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Abstract

Hierarchical phrase-based translation (Hiero for short) models statistical machine translation (SMT)

using a lexicalized synchronous context-free grammar (SCFG) extracted from word aligned bitexts.

The standard decoding algorithm for Hiero uses a CKY-style dynamic programming algorithm with

time complexity O(n3) for source input with n words. Scoring target language strings using a lan-

guage model in CKY-style decoding requires two histories per hypothesis making it significantly

slower than phrase-based translation which only keeps one history per hypothesis. In addition, the

size of a Hiero SCFG grammar is typically much larger than phrase-based models when extracted

from the same data which also slows down decoding. In this thesis we address these issues in Hi-

ero by adopting a new translation model and decoding algorithm called Left-to-Right hierarchical

phrase-based translation (LR-Hiero for short). LR-Hiero uses a constrained form of lexicalized

SCFG rules to encode translation, where the target-side is constrained to be prefix-lexicalized. LR-

Hiero uses a decoding algorithm with time complexity O(n2) that generates the target language

output in left-to-right manner which keeps only one history per hypothesis resulting in faster decod-

ing for Hiero grammars.

The thesis contains the following contributions:

• We propose a novel dynamic programming algorithm for the rule extraction phase. Unlike

traditional Hiero rule extraction which performs a brute-force search, LR-Hiero rule extrac-

tion is linear in the number of rules.

• We propose an augmented version of LR-decoding algorithm previously proposed by Watan-

abe et al. [90]. Our modified LR-decoding algorithm addresses issues related to decoding time

and translation quality and is shown to be more efficient than the CKY decoding algorithm in

our experimental results.

• We extend our LR-decoding algorithm to capture all hierarchical phrasal alignments that are

reachable in CKY-style decoding algorithms.

• We introduce a lexicalized reordering model to LR-Hiero that significantly improves the trans-

lation quality.
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• We apply LR-Hiero to the task of simultaneous translation, the first attempt to use Hiero

models in simultaneous translation. We show that we can perform online segmentation on the

source side to improve latency and maintain translation quality.

Keywords: Statistical Machine Translation; Decoding; Hierarchical Phrase-based Translation
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Chapter 1

Introduction

Machine translation (MT) is the task of automated text translation between natural languages.

Translation is a challenging task which requires a thorough understanding of the source text as

well as good knowledge of the target language. MT systems should formalise the whole process

of translation which is an extremely difficult task since the translation process has not been com-

pletely understood yet. The introduction of statistical alignment models in 1990’s [9] launched a

new research direction in MT: Statistical Machine Translation (SMT). SMT analyses the human

translations with statistical methods to extract implicit information about the translation process

from corpora of translated texts.

The initial SMT models use word-based translation models [9] that not only take lexical trans-

lation into account, but also model reordering, insertion, deletion or duplication of words. The

word-based models gave way to the subsequent phrase-based models [52, 61, 63], which use the

translation of phrases as atomic units. In these models, phrases are any contiguous sequence of

words that do not need to have any syntactic validity.

Hierarchical phrase-based machine translation (Hiero) [14, 15] is another prominent approach

for SMT. Hiero models encode the translation correspondences in hierarchical phrases. The notion

of hierarchy allows the Hiero models to capture the long-distance reordering between source and

target languages.Additionally Hiero can model discontiguous translations as exemplified by the

canonical example of translating the English word not as ne pas in French. These properties

make Hiero models more appropriate for language pairs involving complex reordering than the

phrase-based models [52, 63, 15].

The syntax-based models represent the evolutionary next step in SMT. They utilize syntactic

structure of source and/or target sides for translation. Researchers have proposed myriad models

using different combinations such as string-to-tree, tree-to-tree and so on [92, 68, 28]. A major

limitation of these models is their requirement for a syntactic parser for at least one language, which

limits its application to a few high resource languages. Unlike the full syntax-based models, Hiero

models do not require any linguistic parser making them much simpler to train and decode with.

1



Hiero translation models have been shown to attain competitive performance with other statisti-

cal frameworks [10] for several language pairs. Thus Hiero translation models are attractive choices

for a wide variety of languages. The focus of this thesis is on Hiero translation models. We proposed

a new translation system based on Hiero translation models which works more efficiently than the

state-of-the-art Hiero translation systems.

1.1 Statistical Machine Translation

In statistical machine translation, the translation process can be considered as decoding the meaning

of the source text and re-encoding it into the target language [43]. The main idea of SMT comes

from decision theory. We try to translate the given input sentence according to the translation

probability p(e|f) (i.e. the probability a target string e is the translation of the given input string f

in the source language). In SMT, the most common approach for estimating p(e|f) uses the noisy

channel model:

ê = arg max
e

p(e|f)

= arg max
e

p(f |e).p(e)
(1.1)

Using Bayes theorem, the problem is divided into two sub-problems: p(f |e) the probability that

the source string is the translation of the target string, it is called translation model; and p(e) the

probability of seeing that target language string, called language model. The translation model is

responsible for generating an adequate translation, while the language model is responsible to score

the translation candidates based on the probability of seeing such a sequence of words in the target

language. There are different approaches for modeling languages: the two common approaches are

using n-gram models (i.e. unigram, bigram, trigram, etc.) and recently neural networks [20, 76].

Different approaches have been proposed for the translation model:

• Word-based Models: The early SMT models are word-based which use words as translation

units, proposed by Brown et al. (1993) [9] in IBM. They proposed 5 models called IBM

Models 1-5 [8, 9]. Later Och (2003) [62] proposed Model 6. There is another famous word-

based model which incorporates a Hidden Markov Model over word alignments, called HMM

model [88].

• Phrase-based Models: Och et al, (1999) [59] first proposed to use a sequence of words

(i.e. phrases) as translation units rather than single words. These models are called phrase-

based models which have been shown to produce remarkably better translations [52, 45, 63].

Although phrase-based models address the problem of local reordering and idiomatic expres-

sions in word-based models, they are unable to model long-distance reorderings.
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• Hierarchical Phrase-based Models: These models try to address the problem of com-

plex reordering in phrase-based models by considering the structure of sentences. Chiang

(2005) [14] first proposed to use hierarchical phrases in the form of synchronous context-free

grammar (SCFG) [48, 1]. This approach become dominant in translation of language pairs

with complex reorderings (e.g. Chinese-English).

• Syntax-based Models: These models incorporate the linguistic syntax of sentences in trans-

lation. Syntax-based models can be divided into two groups: synchronous-grammar-based

models and tree-transducer-based models. Many synchronous grammars have been used in

machine translation: SCFG [96], synchronous tree-substitution grammars [23], synchronous

tree-adjoining grammars (STAG) [78, 19] and generalized multi-text grammars (GMTG) [54].

On the other hand, tree transducers have been used to create several syntax-based SMT mod-

els [92, 32, 29, 28].

1.1.1 Log-linear Models

After introducing phrase-based translation systems, the log-linear models became dominant in SMT.

Different components like language model, translation model, reordering model, are used as feature

functions, φi in log-linear models with associated weights, wi [61]:

ê = arg max
e

p(e|f)

= arg max
e

exp(
∑

iwiφi(e, f)∑
e′(

∑
iwiφi(e′, f))

= arg max
e

exp(
∑

i

wiφi(e, f))

(1.2)

Using a log-linear model we can easily integrate arbitrary feature functions to the model. Asso-

ciated to each feature function there is a distinct weight that signifies its importance in the model.

1.2 Hierarchical Phrase-based Translation

Hiero models translation using a lexicalized synchronous context-free grammar extracted from word

aligned bitexts. The SCFG rules are directly extracted from the phrase-alignments of a bitext by re-

placing smaller source-target phrases within larger biphrases with a non-terminalX . The extraction

places some restrictions to control the size and complexity of the final grammar. The size of a Hiero

SCFG grammar is typically larger than phrase-based models extracted from the same data creating

challenges in rule extraction and decoding time especially for larger datasets [75].

Using the extracted SCFG rules, the source and target sentences can be generated simultane-

ously in a derivation process. Hiero typically uses a CKY-style chart-parsing algorithm [17] for

decoding. Given a source sentence f , the decoder search for the best scoring derivation obtained by
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applying rules in SCFG grammar. The final translation is the target side generated by this derivation.

All derivations are scored using a log-linear model.

The decoder parses the source sentence with a modified version of CKY parser. The target side

of the derivations are generated simultaneously which are translation candidates for the input source

sentence. All derivations are scored using rule parameters, languages model score and some other

features (c.f. Section 3.3).

The derivations starts from the leaves corresponding to the smallest spans on the source sentence

(all words) and the lowest level cells in the CKY chart and proceeds bottom-up. For each cell in the

CKY chart, all applicable rules are identified and like the monolingual parsing the non-terminals in

these rules are mapped to some entries in the antecedent cells. The target sides of the rules yield

the translation for the source spans (corresponding to the cell) and the translation candidates for the

input source sentence are obtained from the top-most cell.

Scoring the target language output using a language model within CKY-style decoding requires

two histories per hypothesis, one on the left edge of each span and one on the right, due to the fact

that the target side is not generated in left to right order, but rather built bottom-up from sub-spans.

This leads to complex problems in efficient language model integration and requires state reduction

techniques [36, 37].

1.3 LR-Decoding for Hiero

Decoding in SMT, is the task of finding the best translation for a given source sentence. Since

decoding is an online task thus preserving high translation accuracy with low translation time is

an essential for decoding algorithms. The decoders use language models to ensure that the out-

put translation is grammatically correct, hence computing the language model score is a crucial

part of the process, but the most expensive one as well. Monotonically generating translation, in

left-to-right manner aka LR-decoding, just requires a single language model (LM) history for each

hypothesis which dramatically speeds up the decoding process. There have been many attempts to

develop LR-decoders for different translation models: phrase-based [42, 31], syntax-based [40, 24],

hierarchical phrase based [90] (we will discuss about LR-decoding for Hiero in Chapter 3).

LR-decoding for Hiero simplifies the decoder complexity and language model scoring by gener-

ating the target-side in strict left to right order [90]. The target side of the SCFG rules is constrained

to be prefix-lexicalized aka GNF rules1. However, as we will show this is not as crippling a restric-

tion as it might seem for machine translation if effectively combined with appropriate features that

control distortion and reordering.

The LR-decoding algorithm could avoid the shortcomings of Hiero such as faster decoding,

reduction in the grammar size and the simplified left-to-right language model scoring. It means LR-

decoding has the potential to replace CKY decoding for Hiero. Despite these attractive properties,
1Greibach Normal Form (GNF), although the synchronous grammar is not in this normal form, rather only the target

side is prefix lexicalized as if it were in GNF form. (c.f. Chapter 2)
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we show that the original LR-decoding algorithm for Hiero proposed by Watanabe et al. (2006) [90]

does not perform to the same level of the standard CKY-based Hiero with cube pruning (Chapter 3).

1.4 Contributions

In this dissertation we propose a new translation system, called Left-to-Right Hierarchical Phrase-

based Translation (LR-Hiero). LR-Hiero uses GNF SCFG rules (target side constrained to the form

of GNF) to encode translation. We propose new algorithms for different phases of LR-Hiero. The

detailed contributions of this work are highlighted as follows2:

•. A novel algorithm for rule extraction phase. Hiero uses a brute-force search algorithm

to extract SCFG rules from word-aligned bitexts. Although many constraints are applied to

simplify the rule extraction, this phase is still a bottleneck in training process of Hiero. We

propose a novel dynamic programming algorithm to extract GNF rules which runs in linear

time (Chapter 2).

•. An augmented LR-decoding algorithm. We propose an augmented LR-decoding algorithm

which is demonstrably more efficient than the state-of-the-art CKY Hiero; we find that it is

approximately four times faster (Chapter 3). We introduce new features that significantly

improve the translation quality compared to the original LR-decoding algorithm by [90].

•. Improving LR-decoding algorithm. We introduce two more improvements to LR-Hiero

decoder. We introduce the notion of queue diversity to the cube pruning algorithm to solve

potential search errors in LR-Hiero decoder. CKY-based decoders can capture some complex

phrasal re-orderings which cannot be captured by LR-Hiero decoder. We extend the LR-Hiero

decoder to capture all theses hierarchical phrasal alignments that are reachable in CKY de-

coders. The modifications significantly improve the translation quality on different language

pairs while being much faster (Chapter 4).

•. Lexicalized reordering model for LR-Hiero. The lexicalized reordering model is an impor-

tant model in phrase-based translation systems which helps to capture complex reorderings

in language pairs like Chinese-English. We introduce a lexicalized reordering model to LR-

Hiero which leads to significant improvement on translation quality (Chapter 5).

•. LR-Hiero in simultaneous translation. We apply LR-Hiero for the task of simultaneous

translation (Chapter 6). In simultaneous translation, the translation should be generated in-

crementally as the user speaks/enters the source input. Previous translation services proposed

for real-time translation, are mainly phrase-based as they generate the translation in left-to-

right order. This is the first time Hiero type models are used for simultaneous translation. We

obtain a very fast simultaneous translation system with high accuracy.

2These contributions have been reported in these publications (or submissions): [80, 82, 81, 79].
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Chapter 2

Expressive Hierarchical Rule Extraction
for Left-to-Right Translation

In this chapter we focus on the rule extraction phase for left-to-right hierarchical phrase based

translation (LR-Hiero). Hiero rule extraction induces an exhaustive search for each phrase-pair

which results in excessively larger models. We present a novel dynamic programming algorithm for

extracting prefix lexicalized target side rules for LR-Hiero.

2.1 Introduction

Hierarchical phrase-based translation (Hiero) [15] uses a lexicalized synchronous context-free gram-

mar (SCFG) extracted from word and phrase alignments of a bitext. Similarly LR-Hiero uses lex-

icalized SCFG formalism to model translation. To simplify target generation, in LR-Hiero, SCFG

rules are constrained to be prefix-lexicalized on target side, aka Greibach Normal Form (GNF).

Throughout this thesis we abuse the notation for simplicity and use the term GNF grammars for

such SCFGs. This constraint drastically reduces the size of grammar for LR-Hiero compared to Hi-

ero grammar [80]. Although any monolingual context-free grammar can be converted to Greibach

Normal Form, there is no algorithm to convert an arbitrary SCFG to a weakly equivalent SCFG with

rules constrained to be prefix-lexicalized on the target side.

The usual Hiero rule extraction heuristic applies constraints on the length of initial phrase pairs

considered for rule extraction, number and configuration of non-terminals in order to avoid exces-

sively large grammars. Thus, extracted rules cannot capture all possible alignments on language

pairs with complex reordering.

In addition, allowing more non-terminals in the rules is not practical in Hiero because the com-

putational complexity of CKY decoders increase exponentially with the increase in the rank of the

grammar (that is, the number of non-terminals permitted in the right hand side of the CFG rules).

However, the decoder in LR-Hiero can efficiently apply these types of rules while keeping quadratic
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time complexity by using a variant of the dotted rules used in the Earley parsing algorithm for pars-

ing monolingual CFGs. We will discuss LR-Hiero decoding algorithm in Chapter 3.

Standard Hiero rule extraction is a brute-force search algorithm which considers all possible

replacement of sub-phrases with non-terminals. Despite the constraints on rule configuration, rule

extraction is still a bottleneck and it is usually achieved by way of parallelization and optimization.

Increasing the length of initial phrase pairs or number of non-terminals exponentially increases

the time complexity. In this chapter we propose a dynamic programming algorithm for GNF rule

extraction that is linear in the output length (the number of GNF rules). We first explain a heuristic

rule extraction [15] method which is used in Hiero (Section 2.2). Then we explain our GNF rule

extraction algorithm for LR-Hiero (Section 2.3). This algorithm efficiently extracts SCFG rules for

LR-Hiero, therefore it can be used for extracting sentence level rules or rules with arbitrary number

of non-terminals.

2.2 Hiero Rule Extraction

2.2.1 Hiero Grammar

Hiero translation system uses SCFG formalism which allows the decoder to generate the source and

target synchronously. The decoder successively rewrites the non-terminals in the production rules

starting from a top-level rule rooted at S. A grammar G in Hiero is a special form of SCFG which

is defined as: G = (T,N,R,Rg) where T and N are the set of terminal and non-terminals in G.

Typically there are two types of non-terminals in Hiero grammars: X and S, where S is the start

symbol. The set of production rules, R, are defined as:

X → 〈γ, α,∼〉, γ, α ∈ X ∪ T+ (2.1)

where γ and α are strings of terminals and non-terminals in source and target sides respectively

and the ∼ denotes the alignment of non-terminals in the source and target (co-indexed not-terminal

pairs are written synchronously). Unlike typical SCFGs, the rules are lexicalized on the right hand

side with at least one aligned word pair in source and target.

The production rules are combined to derive the start symbol S by using the glue rules Rg.

Hiero typically uses two glue rules:

S → 〈X1, X1〉

S → 〈S1X2, S1X2〉
(2.2)
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The glue rules allow monotone combination of phrases. They are usually used when no rules

could match or the span length is beyond the length of phrases that production rules have been

extracted from 1.

2.2.2 Heuristic Rule Extraction

Hiero uses a heuristic approach to extract lexicalized SCFG rules from phrase-pairs. Similar to

phrase-based models, training the Hiero models begins from word alignments and the generation of

aligned phrase-pairs [15]. Given a word-aligned sentence pair 〈f̄J , ēI , A〉2, with alignments A, a

source-target sequence pair 〈f̄ , ē〉 is a phrase pair iff:

∀k, ∃k′ such that (k, k′) ∈ A, where k ∈ [i, j] and k′ ∈ [i′, j′]

@k, k′ such that (k, k′) ∈ A, where k ∈ [i, j] and k′ 6∈ [i′, j′]

@k, k′ such that (k, k′) ∈ A, where k 6∈ [i, j] and k′ ∈ [i′, j′]

(2.3)

where f̄ and ē covers spans [i, j] and [i′, j′] on source and target sentences respectively. Under

this definition phrase-pairs might have un-aligned boundary words; we call them loose phrase-

pairs throughout this thesis. Hiero systems usually restrict the rule extraction to tight phrase-pairs,

phrase-pairs with aligned boundaries. This constraint controls the number of extracted Hiero rules,

which would otherwise be substantially higher.

After extracting the initial phrase-pairs from each sentence-pair, the rule extraction algorithm

proceeds as follows. First each initial phrase-pair, x = 〈f̄ , ē〉 is designated as a rule:

X → 〈f̄ , ē〉 (2.4)

These rules are also called terminal rules. Let x′ = 〈f̄ ′, ē′〉 be a sub-phrase pair of the rule (2.4)

such that f̄ = f̄pf̄ ′f̄s and ē = ēpē′ēs. A new rule can be extracted from rule (2.4) by introducing a

new non-terminal X in both source and target sides (covering the spans f ′ and e′):

X → 〈f̄pX1f̄s, ēpX1ēs〉 (2.5)

Using the same index for non-terminal X on both source and target sides allows them to be

rewritten synchronously3. The process of replacing smaller phrase pairs with a new non-terminal

continues until no new rule can be extracted.

For example, consider the German-English phrase pair in Figure 2.1. Given this initial phrase-

pair, the Hiero rule extraction heuristic would first extract a terminal rule:
1It is usually called maximum phrase-pair length.
2J and I indicate the source and target sentence lengths respectively.
3Note that x′ = 〈f̄ ′, ē′〉 is a valid phrase-pair satisfying the constraints in Equation 2.3.
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not yet done their work

ihre arbeit noch nicht gemacht

Figure 2.1: A German-English phrase-pair with word alignments.

X → 〈ihre arbeit noch nicht gemacht, not yet done their work〉 (2.6)

By substituting a sub-phrase 〈 ihre arbeit, their work 〉 with a new non-terminal on source and

target sides, a new rule is extracted:

X → 〈X1noch nicht gemacht, not yet doneX1〉 (2.7)

Equation 2.8 shows some of the SCFG rules extracted by the Hiero rule extraction heuristic for

this phrase pair.

