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Abstract 

The research at hand has been accomplished in collaboration with our industry partner, 

Rigid Robotics Inc. and aims to predict and suggest solutions for some of the known and 

unknown issues that might appear in operation of a tethered Unmanned Aerial System (to 

be referred to as UAS hereafter). In this work, the static and dynamic behaviour of the 

power cable connecting a hovering UAS to its base station is studied in different flight 

scenarios. The mathematical modelling of the cable is carried out using catenary 

equations for the static case and multi-body dynamics principles are employed for the 

dynamic condition. In the preliminary stages of the project, for the purpose of the cable 

and UAS design, a simple technique is used to estimate the maximum tension forces 

present in the static state of the cable as well as the cable shape function and other related 

parameters when UAS is in hovering mode. The derivation of the system’s equations of 

motion is done using Lagrange’s Equations by considering the cable as a discrete multi-

body system. The equations of motion are derived for a system of finite segments and are 

solved numerically using MATLAB™ software package in order to simulate the cable’s 

motion. The effect of wind on the dynamics of the cable is also implemented using 

theoretical methods and simulations. The system’s dynamics is modeled in a planar 

motion as well as a 3D space in separate chapters. 

 

Keywords:  Mathematical Modelling; Cable Dynamics; Tethered Systems; Multi-body 
Dynamics; Lagrange’s Equations; Umbilical Cables 
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Chapter 1.  
 
Introduction 

1.1. Research Objective and Motivation 

This thesis is focused on analyzing the behavior of a cable used to tether a 

hovering Unmanned Aerial System (to be referred to as UAS hereafter) to its stationary 

base station in different operation scenarios. The purpose of the cable is to power the UAS 

in order to increase its operation duration as well as to communicate data securely. This 

research was initiated in collaboration with Rigid Robotics Inc. to analyze the tether’s static 

and dynamic effects on the UAS which they intended to design and manufacture.  

Flexible cables have been in use for several years in many structures including 

bridges; electrical power lines, towing and mooring systems, hovering tethered aerostats, 

etc. For example, a cable might be used for towing an underwater vehicle using a vessel 

or to connect two flying aircrafts called an aerial tow system [1]. Tethering different 

mechanical systems are among applications which benefit significantly from the use of 

cables. These systems are referred to as cable-body systems and are required to satisfy 

certain physical requirements depending on their application and the environment in which 

they are operating [1].  

Cables are widely used in these applications because of their flexibility and 

versatility. The fact that cables provide tension while not resisting compression, makes 

them unique and useful for certain applications. They are also able to mitigate vibrations 

in comparison to similar components of same mechanical properties. 

To better understand the static and dynamic behavior of the system including the 

cable, its effect on the base station, as well as the tension that the cable exerts on the 
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UAS, it is important that the system is modeled so different operation scenarios can be 

simulated and analyzed. By having a reliable dynamic model for the cable-body system, 

one can investigate the cable tensions in each specific flying condition and achieve design 

criteria for system components, including the cable, UAS propellers and motors, cable-

UAS connection joint, the winch and its motor, etc.  

The effect of wind on the system and implement these considerations into the 

controller design procedure for both the winch controller and the UAS controller. Although 

the UAS autopilot mostly considers the tether tension as an external disturbance rather 

than a real-time estimated input, it is critical to understand the operation point which 

enables the control design engineers to design a more robust length controller and 

autopilot for the system. 

1.2. Literature Review 

Using cables in mechanical applications is very common; thus a wide variety of 

analytical and numerical research has been carried out around analysis of cable dynamics 

and static behaviour. Many methods have been employed to analyze the cable dynamics 

in literature, as noted in Choo and Cassarella’s survey of different cable modelling studies 

[1].  These methods include continuous and discrete approaches such as method of 

characteristics, finite element method, linearization method, equivalent lumped-mass 

method, etc. Continuous approaches are mostly used to analyze a cable’s oscillation 

modes or when the static configuration of the cable is of interest. It is common for the 

continuous models to be incapable of yielding a transient response for the whole system 

due to the complication or inefficiency of solving the equations of motion. Discrete models 

are used to analyze larger displacements in the cable when the transient response of the 

system is desired. Among these simulation approaches, method of finite-segment has 

been investigated properly to study the cable’s behavior. Several works have been carried 

out by discretizing the cable into several segments and the equations were derived by 

writing the system equations for a multibody system of finite cable elements.  

In 1972, Dominguez et al. employed a discrete approach to analyze the static and 

dynamic behavior of cable systems [2]. In 1976, Winget and Huston employed a non-linear 
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3D finite segment approach to investigate the dynamic behavior of a cable or chain. Dreyer 

and Van Vuuren [3] have studied static configuration of an inflexible 2D cable anchored at 

its endpoints in 1999 without considering external forces on the cable except gravitational 

forces. The solution was obtained by numerical analysis for both continuous and discrete 

models and results were validated experimentally.  

As mentioned before, cables are used in towing aerial and marine vehicles. 

Kamman and Huston modeled towed and tethered cable systems with a focus on reel-

in/pay-out and towing configurations for marine vehicles in 1999 [4]. Same authors also 

numerically simulated cables for marine applications in 2001 [5]. Dynamic analysis of 

cable structures as discrete systems have been studied in several works and are available 

widely through literature. Buckham et al. have carried out extensive research in this area, 

specifically for underwater vehicles including both low-tension and taut cable applications 

[6]–[11]. 

Many research papers have also been published on analysis of cable dynamics 

and statics for aerial applications. In 1967, Genin and Cannon investigated equilibrium 

configuration and tensions of flexible cables in a uniform flow field with a focus on aerial 

towed vehicles [12]. They considered the effect of cable weight, friction, and drag in their 

mathematical analyses. In 1971, Huffman and Genin in a continuation of Genin’s previous 

work, studied the dynamical behavior of the same system [13]. Non-linear mathematical 

model for extensible cables were derived and computer simulations were run. This model 

considers large displacements as well as impact forces and drag forces while studying the 

stability of the system. 

Quisenberry have worked on aerial tow systems by mathematical modelling of the 

cable as a discrete cable-body system using Lagrange’s method [14]–[16]. In these works, 

the authors have developed a model for the cable in an aircraft tow system and predicted 

the dynamic response of the towed aircraft. 

In a research by Hembree and Sleger [17], authors have modeled a tether using 

recursive rigid-body dynamics in which they estimate the tension in the tether based on a 

low strain model. The elements used in this work are not elastic and each cable element 



 

4 

has only 2 DOF. Johansen et al. [18] have modeled inextensible cable dynamics using a 

discrete cable model and validated their results with a hanging cable. 

Montano et al. [19] studied dynamics of a tethered buoy using mixed finite 

elements. In this work, the model considers a quasi-extensible tether attached to a buoy 

vessel and implemented the buoy’s dynamics. Surendran and Goutam [20] investigated 

reduction of the dynamic amplitudes of moored cable systems. They modeled the cable 

as a discrete lumped mass system and modeled the static and dynamic responses of the 

system.  

Aerostats are similar to the system we are analyzing in this work in the sense that 

they are aerial systems that exert tension to the upper end of the tether, with the exception 

that they usually have no vertical thrust and have more drag due to the wind. There are 

many works on tethered aerostats in literature which date back to as early as to the 70’s. 

Kang and Lee [21] have developed equations of motion for a tethered aerostat 

under atmospheric turbulence using nonlinear cable dynamics for an extensible tether. 

They have obtained results on tether forces due to different wind gusts. Rajani et al. [22] 

have studied dynamic stability of a tethered aerostat in which the cable is modeled as a 

discrete system of segments modeled as a “spring-mass-dashpot” system with the 

segment mass concentrated at the nodes. 

In a similar work, Stanney and Rahn [23] developed equations of motions for a 

tethered aerostat wind under turbulence and obtained results on aerostat position, 

attitude, and tether tension due to wind disturbances. In two separate works in 1982 and 

2001 by Jones and Krausman [24], and Jones and Schroder [25], respectively, the authors 

simulated the response of a tethered aerostat to atmospheric turbulence. They used a 

“Frozen-Field” turbulence model and solved for the dynamics of the system using a non-

linear dynamic simulation. 

Few works have been accomplished modeling a tethered aerial vehicle. Among 

these, Nicotra et al. [26] studied taut cable control of a tethered UAV; although the focus 

is mostly on controlling the UAV and less attention is paid to the cable model. The cable 

is considered taut and the cable tension is considered a disturbance to the UAV. Therefore 
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no specific cable model is developed in this work. Lupashin and D’Andrea [27] 

accomplished a work on stabilization of a flying vehicle on a taut tether, however, the focus 

of this research is mostly on the control of the vehicle rather than modelling the cable itself. 

Muttin [28], [29] has developed equations of motion for a flying ducted fan for oil 

slick surveillance and detection. In this work, the model is approximated using finite-

element method and an updated Lagrangian approach to model the reeling process for 

the UAV as well as effect of wind on Vertical Take Off/Landing (VTOL) process. The 

research considers the effect of wind on the ducted fan as well as simulates the cable 

reeling during operation and emergency mode. 

1.3. Thesis Organization 

Chapter 2: Preliminary Modeling of the Cable, is dedicated to preliminary 

modelling of a static cable. Although all the catenary equations have been derived and 

used extensively in research in all applications, no organized solving algorithm for such a 

system has been developed. This chapter models the cable as a simple static catenary 

shape, however it implements the equations in a very user-friendly code.  

Chapter 3: Two-Dimensional Multi-Body Dynamics Modeling and Analysis of 

the Tether, is allocated to mathematical modelling and simulation of the cable as a 

multibody dynamic system by modelling the system using Lagrange’s method. This 

method is an energy-based method and is more capable and less labor-intensive than 

Newtonian Mechanics in deriving equations of motions of dynamic systems, more 

particularly multi-body systems.. The equations are then solved and simulated using 

MATAB software. Some results are presented at the end for a specific case. 

Chapter 4: Three- Dimensional Multi-Body Dynamics Modeling and Analysis 

of the Tether, analyzes the same problem in a 3D space using the same method as 

Chapter 3. Simulations are run to capture the non-planar motion of the cable. Results are 

presented and observations are made at the end. 
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Finally, Chapter 5: Conclusion, summarizes the work done in this thesis. A few 

recommendations are made and some future works are proposed at the end. 

1.4. Contributions 

The algorithm developed in Chapter 2, although based on simple catenary 

equations, can help the user in analyzing a static cable efficiently without being involved 

in solving catenary equations. Although the purpose of this work was to analyze a captive 

UAS, the static model can be used in any application using a static cable when the only 

external forces applied to the cable are the ones at the cable ends as well as the 

gravitational force. The user can define mechanical properties of the cable as well as the 

forces at the top end, the cable length, as well as horizontal and vertical distance between 

both cable ends. 

Although various extensive research has been carried out on dynamics of flexible 

cables, there is no straightforward organized approach or tool available to analyze 

dynamics of a cable in specific applications. The cable model derived in this work along 

with the computer algorithm developed, allow the user to initiate analyzing the cable’s 

behavior efficiently. The cable model is very versatile and can be applied to a wide range 

of applications in several environments. Given a correct and accurate vehicle model, such 

as a flying vehicle, or a submarine equipment, one can integrate these models into the 

algorithm, allowing the software to generate results of a specific simulation. As an 

example, one can use the cable model to analyze the behavior of a tethered aerostat, or 

a towed submarine vehicle, as long as the user is familiar with the dynamics of the vehicle 

and is able to model it mathematically. 
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Chapter 2.  
 
Preliminary Modeling of the Cable  

2.1. Introduction 

As mentioned in the first chapter, the main objective of this research is to predict 

the behaviour of the cable while the UAS is in different operation scenarios e.g. hovering 

above the base station, or vertical landing or take-off. As a first attempt to predict these 

cable shapes for the preliminary phases of the project, analysis of static behavior of the 

cable as a catenary shape was initiated.  

Knowing certain constant parameters of the system, such as cable’s mechanical 

properties, as well as variable parameters, one can solve for the unknowns of the problem 

using the algorithms offered in this chapter. In order to determine the unknown parameters 

of the problem, one should solve the equations for some parameters such as the cable 

shape function, the length of the cable, and the tension on both ends as well as the tension 

function along the tether. Although the latter is of less importance since the maximum 

tension does not occur along the cable. 

The following sections will explain how calculation of some of these parameters 

was performed during the preliminary phases of the project in order to achieve an estimate 

of the cable’s behaviour. The theory behind this chapter’s content will be presented 

followed by the application to this specific problem as well as solution of the equations and 

results. A conclusion section will follow at the end discussing the obtained data. The 

MATLAB™ codes and instructions on how to use these codes for other similar case-

specific applications are presented in Appendix A. 
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2.2. Development of the Case-Specific Cable Model 

As discussed in Chapter 1, this application concerns a UAS flying at a certain 

altitude and is connected to a base station using a flexible power cable. This configuration 

is simplified assuming the cable is hanging only under effect of its own weight and is 

illustrated in Figure 2.1. It is assumed that the UAS is flying in the same plane as the reel 

i.e. xz-plane; therefore the problem is considered two-dimensional. In practice this is not 

the case since the UAS is flying in a three-dimensional space. The 3D modelling and 

simulation of the cable will be investigated in Chapter 4. 

 

Figure 2.1. UAS – Cable Geometry Configuration 

In addition, assume that there is no wind present so the variables are being 

acquired under a static condition. In practice, usually wind is present and affects the 

physics of problem. In the initial phase of this project it was necessary to estimate the 

relation between parameters such as UAS height and horizontal position, cable length, 

tensions and cable slopes in order to capture some basic working assumptions for the 

UAS. As a result, the analyses in this chapter are limited to a simplified case where 
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external loads are not present. The effect of wind on the cable shape and forces will be 

investigated in Chapter 3. 

Assuming the reel position is fixed, it will have a certain horizontal and vertical 

distance from the hypothetical vertex of the catenary in each different setting; named xA 

and zA respectively. Therefore the coordinate system is not fixed and is defined relative to 

the reel’s position. That is, after solving the problem the parameters xA and zA represent 

the distance between the reel and the vertex of the virtual curve. At this stage, the origin 

of the virtual catenary curve is defined with respect to the base station A and is fixed for 

this specific combination of L, p, and H. From this point all other variables such as zA are 

defined in this coordinate system.  

Generally, this system has six main variables, namely, L, p, H, xA, zA, and T0. Once 

these six variables are known, the system is defined and all other variables, i.e. xB, zB, θA, 

θB, T1 and T2 which are dependent on these variables and can be calculated. Since zA is 

also a direct function of xA, one can represent the system by 5 main equations and 5 

variables. As an example, if some of the parameters of the problem including UAS height 

H, cable length L, and UAS horizontal offset from the base station, labeled p are known, 

the system can be solved. 

To reduce the number of unknowns and equations, the equations are reordered 

by substituting some of these variables with others. Looking at catenary equations, one 

can express the vertical position of any point on the cable in terms of its horizontal position. 

The following equations hold true for both points A and B or generally any point on the 

cable. As stated before, points A and B, respectively represent the reel and the UAS and 

the difference between their vertical coordinates is the UAS height H. 

0

0

cosh 1A
A

T x
z

T





 
  

 
 

 
( 2.1 ) 

0

0

cosh 1B
B

T x
z

T





 
  

 
 

 
( 2.2 ) 
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Therefore, one can see that zA itself is a function of xA and T0 and can be 

considered as a dependant variable and be calculated after solving the system equations. 

Since the difference between these two equations represents the height of the UAS, by 

geometry, one can write: 

B A

B A

x x p

z z H

 


 
 

 
( 2.3 ) 

Equation ( 2.1 ) can be combined with ( 2.2 ) to get 

 
0

0 0

cosh cosh
A A

x pT x
H

T T

 



 
  

 
 

 
( 2.4 ) 

On the other hand, taking a derivative of the angle equation will yield the slope 

equation of the curve. Applying the slope equation at each point A and B will result in 

Equations ( 2.5 ) and ( 2.6 ). 

0

tan sinh

A

A
A

x x

xdy

Tdx






   
 

( 2.5 ) 

0

tan sinh

B

B
B

x x

xdy

Tdx






   
 

( 2.6 ) 

Also, the tension at any point can be expressed in terms of its tangent angle as:  

0

cos

T
T


  

 
( 2.7 ) 

that is, for any point along the cable, the longitudinal cable tension is related to the cable 

angle by this equation. 
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Figure 2.2 shows the free body diagram of the whole cable in equilibrium. 

Assuming the reel is locked and therefore prevented from rotation, the cable can be 

assumed to be suspended between two fixed points A and B. Writing the equilibrium 

equations in both x and z directions will yield: 

0

0

cos cos

sin sin

A A B B

B B A A

T T T

L
T T

T

 


 

 



 


 

 

( 2.8 ) 

 

Figure 2.2. Free-body diagram of the cable in static equilibrium 

By substituting TB from the first line in Equation ( 2.8 ) in the second equation and 

some simple operations one can conclude the following. 

0

tan tanA B

L

T


    

 
( 2.9 ) 

By substituting Equations ( 2.5 ) and ( 2.6 ) into ( 2.9 ), Equation ( 2.9 ) can be 

expressed as:  



 

12 

 

0 0 0

sinh sinh
A A

x p x L

T T T

  
   

 
( 2.10 ) 

Overall, by substituting some of the variables and reordering equations, one can 

reduce the number of variables to five and the number of equations defining the system 

to two. Equation ( 2.11 ) shows the system of two equations that should be solved in order 

to determine the system’s solution. The method for solving these equations will be 

presented in Section 2.3. At this point, there are five variables present in this system of 

equations which are L, p, H, xA, and T0. The equations can be solved given any three 

parameters of the system. 

 

 

0

0 0

0

0 0

cosh cosh

sinh sinh

A A

A A

x pT x
H

T T

x pT x
L

T T

 



 



  
   

  


 
  

 

 

 

( 2.11 ) 

2.3. Solving the System of Equations 

Equation ( 2.11 ) is a set of two nonlinear equations which express variables L and 

H in terms of independent variables xA, T0, and p. Depending on the configuration of the 

problem, this equation can be changed to match the unknowns of the problem. As an 

example, in an application cable length L, UAS height H and horizontal position p might 

be known, therefore the only unknowns of the problem will be xA and T0. However this 

configuration will become a set of implicit equations in terms of xA and T0, since xA cannot 

be directly expressed in terms of T0 or vice versa. In general, Equation ( 2.11 ) represents 

two implicit nonlinear equations and cannot be solved analytically. As a result, a numerical 

method should be used to solve this equation, which is explained in Sections 2.3.1 

and 2.3.2. 
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2.3.1. The Basic Optimization Problem 

Consider a system of n equations and n unknowns as shown in Equation ( 2.12 ). 

 

 

 

1 1 2

2 1 2

1 2

, , , 0

, , , 0

, , , 0

n

n

n n

f x x x

f x x x

f x x x

 





 

 

 

( 2.12 ) 

Now, the variables are defined as a vector called x , where 

1

n

x

x

x

 
 

  
 
 

 

 

( 2.13 ) 

One can then write Equation ( 2.12 ) as 

 

 

1

2

0

0

f x

f x

 




 

 

( 2.14 ) 

Equation ( 2.14 ) has a unique solution specifically for this system of equation,
*x

when  

   
2

1

( ) 0
n

i

i

F x f x


   
 

( 2.15 ) 

where  F x is usually referred to as the cost function or objective function [3]. 

In order to solve Equation ( 2.15 ), One can reduce this problem to an optimization 

problem of the following form 
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 minimize  

subject to appropriate constraints

F x
x






 

 

( 2.16 ) 

The solution to Equation ( 2.16 ),
*x is the minimizer of the objective function  F x

; thereby satisfying the requirements of the original system Equation, ( 2.12 ). Usually a 

numerical search method such as Steepest-Descent method, Newton Method, or Gauss-

Newton Method should be employed to solve Equation ( 2.16 ). 

2.3.2. Numerical Solution to the System of Equations 

As explained in Section 2.3.1, before solving the problem, it should be formulated 

properly. One can write Equation ( 2.11 ) in the following form to comply with the format 

of the optimization problem discussed in Section 2.3.1. 

 

 

0

0 0

0

0 0

cosh cosh 0

sinh sinh 0

A A

A A

x pT x
H

T T

x pT x
L

T T

 



 



  
    

  


 
   

 

 

 

( 2.17 ) 

If first and second equations are denoted by f1(x) and f2(x) respectively and 

consider T0 and xA as two unknown variables x1 and x2, one can write 

 
 

 
 

12 1
1 1 2

2 2

12 1
2 1 2

2 2

, cosh cosh 0

, sinh sinh 0

x px x
f x x H

x x

x px x
f x x L

x x

 



 



  
     

  


 
    

 

 

 

( 2.18 ) 

Now define a vector variable x  denoting the unknown variables of the problem, 

where 
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1

0 2

Ax x
x

T x

   
    

  
 

 
( 2.19 ) 

One can then re-write Equation ( 2.18 ) as 

 

 

1

2

0

0

f x

f x

 




 

 

( 2.20 ) 

which can be reduced to Equation ( 2.21 ) similar to the optimization problem shown in 

Equation ( 2.16 ). 

 

1 2

minimize  

subject to

, 0

F x
x

x x





 



 

 

( 2.21 ) 

In this work, the optimization problem for Equation ( 2.17 ) is solved using 

MATLAB’s nonlinear equation solver function “fsolve”. The programming details and the 

MATLAB™ codes are presented in Appendix A. This tool needs the input equations as a 

vector function of the following form where f1 and f2 are the same functions as described 

in Equation ( 2.18 ). 

1

2

f
G

f

 
  
 

 
 

( 2.22 ) 

 This search algorithm is able to solve Equation ( 2.17 ) with a convergence 

tolerance of less than 10-12. After running each algorithm, the tolerance is checked to 

ensure convergence of the problem. Some example results for different scenarios one can 

apply this tool are presented in the next section along with discussion on how this tool has 

helped achieve some initial working assumptions for the UAS operation. Note that the 



 

16 

mentioned equations are set up for a specific case when the cable length, altitude and 

horizontal position of the UAS is known. However the equations can be set up accordingly 

to accommodate other scenarios. As an example imagine that the altitude and horizontal 

position are known and a certain tension on the cable is required. One can set up the 

equations in a way that the algorithm yields the required cable length to keep the desired 

cable tension. This would be particularly helpful if the purpose of the analyses is to design 

a tension controller system.  

2.4. Results and Discussions 

This section is dedicated to exploring some scenarios of UAS operation. The 

methods and algorithms discussed in previous sections are applied to some specific cases 

and present results and discussions about the observations. The MATLAB™ codes which 

solve specific problems are presented in Appendix A. It should be noted that in all cases, 

the constant µ, cable’s weight per length should be entered at the beginning of the code. 

Moreover, all units used in this algorithm are in metric system. More instructions regarding 

running the codes to solve the problem are presented in Appendix A. 

It should be emphasized again that this chapter assumes a planar motion without 

presence of wind or disturbance on the system’s dynamics and do not consider the 

dynamics of the system and specifically the UAS. The UAS is considered to be able to 

hold its stability and position autonomously and that it introduce no disturbances on the 

cable. That is, a steady state equilibrium is assumed for the system. This assumption is 

valid only for the cases where wind is not present and there is not external forces applied 

to the system. 

As mentioned previously, one can define the problem as they desire based on the 

known factors of the system. For example, one can use three inputs including L, H and p 

to determine the cable’s shape function as well as tensions along the cable as a function 

of horizontal coordinate, x. Also, the codes will help the user develop some general insight 

about how the cable will achieve equilibrium in some scenarios. Three cases are 

investigated in the following three sections. 
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2.4.1. Case I:  Known UAS Coordinates 

In general, for the system developed, knowing three parameters will make the 

problem defined. In the event that the UAS’s coordinates are known, one can solve the 

problem by feeding the known parameters to the algorithm written in the file named 

“Mtethsolve3.m”. This code solves the catenary equations and determines cable variables 

of interest including tensions and cable angle at both ends or on any point of interest on 

the cable. 

Generally, parameters such as altitude (H) and the horizontal offset (p) can be 

available through the UAS’s GPS system or other systems such as an inertial navigation 

systems. Length of the cable (L) can also be known by tracking the reel’s payout, although 

other methods might be used to determine these values. In the case considered in this 

work, since the project is in the research and development stage, the purpose is only to 

predict different scenarios that could occur during flight and gain a better understanding 

of the physics of the system. 

To illustrate the results from this case, a sample algorithm is run for a system with 

parameters p=15, H=120, and L= 122. The cable parameters used in the simulation are 

presented in Table 2.1 

Table 2.1. Parameters Used in Simulation 

Simulation Parameter Value Units 

Mass per length 0.14 [kg/m] 

Cable Modulus of 
Elasticity 

80 [GPa] 

Cable Diameter 0.0135 [m] 

Cable Length 122 [m] 

UAS Height 120 [m] 

UAS Offset 15 [m] 

The syntax for the algorithm is in the form of  

>>Mtethsolve3(p,H,L) 
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As an example, running a script called “Mtethsolve3” with the parameters of 

Table 2.1 and running the following command will yield the results.  

  

>> Mtethsolve3(15,120,122) 

 

 

Figure 2.3. Cable shape function 

Using this algorithm, once the system equations are solved, one can plot the cable 

shape function as well as evaluate all cable values. Using another script called 

“Mtethplot3”, the cable shape can be plotted in a 2D plane. Figure 2.3 shows the cable’s 

shape function using four different values of horizontal offset for the UAS with fixed altitude 

and cable length. The base station is located at the origin of the coordinate system, and 

the red rectangle represents the hovering UAS. 

