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Abstract

In multivariate survival analyses, understanding and quantifying the association between
survival times is of importance. Copulas, such as Archimedean copulas and Gaussian
copulas, provide a flexible approach of modeling and estimating the dependence structure
among survival times separately from the marginal distributions (Sklar, 1959). However,
misspecification in the parametric form of the copula function will directly lead to incor-
rect estimation of the joint distribution of the bivariate survival times and other model-based
quantities.

The objectives of this project are two-folded. First, I reviewed the basic definitions and
properties of commonly used survival copula models. In this project, I focused on semi-
parametric copula models where the marginal distributions are unspecified but the copula
function belongs to a parametric copula family. Various estimation procedures of the de-
pendence parameter associated with the copula function were also reviewed. Secondly, I
extended the pseudo in-and-out-of-sample (PIOS) likelihood ratio test proposed in Zhang
et al. (2016) to testing the semi-parametric copula models for right-censored bivariate sur-
vival times. The PIOS test is constructed by comparing two forms of pseudo likelihoods,
one is the "in-sample" pseudo likelihood, which is the full pseudo likelihood, and the other
is the "out-of-sample" pseudo likelihood, which is a cross-validated pseudo likelihood by
the means of jacknife. The finite sample performance of the PIOS test was investigated
via a simulation study. In addition, two real data examples were analyzed for illustrative
purposes.

Keywords: Goodness-of-fit; Right censoring data; Archimedean Copula; Gaussian Cop-
ula; Survival Analysis
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Chapter 1

Introduction

Assessing dependency among multiple variables is a primary task in multivariate survival
analysis. Copula models have appeared as a popular tool because they separate the joint
distribution into two components: the marginal distributions of the individual variables,
and the interdependency between the variables. Thus, the dependence structure can be
handled separately from the marginal distributions, which provides great flexibility on the
choices of both the marginal distributions and dependence structure. For a set of bivariate
survival times (T1,T2) with respective marginal survival functions S1(t1) and S2(t2), accord-
ing to Sklar’s theorem (Sklar, 1959), their joint survival distribution function S(t1, t2) can
be modeled in terms of univariate marginal distribution functions:

S(t1, t2) = C(S1(t1),S2(t2); θ)

whereC(·, ·; θ) is a copula function with a parameter θ controlling the dependence associa-
tion between the survival times T1 and T2. Usually, the marginal distributions of the survival
times are unspecified. Shih and Louis (1995) proposed a semi-parametric estimator of the
parameter of interest θ via a two-step procedure. When a parametric copula model is used
in applications, misspecification on its parametric structure may lead to inaccurate statisti-
cal estimation and inference. Thus, I am interested in the development of a goodness-of-fit
test for misspecification in copula models of right-censored bivariate survival times.
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1.1 Copula for Multivariate Survival Time

1.1.1 Definition of Copula

A d-dimensional copula,C, is a d-dimensional distribution function with uniform marginals
on [0, 1]. By Sklar’s theorem (Sklar, 1959), for every cumulative distribution function (cdf)
F, of a d-dimensional continuous random vector X = (X1, ..., Xd), there exists a unique
function C, satisfying

F(x1, x2, . . . , xd) = C(F1(x1),F2(x2), . . . ,Fd(xd)),

where F j is the univariate marginal cdf of X j, j = 1, 2, ..., d and (x1, x2, ..., xd) ∈ Rd. On the
other hand, a copula function could be extracted from a multivariate distribution function.
Given the joint cdf F of a continuous random vector X with univariate marginal cdfs Fi’s,
a copula function C could be defined as:

C(u1, u2, . . . , ud) = F(F−1
1 (u1),F−1

2 (u2), . . . ,F−1
d (ud)),

where (u1, u2, . . . , ud) ∈ [0, 1]d and F−1
i ’s are the inverse of the marginal cdfs or marginal

quantile functions.

1.1.2 Survival copula

Consider a d-dimensional multivariate survival times (T1,T2, ...,Td). The multivariate sur-
vival function S(t1, t2, ..., td) can be expressed as a copula function of marginal survivals:

S(t1, t2, ..., td) = C(S1(t1),S2(t2), ...,Sd(td)) (1.1)

where S1(t1),S2(t2), ...,Sd(td) are marginal survival functions.

1.2 Parametric Copula Families for Multivariate Survival
Times

1.2.1 Archimedean Copula

Archimedean copulas (Nelson, 2006) are the most commonly used copulas for modeling
multivariate survival data. There are several reasons why the Archimedean copula family
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is popular. First, Archimedean copula family consists of many parametric copula models,
such as Clayton, Frank, Gumbel, independence, and other copulas, so this allows for a
variety of dependence structures. Secondly, all commonly used Archimedean copulas have
closed forms, unlike the copulas that are derived from multivariate distribution functions
by Sklar’s theorem. Thirdly, Archimedean copulas allow modeling dependence in high
dimensions with only one parameter. This indicates that Archimedean copula is easy to
handle and computationally straightforward. Last but not least, Shih and Louis (1995)
states that Archimedean copula models correspond to proportional frailty models (Oakes,
1989) under certain circumstances. The main idea of proportional frailty models is to
introduce dependence between survival times T1 and T2 by using an unobserved random
variable G, the frailty, and here T1 and T2 are conditionally independent on G.

1.2.2 Definition

I begin with a general definition of Archimedean copulas, which can be found in Nelson
(2006). Let ϕθ be a continuous and strictly decreasing function from [0, 1] to [0,∞] with
a parameter θ, where ϕθ(1) = 0. The pseudo-inverse of ϕθ is denoted by ϕ[−1]

θ : [0,∞] →
[0, 1], which is given by

ϕ[−1]
θ (t) =

ϕ
−1
θ (t) 0 ≤ t ≤ ϕθ(0),

0 ϕθ(0) ≤ t ≤ ∞.

Note that ϕ[−1]
θ is continuous and decreasing on [0,∞], and strictly decreasing on [0, ϕθ(0)].

Furthermore, ϕ[−1]
θ (ϕθ(u)) = u on [0, 1], and

ϕθ(ϕ
[−1]
θ (t)) =

t 0 ≤ t ≤ ϕθ(0),

ϕθ(0) ϕθ(0) ≤ t ≤ ∞.

Finally, if ϕθ(0) = ∞, then ϕ[−1]
θ = ϕ−1

θ . A function C from [0, 1]2 to [0, 1] given by

C(u, v) = ϕ[−1]
θ (ϕθ(u) + ϕθ(v)), (1.2)

is called an Archimedean copula. The function ϕθ is called a generator of the copula, which
is also the inverse of a Laplace transform. Furthermore, if ϕθ(0) = ∞, then ϕθ is a strict
generator. In this case, ϕ[−1]

θ = ϕ−1
θ , and C(u, v) = ϕ[−1]

θ (ϕθ(u) + ϕθ(v)) is called a strict
Archimedean copula. In the following, I introduce several commonly used Archimedean
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copulas.

Gumbel family

The Gumbel copula is given as

Cθ(u, v) = ϕ−1(ϕ(u) + ϕ(v)) = exp
{
−[(− log(u))θ + (− log(v))θ]

1
θ

}
,

where the generator function is ϕθ(t) = (− log(t))θ with θ ≥ 1. In addition, ϕθ is a strict
generator. It is easy to see that ϕ(t) is a continuous function of t and ϕ(1) = 0.

