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Abstract

Universal life insurance is a flexible product which provides the policyholder with life in-
surance protection as well as savings build-up. The performance of the policy is hard to
be evaluated accurately with deterministic asset models, especially when the fund is placed
in accounts that track the performance of equities. This project aims to investigate fac-
tors that affect the savings (account value) and insurance coverage (death benefit) under
a stochastic framework. Time series models are built to capture the complex dynamics of
returns from two commonly offered investment options, T-bills and S&P 500 index, with
and without interdependence assumption. Cash flows of account value, cost of insurance,
and death benefit are projected for sample policies with common product features under
multiple investment strategies. The comparison reveals the impact of asset models and fund
allocation on the projected cash flows.

Keywords: Universal life insurance; Stochastic asset modelling; Cash flow projection;
Time series model; Account value
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Chapter 1

Introduction

1.1 Background and Motivation

Prior to the introduction of universal life insurance products in the early 1980s, people
bought traditional permanent insurance products such as whole life insurance and endow-
ment for lifelong insurance protection. The contract terms for such traditional products are
"fixed and guaranteed", which means:

– premiums must be paid when due for a specific number of years or to a specific age;

– death benefits are guaranteed at issue and do not change without underwriting unless
the policy has riders modifying the death benefit, or is participating and the dividend
is used to purchase additional insurance.

A distinguishing feature of permanent products is that they develop significant cash values
which can be thought of as accumulated premiums less mortality costs and expenses. With
the label of "fixed and guaranteed", the cash values are guaranteed as well.

Since the 1980s, policyholders had an alternative: universal life (UL) insurance. It was
initially created to take advantage of the unprecedented increase in short- and mid-term in-
terest rates in the 1980s and has grown to be the dominant form of permanent life insurance
coverage in North America according to the statistics from the Life Insurance Marketing
and Research Association (LIMRA) (Wark, 2003).

In general, UL insurance combines long-term insurance protection and tax-advantaged in-
vestment in a customizable policy. Neither are premiums predetermined, nor does the con-
tinuation of the policy depend on payment of premiums. Policyholders decide the amount,
timing, and allocation of premiums based on their individual circumstances but within lim-
its specified in the contract. Due to the flexibility, the cash values of universal life products
are not determined up front. Instead, they are valued on an ongoing basis by accumulating
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an account value for a particular UL policy1. The premiums are added to the policyholder’s
account value, and expense and mortality charges are deducted from the account value. The
account value is deposited into investment account(s) per the policyholder’s choice and earns
interest. Varying in investment account(s) offered, two types of universal life insurance have
been developed. The policyholder of universal life (UL) insurance is not involved in the in-
vestment decision. The entire fund is placed in a general account where the credited rate
is determined by the insurance company based on the performance of the company’s gen-
eral asset portfolio. In contrast, variable universal life (VUL) insurance provides a variety
of investment accounts at different risk levels. Besides the general account, options range
from conservative bond-based accounts to risky equity-linked and mutual fund accounts.
Policyholders could manage their money based on their risk profiles, preferred asset types,
and investment styles. Depending on the death benefit option chosen by the policyholder,
the death benefit is either the face amount of the policy (Type A) or the face amount plus
the account value (Type B), subject to corridor requirements.

Since the death benefit that the beneficiary receives is linked to the policy’s account value,
it is important from an insurance planner’s standpoint to have a sense of possible future
cash flows, or account values to be more specific. However, increasingly complex product
design has complicated the projection of cash flows and account values. If the fund is heavily
invested in risky accounts such as equity-linked accounts, the rates of return fluctuate in a
manner that traditional deterministic models can not capture. "Loadings" on assumptions
regarding credited rates may be insufficient as preparation for bad extremes in reality.

To provide a more accurate illustration of future outcomes, stochastic modelling is uti-
lized in this project. The first objective of this project is to establish stochastic models for
returns of a simplified asset portfolio made up of a safe investment (T-bills) and a risky
asset (an equity index) based on historical data. By generating a large scenario set, a thor-
ough evaluation of future account values and resulting death benefits is obtained. The goal
is to figure out how premium allocation strategies and asset models impact policy lapses,
the growth of account values, and the determination of the death benefit under a stochastic
framework. The influence of stochastic analysis is also studied through the comparison with
deterministic projection results.

1.2 Literature Review

There are not many academic papers on the actuarial evaluation of cash flows under uni-
versal life insurance. The existing studies are from different perspectives, summarized as

1The official definition of the cash value for a universal life policy is the amount the policyholder receives
when the policy lapses and equals the account value less the surrender charge. Thus the cash value and
account value are, to some extent, equivalent except for the gap incurred by surrender charges.
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follows.

A number of studies focus on the evaluation of the investment performance of (V)UL poli-
cies. D’Arcy and Lee (1987) compared the after-tax cash values of a VUL policy with
combinations of term insurance and different investment alternatives assuming that the
investor (policyholder) purchased an equivalent amount of insurance coverage. Using in-
dustry average data to determine parameter values, they showed how to choose the optimal
investment vehicle depending on the policyholder’s expected holding period. Some studies
are conducted with respect to the marginal rate of return and internal rate of return of
universal life insurance. Cherin and Hutchins (1987) assessed the internal rates of return
of 60 universal life policies and compared them with the corresponding advertised interest
rates. They concluded that the investor would be better off buying term insurance in the
open market and investing the remaining premiums in alternative investment instruments
rather than paying for a universal life policy, and that expense and mortality charges ac-
counted for the discrepancy. D’Arcy and Lee (1989) calculated the optimal contribution to
a VUL policy based on the marginal rate of return and the internal rate of return when the
policyholder with a given level of capital wanted the insurance coverage within or outside
variable universal life insurance while maximizing the after-tax rate of return.

The determinants of UL insurance cash values have also been studied. Chung and Skipper
(1987) found a positive correlation between the current interest rate and projected cash
values for durations of ten years or longer in a univariate framework. Carson (1996) con-
ducted a multivariate analysis and demonstrated that the effects of expense, mortality, and
surrender charges outweigh the effects of interest rates for one-year and five-year periods.

1.3 Outline

This project is organized as follows. Chapter 2 introduces the products to be analysed
and presents the methodology for calculating basic cash flows: premium, expense, cost
of insurance, account value, and death benefit. In Chapter 3, we establish univariate and
multivariate time series models to describe the dynamics of the returns of the asset portfolio
consisting of US 3-month Treasury Bills and the S&P 500 index. Chapter 4 explains how
the simulation analysis is conducted and presents numerical results of all projected cash
flows. Discussions are also provided regarding the impact of stochastic investment returns
from policyholder’s point of view. Chapter 5 concludes the project.

3



Chapter 2

Mechanism of Universal Life
Insurance

All elements of cash flows for typical universal life insurance policies are variable. Premiums
are not predetermined; within fairly wide limits the policyholder has flexibility in premium
payment pattern. Upon deducting expenses, premiums are deposited into a notional account
(or accounts if the policyholder seeks diversification by building an investment portfolio)
and are broken down into insurance and savings components according to the purposes
they serve. The insurance portion, referred to as the cost of insurance (COI), pays for the
coverage provided by the insurer and is proportional to the amount of death benefit which
is not supported by policyholder’s own fund. This amount measures the risk borne by the
insurance company and thus is called the net amount at risk (NAAR). The savings portion
is the remainder of the premiums and is invested to build the account value. The account
value is the balance in the policyholder’s account (or the total balance in all accounts), and
it makes up the rest of policyholder’s death benefit (DB) besides the NAAR promised by
the insurer. In this sense, mortality risks are shared by the insurance company and the
policyholder.

Two death benefit options are usually available. Adopting the naming convention in Atkin-
son and Dallas (2000), a Type A universal life insurance policy has a constant death benefit,
whereas a Type B policy maintains a level NAAR allowing the death benefit to increase with
the account value. The ratio of the death benefit to the account value is subject to corridor
factors to ensure that the savings component does not overwhelm the insurance coverage.
Unlike traditional products, policyholders could use their savings to pay for expenses and
COI charges. Therefore, continuation of a universal life policy is tied to having enough fund
in the account to cover regular deductions rather than payment of pre-scheduled premiums.

Universal life insurance products credit interest, subject to a guaranteed minimum rate
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if applicable. The insurance company decides the interest rate to be credited based on
earnings on the company’s general asset portfolio or a financial index. The policyholder
does not choose investments. One variation of the universal life insurance, called variable
universal life (VUL) insurance, offers both hands-off and hands-on approaches to investment.
The policyholder could allocate premiums to a wide selection of investment accounts. One
basic account, called the savings account in this project, is tied to the performance of the
company’s general asset portfolio. The others credit interest based on returns of reference
assets including bonds, market indices, and actively managed mutual funds. No minimum
interest rate is guaranteed except for the amount allocated to the savings account. The
insurance company bears the investment risk for the fund in the savings account, while all
investment risks are transferred to policyholders for funds in the other accounts.

In this project, we consider VUL insurance as our standard product to allow for more
flexibility from the policyholder’s perspective. The rest of this chapter firstly presents the
calculation of cash flows including account value, COI, expense, and death benefit, secondly
discusses how those cash flows change under corridor requirements, and finally introduces
how premiums are determined.

2.1 Accumulation of Account Value

We begin with an introduction of notation. Let

ω = limiting age of mortality table,

x = issue age,

qx = probability of death between ages x and x+ 1,

e = expense charge rate,

κ = substandard multiplier rating,

FA = face amount, superscripts A and B are used afterwards to distinguish between Type A

and Type B products,

vt−1 = death benefit discount factor applied in policy year t,

cx = corridor factor at attained age x,

it−1 = credited rate in policy year t, and

iG = guaranteed minimum credited rate.