In order to see the tension ranges of the cable both at the UAS and at the winch, 

the algorithms to solve for the cable parameters are used and cable tensions are plotted 

at the winch and at the UAS along with the cable angle at both ends. This is useful 

specifically in understanding the ranges of cable tensions occurring in different hovering 

scenarios. It has helped with understanding the power ranges for the UAS based on the 

vertical thrust it needs to provide to maintain a specific cable tension range. 
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Table 2.2 shows the parameter ranges considered for the cable length as well as 

UAS positions according to the operation requirements. The UAS is allowed to move in a 

40 meters horizontal distance from its base station while it is supposed to hold an altitude 

between 110 to 130 meters.  

Table 2.2. UAS Operation Requirements 

Simulation Parameter Value Units 

Cable Length (L) 120.5-125 [m] 

UAS Altitude (H) 110-130 [m] 

UAS Horizontal Offset (p) 0-40 [m] 

Figure 2.4 shows positive, zero and negative tension angles at the winch for a 

certain UAS height and cable length at three different offsets. Note that the angles defined 

are with respect to the horizontal line. For each cable length, the angles will be zero at a 

specific offset. This essentially means that the base station will be located at the vertex of 

the catenary making the tangent at the curve, i.e. cable angle zero. Negative angles 

technically mean that the cable is slack and is hanging below the virtual base station. In 

practice, if the base station is located on the ground the cable will be lying on the ground 

and the physics of the cable will change and this analysis will not be applicable to the 

system. However, assuming the cable is allowed to hang below the winch, one can use 

this tool to solve for the system’s parameters.  

 

Figure 2.4. Cable Angle Definition 
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Figure 2.5 shows the magnitude of the cable tensions and angles at the winch 

versus the horizontal offset for different cable lengths for a UAS hovering at a constant 

height of 120 m. For each cable length, the figures are plotted against the offset to a 

maximum offset value as the geometry permits. For an inextensible cable, the limit of the 

offset is determined by the UAS height and length of the tether. 

One can observe that the tension values approach small numbers as the UAS gets 

closer to the base station. For higher cable lengths, when the horizontal offset gets 

smaller, the cable will gain some slackness and the tension direction will be downwards. 

This can be confirmed by the cable angle curves. 

 

Figure 2.5. Cable Tension and Angle vs. Horizontal Offset at Winch for Various 
Lengths, Constant Altitude 

Figure 2.6 shows the cable tensions and angles at different cable lengths plotted 

against the UAS horizontal offset. Again, one can observe the UAS tensions when the 

UAS is closer to the base station tend to converge to a certain range of numbers. These 

numbers are technically the weight of the cable hanging from the UAS. This could be 

interpreted in another way; i.e. when the UAS is closer to the base station, changing the 
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cable length affects the tensions at the UAS less significantly than when it is horizontally 

positioned further, i.e. larger p values. 

 

Figure 2.6. Cable Tension and Angle vs. Horizontal Offset at UAS for Various 
Lengths, Constant Altitude 

 

Figure 2.7. Vertical and Horizontal Components of Tether Tension at UAS for 
Various Lengths, Constant Altitude 



 

22 

Although these two figures are useful in understanding the cable tension, they do 

not give transparent implication of the vertical loads on the UAS. Therefore, the vertical 

and horizontal components of the tension at UAS are plotted and presented in Figure 2.7. 

To observe the effects of the UAS altitude on the tensions, for a UAS hovering at 

a constant offset, Figure 2.8 and Figure 2.9 are presented below. As can be seen in 

Figure 2.8, the tension at the reel takes a minimum value at any certain height. That is, for 

this specific horizontal position, the minimum tension at the reel is 5 N. However by 

comparing Figure 2.8  and Figure 2.10 one can confirm that this minimum value increases 

as p increases. Figure 2.10 shows the results for the same cable lengths and altitudes at 

the offset of 25 meters. 

 

Figure 2.8. Cable Tension and Angle vs. Altitude at Winch for Various Lengths, 
Constant Offset  

Figure 2.9 presents the cable tensions and pull angle at the UAS at different 

heights when the UAS holds offset and constant cable length. This figure helps one 

understand how much the tension increases as the UAS gains height holding other 

parameters constant. It is useful to know the sensitivity of the tensions both at the UAS 

and at the winch to height so the user can understand what to expect in different scenarios.  
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Figure 2.9. Cable Tension and Angle vs. Altitude at UAS for Various Lengths, 
Constant Offset 

 

 Figure 2.10. Cable Tension and Angle vs. Altitude at Winch for 
Various Lengths, Constant Offset of 25 m 
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To illustrate the vertical and horizontal components of the tension at the UAS, they 

are plotted against the UAS altitude H in Figure 2.11. Given any desired horizontal offset 

from the base station as well as cable length, one can plot the cable tensions at the UAS 

or the base station against different flying altitudes to understand how the tension changes 

as the UAS increases its operation height. 

 

Figure 2.11. Vertical and Horizontal Components of Tether Tension at UAS for 
Various Offsets, Versus UAS Altitude 

Considering a UAS at a certain height and distance from base station, it is 

worthwhile to observe the tension sensitivity to cable length changes at both cable ends. 

Figure 2.12 and Figure 2.13 show the tensions at winch and UAS respectively as a 

function of cable length when the UAS height is held constant. The results are plotted for 

different horizontal offsets. 
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Figure 2.12. Cable Tension and Angle vs. Cable Length at Winch for Various 
Offsets, Constant Altitude 

 

Figure 2.13. Cable Tension and Angle vs. Cable Length at UAS for Various Offsets, 
Constant Altitude 
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As mentioned before, the tension itself at the UAS might not define the need for 

the power requirement of UAS thrust system. Thus, Figure 2.14 has been generated 

showing the two horizontal and vertical component of these forces. 

 

Figure 2.14. Vertical and Horizontal Components of Tether Tension at UAS for 
Various Offsets, Constant Altitude 

The results in this section were essentially used in the first stages of research and 

development of the UAS system in order to estimate the winch motor’s torque as well as 

UAS thrust production capability for a more confident conceptual design. In the next 

section, another approach is used and some new results are presented. 

2.4.2. Case II: UAS Thrust and Pitch Effect 

In order to analyze the UAS thrust effects on the cable, another algorithm was 

developed to which one can feed the UAS vertical and horizontal thrust. In equilibrium, the 

thrust force from the UAS will be equal to the tension at the upper end of the cable. 

Therefore, by inputting the vertical and horizontal components of the UAS thrust to the 

algorithm along with the cable length, the algorithm is able to solve the equations and find 
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the parameters of the catenary including horizontal and vertical distance from the base 

station–called offset and altitude, respectively– as well as the vertex location xA. 

Having obtained these parameters, the system is defined and all other parameters 

are calculated accordingly. At this point, the cable shape function can be plotted as well 

as the UAS trajectory. It is worthwhile to emphasize again that UAS and the cable are 

under effect of no external forces and the system is considered stable and in equilibrium. 

The purpose of this test is to see the effect of the length on the cable shape and 

UAS position while the UAS thrust and pitch remain constant. The UAS thrust’s vertical 

and horizontal components can be defined in the form of thrust and pitch meaning that the 

UAS propellers produce a constant vertical thrust. 

 

Figure 2.15. Effect of Length on UAS position, Constant Thrust and Pitch 

Figure 2.15 shows the UAS position for various cable lengths when the UAS thrust 

and pitch are kept constant. It can be observed that by keeping all UAS parameters 
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constant, increasing the length increases both the horizontal position and the flying 

altitude. This helps understand how the cable length affects the position of the UAS. 

In addition, using a similar algorithm, the UAS hovering altitude and horizontal 

offset is plotted as a function of the cable length for the same UAS thrust and pitch in 

Figure 2.16.The two plots in this figure imply that both the altitude and offset change 

linearly with the cable length as long as the forces on the upper end of the tether remain 

constant. This is very important in understanding the reeling in / paying out process. Of 

course, this analyses can be applied to the cases where the system is in a quasi-static 

condition, i.e. the changes in the speed of reeling is small to the point that at each time 

step, one can assume the system is in equilibrium without the presence of inertial forces. 

 

Figure 2.16. UAS Altitude and Offset vs. Cable Length at constant UAS Thrust and 
Pitch 
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2.5. Conclusion 

In this chapter, a simple user-friendly tool has been developed to help any user 

model and solve equations of a static catenary. The focus of this chapter, however, was 

application of this tool to a cable which tethers an unmanned aerial system (UAS) to the 

ground base station. With the correct implementation of variables and equations, this tool 

can be applied to any static cable to achieve forces and cable shape functions in the 

absence of external forces.  

As an example, by applying the correct weight per length for a mooring cable it can 

be applied to a cable connecting a floating object to the seabed. As mentioned before, the 

model is limited to cases where wind or water current, or generally external forces are not 

present and where the static condition of the cable is of interest. As another example, one 

can solve the equations for a certain system configuration based on different weights per 

length of the cable to observe the effect of cable weight on the outputs of the problem. 

In this chapter, two different case studies are presented to demonstrate the 

capability of the developed algorithm in application to different scenarios and some results 

are presented. The results are used to observe the cable behavior to different 

configurations of the system. According to these results one can better understand the 

sensitivity of the tensions both at the UAS and at the winch to different parameters, 

including length, and UAS vertical and horizontal position. In addition, it helps understand 

how the UAS behaves by changing length and what pitch and thrust are required to 

maintain position. Another outcome of these tests is the effect of cable length on UAS 

position by keeping UAS thrust and pitch constant. 

As mentioned in Section 2.1, the codes are limited in terms of application, in the 

sense that they are unable to predict the results of a dynamic system. It is also limited to 

the cases where external forces are absent. However, it is powerful in predicting a quasi-

static system where the acceleration is almost zero and as a result, no inertial force is 

present. With some in-depth mathematical derivation, one may extend this model to one 

that can analyze external forces such as uniform wind, etc. 



 

30 

Chapter 3.  
 
Two-Dimensional Multi-Body Dynamics Modeling 
and Analysis of the Tether 

As mentioned in Chapter 1, nonlinear analysis and modeling of a flexible cable is 

not a straight forward task and can become quite complicated in terms of analytical 

solution [16]. In an effort to approach this problem, a finite segment model is developed 

and solved in order to investigate the cable’s behavior and its interference with the UAS. 

This chapter is dedicated to explaining how the system is modelled and what tools and 

methods are used to derive the equations of the system and how they are solved. Some 

simulations have been run and some observations are presented at the end.  

3.1. Methodology 

Choo and Casarella [1] have carried out a comprehensive research review on 

different analytical methods for modelling and simulation of cables. Several methods are 

discussed along with merits and limitations of each method. The common methods include 

method of characteristics, finite element method, linearization method, equivalent lumped-

mass method, etc. Among these, finite element method is considered the most versatile 

one since it can be applied almost to any application and physical system [1]. 

To model a flexible cable, a discretization method is employed. The cable is 

considered as a discrete system consisting of small segments of the same length as 

shown in Figure 3.1. The system is a combination of multiple rigid bodies to which multi-

body dynamics rules are applied in order to model and solve for the dynamics of the 

system. Note that in this work, the effect of variable length dynamics is not considered.  
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Figure 3.1. Original cable in a hovering operation vs. Discretized model of the 
same cable 

The equation of motion could be developed using Newtonian mechanics. However, 

in order to develop the model using this method one would need to have full information 

of the external forces acting on each mass node as well as all initial conditions of the whole 

system. In this work, considering the fact that the system consists of several bodies in 

interaction, it was chosen to develop the mathematical model for the multi-body system 

using principles of Lagrangian Mechanics.  

Dynamics of the system can also be studied using Lagrange’s method. This 

method has two main advantages over Newtonian mechanics in deriving the systems 

equations. Firstly, Lagrange’s method is energy-based while Newtonian mechanics is 

vectorial in nature [16]. Therefore using Lagrange’s equations will eliminate the use of 

vectors in the final stages of the derivations of equations of motion since it uses scalar 

values rather than vectors. This can make the derivations less complicated and labour-
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intensive. The second advantage is that unlike Newton’s laws, derivation of the equations 

using Lagrange’s method can be carried out through a certain set of procedures as long 

as the system and its constraints are well-defined [19].  

The derived equations will have to be solved. However as it will be explained in 

following sections, the equations that are derived for this system are a set of second order 

ordinary differential coefficients of which include the variable and their rates which makes 

these equations fairly complicated to solve using common analytical methods. Hence the 

best options for solving the equation of motions would be numerical integration techniques 

such as Euler’s method, Trapezoidal method, Modified Euler’s method, Runge-Kutta 

methods, etc. [16]. In this work, it is chosen to use the Runge-Kutta method due to 

simplicity of implementation. 

3.2. Cable Model 

3.2.1. Cable Segment Model 

The finite-element method that is used should implement a suitable cable segment 

model in order to satisfy the physical requirements of the problem as well as to yield an 

acceptable approximation of the system dynamics. Therefore, it is critical that one defines 

the initial and boundary conditions accordingly. As mentioned previously, there are several 

FEA modeling methods for a discrete flexible cable and different methods use different 

cable segment models. Some of the models discussed by Choo and Casarella [1] are 

simple pendulum model, thin rod model, spring-mass model, etc. Other models 

incorporating a cable segment model as several point masses connected by viscoelastic 

springs are also used in some works such as the research carried out by Buckham et al. 

[11] and also Williams et al. [31]. Figure 3.2 shows these different segment models used 

for FEA modeling of flexible cables. 
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Figure 3.2. Different cable segment models used in literature  
a) Simple pendulum, b) Spring-mass, c) Thin-rod [4], d) Curved beam e) Viscoelastic springs 
[1],[6] 

For the purpose of this research, the simple pendulum model is used due to a few 

reasons. First of all, using this model will help effectively model the wind drag forces since 

straight cylinders are used. Drag forces on straight cylinders in a uniform flow are well 

researched and available for implementation into the equations [32]. Moreover, since the 

cable modeled here has a high stiffness relatively, by neglecting the effect of strain, this 

model yields an appropriate physical representation of the cable in different scenarios and 

eliminates the need for using a spring-mass model. The use of simple pendulum model 

for each segment is also suggested in [19] to reduce computation costs.  

Model of the cable is considered as a system of several cable segments connected 

together in sequence as shown in Figure 3.1. Since it is assumed that the cable does not 

undergo any bending moment due to the large bending radii occurred in operation 

scenarios of this work, the connections are modeled as ideal spherical joints; i.e. there are 

only tension forces present at the connections. However the segments can tolerate 

bending since they are modeled as a simple pendulum consisting of a weightless rigid rod 

and a concentrated mass. The cable segment model used in this thesis is shown in 

Figure 3.3 
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Figure 3.3. Simple Pendulum cable segment 

3.2.2. Coordinate System and Model Set-up 

The two dimensional model of the cable is developed in a Cartesian coordinate 

system labeled XZ-plane. XZ is an inertial frame of reference in which the position of each 

node on the cable is represented. An inertial or namely Newtonian frame of reference is 

defined as a reference frame which does not undergo any acceleration including rotational 

or translational [20]. The origin of this system is at the cable’s connection to the ground 

station, the X axis is parallel to the ground and the Z axis is perpendicular to the ground 

pointing upwards to represent the height of each node. In addition to this inertial coordinate 

system, a local coordinate system called xz is used which is defined separately for each 

and every segment in a way that x-axis is always parallel to the cable segment towards 

the mass end of the segment, called tangent coordinate from here on, and the z-axis is 

perpendicular to the cable segment called normal coordinate hereafter. This configuration 

is shown in Figure 3.4. 

Now, length of the ith segment is labeled by li and the angle each segment makes 

with the horizon is called θi. Having this model in mind helps simply express the position 

of each mass node on the cable model as follows: 

1
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


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




 

 

( 3.1 ) 

where Xi and Zi are the coordinates of the ith mass node. 
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Figure 3.4. Global and local coordinate systems of the discretized cable 

Since there are two different frames, one should be able to convert any vector 

expressed in these frames to one another using a transformation matrix. Now, consider a 

vector represented in the inertial reference frame by (U,W) and in the local xz coordinate 

system by (u,w). A transformation matrix can be used to convert the vector representation 

to/from the inertial frame of reference. The equation below shows the transformation 

matrix used to convert any vector in the xz coordinate (u,w) to its XZ representation, i.e. 

(U,W). 

i

i i

ii

U u

wW


   
    

  
R  

 
( 3.2 ) 
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where the transformation matrix from the body frame to the inertial frame is 

expressed as: 

cos sin

sin cosi

i i

i i



 

 

 
  
 

R  
 

( 3.3 ) 

It is clear that the opposite of this transformation could be done using the inverse 

of the matrix
i

R . 

Using Equations ( 3.1 ) - ( 3.3 ) and since each mass is located at (lj,0) in its own 

local frame, one can write the position of each mass node in the inertial frame as: 

1 1

1 1

            ( 1,2,3, , )
0i i

i i
ji j

j jji

xX l
i n

zZ
 

 

 

    
       

    
 R R  

 
( 3.4 ) 

Now that the model’s geometry is set up and the coordinate systems properly, 

different terms for Lagrange’s equations can be used to derive the equations of motion as 

it is presented in Section 3.3. 

3.3. Derivation of Equations of Motion Using Lagrange’s 
Equations 

As explained in Section 3.1, Lagrange’s equations are used for this system in order 

to derive its equations of motion. It is important to be careful with the degrees of freedom 

of the system in the process of deriving the Lagrangian for a multi-body system. According 

to Greenwood, the number of degrees of freedom (DOF) of a system is equal to the 

number of independent coordinates used to specify the configuration minus the number 

of independent equations of constraint [34][33]. It must be noted that the DOF of a system 

is a characteristic of the system and does not depend on the coordinates chosen to 

represent its motion. 
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As an example, the system discussed in Section 3.2.1, can be defined by only two 

coordinates; examples would include X and Z in a Cartesian system or r and θ in a polar 

system. Consider only one segment as shown in Figure 3.5. In this segment there are two 

coordinates defining the position of the mass; however, this system has only one DOF 

since these two coordinates are not independent, i.e. they can be related to each other 

using a constraint equation.  

 

Figure 3.5. Cartesian vs. Polar coordinates for a cable segment 

The equation of constraint, for a cable segment of length li could be written as 

follows which reduces the DOF to one. 

   
2 22

1 1                               ( 1,2, , )i i i i il X X Z Z i n         ( 3.5 ) 

In the same way one can see that the mass could be located using only the 

coordinate θ in polar coordinates since the length of the pendulum is constant. Hence one 

can verify that the DOF is the same regardless of the coordinate system chosen. In the 

multi-body model of the cable, since n cable segments are used, the DOF of the system 

will be n. This could also be verified in another way. Since there are n segments and each 

segment is defined by 2 coordinates (X and Z), the system needs 2n coordinates overall 

to be defined. On the other hand, there are n constraint equations as shown in Equation 

( 3.5 ) which make the DOF equal to 2n-n; i.e. n degrees of freedom. Therefore the 
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minimum number of generalized coordinates needed for the system to be defined 

thoroughly is n. 

In order to simplify the derivation of the equations using Lagrange’s equations, one 

should use generalized coordinates qi in the derivations [34]. In this analysis, θi could be 

used as the generalized coordinates in the development of Lagrange’s equations. 

The Lagrangian of a system is shown byL and is defined as [23]: 

T U L   ( 3.6 ) 

where T and U are the system’s kinetic and potential energy, respectively. 

Lagrange’s equations for a multi-body system consisting of n rigid bodies can be 

written in the following form [34]: 

                     ( 1,2, , )i

i i

d
Q i n

dt q q

      
  

L L
 

 

( 3.7 ) 

where qi’s are the generalized coordinates used to define the system and
iQ  ’s are applied 

or generalized forces that are not derivable from the potential energy [34]. 

Since in this system, the potential energy is independent of velocity, one can 

reduce the Lagrange’s equations to the following format: 

                   ( 1,2, , )i i

i i i

d T T U
Q Q i n

dt q q q

         
   

 
 

( 3.8 ) 

where Qi’s are generalized forces which include applied forces derived from the potential 

energy. Therefore, by making the right selection of the segment angles as the generalized 

coordinates, Equation ( 3.8 ) can be expressed as: 
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                          ( 1,2, , )i

i i

d T T
Q i n

dt  

  
    

  
 

 
( 3.9 ) 

Now that Lagrange’s equations are established for the system, it is critical that all 

the energy terms are derived correctly in order to be incorporated into the main equations. 

3.3.1. Kinetic Energy and Its Derivatives 

The kinetic energy for a system of n particles can be stated as [20]: 

2

1

1

2

n

k k

k

T m V


   
 

( 3.10 ) 

where Vk represents the velocity vector for the kth particle in the inertial reference frame. 

Therefore, according to the choice of reference frame, one can express the 

squared velocity vector as: 

2
2 2                            ( 1,2, , )

T

k k k k kV V V X Z k n      
 

( 3.11 ) 

However, this equation should be written in terms of the generalized coordinates. 

Differentiating and arranging Equation ( 3.1 )yields: 
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( 3.12 ) 

By substituting this equation into the velocity vector equation, one can write: 
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 
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( 3.13 ) 

which can then be reduced to 

2

1 1
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k i j i j j i
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( 3.14 ) 

where li is the length of the ith segment. 

Now, having derived the velocity in terms of the generalized coordinates one can 

write the kinetic energy of the system as: 

1 1 1

1
cos( )
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n k k

k i j i j j i

k i j

T m l l   
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( 3.15 ) 

where mk is the mass of the node at the end of the ith segment. 

The Lagrange’s equations shown in Equation ( 3.9 ) requires finding some of the 

derivatives of the kinetic energy. Differentiating the kinetic energy with respect to the 

generalized coordinate and also with respect to its time derivative respectively yields: 
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( 3.16 ) 
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( 3.17 ) 

It is very critical to note that in equations ( 3.16 ) and ( 3.17 ), the summation over 

k, will start at the ith component. The reason is that the inner summation covers the 1st to 
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the kth terms. Therefore, for all k’s smaller than I, there are no i or i present in the 

summation; hence, the derivative with respect to these terms are zero. 

Following this, one can write the first term on the left hand side of the Lagrange’s 

equation in Equation ( 3.9 ) as : 

 
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( 3.18 ) 

And finally substituting Equations ( 3.16 ) and ( 3.18 ) into ( 3.9 ) yields the following 

equation as the Lagrange’s equation for this system: 
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( 3.19 ) 

3.3.2. Potential Energy 

With the assumption of no strain or elasticity in the links, the only potential energy 

present in this multi-body system is of gravitational form. Gravitational potential energy is 

usually measured with respect to a datum line at which U=0. Assume a datum line on the 

ground, that is at Z=0. Then for the system shown in Figure 3.4, the potential energy could 

be stated as: 
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3.3.3. Derivation of Generalized Forces 

During the derivation of Lagrange’s equations, as seen in Equation ( 3.19 ), one 

needs to evaluate the generalized forces associated with the system’s generalized 

coordinates [33].  In his book, Dynamics of Multibody Systems, Shabana states that these 

generalized forces can be introduced by applying the principle of Virtual Work which can 

be used both in static and dynamic analysis of a multibody system [35]. Quisenberry has 

also applied this method in their thesis for an aircraft towing system [19]. 

Consider a system consisting of k rigid bodies, whose centres of mass are given 

by 3k Cartesian coordinates, x1, x2,…, x3k. Now consider force vectors F1, F2,…, Fk are 

applied to these bodies at these coordinates and moments M1, M2,…, Mk are applied to 

these rigid bodies, and the system goes through infinitesimal position and angular change 

of δr1, δr2,…, δrk and δϕ1, δϕ2,…, δϕk, respectively. Then the virtual work done by these 

forces on the system can be written as: 
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( 3.21 ) 

Using the principle of virtual work, one can obtain the generalized forces for a 

discretized cable in terms of the external forces. According to Quisenberry [19], for the 

system defined in this work, the generalized forces which cannot be derived from the 

potential energy can be written as: 
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( 3.22 ) 

Also, since 
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by subtracting the derivative of the potential energy, one can express the generalized 

forces for this discrete cable system as: 

 
1
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( 3.24 ) 

After calculating the derivative of the X and Z coordinates with respect to the 

generalized coordinates the generalized forces can be simplified to: 
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Combining with the derived Lagrange’s equation ( 3.19 ), one can write: 
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( 3.26 ) 

Equation ( 3.26 ) actually is a set of n second-order ordinary differential equations 

which altogether represent the equations of motion of the cable in terms of n unknown 

variables iθ and their two derivatives iθ and iθ . Defining the applied external forces as well 

as proper initial conditions, one can solve this set of equations for the cable segment’s 

angular acceleration which will fully define the dynamic behavior of the system. Note that 

these equations are highly nonlinear and cannot be solved using common analytical 

methods. Therefore, a suitable numerical technique should be employed for solving the 

equations of motion of the system.  