Note that, when θ = 1, the Gumbel copula is an independent copula, i.e., Cθ(u, v) = u × v.
When θ → ∞, the limit of Gumbel copula is a comonotonicity copula. The comonotonicity
copula is the Fréchet–Hoeffding upper bound: M(u, v) = min(u, v), which corresponds
to the perfectly positive dependence between two variables. Thus, the Gumbel copula
interpolates between independence and perfectly positive dependence, and the parameter θ
reflects the strength of the dependence. For the Gumbel copula, ϕθ is the Laplace form of
a positive stable distribution. Hougaard (1986) stated that an important property of the use
of stable distribution is that the proportionality of the conditional hazard given a frailty is
inherited by the marginal hazard in univariate data.

Clayton family

The Clayton copula is given as:

Cθ(u, v) = max[(u−θ + v−θ − 1]−1/θ), 0],

where the generator function is ϕθ(t) = (t−θ − 1)/θ with θ ∈ [−1,∞)/{0}. For θ > 0, the
copula is strict and it is expressed as

Cθ(u, v) = (u−θ + v−θ − 1)−1/θ

As θ → 0 , the Clayton copula approaches the independence copula, and as θ → ∞, it
approaches the two-dimensional comonotonicity copula. Same as the Gumbel family, the
Clayton copula also interpolates between independence and perfectly positive dependence.
For the Clayton copula, ϕθ is the Laplace form of gamma distribution. Clayton (1978)
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shows that λ(t2|T1 = t1)/λ(t2|T1 ≥ t1) equals to θ if and only if the bivariate survival function
belongs to the Clayton copula, where λ is the hazard function.

Frank family

The Frank copula is given as:

Cθ(u, v) = −
1
θ

log
(
1 +

(e−θu − 1)(e−θv − 1)
(e−θ − 1)

)
,

where the generator function is ϕθ(t) = log(e−θ − 1) − log(e−θt − 1) with θ , 0. Frank
copulas are strict Archimedean copulas. Furthermore, when θ → 0, the Frank copula
approaches the independence copula; when θ → ∞, the Frank copula approaches the
comonotonicity copula; when θ → −∞, the Frank copula approaches the so-called the
counter-comonotonicity copula, which corresponds to the perfectly negative dependence
between two variables. Unlike the Gumbel and Clayton copulas, the Frank copula interpo-
lates between perfectly negative dependence and perfectly positive dependence.

1.2.3 Gaussian family

In the literature, Archimedean copulas are most commonly used to model multivariate
survival data, but they are not the only choices. The Gaussian copula was also considered,
such as Li et al. (2008) and Othus and Li (2010). For ρ ∈ [−1, 1], the Gaussian copula is
defined as

C(u, v) = Φρ(Φ−1(u), Φ−1(v)),

where
Φρ(x, y) =

∫ x

−∞

∫ y

−∞

1

2π
√

1 − ρ2
e

2ρst−s2−t2

2(1−ρ2) dsdt,

and Φ denotes the cdf of standard normal distribution. Same as the Frank copulas, the
Gaussian copula also interpolates between perfectly negative dependence and perfectly
positive dependence.

1.2.4 Dependence measurement

To quantify the dependence among two variables, several dependence measures have been
proposed. Pearson’s correlation is most frequently used in practice as a measure of de-
pendence. Embrechts et al. (2000) shows that Pearson’s correlation remains natural and

5



unproblematic in the class of elliptical distributions (e.g Gaussian and Student’s t) only.
Thus, Pearson’s correlation may not be appropriate to use if the distribution is not ellipti-
cal. In contrast to ordinary correlation measures, alternative measures of associations can
be used, such as rank correlation and tail dependence.

Kendall’s tau

The Kendall’s rank correlation, which is also called the Kendall’s τ, can be treated as a
measure of concordance for bivariate random vectors. Let (x1, y1), (x2, y2) be two sets of
observations of the bivariate random vector (X,Y). Thus, (x1, y1), (x2, y2) are concordant
if (x2 − x1)(y2 − y1) > 0, and (x1, y1), (x2, y2) are discordant if (x2 − x1)(y2 − y1) < 0.

It is easy to see that if Y tends to increase with X, then the probability of concordance
is expected to be high relative to the probability of discordance. Otherwise, if Y tends to
decrease with increasing X, the probability of concordance is expected to be low relative to
the probability of discordance. This motivates Kendall’s rank correlation, which is simply
the probability difference between concordance and disconcordance for pairs of random
vectors. Specifically, the Kendall’s rank correlation is defined as

ρτ(X,Y) = P[(x2 − x1)(y2 − y1) > 0] − P[(x2 − x1)(y2 − y1) < 0].

It can be expressed in a more compact way in the following

ρτ(X,Y) = E[sign((x2 − x1)(y2 − y1))],

where sign(x) = 1 if x > 0, = 0 if x = 0, and = −1 if x < 0. Note that:

• If the agreement between the two rankings is perfect (i.e., the two rankings are the
same), then the coefficient is equal to 1.

• If the disagreement between the two rankings is perfect (i.e., one ranking is the re-
verse of the other), then the coefficient is equal to -1.

• If X and Y are independent, then ρτ = 0.

Kendall’s τ can also be expressed in the form of the copula function Cθ(u, v) in the follow-
ing:

ρτ = −1 + 4
∫ 1

0

∫ 1

0
Cθ(u, v)cθ(u, v)dudv,

6



where cθ(u, v) = ∂Cθ(u, v)/∂u∂v. From this expression, we can see that the Kendall’s τ
is just a function of θ, and it only depends on the bivariate copula function, but not the
marginal distributions.

For some of the copula families introduced above, Kendall’s τ is given as:

• Gumbel: ρτ = 1 − 1/θ;

• Clayton: ρτ = θ/(θ + 2);

• Gaussian: ρτ = 2 arcsin(θ)/π.

Tail Dependence

In some studies, the main interest focuses on the dependence between extreme values of the
variables. Coefficients of tail dependence provide measures of the strength of dependence
in the tails of a bivariate distribution.

Let X and Y be random variables with their respective cdfs F1 and F2. The coefficient of
upper tail dependence of X and Y is

λu(X,Y) = lim
q→1,q<1

Pr[Y > F−2 (q)|X > F−1 (q)],

provided the limit λu(X,Y) ∈ [0, 1] exists. F−j s are the generalized inverse of marginal cdf
F js, where j = 1, 2. Mathematically, it is defined as F−i = inf{x ∈ R : F(x) ≥ y}, y ∈ R.
If λu(X,Y) ∈ (0, 1], then X and Y are said to show upper tail dependence. On the other
hand, if λu(X,Y) = 0, they are asymptotically independent in the upper tail.

Analogously, the coefficient of lower tail dependence is defined as

λl(X,Y) = lim
q→1,q<1

Pr[Y ≤ F−2 (q)|X ≤ F−1 (q)]

The coefficients of tail dependence can be expressed in the form of the copula functions

λu(X,Y) = lim
q→1,q<1

C(q, q)
q

and λl(X,Y) = lim
q→1,q<1

1 − 2q +C(q, q)
1 − q

.

