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Abstract

A recent development in solving challenging combinatorial optimization problems is the
introduction of hardware that performs optimization by quantum annealing. Exploiting
this hardware to solve a problem requires first solving a graph minor-embedding problem,
which is also apparently intractable. Motivated by this application, we consider the special
case of finding a minor-embedding of a planar graph in a grid graph. We introduce two
algorithmic approaches to the problem, based on planarity-testing techniques. For one
approach, we provide an implementation and an experimental evaluation demonstrating its
potential.

Keywords: Planar embedding, Minor-embedding, Adiabatic quantum annealing, Planar
graphs, Grid graphs
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Chapter 1

Introduction

Computer scientists have been trying for decades to find efficient and practical approaches
for dealing with NP-hard problems. Over the past few years, D-Wave Systems, Inc. has
been designing hardware, which employ quantum computing techniques to solve intractable
problems. D-Wave Two is one of such device which works based on a mechanism referred
to as adiabatic quantum annealing. Due to hardware design limitations, the device can
only be used for solving problems in a special format. Performance of D-Wave Two was
compared with several respectable optimization systems, including CPLEX, on a variety of
benchmarks. The solutions found by D-Wave Two were at least as good as those found by
its competitors, and it was significantly faster than other solvers [48]. However, there are
challenges with regard to solving an NP-hard problem, even in the required format, using
D-Wave Two. The prerequisite of having to find a solution to another NP-hard problem is
one of the greatest of those challenges.
A graph describes necessary architectural attributes of the quantum device, and another
graph describes the structure of problem. Before the quantum annealing process can be
applied to solve the instance, a proper solution must be found for the NP-hard graph minor-
embedding problem, which accepts the two graphs as inputs. Graph minor-embedding was
virtually not studied, specifically, before the D-Wave application was found for it. However,
the concepts of minors, planar embedding, and graph drawing are very well studied, in the
graph theory literature, and can be argued to be related to special cases of the minor-
embedding problem.
This chapter presents the motivation of this research, with a brief introduction to the
concept of quantum computing in the D-Wave Two device and also the definition of graph
minors and the minor-embedding problem, which are crucial to the application of the device.
Next, related work on the topics of minor-embedding and graph drawing are reviewed. At
the end of this chapter, contributions of this research to the problem are presented, followed
by the organization of this thesis, in the next chapters.
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1.1 Motivation

1.1.1 Graph Minors

Throughout years, graph minors have attracted much attention, due to the vast range of
applications implied by their role in fixed-parameter tractability [5]. Throughout this thesis,
the term "graph" refers to a simple, undirected, and finite graph, unless stated otherwise.

Definition 1.1. Given two graphs G and H, we say H is a minor of G, if by deleting
vertices, contracting edges or removing edges from G, we can create a graph isomorphic to
H [5].

The operation of removing an edge from the graph is trivial. Removing a vertex consists
of removing the vertex and all edges incident to that vertex, from the sets of vertices and
edges of the graph, respectively. Edge contraction takes place by removing the two vertices,
at the ends of an edge and adding a new vertex to the graph, which is adjacent to the
union of sets of neighbours of the two deleted vertices. Let H = (V,E) and H ′ = (V ′, E′)
be two graphs, which are to be tested for being isomorphic. It is said H is isomorphic
to H ′, or H ' H ′, when there exists a 1-1 function f : V → V ′, such that for each
u, v ∈ V, (u, v) ∈ E, if and only if (f(u), f(v)) ∈ E′ [25].

1.1.2 Application

The D-Wave Two device employs a model, known as Adiabatic Quantum Computing (AQC),
which works by evolving a quantum system "slowly enough" from an initial state to the final
state [16]. This device is used to solve a specific type of quadratic optimization problem, a
form of Ising model, in which variables can only obtain values {−1, 1}. This optimization
problem is NP-hard and can be formulated as follows [12]:

Minimize f(z) = wT z + zTJz

where z is a size n vector of variables, w is a size n vector of weights, and J is a n×n matrix.
Each variable can be mapped to a qubit, in the device hardware, and each non-zero element
in J can represent a coupling between the cubits. The minimized f(z) can be obtained
from a specific energy function of the quantum system, called a Hamiltonian, in the final
stage of the aforementioned system evolution process, or quantum annealing. More details
about the quantum mechanics aspects of the process of quantum annealing can be found in
[32, 52].
The device hardware can be presented by a graph G = (VG, EG), where VG and EG are the
sets of vertices and edges of G, respectively. Each v ∈ VG represents a physical qubit in the
device, and for each u, v ∈ VG, if (u, v) ∈ EG, the Ising model of the problem is allowed
to have a non-zero value for Juv. The Ising model of the problem can also be represented
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by a graph H = (VH , EH), where VH represents the logical qubits, and corresponds to z,
and (u, v) ∈ EH if Juv 6= 0. Due to hardware design limitations, the hardware graph G

