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Abstract

The ridesharing problem is to share personal vehicles by individuals (participants) with
similar itineraries. A trip in the ridesharing problem is a participant and his/her itinerary.
To realize a trip is to deliver the participant to his/her destination by a vehicle satisfying
the itinerary requirement. In this thesis, we focus on two optimization goals: minimize the
number of vehicles and minimize the total travel distance of vehicles to realize all trips. The
minimization problems are complex and NP-hard because of many parameters. We simplify
the problems by considering only some of the parameters. We prove that some simplified
minimization problems are NP-hard while a further simplified variant is polynomial time
solvable. These suggest a boundary between the NP-hard and polynomial time solvable
cases. We also propose a novel approach for finding a maximum matching in hypergraphs
with special properties, extending the well-known maximum matching theorem in graphs
to hypergraphs.

Keywords: Ridesharing problem; graph theory; matching; hypergraph matching; opti-
mization algorithms
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Chapter 1

Introduction

Ridesharing, in its simplest form, is the shared use of personal vehicle by its driver and
individual travelers who have similar itineraries and schedules. When a vehicle is selected
to serve any participant, the owner of the vehicle is called a driver and a participant other
than the driver is called a passenger. There are different motivations and goals for the use of
ridesharing. Some ideal advantages of ridesharing include saving travel cost for both drivers
and passengers (such as gas and parking costs), reducing traffic congestion, conserving fuel,
and reducing air pollution [10, 22, 23]. Despite the advantages of rideshring, according to
[15], the share of work trips that use ridesharing has decreased by almost 10% in the past 30
years. The average occupancy rate of personal vehicle trips is 1.6 persons per vehicle mile
based on reports published in 2011 [17, 25]. Currently, ridesharing coordination is not fully
regulated and organized in the transportation industry. Also, the lack of efficient methods to
encourage participation in ridesharing is a major obstacle for ridesharing to become a regular
transportation alternative for travelers. There are other factors that prevent ridesharing
from being widely adopted, such as privacy, safety, social discomfort, and pricing. Some
of these issues can be addressed by introducing reputation building system, profiling, or
preferences [17]. With today’s technology in GPS and smartphone, Internet-enabled mobile
devices should be able to play an important role in popularizing ridesharing. There are
new companies trying to reduce the gap between convenient transportation and ridesharing
[2, 20], such as Uber and Lyft. Readers can refer to two relative recent surveys [2, 15] about
ridesharing in general. In those two surveys, methods for general ridesharing problems are
reviewed along with some approaches for encouraging participation in ridesharing.

Usually the ridesharing arrangement among the ridesharing participants is managed by
a central matching agency. The matching agency is responsible for correctly facilitating
the ridesharing services by assigning ridesharing arrangement - match between individual
vehicle drivers and passengers. A trip in the ridesharing problem is a participant and
his/her itinerary specified by many parameters such as the origin and destination in a
road network, departure and arrival time, preferred path of a driver, distance/time detour
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from the preferred path a driver can tolerate, vehicle capacity, and so on. To realize a
trip is to deliver the participant to his/her destination by a vehicle satisfying the itinerary
requirement.

In general, there are two types of ridesharing: static and dynamic. In static ridesharing,
the set of participants (both drivers and passengers) is known in advance, and the rideshar-
ing arrangement is computed in advance such that once the ridesharing arrangement is
settled, no further change will be made. In dynamic ridesharing, each trip arrives online
and a driver is arranged for an arrived trip without the knowledge of trips in the future.
The matching agencies must be able to process real-time incoming ridesharing requests
such that the ride-match should be established within a reasonable time frame, such as
several minutes. The newly arranged ride-match (of a real-time incoming request) should
not prevent the already established ridesharing arrangement from being carried out.

Earlier studies only focus on static ridesharing since real-time dynamic ridesharing (with
reasonable response time) is only plausible recently due to GPS-enabled and Internet-
enabled devices. There are slight different ridesharing systems settings that have been
considered and proposed previously, both static and dynamic. We summarize the most
common characteristics of the ridesharing problem that have been considered:

• Independent The drivers who provide the ride service are independent individuals,
and the vehicles that provide the ride service belong to the drivers as well.

• Automatic-matching There is a central matching agency (system) for facilitating
the ridesharing arrangement between the ridesharing participants, which requires a
minimum communication between the agency and the participants. The automated
process of ride-matching may include suggestions for routing, scheduling, and pricing.

• Cost-sharing The total travel cost is divided among the driver and passengers for
each ride-matching such that the ridesharing participants should feel beneficial com-
paring to other means of transportation.

• Carpooling A common mode of the static ridesharing. The ridesharing participants
are known in advance, and the matched commuters usually have similar schedules,
start locations and destinations, or the driver who provides the ride service does not
need to detour from his/her preferred route.

• Dynamic The ridesharing arrangement system needs to facilitate the ridesharing
services in real-time based on the participants’ input. The ridesharing services need
to be established on short notice. Recent dynamic ridesharing is plausible due to
Internet-enabled mobile devices.

The ridesharing problem is not easy to solve as a whole because many parameters and
constraints are involved, especially if the central matching agency needs to balance between
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different optimization goals and to provide services with high level of convenience. The
aforementioned advantages and goals for the use of ridesharing can be conflicting each
other. The following is a non-comprehensive list of optimization goals for ridesharing:

• Minimize the total number of drivers required.

• Minimize the total travel distance/time of drivers’ trips.

• Minimize the total travel time of passengers’ trips.

• Maximize the number of matched (served) requests.

• Minimize the cost for the drivers’ trips.

• Minimize the cost for the passengers’ trips.

For example, if the optimization goal is to minimize the cost for the ridesharing participants,
it is more likely that each driver needs to serve more passengers, which in turns increases the
total travel time and distance for the participants. Typically, a method can only optimize
one or two goals at the same time. Reviews on recent methods for solving the ridesharing
problem can be found in [2, 15].

Static and dynamic ridesharing are closely related. One can view dynamic rideshar-
ing as a sequence of static ridesharing instances. It is important to fully understand the
fundamentals of the static ridesharing problem since the solutions and methods for static
ridesharing problem can be used as a basic scheduling tool for the dynamic systems. For
example, a static arrangement scheme can be used as a subroutine in a dynamic ridesharing
system for a batch of trips arrived in a specific time window, such as the method proposed
in [19]. Thus, we look deeper into the static ridesharing problem by introducing tighter
constraints and explore a boundary between the NP-hard and polynomial time solvable
cases. Then, the solutions and methods of these more constrained problems possibly can
be used for solving the more general static settings and dynamic systems.

In this thesis, we focus on static ridesharing. However, the ridesharing problem we study
is more generic, but simplified. The difference between our generic ridesharing problem and
the traditional ridesharing problem is that the role of a ridesharing participant can be
assigned to be a driver or a passenger. In other words, we assume that each ridesharing
participant is willing to provide ride service, whereas in traditional ridesharing problem,
the sets of drivers and passengers are given as inputs. The formal definition of the generic
ridesharing problem is given in Chapter 2. We make the assumption that the schedules of the
ridesharing participants are always similar enough such that any ride-match arrangement
can be served within the time constraints of the drivers and passengers. As a result, we
only consider the ridesharing problem with the time constraint removed, and we call this
problem the simplified ridesharing problem. This assumption may seem to have less real-life
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application. However, for regularly scheduled carpooling (such as for work commute), it
is likely that the commuters have similar schedules. As mentioned, we look deeper into
the static ridesharing problem by introducing different constraints. Each variant of the
simplified ridesharing problems is differentiated by the constraints that are applied to the
simplified ridesharing problem. These constraints will be introduced in Chapter 3.

We consider two optimization goals in this thesis: (1) minimize the number of drivers and
(2) minimize the total travel distance of drivers for realizing all trips. For each variant of the
simplified ridesharing problem, we either show that it is NP-hard by providing a reduction
or give an algorithm for solving such a simplified ridesharing problem. We extensively
study one of the simplified ridesharing problems, where the algorithm and its analysis for
this problem lead to a novel approach for finding a maximum matching in hypergraphs with
specific properties. In particular, we extend the well-known maximum matching theorem
by Berge [6] in graphs to hypergraphs and present an algorithm that finds an augmenting
hyperpath in hypergraphs.

The rest of the thesis is organized as follows. In Chapter 2, we formally define the
generic ridesharing problem and introduce some basic definitions and notations that are
used throughout the thesis. We also review some of the related works in ridesharing. In
Chapter 3, we state and prove the variants of the simplified ridesharing problem that are NP-
hard (NP-complete). Chapters 4 and 5 are dedicated to polynomial time solvable simplified
ridesharing problems, where Chapter 5 details the maximum matching theorem extension
including a full analysis and presents an algorithm for finding an augmenting hyperpath
and its analysis. Finally, we conclude this thesis and discuss some future works in Chapter
6.
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Chapter 2

Definitions and Related Work

In most of the discussions, we model each variant of the simplified ridesharing problem
using graph theory. Below, we introduce some graph theory basics and notations that are
used throughout the thesis.

2.1 Definitions and Notations

We refer the readers to textbooks on graph theory [11, 24] for other terminologies. A graph
G = (V,E) consists of a finite non-empty set V of elements called vertices (or nodes) and a
set E of 2-element subsets of V called edges (or arcs). The set V (G) is called the vertex set
of G and E(G) is the edge set of G. The cardinality of V , denoted by |V |, is the number of
vertices of G. The cardinality of E, denoted by |E|, is the number of edges of G. For a pair
of vertices u, v ∈ V , the undirected edge e between u and v is represented as e = {u, v}.
The vertices u and v are said to be adjacent to each other, and they are neighbors. The
vertices u and v are said to be incident to e. The degree of a vertex v, denoted by deg(v),
is the number of edges incident to v. A vertex v is isolated if deg(v) = 0. The maximum
degree of G, denoted by ∆(G), is the maximum degree of its vertices.

A directed graph (digraph) is similar to an undirected graph G defined above, except
that there are directions on the edges in a digraph. Formally, a digraph G′ = (V ′, E′) is a
finite non-empty set V ′ of vertices and a set E′ of ordered pairs of members of V ′. E′ is
the set of directed edges of G′. A directed edge e = (u, v) between u and v is considered
to be directed from u to v. Vertices u and v are called the tail and head of e respectively.
The outdegree, denoted by outdeg(v), of a vertex v is the number of edges pointing from
v (having v as a tail). The indegree, denoted by indeg(v), of a vertex v is the number of
edges pointing to v (having v as a head). A vertex v is called a source if indeg(v) = 0 and
outdeg(v) ≥ 1. A vertex v is called a sink if indeg(v) ≥ 1 and outdeg(v) = 0.

5



A walk in an undirected graph G is an alternating sequence between vertices and edges:

a walk W : v0, e1, v1, e2, ..., en, vn (where n ≥ 0)

The length of the walk W is n because n edges (not necessarily distinct) are encountered.
If all the edges in W are distinct, then W is a trail. If all the vertices in W are distinct,
then W is a path. A walk W is closed if it starts and ends at the same vertex. A cycle
(simple cycle) is a closed walk with distinct vertices and edges. A graph is connected if
there is a path between every pair of vertices. A graph without any cycle is called acyclic.
The most common acyclic graph is a tree. A tree is a connected acyclic graph G = (V,E)
where |E| = |V | − 1. An arbitrary acyclic graph is called a forest, which is a set of trees. A
directed graph without any cycle is called directed acyclic graph (DAG).

A matching in a graph G = (V,E) is a setM ⊆ E of vertex-disjoint edges. An edge that
belongs to a matching M is called a matched edge. Otherwise, it is called an unmatched
edge with respect to M . A vertex v is called matched if v is incident with a matched edge.
Otherwise, it is an unmatched or a free vertex with respect to M . A matching M in G is
called maximal if M is not a proper subset of any other matching. A matching M in G is
maximum if there does not exist another matchingM ′ in G such that |M ′| > |M |. A perfect
matching is a matching in which all vertices of G are matched. Every perfect matching is
maximum.

An edge-weighted graph G′ is a graph where each edge of G′ is associated with a real
number, called a weight. A weighted graph usually refers to an edge-weighted graph, unless
otherwise stated. The length of a path P in G′, denoted by dist(P ), is the sum of the
weights assigned to the edges of P . The distance between a vertex u and a path P in a
graph is dist(u, P ) = minv∈V (P ) dist(u, v). A maximum weighted matching M of an edge-
weighted graph G′ is defined as a matching where the total weights of the edges in M have
a maximum value.

2.2 Problem Definition

A road network is expressed by a graph G which consists of a set V (G) of vertices (locations
in the network) and a set E(G) of edges, each edge {u, v} represents a road between u and
v. G is weighted if each edge is assigned a weight (cost to use the road).

Given a set R = (1, ..., l) of ridesharing participants’ trips. We denote a trip by an
integer i ∈ R specified by (si, di, tsi , tdi

, ni, xi,Pi), where

• si is the start location (source) of i (a vertex in G),

• di is the destination of i (a vertex in G),

• tsi is the earliest departure time of i,
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• tdi
is the latest arrival time of i,

• ni is the number of seats (capacity) of i available for passengers,

• xi is the detour distance i can tolerate for offering ridesharing services, and

• Pi is a set of preferred paths of i from si to di in G.

We say trip i can serve i itself and can serve trip j 6= i if (1) ni ≥ 1, (2) i and j can arrive at
their destinations by time tdi

and tdj
respectively using the service of i, and (3) the detour

of i is at most xi. A detour of a driver i is that i has to deviate from i’s preferred path(s)
so that i can serve other trips. A trip i can serve a set σ(i) of trips if trip i can serve all
trips of σ(i) and the total detour of i is at most xi. A trip i can serve at most ni + 1 trips
(including the driver) at any specific time point, but |σ(i)| may be greater than ni + 1 if
i can serve some other passengers after the delivery of the current passenger(s), which is
known as re-take passengers.

The generic ridesharing problem is that given an instance (G,R), G is the road network
and R = {1, ..., l} is the set of ridesharing trips, find a set S ⊆ R of drivers and a mapping
σ : S → 2R such that:

• for each i ∈ S, all trips in σ(i) can be served by i,

• for each pair i, j ∈ S with i 6= j, σ(i) ∩ σ(j) = ∅, and

•
⋃
i∈S

σ(i) = R.

We introduce some notations used throughout the thesis. We call (S, σ) a solution for
the ridesharing problem. We sometimes say S is a solution leaving the mapping σ implicit,
and denote ∪i∈Sσ(i) by σ(S). When a trip j is served by a driver i, we also say j is picked-up
by i.

We study the problem of minimizing |S| (the number of drivers) and the problem of
minimizing the total travel distance of the drivers in S. These two optimization goals may
not conflict each other. However, minimizing one does not mean the other is also minimized
at the same time. We will show an example of this later (in chapter 4.2.1). As a result,
each of the optimization goals is considered separately.

2.3 Related Work

The ridesharing problem is very similar to the dial-a-ride problem (DARP)[12]. In DARP,
a set of designated drivers/vehicles is given who can provide shared service for ride requests
from the users/passengers. The difference between the ridesharing problem and DARP is
that, each vehicle in the ridesharing problem is limited to travel from its source and desti-
nation with possible detour. The DARP problem is a generalization of the vehicle routing
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problem (VRP) with pick-up and delivery. Finding a feasible solution for the DARP is
NP-hard because it also generalizes the traveling salesman problem with time windows
(TSPTW) [26]. Because the ridesarhing problem is NP-hard in general, most previous
studies focus on developing heuristics or solving some simplified variants of the ridesharing
problem, such as single passenger at a time, single pick-up of a driver’s trip, static rideshar-
ing, not including pricing, or single objective function. Usually, the ridesharing problem is
formulated as an IP (or MIP) problem and solved using some heuristics or meta-heuristics.
In [5], Baldacci et al. propose both an exact and heuristic method to solve the car pooling
problem based on two integer programming formulations. Herbawi and Weber [19] gave an
IP formulation of the dynamic ridesharing problem where the objective function contains
four optimization goals at the same time (multiobjective function). Each of the components
in the objective function is associated with a parameter that controls which optimization
goal has more emphasis. The author proposed a generational genetic algorithm to solve
such an IP formulation of the ridesharing problem.

In [1], Agatz et al. developed optimization-based approaches for solving dynamics
ridesharing in practical environment where new drivers and riders continuously enter and
leave the system, which is called rolling horizon. They also built a simulation environment
based on travel demand model data from the Atlanta Regional Commission, and use it to
compare different methods. The ridesharing problem they studied is also slightly simplified
- a driver can make only one pickup and one delivery. There is a similarity between the
ridesharing problem studied in [1] and our ridesharing problem: each trip specifies whether
the participant intends to be a driver, intends to be a passenger, or is flexible to perform
either role. In a recent paper [20], Huang et al. proposed a method for large scale real-time
ridesharing. They compare their method with some general approaches for the ridesharing
problem, such as branch and bound algorithm and mixed integer programming approach.
Their comparison is based on a large scale taxi dataset made by Shanghai taxis.

For a literature review of the ridesharing problem, the reader is referred to the survey
of Furuhata et al.[15].
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Chapter 3

Simplified Ridesharing Problem

Ridesharing Problems with Open Time Windows
By open time windows, we mean the departure/arrival time constraints are always sat-
isfied in any assignment of drivers to passengers, that is, tsi and tdi

are not considered.
The minimization problems can be further simplified, assuming some of the parameters
si, di, ni, xi,Pi satisfy certain constraints specified below:

(C1) Single Destination: all passengers have the same destination, that is, di = D for
every i ∈ R.

(C2) Zero Detour: each driver can only serve others on the way of his/her preferred
path(s), that is, xi = 0 for every i ∈ R.

(C3) Fixed Path: each trip i has a unique preferred path Pi from si to di, that is, |Pi| = 1.

When any of the constraints is satisfied, the minimization problems become easier.
However, we prove that the simplified minimization problems are still NP-hard when any two
of the constraints are satisfied and the other one is not. Note that if the single destination
(C1) constraint is satisfied, there is no re-take involved since every trip has same destination,
driver cannot perform any re-take.

3.1 NP-hardness Result for Non-zero Detour

When constraints (C1) and (C3) are applied but the non-zero detour is allowed, we prove
that the problems of minimizing the number of drivers and total travel distance in the
ridesharing problem are NP-hard. The proof is a reduction from the 3-partition problem.
The decision problem of 3-partition is that given a set A = {a1, a2, ..., a3k} of 3k positive

integers, where
3k∑
i=1

ai = kM and M/4 < ai < M/2, whether A can be partitioned into
k disjoint subsets A1, A2, ...., Ak such that each subset has three elements and the sum of
integers in each subset is M . The decision problem of 3-partition is NP-complete [16].

9



Given an instance A = {a1, ..., a3k} of the 3-partition problem, we construct an instance
(G,RA) of the ridesharing problem as follows (also see Figure 3.1):

• The road network is the weighted graph G with V (G) = {I,D, v1, ..., v4k} and E(G)
having edge {D, I} of weight kM , edges {vi, I} of weight ai, 1 ≤ i ≤ 3k, and edges
{vi, I} of weight kM , 3k + 1 ≤ i ≤ 4k.

• RA = {1, ..., 4k} has 4k trips.

– Each trip i, 1 ≤ i ≤ 4k, has source si = vi and destination di = D, and each trip
i has a unique preferred path between vi and D in G.

– Each trip i, 1 ≤ i ≤ 3k, has ni = 0 (i can only serve i itself) and xi ≥ 0.

– Each trip i, 3k + 1 ≤ i ≤ 4k, has ni = 3 (i can serve up to three passengers at
the same time) and xi = 2M .

Figure 3.1: Ridesharing instance based on a given 3-partition problem instance. For each
trip i, 3k + 1 ≤ i ≤ 4k, ni = 3 and xi = 2M .

Lemma 3.1.1. Any solution for the instance (G,RA) has every trip i, 3k+ 1 ≤ i ≤ 4k, as
a driver with total travel distance at least 2k(k + 1)M .

Proof: In the instance (G,RA), any trip i for 3k + 1 ≤ i ≤ 4k cannot be served by any
other trip j 6= i because for 3k+1 ≤ j ≤ 4k, the detour in such a service by j is 2kM > 2M
for k > 1 and the detour limit is at most 2M . Therefore, trip i for 3k+ 1 ≤ i ≤ 4k must be
a driver in any solution for the instance (at least k drivers).

Let S be the set of k drivers i with 3k + 1 ≤ i ≤ 4k. The total travel distance of the
drivers in S is at least 2kkM . For each trip j, 1 ≤ i ≤ 3k, the total travel distance of drivers
in S and trip j is at least 2kkM + 2aj if j is served by a driver in S, otherwise is at least
2kkM + aj + kM . Since aj > kM , the minimum total travel distance to realize all trips
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is to have every j, 1 ≤ i ≤ 3k, as a passenger and the travel distance is 2kkM +
3k∑
i=1

2aj =

2kkM + 2kM = 2k(k + 1)M .

Theorem 3.1.1. Minimizing the number of drivers in the ridesharing problem is NP-hard
when constraints (C1) and (C3) are satisfied but the zero detour constraint (C2) is not.

Proof: To get the theorem, we prove that an instance A = {a1, ..., a3k} of the 3-partition
problem has a solution if and only if the ridesharing problem instance (G,RA) has a solution
of k drivers.

(→) Assume that the 3-partition instance has a solution A1, ..., Ak where the sum of
elements in each Aj is M . We assign each trip i with 3k + 1 ≤ i ≤ 4k to serve one set Aj
for j = i− 3k. Since ni = 3 and the sum of Aj is M , driver i can serve the three passengers
corresponding to Aj with total detour distance 2M . Hence, we have a solution of k drivers
for (G,RA).