Calculation of these coefficients is straightforward if the copula has an explicit form. For
the Gumbel copula, the coefficient of upper tail dependence is λu(X,Y) = 2 − 21/θ. Hence,
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provided that θ > 1, the Gumbel copula has upper tail dependence. The strength of this
tail dependence approaches to 1 as θ → +∞, while the strength of this tail dependence
approaches to 0 as θ → 1. Figure 1.1 is an illustration of Gumbel copula with θ equals to
1 and 8. The top two plots are the density perspective plots, and the bottom two are the
scatter plots of simulated observations from the Gumbel copulas. Top left plot in Figure
1.1 demonstrates that there is no tail dependence at all, and the data seems random overall,
which is supported by the bottom left scatter plot. In contrast, when θ increases to 8, it
shows an obvious upper tail in the top right plot. The scatter plot in the bottom right also
suggests that there is a strong association between variables in the upper tail.

Figure 1.1: Plots of Gumbel Copula with θ at 1 and 8
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Unlike the Gumbel copula, the Clayton copula has lower tail dependence. The correspond-
ing coefficient of lower tail dependence is λl(X,Y) = 2−1/θ, where θ > 0. Figure 1.2 has
shown that the two variables appear to behave closely in the left corner.

Figure 1.2: Plots of Clayton Copula with θ = 8

Figure 1.3: No tails dependence copulas

However, there exists some copulas that do not exhibit tail dependency. The Frank cop-
ula does not show dependency in both tails for any values of θ. Moreover, the bivariate
Gaussian copula is also symmetric. Please see Figure 1.3.
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1.3 Estimation of Dependence Structure

In the literature, several procedures have been proposed to estimate the dependence param-
eter of the copula function. When both the marginal distributions and the copula functions
are parametrically specified, the maximum likelihood estimates of the parameters associ-
ated with the marginal distributions and the copula can be obtained simultaneously. Al-
ternatively, a two-stage estimation procedure (Shih and Louis, 1995) can be used. In this
procedure, the parameters associated with the marginal distributions and the parameters
associated with the copula function are estimated separately in two steps.

In practice, however, the true marginals distributions are rarely known. A recent empir-
ical study in Kim et al. (2007) indicates that the fully parametric method is not robust
against misspecification of the marginals. Thus, many authors advocate the use of a two-
stage semi-parametric estimation procedure studied in Genest et al. (1995) and Shih and
Louis (1995) to estimate the dependence parameter θ. In the first stage, the marginal sur-
vival functions are estimated by a non-parametric method, and in the second stage, the
dependence parameter θ is estimated by maximizing the pseudo-likelihood function with
the estimated marginal distributions. Without censoring, Genest et al. (1995) estimated the
marginal survival functions by the empirical distribution functions; with censoring, Shih
and Louis (1995) used the Kaplan-Meier estimators. Shih and Louis (1995) also inves-
tigated the asymptotic properties of the two-stage pseudo maximum likelihood estimators
(PMLE). They showed that

√
n(̂θ−θ∗) converges in distribution to a normal random variable

with mean zero under some regularity conditions, where θ̂ is the PMLE of the parameter θ,
and θ∗ is the limiting value of θ̂.

Non-parametric estimation approaches of the copula functions have also been considered.
Gijbels and Mielniczuk (1990) and Chen and Huang (2007) proposed kernel estimators of
the copulas given uncensored data. Chen and Huang (2007) formed their nonparametric
copula estimator in two stages. First, kernel estimators of the marginal distribution func-
tions are obtained. In the second stage, a kernel copula estimator is obtained based on local
linear kernels and a simple mathematical correction that removes the boundary bias. Given
censored data, Gribkova and Lopez (2015) defined one discrete and two smooth estima-
tors of the copula. The first smooth estimator generalizes the estimator of Fermanian et al.
(2004) to the censored survival times, while the second estimator followed the method pro-
posed by Omelka et al. (2009) with correction. Moreover, the convergence rates of both
estimators were derived. Other work of non-parametric estimation of copula functions can
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be found in Kalbfleisch and Prentice (2002), Tsai et al. (1997), Lin and Ying (1993), Pren-
tice et al. (1997), and Prentice et al. (2004).

1.4 Literature Review: Tests for Copula Models

Various goodness-of-fit tests for copulas have been proposed throughout the literature.
Malevergne and Sornette (2003) developed a chi-square test for testing the Gaussian cop-
ulas. Fermanian (2005) introduced two distribution-free goodness-of-fit test statistics for
copulas. The first test used the chi-square test, and the observed and expected frequencies
considered based on a kernel estimate of the copula density and a parametric estimate of
the copula density respectively. The second test was based on the minimum distance be-
tween the smoothed copula density and the estimated parametric density. Scaillet (2007)
also used a kernel based goodness-of-fit test for copulas with fixed smoothing parameters.
Additionally, there are other types of specification tests. Prokhorov and Schmidt (2009)
considered a conditional moment test of the validity of the copula. Mesfioui et al. (2009)
proposed a test based on Spearman dependence function. Genest et al. (2011) came up with
a Cramér–von Mises type statistic, which compares the distance between an estimate of the
parametric Pickands dependence function and nonparametric estimators studied by Genest
and Segars (2009). More recently, Huang and Prokhorov (2014) provided a rank-based
goodness-of-fit test for copulas based on the information test by White (1982).

However, these tests were designed for fully observed data, and they cannot be applied to
the censored data. Several authors have proposed several goodness-of-fit tests for Archi-
medean copulas of censored bivariate survival times. Shih (1998) proposed a goodness-
of-fit test procedure for the bivariate Clayton model. The test compares unweighted and
weighted concordance estimators of the association parameter θ, and if the assumed Clay-
ton model is true, these estimators converge to the true value of θ and their difference should
be close to zero. Wang and Wells (2000) proposed a model selection procedure for right
censored bivariate data based on the L2 norm of the Kendall’s distribution, which is basi-
cally the measurement of the distance between the empirical and model-based estimates of
Kendall’s distribution. Genest et al. (2006) extended the idea of Wang and Wells (2000) to
propose a goodness-of-fit test based on the probability integral transformation, and it also
offered a way to compute the asymptotic p value for various goodness-of-fit tests based on
a non-truncated Kendall’s process. Andersen et al. (2005) proposed three test statistics to
check whether an assumed one-parameter shared frailty model fits bivariate right censored
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data without covariates. The idea behind Andersen et al. (2005) is to measure the difference
between the semi-parametric estimate and the non-parametric estimate of a proposed cop-
ula model via chi-squared type statistic, Kolmogorov-like statistic and weighted difference
based statistic. Later, Emura et al. (2010) extended the idea of comparison between two
point estimators derived under the same class of estimation equations with different weight
functions to general Archimedean models.