cannot be a complete graph, which limits the problem instances that can be solved by the
hardware. However, using a technique, this limitation can become less restrictive. The
technique makes it possible to represent a logical qubit with more than one physical qubit,
as long as the vertices corresponding to the set of selected physical qubits form a connected
subgraph of G. For x ∈ VH , let φ(x) be a subset of VG, which maps to the set of physical
cubits assigned to represent the logical qubit of x, in the Ising model of the problem. For
each two neighbouring vertices u, v ∈ φ(x), if Juv = −∞ in the Ising model of the hardware,
the values of u and v are forced to be the same in the variable vector z which minimizes
the value of f(z). Also, for all u, v ∈ VH for which Juv 6= 0 in the problem Ising model, it
is possible to represent these interactions in the hardware Ising model, between φ(u) and
φ(v).
The explained limitations and possibilities of the D-Wave Two device leads to the conclusion
that it is possible to map the defined problem Ising model onto the device, if and only if H
is a minor of G. We need to find a set of subgraphs of G, which represent the vertices of
H, as outlined above. In short, finding such subgraphs of G is called minor-embedding H
in G.
In the D-Wave’s application, H is part of the input and varies for different problems. The
fastest exact algorithm, given arbitrary graphs G, H, for finding a minor-embedding of H
in G runs in exponential time in the branch-width of G. It is also known about the D-Wave
quantum annealer that the design policies of the hardware graph encourage it to have a
large tree-width, and also the graphs, corresponding to the problem Ising models, are not
very small graphs, in practice [12]. It is easy to conclude, from the presented facts, that
exact algorithms cannot be used for the D-Wave’s minor-embedding problem, in practice.
Figure 1.1 shows the hardware graph of the D-Wave Two device, called the Chimera graph.
Each node represents a qubit, and those nodes with darker colour correspond to inactive
qubits.

Definition 1.2. A k by k Chimera graph, with no inactive qubits, has 8k2 vertices in the
format of a k × k grid structure, in which all vertices of the grid are replaced by K4,4

bipartite graphs. Generally, a complete bipartite graph K4,4 has two disjoint sets U and V
of 4 vertices, and vertices of each set are only connected to all vertices of the other one.
For each K4,4 of the Chimera graph,

• all vertices of V are also connected to the respective vertices in the V sets of the left
and the right neighbouring K4,4 graphs (if they exist) in the grid structure, and

• vertices of U are adjacent to the respective vertices in the U sets of the neighbouring
K4,4 graphs, above and below, if they exist in the grid [21].
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A closer look at the structure of the Chimera graph will reveal that most of the vertices
have degree 6, and if no vertices correspond to inactive quibits, it contains 4 layers of grid
graphs, with edges between respective vertices of neighbouring layers, as a minor. Inspired
by this structure, the specific problem of minor-embedding planar graphs in limited size
grid graphs is the main focus of this work, and we may refer to it simply as the minor-
embedding problem here on after. Our perspective for future extension of this work is to
try to break H (the input graph) into a limited number of planar graphs, minor-embed
them in different layers of the Chimera and eventually embed the connecting edges between
separated components of H. Strategies based on planarization techniques may also be
worthy of investigation.
Although, G (the target graph) is set to a grid graph in this version of the problem, we still
consider the possibility of inactive qubits and possibility of slight changes to the structure
of the Chimera. For that purpose, the heuristic solutions should not be very dependent
on precise structural properties of a grid graph. Since input graphs have been limited to
the family of planar graphs, concepts which are specific to this graph family and can be
related to the minor-embedding problem should be explored and possibly employed by the
solution.