Looking at the equations of motion they can be reduced to a matrix/vector format 

for simpler manipulation and representation. The generalized forces can be implemented 

in a vector of a generalized force n×1 vectorQ where: 
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( 3.27 ) 

Also, after manipulation and simplification of the summations on the left hand side 

of Equation ( 3.26 ), the following matrices can be defined to represent the Lagrange’s 

equations similar to Quisenberry’s work in [19]: 

   
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
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 ( 3.29 ) 

where matrix M  is the mass distribution matrix for the multibody system and is defined 

as: 

 
 

ij
max ,

=              ( , 1,2, )
n

k

k i j

m i j n


 M  
 ( 3.30 ) 

Using these the matrices introduced in Equations ( 3.27 ) – ( 3.30 ), Equation ( 3.26 

) can be expressed as: 

                 diag Aθ B θ θ Q  
 ( 3.31 ) 

where A and B are n by n matrices and functions of i ’s and Q is a vectors with n rows 

and a function of i  and i . Also,θ and θ  are n×1 vectors consisting of i  and i

respectively. Considering these notations, calculation of the external forces will conclude 

the derivation of Lagrange’s equations in the next section. 
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3.4. External Forces 

In general, cables used in most applications in industry are subject to certain types 

of external forces. As an example, consider a mooring cable connecting a ship to a towed 

ROV or an aircraft towing an autonomous UAV. In all these cases as well as the case of 

a tethered flying vehicle for this work, external forces e.g. those caused by wind or water 

current may be applied to the system. This might significantly affect the cable’s shape 

function as well as its dynamic behaviour and tensions acting on the base station and the 

UAS. Thus it is important to derive and implement these forces into the system’s equations 

for the purpose of this analysis. 

As Equation ( 3.31 ) suggests, the generalized force vector Q should be defined 

so that one can solve the Lagrange’s equations. Equation set ( 3.27 ) shows that this 

generalized force vector, consists of the external forces and moments exerted on each 

cable segment namely
iXF ,

iZF and
i

M . Note that all components of the generalized forces 

are inherently moments rather than linear forces in this analysis since the selected 

generalized coordinates are angles. 

In this section, with the assumption of uniform 2D wind forces being the only 

external load on the system, the equations for the external forces applied to each cable 

segment are derived to form the generalized force vector; then the results are substituted 

into the Lagrange’s Equations. 

The drag model used in this research is borrowed from the work of Hoerner [32] in 

which the effect of flow around circular cylinders on lift and drag coefficients in a uniform 

fluid flow is studied. The cross-flow principle or cosine principle – as labeled by Hoerner –

is mostly valid for a straight cylinder of circular cross section in a subcritical flow [16], [32]. 

The principle can also be confirmed by the experimental work done by Poulin and Larsen 

[36]. Therefore it deems appropriate to model the simplified drag and lift forces on the 

cable segments of the system using this principle. 
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Cross-Flow Principle 

For the purpose of modelling the external forces acting on the cable segments due 

to wind, each cable segment is considered as a straight cylindrical rod in a uniform flow 

field with a velocity of V. Although the model set up constrains the motion of the cable in 

a 2D plane, this wind model predicts the external forces appropriately. The rod will be 

subjected to lift and drag forces due to the impact of fluid on its surface. The lift forces 

consist of pressure lift and the drag forces consist of pressure and friction forces acting on 

the surface.  

 

Figure 3.6. Drag and Lift coefficients of circular cylinders, wires and cables [32] 
“The cable is inclined at an angle of α against the direction of flow - at subcritical Reynolds 
numbers” 

Figure 3.6 shows the experimental data and the curve fit to these data. From here 

on, this drag/lift models will be adapted into the equations. Assume a cylinder in  a uniform 

wind flow with velocity of V. Defining the angle of attack α as the angle between the wind 

velocity vector and the longitudinal axes of the cylinder as shown in Figure 3.6, assuming 
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tangential pressure drag to be negligible, and neglecting tip vortices, Hoerner states that 

the lift and drag coefficients for this configuration of a slender cylinder in the uniform 

subcritical wind flow can be calculated as [32]: 

   

   

3 3

, ,

2 2

, ,

sin cos

sin cos cos sin

D D basic f D basic f
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C C C C C

C C C

   

   

    


 

 

 

( 3.32 ) 

 

Figure 3.7. Drag model on a cable segment 

A cable segment used in this work is shown in Figure 3.7. For a more general case, 

assume the wind is acting on the cylinder with a speed of Vw0 with horizontal and vertical 

velocity components of U and W as: 
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 
  
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( 3.33 ) 

 Assuming the cylinder is small enough so that one can neglect the difference in 

translational speeds of its different points, the wind’s velocity vector relative to the 

segment, can be defined as: 

,w rel

U X
V

W Z

 
    

 

 

( 3.34 ) 

 Note that angle of attack α is defined as the angle between ,w relV  with the positive 

direction of axes x  as shown in Figure 3.7. The relative air velocity causes two forces on 

the segment; a drag force and a lift force, namely DF and LF . These forces can be 

calculated as: 
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( 3.35 ) 

Therefore substituting the drag and lift coefficients derived by Hoerner, i.e. 

Equation ( 3.32 ), namely DC and LC , and reordering and simplifying the equations yields 

the forces exerted by the wind on the cable segment in the body frame as: 

 

2 2
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1

2
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 
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   
     
 

 

 

( 3.36 ) 
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where pC is called the pressure coefficient for the cylinder and the relative wind velocity 

tangential and normal components in the segment local frame, ,x relV and ,z relV can be 

determined by rotating the relative wind velocity in the inertial frame, i.e. ,w relV as shown in 

Equation ( 3.37 ) using the rotation matrix 
i

R  defined in Equation ( 3.3 ). 

, 1

,

i

i

i

x rel i

z rel i

V U X

V W Z



   

         

R  

 

( 3.37 ) 

It is also worthwhile to note that the tangential and normal forces in each segment’s local 

frame shown in Equation Error! Reference source not found. can be transformed back 

and forth to the inertial frame using the same rotation matrix; that is: 

i i

i

i i

X x

Z z

F F

F F


   
    

   
   

R  

 

( 3.38 ) 

3.5. UAS Dynamics 

The UAS’s motion and dynamics can affect the dynamic of the cable significantly, 

since the interface between the cable and the UAS is assumed to be an ideal spherical 

joint which cancels moments about its axis but can exert forces and be affected by cable 

tension. As a result the equations of motion for both the UAS and the cable are coupled 

and should be derived and solved simultaneously. In this section, the UAS’s dynamic 

equations will be derived to be implemented into the system equations which are 

previously derived in Equation set ( 3.26 ).  

3.5.1. Implementation of UAS Segment into the Equations 

To accomplish modeling the cable considering the vehicle’s dynamics, the UAS 

can be considered as an additional cable segment with the mass of the UAS lumped at 
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the end, which will form the n+1th element of the multibody system. This element is in fact 

a virtual element extending from the end point of the last cable segment (nth element), i.e. 

the cable connection point to the center of mass of the UAS. It will serve as another cable 

segment with a different mass and length as others as shown in Figure 3.8. The mass for 

this virtual segment will be the mass of the UAS and the length will be the distance 

between the connection point and the UAS center of mass. In addition, it is important to 

model the drag forces on this virtual element in compliance with the appropriate drag 

forces modeled for the UAS. This approach is the best and simplest way of implementing 

the UAS’s equations of motions as it is also  performed in a similar work for a towed aerial 

vehicle by Quisenberry [19]. With the assumption that the connection interface is a torque 

cancelling joint, such as a simple spherical joint – that is the two segments apply only 

forces on the neighbor segments and are free to rotate under any moment, this selection 

ensures that implementation of this element can be completed in consistence with the 

previous modeling approach. The only difference of this element with the rest of the 

system is in the length and mass of the segment as well as addition of the UAS mass 

moment of inertia. 

 

Figure 3.8. UAS Coordinate Setup 
Note that the length between the connection point of the cable and the UAS’s center of mass is 
considered as an extra segment 



 

51 

Moreover, to be able to define the orientation of the vehicle properly, a local 

reference frame q qx z  needs to be defined with the origin positioned at the center of mass 

of the UAS, qx  axes pointing towards the forward face of the UAS and qz axes pointing 

towards the top of the UAS as illustrated in Figure 3.8. Using this configuration, vectors in 

the UAS segment coordinate system, i.e. 1 1n nx z   can be transformed to the q qx z coordinate 

system by using a transformation matrix γ
R as defined below: 

cos sin

sin cos


 

 

 
  

 
R  

 
( 3.39 ) 
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( 3.40 ) 

In this system, the connection point is exactly below the center of mass, making 

   90 degrees. This causes the UAS coordinates to become equal to: 

1

1

q n

q n

x z

z x





   
   

    

 

 

( 3.41 ) 

Addition of this segment will modify the derivation of the Lagrange’s equation in 

the sense that it will add another term to the system. As this segment has moment of 

inertia about the origin of 1 1n nx z   unlike the cable segments, it causes a rotational kinetic 

energy to appear in the derivations. Since planar motion of the system are being studied, 

one can assume that the moment of inertia of the UAS consists of a moment of inertia 

about the y axes only as shown in Equation ( 3.42 ). 
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( 3.42 ) 

This matrix represents the inertia matrix of the UAS about its center of gravity, 

however, in the calculation of kinetic energy, the inertias should be calculated about the 

instantaneous center of rotation, i.e. the connection point which is also the origin of the 

n+1th segment. This requires the inertia matrix to be calculated about this point using 

parallel axis theorem [37], [38]. Then, inertia about the origin of the UAS segment 

coordinate system will be: 

2

1CGyy yy U nI I m l     ( 3.43 ) 

where Um represents the UAS’s mass and 1nl  is the length of the n+1th
 segment. Therefore 

the inertia matrix can be written as: 

2

1

0 0 0

0 0

0 0 0

yy U nI I m l 

 
 

 
 
  

 

 

( 3.44 ) 

Then the kinetic energy of the multibody system including the UAS segment which 

consists of a translational and a rotation term could be written as: 

. .trans rotT T T    ( 3.45 ) 

where the translational kinetic energy is calculated in the same way as in Equation Error! 

Reference source not found. with the addition of a n+1th segment and the rotational 

kinetic energy could be written as: 
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( 3.46 ) 

Taking the derivatives of the new kinetic energy of the system with respect to the 

generalized coordinate and velocity, i and i , respectively, and taking a time derivative 

of the latter, one can implement these terms into Equation ( 3.9 ) and establish the 

Lagrange’s Equations as: 

. .                           ( 1,2, , 1)
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trans trans
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i i
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I Q i n

dt
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( 3.47 ) 

Therefore, the Lagrange’s Equations can be written as: 
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( 3.48 ) 

This configuration implies that the equations can be written in a similar form to 

Equation ( 3.31 ) with slight changes as follows: 

                   ( 1,2, , )diag i n    A θ B θ θ Q   ( 3.49 ) 

where 

 diag  A A I   ( 3.50 ) 
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where I is an (n+1)×1 vector representing inertias of system segments to be 

referred to as the segment inertia vector hereafter. This notation ensures that the term

iyy iI  is added to the corresponding diagonal elements of matrix A . 

Equation ( 3.50 ) shows that addition of the UAS’s segment to the system, affects 

the equations only by one term, which is 
iyy iI   being added to the terms on the diagonal 

of the matrix A . It should be noted that the generalized forces for the last segment, i.e. 

the UAS segment will change as the forces on the UAS are calculated with a different 

coefficient of drag and lift based on the UAS’s geometry and material which will be 

discussed in Section 3.8. For the purpose of this chapter, however, the cable segments 

are modeled using a lumped mass model allowing all moments of inertias to be zero 

except that of the last segment. Therefore the rotational component of the kinetic energy 

of the system can be written as: 

.,

1

2
rot UT  T

ω I ω  
 

( 3.51 ) 

Since the angular velocity of the system is also defined about the y axes only, with 

x and z components equal to zero, Equation ( 3.51 ) is expressed as: 

2

., 1

1

2
rot U yy nT I  

  
 

( 3.52 ) 

Derivation of this rotational part of kinetic energy, will yield the term
iyy iI  . 

Therefore, for the lumped mass model, one can write the ith element of the segment inertia 

vector as:  

 
0                          i=1, ,

( )                     i= 1i
yy UAS

n

I n


  

 
I  

 
( 3.53 ) 



 

55 

This causes the inertia term to be added to the equation of motion of the n+1th 

element only. This will conclude the derivation of equations of motions for a cable-body 

system consisting of a UAS and a cable considering the following assumptions: 

1. The motion is planar. 

2. The UAS dynamics is simplified and the UAS is considered robust 
without a flight controller. 

3.  The cable is considered inextensible. 

4. The base station is considered stationary. 

5. The cable is modeled as a discrete lumped-mass model. 

In order to solve these equations given proper initial conditions, it is important to 

employ a suitable numerical technique. This will be discussed in the following sections. 

3.6. Numerical Method for Solving the System’s Equation of 
Motion 

Now that the equations of the system’s dynamics are completely derived and 

defined in Equation set ( 3.49 ), one can proceed to solving these equations using the 

appropriate initial conditions. Since the system’s equations are highly coupled and 

nonlinear as well as large in terms of number of unknowns and equations, it is necessary 

to employ an appropriate numerical method to solve the system’s dynamic equations. As 

a result, the Runge-Kutta scheme is chosen to solve the system’s equations using 

MATLAB™ software package [39]. As for any numerical analysis method, Runge-Kutta 

integration method needs to receive the system’s equation in a specific arrangement. 

Section 3.6.1 explains how the equations are manipulated to be solved using the fourth-

order Runge-Kutta solver (RK4). Note that the name “fourth-order Runge-Kutta method” 

does not concern the mathematical order of the equations; but rather the truncation errors 

in the integration routine, details of which are beyond the scope of this work. More in-depth 

information on details of this method is vastly available through literature and particularly 

in [40]. 
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3.6.1. Order Reduction of Differential Equations 

The 4th-order Runge-Kutta method can only directly solve first-order ODE’s of the 

form: 

0( , ),             (0)
dy

f x y y y
dx

   
 

( 3.54 ) 

Therefore only first order ODE’s can be solved using this technique. The system 

at hand consists of n+1 nonlinear second-order differential equations in which the 

unknowns are the angles of the segments, i.e. as well as their first and second time-

derivatives, and , respectively. In order to avoid the need to use the Taylor Expansions 

to solve these second-order equations, system’s order will be reduced by converting these 

n+1 second-order equations to 2(n+1) first order ODE’s using the following procedure. 

The general form of the system’s equation for each segment is presented below: 
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( 3.55 ) 

where  , can be a function of time,  , and  . By assuming the following vector, one can 

change the variables in order to achieve a first-order ODE set with the number of equations 

twice as the original number of equations. 

The vector   is called the angular position vector and is represented by: 

1

2

1 ( 1) 1n n
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( 3.56 ) 

The vector   is called the angular velocity vector and is represented by: 
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( 3.57 ) 

The vector   is called the angular acceleration vector and is represented by: 
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( 3.58 ) 

Now, define a vector  consisting of   and  , namely the angular state of the 

system as: 
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( 3.59 ) 

Then, one can write the time-derivative of Equation ( 3.59 ) as: 
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( 3.60 ) 

By comparing these equations to the system’s equation of motion derived in 

Equation ( 3.49 ), and by multiplying the equation by inverse of matrix A  from the left,  

this equation can be expressed as: 
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( 3.61 ) 

where Q is the vector of generalized forces shown in Equation ( 3.27 ). 

Equation ( 3.61 ) is a set of 2n+2 first-order ODE’s which could be solved using 

the Runge-Kutta numerical integration routine. The codes written to implement these 

equation into a MATLAB™ program and to solve the problem can be found in Appendix 

A.  

These equations are then solved numerically using appropriate initial conditions to 

simulate different scenarios. Using the accelerations obtained from the numerical 

solutions, the forces on each cable segment are calculated in order to estimate the cable 

tension at each node. This model is tested for correctness in Section 3.7. 
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3.7. Model Verification 

In order to confidently use the simulations and rely on the results, it is necessary 

to verify the model against experiment or available similar results. As mentioned before, 

given the correct parameters, and initial conditions this cable model is very versatile and 

can be applied to a wide range of applications, from subsea to aerospace and even in 

space applications as long as the cable is not experiencing very low tensions and the 

cable’s stiffness is high enough for the cable extension to be negligible. To verify the 

correctness of the derivations and validity of the model implemented in MATLAB™, 

several tests have been run the result of which will follow. 

3.7.1. Simple Pendulum Test 

The model has been tailored to simulate a simple pendulum and the oscillation 

frequency of the pendulum is verified against theoretical calculations. In theory the period 

of an ideal simple pendulum with a massless rod of length L oscillating without any wind 

friction is calculated by: 

2
L

T
g

  
 

( 3.62 ) 

A series of tests were run with the same conditions to replicate various pendulum 

lengths and the simulated results are compared to the calculated theoretical values. 

Results are compared in Figure 3.9. 
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Figure 3.9. Simple Pendulum Periods, Comparison of Simulated and Theoretical 
Results. 

The plotted results show that the model is agreement with theory in predicting the 

oscillation period for a simple pendulum. This approves that the equations of motion for 

the system were derived correctly. However more tests are needed to prove the validity 

of this model in terms of deriving the equations of motion for the general n-segment model. 

3.7.2. Generalization of the Model to a Finite-Segment Cable 

In previous section, it was confirmed that a simple pendulum using the developed 

model can replicate the oscillation of an ideal pendulum. In this set of tests, the model is 

taken further and the cable is modeled using n rigid segments. Different sets of UAS thrust 

and pitch are applied at the top end of the model and the cable shapes as well as UAS 

positions are compared to similar simulated results using the static model developed 

in Chapter 2. Figure 3.10 shows four different force sets applied at the top end of the 
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cable, both simulated using the catenary model used in Chapter 2 and the discrete model 

developed in this chapter. Note that the simulated models in this case do not consider the 

weight and inertia of the UAS since the purpose of these tests are merely validation of the 

cable shape regardless of the UAS weight. 

One can observe that the discrete model is able to replicate the shape function 

using 31 segments. Even with this number of segments, there is an error of up to 8% 

which is acceptable in most applications. In addition, the number of segments can affect 

the convergence and accuracy of the model, hence there is an error present due to the 

model approximation. 

 

Figure 3.10. Comparison of static cable shapes; catenary model vs. discrete 
model 
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A verification of the forces in the tension concludes the validity of the model. The 

simulation is run with the parameters defined in Table 3.1 and are compared to the results 

of the same conditions using the model used in Chapter 2. 

Figure 3.11 shows different stages of the cable when the UAS is taking off under 

the effect of UAS thrust and pitch shown in Table 3.1. The cable is initially lying on a 

horizontal line when at time 0, the forces are applied at its top end moving the UAS 

upwards until the cable reaches a steady state. The cable tension calculated using both 

models are then compared in Figure 3.12. 

Table 3.1. Forces applied at UAS for Validation 

Simulation Parameter Value Units 

UAS Thrust 180 [N] 

UAS Pitch 4 [deg] 

UAS Weight 0 [-] 

 

Figure 3.11. Cable shapes in the Take-Off process 
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The results show that the cable model can predict the tension in the cable to a 

close approximation. However further from the base station, the error increases. The 

reason behind this is mainly the error included in the end point position of the UAS. As 

you can see the final point on Figure 3.12 represents the UAS endpoint and while the 

tensions are equal, the horizontal position of nodes are not the same. As a result, these 

difference in the values occur. However in the same figure, it can be seen that a model 

with 40 segments behaves very closely to the catenary model. This concludes the 

equations have been derived correctly. 

 

Figure 3.12. Comparison of longitudinal tension in cable 

3.7.3. Model’s Convergence 

Since the developed model is a finite-segment model, its accuracy can be 

dependent on the number of segments used in the simulation as it was observed in 

Figure 3.12. It is clear that modeling the cable with 11 segments yield less accurate results 

than the same model with 40 segments. In order to achieve a better approximation of the 

system’s behavior, it is necessary to understand the model’s convergence. As a result, 
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the simulation is run under same conditions of Table 3.1 for various cable segment 

numbers and the results are presented in Figure 3.13.  

 

Figure 3.13. Convergence of UAS position for various number of cable segments 

According to Figure 3.13, one can see that the model convergence with an error 

of less than 2% with 80 cable segments. Obviously adding more cable segments will 

increase the computational load for the solving process. Figure 3.14 shows how the 

duration for solving the system’s dynamics changes with the number of segments for 

simulating a 120 second flight. One can see that the time needed for the algorithm to solve 

for the accelerations as well as calculating the positions along with all other parameters 

changes significantly with the number of segments; however, discussing the 

computational complexity of the algorithm is beyond the scope of this work. 
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Figure 3.14. Solving duration for different number of cable segments 

Overall, based on the observations discussed above, one can conclude that 

selecting 80 segments for a cable of length 122 m could be an appropriate option in terms 

of accuracy as well as computational load. Note that as the cable length changes, the 

required number of nodes change directly as well; i.e. for a longer cable, larger number of 

cable elements will be needed for the same accuracy and vice versa.  

3.8. Results and Discussions 

The model developed here can be used to approximate the cable shape and 

tensions in different flight scenarios. Although, it was shown before that 80 segments will 

provide an optimum solution in terms of solving time and accuracy, in these case studies, 

lower number of segments are used in order to reduce the processing time since the 
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purpose of these results are illustration of the behavior of the system rather than exact 

calculation of variable values.  

Few case studies are investigated considering the UAS’s weight and moment of 

inertia as shown in Table 3.2 and the results are discussed in the following sections. The 

UAS thrust is modeled as a vectored thrust always perpendicular to the UAS horizontal 

axis. The thrust then is a vector consisting of a horizontal and vertical component in the 

inertial coordinate system which both depend on the UAS pitch; i.e. the angle with respect 

to the horizontal axis X. It is assumed the UAS thrust is held exactly constant in magnitude 

unless stated otherwise. In addition the normal and frictional (tangential) drag coefficients 

used for the cable are 1.5 and 0.02 respectively as suggested in Hoerner’s book [32]. 

Table 3.2. UAS Parameters 

Simulation Parameter Value Units 

UAS Weight 10.56 [kg] 

UAS-Cable Connection Link Length 0.1 [m] 

UAS Moment of Inertia (Ixx)CG 1.22 [kg.m2] 

UAS Moment of Inertia (Iyy)CG 1.22 [kg.m2] 

UAS Moment of Inertia (at connection point) (I’yy) 1.3256 [kg.m2] 

UAS Frame Rod Length 1.012 [m] 

UAS Frame Rod Diameter 0.025 [m] 

UAS Vertical Thrust 283.59 [N] 

3.8.1. Effect of Wind Speed 

This section is dedicated to illustrating effect of horizontal wind speed on the cable 

shape and UAS location. The cable is positioned in a vertical shape in a way that the UAS 

is hovering exactly above the base station. For each test, a certain wind speed is applied 

to the system at t=1 sec and the final states of the system is illustrated after 150 seconds. 

The steady state cable shapes for different wind speeds ranging from 0 to 27 m/s are 

illustrated in Figure 3.15. 
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Figure 3.15. Final Cable Shapes at Different Horizontal Wind Speeds 

It could be observed from this figure that the UAS becomes unstable for wind 

velocities larger than 25 m/s. In order to keep the UAS stable, the UAS autopilot should 

be able to compensate the wind force by aligning the thrust vector so that the horizontal 

component of the thrust can overcome the wind force while the vertical thrust can maintain 

altitude of the UAS. 

Figure 3.16 shows the UAS horizontal offset and height as well as its pitch versus 

time for the same set of tests and wind conditions. From these plots, one can conclude 

that given this amount of thrust, the UAS is not able to stabilize itself as soon as the wind 

speed increases to 26 m/s.  
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Figure 3.16. UAS position and altitude time history under different wind speeds 

 

Figure 3.17. Cable tension and angle at UAS connection point 
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It could be also observed that the cable tensions at the UAS connection point along 

with the cable angle in Figure 3.17. Also, for all the cases where the UAS is stable, that is 

wind speeds lower than 25 m/s, the cable tension reaches a constant value after 

stabilization. It is observable that for higher wind speeds, the tension at the UAS decreases 

significantly at 11 seconds. This means that the cable becomes a little slack. This causes 

a sudden change in the tension which can cause a phenomenon called snap loading. This 

essentially means that can pull the UAS down suddenly which is a hazard to the system. 

Another important parameter that should be considered, is the tension at the base 

station. This helps better understand the forces and therefore torques acting on the winch 

motor and the requirements for design. Figure 3.18 shows how the cable tension and the 

cable angle changes at the base station when the UAS is flying in a windy condition. One 

can see that almost for all wind cases, when the wind starts being applied instantly, the 

cable tension at base increases at once significantly almost by 600%. 

 

Figure 3.18. Cable tension and angle at the winch 
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3.8.2. Take-Off in High-Velocity Wind 

In this case study, the UAS’s behavior during take-off is investigated when the UAS 

rises from a height of zero in a high-velocity windy condition. The effect of thrust on the 

maximum achieved flying altitude is investigated as a guide towards the UAS design. Not 

considering the reeling process, and with focus on thrust effects, the UAS is simulated to 

takes off from the ground in a wind velocity of 28 m/s with a thrust of 283.59 mentioned in 

Table 3.2. The thrust then starts to rise at time t=20 sec, linearly with time and the UAS 

height is observed. Figure 3.19 shows the cable shapes during the increase in the UAS 

thrust for different wind speeds.  

 

Figure 3.19. Cable shape during take-off under the effect of increasing thrust 

The change in UAS position and attitude at various wind speeds under the effect 

of increasing thrust are also illustrated in Figure 3.20. One can see that in all cases the 

UAS can achieve the height of almost 122 meters as long as a large thrust is provided. 

Since this is not the case in reality, and since generating a larger thrust means a larger 
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and heavier UAS, one can conclude the limitations of the system and wind operation 

condition from this analysis.  

Figure 3.21 presents the UAS thrust versus time along with UAS altitude due to 

this thrust. Based on this graph, one can conclude that with the assumption the UAS can 

provide up to 400 N of thrust, at no wind speed larger than 4 m/s can the UAS achieve its 

target altitude of 122 meters. 