X → 〈X1arbeit noch nicht gemacht, not yet doneX1work〉

X → 〈ihreX1noch nicht gemacht, not yet done theirX1〉

X → 〈X1noch nicht gemacht, not yet doneX1〉

X → 〈X1noch nichtX2, not yetX2X1〉

X → 〈ihre arbeitX1gemacht, X1done their work〉

X → 〈ihre arbeitX1, X1their work〉

X → 〈ihreX1noch nichtX2, not yetX2theirX1〉

(2.8)

Hiero models apply several constraints on the extracted rules in order to limit the grammar size

and reduce the time complexity of the CKY decoder. The rules are filtered by removing those

violating any of the following constraints:

•. Only tight phrase-pairs are allowed to be used as initial phrase-pair.

•. Maximum phrase length for initial phrase-pairs is 10 (both source and target sides). The

extracted rules are limited to at most 5 or 7 terms (terminals and non-terminals) on the source

side.

•. At most two non-terminals are allowed in a rule.

•. No-adjacent non-terminals are allowed in the source side. This avoids spurious ambiguities

during decoding4.

•. The rules must be lexicalized with at least one aligned source-target word pair.
4Spurious ambiguity: distinct derivations having the same translation yield with identical feature values.
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Hiero rule extraction algorithm is a brute-force search which considers all possible replacement

of sub-phrases with non-terminals and then filtered them. Increasing the length of initial phrase

pairs or number of non-terminals exponentially increases the time complexity.

2.2.3 Learning Rule Parameters

To learn the rule parameters such as conditional translation probabilities p(ē|f̄) and p(f̄ |ē), we need

to compute the rule counts first. However each sentence pair in the parallel corpus can be gener-

ated through many derivations. Chiang (2007) adapt the heuristics used in phrase-based models to

estimate rule distributions in Hiero.

A unit count is considered for each phrase-pair which is distributed equally to all extracted rules

from the phrase-pair. The rule counts c(f̄ , ē) are then summed up across all phrase-pairs in the

parallel corpus (training data). Then the translation probabilities p(ē|f̄) and p(f̄ |ē) are computed

by relative frequency estimation of the counts.

This heuristic for rule count estimation was first proposed by Bod (1998) for estimating the

parameters of the probabilistic tree substitution grammars (PTSG) for parsing. The heuristic was

later adapted to many SMT models [45, 68, 28, 15].

2.3 LR-Hiero Rule Extraction

2.3.1 LR-Hiero Grammar

LR-Hiero uses a constrained lexicalized SCFG. The target-side rules are constrained to be prefix

lexicalized, for simplicity called GNF rules5:

X → 〈γ, b̄ β〉 (2.9)

where γ is a string of non-terminal and terminal symbols, b̄ is a string of terminal symbols and β is

a possibly empty sequence of non-terminals. This ensures that as each rule is used in a derivation,

the target string is generated from left to right.

To overcome data sparsity and obtain better generalization, four new rules are generated for

each terminal rule 〈f̄ , ē〉 which we call glue rules for the sake of simplicity. The glue rules allow

reordering as well as monotone combination of phrases :

X → 〈f̄X1, ēX1〉 (2.10)

X → 〈X1f̄ , ēX1〉 (2.11)

X → 〈X1f̄X2, ēX1X2〉 (2.12)

X → 〈X1f̄X2, ēX2X1〉 (2.13)
5Greibach Normal Form (GNF). Just the target side is prefix lexicalized (GNF form), not the synchronous grammar.
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2.3.2 Initial Phrase Pair Extraction

Hiero limits the length of initial phrase pairs (usually to 10 words), therefore Hiero models typically

use phrase-pair extraction phase in phrase-based models. Given a parallel corpus, source-target and

target-source word alignments are obtained using an aligner like GIZA++ [63]. Then bidirectional

alignments are symmetrized using some heuristic alignment strategy such as union or intersec-

tion [62]. Aligned phrase-pairs are then extracted using the alignment template approach [63], such

that no words inside the phrase pair are aligned to words outside the phrase pair (the constraints of

loose phrase-pairs Equation 2.3).

The time complexity of extracting all phrase pairs of maximum length K for a word-aligned

sentence pair of length n is O(Kn). This algorithm is not efficient for extracting long phrase pairs

(as long as the length of sentences). Therefore, we use a modified version of the algorithm by Zhang

et al. (2008) [94] to extract all phrase pairs.

Uno et al. (2000) [86] propose a O(n + K) time algorithm for computing all K common

intervals of two different permutations of length n. This algorithm was later modified [56] to be

computed inO(n). Zhang et al. (2008) [94] generalize this to SMT setting and propose a linear time

algorithm for phrase-pair extraction. In this algorithm, word aligned sentence pairs are maximally

decomposed and encoded as a compact alignment tree. The contiguous blocks of the alignment

are captured as the nodes in the alignment tree and the tree structure. For example, phrase pair

in Figure 2.2 is shown in the form of decomposed alignment tree in Figure 2.3. The italicized

nodes form a left-branching chain in the alignment tree and the sub-spans of this chain also lead to

alignment nodes that are not explicitly captured in the tree [94].

f0 f1 f2 f3 f4

e0 e1 e2 e3 e4 e5

Figure 2.2: Example phrase pair with alignments.

([0,5],[0,4])

([0,2],[0,2])

([0,1],[0,1])

([0,0],[0,0]) ([1,1],[1,1])

([2,2],[2,2])

([4,5],[3,4])

Figure 2.3: Decomposed alignment tree for the example alignment in Fig. 2.2.
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2.3.3 GNF Extraction

We first explain the rule extraction algorithm using a working example, then discuss correctness of

the algorithm. Let pp = (f̄ , ē) be a source-target phrase pair, where f̄ and ē are corresponding

phrases on source and target sides. We define largest right sub-phrase, for any target interval [i, j],
as the largest phrase pair (in terms of length of target side) with right boundary j on the target side,

and denote it by LRS[(i, j)]:

LRS[(i, j)] = argmax(f̄ ,ē)∈S(i,j)|ē|

S(i, j) = {(f̄ , ē)|(f̄ , ē) ∈ P, |ē| < |j − i|, ē.end() = j}
(2.14)

where P is a set of all phrase pairs, |ē| denotes length of ē, ē.end() returns the last index of

the span corresponding to ē (in the target sentence). S is empty for phrase pair with target spans

of length one (i = j). Note that LRS[(i, j)] = None if the target word on index j is unaligned.

In Figure 2.4, the LRS[(1, 5)] is 〈 noch nicht gemacht, not yet done 〉6. LRS can be precomputed

for all span lengths in O(n2), where n is target sentence length (routine RightSubPhrases in Algo-

rithm 1). Figure 2.4 (b) shows the chart of LRS computed by RightSubPhrases for the sentence

pair shown in Figure 2.4 (a). Each cell corresponds to a span on the target side.

Algorithm 1 shows the pseudocode for GNF rule extraction. It is a dynamic programming

algorithm that extracts GNF rules for phrase pairs (gradually from small to large phrase pairs). It

works bottom up and fills a chart, R, on the target sentence. Each cell Ri,j keeps all rules that can

cover a phrase pair pp = (f̄ , ē), where ē corresponds to span [i, j] on the target sentence7. At the

end, it returnsR which is the union of all LR-Hiero rules for all target spans (i.e. all possible phrase

pairs).

First, routine ExtractPhrases extracts all phrase pairs P and sorts them increasingly based on

their target length (line 2). LRS is computed for all target spans by RightSubPhrases. Then, in a for

loop on all phrase pairs, the chart of the rules will be filled in a bottom up manner, by small to large

spans (lines 5-23). For each initial phrase pair a terminal rule is created and added to Ri,j (line 8).

Then, using rules from smaller phrase pairs, more rules are generated (line 11-21).

The largest right sub-phrase, pp′ is obtained for initial phrase pair pp in line 12 (note that t is set

to the right boundary of pp (i.e. j) at the beginning). The target span of pp′, [k, t], is used to retrieve

rules for pp′, stored in Rk,t. Replacing each rule of pp′ in our curr_rule8, (Substitute routine)

results in a new rule for pp (lines 16-18). And as the last rule that can be generated using pp′, the

whole pp′ in curr_phr is replaced with a non-terminal (line 19).

All rules for pp which includes rules from pp′ have been generated, thus we can safely replace

pp′ with a non-terminal and continue to generate more rules by replacing other parts of pp with
6In Figure 2.4, we identify phrase pairs to target spans, LRS[(1, 5)] = (3, 5).
7If there is not such a phrase pair, Ri,j will be left empty.
8It is the initial phrase pair pp at the beginning.

12



schuler ihre noch nicht gemacht haben .arbeit

students have done their workyet .not
        1                    2               3            4              5            6            7           8

1)X→〈nochnicht /not yet 〉
2)X→〈X1nicht /not X1〉

1)X→〈ihre arbeit / their work 〉

2)X→〈 ihre X1/ their X 1〉

1)X→〈nochnicht gemacht /not yet done 〉

2)X→〈nochnicht X1/not yet X1〉

3 )X→〈X 2nicht X1/not X 2 X1〉

〈ihre arbeit nochnicht gemacht /not yet done their work 〉

1)X→〈ihre arbeit nochnicht gemacht /not yet done their work 〉

2)X→〈 ihre X1nochnicht gemacht /not yet done their X1〉

3 )X→〈X 1nochnicht gemacht /not yet done X1〉

〈X1nochnicht gemacht /not yet done X 1〉

4 )X→〈X1nochnicht X 2/not yet X2 X1〉

5 )X→〈X1 X 3nicht X2/not X3 X2 X 1〉

〈X1 X2/X 2X 1〉

LRS(3,7)=[6,7]

LRS(3,5)=[3,5]
k=3

t=5

k=6

curr_rule

curr_rule
[3,7]i=3,   t=7

t=2 curr_rule

1)X→〈ihre arbeit nochnicht gemacht haben ./have not yet done their work . 〉
2)X→〈 ihre arbeit nochnicht gemacht haben X 1/havenot yet done their work X1 〉

3 )X→〈 ihre X 2noch nicht gemacht haben X 1/havenot yet done their X2 X 1〉

4 )X→〈X 2nochnicht gemacht haben X1/have not yet done X2 X1〉

5 )X→〈X 2nochnicht X3haben X1/have not yet X 3 X2 X1〉

6 )X→〈X 2haben X1/have X2 X1〉

〈X2 X3 X1/ X3 X2 X1 〉

[2,8]

(c)

(a)

(b)

(d)

        1             2             3            4             5             6            7             8

      (2,2)       (3,3)        (4,4)       (5,5)        (6,6)       (7,7)        (8,8)

      (3,3)       (3,4)        (5,5)       (6,6)        (6,7)       (8,8)
      (3,4)       (3,5)        (6,6)       (6,7)        (8,8)

     (3,5)        (6,6)       (6,7)        (8,8)

     (6,6)       (3,7)        (8,8)
     (2,7)        (8,8)

    (2,8)

(3,5)
(2,5)

(3,7)

[3,5]
[6,7]

[3,4]

Figure 2.4: GNF rule extraction for a German-English sentence pair. (a) bars above (below) the
source (target) words indicate phrase-pairs. (b) LRS chart for this sentence, filled by RightSub-
Phrase (green arrows shows some cells corresponding to phrase pairs which are updated during
rule extraction). The span above each set of rules shows the target side of the corresponding phrase
pair. (c) Extracting rules for span [3,7]: rule #2 is created using rules of span [6,7], #3 replacing
[6,7] with non-terminal, rules #4, #5 created from span [3,5]. Invalid rules are shown in grey. (d)
Extracting rules for span [2,8].

non-terminals. curr_rule is updated to the last rule, t is updated to the index span of pp′ on the

target (line 21)9. The algorithm repeats the loop to find another sub-phrase pair in curr_rule, and
9[i, t] always shows the lexical part of the target side.
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Algorithm 1 GNF Rule Extraction

1: Input f(f1 . . . fn), e(e1 . . . em),A (A is alignment)
2: P = ExtractPhrases(f , e,A) (generate all possible phrase pairs, sorted in increasing order of

length of target side)
3: LRS = RightSubPhrases(P,m) (precompute largest right sub-phrases)
4: R = {}
5: for pp ∈ P do
6: (i, j) = ēpp (target span of pp)
7: Ri,j = {} (rules for target span [i,j])
8: curr_rule = pp (create a terminal rule)
9: AddRule(Ri,j , curr_rule)

10: t = j
11: while t ≥ i do
12: pp′ = LRS[(i, t)]
13: if pp′ is None then
14: break
15: (k, t) = ēpp′ (target span of pp′)
16: for each r ∈ Rk,t do
17: r′ = Substitute(curr_rule, pp′, r)
18: AddRule(Ri,j , r′)
19: curr_rule = Substitute(curr_rule, pp′, X) (replace subphrase with a non-terminal)
20: AddRule(Ri,j , curr_rule)
21: t = k − 1
22: LRS[(i, j)] = pp (update LRS)
23: Add Ri,j toR
24: returnR

25: RightSubPhrases(P,m)
26: LRS = {}
27: for l = 2, . . . ,m do
28: for i = 1, . . . ,m− l do
29: j = i+ l − 1
30: if ∃ pp ∈ P, ēpp == (i+ 1, j) then
31: LRS[(i, j)]= pp
32: elif (i+ 1, j) ∈ LRS then
33: LRS[(i, j)]= LRS[(i+ 1, j)]
34: return LRS

continues until no sub-phrase pair is found (or we reach the beginning of the target phrase (t equals

i)). When all the rules for pp are computed, LRS[(i, j)] is updated to pp so that it can be used in

larger phrases. In fact LRS[(i, j)] should always show the largest right subphrase whose rules have

already been extracted. Note that only if [i, j] corresponds to a phrase-pair, LRS[(i, j)] is updated

(in Figure 2.4(b), some updated cells are shown in green).

Figure 2.4(c) shows how algorithm extracts rules for span [3,7]: at first curr_rule is equal

to the initial phrase pair. Rule #1 is a terminal rule; LRS[3, 7] is 〈ihre arbeit, their work〉
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(target span [6,7]), rule #2 is generated using rules for [6,7]; rule #3 is the result of replacing

[6,7] with a non-terminal. Then curr_rule and t are updated. LRS[3, 5] is sub-phrase pair

〈noch nicht gemacht, not yet done〉, (rules for this phrase pair have been already computed

and consequently LRS[3, 5] has been updated to ([4,6],[3,5])). Rules #4 and #5 are generated using

rules for span [3,5]. Then curr_rule and t are updated. As no lexical item remains in the target

side of curr_rule, the algorithm stops.

AddRule verifies the rule configuration like the number of non-terminals and non-adjacent non-

terminals on the source side. If the rule is valid, it is added to the corresponding cell, Ri,j (e.g. rule

#5, for span [3,7], is not valid because of adjacent non-terminals on the source side).

2.3.4 Correctness

We show that for a given phrase pair, this algorithm extracts all possible Hiero style SCFG rules

which are in GNF format on the target side (the same as Hiero brute-force rule extraction). Given

a phrase pair pp = (f̄ , ē) with target span [i, j], LRS([i, j]) shows the largest subproblem that can

be optimally used to generate rules for pp, denoted by Ri,j .

Optimal structure: Ri,j consists of two disjoint sets

Rs = {r|r = Substitute(pp, pp′, r′)∀r′ ∈ Ri′,j}

Rx = {r|r.pos(pp′) = X}
(2.15)

where r ∈ Ri,j is a rule, pp′ = LRS([i, j]) is a sub-phrase of pp and its target span is [i, j].
r.pos(pp′) denotes the interval of pp′ in r. Rs is the set of rules obtained by replacing pp′ in pp with

each rule of Ri′,j , while Rx is the set of rules having non-terminal X in position of pp′ (in source

and target side). GNF rules on the target side (Equation 2.9), end with a non-terminal (if there is

one) and there is no lexical item between non-terminals. Assuming this we can consider two states

for each r ∈ Ri,j : (a) r has some lexical term in r.pos(pp′); (b) r has a non-terminal in the location

of pp′. Case (a) is equal to set Rs: this type of rules can have non-terminal just in the interval of pp′

(because any non-terminal out of pp′ violates GNF format on the target side). And if there is a rule

of this type it corresponds to a rule in Ri′,j . Consequently case (b) is equal to set Rx. It means that

any r /∈ Rs, should replace a non-terminal instead of pp′ (otherwise violates GNF format on the

target side). ComputingRx corresponds to a smaller problem [i, i′−1] (let’s define t = i′−1) which

can be solved in a similar way. If [i, t] is target side of a phrase pair (like [3, 5] in Figure 2.4(c)), we

just need to use rules in Ri,t to generate more rules and keep all valid rules. Otherwise we repeat

the process: find the largest sub-problem, LRS[i, t] = (k, t), use Rk,t to generate more rules, then

replace [k, t] in the rule with a non-terminal, update the rule and continue. It stops when target side

is entirely covered by non-terminals (Figure 2.4(d) shows an example of this type).
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Corpus Train/Dev/Test
Cs-En Europarl(v7) + CzEng(v0.9); News

commentary(nc) 2008&2009; nc
2011

7.95M/3000/3003

De-En Europarl(v7); WMT2006;
WMT2006

1.5M/2000/2000

Zh-En HK parallel-tex + GALE ph-1;
MTC parts 1&3; MTC part4

2.3M/1928/919

Table 2.1: Corpus statistics in number of sentences. Tuning and test sets for Chinese-English has 4
references.

Using this optimal structure, we iteratively solve the problem in three steps: (1) find the largest

sub-problem (LRS(i, j)), (2) use its solution to generate some rules (Rs), (3) reduce the problem

to a smaller problem (Rx).

Unaligned words in the target language (not present in our example) make the computation

of LRS more complex. For example if target word index j is unaligned, then LRS[i, j] for all

i < j will be empty and the algorithm stops without considering subphrases at the left side of the

unaligned word. To avoid this problem, unaligned words on the target side will be attached to the

closest left phrase pair (if it exists) during computation of LRS.

2.4 Experiments

To evaluate our rule extraction algorithm, we use it to extract the grammar for LR-Hiero on three

language pairs: German-English (De-En), Czech-English (Cs-En) and Chinese-English (Zh-En).

Table 2.1 shows the details of datasets we use.

As baseline we use Kriya [75], an open-source implementation of Hiero in Python (available

on https://github.com/sfu-natlang/Kriya) which performs comparably to other open-

source Hiero systems. We use rule extraction of Kriya to extract SCFG rules (Hiero) and modify it

to extract GNF rules (LR-Hiero) by applying more constraints on during search. Our own imple-

mentation for GNF rule extraction described in Section 2.3 is also in Python which allows use to

make a fair comparison on speed.

To evaluate the performance of our dynamic programming (DP) rule extraction algorithm, we

compare it to the Hiero rule extraction algorithm that uses brute-force search. Figure 2.5 shows

the extraction time of different rule extraction algorithms for extracting grammars with various

configurations and settings. We use 10000 sentence pairs randomly selected from German-English

parallel data. Figure 2.5(a) and (b) illustrates the effect of the rule arity (number of non-terminals)

in the case of using initial phrase-pair of length at most 10 and the full sentence length, respectively.

These diagrams show that our GNF rule extraction algorithm works much faster than the Hiero rule

extraction algorithm. We can see that increasing the number of non-terminals drastically increases
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the extraction time in Hiero rule extraction algorithm, while it slightly increases running time in

the DP extraction algorithm. Due to the constraints applied on the rule format, the number of rules

having more than 2 non-terminals is very limited, therefore extracting these rules slightly affects the

running time.

(a)

(b)

Figure 2.5: Comparing the effect of number of non-terminals and length of initial phrase pairs on
the speed of rule extraction algorithms. Rule extraction time in terms of seconds (German-English
task) for initial phrase-pairs of length at most 10 (a) and full sentence length (b). Note that these to
algorithms are used to extract the same set of GNF rules.

We use our rule extraction algorithm to extract GNF rules from all initial phrase pairs (any

length), rule arity 1 to 4, maximum source rule length 10. Like Hiero, we filter out rules with

adjacent non-terminals on the source side. Terminal rules are constrained to maximum source rule
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Model (msl) Cs-En De-En Zh-En
SCFG (7) 1,961.6 858.5 471.8
GNF (7) 306.3 116.0 100.9
GNF-4 (10) 380.9 214.9 190.0

Table 2.2: Model sizes in millions of rules. Maximum source length (msl) is shown in brakets.

length 7. We use a rule count estimation heuristic similar to Hiero. Table 2.2 shows model sizes for

LR-Hiero (GNF), Hiero (SCFG) and GNF grammar with at most 4 non-terminals (GNF-4). Typical

Hiero rule extraction excludes phrase-pairs with unaligned words on boundaries (loose phrases).