1.2 Related Work

The problem of minor-embedding a graph H in a graph G, for the D-Wave application, was
first introduced by Choi [16]. They continued working on minor-embedding in adiabatic
quantum computation, by investigating a possible hardware architecture, which admits ef-
ficient algorithms for finding a minor-embedding of any graph, with a bounded maximum
degree. This problem remained open [17].
To test H for being a minor of G, when H and G are arbitrary and both given as input, is
an NP-complete problem. Robertson and Seymour, as a part of their pioneering work on
graph minors, proposed an algorithm that can verify if a fixed graph H is a minor of an
arbitrary graph G in polynomial time [54]. However, in case of the D-Wave’s application,
H is part of the input and varies for different problems. Given b is the branch-width of
G, the fastest exact algorithm for the problem of finding a minor of G that is isomorphic
to H runs in O(2(2b+1) log b|H|2b22|H|2 |H|) time [1]. For these reasons, application of exact
algorithms to the D-Wave’s minor-embedding problem is practically impossible.
There has not been much interest in heuristic algorithms for the minor-embedding problem
in the literature, most probably because of the limited applicability before the D-Wave’s
application. To our knowledge, the only existing practical solution to this problem is a
heuristic, which mainly uses pathfinding strategies to find a minor-embedding of H in the
hardware graph [12]. Most choices in this heuristic are made either randomly or using a
greedy approach, and the structure of H is not a parameter. More recently, a determinis-
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tic algorithm has been proposed for the more restricted problem of minor-embedding the
cartesian product of two complete graphs in a Chimera graph without inactive quibits [64].
A planar graph can be described in different ways. A geometric definition of planarity
states that a graph is planar if it can be drawn on a Euclidean plane with no two edges
crossing each other [45]. The combinatorial definition, more helpful with testing for pla-
narity, shows that a graph is planar if and only if K3,3 and K5 are not contained in it
as minors [5]. Planarity testing methods usually either output a planar embedding, that
is, a clockwise ordering of incident edges to all vertices of the input graph, or one of its
forbidden minor(K3,3 or K5) subgraphs. The first linear time planarity testing algorithm
was introduced by Hopcraft and Tarjan [42], and was later known as the path addition
method. Another algorithm, sometimes called the vertex addition method, was introduced
with quadratic time [46], and was improved later to a linear time algorithm [31, 7]. Both
of these methods are considered to be fairly complex. Later attempts introduced linear
time algorithms using simpler approaches, such as traversing a DFS tree in reverse order
and embedding back-edges while preserving planarity. This approach was first introduced
in [35] and does not use complex structures, such as the PQ-trees employed in [7]. Boyer
and Myrvold based their linear time algorithm on this approach and presented it in details
[10]. Since the algorithm works by adding back-edges, working its way up from the bottom
of the DFS tree, it can be referred to as edge addition method.
Graphs admit visual representations in the plane, which can be generated by graph draw-
ing algorithms. The generated drawings have multiple attributes, and algorithms prioritize
them for optimization based on the application. While number of bends, embedding area,
uniform vertex and edge degree distribution, drawing symmetry, and so forth are included
in the desired attributes, minimizing the edge crossings is arguably the most important one
[51]. The reason is the vertex adjacency confusion caused by edge crossings. For that rea-
son, drawing methods usually start with planarity testing of the input. Drawing algorithms
exist for planar and non-planar graphs.
Since a crossing-free drawing does not exist for non-planar graphs, different approaches
exist in the literature for drawing these graphs. Planarization of a non-planar graph is
one appraoch, which involves replacing crossing points with virtual vertices, or removing
a number of edges from the graph. To find the smallest set of edges which, upon their
removal, gives a planar graph, is NP-hard [53]. Both exact methods, such as a branch-and-
cut algorithm [43], and heuristic solutions [57, 38] have been introduced for this problem.
Following approaches mostly work on sparse graphs. Minimizing the number of crossings,
although an NP-hard problem [22], has been pursued for sparse and small graphs [4, 30].
Finding a k-planar drawing, in which no edges are crossed more than k times, is the goal of
some algorithms [11, 23]. Another approach, surveyed in [24], tries to make the crossings
easier to comprehend by widening the angle of crossing edges.
Another interesting approach is to focus on finding a large planar subgraph of the input
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and preserving its planarity in the drawing [2]. Confluent drawings are another means to
conveying the adjacency information, while avoiding crossing of edges [22]. These drawings
bundle up crossing edges in tracks and replace crossings with parallel paths.
Methods for drawing planar graphs usually depend on an ordering of vertices, or edges, or
both. Several algorithms rely on a canonical ordering of vertices and a certain degree of
connectivity of the graph [45]. This concept was first introduced, by De Fraysseix et al.
[34], improved by Kant [44], and was demonstrated to be sufficient for generating a straight-
line drawing, a graph drawing in which all edges are represented by straight line segments.
Earlier, Fáry [33] had discovered that a straight-line drawing exists for each planar graph,
and algorithms had been introduced to compute such drawing, using arithmetic techniques
[61, 15, 14]. The proposed canonical ordering allowed iterating over vertices and adding
them to the drawing in that order. In each iteration, a subset of edges are embedded to
generate a planar drawing of the graph, induced by the set of vertices which have been
iterated over. Chrobak and Payne introduced a simpler straight-line drawing based on the
canonical ordering, which improved the original O(n logn) time algorithm to a linear time
method with the same required grid area of (2n− 4)× (n− 2) [18]. Schnyder used the same
ordering to introduce a straight-line drawing in a (n−2)×(n−2) grid, which took advantage
of a barycentric representation of the graph [55]. Authors of [18], however, claimed their
algorithm remained popular, despite worse embedding area requirements, due to its simpler
implementation and more aesthetically pleasing output. Although the canonical ordering is
mostly employed by straight-line drawing algorithms, it is also the basis of some orthogonal
drawing methods, an instance of which can be found in [44].
Planar orthogonal drawings are another family of graph drawings for planar graphs, in
which only horizontal and vertical line segments are permitted to represent the edges. The
angles between all line segments are nπ

