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Abstract

The random walk is an important tool to analyze the structural features of graphs such as
the community structure and the PageRank. The problem of generating a random walk
may be hard if we are not given full access to the graph. The main component of this
thesis is solving the problem in one such model with restricted access to the graph, the edge
sampling model. We design Sampling-AS, a randomized algorithm that efficiently samples
the endpoint of a random walk, unless some unlikely event happens during the execution of
the algorithm. We also propose Sampling-LS, a randomized algorithm that always samples
the endpoint of a random walk; however, its performance is not as good. Moreover, we
slightly modify both algorithms to improve their performance on some special classes of
graphs such as regular graphs, random graphs and fast mixing graphs. Finally, we consider
some applications for both algorithms.

Keywords: Random Walk; Edge Sampling Model; Randomized Algorithms
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Chapter 1

Introduction

As technology and data collection methods develop rapidly, the size of networks such as
communication networks, geographic networks and social networks has grown dramatically
as well. Approximately 140,000 websites are created in the World Wide Web every day
and huge social networks consisting of billions of users and links have been set up by
leading Internet companies such as Facebook and Twitter. There is an increasing interest
to analyze such networks due to their wide applications. For example, businessmen want
to advertise more effectively using social networks; sociologists are interested in finding
out communities and elites in networks; epidemiologists are keen to study the spread of
infectious diseases within human networks. However, the giant volume of information makes
these large networks difficult to analyze.

Although there are many methods to study networks, one of the most successful ap-
proaches has been proven to be the method that represents networks by graphs followed by
analysing these graphs using graph theory. Researchers define and study various properties
of graphs and interpret information related to networks from the topology of the graphs.
For instance, Google uses PageRank, a graph property defined by Brin et al. [11] to rate
web pages. Another important application is community detection, which assigns vertices
into groups so that vertices within the same group are densely connected internally and
vertices in different groups are less densely connected. Girvan et al. [21] and many other
researchers have tried to detect communities based on graph topology.

A random walk is a stochastic process that starts at an arbitrary node and upon visiting
a node v, moves to a randomly chosen neighbor of v. It has been well studied and widely
used in algorithms for graphs. For instance, a random walk has been used to construct either
a random spanning tree or a random expander graph [12, 30], to solve the load balancing
problem [27], to deal with the decentralized routing problem [29], and to model gossip-based
communications within networks [28]. In addition, the previously mentioned PageRank and
its variation Personalized PageRank [11, 38] make use of the stationary distribution of the
random walk.
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The random walk is also used in many algorithms for sampling nodes from graphs. Some
graphs are too large to be stored in memory and thus one cannot simple sample a node
from them. For instance, in the World Wide Web, it is nearly impossible to simple sample a
page (node); however, it is possible to see the neighbours of the current page, which enables
movement to a random neighbor. Therefore, sampling using random walks is favorable.

Sampling using random walks usually uses the endpoint of a random walk as a sample.
Therefore, within the context of this thesis, given a node u and a non-negative integer l,
we are interested in the endpoint of a l-length random walk starting at u. Hence, the goal
of the thesis is to efficiently sample one node of the network such that the probability that
a fixed node v is sampled is the probability that a l-length random walk starting at u ends
at v.

Graphs can be represented and accessed in a variety of ways. If a graph is given in an
explicit form such as the adjacency matrix or the adjacency list, we would have full access
to the graph and performing a random walk on such graphs would be easy and efficient.
However, sometimes we only have restricted access to the graph and even accessing the
neighbours of a vertex may be hard. This thesis will focus on two models with restricted
access to the graph, the graph streaming model and the edge sampling model.

A good way to process large graphs is by accessing their edges one by one as a stream.
The graph streaming model is invented to emulate this process. In this model, a graph is
represented by a sequence of edges and it can only be accessed edge by edge. Moreover, nor-
mally we only have limited space to process the edge stream since the memory is relatively
small compared to the size of the graph.

The edge sampling model is a model that has been used in some studies. In the edge
sampling model, there is an oracle which can output an edge per query uniformly at random
from a graph. The query is assumed to be expensive and the available space is limited.

The sequence of samples output by the oracle can be viewed as a stream of edges, which
looks similar to the graph streaming model. However, streams of edge samples have 2 main
differences. First of all, edge samples may contain repeated edges. Secondly, even a large
number of edge samples do not guarantee that all edges have been output by the oracle.
Thus, we have to use different techniques for these two models.

The edge sampling model also shares some similarities with property testing problems.
Similar to many property testing problems, the edge sampling model does not provide us
with full information about the graph and it can only be used to infer graph properties or
edge weights by sampling (or observation). The lack of full information about the graph
will become one of the major obstacles when solving problems within this model. Moreover,
we assume that the space is limited and each query is expensive. Therefore, we need to
develop algorithms which minimize both the space and the number of queries needed.

In this thesis, we provide efficient algorithms that sample the endpoints of random walks
in the graph streaming model and the edge sampling model.
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1.1 Related Work

In this section, we briefly review previous works related to random walks, the streaming
model and the edge sampling model.

1.1.1 Random Walks

Metropolis designed the famous Metropolis-Hasting algorithm [35] in the 1950s that uses
random walks for sampling. The algorithm uses a function proportional to the desired distri-
bution to accept or reject the next possible step of the random walk, so that the distribution
of the destination approximates the desired distribution. Sampling using random walks is
still a popular research area. Sarma et al. [43] used random walks to estimate PageRank
in distributed systems, in which each vertex only knows its own and its neighbours’ labels
and only polylog(n) bits of data can be sent through one edge per round. Leskovec et al.
[31] compared different sampling methods and found that sampling using random walks is
among the best methods. Ribeiro et al. [40] was able to use multiple dependent random
walks to sample a graph in order to reduce sampling error.

One important result related to this thesis is published in the paper [42] by Sarma et
al. who are the first to design semi-streaming algorithms specifically to perform random
walks in the graph streaming model. The rough idea of their algorithms is to prepare plenty
of short random walks in parallel followed by stitching together these short random walks
to reduce the number of passes needed. Their algorithms can perform a random walk1

using sublinear space and terminate in sublinear number of passes asymptotically. Their
algorithms also contain a trade-off between the space and the number of passes needed.
Storing many short random walks costs more space but reduces the number of passes.

1.1.2 The Streaming Model

The graph streaming model is a special data streaming model; the latter model has become
popular since the publication of Alon et al.’s paper [1] on estimating frequency moments.
Frequency moments of a sequence containing mi elements of type i, for which 1 ≤ i ≤ n,
are the numbers Fk =

∑n
i=1m

k
i . Later, Cormode et al. designed a famous count-min sketch

which maintains a hashed frequency table to improve frequency estimation [14]. The Lossy
Counting algorithm developed by Motwani et al. stores a frequency table and periodically
removes items with low frequency [32]. The algorithm is used to identify elements in a data
stream whose frequency is greater than a certain threshold. Counting the number of distinct
elements is another interesting problem in the streaming model and Kane et al. [24] devised
the first optimal algorithm to solve the problem. The algorithm achieves better accuracy by
gradually increasing the number of executions of a constant factor approximation algorithm.

1Throughout the thesis, performing a random walk means sampling the endpoint of a random walk.
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Originally, streaming algorithms only allow a data stream to be examined once. In 2006,
Feigenbaum et al. [19] introduced semi-streaming algorithms, which allow the number of
passes to be more than one. Using semi-streaming algorithms, more problems can be solved
in the streaming model.

There are also many studies related to graph streams. Counting triangles in graph
streams were studied both by Sivakumar et al. [4] and Buriol et al. [13]. Sivakumar et al.
estimated the number of triangles by reducing the problem to frequency moments estimation
in a virtual stream; while Buriol et al. used Reservoir Sampling [45] to uniformly sample
an edge and used the probability of the sampled edge belonging to a triangle to estimate
the total number of triangles. McGregor [34] designed an algorithm to solve the Maximum
Weight Matching problem. The algorithm maintains a matching and it checks whether the
weight of a new edge in the graph stream is greater than 1 + γ times of the total weights of
the current matching. If so, the algorithm updates the current matching using the new edge.
Guha [22] and McCutchen et al. [33] have studied the K-Center Clustering problem. It
involves partitioning input points into K clusters and selecting one center for each part such
that the maximum distance between each point within a cluster to its center is minimized.
Guha introduced the "streamstrapping" procedure which summarizes part of the initial data
to improve the approximation ratio, whereas McCutchen et al. further considered dealing
with noise in streams for the K-Center Clustering problem. The problem of constructing a
sparse graph spanner has been studied by Elkin [17] and Baswana [6]. Elkin constructed a
spanner by accepting vertices with dynamically larger labels, while Baswana constructed a
(2k − 1)-spanner using the idea of finding proper clusters for vertices.

1.1.3 The Edge Sampling Model

Karger showed that uniform edge sampling can be used to generate a graph skeleton which
can approximate cut-values under certain conditions [25, 26]. Gao et al. [41] extended
Karger’s work and proved that the subgraph generated by uniform edge sampling could
preserve the original graph’s properties like PageRank, thus accelerating community detec-
tion by executing algorithms on the sampled subgraph. Ribeiro et al. [40] used uniform
edge sampling to estimate degree distributions in social networks.

1.2 Our Contributions

This thesis presents several algorithms that sample the endpoints of random walks in the
graph streaming model and the edge sampling model.

In the graph streaming model, we provide a technique to reduce the space required by
the SingleRandomWalk algorithm in [42].

For the edge sampling model, we first of all design a randomized algorithm called
Sampling-AS. Sampling-AS can be used to sample the endpoint of a l-length random walk
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starting at a given node u correctly for both directed and undirected graphs, unless some
"bad" event happens (to be explained in Chapter 4). The algorithm uses Õ

(
αn+ l

1
2
α

)
space and terminates in Õ

(
l

3
4 + l

1
4
α

)
rounds (The definition of round will also be explained

in Chapter 4.) with high probability2, where n is the number of vertices in a graph and α
is a parameter we can set.

Secondly, for undirected graphs, we design an algorithm called Sampling-LS. Sampling-
LS always samples the endpoint of a l-length random walk starting at a given node u. The
algorithm uses Õ (αn+ αl) space and terminates in Õ

(
l

4
5 + l

3
5
α

)
rounds w.h.p.

The two algorithms for the edge sampling model tackle different situations based on the
requirements of applications and the type of the graph.

Then in Chapter 5, we analyze the performance of these two algorithms on some special
classes of graphs such as regular graphs, random graphs and fast mixing graphs. We find
we can achieve better performance by slightly modifying these algorithms.

Finally in Chapter 6, we consider some applications of the Sampling-AS algorithm.
First of all, based on the Sampling-AS algorithm, we develop the Sampling-AM algorithm
that samples the endpoints of multiple random walks, unless some "bad" event happens (to
be explained in Chapter 6). Then we use Sampling-AM to estimate PageRank scores by
sampling the endpoints of a large number of random walks. Lastly, we modify Sampling-
AM in order to sample the endpoints of absorbing random walks and we use the algorithm
in a random walk based recommendation system.

In addition, we notice a possible gap in [42] and we suggest an alternative solution to
fix the gap.

2Throughout this thesis, an event happens with high probability (shortened to w.h.p.) if the probability
that the event happens is 1 − n−Θ(1).
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Chapter 2

Preliminaries

This chapter introduces basic terminology and notation for the random walk, the graph
streaming model, the edge sampling model and different types of randomized algorithms.

First of all, we give notation used throughout the thesis.

• G(V,E), a graph with vertex set V and edge set E;

• n, the number of vertices in the graph;

• m, the number of edges in the graph;

• l, the length of the random walk to be performed;

• dout(v), the out-degree of vertex v;

• din(v), the in-degree of vertex v;

• d(v), the degree of vertex v in an undirected graph.

2.1 Random Walk

First, we provide a definition for stochastic process.

Definition 2.1.1 (Stochastic Process). Given a probability space (Ω,F , P ) (where Ω is the
sample space, F is a σ-algebra of subsets of Ω and P is a countably additive, non-negative
measure on (Ω,F) with total mass P (Ω) = 1) and a measurable space (S,Σ) (where S is
the set of values and Σ is a σ-algebra of subsets of S), an S-valued stochastic process is a
collection of S-valued random variables on Ω, indexed by a totally ordered set T ("time",
usually N). That is, a stochastic process can be defined as a collection

X = {Xt : t ∈ T}, (2.1)
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where each Xt is an S-valued random variable on Ω. The space S is then called the state
space of the process.

The Markov property means the future state of the stochastic process depends only on
the current state rather than the past states. It is formally defined by the following equation

Pr[Xn+1 = x|X1 = x1, X2 = x2, ..., Xn = xn] = Pr[Xn+1 = x|Xn = xn]. (2.2)

A Markov chain is a stochastic process that satisfies the Markov property.
Let the state space of a Markov chain be the vertex set of a graph and make the

conditional/transition probability that the state changes from vertex u to v (given the
current state is u) as below

P (u, v) =


1

dout(u) , if (u, v) ∈ E

0 , otherwise,
(2.3)

then this special Markov chain is called a random walk (on directed graphs).
For undirected graphs, the conditional/transition probability that the state changes

from u to v (given the current state is u) is

P (u, v) =


1

d(u) , if {u, v} ∈ E

0 , otherwise.
(2.4)

Therefore, a stochastic process is a random walk if it satisfies the following two condi-
tions.

• Condition RW1 (Markov Property): The stochastic process satisfies the Markov
property.

• Condition RW2 (Random Walk Transition): The transition probability between
states satisfies the equation (2.3) in directed graphs (or equation (2.4) in undirected
graphs).

The initial state X0 of a random walk is a sampled node from some distribution σ (even
if the initial state is a specific vertex u, u can still be considered as a sample from a special
distribution σ′ where σ′(u) = 1), and we call σ initial distribution.

We let Pu,v denote the conditional probability that a random walk moves from vertex
u to v, given the walk is currently at u. Then the square matrix P with entries Pu,v
(u ∈ V, v ∈ V assuming vertices are in some order) represents the transition probabilities
between each pair of nodes, and it is called the transition matrix.

If we let πtσ(u) denote the probability that a random walk is at vertex u after t steps
with initial distribution σ, then the vector πtσ represents such probabilities for all vertices.
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In many cases, this vector approaches some vector after sufficiently many steps and we
call this limit vector π∗ stationary distribution. The stationary distribution satisfies the
following equation

π∗P = π∗. (2.5)

For undirected graphs, the stationary distribution is easily computed using the equation

π∗(u) = d(u)
2|E| . (2.6)

However, for most directed graphs, finding the stationary distribution is difficult and
there are no known formulas.

According to the Fundamental Theorem of Markov Chains [39], every finite, irreducible,
and aperiodic Markov chain has a unique stationary distribution. In some problems, the
stationary distribution is hard to compute. However, we can use a large number of random
walks to estimate the stationary distribution if we can prove its uniqueness.

Mixing time, another important property of a random walk, is used to measure the small-
est t needed for πtσ to approach the stationary distribution. To understand the definition
of mixing time, we give the definition of total variation distance first.

Definition 2.1.2 (Total Variation Distance). Given two distributions µ and π, the total
variation distance (TV) is given by

‖µ− π‖TV = sup
A⊂V

(µ(A)− π(A)). (2.7)

Definition 2.1.3 (Mixing Time [7]). The mixing time M(ε) of a random walk is given by

M(ε) = max
σ

min
{
t :
∥∥∥σP t − π∗∥∥∥

TV
≤ ε

}
, (2.8)

where σ is the initial distribution which converges the slowest to the stationary distribution,
π∗ is the stationary distribution and P is the transition matrix of the random walk.

Conventionally, the term random walk is also used to denote the walk generated by
a stochastic process that satisfies Conditions RW1 and RW2. We follow the convention
and call such a stochastic process random walk process to distinguish the walk generated
from the process. In addition, we say multiple random walks are independent if they are
generated by independent random walk processes.

Before we end this section, we define stitching of random walks and prove an important
lemma about it.

Definition 2.1.4 (Stitching). For two independent random walks A, consisting of a se-
quence of steps (a1, a2, ...am) and B, consisting of a sequence of steps (b1, b2, ...bn), given
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the condition that am = b1, the walk C generated by stitching A and B is a walk consisting
of steps (a1, a2, ...am, b2, b3, ...bn).

Lemma 1. The walk that is generated by stitching a sequence of independent random walks
is also a random walk.

Proof. First of all, we reuse the notation in Definition 2.1.4 and prove that C is a random
walk.

We assume A is generated by some stochastic process Ã = (X1, X2, ...Xm) where the
Xis are random variables, and B is generated by some stochastic process B̃ = (Y1, Y2, ...Yn)
where the Yis are random variables. Then C can be considered to be generated by a
stochastic process C̃ = (X1, X2, ...Xm, Y2, ...Yn). We denote the event that the state of Xm

is the same as that of Y1 by D. Note that D must happen, otherwise we cannot stitch two
random walks.

Since A and B are random walks, Ã and B̃ satisfy Conditions RW1 and RW2. Therefore,
the state of each random variable Xi only depends on the state of Xi−1. In addition, since
A and B are independent, each random variable Yi’s state also only depends on the state of
Yi−1. Then we look at Xm and Y2. The state of Y2 depends only on the state of Y1. Under
the condition D, the state of Y2 can be considered as depending only on the state of Xm in
the stochastic process C̃. Therefore, C̃ satisfies Condition RW1.

Meanwhile, the transition probabilities from Xi−1 to Xi and those from Yi−1 to Yi satisfy
Condition RW2. We also consider Xm and Y2. For any state y1 of Y1 given D happens, and
any possible state y2 of Y2,

Pr[Y2 = y2|(Y1 = y1) ∩D] = Pr[Y2 = y2|(Xm = y1) ∩D]. (2.9)

Since the transition probability from Y1 to Y2 satisfies Condition RW2, under the con-
dition D, the transition probability from Xm to Y2 also satisfies Condition RW2.

Therefore, the stochastic process C̃ satisfies Condition RW1 and Condition RW2. It
follows that C is a random walk.