In this paper, I considered an alternative test procedure, the pseudo in-and-out-of sam-
ple (PIOS) likelihood ratio test in Zhang et al. (2016), for semi-parametric copulas on
right-censored bivariate survival times. The idea of PIOS statistic is rooted in the in-and-
out-of-sample (IOS) likelihood ratio test by Presnell and Boos (2004) for cross-sectional
univariate data. The IOS test provided a measure on how sensitive the likelihood is to the
varying data by the means of jackknife. The PIOS test is asymptotical equivalent to the
information ratio (IR) test originally proposed by Zhou et al. (2012). Later, both the PIOS
test and IR test have been extended to test the model mis-specifications for univariate and
multivariate time series data by Zhang et al. (2016). However, those tests are designed for
fully observed data. In this project, I applied the PIOS test in testing the semi-parametric
copula models for right censored bivariate survival times. Compared with the fully ob-
served data, the likelihood function for censored data is more complicated. This results
in more challenges in estimating the marginal distributions including the marginal survival
functions and density functions.

1.5 Organization and Objectives

This paper is organized as follows. In Chapter 2, I will introduce the statistical procedure
of testing semi-parametric copula models for right-censored bivariate survival times. In
Chapter 3, I will investigate the performance of the PIOS test through simulation study and
two real data examples. In the last chapter, I will conclude my thesis with discussions and
future work.
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Chapter 2

In-and-Out-of-sample Pseudo
Likelihood Ratio Test

2.1 Definitions and notations

First, I introduce some notations used in the following sections. Suppose Ti1 and Ti2 are the
i-th bivariate event times, and Ci is the i-th censoring time, where i = 1, 2, ...n. Let Xi1 and
Xi2 denote the observed times, where Xi j = min(Ti j,Ci), for j = 1, 2. Let δi j = I(Ti j ≤ Ci),
j = 1, 2 denote the censoring indicator variables. In summary, the observed data can be
expressed as D = {(Xi1, Xi2, δi1, δi2), i = 1, 2, ..., n}. Here, I assume independent censoring,
i.e. Ci is independent of the bivariate event times Ti1 and Ti2.

Let S(t1, t2) = Pr(Ti1 > t1,Ti2 > t2) be the joint survival function of (Ti1,Ti2), and let
S1(t1) = Pr(Ti1 > t1) and S2(t2) = Pr(Ti2 > t2) be the marginal survival functions of Ti1 and
Ti2 respectively. We assume that there exists a copula function C0 such that

S(t1, t2) = Pr(Ti1 > t1,Ti2 > t2) = C0(S1(t1),S2(t2); θ),

whereC0 is the true copula. However, it is rarely known. Thus, we model the joint survival
function S(t1, t2) by a copula family in the following form

S(t1, t2) = C(S1(t1),S2(t2); θ), (2.1)

whereC is a copula function, and θ is the dependence parameter. As mentioned earlier, the
Archimedean copulas and the Gaussian copula are usually considered to model multivari-
ate survival data in the literature, and both of these two copula families are specified by one
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dependence parameter. Thus, in this thesis, for the purpose of simplicity, I only consider
copula families with one dependence parameter.

The goal of this paper is to propose a test for

H0 : C0 ∈ C = {C(·; θ), θ ∈ Θ} vs. HA : C0 < C = {C(·; θ), θ ∈ Θ},

where Θ ⊂ R is the parameter space.

In addition, some related notations are defined as follows. Let

• f1(t1) = −S′1(t1) and f2(t2) = −S′2(t2) be the marginal density functions of Ti1 and Ti2

respectively;

• Ui1 = S1(Xi1) and Ui2 = S2(Xi2);

• Cθ(u1, u2) = C(u1, u2; θ)

• cθ(u1, u2) = ∂Cθ(u1, u2)/∂u1∂u2

• c
( j)
θ (u1, u2) = ∂Cθ(u1, u2)/∂u j, j = 1, 2.

2.2 Likelihood function

Given the data D, there are generally four different types of data:

• No censoring for neither Ti1 nor Ti2, so δi1 = δi2 = 1, and the corresponding likeli-
hood component is ∂S(Xi1, Xi2)/∂Xi1∂Xi2

• Only Ti1 is censored, but Ti2 is observed, so δi1 = 0 and δi2 = 1, and the corresponding
likelihood component is −∂S(Xi1, Xi2)/∂Xi2

• Only Ti2 is censored, but Ti1 is observed, so δi1 = 1 and δi2 = 0, and the corresponding
likelihood component is −∂S(Xi1, Xi2)/∂Xi1

• Both Ti1 and Ti2 are censored, so δi1 = δi2 = 0, and the corresponding likelihood
component is S(Xi1, Xi2)

14



Thus, the full log-likelihood is written as `D(θ) =
∑n

i=1 `(θ;Di), whereDi = (Xi1, Xi2, δi1, δi2),
and the i-th component of the log-likelihood is

`(θ;Di) = δi1δi2 log
{
∂S(Xi1, Xi2)
∂Xi1∂Xi2

}
+ (1 − δi1)δi2 log

{
−
∂S(Xi1, Xi2)

∂Xi2

}
+ (1 − δi2)δi1 log

{
−
∂S(Xi1, Xi2)

∂Xi1

}
+ (1 − δi1)(1 − δi2) log {S(Xi1, Xi2)} .

(2.2)

Based on the survival copula in (2.1), the i-th log-likelihood component can be written as

`(θ;Di) = δi1δi2 log {cθ(Ui1,Ui2) f1(Xi1) f2(Xi2)} + (1 − δi1)δi2 log
{
−
∂Cθ(Ui1,Ui2)

∂Ui2

∂Ui2

∂Xi2

}
+ (1 − δi2)δi1 log

{
−
∂Cθ(Ui1,Ui2)

∂Ui1

∂Ui1

∂Xi1

}
+ (1 − δi1)(1 − δi2) log {Cθ(Ui1,Ui2)}

(2.3)

Note that all the Archimedean copulas and the Gaussian copula can be used in equation
(2.3). For example, for the Gumbel family,

Cθ(u, v) = ϕ−1(ϕ(u) + ϕ(v)) = exp
{
−[(− log(u))θ + (− log(v))θ]

1
θ

}
,

in the i-th log-likelihood components, it is given as

∂S(Xi1, Xi2)
∂Xi1

=
∂Cθ(Ui1,Ui2)

∂Ui1
×
∂Ui1

∂Xi1

= Cθ(Ui1,Ui2)
∂

∂Ui1

{
−[(− log(Ui1))θ + (− log(Ui2))θ]1/θ

} ∂Ui1

∂Xi1

= Cθ(Ui1,Ui2)
{
−1/θ[(− log(Ui1))θ + (− log(Ui2))θ](1−θ)/θ

}
× (θ(− log(Ui1))θ−1)(−1/Ui1)(− f1(Xi1))

= Cθ(Ui1,Ui2)[(− log(Ui1))θ + (− log(Ui2))θ](1−θ)/θ(− log(Ui1))θ−1− f1(Xi1)
Ui1

Similarly, the partial derivative with respect to Xi2 can be obtained as follows:

∂S(Ui1,Ui2)
∂Xi2

=
∂Cθ(Ui1,Ui2)

∂Ui2
×
∂Ui2

∂Xi2

= Cθ(Ui1,Ui2)[(− log(Ui1))θ + (− log(Ui2))θ](1−θ)/θ(− log(Ui2))θ−1− f2(Xi2)
Ui2
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At last, for the case where δ1 = δ2 = 1, I have