2 , n ∈ Z, which are aesthetic and also suitable for
VLSI design applications. An orthogonal drawing is also a grid drawing, if we map the
coordinates of its vertices and bend points to nodes of an arbitrary 2D-grid. A graph with
maximum degree of more than four cannot admit an orthogonal planar drawing. However,
other polyline algorithms with fewer restrictions on the edge angles exist in the literature
[39, 40, 13, 29], for graphs with maximum degrees of more than four. These algorithms are
mostly based on Kant’s work [44] and use the same concept of adding vertices, one-by-one,
based on the canonical ordering. Older orthogonal drawing algorithms focused on minimiz-
ing the number of bends at the expense of embedding area and run time. However, taking
advantage of a visibility representation in the 2D plane, in which both vertices and edges
of the graph are represented with orthogonal line segments, newer algorithms achieve the
same goal in linear time and smaller embedding area [28]. Algorithms using network flows
can minimize the number of bends in a bounded area, although they run in near-quadratic
time [58, 36, 20].
A visibility representation is defined generally as the result of representing vertices with
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hyper-rectangles in Rn Euclidean space, in a way that the edges are represented orthogonal
to the hyper-rectangles [49]. In a 2D-plane, vertices and edges are represented by horizontal
and vertical lines, respectively. The concept has been well-studied, due to its many applica-
tions in VLSI design [27, 60, 63, 47]. It was proved in [59, 63] that a graph admits a visibility
representation in the R2 plane if and only if it is planar, in which case it can be generated
in linear time. Tamassia and Tollis classified these representations into three classes, based
on their restrictions and combinatorial attributes [59]. Cobos et al. generalized the work
in [59, 63] to bound the dimensions of the Euclidean plane which can contain the visibility
representation for several graph families [19]. Boyer also presented an extention to his work
[10], in [9], introducing an efficient method of computing visibility representations, without
using complicated structures.

1.3 Contribution

In this thesis, we introduce two algorithms for the problem of minor-embedding a planar
graph H = (VH , EH) in a grid graph G = (VG, EG) of limited dimensions. To facilitate
future modification of the algorithms to compensate for inactive qubits and possible changes
of the target graph structure, our solutions employ pathfinding algorithms to solve the
problem, using only vertices of the target graph which represent the active and available
qubits of the hardware. Both algorithms take advantage of the planarity of the input graph
H, to minor-embed it in a grid graph G.
The first presented method uses a specific planar representation of H to minor-embed it in
G. The main component of the algorithm is a novel technique introduced to help reduce
the minor-embedding size, which can be used in some other minor-embedding algorithms
as well. Being provided with the required planar representation of H, the minor-embedding
algorithm can minor-embed H in G, and the required dimensions of G depend only on
|VH |. These attributes make this algorithm suitable for minor-embedding dense graphs in
G. However, the algorithm requires as input the aforementioned planar representation of
H to minor-embed it in G. We propose two modifications for the first algorithm so that it
can minor-embed an arbitrary planar graph in a bounded grid graph.
Our second algorithm generates a solution based on an obtained visibility representation
of H. This method takes advantage of the technique, used in the previous algorithm, and
another novel optimization technique which demonstrates good performance in improving
desired qualities of the minor-embedding. The algorithm is shown to be complete and works
in two phases. In the first phase, a minor-embedding of H is guaranteed to be found in G,
with bounded dimensions, and the second phase tries to optimize the found solution.
We give an experimental evaluation of the second algorithm, including a comparison with
the algorithm in [12]. The results of the experiments have been analyzed and presented,
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followed by suggestions for future work. Our results demonstrate the consistent success of
our algorithm in minor-embedding all instances of different sizes from various graph families,
whereas the competing algorithm [12] is only able to embed the smaller ones, or none at
all, per each family.