 

Figure 3.20. UAS position and pitch under the effect of increasing thrust 

 

Figure 3.21. UAS altitude and the thrust change 
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3.8.3. Effect of UAS Thrust Fluctuations 

Another usage of this simulator is to learn more about the effects of thrust 

fluctuations on the cable and UAS dynamics. In this example, the effect of thrust changes 

on the UAS’s position as well as cable tension at both the UAS and the base station is 

investigated. The thrust is modeled as a simple sine wave of the form: 

2
sinm fThrust T T t

f




 
   

 
 

 
( 3.63 ) 

where the constant  does not affect the results. The variable thrust parameters are 

defined in Table 3.3. 

Table 3.3. UAS Thrust with fluctuations 

Parameter Label Value Units 

UAS Mean Thrust Tm 283.59 [N] 

Fluctuation Amplitude Tf 10 [N] 

Fluctuation Frequency f 1 [Hz] 

Figure 3.22 - Figure 3.24  show the UAS position and attitude as well as cable 

tensions at the base and at the UAS due to this UAS thrust fluctuations. It could be 

observed that the cable tensions vary with the same frequency of 1 Hz at both the UAS 

and the winch; however the thrust change does not propagate to the base with the same 

value, but rather with an amplitude of 4 N in comparison to 10 N. 
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Figure 3.22. UAS position and attitude under thrust fluctuations 

 

Figure 3.23. Cable tension at UAS under thrust fluctuations 
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Figure 3.24. Cable tension at base under thrust fluctuations 

3.9. Conclusion 

In this chapter, a 2D model is developed in order to predict the planar motion of a 

flexible cable. The cable is considered as a discrete system of finite rigid bodies connected 

with frictionless joints. The equations of motions are derived using Lagrange’s Method for 

multi body systems. The equations are then solved numerically given proper initial 

conditions. Wind forces are also modeled using a cable drag model adapted from 

literature.  

The model is validated against theory in terms of oscillation periods as well as 

against results of Chapter 2 in terms of cable shape function, longitudinal tension, and 

model convergence due to number of elements. The results show close approximation 

and reliability of the discrete cable model. The results show that the model is capable of 

simulating the cable’s shape function with a close approximation. This cable model is very 

versatile and can be applied to a wide range of applications, using proper initial conditions 

and system configurations. 
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A few case studies are investigated and results are generated using MATLAB™ 

software. The effect of UAS thrust on the maximum achieved height is studied. Moreover, 

effect of wind speed on the cable shape, tension and UAS position and attitude are 

investigated and presented. In addition, effects of UAS thrust fluctuations on these 

parameters are illustrated in another section. 

In summary, the cable dynamics can be simulated for a planar motion using the 

2D model developed and implemented in this chapter. This algorithm can be used to 

analyze a wide range of properties of the system including but not limited to: effect of cable 

diameter, cable mass per length, wind conditions, UAS size and weight, etc. on the 

dynamic and steady state behaviour of the system.  

It should be noted that this model does not consider the effect of cable strain as 

well as bending in the cable. A more thorough modeling could be carried out to implement 

and investigate these parameters. In addition, a more in-depth modelling of the UAS could 

yield in more accurate and reliable results. 
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Chapter 4.  
 
Three- Dimensional Multi-Body Dynamics Modeling 
and Analysis of the Tether 

The results of Chapter 3, although valuable and important to consider in the 

preliminary stages of an analysis, cannot be fully extended to every system to reflect a 

realistic representation of the system’s dynamic behavior. This is due to the fact that most 

real-world systems will mostly experience a motion in all 3 directions as opposed to the 

2D planar assumption of the previous chapter. Therefore, those effects are investigated 

by modelling the whole system in a 3D space. Presented in following sections are the 

derivations and application of the system’s equation as well as the simulation results for 

the cable system moving in the 3D space. 

4.1. Methodology 

The concept behind this chapter is similar to the one used in Chapter 3. The cable 

is discretized to a set of small rigid segments instead of a continuous non-rigid member. 

Each segment will then be assigned an appropriate coordinate system. Using these 

individual local coordinate systems, Lagrange’s Equations are employed for the whole 

system which then concludes the equations of motion for each segment. The system’s 

equations are then solved accordingly to capture the behavior of the cable under different 

flight scenarios. Similar to the previous chapter, the effect of variable length dynamics as 

well as cable extension are not considered.  

4.2. Cable Model 

4.2.1. Cable Segment Model 

For simplicity and to avoid complexity of the system of equations, the segment 

model used in this chapter is a lumped-mass model as it was used previously in Chapter 

3. However the factor complicating equations of motion for a 3D system is the fact that 
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any rigid body such as one cable segment in a 3D space must be defined by six 

independent coordinates, meaning that each cable segment has 6 degrees of freedom as 

opposed to the planar case where each segment could be defined by two coordinates. 

This is due to the fact that, in order to define the position and orientation of each segment, 

one should specify the position of the mass node with three coordinates in addition to its 

orientation with three angular coordinates. However, since there is a length constraint on 

each node, only the orientation of the segment would define the position of the mass node 

eliminating the need for 6 degrees of freedom. Thus, the size of the system’s equations 

will be three times larger. This adds to the complexity of analytical derivation of the 

system’s equations as well as computational time during solving the equations of motion.  

In this chapter, the effect of longitudinal strain is neglected since the steel cable 

used in this application has relatively high young’s modulus. Should the cable in use have 

low stiffness, such as a very elastic material, it is definitely recommended to use the spring 

mass model to model the strain effect. This will complicate derivation of equations as well 

as computational load of the simulations. Due to the scope of work, this study is left for 

future work. 

4.2.2. Coordinate System and Model Set-up 

An important key to the modeling of a rigid body in 3D space is the concept of 

Euler Angles. This is extensively discussed in literature and text books, however the main 

reference for this concept for the purpose of this study is derived from the valuable 

Advanced Dynamic book by Greenwood [33]. 

Consider a rigid body in the 3D space, the center of mass of which in the inertial 

reference frame XYZ  is defined by (xc,yc,zc); To fully define the location and orientation of 

this object 6 coordinates are needed, 3 of which are the location of the center of mass. 

Now consider a local coordinate system xyz attached to the rigid body with the 

origin located at an arbitrary point. The relationship between the orientation of the local 

coordinate system xyz and the inertial coordinate XYZ is essentially what defines the 

orientation of the rigid body. This relationship, technically a rotation matrix, is what 
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determines the Euler Angles and vice versa. Therefore, any vector in the xyz local 

coordinate system can be represented in the inertial coordinate system, XYZ by utilizing 

this transformation matrix. In essence, each transformation consists of three successive 

rotations where each rotation is done about the latest body axis. The type of Euler Angles 

used for this chapter is called type I or Aircraft Euler Angles. 

The first rotation is about the Z  axis an angle  to achieve the new rotated 

coordinate system x y z   . Then this coordinate system is rotated about yaxes by an angle 

of  and coordinate system x y z  will result. At the end this coordinate system is rotated 

about the xaxis through an angle of  and finally the required local coordinate system 

xyz  is located. 

The rotation matrices for each of the rotations can be presented as [33]: 

cos sin 0

sin cos 0

0 0 1



 

 

 
 

 
 
  

R  

 

( 4.1 ) 

cos 0 sin

0 1 0

sin 0 cos



 

 

 
 


 
  
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1 0 0

0 cos sin

0 sin cos

  

 

 
 


 
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R  

 

( 4.3 ) 

Note that the whole rotation from the inertial frame to the local body frame is 

actually a combination of these 3 successive rotations and can be written as: 

   R R R R   ( 4.4 ) 
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In this work, the local frame should be rotated to the inertial coordinate system. 

This can be completed by using the inverse of matrix R  since each of the three 

rotations is independent of the other. Therefore, one can obtain any vector in the body 

frame by: 

1

X x

Y y

Z z





   
   


   
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R  

 

( 4.5 ) 

Matrix R is an orthogonal matrix, therefore its inverse can be obtained by 

transposing the matrix; and then it could be expressed as: 

 
   1

cos cos ( sin cos cos sin sin ) sin sin cos sin cos

sin cos cos cos sin sin sin cos sin sin sin cos

sin cos sin cos cos



           

           

    



   
 

    
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R  

 

( 4.6 ) 

The reader is referred to [33] for more explanation regarding Euler Angles. 

Error! Reference source not found. shows the inertial and local coordinate 

systems for the cable model in 3D space. Length of the ith segment is labeled by li as 

before. For each segment, the angles , , and  , namely roll (bank), heading, and pitch 

angles, are what defines the local coordinate system with respect to the inertial frame

XYZ . One can now simply express each node’s location in terms of the Euler Angles as: 

1

1

                                ( 1,2,3, , )         
j j j

i ji

i j

j

i j

X x

Y y i n

Z z
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



  
  
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R  

 

( 4.7 ) 

where Xi, Yi  and Zi are the coordinates of the ith mass node. 
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Figure 4.1. Global and local coordinate systems of the cable 

Since each node can be located at in its local coordinate by the vector (li,0,0),one 

can define the position of each node as: 

1
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Therefore, the coordinates will be defined as: 
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( 4.9 ) 
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It can be observed that in this coordinate configuration, each node location will be 

independent of the bank angle since each node location is not dependant on torsion of 

the segment due to the fact that a simple lumped-mass model is used and each node is 

considered a particle of mass m. Each node will be fully defined by 4 coordinates X, Y, Z 

as well as the segment’s bank angle, in general; however the system is constrained by 

the cable segment length. That is: 

     
2 2 22

1 1 1                               ( 1,2, , )i i i i i i il X X Y Y Z Z i n            ( 4.10 ) 

Presence of this constraint reduces the number of system DOF by one for each 

segment. Therefore, in fact the system has a DOF of 3n.  

Having set up the coordinate systems properly, equations of motion for the system 

can now be developed using Lagrange’s Equations. 

 

4.3. Derivation of Equations of Motion Using Lagrange’s 
Equations 

As discussed before, derivation of the equations of motion using Lagrange’s 

Equations, requires selecting, defining and using generalized coordinates for the system. 

In this case, the Euler Angles can be considered as generalized coordinates for the 

discrete cable model since Euler Angles are orthogonal and independent of each other 

and the configuration described here can fully define the node positions for the system.  

Similar to the previous chapter, the generalized coordinates, qi are used in the 

derivations for the 3D model. As used before, the Lagrangian of the system is shown by

L and is defined as [23]: 

T U L   ( 4.11 ) 
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Similar to the derivation of Lagrange’s equations for a multi-body system consisting 

of n rigid bodies in Chapter 3, the kinetic and potential energies are derived as well as 

their derivatives to substitute in the Lagrange’s Equations of the form: 

                   ( 1,2, ,3 )i

i i

d T T
Q i n

dt q q

  
    
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( 4.12 ) 

where qi’s are the generalized coordinates used to define the system and Qi’s are 

generalized forces which include applied forces and inertial forces derived from the 

potential energy. The kinetic and potential energies of the system will be derived in order 

to complete the derivation of Lagrange’s Equations in the following sections 

4.3.1. Kinetic and Potential Energy and Their Derivatives 

The squared velocity vector of each node on the cable with a mass mi can be 

expressed as: 

2
2 2 2                            ( 1,2, , )

T

k k k k k kV V V X Y Z k n       
 

( 4.13 ) 

Also, taking derivative of Equation Error! Reference source not found. with 

respect to time, one can define the velocity components for each node in terms of Euler 

Angles as stated in Equation ( 4.14 ). 
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Therefore, by taking each component to the power of two one can write: 
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( 4.15 ) 

Substituting into Equation ( 4.13 ) to achieve the squared velocity vector in terms 

of the Euler Angles, one can write: 
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which can further be reduced to: 
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Now, using the velocity vector derived for each mass, the kinetic energy of the 

system can be represented as: 
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
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In order to complete the derivation of Lagrange’s equations, the derivatives of this 

kinetic energy with respect to the Euler Angles and their time rates should be derived.  
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) 

Differentiating the kinetic energy with respect to the heading angle   and its rate

 , yields: 



 

  

1

cos cos sin( ) cos sin cos

sin sin sin( ) cos sin cos

                                                                       

n k

k i j

k i ji

i j i j i j j i j i j

i j i j i j j j i i j

T
m l l



          

          

 






     
 

    
 



       , ( 1,2, , )i n 

 

 

( 4.20 ) 



 
1

cos cos cos( ) cos sin sin    , ( 1,2, , )

n k

k i j

k i ji

j i j i j j i j i j

T
m l l

i n



         

 






    



 

 

( 4.21 ) 
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The next term needed in the Lagrange’s Equations is the time-derivative of 

Equation ( 4.21 ). Taking derivative of Equation ( 4.21 ) with respect to time yields: 



   

   

   

1

2 2

cos cos cos( ) cos sin sin( )

cos cos sin( ) cos cos sin( )

cos cos sin( ) sin sin sin( )

2cos

n k

k i j

k i ji

j i j i j j i j i j

j i j i j j i j i j

i j i j i j i j i j i j

j j

d T
m l l

dt 

         

         

         

  

 

 
 

 

   

   

     





   

 

sin cos( ) cos sin cos( )

sin cos cos( )                                        , ( 1,2, , )

i j i j i j i j i j

i j i j i j i n

       

    

   

   

 

 

( 4.22 ) 

Following the same logic as in section 3.3.3 for derivation of generalized forces, 

and assuming there is no strain or elasticity in the links, the only potential energy the 

system preserves is of gravitational form. Selecting the datum line at which U=0, to be on 

the ground, i.e. Z=0, the generalized forces for this generalized coordinates can be 

expressed as: 

 
1

        

                                                                        , ( 1,2, , )

i j j j j

n
j j j j

X Y Z j

j i i i i

X Y Z
Q F F F m g M

i n

 



   

    
     

    

 


 

 

( 4.23 ) 

Based on Equation ( 4.9 )Error! Reference source not found., deriving the rate 

of global coordinates with respect to the heading angle yields: 

sin cos

cos cos                         ( 1,2,3, , ),          

0

j

i i i

i

j

i i i

i

j

i

X
l

Y
l i n j i

Z

 


 





 


 

   



 


 

 

( 4.24 ) 
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Substituting back into Equation ( 4.23 ), the generalized forces in terms of the 

external forces and the segment mass could be written as: 

( sin cos ) ( cos cos )     , ( 1,2, , )
i j j i

n

X i i i Y i i i

j i

Q F l F l M i n    


      
   

 
( 4.25 ) 

Therefore Lagrange’s Equations for the heading angles as one set of the system’s 

equations, can be stated as follows. 

 



   

   

 

1

2 2

cos cos cos( ) cos sin sin( )

cos cos sin( ) cos cos sin( )

2cos sin cos( )

( sin cos ) ( cos cos
j j

n k

k i j

k i ji i

j i j i j j i j i j

j i j i j j i j i j

j j i j i j

X i i i Y i i

d T T
m l l

dt

F l F l

 

         

         

     

  

 

  
  

  

   

   

  

 



)                , ( 1,2, , )
i

n

i

j i

M i n


    
 

 

 

( 4.26 ) 

This concludes the derivation of the system’s equation of motion in terms of the 

heading angles of the segments. 

Following the same path and deriving the equations in terms of the pitch angles

, derivative of the kinetic energy with respect to and  can be written as: 
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

 

    

1

sin cos cos( ) sin sin sin

cos sin cos( ) sin cos cos cos sin

                                                             

n k

k i j

k i ji

i j i j i j j i j i j

i j i j i j i j j i j i j

T
m l l



          

            

 






     
 

    
 



                                   , ( 1,2, , )i n 

 

 

( 4.27 ) 



  


1

sin sin cos cos cos

sin cos sin( )          , ( 1,2, , )

n k

k i j

k i ji

j i j i j i j

j i j i j

T
m l l

i n



      

    

 






  

  



 

 

( 4.28 ) 

Therefore, after taking the time-derivative of Equation ( 4.28 ), it can be written as: 



   

   

 

1

2 2

sin cos sin( ) sin sin cos( ) cos cos

sin cos cos( ) sin cos cos( ) cos sin

sin cos cos( ) cos sin c

n k

k i j

k i ji

j i j i j j i j i j i j

j i j i j j i j i j i j

i j i j i j i j i j

d T
m l l

dt 

           

           

       

 

 
 

 

     

    

  



 

   

 

os( ) sin cos

2sin sin sin( ) sin sin sin( )

cos cos sin( )                                        , ( 1,2, , )

i j i j

j j i j i j i j i j i j

i j i j i j i n

   

           

    

  

    

   

 

 

( 4.29 ) 

Derivatives of the global coordinates in terms of the pitch angle can be written as 

follows: 
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cos sin

sin sin                         ( 1,2,3, , ),          

cos

j

i i i

i

j

i i i

i

j

i i

i

X
l

Y
l i n j i

Z
l

 


 






 




    



  


 

 

( 4.30 ) 

Then, these equations are substituted into the following equation, to define the 

generalized forces for the pitch angle generalized coordinates. 

 
1

        

                                                                        , ( 1,2, , )

i j j j j

n
j j j j

X Y Z j

j i i i i

X Y Z
Q F F F m g M

i n

 



   

    
     

    

 


 

 

( 4.31 ) 

Therefore, the generalized forces are reduced to: 

 ( cos sin ) ( sin sin ) ( cos )         

                                                                                                   , ( 1,2, , )

i

j j j i

n

X i i i Y i i i Z j i i

j i

Q

F l F l F m g l M

i n



    




       
 

 



 

 

( 4.32 ) 

Therefore Lagrange’s Equations for the pitch angles can be expressed as follows: 
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

   

   

 

1

2 2

sin cos sin( ) sin sin cos( ) cos cos

sin cos cos( ) sin cos cos( ) cos sin

2sin sin sin( )

( cos
j

n k

k i j

k i ji i

j i j i j j i j i j i j

j i j i j j i j i j i j

j j i j i j

X i

d T T
m l l

dt

F l

 

           

           

     



 

  
  

  

     

    

 





 sin ) ( sin sin ) ( cos )

                                                                                                   , ( 1,2, , )

j j i

n

i i Y i i i Z j i i

j i

F l F m g l M

i n

   


      
 

 



 

 

( 4.33 ) 

Equation ( 4.33 ) shows the equations of motion based on the pitch angle 

coordinate using Lagrange’s Equations which should be solved in conjunction with all 

other equation sets derived. Please note that Equations ( 4.26 ) and ( 4.33 ) are in fact 

two sets of equations each with n equations in terms of the corresponding generalized 

coordinates. Therefore these two equations represent 2n equations for the 2n-DOF 

system which can be solved numerically. 

The last set of generalized coordinates to consider for the Lagrange’s Equations 

is the bank or roll angle . Looking at the equations of kinetic energy, it can be confirmed 

that both the translational kinetic energy as well as the generalized forces are independent 

of this coordinate. Therefore, derivation of Lagrange’s Equations based on the bank 

angles is inconclusive at this point. However, it will be shown later in Section 4.5.1 that 

implementation of the rotational kinetic energies will add bank angle’s equations of motion 

to the system. 

To this point, all the equations of motion for the cable considering zero twist has 

been derived and should be solved numerically after substituting the proper external 

forces into the generalized force equations, i.e. Equations ( 4.25 ) and ( 4.32 ). 
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4.3.2. Assembling Equations in a Matrix Form 

All the 2n equations of motion derived in the previous section should be solved in 

parallel to yield the solutions for the system dynamics. All the equations should be 

assembled in an easy-to-use matrix form to be plugged into a similar algorithm developed 

in Chapter 3. However, in order to comply with the equations for the UAS dynamics derived 

later, one needs to implement these equations into a general 3n×3n matrix format. 

Based on Equations ( 4.26 ) and ( 4.33 ), the system’s equations of motion can be 

assembled in the following form: 

                   diag diag

  
  

    
    

θ ψ

Aη B η η C θ Q 

ψ





 

 

( 4.34 ) 

in which, ψ and θ , and  are vectors representing heading and pitch angles of all 

elements. Vector η is also called attitude vector representing the Euler Angles in a vector 

of 3n×1 elements and is represented by: 

 
 
 
  

ψ

η = θ                 



 

 

( 4.35 ) 

Therefore, we can write Equation ( 3.26 ) as: 

13

3

31 3 33

 diag







           
          

             
                       

11 12 13 11 12 11 12 13

21 22 23 21 22 2 21 22 23

31 32 33 2 31 32 33

θψψ ψ ψ QA A A B B B C C C

QA A A B B B C C C θθ θ θ

QA A A B B B C C C ψ



  


 
 
 



 

 

( 4.36 

) 

Although, since there is no equation in terms of the roll angle in this case, and all terms of 

the Lagrange’s Equations are zero, the previous equation can be expressed as: 
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 

0 0 0 0

 0 0 0 0

0 0 0 0 0 0 0 0 0 0

diag





            
            

               
                          

11 12 11 12 11

21 22 21 22 21

θψψ ψ ψ QA A B B C

QA A B B C θθ θ θ

ψ



  

 

 

( 4.37 ) 

where 0  represents a zero matrix of size n×n and sub-matrix components of matrix A are 

defined as: 

   

   

   

   

ij,

2 ij,

2 ij,

22 ij,

cos cos cos( )

cos sin sin( )
     ( , 1,2, , )

sin cos sin( )

sin sin cos( ) cos cos

i j i j i ji j

i j i j i ji j

i j i j i ji j

i j i j i j i ji j

l l

l l
i j n

l l

l l

   

   

   

     

  

  


  


  

11

1

1

A M

A M

A M

A M

 

 

( 4.38 ) 

and sub-matrices of matrix B are: 

   

   

   

   

ij,

ij,

ij,

ij,

cos cos sin( )

cos cos sin( )
   ( , 1,2, , )

sin cos cos( )

sin cos cos( ) cos sin

i j i j i ji j

i j i j i ji j

i j i j i ji j

i j i j i j i ji j

l l

l l
i j n

l l

l l

   

   

   

     

  

  


 


  

11

12

21

22

B M

B M

B M

B M

 

 

( 4.39 ) 

and finally, matrixC consists of two sub-matrices: 

   

   

ij,

ij,

2cos sin cos( )
        ( , 1,2, , )

2sin sin sin( )

i j i j i ji j

i j i j i ji j

l l
i j n

l l

   

   

   


 

11

21

C M

C M
 

 

( 4.40 ) 

based on equations of motion derived in ( 4.26 ) and ( 4.33 ). Matrix M is also called the 

mass distribution matrix by Quisenberry [16] and is represented as: 
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 
ij

max ,

=                  ( , 1,2, )
n

k

k i j

m i j n


 M  
 

( 4.41 ) 

By implementing the generalized forces in terms of external forces in Equation ( 4.36 ), 

the equations can be solved numerically using appropriate initial conditions. 

4.4. External Forces 

For the case of the 3D model, the cross flow principle introduced by Hoerner [32] 

is used to calculate the external forces due to wind. Equations ( 4.25 ) and ( 4.32 ) suggest 

that generalized force vectors Q and Q require the external forces and moments applied 

to the system to be derived and entered in terms of the Euler Angles in order to solve the 

equations. It should be emphasized once again that the so-called generalized forces are 

in fact moments in these equations, i.e. the dimension is actually N.m and not N. This is 

due to the fact that the choice of generalized coordinates are angles rather than linear 

positions. This ensures that the equations derived which are energy-based are consistent 

in terms of dimension. 

It is assumed that the flow field is uniform in each direction and the wind profile in 

a certain direction is constant with respect to the other 2 global coordinates; that is, wind 

speed in the X direction is constant in terms of Y and Z, and so on. However; the model 

can be simply extended to a variable profile wind condition with correct implementation of 

the wind profile values in the solver algorithm developed here. 

Cross-Flow Principle 

According to Section 3.4, one can extend the cross flow principle to a 3D cable 

segment model. Thus having the rod model illustrated in Section 3.4, consider the wind 

velocity is defined as the following vector: 
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0w

U

V V

W

 
 

  
 
 

 

 

( 4.42 ) 

Therefore one can express the wind velocity relative to the segment’s speed as: 

,w rel

U X

V V Y

W Z

 
 

  
 

 

 

 

( 4.43 ) 

Defining the angle of attack α as the angle between the wind velocity vector and 

the longitudinal axes of the cylinder as shown in Figure 3.6, and assuming tangential 

pressure drag to be negligible, and neglecting tip vortices, and employing Hoerner’s cross 

flow principle for a slender cylinder in the uniform subcritical wind flow [32], the forces 

exerted by the wind on a cable segment can be expressed as: 

 

 

2 2 2

, , , ,

2 2 2 2 2

, , , , , ,

2 2 2 2 2

, , , , , ,

1

2

1

2

1

2

f x rel x rel y rel z rel

x

y y rel f x rel y rel z rel D y rel z rel

z

z rel f x rel y rel z rel D y rel z rel

dl C V V V V

F

F dlV C V V V C V V

F
dlV C V V V C V V

 

 

 

 
  

   
          
    

     
 

 

 

( 4.44 ) 

in which the relative wind velocity normal components in the segment local frame, 
,x relV

,y relV ,and ,z relV can be determined by transforming the relative wind velocity in the inertial 

frame to each body coordinate system using Euler Angle transformation matrix R  

defined in Equation Error! Reference source not found.. 
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,

,

,

i

i

i

x rel

y rel

z rel

V U X

V V Y

W ZV



   
   

     
       

R  

 

( 4.45 ) 

 It is also worthwhile to note that the tangential and normal forces in each segment’s local 

frame shown in Equation Error! Reference source not found. can be transformed back 

and forth to the inertial frame using the same rotation matrix; that is: 

1

i i

i i

i i

X x

Y y

Z z

F F

F F

F F





   
   

    
      
   

R  

 

( 4.46 ) 

These forces will be used in deriving the generalized forces for the purpose of 

solving the equations of motion. 