Now we consider stitching a sequence of independent random walks. We assume walk
L is generated by stitching a sequence of independent random walks L1, L2, ...Lk. We can
then stitch L1 and L2 to L1,2 first and use the analysis above to prove that L1,2 is a random
walk. Next, we can prove L1,2,3 that is generated by stitching L1,2 and L3, is a random
walk by using the same logic. We inductively stitch the next random walk Li to previously
stitched random walk L1,2...i−1 and in the end we prove L = L1,2...k is also a random walk.

9



2.2 The Graph Streaming Model

In the graph streaming model, for a graph G(V,E) with vertex set V = {v1, v2, ..., vn} and
edge set E = {e1, e2, ..., em}, a graph stream is a sequence

S =< ei1 , ei2 , ...eim >, (2.10)

where eij ∈ E and i1, i2, ..., im is an arbitrary permutation of {1, 2, ..., n}. Each edge of
the graph shows up exactly once in the stream and edges may come in any order. We
have limited memory to process these edges, normally sublinear in |V |. Below is the formal
definition of the problem we consider in the graph streaming model.

Problem 1. Given a graph stream S containing all edges of a connected unweighted directed
or undirected graph G in an arbitrary order, with a distribution σ and any l ≥ 0, sample
the endpoint of a l-length random walk with initial distribution σ.

Note that the problem does not require intermediate steps of the random walk but only
the endpoint of a random walk.

We are going to solve the problem using semi-streaming algorithms. Reading through
the whole graph stream S once is called one pass and one goal of streaming algorithms is
to minimize the number of passes needed.

There are two trivial algorithms to perform a random walk of length l in the graph
streaming model.

The first one uses O(1) space to store the current node of the random walk. For each
pass, it uses Reservoir Sampling (explained in the next section) to uniformly sample an
outgoing edge of the current node, and then it extends the random walk by setting the
current node to be the other end of the sampled outgoing edge. The total space needed is
O(1) and the total number of passes is O(l).

The second algorithm uses one pass and stores all the edges using O(n2) space. Later
on, when the random walk visits a node, we uniformly sample an outgoing edge from all
outgoing edges of that node and extend the random walk using the sampled outgoing edge.
Therefore, the total space used by the algorithm is O(n2) and the total number of passes is
one.

The two trivial algorithms demonstrate a clear trade-off between the space needed and
the number of passes needed.

Reservoir Sampling

Reservoir Sampling, designed by Vitter [45] is a randomized algorithm that uniformly sam-
ples an item from a data stream using constant space and one pass. Now we explain how it
can be used to uniformly sample outgoing edges of a vertex in the graph streaming model.
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We consider a specific vertex v in graphG(V,E), given the graph stream S =< ei1 , ei2 , ...eim >.
We use H to store the edge sample of v, and use c (initially c = 0) to count the number of
outgoing edges of v that the algorithm has seen so far.

Reservoir Sampling reads edges in S one by one. We skip edges that are not outgoing
edges of v. Given an edge e, whose source is v, we increase c by 1 and set H to be e with
probability 1

c . After reading the entire S once, the algorithm outputs H.
We assume v has k outgoing edges and the j-th outgoing edge of v in S is e′. The

probability that H is e′ by the end of the algorithm is 1
j · (1−

1
j+1) · (1− 1

j+2)... · (1− 1
k ) = 1

k .
Therefore, H is a uniform sample from all outgoing edges of v. In addition, the space
required is O(1) as the algorithm only stores one edge H and one counter c.

Moreover, if we run s independent instances of Reservoir Sampling for any vertex v, we
are able to uniformly and independently sample s edges (with repetition) from all outgoing
edges of v using O(s) space and one pass.

2.3 The Edge Sampling Model

The edge sampling model is another model in which we want to sample the endpoints of
random walks. We assume there is an oracle which can output an edge uniformly at random
from a graph G(V,E) per query. The amount of memory available is limited and the query
is expensive. Below we introduce the problem we are going to solve.

Problem 2. Given an oracle which can return an edge uniformly and randomly from a
connected directed or undirected graph G per query, with a distribution σ and any l ≥ 0,
sample the endpoint of a l-length random walk with initial distribution σ.

Our goal is to solve the problem using as few queries and as little memory as possible.
There is also a trivial algorithm to perform a random walk of length l in the edge

sampling model. The algorithm uses O(1) space to store the current node of the random
walk and keeps querying the oracle until an outgoing edge of the current node is returned.
Then the algorithm will set the current node to be the other end of the sampled outgoing
edge. The number of queries needed highly depends on the graph structure. In a d-regular
graph, if we denote the number of queries needed for one step by k, then its expectation

E[k] = m

d
= d · n/2

d
= n

2 . (2.11)

Thus, the total number of queries needed for a random walk of length l is nl
2 in expec-

tation.
Unlike the graph streaming model, even after storing a large number of edge samples in

the edge sampling model, we cannot guarantee that we have stored all the edges. Therefore,
when the random walk visits a node, we cannot select an outgoing edge from all outgoing
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edges we have stored for that node to extend the random walk. Without storing any
outgoing edge of the node, the walk generated is biased.

2.4 Randomized Algorithms

Randomized algorithms are algorithms whose output or running time are random variables.
There are three main categories of randomized algorithms and our algorithms are among
two of them. Before introducing these categories, we first give the definition of an algorithm
that would correctly solve our problems.

Definition 2.4.1. We let πlσ denote the distribution over vertices such that the probability
that a fixed vertex v is sampled is the probability that a random walk with initial distribution
σ ends at v after l steps. An algorithm with input σ and l correctly solves our problems if
its output X (a random variable) satisfies the condition

∀u ∈ V , Pr[X = u] = πlσ(u). (2.12)

Definition 2.4.2 (Las Vegas Algorithm [3]). An algorithm is a Las Vegas algorithm if its
output is always correct but the running time may be unbounded.

In our problems, the output X of a Las Vegas algorithm with input σ and l satisfies
Equation 2.12. In addition, the number of passes/queries and the space required by the
algorithm are random variables.

Definition 2.4.3 (Atlantic City Algorithm [44]). An algorithm is an Atlantic City algorithm
if it is a probabilistic polynomial-time algorithm that answers correctly at least 75% of the
time.

In our problems, the output of an Atlantic City algorithm is correct unless some unlikely
event R happens and Pr[R] < 0.25. If X is the output of an Atlantic City algorithm,

∀u ∈ V , Pr[X = u|R] = πlσ(u). (2.13)

Meanwhile, the number of passes/queries and the space required for the algorithm are
random variables.

Definition 2.4.4 (Monte Carlo Algorithm [3]). An algorithm is a Monte Carlo algorithm
if its running time is deterministic, but its output may be incorrect with a certain (typically
small) probability.

A Monte Carlo algorithms may output incorrect results but its running time is deter-
ministic. Our algorithms do not belong to this category.
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Chapter 3

Random Walks in the Graph
Streaming Model

This chapter focuses on the connected graphs in the graph streaming model. First, we
describe one algorithm from paper [42] by Sarma et al. Then we demonstrate a gap in the
analysis given in that paper and suggest an alternative solution to this problem. In the end,
we also suggest a technique to reduce the space required for our alternative algorithm.

3.1 Original Algorithm and Analysis

3.1.1 Original Algorithm

Since the paper [42] by Sarma et al. is the starting point for our thesis, it is necessary
to begin with its main ideas. We focus on the SingleRandomWalk algorithm in [42] and
introduce its ideas here. We also provide the pseudocode of the algorithm for the reader’s
reference.

The main goal of this algorithm is to sample the endpoint of a random walk with given
length l while balancing the space and the number of passes required. Generally speaking,
the algorithm consists of two main phases. Phase 1 prepares a large number of w-length
short random walks and Phase 2 starts a random walk Lu, tries to use the w-length random
walks prepared in Phase 1 to extend Lu and outputs the endpoint of Lu when its length is
l.

Phase 1 has two subphases. In Subphase (1.1), the algorithm first samples each node
independently with probability α and stores the sampled nodes in a set T (we call vertices
in T connectors and other nodes non-connectors). In Subphase (1.2), the algorithm uses w
passes to prepare a w-length random walk for each sampled node in parallel.

In Phase 2, the algorithm samples a node from the given initial distribution and starts
Lu at the sampled node. If the random walk visits a connector for the first time, the random
walk can take advantage of the prepared w-length random walk and proceed w steps without
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reading the stream. One important point is that the same w-length random walk cannot be
used more than once, otherwise this stochastic process’s future state would also depend on
the past states thus violating the Markov property. Therefore, the algorithm uses a set S
to store connectors whose w-length random walks have been used (we call these connectors
used connectors and other connectors unused connectors). If a connector has been added
into S, then its w-length random walk cannot be used again.

In Phase 2, Lu might also be stuck on either a used connector or a non-connector.
Being stuck means that Lu visits a node without an available w-length random walk and
we call such a node stuck node. The algorithm proposes a subroutine HandleStuckNode to
deal with this scenario. The subroutine uses a set R to store any non-connector the random
walk visits during the current invocation of the subroutine. Then the subroutine uniformly
samples s outgoing edges for each node in S ∪R using one pass (we denote this procedure
as Subphase (2.1)). Afterwards, Lu would use the sampled s edges when it visits a node in
S∪R. In the case where the random walk quickly leaves the set S∪R, the new node it visits
is an unused connector with probability α and Lu can make αw progress3in expectation. If
Lu keeps visiting vertices in S ∪ R, when it visits a vertex v ∈ S ∪ R s + 1 times, v does
not have edge samples to extend Lu. Then, we say Lu is trapped and we need to use an
additional pass to sample s edge samples for vertices in S ∪R. Even if the random walk is
trapped, Lu can still make at least s progress after one pass since Lu uses up all s edges of
v.

This technique helps extend the random walk efficiently. In some graphs, Lu might
easily leave S ∪ R and frequently visit unused connectors. Then Lu is likely to use many
prepared w-length random walks to proceed quickly. In graphs where Lu is trapped within
a small group of nodes and unable to visit many unused connectors, it can still use the
subroutine HandleStuckNode to proceed with at least s steps after each pass.

Below is the SingleRandomWalk algorithm and its subroutine HandleStuckNode from
paper [42].

3.1.2 Original Analysis

In this section, we will briefly go over the analysis in the paper [42] since it is relevant to
our study. The core result is the following theorem.

Theorem 1 (Theorem 3.1 in [42]). For any graph G with n vertices and any l ≥ 0, the
endpoint of a random walk of length l can be sampled using Õ(

√
l
α) passes and Õ(αn +√

l
α + αl) space w.h.p., for any choice of α with 0 < α ≤ 1.

First of all, Sarma et al. [42] prove the correctness of the SingleRandomWalk. During
the entire algorithm, no w-length random walk is reused. In addition, in each invocation of

3A random walk makes x progress meaning the random walk proceeds with x steps.
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Algorithm 1 SingleRandomWalk(u, l)
1: Input: Starting node u and desired walk length l.
2: Output: endpoint of Lu (the random walk from u of length l)
3: Phase 1 starts
4: Subphase (1.1) T ← set of nodes obtained by sampling each node independently with

probability α (in one pass and we refer to nodes in T as connectors).
5: Subphase (1.2) In w passes, perform walks of length w from every node in T . Let
W [t] ← the end point of the walk of length w from t ∈ T (the nodes in T whose w
length walks get used by Lu will get included in S).

6: Phase 2 starts
7: Initialize Lu to be a zero length walk starting at u and let x ← u
8: S ← { } (which is used to store used connectors)
9: while |Lu| < l do

10: if x ∈ T and x /∈ S then
11: Extend Lu by appending the available w-length walk (implicitly by setting the

current endpoint x of Lu to be the endpoint of the w-length walk starting from x).
S ← S ∪ {x}, and let x ← W [x] { This means we have a w-length walk starting at x
that has not been used so far in Lu. }

12: else
13: HandleStuckNode(x, T, S, Lu, l) { This means Lu either reaches an non-connector

or a used connector, then we will use subprocess HandleStuckNode to deal with it.)
14: end if
15: end while
16: return the endpoint of Lu

the HandleStuckNode, since Lu uses the k-th edge sample while visiting a node for the k-th
time, s sampled edges are only used at most once. Therefore, each future state does not
depend on the past states and this stochastic process satisfies Condition RW1. Moreover,
if the current state is u, the process uniformly and randomly picks a neighbor of u to be
the next state. Hence, this Markov chain also satisfies Condition RW2. Therefore, the
generated Lu is a random walk.

Secondly, paper [42] analyzes the space complexity of the algorithm. The paper claims
the space required to store the endpoints of all w-length random walks for connectors is
O(αn). Each connector only requires O(1) space to store one endpoint and there are O(αn)
connectors. (O(αn) should be a typo since the number of connectors can only be bounded
by Õ(αn), which will be explained later.) During Phase 2, space is needed for set S and sets
R. Regarding the bound of the space required for S and R, paper [42] proves the following
lemma and claim.

Lemma 2 (Lemma 3.4 in [42]). |S| ≤ l/w

Proof. A node is added to the set S only after we use a w-length walk from one of the
connectors. If we perform a walk of length l, we will end up using at most l/w walks of
length w.
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Algorithm 2 HandleStuckNode(x, T, S, Lu, l)
1: R← x
2: while |Lu| < l do
3: Subphase (2.1) Eu ← sample s edges (with repetition) for every node u ∈ S (using

one pass)
4: Extend Lu using edges sampled in Subphase (2.1). (When visiting a node v ∈ S for

the k-th time, use the k-th sampled edge from Ev.)
5: x← new endpoint after extending Lu (Then there are three cases.)
6: (1) if (x ∈ S ∪R), continue4{ no new node is seen, at least s progress is made.}
7: (2) if (x ∈ T and x /∈ S ∪ R), return5{this means that x is a node that has not

been seen in the walk so far, and x is a connector; therefore, the w-length walk from x
has not been used}

8: (3) if (x /∈ T and x /∈ S ∪ R), R ← R ∪ {x}, continue {this means that x is a
new node that has not been visited in this invocation, and x is not in the initial set of
sampled nodes T }

9: end while
10: return the endpoint of Lu

Claim 1 (Claim 3.5 in [42]). With every additional pass over the edge stream (after the
first w passes), the length of the random walk Lu increases by at least O(min{s, αw}) in
amortization.

Proof. We only need to examine the algorithm HandleStuckNode. An additional pass over
the stream is made when s edges are sampled from every node in S∪R. This happens when
the algorithm gets stuck at a new stuck node in R. After a pass over the stream, either the
algorithm makes s progress, or a new node is visited (where new node stands for a node
that is not in S ∪R). In the latter case, with probability α, the new node is in T (since T
contains each node with probability α), and with probability 1− α, it is a new stuck node.
If the new node is not a stuck node, w progress is made. Since the probability of not seeing
a new node in T is 1−α with every additional pass, the probability that more than Õ(1/α)
new stuck nodes are seen before a new node in T is seen to be small by Chernoff bound.
Therefore, w.h.p., |R| is less than Õ(1/α) in each invocation of HandleStuckNode. Hence,
the number of passes in which s progress is not made, is no more than Õ(1/α), at the end
of which w progress is made giving w

Õ(1/α) average progress per pass. By this amortized
argument, the walk makes O(min{s, αw}) progress with every pass over the edge stream.
Furthermore, w.h.p., in r passes, the algorithm SingleRandomWalk makes a progress of at
least O(r ·min{s, αw}) steps (for r ≥ Ω(1/α)).

Using the above lemma and claim, [42] proves that the size of S ∪R is Õ( lw + 1
α) w.h.p.

Because each node in S ∪ R stores s edge samples in the HandleStuckNode, the space
complexity for the entire algorithm is Õ(αn+ s( lw + 1

α)) w.h.p.
4Throughout the thesis, continue means that the described algorithm starts another while loop.
5Throughout the thesis, return means that the described algorithm exits the current subroutine.
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Then paper [42] bounds the number of passes needed. In Phase 1, the algorithm needs
w + 1 passes to sample nodes in T and it generates a w-length random walk for each
connector. In Phase 2, from Claim 1, the total number of passes is l

O(min{s,αw}) w.h.p.
Thus, the total number of passes is Õ(w + l

s + l
αw ) w.h.p.

After setting s =
√
lα and w =

√
l
α , Theorem 1 is proved.

3.2 The Gap and Our Solution

In the beginning, we introduce the term stop. The random walk Lu stops at a node when
this node is assigned to x in the pseudocode. If a node is visited by the random walk
within the w-length short random walks, the node is not considered to be stopped at by
the random walk.

3.2.1 The Gap

The gap comes from the proof of Claim 1. In the original analysis for the subroutine
HandleStuckNode, after an execution of Subphase (2.1), the random walk Lu will use the
sampled edges to proceed and we end up with one of the following cases. (Let x be the
endpoint of Lu at this time.)

Case 1. After the current execution of Subphase (2.1), Lu does not leave S∪R and is trapped,
that is x ∈ S ∪R.

Case 2. Lu leaves S ∪R, that is x /∈ S ∪R. (This is the case that random walk stops at a new
node, which has the two subcases below.)

Case 2(a) The new node is an unused connector, x ∈ T and x /∈ S ∪R.

Case 2(b) The new node is a non-connector, x /∈ T and x /∈ S ∪R.

If Case 1 happens, the random walk makes at least s progress. If Case 2 happens,
[42] says that with probability α Case 2(a) happens, and with probability 1− α Case 2(b)
happens. To be more precise, we denote Y to be the event that the random walk leaves
S∪R (Case 2) and let X denote the event that x is a connector (X∩Y is Case 2(a)). Then,
[42] claims that

Pr[X|Y ] = α. (3.1)

However, we argue that for the original SingleRandomWalk, it is possible that

Pr[X|Y ] < α. (3.2)

To prove this, we first need the following observation.
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Observation 1. In the SingleRandomWalk algorithm, if the random walk stops at a node
for the first time, the probability that the node is a connector is α.

Proof. We let Z denote the event that the random walk stops at some node u for the first
time. X denotes the same event as defined above. Thus, we claim

Pr[X|Z] = α. (3.3)

To prove this equation, we use the following arguments. Given the condition that the
random walk stops at some node u for the first time, the event that u is a connector is the
same event that u is sampled as a connector in Subphase (1.1). Therefore, this conditional
probability should also be α. More importantly, such conditional probabilities for every
node are independent since we sample every node as connector independently.

Now, we prove Inequality (3.2).

Proof. We reuse the same events X and Y . In event Y , x is outside of S ∪R and x can be
in two mutually exclusive events.