We include loose phrase-pairs as terminal rules in all GNF grammars.

In Chapter 4 we use all grammars shown in Table 2.2 for decoding in both Hiero and LR-Hiero

translation system. Please see Section 4.4.2 for the results and discussion on the effect of different

grammars on the performance of the translation systems.

2.5 Related Work

Many approaches have been developed to improve SCFG rules for Hiero. Some of the works have

employed generative methods using Bayesian techniques to induce SCFG [6, 5, 47, 74] directly

from bilingual data without word alignments. de Gispert et al. (2010) [18] extract rules based on

posterior distributions provided by the HMM word-to-word alignment model, rather than a single

alignment which is used in original Hiero. Most of these approaches restrict the grammar to rules

with one or at most two non-terminals to be able to use the grammar in decoding [6, 18, 74].

Recently Levenberg et al. (2012) [47] propose an approach to learn grammars with an unre-

stricted number of non-terminals but do not use the grammar directly in the decoder. The obtained

SCFG rules are used to obtain the word alignments rather than the SCFG rules for decoding. An

unrestricted number of non-terminals makes the induced grammar unusable in CKY based decoders.

Zhang et al. (2008) [94] encode the word aligned sentence pairs as a normalized decomposition

tree (a hierarchical representation of all the phrase pairs in linear time) which yields a set of minimal

Hiero (SCFG) rules. They discuss that the method can be modified to extract all Hiero rules. But

the algorithm is just applied as an analytical tool for aligned bilingual data.

Syntax-based translation systems, tree-to-tree [21], tree-to-string [50, 38] and string-to-tree [28],

extract sentence level rules, but they extract rules from parse trees (on source or target) rather than

word aligned sentence pairs which we discussed in this chapter.

Braune et al. (2012) [7] extend Hiero by extracting an additional and separate set of rules for

long-distance reorderings. They modify Hiero extractor based on some analysis on long-distance

German-to-English movement and filter them based on linguistic information. New rules are ap-

plied to long spans (11 to 50) but do not improve translation quality in terms of BLEU (in some

case BLEU scores get reduced by 0.4). However they show that their approach helps in terms of
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improving the reordering between source and target (using LRscore [4] evaluation scores and some

manual evaluation).

2.6 Summary and Conclusion

We propose a dynamic programming algorithm for GNF rule extraction that is linear in the number

of GNF rules. We use the sentence level GNF rules with different number of non-terminals in the

LR-decoder and analyze the effect of these rules in LR-Hiero translation system on different lan-

guage pairs. New rules with more non-terminals improve the alignment coverage (24% on average)

on language pairs with more complex reordering, while it marginally affects the decoding speed.

Using rules with more non-terminals is a promising approach in Hiero translation systems which is

practical using LR-decoding.
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Chapter 3

Left-to-Right Decoding for Hierarchical
Phrase-based Translation

Watanabe et al. (2006) [90] propose a promising decoding algorithm for hierarchical phrase-based

translation (Hiero). It generates the target sentence by extending the hypotheses only on the right

edge which is called left-to-right (LR) decoding. LR-decoding has complexity O(n2b) (in practice)

to translate an input sentence of n words and beam size b, compared to O(n3b) for the CKY al-

gorithm. It requires a single language model (LM) history for each target hypothesis rather than

two LM histories per hypothesis as in CKY. In this chapter we present an augmented LR decoding

algorithm that builds on the LR-decoding algorithm by Watanabe et al. (2006) [90]. Unlike that

algorithm, using experiments over multiple language pairs we show two new results: our LR decod-

ing algorithm provides demonstrably more efficient decoding than CKY-based Hiero decoder, four

times faster; and by introducing new distortion and reordering features for LR decoding, it main-

tains the same translation quality (as in BLEU scores) obtained by phrase-based and CKY Hiero

with the same translation model.

3.1 Introduction

Hiero [15] models translation using a lexicalized synchronous context-free grammar (SCFG) ex-

tracted from word aligned bitexts. Typically, CKY-style decoding is used for Hiero with time com-

plexity O(n3) for source input with n words. Scoring the target language output using a language

model within CKY-style decoding requires two histories per hypothesis, one on the left edge of each

span and one on the right, due to the fact that the target side is not generated in left to right order, but

rather built bottom-up from sub-spans. This leads to complex problems in efficient language model

integration and requires state reduction techniques [36, 37]. The size of a Hiero SCFG grammar is

typically larger than phrase-based models extracted from the same data creating challenges in rule

extraction and decoding time especially for larger datasets [75].
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In contrast, the LR-decoding algorithm could avoid these shortcomings such as faster time com-

plexity, reduction in the grammar size and simplified left-to-right language model scoring.

Despite these attractive properties, we show that the LR-decoding algorithm proposed by Watan-

abe et al. (2006) [90] does not perform to the same level of the standard CKY Hiero with cube

pruning (see Table 3.3). In addition, the current LR decoding algorithm does not obtain BLEU

scores comparable to phrase-based or CKY-based Hiero models for different language pairs (see

Table 3.4). In this chapter we propose modifications to the LR decoding algorithm that addresses

these limitations and provides, for the first time, a true alternative to the standard Hiero that uses

CKY-based decoder.

We introduce a new extended version of the LR-decoding algorithm presented in [90] which

is demonstrably more efficient than the CKY Hiero algorithm. We measure the efficiency of the

LR-decoder in a way that is independent of the choice of system and programming language by

measuring the number of language model queries. Although more efficient, the new LR-decoding

algorithm suffered from lower BLEU scores compared to Hiero CKY decoder. Our analysis of left

to right decoding showed that it has more potential for search errors due to early pruning of good

hypotheses. This is unlike bottom-up decoding (CKY) which keeps best hypotheses for each span.

To address this issue, we introduce two novel features into LR-Hiero that deal with reordering and

distortion. Our experiments show that LR-decoding with these features using prefix lexicalized

target side rules (GNF) equals the scores obtained by CKY decoding with the same set of rules and

phrase-based translation system. It performs four times fewer language model queries on average,

compare to CKY Hiero decoding with Hiero SCFG rules: 6466.7 LM queries for CKY Hiero (with

cube pruning) compared to 1500.45 LM queries in LR Hiero (with cube pruning), while translation

quality suffers by only about 0.67 in BLEU score on average, across two different language pairs.

3.2 Left-to-Right Decoding for Hiero

Hierarchical phrase-based SMT [14, 15] uses a synchronous context free grammar (SCFG), where

the rules are of the form X → 〈γ, α〉, where X is a non-terminal, γ and α are strings of terminals

and non-terminals.

Chiang (2007) [15] places certain constraints on the extracted rules in order to simplify decoding

(c.f./ Section 2.2 for the details of rule extraction algorithms).

3.2.1 GNF Rules

Watanabe et al. (2006) [90] propose a left-to-right decoding algorithm that generates the target

hypotheses left to right, but for synchronous context-free grammar (SCFG) as used in Hiero. The

target-side rules are constrained to be prefix lexicalized (c.f. Section 2.3 for GNF rule extraction

algorithms).
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Figure 3.1: (a): A word-aligned German-English sentence pair. The bars above the source words
indicate phrase-pairs having at least two words. (b): its corresponding left-to-right target derivation
tree. Superscripts on the source non-terminals show the indices of the rules (see Figure 3.2) used in
derivation.

Figure 3.1(a) shows a word-aligned German-English sentence with a phrase pair 〈ihre arbeit

noch nicht gemacht haben , have not yet done their work〉 that will lead to a SCFG rule. Given other

smaller phrases (marked by bars above the source side), we extract a GNF rule1:

X → 〈X1 noch nicht X2 haben, have not yet X2 X1〉 (3.1)

It might appear that the restriction that target-side rules be GNF is a severe restriction on the

coverage of possible hypotheses compared to the full set of rules permitted by the Hiero extraction

heuristic. However there is some evidence in the literature that discontinuous spans on the source

side in translation rules is a lot more useful than discontinuous spans in the target side (which is

disallowed in the GNF). For instance, Galley et al. [31] do an extensive study of discontinuous

spans on source and target side and show that source side discontinuous spans are very useful but

removing discontinuous spans on the target side only lowers the BLEU score by 0.2 points (using the

Joshua SMT system on Chinese-English). Removing discontinuous spans means that the target side

rules have the form: uX,Xu,XuX ′, XX ′u, or uXX ′ of which we disallow Xu,XuX ′, XX ′u.

Zhang et al. (2012) [95] also conduct a study on discontinuous spans on source and target side

of Hiero rules and conclude that source discontinuous spans are always more useful than discontinu-

ities on the target side with experiments on four language pairs (Chinese-English, French-English,

German-English and Spanish-English). As we shall also see in our experimental results (see Ta-
1 LR-Hiero rule extraction excludes non-GNF rules such asX → 〈X1 noch nicht gemachtX2, X2 not yet doneX1〉.
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 X ⟦ schuler ihre arbeit nochnicht gemacht haben .⟧
schuler  X1

1⟦ihre arbeit nochnicht gemacht haben .⟧

schuler  X1
2
⟦ihre arbeit nochnicht gemacht ⟧ haben X 2

2
⟦.⟧

schuler X 1
3
⟦ihre arbeit ⟧ nochnicht  X2

3
⟦gemacht⟧ haben X 2

2
⟦.⟧

schuler  X1
3
⟦ihre arbeit⟧ nochnicht gemacht haben X 2

2
⟦.⟧

schuler ihre arbeit nochnicht gemacht haben X 2
2⟦.⟧

schuler ihre arbeit nochnicht gemacht haben .

1)X→⟨schuler X1/ students X1⟩

2)X→⟨X1haben X 2/have X 1X 2⟩

3 )X→⟨X 1nochnicht X2/not yet X 2X 1⟩

4 )X→⟨gemacht /done ⟩
5 )X→⟨ ihre arbeit / their work ⟩
6 )X→⟨ ./ . ⟩

[0,8]
students [1,8 ]
students have [1,6 ][7,8]
students have not yet [5,6] [1,3 ][7,8]
students have not yet done [1,3 ][7,8]
students have not yet done their work [7,8]
students have not yet done their work .

rules source side coverage hypothesis

G

G <s>

<s>

<s>

<s>

<s>

<s>

<s>

</s>

Figure 3.2: Illustration of the LR-decoding process in Figure 3.1. (a) Rules pane shows the rules
used in the derivation (glue rules are marked by G) (b) Decoder state using Earley dot notation
(superscripts show rule#) (c) Hypotheses pane showing translation prefix and ordered list of yet-to-
be-covered spans.

ble 3.4) we can get close to the BLEU scores obtained using the full set of Hiero rules by using only

target lexicalized rules in our LR-decoder.

3.2.2 LR-Decoding

LR-decoding uses a top-down depth-first search, which strictly grows the hypotheses in target sur-

face ordering. Search on the source side follows an Earley-style search [22], the dot jumps around

on the source side of the rules based on the order of non-terminals on the target side. This search is

integrated with beam search or cube pruning to efficiently find the k-best translations.

Several important details about the algorithm of LR-decoding are implicit and unexplained

in [90]. In this section we describe the LR-decoding algorithm in more detail than the original

description in [90]. We explain our own modified algorithm for LR-Hiero decoder with cube prun-

ing in Section 3.2.3.

Algorithm 2 shows the pseudocode for LR decoding. Decoding the example in Figure 3.1(b)

is explained using a walk-through shown in Figure 3.2. Each partial hypothesis h is a 4-tuple

(ht, hs, hcov, hc): consisting of a translation prefix ht, a (LIFO-ordered) list hs of uncovered spans,

source words coverage set hcov and the hypothesis cost hc. The initial hypothesis is a null string

with just a sentence-initial marker 〈s〉 and the list hs containing a span of the whole sentence, [0, n].
The hypotheses are stored in stacks S0, . . . , Sn, where each stack corresponds to a coverage vector

of same size, covering same number of source words [45].

At the beginning of beam search the initial hypothesis h0 is added to the decoder stack S0

(line 6 in Algorithm 2). Hypotheses in each decoder stack are expanded iteratively, generating

new hypotheses, which are added to the latter stacks corresponding to the number of source words

covered. In each step it pops from the LIFO list hs, the span [u, v] of the next hypothesis h to be

processed.

All rules that match the entire span [u, v] are then obtained efficiently via pattern matching [51].

GetSpanRules addresses possible ambiguities in matched rules to the given span [u, v]. For example,

given a rule r, with source side rs : 〈X1 the X2〉 and source phrase p : 〈ok, the more the better〉.
There is ambiguity in matching r to p. GetSpanRules returns a distinct matched rule for each

possible matching.
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Algorithm 2 LR-Decoding

1: Input sentence: f = f0f1 . . . fn

2: F = FutureCost(f) (Precompute future cost for spans)
3: for i = 0, . . . , n do
4: Si = {} (Create empty stacks)
5: h0 = (〈s〉, [[0, n]], ∅,F[0,n]) (Initial hypothesis 4-tuple)
6: Add h0 to S0 (Push initial hyp into first Stack)
7: for i = 0, . . . , n− 1 do
8: for each h in Si do
9: [u, v] = pop(hs) (Pop first uncovered span from list)

10: R = GetSpanRules([u, v]) (Extract rules matching the entire span [u, v])
11: for r ∈ R do
12: h′ = GrowHypothesis(h, r, [u, v],F) (New hypothesis)
13: Add h′ to Sl, where l = |h′cov| (Add new hyp to stack)
14: return arg max(Sn)

15: GrowHypothesis(h, r, [u, v],F)
16: h′ = (h′t = ∅, h′s = hs, h

′
cov = ∅, h′c = 0)

17: rX = {Xj , Xk, . . . |j C k C . . .} (Get non-terminals in surface order)
18: for each X in reverse(rX) do
19: push(h′s, span(X)) (Push uncovered spans to LIFO list)
20: h′t = Concatenate(ht, rt)
21: h′cov = UpdateCoverage(hcov, rs)
22: h′c = ComputeCost(g(h′),F¬h′cov

)
23: return h′

The GrowHypothesis routine creates a new candidate by expanding given hypothesis h using

rule r and computes the complete hypothesis score including language model score. Since the

target-side rules are in GNF, the translation prefix of the new hypothesis is obtained by simply

concatenating the terminal prefixes of h and r in same order (line 20). UpdateCoverage updates

source word coverage set using the source side of r. The hs list is built by pushing the non-terminal

spans of rule r in a reverse order (lines 17 and 18). The reverse ordering maintains the left-to-right

generation of the target side.

In the walk-through in Figure 3.2, the derivation process starts by expanding the initial hypothe-

sis h0 (first item in the right pane of Figure 3.2) with the rule (rule #1 in left pane) to generate a new

partial candidate having a terminal prefix of 〈s〉 students (second item in right pane). The second

item in the middle pane shows the current position of the parser employing Earley’s dot notation,

indicating that the first word has already been translated. Now the decoder considers the second

hypothesis and pops the span [1, 8]. It then matches the rule (#2) and pushes the spans [1, 6] and

[7, 8] into the list hs in the reverse order of their appearance in the target-side rule. At each step the

new hypothesis is added to the decoder stack Sl depending on the number of covered words in the

new hypothesis (line 13 in Algorithm 2).
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Algorithm 3 LR-Hiero Decoding with Cube Pruning

1: Input sentence: f = f0f1 . . . fn

2: F = FutureCost(f) (Precompute future cost for spans)
3: S0 = {} (Create empty initial stack)
4: h0 = (〈s〉, [[0, n]], ∅,F[0,n]) (Initial hypothesis 4-tuple)
5: Add h0 to S0 (Push initial hyp into first Stack)
6: for i = 1, . . . , n do
7: cubeList = {} (MRL is max rule length)
8: for p = max(i− MRL, 0), . . . , i− 1 do
9: {G} = Grouped(Sp) (Group based on the first uncovered span)

10: for g ∈ {G} do
11: [u, v] = gspan

12: R = GetSpanRules([u, v])
13: for Rs ∈ R do
14: cube = [ghyps, Rs]
15: Add cube to cubeList
16: Si = Merge(cubeList,F) (Create stack Si and add new hypotheses to it, see Figure 3.3)
17: return arg max(Sn)

18: Merge(CubeList,F)
19: heapQ = {}
20: for each (H,R) in cubeList do
21: [u, v] = span of rule R
22: h′ = GrowHypothesis(h1, r1, [u, v],F) (from Algorithm 2)
23: push(heapQ, (h′c, h′, [H,R])
24: hypList = {}
25: while |heapQ| > 0 and |hypList| < K do
26: (h′c, h′, [H,R]) = pop(heapQ)
27: push(heapQ,GetNeighbours([H,R])
28: Add h′ to hypList
29: return hypList

For pruning we use an estimate of the future cost2 of the spans uncovered by current hypothesis

together with the hypothesis cost. The future cost is precomputed (line 2 Algorithm 2) in a way

similar to the phrase-based models [44] using only the terminal rules of the grammar. The Com-

puteCost method (line 22 in Algorithm 2) uses the usual log-linear model and scores a hypothesis

based on its different feature scores g(h′) and the future cost of the yet to be covered spans (F¬h′cov
).

Time complexity of left to right Hiero decoding with beam search is O(n2b) in practice where n is

the length of source sentence and b is the size of beam [40].

3.2.3 LR-Hiero Decoding with Cube Pruning

2Watanabe et al. [90] also use a similar future cost, even though it is not discussed in the paper (p.c.).
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The Algorithm 2 presented earlier does an exhaustive search as it generates all possible partial

translations for a given stack that are reachable from the hypotheses in previous stacks. However

only a few of these hypotheses are retained, while the majority of them are pruned away. The

cube pruning technique [15] avoids the wasteful generation of poor hypotheses that are likely to be

pruned away by efficiently restricting the generation to only high scoring partial translations.

We modify the cube pruning for LR-decoding that takes into account the next uncovered span

to be translated indicated by the Earley’s dot notation. The Algorithm 3 shows the pseudocode for

LR-decoding using cube pruning. The structure of stacks and hypotheses and computing the future

cost is similar to Algorithm 2 (lines 1-5). To fill stack Si, it iterates over previous stacks (line 8 in

Algorithm 3) 3.

All hypotheses in each stack Sp (covering p words on the source-side) are first partitioned into

a set of groups, {G}, based on their first uncovered span (line 9) 4.

Each group g is a 2-tuple (gspan, ghyps), where ghyps is a list of hypotheses which share the same

first uncovered span gspan. Rules matching the span gspan are obtained from routine GetSpanRules,

which are then grouped based on unique source side rules (i.e. each Rs contains rules that share the

same source side s but have different target sides). Each ghyps and possibleRs
5 create a cube which

is added to cubeList.

In the LR-Hiero decoder, each hypothesis is developed with only one uncovered span, therefore

each cube always has just two dimensions: (1) hypotheses with the same number of covered words

and similar first uncovered span, (2) rules sharing the same source side.

In Figure 3.3(a), each group of hypotheses, ghyps, is shown in a green box (in stacks), and each

rectangle on the top is a cube. Figure 3.3 is using the example in Figure 3.2.

The Merge routine is the core function of cube pruning which generates the best hypotheses

from all cubes [15]. For each possible cube, (H,R), the best hypothesis is generated by calling

GrowHypothesis(h1, r1, span,F) where h1 and r1 are the best hypothesis and rule in H and

R respectively (line 21). Figure 3.3 (b) shows a more detailed view of a cube (shaded cube in

Figure 3.3(a)). Rows are hypotheses and columns are rules which are sorted based on their scores.