(←) Assume that (G,RA) has a solution of k drivers. By Lemma 3.1.1, every trip i with
3k + 1 ≤ i ≤ 4k must be a driver in the solution. Then, each trip j for 1 ≤ j ≤ 3k cannot
be a driver in the solution. By the detour limit xi = 2M and ni = 3, each driver i can
serve at most 3 passengers. From this and there are 3k passengers, each driver i must serve
exactly 3 passengers in the solution. Assume, for contrary, that some driver i has a detour
smaller than 2M . Then from the fact that the sum of elements in A is kM , implying some
driver i′ must have a detour greater than 2M , a contradiction. So the detour of each driver
i is exactly 2M . For each driver i with 3k + 1 ≤ i ≤ 4k, let Aj , j = i − 3k, be the subset
of the three integers of A corresponding to the passengers served by i. Then A1, ..., Ak is a
solution for the 3-partition problem instance.

The size of (G,RA) is linear in k. It takes a linear time to convert a solution of (G,RA)
to a solution of the 3-partition instance and vice versa.

Theorem 3.1.2. Minimizing the total travel distance of drivers in the ridesharing problem
is NP-hard when constraints (C1) and (C3) are satisfied but the zero detour constraint (C2)
is not.

Proof: The proof is similar to that for Theorem 3.1.1: we prove that an instance A =
{a1, ..., a3k} of the 3-partition problem has a solution if and only if the ridesharing problem
instance (G,RA) has a solution with 2k(k + 1)M total travel distance.

Assume that the 3-partition instance has a solution. Then there is a solution of k drivers
for (G,RA) as shown in the proof of Theorem 3.1.1. The total travel distance of this solution
is 2k(k + 1)M as shown in the proof of Lemma 3.1.1.

Assume that (G,RA) has a solution with total travel distance 2k(k+ 1)M . As shown in
the proof of Lemma 3.1.1, trips i with 3k+ 1 ≤ i ≤ 4k are the drivers in the solution. From
this, there is a solution for the 3-partition instance as shown in the proof of Theorem 3.1.1.
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3.2 NP-hardness Result for Not Fixed Preferred Path

When constraints (C1) and (C2) are satisfied but trips may have multiple preferred paths,
we prove that the problems of minimizing the number of drivers and total travel distance
in the ridesharing problem are NP-hard. The proof is a reduction from the 3-partition
problem (introduced in Section 3.1).

Given an instance A = {a1, ..., a3k} of the 3-partition problem, we construct an instance
(G,RA) of the ridesharing problem as follows (also see Figure 3.2):

• The road network is the graph G with V (G) = {D, I, u1, ..., u3k, v1, ..., vk} and E(G)
having edges {ui, I} for 1 ≤ i ≤ 3k, edges {I, vi} and {vi, D} for 1 ≤ i ≤ k. Each
edge has weight of 1.

• RA = {1, ..., 3k + kM} has 3k + kM trips.

– Each trip i, 1 ≤ i ≤ 3k, has source si = ui, destination di = D, ni = ai

and xi = 0. Each trip i has k preferred paths {ui, I}, {I, vj}, {vj , D} in G, for
1 ≤ j ≤ k.

– Each trip i, 3k + 1 ≤ i ≤ 3k + kM , has source si = vj , j = d(i − 3k)/Me, and
destination di = D, ni = 0, xi ≥ 0 and a unique preferred path {vj , D} in G.

Figure 3.2: Ridesharing instance based on a given 3-partition problem instance.

Lemma 3.2.1. Any solution for the instance (G,RA) has every trip i, 1 ≤ i ≤ 3k, as a
driver and total travel distance at least 9k.

Proof: Since constraint (C2) is satisfied (detour is not allowed), every trip i, 1 ≤ i ≤ 3k,
must be a driver in any solution. A solution with exactly 3k drivers has total travel distance
9k, and any solution with a trip i, 3k+1 ≤ i ≤ 3k+kM , as a driver has total travel distance
greater than 9k.
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Theorem 3.2.1. Minimizing the number of drivers in the ridesharing problem is NP-hard
when constraints (C1) and (C2) are satisfied but the fixed preferred path constraint (C3) is
not.

Proof: We prove the theorem by showing that an instance A = {a1, ..., a3k} of the 3-
partition problem has a solution if and only if the ridesharing problem instance (G,RA) has
a solution of 3k drivers.

(→) Assume that the 3-partition instance has a solution A1, ..., Ak where the sum of
elements in each Aj is M . For each Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ k, we assign the three
trips whose nj1 = aj1 , nj2 = aj2 and nj3 = aj3 to serve the M trips with sources at vertex
vj . Hence, we have a solution of 3k drivers for (G,RA).

(←) Assume that (G,RA) has a solution of 3k drivers. By Lemma 3.2.1, every trip i,
1 ≤ i ≤ 3k, is a driver in the solution. Then, each trip j for 3k + 1 ≤ j ≤ 3k + 4kM
must be a passenger in the solution, total of kM passengers. Since

∑
1≤i≤3k ai = kM , each

driver i, 1 ≤ i ≤ 3k, serves exactly ni = ai passengers. Since ai < M/2 for every ai ∈ A,
at least three drivers are required to serve the M passengers with sources at each vertexvj ,
1 ≤ j ≤ 3k. Therefore, the solution of 3k drivers has exactly three drivers j1, j2, j3 to
serve the M passengers with sources at the vertex vj , implying aj1 + aj2 + aj3 = M . Let
Aj = {aj1 , aj2 , aj3}, 1 ≤ j ≤ k, we get a solution for the 3-partition problem instance.

The size of (G,RA) is polynomial in k. It takes a polynomial time to convert a solution
of (G,RA) to a solution of the 3-partition instance and vice versa.

Theorem 3.2.2. Minimizing the total travel distance of drivers in the ridesharing prob-
lem is NP-hard when constraints (C1) and (C2) are satisfied but the fixed preferred path
constraint (C3) is not.

Proof: Let dsum be the sum of travel distances of all trips i with 1 ≤ i ≤ 3k. Then
the total travel distances of drivers in any solution for (G,RA) is at least dsum = 9k by
Lemma 3.2.1. We show that an instance A = {a1, ..., a3k} of the 3-partition problem has a
solution if and only if instance (G,RA) has a solution with travel distance dsum.

Assume that the 3-partition instance has a solution. Then there is a solution of 3k
drivers for (G,RA) as shown in the proof of Theorem 3.2.1. The total travel distance of
this solution is dsum.

Assume that (G,RA) has a solution with total travel distance dsum. By Lemma 3.2.1,
trips i with 1 ≤ i ≤ 3k must be drivers. From this, there is a solution for the 3-partition
instance as shown in the proof of Theorem 3.2.1.

3.3 NP-hardness Result for Non-unique Destinations

Without the single destination constraint (C1), drivers can perform re-take, and the problem
becomes harder. In fact, we show that the problems of minimizing the number of drivers
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and total travel distance in the ridesharing problem are NP-hard when constraints (C2)
and (C3) are satisfied but trips may have distinct destinations. The proof is a reduction
from the Interval Scheduling with Machine Availabilities Problem (ISMAP) [4], which is
also called the k-Track Assignment Problem [9].

The ISMAP is a machine scheduling problem: Given m machines and n jobs. Each
machine i, 1 ≤ i ≤ m, has an operational interval [ai, bi), ai is the start time and bi is
the end time. Each job j, 1 ≤ j ≤ n, has a process interval [pj , qj), pj is the start time
and qj is the end time. We may simply call [ai, bi) and [pj , qj) an interval and call each of
ai, bi, pj , qj an end point of an interval. Each job can only be processed by one machine, and
each machine can process at most one job at any time point. A schedule is an assignment
of jobs to machines such that every job is assigned to one machine, if job j is assigned
to machine i then [pj , qj) ⊆ [ai, bi), and if jobs j and j′ are assigned to machine i then
[pj , qj) ∩ [pj′ , qj′) = ∅. The decision version of ISMAP is that: Given m machines and n

jobs, is there a schedule for the machines and jobs? The decision problem is NP-complete
[4, 9].

Given an ISMAP instance I ofmmachines and n jobs, we first construct another ISMAP
instance I ′ such that there is a schedule for I if and only if there is a schedule for I ′. Then
we construct an instance of the ridesharing problem such that there is an optimal solution
for the ridesharing problem if and only if there is a schedule for I ′.

The constructions of I ′ is as follows: We assume that bi ≤ bi+1 for 1 ≤ i ≤ m − 1
and ai ≥ 0 for 1 ≤ i ≤ m. For each i in I, we extend the operational interval of i to
[i −m − 1, bi + i) and include i as a machine in I ′. Every job j in I is included in I ′. For
each machime i ∈ I ′, we create a new job yi with process interval [pyi , qyi) = [i−m− 1, ai)
and a new job zi with process interval [pzi , qzi) = [bi, bi + i). Then each of jobs yi and zi
can be processed only by machine i in any schedule for I ′.

Lemma 3.3.1. There is a schedule for I if and only if there is a schedule for I ′.

Proof: Assume that there is a schedule S for I. Then in addition to S, assigning jobs yi
and zi to machine i, 1 ≤ i ≤ m, gives a schedule for I ′. Assume that there is a schedule S′

for I ′. Then removing jobs yi and zi, 1 ≤ i ≤ m, from S′ gives a schedule for I. The size
of I ′ is linear in |I|. A schedule of I can be computed from a schedule of I ′ in linear time
and vice versa.

Given an instance I ′ of m machines and n+ 2m jobs, we construct an instance (G,RI)
for the ridesharing problem as follows:

• Graph G is the road network with V (G) = {u | u is an end point of an interval in I ′}
and E(G) = {{u, v} | u < v and no w ∈ V (G) with u < w < v}. Notice that G is a
path.

• RI is the set of trips defined below.
For each machine i (1 ≤ i ≤ m) of interval [i−m− 1, bi + i), three trips are created,
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(1) trip i (corresponding to machine i) with source si = i − m − 1, destination
di = bi + i, ni = 1, xi = 0, and the unique preferred path between i−m− 1 and
bi + i in G;

(2) trip m+ i (corresponding to job yi of interval [i−m− 1, ai)) with source sm+i =
i−m− 1, destination dm+i = ai, nm+i = 0, xm+i = 0, and the unique preferred
path between i−m− 1 and ai in G; and

(3) trip 2m+ i (corresponding to job zi of interval [bi, bi+ i)) with source s2m+i = bi,
destination d2m+i = bi + i, n2m+i = 0, x2m+i = 0 and the unique preferred path
between bi and bi + i in G.

For each job j of interval [pj , qj), 1 ≤ j ≤ n, a trip i = 3m+ j is created with source
si = pj , destination di = qj , ni = 0, xi = 0, and the unique preferred path between pj
and qj in G.

Lemma 3.3.2. Every solution for the instance (G,RI) has every trip i, 1 ≤ i ≤ m as a
driver.

Proof: From the zero-detour constraint (C2), a trip i can serve a trip j 6= i if the interval of
j is a subset of the interval of i in I ′ and ni > 0. Since the interval of any trip i, 1 ≤ i ≤ m,
is not a subset of the interval of any trip other than i, trip i cannot be served by any trip
other than i. Further, any trip i, m + 1 ≤ i ≤ 3m + n, cannot serve any trip other than i
because ni = 0. So any solution for the instance (G,RI) must include every trip i, 1 ≤ i ≤ m
as a driver.

Theorem 3.3.1. Minimizing the number of drivers in the ridesharing problem is NP-hard
when constraints (C2) and (C3) are satisfied but the unique destination constraint (C1) is
not.

Proof: Given an ISMAP instance I, we construct an instance I ′ as shown above. By
Lemma 3.3.1, I has a schedule if and only if I ′ has a schedule. We will prove that I ′ has a
schedule if and only if the instance (G,RI) has a solution of m drivers.

(→) Assume that I ′ has a schedule. Then for every job assigned to machine i, 1 ≤ i ≤ m
the interval of the job is a subset of the interval of i and thus trip i can serve the trip
corresponding to the assigned job. Further, there is no overlap between the intervals of any
two jobs assigned to machine i. Therefore, trip i can serve all trips corresponding to the
jobs assigned to it. Thus, trips i, 1 ≤ i ≤ m, and the assignment of jobs to every trip i give
a solution of m drivers for (G,RI).

(←) Let (S, σ) be a solution of m drivers for (G,RI). By Lemma 3.3.2, S has all
tripsi, 1 ≤ i ≤ m, as the drivers and every trip j,m+ 1 ≤ j ≤ 3m+n, is served by a driver.
A schedule for I ′ can be obtained by assigning each job corresponding to a passenger in
σ(i) to machine i.
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The size of (G,RI) is linear in |I ′| and |I|. A schedule for I ′ and that for I can be
computed from a solution of m drivers in linear time and vice versa.

Theorem 3.3.2. Minimizing the total travel distance of drivers in the ridesharing problem
is NP-hard when constraints (C2) and (C3) are met but the unique destination constraint
(C1) is not.

Proof: The proof is similar to that of Theorem 3.3.1. Let dsum be the sum of travel
distances of all trips i with 1 ≤ i ≤ m (recall that there is no detour). Then the total travel
distances of drivers in any solution for (G,RI) is at least dsum because any solution must
have every i, 1 ≤ i ≤ m as a driver. We show that an instance ISMAP instance I has a
schedule if and only if instance (G,RI) has a solution with travel distance dsum.

Assume that I has a schedule. Then by a similar argument as that in Theorem 3.3.1,
instance (G,RI) has a solution (S, σ) with all trips i, 1 ≤ i ≤ m, as the drivers and all trips
j,m + 1 ≤ j ≤ 3m + n as the passengers. Hence, the total travel distance of all drivers in
S is dsum.

Assume that (G,RI) has a solution with travel distance dsum. Then the solution has
all trips i with 1 ≤ i ≤ m as the drivers and all trips j with m + 1 ≤ j ≤ 3m + n as the
passengers. As shown in the proof of Theorem 3.3.1, a schedule for I can be obtained.

3.4 A Greedy Algorithm

We give a greedy algorithm for the problems of minimizing the number of drivers and
minimizing the total travel distance of drivers when none of the constraints (C1), (C2) and
(C3) is applied. The minimization problems are NP-hard as shown in the previous sections.
An input instance for the minimization problems is (G,R), where G is an arbitrary road
network and R = {1, 2, ..., l} is a set of trips. Each trip i ∈ R is specified by (si, di, ni, xi,Pi),
where si and di are arbitrary vertices in G, ni ≥ 0, xi ≥ 0 and |Pi| ≥ 0. The outline of
the greedy algorithm is as the follows: Given an instance (G,R), we construct a bipartite
graph H(U, V,E) with U = {u1, ..., ul}, V = {v1, ..., vl} and E = {{ui, vj} | trip i can serve
trip j}. For each trip i ∈ R, compute a maximal set σ(i) of trips that trip i can serve
using the bipartite graph. Finally, we select a subset of trips which can serve all trips by
a greedy approach. For each trip i, we compute a value h(i) depends on the minimization
problem. For the problem of minimizing the number of drivers, h(i) = |σ(i)|. For the
problem of minimizing the total traveling distance, h(i) is the total distance can be saved.
Select the largest h(i) each time until all trips are served. The details of the algorithm
is given in Algorithm 1. We will only give a simple time analysis for this algorithm. In
the next chapter, we will study different variants of simplified ridesharing problem that are
polynomial time solvable, in particular, ridesharing problems without re-take.
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Algorithm 1 A Greedy Algorithm
Input: Road network G and R = (1, ..., l) of trips with each trip i = (si, di, ni, xi,Pi).
Output: a solution (S, σ) to the ridesharing instance (G,R).

1: for i = 1 to l do
2: if |Pi| ≥ 1 then take one path Pi from Pi.
3: else compute a shortest path from si to di.
4: end for
5: /* Construct a bipartite graph H(U, V,E) */
6: U = {u1, ..., ul}, V = {v1, ..., vl} and E = ∅
7: for ui ∈ U and vj ∈ V do
8: /* Let sij (resp. dij) be the vertex on Pi s.t.
9: dist(sj , sij) = dist(sj , Pi) (resp. dist(dj , dij) = dist(dj , Pi)) */

10: if dist(si, sij) ≤ dist(si, dij) then c(ui, vj) = 2[dist(sj , Pi) + dist(dj , Pi)]
11: else c(ui, vj) = 2[dist(sj , Pi) + dist(tj , Pi) + dist(sij , dij)]
12: if c(ui, vj) ≤ xi then include {ui, vj} in E.
13: /* Let Qij be the path with the length dist(Pi) + c(ui, vj) for serving j by i */
14: end for
15: /* Compute a maximal set σ(i) of trips that i can serve. Let mi be the largest number

of passengers of σ(i) at any time point i can serve using path Qij and let ci be the sum
of detours for serving σ(i). */

16: for i = 1 to l do
17: σ(i) := {i}, mi = 0, ci = 0
18: for every {ui, vj} ∈ E in the increasing order of c(ui, vj) do
19: compute mi for the case that vj is included in σ(i) and
20: passengers j′ ∈ σ(i) are picked up in the increasing order of dist(si, sij′).
21: if ci + c(ui, vj) ≤ xi and mi ≤ ni then
22: Include j in σ(i), ci = ci + c(ui, vj), update mi.
23: end if
24: end for
25: end for
26: /* Find a set of drivers which can serve all trips. Let h(i) = |σ(i)| for minimizing the

number of drivers and let h(i) =
∑
j∈σ(i) dist(Pj) − c(ui, vj) for minimizing the total

travel distance. */
27: S = ∅. Mark every trip unserved.
28: while ∃ an unserved trip do
29: Select an unserved trip i with the largest h(i).
30: Include i in S, mark every trip in σ(i) served.
31: Remove every served trip from σ(j) and update h(j) for every unserved j.
32: end while

Time complexity Let l be the number of trips in R, n = |V (G)| and m = |E(G)| where
G is the road network. To compute a single-source shortest path in G, it is known that
it takes O(m + n logn) using Dijkstra’s algorithm [14]. To find the vertex sij (resp. dij)
on path Pi requires a call to Dijkstra’s algorithm. Hence, it takes O((m + n logn)l2) to
construct the bipartite graph H(U, V,E). For computing σ(i), it needs to test if a trip j
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(with {ui, vj} ∈ E(H)) can be included in σ(i) due to re-take, which takes at most ni times
to see j overlaps with how many trips already in σ(i). Since |σ(i)| is at most l and c(ui, vj)
could have been sorted when constructing H(U, V,E), it takes O(l2) to compute σ(i) for
one trip i ∈ R, total of O(l3). The while loop starts at line 28, is linear in l. Therefore, this
greedy algorithm runs in O((m+ n logn)l2 + l3).
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Chapter 4

Polynomial Time Solvable
Simplified Ridesharing Problems

In this chapter, we study a number of variants of the simplified ridesharing problem that
can be solved in polynomial time. We will give a polynomial time algorithm or a method to
solve each problem stated in this chapter. We start with the simplified ridesharing problem
where all three constraints C1, C2, and C3 are satisfied. As mentioned, re-take operation
is not involved when all trips in R have the same destination (C1).

4.1 All Constraints Are Satisfied - C1C2C3

We consider a special case of this problem: all the ridesharing trips lie on a single path
of the road network G. In other words, for the given set R = {1, ..., l} of trips, the graph
induced by the preferred paths Pi, 1 ≤ i ≤ l, is a path in G. We give a polynomial time
exact algorithm for the problem of minimizing the number of drivers. For this special case,
a ridesharing problem instance (G,R) can be expressed by a set R = (1, ..., l) of l trips on
a graph G with V (G) = {0, 1, ..., l} and E(G) = {{i, i+ 1} | 0 ≤ i ≤ l − 1}, where 0 is the
common destination for all trips in R.

4.1.1 Algorithm

Given a problem instance (G,R). For every trip i ∈ R, we can assume without loss of
generality that i = (si, di, ni, xi, Pi), where si = i, di = 0, ni ≥ 1, xi = 0 and Pi is the
unique path between 0 and i in G. Given a (partial) solution (S, σ), we define the following
for each driver in S:

• free(i) = ni − |σ(i)|+ 1 is the number of additional trips i can serve.

• Sf := {i | i ∈ S and free(i) > 0} is the set drivers in S who can serve additional trips.

19



The algorithm processes every trip i of R, from i = 1 to l. In processing i, the algorithm
finds a minimum cardinality of drivers for the trips from 1 to i. We call this algorithm,
Ridesharing-for-path (RFP for short), and it is given in Algorithm 2. During any execution
point of Algorithm 2, whenever a trip (ridesharing participant) is assigned to be a passenger,
it remains as a passenger throughout the algorithm. On the other hand, an assigned driver
can be changed to a passenger when a new trip is processed.

Algorithm 2 Ridesharing-for-Path
Input: Graph G and R = (1, ..., l) with 0 < s1 < s2 < ... < sl.
Output: a solution (S, σ) to the ridesharing instance (G,R) such that |S| is minimized.

1: S := {1}, σ(1) := {1}, Sf := {i | i ∈ S and free(i) > 0}
2: for i = 2 to l do
3: S := S ∪ {i}, σ(i) := {i}, compute free(i) and Sf
4: k := Find-Target(i)
5: while k 6= 0 do /* serve σ(k) by drivers in Sf and remove k from S */
6: for each j ∈ Sf , k < j < i do
7: move free(j) trips from σ(k) to σ(j) and update free(j).
8: end for
9: Move the remaining trips of σ(k) to σ(i) and update free(i).