1. The random walk stops at x for the first time. (Denote this event as Y1.)

2. The random walk has stopped at x before. (Denote this event as Y2.)

The reason Y2 might happen is because the algorithm does not store all the vertices that
Lu has stopped at. Although S stores all used connectors, R only stores non-connectors
that Lu has stopped at in the current invocation of the HandleStuckNode. Consider a
non-connector v that the random walk has stopped at in previous invocations of the Han-
dleStuckNode. If Lu happens to stop at v, the event Y2 happens. Therefore, Pr[Y2] > 0.

According to the definition of conditional probability,

Pr[X|Y ] = Pr[X ∩ Y ]
Pr[Y ] . (3.4)

Since the algorithm adds used connectors to S, if the event Y2 happens, Lu will only
stop at a non-connector that has been stopped at before, which means

Pr[X|Y2] = 0 and Pr[X ∩ Y2] = 0. (3.5)

Therefore, due to Equation (3.5),

Pr[X|Y ] = Pr[X ∩ Y1] + Pr[X ∩ Y2]
Pr[Y ] = Pr[X ∩ Y1]

Pr[Y ] . (3.6)
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Since Y1 ∪ Y2 = Y and Y1 ∩ Y2 = ∅,

Pr[X|Y ] = Pr[X ∩ Y1]
Pr[Y1] + Pr[Y2] <

Pr[X ∩ Y1]
Pr[Y1] = Pr[X|Y1]. (3.7)

By Observation 1,
Pr[X|Y ] < Pr[X|Y1] = α. (3.8)

In the proof of Claim 1, [42] uses Equation (3.1) to prove the space bound for R and
also the bound for the number of passes. Since this equation is not correct, the original
bounds do not hold any more.

To illustrate the gap clearly, we include the following five figures to show a situation
where the gap occurs. Graph G is a connected graph and the edges are not shown. White
points represent the vertices that the random walk Lu has never stopped at. Black points
represent the non-connectors that Lu has stopped at, while red or gray points represent the
connectors that Lu has stopped at. In addition, straight arrow means Lu proceeds with one
regular random walk step while curved arrow means Lu uses a prepared w-length random
walk.

Figure 3.1 is the state of the graph after connectors are sampled and w-length random
walks are prepared. Lu starts at vertex u. Since no vertices have been stopped at, all of
them are white and with probability α they are connectors by Observation 1. In addition,
R and S are empty.

Initially, the random walk stops at u and with probability 1−α, u happens to be a non-
connector. Thus, the algorithm uses the subroutine HandleStuckNode and stores s into R.
Assume Lu visits a and b in the next two steps and they both happen to be non-connectors,
then a and b are added to R as well. Figure 3.2 illustrates the state where R is {u, a, b} and
S is still empty.

In the next step, Lu visits c and with probability α, c happens to be a connector. Thus,
this invocation of the HandleStuckNode completes and the space for current R will be
released. This state is shown in Figure 3.3.

In Figure 3.4, Lu utilizes the w-length random walk of c and adds c into S. Let us
assume that Lu comes back to the vertex u. Since u is a non-connector, Lu is stuck again
and the algorithm starts another invocation of HandleStuckNode.

Finally in Figure 3.5, we assume Lu visits a again (the step is represented by the bold
black arrow). Since a /∈ R∪S, a is considered to be a new node in the original analysis. The
original analysis argues that a is a connector with probability α at this step. The argument
is incorrect since a is a non-connector for sure.
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Figure 3.1: The initial state of the graph of Phase 2

Figure 3.2: The random walk Lu has stopped at some non-connectors

Figure 3.3: Lu stops at a connector
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Figure 3.4: Lu utilizes the w-length random walk of c and comes back to u

Figure 3.5: Lu stops at a previous non-connector again
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3.2.2 Our Alternative Solution

We propose our alternative solution to avoid the gap described above. Our algorithm
discards the set R and uses the set S to store all the vertices that the random walk has
stopped at (no matter whether they are connectors or not). For a node u, if it is not
stored in S, then it is a node that the random walk has never stopped at. With probability
α, u is a connector by Observation 1. The algorithm using our alternative solution is
called Streaming-S (short for Streaming Single Random Walk) whose subroutine is called
Streaming-H. The following pseudocode provides the details.

Algorithm 3 Streaming-S(u, l)
1: Input: Starting node u and desired walk length l.
2: Output: The endpoint of Lu (the random walk from u of length l)
3: Phase 1 starts
4: Subphase (1.1) T ← set of nodes obtained by sampling each node independently with

probability α (in one pass and we refer to nodes in T as connectors).
5: Subphase (1.2) In w passes, perform walks of length w from every node in T . Let
W [t] ← the end point of the walk of length w from t ∈ T

6: Phase 2 starts
7: Initialize Lu to be a zero length walk starting at u and let x ← u
8: S ← { } (which is used to store all vertices the random walk has stopped at)
9: while |Lu| < l do

10: if x ∈ T and x /∈ S then
11: Extend Lu by appending the available w-length walk (implicitly by setting the

current endpoint x of Lu to be the endpoint of the w-length walk starting from x).
S ← S ∪ {x}, and let x ← W [x] { This means we have a w-length walk starting at x
that has not been used so far in Lu. }

12: else
13: Streaming-H(x, T, S, Lu, l) { This means Lu either reaches a non-connector or a

used connector, then we will use subroutine Streaming-H to deal with it.)
14: end if
15: end while
16: return the endpoint of Lu

The Streaming-S algorithm stores much more vertices than the original SingleRan-
domWalk algorithm. Therefore, our algorithm has a different probabilistic bounds on the
space and number of passes needed, and the following theorem states the new bounds. We
will prove it in Sections (a) and (b) below.

Theorem 2. For any connected graph G with n vertices and any integer l ≥ 0, the
Streaming-S algorithm always samples the endpoint of a l-length random walk. It uses
Õ(αn+ l

1
2
α ) space and terminates in Õ(l

3
4 + l

1
4
α ) passes w.h.p. In particular, if l = O(n) and

α = n−
1
4 , the space complexity of Streaming-S is Õ(n

3
4 ) and the number of passes required

is Õ(n
3
4 ) w.h.p.
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Algorithm 4 Streaming-H(x, T, S, Lu, l)
1: while |Lu| < l do
2: Subphase (2.1) Eu ← sample s edges (with repetition) for every node u ∈ S.

(using one pass)
3: Extend Lu using edges sampled in Subphase (2.1). (When visiting a node v ∈ S for

the k-th time, use the k-th sampled edge from Ev.)
4: x← new end point after extending Lu (Then there are three cases.)
5: (1) if (x ∈ S), continue { no new node is seen, at least s progress is made.}
6: (2) if (x ∈ T and x /∈ S), return {this means that x is a node that has not been

stopped at by Lu so far, and x is a connector; therefore, the w-length walk from x has
not been used}

7: (3) if (x /∈ T and x /∈ S), S ← S ∪ {x}, continue {this means that x is a node that
has not been stopped at by Lu, and x is not a connector }

8: end while
9: return the endpoint of Lu

(a) Space

First of all, we need the following result about the number of connectors.

Lemma 3. W.h.p., the number of connectors is Õ(αn).

Proof. For every node u ∈ V , we define Xu to be 1, if u is sampled to be a connector and
0 otherwise. Let X =

∑
u∈V Xu, then E[X] = αn. As the Xus are independent, identical

and 0-1 random variables, Chernoff bound can be applied to X to derive that

Pr[X > (1 + δ) · E[X]] ≤ e−
δ2

2+δE[X]. (3.9)

Let δ = 2 log(n) and, since log(n) can be assumed to be greater than 2,

Pr[X > (1 + 2 log(n)) · αn] ≤ e− log(n)·αn = n−αn. (3.10)

We assume αn ≥ 1 (otherwise there are almost no connectors) and denote the event
that the number of connectors is not Õ(αn) by Q1. Then, Pr[Q1] ≤ 1

n .

From Lemma 3, we know there are Õ(αn) connectors w.h.p. Since we only store the
endpoint of each w-length random walk, we only need O(1) space for each connector. There-
fore, w.h.p. the total space required for storing connectors and generating w length random
walks is Õ(αn).

In order to bound the space complexity for S, we need the following lemma.

Lemma 4. W.h.p., for the sequence of nodes added to S, there are at most Õ( 1
α) consecutive

non-connectors before a connector occurs through the algorithm.
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Proof. In the beginning, we uniformly sample connectors with probability α. Therefore, the
conditional probability that a node u is a connector equals α by Observation 1, conditioned
on the event that u is a node that the random walk has never stopped at. If a node is to
be added to S, the random walk must stop at the node for the first time. Thus, for every
new node added to S, the node is a connector with probability α.

We set Pi to be the probability that i consecutive non-connectors are added to S, then

Pi = (1− α)i. (3.11)

In addition, since 1− α < e−α,

log
( 1

1− α

)
= − log(1− α) > α. (3.12)

If we set i = log(l·n)
α , then by Inequality (3.12),

i = log(l · n)
α

>
log(l · n)
log

(
1

1−α

) . (3.13)

Therefore,

Pi = (1− α)
log(l·n)

α < (1− α)
log(l·n)

log( 1
1−α) = 1

nl
. (3.14)

Hence, for a specific connector v in S, the probability that there are Õ( 1
α) consecutive

non-connectors added before v is at most 1
nl . Let Q2 denote the event that there exists some

connector u ∈ S, for which there are more than Õ( 1
α) consecutive non-connectors added

before u. By the union bound, Pr[Q2] ≤ 1
nl · |S| ≤

1
n .

The maximum number of connectors that may be used is l
w by Lemma 2. By Lemma

4, w.h.p. |S| is at most Õ( l
αw ). Since each node in S stores s edge samples, the total space

required by the Streaming-H is Õ( ls
αw ) w.h.p.

We denote the union of events Q1 and Q2 as Q. By the union bound, Pr[Q] ≤ 2
n .

Therefore, the total space needed for the Streaming-S algorithm is Õ(αn+ ls
αw ) w.h.p.

If l = O(n), α = n−
1
4 , s = n

1
4 , w = n

3
4 , the space required is Õ(n

3
4 ) w.h.p. Compared to

the algorithm in [42], although the space complexity increases from Õ(n
2
3 ) to Õ(n

3
4 ), it is

still sublinear.

(b) Number of Passes

First of all, sampling connectors uses one pass and generating w-length random walks for
connectors uses w passes.
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Since the random walk does not need additional passes to utilize w-length random walks,
we only need to bound the number of passes required by Subphase (2.1). There are two
cases where we need to use additional 1 pass to sample s edge samples for nodes in S.

Case 1. The random walk Lu stops at a stuck node x /∈ T and x /∈ S. (This is the case where
x is a new node for S and is not a connector, then we will add it to S.)

Case 2. Lu does not leave S and is trapped at a node x ∈ S.

In both cases, we can use one pass to draw s samples for each node in S. The number
of times Case 1 occurs is bounded by |S|, which is Õ( l

αw ) w.h.p from the analysis for the
space complexity. The number of times Case 2 occurs is bounded by O( ls), since each time
Case 2 occurs, the random walk will make at least s progress. Thus, the total number of
passes from both cases is Õ( l

αw + l
s) w.h.p.

From the analysis above, the total number of passes required by the Streaming-S algo-
rithm is Õ(w + l

αw + l
s) w.h.p.

If l = O(n), α = n−
1
4 , s = n

1
4 , w = n

3
4 , the total number of passes is Õ(n

3
4 ). The number

of passes increases from Õ(n
2
3 ) to Õ(n

3
4 ) compared to the algorithm in [42], but it is still

sublinear.
With the help of the previous analysis for space complexity and the number of passes,

if we let w = l
3
4 and s = l

1
4 , Theorem 2 is obtained.

3.2.3 Space Improvement

Since the Streaming-S algorithm stores all vertices that the random walk has stopped at,
the size of set S grows quickly. As a result, storing s edges for each node in S uses a large
amount of space.

The space required by the algorithm can be reduced in some graphs using the following
technique. In the subroutine Streaming-H, previously we store s edges for each node in S,
which takes O(|S|s) space. s edges are required for each vertex, since even if the random
walk Lu keeps visiting the vertex, Lu can still make at least s progress by using the sampled
s edges. However, if the number of outgoing edges of a node is smaller than s, we only need
to store all outgoing edges of the node using space less than s. When Lu visits the node,
we uniformly sample an outgoing edge from all outgoing edges stored, and use this edge to
extend Lu. After storing all outgoing edges of a vertex, sufficient amount of edge samples
can be generated no matter how many times the random walk visits the node. Moreover,
in order to identify the vertices with out-degree no more than s, we need an additional pass
to count the out-degree for each vertex in S.

Using the idea above, we design a new subroutine Streaming-SH (short for Streaming
Space Saving HandleStuckNode) below. We propose a new algorithm Streaming-SS by
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replacing Streaming-H with Streaming-SH. The Streaming-SS algorithm can be used if we
know in advance that only few nodes have a large number of outgoing edges.

Algorithm 5 Streaming-SH(x, T, S, Lu, l)
1: while |Lu| < l do
2: Subphase (2.1) Count the out-degree for each vertices in S and partition S into

two subsets F andM . F contains every node whose out-degree is no more than s, while
M contains every node whose out-degree is larger than s. (using one pass)

3: For each node u in F , store all distinct outgoing edges of u into Eu. For each node
v in M , uniformly sample s outgoing edges (with repetition) into Ev for v. (using one
pass)

4: Extend Lu using previously stored edges. (When visiting a node u ∈ F , use an edge
sampled uniformly from Eu; when visiting a node v ∈M for the k-th time, use the k-th
sampled edge Ev.)

5: x← new end point after extending Lu (Then there are three cases.)
6: (1) if (x ∈ S), continue { no new node is seen, at least s progress is made.}
7: (2) if (x ∈ T and x /∈ S), return {this means that x is a node that has not been

stopped at by Lu so far, and x is a connector; therefore, the w-length walk from x has
not been used}

8: (3) if (x /∈ T and x /∈ S), S ← S ∪ {x}, continue {this means that x is a new node
that has not been stopped at by Lu, and x is not a connector }

9: end while
10: return the endpoint of Lu

The number of passes for the Streaming-SS algorithm is increased by a constant factor of
at most two since Subphase (2.1) uses an additional pass. The Streaming-SS algorithm needs
extra O(|S|) space when counting the out-degree of each vertex in S and partitioning these
vertices, but it saves the space that stores edges for vertices in S. The space improvement
effect of the algorithm depends highly on the graph structure, especially on the degree
distribution. In Chapter 5, we will show that the algorithm performs well in special classes
of graphs like regular graphs.
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Chapter 4

Random Walks in the Edge
Sampling Model

In this chapter, we use an idea similar to that in the Streaming-S algorithm to sample the
endpoints of random walks on connected graphs in the edge sampling model. As before,
we sample connectors and prepare a w-length random walk for each connector in parallel.
Then, we make use of the prepared w-length random walks to quickly extend a random
walk Lu.

As mentioned before, for any vertex u in the graph streaming model, we can use one
pass to uniformly sample any amount of outgoing edges of u by running multiple instances
of the Reservoir Sampling algorithm in parallel.

However, the Reservoir Sampling algorithm cannot be applied in the edge sampling
model since the oracle might output repeated edges. In the edge sampling model, the oracle
returns an edge uniformly at random. Therefore, for a vertex v of low degree, the oracle
is unlikely to output any outgoing edge of v. Because Subphase (1.2) and the subroutine
Streaming-H both need many edge samples for vertices of low degree in the graph streaming
model, we have to query the oracle many times to get a sufficient number of edge samples
in the edge sampling model. In order to reduce the number of queries, we need special
strategies to deal with these bottlenecks.

Based on different strategies we use, we will give one Atlantic City algorithm that could
be used for directed or undirected graphs. We also give a Las Vegas algorithm for undirected
graphs. The Las Vegas algorithm uses slightly more queries and space, but its output is
guaranteed to be correct.

Round

In order to better compare algorithms in the edge sampling model, we define one round
to be a sequence of m log(mnl) queries so that after one round all edges will be returned
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by the oracle at least once w.h.p. The following lemma follows from the coupon collector
problem.

Lemma 5. The probability that some edge is not sampled in k rounds is at most n−kl−1.

Proof. We use Pi(x) to represent the probability that the i-th edge is not sampled after x
queries (we assume edges have some order),

Pi(x) =
(
m− 1
m

)x
=
(

1− 1
m

)mx 1
m

< e−
x
m . (4.1)

Let P (x) denote the probability that at least one edge is not sampled after x queries. By
the union bound,

P (x) ≤
m∑
i=1

Pi(x) = m · Pi(x) < m · e−
x
m . (4.2)

For k rounds, x equals to km log(mnl),

P (km log(mnl)) < m · e−k log(mnl) = 1
mk−1nklk

≤ n−kl−1. (4.3)

Therefore, all edges will be sampled at least once in k rounds w.h.p.

4.1 The Atlantic City Algorithm

First of all, we introduce the Atlantic City algorithm. We name this algorithm Sampling-AS
(short for Sampling Atlantic City Single Random Walk) and its subroutine Sampling-AH.
The Sampling-AS algorithm always samples the endpoint of a random walk with length l,
unless some unlikely event happens.

Since the Sampling-AS algorithm has a very similar structure to the Streaming-S algo-
rithm, we reuse the terminology (connectors, non-connectors et al.) and notation (S, R, Lu
et al.) from the Streaming-S algorithm.

In Phase 1, the Sampling-AS algorithm samples connectors in Subphase (1.1) and pre-
pares one w-length walk for each connector using 2w rounds in Subphase (1.2).

In Phase 2, when Lu (the walk we generate) stops at connectors, the Sampling-AS
algorithm uses the prepared w-length walks to extend Lu. When Lu stops at a stuck node,
the subroutine Sampling-AH is used. It samples s edges for all stuck nodes in S (S contains
all vertices that Lu has stopped at) using 2 rounds, and extends Lu using the sampled edges.

The pseudocode is presented below to give a general idea of the algorithm. The key
steps will be explained in Section 4.1.1.