The first best hypotheses, h′, along with corresponding score, h′c and corresponding cube,

(H,R) are placed in a priority queue, heapQ (triangle in Figure 3.3). Iteratively the best hy-

pothesis is popped from the queue (line 26) and its neighbours in the cube are added to the priority

queue (using GetNeighbours([H,Q])). It continues to generate all K best hypotheses. Using the

cube pruning technique, each stack is filled with K best hypotheses without generating all possible

hypotheses in each cube.
3As the length of rules are limited (at most MRL), we can ignore stacks with index less than i− MRL
4The beam search decoder in Phrase-based system [39, 44, 73] groups the hypotheses in a given stack based on their

coverage vector. But this idea does not work in LRHiero decoding in which the expansion of each hypothesis is restricted
to its first uncovered span. We have also tried another way of grouping hypotheses: group by all uncovered spans, hs.
Our experiments did not show any significant difference between the final results (BLEU score), therefore we decided to
stick to the simpler idea: using first uncovered span for grouping.

5Note that, just rules whose number of terminals in their source side is equal to i− p can be used.
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Figure 3.3: Example of generating hypotheses in cube pruning using Figure 3.2: (a) Hypotheses
in previous stacks are grouped based on their first uncovered span, and build cubes (grids on top).
Cubes are in different sizes because of different number of rules and group sizes. Cubes are fed
to a priority queue (triangle) and new hypotheses are iteratively popped from the queue and added
to the current stack, S5. (b) Generating hypotheses from a cube. The top side of the grid denotes
the target side of rules sharing the same source side (Rs) along with their scores. Left side of the
grid shows the hypotheses in a same group, their first uncovered span and their scores. Hypothesis
generated from row 1 and column 1 is added to the queue at first. Once it is popped from the queue,
its neighbours (in the grid) are subsequently added to the queue.

Figure 3.3 (b) shows the derivation of the two best hypotheses from the cube. The best hypoth-

esis of this cube which is likely created from the best hypothesis and rule (left top most entry) is

popped at first step. Then, GetNeighbours calls GrowHypothesis to generate the next potential best

hypotheses of this cube (neighbours of the popped entry which are shaded in Figure 3.3(b)). These

hypotheses are added to the priority queue. In the next iteration, the best hypothesis is popped from

all candidates in the queue and algorithm continues.

27



3.3 Features

We use the following standard SMT features for the log-linear model of LR-Hiero: relative-frequency

translation probabilities p(f |e) and p(e|f), lexical translation probabilities pl(f |e) and pl(e|f), a

language model probability, word count and phrase count. In addition we also use the glue rule

count and the two reordering penalty features employed by Watanabe et al. [90, 89]. These features

compute the height and width (span size of the entire subtree) of all subtrees which are backtraced

in the derivation of a hypothesis. A non-terminalXi is pushed into the LIFO list of a partial hypoth-

esis; it’s backtrace refers to the set of non-terminals that must be popped before Xi.

In Figure 3.1(b), X2 has two subtrees X3 and X6, where X3 should be processed before X6.

The subtree rooted at X3 in Figure 3.1(b) has a height of 2 and span [1, 6] having a width of 5.

Similarly, X4 should be backtraced before X5 and has height and width of 1. Backtracing applies

only for rules having at least two non-terminals. Thus the total height and width penalty for this

derivation are 3 and 6 respectively.

However, the height and width features do not distinguish between a rule that reorders the non-

terminals in source and target from one that preserves the ordering. Rules #2 and #3 in Figure 3.2

are treated equally although they have different orderings. The decoder is thus agnostic to this

difference and would not be able to exploit this effectively to control reordering and instead would

rely on the partial LM score. This issue is exacerbated for glue rules, where the decoder has to

choose from different possibilities without any way to favour one over the others. Instead of the

rule #2, the decoder could use its reordered version 〈X1 haben X2, have X2 X1〉 leading to a poor

translation.

The features we introduce can be used to learn if the model should favour monotone transla-

tions at the cost of re-orderings or vice versa and hence can easily adapt to different language pairs.

Further, our experiments (see Section 5.4) suggest that the features h and w are not sufficient by

themselves to model reordering for language pairs exhibiting very different syntactic structure. Be-

low we introduce new features aimed at modeling reordering phenomena and propose the use of

(slightly modified) distortion features for LR-Hiero.

3.3.1 Distortion Features

Our distortion features are inspired by their namesake in phrase-based system, with some modifica-

tions to adapt the idea for the discontiguous phrases in LR-Hiero grammar (GNF rules).

Consider a rule r = 〈γ, b̄ β〉, with the source term γ being a mixed string of terminals and

non-terminals. Representing the non-terminal spans and each sequence of terminals in γ as dis-

tinct items, our distortion feature counts the total length of jumps between the items during Earley

parsing.

Figure 3.4 (a) explains the computation of our distortion feature for an example rule r. Let

I = [I0, . . . , Ik] be the items denoting the terminal sequences and non-terminal spans with I0 and

Ik being dummy items (` and a in Figure) marking the left and right indices of the rule r in input
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r : hf1X1f2X2f3, tX2X1i I = [`, f1, f2, f3, X2, X1,a]

f2 f3 X1 f1 X2 (a)

r : 〈X1noch nicht X 2/not yet X2 X1〉

I=[(1,1) ,(3,5) ,(5,6) ,(1,3) ,(6,6)]

.1ihre2arbeit3noch4nicht5gemacht 6

(b)

Figure 3.4: (a) Distortion feature computation using a rule r. (b) Example of distortion computation
for applying r3 on phrase 〈ihre arbeit noch nicht gemacht haben〉. subscripts between words show
the indices which are used to build I . Distortion would be: d = 2 + 0 + 5 + 3.

sentence f . Other items are arranged by their realization order on the target-side with the terminal

sequences preceding non-terminal spans. The items for the example rule are shown in Figure 3.4

(a). The distortion feature is computed as follows:

d(r) =
k∑

j=1
|ILj − IRj−1| (3.2)

where superscripts refer to position of left (L) and right (R) edge of each item in the source sentence

f . These are then aggregated across the rules of a derivation D as: d =
∑

r∈D d(r). For each item

Ij , we count the jump from the end of previous item to the beginning of the current. In Figure 3.4 (a)

the jumps are indicated by the arrows above the rule. Figure 3.4 (b) shows an example of distortion

computation for r3 and phrase 〈ihre arbeit noch nicht gemacht haben〉 from Figure 3.2.

Since the glue rules are likely to be used in the top levels (possibly with large distortion) of the

derivation, we would want the decoder to learn the distortion for regular and glue rules separately.

We thus use two distortion features for the two rule types and we call them dp and dg.

These features do not directly model the source-target reordering, but only capture the source-

side jumps. Furthermore they apply for both monotone and reordering rules. We now introduce a

new feature for exclusively modelling the reordering.
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3.3.2 Reordering Feature

This feature simply counts the number of reordering rules, where the non-terminals in source and

target sides are reordered. Thus r〈〉 = rule(D, 〈〉), where rule(D, 〈〉) is the number of reordering

rules in D. Similar to width and height, this feature is applied for rule having at least two non-

terminals. This feature is applied to regular and glue rules.

3.4 Experiments

We conduct different types of experiments to evaluate LR-Hiero decoding developed by cube prun-

ing and integrating new features into LR-Hiero system for two language pairs: German-English

(de-en) and Czech-English (cs-en). Table 6.3 shows the dataset details.

3.4.1 System Setup

In our experiments we use four baselines as well as our implementation of LR-Hiero (written in

Python):

• Hiero: we used Kriya, our open-source implementation of Hiero in Python, which performs

comparably to other open-source Hiero systems [75]. Kriya can obtain statistically equal

BLEU scores when compared with Moses [44] for several language pairs [70, 10].

• Hiero-GNF: where we use Hiero decoder with the restricted LR-Hiero grammar (GNF rules).

• LR-Hiero: our implementation of LR-Hiero [90] in Python.

• phrase-based: Moses [44]

• LR-Hiero+CP: LR-Hiero decoding with cube pruning.

We use a 5-gram LM trained on the Gigaword corpus and use KenLM [35] for LM scoring

during decoding. We tune weights by minimizing BLEU loss on the dev set through MERT [60]

and report BLEU scores on the test set. We use comparable pop limits in each of the decoders: 1000

for Moses and LR-Hiero and 500 with cube pruning for Hiero and LR-Hiero+CP. Other extraction

and decoder settings such as maximum phrase length, etc. were identical across settings so that the

results are comparable.

Table 3.2 shows how the GNF grammar used in LR-Hiero is much smaller than SCFG grammar

(Hiero).

3.4.2 Time Efficiency Comparison

To evaluate the performance of LR-Hiero decoding with cube pruning (LR-Hiero+CP), we compare

it with three baselines: (i) Hiero, (ii) Hiero-GNF, and (iii) LR-Hiero (without cube pruning) with

two different beam sizes 500 and 1000. When it comes to instrument timing results, there are lots
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Corpus Train/Dev/Test
cs-en Europarl(v7), CzEng(v0.9);

News commentary
7.95M/3000/3003

de-en Europarl(v7); News
commentary

1.5M/2000/2000

Table 3.1: Corpus statistics in number of sentences

Model cs-en de-en
Phrase-based 233.0 77.2
Hiero 1,961.6 858.5
LR-Hiero 230.5 101.3

Table 3.2: Model sizes (millions of rules). We do not count glue rules for LR-Hiero which are
created at runtime as needed.

of system level details that we wish to abstract away from, and focus only on the number of “edges”

processed by the decoder. In comparison of parsing algorithms, the common practice is to measure

the number of edges processed by different algorithms for the same reason [57]. By analogy to

parsing algorithm comparisons, we compare the different decoding algorithms with respect to the

number of calls made to the language model (LM) since that directly corresponds to the number

of hypotheses considered by the decoder. A decoder is more time efficient if it can consider fewer

translation hypotheses while maintaining the same BLEU score. All of the baselines use the same

wrapper to query the language model, and we have instrumented the wrapper to count the statistics

we need and thus we can say this is a fair comparison. For this experiment we use a sample set of

50 sentences taken from the test sets.

Table 3.3 shows the results in terms of average number of language model queries and times in

milliseconds.

3.4.3 Reordering Features

To evaluate the new reordering features proposed to LR-Hiero (Section 3.3.2), LR-Hiero+CP with

new features is compared to all baselines. Table 3.4 shows the BLEU scores of different models in

two language pairs. The baseline [90] model uses all the features mentioned therein but is worse

than both phrase-based and Hiero baselines by up to 2.3 BLEU points.

All the reported results are obtained from a single optimizer run. However we observed in-

significant changes in different tuning runs in our experiments. We find a gain of about 1 BLEU

point when we add a single distortion feature d and a further gain of 0.3 BLEU when we split the

distortion feature for the two rule types (dp and dg). The last line in part two of Table 3.4 shows

a consistent gain of 1.6 BLEU over the LR-Hiero baseline for both language pairs. It shows that

LR-Hiero maintains the BLEU scores obtained by “phrase-based” and “Hiero-GNF”.
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Model cs-en de-en
#queries / time(ms) #queries / time(ms)

Hiero 5,679.7 / 16.12 7,231.62 / 20.33
Hiero-GNF 4,952.5 / 14.71 5,858.74 / 18.23
LR-Hiero (1000) 46,333.21 / 163.6 83,518.63 / 328.11
LR-Hiero (500) 24,141.03 / 97.61 42,783.12 / 192.23
LR-Hiero+CP 1,303.2 / 4.2 1,697.7 / 5.67

Table 3.3: Comparing average number and time of language model queries.

Model cs-en de-en
Phrase-based 20.32 24.71
Hiero 20.64 25.52
Hiero-GNF 20.04 24.84
LR-Hiero 18.30 23.47
LR-Hiero + reordering feats 20.20 24.90
LR-Hiero + CP + reordering feats 20.15 24.83
Hiero-GNF + reordering feats 20.52 25.09
Hiero + reordering feats 20.77 25.72

Table 3.4: BLEU scores. The rows are grouped such that each group use the same model. The last
row in part 2 of table shows LR-Hiero+CP using our new features in addition to the baseline Watan-
abe features (line LR-Hiero baseline). The last part shows Hiero using new reordering features. The
reordering features used are dp, dg and r〈〉. LR-Hiero+CP has a beam size of 500 while LR-Hiero
has a beam size of 1000, c.f. with the LM calls shown in Table 3.3.

We performed statistical significance tests using two different tools: Moses bootstrap resam-

pling and MultEval [16]. The difference between “LR-Hiero+CP+reordering feat” and three base-

lines: “phrase-based”, “Hiero-GNF”, “LR-Hiero+reordering feat” are not statistically significant

even for p-value of 0.1 for both tools.

To investigate the impact of the proposed reordering features with other decoder or models, we

add these features to both Hiero and Hiero-GNF6. The last part of Table 3.4 shows the performance

CKY decoder with different models (full Hiero and GNF) with the new reordering features in terms

of BLEU score. The results show that these features are helpful in both models. Although, they do

not make a big difference in Hiero with full model, they can alleviate the lack of non-GNF rules in

Hiero-GNF.

Nguyen et al. (2013) [58] integrate traditional phrase-based features: distortion and lexicalized

reordering into Hiero as well. They show that such features can be useful to boost the translation

quality of Hiero with the full rule set. Nguyen et al. (2013) [58] compute the distortion feature in a

different way, only applicable to CKY. The distortion for each cell is computed after the translation
6Feature r〈〉 is defined for SCFG rules and cannot be adopted to phrase-based translation systems; and Moses uses

distortion feature therefore we omit Moses from this experiment.
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for non-terminal sub-spans is complete. In LR-decoding, we compute distortion for rules even

though we are yet to translate some of the sub-spans. Thus our approach computes the distortion

incrementally for the untranslated sub-spans which are later added. Unlike [58], our distortion

feature can be applied to both LR and CKY-decoding (Table 3.4). We have also introduced another

reordering feature (Section 3.3.2) not proposed previously.

3.5 Summary and Conclusion

We provided a detailed description of left-to-right Hiero decoding, many details of which were only

implicit in [90]. We presented an augmented LR decoding algorithm that builds on the original algo-

rithm in [90] but unlike that algorithm, using experiments over multiple language pairs we showed

two new results: (i) Our LR decoding algorithm provides demonstrably more efficient decoding

than Hiero and the original LR decoding algorithm in [90]. And, (ii) by introducing new distortion

and reordering features for LR decoding we show that it maintains the BLEU scores obtained by

phrase-based and Hiero-GNF.

Hiero uses standard Hiero-style translation rules capturing better reordering model than prefix

lexicalized target-side translation rules used in LR-Hiero. Our LR-decoding algorithm is 4 times

faster in terms of LM calls while translation quality suffers by about 0.67 in BLEU score on average.

Unlike Watanabe et al. (2006) [90], our new features can easily adapt to the reordering require-

ments of different language pairs. We also introduce the use of future cost in decoding algorithm

which is an essential part in decoding. We have shown in this chapter that left-to-right (LR) de-

coding can be considered as a potential faster alternative to CKY decoding for Hiero-style machine

translation systems.

In future work, we plan to apply lexicalized reordering models to LR-Hiero. It has been shown

to be useful for Hiero in some languages therefore it is promising to improve translation quality

in LR-Hiero which suffers from lack of modeling power of non-GNF target side rules. We also

plan to extend the glue rules in LR-Hiero to provide a better reordering model. We believe such an

extension would be very effective in reducing search errors and capturing better reordering models

in language pairs involving complex reordering requirements like Chinese-English.
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Chapter 4

Search Errors and Alignment Coverage
in Left-to-Right Decoding

In Chpater 3 we discussed a left-to-right algorithm for LR-Hiero and showed that LR-decoder is

more efficient than CKY based decoders. However LR-decoder is unable to capture some hierar-

chical phrase alignments reachable using CKY decoding and suffers from lower translation quality

as a result. In this chapter we introduce some improvements to the LR-decoder to overcome this

alignment coverage issue and fix some potential search error in LR-Hiero.

4.1 Introduction

Watanabe et al. (2006) [90] propose a left-to-right (LR) decoding algorithm for Hiero which uses

beam search and runs inO(n2b) in practice where n is the length of source sentence and b is the size

of beam [40]. However, this decoding algorithm does not perform well in comparison to current

state-of-the-art Hiero and phrase-based translation systems (c.f. Section 3.4). In Chapter 3, we

propose an augmented LR decoding which address these limitations in translation quality and time

efficiency. This Algorithm is used in LR-Hiero.

Although LR-Hiero performs much faster than Hiero in decoding and obtains BLEU scores

comparable to phrase-based translation system, there is still a notable gap between Hiero and LR-

Hiero (Section 3.4). In this chapter, we inspect this gap and propose some solutions to improve the

LR-Hiero decoding algorithm and fill this gap.

Using instructive examples, we show that Hiero CKY decoder can capture some complex

phrasal re-orderings that are observed in language pairs such as Chinese-English that LR-Hiero

cannot (c.f. Section 4.3). We extend the LR-Hiero decoder to capture all the hierarchical phrasal

alignments that are reachable in CKY decoder.

Unlike Hiero, in LR-Hiero the decoder requires future cost to have a fair comparison in pruning

hypotheses. We show that using future cost leads to search error in cube pruning. To alleviate this

issue, we introduce queue diversity to the cube pruning algorithm (c.f. Section 4.2).
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rules hypotheses

G 1)〈Taiguo shi X1/Thailand X1〉
G 2)〈yaoX1/wants X1〉
G 3)〈liyong X1/to utilize X1〉

4)〈zhe bi qian X1/this money X1〉
5)〈X1zhuru geng duo X2/

to inject more X2X1〉
6)〈liudong X1/circulating X1〉

G 7)〈zijin X1/capital X1〉
8)〈./.〉
9)〈xiang jingji/to the economy〉

〈s〉[0, 15]
〈s〉 Thailand [2,15]
〈s〉Thailand wants [3,15]
〈s〉Thailand wants to utilize [4,15]
〈s〉Thailand wants to utilize this money [7,15]
〈s〉Thailand wants to utilize this money to inject more [12,15][7,9]

〈s〉Thailand wants to utilize this money to inject more circulating [13,15][7,9]
〈s〉Thailand wants to utilize this money to inject more circulating capital [14,15][7,9]
〈s〉Thailand wants to utilize this money to inject more circulating capital . [7,9]
〈s〉Thailand wants to utilize this money to inject more circulating capital . to the economy〈/s〉

Figure 4.1: The process of translating the Chinese sentence in Figure 4.3(b) in LR-Hiero. Left side
shows the rules used in the derivation. Glue rule are marked by G (see chapter 2). The hypotheses
column shows the translation prefix and the ordered list of yet-to-be-covered spans.

We evaluate the modified decoder on three language pairs and show that LR-Hiero can reach

the translation scores comparable to CKY-Hiero in two language pairs, and reduce the gap between

Hiero and LR-Hiero on the third one.

4.2 LR Decoding with Queue Diversity

As we mentioned in the previous chapters, in LR-Hiero we use GNF grammar which is a constrained

form of SCFG: X → 〈γ, b̄ β〉 where γ is a string of non-terminal and terminal symbols, b̄ is a string

of terminal symbols and β is a possibly empty sequence of non-terminals. Using GNF grammar

ensures that as each rule is used in a derivation, the target string is generated from left to right. We

discussed the rule extraction algorithm in Chapter 2.

LR-Hiero decoder, that we describe in Chapter 3, uses a top-down depth-first search, which

strictly grows the hypotheses in target surface ordering. Search on the source side follows an

Earley-style search [22], the dot jumps around on the source side of the rules based on the or-

der of nonterminals on the target side. This search is integrated with beam search or cube pruning

to find the k-best translations.