4.5. UAS Dynamics 

It is important to consider the UAS dynamics in the modelling of the system in order 

to capture the dynamic and static behavior of the system with a closer approximation. The 

same procedure used in Chapter 3 is followed in order to implement the dynamics of the 

UAS into the equations of motion. 

4.5.1. Implementation of UAS Segment into the Equations 

The UAS is considered to be another extra segment added to the n-segments 

modeled before and derive the Lagrange’s Equations for this n+1th segment. Since each 

segment is considered to have 2 degrees of freedom, there are two equation derived for 

the UAS which are then added to the matrix equations derived before.  It is assumed this 

particular segment expands from the last mass node which happens to be on the cable-

UAS connection point to the center of gravity of the UAS so that it complies with the 
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lumped mass model. In essence, the UAS, is reduced to a cable segment with a mass 

equal to the UAS’s and mass moment of inertia according to that of the UAS. 

A new axis is defined as the UAS’s principal axis and is labeled as 
q q qx y z  to be 

able to define the orientation of the vehicle with respect to the inertial frame in terms of 

Euler Angles. The origin of this coordinate system is located at the center of mass of the 

UAS,
qx  axes pointing towards the forward face of the UAS and

qz axes pointing towards 

the top of the UAS while the 
qy  axes point towards port as shown in Figure 4.2. In this 

work, the cable/UAS connection is constrained not to rotate about its longitudinal axes. 

That is, it can rotate about 
qx  and

qy  axis but is not able to rotate freely about the 
qz  axes. 

Thus, the UAS
q qx z  plane will always be in the same plane as the virtual segment plane 

1 1n nx z  . Using this configuration, vectors in the UAS coordinate system,
q q qx y z , can be 

transformed to the UAS virtual segment coordinate system, i.e. 1 1 1n n nx y z   through 

rotation with an angle  by using the following rotation matrix: 

cos 0 sin

0 1 0

sin 0 cos



 

 

 
 


 
  

R  

 

( 4.47 ) 

 In this system, the connection point is exactly below the center of mass, which 

makes the angle 90  . This causes the UAS coordinates to become equal to: 

1

1

1

qn

n q

n q

zx

y y

z x







  
  

   
      

 

 

( 4.48 ) 
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Figure 4.2. UAS 3D Coordinate Setup 
Note that the length between the connection point of the cable and the UAS’s center of mass is 
considered as an extra virtual segment 

Consider that the UAS has the mass moment of inertia CGI at its center of gravity 

and about its principal axis
q q qx y z . 

xx xy xz

CG yx yy yz

zx zy zz

I I I

I I I I

I I I

 
 

  
 
 

 

 

( 4.49 ) 

in which the off-diagonal elements xyI ,
xzI ,and zyI  are considered to be very close to zero 

and therefore neglected due to symmetry of the UAS. This matrix of mass moment of 
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inertia should be transformed to a new matrix representing the inertia at the origin of the 

cable segment and aligned with the virtual segment axis 1 1 1n n nx y z   . 

In order to transform the inertia matrix, one needs to align it with the 1 1 1n n nx y z  

coordinate system by using the rotation matrix R and then translate it to reflect the inertia 

in the desired coordinate system. Define the inertia matrix about the center of mass 

aligned with the UAS segment axis 1 1 1n n nx y z   to be called CGI . Then we can state this 

inertia matrix in terms of the principal inertias as: 

1

CG CGI I 

R R   ( 4.50 ) 

This matrix is then needed to be transferred to be calculated about the 1 1 1n n nx y z  

axis using parallel axes theorem [37], [38], [41]. Therefore: 

2

1 1

2

1

cos 0 sin 0 0 cos 0 sin 0 0 0

0 1 0 0 0 0 1 0 0 0

sin 0 cos 0 0 sin 0 cos 0 0

xx

n yy U n

zz U n

I

I I m l

I m l

   

   

 



       
      

       
            

 

 

( 4.51 

) 

where Um  is the UAS mass and 1nl  is the length of the n+1th
 segment, i.e. the distance 

between the connection point and the center of mass. One can finally write the inertia 

about the origin of this segment as: 

1

1

1

2

1 1

2

1

0 0 0 0

0 0 0 0

0 00 0

n

n

n

x zz

n y yy U n

xx U nz

I I

I I I m l

I m lI







 



   
   

     
      

 

 

( 4.52 ) 

The kinetic energy of the multibody system including the UAS segment which 

consists of a translational and a rotation term could be written as: 
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. .trans rotT T T    ( 4.53 ) 

In calculation of the rotational part of the kinetic energy of the UAS, one needs to 

use the angular velocities of the segment about each axis in the inertial coordinate system. 

Note that the rate of change of the Euler angles, i.e. , , and  are not orthogonal and 

one needs to use the components of the angular velocity in terms of these three rates. For 

any segment in the system, including the virtual UAS segment, the angular velocity vector 

can be stated as [33]: 

sin

cos sin cos

cos cos sin

i

i

i

x i i i

i y i i i i i

i i i i iz

   

     

    

   
   

     
      

ω  

 

( 4.54 ) 

One can calculate the rotational kinetic energy using the angular velocity of each 

segment as well as inertia matrix as: 

 
1 1

. .

1 1

1

2

n n

rot rot j j jj
j j

T T
 

 

   T
ω I ω  

 
( 4.55 ) 

Then, substituting the components of the angular velocity vector, the rotational 

kinetic energy is written as: 

1

.

1

0 0

1
0 0

2
0 0

j j

j j j j j

j j

x x
n

rot x y z y y

j

z z

I

T I

I



   







    
    
     
     
        

  

 

( 4.56 ) 

which can be written as the following summation: 
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 
1

2 2 2

.

1

1

2 j j j j j j

n

rot x x y y z z

j

T I I I  




    
 

( 4.57 ) 

In which, the angular velocity terms can be substituted from Equation ( 4.54 ) to 

achieve the following: 

 

 

 

1
2 2 2

.

1

2 2 2 2 2

2 2 2 2 2

1
sin 2 sin

2

cos sin cos 2 cos sin cos

cos cos sin 2 cos cos sin

j

j

j

n

rot x j j j j j j

j

y j j j j j j j j j j

z j j j j j j j j j j

T I

I

I

    

         

         





   

  

 



 

 

( 4.58 ) 

The translational part of the Kinetic energy will be in the exact same format as 

before and in line with representation of kinetic energy for all other segments. 

Taking the derivatives of the new kinetic energy of the system with respect to the 

heading angle i and its rate yields: 

. =0                                   ( 1,2, , 1)rot

i

T
i n




  


 

 
( 4.59 ) 

 

 

 

2.

2 2

2 2

= sin sin

cos sin cos sin cos

cos cos cos cos sin                 ( 1,2, , 1)

i

i

i

rot
x i i i i

i

y i i i i i i i

z i i i i i i i

T
I

I

I i n

   


      

      


 



 

   

 

 

( 4.60 ) 

After taking a time-derivative of Equation ( 4.60 ), it can be stated as: 



 

100 

2.

2 2 2 2

2

= sin 2 cos sin sin cos

cos sin 2 sin cos sin 2 cos sin cos

cos sin cos sin sin cos cos c

i

i

rot
x i i i i i i i i i i i

i

y i i i i i i i i i i i i i

i i i i i i i i i i i

Td
I

dt

I

         


            

          

 
        

   

   

 

2 2

2 2 2 2

2 2 2

os sin

cos cos 2 cos sin cos 2 cos cos sin

cos cos sin sin cos sin cos cos sin

                                                 

i

i i

z i i i i i i i i i i i i i

i i i i i i i i i i i i i

I

 

            

            

 


   

  


                                    ( 1,2, , 1)i n  

 

 

( 4.61 ) 

Then, the addition of rotational kinetic energy to the left hand side of the Lagrange’s 

Equations in terms of the heading angle will be: 

2. .

2 2 2 2

2

sin 2 cos sin sin cos

cos sin 2 sin cos sin 2 cos sin cos

cos sin cos sin sin cos

i

i

rot rot
x i i i i i i i i i i i

i i

y i i i i i i i i i i i i i

i i i i i i i i

T Td
I

dt

I

         
 

            

        

  
           

   

   

 

2 2

2 2 2 2

2 2 2

cos cos sin

cos cos 2 cos sin cos 2 cos cos sin

cos cos sin sin cos sin cos cos sin

                                       

i

i i i i i

z i i i i i i i i i i i i i

i i i i i i i i i i i i i

I

   

            

            

 


   

  


                                              ( 1,2, , 1)i n  

 

 

( 4.62 ) 

The derivation of the Equations for the pitch angle is done by taking derivatives of 

the kinetic energy with respect to the pitch angle and its rate as shown below: 

 

 

 

2.

2 2

2 2

= sin cos cos

cos sin sin sin sin cos

cos sin cos sin cos sin       ( 1,2, , 1)

i

i

i

rot
x i i i i i i

i

y i i i i i i i i i

z i i i i i i i i i

T
I

I

I i n

    


        

        


 



  

    

 

 

( 4.63 ) 
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 

 

2.

2

= cos cos sin cos

sin cos cos sin      ( 1,2, , 1) 

i

i

rot
y i i i i i i

i

z i i i i i i

T
I

I i n

     


     


 



   

 

 

( 4.64 ) 

And therefore the time derivative of Equation ( 4.64 ) could be expressed as: 

 

2.

2 2

2

= cos 2 cos sin cos sin cos

sin sin cos cos cos sin

sin 2 sin cos cos cos sin

sin cos sin

i

i

rot
y i i i i i i i i i i

i

i i i i i i i i i i

z i j i i i i i i i i

i i i i i

Td
I

dt

I

         


         

         

    

 
      

  


   

  2 2cos cos sin      ( 1,2, , 1)i i i i i i n        


 

 

( 4.65 ) 

The left hand side of the Lagrange’s Equations for the UAS rotational kinetic 

energy in terms of the pitch angle is now written in the following form: 

 

2. .

2

2 2 2 2

2

sin cos cos

cos 2 cos sin cos sin cos

cos cos sin cos sin sin

sin 2 sin cos

i

i

i

rot rot
x i i i i i i

i i

y i i i i i i i i i i

i i i i i i i i i

z i j i i i i

T Td
I

dt

I

I

    
 

         

        

     

  
          

   

   


 

 2 2 2 2

cos cos sin

cos cos sin cos sin cos      ( 1,2, , 1)

i i i i

i i i i i i i i i i n

   

        

 

    


 

 

( 4.66 ) 

Continuing to the Lagrange’s Equations based on the rotational kinetic energy of 

the UAS for the roll angle and its rate, and , respectively, one can write: 
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 

 

2 2 2.

2 2

2 2 2

2 2

= cos sin cos cos sin

cos cos sin

cos cos sin sin cos

cos cos sin              ( 1,2, , 1)

i

i

rot
y i i i i i i i

i

i i i i i

z i i i i i i i

i i i i i

T
I

I

i n

      


    

      

    


  

 


  

   


 

 

( 4.67 ) 

 . = sin                         ( 1,2, , 1)
j

rot
x i i i

i

T
I i n  




   


 

 
( 4.68 ) 

Derivative of Equation ( 4.68 ) is taken with respect to time to get the first term of 

Lagrange’s Equation as: 

. = sin cos                    ( 1,2, , 1)
j

rot
x i i i i i i

i

Td
I i n

dt
     



 
         

 
 

( 4.69 ) 

Therefore, the left hand side of the Lagrange’s Equations for all segments in terms 

of the roll angle based on the UAS rotational kinetic energy can be stated as follows: 

 

 

. .

2 2 2

2 2

2 2 2

2 2

sin cos

cos sin cos cos sin

cos cos sin

cos cos sin sin cos

cos cos sin

i

i

i

rot rot
x i i i i i i

i i

y i i i i i i i

i i i i i

z i i i i i i i

i i i i i

T Td
I

dt

I

I

     
 

      

    

      

    

  
          

  

 


  




                     ( 1,2, , 1)i n  

 

 

( 4.70 ) 

These equations derived based on rotational kinetic energy can now be combined 

in a matrix form. The equations of motion based on rotational kinetic energy can then be 

added to the Equation ( 4.36 ) which has been derive based on translational kinetic energy 
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of the system. It should be noted that Equation ( 4.36 ) consists of 3n equations which 

should be extended to 3(n+1) equations after adding the UAS segment. 

Arranging Equations ( 4.62 ), ( 4.66 ), ( 4.70 ) to a matrix form, one can write them 

in the following form which represents the additional terms to be added to the left hand 

side of Equation ( 4.37 ) to reflect the dynamics of the UAS into the equations of motion: 

2

2

2

 

      
      

       
      

         

rot. rot. rot. rot. rot. rot. rot.

rot. rot. rot. rot. rot. rot.

rot. rot. rot. rot. rot. rot.
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   
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) 

where each sub matrix of A is a diagonal matrix with the elements stated below: 
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rot.

rot. rot.

rot. rot.

rot.

rot. rot.

11

12 21

13 31

22

23 32

A

A A

A A

A

A A
,

,

    ( 1,2, , 1)

0

i

i i

x
i i

i n

I





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and sub-matrices of matrix B are: 
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and finally, matrixC consists of two sub-matrices: 
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It is very important to note that Equation ( 4.71 ) includes the rotational kinetic 

energy for all cable segments. That is it can implement the effect of inertias of cable 
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segments into the equations. It is also worthwhile to mention that unless the inertias of the 

segments are included as thin rods, matrix A becomes irreversible causing the system to 

be singular and not solvable. Therefore, the rotational kinetic energy for all segments is 

added in all directions. This means that the model has migrated from a lumped mass 

model to a thin rod model at this point. Although the mass is assumed to be located at the 

end of the segment, the mass moments of inertia are calculated and implemented in matrix

A for the purpose of solving the problems. 

Addition of Equation ( 4.71 ) to the left hand side of Equation ( 4.37 ) and adding 

the generalized force component for the UAS, will finalize the derivation of equations of 

motion for the UAS-cable system. This set of 3(n+1) equations can be expressed as 

follows and will be solved through a similar expanded algorithm developed in Chapter 3. 

13

3

31 3 33

 diag

                 
                           

                          

11 12 13 11 12 11 12 13
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A A A B B B C C C  







   
   

   
   

  

Q

Qθ

Qψ




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where any primed matrix conveys the addition of rotational and translational coefficient 

matrices added together. 

Since the cable model used in this work is the lumped-mass model, there is no 

inertia involved in the equations of motion for the cable segments. Thus the only inertia 

added to the equations is the UAS inertia. As seen before, Equation ( 4.37 ) in fact consists 

of 2(n) equations, which after addition of the UAS segments will be augmented to reflect 

3(n+1) equations. Since there is no inertia involved in the cable model, the only term added 

to the translational equations is at the n+1th row of submatrices of matrices A ,B andC . 

This causes the submatrices of C  to remain zero except at the n+1th element which is a 

coefficient of the UAS’s bank angle. This will be observed in the results section. 
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4.6. Numerical Method for Solving the System’s Equation of 
Motion 

The equations derived in this chapter are similar to the equations derived 

in Chapter 3 in terms of mathematical order. That is the equation set is still a coupled set 

of several highly non-linear second-order ordinary differential equations with a larger 

variable number. In Chapter 3, the main variables were a set of n+1 generalized 

coordinates each of which represented the attitude angle of each cable segment. In this 

chapter, there are mainly three sets of attitude angles which consist of heading, pitch and 

roll angles. Each of these attitude angles consist of n+1 angles in compliance with the 

number of segments used for the model in addition to one cable segment. 

For the purpose of solving this set of equations, the same tool in MATLAB™ 

software package is used which solves the non-linear ODE’s using the Runge-Kutta 

numerical integration method.  

After adding the rotational terms and implementing the UAS dynamic equations to 

Equation ( 4.37 ), it will have 3(n+1) equations in which the unknowns are the Euler Angles 

of the segments as well as their first and second time derivatives, i.e., ,  , ,  ,  ,  , 

 ,  ,  respectively. In order to use the “ode45” solver in MATLAB™, the equation set 

is reduced by order and enlarged by equation size using the following procedure. This will 

convert the 3(n+1) second-order ODE’s to 6(n+1) first-order ODE’s which can be solved 

using proper initial conditions. 

4.6.1. Order Reduction of Differential Equations 

The general form of the system’s equation for each segment is presented below: 
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( 4.76 ) 

By assuming the following vectors as attitude vectors, one can change the order of the 

system as follows. 

The vector   is called the angular position vector and is represented by: 

1 1 1

2 2 2

1 1 1( 1) 1 ( 1) 1 ( 1) 1

, ,

n n nn n n

  

  
  

         

     
     
       
     
     
     
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The vector   is called the Euler Angle rate vector and is represented by: 

1 11

2 2 2

1 ( 1) 1 1 1( 1) 1 ( 1) 1

, ,

n n n nn n

 

  
  

         

    
    
          
    
        
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The vector   is the vector consisting of second time-derivative of Euler Angles 

and is represented by: 
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1 11

2 2 2

1 ( 1) 1 1 1( 1) 1 ( 1) 1

, ,

n n n nn n

 

  
  
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    
    
          
    
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( 4.79 ) 

Now, define a vector consisting of vectors defined in Equations ( 4.77 ) and ( 4.78 

), named the angular state of the system as: 

6( 1) 1n





 
 




 

 
 
 
 

   
    
   

 
 
 
 
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where  is defined in Equation ( 4.35 ).Then, the time-derivative of Equation ( 4.80 ) can 

be written as: 

6( 1) 1n





 


 




 

 
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 
 
  

    
 

  
 
 
 
 
 
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Manipulating the system’s equation of motion and substituting the variables by the 

system state vector, one can express the reduced order system of equations in the form 

of: 
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 
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where A , B and C are coefficient matrices of Equation ( 4.37 ) added to the rotational 

matrices of Equation ( 4.71 ) and Q  is the vector of generalized forces defined as: 

Q







 
 

  
 
 

Q

Q

Q
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Equation ( 4.82 ) is a set of 6n+6 first-order ODE’s which will be solved using the 

Runge-Kutta numerical integration algorithm. The algorithms and MATLAB™ programs 

are presented in Appendix A.  

These equations are then solved numerically using appropriate initial conditions to 

simulate different scenarios. Using the accelerations obtained from the numerical 

solutions, the forces on each cable segment are calculated in order to estimate the cable 

tension at each node. This model is then verified for correctness in the following section. 

4.7. Model Verification 

The derivation of the Lagrange’s Equations for the 3D multibody discrete cable 

system is a detail-oriented task. Thus it is very likely to make mistakes while deriving or 
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implementing the equations into the software. Therefore, it is deemed necessary to test 

the validity of the 3D model as well to ensure it is derived and implemented correctly. The 

next few sections present some simple tests ensuring the model’s validity. 

4.7.1. Simple Pendulum Test 

Similar to Chapter 3, as an initial test, the model is tested to ensure it is acting 

reasonably with only one segment; that is when it is modeling an ideal simple pendulum 

with a mass located at the end, and no friction present. In addition, to test this model 

against a simple pendulum, it is important to set the inertias to zero to reflect the behavior 

of the pendulum with a pointed mass and a massless rod. The comparison between the 

theoretical oscillation periods and simulated periods are presented in Figure 4.3. 

 

Figure 4.3. Simple Pendulum Periods, Comparison of Simulated and Theoretical 
Results. 
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According to the results of a few tests, one can observe that the model is capable 

of predicting the dynamics of an ideal pendulum with a high accuracy. As you can see in 

Figure 4.3, in these tests, different set of pendulum lengths are chosen in comparison to 

Chapter 3. It should be noted that these results simulate the pendulum oscillating in the 

YZ  plane where heading angle, i is 90 degrees for the segment. Other sets of tests have 

been run with the pendulum oscillating in other vertical planes– that is with other values 

of heading angles–to ensure the model’s accuracy. 

4.7.2. Generalization of the Model to a Finite-Segment Cable 

To confirm that the model simulates a finite segment cable model properly and 

correctly, some tests similar to Section 3.7.2 are run and compared in this section. It 

should be noted that since this section is merely studying the cable’s behavior, the UAS’s 

properties is neglected in these set of simulations. Four different combinations of thrust 

and pitch are tested for each of the lumped mass model as well as the lumped mass model 

where the segment inertias are added to the cable model. The results are presented in 

Figure 4.4. It can be seen in these plots that the cable shape generated using the 3D 

model agrees to the ones generated using the 2D models. 
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Figure 4.4. Comparison of static cable shapes; catenary model vs. 2D and 3D 
discrete models 

4.8. Results and Discussions 

Results from the modeling and simulation of the 3D cable-body system in a few 

case studies are demonstrated in the following sections. Table 4.1 shows the UAS 

properties as well as the simulation parameters used in these set of tests. Again the 

normal and frictional drag coefficients are chosen to be 1.5 and 0.02 respectively to follow 



 

113 

the guidelines from Hoerner [32]. Similar to the 2D case, the UAS thrust is modeled as a 

vectored thrust always perpendicular to the UAS horizontal axis; that is the thrustT is 

always in the x direction of the UAS virtual segment. The UAS thrust is assumed to be held 

exactly constant in magnitude unless stated otherwise. In general, the thrust components 

in the global coordinate is defined as: 

1 1 1

1 0

0
n n n

X
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Z

T T

T R
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    
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   

   
  
  
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Then the thrust vector can be written as: 
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   

 
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 
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 

 



  
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It is worthwhile to mention that in this configuration of Euler Angle’s, positive values 

of the pitch angles i represent downward pitch since the angles follow right-hand rule. 

Table 4.1. UAS Parameters 

Simulation Parameter Value Units 

UAS Weight 10.56 [kg] 

UAS-Cable Connection Link Length 0.1 [m] 

Cable Effective Shear Modulus 56 [MPa] 

UAS Moment of Inertia (at connection point) (I’xx) 0.94 [kg.m2] 

UAS Moment of Inertia (at connection point) (I’yy) 1.33 [kg.m2] 

UAS Moment of Inertia (at connection point) (I’zz) 1.33 [kg.m2] 

UAS Frame Rod Length 1.01 [m] 

UAS Frame Rod Diameter 0.025 [m] 

UAS Vertical Thrust 283.59 [N] 
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A very important fact about the 3D modelling of any rigid body using Euler Angles 

is the concept of gimbal lock. Using Type I Euler Angles, this condition occurs “when two 

of the Euler angle rates represent rotations about the same axis in space” [33]; that is 

when 
2


   . This causes a singularity in the problem making the angles   and  not 

defined. It is important to be aware of this limitation in the model and avoid situations that 

this phenomenon might happen. 

4.8.1. Effect of Wind on Lateral Motion 

In this section the UAS and cable’s dynamic behavior is investigate when the UAS 

is operating in a windy condition. According to Chapter 3, and due to the inherent limitation 

of the 2D model, the UAS and cable were always moving in the XZ  plane. However, in 

reality this is not the case and the UAS will have lateral motion, called sway, hereafter, in 

addition to drift or offset motion in the X direction.  

The UAS is considered to have reached steady state under the effect of a 4 m/s 

wind in the X direction when a wind with the velocity of 8 m/s starts blowing on the system 

at time t=1 seconds in the lateral direction for 10 seconds. The UAS is then allowed to 

reach steady state condition and the position as well as cable tensions are plotted. 

Table 4.2 shows the wind parameters used for simulation. 

Table 4.2. Wind Velocity Vector 

Parameter Label 
Value 
(m/s) 

Application 
Time (sec) 

Wind Velocity in X direction U 4 0:00-120:00 

Wind Velocity in Y direction V 8 1:00-11:00 

Wind Velocity in Z direction W 0 N/A 

Figure 4.5 shows how the position of UAS center of mass changes in all horizontal 

and vertical planes. One can see the inherent stability of the UAS in the sense that it can 

achieves the same position after some time. The wind stops blowing at t=11s and by t=80s 

the UAS has achieved the initial stable position.  
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Figure 4.5. UAS position in different planes, Lateral Wind Effect  

 

Figure 4.6. UAS Position and Attitude, Lateral Wind Effect 

Figure 4.6 presents the UAS position as well as its attitude plotted against time. 

Generally the UAS holds a relatively stable heading and pitch and it can settle to that value 
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after the lateral wind stops blowing. Also it can be inferred that with this lateral wind 

blowing the UAS height drops about 15 meters in about 17 seconds. This is something to 

consider seriously when designing the control for the flying aerial system. Also, this wind 

pulls the UAS sideways by 50 meters which is a significant amount. Again this is 

something to be aware of when specifying the operating point for the UAS. 

4.8.2. Variable Wind Model 

To better model the wind effect on stability of the cable-body system, a more 

realistic wind model can be introduced in order to study the effect of wind speed and 

direction variations on the system’s static and dynamic stability. As an example, the effect 

of a certain wind variation on the system’s states is simulated here.  