Lu constructed by the Sampling-AS algorithm might violate Conditions RW1 and RW2
of a random walk if some "bad" events happen. The union of all "bad" events is denoted by
R and will be explained in detail in Section 4.1.2.
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Algorithm 6 Sampling-AS(u, l)
1: Input: Starting node u and desired walk length l.
2: Output: The endpoint of Lu (the walk starting from u of length l)
3: Phase 1 starts
4: Subphase (1.1) Sample each node appearing in a round independently with probability
α, and store the sampled nodes into a set T

5: Subphase (1.2) In 2w rounds, perform a w-length walk from every node in T . Let
W [t] be the end point of the w-length walk from t ∈ T

6: Phase 2 starts
7: Initialize Lu to be a zero length walk starting at u and let x ← u
8: S ← { } (which is used to store vertices that Lu has stopped at)
9: while |Lu| < l do

10: if x ∈ T and x /∈ S then
11: Extend Lu by appending the available w-length walk (implicitly by setting the

current endpoint x of Lu to be the endpoint of the w-length walk starting from x).
S ← S ∪ {x}, and let x ← W [x].

12: else
13: Sampling-AH(x, T, S, l, Lu) (This means Lu either reaches a non-connector or a

used connector, then we will use the subroutine Sampling-AH to deal with it.)
14: end if
15: end while
16: return the endpoint of Lu

Algorithm 7 Sampling-AH(x, T, S, l, Lu)
1: while |Lu| < l do
2: Subphase (2.1) Eu ← sample s edges (with repetition) for every node u ∈ S.

(using two rounds)
3: Extend Lu using edges sampled in Subphase (2.1). (When visiting a node v ∈ S for

the k-th time, use the k-th sampled edge from Ev.)
4: x← new endpoint after extending Lu (Then there are three cases.)
5: (1) if (x ∈ S), continue (Lu is still in S, at least s progress is made.)
6: (2) if (x ∈ T and x /∈ S), return (This means Lu reaches an unused connector and

we can use it to extend the walk.)
7: (3) if (x /∈ T and x /∈ S), S ← S∪{x}, continue (Lu reaches a new non-connector.)
8: end while
9: return the endpoint of Lu
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4.1.1 Detailed Implementation

Subphase (1.1) in the Sampling-AS Algorithm

We assume all nodes are pre-labeled with distinct labels (usually a sequence of integers from
1 to n). We also randomly pick a hash function that uniformly maps the labels of nodes to
some buckets.

For each sampled edge, we use the labels of both ends as the input for the hash function.
During the sampling process, no matter how many times a node’s label is used as the input
in the hash function, the label will always be mapped to the same bucket.

Before the sampling starts, we randomly choose α fraction of buckets. During the
sampling process, if a node’s label is in one of the buckets chosen, then we store the node
into T . Otherwise, we do not store the node. By doing so, each node appearing within the
round has probability α to be sampled into T . Moreover, only nodes that are sampled are
stored.

By Lemma 5, with probability at least 1−n−1l−1, we will see all edges in E in Subphase
(1.1). Thus, w.h.p., each node is considered and sampled with probability α because the
graph is assumed to be connected. We use Q0 to represent the event that some node does
not show up in Subphase (1.1) and Pr[Q0] ≤ n−1l−1.

The Technique to Sample Sufficient Edge Samples

Before we describe other subphases, we want to explain the technique that is used to
sample a sufficient number of edges for vertices of low degree. This technique is called
Sufficient-Sampling and it is used in Subphases (1.2) and (2.1). Since the technique is not
too complicated, it might have been used by other researchers.

For any node v, we assume that mv samples are required. Sufficient-Sampling uses a
counter fv to count the number of edge samples still required for v during the procedure.
Sufficient-Sampling also uses a multi-set Ev to store sampled edges for node v (The k-th
item in Ev means the k-th item that is added into Ev). Initially, fv = mv and Ev is empty.
By the end of Sufficient-Sampling, fv = 0 and Ev contains mv edge samples from v.

When G(V,E) is a directed graph, if each sampled edge e’s source is some vertex v ∈ U ,
we store e into Ev and deduct 1 from fv. If fv becomes 0, we no longer consider new edge
samples for v (v already has mv edge samples).

For each sampled edge e in undirected graphs, we randomly and uniformly select one
end of e as the source. Then we follow the same steps as for directed graphs, which ensures
that one edge sample can be used to extend only one random walk.

The procedure so far is named Normal-sampling.
After Normal-sampling, for any vertex v for which fv > 0 (we still need fv edge samples

from v and we sample them from edges we have stored for v in Normal-sampling), we
uniformly sample fv edge samples (with repetition) from the distinct edges in Ev and add
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the sampled edges to Ev. This step is called Re-sampling. Now, each vertex v ∈ U has mv

edge samples in Ev.
We let R∗ denote the event that some edge in E is not output by the oracle in Normal-

sampling. Sufficient Sampling works unless the "bad" event R∗ happens. The core result of
this technique is given in Lemma 6.

Lemma 6. For a graph G(V,E) in the edge sample model, given a vertex set U ⊆ V , each
vertex v ∈ U has an associated value mv denoting the number of edge samples required
for v. For each node v ∈ U , Sufficient-Sampling independently and uniformly samples mv

edges from all outgoing edges of v, unless the event R∗ happens. The probability that R∗

happens is at most n−2l−1. In addition, Sufficient-Sampling always uses two rounds and
O(
∑
v∈U (1 +mv)) space,

Proof. We first prove that if R∗ does not happen, the edge samples in each Ev are indepen-
dent and uniform samples from all outgoing edges of v.

Considering a node v, there are two cases where Ev gets an edge sample e.

Case 1. e is sampled during the Normal-sampling step.

Case 2. e is uniformly selected from the distinct edges of Ev in the Re-sampling step.

In Case 1, since any edge e only has one source, say v, e is used as an outgoing edge
sample for only one vertex v. Therefore, edge samples in Case 1 are never reused. In
addition, because the oracle outputs each outgoing edge of v with the same probability, e
is a uniform sample from all outgoing edges of v.

In Case 2, given that R∗ does not happen, all edges of E are sampled during Normal-
sampling. Consequently, for any vertex v, Ev contains all outgoing edges of v. Hence,
sampling e uniformly from the distinct edges of Ev is equivalent to sampling e uniformly
from all outgoing edges of v. Moreover, e is used by only one vertex v.

In both cases, an edge sample e is never reused. Therefore, all edge samples are inde-
pendent.

Secondly, we prove the space complexity in Lemma 6. For each vertex v, the counter fv
costs O(1) space and storing sampled edges also costs O(mv) space. Hence, the total space
complexity is O(

∑
v∈U (1 +mv)).

Finally, by Lemma 5, the probability that R∗ happens is at most n−2l−1.

Subphase (1.2) in the Sampling-AS Algorithm

We divide Subphase (1.2) into a sequence of w iterations. In each iteration, we extend all
short random walks by one step. After w iterations, all short random walks have length w.

Within a specific iteration, we denote the current distinct endpoints of all short random
walks by U1. For each vertex v ∈ U1, the number of random walks at v is denoted by mv

′
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(we need mv
′ edge samples for v to extend all random walks currently stopping at v). Then

we use Sufficient-Sampling with U = U1 and mv = mv
′ for each v ∈ U . By Lemma 6, if

R∗ does not happen, each vertex v ∈ U1 gets sufficient edge samples to extend mv
′ random

walks stopping at v using two rounds.
We let R1 denote the event that in some iteration, the "bad" event R∗ of Sufficient

Sampling happens. Now, we present the analysis for Subphase (1.2) in Lemma 7.

Lemma 7. Given any undirected connected graph G with n vertices, Subphase (1.2) of
Sampling-AS samples the endpoints of |T | independent w-length random walks, unless the
event R1 happens. Event R1 happens with probability at most 1

n . In addition, Subphase
(1.2) always uses 2w rounds and O(|T |) space,

Proof. In w iterations, we use Sufficient-Sampling w times. By Lemma 6 and the union
bound, Pr[R1] ≤ w · n−2l−1 ≤ 1

n .
If R1 does not happen, the future state of any walk depends only on the current state

because edge samples are independent and are never reused. Therefore, for any w-length
walk, the stochastic process that generates the walk satisfies Condition RW1.

Also, if R1 does not happen, all edge samples of a vertex v are uniform samples from
all outgoing edges of v. When any w-length walk visits a vertex v, it chooses each outgoing
edge of v with the same probability to move forward. As a result, for any w-length walk,
the stochastic process that generates the walk also satisfies Condition RW2.

In conclusion, if R1 does not happen, the generated w-length walks are random walks.
Finally, we analyze the space complexity for Subphase (1.2). In each iteration, the total

number of short random walks is |T |, which makes
∑
v∈U1 mv

′ = |T |. Hence, the space used
in one iteration is O(|T |) by Lemma 6. Because each iteration reuses the space, the total
space complexity is O(|T |).

Subphase (2.1) in the Sampling-AS Algorithm

In Subphase (2.1), we use Sufficient-Sampling by setting U = S and mv = s for each vertex
v ∈ U .

We give the analysis for Subphase (2.1) in Lemma 8.

Lemma 8. Given any undirected graph G with n vertices and any l ≥ 0, Subphase (2.1) of
Sampling-AS independently and uniformly samples s edges from all outgoing edges for each
node in S, unless the event R∗ happens. The event R∗ happens with probability at most 1

nl .
In addition, Subphase (2.1) always uses two rounds and O(|S| · s) space,

The proof for Lemma 8 is omitted since it follows directly from Lemma 6.
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4.1.2 Analysis

We let R2 denote the event that in some invocation of Subphase (2.1) event R∗ happens. R
will be the union of the "bad" events R1 and R2. The following theorem describes the core
results of our analysis. Its proof is given in Sections (a) and (b).

Theorem 3. Given any undirected connected graph G with n vertices and any integer
l ≥ 0, the Sampling-AS algorithm always samples the endpoint of a l-length random walk,
unless the event R happens (R happens with probability at most 2

n). The algorithm uses

Õ

(
αn+ l

1
2
α

)
space and terminates in Õ

(
l

3
4 + l

1
4
α

)
rounds w.h.p. In particular, if l = O(n)

and α = n−
1
4 , then the space complexity is Õ(n

3
4 ) and the number of rounds is Õ(n

3
4 ) w.h.p.

(a) Correctness and Error Bounds

After each invocation of Subphase (2.1), the Sampling-AS algorithm extends Lu by at least
one step. Therefore, the total number of invocations of Subphase (2.1) is bounded by l. By
the union bound and Lemma 8, Pr[R2] ≤ l · 1

nl = 1
n .

By the union bound, Lemma 7 and the analysis above,

Pr[R] ≤ Pr[R1] + Pr[R2] ≤ 2
n
. (4.4)

This completes the proof of the error bounds for the Sampling-AS algorithm.
Lu is constructed by two types of short walks.

Type 1 w-length walks prepared in Subphase (1.2)

Type 2 walks prepared in each invocation of Sampling-AH

If event R does not happen, Lemma 7 implies that walks of Type 1 are independent
random walks. Now we prove that walks of Type 2 are also random walks. We look at some
walk L∗ of Type 2 which is generated in one invocation of Sampling-AH. Because L∗ uses
the k-th edge sample of v if L∗ visits v for the k-th time, no edge sample is reused. Hence,
at each step, the future state of L∗ only depends on the current state, and the stochastic
process L̃∗ that generates L∗ satisfies Condition RW1. If the event R does not happen,
when L∗ visits a vertex v, it chooses each outgoing edge of u with the same probability. As
a result, L̃∗ also satisfies Condition RW2. In conclusion, L∗ is a random walk if R does not
happen.

Moreover, as each edge sample is used by at most one walk and a walk is used at
most once, all walks of Type 1 and Type 2 are independent. By Lemma 1, the walk Lu,
generated by stitching these independent short random walks is also a random walk (given
the condition that the event R does not happen).

33



(b) Probabilistic Bounds on Space and the Number of Rounds

First of all, we prove the following lemma.

Lemma 9. Given the condition that the event Q0 does not happen during the execution of
the Sampling-AS algorithm, if Lu stops at a node for the first time, with probability α, the
node is a connector.

Proof. If the eventQ0 does not happen, each node is sampled as a connector with probability
α in Subphase (1.1). Under such condition, the scenario in the Sampling-AS algorithm is
the same as that in the Streaming-S algorithm. Therefore, we omit the rest of the proof
since it is the same as the proof for Observation 1.

Using Lemma 9, Lemma 10 can be proved.

Lemma 10. For the sequence of nodes added to S, there are at most Õ( 1
α) consecutive

non-connectors before a connector occurs w.h.p.

Proof. We also omit most of the proof for Lemma 10 as it is almost the same as Lemma 4
conditioned on Q0 ∩Q2. The probability that event Q0 or event Q2 happens can be easily
bounded by 2

n using the union bound.

We use Q′ to represent the union of events Q0, Q1 (the event that the number of
connectors is not Õ(αn)) and Q2 (the event that there is some connector v ∈ S for which
there are more than Õ( 1

α) non-connectors added before v). By the union bound, Pr[Q′] ≤ 3
n .

The maximal number of connectors used is l
w by Lemma 2. By Lemma 10, |S| is at

most Õ( l
αw ) if the event Q′ does not happen. Since each node in S stores s edge samples,

the total space required for the subroutine Sampling-AH is Õ( ls
αw ) w.h.p.

Therefore, the total space needed for the Sampling-AS algorithm is Õ(αn+ ls
αw ) w.h.p.

If l = O(n), α = n−
1
4 , s = n

1
4 , w = n

3
4 , the space complexity is Õ(n

3
4 ) w.h.p., which is

sublinear.
Next, the number of rounds required can be bounded. First of all, sampling connectors

uses one round and generating w-length walks for connectors takes 2w rounds. Using
analysis similar to that in the Streaming-S algorithm, the total number of rounds for Phase
2 is Õ( l

αw + l
s) if the event Q′ does not happen.

From the analysis above, the total number of rounds required by the Sampling-AS
algorithm is Õ(w+ l

αw + l
s) w.h.p. If l = O(n), α = n−

1
4 , s = n

1
4 , w = n

3
4 , the total number

of rounds required is Õ(n
3
4 ) w.h.p., which is also sublinear.

Based on the previous analysis for space complexity and the number of rounds, letting
w = l

3
4 and s = l

1
4 , we obtain Theorem 3.
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Space Improvement

We name the modified Sampling-AS algorithm Sampling-SAS (short for Sampling Space
Saving Atlantic Single RandomWalk) and the modified subroutine Sampling-SAH. Sampling-
SAS uses an idea similar to the one in the Streaming-SS algorithm by changing Subphase
(2.1) to save space.

To identify vertices of low degree, the Streaming-SS algorithm uses an additional pass to
count the out-degree of each vertex in S. However, this technique does not work in the edge
sampling model. First of all, the oracle might output repeated edges in the edge sampling
model. To count distinct outgoing edges of a vertex, each edge will need to be stored, which
costs much space. Moreover, even after a large amount of queries, we cannot make sure if
all outgoing edges of a vertex have been sampled. Therefore, even if we store all edges of a
vertex u output by the oracle, the out-degree of u may still be underestimated.

Sampling-SAS skips the Re-sampling step of Sufficient-Sampling in Subphase (2.1). Af-
ter the execution of the modified Sufficient-Sampling, vertices in S have at most s edges.
Vertices in S can be further divided into two subsets F and M . For a vertex u, if the
number of sampled edges for u (which is |Eu|) is less than s, u is put into F . Otherwise, u
is put into M .

Later on when Lu visits some node v ∈ S for the k-th time, if v ∈ F , Lu is extended using
an uniform edge sample from distinct outgoing edges of Ev. If v ∈M , Lu is extended using
the k-th edge sample of Ev. The details for the subroutine Sampling-SAH are presented in
the pseudo code below.

Algorithm 8 Sampling-SAH(x, T, S, Lu, l)
1: procedure Samping-SAH
2: while |Lu| < l do
3: Subphase (2.1) Sample at most s edge samples for each node in S, and divide

all the nodes in S into two subsets F and M . F contains nodes whose number of edge
samples is less than s, while M contains nodes with s edge samples. (using two rounds)

4: Extend Lu by random walking using previously stored edges. (When visiting a
node v ∈ F , use the edge sampled uniformly from all distinct sampled edges of v; when
visiting a node v′ in M for the k-th time, use the k-th sampled edge from v′.)

5: x← new endpoint after extending Lu (Then there are three cases.)
6: (1) if (x ∈ S), continue { no new node is seen, at least s progress is made.}
7: (2) if (x ∈ T and x /∈ S), return {this means that x is a node that has not been

seen in the walk so far, and x is among the set of nodes sampled initially; therefore, the
w-length walk from x has not been used}

8: (3) if (x /∈ T and x /∈ S), S ← S ∪ {x}, continue {this means that x is a new
node that has not been visited in this invocation, and x is not in the initial set sampled
nodes T }

9: end while
10: return final destination of Lu
11: end procedure
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In the Streaming-SS algorithm, we can know whether a vertex v has out-degree less
than s or not by counting the out-degree for each vertex using an additional pass. If the
out-degree of v is less than s, the Streaming-SS algorithm only stores distinct edges for v
rather than storing s edge samples with repetition for v. For each vertex v ∈ S in the edge
sampling model, the Sampling-SAS algorithm needs to store all edge samples with repetition
for u in Subphase (2.1), because we need repeated edge samples if u has high out-degree.
Compared to the Streaming-SS algorithm, the Sampling-SAS algorithm avoids counting the
out-degree for each vertex and thus reduces the number of rounds required. However, the
Sampling-SAS algorithm stores repeated edge samples for vertices of low out-degree and this
increases space complexity. Next we show that compared to the Streaming-SS algorithm,
the Sampling-SAS algorithm only increases the space required slightly.

Lemma 11. For any edge e in a graph, the number of times that e is sampled within two
rounds is 6 log(mnl) w.h.p.