∂2S(Ui1,Ui2)
∂Xi1∂Xi2

= cθ(Ui1,Ui2) f1(Xi1) f2(Xi2)

= Cθ(Ui1,Ui2)(Ui1Ui2)−1[(− log(Ui1))θ + (−log(Ui2))θ](2/θ−2)(log(Ui1) log(Ui2))θ−1

×
{
1 + (θ − 1)[(− log(Ui1)θ + (− log(Ui1))θ]−1/θ

}
f1(Xi1) f2(Xi2)

2.3 Two-step Pseudo Maximum Likelihood Estimates of θ

In this thesis, I consider situations where the marginal distributions of Ti1 and Ti2 are
unspecified. A two-step estimation procedure was proposed in Shih and Louis (1995).
In the first step, the marginal survival functions of Ti1 and Ti2 can be estimated non-
parametrically via the Kaplan-Meier estimator (Kaplan and Meier, 1958) or Nelson-Aalen
estimator (Nelson 1972 and Aalen 1978). Specifically, for the j-th event time, j = 1, 2, let
x(1), j, x(2), j, ..., x(k j), j be the distinct, ordered and uncensored event times. The Kaplan-Meier
estimate of S j(t) is given by

Ŝ j(t) =
∏

x(m), j<t

[
1 −

dN(x(m), j)
Y(x(m), j)

]
,

where Y(x(m), j) =
∑n

i=1 I(Xi j > x(m), j) is total number of subjects at risk at time x(m), j, and
dN(x(m)) =

∑n
i=1 I(Xi j ≤ x(m), j)I(δi j = 1) is total number of uncensored events prior to time

x(m), m = 1, 2..., k j. In R, Kaplan-Meier estimators are obtained via the function survfit
in package survival. The alternative way to estimate survival functions is to use Nelson-
Aalen estimators. It is given as S̃ j(t) = exp{−Λ̃ j(t)}, where

Λ̃ j(t) =
∑

x(m), j<t

dN(x(m), j)
Y(x(m), j)

is the estimate of the cumulative hazard function Λ j(t). The Kaplan-Meier estimator and
the Nelson-Aalen estimator are asymptotically equivalent.
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In the second step, the dependence parameter θ of a copula function is estimated by maxi-
mizing the pseudo likelihood function

̂̀(θ;D) =

n∑
i=1

δi1δi2 log
{
cθ(Ûi1, Ûi2) f̂1(Xi1) f̂2(Xi2)

}
+ (1 − δi1)δi2 log

∂Cθ(Ûi1, Ûi2)
∂Xi2

∂Ûi2

∂Xi2


+ (1 − δi2)δi1 log

∂Cθ(Ûi1, Ûi2)
∂Xi1

∂Ûi1

∂Xi1

 + (1 − δi1)(1 − δi2) log
{
Cθ(Ûi1, Ûi2)

}
,

where Ûi1 = Ŝ1(Xi1) and Ûi2 = Ŝ2(Xi2) are the estimated marginal functions from the first
step.

To construct the pseudo likelihood function, it is required to obtain the estimates of the
density functions, f̂1 and f̂2. Here, I suggest using kernel smoothed estimates, denoted by
λ̂ j(t), of the hazard functions λ j(t) =

f j(t)
S j(t)

(Proschan, 1963) to obtain the estimates of the

density functions by f̂ j(t) = λ̂ j(t)̂S j(t). More specifically,

λ̂ j(t) =
1

b(t)

n∑
i=1

K
(
t − x(i), j

b(t)

)
δ(i), j

n − i + 1
.

where K(·) is a kernel function, b(t) is the bandwidth of a kernel function that controls the
smoothness of the estimated function, 0 < x(1), j < x(2), j < ... < x(n), j are ordered times of
{Xi j, i = 1, · · · , n} and δ(i), j is the corresponding indicator variable of x(i), j. In R, the func-
tion muhaz in package muhaz can be used to obtain the estimate described above. Kernel
smoothing is widely used in statistical applications, particularly for density functions and
regression models. The performance of kernel smoothed estimates depends on the choice
of bandwidth. A large bandwidth would lead to estimators with less variability at the cost
of increased bias and inaccurate inference by the re-sampling. On the other hand, a small
bandwidth would yield estimators with large variability. To find the optimal bandwidth for
the kernel smoothed estimate of the hazard function, one can use locally optimal bandwidth
selection method. There are two main advantages of locally optimal bandwidth method.
First, an optimal local bandwidth can be consistently estimated by minimizing an estimate
of the local mean squared error of the hazard rate estimate with respect to the bandwidth.
Secondly, the local bandwidth estimates allow for larger bandwidths at points with larger
variance and generally lead to increasing bandwidths near the left endpoint and towards
the right endpoint. More details about the local bandwidth can be found in Wang et al.
(1998). There are two popular methods to choose the optimal local bandwidth, which are
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cross-validation and "plug-in" techniques respectively. In R, the optimal local bandwidth is
obtained by "plug-in" technique through the function muhaz with argument bw.method =
"local". However, the muhaz function can only return the hazard estimates on a grid of
ordered time events. Thus, we use approx function of R to obtain the hazard estimates on
the observed event time in the data by interpolation.

Finally, a pseudo maximum likelihood estimates (PMLE) of θ can be obtained by solving
the equation

∂̂̀(θ;D)
∂θ

= 0.

2.4 PIOS test

Essentially, the construction of the PIOS test consists of two parts: "in-sample" pseudo
log likelihood and the "out-of-sample" pseudo log likelihood. The "in-sample" pseudo log
likelihood is the full log likelihood ̂̀in =

∑n
i=1

̂̀(θ̂;Di) with the PMLE θ̂ obtained using the
full data, i.e. θ̂ = arg min

∑n
i=1

̂̀(θ;Di). The "out-of-sample" pseudo log likelihood is the
cross-validated log likelihood. For i = 1, ..., n, let θ̂(−i) be the PMLE of θ obtained by using
the subset of the data which deletes the i-th observation, i.e., θ̂(−i) = arg min

∑
j,i

̂̀(θ;D j).
The "out-of-sample" pseudo log likelihood is given as ̂̀out =

∑n
i=1

̂̀(θ̂(−i); Di). Thus, the
PIOS test can be expressed as

Tn = l̂in − l̂out (2.4)

Intuitively, if the i-th "in-sample" log-likelihood appears much larger than the "out-of-
sample" log-likelihood, then the fitted model will shift to accommodate the i-th obser-
vation, suggesting that the model is in some way inadequate to describe the data. This
motivates Tn, which compares the "in-sample" pseudo log-likelihood and "out-of-sample"
pseudo log-likelihood, as a global measure of model adequacy. According to Zhang et al.
(2016), under the null hypothesis of correct model specification, the PIOS test statistic Tn

in (2.4) converges in probability to p, which is the dimension of the parameter vector of
θ. For example, Archimedean copula family only has one parameter, so Tn

p
→ 1 under

the null hypothesis. According to Zhang et al. (2016), the PIOS test statistic Tn is asymp-
totically equivalent to a so-called information ratio (IR) statistic (Zhou et al., 2012) under
the null hypothesis. The IR statistic is defined based on two forms of information matri-
ces, which are negative sensitivity matrix S (θ) ∆