10: Remove k from S and update Sf .
11: if free(i) ≥ 1 and |S| ≥ 2 then k := Find-Target(i)
12: end while
13: end for
14: procedure Find-Target(i)
15: for each j ∈ S \ {i}, gap(i, j) := |σ(j)| −

∑
a∈Sf ,j<a<i

free(a)
16: Let k = argj∈S\{i}min{gap(i, j)};
17: if free(i) ≥ gap(i, k), then return k, else return 0.
18: end procedure

The procedure Find-Target computes a driver k ∈ S to be removed from S and an
integer gap. To remove a driver k from S, the trips of σ(k) will be served by drivers j
in Sf for k < j ≤ i, first by those other than i and then by i. The value gap(i, k) is the
minimum number of seats required from i to remove a driver from S and k is the driver
can be removed from S by gap(i, k) seats from i.

We will discuss the more general case later in Chapter 5.

4.1.2 Analysis

In this section, we prove that Algorithm 2 Ridesharing-for-path finds a minimum solution.
Let us introduce some notations. For 1 ≤ j < i, let R(j, i) = {k | j ≤ k ≤ i}. For a solution
(S, σ) of R, let S(j, i) = S ∩ R(j, i) be the set of drivers in R(j, i) and P (j, i) = R(j, i) \ S
be the set of passengers in R(j, i).
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Proposition 4.1.1. Let (S, σ) be the solution found by Algorithm RFP processed R(1, i)
only and (S∗, σ∗) be a solution for R. If there is a driver k in S that serves passenger y,
then for every driver j in S(y + 1, k − 1), |σ(j)| ≥ |σ∗(j)|.

Proof: Since y is served by k in S, free(j) = 0 for y < j < k by the algorithm when y is
put into σ(k). From this, |σ(j)| = nj + 1 ≥ |σ∗(j)|.

Lemma 4.1.1. Let (S, σ) be the solution found by Algorithm RFP processed R(1, i) only.
If there is an optimal solution (S∗1 , σ∗1) for R with S∗1(1, i) ⊆ S, then an optimal solution
(S∗, σ∗) for R can be constructed such that S∗ = S∗1 and for every j ∈ S∗(1, i), σ(j) ⊆ σ∗(j)
(inclusion property).

Proof: Let (S, σ) be the solution found by Algorithm RFP processed R(1, i) only and
(S∗1 , σ∗1) be an optimal solution for R with S∗1(1, i) ⊆ S. We check the inclusion property
for every element of S∗1(1, i) in the decreasing order. Let Yj = σ(j) \ σ∗1(j) for j ∈ S∗1(1, i).
Assume that Yk 6= ∅ for some k ∈ S∗1(1, i) and Yj = ∅ (inclusion property holds) for every
j ∈ S∗1(k+1, i). Every y0 ∈ Yk is served by some driver j0 6= k in solution S∗1 . If σ∗1(k) ⊂ σ(k)
then we move y0 from σ∗1(j0) to σ∗1(k). After the move, we have the following progress:

• The size of Yk is reduced by one, the size of Yj for every j ∈ S∗1(1, i) with j 6= k is
non-increasing, and the inclusion property holds for every j ∈ S∗1(k + 1, i).

Suppose that σ∗1(k) 6⊂ σ(k). Let u be a passenger in σ∗1(k) \ σ(k). If u < j0 then we move
y0 from σ∗1(j0) to σ∗1(k) and move u from σ∗1(k) to σ∗1(j0) (Figure 4.1a). After this, only
σ∗1(k) and σ∗1(j0) are changed. The size of Yk is reduced by one. Further, the size of Yj0
is not changed, and even if j0 ∈ S∗1(k + 1, i), the inclusion property still holds for every
j ∈ S∗1(k + 1, i) because y0 6∈ σ(j0). Therefore, we get a progress.

Assume that u > j0. Then y0 < j0 < u < k and y0 ∈ σ(k). By Proposition 4.1.1,
|σ(j0)| ≥ |σ∗1(j0)|. From this and y0 ∈ σ∗1(j0) but y0 /∈ σ(j0), there is a y1 ∈ σ(j0) \ σ∗1(j0)
such that y1 ∈ σ∗1(j1) with j1 6= j0. We try to move y0 to σ∗1(k) to have a progress by the
following move process:

• For y0 ∈ Yk, if there are u ∈ σ∗1(k) \ σ(k), j0 and j′ such that y0 ∈ σ∗1(j0), y′ ∈ σ(j0),
y′ ∈ σ∗1(j′) and j′ > u, then we move y0 from σ∗1(j0) to σ∗1(k), move y′ from σ∗1(j′) to
σ∗1(j0) and move u from σ∗1(k) to σ∗1(j′) (Figure 4.1b).

If j1 > u then we apply the move process with j1 = j′ and y1 = y′. After the move
process, only σ∗1(k), σ∗1(j0) and σ∗1(j1) are changed. The size of Yk is reduced by one since
u /∈ σ(k), the size of Yj0 is reduced by one since y1 ∈ σ(j0), and the size of Yj1 is not
increased since y1 /∈ σ(j1). The inclusion property still holds for every j ∈ S∗1(k+ 1, i) after
the move. Therefore, we get a progress.

Assume that j1 < u (extend-case). By Proposition 4.1.1, |σ(j1)| ≥ |σ∗1(j1)|. From this
and y1 ∈ σ∗1(j1) but y1 /∈ σ(j1), there is a passenger y2 ∈ σ(j1)\σ∗1(j1) such that y2 ∈ σ∗1(j2)
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(a) A move process involving two drivers k and j0
(b) A general move process involving
three drivers k, j0 and j′.

(c) A move process involving four drivers k, j0, j1 and j2 = j′.

(d) A move process involving a general chain of distinct passengers y0, ..., yp. Notice that
j2 = j0 < jp.

Figure 4.1: Different modifications of S∗1 (move progresses) to have a progress. In each
figure, trips in R are represented by vertices on a path (the horizontal line). Each arc (u, v)
from a vertex u to a vertex v denotes that driver u serves passenger v in some solution. The
solid arcs above the path represent (S, σ), the solid arcs below the path represent (S∗1 , σ∗1),
and the dashed arcs below the path represent the modified (S∗1 , σ∗1) after a move progress.

with j2 6= j1. Notice that y2 6= y1 and y2 6= y0 since j1 < u < k (j1 6= j0 6= k). If j2 > u

then we apply the move process with j2 = j′ and y2 = y′ to get a progress (Figure 4.1c).
Otherwise (j2 < u), we have the extend-case.

Assume that the extend case continues and we have a chain of distinct passengers
y0, y1, .., yp−1 such that yc ∈ σ(jc−1), yc ∈ σ∗1(jc), and jc−1 6= jc for c = 1, .., p − 1, and
y0 ∈ σ(k), y0 ∈ σ∗1(j0), and j0, j1, .., jp−1 < u. By Proposition 4.1.1, |σ(jp−1)| ≥ |σ∗1(jp−1)|.
From this and yp−1 ∈ σ∗1(jp−1) but yp−1 /∈ σ(jp−1), there is a yp ∈ σ(jp−1) \ σ∗1(jp−1) such
that yp ∈ σ∗1(jp) with jp 6= jp−1. If jp 6= jc for every c = 0, .., p− 1, then yp 6= yc for every
c = 0, .., p− 1. Assume that jp = jc′ for some c′ ∈ [0, p − 2]. Since |σ(jc′)| ≥ |σ∗1(jc′)| and
for every yc′ ∈ σ∗1(jc′) \ σ(jc′), there is a yp ∈ σ(jp) with yp 6= yc for every c = 0, .., p − 1.
Since the elements in the chain are distinct, the length of the chain cannot exceed u − 1,
and there is a jp with jp > u for the chain y0, .., yp. Then we apply the move process with
jp = j′ and yp = y′ to get a progress (Figure 4.1d).

From the above, we can modify (S∗1 , σ∗1) such that S∗1 does not change and the size of
Yk is reduced by one. Repeat the above, we get Yk = ∅ and have the lemma proved.
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Recall that free(i) is the number of additional trips a driver i in a (partial) solution
(S, σ) can serve. In the rest of this section, we will use free1(i), free∗(i) and free∗1(i) for the
numbers of additional trips a driver i in (partial) solutions (S1, σ1), (S∗, σ∗) and (S∗1 , σ∗1)
can serve, respectively.

Lemma 4.1.2. Let (S, σ) be the solution found by Algorithm RFP processed R(1, i) only.
Then there is an optimal solution (S∗, σ∗) for R such that S∗(1, i) ⊆ S.

Proof: We prove the lemma by induction on i. For i = 1, S = {1} and for any optimal
solution S∗ for R, S∗(1, 1) ⊆ S. So the induction base is true. Assume that for i − 1 ≥ 1,
the lemma holds and we prove it for i. Let (S, σ) and (S1, σ1) be the solutions found
by Algorithm RFP processed R(1, i) and R(1, i − 1) only, respectively. By the induction
hypothesis, there is an optimal solution (S∗1 , σ∗1) such that S∗1(1, i−1) ⊆ S1. If S∗1(1, i−1) ⊆
S then S∗(1, i) ⊆ S because i ∈ S. Taking S∗ = S∗1 , we get the lemma. So we assume that
the set W = {w | w ∈ S∗1(1, i− 1) and w /∈ S} is not empty. We show that another optimal
solution (S∗, σ∗) can be found by modifying S∗1 with every w ∈ W removed from S∗1 such
that S∗(1, i) ⊆ S.

We start the modification from a trivial case where S ⊆ S∗1(1, i) ∪ {i}. Let S∗ =
(S∗1 \W )∪{i}. If i /∈ S∗1 then |S∗(1, i)| = |S∗1(1, i)| − |W |+ 1, and if i ∈ S∗1 then |S∗(1, i)| =
|S∗1(1, i)| − |W |. Since S serves all trips in R(1, i), we can move every trip in σ1(j), j ∈ W
to σ∗(k) for some k ∈ S∗. Since |W | ≥ 1, |S∗| ≤ |S∗1 | and S∗ is optimal. Notice that in the
trivial case, i /∈ S∗1 and |W | = 1, otherwise, |S∗| < |S∗1 |, a contradiction since S∗1 is optimal.

Assume that S 6⊆ S∗1(1, i)∪{i}. The idea for finding (S∗, σ∗) is to modify S∗1 by replacing
a driver w ∈ W with a driver in (S1 \ S∗1) ∪ {i}. Let w be an arbitrary element of W and
Z = S1 \ S∗1 . Notice that S ∩ Z 6= ∅, otherwise S ⊆ S∗1(1, i) ∪ {i}. By Lemma 4.1.1, we
assume that the inclusion property holds for every j ∈ S∗1(1, i − 1). The modification is
divided into two cases.

Case 1. There is a z ∈ Z with z < w. We further assume that for some a z ∈ Z with
z < w, gap(i, w) ≤ gap(i, z), which can be written as:

gap(i, w) = |σ1(w)| −
∑

j∈S1(w+1,i−1)
free1(j) ≤ gap(i, z) = |σ1(z)| −

∑
j∈S1(z+1,i−1)

free1(j)

From this, |σ1(w)| ≤ |σ1(z)| −
∑
j∈S1(z+1,w) free1(j). By the inclusion property, for every

j ∈ S∗1(1, i− 1), σ1(j) ⊆ σ∗1(j) and free∗1(j) = free1(j)− |σ∗1(j) \ σ1(j)|. Therefore,
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|σ∗1(w)| = |σ1(w)|+ |σ∗1(w) \ σ1(w)| ≤ [|σ1(z)| −
∑

j∈S1(z+1,w)
free1(j)] + |σ∗1(w) \ σ1(w)|

= |σ1(z)| − free1(w) + |σ∗1(w) \ σ1(w)| −
∑

j∈S1(z+1,w−1)
free1(j)

= |σ1(z)| − free∗1(w)−
∑

j∈S1(z+1,w−1)
free1(j)

≤ |σ1(z)| − free∗1(w)−
∑

j∈S∗1 (z+1,w−1)
free∗1(j) = |σ1(z)| −

∑
j∈S∗1 (z+1,w)

free∗1(j).

From this, |σ1(z)| ≥ |σ∗1(w)|+
∑
j∈S∗1 (z+1,w) free∗1(j), implying that if we remove |σ1(z)| trips

from σ∗1(j) for j ∈ S∗1 , S∗1(w+ 1, l) can serve at least |σ∗1(w)| additional trips. We apply the
following update process to modify (S∗1 , σ∗1):

• Add z to S∗1 , define σ∗1(z) = σ1(z) and remove the trips of σ∗1(z) from σ∗1(j) for j 6= z.

After the update, S∗1(w+ 1, l) can serve at least |σ∗1(w)| additional trips. We move the trips
of σ∗1(w) to σ∗1(j), j ∈ S∗1(w + 1, l) and remove w from S∗1 . By this, the size of S∗1 is not
changed, the inclusion property still holds for every j ∈ S∗1(1, i−1), the size ofW is reduced
by one, and the size of Z is reduced by one.

Assume that for every z ∈ Z with z < w, gap(i, w) > gap(i, z). Then by Algo-
rithm RFP, for any z0 ∈ Z with z0 < w, z0 is served before w (z0 /∈ S) and |σ1(z0)| >∑
j∈S1(z0+1,i−1) free1(j). From this, after z0 is served, |σ(j)| = nj + 1 for j ∈ S1(z0 + 1, i).

Furthermore, every z ∈ Z with gap(i, w) > gap(i, z) is served before w in Algorithm RFP
(z /∈ S). Therefore, for every z ∈ S ∩ Z, gap(i, w) ≤ gap(i, z) implying nz ≥ nw. We apply
the update process taking some z ∈ S ∩ Z. After the update, S∗1(1, l) can serve at least
nz +1 ≥ |σ∗1(w)| additional trips. If there is a driver k ∈ S∗1(1, w−1) serves at least one trip
in σ1(z), then |σ∗1(k)| > |σ1(k)| by inclusion property, a contradiction to Proposition 4.1.1.
Thus, S∗1(w+ 1, l) can serve at least nz + 1 ≥ |σ∗1(w)| additional trips after the update. We
move the trips of σ∗1(w) to σ∗1(j), j ∈ S∗1(w + 1, l) and remove w from S∗1 . By this, the size
of S∗1 is not changed, the inclusion property still holds for every j ∈ S∗1(1, i− 1), the size of
W is reduced by one, and the size of Z is reduced by one.

Case 2 For every z ∈ Z, z > w. Let z0 be the minimum in Z. Then S1(w, z0 −
1) = S∗1(w, z0 − 1) and free∗1(j) = free1(j) for every j ∈ S∗1(w, z0 − 1) by the inclusion
property. Assume for contradiction, there is a k ∈ S∗1(w, z0 − 1) with free∗1(k) < free1(k)
(σ1(k) ⊂ σ∗1(k)). By the inclusion property, every y ∈ σ∗1(k) \ σ1(k) is in σ1(z) for some
z ∈ Z. Then |σ1(k)| < |σ∗1(k)| is a contradiction to Proposition 4.1.1 since y < k < z.
Hence, free∗1(j) = free1(j) for every j ∈ S∗1(w, z0 − 1).

Assume that gap(i, w) > gap(i, z0). By Algorithm RFP, z0 is served before w and
|σ1(z0)| >

∑
j∈S1(z0+1,i−1) free1(j). From this, after z0 is served, |σ(j)| = nj + 1 for j ∈

S1(z0 + 1, i). Further, there is a z ∈ S ∩ Z with w < z0 < z and gap(i, w) ≤ gap(i, z),
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implying nz ≥ nw. We apply the update process taking this z. After the update, S∗1(w+1, l)
can serve at least nz + 1 ≥ |σ∗1(w)| additional trips. We move the trips of σ∗1(w) to σ∗1(j),
j ∈ S∗1(w+ 1, l) and remove w from S∗1 . By this, the size of S∗1 is not changed, the inclusion
property still holds for every j ∈ S∗1(1, i− 1), the size of W is reduced by one, and the size
of Z is reduced by one.

Assume that gap(i, w) ≤ gap(i, z0). Note that |σ1(z0)| ≥ |σ1(w)|−
∑
j∈S1(w+1,z0) free1(j).

We apply the update process with z0 = z. After the update, S∗1(w + 1, l) has at least
|σ1(z0)| +

∑
j∈S1(w+1,z0) free1(j) ≥ |σ1(w)| seats for σ∗1(w). Since free∗1(w) = free1(w) we

have |σ1(w)| = |σ∗1(w)| and can move the trips of σ∗1(w) to σ∗1(j), j ∈ S∗1(w + 1, l), and
remove w from S∗1 . By this, the size of S∗1 is not changed, the inclusion property still holds
for every j ∈ S∗1(1, i− 1), the size of W is reduced by one, and the size of Z is reduced by
one.

Repeat the processes in Cases 1 and 2, we get an optimal solution S∗1 with either W = ∅
or Z = ∅. For W = ∅, S∗ = S∗1 is the solution we want to find. For Z = ∅, S ⊆ S∗1(1, i)∪{i}
and by the argument in the trivial case, we can get S∗.

Theorem 4.1.1. Algorithm 2 Ridesharing-for-path finds a solution (S, σ) for input instance
(G,R) with the minimum number of drivers.

Proof: First, observe that (S, σ) is a solution for R since every trip in R is processed one
by one and assigned to be a driver initially. By Lemma 4.1.2, there is an optimal solution
(S∗, σ∗) for R such that S∗ ⊆ S. Assume that S∗ ⊂ S. By Lemma 4.1.1, we can modify
σ∗ such that the inclusion property holds, that is, σ(j) ⊆ σ∗(j) for every j ∈ S ∩ S∗. Let
z be a driver in S \ S∗1 . Then all trips in σ(z) must be served by drivers in S∗(z + 1, l).
By the inclusion property, free∗(j) ≤ free(j) for every j ∈ S∗(1, l). This implies that
|σ(z)| ≤

∑
j∈S(z+1,l) free(j), which is a contradiction to Algorithm RFP as σ(z) should have

been served by S. Therefore, it must be the case that S∗ = S.

Time complexity Let l be the number of trips in R. The road network G is expressed by
the trips in R by a single path with l+ 1 vertices and l edges. Moving passengers from one
set to another set (line 7 and line 9) does not require the actual general road network and
can be done in O(1). In each iteration, the Find-Target procedure is called multiple times,
which is at most ni times. Actually, we can have a tighter bound. Suppose that there are ni
drivers in S(1, i−1) just before processing i, where |σ(j)| = 1 for every j ∈ S(1, i−1). After
i is added to S. The Find-Target procedure will be called ni times in this iteration. As a
result, S(1, i) will contain only one driver, i, at the end of this iteration. When processing
the next trip i+ 1, Find-Target will be called only once even if ni+1 is large. In fact, Find-
Target is called at most αi = min{ni, |S(1, i− 1)|} for each iteration i. Since the size of S
is increased at most one for each iteration and each time Find-Target returns k > 0, size of
S is decreased by one,

∑
1≤i≤l αi is at most l, where α1 = 0 and |S(1, 1)| = 1.
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The running time for procedure Find-Target is O(l) since it needs to do a scan of S(1, i)
to find out the driver k with minimum gap(i, k). Hence, the running time for Algorithm
RFP is O(l2).

4.2 Non-unique Destinations Without Re-take

In chapter 3.3, we proved that the minimization problems of minimizing the number of
drivers and total travel distance in the ridesharing problem are NP-hard when constraints
(C2) and (C3) are satisfied but trips may have distinct destinations. The rest of the thesis
is focused on this variant of the simplified ridesharing problem where re-take is not allowed.
The reduction in chapter 3.3 no longer can be applied when re-take is not allowed (each
machine i can process up to ni jobs, which is not ISMAP).

First, we formally restate this variant of the ridesharing problem. Consider the following
simplified ridesharing problem: Given an instance (G,R), where G is the road network and
R is a set of ridesharing trips. Each trip u in R is specified by a tuple (Pu, nu), where

• Pu is a path in G with a source su and destination tu, and

• nu ≥ 0 is the number of passengers u can serve for ridesharing,

We assume the start location of each trip u is distinct, that is, su 6= sv for every pair
u, v ∈ R with u 6= v. In the following sections, we consider three different cases for this
simplified variant ridesharing problem, starting from a special case to a fully generalized
case. We give a detailed analysis for the general case in Chapter 5. We will construct a
pick-up relation graph, which is used in all three cases.

Pick-up graph. The pick-up relation graph (pick-up graph for short) for a set R of
ridesharing trips is a digraph GP (V,E), where V (GP ) = R, and there is a directed edge
(u, v) ∈ E(GP ) if trip u can serve trip v.

The time it takes to construct the pick-up graph is O(l2 ∗ |V (G)|) where l = |R| and G
is the road network. For each pair u, v ∈ R, u can serve v if sv and tv lie on the path Pu,
which takes O(|V (G)|) to check.

4.2.1 Limited Capacity

Consider the following special case where all trips in R can serve at most one passenger,
that is, nu ≤ 1 for every u ∈ R. It is intuitively a matching problem between the drivers and
passengers. In a maximum matching M of the underlying pick-up graph GP (constructed
based on (G,R)), each matched edge represents a single pick-up. The actual pick-up can
be recovered by the edge direction in GP . For any unmatched vertex v w.r.t. M , v drives
singly (no sharing with other participants). M derives an optimal solution for minimizing
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the number of drivers. As an example, consider the pick-up graph GP of a given simplified
ridesharing instance and its different optimization goals in Figure 4.2, where a maximum
matching correctly finds the minimum number of drivers.