Proof. First of all, we consider a specific edge e. We let Xi be 1 if the i-th query is e
and 0 otherwise. We let X =

∑2m log(mnl)
i=1 Xi. Clearly, X is the number of times that e is

sampled within two rounds and E[X] = 1
m · 2m log(mnl) = 2 log(mnl). Since all the Xi’s

are independent, identical and 0-1 random variables, we can apply Chernoff bound for X
and get

P [X > (1 + δ)E[X]] ≤ e−
δ2

2+δ 2 log(mnl). (4.5)

Set δ = 2, then

P [X > 3E[X] = 6 log(mnl)] ≤ e−2 log(mnl) = (mnl)−2. (4.6)

Let Q∗3 denote the event where at least one edge in E is sampled more than 6 log(mnl)
times within two rounds. By the union bound,

P [Q∗3] ≤
|E|∑
i=1

(mnl)−2 ≤ m · (mnl)−2 ≤ (nl)−1. (4.7)

Let Q3 be the event that during some Subphase (2.1) in the entire Sampling-SAS algo-
rithm, some edge is sampled more than 6 log(mnl) times. By the union bound, Pr[Q3] ≤
l · 1

nl = 1
n because the number of times that Subphase (2.1) is executed is at most l. In

addition, denote the union of events Q′ and Q3 as Qs, Pr[Qs] ≤ 4
n (also by the union

bound).
Therefore, if event Qs does not happen, the Sampling-SAS algorithm only increases

the space storing edges of low-degree vertices by a factor of 6 log(mnl). Moreover, as
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the Õ symbol hides log terms, space complexities are the same between the Streaming-SS
algorithm and the Sampling-SAS algorithm.

Compared to the Sampling-AS algorithm, the number of rounds required for the Sampling-
SAS algorithm does not increase. The space required is at most |S|s in Subphase (2.1).
The space improvement effect of the Sampling-SAS algorithm also depends highly on the
graph structure, especially on the degree distribution. This will be discussed in detail in
Chapter 5.

4.2 The Las Vegas Algorithm

The Sampling-AS algorithm samples the endpoint of a random walk of length l if event
R does not happen. Although R seems unlikely, the correctness of the algorithm cannot
be guaranteed since it is unknown if R happens or not. Meanwhile, in some scenarios,
we do need an algorithm that always samples the endpoint of a random walk of length l.
Therefore, a Las Vegas algorithm called Sampling-LS (short for Sampling Las Vegas Single
Random Walk) is introduced which samples the endpoint of a l-length random walk. The
Sampling-LS algorithm’s output is always correct, while the number of rounds required and
space complexity are random variables. Although the Sampling-LS algorithm can also be
applied to directed graphs, its probabilistic bounds on the number of rounds and space
required is only proven on undirected graphs because the technique we use for undirected
graphs cannot be applied to directed graphs. This will be further explained at the end of
Section 4.2.1.

The Sampling-LS algorithm modifies Subphases (1.2) and (2.1). When many edge sam-
ples are required by the vertices of low-degree in both subphases, the Sampling-LS algorithm
no longer uses Sufficient-Sampling that might cause event R. The algorithm keeps querying
the oracle until each vertex of low-degree gets sufficient amount of edge samples required.
Obviously, the algorithm needs more queries than the Sampling-AS algorithm. Neverthe-
less, we prove that in undirected graphs, the number of queries needed will not increase
significantly. Below is the detailed pseudo code of the Sampling-LS algorithm. We will
further explain Subphase (1.2) and Subphase (2.1) in Section 4.2.1.

4.2.1 Detailed Implementation

In this section, the key subphases in the Sampling-LS algorithm will be explained and the
number of rounds and space required will be bounded.
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Algorithm 9 Sampling-LS(u, l)
1: Input: Starting node u and desired walk length l.
2: Output: The endpoint of Lu (the random walk from u of length l)
3: Phase 1 starts
4: Subphase (1.1) Sample each distinct node appearing in a round independently with

probability α, and store the sampled nodes into a set T .
5: Subphase (1.2) Perform walks of length w from every node in T . Let W [t] be the

endpoint of the walk of length w starting from t ∈ T . (completes in 6w log(nl) rounds
w.h.p.)

6: Phase 2 starts
7: Initialize Lu to be a zero length walk starting at u and let x ← u
8: S ← { } (which is used to store vertices Lu has stopped at)
9: while |Lu| < l do

10: if x ∈ T and x /∈ S then
11: Extend Lu by appending the available w-length walk (implicitly by setting the

current endpoint x of Lu to be the endpoint of the w-length walk starting from x).
S ← S ∪ {x}, and let x ← W [x].

12: else
13: Sampling-LH(x, T, S, l, Lu) (This means Lu either reaches a non-connector or a

used connector, then we will use the subroutine Sampling-LH to deal with it.)
14: end if
15: end while
16: return the endpoint of Lu

Algorithm 10 Sampling-LH(x, T, S, l, Lu)
1: while |Lu| < l do
2: Subphase (2.1) Sample at most s edges into Ev (with repetition) for each node
v ∈ S using 64

√
s+ 1 log(nl) rounds.

3: Extend Lu by using edges sampled in Subphase (2.1). (When visiting a node v ∈ S
for the k-th time, use the k-th sampled edge from Ev.)

4: x← new endpoint after extending Lu (Then there are three cases.)
5: (1) if (x ∈ S), continue (Lu is trapped in S, at least s progress is made w.h.p.)
6: (2) if (x ∈ T and x /∈ S), return (This means Lu reaches an unused connector and

we can use it to extend.)
7: (3) if (x /∈ T and x /∈ S), S ← S∪{x}, continue (Lu reaches a new non-connector.)
8: end while
9: return the endpoint of Lu
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Subphase (1.2) in the Sampling-LS Algorithm

For each short random walk, a counter is used to store the current length. Subphase (1.2)
is still divided into a sequence of w iterations. Within each iteration, a short random walk
gets exactly one edge sample and thus moves one step forward.

Within the i-th iteration, initially all short random walks have length i − 1. If a new
edge sample e cannot be used to extend any (i−1)-length random walk, then no actions will
be performed. If e can be used, we uniformly select a (i − 1)-length random walk L′ from
all (i−1)-length random walks that can use e. Then L′ is extended using e and the counter
of L′ is set to i. We keep querying the oracle for new edge samples until each random walk
has length i.

If the number of rounds required for a single iteration is bounded, the total number of
rounds required for Subphase (1.2) can also be bounded. However, when trying to bound
the number of rounds required for one iteration, the following challenge is encountered.

Assuming that Subphase (1.2) needs to perform k short random walks, it is possible
that multiple random walks are all at some node v of low-degree at the beginning of some
iteration. Thus, within the iteration, many queries are required to get sufficient amount
of edge samples from v since sampling one edge from v has low probability. In the worst
case, the k random walks are all at some node v′ of degree 1. Using k rounds, each random
walk is only extended by length 1. Therefore, in the worst case, performing the k random
walk processes in Subphase (1.2) requires O(kw) rounds, which is no better than the trivial
algorithm that performs k random walk processes one after another.

Although the worst case can happen, the next lemma proves that the worst case is
unlikely.

Lemma 12. Given an undirected graph G with n vertices, any non-negative integer k ≤
n and any integer w ≥ 0, Subphase (1.2) of the Sampling-LS algorithm always samples
the endpoints of k independent random walks of length w. In addition, Subphase (1.2)
terminates in 6w log(nl) rounds and uses O(k) space w.h.p.

Proof. First of all, we prove that k w-length walks generated are random walks. We look
at one walk L∗. Since an edge sample is never reused, at each step, the future state of L∗

only depends on the current state. Therefore, the stochastic process L̃∗ that generates L∗

satisfies Condition RW1. Meanwhile, when L∗ visits a vertex u, it chooses each outgoing
edge of u with the same probability. As a result, L̃∗ also satisfies Condition RW2. In
conclusion, L∗ is a random walk and all generated w-length walks are random walks.

Next, we bound the number of rounds required using the idea in the proof of Lemma
3.2 in paper [15].

In Subphase (1.2), one random walk is performed for each connector. For better anal-
ysis, assume there is another algorithm called Sampling-I and we couple Subphase (1.2) of
Sampling-LS and Sampling-I. Sampling-I not only performs all random walks required by
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Subphase (1.2) of Sampling-LS, but also performs additional random walks. For each node
v ∈ V , Sampling-I performs d(v) random walks from v. The random walks performed in
the Sampling-I algorithm can be partitioned into two sets. The first set contains random
walks required for connectors in Subphase (1.2) of Sampling-LS. The second one contains
additional random walks added so that each node v has d(v) random walks from v. In one
iteration, the number of rounds required by Sampling-I is no less than that required by
Sampling-LS, since Sampling-I needs additional edge samples for extra random walks.

If there is an upper bound on the number of rounds required for one iteration by
Sampling-I, this bound is also an upper bound on the number of rounds required for one
iteration in Subphase (1.2). Then, we focus on the Sampling-I algorithm and bound the
number of rounds required in one iteration.

We define Xj
i (e) to be a random variable whose value is 1 if the i-th random walk passes

through edge e in the j-th iteration, otherwise its value is 0. Then we let Xj(e) =
∑
iX

j
i (e).

Since all Xj
i (e)s are independent, Chernoff bound can be applied to upper bound Xj(e),

which can prove that w.h.p. every edge does not need to be sampled many times to extend
all random walks.

Claim 2. For any edge e and any j, E[Xj(e)] = 2.

Proof (of Claim 2). Since each node v has d(v) random walks in the beginning, the number
of random walks starting at v is proportional to its stationary distribution d(v)

2m . Therefore,
after j iterations, the expected number of random walks that are at v is still d(v).

For an edge e = {x, y} in the j-th iteration, the number of random walks passing through
e comes from two ends x and y. The expected number of random walks passing from x to
y is d(x) · 1

d(x) = 1. After considering the random walks from y to x, E[Xj(e)] = 2.

By Chernoff bound from Theorem 4.4 of [37], for any edge e and any iteration j (since
n is large, R = 3 log(nl) > 6E[Xj(e)]),

Pr[Xj(e) ≥ 3 log(nl)] ≤ 2−R = (nl)−3. (4.8)

We letQ∗4 denote the event that within one iteration, there exists an edge e and an integer
1 ≤ j ≤ w such that Xj(e) ≥ 3 log(nl). By the union bound, Pr[Q∗4] ≤ m · w · (nl)−3 ≤
n2 · l · (nl)−3 ≤ 1

nl . Then we use Q4
′ to represent the event that in some iteration of w

iterations, Q∗4 happens. Also by the union bound, Pr[Q4
′] ≤ w · 1

nl ≤
1
n . Therefore, if

Q4
′ does not happen, we need at most 3 log(nl) edge samples for each edge e to extend all

random walks in one iteration in the Sampling-I algorithm.
By Lemma 5, using two rounds, we get at least 1 edge sample for each edge with

probability no less than 1 − (nl)−2. In order to get 3 log(nl) edge samples for each edge,
we use 6 log(nl) rounds in each iteration. If we denote the event that within w iterations,
some edge is not sampled for 3 log(nl) times in some iteration by Q4

′′. By the union bound,
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Pr[Q4
′′] ≤ w · 6 log(nl) · (nl)−2 ≤ 1

n . Denoting the union of event Q4
′ and Q4

′′ by Q4, each
iteration requires 6 log(nl) rounds if event Q4 does not happen. Moreover, Pr[Q4] ≤ 2

n .
In conclusion, Subphase (1.2) requires 6w log(nl) (which is Õ(w)) rounds w.h.p.
Finally, we prove the space complexity is O(k). Within each iteration, we use O(k)

space to store the current node and the current length for each random walk. Therefore,
the total space required is O(k).

Note that the previous proof only works in undirected graphs. In directed graphs, it is
possible that the in-degree of a node v is much more than the out-degree of v. If there is
a random walk visiting v from each incoming edge in the last iteration, then the current
iteration requires a large number of queries to sample enough edges to extend all random
walks at v. A counterexample can be easily found to prove that Lemma 12 is not valid
in directed graphs. Consider a directed graph like a star, there is one vertex a as a hub
with only one outgoing edge pointing to another vertex b. All other vertices (including b)
contain one outgoing edge pointing to a. If a random walk is started from each vertex, these
random walks will visit a and approximately n rounds are required to extend all random
walks by length 1.

Subphase (2.1) in the Sampling-LS Algorithm

In Subphase (2.1), we do not prepare s edge samples for each node but use the following
way to sample at most s edges for nodes in S. We query the oracle for 64

√
s+ 1 logn

rounds. For each vertex v ∈ S, a multi-set Ev can be used to store sampled edges of v (with
repetition), and it stops storing new sampled edges of v if the size of Ev equals s. After
the process completes, each vertex in S has at most s edge samples. Moreover, vertices of
low-degree are likely to have less than s edge samples.

Lemma 3.17 in [15] is restated since it is the starting point of our analysis. We let
Nx
t (y) denote the number of times that a random walk visits vertex y after t steps, given

the random walk starts at vertex x.

Lemma 13 (Lemma 3.17 in [15]). For t = O(m2) and any vertex y ∈ V , the random walk
that starts at x ∈ V satisfies

Pr[Nx
t (y) ≥ 32d(y)

√
t+ 1 logn] ≤ 1

n2 . (4.9)

By Lemma 13, a random walk of length s is unlikely to visit a vertex of low degree s
times. Then, Lemma 14 can be proven, which shows that for any vertex v ∈ S, the amount
of edge samples stored in Ev after 64

√
s+ 1 logn rounds is sufficient to extend a random

walk by length s w.h.p.
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Lemma 14. During 64
√
s+ 1 log(nl) rounds, Subphase (2.1) of Sampling-LS uses at most

O(|S| · s) space to store edge samples. The stored edge samples are sufficient to extend a
random walk by length s w.h.p.

Proof. According to Lemma 13, by replacing the parameter n with nl in Inequality (4.9), for
a random walk of length s, a vertex y of degree d(y) will be visited at most 32d(y)

√
s+ 1 log(nl)

times, otherwise we say event Q∗5 happens (Q∗5 happens with probability at most (nl)−2).
For each vertex y, w.h.p. deg(y) edges are sampled for y using two rounds. Therefore, we
use 64

√
s+ 1 log(nl) rounds to get the sufficient amount of edge samples for each vertex y.

During Subphase (2.1), every edge in E is output by the oracle in every 2 rounds w.h.p,
otherwise we denote the event by Q5

′′.
Let Q5

′ denote the event that Q∗5 happens in some invocation of Sampling-LH, by the
union bound Pr[Q5

′] ≤ l · 1
(nl)2 ≤ 1

n . Following a similar analysis to that of Subphase
(1.2), we get Pr[Q5

′′] ≤ l · (nl)−2 ≤ 1
n . Therefore, throughout the Sampling-LS algorthm,

Subphase (2.1) uses Õ(
√
s) rounds, unless event Q5

′′ happens. More importantly, this
amount of edge samples is sufficient to perform a random walk of length s, if event Q5

′ does
not happen. Denote the union of Q5

′ and Q5
′′ by Q5 and Pr[Q5] ≤ 2

n by the union bound.
Then, we prove that space complexity is O(|S|·s). Before starting sampling, O(|S|) space

is used to store all nodes in S. For a vertex y of high degree, 32d(y)
√
s+ 1 log(nl) may be

greater than s, but we only store at most s edges for y. Therefore, min{s, 32d(y)
√
s+ 1 log(nl)}

edges are required for each vertex y ∈ S. As a result, the total space required is still bounded
by O(|S| · s).

4.2.2 Analysis

The following theorem that describes the core result of our analysis will be proven in Sections
(a) and (b).

Theorem 4. Given an undirected graph G with n vertices and any l ≥ 0, the Sampling-LS
algorithm always samples the endpoint of a single random walk with length l. The algorithm
uses Õ (αn+ αl) space and terminates in Õ

(
l

4
5 + l

3
5
α

)
rounds w.h.p. In particular, if l =

O(n) and α = n−
1
5 , space complexity is Õ(n

4
5 ) and the number of rounds required is Õ(n

4
5 )

w.h.p.

(a) Correctness

We follow the argument in Subsection (a) of Section 4.1.2.
Lemma 12 proves that walks of Type 1 (see page 33) are independent random walks.

Now we prove that walks of Type 2 (also see page 33) are also random walks. Consider a
walk L∗ of Type 2 which is generated in one invocation of Sampling-LH. No edge sample is
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reused, since L∗ uses the k-th edge sample of u if L∗ visits u for the k-th time. Hence, at
each step, the future state of L∗ only depends on the current state. Therefore, the stochastic
process L̃∗ that generates L∗ satisfies Condition RW1. Meanwhile, when L∗ visits a vertex
u, L∗ chooses each outgoing edge of u with the same probability. As a result, L̃∗ also
satisfies Condition RW2. In conclusion, L∗ is a random walk if R does not happen.

Moreover, as each edge sample is used by at most one short random walk and each short
random walk is used at most once, all random walks of Type 1 and Type 2 are independent.
By Lemma 1, the walk Lu, generated by stitching these independent short random walks is
also a random walk.

In conclusion, Lu generated by Sampling-LS is always a random walk.

(b) Probabilistic Bounds on Space and Rounds

We use the same event Q′ (see page 34) in the Sampling-AS algorithm. As analyzed before,
Q′ is the union of events Q0, Q1 and Q3, and Pr[Q′] ≤ 3

n . W.h.p., Q′ does not happen.
Space complexity will be analyzed first. By Lemma 3, we need Õ(αn) space to store

endpoints of w-length random walks w.h.p. The maximal number of connectors used is
O( lw ) by Lemma 2. According to Lemmas 10 and 14, the space required in Subphase (2.1)
is Õ( l

αws) w.h.p. Therefore, the total space required is Õ(αn+ l
αws) w.h.p.

Next, we bound the number of rounds required. Subphase (1.1) uses one round. If event
Q4 does not happen, Subphase (1.2) uses 6w log(nl) rounds by Lemma 12. The number
of times that Subphase (2.1) executes is bounded by Õ( ls + l

αw ) using the same analysis
as that of the Sampling-AS algorithm, unless event Q′ happens. If Q5 does not happen,
Subphase (2.1) requires Õ(

√
s) rounds by Lemma 14. We denote the union of events Q′,

Q4 and Q5 by QL. By the union bound, Pr[QL] ≤ 3
n + 2

n + 2
n = 7

n . Therefore, the total
number of rounds required is Õ(w + ( ls + l

αw )
√
s) w.h.p.