Following Dickson et al. (2013), we consider a universal life insurance policy issued to an
insured aged x. The cash flows are updated annually, and no partial withdrawal is allowed.
At the beginning of tth policy year, t = 1, 2, . . . , ω − x, the policyholder pays the premium
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denoted by Pt−1. Unless otherwise noted, subscript regarding time is as of the exact payment
time. After the premium payment, an expense charge Et−1 is deducted. Assume that the
expense charge is $e per $1 premium. Then

Et−1 = ePt−1. (2.1)

In return for the death benefit DBt payable upon the death of the insured in year t, a cost
of insurance (COI) charge denoted by COIt−1 is deducted from the policyholder’s fund.
The COI is the product of the COI rate and the net amount at risk at the end of policy
year t discounted back to the start of the year; that is

COIt−1 = vt−1 q
r
x+t−1NAARt, (2.2)

where qr
x+t−1 is the COI rate applied to the policyholder attaining age x+t−1 in policy year

t, and NAARt is the net amount at risk at the end of policy year t. It can be interpreted as
the single premium for a one-year term insurance with sum insured equal to the NAARt.

The COI rate varies for the insured in different risk classes. Taking risk level into ac-
count, the COI rate qr

x+t−1 is adjusted from the standard mortality rate (or unrated COI
rate) according to following rating system:

qr
x+t−1 = κqx+t−1, (2.3)

where κ is the substandard multiplicative rating that distinguishes lives at different risk
levels and qx+t−1 is the standard rate. Note that κ is 1 for the insured with no rating (i.e.,
standard life), otherwise κ > 1.

The net amount at risk (NAAR) is the liability of the insurer in exchange for COI charges.
It is the portion of the death benefit not supported by policyholder’s fund; that is

NAARt = DBt −AVt, (2.4)

where DBt is the death benefit if death occurs in policy year t, and AVt is the policyholder’s
account value at the end of policy year t. In this sense, the NAAR measures the risk the
insurer bears in dollar amount. The choice of death benefit option influences how the
NAAR is calculated. For a Type A policy, the death benefit in policy year t, DBt, is level
throughout the policy period and is specified in the contract as

DBt = FAA. (2.5)
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Provided (2.4), the NAARt decreases as AVt increases. For a Type B policy, the face amount
is the amount of coverage provided by the insurer; in other words,

NAARt = FAB. (2.6)

Given (2.4), the death benefit becomes

DBt = AVt +NAARt = AVt + FAB.

Then the legacy received by the beneficiary of a Type B policy varies with the account value.

The account value accumulates by it−1 after premiums flowing in and charges deducted. In
policy year t, the account value at the year end, AVt, is obtained by

AVt = (AVt−1 + Pt−1 − Et−1 − COIt−1)(1 + it−1), t = 1, 2, . . . , ω − x.

With (2.1), the equation becomes

AVt =
[
AVt−1 + (1− e)Pt−1 − COIt−1

]
(1 + it−1). (2.7)

Provided (2.2) and (2.3), we further have

AVt =
[
AVt−1 + (1− e)Pt−1 − κvt−1qx+t−1NAARt

]
(1 + it−1). (2.8)

Theoretically, starting from AV0 = 0, the account value in each policy year can be calcu-
lated recursively by (2.8).

2.2 Corridor Requirement and Recalculated COI

According to the US Internal Revenue Code (1986), the relation of the death benefit and the
account value must pass either the guideline level premium test (GLPT) or the cash value
accumulation test to ensure that a life insurance policy is used predominantly for insurance
purposes and is eligible for tax exemption. In this project, a GLPT is conducted so that
the death benefit must equal or exceed a certain multiple of the account value, which as a
result constrains the net amount at risk. Based on Dickson et al. (2013), the corridor death
benefit is defined as

DBc
t = cx+t−1 AVt, (2.9)

where cx+t−1 is the corridor factor applied to an insured at age x + t − 1. As one ages,
the corridor factor declines to 1. The corridor death benefit is the minimum death benefit
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required, given the attained age of the insured and the account value, to ensure that policy
is compliant. If the current death benefit DBt is no less than corridor death benefit DBc

t ,
the policy passes the corridor test. Otherwise, the death benefit needs to be raised to the
corridor death benefit, and the COI charge requires recalculation.

Consider a Type A product first. If the corridor test is satisfied, the net amount at risk,
NAARt, is determined by (2.4). Given (2.5),

NAARf
t = FAA −AVt,

where the superscript f indicates that all calculations are based on the face amount. With
(2.7), the net amount at risk becomes

NAARf
t = FAA −

[
AVt−1 + (1− e)Pt−1 − COIf

t−1

]
(1 + it−1). (2.10)

Combining (2.10), (2.2), and (2.3), we could solve for the COI charge

COIf
t−1 =

κqx+t−1vt−1
[
FAA − (AVt−1 + (1− e)Pt−1)(1 + it−1)

]
1− κqx+t−1vt−1(1 + it−1) .

If the current death benefit does not reach the floor set by the corridor requirement, corridor
factors play a role in determining the death benefit and the COI charge. With (2.9) and
(2.4), the net amount at risk is given by

NAARc
t = (cx+t−1 − 1)AVt, (2.11)

where the superscript c indicates application of corridor factors. Similarly from (2.11), (2.2),
and (2.3), we could get

COIc
t−1 = κqx+t−1vt−1(cx+t−1 − 1)(1 + it−1)(AVt−1 + (1− e)Pt−1)

1 + κqx+t−1vt−1(cx+t−1 − 1)(1 + it−1) . (2.12)

By comparing COIf
t−1 and COIc

t−1, we could judge whether the corridor factor comes
into effect. A larger NAAR contributes to a larger COI charge. Thus if COIc

t−1 =
max(COIf

t−1, COI
c
t−1), the corridor requirement leads to an increase of the COI charge

to COIc
t−1. Otherwise, the regular charge COIt−1 (i.e., COIf

t−1) is imposed on the account.
Conclusively,

COIt−1 = max(COIf
t−1, COI

c
t−1), (2.13)

and
DBt = max(FAA, cx+t−1 AVt).
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On the contrary, for a Type B policy, the net amount at risk always equals the face amount.
With (2.2), (2.3), and (2.6), the COI based on the face amount becomes

COIf
t−1 = κqx+t−1 vt−1 FA

B.

Both (2.12) and (2.13) still hold, while the death benefit becomes

DBt = max(FAB +AVt, cx+t−1 AVt).

Then we could decide the COI and death benefit in any policy year.

2.3 Guaranteed Maturity Premium

The premium payment pattern {Pt} highly depends on the policyholder’s behaviour because
of the flexibility declared by the contract. Policyholders act in their best interest by nature
in aspects of premium payment amount and frequency. For example, if the credited rate
is low at the moment, the policyholder may suspend payments and use the account value
to cover all the deductions. When the credited rate bounces back, the policyholder may
continue building up the account value. Other factors such as external interest rates, the
level of surrender charges, and the tax deferral function of universal life products, may also
impact the premium payment pattern. Consequently, it is hard to predict this pattern with
confidence. However, if the investment account is designed with a guaranteed credited rate,
a planned premium, referred to as the guaranteed maturity premium (GMP), could shed
light on how much one needs to pay to keep the policy in force throughout the policy period.

According to Lombardi (2006), the guaranteed maturity premium, denoted as PG, is the
annual level gross premium that provides for an endowment for the face amount payable
at the latest permissible maturity date under the contract. It is calculated as of the issue
date with guarantees as to expense charges, cost of insurance charges, and credited inter-
est rates. In most cases, actual expense charges equal the guaranteed maximum expense
charges, whereas actual mortality charges are often less than the guaranteed maximum.
For simplicity, we assume that the guaranteed and actual charges on both mortality and
expense are the same. The guaranteed minimum credited rate, iG, is usually locked in after
the issue date, and hence it is assumed to be deterministic.

The mechanism of the account value accumulation on a non-guaranteed basis, as discussed
in Section 2.1, also applies to the fund accumulation on a guaranteed basis. Hence, by
letting all assumptions in (2.8) be the guaranteed levels, the guaranteed account value at
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the end of policy year 1 for both product types is obtained as

AV1 =
{

(AV0 + (1− e)PG − κvt−1qx+1 (FAA −AV1))(1 + iG), Type A,
(AV0 + (1− e)PG − κvt−1qx+1 FA

B)(1 + iG), Type B,
(2.14)

where iG and PG are the guaranteed credited rate and the guaranteed maturity premium,
respectively, and AV0 = 0. From (2.14), we see that AV1 is a function of PG. Therefore,
we could write

AV1 ,

{
fA

1 (PG), Type A,
fB

1 (PG), Type B.

Likewise in policy year 2, with (2.8), (2.4), (2.5), and (2.6), we have

AV2 =
{

(AV1 + (1− e)PG − κvt−1qx+1 (FAA −AV2))(1 + iG), Type A,
(AV1 + (1− e)PG − κvt−1qx+1 FA

B)(1 + iG), Type B;

,

{
fA

2 (f1(PG), PG), Type A,
fB

2 (f1(PG), PG), Type B;

,

{
FA

2 (PG), Type A,
FB

2 (PG), Type B.