Figure 4.2: A pick-up graph GP with four trips that have unit capacity, where dist(pu) = 10,
dist(pv) = 8, dist(px) = 3, and dist(py) = 3.

To minimize the total travel distance, we need to construct a different undirected
weighted graph Gw = (Vw, Ew) based on a given pick-up graph GP . Vw consists of two
sets V1 and V2, each of which is a copy of V (GP ). Ew has three subsets {E1, E2, E3}.
E1 = E(GP ) is the set of edges between the vertices in V1. (V2, E2) forms a complete graph.
In addition, there are |V (GP )| edges in E3. Each edge e ∈ E3 is formed by each pair of the
same vertices in V1 and V2 (each of them is a copy of V (GP )). For every e = {u, v} ∈ E1

(correspond to (u, v) ∈ E(GP )), e has weight dist(pu). For every e = {u, u} ∈ E3, e has
weight dist(pu). The weight of every edge in E2 is zero. We claim that a minimum weight
perfect matching of Gw (which can be solved in polynomial time) provides an optimal so-
lution for the ridesharing problem. In such a matching, a matched edge in E1 means a
pick-up, a matched edge in E3 means a singly driving, while a matched edge in E2 has no
particular meaning, except to ensure that there is a perfect matching. The construction of
Gw is shown in Figure 4.3, which is based on the pick-up graph GP in Figure 4.2.

The minimum weight perfect matching finds a solution of the ridesharing problem with
total travel distance 16 as shown in Figure 4.2. Agatz et al. [1] considered a similar matching
problem, but for dynamic settings.

4.3 An Algorithm for Tree Pick-up Graph

Given an instance (G,R) with nu ≥ 0 for every u ∈ R. Since we assume the start location
of each trip i is distinct, the pick-up graph GP (based on (G,R)) is a directed acyclic graph
(DAG). An edge (u, v) in GP is called a short-cut if after removing (u, v), there is a path
from u to v in GP . The pick-up graph GP is called simplified if every short-cut has been
removed from GP . We give an algorithm for an instance (G,R) with its simplified pick-up
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Figure 4.3: Gw based on the pick-up graph GP with four trips that have unit capacity,
where dist(pu) = 10, dist(pv) = 8, dist(px) = 3, and dist(py) = 3.

graph T being a forest. In what follows, we assume that the simplified pick-up graph for
(G,R) is a rooted tree T .

For a vertex u in T , we define the following:

• Tu, the subtree rooted at u.

• Cu, the set of child vertices of u (u 6∈ Cu).

• Du, the set of descendant vertices of u (u 6∈ Du).

• For a set S of drivers, S(Tu) = S ∩ V (Tu) is the subset of drivers in Tu and P (Tu) =
V (Tu) \ S(Tu) is the set of passengers in Tu.

• For a mapping σ, free(u) = min{nu, |Du|}+ 1− |σ(u)|, additional trips u can serve.

4.3.1 Algorithm

It turns out the algorithm for (G,R) with its simplified pick-up graph being a tree is
almost identical to Algorithm RFP, presented in chapter 4.1. The only difference is that
instead of searching a subpath, the algorithm searches a subtree. For completeness, we shall
present the algorithm for tree pick-up graph as well. Given the rooted tree T (the simplified
pick-up graph for (G,R)), our algorithm processes every vertex u of T in the post-order.
In processing u, the algorithm finds a solution (S(Tu), σ) for (the trips in) Tu with the
minimum cardinality. For u and each descendant v of u, let Qu,v be the set of vertices in
the path from u to v in Tu, excluding u and v. The algorithm is called Ridesharing-for-Tree
(RFT for short) and is given in Algorithm 3.

Similar to Algorithm RFP, whenever a trip (a ridesharing participant) is assigned to be
a passenger. It remains as a passenger throughout the algorithm. On the other hand, an
assigned driver can be changed a passenger when a new ancestor of an assigned driver trip
is processed.
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The Find-Target procedure computes a vertex w ∈ S(Tu) to be removed from S(Tu)
and an integer gap. To remove a vertex v from S(Tu), the trips of σ(v) will be served by
ancestors of v, first by those other than u and then by u. gap is the minimum number
of seats required from u to remove a vertex from S(Tu) and w is the vertex which can be
removed from S(Tu) by gap seats from u.

Algorithm 3 Ridesharing-for-Tree
Input: a rooted tree T of the simplified pick-up graph for an instance (G,R).
Output: a solution (S, σ) to the ridesharing instance (G,R) such that |S| is minimized.

1: for every vertex u in T in the post-order do
2: /* Initialization */
3: σ(u) := {u}, compute free(u)
4: S(Tu) := {u} ∪ (∪v∈CuS(Tv)).
5: /* Minimize S(Tu) by removing some vertices from S(Tu) */
6: w := Find-Target(u)
7: while w 6= ∅ do /* Serve σ(w) by ancestors of w and remove w from S(Tu) */
8: for every v ∈ Qu,w ∩ S(Tu) do
9: move free(v) trips from σ(w) to σ(v) and update free(v).

10: end for
11: Move the remaining trips of σ(w) to σ(u) and update free(u).
12: Remove w from S(Tu).
13: w := Find-Target(u)
14: end while
15: end for

16: procedure Find-Target(u)
17: for each v ∈ S(Tu) \ {u}, gap(u, v) := |σ(v)| −

∑
x∈Qu,v∩S(Tu) free(x)

18: Let gap(u,w) be the minimum of gap(u, v) for v ∈ S(Tu) \ {u}.
19: if (S(Tu) \ {u} 6= ∅ and free(u) ≥ gap(u,w)), then return w, else return nil.
20: end procedure

Although Algorithm RFT and Algorithm RFP are merely the same, the analysis of Al-
gorithm RFP cannot be directly applied to Algorithm RFT. Under inspection, Lemma 4.1.1
can be applied to Algorithm RFT. However, Lemma 4.1.2 requires more in-depth analysis.
We believe that a modified version of Lemma 4.1.2 can be obtained and useful for proving
the correctness of Algorithm RFT, which we stated it as the following conjecture.

Conjecture 4.3.1. Let Tu be the subtree that has just been processed by the Algorithm 3
Ridesharing-for-Tree and (S(Tu), σ) be the solution found by the algorithm for Tu. Then
there is an optimal solution (S∗, σ∗) for R such that S∗(Tu) ⊆ S(Tu).

We leave the proof of this conjecture and correctness of Algorithm RFT as a future
work. We will consider the general case in the next chapter.

Time complexity Let n = |V (GP )| and m = |E(GP )| where GP is the pick-up graph.
Then, it takes O(mn) to convert a pick-up graph GP to a simplified pick-up graph T since
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each edge (u, v) needs to be checked, and it takes O(n) to test reachability from u to v. To
test if T is a tree (forest), it takes linear time. Assuming that the simplified pick-up graph T
is a tree. Algorithm RFT does not need the actual road network any more for constructing
the solution for R. Moving passengers from one set to another set (line 9 and line 11) can
be done in O(1). The number of nodes in T is l = |R|. Then, similar to Algorithm RFP,
the running time for Algorithm RFT is O(l2).
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Chapter 5

Algorithm for General Pick-up
Graph

When the simplified pick-up graph T (of the constructed pick-up graph GP ) is no longer a
forest, that is, a vertex in T can have multiple parents, the problem becomes much harder.
We will not use the simplified pick-up graph T to solve this case any more, instead we
construct a hypergraph (defined in Section 5.1) based on the pick-up graph GP . We call
this constructed hypergraph a pick-up relation hypergraph (pick-up hypergraph for short).
We then find a matching in this pick-up hypergraph, which is equivalent to a solution to
the simplified ridesharing problem. This is proved in Theorem 5.2.1. Let us first consider
the construction of the pick-up hypergraph.

5.1 Construction of Pick-up Hypergraph

A hypergraph is a generalization of a graph. Formally, a hypergraph H = (V,E) consists
of a finite non-empty set V of vertices and a set E of non-empty subsets of V called
hyperedges. Hyperedges in E(H) can contain different number of vertices. Given a pick-up
graph GP = (V,E), we construct a pick-up hypergraph H = (V,E) based on GP . The
idea of H is inspired by the (g,f)-factor (or degree constrained subgraph) problem [7]. The
construction of H works as follows:

• For each vertex v ∈ V (GP ) where v is not a sink, create v1, v2, ..., vnv copies of v in V (H).

• For each vertex v ∈ V (GP ) where v is a sink, create a vertex v1 of v in V (H).

• For any vertex v ∈ V (GP ) with nv = 0, create a vertex v1 of v in V (H).

• For each edge (u, v) ∈ E(GP ), create nu hyperedges {u1, v1, ..., vnv}, ..., {unu , v1, ..., vnv}
in E(H).

See Figure 5.1 for an illustration of the construction of H.
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Figure 5.1: An example of a pick-up graph GP (left) and its corresponding pick-up hyper-
graph H (right).

The hyperedges in H are not directed, but we will give an orientation to the edges in H
based on GP . Let (u, v) be an edge in GP and e = {ui, v1, v2, ..., vnv} be a corresponding
edge in H, for some i ∈ [1, nu]. For e, ui is called a parent of each vertex in e \ {ui}, and
each vertex in e \ {ui} is a child of ui. Ancestor for hypergraphs is defined the same as
for graphs. Vertex u is an ancestor of v if u is a parent of v or u is a parent of another
ancestor of v. Each hyperedge e in H has exactly one parent and |e| − 1 children, and all
the children correspond to the same vertex in GP . Notice that the vertices {v1, v2, ..., vnv}
that correspond to the single vertex v ∈ V (GP ) must appear as a whole in any hyperedge
in H.

The pick-up hypergraph H has two properties:

Property 5.1.1. Shortcut property: Let u, v, w be vertices in a pick-up graph GP . If
edges (u, v) and (v, w) ∈ E(GP ), then (u,w) ∈ E(GP ). This shortcut property also holds
in H. Let u, v1, ..., vnv , and w1, ..., wnw be vertices in H. If edges {u, v1, ..., vnv} and
{v1, w1, ..., wnw}, ..., {vnv , w1, ..., wnw} in E(H), then {u,w1, ..., wnw} ∈ E(H).

Denoted by Sv = {v1, ..., vnv}, the set of vertices in H that corresponds to a vertex v in GP .

Property 5.1.2. Each edge e ∈ E(H) contains exactly one vertex ui (i ∈ [1, nu]) from the
set Su and all vertices from another set Sv, where ui ∈ Su is the parent in e and Sv are
children in e.

Corollary 5.1.1. Due to Property 5.1.2, for any two incident hyperedges e, e′ in H:

|e ∩ e′| =

1 or |e| − 1, if |e| = |e′|

1, otherwise
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Intuitively, if |e∩ e′| = 1, e and e′ have the same vertex (e∩ e′) being the parent of their
respective hyperedges. It is not possible that |e ∩ e′| > 1 and |e| 6= |e′|.

Let us introduce some definitions for general hypergraphs. A path P in a hypergraph H
is a sequence of distinct vertices and hyperedges v1, e1, v2, e2, ..., ek, vk+1 where vj , vj+1 ∈ ej
for j = 1, ..., k. If vk+1 = v1, then P is said to be a cycle. In fact, this is called a Berge-cycle.
We use a more generic definition of hypercycle, which is given below:

Definition 5.1.1. C is a cycle of length k in a hypergraph H if its vertices can be given
a cyclic ordering v1, ..., vj such that every pair of consecutive vertices vi and vi+1 lie in an
edge of C, and C has exactly k edges.

Any Berge-cycle is a generic hypercycle, but a generic hypercycle may not be a Berge-
cycle.

Definition 5.1.2. An edge e in a hypergraph H is called a portal edge if e is incident to
at least three edges e1, e2, e3 such that e1, e2 and e3 are pairwise disjoint.

Notice that only hypergraphs can contain portal edges. For simplicity, a (hyper)path P
of length k is denoted by its (hyper)edges only, i.e. P = e1, e2, ..., ek.

Definition 5.1.3. A hyperpath P = e1, e2, ..., ek is simple if P is generic hypercycle free.
Equivalently, ei ∩ ej+1 = ∅ for 1 ≤ i < j < k (that is, every edge ei ∈ P is only incident to
ei−1 and ei+1 for 2 ≤ i ≤ k− 1), and e1 is only incident to e2, ek is only incident to ek−1.

A matching M in a hypergraph H is defined the same - a set of pairwise vertex-disjoint
edges. An alternating hyperpath in H is a simple hyperpath whose edges are alternately
matched and unmatched w.r.t. M (an alternating hyperpath does not admit a generic
hypercycle). An augmenting hyperpath in H is an alternating hyperpath that starts from
and ends on unmatched edges, each of which is incident to at most one matched edge of H
w.r.t. M .

5.2 Matching in Hypergraph and Solution for Ridesharing

Now, we are ready to show that finding a solution for this variant of simplified ridesharing
problem is equivalent to finding a matching in the pick-up hypergraph.

Theorem 5.2.1. The simplified ridesharing problem (G,R) when constraints (C2) and
(C3) are satisfied but trips may have distinct destinations without re-take has a solution
(S, σ) of k passengers if and only if the pick-up hypergraph H, based on the pick-up graph
GP of R, has a matching M of size k.

Proof: (→) Given a solution (S, σ) of k passengers for (G,R). Let v be a passenger of
driver u in (S, σ). Since u can serve v, there is an edge (u, v) in GP , which corresponds
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to a hyperedge {ui, v1, ..., vnv} in H, for some i ∈ [1, nu]. A driver u can serve up to nu
passengers, and there are nu copies of u in H. Thus, the hyperedges representing the pick-
ups of the same driver can be chosen in a way that they do not intersect. Hence, there are
k vertex-disjoint hyperedges in H that form a matching M .
(←) Suppose that there is a matchingM in H where |M | = k. Then every matched edge in
H represents a valid pick-up between two trips in (G,R) as follows. Let e = {ui, v1, ..., vnv}
be a matched edge w.r.t. M , which corresponds to an edge (u, v) in GP , where u is the
driver and v is the passenger. Every hyperedge in H incident to e must be unmatched. This
implies that no other trips will serve v, and v will not serve other trips because e contains
{v1, ..., vnv}, all copies of v. By Property 5.1.2, every hyperedge e in H that contains uj ,
where uj is a child in e and j 6= i, must contain all of {u1, ..., unu}, which means no other
trip can serve u as well. For the vertices where the whole set {w1, ..., wnw} that are not
matched, the corresponding vertices in GP represent singly drivers, only serve themselves.
Therefore, a matchingM in H gives a solution (S, σ) of k passengers to instance (G,R).

By Theorem 5.2.1, the size of M in H equals to the number of passengers in a solution
(S, σ) for an instance (G,R). Hence, by maximizing the size of a matching inH, we minimize
the number of drivers for the ridesharing problem. Note: neither a k-uniform hypergraph
H nor a perfect matching M of H is required for solving the ridesharing problem. For
simplicity, we drop the prefix “hyper” - for hyperpath, hyperdedge, and hypercycle most of
the times.

5.2.1 Augmenting Graph

The key of most algorithms for finding a maximum matching in a graph is based on the
maximum maching theorem by Berge [6].

Theorem 5.2.2. Berge’s maximum matching theorem: A matching M in a graph G is
maximum if and only if there exists no augmenting path in G w.r.t M .

We will extend Berge’s maximum matching theorem to hypergraphs so that we know a
matching in a hypergraph is maximum or not. We prove the following theorem.

Theorem 5.2.3. A matching M in a hypergragh H is maximum if and only if there exists
no augmenting graph in H w.r.t. M .

We call this theorem, the maximum hyper-matching theorem. Augmenting graph is a
generalization of augmenting path for hypergraphs. Before defining an augmenting graph,
we need to define end-edges. An edge e is said to be an end-edge if e is incident to at
most one other edge. Similarly, a vertex u is said to be an end-vertex if u is incident to
(belongs to) only one edge. Let H be an arbitrary hypergraph and M be a matching in H.
An augmenting graph T is a connected subgraph of H w.r.t M such that T satisfies the
following:
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(A1) Every end-edge e in T is an unmatched edge, and e is incident to at most one matched
edge in H.

(A2) For every pair of vertices u, v in T , every path in T connecting u and v is an alternating
path.

(A3) All matched edges of H incident to an unmatched edge that is in T must be in T .

(A4) The number of unmatched edges in T is greater than the number of matched edges
in T .

The (A2) condition is very important because it implies that unmatched edges are only
incident to unmatched edges and matched edges are only incident to matched edges in T .
Also, notice that Theorem 5.2.3 reduces to Berge’s Theorem when H is a graph because
any augmenting graph T is an augmenting path in H. Figure 5.2 shows an example of an
augmenting graph of a hypergraph w.r.t. a matching.

(a) A hypergraph H with
matching M

(b) An augmenting
graph T of H w.r.t. M

(c) New matching after
augmentation, M = M ⊕ T

Figure 5.2: An example of an augmenting graph of a hypergraph w.r.t a matching. The
bold edges represents a matched edge, and non-bold edge represents an unmatched edge.

Lemma 5.2.1. If a hypergraph H has an augmenting graph T w.r.t. matching M , then H
has a larger matching than M .

By Lemma 5.2.1 which is proved later, if there exists an augmenting graph T in H

w.r.t. a matching M , we can enlarge M by augmenting M with T , i.e. M = M ⊕ T , see
Figure 5.2. The idea for finding a maximum matching in the pick-up hypergraph is to find
an augmenting graph in each iteration until none exists. We describe the algorithm for
finding a maximum matching in a pick-up hypergraph in the next section.
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5.3 Algorithm

Overview The proposed algorithm works as an augmenting algorithm, such as Edmonds’
maximum matching algorithm [13]. There are two steps in our algorithm. First, the algo-
rithm finds a maximal matching in H. Consider a matchingM in H, which is not maximal.
The algorithm finds a non-empty set of edge-disjoint alternating paths T = {P1, P2, ..., Ph}
in H w.r.t. M such that T has exactly one augmenting path and all other paths in T are
even length alternating paths. Here, T is an augmenting graph formed by P1∪P2∪ ...∪Ph.
Then by Lemma 5.2.1, augmenting M with T (i.e. M = M ⊕ T ) will increase the size of
M by one. This process continues until a maximal matching M is obtained.

The algorithm enters the second step after a maximal matching M has been obtained.
At each iteration of the second step, a matched portal edge e of H is picked. e is removed
from M , so the vertices incident to e become free (unmatched). The algorithm will try
to find a set of edge-disjoint alternating paths T = {P1, P2, ..., Ph} in E(H) \ {e} w.r.t
M ′ = M \ {e}, where T resembles an augmenting graph. If T cannot be found, a different
matched portal edge w.r.t. M is checked. If T can be found, set M ′ = M ′ ⊕ T , which
increases the size of M ′ by one so that |M ′| = |M |. Then, the algorithm tries to find a
larger matching w.r.t. the new matchingM ′ by starting from the first step. Essentially, this
is how the algorithm make progress. This second step stops when all matched portal edges
are checked and no augmenting graph T can be found. We call this algorithm Maximum-
Matching-for-Hypergraph (MMH for short), and it is shown in Algorithm 4. The details
of the procedures Search and CandidateSearch are presented in Sections 5.3.2 and 5.3.3
respectively. Also, we provide a full example of Algorithm 4 in Appendix A.

Algorithm 4 Maximum-Matching-for-Hypergraph
1: Input: A pick-up hypergraph H.

Output: A maximum matching M in H.
2: M := ∅;
3: Pick an unmatched edge e ∈ H where e is incident to at most one matched edge
4: (Found, T ) := Search(H,M, ∅, e, ∅)
5: if Found == True then
6: M := M ⊕ T /* Augment T */
7: end if
8: Repeat steps 3-7 until |M | cannot be increased and every unmatched edge w.r.t. M is processed
9: Pick a matched portal edge e ∈ E(H) w.r.t. M

10: M := CandidateSearch(H,M, e)
11: Repeat steps 8-9 until |M | cannot be increased and every matched portal edge w.r.t. M is

processed
12: return M

Note that after an augmentation, the set of matched and unmatched edges can be completely
different. It needs to check every unmatched and matched edge again respectively for steps 3-8
and steps 9-11.
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5.3.1 Augmenting path

The proposed algorithm (specifically in procedure Search) needs to find a set of alternating
paths in the pick-up hypergraph w.r.t. a matching. We propose a method for finding an
augmenting path in general hypergraphs by extending the algorithm in [8] for graphs to
hypergraphs. It may be possible to enhance (or simplify) the current method for finding an
augmenting path in hypergraphs more efficiently, such as extend from a simpler maximum
matching algorithm [21], or follow a similar approach for finding a perfect matching in bi-
partite hypergraphs [3] (which is a recent result). However, we only focus on finding an
augmenting path in polynomial time in the size of a hypergraph. The method for finding
an augmenting path in general hypergraphs is detailed in Sections 5.5 to 5.7 along with its
analysis. We shall note that there is a similar aspect between [3] and our approach. In
[3], it relies on the hypergraph version of Hall’s theorem, which is proved in [18]. Our pro-
posed algorithm relies on the hypergraph version of Berge’s theorem, that is, Theorem 5.2.3
(maximum hyper-matching theorem).