If we set w = l
4
5 and s = α2l

4
5 , the total space required is Õ (αn+ αl) and the total

number of rounds required is Õ
(
l

4
5 + l

3
5
α

)
w.h.p. When l = O(n) and α = n−

1
5 , space

complexity is Õ(n
4
5 ) and the total number of rounds is Õ(n

4
5 ). Compared to the Sampling-

AS algorithm, space complexity and the total number of rounds required for the Sampling-
LS algorithm increase by Õ(n

1
20 ).

This completes the proof of Theorem 4.
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Chapter 5

Special Classes of Graphs

In Chapter 3 and Chapter 4, we described several algorithms that can sample the endpoint
of a random walk in the graph streaming model and the edge sampling model. In addition,
we gave probabilistic bounds on the space and the number of passes/rounds required. We
also provided a technique to save space for these algorithms. In this chapter, we analyze
the performance of these algorithms on special classes of graphs such as regular graphs,
random graphs and fast mixing graphs.

5.1 Regular Graph

A regular graph is a graph each vertex of which has the same degree. For a directed regular
graph, we additionally require that for each vertex, its in-degree equals to its out-degree.
A regular graph whose vertices have degree k is called a k-regular graph.

Throughout our analysis, we assume k is a constant and it is known. In this case, only
O(1) unit of space is required to store all the edges incident on a vertex. In other words,
instead of using s space in Subphase (2.1) for each vertex in S, only O(1) space is needed by
using the space-saving technique stated in earlier chapters. Moreover, because the change
of s’s value has no impact on the amount of space required, an increase in s would also
reduce the number of passes/rounds required.

The Streaming-SS algorithm

First of all, we consider the algorithm Streaming-SS that uses our space saving technique in
the graph streaming model. The following lemma states the performance of Streaming-SS.

Lemma 15. Given a k-regular connected graph with n vertices, the Streaming-SS algorithm
always samples the endpoint of a random walk with length l. W.h.p., it uses Õ(αn +

√
l
α)

space and terminates in Õ(
√

l
α) passes. In particular, if l is O(n) and α = n−

1
3 , the space

complexity is Õ(n
2
3 ) and the number of passes required is Õ(n

2
3 ) w.h.p.
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Proof. W.h.p., Subphase (1.1) and Subphase (1.2) use Õ(αn) units of space. By Lemmas 2
and 4, w.h.p. |S| is at most Õ( l

αw ). Since each node in S uses O(1) space, the total space
required is Õ(αn+ l

αw ) w.h.p.
Subphase (1.1) uses one pass, and Subphase (1.2) uses w passes. In the subroutine

Streaming-H of Phase 2, there are originally two cases where we need one pass to sample s
edges for nodes in S.

Case 1. Lu visits a stuck node x /∈ T and x /∈ S. (This is the case where the random walk
leaves S but visits a non-connector.)

Case 2. Lu keeps visiting vertices in S and gets trapped in S. (see page 14 for the definition
of trap)

In the first case, one pass is used to get all the edges for each node in S. The number
of times that Case 1 happens is bounded by |S|, which is Õ( l

αw ) w.h.p. However, Case 2
never happens in the Streaming-SS algorithm on regular graphs. Because all edges for each
vertex are stored in S, regardless of how many times Lu visits a node v ∈ S, we can extend
Lu using an edge that is uniformly sampled from all outgoing edges of v. Therefore, the
total number of passes required in Phase 2 is Õ( l

αw ) w.h.p.
Adding the number of passes required in Phase 1, the total number of passes required

by the Streaming-SS algorithm on regular graphs is Õ(w + l
αw ) w.h.p. Set w =

√
l
α , and

Lemma 15 is obtained.

The Sampling-SAS algorithm

We first introduce some modifications to the Sufficient-Sampling used by the Sampling-
SAS algorithm. The modified Sufficient-Sampling keeps querying the oracle until for each
vertex k distinct edges have been stored during the Normal-sampling step. Through this
modification the event R can be avoided since we have stored all edges of each vertex. When
uniform edge samples for a vertex v are needed in Subphase (1.2) or Subphase (2.1), we
can generate as many edge samples as required by uniformly sampling all distinct edges
starting from v. The modified algorithm is called Sampling-SASR, which is a Las Vegas
algorithm, because its output is always correct. The same modifications can be applied to
other graphs as long as the degree of each vertex is known. The next lemma describes the
performance of Sampling-SASR.

Lemma 16. Given a k-regular connected graph with n vertices, the Sampling-SASR algo-
rithm always outputs the endpoint for a random walk of length l. W.h.p., it uses Õ(αn+

√
l
α)

space and terminates in Õ(
√

l
α) number of rounds. In particular, if l = O(n) and α = n−

1
3 ,

the space complexity is Õ(n
2
3 ) and the number of rounds required is Õ(n

2
3 ) w.h.p.
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Proof. Using similar analysis for the Streaming-SS algorithm, Sampling-SASR requires
Õ(αn + l

αw ) space and Õ(w + l
αw ) number of rounds w.h.p. By setting w =

√
l
α , Lemma

16 is obtained.

Note that Sampling-LS is not used for regular graphs since the Sampling-SASR algo-
rithm is a Las Vegas algorithm with better performance.

5.2 Random Graph

Random graphs are an important type of graphs which are generated by some random
process. It is believed that studying random graphs can help us gain a deeper understanding
of the structure of large graphs. In this section, we study the most common random graph
model, the Erdős-Rényi model [18], denoted as G(n, p) where n is the number of nodes and
every possible edge occurs independently with probability p (0 < p < 1).

For random graphs, we assume np > 1+ε (Random graphs with this property are called
supercritical random graphs) and np = O(1). For random graphs under this assumption,
w.h.p there is a single giant connected component, with other components having size
O(logn) [10]. We only focus on performing random walks on the giant component.

Random graphs are similar to regular graphs to some extent since the degree of most
nodes is close to the expected degree in a random graph. The expected degree for a node
is (n− 1)p ≈ np when n is large. By our assumption, np is a constant and thus the degree
of most nodes is close to a constant. The following lemma bounds the maximal degree of a
vertex in a random graph. (Bollobás [9] proved a tighter bound with more a complicated
proof, but the bound below helps us simplify further computation.)

Lemma 17. The degree of any node in G(n, p) does not exceed (1 + 4 logn)(n− 1)p w.h.p.

Proof. First of all, consider only one specific node u. Let Xv be 1 if the possible edge {u, v}
exists, 0 otherwise. Let X equal to

∑
v∈V,v 6=uXv, and E[X] = (n − 1)p can be derived.

Since Xv’s are identical, independent and 0-1 random variables, by Chernoff bound,

P [X > (1 + δ)(n− 1)p] ≤ e−
δ2

2+δ (n−1)p(δ > 0). (5.1)

Let δ = 4 log(n). Because 4 log(n) is greater than 2,

P [X > (1 + δ)(n− 1)p] ≤ e−(2 log(n))(n−1)p = n−2(n−1)p. (5.2)

According to our assumption, (n− 1)p ≥ 1, therefore w.h.p. X ≤ (1 + 4 logn)(n− 1)p.
Then we can apply the union bound over all nodes. Let Qr denote the event that some

node has degree greater than (1 + 4 logn)(n− 1)p. Then

P [Qr] ≤ n · n−2(n−1)p ≤ n−1. (5.3)
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Therefore, no node in a random graph has degree greater than (1 + 4 logn)(n − 1)p
w.h.p.

Since np is a constant under our assumption, the space required to store all the edges
incident on any node is Õ(1) w.h.p.

The Streaming-SS algorithm requires exactly the same amount of space and the same
number of passes on regular graphs and random graphs. The space required is Õ(αn+ l

αw )
and the number of passes required is Õ(w + l

αw ) w.h.p. Note that it is possible that the
degree of some node in G(n, p) exceeds (1 + 4 logn)(n − 1)p. In this case, the previous
probabilistic bounds do not hold.

Because the degree of each vertex in random graphs is unknown in the edge sam-
pling model, the Sampling-SAS algorithm cannot be converted into a Las Vegas algorithm.
Sampling-SAS samples the endpoint for a random walk of length l, unless R happens. In
addition, Sampling-SAS uses the same space and number of rounds as in Lemma 16 w.h.p.

The Sampling-LS algorithm also achieves better performance on random graphs, which
will be elaborated in the next section.

5.3 (Undirected) Fast Mixing Graph

A fast mixing graph is a graph where random walk has a mixing timeM(ε) = poly(logn, log(1
ε )).

The fast mixing property can be used to improve the performance of the Streaming-S algo-
rithm and the Sampling-LS algorithm. The improvements for the Sampling-LS algorithm
on fast mixing graphs will be explained in detail next. The explanation for Streaming-S al-
gorithm’s improvements is skipped because it shares similarity with that of the Sampling-LS
algorithm.

As mentioned before, π∗ is the stationary distribution of a random walk. After M(ε)
steps, the random walk visits a vertex v with probability close to π∗(v). For any set U ,
the probability that the random walk leaves U after M(ε) steps (denoted by p̂) is close to∑
v/∈U π

∗(v). If p̂ is no less than 1
4 and M(ε) is small, then the random walk quickly leaves

the set U (as will be explained in detail later) w.h.p.
Subphase (2.1) of Sampling-LS prepares at most s uniform edge samples for each node in

S, in case the random walk Lu keeps visiting nodes in S. However, for fast mixing graphs,
if S satisfies the condition that p̂ ≥ 1

4 , then Lu is likely to leave S in less than s steps.
Therefore, Subphase (2.1) does not have to prepare s edge samples for each node in S.

When the random walk Lu stops at a stuck node in an undirected graph, let

c =
∑
x∈S

π∗(x) =
∑
x∈S d(x)

2m . (5.4)
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After Lu proceeds with M(ε) steps, the probability p̂ that the current endpoint of Lu is
not in S is (σ is the distribution of Lu’s endpoint before M(ε) steps, and P is the transition
matrix)

p̂ =
∑
x/∈S

σPM(ε)(x) =
∑
x/∈S

π∗(x)− (π∗(x)− σPM(ε)(x)). (5.5)

It can be simply derived that

p̂ ≥
∑
x/∈S

π∗(x)− |π∗(x)− σPM(ε)(x)| =
∑
x/∈S

π∗(x)−
∑
x/∈S
|π∗(x)− σPM(ε)(x)|. (5.6)

By the well-known equation ‖µ− π‖TV = 1
2
∑
x |µ(x)−π(x)| and the definition of mixing

time,

∑
x/∈S
|π(x)− σPM(ε)(x)| ≤ 2

∥∥∥σPM(ε) − π
∥∥∥
TV

< 2ε. (5.7)

Therefore,
p̂ > 1− c− 2ε. (5.8)

Thus, the probability that Lu is outside of S after M(ε) steps is greater than 1− c− 2ε.
We consider one iteration to be the process that Lu moves for M(ε) steps. After each
iteration the probability that Lu is outside of S is p̂ regardless of the initial distribution of
Lu in this iteration. Next, it will be shown that if p̂ ≥ 1

4 , Lu leaves each set S within log(nl)
iterations w.h.p. In fast mixing graphs, since M(ε) log(nl) is likely to be smaller than s,
only M(ε) log(nl) edge samples need to be prepared for each node in S.

As Lu grows, the size of set S also grows. Consequently, c increases and probability p̂
decreases accordingly. In order to give a lower bound of the probability p̂, c needs to be
upper bounded so that p̂ ≥ 1

4 . Let c
∗ be the maximum value of c throughout the execution

of Sampling-LS. Because c monotonically increases, c∗ equals to the value of c calculated
using the largest S (denoted as S∗) when the algorithm terminates. Moreover, we define
Condition F1 as

∑
x∈S∗ d(x)

2m + 2ε < 3
4 . If Condition F1 is satisfied, p̂ ≥ 1

4 through the
algorithm.

Here we present the core results of the analysis.

Lemma 18. Given an undirected graph G(V,E) with mixing timeM(ε), when Sampling-LS
terminates, if Condition F1 is satisfied, the random walk Lu leaves set S withinM(ε) log(nl)
steps w.h.p.

Proof. For set S and p̂ during the algorithm,

p̂ > 1− c− 2ε ≥ 1− c∗ − 2ε. (5.9)

Let Ei be the event that the endpoint of Lu is inside S by the end of the i-th iteration.
Denote the event that random walk never leaves set S within the i-th iteration by Yi. Since
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event Yi ⊆ Ei,
Pr[Yi] ≤ Pr[Ei]. (5.10)

As (
⋂k
i=1 Yi) ⊆ (

⋂k
i=1Ei), the probability that Lu never leaves set S after k iterations

(denoted as Pr[
⋂k
i=1 Yi]) satisfies

Pr[
k⋂
i=1

Yi] ≤ Pr[
k⋂
i=1

Ei]. (5.11)

In addition,

Pr[
k⋂
i=1

Ei] = Pr[E1] · Pr[E2|E1] · Pr[E3|E2 ∩ E1]... · Pr[Ek|
k−1⋂
i=1

Ei]. (5.12)

Since each iteration has M(ε) steps, by the definition of mixing time, the endpoint’s
distribution of Lu is close to the stationary distribution. Therefore, every Pr[Ej |

⋂j−1
i=1 Ei]

can be bounded using Inequality (5.8). Consequently,

Pr[Ej |
j−1⋂
i=1

Ei] ≤ c∗ + 2ε (1 ≤ j ≤ k). (5.13)

Thus,

Pr[
k⋂
i=1

Ei] ≤ (c∗ + 2ε)k. (5.14)

By Inequalities (5.11) and (5.14),

Pr[
k⋂
i=1

Yi] ≤ (c∗ + 2ε)k. (5.15)

If k = log(nl) and c∗ + 2ε < 3
4 , then

Pr[
k⋂
i=1

Yi] ≤ (c∗ + 2ε)k ≤ 1
nl
. (5.16)

Thus, w.h.p., Lu leaves set S within M(ε) · log(nl) steps. Let Q∗f be the event that,
when Lu gets stuck at some node, Lu does not leave S within M(ε) · log(nl) steps. Because
Lu can get stuck at most l times, by the union bound Pr[Q∗f ] ≤ 1

nl · l = 1
n . In other words,

w.h.p., Lu leaves S within M(ε) · log(nl) steps throughout the algorithm.
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Space Complexity and the Number of Rounds Required

Because of Lemma 18, Subphase (2.1) only needs to prepare M(ε) log(nl) edges for each
vertex in S rather than up to s edges. For a fast mixing graph whose M(ε) is poly logn,
one way to use Lemma 18 is sampling poly logn · log(nl)(Õ(1)) edges for each vertex in S in
one round, which greatly saves space in Subphase (2.1). Another way is using O(1) space
to store the current endpoint of Lu and using M(ε) log(nl) new rounds until Lu leaves S.

Although there are two ways to use Lemma 18, only the second way is elaborated
in this section due to the similarity of analysis shared by the first and the second ways.
The Las Vegas algorithm Sampling-LS is modified using the second way and is now called
Sampling-LSF. The performance of Sampling-LSF is given in Lemma 19.

Lemma 19. Given an undirected connected fast mixing graph G with n vertices and any
l ≥ 0, Sampling-LSF always samples the endpoint for a random walk of length l. W.h.p.,
it uses Õ(αn +

√
l
α) space and completes in Õ(

√
l
α) rounds, unless Condition F1 is not

satisfied. In particular, if l = O(n) and α = n−
1
3 , the space complexity is Õ(n

2
3 ) and the

number of rounds required is Õ(n
2
3 ) w.h.p.

Proof. First of all, we bound the space complexity of the Sampling-LSF algorithm. The
algorithm requires Õ(αn) space to store connectors and the endpoints of w-length random
walks w.h.p. By Lemmas 2 and 4, |S| is at most Õ( l

αw ) w.h.p. Since each node in S

uses O(1) space, the space required in Phase 2 is Õ( l
αw ). Therefore, the space required to

perform a single random walk of length l is Õ(αn+ l
αw ) w.h.p.

Phase 1 requires O(w) rounds to prepare w-length random walks. In Phase 2, when
Lu stops at a stuck node, by Lemma 18, w.h.p. M(ε) log(nl) (Õ(1)) rounds are required
to let Lu leave S. After leaving S, with probability α, Lu stops at a connector and makes
w progress. By Lemma 4, for all nodes in S, there are at most Õ( 1

α) consecutive non-
connectors before a connector occurs w.h.p. Therefore, if Lu stops at Õ( 1

α) nodes outside
S, Lu is extended by at least w steps w.h.p. Moreover, the number of rounds required for
Lu to stop at such amount of nodes outside S is bounded by Õ( 1

α) · Õ(1) = Õ( 1
α) w.h.p.

Consequently, the number of rounds required in Phase 2 is bounded by l
w · Õ( 1

α) = Õ( l
αw )

w.h.p. Adding the number of rounds required in Phase 1, the total number of rounds
required by the algorithm is Õ(w + l

αw ) w.h.p.
Let w =

√
l
α . We obtain Lemma 19.

5.3.1 Analysis for Particular Fast Mixing Graphs

In this section, we use some known results to demonstrate that random graphs generated
by Erdős-Rényi model and Preferential Attachment model (or Barabási-Albert model) have
the fast mixing property. Then Sampling-LSF is applied to them.
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Since M(1
4) mixing time in various classes of graphs has been well studied, we set ε to

be 1
4 in order to use the known results.

Random Graphs Generated by Erdős-Rényi Model

Fountoulakis et al. [20] and Benjamini et al. [8] proved independently the following theorem
which indicates the mixing time for supercritical random graph G(n, p) (np > 1).

Theorem 5 (Theorem 1.1 in [8]). If p = c
n where c > 1, then C1, the largest component of

G(n, p) (the unique component of linear size) satisfies

MC1(1
4) = Θ(log2(n)), (5.17)

here MC1(1
4) denotes the 1

4 -mixing time for the component C1.

Since the mixing time for supercritical random graph is poly logn, Sampling-LSF can
be used. Next, we bound the size of S∗ so that Condition F1 is satisfied, where S∗ is the
set S when Sampling-LSF terminates.

By Lemma 17, we find that the upper bound on the degree of any vertex in S is
(1 + 4 logn)(n − 1)p w.h.p. Then we prove the lower bound for the number of edges of
G(n, p) to bound the denominator 2m of c.

Lemma 20. W.h.p., the number of edges of G(n, p) is at least (1− logn√
n

)pn(n− 1).