In any policy year i, i = 1, 2, . . . , ω − x, we have

AVi =
{
FA

i (PG), Type A,
FB

i (PG), Type B,

implying that the account value depends on PG. Then letting AVω−x = 0, we can solve
for the guaranteed maturity premium PG. Numerical procedures are needed in this process.
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Chapter 3

Stochastic Processes of Assets

The prevailing universal life insurance products in the marketplace usually provide multiple
investment options which track the performances of a broad array of investment instruments
such as Treasury Bills (T-bill), bonds, equity indices, and mutual funds. Policyholders could
tailor their premium allocation strategy to reflect their objectives and risk tolerance. In this
project, the investment strategy from the policyholder’s standpoint is simplified to allocation
between two investment accounts, a savings account and an equity account, where credited
rates are linked to 3-month T-bill rates and the yields on the S&P 500 index, respectively.
Depending on whether the asset model captures the interdependence between these two
assets, two modelling schemes are outlined in the remainder of this chapter.

3.1 Univariate Model

An intuitive way to model the combination of the two accounts is to assume that the returns
of two assets fluctuate independently and that each is modelled by a separate process.

3.1.1 Model for US T-bills

Figure 3.1 displays the monthly observations of 3-month US T-bill rates (nominal, per an-
num) from Jan. 1982 to Aug. 20151 and the rolling one-year volatilities. Descriptive statistics
are calculated and presented in Table 3.1. The overall trend of nominal rates is downward
except for a few bounces in 1982, 1986, 1994, 1999, and 2004. In 2008, the rate hit the bot-
tom and has stayed low since then. Rises of the rolling standard deviation coincided with
the dramatic ups and downs of the nominal rates. We employ an autoregressive moving
average (ARMA) model to capture the path dependence of the data.

1Data are obtained from US Federal Reserve System.
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Figure 3.1: Historical nominal annual rates and annual volatility, US 3-month T-bill

Mean 0.0425 Quantiles

Standard deviation 0.0314 5% 0.0003
Min 0.0001 25% 0.0121
Max 0.1428 Median 0.0472

Skewness 0.3412 75% 0.0597
Excess kurtosis -0.3860 95% 0.0924

Table 3.1: Summary statistics of nominal annual rates, US 3-month T-bill

To ensure a consistent time unit between observations and interest rates, monthly rates of
return are modelled. Let {rt} denote the sequence of monthly T-bill rates. Log transfor-
mation is conducted on rt to prevent negative rates. Then an ARMA(p, q) model (Box et
al. , 1994) on ln(rt) is of the form

ln(rt)− µ =
p∑

i=1
φi

(
ln(rt−i)− µ

)
+ εt −

q∑
j=1

θjεt−j . (3.1)

In (3.1), µ is the long-term mean of the process, φi’s and θj ’s are the coefficients of the
autoregressive (AR) and the moving average (MA) terms, respectively, and {εt} are innova-
tions that incorporate the fluctuation not explained by the past values with εt

iid∼ N(0, σ2
ε).

Using the back-shift operator B, (3.1) is rewritten as

(1− φ1B − · · · − φpB
p)
(
ln(rt)− µ

)
= (1− θ1B − · · · − θpB

q)εt.

12



The autocorrelation function (ACF) and partial autocorrelation function (PACF) offer ef-
fective tools for order identification. Alternatively, one could compare information criteria
such as the Akaike information criterion (AIC) (Akaike, 1973), and select p and q that give
a minimum AIC value.

Tsay (2005) has shown that an ARMA(p, q) model as (3.1) can be inverted into an infinite-
order autoregressive model; that is, there are coefficients πj , j = 1, 2, . . . , such that

ln(rt)− µ = π1
(
ln(rt−1)− µ

)
+ π2

(
ln(rt−2)− µ

)
+ π3

(
ln(rt−3)− µ

)
+ · · ·+ εt

if the MA characteristic roots, which satisfy

1− θ1B − · · · − θpB
q = 0,

exceed 1 in modulus. Then the residuals are defined as

et = ln(rt)− ln(r̂t)

= ln(rt)− µ̂− π̂1
(
ln(rt−1)− µ̂

)
− π̂2

(
ln(rt−2)− µ̂

)
− π̂3

(
ln(rt−3)− µ̂

)
− . . . ,

where π̂i’s 2 and µ̂ are parameters estimated from the data.

A sound ARMA model should satisfy that residuals act like white noise, that parame-
ter estimates are significant, and that the process is stationary. These characteristics are
examined as Table 3.2 suggests.

Properties Tests

Significance of coefficient – two-sided t-test,
– p-value less than the significance level indicates the co-

efficient is significantly different from zero.

Stationarity – AR characteristic roots exceed 1 in absolute value
(Cryer and Chan, 2008).

Normality of residuals – Shapiro-Wilk normality test, W statistic (Shapiro and
Wilk, 1965),

– p-value exceeding significance level indicates normal
residuals.

Independence of residuals – Q statistic (Ljung and Box, 1978), asymptotically chi-
square distributed,

– p-value exceeding the significance level indicates no se-
rial correlation in residuals.

Table 3.2: Model diagnostics, ARMA(p, q)
2The π’s are not estimated directly but rather implicitly as functions of φ’s and θ’s.
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Before fitting to the model, historical nominal annual rates are converted to monthly rates
through dividing by 12 and then transformed by the logarithm function. The ACF and
PACF of log monthly rates are shown in Figure 3.2. The decay of the autocorrelation func-
tion is quite slow, and strong correlation still exists after a 25-month lag. The PACF is cut
off at lag 3. This suggests that AR(1), AR(2), and ARMA(2,1) are worth consideration.

Figure 3.2: Autocorrelation and partial autocorrelation functions, log monthly T-bill rates

Model estimation and diagnosis are done by R, and results are summarized in Table 3.3.
All models are stationary and incorporate significant AR (and MA) terms. AR(1) fails
the Ljung-Box test as the p-value of the Q statistic is relatively small. Among the rest,
ARMA(2,1) gives a smaller AIC value; therefore it is chosen as the functional form of ln(rt).

Model Parameters AIC Characteristic Q statistics W statistics
(p-values) roots (p-values) (p-values)

AR(1) φ1: 0.9943 (0.0000) −44.71 1.0057 10.5482 0.6287
µ:−6.7530 (9.3699e-7) (0.0011) (< 2.2e−16)
σ2

ε : 0.0514

AR(2) φ1: 1.1636 (0.0000) −53.89 1.0089 0.4684 0.6287
φ2:−0.1709 (1.6278e-4) 5.7992 (0.4937) (< 2.2e−16)
µ:−6.7456 (1.1652e-8)
σ2

ε : 0.0499

ARMA(2,1) φ1: 0.7333 (1.1754e-08) −62.32 1.0082 0.1433 0.6352
φ2: 0.2564 (1.3875e-02) −3.86783 (0.705) (< 2.2e−16)
θ1: 0.4893 (7.1767e-06)
µ:−6.6157 (3.5960e-08)
σ2

ε : 0.0487

Table 3.3: Estimation results, AR(1), AR(2), and ARMA(2,1)

3MA characteristic roots are not listed because they do not determine stationarity.
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According to Table 3.3, the ARMA(2,1) model for log monthly T-bill rates is formulated as

ln(rt) + 6.6157 = 0.7333
[
ln(rt−1) + 6.6157

]
+ 0.2564

[
ln(rt−2) + 6.6157

]
+ εt − 0.4893εt−1,

(3.2)

where εt ∼ N(0, 0.0487). Note that the normality of residual is not validated, which implies
a limitation of the above model.

3.1.2 Model for S&P 500 Index

Another category of popular investment accounts are equity-linked accounts. Here the
Standard & Poor’s 500 (S&P 500) Index is chosen as an example for analysis. Figure 3.3
shows monthly rates of return on the S&P 500 index with rolling 1-year volatility estimates
from Feb. 1950 to Sep. 20154. These returns are approximated by the growth of closing
prices on the last day of successive months. Table 3.4 shows descriptive statistics of the
historical returns.

Figure 3.3: Monthly rates of return and annual volatilities, S&P 500
4Data are from Yahoo Finance.
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Mean 0.0069 Quantiles

Standard deviation 0.0415 5% −0.0621
Min −0.2176 25% −0.0176
Max 0.1630 Median 0.0091

Skewness −0.4221 75% 0.0350
Kurtosis 1.7102 95% 0.0709

Table 3.4: Summary statistics of monthly rate of return, S&P 500

This time period covers several bull and bear markets with a series of sharp stock market
declines such as those seen in Oct. 1987, Aug. 1998, and Sep. 2008. A notable feature ex-
posed by Figure 3.3 is that the volatilities vary over time. As noted by Mandelbrot (1963),
"large changes (in price) tend to be followed by large changes, of either sign, and small
changes tend to be followed by small changes". This phenomenon, commonly referred to as
volatility clustering, breaks the fundamental assumption of ARMA models that the innova-
tions are independent and identically distributed. To improve the model so that it allows for
volatility bunching, a generalized autoregressive conditional heteroscedasticity (GARCH)
process (Bollerslev, 1986) is added to the classical ARMA model.