Consider that vector wV represents the wind velocity vector parallel to the ground; 

i.e. the XY  plane as a function of time. For simplicity, assume there is no cross-flow wind 

present in the vertical direction. Now, the variablesU andV which represent the wind 

velocity in X andY  direction respectively are also functions of time. By employing a simple 

wind model used to model an aerostat in Fourie’s work [42], the wind velocity vector is 

defined as: 

  
 

 

   

   
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sin

w

w
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   

 

 

( 4.86 ) 

where the magnitude which varies with a frequency of 0.5 Hz, mean wind speed of 3 m/s 

and a variance of 1 m/s. The wind heading angle  also has a mean value of 45 degrees 

and a variance of 15 degrees which fluctuates every 10 seconds. The wind parameters 

are then defined as shown in Error! Reference source not found.. Figure 4.7 shows the 

wind speed and heading variations during a 100 seconds of simulation. The UAS attitude 

and position due to application of this fluctuating wind velocity are presented in Figure 4.9. 
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Table 4.3. Wind Parameters 

Parameter Label Value Units 

Wind Velocity Magnitude Mean Value 
V  3 [m/s] 

Wind Velocity Variance V  2 [m/s] 

Wind Velocity Frequency 
Vf  0.5 [Hz] 

Wind Heading Angle Mean Value 
  0 [deg] 

Wind Heading Angle Variance 
  10 [deg] 

Wind Heading Angle Frequency f  0.1 [Hz] 

 

 

Figure 4.7. Wind Variations; left: speed variations; right: heading variations 
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Figure 4.8. UAS position in different planes, Lateral Wind Effect  

 

Figure 4.9. UAS Position and Attitude, Lateral Wind Effect 
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4.8.3. Effect of UAS Thrust Fluctuations on Lateral Motion  

Having reliable data regarding thrust fluctuations in a specific flying vehicle, effect 

of this force fluctuations on the vehicles stability and operating point can be simulated. As 

a case study and in order to demonstrate the simulation, consider a simple harmonic thrust 

fluctuation in which the thrust magnitude is modeled in the exact same way as 

Section 3.8.3: 

2
sinm fThrust T T t

f




 
   

 
 

 
( 4.87 ) 

where the initial phase   does not affect the result. The variable thrust parameters are 

defined in Table 4.4. The UAS and the cable segments are initially positioned at 89 

degrees with respect to the horizon to avoid singularity in the Euler Angle calculations. 

Then the system simulation starts with this thrust fluctuation. Since there is no initial 

positon or force in Y  direction, the system states in the lateral direction remain zero and 

the motion is planar. 

Table 4.4. UAS Thrust with fluctuations 

Parameter Label Value Units 

UAS Mean Thrust Tm 283.59 [N] 

Fluctuation Amplitude Tf 50 [N] 

Fluctuation Frequency f 1 [Hz] 

  Figure 4.10 shows the UAS position on horizontal and vertical planes. The time 

response for the UAS position and attitude can also be seen in Figure 4.11. According to 

this figure, it can be observed that a 1 Hz thrust fluctuation with an amplitude of 50 N, 

causes a decaying oscillation with a period of 57 sec in the UAS offset. The thrust 

fluctuation causes an oscillation in the UAS altitude with a frequency of 1 Hz and a peak-

to-peak amplitude of 0.15 meters; that is the vertical UAS motion is 15 centimeters at 

most. However the UAS pitch changes every two seconds in comparison to the thrust 

frequency of 1 Hz with a peak-to-peak amplitude of 1 degrees.  
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Figure 4.10. UAS position results due to thrust fluctuations 

 

Figure 4.11. UAS position and attitude under thrust fluctuations 



 

121 

4.9. Conclusions 

This chapter was dedicated to 3D modelling and simulation of the cable which is 

used to tether a captive UAS to its base station. Modelling of the system was accomplished 

by discretizing the cable into finite rigid body segments using a lumped-mass model. An 

Euler Angle representation were used to specify the coordinates of each segment after 

which equations of motion were derived using Lagrange’s Method for multibody systems. 

The UAS itself was modeled as an additional cable segment with specific length, mass 

and inertia matrix. The lumped-mass model found to be insufficient in terms of solving the 

problem numerically as it caused the coefficient matrices to be singular. Therefore, a thin 

rod model including inertia matrices of the cable segments were used instead.  

The equations of motion were then manipulated in order to reduce the 

mathematical order of the differential equations, enabling the author to numerically solve 

them using the 4th order Runge-Kutta integration routine in MATLAB software package. A 

torsion stiffness model was added since the model showed unreasonable results due to 

the limitation of the torsion-free model. The results were generated considering the torsion 

stiffness in the cable and were compared. 

Effect of lateral wind on the dynamic of the cable and the UAS was also presented 

to demonstrate stability of the system in such conditions. Another Effect that is 

investigated in this chapter, is the effect of variable wind on the system’s stability. A wind 

model is used in which wind velocity and heading angle changes randomly with a normal 

distribution. In addition, UAS take off in a windy condition is investigated along with effect 

of UAS thrust fluctuation on the UAS states. 
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Chapter 5.  
 
Conclusions and Future Work 

In this work, a captive tether/UAS system was modeled mathematically and the 

results were simulated numerically. A summary of the contributions, recommendations 

and potential future work is given in this chapter. 

5.1. Summary 

Firstly, in Chapter 2, a computer algorithm was developed in order to predict the 

static behavior of the tether/UAS system under different loading conditions. This model 

uses catenary equations as the basis of modelling and was able to predict different 

parameters of the system given certain flying conditions.  

Two different case studies were used to demonstrate the capability of the 

developed algorithm in application to different scenarios and some results were illustrated. 

Using this algorithm and results, one can understand the sensitivity of the tensions both 

at the UAS and at the winch to different parameters, including length, and UAS vertical 

and horizontal position. The results show the effect of cable length on UAS behavior as 

well as UAS pitch and thrust requirements to maintain vertical and horizontal position.  

Dynamic behavior as well as the effect of wind was neglected in this chapter. The 

study is also limited to the cases where external forces are absent except at the endpoint. 

However, it is possible to implement external forces into the algorithm with more 

complicated mathematical derivations. The algorithm is powerful in predicting a quasi-

static system where the acceleration is almost zero and as a result, no inertial forces are 

present. With more detailed mathematical derivation, one may extend this model to one 

that can analyze external forces such as uniform wind, etc. 

In Chapter 3, the cable/UAS system was modeled by writing the Lagrange’s 

Equations for the multibody system of discretized cable. The cable was modelled as a 

multibody system of finite rigid segments. The equations of motion were derived and 
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solved numerically. Three different case studies were investigated including effect of wind 

speed on UAS stability, takeoff in extreme wind, and effect of thrust fluctuations on the 

dynamics of the system. 

The model is limited in the sense that it does not consider the effect of cable strain 

as well as bending in the cable. A more thorough modeling could be carried out to 

implement and investigate these parameters. In addition, a more in-depth modelling of the 

UAS could yield in more accurate and reliable results. 

In Chapter 4, a 3D model was developed for the same system. A lumped-mass 

model was used to represent the discretized cable model. Euler Angles were used to 

represent each segments orientation in space. The Lagrange’s Equations were used in 

order to derive equations of motion for such a multi-body cable/UAS system. The problem 

was solved numerically using 4th order Runge-Kutta numerical integration method. A few 

case studies were simulated including torsion stiffness effect, effect of lateral wind on the 

dynamic of the cable and the UAS, and effect of randomly varying wind speed. In addition, 

the effect of UAS thrust fluctuations were investigated when the UAS is in hovering mode. 

5.2. Future Work 

Modelling flexible media is a vast field and there have been several areas identified 

during this work that the author would like to explore in future. By considering the following 

effects in the models, one will be able to generate a more accurate model for a flexible 

cable. 

5.2.1. Bending Stiffness  

It would make the model more accurate if one implements the effect of bending 

stiffness in the cable segment joints. Cables do not behave exactly similar to chains in 

practice and usually a cable shows resistance towards bending. This is due to the 

resistance that the cable shows if the bending radius gets smaller than the bending radius 

limit of the cable which depends on the material, wire arrangement, diameter, etc. By 
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including this stiffness into the model the cable is being limited in extreme scenarios which 

enables the model to replicate the real physics of the problem with a better accuracy.  

5.2.2. Longitudinal Strain 

Adding the effect of longitudinal strain in each cable segment allows the model to 

simulate the change in length of the tether due to tension. In most applications, cables 

have a relatively low stiffness allowing the cable to stretch throughout its length. Addition 

of this factor could improve the reliability and validity of the model significantly.   

5.2.3. Reeling Process 

In many marine, submarine, aerial, and space applications, the cable is usually 

used to deploy a system or a vehicle. In most of these applications the vehicle or the 

mechanical system is deployed using a winch and a tether by paying out the cable Thus, 

modelling the reeling process could be a worthwhile addition to this study. The author 

hopes to be able to model this process using a method called Updated Lagrangian Method 

which is employed in a similar work by Muttin [29]. 

5.2.4. Contact Modelling 

During each operation, it might occur that the cable comes in contact with its 

surroundings [9]. As an example, the cable might have to be laid on the ground during 

landing off-base due to an emergency. Modeling these types of contacts can be a helpful 

improvement to the model.  

5.2.5. Sophisticated UAS Modelling 

With implementation of a sophisticated UAS model, one can model different flight 

scenarios more realistically. This can include a flight controller based on position feedback 

as well as more accurate aerodynamic modelling of the UAS based on its geometry. In 

addition, detailed modelling of the UAS thrusters based on their relative position on the 
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UAS with respect to the center of mass could be very helpful in predicting the system’s 

behavior. 

5.2.6. Base Station Motions 

The cable-body system studied in this work can be used in a lot of applications 

including oil spill detection in the ocean [28], [29], as well as civil or border surveillance. It 

could be also used in mining sites for surveillance of the operation. In some of these cases, 

it is required to mount the base station on a moving vehicle; either a ground vehicle or a 

vessel in the case of the marine operations. Thus, in the scope of development of this 

cable model further, it is expected to extend the model to add the effect of base station 

motions or oscillations. 

5.3. Recommendations 

In this work the coordinate system used to represent each cable segment will 

cause the segment pitch angle to be close to 90 degrees. It is recommended that the 

choice of Euler Angles be different according to the common operating range of the system 

in order to leave a bigger margin between the operating angles and the gimbal lock angles 

of the system. In spite of this fact, this model tends to be able to predict the behavior at 

most of the cases without any singularity in the system. 
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Appendix A.  
 
MATLAB Program Codes 

A.1. Chapter 2 

Below are presented a few sample MATLAB codes as used in the static simulation of 
Chapter 2. 

 

Function “MTeth8” defines the function of unknowns for the cable. 

% Implementation of formula derivations for Catenary cables 
% Derived and Implemented by: Sina Doroudgar, Rigid Robotics Inc., 

  
% Description:  
%Three variable function to be solved for the static Tether 
%variables are: x=[x1 p H]', 
%p, the offset from the base station, H, the height, and T1 the cable 

tension at winch should be entered. 

  
function G=MTeth8(x,L,T2ver,T2hor); 
g=9.81;            % gravitational acceleration 
mu=0.14*g;       % cable's weight per unit length    
Th2Radian=atan(T2ver/T2hor) 
% p=p 
% H=H 
% L=L 
T0=T2hor; 
G=[x(3)-(T0/mu).*(cosh(mu.*(x(1)+x(2))/T0)-cosh(mu.*x(1)/T0));  

%function G defines a vector of two functions to be solved 
    L-(T0/mu).*(sinh(mu.*(x(1)+x(2))/T0)-sinh(mu.*x(1)/T0));  
%     tan(Th2Radian)-sinh(mu.*(x(1)+x(2))/T0)]; 
    T2ver/T2hor-sinh(mu.*(x(1)+x(2))/T0)]; 
% sqrt(T2ver.^2+T2hor.^2)-T0*cosh(mu.*(x(1)+x(2))/T0)]; 
% T0-T2.*(cos(atan(sinh(mu.*(x(1)+x(2))/T0))))]; 
%F=G'*G; 
% global p 
% global H 
% global L 
end 

  

 

___________________________________________________________ 

 

The script “Mtethsolve8.m” solves the system using the inputs as defined in the codes. 

% Implementation of formula derivations for Catenary cables 
% Derived and Implemented by: Sina Doroudgar, Rigid Robotics Inc., 
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% Description: Solves the Catenary equation for known parameters:  

offset of p, height 
% of H and cable length of L 
% The variable is implemented as vector x=[x1;T0] 

  

  

  
function F = Mtethsolve8(L,T2ver,T2hor); 
format long 
x0=[122;25;120];    % iteration start point 
g=9.81;            % gravitational acceleration 
mu=0.14*g;       % cable's weight per unit length 

  
 [x,fval] = fsolve(@(x) MTeth8(x,L,T2ver,T2hor), x0) 

  
Th2Radian=atan(T2ver/T2hor); 
T0=T2hor; 

  
Th1Radian=atan(sinh(x(1)*mu/T0)); 
Th2Radian=atan(sinh((x(1)+x(2))*mu/T0)); 

  
y1=T0/mu.*(cosh(mu.*x(1)/T0)-1); 
y2=T0/mu.*(cosh(mu.*(x(1)+x(2))/T0)-1); 

  

  

  
if abs(fval) > 1e-3; 
    display ('Function cannot calculate forces accurately;') 
    display('The offset is too small and the error of the code is high 

at this point.') 
    display('The force on the UAV is approximated by the cable weight 

which is approximately equal to') 
    T2=mu.*x(3) 
    display('and the force at the base station could be approximated by 

zero.') 
    T1=0 
end 
fval 
if abs (fval) <= 1e-3; 
    format short 
    display 'at altitude(m)=' 
    H=x(3) 
    display 'with a tether length of (m)=' 
    L=L 
    display 'at offset position (m)=' 
    p=x(2) 
    display 'Horizontal Force (N) is:' 
    T0= T0 
    display 'angle at winch (degrees) is:' 
    Th1 =Th1Radian*180/pi 
    display 'tension force at winch (N) is:' 
    T1=T0/cos(Th1Radian) 
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    display 'angle at UAV (degrees) is:' 
    Th2 =Th2Radian*180/pi 
    display 'tension force at UAV (N) is:' 
    T2=T0/cos(Th2Radian) 

    
end 

  

  
xt=[x(1):.01:x(1)+p]; 
TTT=T0*cosh(mu.*xt./T0); 
plot(xt-x(1),TTT,':') 
hold on 

  
end 

  
  

______________________________________________________________________ 

 

The script “Mtethplote8.m” solves and plots the cable shape for the system using the 
inputs as defined in the codes. 

 
% Implementation of formula derivations for Catenary cables 
% Derived and Implemented by: Sina Doroudgar, Rigid Robotics Inc., 

  
% Description: Plots the hyperbolic shape function of the catenary 

tether  

  
function [y,H,p] = Mtethplot8(L, T2ver,T2hor); 
x0=[2;25;120];      % iteration start point 
g=9.81;            % gravitational acceleration 
mu=0.14*g;       % cable's weight per unit length 

  
% global p 
% global H 
% global L 

  
% [x,fval]=fsolve(@Teth3,[x0 p H L]); 
% if (L<=sqrt(p.^2+H.^2)) 
%   display ('ERROR: Cable length is insufficient for this altitude. 

Please enter a cable length larger than sqrt(p.^2+H.^2)') 
%     return 
% else 

        
[x,fval] = fsolve(@(x) MTeth8(x, L,T2ver,T2hor), x0); 

  

  
Th2Radian=atan(T2ver/T2hor); 
T0=T2hor; 
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Th1Radian=atan(sinh(x(1)*mu/T0)); 
Th2Radian=atan(sinh((x(1)+x(2))*mu/T0)); 

  
y1=T0/mu.*(cosh(mu.*x(1)/T0)-1); 
y2=T0/mu.*(cosh(mu.*(x(1)+x(2))/T0)-1); 

  
p=x(2); 
H=x(3); 

  
xt=[x(1):.01:x(1)+p];      % generates points to graph the cable shape 
y=T0/mu.*(cosh(mu.*xt/T0)-1);     % representation of the cable graph 

in terms of variable x (called xt here) 
plot (xt-x(1),y-y(1)); 
% axis([x(1)-.5 x(1)+p+.5 -y(1)-5 H+10]); 
axis([-2 p+2 -20 H+10]); 
grid on; 
hold on; 
axis equal; 
rectangle('Position',[p-2,H-1,4,2],'FaceColor','y'); 
% plot(plot::Circle2d(1, [0, 1]) 
% plot:Circle2d(1, <[0, 1]>) 
% filledCircle([0,1],1,1000,'b'); 
% end 
text(xt(round(end/1.1))-x(1),y(round(end/1.1))-

y(1),['L=',num2str(L)],'fontsize',6); 

  
end 

 

 

A.2. Chapter 3 

The following codes are used in simulation and solution of the 2D cable-body system’s 
dynamics: 

 

The script “simParams.m” loads the geometrical and mechanical system parameters. 

%% simParams 

  

  
global segLength 
global lengthVector 
global massVector 
global n 
global massMatrix 
global m 
global k 
global windVelocity 
global airDensity 
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global segArea 
global Cf 
global Cd 
global L 
global UASInertia 
global inertias 
global g 
global T2hor 
global T2ver 
global UASTHRUST 
global UASArea 
global MaxU 
global MaxW 
global UTrig 
global WTrig 

  

  

  
UASArea=[]; 

 
segNo=20; 
n=segNo; 
k=2*n+2; 

   
MaxU=6; %wind horizontal velocity_mps 
UTrig=1; %wind horizontal velocity application time 
MaxW=0; %wind vertical velocity_mps 
WTrig=10000; %wind vertical velocity application time 
Cd=1.2;    % slender cylinder drag coefficient 
Cf=0.05;   % slender cylinder friction coefficient 
L=122;%-122/(n+1);  % cable length 
g=9.81; %gravitational acceleration 
airDensity=1.225; %kg/m^3 
massPerLength=0.14; %cable mass per length (kg/km) 
cableDia=0.0135; %Cable diameter (m) 
E=0.4*200e9; %cable modulus of elasticity (Pa) 
windVelocity=zeros(2*n+2,1); 

  
n=k/2-1; %number of cable segments 
segLength=L/n; 
m=segLength*massPerLength; 
massUAS=10.56;%35; % UAS mass(kg) 
lUAS=0.1;%0.2; %UAS segment length(m) 
UASInertia=1.3256;   %kgm^2 
massMatrix=zeros(n+1,n+1); 
lengthVector=zeros(n+1,1); 
lengthVector(1:n)=segLength; 
lengthVector(n+1)=lUAS; 
segArea=lengthVector*cableDia;   %characteristic length of cable 

segment 
segArea(n+1)=(1.012*0.025); 
% UASArea(1)=; 
% UASArea(2)=; 
% moments=zeros(n+1,1); % External Moments Vector 
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massVector=zeros(n+1,1); 
massVector(1:n)=m; 
massVector(n+1)=massUAS; 

  

  
%% Inertias 
inertias=zeros(n+1,1); 
inertias(n+1)=UASInertia;   %Deactivated for validation 
%% 

  
for i=1:n+1; 
    for j=1:n+1; 
%         massMatrix(i,j)=(n+1-max(i,j))*m+massUAS; 
        massMatrix(i,j)=sum(massVector(max(i,j):end)); 

                  
    end 
end 

______________________________________________________________________ 

The function “ndimrigid.m” defines the equations of motion completely including the 
coefficient matrices, etc. 

%ndimrigid 

  
function dQ = ndimrigid(t,Q); 
global segLength 
global lengthVector 
global massVector 
global n 
global k 
global massMatrix 
global windVelocity 
global airDensity 
global segArea 
global Cf 
global Cd 
global inertias 
global g 
global T2hor 
global T2ver 
global UASTHRUST 
global MaxU 
global MaxW 
global UTrig 
global WTrig 
UASTHRUST =283.5936+10.*sin(2.*pi./1.*t); 
U=MaxU*(heaviside(t-UTrig));  
W=MaxW*(heaviside(t-WTrig)); 
windVelocity(1:2:end,1)=U; 
windVelocity(2:2:end,1)=W; 
temp=0; 
velocity=zeros(2*n+2,1); 
% windVelocity=zeros(2*n+2,1); 
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rotationBigMatrix=[0]; 
forceSegment=[0]; 
% for i=1:n+1; 
% windVelocity(1:2:end,1)=U; 
% windVelocity(2:2:end,1)=W; 
% end 
%% 
dQ=zeros(k,1); 
moments=zeros(n+1,1); % External Moments Vector 

  
A=zeros(1); 
B=zeros(1); 
AA=[]; 
BB=[]; 

  

  
for i=1:n+1; 
    for j=1:n+1; 

        
        

A(i,j)=massMatrix(i,j)*lengthVector(i)*lengthVector(j)*cos(Q(n+1+i)-

Q(n+1+j))+(i==j)*inertias(i);%+(i==j)*(sum(AA(i:end,1))+inertias(i)+1/4

*massVector(i)*lengthVector(i).^2); 
    end 
end 

  
for i=1:n+1; 
    for j=1:n+1; 
%         for i1=1:n+1; 
        

B(i,j)=massMatrix(i,j)*lengthVector(i)*lengthVector(j)*sin(Q(n+1+i)-

Q(n+1+j));%-(i==j)*(sum(BB(i:end,1))); 
    end 
end 

  
% newA=[-inv(A)*B*diag(Q(1:n+1))  zeros(n+1); 
    newA=[-A\(B*diag(Q(1:n+1)))  zeros(n+1); 

  
      eye(n+1)                  zeros(n+1)]; 
%   newC=[-inv(A)*(Q(1:n+1))  zeros(n+1);... 
%       zeros(n+1)                  zeros(n+1)]; 

   
%   dQ=newA*Q+0*newC; 

  
%% Rotation Matrix for Velocity 

  
for i=1:n+1; 
    temp=[0;0]; 
      for j=1:i; 
          RDotThet=[-sin(Q(j+n+1))  -cos(Q(j+n+1)); 
              cos(Q(j+n+1))       -sin(Q(j+n+1))]; 
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          velocity(2*i-1:2*i,1)= 

temp+Q(j)*RDotThet*[lengthVector(j);0]; 
          temp=velocity(2*i-1:2*i,1); 
      end 
end 

  

  
relativeVelocity=windVelocity-velocity; 

  

  
for i=1:n+1; 
    rotationBigMatrix(2*i-1:2*i,2*i-1:2*i)=[cos(Q(n+1+i)) -

sin(Q(n+1+i)) ;sin(Q(n+1+i)) cos(Q(n+1+i))]; 
end 

  
% relVelSegment=inv(rotationBigMatrix)*relativeVelocity; 
relVelSegment=(rotationBigMatrix)\relativeVelocity; 

  
% Wind Forces on Cable 
for i = 1:n; 
    forceSegment(2*i-

1,1)=0.5*airDensity*segArea(i)*3.14*Cf*relVelSegment(2*i-

1,1)*sqrt(relVelSegment(2*i-1,1).^2+relVelSegment(2*i,1).^2); 
    

forceSegment(2*i,1)=0.5*airDensity*segArea(i)*relVelSegment(2*i,1)*(Cf*

3.14*sqrt(relVelSegment(2*i-

1,1).^2+relVelSegment(2*i,1).^2)+Cd*abs(relVelSegment(2*i,1))); 
end 

  
%% Wind forces on UAS 
for i = n+1; 
forceSegment(2*i-1,1)=0.5*airDensity*segArea(i)*relVelSegment(2*i-

1,1)*(Cf*3.14*sqrt(relVelSegment(2*i-

1,1).^2+relVelSegment(2*i,1).^2)+2*Cd*abs(relVelSegment(2*i-1,1))); 
forceSegment(2*i,1)=0.5*airDensity*segArea(i)*relVelSegment(2*i,1)*(3.1

4*Cf*sqrt(relVelSegment(2*i-

1,1).^2+relVelSegment(2*i,1).^2)+Cd*abs(relVelSegment(2*i,1))); 
end 

  
% forceSegment(2*n+1) = T2ver; 
% forceSegment(2*n+2) = T2hor; 

  
% forceSegment(2*n-1)=200*(heaviside(t-10)-heaviside(t-10.6)); 
% forceSegment(2*n+2)=20; 
forceWld=rotationBigMatrix*forceSegment; 
% 

forceWld(2*n+1:2*n+2,1)=[0*sin(2*pi*t/1);1*(massPerLength*L+massUAS)*g+

0*1.5*sin(2*pi*t/0.1)]; 

 
forceWld(2*n-1) = 1*forceWld(2*n-1)+UASTHRUST*(1)*cos(Q(2*n+2)); 
forceWld(2*n+2) = 1*forceWld(2*n+2)+UASTHRUST*(1)*sin(Q(2*n+2)); 

  
%%Impact Force 
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% 

forceWld(3*round((n+1)/4)+1)=forceWld(3*round((n+1)/4)+1)+40.*(heavisid

e(t-60)&heaviside(61-t)); 
%% 
% forceWld(2*n+1)=5*(heaviside(t-5)-heaviside(t-5.1)); 
%% generalized force (Q) in equations 
generalizedForce=zeros(n+1,1); 
generalizedForcei=[]; 
moments(1)=0; 
moments(n+1)=0; 

  
for i=1:n; 
%     moments(i)=forceWld(2*i-1)*.5*lengthVector(i)*sin(Q(n+1+i))-

forceWld(2*i)*.5*lengthVector(i)*cos(Q(n+1+i)); 
    tempq=[0]; 
        for j=i:n+1; 
%        if j==i; 
%         tempq=[0.5*((forceWld(2*j)-

massVector(j))*lengthVector(i)*cos(Q(n+1+i))-forceWld(2*j-

1)*lengthVector(i)*sin(Q(n+1+i)))]; 
%        end           
        generalizedForcei(i,1)=tempq+(forceWld(2*j)-

massVector(j)*g)*1*lengthVector(i)*cos(Q(n+1+i))-forceWld(2*j-

1)*lengthVector(i)*sin(Q(n+1+i));%-

lengthVector(i)/2*cos(Q(n+1+i));%+moments(i); 
        tempq=generalizedForcei(i,1); 
    end 
    generalizedForce(i,1)=generalizedForcei(i,1)+moments(i); 
end 

  
for i=n+1; 
%     moments(i)=forceWld(2*i-1)*.5*lengthVector(i)*sin(Q(n+1+i))-

forceWld(2*i)*.5*lengthVector(i)*cos(Q(n+1+i)); 
    tempqq=[0]; 
        for j=i:n+1; 
%        if j==i; 
%         tempq=[0.5*((forceWld(2*j)-

massVector(j))*lengthVector(i)*cos(Q(n+1+i))-forceWld(2*j-

1)*lengthVector(i)*sin(Q(n+1+i)))]; 
%        end           
        generalizedForcei(i,1)=tempqq+(forceWld(2*j)-

massVector(j)*g)*1*lengthVector(i)*cos(Q(n+1+i))-forceWld(2*j-

1)*lengthVector(i)*sin(Q(n+1+i));%-

lengthVector(i)/2*cos(Q(n+1+i));%+moments(i); 
        tempqq=generalizedForcei(i,1); 
    end 
    generalizedForce(i,1)=generalizedForcei(i,1)+moments(i); 
end 

  

  

  

  
generalizedForce; 
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% generalizedForce=diag(forceSegment)*lengthVector/2 
t 
% dQ=newA*Q+[inv(A)*generalizedForce; zeros(n+1,1)]; 
dQ=newA*Q+[A\generalizedForce; zeros(n+1,1)]; 

  

___________________________________________________________ 

 

Script “solveSystem.m” solves the equations of motion given the initial conditions defined 
in the same file in the form of segment angles.  