Given an input source string, each source side non-terminal is instantiated with the legal spans,

e.g. if there is a SCFG rule 〈aX1, a
′X1〉 and if a only occurs at position 3 in the input then this

rule can be applied to span [3, i] for all i, 4 < i ≤ n for input of length n and source side X1 is

instantiated to span [4, i].
Algorithm 4 shows the pseudocode for LR-Hiero decoder with cube pruning (CP). In this sec-

tion, we will introduce the notion of queue diversity to LR-Hiero decoder (function Merge in Al-

gorithm 4). We first briefly explain the LR-Hiero decoder algorithm. Algorithm 4 is similar to

Algorithm 3 in Chapter 3 and the modified lines have been highlighted.
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Algorithm 4 LR-Hiero Decoding

1: Input sentence: f = f0f1 . . . fn

2: F = FutureCost(f) (Precompute future cost1for all spans of the source sentence)
3: S0 = {} (Create empty initial stack)
4: h0 = (〈s〉, [[0, n]], ∅,F[0,n]) (Initial hypothesis 4-tuple)
5: Add h0 to S0 (Push initial hyp into first Stack)
6: for i = 1, . . . , n do
7: cubeList = {} (MRL is max rule length)
8: for p = max(i− MRL, 0), . . . , i− 1 do
9: {G} = Grouped(Sp) (based on the first uncovered span)

10: for g ∈ {G} do
11: [u, v] = gspan

12: R = GetSpanRules([u, v])
13: for Rs ∈ R do
14: cube = [ghyps, Rs]
15: Add cube to cubeList
16: Si = Merge(cubeList,F) (Create stack Si and add new hypotheses to it, see Figure 4.2)
17: return arg max(Sn)

18: Merge(CubeList,F)
19: heapQ = {}
20: for each (H,R) in cubeList do
21: hypList = getBestHypotheses((H,R),F , d) (d best hypotheses of each cube)
22: for each h′ in hypList do
23: push(heapQ, (h′c, h′, [H,R]) (Push new hyp in queue)
24: hypList = {}
25: while |heapQ| > 0 and |hypList| < K do
26: (h′c, h′, [H,R]) = pop(heapQ) (pop the best hypothesis)
27: push(heapQ,GetNeighbours([H,R]) (Push neighbours to queue)
28: Add h′ to hypList
29: return hypList

4.2.1 LR-Hiero Decoder

Figure 4.1 shows a worked out example of how the decoder works. Each partial hypothesis h is a

4-tuple (ht, hs, hcov, hc): consisting of a translation prefix ht, a (LIFO-ordered) list hs of uncovered

spans, source words coverage set hcov and the hypothesis cost hc. The initial hypothesis is a null

string with just a sentence-initial marker 〈s〉 and the list hs containing a span of the whole sentence,

[0, n]. The hypotheses are stored in stacks S0, . . . , Sn, where Sp contains hypotheses covering p

source words just like in stack decoding for phrase-based SMT [45].

To fill stack Si we use hypotheses in stacks Sp, where i−MRL ≤ p < i. As the length of rules are

limited (at most MRL), we can ignore stacks with index less than i−MRL. Hypotheses in each stack
1The future cost is precomputed in a way similar to the phrase-based models [44] using only the terminal rules of the

grammar.
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Figure 4.2: Cubes (grids) are fed to a priority queue (triangle) and generated hypotheses are itera-
tively popped from the queue and added to stack Si. Lower scores are better. Scores of rules and
hypotheses appear on the top and left side of the grids respectively. Shaded entries are hypotheses
in the queue and black ones are popped from the queue and added to Si.

are partitioned into a set of groups {G}, based on their first uncovered span (line 9). Each group g

is a 2-tuple (gspan, ghyps), where ghyps is a list of hypotheses which share the same first uncovered

span gspan. Rules matching the span gspan are obtained from routine GetSpanRules. Each ghyps

and possible Rs (unique source side rule) create a cube which is added to cubeList (line 15).

Generated cubes (cubeList) are given to the Merge routine to generate the K best hypotheses using

cube pruning. Decoding finishes when the last stack, Sn, has been filled.

4.2.2 Cube Pruning with Queue Diversity

The routine Merge in Algorithm 4 is the main part of cube pruning. Merge is responsible to creates

the best hypotheses for each stack, given the list of all cubes (cubeList). Figure 4.2 shows a detailed

view of the Merge routine and how it works. In each cube, rows correspond to hypotheses and

columns correspond to rules (all rules share the same source side, but have different target sides).

Both hypotheses (rows) and rules (columns) are sorted based on their scores. Cube pruning assumes

that the best hypothesis of a cube, (H,R), is created from the best hypothesis and rule (leftmost and

topmost entry of each cube in Figure4.2) and the next best hypotheses are the neighbours of that

entry.

GetBestHypotheses((H,R),F , d) uses hypotheses H and rule set R to produce new hy-

potheses2. The first best hypothesis, h′ along with its score h′c and the corresponding cube (H,R)
create a 3-tuple which is placed in a priority queue heapQ (triangle in Figure 4.2 and line 23 in

Algorithm 4). The best hypotheses in the queue are popped (line 26) iteratively. After popping each

hypothesis, its neighbours in the corresponding cube are generated and added to the priority queue

(line 27). This continues until K best hypotheses are generated and added to hypList.

The main idea behind hypotheses generation in cube pruning is that the best possible hypothesis

for each cube is generated by combining the best old hypothesis and the best rule (sorted based

on their scores). This assumption holds if the final score of new hypotheses is the summation of
2This function is described in details in Chapter 3.
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old hypothesis score and the rule score. While in addition to hypothesis and rule scores, we need

to compute the language model (LM) score for the new partial translation3. Adding the LM score

violates the hypotheses generation assumption of CP and it can cause search errors.

Figure 4.2 illustrates this issue and how it results in search error. The numbers on the boundaries

of cubes4 are the hypothesis (left) and rule (top) scores. The number in each entry shows the final

score (including LM score) of the hypothesis generated from hypothesis and rule corresponding

to the row and column of the entry. Note that in cube pruning, we do not generate all possible

hypotheses. At each step just the shaded entries have been generated which have been added to the

queue.

The entry on the top-left corner of the right cube has a score worse than many other hypotheses

in the same cube (after adding LM score). Since the score of this hypothesis is worse than all

hypotheses in the left cube, all hypotheses in the right cube will be ignored. This type of search

error hurts LR-Hiero more than Hiero, due to the fact that hypotheses scores in LR-Hiero also rely

on the future cost. While Hiero uses CKY decoder which fills a CKY chart. Each entry in CKY

chart contains hypotheses for the same span, therefore Hiero does not need to use future cost for

ranking or pruning the hypotheses.

To solve this issue in LR-Hiero, we introduce the notion of queue diversity which is indicated

by parameter d in GetBestHypotheses((H,R),F , d) in Algorithm 4. As shown in Figure 4.2, in

any cube the top-left entry might not be the best possible hypothesis. However, if we generate a few

more hypotheses of each cube, we might access better hypotheses in the cube which are blocked

by a bad hypothesis in the top-left entry. The idea is to generate d best hypotheses from each cube

and add them all to the priority queue at the begining (line 21-23). This parameter guarantees that

each cube will produce at least d candidate hypotheses for the priority queue. In the standard cube

pruning for LR-Hiero d = 1.

We call it queue diversity, since we apply the idea of diversity at queue level, before generating

K best hypothesis. We fill each stack differently from Hiero CKY decoder, thus queue diversity is

different from lazy cube pruning [67] or cube growing [39, 87, 91]. In the experimental results we

show that adding queue diversity reduces the search error for some language pairs.

4.3 Capturing Missing Alignments

Figure 4.3(a) and Figure 4.3(b) show two examples of a common problem in LR-Hiero decoding.

The process of translating the Chinese sentence in Figure 4.3(b) to English, are shown in Figure 4.1.

The problem occurs in step 5 of Figure 4.1 where rule #5 is matched to span [7, 15]. LR-Hiero

decoder maintains a stack (last-in-first-out) of yet-to-be-covered spans for each partial hypothesis

(hs in Algorithm 4). To develop new hypotheses from a given partial hypothesis, the decoder

should match some rules to the first uncovered span. In this example, span [7, 15] in Step 5. LR-

3The target side of rule, rt, is concatenated to the old translation prefix, ht.
4In LR-Hiero, there are only two dimensions. We abuse the notation for simplicity and use the term cube.
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Tā b ch ng shu  ,ǔ ō ō liánhé zhèngfǔ , bìngqiě y u nénglìǒ guànchè .mùqián

He added that the coalition government carrying out the economic reform plancapable ofand

jīngjì g igé  jìhuàǎ

is now in stable .

X1

condition

zhuàngkuàng wěndìng
 0      1                   2            3   4               5                    6                      7                                  8                         9   10                11        12              13                     14             15             16            17      18

(a)

Tàiguó shì  yào zhè bǐ qián xiàng jīngjì zhùrù gèng duō .lìyòng

Thailand wants to circulating capital to the economyinject morethis money to

liúdòng zījīn

utilize .

X1

X 2

0               1          2              3                  4            5     6            7                 8             9               10           11         12                    13           14      15

(b)

Figure 4.3: Two Chinese-English sentence pairs from devset data in our experiments. (a) Correct
rule cannot be matched to [6,18], our modifications match the rule to the first subspan [6,9]. (b)
LR-Hiero decoder detects a wrong span for X2, [12,15]. We modify the rule matching algorithm so
that X2 is matched to three subspans: [12,13], [12,14] and [12,15]. Each match of X2 corresponds
to a distinct hypothesis, therefore this rule results in three hypotheses.

Hiero matches rule #5 to span [7, 15], therefore X2 is forced to match to span [12, 15]. This rule

reorders the translation of span [7, 9] (corresponding to X1) and [12, 15] which at the end leads to

an incorrect translation in Step 9.

However, if we use Hiero for translating this sentence using the same set of rules, the CKY

decoder will be able to generate the correct translation for span. Since the CKY-decoder works

bottom-up, it first generates the best translation for each source span and then combines them. In

this example, CKY decoder can use rule#5 to translate span [7, 14]. Then it simply combines the

translation of [7, 14] with the translation of spans [0, 7] and [14, 15] using glue rules (monotonic

combination).

Figure 4.3(a) shows another issue in decoding. In this example the first two phrases can be trans-

lated monotonically using rules in the form of 〈b̄X1, b̄′X1〉, where b̄ and b̄′ are strings of terminal

symbols in the source and target respectively. First rule 〈ta buchong shuo , X1, he added that X1〉 is

matched to the span of whole sentence, [0, 18] (the initial uncovered span). By matching this rule the

non-terminal X1 is matched to span [4, 18] which creates the new uncovered span for the obtained

partial hypothesis. Later in expanding the second partial hypothesis, span [4, 18] is matched by rule

〈lianhe zhengfu X1, the coalition government X1〉 and the non-terminal X1 in this rule is matched

to span [6, 18]. For span [6, 18], we have to apply rule 〈muqian X1 wending, is now in stable X1〉 to

obtain the correct translation. But this rule cannot be matched to span [6, 18] and the decoder fails to

generate the correct translation. Again, CKY decoder in Hiero can apply this rule to span [6, 9] and

generate the correct translation for this span. Then the translation of this span can be monotonically

concatenated to span [0, 6] and later on to the remaining spans ([9, 18]).
In both these cases, Hiero has no difficulty in reaching the target sentence using the same GNF

rules. This fact that, in LR-Hiero we have to process spans in the same order as they added to the
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the stack of yet-to-be-covered spans, hs, applies severe constraints to the decoding process. While

bottom-up decoders such as Hiero CKY can capture the alignments in Figure 4.3.

4.3.1 Augmenting GNF Rules

We extend the LR-Hiero decoder to handle the cases discussed in previous section, by augmenting

the GNF grammar and make it more expressive. Generally GNF Rules in LR-Hiero can be grouped

into three types based on the right boundary of the source and target side. These groups are shown

in Equation 4.1.

(a) 〈γā, b̄β〉

(b) 〈γXn, b̄βXn〉

(c) 〈γXn, b̄βXm〉

(4.1)

where γ is a string of terminals and non-terminals, ā and b̄ are terminal sequences of source and

target respectively, β is a possibly empty sequence of non-terminals and Xn and Xm are different

non-terminals5. We will discuss about the issues that LR-Hiero decoder might face using each type

and then propose a solution to resolve these issues.

•. Type (a): rules end at a terminal (lexical term). These rules can only be matched to spans

ending at the same word. Example (a) in Figure 4.3 shows an issue caused by this type of

rules.

•. Type (b): rules end at the same non-terminal,Xn, on both source and target sides. These type

of rules model the monotone concatenation of any spans match to Xn to the first part of rule

(before Xn).

•. Type (c): rules end at different non-terminals on source and target sides. Unlike type (b),

these rules reorder the last non-terminal on the source side, Xn. Figure 4.3 (b) is an example

of mis-matching this type of rules.

To resolve the possible issues, we propose to augment the GNF grammar by creating new rules

corresponding to each extracted GNF rule. The new rules are created by adding a new non-terminal

Xr to the end of GNF rules (both source and target sides). Note that the new rules are created

on the fly during decoding. The new non-terminal Xr is responsible to match the right boundary.

Equation 4.2 shows the new rules.
5In rule type (c) Xn will be a part of β and Xm will be a part of γ.
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Model Cs-En De-En Zh-En
Hiero 318 351 187
LR-Hiero 278 300 132
LR-Hiero+(abc) 338 361 174

Table 4.1: No. of sentence covered in forced decoding of a sample of sentences from the devset.

(a) 〈γā, b̄β〉 ⇒ 〈γāXr, b̄βXr〉

(b) 〈γXn, b̄βXn〉 ⇒ 〈γXnXr, b̄βXnXr〉

(c) 〈γXn, b̄βXm〉 ⇒ 〈γXnXr, b̄βXmXr〉

(4.2)

Xn and Xm are different non-terminals distinct from Xr. The extra non-terminal Xr enables

the decoder to add a new yet-to-be-covered span to the bottom of the stack, hs, in generating each

new partial hypothesis 6. This allows the decoder to match any two adjacent spans and simulate

monotonic glue rule, 〈SX, SX〉 in Hiero CKY decoder.

In an experiment, we translated sentences of devset data using forced decoding to evaluate

the effect of augmenting GNF rules on alignment coverage7. Table 4.1 compares the number of

sentences that can be translated by LR-Hiero and Hiero, in forced decoding mode. It shows that

augmenting GNF rules improves the coverage by 31% for Chinese-English and more than 20% for

the other two language pairs.

4.4 Experiments

The experimental results in this chapter is divided into two parts: (i) experiments to evaluate mod-

ified LR-Hiero decoder proposed in this chapter (Section 4.4.1); (ii) experiments to evaluate the

effect of GNF rules extracted using GNF extraction algorithm proposed in Chapter 2. We use three

language pairs in all experiments (Table 6.3): German-English (De-En), Czech-English (Cs-En) and

Chinese-English (Zh-En).

4.4.1 Improvements on LR-Hiero Decoder

We use a 5-gram LM trained on the Gigaword corpus and use KenLM [35] for LM scoring during

decoding. We tune weights by minimizing BLEU loss on the dev set through MERT [60] and report

BLEU scores on the test set. We use pop limit (beam size) 500 for Hiero and LR-Hiero. Other

extraction and decoder settings such as maximum phrase length, etc. are identical across settings

so that results are comparable. To make the results comparable we use the same feature set for
6For the sake of simplicity, in rule type (b) we can merge Xn and Xr as they are in the same order on both source and

target side.
7c.f. Section 4.4 for experimental settings.
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Corpus Train/Dev/Test
Cs-En Europarl(v7) + CzEng(v0.9); News

commentary(nc) 2008&2009; nc
2011

7.95M/3000/3003

De-En Europarl(v7); WMT2006;
WMT2006

1.5M/2000/2000

Zh-En HK + GALE phase-1; MTC part
1&3; MTC part 4

2.3M/1928/919

Table 4.2: Corpus statistics in number of sentences. Tuning and test sets for Chinese-English has 4
references.

Model Cs-En De-En Zh-En
Hiero 1,961.6 858.5 471.9
LR-Hiero 266.5 116.0 100.9

Table 4.3: Model sizes (millions of rules).

all baselines which includes standard features of Hiero: two relative-frequency probabilities p(e|f)
and p(f |e), two lexically weighted probabilities lex(e|f) and lex(f |e), language model probability,

word penalty, phrase penalty, and glue rule penalty. We add distortion features (separated for regular

and glue rules in LR-Hiero) proposed in Chapter 3 [80] to all translation systems including Hiero.

We use 3 baselines: (i) our implementation of Watanabe et al. (2006) [90] LR decoding for

Hiero which use beam search: LR-Hiero (beam); (ii) LR-Hiero decoder proposed in Chapter 3:

(LR-Hiero+CP); (iii) Kriya, an open-source implementation of Hiero in Python, which performs

comparably to other open-source Hiero systems [75]: (Hiero).

Table 4.3 shows model sizes for LR-Hiero (GNF) and Hiero (SCFG). Typical Hiero rule extrac-

tion excludes phrase-pairs with unaligned words on boundaries (loose phrases8). In these experi-

ments, we use the Hiero rule extraction heuristic, but exclude non-GNF rules. We include loose

phrase-pairs as terminal rules.

Table 4.4 shows the translation quality of different systems in terms of BLEU score. Row 3 is re-

peated from Chapter 3 which is presented in [80] 9. As we discussed in Section 4.2.2, LR-Hiero+CP

suffers from severe search errors on Zh-En (1.5 BLEU) but using queue diversity (QD=15) we fill

this gap. We use the same QD(=15) in next rows for Zh-en. For Cs-En and De-En we use regular

cube pruning (QD=1), as it works as well as beam search (compare rows 4 and 2).

We measure the benefit of the new modified rules from Section 4.3: (ab): adding modifications

for rules type (a) and (b); (abc): modification of all rules. We can see that for all language pairs
8c.f. Section 2.2.2 for the formal definition of loose phrases.
9We report results on Cs-En and De-En in [80]. Row 4 is the same translation system as row 3 (LR-Hiero+CP). We

achieve better results than our previous work [80] (row 4 vs. row 3) due to bug corrections and adding loose phrases as
terminal rules.
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Model Cs-En De-En Zh-En
Hiero 20.77 25.72 27.65
LR-Hiero (beam) [90] 20.72 25.10 25.99
LR-Hiero+CP [80] 20.15 24.83 -
LR-Hiero+CP (QD=1) 20.68 25.14 24.44
LR-Hiero+CP (QD=15) - - 26.10
LR-Hiero+CP+(ab) 20.88 25.22 26.55
LR-Hiero+CP+(abc) 20.89 25.22 26.52

Table 4.4: BLEU scores for different baselines and modified LR-Hiero. QD=15 indicates we use
d = 15 in Algorithm 4. We use QD=15 for Zh-En in last three rows.

Figure 4.4: Average number of language model queries.

(ab) constantly improves performance of LR-Hiero, significantly better than LR-Hiero+CP and LR-

Hiero (p-value<0.05) on Cs-En and Zh-En, evaluated by MultEval [16]. But modifying rule type

(c) does not show any improvement. Since, augmenting type (c) rules with a new non-terminal

introduces spurious ambiguity.

Figure 4.4 shows the results in terms of average number of language model queries on a sample

set of 50 sentences from test sets. All of the baselines use the same wrapper to KenLM [35] to query

the language model, and we have instrumented the wrapper to count the statistics. In Section 3.4 we

showed that LR-Decoder with beam search by Watanabe et al. [90] does not perform at the same

level of state-of-the-art Hiero (more LM calls and less translation quality). As we can see in this

figure, adding new modified rules slightly increases the number of language model queries on Cs-

En and De-En so that LR-Hiero still works 2 to 3 times faster than Hiero. On Zh-En, LR-Decoder

works significantly better than LR-Hiero decoder which runs with cube pruning (row 2 and 4 in

Table 4.4). It is mainly due to the search error that we discussed in Section 4.2.2. We apply queue

diversity (QD=15) which reduces search errors and improves translation quality but increases the

number of hypothesis generation on the other hand.
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Model (msl) Cs-En De-En Zh-En
SCFG (7) 1,961.6 858.5 471.8
GNF (7) 306.3 116.0 100.9
GNF-4 (10) 380.9 214.9 190.0

Table 4.5: Model sizes in millions of rules. Maximum source length (msl) is shown in brakets.

Model Cs-En De-En Zh-En
Hiero 20.77 25.72 27.65
LR-Hiero [90] 20.72 25.05 25.99
LR-Hiero+CP 20.52 25.07 26.10
LR-Hiero+CP (GNF-1) 20.38 24.20 25.81
LR-Hiero+CP (GNF-2) 20.49 25.32 25.92
LR-Hiero+CP (GNF-3) 20.50 25.34 26.13
LR-Hiero+CP (GNF-4) 20.50 25.34 26.10

Table 4.6: BLEU scores for Hiero, LR-Hiero and LR-Decoder [90]. GNF-x: GNF grammars with
at most x non-terminals using the proposed rule extraction algorithm.