Let δt be the log return (i.e., force of interest) of the S&P 500 index on a monthly ba-
sis at time t. Unlike the pure ARMA(p, q) model where errors are i.i.d. standard normal
random variables, the model with a GARCH process treats the variances of the innovations
as a time series which evolves over time. Specifically, the process governing the development
of δt is written as

δt = at + εt, (3.3a)

at = φ0 +
p∑

i=1
φiat−i +

q∑
j=1

θjεt−j , (3.3b)

εt = σtzt, (3.3c)

σ2
t = α0 +

m∑
i=1

αiε
2
t−i +

s∑
j=1

βjσ
2
t−j . (3.3d)

The change of δt is driven by two forces: at, the conditional mean of δt given the past
information up to time t − 1, and the innovation εt. The conditional mean at follows
an ARMA(p, q) model with a constant term φ0 as described by (3.3b). Meanwhile, given
the standardized error zt such that zt

iid∼ N(0, 1), the innovation εt is constrained by the
conditional variance of δt, σ2

t . With the past information up to time t − 1, σ2
t follows a

GARCH(m, s) model given by (3.3d) where α0 > 0, αi ≥ 0 for i = 1, 2, . . . ,m, βj ≥ 0 for
j = 1, 2, . . . , s, and

∑max(m,s)
i=1 (αi + βi) < 1.
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In terms of identifying the mean process (3.3a), the aforementioned technique for ARMA
models still applies. The GARCH orders m and s, as Cryer and Chan (2008) stated, are
determined by fitting the squared residuals of the main process, ε2

t , to an ARMA model
and identifying the orders pres and qres. The GARCH(m,s) model for {δt} implies an
ARMA(max(m, s), s) model for the squared residuals. Hence, s and m are obtained by

s = qres,

0 ≤m ≤ pres.

To ensure the model assumptions are supported, a series of tests are conducted as Table
3.5 shows.

Properties Tests

Significance of coefficient – two-sided t-test; p-value less than the significance level
indicates the coefficient is significantly non-zero.

Stationarity –
∑max(m,s)

i=1 (αi + βi) < 1 (Cryer and Chan, 2008).

Normality of innovations – QQ plot; points should lie close to the line y = x,
– Jarque-Bera test; p-value less than the significance level

suggests rejection of normality (Cryer and Chan, 2008).

Independence of
standardized residuals

– Ljung-Box test; Q statistics; p-value exceeding the sig-
nificant level indicates no serial correlation in residuals
(Cryer and Chan, 2008).

Table 3.5: Model diagnostics, GARCH(m, s)

Figure 3.4a exhibits the ACF and PACF of log monthly returns of S&P 500 index. The
ACF and PACF do not show significant correlations. Even at lags 4 and 12, the correlations
are just mild. Therefore, the mean process (3.3a) does not include any AR or MA terms,
and a white noise process seems plausible for δt. Contrariwise, the ACF and PACF of the
squared log returns, displayed in Figure 3.4b, admit significant autocorrelations and hence
furnish the evidence for a higher-order serial dependence structure such as the GARCH
model rather than a simple white noise process.

As mentioned earlier, to determine the GARCH orders m and s, we need to identify the
ARMA orders of the squared residuals ε2

t . The extended autocorrelation function (EACF)
proposed by Tsay and Tiao (1984) is utilized in order to effectively identify an ARMA
model. In Table 3.6, the EACF suggests an ARMA(1,1) model for the squared residuals
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(a) Log return (b) Squared log return

Figure 3.4: Autocorrelation functions and partial autocorrelation functions, S&P 500

AR\MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 × × × × ◦ ◦ ◦ ◦ × ◦ ◦ ◦ ◦ ◦
1 × ◦ ◦ ◦ ◦ ◦ ◦ ◦ × ◦ ◦ ◦ ◦ ◦
2 × × ◦ ◦ ◦ ◦ ◦ ◦ × ◦ ◦ ◦ ◦ ◦
3 × × × ◦ ◦ ◦ ◦ ◦ × ◦ ◦ ◦ ◦ ◦
4 × × × × ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
5 × × × × × ◦ ◦ ◦ × ◦ ◦ ◦ ◦ ◦
6 × × ◦ × × × ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
7 ◦ × ◦ ◦ × × ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Table 3.6: Extended autocorrelation function, squared residuals
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and accordingly a GARCH(1,1) model for σ2
t .

The maximum likelihood estimation of aforementioned model, as returned by R{fGARCH},
is

δt = 6.509× 10−3 + εt,

εt = σt zt,

σ2
t = 8.991× 10−5 + 0.1137ε2

t−1 + 0.8408σ2
t−1,

(3.4)

where zt is Gaussian white noise with unit variance, and the conditional mean of δt is
6.509× 10−3.

Table 3.7 displays all related test outcomes. All parameter estimates are statistically sig-
nificant. Parameters α1 and β1 satisfy α1 + β1 < 1, implying a stationary process which
prevents volatilities from exploding. The Ljung-Box test accounts for the independence
of the residuals. However, the normality of standardized residuals is strongly rejected, as
suggested by the Jarque-Bera test result. Alternative evidence is provided by Figure 3.5.
Historical data have a heavier tail than that implied by the model.

Test Outputs

T-test on coefficients
(parameter: p-value)

µ5: 1.07e-6 α0: 0.0085
α1: 6.77e-6 β1: <2e-16

Jarque-Bera test 0
(p-value)

Ljung-Box test 0.44026

(p-value)

Table 3.7: Test results, GARCH(1,1)

To improve the goodness of fit, one could assume that zt follows a heavy-tailed distribution
such as a t-distribution. In this project, we use (3.4) as the model for the log monthly
returns of the S&P 500 index. As in Section 3.1.1, we note the limitation of this model as
a result of the residuals being imprecisely specified.

5µ represents the conditional mean of δt
6The p-value corresponds to Q statistics at lag 15.
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Figure 3.5: QQ plot of standardized residuals, S&P 500 vs GARCH(1,1)

3.2 Multivariate Model

Alternatively, we treat yields from the two assets systematically as a multivariate time series
and utilize a vector autoregressive model (VAR) to capture their interaction. The VAR
model is generalized from the univariate autoregressive model by letting all components
be multidimensional. Suppose that a vector yt at time t comprises the interest rate of
T-bills, rt, and the effective rate of return of the S&P 500 index, denoted as Rt, both on
a monthly basis. The returns of the S&P 500 index between Feb. 1950 and Dec. 1981 are
ignored so that these two series are of the same length from Jan. 1982 to Sep. 2015. The
two-dimensional VAR(p) model is of the form

yt = φ0 +
p∑

i=1
φiyt−i + εt, (3.5)

where φ0 is a two-dimensional constant vector, the φi’s are 2× 2 coefficient matrices, and
εt is a two-dimensional white noise process with time-invariant positive definite covariance
matrix Σε , E(εtε

T
t ). An explicit presentation of the model is

(
Rt

rt

)
=
(
φ10

φ20

)
+

p∑
i=1

(
φi,11 φi,12

φi,21 φi,22

)(
Rt−i

rt−i

)
+
(
ε1t

ε2t

)
.

As in the univariate AR model, the lag length of the VAR model, p, can be selected based
on information criteria. The general approach is to fit the VAR(p) models with order
p = 0, 1, . . . , pmax and choose the value of p which minimizes the information criteria func-
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tion. Three commonly used information criteria are Akaike (AIC), Schwarz-Bayesian (BIC)
(Schwarz, 1980), and Hannan-Quinn (HQ) (Hannan and Quinn, 1979). By applying all three
information criteria to a series of VAR models for T-bill rates and S&P 500 index returns,
we obtain Figure 3.6 demonstrating how values of criteria functions vary as the order p
increases.

Figure 3.6: Information criteria, S&P 500 and T-bills

All of them drop to the minimum when p = 2. Therefore, we select the order p = 2. The
least square estimates of the coefficients calculated by R{vars} are presented in Table 3.8.

Parameters Estimates P-values

φ10 0.0047 0.206
φ1,11 0.0389 0.437
φ1,12 −12.2118 0.183
φ2,11 −0.0089 0.860
φ2,12 13.0142 0.152
φ20 2.180e−5 0.220
φ1,21 6.578e−4 0.007
φ1,22 1.359 <2e-16
φ2,21 5.376e−4 0.027
φ2,22 −0.373 <2.76e-16

Table 3.8: Coefficient estimation, VAR(2)

To ensure that the fitted model is adequate and properly specified, model checking is con-
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ducted to see if all fitted parameters are statistically significant, if there exist structural
changes, if the process is stable, and if residuals violate the distributional assumptions,
for example, independence and multivariate normality (Tsay, 2014). The significance of
coefficients is examined per line by t-test as stated in Table 3.2 for the univariate ARMA
models, and the resulting p-values are listed in Table 3.8 beside the parameter estimates.
We see that none of coefficients determining the path dependence of Rt are significantly
non-zero. However, to preserve the relationship, we keep those parameters in the system.
The VAR(2) model is estimated as

(
Rt

rt

)
=
(

0.0047
2.180× 10−5

)
+
(

0.0389 −12.2118
6.578× 10−4 1.359

)(
Rt−1

rt−1

)

+
(

−0.0089 13.0142
5.376× 10−4 −0.3731

)(
Rt−2

rt−2

)
+
(
ε1t

ε2t

)
, (3.6)

and Σε =
(

1.883× 10−3 2.734× 10−7

2.734× 10−7 4.357× 10−8

)
.

With the back-shift operator B, (3.5) could be written as

φ(B)yt = φ0 + εt,

where φ(B) = I2 −
∑p

i=1φiB
i and I2 is an identity matrix of dimension two. Particularly

for VAR(2), φ(B) = I2 − φ1B − φ2B
2. The VAR(p) (or VAR(2) specifically) is station-

ary when all solutions of the determinant equation |φ(B)| = 0 exceed 1 in modulus (Tsay,
2014). The solutions of the equation system (3.6) are 0.9789, 0.2491, 0.2491, and 0.0605,
suggesting stationarity of the estimated VAR(2) model given by (3.6).

The stability of the regression relationships in (3.6) can be assessed by the Cumulative
Sum (CUSUM) test proposed by Barnard (1959). Results show that structural changes are
barely feasible in a statistical sense (see Appendix A for details).