%%solveSystem 

  
tic 

  
simParams 

  
thet0=[zeros(1,n+1) ones(1,n+1)*(1)*pi/2]';  % define initial 

conditions 

thet0(end)=pi/2; 
options = odeset('RelTol',1e-4*eye(1,size(thet0,2)),'AbsTol',1e-

6*eye(1,size(thet0,2))); 
global segLength 
global m 
global lengthVector 
global massVector 
global n 

  
dimTol=0; 

  
timeEnd = 100;      % define simulation time 

  
[T,Y] = ode45(@ndimrigid,[0 timeEnd],thet0,options); 
solvingTime=toc/60  
disp('minutes') 

  
plotSystem 
forceCalc 
plottest 

___________________________________________________________ 

Script “plotSystem.m” calculates and plots the results in terms of acceleration, position 
and velocities.  

 

%% plot system 

  
tic 

  
global segLength 
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global lengthVector 
global massVector 
global n 
global massMatrix 
global m 
global k 
global windVelocity 
global airDensity 
global segArea 
global Cf 
global Cd 

  
limlim = (n+1)*segLength*3; 

  
 %Plotting the columns of the returned array Y versus T shows the 

solution 
XX=[]; 
ZZ=[]; 
X=[]; 
Z=[]; 
TT=T(1:20:end,:); 
YY=Y(1:20:end,:); 
accel = 0*(YY); 
for j=1:size(TT); 
%     clf 
    X(1,j)=lengthVector(1)*cos(YY(j,n+1+1));%-

lengthVector(1)/2*cos(YY(j,n+1+1)); 
    Z(1,j)=lengthVector(1)*sin(YY(j,n+1+1));%-

lengthVector(1)/2*sin(YY(j,n+1+1)); 
    for i=2:n+1; 
        X(i,j)=X(i-1,j)+lengthVector(i)*cos(YY(j,n+1+i)); 
        Z(i,j)=Z(i-1,j)+lengthVector(i)*sin(YY(j,n+1+i)); 
%          
%         sumx=X(i); 
%         sumz=Z(i); 
    end 

     

     
    filename = 'testnew51.gif'; 

     
[accel(j,:)]=ndimrigid(TT(j), YY(j,:)'); 
acceleration=accel(:,1:n+1); 
velocity=accel(:,n+2:end); 

  

   
 figure(1) 
 subplot(312) 
    plot(TT(:,1),Z(end,:),'-') 
    xlabel('Time (sec)') 
    ylabel('UAS Height (m)') 
    hold on 
    grid minor 

  



 

141 

    subplot(311) 
    plot(TT(:,1),X(end,:),'-') 
    xlabel('Time (sec)') 
    ylabel('UAS Offset (m)') 
    hold on 
    grid minor 

     
    subplot(313) 
    pitch=-pi/2*ones(size(YY(:,2*n+2),1),1)+YY(:,2*n+2); 
    pitch=pitch*180/pi; 
    plot(TT(:,1),pitch,'-') 
    xlabel('Time (sec)') 
    ylabel('UAS Pitch (deg)') 
    hold on 
    grid minor 
% legend('WindSpeed=') 
   print('positions','-dmeta') 
   print('positions','-dpng') 
   saveas(gcf,'positions.fig') 
    %} 

  
        %% 
    figure(2) 
    angle=atan2(Z(1,:),X(1,:)); 
    angle=angle*180/pi+360; 
    plot(TT(:,1),angle,'-'); 
    hold on 
    legend on 
    plot(TT(:,1),YY(:,n+2)*180./pi-180,'-k') 
    legend('Cable Angle from calculation','Cable Angle from the 

results(measured from -X)') 
    xlabel('Time (sec)') 
    ylabel('Cable Angle (deg)') 

    
    print('angles','-dmeta') 
   print('angles','-dpng') 
   saveas(gcf,'angles.fig') 

     
    figure(3) 

     
    plot(TT(:,1),acceleration(:,end),'-'); 
    hold on 
    legend on 
    legend('Angular Acceleration') 
    xlabel('Time (sec)') 
    ylabel('Angular Acceleration(rad/sec^2)') 

   
    print('Angular Acceleration','-dmeta') 
   print('Angular Acceleration','-dpng') 
   saveas(gcf,'Angular Acceleration.fig') 

    
    figure(4) 
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    plot(TT(:,1),velocity(:,end),'-'); 
    hold on 
    legend on 
    legend('Angular Velocity') 
    xlabel('Time (sec)') 
    ylabel('Angular Velocity(rad/sec)') 

     
     print('Angular Velocity','-dmeta') 
   print('Angular Velocity','-dpng') 
   saveas(gcf,'Angular Velocity.fig') 

    

       

  
plottingTime=toc/60 
disp('minutes') 

 

______________________________________________________________________ 

The script “forceCalc.m” calculates and plots the forces in the cable against time. 

%% forces 
global g 
global massVector 
global lengthVector 
global T2hor 
global T2ver 
global UASTHRUST 

  

  
interForce=0*YY; 
baseForce=0*YY(:,1:2); 
linAccel=0*YY; 

  
for jj=1:size(TT); 

  

  
for i=1:n+1; 
    tempa=[0;0]; 
      for j=1:i; 
          RDotThet=[-sin(YY(jj,j+n+1))  -cos(YY(jj,j+n+1)); 
              cos(YY(jj,j+n+1))       -sin(YY(jj,j+n+1))]; 

           
          RDotDotThet=[-cos(YY(jj,j+n+1))  sin(YY(jj,j+n+1)); 
              -sin(YY(jj,j+n+1))       -cos(YY(jj,j+n+1))]; 

         
          linAccel(jj,2*i-1:2*i)= 

tempa+YY(jj,j).^2*RDotDotThet*[lengthVector(j);0]+acceleration(jj,j)*RD

otThet*[lengthVector(j);0]; 
%           
          tempa=linAccel(jj,2*i-1:2*i); 
          tempa=tempa'; 
%           tempa' 
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      end 
%      
end 

  

  
hold on 
%% Force Calculations 

  

  

  
T2hor = UASTHRUST*(1)*cos(YY(jj,2*n+2)); 
T2ver = UASTHRUST*(1)*sin(YY(jj,2*n+2)); 

  
for i1 = n+1 
interForce(jj,2*i1-1:2*i1)=[T2hor T2ver];%-massVector(i1-1)*[0 g]; 
end 
for i2=n:-1:2; 
interForce(jj,2*i2-1:2*i2)=[interForce(jj,2*i2+1:2*i2+2)]-

massVector(i2)*[linAccel(jj,2*i2+1) linAccel(jj,2*i2+2)+g];%-

massVector(i2-1)*[0 g]; 
end 
for i3=1; 
interForce(jj,2*i3-1:2*i3)=[interForce(jj,2*i3+1:2*i3+2)]-

massVector(i3)*[linAccel(jj,2*i3+1) linAccel(jj,2*i3+2)+g]; 
end 

  
baseForce(jj,1:2)=[interForce(jj,1:2)]-massVector(1)*[linAccel(jj,1) 

linAccel(jj,2)+g]; 

  

  

  
end 

  

  
figure (5) 
subplot(211) 
plot(TT(:),linAccel(:,1:2:end),'-') 
xlabel('Time (sec)') 
ylabel('Node Horizontal Accelerations (m/s^2)') 
grid minor 
title('Node Accelarations') 

  
subplot(212) 
plot(TT(:),linAccel(:,2:2:end),'-') 
xlabel('Time (sec)') 
ylabel('Node Vertical Accelerations (m/s^2)') 
grid minor 

  
 print('Node Accel','-dmeta') 
   print('Node Accel','-dpng') 
   saveas(gcf,'Node Accel.fig') 
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figure (6) 
subplot(211) 
plot(TT(:),interForce(:,1:2:end)) 
xlabel('Time (sec)') 
ylabel('Node Horizontal Forces (N)') 
grid minor 
title('Node Forces') 

  
subplot(212) 
plot(TT(:),interForce(:,2:2:end)) 
xlabel('Time (sec)') 
ylabel('Node Vertical Forces (N)') 
grid minor 
legend([num2str((2:2:size(interForce,2))')]) 
% text(TT(end-

30),interForce,['L=',num2str(L),'m'],'fontsize',8);%,'Color',colours(k)

); 

  
 print('Node Forces','-dmeta') 
   print('Node Forces','-dpng') 
   saveas(gcf,'Node Forces.fig') 

  

    
figure (7) 
subplot(211) 
plot(TT(:),baseForce(:,1)) 
xlabel('Time (sec)') 
ylabel('Base Horizontal Forces (N)') 
grid minor 
title('Base Forces') 

  
subplot(212) 
plot(TT(:),baseForce(:,2)) 
xlabel('Time (sec)') 
ylabel('Base Vertical Forces (N)') 
grid minor 

  
 print('Base Forces','-dmeta') 
   print('Base Forces','-dpng') 
   saveas(gcf,'Base Forces.fig') 

  
tension1=[]; 
tension=[]; 
for j4=1:n+1; 
tension1(j4,1)=norm(interForce(end,2*j4-1:2*j4));    
end 
tension=[norm(baseForce(end,:));... 
    tension1]; 

  
figure(8) 
Xs=[zeros(1,size(X,2)); X(:,:)]; 
plot(Xs(:,end),tension,'>') 
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xlabel('Node X-Position (m)') 
ylabel('Longitudinal Cable Tension(N)') 
grid minor 
title('Cable Tesnion Comparison') 
legend('Discrete Model') 
hold on 

  
print('Cable Tesnion','-dmeta') 
   print('Cable Tesnion','-dpng') 
   saveas(gcf,'Cable Tesnion.fig') 

 

  

A.3. Chapter 4 

The following codes are used in simulation and solution of the 3D cable-body system’s 
dynamics: 

The script “simParams.m” loads the geometrical and mechanical system parameters. 

   
%% simParams 

  
global segLength 
global lengthVector 
global massVector 
global n 
global massMatrix 
global m 
global k 
global windVelocity 
global airDensity 
global segArea 
global Cf 
global Cd 
global L 
global G 
global Jp 
global UASInertia 
global inertias 
global g 
global TX 
global TY 
global TZ 
global UASTHRUST 
global UASArea 
global MaxU 
global MaxV 
global MaxW 
global UTrig 
global VTrig 
global WTrig 
global BETA UU jk ts 
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UU=[]; 
BETA=[]; 
ts=0:0.1:150; 
for tt=0:2:150; 
idx=find(ts==tt); 
idx=idx(1); 
UU(1,idx:size(ts,2))=3+sqrt(50)*randn(1,1); 
end 

  

  
for tt=0:10:150; 
idx=find(ts==tt); 
idx=idx(1); 
BETA(1,idx:size(ts,2))=45+sqrt(10)*randn(1,1); 
end 

  
figure(123) 
subplot(121) 
hold on 
plot(ts,UU); 
xlabel('time (sec)') 
ylabel('Wind Velocity (m/s)') 
grid on 
subplot(122) 
hold on 
plot(ts,BETA) 
xlabel('time (sec)') 
ylabel('Wind Heading (\beta) (deg)') 
grid on   
print('wind','-dmeta') 
   print('wind','-dpng') 
   saveas(gcf,'wind.fig') 

  
figure(12314) 
subplot(121) 
hold on 
plot(ts,UU.*cosd(BETA)); 
xlabel('time (sec)') 
ylabel('Wind Velocity in X direction (m/s)') 
grid on 
subplot(122) 
hold on 
plot(ts,UU.*sind(BETA)) 
xlabel('time (sec)') 
ylabel('Wind Velocity in Y Direction(m/s)') 
grid on   
print('windUV','-dmeta') 
   print('windUV','-dpng') 
   saveas(gcf,'windUV.fig') 
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UASArea=[]; 

 
segNo=14;   %define no. of segments 
n=segNo; 
k=6*n+6; 

  

  

  

  
%% Parameters 
UTrig=0; 
VTrig=0; 
MaxW=0; 
WTrig=1000; 
Cd=1.2;    % slender cylinder drag coefficient 
Cf=0.05;   % slender cylinder friction coefficient 
L=122;%-122/(n+1);  % cable length 
g=9.81; %gravitational acceleration 
airDensity=1.225; %kg/m^3 
massPerLength=0.14; %cable mass per length (kg/km) 
cableDia=0.0135; %Cable diameter (m) 
E=0.4*200e9; %cable modulus of elasticity (Pa) 
G=56e6; %effective shear modulus (Pa) 
Jp=0.5*pi*(cableDia/2)^4; 
windVelocity=zeros(3*n+3,1); 

  
% n=k/2-1; %number of cable segments 
segLength=L/n; 
m=segLength*massPerLength; 
massUAS=10.56;%35; % UAS mass(kg) 
lUAS=0.1;%0.2; %UAS segment length(m) 
% UASInertia=1.3256;   %kgm^2 
UASInertia=[0.94 1.3256 1.3256];   %kgm^2 
massMatrix=zeros(n+1,n+1); 
lengthVector=zeros(n+1,1); 
lengthVector(1:n)=segLength; 
lengthVector(n+1)=lUAS; 
segArea=lengthVector*cableDia;   %characteristic length of cable 

segment 
segArea(n+1)=(1.012*0.025); 
% UASArea(1)=; 
% UASArea(2)=; 
% moments=zeros(n+1,1); % External Moments Vector 
massVector=zeros(n+1,1); 
massVector(1:n)=m; 
massVector(n+1)=massUAS; 

  

  
%% Inertias 
inertias=zeros(n+1,3); 
% for i=1:n+1 
%     inertias(i)=massVector(i).*lengthVector(i).^2./3; 
% end 
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 for i=1:n 
    inertias(i,1)=massVector(i).*(cableDia/2).^2; 
    inertias(i,2)=massVector(i).*lengthVector(i).^2; 
    inertias(i,3)=massVector(i).*lengthVector(i).^2; 
 end 
inertias(n+1,:)=UASInertia;   %Deactivated for validation 
%% 

  
for i=1:n+1; 
    for j=1:n+1; 
%         massMatrix(i,j)=(n+1-max(i,j))*m+massUAS; 
        massMatrix(i,j)=sum(massVector(max(i,j):end)); 

                  
    end 
end 

______________________________________________________________________ 

The function “ndimrigid.m” defines the equations of motion completely including the 
coefficient matrices, etc. 

%rigid 

  
function [dQ,FORCEWORLD] = ndimrigid(t,Q); 
global segLength 
global lengthVector 
global massVector 
global n 
global k 
global massMatrix 
global windVelocity 
global airDensity 
global segArea 
global Cf 
global Cd 
global G 
global Jp 
global inertias 
global g 
global TX 
global TY 
global TZ 
global UASTHRUST 
global MaxU 
global MaxV 
global MaxW 
global UTrig 
global VTrig 
global WTrig 
global UU BETA jk ts 
% Wind VTOL 
PsiRate=Q(1:n+1);ThetaRate=Q(n+2:2*n+2);PhiRate=Q(2*n+3:3*n+3); 
Psi=Q(3*n+4:4*n+4);Theta=Q(4*n+5:5*n+5);Phi=Q(5*n+6:6*n+6); 
% UASTHRUST =283.5936;%+10.*(t>20).*(t-20); 
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UASTHRUST =283.5936;%+10.*(t>5).*(t-5); 

     
Uinf=interp1(ts,UU,t); 
beta=interp1(ts,BETA,t); 

  

  
U=Uinf*cosd(beta);%+MaxU./10*sin(0.5./50*t*t);%0.2*sin(2*pi/.05*t)*(hea

viside(t-UTrig)); 
V=Uinf*sind(beta);%*(heaviside(t-VTrig)); 
W=MaxW;%*(heaviside(t-WTrig)); 
windVelocity(1:3:end,1)=U; 
windVelocity(2:3:end,1)=V; 
windVelocity(3:3:end,1)=W; 

  
temp=0; 
velocity=zeros(3*n+3,1); 
% windVelocity=zeros(2*n+2,1); 
rotationBigMatrix=[0]; 
forceSegment=[0]; 
% for i=1:n+1; 
% end 
%% 
dQ=zeros(k,1); 
moments=zeros(n+1,1); % External Moments Vector 
%% 
A=[];B=[];C=[]; 
A11=zeros(n+1,n+1);A12=zeros(n+1,n+1);A13=zeros(n+1,n+1);A21=zeros(n+1,

n+1);A22=zeros(n+1,n+1);A23=zeros(n+1,n+1);A31=zeros(n+1,n+1);A32=zeros

(n+1,n+1);A33=zeros(n+1,n+1); 
B11=zeros(n+1,n+1);B12=zeros(n+1,n+1);B13=zeros(n+1,n+1);B21=zeros(n+1,

n+1);B22=zeros(n+1,n+1);B23=zeros(n+1,n+1);B31=zeros(n+1,n+1);B32=zeros

(n+1,n+1);B33=zeros(n+1,n+1); 
C11=zeros(n+1,n+1);C12=zeros(n+1,n+1);C13=zeros(n+1,n+1);C21=zeros(n+1,

n+1);C22=zeros(n+1,n+1);C23=zeros(n+1,n+1);C31=zeros(n+1,n+1);C32=zeros

(n+1,n+1);C33=zeros(n+1,n+1); 
A11rot=zeros(n+1,n+1);A12rot=zeros(n+1,n+1);A13rot=zeros(n+1,n+1);A21ro

t=zeros(n+1,n+1);A22rot=zeros(n+1,n+1);A23rot=zeros(n+1,n+1);A31rot=zer

os(n+1,n+1);A32rot=zeros(n+1,n+1);A33rot=zeros(n+1,n+1); 
B11rot=zeros(n+1,n+1);B12rot=zeros(n+1,n+1);B13rot=zeros(n+1,n+1);B21ro

t=zeros(n+1,n+1);B22rot=zeros(n+1,n+1);B23rot=zeros(n+1,n+1);B31rot=zer

os(n+1,n+1);B32rot=zeros(n+1,n+1);B33rot=zeros(n+1,n+1); 
C11rot=zeros(n+1,n+1);C12rot=zeros(n+1,n+1);C13rot=zeros(n+1,n+1);C21ro

t=zeros(n+1,n+1);C22rot=zeros(n+1,n+1);C23rot=zeros(n+1,n+1);C31rot=zer

os(n+1,n+1);C32rot=zeros(n+1,n+1);C33rot=zeros(n+1,n+1); 
AA=[];BB=[];CC=[]; 
%% 

  
for i=1:n+1; 
    for j=1:n+1; 
        %         for i1=1:n+1; 
        %              
        

A11(i,j)=massMatrix(i,j)*lengthVector(i)*lengthVector(j)*(cos(Theta(i))

*cos(Theta(j))*cos(Psi(i)-
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Psi(j)));%+(i==j)*inertias(i);%+(i==j)*(sum(AA(i:end,1))+inertias(i)+1/

4*massVector(i)*lengthVector(i).^2); 
        

A12(i,j)=massMatrix(i,j)*lengthVector(i)*lengthVector(j)*(cos(Theta(i))

*sin(Theta(j))*sin(Psi(i)-Psi(j))); 
        A21(i,j)=massMatrix(i,j)*lengthVector(i)*lengthVector(j)*(-

sin(Theta(i))*cos(Theta(j))*sin(Psi(i)-Psi(j))); 
        

A22(i,j)=massMatrix(i,j)*lengthVector(i)*lengthVector(j)*(sin(Theta(i))

*sin(Theta(j))*cos(Psi(i)-Psi(j))+cos(Theta(i))*cos(Theta(j))); 

  
        

A11rot(i,i)=inertias(i,1)*(sin(Theta(i))).^2+(inertias(i,2)*(sin(Phi(i)

)).^2+inertias(i,3)*(cos(Phi(i))).^2)*(cos(Theta(i))).^2; 
        A12rot(i,i)=(inertias(i,2)-

inertias(i,3))*cos(Phi(i))*sin(Phi(i))*cos(Theta(i)); 
        A21rot=A12rot; 
        

A22rot(i,i)=(inertias(i,2)*(cos(Phi(i))).^2+inertias(i,3)*(sin(Phi(i)))

.^2); 
        A13rot(i,i)=(-inertias(i,1)*sin(Theta(i))); 
        A31rot=A13rot; 
        A23rot(i,i)=0; 
        A32rot=A23rot; 
        A33rot(i,i)=inertias(i,1); 
    end 
end 
A=[A11+A11rot A12+A12rot A13+A13rot;A21+A21rot A22+A22rot 

A23+A23rot;A31+A31rot A32+A32rot A33+A33rot]; 

  
for i=1:n+1; 
    for j=1:n+1; 
        %         for i1=1:n+1; 
        %              
        

B11(i,j)=massMatrix(i,j)*lengthVector(i)*lengthVector(j)*(cos(Theta(i))

*cos(Theta(j))*sin(Psi(i)-

Psi(j)));%+(i==j)*inertias(i);%+(i==j)*(sum(AA(i:end,1))+inertias(i)+1/

4*massVector(i)*lengthVector(i).^2); 
        

B12(i,j)=massMatrix(i,j)*lengthVector(i)*lengthVector(j)*(cos(Theta(i))

*cos(Theta(j))*sin(Psi(i)-Psi(j))); 
        

B21(i,j)=massMatrix(i,j)*lengthVector(i)*lengthVector(j)*(sin(Theta(i))

*cos(Theta(j))*cos(Psi(i)-Psi(j))); 
        

B22(i,j)=massMatrix(i,j)*lengthVector(i)*lengthVector(j)*(sin(Theta(i))

*cos(Theta(j))*cos(Psi(i)-Psi(j))-cos(Theta(i))*sin(Theta(j))); 

         
        B11rot(i,i)=0; 
        B13rot=B11rot; 
        B22rot=B11rot; 
        B23rot=B11rot; 
        B33rot=B11rot; 
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        B12rot(i,i)=(inertias(i,3)-

inertias(i,2))*cos(Phi(i))*sin(Phi(i))*sin(Theta(i)); 
        B21rot(i,i)=(-

inertias(i,1)+inertias(i,2)*(sin(Phi(i))).^2+inertias(i,3)*(cos(Phi(i))

).^2)*sin(Theta(i))*cos(Theta(i)); 
        B31rot(i,i)=(inertias(i,3)-

inertias(i,2))*cos(Phi(i))*sin(Phi(i))*(cos(Theta(i))).^2; 
        B32rot(i,i)=(inertias(i,2)-

inertias(i,3))*cos(Phi(i))*sin(Phi(i)); 

  

         

         
    end 
end 
B=[B11+B11rot B12+B12rot B13+B13rot;B21+B21rot B22+B22rot 

B23+B23rot;B31+B31rot B32+B32rot B33+B33rot]; 

  

  
for i=1:n+1; 
    for j=1:n+1; 

        
        C11(i,j)=massMatrix(i,j)*lengthVector(i)*lengthVector(j)*(-

2*cos(Theta(i))*sin(Theta(j))*cos(Psi(i)-

Psi(j)));%+(i==j)*inertias(i);%+(i==j)*(sum(AA(i:end,1))+inertias(i)+1/

4*massVector(i)*lengthVector(i).^2); 
        

C21(i,j)=massMatrix(i,j)*lengthVector(i)*lengthVector(j)*(2*sin(Theta(i

))*sin(Theta(j))*sin(Psi(i)-Psi(j))); 

  
        C11rot(i,i)=2*cos(Theta(i))*sin(Theta(i))*(inertias(i,1)-

inertias(i,2)*(sin(Phi(i))).^2-inertias(i,3)*(cos(Phi(i))).^2); 
        C12rot(i,i)=cos(Theta(i))*(-inertias(i,1)+(inertias(i,2)-

inertias(i,3))*((cos(Phi(i))).^2-(sin(Phi(i))).^2)); 
        

C13rot(i,i)=2*(cos(Theta(i))).^2*sin(Phi(i))*cos(Phi(i))*(inertias(i,2)

-inertias(i,3)); 
        C22rot(i,i)=2*sin(Phi(i))*cos(Phi(i))*(inertias(i,3)-

inertias(i,2)); 
%         C22rot(i,i)=2*sin(Phi(i))*cos(Phi(i))*(inertias(i,3)-

inertias(i,2)); 
        C21rot(i,i)=0; 
        C32rot=C21rot; 
        C33rot=C21rot; 
        C23rot(i,i)=cos(Theta(i))*(inertias(i,1)+(inertias(i,2)-

inertias(i,3))*((cos(Phi(i))).^2-(sin(Phi(i))).^2)); 
        C31rot(i,i)=cos(Theta(i))*(-inertias(i,1)+(inertias(i,3)-

inertias(i,2))*((cos(Phi(i))).^2-(sin(Phi(i))).^2)); 