Proof. There are n(n−1)
2 possible edges and each edge occurs independently with probability

p. Let Yuv be 1 if the possible edge (u, v) exists, 0 otherwise. Let Y =
∑
u∈V,v∈V,u 6=v Yuv.

Then E[Y ] = pn(n−1)
2 . As the Yuvs are identical, independent and 0-1 random variables,

Chernoff bound can be used, and

Pr[Y < (1− δ)E[Y ]] ≤ e−
δ2
2 E[Y ] ≤ e−

δ2
4 n. (5.18)

If we set δ = logn√
n
, we get

Pr[Y < (1− δ)E[Y ]] ≤ e−
log2(n)

4 ≤ 1
n
. (5.19)

Condition F1 implies that∑
x∈S∗ deg(x)

2m ≤ |S
∗|(1 + 4 logn)(n− 1)p

2
(
1− logn√

n

)
pn(n− 1)

= |S
∗|(1 + 4 logn)

2
(
1− logn√

n

)
n

<
1
4 . (5.20)

Then,

|S∗| <

(
1− logn√

n

)
n

2(1 + 4 logn) . (5.21)

51



As proved earlier, |S∗| = Õ( l
wα). For any l, w and α can be set so that Inequality (5.21)

is satisfied.

Power Law Graphs

Power law graphs are graphs whose degree distribution satisfies the power law asymptoti-
cally. That is, the fraction P (k) of vertices of degree k is

P (k) ∼ k−α, (5.22)

where C is a constant and α, called exponent, is also a constant.
Many networks are found to have the power law property. For example, Price [16] found

that the number of citations a paper receives in the citation network satisfies the power
law. Barabási et al. [5] found that the number of actors that an actor has collaborated with
satisfies the power law with exponent α = 2.3± 0.1. Therefore, it is important to perform
random walks on power law graphs.

In order to explain the power law property in networks, Barabási et al. [5] proposed a
model called preferential attachment model or Barabási-Albert model. The model uses the
following procedure to generate a random power law graph Gd(n).

Initially, the graph has d0 vertices, the edges between which are chosen arbitrarily, as
long as each vertex has at least one edge. Then we add n new vertices to the graph. Each
new vertex connects to d existing vertices such that the probability pi that the i-th new
vertex connects to the vertex u is

pi = d(u)∑
v∈V d(v) , (5.23)

where d(v) is the current degree for vertex v.
This process is called preferential attachment process because vertices of high degree are

more likely to be connected by more edges when new nodes are added. Moreover, Barabási
et al. [5] proved that Gd(n) is a power law graph with exponent α = 3.

The preferential attachment model is the first well-known model attempting to generate
and explain a power law network. Although it has the limitation that it can only generate
power law graphs with exponent 3, it is still worth studying.

Mixing time is inversely correlated to conductance in a graph. Next we use a known
conductance property of the preferential attachment model to bound its mixing time. The
conductance of a graph G is defined as (S = V \ S)

ΦG = min
S⊆V

∑
u∈S,v∈S auv

min(a(S), a(S))
, (5.24)
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where auv is 1 if edge (u, v) exists (otherwise 0), and

a(S) =
∑
u∈S

∑
v∈V

auv (5.25)

is the number of edges incident to vertices in S.
Mihail et al. [36] proved the constant conductance property for preferential attachment

graph Gd(n) in the following theorem, in which ρGd(n) is the edge expansion of the graph
and ΦGd(n) is the conductance of the graph. The edge expansion of a graph G, also known
as its Cheeger constant is defined as

ρGd(n) = min
U⊂V,0<|U |<n

2

E(U,U)
|U |

, (5.26)

where E(U,U) denotes the set of edges with one end in U and the other end in V \ U .

Theorem 6 (Theorem 1 in [36]). For every positive constant integer d ≥ 2 and for every
positive constant c < 2(d − 1) − 1, there is a positive constant γ = γ(d, c) such that the
random graph Gd(n) has edge expansion γ and conductance γ

d+γ w.h.p. In particular, for

γ < min{d−1
2 −

c+1
4 , 1

5 ,
(d−1) ln 2− 2

5 ln 5
2(ln d+ln 2+1) },

Pr[ρGd(n) < γ] ≤ o(n−c), (5.27)

and
Pr[ΦGd(n) ≤

γ

d+ γ
] ≤ o(n−c). (5.28)

Paper [36] proved the constant conductance property of preferential attachment graphs
but did not bound mixing time. Now, we use the inequality below to bound the mixing
time for preferential attachment graphs. The inequality (Φ is the conductance of the graph
and M is the mixing time.),

Φ2/2 ≤ 1
M
≤ 2Φ, (5.29)

was first proven by Jerrum et al. [23].
We let MGd(n) be the mixing time for the preferential attachment graph, then

MGd(n) ≤
2

ΦGd(n)
2 . (5.30)

By Theorem 6, w.h.p.

MGd(n) ≤ 2
(
d+ γ

γ

)2
. (5.31)

Since the mixing time of the preferential attachment graph can be bounded by a constant
w.h.p., our algorithms for fast mixing graphs can be applied to preferential attachment
graphs.
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The Sampling-LSF algorithm can also be used on other power law graphs as long as the
graphs have the fast mixing property.

Now for fast mixing power law graphs with exponent α, we bound the maximal size of
S∗ so that Condition F1 is satisfied.

Recall that Condition F1 requires that
∑

x∈S∗ d(x)
2m < 1

4 (ε = 1
4). In the worst case, S∗

contains as many vertices of high degree as possible. Thus, we need to find out the smallest
fraction of vertices whose degree sum is half of the graph’s total degree since this fraction
is the upper bound of |S∗|.

We assume the degree’s power law distribution is

p(x) = Cx−α (5.32)

with α > 0 and x ∈ N+. Although the degree distribution of a power law graph is asymp-
totically close to Equation (5.32) by definition, we use Equation (5.32) to roughly calculate
the bound of |S∗|.

First of all, we calculate the constant C. As

1 =
∑
x∈N+

p(x), (5.33)

C = 1∑
x∈N+ x−α

. (5.34)

The sum
∑
x∈N+ x−α is the Riemann zeta function, and it is denoted by ζ(α). Thus,

p(x) = x−α

ζ(α) . (5.35)

Let P (x) be the probability that the degree of a node is greater than x, then

P (x) =
∑

t>x,t∈N+

t−α

ζ(α) . (5.36)

In addition, let W (x) be the fraction of the total degree of vertices that have degree
more than x. Thus,

W (x) =
∑
t>x,t∈N+ t t

−α

ζ(α)∑
t∈N+ t t

−α

ζ(α)
=
∑
t>x,t∈N+ t−α+1

ζ(α− 1) . (5.37)

Since ∫ k+1

k
t−αdt ≤ k−α ≤

∫ k

k−1
t−αdt, (5.38)

then
W (x) ≤ 1

ζ(α− 1)

∫ ∞
x

t1−αdt = 1
ζ(α− 1)

x2−α

α− 2 . (5.39)
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In order to satisfy Condition F1, we require that

W (x) ≤ 1
ζ(α− 1)

x2−α

α− 2 <
1
4 , (5.40)

and thus

x >

(
ζ(α− 1)(α− 2)

4

) 1
2−α

. (5.41)

Let x̂ =
(
ζ(α−1)(α−2)

4

) 1
2−α . Then the maximal size of S∗ is bounded by P (x̂).
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Chapter 6

Applications

In this chapter, we first develop an algorithm called Sampling-AM that samples the end-
points of multiple random walks based on Sampling-AS. Then we use Sampling-AS to
estimate PageRank scores for vertices. Sampling-AM is further modified to sample the end-
points of absorbing random walks and it is used in a random walk based recommendation
system.

6.1 Multiple Random Walks

Applications in Sections 6.2 and 6.3 involve the endpoints of a large number of random
walks. We can either use our Sampling-AS algorithm to sample their endpoints one after
another or execute multiple instances of Sampling-AS in parallel.

If multiple instances of Sampling-AS execute Sufficient-Sampling in parallel, an edge
sample drawn in the Normal-sampling step might be used more than once. Thus, these mul-
tiple random walks are not independent. Therefore, when parallel executions of Sufficient-
Sampling are needed, we use a technique called Parallel-Sufficient-Sampling that generates
all edge samples required together. Assume K random walks are being constructed. Let
U1 denote the current distinct endpoints of K random walks, then for each node u ∈ U1,
Parallel-Sufficient-Sampling countsmu

′ which is the number of edge samples starting from u

required by allK random walks. Next, Parallel-Sufficient-Sampling uses Sufficient-Sampling
with U = U1 and mu = mu

′ for each u ∈ U1. In this way, all edge samples generated by
Parallel-Sufficient-Sampling are never reused; therefore, all K random walks are indepen-
dent. The space complexity is the same as that required by K instances of Sufficient-
Sampling since the number of edge samples stored does not change. Moreover, the error
probability is the same as that for a single execution of Sufficient-Sampling since the "bad"
event is still R∗.
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Hence, executing K instances of Sampling-AS in parallel (using Parallel-Sufficient-
Sampling) requires Õ(Kαn + K l

1
2
α ) space w.h.p. The number of rounds required is still

Õ(l
3
4 + l

1
4
α ) w.h.p., because each execution of Sampling-AS can use the same round.

Paper [42] uses an elegant technique to reduce the space required by multiple random
walks. Since the technique can be directly used in our solution, we will briefly describe the
technique.

The main idea of the technique is to reduce the number of w-length random walks we
prepare. When we perform multiple random walks, some connectors are likely to be used
by most of the random walks while others are not likely to be used. Therefore, instead of
preparing K w-length random walks for each connector, we prepare w-length random walks
based on the probability pv that the w-length random walks of a connector v is used. This
technique can save much space when K is large. Moreover, if we use K∗ random walks and
count n∗v, the number of w-length random walks of the connector v that is used, then we
can estimate pv using n∗v

K∗ . We start by using a small K∗ and then double the number of
random walks each time to get a more accurate estimation of pv.

In order to estimate pv, we need the following lemma.

Lemma 21 (Lemma 4.2 in [42]). If the probability of an event X occurring is p, then in
t = Θ(logn/ε) trials, the fraction of times the event X occurs satisfies

p−√pε− ε ≤ X ≤ p+√pε+ ε, (6.1)

w.h.p.

We omit the proof for the lemma here since it can be found in [42]. Note that when
t = 8(log(nKl)/ε) = O(logn/ε), this process succeeds with probability at least 1−(nKl)−2.
Also, if p� ε, the approximation ratio is close to 1. Next we will give the precise definition
for pv.

Definition 6.1.1 (Definition 4.4 in [42]). For every connector v, pv is defined as the proba-
bility that during the execution of the algorithm Streaming-S, the w-length walk of v is used
(and hence v gets included in the set S).

We call our algorithm Sampling-AM, which samples the endpoints of multiple random
walks in the edge sampling model. The algorithm runs in logK phases and in Phase j + 1
we will use O(2j logn) random walks in parallel to estimate pv with an additive error of√
pv/2j + 1/2j (we denote the estimated pv by p̃v). This p̃v is then used in Phase j + 2 to

calculate the number of w-length random walks we need to prepare for each connector. After
w-length random walks are prepared, in Phase j + 2, the algorithm spawns O(2j+1 logn)
instances of Sampling-AS using Parallel-Sufficient-Sampling. (Note that Phase 1 processes
of all instances of Sampling-AS have been completed.) Please refer to the pseudo code for
details.
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The performance of Sampling-AM is stated in Theorem 7. "Bad" event RM is the event
that R (see page 33) happens in some execution of Sampling-AS.

Theorem 7. Given a graph G with n vertices, any l ≥ 0 and any non-negative K upper
bounded by poly(n), Sampling-AM samples the endpoints of K l-length random walks, unless
the event RM happens. (RM happens with probability at most Õ( 1

n).) The algorithm termi-

nates in Õ(l
3
4 + l

1
4
α ) rounds and uses Õ(αn+K l

1
2
α ) space with probability at least 1−O( 1

n),
for any choice of α with 0 < α ≤ 1.

Algorithm 11 Sampling-AM(σ, l,K)
1: Input: Initial distribution σ, length of the walk l and the number of random walks K
2: T ← nodes obtained by sampling each node independently with probability α.
3: Perform phases 1 through log K as follows.
4: Phase 1:
5: Sample the endpoints of O(logn) walks of length w starting from each connector in
w rounds. These w-length random walks are sufficient for O(logn) parallel executions
of Sampling-AS.

6: Spawn K1 = O(logn) instances of Sampling-AS (using Parallel-Sufficient-Sampling)
to obtain K1 walks. All these instances only use the w-length walks generated in the
previous step.

7: For each connector v, use p̃v = nv/K1 to estimate pv, where nv is the number of
used w-length walks of v generated in the current phase.

8: Phase (j+1): {The estimated p̃v is known up to an additive error of
√
pv/2j−1+1/2j−1

}
9: In w rounds, find the endpoints of O(2j p̃v logn + logn) random walks of length w

starting from connector v. These w-length random walks are sufficient for O(2j logn+
logn) parallel executions of Sampling-AS.

10: Run Kj+1 = O(2j logn+logn) instances of Sampling-AS using the w-length random
walks sampled in the previous step. (When parallel executions of Sufficient-Sampling
is needed, Parallel-Sufficient-Sampling is used.)

11: Estimate the pv using p̃v = nv/Kj+1 where nv is the number of used w-length walks
of v generated in the current phase. This estimate is accurate up to an additive error
of
√
pv/2j + 1/2j w.h.p. (by Chernoff bound).

Proof. We show that the number of w-length random walks in each phase is sufficient to
perform single random walks in that phase w.h.p. Since we perform O(2j−1 logn + logn)
random walks in Phase j, after Phase j, our estimated p̃v satisfies p̃v ≥ pv −

√
pv/2j−1 −

1/2j−1 w.h.p by Lemma 21 with ε ≤ 2−(j−1). Then we can deduce pv ≤ 2p̃v + 1
2j−1 =

O(p̃v + 1
2j−1 ) w.h.p. Since we generate Kj+1 random walks in Phase j + 1, by Lemma 21

with ε ≤ 2−j , the number of random walks that use connector v’s w-length random walks
is at most Kj+1(pv +

√
pv/2j + 1/2j) ≤ O(2j p̃v logn+ logn). This is exactly the number of

w-length random walks we prepare in Phase j + 1.
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In Phase 1, we start with 8 log(nKl) random walks. Therefore, in each phase, we use
at least 8 log(nKl) random walks to estimate pv. Hence, each estimation for pv satisfies
Inequality (6.1) with probability at least 1− (nKl)−2. We assume that α · logK · logn ≤ K,
then the total number of estimations for pv is at most logK · |T | ≤ Kn (|T | is the number
of connectors). Consequently, the probability that some estimation p̃v does not satisfy
Inequality (6.1) during the Sampling-AM is at most (nKl)−2 · Kn = 1

nKl2 by the union
bound. Hence, the number of w-length random walks in each phase is sufficient to execute
the instances of Sampling-AS in the same phase w.h.p.

We need Õ(αn) units of space to store connectors. Then we need to store the endpoints
of w-length random walks in Phase t+1 using O(

∑
(2tp̃v logn+logn)) of space. In addition,

we observe that
∑
pv ≤ l

w . Since the last phase stores the most w-length random walks,
the space used to store w-length random walks is at most O(

∑
(Kp̃v logn + logn)) =

Õ(K l
w + αn).

Let Q0 denote the event that some node is not considered when sampling connectors,
then Pr[Q0] ≤ 1

n . In addition, let Q1 denote the event that the number of connectors is
Õ(αn), then Pr[Q1] ≤ 1

n . By Lemma 10, if Q0 does not happen, the probability that there
are more than i consecutive non-connectors before a connector occurs (denoted as Q2) is at
most 1

nl , when i = log(nl)
α . In Sampling-AM, we increase i from lognl

α to log(nK log(K)l2)
α ,then

Pr[Q2] ≤ 1
nK logKl2 · |S| ≤

1
nK log(K)l by the union bound. Let Q2

′ be the event that Q2 does
not happen for all random walks in Sampling-AM, then Pr[Q2

′] ≤ K logK · 1
nK log(K)l = 1

nl

by the union bound (the total number of random walks the algorithm constructs is bounded
byK logK). QM denotes the union of Q0, Q1 and Q2

′ and Pr[QM ] ≤ 3
n . Since the increased

value of i is still Õ( 1
α), Lemma 10 holds with even higher probability. By doing so, the space

required in Subphase (2.1) of Sampling-LS is Õ(K ls
αw ), unless QM happens. Therefore, the

space complexity of Sampling-AM is Õ(K ls
αw + αn) w.h.p.

The number of rounds needed in any phase is the same as the Sampling-AS algorithm.
Since we have logK phases, the total number of rounds needed is Õ(w + l

αw + l
s) w.h.p.

Now we bound the error probability. As RM is equivalent to the event that R does not
happen in logK instances of Sampling-AS. By the union bound, Pr[RM ] ≤ logK 1

n = Õ( 1
n).

Let w = l
3
4 and s = l

1
4 , Theorem 7 is obtained.

6.2 Estimating PageRank Scores

PageRank is the main problem solved by [42] for the graph streaming model. Here, we
briefly describe the idea and also apply a similar idea to the edge sampling model.

The PageRank vector can be considered as the stationary distribution of a special ran-
dom walk (we call it the PageRank random walk). For each step, this random walk Lu

proceeds as a regular random walk with probability β, and with probability (1 − β) Lu
moves to a uniformly selected node (we call such a step jump and a jump is still consid-
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ered as one step). Lu keeps moving until the length of Lu reaches the value needed. The
PageRank score PR(v) is defined using the following equation (N(v) denotes the neighbors
of node v)

PR(v) = 1− β
n

+ β
∑

u∈N(v)

PR(u)
d(v) . (6.2)

For PageRank random walks, we let M(δ) denote the mixing time and let π∗ denote
the stationary distribution. Since PR(v) = π∗(v), PR(v) can be estimated using the
endpoints of many PageRank random walks with length equal to the value of M(δ). Paper
[42] estimates the PageRank vector of a graph G by sampling the endpoints of M(δ)-length
random walks on a modified graph G′. G′ is constructed from graph G by adding a complete
graph on it.