Recall that {εt} is a sequence of i.i.d. random vectors which follow a multivariate nor-
mal distribution with mean zero and positive-definite covariance matrix Σε. Table 3.9
summarizes the tests applied to the residuals to examine satisfaction of the requirements
mentioned earlier and the corresponding results regarding (3.6).

Unfortunately, only the Portmanteau test gives a favorable outcome, confirming that resid-
uals are independent over time. Evidence is against a constant variance-covariance matrix
and normality of the residuals whose reasons are, to some extent, understood. In the uni-
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Properties Tests P-values

Heteroscedasticity – ARCH test (Engle, 1982),
– p-value larger than the significance level indicates

absence of heteroscedasticity.

<2.2e-16

Serial and
cross-sectional
correlations

– multivariate Portmanteau test (Tsay, 2014),
– p-value exceeding the significance level indicates

no correlations.

0.5534

Normality – Jarque-Bera test (Jarque and Bera, 1980),
– p-value larger than the significance level indicates

normality of residuals.

<2.2e-16

Table 3.9: Residual diagnostics, VAR(2)

variate model for the S&P 500 index (a constant conditional mean plus a GARCH(1,1)
volatility process), the volatility process is statistically significant, implying the inherited
variability of volatilities of S&P 500 returns. A simple model like VAR(2) which merely at-
tributes changes in stock returns to the path dependence of the return itself would probably
fail the test for constant variance. Moreover, the Jarque-Bera test of the univariate S&P
500 return model has pointed out that the normal distribution is not heavy-tailed enough
to model the innovations hidden in the data. With the same data, the outcomes should
be coherent, and thus normal innovation is still not an appropriate assumption even for
VAR(2). However, for the sake of simplicity, we assume all basic assumptions of VAR(2)
are satisfied and use (3.6) to emphasize the interdependence between the T-bill rates and
the rates of return of the S&P 500 index.
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Chapter 4

Numerical Analysis

In this chapter, we present the numerical results from the stochastic analysis. We first
define sample contracts to be studied and discuss the values of the guaranteed maturity
premium for such standard product designs. We then introduce the simulation procedure
used in the numerical analysis. Results are shown afterwards with comments aiming to
address questions such as how likely it is that the standard policies lapse, how much wealth
the policyholder could anticipate from the policy, and how the corridor factors impact the
death benefit.

4.1 Sample Contracts

For numerical illustrations, consider both Type A and Type B universal life insurance poli-
cies issued to a female nonsmoker aged 30 at time 0, with time measured in years. Both
policies offer two investment account options: a savings account where the fund earns in-
terest based on the yields of US 3-month T-bills and an equity account where returns track
the performance of the S&P 500 index.

In terms of the basic savings account, the insurance company usually claims in the contract
that higher interest rates may be credited and that the decision is made by the insurer.
However, an attempt to model actual interest rate crediting behavior is challenging. The
insurer’s decision is subject to not only performance of the reference asset, but also a series
of concerns such as competitiveness and stability of the returns and the financial position
of the general asset portfolio. To simplify the problem, we proceed in the following way
in this project. Firstly, no buffer is added to T-bill returns. Hence, credited rates of the
savings account are strictly in line with the actual T-bill rates minus the management fee.
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Secondly, nonnegative credit rates are guaranteed. This process is formalized as

iSt−1 = max(rY
t−1 − fS , 0),

where iSt−1 is the interest rate applied to the savings account in policy year t, rY
t−1 is the

annually compounded T-bill rate in policy year t, and fS denotes the constant management
fee for the savings account with fS = 0.1% per annum.

The risky investment option (i.e., the equity account) is not eligible for any interest rate
adjustment or guarantee as specified in the contract. The credited rate can be either neg-
ative or positive, merely depending on the annual rate of return of the S&P 500 index less
the management fee; that is,

iEt−1 = RY
t−1 − fE ,

where iEt−1 is the interest rate credited to the equity account in policy year t, RY
t−1 is the

annual rate of return of the S&P 500 index in policy year t, and fE represents the manage-
ment fee for the equity account with fE = 1.67% per annum1.

Suppose that the insured is rated as a standard life, i.e., κ = 1, and her mortality rate
qx is estimated by the 2001 CSO Ultimate Table2. When the fund is allocated to both ac-
counts, the COI charge is first subtracted from the savings account until no balance remains.
The amount due (if any) then reduces the value of the equity account until no balance is
left. The policy lapses when both accounts are exhausted. The policies, for both Type
A and Type B, are assumed to be paid up at age 65. The face amount, FA, is $100000,
and the expense charge rate e is assumed 5% of the premium deposit. The death benefit
discount factor vt−1 for policy year t is equivalent to the applicable credited rate, i.e.,

vt−1 = (1 + it−1)−1.

The corridor factor cx is from Lombardi (2006) (see Appendix B for the list of values).

4.2 Guaranteed Maturity Premium

The guaranteed maturity premium (GMP), PG, is calculated under a deterministic frame-
work. We presume the most conservative circumstances where all premiums are placed in
the savings account. Table 4.1 shows GMPs of Type A and Type B policies at various levels
of the guaranteed credited rate iG.

1The values of fS and fE are chosen based on Manulife’s sample contract with adjustment.
http://www.manulife.ca

2The table is from 2001 Commissioners Standard Ordinary (CSO) Task Force Report.
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Type

GMP iG

0% 1% 1.5% 2% 2.5% 8%

Type A 3342.76 2148.02 1821.53 1549.82 1323.42 320.26
Type B 47241.56 25806.02 19125.31 14207.44 10581.90 678.48

Table 4.1: Guaranteed maturity premium

The GMPs of both types decrease as the guaranteed credited rate increases, but the change
is realized through mechanisms differing by product types. On the guaranteed basis, the
net premium (premiums after expense deductions) and accrued interest exactly cover all
insurance charges as discussed in Section 2.3. For a Type B policy, the NAAR remains
constant over time. Then according to (2.2), the COI charges vary in a pattern exclusively
determined by mortality rates. In other words, the value of the guaranteed credited rate
does not impact COI charges. However, a large iG speeds up account value accumulation,
which enables the policyholder to pay off the insurance charges with less premiums. In
contrast, the NAAR of a Type A policy decreases as the account value is being built up
since the sum, or the death benefit, is fixed. This results in a downward trend of COI
charges even without a high guaranteed credited rate. With high guaranteed credited rates,
the shrinking NAAR and the accelerating interest accrual cooperate in dragging the GMP
down.

Note that the guaranteed maturity premium is the maximum that the policyholder needs
to pay in order to prevent policy lapse. Theoretically it only applies to the savings account
because the equity account is not designed with an interest rate guarantee. For the equity
account, the GMP is more like an approximate premium at a certain interest rate level.

4.3 Simulation Framework

It would have been the best outcomes if we could establish the probability distribution of
the account value AVt from (2.8). However, recursive substitution of the AV ’s gets com-
plicated especially for Type A products whose NAAR varies with the AV as well, and for
both types the AV is obviously highly dependent on the path of {it}. The path dependence
of the policyholder’s account value and the complex relationship between the net amount
at risk and the account value makes it difficult to find analytical expressions for the AV .
Therefore, simulation analysis is conducted to throw light on potential future cash flow
outcomes.
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The steps involved in a single scenario are summarized as follows.

– Simulate (ω−issue age)×12 log effective T-bill rates and forces of interest on the S&P
500 index at monthly frequency from the univariate model in Section 3.1 and convert to
effective rates. Generate (ω−issue age)×12 monthly effective rates for both assets from
the multivariate model in Section 3.2. Results include two sequences for the T-bills (one
from the univariate model and the other from the multivariate model) and two sequences
for the S&P 500 index.

– Compound to annual interest rates. Each sequence is accordingly compressed to length
of (ω−issue age).

– Given product type, premium payment plan, and allocation strategy, let the fund grow
along the simulated paths of the univariate and multivariate models according to the
mechanism discussed in Chapter 2. Two sets of future cash flows are obtained, including
expense charge, cost of insurance, credited interest, and account value in any policy year
between 0 and (ω−issue age). Each set contributes to one potential outcome under the
univariate and multivariate models, respectively.

In total 5000 scenarios are generated. Hence the empirical distribution of every element of
cash flows is of size n = 5000.

4.4 Cash Flow Projections

4.4.1 Simulated rates of return

Figure 4.1 illustrates where the average annual interest rates lands and how much they
variate. By comparing Figures 4.1c and 4.1d, we see that the mean of the S&P 500 re-
turns simulated from the univariate model are a bit higher than those from the multivariate
model. Meanwhile, the GARCH process expands variability of the annual rates through
fluctuating volatilities. Overall, the long-term average for both models are close to the
mean of the historical annual rates of return. Opposite conclusions are reached from the
comparison between Figures 4.1a and 4.1b. Despite the different speeds of convergence,
the long-term levels predicted by the two models are consistent. In the long run, the mean
of the T-bill returns based on the univariate model are slightly lower than those from the
multivariate model. But neither approaches the level suggested by the historical mean.
Recall that both models violate the assumption regarding the normality of residuals and
that historical data suggest residuals be modelled by a heavy-tailed distribution. Therefore,
the standard deviations of the annual rates are understated by the current two asset models.
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(a) T-bill, univariate model (b) T-bill, multivariate model

(c) S&P 500, univariate model (d) S&P 500, multivariate model

Figure 4.1: Mean and standard deviation of annually compounded simulated rates of return
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4.4.2 Premium payment and allocation strategies

Another essential step is to forecast the amount of future premiums which the policyholder
usually decides in his or her best interest. Above all, the accumulated value should be no
less than the sum of all costs. Apparently, the S&P 500 index generates higher returns than
T-bills, so less deposits into the equity account would meet the requirement. For instance,
if the credited rates applied to the savings account and the equity account are constants
estimated by the process mean of (3.2) (equivalent to an annual effective rate of 1.62%)
and the conditional mean of (3.4) (corresponding to an annual effective rate of 8.12%) ,
respectively, the GMP of a Type A contract, judging from Table 4.1, is roughly between
$1550 and $1821 when totally invested in the savings account, and the GMP drops to about
$320 when the fund is completely invested in the S&P 500 index. For comparison purposes,
we suppose that the policyholder pays $1700 each year (correspond to a 1.71% interest rate)
during the payment period for a Type A contract regardless of the policyholder’s investment
strategies and fund performance. The annual premium for a Type B contract is assumed
to be $15000 (approximately correspond to 1.91%).