5.3.2 Main search

The core of the algorithm is to find a non-empty set of edge-disjoint alternating paths
T = {P1, P2, ..., Ph} in the pick-up hypergraph H w.r.t matching M such that the graph
induced by T = {P1, P2, ..., Ph} forms an augmenting graph. The Search procedure is only
responsible for finding and returning an augmenting graph T , which is shown on the next
page.

The first alternating path P1 ∈ T found by the Search procedure is an augmenting path,
so P1 has one more unmatched edge than matched edge. Each path of {P2, ..., Ph} is an
even length alternating path. The paths in T are found by the algorithm one by one to
ensure that that paths are pairwise edge-disjoint. In fact, we make sure that the paths
{P1, P2, ..., Ph} form an augmenting graph T of H. Once T is found, we take the symmetric
difference of M and T to increase the size of the matching by one.

We now describe how the Search procedure finds T in detail. Let M be the current
matching in the pick-up hypergraph H. The algorithm first finds an augmenting path P1

starts from and ends with unmatched edges w.r.t. M . P1 becomes the initial augmenting
graph, T = P1. If P1 does not contain any unmatched portal edge, M ⊕ P1 is a valid
augmentation that gives a larger matching by Lemma 5.2.1. Suppose P1 contains some
unmatched portal edges. If we perform the symmetric difference M ′ = M ⊕ P1, M ′ may
not be a valid matching. This is because there can be matched edges in H \ P1 w.r.t. M
incident to unmatched portal edges of P1. After augmentation M ′ = M ⊕P1, two matched
edges w.r.t. M ′ may be incident to each other, which is not a valid matching. To solve this
problem, we try to find alternating paths that start from the matched edges incident to the
unmatched portal edges of P1.
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1: procedure Search(H,M, T, e, List)
2: Find an alternating path Pe in E(H) \ E(T ) that starts from e and ends with an unmatched

edge w.r.t. M such that Pe does not contain any edge from List, and no unmatched edge in Pe

intersects with any unmatched edge in T .
3: if Pe cannot be found then
4: return (False, ∅)
5: end if
6: Set T = T ∪ Pe

7: if Pe does not contain any unmatched portal edge, return (True, T )
8: List[e] := List; /* A list of unmatched portal edges should not be included when finding a

different alternating path that starts from e */
9: for each unmatched portal edge e′ in Pe do

10: Let e1, ..., ek be the matched edges in H \ T that are incident to e′.
11: for each ei do /* 1 ≤ i ≤ k */
12: (Completed, Temp) := Search(H,M, T, ei, ∅)
13: if (Completed == False) then
14: Remove Pe from T ; Add e′ to List[e].
15: Remove from T all the alternating paths that were found after Pe.
16: break;
17: end if
18: T := Temp

19: end for
20: if (Completed == False) then break;
21: end for
22: if (Completed == True), return (True, T )
23: return Search(H,M, T, e, List[e]) /* find another alternating path starts from e */
24: end procedure

Let e be an unmatched portal edge in P1. There can be at most k = |e| − 2 matched
edges in H \P1 incident to e. For each matched edge ei, i = 1, ..., k, that is incident to e, we
try to find an even-length alternating path Pei starts from ei and ends with an unmatched
edge et w.r.t. M one by one. We allow the unmatched end-edge et to be incident to matched
portal edge(s) of P1 as long as it cannot be extended anymore. In other words, Pei is an
alternating path ends with an unmatched edge in H \T w.r.t. M . In addition, we make sure
that unmatched edges of Pei do not intersect with unmatched edges in T . Then, add Pei

to T , and find the next alternating path starts from ei+1. Suppose we can find k different
alternating paths for every ei, i = 1, ..., k. T will consist of alternating paths P1, Pe1 , ...,
Pek

where P1 has one more unmatched edge and Pei has equal number of unmatched and
matched edges. M ⊕ T increases the size of the matching by one. If Pei also contains some
unmatched portal edges, then follow the same procedure to find another set of alternating
paths in H \ T that start from the matched edges incident to unmatched portal edges.
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Recursively do this until all matched edges incident to unmatched portal edges are included
in T so that we are safe to perform the augmentation M = M ⊕ T .

Suppose that there does not exist a desired alternating path in H \ T starts from ei

that is incident to an unmatched portal edge e of the path Pey ∈ T . The algorithm will
try to find another alternating path P ′ey

starts from ey to replace Pey , where P ′ey
does not

contain e. If P ′ey
can be found, Pey is removed from T and P ′ey

is added to T . In addition,
T only keeps the alternating paths that were found prior to finding Pey . If P ′ey

does not
exist, the algorithm backtracks further to the path containing the unmatched portal edge e′

that is incident to ey. This can backtrack to the initial augmenting path P1. If a different
augmenting path cannot be found, the algorithm checks the next unmatched edge that is
incident to at most one matched edge.

5.3.3 Candidate search

The intuition of CandidateSearch can be summarized as follows. Let M be a maximal
matching in the pick-up hypergraph H. We know that the current corresponding drivers
in H based on M cannot serve anymore passengers. However, it is possible that a par-
ticular passenger should be a driver instead. In CandidateSearch, a matched portal edge
e = (ui, v1, ..., vnv ) is removed from M so that v1, ..., vnv become unmatched. As a re-
sult, these passengers represented by vertices in e have a chance to become drivers. The
CandidateSearch procedure is shown below:

1: procedure CandidateSearch(H,M, e)
2: M ′ := M − {e}; E(H ′) = E(H) \ {e};
3: Pick an unmatched edge e′ ∈ H ′ where e′ is incident to at most one matched edge
4: (Found, T ) := Search(H ′,M ′, ∅, e′, ∅)
5: if Found == True then
6: M ′ := M ′ ⊕ T /* Augment T */
7: end if
8: Repeat steps 3-7 until |M ′| cannot be increased and every unmatched edge w.r.t. M ′ is processed
9: if |M ′| < |M | then /* no augmentation was made */

10: Set M ′ = M ′ ∪ {e};
11: end if
12: return M ′

13: end procedure

Let M ′ = M \ {e}. Every edge incident to e is unmatched w.r.t. M ′ since e was a
matched edge. Let H ′ be the hypergraph H with the edge e removed. Then procedure
Search is called, H ′ is given as an input along with M ′. In this way, if an augmenting
graph T can be found, e is not included in T . There are four possible outcomes after one
iteration in CandidateSearch:
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(1) T is found and augmented - M ′ = M ′⊕T . As a result, |M ′| increased by one (so now
|M ′| = |M |). There are unmatched edges w.r.t M ′ have not been processed.

(2) Similar to (1), |M ′| increased by one, but all unmatched edges w.r.t M ′ have been
processed.

(3) T cannot be found. |M ′| unchanged (so |M ′| < |M |), but there are unmatched edges
w.r.t M ′ have not been processed.

(4) |M ′| unchanged, and all unmatched edges w.r.t M ′ have been processed.

For both (1) and (3), call Search is called again to process a different unmatched edge
w.r.t. M ′. This is repeated until all unmatched edges w.r.t. M ′ are processed. For (2), no
further process is required, so just proceed to check the next matched portal edge w.r.t M ′.
For (4), revert M ′ to the original matching M , and check the next matched portal edge
w.r.t M .

5.4 Analysis of Optimality

As mentioned, many algorithms rely on the Berge’s maximum matching theorem for finding
a maximum matching in graphs. Our algorithm also relies on the hypergraph version of
the theorem. Let us restate the maximum matching theorem and the hypergraph version
of the theorem.

Theorem 5.4.1. Berge’s maximum matching theorem [6]: A matching M in a graph G is
maximum if and only if there exists no augmenting path in G w.r.t M .

Theorem 5.4.2. Maximum hyper-matching theorem: A matching M in a hypergragh H is
maximum if and only if there exists no augmenting graph in H w.r.t. M .

Theorem 5.4.2 applies to arbitrary hypergraphs, not just pick-up hypergraphs. In this
section, we will first prove the contrapositive of Theorem 5.4.2 in Lemma 5.4.1 and Theo-
rem 5.4.3, for each direction.

Lemma 5.4.1. If a hypergraph H has an augmenting graph T w.r.t. matching M , then H
has a larger matching than M .

Proof: Let M1 be the set of edges of T belonging to M and M2 = E(T ) −M1. In other
words, M1 is the set of matched edges in T and M2 is the set of unmatched edges in T .
Since T is an augmenting graph, |M2| ≥ |M1| + 1. Thus, (M −M1) ∪M2 gives a larger
matching than M . The new matching is valid because when an unmatched edge e ∈ M2

becomes matched, every matched edge in H incident to e becomes unmatched at the same
time, and no two unmatched edges in M2 are incident to each other by the definition of
augmenting graph.
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The following lemma is used in Berge’s maximum matching theorem. Again, we will extend
this to hypergraphs stated in Lemma 5.4.3.

Lemma 5.4.2. Let M1 and M2 be two matchings in a graph G. Let G′ be the spanning
subgraph of G with edge set E = (M1 −M2) ∪ (M2 −M1), the symmetric difference of M1

and M2. Then each component of G′ is one of the following types:

1. An isolated vertex;

2. An even cycle whose edges alternately in M1 and M2.

3. A simple path whose edges alternately in M1 and M2 such that each end-vertex of the
path is unmatched with respect to exactly one of M1 and M2.

Lemma 5.4.3. Let M1 and M2 be two matchings in a hypergraph H. Let S be the spanning
subgraph of H with edge set E = (M1 −M2) ∪ (M2 −M1), the symmetric difference of M1

and M2. Then each component of S is one of the types stated in Lemma 5.4.2 or:

4. A hypergraph containing an edge incident to at least three other edges and each edge
of the graph is matched to exactly one of M1 and M2.

Proof: Note that ∆(S) is still at most two. Hence, Lemma 5.4.2 still holds for the
components in S. Let S1 be a component of S. If S1 is not an even cycle nor a (trivial)
path, then there exists an edge in S1 that is incident to at least three other edges. Observe
that the edges of each path and even cycle in S are alternately in M1 and M2 since no two
edges in a matching are incident to each other. It is obvious that each edge of the graph is
matched to exactly one of M1 and M2 due to E(S) = (M1 −M2) ∪ (M2 −M1).

Two other lemmas are required to prove Theorem 5.4.3. Let us introduce some notations
first. In the following proofs, a (hyper)path always refer to a simple (hyper)path due to the
fact that all alternating paths are simple by definition. Let M and M ′ be two matchings
in a hypergraph H and e be a portal edge in H. Sometimes, we call a portal edge a portal
only. If e ∈M , then it is called anM -portal, otherwise e ∈M ′ and called anM ′-portal. For
simplicity, edges from M are sometimes called M edges. Also, when not explicitly stated,
M edges can mean both M -portals or edges from M . Similarly for edges from M ′.

Lemma 5.4.4. Let M and M ′ be two matchings in a hypergraph H and S be the spanning
subgraph of H with edge set E = (M −M ′)∪ (M ′−M). Let S1 be a component of S and e
be an M ′-portal in S1. Let e1 be an edge in S1 that is incident to e and T1 be the subgraph
of S1 \ {e} containing the edges that are reachable from e1. If T1 contains none of the two
subgraphs stated below, then T1 has more M edges than M ′ edges.

1. A path P1 starts from e1 and ends at an M ′ end-edge et1 of T1 (type 1).
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2. An even length path P1 starts from e1 to an M ′ edge that is incident to an even length
cycle C1 of T1 (type 2).

Proof: If T1 is a tree and every end-edge in T1 is from M , it is obvious that T1 has more
M edges than M ′ edges. Suppose T1 contains some cycles, and e1 must go through an odd
length path (starts at e1) to reach any cycle in T1. We will note the difference between the
number of M edges and the number of M ′ edges in T1 after removing a sequence of cycles
from T1.

Remove an even length cycle C from T1, and this may divide T1 into multiple compo-
nents. Consider a component Tc of T1 \ C that does not contain the edge e1. If there is
an M ′ edge e′ in Tc incident to C, then e′ is the only edge incident to C. Assume, for
contradictory, that there is another edge f in Tc incident to C. There exists a path Pe′ from
e′ to f in Tc since e′ and f belong to the same component. This path Pe′ plus a sub-path of
C forms another cycle CTc . The edge ec ∈ C incident to e′ is an M -portal, and there exists
a path P1 in T1 \CTc from e1 to the edge incident to ec. P1∪CTc forms the type 2 subgraph
(see Figure 5.3 (a) → (b)), which leads to the contradiction that T1 does not contain this
subgraph. Thus, Tc can only have exactly one M ′ edge incident to C. On the other hand,
if Tc does not have an M ′ edge incident to C, Tc can have multiple M edges incident to
C. If Tc is a tree, it has at most one end-edge from M ′ and all other end-edges from M ,
so the number of M edges is at least the number of M ′ edges in Tc. Suppose Tc contains
cycles. Remove another even length cycle C ′ from Tc, which may further divide Tc into
more components. Let T ′c be a component in Tc \ C ′. By the above analysis, T ′c can have
at most one M ′ edge incident to C ′. Some end-edges in T ′c can be incident to previously
removed cycles because they may not be end-edges in T1. However, these end-edges in T ′c
must from M . Otherwise, there exists an even length path in T1 from e1 to one of these
end-edges that connects to a cycle, which is the type 2 subgraph - a contradiction. Again,
if T ′c is a tree, it has at most one end-edge from M ′ and all other end-edges are from M , so
the number of M edges is at least the number of M ′ edges in T ′c. If T ′c still has cycles, then
remove a cycle from T ′c one by one until there is none. Each of the resulting components is
a tree that has at least as many M edges as M ′ edges.

Consider the component Tc1 of T1 \ C that contains the edge e1. Every edge in Tc1

incident to C is an M edge. Otherwise, it will form the type 2 subgraph. If Tc1 is a tree,
it has more M edges than M ′ edges since every end-edge in Tc1 is from M . Suppose Tc1

contains cycles. Similarly, remove an even length cycle C ′ from Tc1 , which may further
divide Tc1 into more components. For the case where the components of Tc1 \ C ′ that do
not contain the edge e1 is identical to the above. Let T ′c1 be the component of Tc1 \ C ′

that contains the edge e1. If T ′c1 is a tree, it has more M edges than M ′ edges. If T ′c1 has
cycles, again, remove a cycle from T ′c1 one by one until there is none. Each of the resulting
components is a tree that has at least as many M edges as M ′ edges, except for the tree

42



(a) Edges {e2, e3, e4, ec} form cycle C and
edges {e′, f} form component Tc.

(b) Edges {e′, f, e4, ec} form the new cycle
CTc

, and there is a path P1 from e1 to e3,
which forms type 2 subgraph.

Figure 5.3: An example for forming type 2 subgraph. The bold rounded rectangle represents
an M edge, and non-bold rounded rectangle represents an M ′ edge.

containing the edge e1, which has more M edges than M ′ edges. Therefore, T1 has more
M edges than M ′ edges.

Lemma 5.4.5. Let M and M ′ be two matchings in a hypergraph H and S be the spanning
subgraph of H with edge set E = (M −M ′)∪ (M ′−M). Let S1 be a component of S, where
S1 contains some cycles, and every end-edge in S1 is from M . If S1 contains none of the
two subgraphs stated below, then the number of M edges is at least the number of M ′ edges
in S1.

1. Two even length cycles C1 and C2 in S1 that are connected by a path P , where P is
odd and has more edges from M ′ than M (subgraph 1).

2. Two even length cycles C1 and C2 in S1 that share a path P , where P is odd and has
more edges from M than M ′ (subgraph 2).

Proof: The proof is similar to Lemma 5.4.4 - by removing a sequence of cycles from S1.
If S1 contains only one cycle, it is trivial. Suppose S1 contains multiple cycles. Remove an
even length cycle C from S1, which may divide S1 into multiple components. Consider a
component Tc of S1 \ C. If there is an M ′ edge e′ in Tc incident to C, then e′ is the only
M ′ edge incident to C since another M ′ edge in Tc incident to C would form subgraph 2
(see Figure 5.4 (a) → (b) and (c) → (d)).

Suppose Tc is a tree. Notice that Tc cannot just be a single M ′ edge. Otherwise, C ∪Tc
forms subgraph 2 (see Figures 5.4c, 5.4d). Tc has at most one end-edge from M ′ and all
other end-edges from M , so the number of M edges is at least the number of M ′ edges
in Tc. Suppose Tc contains cycles. Remove an even length cycle C ′ from Tc, which may
further divide Tc into more components. Let T ′c be a component in Tc \ C ′. By the above
analysis, T ′c can have at most one M ′ edge incident to C ′. Some end-edges in T ′c can be
incident to previously removed cycles because they may not be end-edges in S1. However,
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(a) Edges {e1, e3, e4, e5} form cycle C and
edges {e2, e6, e7} form component Tc.

(b) Edges {e1, e3, e4, e5} form a cycle C1 and
edges {e1, e2, e6, e7} form a cycle C2. The
path shared by C1 and C2 is e1.

(c) Edges {e1, e2, e3, e4} form cycle C and
edge e5 forms component Tc.

(d) Edges {e1, e2, e3, e4} form a cycle C1
and edges {e1, e2, e4, e5} form a cycle C2.
The path shared by C1 and C2 is e1, e4, e2.

Figure 5.4: Examples for forming subgraph 2. The bold rounded rectangle represents an
M edge, and non-bold rounded rectangle represents an M ′ edge.

these end-edges in T ′c must from M . Otherwise, there exists an odd length path with more
M ′ edges in S1 connecting C and C ′, which is the subgraph 1 - a contradiction. Hence, T ′c
has at most one end-edge from M ′, and all other end-edges are from M . If T ′c is a tree, the
number of M edges is at least the number of M ′ edges in T ′c. If T ′c still has cycles, then
remove a cycle from T ′c one by one until there is none. Each of the resulting components is
a tree that has at least as many M edges as M ′ edges.

Theorem 5.4.3. Let M and M ′ be two matchings in a hypergraph H with |M ′| > |M |, and
let S be the spanning subgraph of H with edge set E = (M −M ′) ∪ (M ′ −M). Then there
is a component S1 of S such that there exists an augmenting graph w.r.t. M in S1.

Proof: Since |M ′| > |M |, there is a component S1 in S such that S1 has more edges
from M ′ than M . If every edge in S1 is incident to at most two edges of S1, then S1 is
an odd-length path, and thus an augmenting graph w.r.t. M (observed by Lemma 5.4.2).
Otherwise, by Lemma 5.4.3, S1 contains an edge e incident to at least three edges of S1,
which is a portal edge. Note that edges in any path in S1 alternate between M and M ′.

Case 1: Suppose S1 is a tree - generic hypercycle free. Since S1 has more M ′ edges
than M edges, there is a path P in S1 such that the two end-edges of P are M ′ end-edges
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in S1. We will show that an augmenting graph T w.r.t. M can be constructed from P .
Initially, let T = P . Notice that if an M edge in S1 \ T is incident to an edge e ∈ T then
e is an M ′-portal. If T does not contain any M ′-portal of S1, then T is an augmenting
graph w.r.t. M by definition. Assume that there are M ′-portals in T. Let ΩT be the set
of M ′-portals of S1 in T . We process the M ′-portals in ΩT one by one, trying to include
the subtrees of S1 incident to the M ′-portals in ΩT (trying to satisfy the A3 condition in
the definition of augmenting graph). If we just include M edges incident to M ′-portals in
ΩT to T , T will not have more M ′ edges than M edges. Thus, we try to include subtrees
containing equal number of M and M ′ edges to T so that T has more M ′ edges. The way
to accomplish this is quite similar to the Search procedure in Algorithm 4.

Let e be an M ′-portal in ΩT and e1, ..., ek be the edges in S1 \ T that are incident to
e. Each ei, 1 ≤ i ≤ k, is a M edge. The subgraph of S1 reachable from ei without using
any edge of T is a tree, denoted by Ti. We check every Ti. If every end-edge in Ti is an
M edge, then Ti has more M edges than M ′ edges. We remove e ∪ Ti from S1 to get a
subgraph of S1. Since S1 has more M ′ edges than M edges and the number of M ′ edges is
at most that of M edges in e ∪ Ti, the subgraph of S1 has more M ′ edges than M edges.
From this, there is a component S′1 of the subgraph that is a tree and has more M ′ edges
than M edges. Furthermore, any M ′ edge in S′1 is not incident to any edge in S1 \S′1. Then
an augmenting graph in S′1 w.r.t. M is also an augmenting graph in S1, and we try to find
such an augmenting graph anew from S′1.

Assume that every Ti, 1 ≤ i ≤ k, has an end-edge eti which is an M ′ edge. Let Pi be
the path from ei to eti and T = T ∪Pi. If Pi has an M ′-portal, we include every M ′-portal
of S1 in Pi to ΩT . We mark edge e processed. After every M ′-portal in T is processed, T
is an augmenting graph w.r.t. M because every end-edge in T is an M ′ edge, implying T
has more M ′ edges than M edges, and every M edge in S1 \ T is not incident to T .

Case 2: Suppose S1 is not a tree, which contains cycles. In this case, a path P starts
and ends with an edge from M ′ may not exist in S1. In fact, there are three cases to be
considered: (1) S1 has at least two end-edges from M ′, (2) S1 has exactly one end-edge
from M ′, and (3) S1 has no end-edge from M ′. First notice that in all three cases, every
cycle C in S1 must contain at least one portal edge. Otherwise, no other edges in S1 can
connect to C, which makes C an isolated component.