  

         
    end 
end 
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C=[C11+C11rot C12+C12rot C13+C13rot;C21+C21rot C22+C22rot 

C23+C23rot;C31+C31rot C32+C32rot C33+C33rot]; 

  

  
% newA=[-inv(A)*B*diag(Q(1:n+1))  zeros(n+1); 
newA=[-A\(B*diag(Q(1:3*n+3)))  zeros(3*n+3); 

     
eye(3*n+3)                  zeros(3*n+3)]; 

  
%% Rotation Matrix for Velocity 

  
for i=1:n+1; 
    temp=[0;0;0]; 
    for j=1:i; 
        RDotThet=[-sin(Psi(j))*cos(Theta(j))  -

cos(Psi(j))*sin(Theta(j)) 0; 
            cos(Psi(j))*cos(Theta(j))  -sin(Psi(j))*sin(Theta(j)) 0; 
            0                       -cos(Theta(j))                0]; 

         
        velocity(3*i-2:3*i,1)= 

temp+(RDotThet*[PsiRate(j);ThetaRate(j);PhiRate(j)])*lengthVector(j); 
        temp=velocity(3*i-2:3*i,1); 
    end 
    %     velocity(2*i-1:2*i,1)=velocity(2*i-

1:2*i,1)+0.5*lengthVector(i).*[Q(i)*sin(Q(n+1+i));-Q(i)*cos(Q(n+1+i))]; 
end 

  

  
relativeVelocity=windVelocity-velocity; 

  

  
for i=1:n+1; 
    rotationBigMatrix(3*i-2:3*i,3*i-2:3*i)=[cos(Psi(i))*cos(Theta(i))                                            

sin(Psi(i))*cos(Theta(i))                                            -

sin(Theta(i));... 
                             -

sin(Psi(i))*cos(Phi(i))+cos(Psi(i))*sin(Theta(i))*sin(Phi(i))             

cos(Psi(i))*cos(Phi(i))+sin(Psi(i))*sin(Theta(i))*sin(Phi(i))           

sin(Phi(i))*cos(Theta(i));  ... 
                              

sin(Psi(i))*sin(Phi(i))+cos(Psi(i))*sin(Theta(i))*cos(Phi(i))            

-cos(Psi(i))*sin(Phi(i))+sin(Psi(i))*sin(Theta(i))*cos(Phi(i))           

cos(Phi(i))*cos(Theta(i))]; 

         
end 

  
% relVelSegment=inv(rotationBigMatrix)*relativeVelocity; 
relVelSegment=(rotationBigMatrix)\relativeVelocity; 

  
% Wind Forces on Cable 
for i = 1:n ; 
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    Vall=sqrt(relVelSegment(3*i-2,1).^2+relVelSegment(3*i-

1,1).^2+relVelSegment(3*i,1).^2); 
    forceSegment(3*i-

2,1)=0.5*airDensity*segArea(i)*3.14*Cf*relVelSegment(3*i-2,1)*Vall; 
    forceSegment(3*i-1,1)=0.5*airDensity*segArea(i)*relVelSegment(3*i-

1,1)*(Cf*3.14*Vall+Cd*sqrt(relVelSegment(3*i-

1,1).^2+relVelSegment(3*i,1).^2)); 
    

forceSegment(3*i,1)=0.5*airDensity*segArea(i)*relVelSegment(3*i,1)*(Cf*

3.14*Vall+Cd*sqrt(relVelSegment(3*i-1,1).^2+relVelSegment(3*i,1).^2)); 
end 

  
%% Wind forces on UAS 
for i = n+1; 
    Valluas=sqrt(relVelSegment(3*i-2,1).^2+relVelSegment(3*i-

1,1).^2+relVelSegment(3*i,1).^2); 
    forceSegment(3*i-2,1)=0.5*airDensity*segArea(i)*relVelSegment(3*i-

2,1)*(3.14*Cf*Valluas+2*Cd*abs(relVelSegment(3*i-2,1))); 
    forceSegment(3*i-1,1)=0.5*airDensity*segArea(i)*relVelSegment(3*i-

1,1)*(3.14*Cf*Valluas+Cd*sqrt(relVelSegment(3*i-

1,1).^2+relVelSegment(3*i,1).^2)+Cd*abs(relVelSegment(3*i-1,1))); 
    

forceSegment(3*i,1)=0.5*airDensity*segArea(i)*relVelSegment(3*i,1)*(3.1

4*Cf*Valluas+Cd*sqrt(relVelSegment(3*i-

1,1).^2+relVelSegment(3*i,1).^2)+Cd*abs(relVelSegment(3*i,1))); 
end 

  
forceWld=rotationBigMatrix*forceSegment; 
%  

  
% forceWld(3*n-2) =30*(heaviside(t-3)); 
forceWld(3*n-2) = 1*forceWld(3*n-

2)+UASTHRUST*(cos(Psi(end))*cos(Theta(end))); 
forceWld(3*n-1) = 1*forceWld(3*n-

1)+UASTHRUST*(sin(Psi(end))*cos(Theta(end))); 
forceWld(3*n+3) = 1*forceWld(3*n+3)-UASTHRUST*sin(Theta(end)); 

  

  
%%Impact Force 
% 

forceWld(3*round((n+1)/4)+1)=forceWld(3*round((n+1)/4)+1)+40.*(heavisid

e(t-60)&heaviside(61-t)); 
%% 
% forceWld(2*n+1)=5*(heaviside(t-5)-heaviside(t-5.1)); 
FORCEWORLD=forceWld; 
%% generalized force (Q) in equations 
generalizedForce=zeros(3*n+3,1); 
generalizedForcePsi=zeros(n+1,1); 
generalizedForceTheta=zeros(n+1,1); 
generalizedForcePhi=zeros(n+1,1); 

  
generalizedForcei=[]; 
generalizedForceiPsi=[]; 
generalizedForceiTheta=[]; 
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generalizedForceiPhi=[]; 
moments(1)=0; 
moments(n+1)=0;%forceWld(3*n+1)*0.5*cos(Theta(n+1)); 
% 
for i=1; 
    %     moments(i)=forceWld(2*i-1)*.5*lengthVector(i)*sin(Q(n+1+i))-

forceWld(2*i)*.5*lengthVector(i)*cos(Q(n+1+i)); 
    tempqPsi=[0]; 
    tempqTheta=[0]; 
    tempqPhi=[0]; 
    for j=i:n+1; 

         
        %        end 
        generalizedForceiPsi(i,1)=tempqPsi+forceWld(3*j-2)*(-

lengthVector(i)*sin(Psi(i))*cos(Theta(i)))+forceWld(3*j-

1)*lengthVector(i)*cos(Psi(i))*cos(Theta(i));%-

lengthVector(i)/2*cos(Q(n+1+i));%+moments(i); 
        generalizedForceiTheta(i,1)=tempqTheta+forceWld(3*j-2)*(-

lengthVector(i)*cos(Psi(i))*sin(Theta(i)))+forceWld(3*j-1)*(-

lengthVector(i)*sin(Psi(i))*sin(Theta(i)))+(forceWld(3*j)-

massVector(j)*g)*(-lengthVector(i)*cos(Theta(i)));%-

lengthVector(i)/2*cos(Q(n+1+i));%+moments(i); 
        tempqPsi=generalizedForceiPsi(i,1); 
        tempqTheta=generalizedForceiTheta(i,1); 
%         tempqPhi=generalizedForceiPhi(i,1); 
    end 
            generalizedForceiPhi(i,1)=-

1*G*(Jp).*(Phi(i)./lengthVector(i)+(Phi(i)-

Phi(i+1))./lengthVector(i+1))+moments(i);%-

lengthVector(i)/2*cos(Q(n+1+i));%+moments(i); 

  
end 
%} 
for i=n+1; 

    
    tempqPsi=[0]; 
    tempqTheta=[0]; 
    tempqPhi=[0]; 
    for j=i:n+1; 
        %         
        generalizedForceiPsi(i,1)=tempqPsi+forceWld(3*j-2)*(-

lengthVector(i)*sin(Psi(i))*cos(Theta(i)))+forceWld(3*j-

1)*lengthVector(i)*cos(Psi(i))*cos(Theta(i));%-

lengthVector(i)/2*cos(Q(n+1+i));%+moments(i); 
        generalizedForceiTheta(i,1)=tempqTheta+forceWld(3*j-2)*(-

lengthVector(i)*cos(Psi(i))*sin(Theta(i)))+forceWld(3*j-1)*(-

lengthVector(i)*sin(Psi(i))*sin(Theta(i)))+(forceWld(3*j)-

massVector(j)*g)*(-lengthVector(i)*cos(Theta(i)));%-

lengthVector(i)/2*cos(Q(n+1+i));%+moments(i); 
        tempqPsi=generalizedForceiPsi(i,1); 
        tempqTheta=generalizedForceiTheta(i,1); 
%         tempqPhi=generalizedForceiPhi(i,1); 
    end 
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            generalizedForceiPhi(i,1)=-1*G*(Jp)./lengthVector(i-

1).*(Phi(i)-Phi(i-1))+moments(i);%- 

  
end 
%} 

  
for i=2:n; 

     
    tempqPsi=[0]; 
    tempqTheta=[0]; 
    tempqPhi=[0]; 
    for j=i:n+1; 

        
        generalizedForceiPsi(i,1)=tempqPsi+forceWld(3*j-2)*(-

lengthVector(i)*sin(Psi(i))*cos(Theta(i)))+forceWld(3*j-

1)*lengthVector(i)*cos(Psi(i))*cos(Theta(i));%-

lengthVector(i)/2*cos(Q(n+1+i));%+moments(i); 
        generalizedForceiTheta(i,1)=tempqTheta+forceWld(3*j-2)*(-

lengthVector(i)*cos(Psi(i))*sin(Theta(i)))+forceWld(3*j-1)*(-

lengthVector(i)*sin(Psi(i))*sin(Theta(i)))+(forceWld(3*j)-

massVector(j)*g)*(-lengthVector(i)*cos(Theta(i)));%-

lengthVector(i)/2*cos(Q(n+1+i));%+moments(i); 
        tempqPsi=generalizedForceiPsi(i,1); 
        tempqTheta=generalizedForceiTheta(i,1); 
%         tempqPhi=generalizedForceiPhi(i,1); 
    end 
            generalizedForceiPhi(i,1)=-1*G*(Jp).*((Phi(i)-Phi(i-

1))./lengthVector(i)+(Phi(i)-Phi(i+1))./lengthVector(i))+moments(i); 

  
end 
generalizedForce=[generalizedForceiPsi;generalizedForceiTheta;generaliz

edForceiPhi]; 

  
generalizedForce; 

  

 
t 

  
dQ=newA*Q+[A\generalizedForce; zeros(3*n+3,1)]+[-

A\(C*diag([ThetaRate;PhiRate;PsiRate])) zeros(3*n+3);zeros(3*n+3) 

zeros(3*n+3)]*[PsiRate;ThetaRate;PhiRate;zeros(3*n+3,1)]; 

  

 

 

___________________________________________________________ 

 

Script “solveSystem.m” solves the equations of motion given the initial conditions defined 
in the same file in the form of segment angles.  

%%solveSystem 
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tic 

  
simParams 

  
Psi0=ones(1,n+1)*(0)*pi/180;Theta0=ones(1,n+1)*(-

89)*pi/180;Phi0=ones(1,n+1)*(0)*pi/180; 
PsiRate0=ones(1,n+1)*0;ThetaRate0=ones(1,n+1)*0;PhiRate0=ones(1,n+1)*0; 
Theta0(end)=(-89)*pi/180; 
% Psi0(end)=0*pi/2; 
thet0=[PsiRate0 ThetaRate0 PhiRate0 Psi0 Theta0 Phi0]'; 
options = odeset('RelTol',1e-2*eye(1,size(thet0,2)),'AbsTol',1e-

3*eye(1,size(thet0,2))); 
global segLength 
global m 
global lengthVector 
global massVector 
global n 

  
% timeStep=.5; 
dimTol=0; 

  
timeEnd =20; 
[T,SOLUT] = ode23(@ndimrigid,[0 timeEnd],thet0,options); 
solvingTime=toc/60  
disp('minutes') 
%  
plotSystem 
forceCalc 
save(['workspace_',num2str(MaxU),'_',num2str(MaxV),'_',num2str(MaxW),'_

',num2str(round(UASTHRUST))]) 
% plottest 

 

___________________________________________________________ 

Script “plotSystem.m” calculates and plots the results in terms of acceleration, position 
and velocities.  

%% plot system 

  
tic 

  
global segLength 
global lengthVector 
global massVector 
global n 
global massMatrix 
global m 
global k 
global windVelocity 
global airDensity 
global segArea 
global Cf 
global Cd 
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samplingRate=2*(round(size(T,1)/500)+1); 
% timeStep=.5; 
limlim = (n+1)*segLength*3; 

  

  
%Plotting the columns of the returned array Y versus T shows the 

solution 
XX=[]; 
YY=[]; 
ZZ=[]; 
X=[]; 
Y=[]; 
Z=[]; 
% TT=T(1:10:end,:); 
% YY=Y(1:10:end,:); 
TT=T(1:samplingRate:end,:); 
SOLUTSAMP=SOLUT(1:samplingRate:end,:); 
PsiRate=[];ThetaRate=[];PhiRate=[];Psi=[];Theta=[];Phi=[]; 
PsiRate=SOLUTSAMP(:,1:n+1);ThetaRate=SOLUTSAMP(:,n+2:2*n+2);PhiRate=SOL

UTSAMP(:,2*n+3:3*n+3); 
Psi=SOLUTSAMP(:,3*n+4:4*n+4);Theta=SOLUTSAMP(:,4*n+5:5*n+5);Phi=SOLUTSA

MP(:,5*n+6:6*n+6); 

  
accel = 0*(SOLUTSAMP); 
FORCEWORLD=zeros(size(SOLUTSAMP,1),3*(n+1)); 
for j=1:size(TT); 
    X(1,j)=lengthVector(1)*cos(Psi(j,1))*cos(Theta(j,1));%-

lengthVector(1)/2*cos(YY(j,n+1+1)); 
    Y(1,j)=lengthVector(1)*sin(Psi(j,1))*cos(Theta(j,1));%-

lengthVector(1)/2*sin(YY(j,n+1+1)); 
    Z(1,j)=lengthVector(1)*(-sin(Theta(j,1)));%-

lengthVector(1)/2*sin(YY(j,n+1+1)); 
    for i=2:n+1; 
        X(i,j)=X(i-1,j)+lengthVector(i)*cos(Psi(j,i))*cos(Theta(j,i)); 
        Y(i,j)=Y(i-1,j)+lengthVector(i)*sin(Psi(j,i))*cos(Theta(j,i)); 
        Z(i,j)=Z(i-1,j)+lengthVector(i)*(-sin(Theta(j,i))); 
%          
%         sumx=X(i); 
%         sumz=Z(i); 
    end 

     
    %         figure (2) 

     
    filename = 'testnew51.gif'; 

     
[accel(j,:),FORCEWORLD(j,:)]=ndimrigid(TT(j), SOLUTSAMP(j,:)'); 
Psi2dot=accel(:,1:n+1); 
Theta2dot=accel(:,n+2:2*n+2); 
Phi2dot=accel(:,2*n+3:3*n+3); 

 

  
%% 
 figure(2221) 
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 subplot(321) 
 plot(TT(:,1),X(end,:),'-') 
 xlabel('Time (sec)') 
 ylabel('UAS Offset (m)') 
 hold on 
 grid minor 
 title('UAS Position') 

  
 subplot(323) 
 plot(TT(:,1),Z(end,:),'-') 
 xlabel('Time (sec)') 
 ylabel('UAS Height (m)') 
 hold on 
 grid minor 

   
 subplot(325) 

  
 plot(TT(:,1),Y(end,:),'-') 
 xlabel('Time (sec)') 
 ylabel('UAS Sway (m)') 
 hold on 
 grid minor 
% legend('WindSpeed=') 
   print('longitudinal','-dmeta') 
   print('longitudinal','-dpng') 
   saveas(gcf,'longitudinal.fig') 
    %} 

     
%   figure(2222) 
  subplot(322) 
   pitch=Theta(:,end); 
 pitch=pitch*180/pi; 
 plot(TT(:,1),pitch,'-') 
 xlabel('Time (sec)') 
 ylabel('UAS Pitch (deg)') 
 hold on 
 grid minor 
  title('UAS Attitude') 

  

  
subplot(324) 

  
 heading=Phi(:,end); 
 heading=heading*180/pi; 
 plot(TT(:,1),heading,'-') 
   xlabel('Time (sec)') 
 ylabel('UAS Heading (deg)') 
 hold on  
 grid minor 
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 subplot(326) 
 bank=-Psi(:,end); 
 bank=bank*180/pi;     
 plot(TT(:,1),bank,'-') 
 xlabel('Time (sec)') 
 ylabel('UAS Bank (deg)') 
 hold on 
 grid minor 

  

  
% legend('WindSpeed=') 
   print('lateral','-dmeta') 
   print('lateral','-dpng') 
   saveas(gcf,'lateral.fig') 
    %} 

  

     
    figure(22221) 
    subplot(221) 
    plot(X(end,:),Y(end,:),'-') 
text(X(end,1),Y(end,1),sprintf('t=%.2f (sec)',TT(1))) 
 xlabel('X (m)') 
 ylabel('Y (m)') 
 hold on 
 grid minor 

  
 subplot(222) 
 plot(X(end,:),Z(end,:),'-') 
 text(X(end,1),Z(end,1),sprintf('t=%.2f (sec)',TT(1))) 
 xlabel('X (m)') 
 ylabel('Z (m)') 
 hold on 
 grid minor 

  
 subplot(223) 
 plot(Y(end,:),Z(end,:),'-') 
  text(Y(end,1),Z(end,1),sprintf('t=%.2f (sec)',TT(1))) 
 xlabel('Y (m)') 
 ylabel('Z (m)') 
 hold on 
 grid minor 

  
 subplot(224) 
 plot(TT(:,1),Z(end,:),'-') 
 hold on 
 plot(TT(:,1),X(end,:),'-') 
 hold on 
 plot(TT(:,1),Y(end,:),'-') 
 legend(['Height'], ['Offset'], ['Sway']) 
  hold on 
 grid minor 
 xlabel('T (sec)') 
 ylabel('Z,X,Y (m)') 
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    print('all','-dmeta') 
   print('all','-dpng') 
   saveas(gcf,'all.fig') 

   

  
plottingTime=toc/60 
disp('minutes') 

 

______________________________________________________________________ 

The script “forceCalc.m” calculates and plots the forces in the cable against time. 

%% forces 
global g 
global massVector 
global lengthVector 
global TX 
global TY 
global TZ 
global UASTHRUST 

  

  
interForce=0*SOLUTSAMP; 
baseForce=0*SOLUTSAMP(:,1:2); 
linAccel=0*SOLUTSAMP; 

  
for jj=1:size(TT); 

  

  
for i=1:n+1; 
    tempa=[0;0;0]; 
      for j=1:i; 
          RDotDot=[-sin(Psi(jj,j))*cos(Theta(jj,j))  -

cos(Psi(jj,j))*sin(Theta(jj,j))     0; 
                    cos(Psi(jj,j))*cos(Theta(jj,j))  -

sin(Psi(jj,j))*sin(Theta(jj,j))     0; 
                       0                             -cos(Theta(jj,j))                    

0]; 

           
          RDot2=[-cos(Psi(jj,j))*cos(Theta(jj,j))  -

cos(Psi(jj,j))*cos(Theta(jj,j))     0; 
                  -sin(Psi(jj,j))*cos(Theta(jj,j))  -

sin(Psi(jj,j))*cos(Theta(jj,j))     0; 
                       0                            sin(Theta(jj,j))                    

0]; 

         
          RDotRDot=[2*sin(Psi(jj,j))*sin(Theta(jj,j))  0  0; 
                   -2*cos(Psi(jj,j))*sin(Theta(jj,j))  0  0; 
                       0                               0  0]; 

           
          linAccel(jj,3*i-2:3*i)= 

tempa+RDotDot*[Psi2dot(jj,j)';Theta2dot(jj,j)';Phi2dot(jj,j)']+... 
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RDot2*diag([PsiRate(jj,j)',ThetaRate(jj,j)',PhiRate(jj,j)'])*[PsiRate(j

j,j)';ThetaRate(jj,j)';PhiRate(jj,j)']+... 
              

RDotRDot*[PsiRate(jj,j)'.*ThetaRate(jj,j)';PhiRate(jj,j)'.*ThetaRate(jj

,j)';PsiRate(jj,j)'.*PhiRate(jj,j)']; 
          tempa=linAccel(jj,3*i-2:3*i); 
          tempa=tempa'; 
%           tempa' 

           
      end 
%     
end 

  

  
hold on 
%% Force Calculations 

  

  
TX = UASTHRUST*(cos(Psi(jj,end))*cos(Theta(jj,end))); 
TY = UASTHRUST*(sin(Psi(jj,end))*cos(Theta(jj,end))); 
TZ = -UASTHRUST*sin(Theta(jj,end)); 

  

  
FORCEWORLD; 

  
for i1 = n+1 
% interForce(jj,3*i1-2:3*i1)=[TX TY TZ]+FORCEWORLD(jj,3*i1-2:3*i1);%-

massVector(i1-1)*[0 g]; 
interForce(jj,3*i1-2:3*i1)=FORCEWORLD(jj,3*i1-2:3*i1);%-massVector(i1-

1)*[0 g]; 
end 
for i2=n:-1:1; 
interForce(jj,3*i2-2:3*i2)=FORCEWORLD(jj,3*i2-

2:3*i2)+[interForce(jj,3*i2+1:3*i2+3)]-

massVector(i2)*[linAccel(jj,3*i2-2) linAccel(jj,3*i2-1) 

linAccel(jj,3*i2)+g];%-massVector(i2-1)*[0 g]; 
end 
for i3=1; 
interForce(jj,3*i3-2:3*i3)=FORCEWORLD(jj,3*i3-

2:3*i3)+[interForce(jj,3*i3+1:3*i3+3)]-

massVector(i3)*[linAccel(jj,3*i3-2) linAccel(jj,3*i2-1) 

linAccel(jj,3*i3)+g]; 
end 

  
baseForce(jj,1:3)=[interForce(jj,4:6)]-massVector(1)*[linAccel(jj,1) 

linAccel(jj,2) linAccel(jj,3)+g]; 

  

  

  
end 
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figure (5) 
subplot(311) 
plot(TT(:),linAccel(:,1:3:end),'-') 
xlabel('Time (sec)') 
ylabel('Node X Accelerations (m/s^2)') 
grid minor 
title('Node Accelarations') 

  
subplot(312) 
plot(TT(:),linAccel(:,2:3:end),'-') 
xlabel('Time (sec)') 
ylabel('Node Y Accelerations (m/s^2)') 
grid minor 

  
subplot(313) 
plot(TT(:),linAccel(:,3:3:end),'-') 
xlabel('Time (sec)') 
ylabel('Node Vertical(Z) Accelerations (m/s^2)') 
grid minor 

  
 print('Node Accel','-dmeta') 
   print('Node Accel','-dpng') 
   saveas(gcf,'Node Accel.fig') 

  
figure (6) 
subplot(311) 
plot(TT(:),interForce(:,1:3:end)) 
xlabel('Time (sec)') 
ylabel('Node X Forces (N)') 
grid minor 
title('Node Forces') 

  
subplot(312) 
plot(TT(:),interForce(:,2:3:end)) 
xlabel('Time (sec)') 
ylabel('Node Y Forces (N)') 
grid minor 

  
subplot(313) 
plot(TT(:),interForce(:,3:3:end)) 
xlabel('Time (sec)') 
ylabel('Node Vertical(Z) Forces (N)') 
grid minor 

 
 print('Node Forces','-dmeta') 
   print('Node Forces','-dpng') 
   saveas(gcf,'Node Forces.fig') 

  

    
figure (7) 
subplot(311) 
plot(TT(:),baseForce(:,1)) 
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xlabel('Time (sec)') 
ylabel('Base X Forces (N)') 
grid minor 
title('Base Forces') 

  
subplot(312) 
plot(TT(:),baseForce(:,2)) 
xlabel('Time (sec)') 
ylabel('Base Y Forces (N)') 
grid minor 

  
subplot(313) 
plot(TT(:),baseForce(:,3)) 
xlabel('Time (sec)') 
ylabel('Base Vertical(Z) Forces (N)') 
grid minor 

  
 print('Base Forces','-dmeta') 
   print('Base Forces','-dpng') 
   saveas(gcf,'Base Forces.fig') 

  
tension1=[]; 
tension=[]; 
for j4=1:n+1; 
tension1(j4,1)=norm(interForce(end,3*j4-2:3*j4));    
end 
tension=[norm(baseForce(end,:));... 
    tension1]; 

  
figure(8) 
Xs=[zeros(1,size(X,2)); X(:,:)]; 
plot(Xs(:,end),tension,'>') 
xlabel('Node X-Position (m)') 
ylabel('Longitudinal Cable Tension(N)') 
grid minor 
title('Cable Tesnion Comparison') 
legend('Discrete 3D Model') 
hold on 

  
print('Cable Tesnion','-dmeta') 
   print('Cable Tesnion','-dpng') 
   saveas(gcf,'Cable Tesnion.fig') 
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