To reflect different investment needs of policyholders, we consider four premium alloca-
tion strategies: w = 0%, 40%, 60%, and 100% with w denoting the proportion of premium
placed in the savings account.

4.4.3 Policy lapse

Type A policy

Table 4.2 lists the numbers of scenarios where the Type A policies are in force at various
time points. Recall that the premium payment ends in the 35th policy year. After that, the
policyholder counts on the wealth in the account rather than making additional deposits
to withstand bad investment outcomes, increasing insurance charges, or both. This action
puts the insured in danger of losing the coverage if deposits made during the payment period
are inadequate, and fluctuations in stochastic asset returns may aggravate or improve the
situation depending on their direction. From Table 4.2, we see that lapses occur under all
premium allocation strategies regardless of the asset model used and that they all happen
after the 40th policy year. In contrast, Figure 4.3, which illustrates the development of ac-
count values under a deterministic framework (see Section 4.4.4 for explanations), indicates
that the policy will not lapse for sure unless w = 1. It is because the premium we suppose
needs an interest rate of 1.71% to prevent the policy from lapse while in the deterministic
analysis the fund is growing by 1.62%. Table 4.2 and Figure 4.3 are consistent in a sense
that the most lapses appear when w = 1. On the other hand, there are "survivors" even
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after the 70th policy year when w = 1, suggesting the notable impact of "good years".

Policy
year

Attained
Age

Univariate model Multivariate model
w = 0 w = 0.4 w = 0.6 w = 1 w = 0 w = 0.4 w = 0.6 w = 1

20 50 5000 5000 5000 5000 5000 5000 5000 5000
40 70 5000 5000 5000 5000 5000 5000 5000 5000
50 80 4999 5000 5000 5000 4972 4998 5000 5000
70 100 4911 4931 4923 1804 4573 4683 4747 4410
91 121 4897 4905 4897 1610 4484 4594 4674 4261

Table 4.2: Numbers of in-force policies, Type A

Secondly, opposite signals are received from the comparison between two asset models: un-
der the univariate model, the policyholder is safer when the fund is, partially or totally,
invested in the equity account and riskier when the fund is dumped in the savings account.
This is probably because on average the univariate model gives higher S&P 500 returns but
lower T-bill returns. The slow convergence of T-bill rates under the univariate model, as
demonstrated in Figure 4.1a, contributes to the fund missing the chance of early accumu-
lation, which results in increased lapse probabilities in later years.

Notice that regardless of the asset model chosen, a conservative investment strategy where
all premiums are deposited into the savings account (i.e., w = 1) is least effective in keeping
the policy in force, due to the absolute low returns. The other extreme (w = 0) is better
because high returns offset the potential loss incurred by frequent fluctuations. The best
choice is a "mixed" or "balanced" strategy allocating premiums to both accounts. Though
the optimal w is not discussed, balanced premium allocation strategies overall do secure the
policy against lapse to the largest extent.

Type B policy

Analysis for a Type B product is conducted in the same vein, and results are shown in Table
4.3. Some similar conclusions are drawn. Here we only bring up phenomena or features
specific to Type B contracts.

By comparing Table 4.3 and Figure 4.5 where the development of account values under
a deterministic framework is illustrated (see Section 4.4.4 for details), we see that the
stochastic analysis detects possible policy lapses when w = 0.4 or 0.6 at the timing which is
roughly consistent with the deterministic projection. Moreover, when w = 1, the policy can
not even stay in force after the 60th policy year under the deterministic analysis because
the constant credited rate assumed fails to support the premium amount we suppose. But
the varying T-bill rates generated from the stochastic models extend the life of the contract
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at least to 70 years with the most probability.

Policy
year

Attained
Age

Univariate model Multivariate model
w = 0 w = 0.4 w = 0.6 w = 1 w = 0 w = 0.4 w = 0.6 w = 1

20 50 5000 5000 5000 5000 5000 5000 5000 5000
40 70 5000 5000 5000 5000 5000 5000 5000 5000
50 80 5000 5000 5000 5000 5000 5000 5000 5000
70 100 5000 5000 5000 5000 4983 5000 5000 5000
91 121 4960 4959 4954 1651 4720 4757 4782 4166

Table 4.3: Numbers of in-force policies, Type B

4.4.4 Projected account values

Type A policy

Figure 4.2 presents the account value projections with stochastic asset returns. Each sub-
figure demonstrates a projection based on one combination of premium allocation strategies
(w varying among 0, 0.4, 0.6, and 1) and asset models (univariate or multivariate). For
each projection, the development of various percentiles of the account value is depicted
on the left, and values of key statistics are listed on the right. Only scenarios that keep
the policy in force till the limiting age are considered3. Account values are forecast under
a deterministic framework where the annual T-bill rate of return is 1.62% (equivalent to
the long-term level estimated by (3.2)4 ) and the annual S&P 500 rate of return is 8.12%
(equivalent to the conditional mean in monthly scale from (3.4)5); Figure 4.3 displays the
growth of the account value on the left and key values on the right.

Except for Figures 4.2d and 4.2h, all plots are in a similar shape. The percentiles move
upwards as the fund is being built up. The distribution of the account values at each time
point is skewed to the right. The right tail gets fatter as years pass, and tremendous upside
potential is created in later years. Figures 4.2h and 4.2d are alike: neither the skewness of
the distribution nor growth in the account value is as striking as in the others.

3In order to compare account values over time, scenarios that lead to policy lapses at any time are
excluded. However, from the insurer’s standpoint, this measure overstates potential account values.

4The annual rate is calculated by (e−6.6157 + 1)12 − 1.
5The annual rate is calculated by e12∗6.509×10−3

− 1
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Policy year 20 40 50 70

5th percentile 0.0311 0.0901 0.1320 0.2898
25th percentile 0.0478 0.1758 0.2870 0.8061
50th percentile 0.0640 0.2780 0.5089 1.7162
75th percentile 0.0890 0.4620 0.9510 3.7144
95th percentile 0.1481 0.9827 2.3460 11.2003

Mean 0.0737 0.3810 0.7894 3.3292
SD 0.0399 0.3698 0.9109 5.4899

* out of 4897 scenarios

(a) w = 0, univariate model

Policy year 20 40 50 70

5th percentile 0.0315 0.0810 0.1126 0.2348
25th percentile 0.0423 0.1384 0.2164 0.5888
50th percentile 0.0524 0.2046 0.3622 1.2015
75th percentile 0.0683 0.3229 0.6502 2.5562
95th percentile 0.1053 0.6595 1.5664 7.5088

Mean 0.0585 0.2709 0.5457 2.2726
SD 0.0251 0.2396 0.5979 3.6457

* out of 4905 scenarios

(b) w = 0.4, univariate model

Policy year 20 40 50 70

5th percentile 0.0319 0.0764 0.1016 0.1970
25th percentile 0.0390 0.1169 0.1737 0.4359
50th percentile 0.0459 0.1615 0.2735 0.8476
75th percentile 0.0565 0.2410 0.4627 1.7668
95th percentile 0.0814 0.4662 1.0746 5.1112

Mean 0.0500 0.2053 0.3942 1.5779
SD 0.0169 0.1602 0.4000 2.4717

* out of 4897 scenarios

(c) w = 0.6, univariate model

Figure 4.2: Percentiles, mean, and standard deviation of account value, Type A, in million
$
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Policy year 20 40 50 70

5th percentile 0.0310 0.0619 0.0751 0.1089
25th percentile 0.0320 0.0721 0.0905 0.1298
50th percentile 0.0329 0.0817 0.1043 0.1576
75th percentile 0.0345 0.0939 0.1244 0.2085
95th percentile 0.0385 0.1258 0.1966 0.3852

Mean 0.0337 0.0867 0.1154 0.1914
SD 0.0027 0.0260 0.0481 0.1262

* out of 1610 scenarios

(d) w = 1, univariate model

Policy year 20 40 50 70

5th percentile 0.0258 0.0648 0.0943 0.1928
25th percentile 0.0403 0.1277 0.1954 0.4529
50th percentile 0.0557 0.2124 0.3510 0.9308
75th percentile 0.0779 0.3557 0.6553 2.0733
95th percentile 0.1319 0.7926 1.6924 6.7424

Mean 0.0640 0.2933 0.5650 2.0788
SD 0.0358 0.2831 0.8326 10.4227

* out of 4484 scenarios

(e) w = 0, multivariate model

Policy year 20 40 50 70

5th percentile 0.0291 0.0671 0.0920 0.1675
25th percentile 0.0391 0.1114 0.1595 0.3492
50th percentile 0.0494 0.1660 0.2639 0.6708
75th percentile 0.0636 0.2615 0.4681 1.4423
95th percentile 0.0986 0.5490 1.1466 4.5323