Case 2.1: Let us consider the first case: S1 has at least two end-edges from M ′. The
analysis follows a similar structure as in the tree case. Let P be a path with two M ′ end-
edges in S1. We will try to construct an augmenting graph T w.r.t. M from P . Let T = P ,
which has exactly one more edge from M ′ than M . Let ΩT be the set of M ′-portals of
S1 in T . Again, if ΩT = ∅, T is an augmenting graph w.r.t. M by definition. Suppose
ΩT 6= ∅. We will process the M ′-portals in ΩT one by one, and try to include subgraphs of
S1 incident to theM ′-portals in ΩT . Let e be anM ′-portal in ΩT and e1, ..., ek be the edges
in S1 \ T that are incident to e. Each edge ei, 1 ≤ i ≤ k, is called a root edge. Let Ti be
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the subgraph of S1 containing the edges that are reachable from ei without using any edge
of T . Then, check if there exists in Ti, one of the three subgraphs stated in the following:

(Type 1) A path Pi starts from ei and ends at an M ′ end-edge eti of S1.

(Type 2) An even length path Pi starts from ei to an M ′ edge that is incident to an even
length cycle Ci of Ti.

(Type 3) A path Pi starts from ei to an edge eti that is incident to an M edge of T .

Type 1 - eti
being an end-edge in S1

Type 3 - eti
is incident to an M edge

of T

Type 2 - eti being an M ′ edge incident to an even length cycle Ci

of Ti

Figure 5.5: Three types of subgraphs to be checked. The bold rounded rectangle represents
an M edge, and non-bold rounded rectangle represents an M ′ edge.

All three types are illustrated in Figure 5.5. Type 1 and type 3 are almost the same.
For type 2, the length of Pi can be zero, but Ci must include ei then. Let GTi be one of
the subgraphs above. Notice that GTi has equal number of M ′ edges and M edges. Add
GTi to T , and T has exactly one more M ′ edge than M edge. Include every M ′-portal of
S1 in GTi to ΩT . Then continue to process the next root edge. Initially, T has one more
M ′ edge than M edge, and we add to T one of the subgraphs GTi each time, where GTi has
equal number of M and M ′ edges. Thus, T has exactly one more edge from M ′ than M
so far. After process every M ′-portal in ΩT , if one of the subgraphs (types 1, 2, 3) can be
found each time, the resulting T is an augmenting graph since T satisfies the definition of
augmenting graph.

Suppose Ti does not contain the type 1, type 2, and type 3 subgraphs. Then every
end-edge in Ti is an M edge. Assume that ei is the only edge in Ti that is incident to portal
edge in ΩT . Notice that ei must be an end-edge in Ti. By Lemma 5.4.4, Ti has more M
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edges than M ′ edges. Remove e∪Ti from S1 to get a subgraph of S1. Because S1 has more
M ′ edges than M edges, there is a component S′1 of the resulting subgraph has more M ′

edges than M edges. Furthermore, any M ′ edge in S′1 is not incident to any edge in S1 \S′1.
Then an augmenting graph in S′1 w.r.t. M is also an augmenting graph in S1, and we try
to find an augmenting graph anew from S′1.

Assume that there exists some edges in Ti, other than ei, are incident to portal edges
in ΩT . Let ΣT be the set of M -portals of S1 in T , and let h be an edge in ΣT . We will try
to add to T subgraphs of S1 \ T incident to the M -portals in ΣT . Let h1, ..., hk be edges
incident to h that are not in T , and Hj be the subgraph of S1 \T containing the edges that
are reachable from hj without using any edge of T , for 1 ≤ j ≤ k. Check each Hj to find
one of the three types of subgraphs stated below, which are very similar to types 1-3:

(Type 4) A path Pj starts from hj and ends at an M ′ end-edge etj of S1.

(Type 5) An odd length path Pj starts from hj to an M ′ edge that is incident to an even
length cycle Cj of Hj .

(Type 6) A path Pj starts from ej to an edge etj that is incident to a M edge of T .

As a result, each type of the subgraph GHj has one more edge from M ′ than M . Let PTi

be any path in Ti from ei to the edge incident to an M ′-portal e′ ∈ ΩT with e′ 6= e. Add
GHj ∪ PTi to T . Include every M ′-portal of S1 in GHj ∪ PTi to ΩT . Since GHj ∪ PTi has
equal number of M ′ edges and M edges, the new T has exactly one more M ′ edge than M
edge. Repeat the whole process for the next M ′-portal in ΩT .

Suppose that for every h ∈ ΣT , Hj does not contain the type 4, 5, and 6 subgraphs.
Then every end-edge in Hj is an M edge with the possible exception of h, for 1 ≤ j ≤ k.
Remove T , Ti, Hj that is incident to h ∈ ΣT (for 1 ≤ j ≤ k) from S1 to get a subgraph of
S1. By Lemma 5.4.4, Ti has more M edges than M ′ edges, and Hj has at least as many
M edges as M ′ edges. Since T has exactly one more M ′ edges than M edges, the resulting
subgraph of S1 has more M ′ edges than M edges. From this, there is a component S′1 of
the resulting subgraph that has more M ′ edges than M edges. Furthermore, any M ′ edge
in S′1 is not incident to any edge in S1 \S′1. Then, we try to find an augmenting graph anew
from S′1. Notice that S′1 can have at least two, exactly one, or no end-edges from M ′. For
the last two cases, they are proved below, which follow the same structure.

Case 2.2: For the second case: S1 has exactly one end-edge from M ′. The proof is
similar to the first cycle case (Case 2.1). Let es be the only end-edge in S1 that is from
M ′. There must exists an odd length path P starts from es and connects to an even length
cycle C in S1. Otherwise, S1 has at least as many M edges as M ′ edges by Lemma 5.4.4,
a contradiction. Let us denote the subgraph P ∪C by T , which has exactly one more edge
from M ′ than M . Let ΩT be the set of M ′-portals in T . We then follow the construction
stated above to process each M ′-portal in ΩT .
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The only difference between the first case and this case is that when searching the
subgraph Ti that is incident to an M ′-portal edge e ∈ ΩT , we only look for type 2 and
type 3 subgraphs since es is the only M ′ end-edge in T . Similarly when searching the
subgraph Hj that is incident to an M -portal edge h ∈ ΣT , we only look for type 5 and type
6 subgraphs. Then rest is identical to the construction stated in the first cycle case.

Case 2.3: Finally, S1 has no end-edge from M ′. The proof is almost identical to the
second cycle case (Case 2.2). By the contrapositive of Lemma 5.4.5, there exists at least
one of the two following subgraphs in S1. (1) Two even length cycles C1 and C2 in S1 that
are connected by a path P , where P is odd and has more edges from M ′ than M . (2) Two
even length cycles C1 and C2 in S1 that share a path P , where P is odd and has more edges
from M than M ′. Either one of these subgraphs is used as the initial T , which has exactly
one more edge from M than M ′. Then the rest is identical to the second cycle case.

This concludes the proof of Theorem 5.4.2. It remains to prove the MMH algorithm
can find an augmenting graph if one exists. However, we will not complete the proof of the
correctness of the algorithm. Instead, we describe and outline general ideas of what needs
to be done to prove the correctness of the algorithm in the next section.

5.4.1 Correctness of the Algorithm

We will state two conjectures about the MMH algorithm, and in conjunction with Theo-
rem 5.4.3 and these two conjectures, we claim that the MMH algorithm can find a maximum
matching in pick-up hypergraphs. In the Search procedure of the MMH algorithm, it only
finds a more restricted augmenting graph. The augmenting graph T found by the Search
procedure satisfies the definition of augmenting graph (conditions A1-A4) and the following
two additional conditions:

(A5) T can be decomposed into a set P of edge-disjoint alternating paths such that there
is exactly one augmenting path p0 in P , and all other paths in P are even length.

(A6) The paths in P can be given an ordering such that for each pi ∈ P where i ≥ 1, the
unmatched end-edge of pi is also an end-edge in T \ pj , j = 0, ..., i− 1.

We call an augmenting graph satisfying conditions A1-A6 a restricted augmenting graph.

Definition 5.4.1. An augmenting graph T of a hypergraph H is called minimal if E(T ′) is
not a proper subset of E(T ), where T ′ is any other augmenting graph of H.

Trivial examples of non-minimal augmenting graph are shown in Figure 5.6.
The Search procedure precisely finds a restricted augmenting graph by finding a set

P of edge-disjoint alternating paths such that P satisfies condition A6, and we state the
following without a proof.
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(a) Suppose the graph shown is an
augmenting graph T of a hypergraph H.
Then removing either e1, e2, or e3 from T , it
is still an augmenting graph of H.

(b) Suppose the graph shown is an
augmenting graph T of a hypergraph H.
Then removing {e1, e2, e3, e4} from T , it is
still an augmenting graph of H.

Figure 5.6: Examples of non-minimal augmenting graph. The bold rounded rectangle
represents a matched edge and non-bold rounded rectangle represents an unmatched edge.

Conjecture 5.4.1. Let H be a pick-up hypergraph and M be a matching in H. If there
exists a restricted augmenting graph T of H, then the Search procedure in MMH algorithm
finds T .

The MMH algorithm has the following property:

• The Search procedure of the MMH algorithm finds only minimal restricted augment-
ing graph.

We will prove this property by Lemma 5.4.6.

Lemma 5.4.6. Let H be a pick-up hypergraph and M be a matching in H. Suppose Search
finds a restricted augmenting graph T of H. Then T is a minimal restricted augmenting
graph.

Proof: Recall that T found by Search can be decomposed into a set P of edge-disjoint
alternating paths such that P contains exactly one augmenting path, and all other paths
in P are even length. We will show that T is minimal by contradiction. Assume there is
a restricted augmenting graph T ′ that is a subgraph of T such that Er = E(T ) \ E(T ′) is
not empty. Since T has exactly one more unmatched edge than matched edge, the number
of matched edges is at least that of unmatched edges in Er. Hence, there must exist a
component Tr of T \ T ′ where the number of matched edges is at least that of unmatched
edges in Tr. Only unmatched edges in Er can be incident to T ′. Otherwise, T ′ is not an
augmenting graph by definition. Any end-edge e of Tr must be unmatched for the following
reasons. (1) If e is also an end-edge of T , then e must be unmatched. (2) If e is an end-edge
of Tr but not an end-edge of T , then e is incident to T ′, so e is an unmatched edge.

Let P ′ ⊆ P be the set of paths where every path pi ∈ P ′ has a subpath pri of pi belongs
to Tr. Notice that for each pi ∈ P ′, either both end-edges of pri are unmatched or the
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length of pri is even. Let p1 ∈ P be the first path containing edges of Tr added by Search.
Consider the moment when p1 is added to T . There are three possible situations. (1) Both
the end-edges of p1 belongs to Tr, i.e. p1 is fully contained in Tr. Then p1 must be the
augmenting path in P . (2) Only one end-edge e1 of p1 belongs to Tr. Since p1 is the first
path containing edges of Tr being added, e1 is not incident to any other path in Tr, and p1

cannot end at a matched edge by the algorithm. Thus, e1 is an unmatched end-edge in Tr.
(3) Both end-edges of p1 do not belong to Tr. Then a subpath pr1 of p1 belongs to Tr. Both
end-edges of pr1 are unmatched since they must be incident to T ′. Summarizing the above,
the subpath pr1 of p1 (pr1 can be p1) belongs to Tr has more unmatched edges than matched
edges. All other alternating paths added to Tr after p1 contains as many unmatched edges as
matched edges. Thus, Tr has more unmatched edges than matched edges, a contradiction.
Therefore, such a restricted augmenting graph T ′ does not exist.

The main idea for proving the correctness of the MMH algorithm lies in the following
conjecture.

Conjecture 5.4.2. Let H be a pick-up hypergraph and M be a matching in H. Suppose
there exists a minimal augmenting graph T of H. Then T can be decomposed into a set T ′

of edge-disjoint minimal restricted augmenting graphs w.r.t M \M ′, where M ′ ⊆ M is a
set of matched portal edges and |T ′| = |M ′|+ 1.

The proof of Conjecture 5.4.2 most likely require the pick-up hypergraph properties.
In particular, Property 5.1.2 makes sure that any pick-up hypergraph is not a k-uniform
k-partite hypergraph. Assuming this conjecture is true, by Lemma 5.4.1 and Lemma 5.4.6,
the Search procedure finds all minimal restricted augmenting graphs in T ′ when the Ex-
tendSearch procedure checks each matched edge in M . Basically, ExtendSearch removes
|M ′| matched edges from M , and Search adds |T ′| unmatched edges into M one by one.
Thus, |M | is increased by one. From this and Theorem 5.4.3, the MMH algorithm can find a
maximum matching in the pick-up. We leave the proof of Conjecture 5.4.2 as a future work.
We include the following two lemmas as they might be useful for proving Conjecture 5.4.2.

Lemma 5.4.7. Let M and M ′ be two matchings in a hypergraph H and S be the spanning
subgraph of H with edge set E = (M −M ′)∪ (M ′−M). Let S1 be a component of S, where
S1 contains some cycles and does not contain any M ′-portal. Then the number of M ′ edges
is at least the number of M edges in S1.

Proof: The proof is similar to Lemma 5.4.4. We will observe the difference between
the number of M edges and the number of M ′ edges in S1 after removing a sequence of
cycles from S1. Remove an even length cycle C from S1, which may divide S1 into multiple
components. Consider a component Tc of S1 \ C. Since there is no M ′-portal in S1, every
edge in Tc incident to C is an M ′ edge, so there is at least one M ′ end-edge in Tc.

Assume Tc is a tree. If every end-edge in Tc is an M ′ edge, then it has more M ′ edges.
Suppose there are some M end-edges in Tc. Let Pc1 be a path in Tc starts from an M ′ end-
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edge and ends at an M end-edge, which has equal number of M ′ and M edges. Consider
another path Pc2 in Tc \ Pc1 where one end-edge e of Pc2 is incident to Pc1 . Since there are
only M -portals in S1, e is an M ′ edge. Hence, Pc2 has at least as many M ′ edges as M
edges. Similarly for all other paths in Tc. Thus, Tc has at least as many M ′ edges as M
edges.

Assume Tc contains cycles. Remove another even length cycle C ′ from Tc, which may
further divide Tc into more components. Let T ′c be a component of Tc \C ′. Some end-edges
in T ′c can be incident to previously removed cycles because they may not be end-edges in
S1. However, all these end-edges must from M ′ since there are only M -portals in S1, so
there can be more M ′ end-edges than M end-edges in Tc. Again, if T ′c is a tree, the number
of M ′ edges is at least the number of M edges in T ′c. If T ′c still has cycles, then remove a
cycle from T ′c one by one until there is none. Each of the resulting components is a tree
that has at least as many M ′ edges as M edges. Therefore, S1 has at least as many M ′

edges as M edges.

Corollary 5.4.1. Let M and M ′ be two matchings in the hypergraph H and S be the
spanning subgraph of H with edge set E = (M −M ′) ∪ (M ′ −M). Let S1 be a component
of S, where S1 contains some cycles and does not contain any M -portal. Then the number
of M edges is at least the number of M ′ edges in S1.

Lemma 5.4.8. Let H be an arbitrary hypergraph and M be a matching in H. Let T be
a minimal augmenting graph of H. Then every cycle in T contains at least one matched
portal edge of T .

Proof: Assume for contradictory that T contains some cycles with no matched portal
edge. Let CT be the set of cycles in T without matched portal. Remove an even length
cycle C1 ∈ CT from T . Every edge in T \C1 that is incident to C1 is a matched edge. Since
C1 has even number of matched and unmatched edges, there must exist a component T1

of T \ C1 has more unmatched edges than matched edges. Every unmatched edge in T1

is not incident to edges in T \ T1. Thus, an augmenting graph in T1 w.r.t. M is also an
augmenting graph in H. Following a similar analysis as in Theorem 5.4.3, it can be shown
that T1 contains an augmenting graph of H, which is a contradiction that T is a minimal
augmenting graph of H.

Time complexity Since we have not proved that the Search procedure can find a re-
stricted augmenting graph if one exists. We will leave the time complexity for Algorithm
MMH as a future work. The time it takes to find a restricted augmenting graph using the
current algorithm may be exponential in the numbers of the edges of a pick-up hypergraph.
It is possible that we could try to bound the search space by not searching certain subgraphs
unless it is necessary. We leave this as an open problem:
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Remark 5.4.1. Does there exist a polynomial time algorithm in the size of a pick-up hy-
pergraph H for finding a restricted augmenting graph in H w.r.t. a matching M in H?

Also note that the current method relies on finding an augmenting/alternating path
in the pick-up hypergraph. The algorithm introduced in the next chapter is for general
hypergraphs. It is possible that it can be simplified specifically just for pick-up hypergraph.

5.5 Finding Augmenting Path in Hypergraphs

We propose an algorithm for finding an augmenting path in hypergraphs since there does
not exist one. The approach from [3] is for bipartite hypergraphs, but it might be able to
extend to general hypergraphs. Our approach is based on [8]. We recommend the readers
to read [8] to make the proposed algorithm more easily understood.

Similar to [8], we will also construct a directed hypergraph HM = (VM , EM ), where VM
is a set of vertices and EM is a set of directed hyperedges, based on a given undirected
hypergraph. A directed hyperedge e is a pair (T,H), where T and H are both nonempty
subsets of VM . They respectively represent the tail and the head of e. Let H ′ = (V ′, E′)
be an undirected hypergraph without parallel hyperedges and M ⊆ E′ be a matching. Two
hyperedges are parallel hyperedges if one of the edges is a subset of the other.

The construction of HM is as follows: For each vertex v ∈ V ′, we introduce two vertices
vA and vB. VM := {vA, vB | v ∈ V ′} ∪ {s, t}, where s, t /∈ V ′ and s 6= t.
For all pairs of edges ei, ej ∈ E′ such that ei ∩ ej 6= ∅, let eA = {vA | v ∈ e} and
eB = {vB | v ∈ e}. Create four directed hyperedges −−→eiej1, −−→eiej2, and −−→ejei1, −−→ejei2 in EM as
follows:

−−→eiej1 =

(eAi \ eAj , eBi ∩ eBj ), if ei ∈M.

(eBi \ eBj , eAi ∩ eAj ), if ei ∈ E′ \M.

−−→eiej2 =

(eAi ∩ eAj , eBi \ eBj ), if ei ∈M.

(eBi ∩ eBj , eAi \ eAj ), if ei ∈ E′ \M.

−−→ejei1 =

(eAj \ eAi , eBj ∩ eBi ), if ej ∈M.

(eBj \ eBi , eAj ∩ eAi ), if ej ∈ E′ \M.

−−→ejei2 =

(eAj ∩ eAi , eBj \ eBi ), if ej ∈M.

(eBj ∩ eBi , eAj \ eAi ), if ej ∈ E′ \M.

Finally, add to EM , a directed edge from s to vertex vB and a directed edge from vA to t,
for each free vertex v ∈ V such that v belongs to an unmatched edge e ∈ E′ that is incident
to at most one matched edge of H ′. This can create O(|E′|2) hyperedges for EM since we
check every pair (ei, ej) in E′. We denote the A-vertices and B-vertices belong to an edge
e ∈ EM by A(e) and B(e) respectively.

A directed hyperpath from u to v in HM is a sequence of k hyperedges (T1, H1), ...,
(Tk, Hk) ∈ EM satisfying Ti ⊆

⋃i−1
j=0Hj for all i = 1, ..., k + 1, where H0 = {u} and

Tk+1 = {v}. The vertex v is said to be reachable from the vertex u in HM if there exists
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a directed hyperpath from u to v. A directed simple hyperpath P = (T1, H1), ..., (Tk, Hk)
is elementary if Ti ⊆ Hi−1 for i = 2, ..., k, where T1 and Hk are an actual tail and head
respectively in EM . Our algorithm is based on this definition of elementary hyperpath to
search simple hyperpaths in HM .

A trivial directed hypergraph HM is shown in Figure 5.7 (on the right). The vertex t
is reachable from xA through the directed hyperpath P = ({xA}, {vB, wB}), ({vB}, {uA}),
({uA}, {t}). This hyperpath P is also simple and elementary. On the other hand, wA does
not reach t. In fact, wA does not reach any other vertex in HM because there does not exist
a tail that consists of only {wA}.

Figure 5.7: On the left is a very simple undirected hypergraph H ′, where e1 and e3 are
unmatched, and e2 is matched. The corresponding directed hypergraph HM is shown on
the right.

Remark Due to the Property 5.1.2 of a pick-up hypergraph H, if we construct HM based
on H, the hyperedges in HM can be slightly simplified. Recall that for any two incident
hyperedges e, e′ in H:

|e ∩ e′| =

1 or |e| − 1, if |e| = |e′|

1, otherwise

As a result, for each edge e = (Ti, Hi) in HM , either |Ti| = 1 or |Hi| = 1, or both |Ti| =
|Hi| = 1.

For simplicity, “directed” is dropped from directed hyperedge and directed hyperpath
whenever there is no ambiguity. Also, we introduce two notations of a simple path P =
(T1, H1), ..., (Tk, Hk) in HM . P can be represented with A/B vertices: (TA1 , HB

1 ), (TB2 , HA
2 ),

..., (TAk , HB
k ), or simply P = TA1 , H

B
1 , H

A
2 , ...,H

B
k since Ti ⊆ Hi−1, for i = 2, ..., k. The path

from V A to UB is sometimes denoted by V A  UB.
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We have directed the edges inM from “A-vertices to B-vertices” and the edges in E′\M
from “B-vertices to A-vertices”. Since the distinct vertices vA and vB in VM correspond
to the same vertex v in V ′, we need to define strongly simple paths in HM which cannot
contain both vertices vA and vB at the same time, so that they correspond to unique paths
in H ′.
A (hyper)path P in HM is strongly simple if

(a) P is simple, and

(b) vA ∈ P ⇒ vB /∈ P , where vA, vB ∈ VM .