Comparing Table 4.4 with Figure 4.4 shows that our modifications to LR-Hiero decoder sig-

nificantly improves the BLEU scores compared to previous LR decoder for LR-Hiero. We obtain

comparable results to Hiero for Cs-En and De-En and remarkably improve results on Zh-En, while

at the same time making 2 to 3 times less LM calls on Cs-En and De-En compared to CKY-Hiero.

4.4.2 GNF Rule Extraction

In this section we evaluate GNF rules extracted using the LR-Hiero rule extraction algorithm pro-

posed in Chapter 210. We use initial phrase pairs of any length (as long as sentence length) to extract

rules (arity 1 to 4) and maximum source rule length 10. Terminal rules are constrained to maximum

source rule length 7. To make the comparison easier, we repeat the Table 2.2 from Chapter 2 here.

Table 4.5 shows model sizes for GNF grammar extracted by Hiero rule extraction heuristic (GNF),

Hiero (SCFG) and GNF grammar extracted by GNF rule extraction with at most 4 non-terminals

(GNF-4). We include loose phrase-pairs as terminal rules in GNF grammars.

To evaluate the GNF rule extraction, we use all grammars in LR-Hiero and compare them with

SCFG grammar in Hiero. The experimental setting is the same as experiments in Section 4.4.111.

Table 4.6 shows the BLEU score for different decoders and grammars. The last 4 rows are

GNF grammar with 1 to 4 non-terminals extracted by our rule extraction. To show how adding

more non-terminals affect the alignment coverage, we translate the devset sentences with different

grammars in forced decoding mode. We use CKY decoding for SCFG and LR-Hiero decoder for
10The results in this section has been reported in [81]. Some of the experiments on LR-Hiero has been repeated which

leads to minor changes in some results.
11We use queue diversity (QD=15) for Chinese-English in LR-Hiero.
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Figure 4.5: Average number of language model queries. (GNF4) denotes new GNF grammar with
4 non-terminals.

GNF grammars. Table 4.1 shows the size of the reachable subset by forced decoding for different

grammars. It shows that adding more non-terminals considerably improves the alignment coverage

on De-En and Zh-En (average 24%).

Comparing Tables 4.6 and 4.1 is interesting. While adding rules with more than 2 non-terminals

does not change BLEU score it improves the alignment coverage. In our analysis we notice that

LR-Decoder rarely uses rules with 3 or 4 non-terminals in the K-best list. It is probably because,

rules with less non-terminals are generally more frequent and hypotheses which use them have got

higher scores during decoding. Here we just use Hiero and LR-Hiero standard features which are

not designed for rules with more complex reordering. The next step is to elaborate features for rules

with 3 and 4 non-terminals12.

To evaluate the effect of the grammars on the decoding process in terms of speed, we use the

number of language model calls since that directly corresponds to the number of hypotheses con-

sidered by the decoder, consequently the speed of decoder. Figure 4.5 shows the results in terms of

average number of language model queries and times in milliseconds on a sample set of 50 sentences

from test sets.

4.5 Summary and Conclusion

In this chapter we introduce two improvements to LR-Hiero decoder. We add queue diversity to

the cube pruning algorithm for LR-Hiero to solve the search error issue. We show that CKY-

based decoders can capture some complex phrasal re-orderings (observed in language pairs such

as Chinese-English) which cannot be captured by the LR-Hiero decoder. We extend the LR-Hiero

decoder to capture all these hierarchical phrasal alignments that are reachable in CKY decoders.
12In another experiment not reported here, we extract rules with unlimited number of non-terminals and source rule

length for Cs-En (while we keep non-adjacent non-terminals on the source side). But filtering rules on dev and test sets
results in rules with at most 5 non-terminals.
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Our experimental results show that these modifications improve translation quality of LR-Hiero to

reach comparable (slightly better) BLEU scores to LR-Hiero on Czech-English and significantly

improve the BLEU score on Chinese-English language pair.
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Chapter 5

Lexicalized Reordering Model for
Left-to-Right Hierarchical Phrase-based
Translation

Phrase-based and hierarchical phrase-based (Hiero) translation models differ radically in the way

reordering is modeled. Lexicalized reordering models play an important role in phrase-based MT

and such models have been added to CKY-based decoders for Hiero. In Chapter 3, we proposed

a promising decoding algorithm for Hiero (LR-Hiero) that visits input spans in arbitrary order and

produces the translation in left to right (LR) order which leads to far fewer language model calls

and leads to a considerable speedup in decoding. In Chapter 4 we introduced an augmented version

of LR-Hiero decoder to capture more hierarchical phrasal alignment and fix some potential search

errors. In this chapter we introduce a novel lexicalized reordering model (LRM) for LR-Hiero and

show that it improves translation quality for Czech-English, Chinese-English and German-English.

5.1 Introduction

The phrase-based translation system generates the translation from left-to-right, by selecting a

phrase on the source sentence and concatenating its translation to the growing target sentence. It

continues until all source words are translated. A distortion penalty is used to penalize deviation

from the monotone translation (no reordering between source and target) [45, 63]. Identical distor-

tion penalties for different types of phrases ignore the fact that certain phrases (with certain words)

were more likely to reorder than others.

State-of-the-art phrase based translation systems directly address this issue by applying lexical-

ized reordering models (LRM) to capture the reordering of phrase pairs [84, 44, 30, 31]. LRM uses

word aligned data to determine how each source-target phrase pair tends to be reordering during

decoding. LRM condition reordering probabilities on the words of each phrase pair. These models

distinguish three orientations with respect to the previously translated phrase: monotone (M), swap
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(S), and discontinuous (D), which are primarily designed to handle local re-orderings of neighbour-

ing phrases.

Hierarchical phrase-based translation (Hiero) [15] uses hierarchical phrases for translations

which are represented in the form of a lexicalized synchronous context-free grammar (SCFG).

Non-terminals in the SCFG rules correspond to gaps in phrases which are recursively filled by

other rules (phrases). The SCFG rules are extracted from word and phrase alignments of a bitext.

Hiero uses CKY-style decoding which parses the source sentence with time complexity O(n3) and

synchronously generates the target sentence (translation).

Left-to-right hierarchical translation system (LR-Hiero) also uses translation rules in the form

of SCFG grammar. LR-Hiero uses an augmented version of the left-to-right (LR) decoder first

proposed by Watanabe et al. (2006) [90] for Hiero. This decoder is an Earley style parser which

parses the source sentence using SCFG rules but generates translation in left-to-right manner. To

simplify target generation, SCFG rules are constrained to be prefix-lexicalized on target side aka

Greibach Normal Form (GNF). Restricting the target generation in one way (left-to-right) which

just requires a single language model (LM) history for each hypothesis effectively helps speed up

decoding process [80, 82].

We showed that GNF grammars can get close to the BLEU scores obtained by full set of Hiero

rules (SCFG) for some language pairs (c.f. Chapter 4). However, in language pairs with more

complex reordering like Chinese-English, discontinuous spans on the target side play an important

role in modeling the reordering. Therefore removing all non-GNF rules can hurt the translation

quality.

In Chapter 3, we introduce a new distortion feature to Hiero and LR-Hiero which significantly

improves translation quality in LR-Hiero and improves Hiero results to a lesser extent. Nguyen et al.

(2013) [58] integrate a distortion and lexicalized reordering feature with a CKY-based Hiero decoder

significantly improving the translation quality. In their approach, each partial hypothesis during

decoding is mapped into a phrase-based translation path to compute the reordering and distortion

features. However they use an LRM trained for phrase-based MT [31] which cannot be applied to

all Hiero rules. Cao et al. (2014)[11] propose an approach to directly train LRM for Hiero rules.

These two approaches are designed for CKY-decoding and cannot be applied to LR-Hiero.

To improve the reordering model we introduce lexicalized reordering model (LRM) to LR-

Hiero. We show that augmenting LR-Hiero by lexicalized reordering model significantly improve

the translation quality in different language pairs.

5.2 Lexicalized Reordering Model

The main idea in phrase-based LRM is to divide possible reorderings into three orientations that can

be easily determined during decoding and also from word-aligned sentence pairs (parallel corpus).

Given a source sentence f, a sequence of target language phrases e = (ē1, . . . , ēn) is generated
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by the decoder, and a phrase alignment a= (a1, . . . an) defines a source phrase f̄ai for each target

phrase ēi.

For each phrase-pair, the orientations are described in terms of the previously translated source

phrase fai−1 (prev) and the next source phrase to be translated fai+1 (next):

• Monotone (M): next follows prev (immediately).

• Swap (S): prev follows next (immediately).

• Discontinuous (D): next and prev are not adjacent in the source sentence.

Usually next and prev are defined for both directions left-to-right and right-to-left in generating

translation. we only discuss left-to-right here, but the right-to-left case is similar (but symmetrical).

The probability of an orientation given a phrase pair 〈f̄ , ē〉 can be estimated using relative fre-

quency:

P (o|f̄ , ē) = cnt(o, f̄ , ē)∑
o′∈{M,S,D} cnt(o′, f̄ , ē)

(5.1)

where, o ∈ {M,S,D} and cnt is computed on word-aligned parallel data (count phrase-pairs and

their orientations). Given the sparsity of the orientation types, we may use smoothing.

As the decoder develops a new hypothesis by translating a source phrase, fai , it assesses the im-

plied orientation, oi, (respect to ai−1) to verify if the reordering does make sense. During decoding,

for each phrase pair 〈f̄ai , ēi〉, only one orientation is activated (the probability is greater than zero):

• oi = M if ai − ai−1 = 1

• oi = S if ai − ai−1 = −1

• oi = D if |ai − ai−1| 6= 1

The log of this probability is easily folded into the linear models (one log-linear weight for each

orientation) that guide the decoder.

5.3 Lexicalized Reordering Model for LR-Hiero

LR-Hiero uses a subset of the Hiero SCFG rules where the target rules are in Greibach Normal

Form (GNF): 〈γ, ē β〉 where γ is a string of non-terminal and source words, ē is a target phrase

and β is a possibly empty sequence of non-terminals. We abuse notation slightly and call this a

GNF SCFG grammar. The LR-Hiero decoder develops a new hypothesis by applying a GNF rule

, r = 〈γ, ē β〉, to an untranslated span of the source sentence (determined by the SCFG)1. The

translation prefix of the new hypothesis is generated by appending the target side of the applied

rule, ē, to the translation prefix of the old hypothesis. Figure 5.1 shows a walk-through of decoding
1Uncovered span. The order for translating source spans is determined by the grammar.
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(1)
(2)
(3 )
(4 )
(5)

⟨ , ⟦[0,10]⟧ ,0⟩
⟨ He added that ,⟦[ 4,10]⟧ ,4.3⟩
⟨ He added that the coalition government ,⟦[6,10 ]⟧,7.7 ⟩
⟨ He added that the coalition government is now i n stable , ⟦[7,8] [9,10 ]⟧,11.2 ⟩
⟨ He added that the coalition government is now i n stable condition,⟦[9,10]⟧ ,13.4 ⟩
⟨ He added that the coalition government is now i n stable condition. ,⟦⟧ ,14.3⟩

rules hypotheses

<s>

<s>

<s>

<s>

<s>

<s>

</s>

⟨ht , hs , hc ⟩

Figure 5.1: The process of translating a Chinese (Figure 5.2) sentence to English using LR-Hiero.
Left side shows the rule Numbers used in each step of creating the derivation (Rules are shown in
Figure 5.2). The hypotheses column shows 3-tuple partial hypotheses: the translation prefix, ht, the
ordered list of yet-to-be-covered spans, hs, and cost hc.

他 补充 说 , 联合 政府 目前

He added that the coalition government is now in stable condition

状况 稳定
 0      1              2         3    4               5                6                 7                 8                9      10

.

.

1)⟨他 补充 说 , /He added that ⟩
2)⟨联合 政府 / the coalition government ⟩
3 )⟨目前 稳定 / is now i n stable ⟩
4 )⟨状况 /condition ⟩

5 )⟨ ./ .⟩

*__*

rules phrase pairs

1)X→⟨他 补充 说 , X1/Headded that X1⟩

2)X→⟨联合 政府 X1/ the coalition government X 1⟩

3 )X→⟨目前 X1稳定 X 2/ is now i n stable X1 X 2⟩

4 )X→⟨状况 /condition⟩
5 )X→⟨ ./ .⟩

Figure 5.2: A word-aligned Chinese-English sentence pair on the top (from devset data used in
experiments.) The rules pane shows the rules used for decoding in Figure. 5.1; Phrase-pairs pane
showing the set of source-target phrase pairs created by removing the non-terminals from the rules.

the example in Figure 5.2. The target generation in LR-Hiero is analogous to phrase-based MT.

Given an input sentence f, the output translation is a sequence of contiguous target-language phrases

e = (ē1, . . . , ēn) incrementally concatenated during decoding. We can define a phrase alignment

a = (a1, . . . an) which aligns each target phrase, ēi to a source phrase fai corresponding to source

side of a rule, ri used at step i. But unlike target, source phrases can be discontiguous. For each rule

rai = 〈γi, ēi βi〉, the source phrase fai is created by removing all non-terminals on the right or left

boundaries of γi and then replacing the other non-terminals with a gap2 (Function removeNonTerm

in Algorithm 5). Figure 5.1 illustrates the process of translating a Chinese-English sentence pair by

LR-Hiero.

5.3.1 Training

Here we discuss our approach to compute P (o|f̄ , ē), the probability of an orientation given phrase

pair of a rule, r.p = 〈f̄ , ē〉, on word-aligned data using relative frequency. We assume that phrase

2We replace the non-terminals with a unique symbol *__*.
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Algorithm 5 Training LRM

1: Input
2: sentence pair: 〈f , e〉
3: rule: r = 〈γ, ēβ〉
4: f̄ = removeNonTerm(γ) (remove non-terminals in src of r)
5: for each 〈f̄ ′, ē′〉 in 〈f , e〉 do
6: if s− t′ = 1 then
7: if u− v′ = 1 then
8: orientation = M

9: elif v − u′ = 1 then
10: orientation = S
11: else
12: orientation = D
13: else
14: orientation = D
15: return orientation

ē spans the word range s . . . t in the target sentence and the phrase f̄ spans the range u . . . v in the

source sentence3.

For a given phrase pair 〈f̄ , ē〉, we set orientation to o = M if there is a phrase pair,〈f̄ ′, ē′〉,
where its target side appears just before the target side of the given phrase (s = t′+1) and its source

side also appears just before f̄ , or u = v′+1. Orientation is o = S if there is a phrase pair where its

target side appears just before ē (s = t′+1) but its source side also appears just after f̄ (v = u′−1).

Otherwise the orientation is o = D.

Algorithm 5 shows how to determine the orientation for a rule in a sentence pair from training

data4. We consider phrases of any length to compute orientation. Note that although the phrase pair

extracted from the rules can be discontinuous, we just consider continuous phrases in the sentence

pair to compute orientation.

We use relative frequency to build smoothed maximum likelihood estimates of orientation prob-

abilities. Once orientation counts for rules (phrase-pairs obtained form rules) are collected from the

bitext, the probability model P (o|f̄ , ē) is estimated using recursive MAP smoothing as discussed

in [13]:
3The phrase ē′ spans the word range s′ . . . t′ and similarly for the source phrases.
4The given rule exists in the sentence pair.
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P (o|f̄ , ē) = cnt(o, f̄ , ē+ αtPt(o|ē) + αsPs(o|f̄)∑
o′ P (o′|f̄ , ē) + αt + αs

Ps(o|f̄) =
∑

ē′ cnt(o, f̄ , ē′) + αgPg(o)∑
ē′,o′ cnt(o′, f̄ , ē′) + αg

Pt(o|ē) =
∑

f̄ ′ cnt(o, f̄ ′, ē) + αgPg(o)∑
f̄ ′,o′ cnt(o′, f̄ ′, ē) + αg

Pg(o) =
∑
〈f̄ ,ē〉 cnt(o, f̄ , ē) + αu/3∑
〈f̄ ,ē〉,o′ cnt(o′, f̄ , ē) + αu

(5.2)

where the α parameters can be tuned empirically5.

5.3.2 Decoding

Phrase-based LRM uses local information to determine orientation for a new phrase pair, 〈f̄ai , ēi〉,
during decoding [44, 84]. For left-to-right order, f̄ai is compared to the previously translated phrase

f̄ai−1 to find orientation and compute the score. For instance, if f̄i is the left adjacent of ¯fi−1, the

orientation is swap with respect to the previous phrase, then feature P (oi = S|f̄i, ēi) in the current

translation hypothesis is activated.

Galley et al. (2008) [30] introduce the hierarchical phrase reordering model (HRM) which

increases the consistency of orientation assignments. In HRM, the emphasis on the previously

translated phrase is removed and instead a compact representation of the full translation history, as

represent by a shift-reduce stack, is used to determine orientation during decoding. Once a source

span is translated, it is shifted onto the stack; if the two spans on the top are adjacent, then a reduction

merges the two. During decoding, orientations are always determined with respect to the top of this

stack, rather than the previously translated phrase.

LR-Hiero is a hierarchical phrase-based model that uses SCFG rules6 for translation. Although

we reduce the SCFG rules to phrase pairs for training the reordering model, the rules are used for

decoding and the order of translating source phrases (spans) are determined by the non-terminals in

the SCFG rules. Therefore we cannot simply rely on the previously translated phrase to compute

the reordering scores during decoding.

Since LR-Hiero uses lexicalized glue rules [90], non-terminals can be matched to very long

spans on the source sentence. It makes LRM in LR-Hiero comparable to HRM in phrase-based

MT. However, we cannot rely on the full translation history like HRM, since translation model is a

SCFG grammar encoding reordering information.

We employ a shift-reduce approach to find a compact representation of the recent translated

source spans which is also represented by a stack, S, for each hypothesis. However, S always
5Following [13] we use α∗ = 10.
6LR-Hiero uses a restricted form on SCFG rules, in which the target is in GNF format.
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Algorithm 6 LRM in Decoding

1: Input
2: hypothesis: hyp = (S, r, feat)
3: rule: r = (f̄ , ē, feat)
4: hyp′ = (S′ = {}, None, hyp.feat) (initialize new hypothesis)
5: rp = hyp.r (the rule which was used to generate hyp)
6: if r.f̄ right adjacent S then
7: active_M(hyp′.feat, r.feat)
8: S′ = update(S, r.f̄)
9: elif r.f̄ left adjacent S then

10: active_S(hyp′.feat, r.feat)
11: S′ = update(S, r.f̄)
12: elif r.f̄ right adjacent rp.f̄ then
13: active_M(hyp′.feat, r.feat)
14: S′ = update(rp.f̄ , r.f̄ , S)
15: elif r.src left adjacent rp.f̄ then
16: active_S(hyp′.feat, r.feat)
17: S′ = update(rp.f̄ , r.f̄ , S)
18: else
19: active_D(hyp′.feat, r.feat)
20: S′ = update(S, r.f̄)
21: hyp′.r = r
22: return hyp′

23: update(pre_span, new_span, hyp_span = None)
24: if hyp_span 6= None then
25: if hyp_span covers new_span then
26: return add(hyp_span, new_span)
27: if (pre_span covers new_span) or (pre_span adjacent new_span) then
28: return add(pre_span, new_span)
29: return new_span

contains just one source span (which might be discontiguous), unlike HRM which always maintain

all previous translated spans. As the decoder applies a rule, ri, the corresponding source phrase

ri.f̄ is compared respect to the span in S to determine the orientation. If they are adjacent or S

covers the span ri.f̄ , they are reduced. Otherwise stack is set to S = ri.f̄ . Orientation of ri.f̄

is computed with respect to S but if they are not adjacent (M or S), we still need to consider the

possible local reordering with respect to the previous rule ri−1.f̄ . For instance, in Figure 5.3, rules

#5,#4 are monotone, while both are covered by the current span in S. This algorithm runs in O(1)
since it needs a limited number of comparisons to update S and compute orientation, unlike HRM

which needs to maintain a sequence of contiguous spans in the stack and runs in linear time.