Mean 0.0546 0.2196 0.4042 1.4371
SD 0.0232 0.1852 0.5469 6.8236

* out of 4594 scenarios

(f) w = 0.4, multivariate model

Figure 4.2: Percentiles, mean, and standard deviation of account value, Type A, in million
$ (con’t)
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Policy year 20 40 50 70

5th percentile 0.0308 0.0699 0.0904 0.1517
25th percentile 0.0384 0.1030 0.1412 0.2842
50th percentile 0.0460 0.1414 0.2127 0.5023
75th percentile 0.0562 0.2079 0.3526 1.0139
95th percentile 0.0799 0.4030 0.8049 3.1002

Mean 0.0495 0.1770 0.3070 1.0134
SD 0.0164 0.1262 0.3675 4.5629

* out of 4674 scenarios

(g) w = 0.6, multivariate model

Policy year 20 40 50 70

5th percentile 0.0327 0.0703 0.0840 0.1188
25th percentile 0.0361 0.0832 0.1028 0.1517
50th percentile 0.0394 0.0951 0.1199 0.1870
75th percentile 0.0429 0.1097 0.1423 0.2337
95th percentile 0.0491 0.1347 0.1870 0.3278

Mean 0.0399 0.0980 0.1254 0.2008
SD 0.0051 0.0203 0.0319 0.0684

* out of 4261 scenarios

(h) w = 1, multivariate model

Figure 4.2: Percentiles, mean, and standard deviation of account value, Type A, in million
$ (con’t)
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Policy year Account value

20 0.0632
40 0.2654
50 0.4867
70 1.6082

(a) w = 0

Policy year Account value

20 0.0530
40 0.1969
50 0.3461
70 1.1225

(b) w = 0.4

Policy year Account value

20 0.0472
40 0.1561
50 0.2591
70 0.7862

(c) w = 0.6

Policy year Account value

20 0.0357
40 0.0711
50 0.0754
70 lapse

(d) w = 1

Figure 4.3: Development of account value with deterministic returns, Type A,
in million $
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An immediate conclusion supported by Figure 4.2 is that an aggressive investment strategy
normally creates more wealth at a price. The means and the standard deviations of the
account value increase as more fund is invested in the equity account. As a measure of costs
or risks, the standard deviation quantifies the extent of variability while the 5th percentile
quantifies the worst scenario with certain confidence. Larger standard deviations indicate
more extreme investment outcomes on both ends. The increase in upside is not our concern
but the decrease in downside is. However, a risky portfolio does not necessarily lead to
deterioration of downside potential. We see that except in the 20th policy year when w is
0 or 0.4 under the univariate model and the 20th and 40th policy years when w is 0, 0.4, or
0.6 under the multivariate model, the 5th percentiles increase as w decreases. Namely, in
the majority of time, the worst outcome is improved by risky premium allocation strategies.
In this regard, despite the security provided by the guaranteed credited rate, the advan-
tage of the savings account is limited from the policyholder’s perspective. The policyholder
could bet on a risky investment strategy generating more wealth without sacrificing account
values. Combining the results from Table 4.2, a wise choice would be a moderate premium
allocation strategy which maintains the coverage effectively and accommodate to one’s in-
vestment needs.

As to the difference across asset models, the interdependence between the returns of two
investment options makes a difference in account value projections. We see that the means
of the account value under the univariate model are higher than their counterparts under
the multivariate model as long as the fund is (partially or fully) placed in the equity account.
But the relation reverses when the savings account is the only chosen investment option.

The contrast between Figures 4.2 and 4.3 shows that the mean account values projected
under the stochastic framework considerably surpass the corresponding deterministic pro-
jections. But in most instances, the medians (i.e., the 50th percentiles) of the account
value projected stochastically are closer to their counterparts under the deterministic anal-
ysis. We could expect closer gaps if studying the means and medians without excluding
the scenarios that render the policy lapse during the coverage period. We can not assert
which projection is superior but admit that the stochastic analysis gives more information
on future account values.

Type B policy

The stochastic and deterministic projection results are displayed in Figures 4.4 and 4.5 in
the same format as for Type A policies.
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Policy year 20 40 50 70

5th percentile 0.2833 0.7865 1.1126 2.2250
25th percentile 0.4329 1.5695 2.5380 7.0029
50th percentile 0.5786 2.4864 4.5572 15.0955
75th percentile 0.8024 4.1451 8.5400 33.0307
95th percentile 1.3350 8.8646 21.0449 100.3841

Mean 0.6654 3.4131 7.0634 29.6264
SD 0.3591 3.3301 8.2011 49.3678

* out of 4960 scenarios

(a) w = 0, univariate model

Policy year 20 40 50 70

5th percentile 0.2898 0.7258 0.9803 1.8006
25th percentile 0.3818 1.2228 1.8931 4.9359
50th percentile 0.4699 1.8029 3.1852 10.3133
75th percentile 0.6085 2.8500 5.7062 22.1461
95th percentile 0.9328 5.8185 13.7564 65.9746

Mean 0.5237 2.3881 4.7877 19.7339
SD 0.2197 2.1063 5.2602 32.0623

* out of 4959 scenarios

(b) w = 0.4, univariate model

Policy year 20 40 50 70

5th percentile 0.2934 0.6928 0.8930 1.4943
25th percentile 0.3548 1.0384 1.5326 3.6336
50th percentile 0.4139 1.4287 2.4039 7.2655
75th percentile 0.5065 2.1259 4.0620 15.2974
95th percentile 0.7236 4.0901 9.4376 44.8726

Mean 0.4499 1.8172 3.4661 13.6577
SD 0.1469 1.4070 3.5171 21.7258

* out of 4954 scenarios

(c) w = 0.6, univariate model

Figure 4.4: Percentiles, mean, and standard deviation of account value, Type B, in million
$
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Policy year 20 40 50 70

5th percentile 0.2855 0.5672 0.6475 0.8149
25th percentile 0.2931 0.6356 0.7792 1.0371
50th percentile 0.3012 0.7216 0.9263 1.2591
75th percentile 0.3138 0.8437 1.1232 1.7038
95th percentile 0.3476 1.1340 1.7752 3.3434

Mean 0.3072 0.7735 1.0221 1.5698
SD 0.0227 0.2334 0.4371 1.1337

* out of 1651 scenarios

(d) w = 1, univariate model

Policy year 20 40 50 70

5th percentile 0.2304 0.5393 0.7272 1.2745
25th percentile 0.3610 1.0814 1.6213 3.5971
50th percentile 0.4978 1.8230 3.0319 7.8515
75th percentile 0.6933 3.1146 5.7465 17.7445
95th percentile 1.1788 7.0382 14.8656 58.3253

Mean 0.5723 2.5595 4.9055 17.8621
SD 0.3203 2.5274 7.3851 91.7227

* out of 4720 scenarios

(e) w = 0, multivariate model

Policy year 20 40 50 70

5th percentile 0.2663 0.5956 0.7459 1.1399
25th percentile 0.3526 0.9573 1.3617 2.7475
50th percentile 0.4421 1.4396 2.2670 5.5853
75th percentile 0.5666 2.2763 4.0382 12.1875
95th percentile 0.8724 4.8085 9.8816 38.8453

Mean 0.4880 1.9097 3.4819 12.1404
SD 0.2031 1.6187 4.7608 59.0562

* out of 4757 scenarios

(f) w = 0.4, multivariate model

Figure 4.4: Percentiles, mean, and standard deviation of account value, Type B, in million
$ (con’t)
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Policy year 20 40 50 70

5th percentile 0.2836 0.6272 0.7691 1.0895
25th percentile 0.3492 0.9079 1.2263 2.2632
50th percentile 0.4153 1.2467 1.8663 4.2039
75th percentile 0.5033 1.8231 3.0873 8.6493
95th percentile 0.7113 3.5461 7.0228 26.6404

Mean 0.4453 1.5593 2.6797 8.6230
SD 0.1432 1.1071 3.2135 39.7097

* out of 4782 scenarios

(g) w = 0.6, multivariate model

Policy year 20 40 50 70

5th percentile 0.2987 0.6139 0.6958 0.7113
25th percentile 0.3271 0.7295 0.8733 1.0563
50th percentile 0.3548 0.8355 1.0416 1.3979
75th percentile 0.3875 0.9735 1.2537 1.8462
95th percentile 0.4429 1.2075 1.6481 2.7287

Mean 0.3643 0.8918 1.1381 1.6422
SD 0.0453 0.1832 0.2884 0.6208

* out of 4166 scenarios

(h) w = 1, multivariate model

Figure 4.4: Percentiles, mean and standard deviation of account value, Type B, in million
$ (con’t)
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Policy year Account value

20 0.0621
40 0.2483
50 0.4302
70 1.0943

(a) w = 0

Policy year Account value

20 0.0522
40 0.1849
50 0.3085
70 0.6612

(b) w = 0.4

Policy year Account value

20 0.0465
40 0.1432
50 0.2206
70 0.3500

(c) w = 0.6

Policy year Account value

20 0.0351
40 0.0597
50 0.0414
70 lapse

(d) w = 1

Figure 4.5: Development of account value with deterministic returns, Type B,
in million $
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In Figure 4.4, the percentiles in most plots increase following a familiar trend. But a unique
growth pattern shows up in Figures 4.4d and 4.4h: the percentiles reach a peak and then
drop. It is especially obvious for the 5th and 25th percentiles. The mechanism of Type B
policies accounts for this special feature. At the early stages, net deposits (excluding the
expense charge) and interest are more than enough to pay the COI charges, and the excess
contributes to fund accumulation. For a Type B contract, the COI charge increases as the
insured ages without the account value offsetting the NAAR. In later years the COI could
become so large that inflows do not cover it. The deficit needs to be made up by withdrawals
from one or both accounts. Thus the account value starts to decline. Conversely, the 95th
percentile does not have a reversal point. Hence, if the returns are favorable enough, it is
still possible that interest could cover the increasing COIs. Then it is not necessary to lose
account values.