We are now ready to extend the theorem in [8] from directed graphs to directed hypergraphs.

Theorem 5.5.1. Let H ′ = (V ′, E′) be an undirected hypergraph without parallel hyperedges,
M be a matching in H ′ and HM = (VM , EM ) defined as above. Then there exists an
augmenting path in H ′ w.r.t. M if and only if there exists a strongly simple path from s to
t in HM .

Proof: (→) Let Q = (e1, e2, ..., el) be an augmenting path in H ′ w.r.t. M . Then Q is
simple, i.e. ei ∩ ej+1 = ∅, for 1 ≤ i < j < l. e1 and el are unmatched edges such that each
is incident to one matched edge in H ′. By the construction of HM , there will be an edge es
connecting s and a vertex in e1 and an edge et connecting t and a vertex in el. Let (Ti, Hi)
and (Ti+1, Hi+1) be two directed edges correspond to ei and ei+1 in Q respectively. Assume
without loss of generality, ei is unmatched and ei+1 is matched. Then, we have (TBi , HA

i )
and (TAi+1, H

B
i+1).

By the construction of HM , ei ∩ ei+1 is used as the tail or head for two adjacent
edges in EM . This means that there exists two adjacent edges in EM , say (TBi , HA

i ) and
(TAi+1, H

B
i+1), such that B(ei) ∩ HB

i+1 = ∅ and TBi ∩ B(ei+1) = ∅. Similarly, the same
property holds for A-vertices if ei is matched and ei+1 is unmatched. Since Q is simple,
A(ei) ∩ A(ei+2) = ∅ and B(ei) ∩ B(ei+2) = ∅. Hence, there exists a strongly simple path
Q′ = (es, (T1, H1), ..., (Tl, Hl), et) in HM .
(←) Let P = (es, e1, ..., ek, et) be a strongly simple path in HM . Then, ei ∩ ej+1 = ∅, for
1 ≤ i < j < k. e1 and ek are unmatched edges w.r.t. M such that each is incident to
exactly one matched edge in H ′. Hence, the undirected version of P ′ = (e1, e2, ..., ek) is an
augmenting path in H ′.

5.6 Algorithm for the Reachability Problem

As shown by Theorem 5.5.1, finding an augmenting path in the undirected hypergraph H ′

is equivalent to finding a strongly simple in HM (constructed base on H ′ and matching M
in H ′). By extending the modified depth-first search in [8], the proposed algorithm MDFS-
hypergraph (MDFS for short) finds exactly the strongly simple paths in HM . The MDFS

54



uses a stack K. TOP(K) denotes the last head (with the only exception of s) added to the
MDFS-stackK. An operation POP(HA) means the head HA is removed fromK, where HA

is the top element of K. An operation PUSH(HA) means the head HA is pushed onto K,
which becomes the top element of K. In each step, MDFS considers an edge e = (TXi , HX

i )
which has not been considered previously, where TXi ⊆ TOP (K) and X ∈ [A,B] (also X
means not X). We distinguish two cases:

• Case 1: X = A, i.e. e = (TAi , HB
i ) and the corresponding edge in H ′ is matched.

1.1 No vertex of HB
i belongs to a set ZB ∈ K, but there exists at least one set Y A ∈ K

containing vertices from HA
i

1.2 No vertex of HB
i and HA

i belongs to a set that is in K

(i) HB
i has not been in K, and no subset of HB

i has been in K previously
(ii) HB

i has not been in K, but some subsets of HB
i have been in K previously

(iii) HB
i has been in K previously

• Case 2: X = B, i.e. e = (TBi , HA
i ) and the corresponding edge in H ′ is unmatched.

2.1 There exists at least one set Y A ∈ K containing vertices from HA
i

2.2 No vertex of HA
i belongs to a set Y A ∈ K, but there exists at least one set ZB ∈ K

containing vertices from HB
i

2.3 No vertex of HA
i and HB

i belongs to a set that is in K

(i) HA
i has not been in K, and no subset of HA

i has been in K previously
(ii) HA

i has not been in K, but some subsets of HA
i have been in K previously

(iii) HA
i has been in K previously

Note: cases 1.1 and 2.2 are symmetric; cases 1.2 and 2.3 are symmetric. There are only
two sub-cases for Case 1 compare to Case 2. More precisely, there is no sub-case for some
vertex of HB

i is contained in a set ZB ∈ K. This is due to a matched vertex can only
belong to a unique matched edge. Let e be a matched edge in H ′, eB = {vB | v ∈ e} and
eA = {vA | v ∈ e}. Consider the following: Suppose the algorithm has visited an edge
(V A, ZB) and pushed ZB onto K (and still in K), where ZB contains some vertices from
eB. The edge (V A, ZB) corresponds to a matched edge e′ in H ′ because it is directed from
A-vertices to B-vertices. As ZB contains some vertices from eB, it must be the case that
e′ = e since a matched vertex can only belong to a unique matched edge. Hence, V A must
contain vertices from eA such that V A ∪ ZB corresponds to all vertices in e. In order for
MDFS to visit another head HB

i containing some vertices from eB (with ZB ∈ K), it must
first visit a tail TA, where (TA, HB

i ) ∈ EM . For the same reasoning stated above, the edge
(TA, HB

i ) corresponds to the matched edge e, i.e. TA ∪ HB
i corresponds to the vertices

of e. By Cases 2.1 and 2.2, TA will never be added to K since either V A ∩ TA 6= ∅ or
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ZB ∩TB 6= ∅. Thus, HB
i will never be considered while ZB ∈ K. As a result, we will never

have this sub-case in Case 1.
We say that MDFS has found a path Q = (TA1 , HB

1 ), ..., (TAk , HB
k ) if and only if for

HX
i ∈ Q, 1 ≤ i ≤ k−1, MDFS has performed the operation PUSH(HX

i ) and all edges on Q
are considered. After performing the operation POP(HA) from the top of stack K, MDFS
always maintains a collection L[V A

i ] of sets containing two types (A and B) of vertices, for
each tail V A

i ⊆ HA such that V A
i has been used as a tail by MDFS. Each set Y A of vertices

in L[V A
i ] is a head and must satisfy the requirements that:

1. MDFS has found a path Q from V A
i to Y A with no vertex from Y A and Y B belongs to

a head or tail that is in Q (including V A
i ),

2. PUSH(Y A) has never been performed, and at least one of the following must be satisfied
(or both of them if can be applied)

3. POP(UB) is performed for every head UB containing at least one vertex from Y B,
where UB has been pushed by MDFS. In other words, there does not exist a set UB ∈ K
contains vertex from Y B when Y A is added to L[V A

i ].

4. POP(UA) is performed for every head UA containing at least one vertex from Y A, where
UA has been pushed by MDFS. In other words, there does not exist a set UA ∈ K

contains vertex from Y A when Y A is added to L[V A
i ].

Each set ZB of vertices in L[V A
i ] must satisfy the requirements that:

1. MDFS has found a path Q′ from V A
i to ZB with no vertex from ZA and ZB belongs to

a head or tail that is in Q′ (including V A
i ),

2. PUSH(ZB) has never been performed, and at least one of the following must be satisfied
(or both of them if can be applied)

3. POP(WA) is performed for every headWA containing at least one vertex from ZA, where
WA has been pushed by MDFS. In other words, there does not exist a set WA ∈ K

contains vertex from ZA when ZB is added to L[V A
i ].

4. POP(WB) is performed for every headWB containing at least one vertex from ZB, where
WB has been pushed by MDFS. In other words, there does not exist a set WB ∈ K

contains vertex from ZB when ZB is added to L[V A
i ].

These requirements allow some subsets of Y A and some subsets of ZB to have been in K
previously; this is specifically for Case 2.3.ii and Case 1.2.ii.

After performing the operation POP(HB), MDFS also maintains a collection L[V B
i ] of

sets containing two types of vertices, for each tail V B
i ⊆ HB such that V B

i has been used as
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a tail by MDFS. Each set of vertices in L[V B
i ] is a head and follows the exact requirements

stated above. The updating of L[V B
i ] is identical as well.

Let V A be a head and HX ∈ L[V A
i ], for some tail V A

i ⊆ V A and X ∈ [A,B]. In the
original MDFS algorithm [8], the path Q from V A

i to HX is kept implicitly after performing
PUSH(HX). For the MDFS-hypergraph algorithm, this path needs to be stored explicitly to
make sure that the strongly simple property holds throughout the algorithm. We introduce
a secondary Stack KS , which keeps track of the simple path Q from V A

i to HX when a head
HX ∈ L[V A

i ] is pushed onto the stack K. In Case 1.2.iii and Case 2.3.iii, the algorithm
visits a head Y A which has been in K previously. Instead of pushing Y A onto K again,
MDFS pushes a head HX ∈ L[V A

i ] onto K, where V A
i ⊆ Y A is a tail. Such an operation

is identical to original MDFS algorithm. Since only HX ∈ K and the path Q from V A
i to

HX is not on K, we use KS to store Q. More precisely, when the operation PUSH(HX) is
performed, Q is also pushed onto KS . When HX is popped from K, Q is popped from KS

as well. Again, the same process applies to L[V B
i ] for some tail V B

i .
As a result, the two cases need to be modified accordingly as the following:

• Case 1: X = A, i.e. e = (TAi , HB
i ) and the corresponding edge in H ′ is matched.

1.1 No vertex of HB
i belongs to a set ZB ∈ K ∪ KS , but there exists at least one set

Y A ∈ K ∪KS containing vertices from HA
i

(i) Y A ∈ K
(ii) Y A ∈ KS

1.2 No vertex of HB
i and HA

i belongs to a set that is in K ∪KS

(i) HB
i has not been in K, and no subset of HB

i has been in K previously
(ii) HB

i has not been in K, but some subsets of HB
i have been in K previously

(iii) HB
i has been in K previously

• Case 2: X = B, i.e. e = (TBi , HA
i ) and the corresponding edge in H ′ is unmatched.

2.1 There exists at least one set Y A ∈ K ∪KS containing vertices from HA
i

(i) Y A ∈ K
(ii) Y A ∈ KS

2.2 No vertex of HA
i belongs to a set Y A ∈ K ∪ KS , but there exists at least one set

ZB ∈ K ∪KS containing vertices from HB
i

(i) ZB ∈ K
(ii) ZB ∈ KS

2.3 No vertex of HA
i and HB

i belongs to a set that is in K ∪KS

(i) HA
i has not been in K, and no subset of HA

i has been in K previously
(ii) HA

i has not been in K, but some subsets of HA
i have been in K previously
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(iii) HA
i has been in K previously

Overview of how to update L[V A
i ], for any tail V A

i , i.e. when a head Y X , X ∈ [A,B],
should be added to and removed from L[V A

i ] (similarly for B-vertices tail L[V B
i ]).

• Initially, L[V A
i ] := ∅.

• After an operation POP(UB) or POP(UA), where UB or UA contains vertices from
Y B or Y A respectively, check to see if there exists another set in K ∪KS containing
vertices from Y B or Y A. If such a set does not exist in K ∪KS , add Y X to L[V A

i ]
when the followings are satisfied: MDFS has found a path from V A

i to Y X with no
vertex of Y A and Y B belongs to any edge on the path, and PUSH(Y X) has never
been performed.

• After PUSH(Y A), remove the head Y A from L[V A
i ], for all L[V A

i ] containing Y A.

We need one more definition before presenting the algorithm. Let P = (TX1 , HX
1 ),

(TX2 , HX
2 ), ..., (TXk , HX

k ) be a path in HM , where X ∈ [A,B]. We say that the path P does
not intersect K ∪KS if the following is satisfied:

For every set V X1 of TXi , HX
i , 1 ≤ i ≤ k :

∀ WX2 ∈ K ∪KS such that (V X1 ∪ V X1) ∩ (WX2 ∪WX2) = ∅,where X1, X2 ∈ [A,B]

The MDFS algorithm for hypergraphs is presented in Algorithm 5. We assume that
L[V X

i ], for every tail V X
i ∈ EM , X ∈ [A,B], is correctly computed. The correctness proof

of MDFS is also based on this assumption. The construction of L[V X
i ] is described in

section 5.7.1. When a head or tail is marked “pushed”, it means that it has been in K.
Some head and tail can contain the exact same set of vertices, so marking one of them
“pushed” means both are marked “pushed”.

5.7 Analysis

For the sake of completeness, we shall prove the correctness of MDFS for hypergraph HM .
The correctness proof of MDFS-Hypergraph (MDFS for short) closely follows the correctness
proof in [8]. Similar to depth-first search, we also use the notion of the current search path
in our correctness proof for MDFS. First note that at any execution point of MDFS, the
elements in K ∪ KS represent a single path from s to TOP(K). It is obvious that the
elements in K represent a single path from s to TOP(K) if KS is empty. When MDFS is in
either Case 1.2.iii or Case 2.3.iii, a head HX

i , X ∈ [A,B], is pushed onto K, but the actual
path Qi connecting HX

i and the last head HX
i−1 added to K is pushed onto KS . Thus, the
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Algorithm 5 MDFS-hypergraph
1: Input: HM = (VM , EM ).

Output: An augmenting path P in HM if it exists.
2: Let K be a stack; PUSH(s);
3: SEARCH

4: procedure SEARCH
5: h := TOP (K);
6: if h = t /* sink t */
7: construct the augmenting path P which is found by the algorithm
8: else
9: TK := {Ti | Ti ⊆ h and Ti is a tail, where Ti is not marked “pushed”}

10: mark h “pushed”;
11: for every Ti ∈ TK , mark Ti “pushed”, and do
12: for every head HX

i such that {Ti, H
X
i } ∈ EM do

13: Case 1: X = B
14: Case 1.1: ∃ Y A ∈ K ∪KS such that Y A ∩HA

i 6= ∅
15: Case 1.1.i: Y A ∈ K
16: no PUSH-operation is performed
17: Case 1.1.ii: Y A ∈ KS

18: for every path Q ∈ KS from tail V X1 to head UX2 containing every such Y A,
where UX2 ∈ L[V X1 ] and X1, X2 ∈ [A,B], replace Q with a strongly simple
path Q′ not containing any Y A if Q′ exists, and Goto Case 1.2. Otherwise,
no PUSH-operation is performed.

19: end of Case 1.1
20: Case 1.2:
21: Case 1.2.i: (HB

i is not marked “pushed”) and (@ V B
i ⊆ HB

i marked “pushed”)
22: PUSH(HB

i ); SEARCH;
23: Case 1.2.ii: (HB

i is not marked “pushed”) and (∃ V B
i ⊆ HB

i marked “pushed”)
24: PUSH(HB

i ); SEARCH; Goto Case 1.2.iii;
25: Case 1.2.iii: (HB

i is marked “pushed”) or (∃ V B
i ⊆ HB

i marked “pushed”)
26: for every pushed tail V B

i ⊆ HB
i do

27: while ∃ HX ∈ L[V B
i ] such that V B

i  HX does not intersect K ∪KS do
28: Push the path from V B

i to HX onto KS ; PUSH(HX); SEARCH;
29: end while
30: end for
31: end of Case 1.2
32: end of Case 1
33: Case 2: X = A
34: Case 2.1: ∃ Y A ∈ K ∪KS such that Y A ∩HA

i 6= ∅
35: Case 2.1.i: Y A ∈ K
36: no PUSH-operation is performed
37: Case 2.1.ii: Y A ∈ KS

38: for every path Q ∈ KS from tail V X1 to head UX2 containing every such Y A,
where UX2 ∈ L[V X1 ] and X1, X2 ∈ [A,B], replace Q with a strongly simple
path Q′ not containing any Y A if Q′ exists, and Goto Case 2.3. Otherwise,
no PUSH-operation is performed.

39: end of Case 2.1
40: Case 2.2: ∃ ZB ∈ K ∪KS such that ZB ∩HB

i 6= ∅
41: Case 2.2.i: ZB ∈ K
42: no PUSH-operation is performed
43: Case 2.2.ii: ZB ∈ KS
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44: for every path Q ∈ KS from tail V X1 to head UX2 containing every such ZB ,
where UX2 ∈ L[V X1 ] and X1, X2 ∈ [A,B], replace Q with a strongly simple
path Q′ not containing any ZB if Q′ exists, and Goto Case 2.3. Otherwise,
no PUSH-operation is performed.

45: end of Case 2.2
46: Case 2.3:
47: Case 2.3.i: (HA

i is not marked “pushed”) and (@ V A
i ⊆ HA

i marked “pushed”)
48: PUSH(HA

i ); SEARCH;
49: Case 2.3.ii: (HA

i is not marked “pushed”) and (∃ V A
i ⊆ HA

i marked “pushed”)
50: PUSH(HA

i ); SEARCH; Goto Case 2.3.iii;
51: Case 2.3.iii: (HA

i is marked “pushed”) or (∃ V A
i ⊆ HA

i marked “pushed”)
52: for every pushed tail V A

i ⊆ HA
i do

53: while ∃ HX ∈ L[V A
i ] such that V A

i  HX does not intersect K ∪KS do
54: Push the path from V A

i to HX onto KS ; PUSH(HX); SEARCH;
55: end while
56: end for
57: end of Case 2.3
58: end of Case 2
59: end for
60: POP(KS) if h was added under Case 1.2.iii or Case 2.3.iii;
61: POP(K);
62: if ∃ a head HX has not been pushed but considered s.t. HX does not intersect K ∪KS

63: Add HX to L[V A
i ], for all tails V A

i such that a strongly simple path from V A
i to HX

has been found.
64: end if
65: end for
66: end if
67: end procedure

path from s to HX
i−1, represented by K ∪ KS , is extended to the path s, ...,HX

i−1, Q,H
X
i .

MDFS continues the search from HX
i , which can encounter Case 1.2.iii or Case 2.3.iii again

later. In either case, the path from s to HX
j−1, j > i, is extended by another path Qk, HX

k .
The path from s to HX

k remains as a single path. When the top head HX
p ∈ K is popped,

where the path Qp connecting HX
p and the last head HX

p−1 added to K is in KS , the path
QP is immediately popped from KS as well. This results in a shorter path, i.e. the path,
represented by K ∪ KS , is now from s to HX

p−1, which is still a single path. The search
continues from HX

p−1. We call this single path represented by the elements in K ∪ KS a
search path w.r.t. that execution point. In particular, we call the single path the current
search path w.r.t the current execution point. When we say a previous (an earlier) search
path, we mean a search path w.r.t. any execution point prior to the current one.

For the first lemma, it shows that if there exists a strongly simple path P in HM from
UX1 to WX2 , X1, X2 ∈ [A,B], where P has not been considered, WX2 will be considered
before POP(UX1) is performed.

Lemma 5.7.1. Let UB ∈ EM be a head for which MDFS performs the operation PUSH(UB)
and UBi ⊆ UB be a tail that is not marked “pushed”. Suppose at the moment when the oper-
ation PUSH(UB) is performed, there exists a strongly simple path P: UBi = TB1 , H

A
1 , H

B
2 , ...,
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HB
t−1, H

A
t =WA such that @ ZX , ZX ∈ K∪KS containing vertices from HX

i and HX
i , for all

HX
i ∈ P . Then PUSH(WA) is performed before the execution of the operation POP(UB).

Proof: Assume, to the contrary, that PUSH(WA) is performed after POP(UB) for the
strongly simple path P . After the execution of PUSH(UB), the edge e = (TB1 , HA

1 ) must be
considered before POP(UB) by MDFS since TB1 is not marked pushed. Suppose PUSH(HA

1 )
is performed next, then PUSH(HA

2 ) would be performed after, and so on due to P is strongly
simple. However, at some point, PUSH(HX

r ), 1 ≤ r ≤ t and X ∈ [A,B], must not perform
by our assumption, and MDFS starts to backtrack until POP(UB) is performed so that it
is performed before PUSH(WA). Let HX

r be the first head on P such that PUSH(HX
r ) has

never been performed just before POP(UB) is performed.
Suppose X = A. Let us consider the moment when MDFS has pushed the path P1 =

TB1 , H
A
1 , ...,H

B
r−1 and PUSH(HA

r ) is not performed next where this is the last time HA
r is

considered before POP(UB). In other words, the edges on the subpath TB1 , H
A
1 , ...,H

B
r−1

of the strongly simple path P have been considered and pushed, and P1 is a collection of
sub-path(s) of the current search path. Do not confuse P1 with P ; P1 may not contain any
head in P . There are three cases for which PUSH(HA

r ) is not performed, namely MDFS
is in Case 2.1, Case 2.2, or the tail TBr has already been marked “pushed” before HB

r−1 is
pushed; in other words, PUSH(HB

r−1) was performed under Case 1.2.ii.

Case 2.1 & Case 2.2 There exists sets Y A or ZB ∈ K∪KS containing vertices from HA
r or

HB
r respectively. If all Y A and ZB ∈ K, P1 can be TB1 , HA

1 , ...,H
B
j , Y

A, ..., ZB, HA
k , ...,H

B
r−1

(similarly if some set ZB comes before Y A). MDFS starts to backtrack. When it backtracks
to HB

j (a head on P ), every set Y A, ZB ∈ K has been popped. The edge (TBj+1, H
A
j+1) that

is on the strongly simple path P would be considered before HB
j is popped if TBj+1 is not

marked “pushed”. Assume it is the case. Under our consideration, the head HA
j+1 has

been pushed. In fact, the edges on the strongly simple path from HA
j+1 to HA

r−1 have been
considered and pushed. Hence, HA

r ∈ L[TAj+2], where TAj+2 ⊆ HA
j+1 is a tail, since the path

from TAj+2 to HA
r has been found by MDFS. As a result, PUSH(HA

r ) is performed next, a
contradiction.