Although in the graph streaming model, we can change the edge streams to modify the
original graph, we cannot modify the oracle in the edge sampling model. Therefore, we
need to sample the endpoints ofM(δ)-length PageRank random walks using the oracle that
uniformly outputs an edge of the original graph G per query.

6.2.1 Single PageRank Random Walk

Because the PageRank random walk jumps to a uniform vertex with probability 1 − β, a
technique called Node-Sampling is developed to uniformly sample k nodes with repetition
from G. Now we describe Node-Sampling in detail.

We still assume all vertices are pre-labeled with distinct labels. We randomly pick k
independent hash functions that uniformly map the labels of the nodes to the interval (0, 1)
and let fi denote the i-th hash function.

Then Node-Sampling uses two rounds of edge samples. For each hash function fi, Node-
Sampling uses a variable Vi to store the node with the highest value hashed by fi. For each
edge sample e, its two ends are hashed using all the hash functions and the Vis are updated
when necessary. Finally, Node-Sampling outputs all the Vis.

Let R∗ denote the event that some edge in G is not returned by the oracle during Node-
Sampling. (R∗ denotes the same event in Sufficient-Sampling of Sampling-AS.) Vertices in
the Vis are uniform node samples with repetition, unless the event R∗ happens.

Lemma 22. Given a graph G(V,E) and any k > 0 in the edge sampling model, Node-
Sampling uniformly and independently samples k nodes with repetition from all the nodes
of V , unless the event R∗ happens. The probability that R∗ happens is at most n−2l−1. In
addition, Node-Sampling always uses two rounds and O(k) space,

Proof. If event R∗ does not happen, then every node is considered during Node-Sampling.
Since each node has the same probability to be hashed to the highest value by every hash
function, each node is sampled with the same probability. Moreover, since hash functions are
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independent, the samples in the Vis are also independent. In addition, the space complexity
of Node-Sampling is O(k) because the Vis only store k vertices.

Finally, by Lemma 5, the probability that R∗ happens is at most n−2l−1.

Now, we modify the Sampling-AS algorithm to sample the endpoint of a single M(δ)-
length PageRank random walk. We call the modified algorithm Sampling-ASP and its
subroutine Sampling-AHP.

Subphase (1.2) is again divided into w iterations and Li denotes the i-th random walk.
Within a specific iteration, for each random walk Li, with probability β, Li is put into a
set A. Otherwise Li is put into a set B. Thus, A contains random walks that will move
regularly and B contains random walks that will jump. Then for random walks in A, we
use Sufficient-Sampling as before to extend them, while for random walks in B, we use
Node-Sampling to sample |B| uniform node samples with repetitions to extend them. Since
Sufficient-Sampling and Node-Sampling can be executed in parallel, the number of rounds
required in Subphase (1.2) is still O(w) rounds.

The pseudocode for Sampling-AHP is shown below.

Algorithm 12 Sampling-AHP(x, T, S, l, Lu)
1: while |Lu| < l do
2: Subphase (2.1) Sample s edges (with repetition) for every node u ∈ S into Eu and

also uniformly sample s nodes into W . (using two rounds)
3: Extend Lu using edges sampled in Subphase (2.1). (When visiting a node v ∈ S for

the k-th time, with probability β, use the k-th sampled edge from Ev. With probability
1− β, use the k-th sampled node in W .)

4: x← new end point after extending Lu (Then there are three cases.)
5: (1) if (x ∈ S), continue (Lu is still in S, at least s progress is made.)
6: (2) if (x ∈ T and x /∈ S), return (This means Lu reaches an unused connector and

we can use it to extend Lu.)
7: (3) if (x /∈ T and x /∈ S), S ← S∪{x}, continue (Lu reaches a new non-connector.)
8: end while
9: return the endpoint of Lu

In Sampling-AHP, Subphase (2.1) executes Sufficient-Sampling and Node-Sampling in
parallel using two rounds. Sufficient-Sampling draws s edge samples for each vertex v in S
(storing them in the multiset Ev) and Node-Sampling draws s uniform node samples with
repetition (storing them in the multiset W ). When the PageRank random walk Lu visits
a node v ∈ S for the k-th time, with probability β, Lu moves regularly and uses the k-th
edge in Ev. With probability 1 − β, Lu jumps and its endpoint is set to the k-th node in
W . The rest of the procedures are the same as those in Sampling-AH.
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Performance and Error Bounds

First of all, we bound space complexity. The space required to store connectors and the
endpoints of w-length random walks is Õ(αn) w.h.p. By Lemma 10, |S| is at most Õ( l

αw )
w.h.p. Subphase (2.1) stores s edges for each node in S and s nodes in total. Therefore,
Subphase (2.1) requires Õ( ls

αw ) space w.h.p. Together, the space complexity of Sampling-
ASP is Õ(αn+ ls

αw ) w.h.p.
Since we prepare s outgoing edges for each vertex in S and s uniform node samples

with repetition, if Lu keeps visiting vertices in S, Lu will still make at least s progress.
The rest of the analysis is the same as that for Sampling-AS, and we get the same bound
Õ(w + l

αw + l
s) on the number of rounds required w.h.p.

Finally, as Node-Sampling and Sufficient-Sampling have the same "bad" eventR∗, Sampling-
ASP shares the same error bounds with Sampling-AS. Sampling-ASP correctly samples the
endpoint of a single PageRank random walk, unless R happens (R happens with probability
at most 2

n).

6.2.2 Multiple PageRank Random Walk

Now, we are going to use Sampling-AM to sample the endpoints of a large number of
PageRank random walks. Instead of using Sampling-AS as a subroutine for Sampling-AM,
we use Sampling-ASP. Since Sampling-ASP and Sampling-AS have the same performance
and error bounds, Theorem 7 also holds for multiple PageRank random walks. We estimate
the PageRank score by sampling the endpoints ofN = 81

ε log(nM(δ))(O(1
ε logn)) PageRank

random walks of length M(δ) and count the number of times nv that node v occurs as an
endpoint. Let P̃R(v) denote the estimated value of PR(v), then P̃R(v) = nv

N . By the
definition of mixing time, the probability that the random walk ends at v after M(δ) steps
is close to PR(v) with an absolute error less then δ. If event RM (see page 58) does not
happen, by Lemma 21, using N number of random walks, we can get

PR(v)−
√
PR(v)ε− ε− δ ≤ P̃R(v) ≤ PR(v) +

√
PR(v)ε+ ε+ δ (6.3)

with probability at least 1 − n−2. Therefore, if RM does not happen and PR(v) is large,
w.h.p. P̃R(v) is a good estimate since the relative error is small.

By Theorem 7, the total number of rounds required is Õ(M(δ)
3
4 + M(δ)

1
4

α ) w.h.p. The
space complexity is O(n) since we need to use a counter to count nv for each v ∈ V .

Lastly, we bound the error probability for this procedure. Let X denote the event that
the PageRank estimation P̃R(v) satisfies Inequality (6.3), then

Pr[X|RM ] ≥ 1− n−2. (6.4)
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By Theorem 7,
Pr[RM ] ≥ 1− Õ

( 1
n

)
. (6.5)

Since X = (X ∩RM ) ∪ (X ∩RM ),

Pr[X] = Pr[X|RM ] · Pr[RM ] + Pr[X|RM ] · Pr[RM ]] ≥ Pr[X|RM ] · Pr[RM ]. (6.6)

By the three inequalities above,

Pr[X] ≥ (1− n−2) ·
(

1− Õ
( 1
n

))
≥ 1−

(
n−2 + Õ

( 1
n

))
≥ 1− Õ

( 1
n

)
. (6.7)

Therefore, using Sampling-AM to estimate PageRank scores succeeds w.h.p. Compared to
the trivial algorithm that uses O(n) space and O(M(δ)) rounds, the Sampling-AM algorithm

reduces the number of rounds required to Õ(M(δ)
3
4 + M(δ)

1
4

α ) w.h.p.

6.3 Trust-based Recommendation Systems

Recommendation systems are useful in the modern society. For instance, Amazon uses a
recommendation system to recommend products to users; Netflix recommends movies based
on its recommendation system; Apple iTunes provide recommendations on music using a
recommendation system.

Although there are multiple categories of recommendation systems, we focus on trust-
based systems. Informally speaking, the problem is to estimate the recommendation rating
of a single item for some specific user, given the network in which a few users have already
rated the item. (Users are represented by nodes.) In daily life, a user is likely to ask people
he trusts for opinions. In trust-based recommendation systems, such trust relations between
people are represented by edges.

Andersen et al. [2] modeled the above problem using an annotated directed graph called
a voting network. Users that have rated the item are called voters. To make the problem
simpler, voters are assumed to have only two ratings - either recommend the item (labeled
with +) or do not recommend the item (labeled with −). A directed edge from node a to
node b means that a trusts b. Then we need to provide recommendation for a given user s
(an unlabeled node).

To be precise, we give the formal definitions for a voting network and the recommenda-
tion problem.

Definition 6.3.1. A voting network is a directed unweighted annotated multigraph G =
(N,V+, V−, E) where N is a set of nodes, V+, V− ⊆ N are disjoint subsets of positive
and negative voters, and E ⊆ N2 is a multiset of edges with parallel edges allowed and no
self-loops.
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When V+ and V− are clear from context, we denote the set of voters by V = V+ ∪ V−
and the set of non-voters by V = N \ V .

Definition 6.3.2. A recommendation system R̂ takes a voting network G and source s ∈ V
as input and outputs recommendation R̂(G, s) ∈ {−, 0,+}.

The output + shown above means that R̂ recommends the item; the output − means
that R̂ does not recommend the item; the output 0 represents that R̂ has no opinion. In
addition, sgn : R→ {−, 0,+} denotes the function that computes the sign of its input.

6.3.1 Random Walk Recommendation System

One good heuristic algorithm that solves the recommendation problem uses random walks.
The random walk recommendation algorithm starts a random walk at the source node

s. Upon visiting a node v, the random walk uniformly samples an outgoing edge of v and
then uses the edge to proceed. Let Z denote the set that contains all non-voters without
outgoing edges; the random walk keeps going until it visits a voter (a node in V ), or a node
in Z. Let ps be the probability that the random walk starting at s terminates at a node
with a positive vote and qs be the probability that the random walk starting at s terminates
at a node with a negative vote. Let rs = ps−qs. The random walk recommendation system
recommends sgn(rs) to s.

By sampling the endpoints of a large number of random walks starting from s, ps and
qs can be estimated. Thus, rs can also be estimated.

Absorbing Random Walks

Since random walks will stop when visiting nodes in Z ∪V , these random walks can be con-
sidered absorbing random walks. Absorbing random walks are random walks with absorbing
nodes. Once a random walk reaches such a node, the random walk stops. Therefore, we
need to modify Sampling-AM to sample the endpoints of absorbing random walks.

Another important point worth mentioning is that we do not know after how many steps
a random walk starting from s will stop. Therefore, normally, we set a maximum length
l for these random walks and force a random walk to stop and output 0 when it reaches
l steps. This maximum length will cause some estimation error for rs and will be further
explained later.

Since a voting network is annotated, we assume every edge e returned by the oracle
in the edge sampling model also contains labels so that the labels for both ends of e are
known.

First of all, we modify the procedure that prepares w-length random walks. Since these
random walks might visit absorbing nodes before they reach length w, we call these random
walks short random walks. Whenever a short random walk visits a node, we check whether
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the node is an absorbing node or not. If it is, the short random walk stops and this absorbing
node becomes the endpoint. The probabilistic bounds on space complexity and the number
of rounds required do not change.

Then we start random walks from the source node s and follow similar procedures as
in Sampling-AM. If a random walk visits a connector with an unused short random walk,
the random walk will move to the endpoint of this short random walk. We terminate a
random walk and output the label of its endpoint if the random walk visits an absorbing
node; otherwise, we let the random walk continue. In the case where a random walk stops
at a stuck node, we use the subroutine Sampling-AH that samples s edges for each node
in S, with the exception that after each step, we will check whether the current node of
the random walk is an absorbing node (if so, terminate the random walk and output its
endpoint) or not (continue the random walk).

The following theorem states the core results of our estimation for rs. The proof is given
in the next two sections.

Theorem 8. Given a voting network G with n vertices, an unlabeled node s, any integer
l ≥ 0 and any positive ε ≤ 1, by sampling the endpoints of N̂ = 81

ε log(nl) absorbing random
walks with length at most l starting from s, rs can be estimated by p̃s − q̃s, where p̃s = pn

N̂

(pn is the number of absorbing random walks that terminate at positive voters) and q̃s = qn
N̂

(qn is the number of absorbing random walks that terminate at negative voters). Moreover,
let r̃s = p̃s − q̃s; then w.h.p., the absolute error of the estimation is bounded by

|rs − r̃s| ≤
√

2
(
p̃s + 3

2ε+ β

)
ε+

√
2
(
q̃s + 3

2ε+ β

)
ε+ 2ε+ β, (6.8)

where β is the fraction of random walks that terminate at length l. In addition, the estima-
tion terminates in Õ(l

3
4 + l

1
4
α ) rounds and uses Õ(αn+ 1

ε
l
1
2
α ) space w.h.p.

The Space Complexity and the Number of Rounds Required

Obviously, the algorithm that samples the endpoints of multiple absorbing random walks
has the same space complexity as the Sampling-AM algorithm.

In terms of the number of rounds required, if a random walk terminates at the maximum
length l, the number of rounds required for it is the same as the Sampling-AM algorithm.
However, if a random walk terminates before length l, it must either terminate right after
using a short random walk or while handling a stuck node. In both cases, before using
the last short random walk or before the last invocation of the subroutine to handle stuck
node, all previous steps for the random walk are generated exactly the same way as when
constructing a regular random walk without absorbing nodes, as otherwise the random walk
would have stopped earlier. Therefore, the number of rounds required is at most the same
as the number of rounds required by Sampling-AM.
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Therefore, our modified multiple random walk algorithm that samples the endpoints of
multiple absorbing random walks has the same bounds on space complexity and the number
of rounds as the original Sampling-AM algorithm. By Theorem 7, the estimation terminates
in Õ(l

3
4 + l

1
4
α ) rounds and uses Õ(αn+ 1

ε
l
1
2
α ) space w.h.p.

Absolute Error

We use N̂ = 81
ε log(nl) = O(1

ε logn) absorbing random walks of length at most l. We count
pn, the number of endpoints that are labeled + and qn, the number of endpoints that are
labeled −. Then we use p̃s = pn

N̂
to estimate ps and use q̃s = qn

N̂
to estimate qs. In addition,

let β denote the fraction of random walks that are forced to stop at length l. In other words,
β is the fraction of random walks that might end up at voters if there is no maximum length
restriction.

If we denote p∗s and q∗s to be the estimates of ps and qs respectively using the absorbing
random walks without the maximum length restriction, then by Lemma 21, w.h.p. p∗s is
bounded by

ps −
√
psε− ε ≤ p∗s ≤ ps +√psε+ ε, (6.9)

and w.h.p. q∗s is also bounded by

qs −
√
qsε− ε ≤ q∗s ≤ qs +√qsε+ ε. (6.10)

Since p̃s ≤ p∗s ≤ p̃s + β, ps −
√
psε − ε − β ≤ p̃s ≤ ps + √psε + ε w.h.p. Similarly,

qs−
√
qsε−ε−β ≤ q̃s ≤ qs+√qsε+ε w.h.p. Let r̃s = p̃s− q̃s, then rs−

√
psε−

√
qsε−2ε−β ≤

r̃s ≤ rs +√psε+√qsε+ 2ε+ β w.h.p. Since √xy ≤ x+y
2 for any non-negative real numbers

x and y, qs −
√
qsε − ε − β ≥ qs

2 −
3
2ε − β. Then we get qs ≤ 2(q̃s + 3

2ε + β), and similarly
ps ≤ 2(p̃s + 3

2ε + β). With the help of previous inequalities, we can bound r̃s using the
inequality

|rs − r̃s| ≤
√

2
(
p̃s + 3

2ε+ β

)
ε+

√
2
(
q̃s + 3

2ε+ β

)
ε+ 2ε+ β. (6.11)

In order to make r̃s a good approximation for rs, both ε and β should be very small. We
can increase the number of absorbing random walks to decrease ε. We can also increase the
maximum length l to decrease β.
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Chapter 7

Conclusion and Future Work

In this thesis, we have considered the problem of efficiently sampling the endpoints of
random walks in the edge sampling model. The model assumes that there is an oracle that
uniformly samples an edge from a graph per query. Inspired by the SingleRandomWalk
algorithm suggested in paper [42] for the graph streaming model, first of all, we designed
the Sampling-AS algorithm which is an Atlantic City randomized algorithm. It samples
the endpoint of a single random walk with given length l, unless some unlikely "bad" event
R happens. Sampling-AS works in two phases. In Phase 1, the algorithm prepares a large
number of w-length random walks in parallel. In Phase 2, the algorithm starts a random
walk Lu and uses the prepared w-length random walks to extend Lu so that the length of Lu
reaches l quickly. Next, we developed a Las Vegas algorithm called Sampling-LS that does
not have "bad" events and always samples the endpoint of a single random walk; however,
its performance is not as good as the performance of Sampling-AS.

Then we considered the performance of both algorithms on special classes of graphs such
as regular graphs, random graphs and fast mixing graphs. We find that both algorithms
achieve better performance after some modifications. Finally, based on Sampling-AS, we
suggested the Sampling-AM algorithm which samples the endpoints of multiple random
walks, unless some unlikely "bad" event RM happens. It is then used to estimate PageRank
scores for vertices, and it is also used in random walk recommendation systems.

Some suggestions for future work include:

• One possible direction is generalizing the edge sampling model to weighted graphs.
The oracle on weighted graph G can be assumed to return an edge e of weight we with
probability we

wG
(where wG = 2

∑
e∈E we). The edge sampling model we have studied

in this thesis is only a special case where all edges are equally weighted. The problem
becomes how to sample the endpoints of weighted random walks. We have started
some initial work to address this problem and the direction is promising.

• Another possible direction is finding and proving a probabilistic bound on the num-
ber of rounds required by the Sampling-LS algorithm on directed graphs. Lemma 12
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is important for bounding the number of rounds required by Sampling-LS on undi-
rected graphs. However, we proved that Lemma 12 does not hold on directed graphs.
Therefore, another approach is required to bound the number of rounds needed when
preparing w-length random walks on directed graphs.
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