= −�0[`θθ(θ;D1)] and variability matrix
V(θ) ∆

= �0[`T
θ (θ;D1)`θ(θ;D1)], where `θ(θ;D1) = ∂

∂θ
l(θ;D1), `θθ(θ;D1) = ∂

∂θ∂θT l(θ;D1), and
�0(·) is the expectation under the true copula model C0. Under suitable regularity condi-
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tions,
Tn

p
→ �0[`T

θ (θ∗;D1)S −1(θ)`θ∗(θ∗;D1)] = tr{S −1(θ∗)V(θ∗)}, as n→ ∞,

where θ∗ ∈ Θ is the limiting value of θ̂, i.e., θ̂
p
→ θ∗. Under correct model specification,

S (θ∗) = V(θ∗) causes tr{S −1(θ∗)V(θ∗)} = p. The IR statistic is given as Rn = tr{Ŝ −1(̂θ)V̂ (̂θ)}
where Ŝ (θ) and V̂(θ) are consistent estimates of the two information matrices S (θ) and
V(θ), respectively. More proofs can be found in Zhang et al. (2016). In addition, under the
null hypothesis, Rn is asymptotically distributed as a normal random variable. Due to the
stochastic equivalence between Tn and Rn, Tn is also asymptotically normally distributed
under the null hypothesis. However, it is difficult to estimate the asymptotic variance an-
alytically. I suggest using bootstrap to approximate the asymptotical variance of the test
statistic in finite samples. Specifically, the bootstrap is implemented in the following steps:

Step 1 Sample observations with size n with replacement

Step 2 Use the re-sampled data to calculate the PIOS test statistic, denoted as T (b)
n

Step 3 Repeat Step 1-2 by B times

Based on the B bootstrap counterparts of Tn, denoted by TBn = {T (b)
n , b = 1, · · · , B}, we are

able to calculate the standard deviation sd{TBn }. The p-value is calculated as 2
[
1 −Φ

(
|

Tn−1
sd{TBn }

|
)]

where Φ is the cdf of a standard normal distribution.

19



Chapter 3

Numerical Illustration

In this chapter, I conduct simulation studies to investigate the finite sample performance
of the PIOS test in terms of type I error control and test power. In addition, two real data
examples are presented to illustrate the use of PIOS test for data analyses.

3.1 Simulation Studies

In this section, I investigate the performance of the PIOS test, such as its empirical type
I error and test power, in finite samples. In the simulation studies, I considered four cop-
ula models: three Archimedean copulas, which are Frank, Clayton and Gumbel, and the
Gaussian copula family. In addition, I investigated the effects of several factors on the per-
formance of the test. These factors include the percentage of censoring, the dependence
strength (characterized by Kendall’s τ), and the sample size. Specifically, I considered two
censoring rates, which are 30% and 60%, three values of Kendall’s τ, which are 0.2, 0.5,
and 0.8, and two sample sizes 500 and 1000. For each dataset, 200 bootstrap samples are
used to calculate the empirical p-value.

3.1.1 Setups

A simulated data set of size n is generated via the following steps: for each data point
i = 1, 2, ..., n,

Step 1. Simulate a bivariate random vectors, denoted as (ui1, ui2), from a copula modelC0(·; ·; θ0)
with θ0 obtained from a given value of Kendall’s τ.
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Step 2. Generate a bivariate survival times (Ti1,Ti2) from (ui1, ui2) via Ti1 = F−1
1 (ui1), Ti2 =

F−1
2 (ui2), where F−1

j (·) is the quantile function of a Weibull distribution with rate
η1 = 2 and η2 = 5.

Step 3. Simulate the censoring time Ci from an exponential distribution with rate d = 0.8
and 0.5, which results in censoring rate approximately 30% or 60% respectively.

Step 4. Obtain the observed dataD= {(Xi1, Xi2, δi1, δi2), i = 1, 2, ..., n}, where Xi1 = min(Ti1,Ci),
Xi2 = min(Ti2,Ci), δi1 = I(Ti1 ≤ Ci), and δi2 = I(Ti2 ≤ Ci).

Based on the simulated data D = {Di, i = 1, ..., n}, we follow the steps below to implement
the PIOS test procedure of testing whether an assumed copula model C(·; ·; θ) is correctly
specified. The steps are

Step 1. Obtain the KM estimates of the marginal survival functions for Ti1 and Ti2 respec-
tively. Obtain the estimates of the density functions by taking the product of the
estimated survival functions and estimated hazard functions, where the hazard func-
tions are estimated by the kernel smoothing and interpolation described in Sec-
tion 2.3. Here, I considered an Epanechnikov kernel function, which is defined as
K(x) = 3

4 (1 − x2)I(|x| ≤ 1).

Step 2. Estimate the PMLE of θ by maximizing the pseudo log likelihood function with
the estimated marginal survival functions and estimated marginal density functions
obtained from the first step. In R, I used optimize function for minimizing the
negative pseudo log likelihood function by Brent’s method. Denote the PMLE by θ̂.

Step 3. Obtain "in-sample" pseudo log-likelihood, which is ̂̀in =
∑n

i=1
̂̀(θ̂;Di), where θ̂ is the

PMLE obtained from Step.2.

Step 4. Obtain "out-of-sample" pseudo log-likelihood, which is ̂̀out =
∑n

i=1
̂̀(θ̂(−i);Di), where

θ̂(−i) is obtained by maximizing the pseudo log-likelihood with the i-th data point Di

deleted for i = 1, 2, ..., n.

Step 5. Calculate the PIOS test statistic Tn = ̂̀in − ̂̀out.

Step 6. Implement the non-parametric bootstrap procedure with B = 200 bootstrap resamples
to obtain the empirical p-value, p.

Step 7. Given a significance level α, if p ≤ α, the null hypothesis is rejected; otherwise, we
fail to reject the null hypothesis. Here, I considered the significance level α = 0.05.
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Due to intensive computations required by a large number of simulation scenarios, the
results were summarized based on 200 replications for each scenario.

Type I error control

Table 3.1 and Table 3.2 report the empirical type I errors, which are the empirical propor-
tions of rejecting the null hypothesis among the 200 replications when the null hypothesis
is true, at a significance level 5%. The results show that the PIOS test Tn performed satis-
factorily in type I error control for most of the cases. There are some observations I would
like to point out. First of all, under each censoring rate and dependence strength, the em-
pirical type I error gets closer to the nominal level as the sample size increases. Especially,
when the sample size equals to 1000, the overall performance of the PIOS test is good as
expected. Secondly, given the same sample size and censoring rate, type I errors do not
demonstrate certain tendencies such as increasing, decreasing or remaining the same value
when Kendall’s tau increases from 0.2 to 0.8. Thirdly, the empirical type I error decreases
as the censoring rate decreases for the sample size 1000 and each value of Kendall’s rank
correlation. Even though the empirical type I errors are satisfactory in most of the settings,
there are some cases with slightly inflated type I errors such under the Clayton model with
Kendall’s τ = 0.2, censor rate = 60% and n = 500. This problem happens due to an
insufficient number of bootstrap resamples.