Algorithm 6 shows how to compute reordering scores during decoding in LR-Hiero. There are

two inputs: a hypothesis, hyp, and a rule, r, that should be integrated into hyp to generate a new
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rules ri.f̄ Oi S

1) 〈0 1 2 3 4 X1/
under such circumstance X1〉

2) 〈5 X1/, X1〉
3) 〈6 X1 11/when X1〉
4) 〈7 8 X1/the right of life X1〉
5) 〈9 10/was deprived〉
6) 〈12 X1/, X1〉
7) 〈13 14 X1/it can only X1〉
8) 〈15 16X118/take violenceX1〉
9) 〈17/to〉

{−1}
{0, 1, 2, 3, 4}

{5}
{6, 11}
{7, 8}
{9, 10}
{12}
{13, 14}
{15, 16, 18}
{17}

M

M
M
D
M
M
M
M
D

[(-1)-(-1)]
[(-1)-4]

[(-1)-5]
[(-1)-11]
[(-1)-11]
[(-1)-11]
[(-1)-12]
[(-1)-14]
[(-1)-18]
[(-1)-18]

Figure 5.3: Computing correct orientation for each rule during decoding in LR-Hiero for the exam-
ple in Figure 5.4. rules: the rules used in the derivation. ri.f̄ : the position of rule’s lexical terms in
the source sentence; Oi: the identified orientation. S is the recent translated source span (possibly
discontinuous). At each step Oi is identified by comparing ri.f̄ to S in the previous step or last
translated source phrase ri−1.f̄ .

X

X

X

X

X

在 这 种 情况下 , 当 生命 权 被 剥夺 时 , 只 能 采取暴力的手段undersuchcircumstance,whentherightoflifewasdeprived
,
it

only
can

of

violance
take

….

….

Figure 5.4: An example showing that the shift-reduce algorithm can capture local reorderings like:
the right of life and was deprived.

hypothesis, hyp′7. The information required (from the input hypothesis) to compute the reordering

scores is stored in a 3-tuple (S, r, feat): S is the stack containing the previously translated source

7We skip the complete decoding algorithm here. It is described in Algorithm 3, Chapter 3.
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Corpus Train/Dev/Test
Cs-En Europarl(v7) + CzEng(v0.9); News

commentary(nc) 2008&2009; nc 2011
7.95M/3000/3003

De-En Europarl(v7); WMT2006; WMT2006 1.5M/2000/2000
Zh-En HK + GALE phase-1; MTC part 1&3;

MTC part 4
2.3M/1928/919

Table 5.1: Corpus statistics in number of sentences. Tuning and test sets for Chinese-English has 4
references.

span, r is the last rule that has been used to generate hyp, feat is a feature vector. The given rule

also is a 2-tuple (f̄ , feat): f̄ is the simplified source phrase (span on the source sentence) of the

rule, feat is a feature vector containing reordering scores for the phrase-pair of this rule. The new

hypothesis, hyp′ is initialized with an empty stack, S′ and a copy of the given hypothesis feature

vector, hyp.feat. Procedures active_M(), active_S() and active_D() activate monotone, swap and

disjoint reordering score respectively (i.e. add the corresponding score from r.feat to the new

hypothesis feature vector hyp′.feat).

Figure 5.3 illustrates the application of shift-reduce approach to compute orientation for initial

decoding steps of a Chinese-English sentence pair shown in Figure 5.4. For the sake of simplicity,

we show source words in the rules with the corresponding index in the source sentence. S and ri.f̄

for the initial hypothesis are set to−1, corresponding to the start of sentence symbol, making it easy

to compute the correct orientation for spans at the beginning of the input (with index 0).

5.4 Experiments

We evaluate lexicalized reordering model and new glue rules for LR-Hiero decoder on three lan-

guage pairs: German-English (De-En), Czech-English (Cs-En) and Chinese-English (Zh-En). Ta-

ble 6.3 shows the corpus statistics for all language pairs.

We train a 5-gram LM on the Gigaword corpus using KenLM [35] and use it for decoding. The

weights in the log-linear model are tuned by minimizing BLEU loss through MERT [60] on the dev

set for each language pair and the report BLEU scores on the test set.

We use three baselines in our experiments:

• Hiero: we used Kriya, an open-source implementation of Hiero in Python, which performs

comparably to other open-source Hiero systems [75]. Kriya can obtain statistically equal

BLEU scores when compared with Moses [44] for several language pairs [70, 10].

• phrase-based: Moses [44] with and without lexicalized reordering features.

• LR-Hiero: LR-Hiero decoding with cube pruning8.
8Following Chapter 4 we use queue diversity for Chinese-English task. In these experiments we use QD = 10.
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Model Cs-En De-En Zh-En
Phrase-based 20.32 24.71 25.68

+ Lexicalized reordering 20.74 25.99 26.61
Hiero 20.77 25.72 27.65
LR-Hiero 20.52 24.96 25.73

+ Lexicalized reordering 20.86 25.44 26.57

Table 5.2: Comparing the translation accuracy in terms of BLEU scores for different baselines and
LR-Hiero with lexicalized reordering model.

Model Cs-En De-En Zh-En
Hiero 6279.3 7152.3 6524.7
LR-Hiero + Lexicalized reordering 2015.1 2908.3 2225.7

Table 5.3: Comparing Translation time in terms of average No. of language model queries.

Pop limit for Hiero and LR-Hiero is 500 and beam size for Moses is 1000. Other extraction and

decoder settings such as maximum phrase length, etc. were identical across settings. To make the

results comparable we use the standard SMT features for log-linear model of all baselines: relative-

frequency translation probabilities p(f |e) and p(e|f), lexical translation probabilities pl(f |e) and

pl(e|f), a language model probability, word count, phrase count and distortion9. For Hiero and

LR-Hiero, we also use the glue rule count.

Tables 5.2 compares the performance of different translation systems in terms of translation

quality (BLEU). In all language pairs lexicalized reordering model improves the translation quality

of LR-Hiero. We observe that lexicalized reordering model have similar effect on both phrase-based

translation system and LR-Hiero. In Czech-English, LRM gets the best results but not significantly

better than LR-Hiero without LRM but for the other language pairs LRM significantly improves the

LR-Hiero results (p-value<0.05, evaluated by MultEval [16]).

Tables 5.2 compares the performance of different translation systems in terms of decoding

speed. By analogy to parsing algorithm comparisons, we compare the different decoding algo-

rithms with respect to the number of calls made to the language model (LM) since that directly

corresponds to the number of hypotheses considered by the decoder. A decoder is more time effi-

cient if it can consider fewer translation hypotheses while maintaining the same BLEU score. The

same wrapper is used to query the language model, and we have instrumented the wrapper to count

the statistics we need and thus we can say this is a fair comparison. For this experiment we use a

sample set of 50 sentences taken from the test sets.

Table 3.3 shows the results in terms of average number of language model queries and times in

milliseconds. We can see LR-Hiero+LRM still works 3 times faster than Hiero in terms of number

of LM calls
9Two distortion features for Hiero and LR-Hiero models, as defined in Section 3.3.
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5.5 Summary and Conclusion

In this chapter we proposed a novel lexicalized reordering model for the left-to-right variant of

Hiero called LR-Hiero. The model was different from lexicalized reordering models proposed for

phrase-based or Hiero-style translation systems. We showed that our lexicalized reordering model

significantly improved the translation quality of LR-Hiero on three different language pairs.

57



Chapter 6

Simultaneous Translation using
Hierarchical Phrase-based Translation
Models

In this chapter we focus on simultaneous translation using the Hiero translation models. Previous

simultaneous translation approaches either use a separate segmenter and a traditional machine trans-

lation decoder or just make the decoder decide how to segment and translate by its own. We propose

a new approach for automatic simultaneous translation by integrating segmentation and incremental

decoding. We investigate different methods to generate training data for the segmentation model.

We augment the left-to-right hierarchical translation decoder and integrate it with our segmentation

model to build an incremental translation system. This is the first use of hierarchical phrase-based

translation models in simultaneous translation.

6.1 Introduction

In simultaneous translation the incoming speech stream is segmented and translated incrementally

to reduce the latency. Mainly there are two approaches for simultaneous translation task: sentence

segmentation and incremental decoding, also called stream decoding.

In incremental decoding, incoming words are fed into the decoder one-by-one, and the decoder

updates its internal state. The decoder is responsible to decide when to begin the translation process

and when to output the translation. Incremental decoding algorithms have been proposed for phrase-

based [46, 73] translation, and recently for hierarchical phrase-based [25] and syntax-based [65]

translation systems.

Actual speech translation systems automatically estimate the sentence boundaries using period

estimation methods [69]. Many recent researches in simultaneous translation focus on sentence seg-

mentation, where the input is already splitted into sentences. Hence, the main task is to further split

the sentences into shorter subsequences of words which we call segments. The sentence segmenta-
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tion approach first splits the input sequence into segments. As soon as a segment is recognized, it is

given to a decoder to generate the translation for that segment.

Different methods have been proposed for sentence segmentation. Some early works use prosodic

boundaries [26, 3], Rangarajan et al. (2013) [69] use classification models to predict punctuation

marks, and some research leverages the reordering probabilities of phrases to predict the segment

boundaries [27, 93, 79].

More recently methods have been proposed to explicitly optimize translation accuracy in sen-

tence segmentation [64, 77]. These methods provide annotated data which can be used in the train-

ing the segmentation models, but they have never been used in end-to-end simultaneous translation.

In this work, we focus on sentence segmentation for simultaneous translation. We model the

segmentation task as a classification problem and investigate different methods to provide labeled

data for training the segmentation model (Section 6.2). While the input sentence is given (word by

word), the segmenter is queried for each word to determine whether a segment is completed or not.

Hierarchical phrase-based translation model is a prominent approach for SMT, usually compa-

rable to or better than conventional phrase-based systems. However, previous translation services

proposed for real-time translation environments, are mainly phrase-based [26, 73, 3, 93, 64]. Since

a phrase-based decoder generates translations in a left-to-right manner which is more suited than the

CKY based decoding algorithm used in Hiero decoders which requires the entire input sentence be-

fore generating the translation. We propose to use LR-Hiero for simultaneous translation which uses

hierarchical phrase-based translation model while generates the translation in left-to-right manner.

Segmentation-based simultaneous translation approaches typically use a traditional decoder to

translate each input segment individually. We adapt LR-Hiero decoder to incrementally translate

the input sentence (stream of words) given the segment boundaries (Section 6.3). We evaluate

our incremental translation system on the speech translation of TED talks on two language pairs:

English-French and English-German.

6.2 Sentence Segmentation

The segmentation task is usually modeled as a binary classifier which is called for each input word

to determine if it is a segment boundary or not. To train the segmentation classifier we need some

training data in the form of sentences with labeled words showing if a word is a segment boundary

or not. For each sentence f = 〈f1 . . . fJ〉 different possible segmentations exist which grow expo-

nentially with the length of the sentence. Finding the best segmentation can be quite difficult, as it

requires a brute-force search over all possible segmentations which is intractable.

Different heuristics have been proposed to efficiently solve this problem. We will describe two

recent approaches: alignment-based and translation-based heuristics. These heuristics use parallel

data on the source and target languages of the simultaneous translation task to effectively label the

training data for the segmentation model. We define C = 〈F,E〉 as a parallel corpus of source and

target sentences used to extract traning data.
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6.2.1 Alignment-based Heuristic

The idea behind alignment-based segmenters is to split the input sentence into segments which can

be translated to the target language monotonically [93, 79]. To achieve this goal, the segmentation

task is simplified to find segmentations of the source sentences where reordering just occurs inside

segments but not across segments.

To find such segmentations we can leverage word alignment models. Given the word alignment

a = 〈a1 . . . aJ〉 for a sentence pair 〈f, e〉, we can segment the source sentence f = 〈f1 . . . fJ〉, into

a set of K phrases s:

sk = 〈jk−1, jk〉 ∀k = 1 . . .K, j0 = 1 (6.1)

where jk is the end position of source phrase or segment sk. To restrict the reorderings inside the

segments, we should extract segments where ajk−1 < ajk
for all k. This segmentation results in a

phrase alignment for the sentence pair 〈f, e〉 called monotonic phrase alignment. Figure 6.1 shows

word alignment matrix and monotonic phrase alignment for an English-German sentence pair.

Monotonic phrase alignment for a sentence pair can be found in linear time, given the word

alignment. Experimentally, it has been shown that translation quality improves significantly with

longer phrases [45]. Therefore to avoid too short segments which results in word-to-word transla-

tion, the segmentation algorithm is forced to extract segments of length more than µ1.

We can train a word alignment model over a parallel corpus containing the parallel data of the

translation task and C. It provides us the oracle word alignment for C which can be used to extract

labeled data for the segmentation classifier.

6.2.2 Translation-based Heuristic

The translation-based segmentation strategy [64, 77] focuses on obtaining the segmentation points

which are the least harming to the translation accuracy. This heuristic performs the segmentation

using an iterative greedy approach which tries to find the most harmless segmentation point to the

translation accuracy at each iteration and add it to the previously discovered ones. Segmentation

points are described using a set of features. Different kinds of features can be used such as bigram

POS tags, lexical terms, parsing related features and etc. Each feature is used as a metric to recog-

nize segmentation point in a given input sentence. For instance, suppose we find a feature which

is a bigram POS tag: NNS-IN. Using this feature we can find a segmentation point at index 10 in

the English-German sentence in Figure 6.1 (the segmentation point is surrounded by two words

engineers and in with POS tags NNS and IN). This approach is applied on a given parallel corpus

and outputs an optimal set of features, called FVS, based on the input corpus2.
1µ is usually set to 4 [93, 79].
2The output FVS results in the best segmentation strategy (a set of segmentation points) for the input parallel corpus

in terms of translation quality.
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Figure 6.1: Word alignment matrix for an English-German sentence pair. Monotone phrases are
shown in dashed lines.

Given a parallel corpus C = {F , E} and a given number of segmentation points, K, the

translation-based segmentation heuristic first extracts the FVSs over the corpus and excludes the

ones occurring more than K times. Take the feature frequencies 〈c1 . . . cm〉 to be the related occur-

ring frequencies of the m remaining features. As an example, if c2 = 7 it means the second feature

has happened 7 times over the corpus and if it belongs to our selected FVS to build the segmentation

model, we will put 7 segmentation points in the source corpus wherever this second feature appears

in the source sentences. The translation-based segmentation heuristic tries to find a feature set s

containing l(≤ m) features according to the least harmful segmentation criterion for the translation

accuracy where Equation (6.2) holds.

l∑
i=1

csi = K (6.2)

The translation accuracy in the previous works [64, 77] was defined as the summation over the

sentence-level BLEU score [49] of the translations of segmented sentences. Our primarily experi-

ments show that the sentence-level BLEU tends to oversegment some sentences in the corpus and

leave the other sentences untouched. To overcome this issue, we propose to use corpus-level BLEU
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to measure translation accuracy. The corpus-level BLEU gives a general view over the corpus there-

fore it alleviate the tendency to localize the segmentation.

Oda et al. (2014) [64] propose a dynamic programming algorithm to find an optimal feature set

s. They initialize the feature set as empty (s = {}), then greedily choose a feature which adding it

to the corpus causes the least translation loss on the parallel corpus (in terms of average sentence

level-BLEU). Once a feature has been chosen, all the points exhibiting that feature are segmented

at the same time. They take advantage of dynamic programming (DP) to implement their approach.

DP is used to build larger sets of segmentation points from smaller sets. This approach is called

Greedy-DP (GDP).

However, this approach does not model the trade-off between accuracy and latency. This trade-

off is crucial in designing a simultaneous translation system. To model this trade-off we use the

Pareto Optimality approach proposed by [77]. This approach finds all Pareto-Optimal points (i.e.

those segmentation strategies that are equally optimal, in terms of latency and translation quality

which heres is BLEU) to generate training data for the segmentation model. In this approach, the

algorithm iteratively goes over the corpus and examines the available features by computing the

difference of translation accuracy (∆) before and after applying each available feature to the source

corpus. The features which cause least translation loss (the smallest ∆) are selected as candidate

points [64]. Among them, the feature which causes the least latency or the highest throughput which

we define in Equation 6.3 is selected to be added to the feature set s.

#Translated Segments
Total Translation T ime

(6.3)

Shavarani et al. (2015) [77] use sentence-level BLEU score to compute translation accuracy and

still suffer from tendency to localize the segmentation to a few sentences in the data set. We propose

to use corpus-level BLEU within the Pareto optimality approach.

6.2.3 Segmentation Model

Given a set of sentences along with the gold segmentations, we can prepare the training data for

the segmentation model. For each segment in the gold segmentation we create a positive training

example corresponding to the whole segment and a set of negative examples corresponding to each

smaller segment. For example for a segment 〈i, j〉, the positive example is (i, j), and negative

examples are [(i, i+ 1), (i, i+ 2), . . . (i, j − 1)].
Having the training data, we train a binary classifier (a log-linear model) based on different

feature sets. Basic features, used in [93], are: the last word of the segment (candidate segment

boundary), the position of the boundary in the sentence, and the candidate segment length (Set1).

We use this model as our baseline. We propose to use additional features containing different

information which can be partitioned into:

• Part of Speech tags: The first group uses Part Of Speech (POS) tags of the candidate segment

as features. We considered the last three POS tags in a segment and also bigrams and trigrams
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Set1: Word, Position, Length “engineers”, 9, 5
Set2: + POS tags [NNS],[CC-NNS],[NN-CC-NNS]
Set3: + Cross POS tag [NNS-IN]
Set4: + Reordering 0.8904, 0.6

Table 6.1: Feature sets and an example (for segment “from our scientist and engineers” in the
English sentence in Figure 6.1)

of the POS tags for each segment (Set2). In addition to these features we consider POS bigram

surrounding the segment boundary (Set3) and two features to model the reordering (Set4).

• Decoder Status: We hypothesize that the previous state of the decoder might have useful in-

formation. This was the motivation for the next group of features. These features can be seen

as feedback from decoder about its output. Feedback from the decoder includes: language

model score (lm), translation probabilities p(e|f) and p(f |e) and two lexically-weighted

translation probabilities (tm0,tm1,tm2,tm3), and the model score (c). We normalize these

values and use them as features in segmentation model.

• Reordering Features: The lexicalized reordering model [44] of phrase-based translation

system determines the orientation of phrases with respect to the previous phrase, monotone

(M), swap (S) and discontinuous (D). We expect the segments to be monotonically ordered.

For each segment, we define two reordering features corresponding to the monotone feature

orientation of the first and last phrases of the segment3. To compute the feature values we use

lexicalized reordering model of Moses [44] for monotone orientation of both left-to-right and

right-to-left (corresponding to the first and last phrases of the segment).

Table 6.1 shows an example for POS-based and reordering-based features defined on the second

segment (“from our scientist and engineers”) of the stream “we desperately need great communica-

tion from ...” (see Figure 6.1).

6.3 Integrated Segmentation and Decoding

As we discussed before, in sentence segmentation approaches, the input stream is segmented and

for each segment the machine translation decoder is called to translate the obtained segments indi-

vidually. In this approach the decoder treats each segment as an independent input, while we are

translating the input stream. We propose to integrate the segmentation model and decoder. This

approach can be also considered as a stream decoding method which the decoder exploit other

resources beyond just decoding cues.

Hiero models encode the translation correspondences in hierarchical phrases, unlike the phrase-

based models that use contiguous translation phrases. The notion of hierarchy allows the Hiero
3We consider the longest phrase which is available in the phrase-table.
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models to capture long-distance reordering between source and target languages unlike phrase-

based models. Additionally they also model discontiguous translations, e.g. translating the English

word not as ne pas in French (with an appropriate verb form inserted between ne and pas).

These properties make Hiero models more appropriate for some language pairs than phrase-based

models [52, 61, 63].

Hiero uses a lexicalized synchronous context-free grammar (SCFG) extracted from word and

phrase alignments of a bitext. Typically, Hiero uses a CKY-style decoding algorithm with time

complexity O(n3) where the source input has n words.

Previous translation services proposed for real-time translation environments, are mainly phrase-

based [26, 73, 3, 93, 64]. Since a phrase-based decoder generates translations in a left-to-right man-

ner, it is more suited than the CKY based decoding which requires the entire input sentence before

generating the translation.