4.4.5 Impact from corridor factors

Type A policy

Table 4.4 gives the numbers of scenarios where the death benefit is the amount required
by corridor factors. First, all scenarios that keep Type A policies in force throughout the
insurance period also raise the amount of death benefit. This is because the interest earned
in those scenarios is substantial so that the policy could "survive" all future deductions even
without deposits after the 35th policy year. Then the proportion of the savings component
exceeds the threshold set up by the corridor factors. The death benefit is augmented ac-
cordingly to ensure the insurance function of the policy.

Policy
year

Attained
Age

Univariate model Multivariate model
w = 0 w = 0.4 w = 0.6 w = 1 w = 0 w = 0.4 w = 0.6 w = 1

20 50 3371 2484 1622 3 2627 2084 1588 85
40 70 4712 4624 4475 655 4170 4147 4112 2932
50 80 4822 4804 4740 1047 4363 4411 4420 3604
70 100 4896 4907 4895 1598 4515 4609 4680 4252
91 121 4897 4905 4897 1610 4484 4594 4674 4261

Table 4.4: Counts of scenarios where death benefit determined by corridor factors, Type A

Secondly, the counts of scenarios where the death benefit hits the corridor increase as the
insured ages. They are not strictly increasing after the 70th policy year because of the
increasing probability of policy lapse, but the trend exists. This phenomenon could be
explained by the product features of the Type A contract and the rationale of corridor
requirements. Per Section 2.2, the corridor factors constrain the risk sharing between the
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insurer and the policyholder by setting the minimum death benefit for which the insurer
must bear the risk in dollar amount as a multiple of (cy − 1) of account value, where cy

denotes the corridor factor at attained age y and cy decreases as the insured gets old. In
the early years of the policy, despite the large value of cy compared to that applied when
the insured is old, the account values are relatively small so that cy-fold the account value
could not reach the predetermined face amount, or the death benefit, for a Type A con-
tract. Hence the death benefit remains the face amount. But as the account value grows,
cy times the account value eventually exceeds the face amount, which is highly likely with
the current premium payment plan and not offset by the declining multiplier cy. Then the
death benefit rises to the amount set by the corridor factors. Therefore, we see the upward
trend in the counts over time in Table 4.4.

Type B policy

Table 4.5 presents an opposite trend. Unlike a Type A contract where the increasing account
value triggers an increase in the death benefit, the growth of the fund frees the death benefit
from corridor requirements for a Type B product. As mentioned earlier, it is required that
the ratio of the death benefits supported by the insurer and the policyholder be (cy−1) : 1,
which is later referred to as the required ratio. The declining cy allows the proportion
underwritten by the insurance company to shrink such that the mortality risk is gradually
transferred to the policyholder. In other words, the required ratio decreases over time. On
the other hand, the "contractual" ratio of NAAR to AV equals to FA/AV . With the face
amount predetermined and fixed, an increasing account value makes the "contractual" ratio
decrease, which agrees with the pattern of the required ratio. Considering the magnitude of
the face amount and the projected account values, the "contractual" ratio starts at a higher
point than the required ratio and then falls behind. For example, in the 70th policy year,
the corridor factor drops to 1, and thus the required ratio becomes 0. No matter how large
the account value grows to, FA/AV could merely converge to 0 but never get to 0. This
gap indicates that the insurance company has borne more than required. Therefore, the
death benefit could be as much as the contract defines.

Policy
year

Attained
Age

Univariate model Multivariate model
w = 0 w = 0.4 w = 0.6 w = 1 w = 0 w = 0.4 w = 0.6 w = 1

20 50 5000 5000 5000 5000 4999 5000 5000 5000
40 70 4860 4873 4867 2566 4508 4617 4710 4677
50 80 4123 3616 2999 59 3190 2702 2211 52
70 100 0 0 0 0 0 0 0 0
91 121 0 0 0 0 0 0 0 0

Table 4.5: Counts of scenarios where death benefit determined by corridor factors, Type B
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Chapter 5

Conclusion

As universal life insurance products become increasingly complex through diversified in-
vestment accounts, policyholders are facing challenges in predicting their account values
and death benefits, which ultimately complicates their insurance planning. In this project,
we have established univariate and multivariate stochastic asset models based on historical
data for a simplified investment portfolio made up of two most commonly offered accounts:
a savings account which tracks the returns of US 3-month T-bills and an equity account
which ties to the performance of the S&P 500 index. Numerical results show that no matter
whether these two assets are treated as independent or interdependent, the projected annual
returns in the long run are roughly consistent. Additionally, models under both approaches
on average understate T-bill returns but generate reliable S&P 500 returns. Note that em-
pirical data suggest that residuals should be modelled by a distribution with heavier tails
than the normal distribution used in this project. Hence the variability of future rates of
return is also underestimated.

Based on the stochastic asset models, the cash flows of universal life policies with com-
mon product features and varying investment strategies are projected. Comments on the
performance of universal life policies are summarized as follows.

– Policy lapse
Although returns of the S&P 500 index are more volatile, they do not necessarily
increase the probability of lapse. Nevertheless a safer investment strategy is to hold
a balanced asset mix.

– Account values
The account values tend to grow over time, but it is more likely to see declines in Type
B policies’ account values in the later years if the fund is dumped into the savings
account. The distributions of future account values are right-skewed, which means
that the favorable extremes significantly outperform the average level but happen
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infrequently. A risky option such as the equity account does not always lead to worse
downside potential than the conservative savings account, but it results in a wider
range of possible outcomes. Meanwhile, the difference across asset models stands
out. The univariate model gives higher projected account values as long as the equity
account is involved in the asset mix, while the opposite holds if the entire fund is
invested in the savings account.

– Death benefit
For Type A policies, the death benefit in the later years tends to be determined by
corridor factors. By contrast, the impact of the corridor factors on Type B policies’
death benefits is more likely to be observed in the early years; as the insured ages,
the death benefit shifts to the amount specified by the contract.

One limitation of this project rests on simulation of the asset returns over the insurance
period. Investigation is needed regarding the performance of the two asset models in long
term projections. For example, the GARCH(1,1) model is believed to provide good short-
term forecasts for the volatilities of the S&P 500 index, while in the long term its monotonic
term structure does not agree with the real trend. To address this issue, we could improve
the models by including additional terms, say a component model with leverage effects for
the volatilities of the S&P 500 index. But a full understanding is required for successful
implementation and rational interpretation, which could be a barrier for practitioners to
apply sophisticated models. Alternatively, re-estimation could be conducted regularly to
reflect the current circumstances, and the method proposed in this project still applies.

Recall that in this project we suppose a static premium payment pattern where the policy-
holder keeps depositing a constant amount from age 30 to 65. However, such assumption
is not realistic for universal life policies because the policyholder also manages his or her
wealth via premium payments. For instance, if the fund is earning a low return, the poli-
cyholder would use the account value rather than the external fund to pay all deductions.
Further study could be done with a dynamic premium strategy where the policyholder re-
acts to ups and downs of the investment returns and account values. Besides, one could
explore how values of the parameters in the asset models influence cash flow projection
through sensitivity tests. Last but not least, the condition for policy lapse in this project is
set as the account value falls below zero. In practice, a rider called "No Lapse Guarantee"
is offered by most insurance companies. This guarantee allows the policy to remain in force
for the guaranteed period even if the cash value drops to zero as long as certain minimum
premium payments have been made for a given period. The projection of cash flows for
policies with no lapse guarantee is another interesting extension of this project.
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Appendix A

CUSUM test for structural changes

The Cumulative Sum (CUSUM) test aims to detect chances of structural changes such as
change in lag length and in values of coefficients. The graphical outputs of the test are
shown in Figure A.1. If there is no structural change, the empirical fluctuation process

Figure A.1: OLS-CUSUM test on structural change, VAR(2)

computed based on the cumulative sum of the ordinary least square (OLS) residuals of the
VAR model should not deviate from mean zero too much. As the asymptotic distribution of
the fluctuation process is known, the thresholds of fluctuation, being crossed with a prob-
ability equal to the significance level, are computed and represented by red lines in Figure
A.1. If the empirical fluctuation process shows large deviation and crosses the boundaries
or thresholds, there is evidence that structural change should be expected. From Figure
A.1, we see that the fluctuation process of {Rt} is relatively stable. Despite the notable
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deviation of the fluctuation process of {rt}, it remains within the boundaries. In this sense,
we conclude that structural changes are barely feasible.
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Appendix B

Corridor factors

Age Factor Age Factor Age Factor

6 40 2.50 60 1.30 80 1.05
41 2.43 61 1.28 81 1.05
42 2.36 62 1.26 82 1.05
43 2.29 63 1.24 83 1.05
44 2.22 64 1.22 84 1.05
45 2.15 65 1.20 85 1.05
46 2.09 66 1.19 86 1.05
47 2.03 67 1.18 87 1.05
48 1.97 68 1.17 88 1.05
49 1.91 69 1.16 89 1.05
50 1.85 70 1.15 90 1.05
51 1.78 71 1.13 91 1.04
52 1.71 72 1.11 92 1.03
53 1.64 73 1.09 93 1.02
54 1.57 74 1.07 94 1.01
55 1.50 75 1.05 >95 1.00
56 1.46 76 1.05
57 1.42 77 1.05
58 1.38 78 1.05
59 1.34 79 1.05
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