Table 3.1: Type I error with sample size of 500

True and fitted copula Gumbel Frank Clayton Gaussian

Censor Kendall’s τ

0.3 0.2 0.054 0.044 0.065 0.061
0.5 0.066 0.050 0.058 0.054
0.8 0.061 0.044 0.060 0.063

0.6 0.2 0.051 0.050 0.067 0.065
0.5 0.064 0.059 0.064 0.059
0.8 0.062 0.064 0.058 0.064

Test Power

Table 3.3 and Table 3.4 report the empirical power of the PIOS test, which is the empirical
proportion of correctly rejecting the null hypothesis when the null hypothesis is not true.
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Table 3.2: Type I error with sample size of 1000

True and fitted copula Gumbel Frank Clayton Gaussian

Censor Kendall’s τ

0.3 0.2 0.052 0.043 0.052 0.056
0.5 0.041 0.040 0.053 0.042
0.8 0.046 0.033 0.052 0.044

0.6 0.2 0.038 0.051 0.054 0.058
0.5 0.038 0.046 0.061 0.050
0.8 0.044 0.044 0.055 0.056

Here I simulated data from one of the four copulas, and then use the PIOS test for each of
the other copulas. Several observations could be drawn from the results in the following

1. In general, the test power increases when the sample size increases, or the depen-
dence strength increases, or the censoring rate decreases.

2. When the Kendall’s tau is close to 0, such as τ = 0.2, the simulated data are drawn
from a copula which is close to the independent copula. Thus, the separation be-
tween different copulas become challenging, especially with small sample sizes. It is
interesting to note that even in this situation of weak dependence, the PIOS test has
demonstrated relatively high power of rejecting the Gaussian copula when the data
is simulated from Archimedean copulas with a large sample size.

3. In general, the PIOS test performs well in differentiating between Clayton and Gum-
bel and between Clayton and Gaussian. It might result from their distinct tail de-
pendence structures where Clayton copulas have lower tail dependence, but Gumbel
copulas have upper tail dependence, and Gaussian copulas have no tail dependence,
which can be seen in Figure 3.1, which shows the scatter plots of simulated observa-
tions from these three copulas with a common Kendall’s tau 0.8.

4. There are some cases where the PIOS test performs poorly with low power. For ex-
ample, when the data are simulated from the Gumbel or Clayton copulas, the power
of rejecting the Frank copulas is low, even with large sample size and strong corre-
lation. This also happens when the Gumbel or the Frank copulas are tested but the
data simulated from the Gaussian copula. However, if the data are generated from
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Figure 3.1: Scatter plots of 500 pairs of simulated data from three different copulas with a
common Kendall’s τ = 0.8.

the Gumbel or Frank copulas with moderate correlation, the test will reject the Gaus-
sian copula with high power when the sample size is large and the censoring rate is
low. This might be due to the censoring mechanism. The event times are subject to
right-censoring, which leads to insufficient information regarding the upper tail de-
pendence from the data. Thus, when the data are generated from the Gumbel copula,
it is hard to differentiate the Gumbel copula from the Frank copula which is sym-
metric among the Archimedean family. Similarly, when the data are simulated from
the Gaussian copula, insufficient information on the upper tail dependence will lead
to low power of rejecting the Gumbel copula. In contrast, since the Clayton copula
has lower tail dependence, it is relatively easier to be differentiated from the other
copulas.
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3.2 Application

In this section, I illustrate the PIOS test procedure via two real data examples. The first
data example was used in several previous work (Manatunga and Oakes 1999, Wang and
Wells 2000, Emura et al. 2010). It is from a diabetic osteopathy study, which examined
the effectiveness of laser photocoagulation for delaying the onset of blindness in patients
with diabetic retinopathy. According to Manatunga and Oakes (1999), it has been shown
that the data set that only includes patients with adult onset diabetes can be fit well using
the Clayton model based on the diagnostic plot proposed by Oakes (1989). In addition,
Wang (2010) has also shown that the Clayton copula is the best fit to the adult onset data,
but different from Manatunga and Oakes (1999), they claimed the Frank copula can also
be used to fit the data. To compare our analysis with the previous results, we conducted the
PIOS test on the same adult onset data. Approximately 39.8% of them have blindness with
treatment, and 78.3% of them experience censoring without the treatment. The empirical
estimate of Kendall’s rank correlation is 0.376. To conduct the PIOS test, an Epanechnikov
kernel function and 2000 bootstrap samples were considered. The corresponding p-value
of the PIOS test for the Gumbel, Frank, Clayton, and Gaussian copulas are 0.287, 0.420,
0.483, and 0.119 respectively. At the significance level 0.05, I fail to reject all the four
copulas. However, since the p-value for the Clayton copula is the highest among the four,
so it seems that the Clayton copula might be the most appropriate model for the adult sub-
sample, which agrees with the same conclusion stated in Manatunga and Oakes (1999) and
Wang (2010).

The second data example is from the Australian Twin Study (Duffy et al., 1990), in which
the ages at appendicectomy measured for each twin pairs represents the bivariate event
times. A subset of the original data, which contains 748 dizygotic pairs, was studied
according to Prentice and Hsu (1997). In this sub-sample, 82 observations were uncen-
sored, 117 were censored for the treated group, 105 were censored for the untreated group,
and 444 were censored for both treated and untreated groups. The empirical estimate of
Kendall’s rank correlation is 0.487. I still considered an Epanechnikov kernel function and
2000 bootstrap samples. The PIOS test was applied on four copula model candidates indi-
vidually, and the results showed that the Gumbel copula (p-value = 0.257) and the Frank
copula (p-value = 0.071) are not rejected at the 5% significance level, and the Clayton
copula (p-value = 0.036) and the Gaussian copula (p-value = 0.000) are rejected at the 5%
significance level. I would conclude that the Gumbel copula was the "best" fitting copula
to the data, which is consistent with the conclusion drawn by Emura et al. (2010).
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Chapter 4

Discussion

In this paper, I extended the PIOS test to semi-parametric copula models for right-censored
bivariate survival times. The PIOS test statistic is constructed by comparing the "in-sample"
pseudo likelihood and "out-of-sample" pseudo likelihood. The essential idea of the PIOS
test is to quantify how the assumed copula is sensitive to the change of data. There are
several advantages of the PIOS test. First of all, unlike other goodness-of-fit test proce-
dures, our test can be used on all possible copula models that have been considered in the
literature. Second, in comparison to the blanket tests considered in Genest et al. (2009) and
Scaillet (2007), all of which are rank-based tests, the PIOS test enables us to avoid using
any probability integral transformations. Last, the PIOS test is computational straightfor-
ward and easily constructed. As shown in simulation studies, it works quite well in type I
error control and reach high power in separation of several different copulas. For datasets
with small sizes, it still works satisfactorily.

However, there are some issues with the PIOS test. Under the right censoring, some copulas
might be difficult to be differentiated from each other. One of the possible reasons might be
that the censoring leads to insufficient information on the upper tail dependence. Moreover,
the non-parametric bootstrap method considered here might not be able to approximate the
finite sample distribution of the test statistic well for some scenarios. Table A.1, A.2, A.3
and A.4 present the average estimated standard errors from bootstrap (boot.se) and the em-
pirical standard errors (em.se). Most of the estimated standard errors are very close to the
empirical standard errors. However, when the censoring rate is high, and Kendall’s rank
correlation is strong, there are some discrepancies. As a consequence, inaccurate estimate
of the standard errors might lead to inaccurate power and type I error of the test procedure.
Thus, an alternative resampling procedure, such as the parametric bootstrap method, should
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be considered.