We propose to use left-to-right hierarchical phrase-based translation in our simultaneous trans-

lation framework. It has been shown that left-to-right hierarchical (LR-Hiero) decoder can translate

using Hiero translation model much faster than CKY Hiero decoder [80]. In addition, it generates

the translation in left-to-right manner. These properties make it a suitable decoder for simultaneous

translation [79]. We augment LR-Hiero decoder to incrementally translate the input and integrate it

with the segmentation model.

6.3.1 LR-Hiero Decoder

LR-Hiero uses a constrained lexicalized SCFG usually called GNF grammar: X → 〈γ, b̄ β〉, where

X is a non-terminal, γ is a string of non-terminal and terminal symbols, b̄ is a string of terminal

symbols and β is a possibly empty sequence of non-terminals. Using GNF rules ensures that in

derivations the target side is always generated from left to right. The rules are obtained from a word

and phrase aligned bitext by replacing the smaller source-target phrase pair within a larger phrase

pair with some non-terminal4.

The decoding algorithm in LR-Hiero follows an Earley-style search [22] on the source side. The

dot jumps around on the source side of the rules based on the order of nonterminals on the target

side. Thus the target side derivation is strictly developed in left to right order. The search algorithm

is integrated with beam search or cube pruning to find the k-best translations.

Algorithm 7 shows the pseudocode of incremental decoder for LR-Hiero. This a modified

version of LR-Hiero decoder described in Chapter 3 (the modified lines have been highlighted).

Each partial hypothesis h is a 4-tuple (ht, hs, hcov, hc) : a translation prefix ht, a (LIFO-ordered)

list hs of uncovered spans, source words coverage set hcov and the hypothesis cost hc which includes

future cost and a model score computed based on feature values (using a log-linear model).

The translation prefix for the initial hypothesis is the input string history. In the standard LR-

Hiero decoder, history is a null with just a sentence-initial marker (history = 〈s〉). The initial

4We discussed the rule extraction algorithm in Chapter 2.
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Algorithm 7 LR-Hiero Incremental Decoder
1: Input: f = f0 . . . fn, history
2: F = FutureCost(f) (Precompute future cost for all source spans)
3: S0 = {} (Create empty initial stack)
4: h0 = (history, [[0, n]], ∅,F[0,n]) (Initial hypothesis 4-tuple)
5: Add h0 to S0 (Push initial hyp into first Stack)
6: for i = 1, . . . , n do
7: cubeList = {} (MRL is max rule length)
8: for p = max(i− MRL, 0), . . . , i− 1 do
9: {G} = Grouped(Sp) (based on the first uncovered span)

10: for g ∈ {G} do
11: [u, v] = gspan

12: R = GetSpanRules([u, v]) (Extract rules matching span [u, v])
13: for Rs ∈ R do
14: cube = [ghyps, Rs]
15: Add cube to cubeList
16: Si = Merge(cubeList,F) (Create stack Si and add new hypotheses to it)
17: h_best = argminh∈Snhc

18: return h_bestt

hypothesis is the history and the list hs containing one span indicating the whole input, [0, n]. The

hypotheses are stored in stacks S0, . . . , Sn, where Sp contains hypotheses covering p source words,

just like in stack decoding for phrase-based SMT [45]. Decoding process finishes when stack Sn

has been filled.

6.3.2 Incremental Translation

In our simultaneous translation framework, we integrate LR-Hiero with the segmentation model.

This framework is shown in Algorithm 8. The input is a stream of words (f = f0f1 . . .) which

is fed to the translation system word by word. buffer always contains the sequence of yet-to-be-

translated words (initially empty) and history contains the translation words previously emitted by

the translation system, initially set to null string (a sentence initial marker).

For each new input word, fi, the translation system queries the segmentation model. The content

of buffer and fi are given to the Segmenter to determine whether the sequence of words in buffer is

a valid segment for translation or not.

Once a segment is recognized, the segment and history are passed to the decoder (Algorithm 7).

The decoder translates the given source segment, and produces the translation output for that seg-

ment given the history as previously translated words. After emitting the translation to the output,

buffer is initialized with the last input word, fi which is not translated yet and history is updated

with the last emitted translation. This is a simple, yet effective way to define history.
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rules hypotheses
<s> {[0, 5]} , 0
<s> wir {[1, 5]} , -0.6
<s> wir brauchen {[1, 2][3, 5]}  , -1.14
<s> wir brauchen unbedingt {[3, 5]} , -2.8
<s> wir brauchen unbedingt groß  artige {[4, 5]} , -3.4
<s> wir brauchen unbedingt groß  artige kommunikation {} , -4.1

groß  artige kommunikation {[5, 10]} , -4.1
groß  artige kommunikation aus unserer {[7,10]} , -4.8
groß  artige kommunikation aus unserer wissenschaftler und ingenieure {} , -5.7

und ingenieure {[10, 17]} , -5.7
und ingenieure um {[12, 17]} , -6.3
und ingenieure um die welt {[12, 14][16, 17]} , -7.1
und ingenieure um die welt zu verändern {[16, 17]} , -7.7 
und ingenieure um die welt zu verändern . </s> {} , -8.05

Emit Translation

Emit Translation

Emit Translation
Stop

Figure 6.2: Simultaneous translation for an English-German sentence using LR-Hiero. The word
alignment is shown on the top. The segmentation points are shown by red stars. On the bottom,
different steps of the decoder are shown. The left side shows the rules used in the derivation.The
hypotheses column shows 4-tuple partial hypotheses: the translation prefix, ht, the ordered list of
yet-to-be-covered spans, hs, source word coverage vector, hcov and cost hc.

In this approach, the translation output is updated over time by adding the translation of the next

input segments and the decoder does not change the output which is already produced and emitted.

Therefore, it is an appropriate approach for speech translation.

Figure 6.2 illustrates different steps of translating the English-German sentence pair in Fig-

ure 6.1 using the simultaneous translation framework with LR-Hiero as translation system. The first

5 words are recognized as a segment and given to the decoder along with 〈s〉 as history. Then the

translation is emitted and the status of the decoder (hypotheses) is preserved for the translation of

next segment. The process is repeated until the end of sentence is detected.

6.4 Experimental Results

Following the International Workshop on Spoken Language Translation (IWSLT) shared task, we

evaluate our approach on the speech translation of TED talks for English-French and English-

German [12].

6.4.1 System Setup

For English-French, we use development (dev2010) and test data (tst2010) of IWSLT 2010 to tune

and evaluate the translation system. We use the parallel text provided as training data of IWSLT
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Algorithm 8 Simultaneous Translation
1: Input stream: f = f0f1 . . .
2: buffer = []
3: history = 〈s〉
4: while fi 6= 〈/s〉 do
5: if Segmenter(buffer, fi) == True then
6: trans = Decoder(buffer, history)
7: print trans
8: buffer = [fi]
9: history = trans

10: else
11: Add fi to buffer (Add the current word to the end of buffer)
12: trans = Decoder(buffer, history) (Translate the last segment)
13: print trans

2011 and Europarl (v7) as the training data for our translation task (about 2M sentence pairs). The

training data from IWSLT 2011 is used as the training set for alignment-based segmentation model

(90% as training and 10% as test set). We use a 4-gram language model trained on the French

corpus of WMT2011 (Europarl, News Commentary and UN documents) using KenLM [35].

For English-German, we use the parallel text provided as training data of IWSLT 2013 and

about one million sentence pairs of Europarl (v7), selected randomly to train the translation system.

We use development set 2010 and 2012 and test set 2010 of IWSLT shared task as development set

to tune the translation system (LR-Hiero) and test set of IWSLT 2013 is used for final evaluation.

The training data from IWSLT 2013 is used as the training set for alignment-based segmenter (90%

as training and 10% as test set). We use a 5-gram LM trained on the monolingual German data

provided by WMT 2013 shared task using KenLM [35].

We use pop limit 500, maximum source rule length 7 and at most 2 non-terminals in LR-Hiero.

The standard feature set of LR-Hiero [80] (c.f. Section 3.3) is used in a discriminative log-linear

model. We use GNF rule extraction algorithm described in Chapter 2 and include loose phrase-

pairs as terminal rules. The weights in the log-linear model are tuned by minimizing BLEU loss

through MERT [60] on the dev set for each language pair. In these experiments, we use the reference

transcript of the utterance for dev and test sets. LR-Hiero is trained once for each language pair and

used in all experiments.

We use the Stanford POS-Tagger [85] to obtain the POS tags used in training the segmenter.

6.4.2 Evaluating Features for Segmentation Modeling

We conduct some experiments to evaluate decoder-based and POS-based features for segmentation

model. For the initial evaluation on features we use a segmentation model trained labeled data

provided using alignment-based heuristic on English-French 5.
5The experiments in this section are published in [79]. The experiments on decoder-based features are expensive,

therefore we limit these initial experiments to English-French.
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features P R F1
Basic 0.77 0.86 0.81
+ POS 0.7924 0.84151 0.8162
+ Decoder (all) 0.7971 0.8295 0.8129
+ Decoder (lm,tm0,c) 0.8085 0.8137 0.8110
+ POS + Decoder (lm,tm0,c) 0.8041 0.8284 0.8161
+ POS + Decoder (all) 0.8084 0.8137 0.8110

Table 6.2: Results of segmentation model trained using different decoder-based and POS-based
features on French-English.

Table 6.2 shows the results of the segmentation model on test set (10% of IWSLT 2011 training

data). As we can see both POS-based and decoder based features improve the baseline in terms

of precision and F1 measure. But adding decoder-based features decrease the recall. Based on

this experiment we decide to use Basic+POS features as in other experiments. This set of features

outperforms all other feature sets, while it is faster, than others during decoding 6.

6.4.3 Different Labeled Data for Segmentation Modeling

In Section 6.2 we discussed two heuristics: translation-based and alignment-based, to provide train-

ing data for segmentation model. We conduct some experiments on English-German to compare

these heuristics. We use Dev 2010 and 2012 and Test 2010 from IWSLT to provide the training date

for segmentation model. Table 3 shows the statistics of data used in our experiments.

Task Sentences Tokens
MT Train 1033491 27948039

Tune 3669 74883
Seg. model Train 3669 74883
Test 1025 22026

Table 6.3: Corpus statistics in number of sentences and tokens (source side) for English-German.

In the translation-based heuristic we need the translation of all possible segments. We use the

data by Shavarani et al. [77] which contains translation for all segments (translated by Moses) stored

in a lattice. To evaluate segment translation quality, we use corpus level BLEU [66]. To compute

the latency model, we use the sayit7 script by Hal Daumé which receives the content of the segment

(in text format) and estimates the time it takes from a human to say the segment in some languages:

English (US), German, French, Italian, Spanish, and Japanese. We set the α regularizer coefficient

to 0.5 because this value avoids selecting features with extremely high or low frequency.

For the alignment-based heuristic, we concatenate the training data of segmentation model

(3669 sentence pairs) to the training data of the translation system and run GIZA++ to get the
6The models trained using decoder-based features need the feedback from decoder, therefore it requires to run the

decoder on the corresponding input segment, given each input word.
7http://www.umiacs.umd.edu/hal/sayit.py
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Labeled data Heuristic Features P R F1

Translation-based

Set1 81.38 52.56 63.87
Set2 82.03 53.90 65.06
Set3 97.18 69.89 81.31
Set4 93.41 64.14 76.06

Alignment-based

Set1 71.78 62.88 67.04
Set2 74.58 56.46 64.27
Set3 79.78 58.39 67.43
Set4 79.09 59.62 67.97

Table 6.4: Results of segmentation model trained on different labeled data using various feature sets
on German-English.

Labeled data Features BLEU Latency No. segments
Translation-based Set3 20.86 0.311 3313

Alignment-based
Set3 20.60 0.540 2648
Set4 20.62 0.524 2654

Prosodic heuristic - 20.88 0.514 2709
Regular translation - 21.04 6.353 1025

Table 6.5: Results of simultaneous translation using different models for segmentation on test data
(German-English).

word alignment. Then the heuristic discussed in Section 6.2 is used to extract segments. To have a

fair comparison, we choose µ = 5 in translation-based heuristic which provides comparable number

of segments on the training data.

Table 6.4 shows the results of different segmentation models in terms of precision, recall and F1

measure on a heldout set8 (5000 sentences randomly selected from training data of IWSLT 2013).

This table compares the performance of different labeled data and feature sets. Based on results of

Section 6.4.2, we choose POS-based features (Set2) and here compare it to new feature sets (Set3

and Set4 in Section 6.2.

Table 6.5 shows the results of the end-to-end simultaneous translation on test data for German-

English. Base on results of previous experiments on different feature sets, we choose Set3 as the

best feature set for translation-based model while on alignment-based model Set3 and Set4 have

comparable results in Table 6.4, therefore we try the translation system using both models.

We implemented a heuristic segmenter based on Rangarajan et al. [69] which segments on

surface clues such as punctuation marks. These segments reflect the idea of segmentation on silence

frames of around 100ms in the ASR output used in [3]. The results of this heuristic (prosodic) has

been shown in the forth row of Table 6.5.
8We use the set of POS tags obtained by translation-based heuristic to create the gold reference for this experiment.
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In Table 6.5, latency is calculated as the total time taken to translate the whole sentence divided

by the number of segments. This is the result of taking the average over 5 different runs for 50

sentences randomly selected from test set.

6.5 Discussion

Early work on speech translation uses prosodic pauses detected in speech as segmentation bound-

aries [26, 3]. Segmentation methods applied on the transcribed text can be divided to two categories:

heuristic methods which use linguistic cues, like conjunctions, commas, etc. [69]; and statistical

methods which train a classifier to predict the segmentation boundaries. Some early methods use

prosodic and lexical cues as features to predict soft boundaries [53]; while most recent methods rely

on word alignment information to identify contiguous blocks of text that do not contain alignments

to words outside them [93, 79]. In addition to these segmentation approaches which are applied

before calling the translation decoder, there is another strategy which perform the segmentation

during decoding which is usually called stream or incremental decoding. Various incremental de-

coding approaches have been proposed for phrase-based [46, 73], hierarchical phrase-based [79, 25],

and recently syntax-based [65] translation systems. In most incremental decoding algorithms, the

decoder waits for more input and commits the translation when the current utterance is enough to

generate a fluent translation. Oda et al. (2015) [65] propose a method to predict the future syntactic

constituents and use it in generating complete parse trees. It helps to find a good point to commit

the translation.

Recently some research focused on language pairs with divergent word order. Grissom et al.

(2014) [33] predict sentence-final verbs using reinforcement learning. It greatly affects the delay in

tasks like German-English which translates from a verb-final language to a verb-initial language. He

et al. (2015) [34] design syntactic transformations to rewrite batch translations into more monotonic

translations.

Some research has been conducted on human simultaneous interpretation to determine the effect

of the latency and accuracy metrics on the human evaluation of the output of simultaneous transla-

tion. The results indicate that latency is not as important as accuracy [55]. This implies that we need

algorithms that can make a careful choice between different segmentation decisions of the same la-

tency to produce translations with the best translation quality possible (for that latency) which we

have done in this chapter.

6.6 Summary and Conclusion

In this chapter we proposed the use of Hiero translation model for simultaneous translation for the

first time. We integrate a sentence segmentation model into LR-Hiero translation system to create

a new framework for simultaneous translation. We propose to use different heuristics to create

training data for the sentence segmentation model based on translation accuracy and reordering
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(word alignment). We investigate different sets of features for segmentation model and evaluate

them based on different measures.

We show that our framework is able to produce fast yet accurate translation for simultaneous

translation. Our framework works around 23 times faster than a regular translation system, while

preserving a comparable translation quality.

As future work we are interested to compare our translation framework with other simultaneous

MT systems and also apply it on complex word reordering language pairs like Chinese-English. We

would like to improve the segmentation model and use it in regular translation tasks, we hope it

results in faster translation systems.
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Chapter 7

Conclusions and Future Directions

In this thesis we presented a new hierarchical phrase based translation system: left-to-right hierar-

chical phrase-based translation (LR-Hiero). LR-Hiero uses a constrained form of lexicalized SCFG

rules to encode translation, where the target-side is constrained to be prefix-lexicalized, GNF gram-

mar which is a small subset of Hiero SCFG grammar. LR-Hiero applies a left-to-right decoding

algorithm that generates the target side in left-to-right manner which simplifies the language model

integration and leads to less language model calls during decoding. Using a smaller but informative

grammar and applying LR-decoding results in a faster translation system. We showed that LR-Hiero

a viable alternative for Hiero.

In Chapter 2, we proposed a novel dynamic programming algorithm for rule extraction phase of

LR-Hiero. Unlike traditional Hiero rule extraction which performs a brute-force search, LR-Hiero

rule extraction is linear in the number of rules.

In Chapter 3 we proposed an augmented version of LR-decoding algorithm which was first

proposed by Watanabe et al. [90]. The original LR-decoding does not perform to the same level

of current state-of-the-art translation systems, both on time and translation quality. Our modified

LR-decoding algorithm addressed these issues. We showed that this algorithm performs around

four times faster than CKY decoding algorithm. We further extende the LR-decoding algorithm

to capture all hierarchical phrasal alignments that are reachable in CKY-style decoding algorithms

(Chapter 4).

We also introduced a lexicalized reordering model to LR-Hiero, and showed that this model

significantly improved the translation quality (Chapter 5).

Finally we applied hierarchical translation model to the task of simultaneous translation for the

first attempt using LR-Hiero. We obtained a very fast simultaneous translation system which is 23

times faster than a regular translation system (in terms of latency) while it maintains a comparable

translation quality (Chapter 6).
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7.1 Future Directions

The following directions can be explored to extend the L-Hiero frame work or to apply it in other

tasks such as simultaneous translation:

• Grammar Induction: currently we use an approach similar to the standard Hiero to compute

rule parameters. Some heuristics are used to estimate rule counts. Then, the conditional

translation probabilities are computed by relative frequency estimation of the counts. It has

been shown that this approach leads to poor estimation for rule parameters [6, 5, 47, 72].

This issue becomes more severe in LR-Hiero, since it uses rules extracted from phrase pairs

(production rules) to build glue rules and use the same parameters for the generated glue

rules. Levenberg et al. (2012) [47] propose an approach to learn grammars with unrestricted

number of non-terminals but do not use the grammar directly in a decoder for translation. The

obtained SCFG rules are just used for the purpose of obtaining the phrase alignments.

For future exploration, we intend to extend the non-parametric Bayes model proposed in [47],

by expanding the sampler to explore the space of word alignment broadly and more quickly.

We hope it would result in a more expressive grammar with better parameter estimation.

As LR-Hiero can efficiently use grammars with more than two non-terminals and preserve

the quadratic time complexity, we expect using the induced grammar in decoding further

improves translation output.

• Extend Simultaneous Translation Framework: In Chapter 6 we proposed a sentence seg-

mentation approach and integrate it into the decoder of LR-Hiero for the task of simultaneous

translation. We expanded the translation based heuristic by [64, 77] to extract labeled data to

train the sentence segmentation model. In this approach based on the segment length, differ-

ent set of segments and consequently different training data is created. In Chapter 6 we fixed

the segment length to 5 to extract training data and train one segmentation model.

As a future direction, we plan to extend the simultaneous translation framework. Correspond-

ing to each segment length, extract a training data and train a separate segmentation model.

By tuning a weighted combination of these segmentation models, we reach more flexibility

in the final sentence segmenter. We hope it results in more accurate sentence segmentation

model.

• Neural Machine Translation: Most of the current NMT models use an encoder/decoder

approach, where the encoder reads and encodes the given source sentence into a fixed-length

vector, which is then fed to the decoder to produce the output translation. Different neural

network models, e.g. convolutional, long short term memory (LSTM), etc. have been used

as encoder/decoder in NMT systems [41, 2, 83]. But all models suffer on long sentences. I

believe it is due to the fact that the fixed length context vector is unable to maintain the whole

translation and reordering information of source sentence.
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Left-to-right translation generation is a promising idea for any translation system. This idea

can be applied to NMT systems so that the network can model the reordering information

between source and target languages more explicitly. To achieve this, we can leverage syn-

tactic parse tree on source (and target) language. Socher et al. (2011) [71] use recursive

auto-encoder which is built based on parse tree for paraphrase detection. We can adapt this

idea to NMT.
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