Suppose TBj+1 is marked “pushed”. It means that the edge (TBj+1, H
A
j+1) has been con-

sidered earlier by a previous search path, i.e. HA
j+1 is pushed and popped before the current

search path, and PUSH(HB
j ) was performed under Case 1.2.ii. Because of this, the edge

(TBj+1, H
A
j+1) is not considered during the current search. MDFS performs the operation

POP(HB
j ), and moves to Case 1.2.iii. The head HB

j is treated as it has been pushed pre-
viously. Thus, MDFS checks each tail that is a subset of HB

j . In this case, MDFS finds
TBj+1 such that HA

r ∈ L[TBj+1] since a strongly simple path from TBj+1 to HA
r has been found

under our consideration. As a result, PUSH(HA
r ) is performed next, a contradiction. Note:

if some set ZB comes before Y A in P1, MDFS would have been in Case 2.3.ii and Case
2.3.iii, which is symmetric to Case 1.2.ii and Case 1.2.iii.
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For the case where some sets Y A and ZB ∈ KS . Let Q ∈ KS be a path containing Y A

and ZB. By the assumption of the lemma, @ Y A, ZB ∈ K ∪KS containing vertices from
HA
r and HB

r at the moment PUSH(UB) is performed. This means that the path Q from
tail V X1 to head UX2 , where UX2 ∈ L[V X1 ] and X1, X2 ∈ [A,B], is added to KS after
PUSH(UB). Suppose Q is not on P1, i.e. Q is on the current search path but comes before
P1. If P1 is a subpath of the strongly simple path P , MDFS can replace Q with another
path Q′ from V X1 to head UX2 not containing Y A and ZB by the assumption that P is
strongly simple path at the moment PUSH(UB) is performed. If P1 is not a subpath of P
and MDFS cannot replace Q, then MDFS starts to backtrack. Eventually, it will backtrack
to a head HX

j , X ∈ [A,B], such that TB1 , HA
1 , ...,H

X
j is a subpath of P . Then, by the same

reason stated above, HA
r ∈ L[TXj+1]. MDFS picks the strongly simple path P ′ from TXj+1 to

HA
r such that Q can be replaced with another path Q′, where Q′ does not intersect with P ,

and pushes P ′ and HA
r , which leads to a contradiction.

SupposeQ is on P1 implicitly, i.e. P1 = TB1 , H
A
1 , ...,H

X
j , Q,H

X
k , ...,H

B
r−1, where TB1 , HA

1 ,

..., HX
j and HX

k , ...,H
B
r−1 belong to K, and Q belongs to KS . If TB1 , HA

1 , ...,H
X
j and

HX
k , ...,H

B
r−1 are two subpaths of P , then there exists a strongly simple path Q′ from

TXj+1 to HX
k . MDFS can replace Q with Q′ due to our consideration that the edges on Q′

have been considered and pushed. In fact, this replacement can be applied to all paths
in KS that are on P1. More precisely, if all heads on P1 that are in K also belong to P ,
then MDFS can apply the replacement for each path in KS that is on P1 so that paths in
KS will be subpaths of P . Thus, there is not any set in KS containing HA

r and HB
r . If

TB1 , H
A
1 , ...,H

X
j or HX

k , ...,H
B
r−1 is not a subpath of P and MDFS cannot replace Q, then

MDFS starts to backtrack. Eventually, it will backtrack to a head HX
p , p < j, such that

TB1 , H
A
1 , ...,H

X
p is a subpath of P . Then, by the same reason stated above, HA

r ∈ L[TXp+1].
Hence, either PUSH(HA

r ) can be performed next, or Y A and ZB ∈ K which is the above
case, and both of them result in the contradiction that PUSH(HA

r ) is not performed.

Case 1.2.ii The tail TBr has already been marked “pushed” before HB
r−1 is pushed. This

is very similar to one of the above sub-cases. It means that the edge (TBr , HA
r ) has been

considered earlier by another search path. Then MDFS performs the operation POP(HB
r−1),

and moves to Case 1.2.iii. The head HB
r−1 is treated as it has been pushed previously.

Thus, MDFS checks each tail that is a subset of HB
r−1. Although HA

r ∈ L[TBr ] under our
consideration, where TBr ⊆ HB

r−1, MDFS can only perform PUSH(HA
r ) if HA

r does not
intersect the current search path P1, which implies that P1 is a subpath of P . Otherwise,
MDFS starts to backtrack. Eventually, it will backtrack to a head HX

j , X ∈ [A,B], such
that TB1 , HA

1 , ...,H
X
j is a subpath of P and HA

r ∈ L[TXj+1]. Hence, PUSH(HA
r ) can be

performed next, a contradiction.
For X = B, MDFS is in Case 1.1 or Case 2.3.ii, which is symmetric to Case 2.2 and

Case 1.2.ii respectively.
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Remark 5.7.1. The starting vertices and ending vertices of P in Lemma 5.7.1 can be
A-vertices or B-vertices, and Lemma 5.7.1 still holds.

The following lemma is important for the MDFS algorithm. Any search path P made
by MDFS continues to grow as long as P can be kept strongly simple.

Lemma 5.7.2. MDFS constructs only strongly simple paths.

Proof: (By induction on the number of PUSH operations). Note that only a PUSH
operation can destroy the strongly simple property.

Base case: This is trivial as the first PUSH operation PUSH(s) cannot destroy the
strongly simple property.

Inductive step: Suppose that all m - 1 numbers of PUSH operations do not destroy the
strongly simple property. Let us consider the mth PUSH operation. A PUSH operation
occurs in Case 1.2 or Case 2.3. Because these two cases are completely symmetric, we only
need to consider one of them. Let us consider that the mth PUSH operation occurs in Case
2.3, i.e. the edge being considered is e = (TBi , HA

i ). Recall that if MDFS is in Case 2.3, no
vertex of HA

i and HB
i belongs to a set that is in K ∪KS . (In fact, it is the same for Case

1.2)

Case 2.3.i and Case 2.3.ii For both cases, the operation PUSH(HA
i ) is performed. In

order for this PUSH operation to destroy the strongly simple property, there must exist at
least one set Y A or ZB containing vertices from HB

i or HA
i respectively, where Y A or ZB

belongs to the current search path K ∪KS . However, such a set Y A or ZB cannot exist.
Otherwise, the algorithm MDFS would not have pushed HA

i in the first place.

Case 2.3.iii SinceHA
i has been inK previously (mark pushed), the operation PUSH(HA

i )
is not performed. Instead, a head UX ∈ L[V A

i ] is pushed, where X ∈ [A,B] and V A
i ⊆ HA

i

is a tail in EM . Hence, the current search paths is extended by a path P = V A
i , Q, U

X ,
but only UX is pushed onto the stack K; HA

i , Q is pushed onto KS . Similarly, this PUSH
operation destroys the strongly simple property only if there exists a set Y X ∈ P such that
Y X or Y X intersects with K ∪KS . In order for MDFS to reach Case 2.3, HA

i (and V A
i )

do not intersect with K ∪KS . Also, the algorithm only chooses a path P such that P does
not intersect with K ∪KS .

The correctness of the algorithm can be derived from Lemma 5.7.1 and Lemma 5.7.2.

Theorem 5.7.1. MDFS finds a strongly simple path from s to t if such a path exists.

Proof: Suppose there is a strongly simple path P : s = T1, H
B
1 , T

B
2 , H

A
2 , ..., T

B
k−1, H

A
k−1,

TAk , Hk = t in HM . It is clear that the edge (T1, H
B
1 ) is considered by MDFS, and the oper-

ation PUSH(HB
1 ) is performed. Thus, HB

1 and HA
k−1 fulfill the assumptions of Lemma 5.7.1

with respect to the path HB
1 , T

B
2 , H

A
2 , ..., T

B
k−1, H

A
k−1. By Lemma 5.7.1, MDFS performs

PUSH(HA
k−1) and hence, PUSH(t) is performed. Thus, MDFS finds a path from s to t. By

Lemma 5.7.2, MDFS constructs only strongly simple paths.
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5.7.1 Subtle Details of the MDFS-hypergraph Algorithm

In this section, we will outline how to construct L[V X
i ], for some tail V X

i where X ∈ [A,B],
and how to retrieve the strongly simple path once it is discovered. In [8], a sketch of an
efficient implementation of the original algorithm MDFS for graphs is provided. Such an
efficient implementation requires two properties, but these two properties do not hold in
MDFS-hypergraph (it may be possible to modify the MDFS-hypergraph algorithm so that
a more efficient implementation is possible). Thus, we will describe a (not as efficient)
method for constructing L[V X

i ], including how to find the strongly simple path from V X
i to

a head H [A,B] ∈ L[V X
i ]. For simplicity, X always refer to either the A-vertex or B-vertex.

The way of adding a head UA containing A-vertices and a head WB containing B-
vertices to L[V X

i ] is identical, so we only describe when to add UA to L[V X
i ] and how to

find the path from V X
i to UA. Suppose a head UA cannot be pushed onto K because there

are some sets Y A or ZB in K ∪KS containing some vertices from UA or UB respectively
(Cases 2.1 and 2.2). MDFS starts to backtrack by popping the top element, when all sets
Y A and ZB are popped from K ∪KS , we need to find all tails V X

i where MDFS has found
a simple path from V X

i to UA.
Finding all tails V X

i can be accomplished by running a backward depth-first search for
the simplest case. Start at UA, and search the already considered edges (marked “pushed”)
backward, i.e. from head to tail instead, then consider each head marked pushed that is
a super set of the just visited tail. Label each searched edge “backward pushed”. When
a set Y A (Y B) or ZB (ZA) that intersects with any vertex in the current search path is
reached, this search path should not be extended any longer. Otherwise, it will not result
in a strongly simple path. The backward search terminates when it finds all the edges of
all strongly simple paths between UA and each tail V X

i .This may require to search every
pushed edge. As a result, this backward search produces a subgraph GUA of HM induced
by all “backward pushed” edges, which consists of a sink UA and multiple sources (tails)
such that there exists a strongly simple path from each tail to UA in GUA . Hence, we can
add UA to L[V X

i ], for every tail V X
i in GUA . We call such a graph GUA a backward search

graph.
In the general case, we have to run a backward MDFS starting at UA, and search the

“pushed” edges backward. The purpose of the backward MDFS is to build a graph consists
of all pushed tails that can reach UA through a strongly simple path, whereas the purpose
of the regular MDFS is to find a strongly simple path from the source to the destination.
If we only run a regular backward depth-first search, some tails may not be strongly simple
connected to UA. Hence, we run a backward MDFS to construct a backward search graph
GUA consists of the sink UA.

Let us now explain how to find a different strongly simple path for Cases 2.1.ii and 2.2.ii.
Suppose that the head HA being considered by the algorithm intersects with at least one
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set Y A that belongs to a path Q ∈ KS . MDFS tries to find another strongly simple path
Q′ not containing Y A to replace the path Q containing Y A (similarly for case 1.1.ii). Let
Q = V X

i , ..., Y A, ..., UA, where UA ∈ L[V X
i ], and GUA be the backward search graph with

sink UA. Finding a different strongly simple path Q′ connecting V X
i and UA can be done

using GUA . Remove every edge from GUA that contains vertex from HA or HB. If there
still exists a path Q′ connecting V X

i and UA in the resulting graph GR
UA , then replace Q

with Q′. In other words, those removed edges do not form an edge-cut for V X
i and UA. The

new current search path can continue from HA, and GR
UA will be used temporarily until

HA is popped. If HA intersects with multiple paths in KS . We can do the same for all
backward search graphs one by one to find that many different strongly simple paths.

There is a more complicated case (which can be encountered by Case 2.3.iii and Case
1.2.iii as well). Consider the following: Let Q1, Q2, ..., Qk be paths in KS and GHX be the
backward search graph with the sink HX . Suppose that a strongly simple path P from V A

i

to HX cannot be found in GHX because every such path P intersects with a path Qi in KS ,
i ∈ [1, ..., k]. However, it may be possible that Qi can be replaced with another strongly
simple path Q′i so that P can be found in GHX , but another strongly simple path Qj in KS

needs to be replaced by another Q′j first so that Q′i and P can be found. This can continue,
thus we need to consider all paths in KS at once in general.

Let the current search path P , represented by elements in K ∪ KS , be the following:
s = T1, H

B
1 , ...,H

X
c−1, Q1, H

A
c , ...,H

X
d−1, Q2, H

A
d , ..., Qk, H

A
l , ...,H

B
p−1, where every Qi, 1 ≤

i ≤ k, is a path in KS . Note that the head comes after each Qi does not need to be
A-vertices. It is made this way for simplicity. The MDFS algorithm is considering the
next edge (TBp , HA

p ) where HA
p (or HB

p ) intersects with paths in KS only. We want to
find a strongly simple path from s to HA

p . Let H be the graph induced by the subpaths
(HB

1 , ...,H
A
c−1) ∪ (HX

c , ...,H
A
d−1) ∪ ... ∪ (HA

l , ...,H
B
p−1, H

A
p ) and the backward search graphs

GQ1 ∪ GQ2 ∪ ... ∪ GQk
. Then, run MDFS on H. If it can return a strongly simple path

P ′ from s to HA
p , then replace the elements in K ∪KS according to P ′, and continue the

search from HA
p (on HM ).

To save computation, we can store every backward search graphs constructed during
the call to MDFS(H) for further search.

Time complexity The time complexity of Algorithm MDFS-hypergraph depends on the
implementation of backward search graphs and finding a different strongly simple path
using the backward search graphs. It should be pointed out that finding a different strongly
simple path using the backward search graphs may still be exponential in the numbers of
the edges of the constructed directed hypergraph HM . It may be possible to reduce the
running time of Algorithm MDFS-hypergraph. We will leave this as a future work:

Remark 5.7.2. Does there exist a polynomial time algorithm in the size of the directed
hypergraph HM for finding a strongly simple path from s to t in HM?
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Chapter 6

Conclusion and Future Work

In this thesis, we studied the simplified ridesharing problem for the following variants:

(I) Constraints (C1) and (C3) are satisfied but (C2) detour is allowed.

(II) Constraints (C2) and (C3) are satisfied but (C1) trips can have distinct destination.

(III) Constraints (C1) and (C2) are satisfied but (C3) trips can have multiple preferred
paths.

(IV) All constraints (C1), (C2) and (C3) are satisfied.

(V) Constraints (C2) and (C3) are satisfied but (C1) trips can have distinct destination
and drivers are not allowed to perform re-take.

We first proved variants (I), (II) and (III) are NP-hard for minimizing the number of drivers
and the total travel distance of the drivers. These results imply that if one of constraints
C1, C2 and C3 is not satisfied then the minimization problems are NP-hard. Next, we
provided a polynomial time exact algorithm (Algorithm RFP) for a special case of variant
(IV). In this special case, we restrict the unique preferred paths of all trips lie on a same
path of the road network. It is easy to see that Algorithm RFP has a polynomial time
running in the size of the input. We showed that Algorithm RFP can find a solution to
variant (IV) where the number of drivers is minimized.

Variant (IV) is a special case of variant (V) since satisfying C3 means re-take operations
are not involved. When re-take is not allowed, the NP-hard reduction for variant (II) cannot
be applied to variant (V). We then show that variant (V) can be solved in polynomial time,
from a very simple case to the general case of this variant. When solving the general case,
the algorithm and its analysis for this case lead to a novel approach for finding a maximum
matching in hypergraphs with specific properties.

In order to prove that a matching in a hypergraph is maximum, we extend the well-
known maximum matching theorem for graphs to hypergraphs (which we call the maximum
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hyper-matching theorem). In particular, we define a graph structure called augmenting
graph, which generalizes the idea of augmenting path for graphs to hypergraphs. The al-
gorithm (Algorithm MMH) we proposed for finding a maximum matching in the special
hypergraph (pick-up relation hypergraph) relies on the maximum hyper-matching theorem.
Algorithm MMH finds a more restricted augmenting graph in each iteration. The correct-
ness of Algorithm MMH is based on the conjecture (Conjecture 5.4.2) that an augmenting
graph can be decomposed into a set of edge-disjoint restricted augmenting graphs. There-
fore, it will be worthwhile to prove Conjecture 5.4.2 and complete the correctness proof for
Algorithm MMH as a future work.

Although variants (I), (II) and (III) are NP-hard, it would be interesting to know
whether good approximation algorithms can be made base on Algorithm RFP for these
three variants. These approximation algorithms and Algorithm RFP maybe also useful for
the generic ridesharing algorithm (where time constraints are considered). We only gave an
algorithm to each of the variants (IV) and (V) where the number of drivers are minimized.
It should be possible to have a polynomial time exact algorithm for minimizing the total
travel distances of the drivers as well for each variant.

The method for solving variant (V) is a byproduct of finding a maximum matching in
pick-up hypergraphs. It may be possible to solving variant (V) directly using a simpler
algorithm. Another interesting idea is to come up with a better running time algorithm
compared to Algorithm MMH for finding a maximum matching in pick-up hypergraphs.
A more interesting but challenging direction is to find out what kinds of hypergraphs or
properties a hypergraph must have such that a maximum matching in these hypergraphs
can be found in polynomial time.
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Appendix A

A Full Example of Algorithm 4

The following is a full example of the MMH algorithm for finding a maximum matching in
a hypergraph H with Property 5.1.2, given in Figure A.1.

Figure A.1: A hypergraph H with Property 5.1.2 and matching M , where the bold edges
are matched edges and un-bold edges are unmatched edges.

The algorithm checks every unmatched edge e where e is incident to at most one matched
edge and calls the Search procedure. In this case, e1 and e13 will be checked. The
algorithm checks e1 first. Suppose that the algorithm finds the augmenting path P =
e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13. So, initially T = P . Then, every unmatched
portal edge in P will be processed by the algorithm. e3 and e9 are the only two unmatched
portal edges in P .

Suppose that e9 is checked first. The algorithm tries to find an even length alternating path
starts at e14 inH\T . However, such an alternating path does not exist. Thus, the algorithm
backtracks and tries to find another augmenting path starts from e1 such that it does not
contain e9. The algorithm finds another augmenting path P = e1, e2, e3, e4, e5, e6, e15, e16,
e17, e12, e13 and sets T = P initially. Then it process the only unmatched portal edge e3 in
P . This time, it finds an even length alternating path P1 = e18, e19, e20, e21, e8, e7. Add P1
to T . There is no more unmatched portal edge needs to be processed. T is an augmenting
graph, see Figure A.2.
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Figure A.2: An augmenting graph of H w.r.t. M .

Augment M with T , that is, M = M ⊕ T gives a larger matching (Figure A.3).

Figure A.3: The matching after the first augmentation.

After the augmentation, there is no more unmatched edge that is incident to at most one
matched edge. The algorithm checks each matched portal edge and calls the Candidate-
Search procedure. There are three matched portal edges, e3, e22, and e31.

Suppose that the algorithm checks e3 first. e3 is removed from the current matching M
temporarily. The unmatched edges that are incident to at most one matched edge is checked,
i.e. a call to Search withH ′ = H\{e3},M ′ = M\{e3} and each of e2, e4 and e18 one by one.
When processing e2, no augmenting path can be found in H ′. Then, it checks e4 next and
finds an augmenting path from e4 to e18 in H ′, namely P = e4, e5, e6, e7, e8, e21, e20, e19, e18.
T = P initially. The unmatched portal edge e6 in P is processed. There does not exist an
even length alternating path starts from e15 in H ′ \ T . The algorithm backtracks and tries
to find another augmenting path not containing e6, but there does not exist one.

Hence, it returns to CandidateSearch, and checks e22. A call to Search with H ′ = H \
{e22}, M ′ = M \ {e3} and each of e23, e25 and e26. When processing e23, an augmenting
path P = e23, e24, e25 in H ′ w.r.t M ′ is found. There is no unmatched portal edge in P .
T = P is returned, and M ′ = M ′ ⊕ T . The new matching M ′ has the same number of
edges as M . Then, the algorithm processes e26 w.r.t. M ′. It finds an augmenting path
P = e26, e27, e28, e35, e36 and sets T = P initially. The unmatched portal edge e28 in P is
processed. There does not exist an even length alternating path starts from e29 in H ′ \ T .
The algorithm backtracks and tries to find another augmenting path not containing e28,
but there does not exist one. The current matching is shown in Figure A.4.
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Figure A.4: The matching after the second augmentation.

The algorithm now checks the next matched portal edge e31 w.r.t. M ′. The process is
identical to checking e22. Two augmenting graphs T1 and T2 are found w.r.t. M ′, shown in
Figure A.5. Augmenting T1 and T2 gives a matching M1 that has one more edge than M .
Matching M1 is shown in Figure A.6.

(a) An augmenting
graph T1 of H ′ w.r.t.
M ′ (b) An augmenting graph T2 of H ′ w.r.t. M ′

Figure A.5: Two augmenting graphs of H ′ w.r.t. M ′.

The algorithm checks e3 and e28 by calling the CandidateSearch procedure. No augmenting
graph is returned. Since there does not exist an augmenting graph in H w.r.t. M1, M1 is
maximum. In fact, this is the case by the maximum hyper-matching theorem.

Figure A.6: A hypergraph H ′ with maximum matching M1.
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