In addition, the assumption of independent censoring is required in the Kaplan-Meier es-
timates of the survival function. In my future work, I plan to investigate the robustness
of the PIOS test against violation of the independent censoring assumption. Moreover, I
plan to establish the theoretical proof of the asymptotic properties of the PIOS test in the
framework of semi-parametric copula models for right-censored bivariate survival times. In
Zhang et al. (2016), the PIOS statistic was shown to be asymptotically equivalent to the IR
statistic. Thus, I plan to study the IR statistic for testing the semi-parametric copula models
of right-censored event times. Furthermore, to make the computation less time-consuming,
I plan to extend the PIOS test by deleting a block of data to construct "out-of-sample"
pseudo likelihood. Last but not least, I plan to compare the PIOS test to other existing test
procedures to better evaluate its performance.
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Appendix A

Empirical standard error comparisons

Table A.1: Standard errors of the Gumbel copula simulation

Sample size of 500

Gumbel Frank Clayton Gaussian

Censor Kendall’s τ boot.se em.se boot.se em.se boot.se em.se boot.se em.se

0.3 0.2 0.085 0.089 0.072 0.071 0.157 0.151 0.126 0.146
0.5 0.097 0.107 0.094 0.094 0.237 0.217 0.213 0.261
0.8 0.104 0.114 0.307 0.316 0.405 0.474 0.459 0.542

0.6 0.2 0.093 0.094 0.080 0.077 0.171 0.160 0.139 0.158
0.5 0.108 0.118 0.107 0.106 0.264 0.258 0.261 0.324
0.8 0.118 0.128 0.370 0.399 0.456 0.549 0.612 0.717

Sample size of 1000

Gumbel Frank Clayton Gaussian

Censor Kendall’s τ boot.se em.se boot.se em.se boot.se em.se boot.se em.se

0.3 0.2 0.060 0.059 0.050 0.047 0.109 0.105 0.092 0.092
0.5 0.070 0.068 0.066 0.060 0.174 0.162 0.151 0.163
0.8 0.073 0.074 0.198 0.183 0.303 0.343 0.288 0.351

0.6 0.2 0.066 0.062 0.055 0.053 0.118 0.117 0.103 0.105
0.5 0.077 0.076 0.074 0.067 0.195 0.184 0.169 0.184
0.8 0.083 0.085 0.278 0.272 0.359 0.429 0.363 0.448
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Table A.2: Standard errors of the Frank copula simulation

Sample size of 500

Gumbel Frank Clayton Gaussian

Censor Kendall’s τ boot.se em.se boot.se em.se boot.se em.se boot.se em.se

0.3 0.2 0.096 0.095 0.070 0.066 0.154 0.150 0.126 0.142
0.5 0.125 0.124 0.093 0.095 0.258 0.233 0.196 0.248
0.8 0.284 0.271 0.231 0.215 0.665 0.680 0.405 0.496

0.6 0.2 0.108 0.103 0.078 0.075 0.167 0.171 0.139 0.154
0.5 0.137 0.138 0.103 0.109 0.281 0.272 0.211 0.274
0.8 0.303 0.288 0.261 0.255 0.748 0.817 0.419 0.531

Sample size of 1000

Gumbel Frank Clayton Gaussian

Censor Kendall’s τ boot.se em.se boot.se em.se boot.se em.se boot.se em.se

0.3 0.2 0.067 0.069 0.049 0.047 0.110 0.108 0.094 0.104
0.5 0.095 0.088 0.065 0.062 0.195 0.176 0.154 0.178
0.8 0.235 0.221 0.153 0.083 0.525 0.504 0.332 0.385

0.6 0.2 0.073 0.074 0.054 0.052 0.119 0.124 0.105 0.116
0.5 0.104 0.097 0.073 0.068 0.219 0.199 0.168 0.207
0.8 0.253 0.239 0.172 0.158 0.603 0.609 0.347 0.406
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Table A.3: Standard errors of the Clayton copula simulation

Sample size of 500

Gumbel Frank Clayton Gaussian

Censor Kendall’s τ boot.se em.se boot.se em.se boot.se em.se boot.se em.se

0.3 0.2 0.114 0.094 0.070 0.066 0.122 0.125 0.112 0.120
0.5 0.137 0.128 0.088 0.083 0.121 0.120 0.185 0.205
0.8 0.300 0.287 0.193 0.197 0.142 0.175 0.486 0.562

0.6 0.2 0.138 0.104 0.078 0.074 0.132 0.141 0.123 0.136
0.5 0.145 0.139 0.096 0.094 0.134 0.148 0.191 0.223
0.8 0.307 0.296 0.184 0.182 0.169 0.200 0.494 0.601

Sample size of 1000

Gumbel Frank Clayton Gaussian

Censor Kendall’s τ boot.se em.se boot.se em.se boot.se em.se boot.se em.se

0.3 0.2 0.072 0.068 0.048 0.048 0.088 0.092 0.084 0.093
0.5 0.101 0.086 0.062 0.060 0.088 0.098 0.138 0.148
0.8 0.233 0.203 0.108 0.109 0.096 0.116 0.408 0.436

0.6 0.2 0.079 0.075 0.052 0.051 0.096 0.099 0.091 0.102
0.5 0.108 0.095 0.068 0.066 0.099 0.112 0.146 0.159
0.8 0.239 0.211 0.112 0.101 0.117 0.147 0.414 0.452
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Table A.4: Standard errors of the Gaussian copula simulation

Sample size of 500

Gumbel Frank Clayton Gaussian

Censor Kendall’s τ boot.se em.se boot.se em.se boot.se em.se boot.se em.se

0.3 0.2 0.084 0.086 0.066 0.063 0.136 0.145 0.104 0.118
0.5 0.089 0.092 0.077 0.074 0.181 0.199 0.120 0.134
0.8 0.109 0.128 0.168 0.164 0.251 0.339 0.137 0.159

0.6 0.2 0.095 0.095 0.073 0.071 0.145 0.148 0.114 0.131
0.5 0.099 0.101 0.085 0.084 0.202 0.232 0.133 0.156
0.8 0.121 0.140 0.197 0.206 0.290 0.399 0.154 0.190

Sample size of 1000

Gumbel Frank Clayton Gaussian

Censor Kendall’s τ boot.se em.se boot.se em.se boot.se em.se boot.se em.se

0.3 0.2 0.061 0.061 0.046 0.047 0.097 0.096 0.078 0.081
0.5 0.064 0.066 0.054 0.055 0.134 0.137 0.086 0.088
0.8 0.079 0.100 0.085 0.071 0.181 0.219 0.095 0.096

0.6 0.2 0.066 0.067 0.051 0.051 0.106 0.107 0.087 0.093
0.5 0.071 0.074 0.060 0.060 0.153 0.159 0.097 0.103
0.8 0.088 0.108 0.117 0.089 0.210 0.268 0.110 0.118
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