1.4 Organization of the Thesis

Chapter 2 presents necessary preliminaries and background concepts. In Chapter 3, a spe-
cific planar representation of the input graph is suggested as the basis of our first algorithm,
and a rather generic, novel technique is introduced to improve the results. This technique is
also employed in the proposed algorithm, in Chapter 4, which takes advantage of a visibility
representation of the graph, to guarantee its minor-embedding, in a grid graph. Experi-
ments are conducted on this algorithm and another minor-embedding heuristic, the results
of which are presented in Chapter 5. Chapter 6 concludes the thesis and proposes future
courses of action to extend this work.
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Figure 1.1: The 8x8 Chimera graph, with 512 vertices, and maximum degree 6 [50]
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Chapter 2

Background and Preliminaries

Background and preliminaries, essential to better comprehend the next chapters, are pre-
sented in the following sections.

2.1 Planarity

Definition 2.1. Let G = (VG, EG) be a graph and D : VG ∪ EG → 2R2 be a mapping from
vertices and edges of G to points and simple curves in the plane, respectively. D is a planar
representation of G, if:

• For each v ∈ VG, D(v) ∈ R2 is a point, and for all pairs u, v ∈ VG, D(v) 6= D(u).

• For each (u, v) ∈ EG, D(u, v) is a simple curve satisfying the following conditions:

– D(u), D(v) ∈ D(u, v), and the end points of D(u, v) are D(u) and D(v).

– For all u, v, w ∈ VG, if D(w) ∈ D(u, v) then w = u or w = v.

– For all e, (u, v) ∈ EG, if e 6= (u, v) then D(u, v) ∩D(e) ⊂ {D(u), D(v)}.

Let DG =
⋃
x∈(VG∪EG)D(x) be the set of all points in the plane representing vertices

and edges of G. Each point in the plane either belongs to DG, belongs to an area bounded
by DG, or neither. The areas in R2 bounded by DG are called the faces (or inner faces) of
D, and the set of points in R2 −DG not on the inner faces of D, constitute the outer face
of D.

Definition 2.2. A graph is called a planar graph if and only if it has a planar representation.

Since R2 defines the set of points in a plane, a graph can have zero or an infinite number
of planar representations [45]. It is possible to partition planar representations of G into
a finite number of equivalence classes. Each equivalence class is referred to as a planar
embedding of G, and shortly, we will explain the equivalence relation between two planar
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Figure 2.1: Two planar representations of one graph, which do not realize the same planar
embedding.

representations realizing the same planar embedding.
First, for each v ∈ VG, we define Iv to be the set of all edges of G incident to v.

Definition 2.3. Let D and D′ be two planar representations of a graph G = (VG, EG). D
and D′ realize the same planar embedding if for all v ∈ VG with Iv = {e1, e2, . . . , em}, the
same clockwise ordering of appearance in R2 applies to both sets {D(e1), D(e2), . . . , D(em)}
and {D′(e1), D′(e2), . . . , D′(em)} [3].

Figure 2.1 illustrates planar representations of two different embedding classes for a
graph.

2.2 Visibility Representation

Definition 2.4. Let H = (VH , EH) be a planar graph and ΓH : VH ∪ EH → 2R2 be a
function, mapping vertices and edges of H to non-overlapping line segments in the plane.
ΓH is a visibility representation of H if:

• For each v ∈ VH , ΓH(v) is a horizontal line segment.

• For each e ∈ EH , ΓH(e) is a vertical line segment.

• If ΓH((u, v)) ∩ ΓH(w) 6= ∅, then w = u or w = v.

A visibility representation of a graph provides an ordering for its vertices and edges,
which is often used in planar graph drawing algorithms. In Figure 2.2, a graph and a
visibility representation of it are depicted.
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Figure 2.2: Pictures a and b depict a planar graph G and a visibility representation of G,
respectively.

v1 v2

v3

v4 v5

v6

Γ(v1)

Γ(v2)
Γ(v3)

Γ(v5)Γ(v4)

Γ(v6)

a) b)

2.3 2D Grid Graphs

A grid graph is a planar graph with specific structural attributes. In order to define grid
graphs, we need to present the operation, used for generating them. The Cartesian graph
product of two graphs H1 = (V1, E1) and H2 = (V2, E2), denoted by H1 �H2, is the graph
G = (VG, EG) with VG = {(u, v) : u ∈ V1, v ∈ V2}. For each pair (x1, y1), (x2, y2) ∈ VG,
((x1, y1), (x2, y2)) ∈ EG if and only if (x1 = x2 AND (y1, y2) ∈ E2) OR ((x1, x2) ∈ E1 AND
y1 = y2) [6].

Definition 2.5. A grid graph, or simply a grid, is the Cartesian graph product of two path
graphs. The grid graph Gm,n = Pm � Pn is called an m× n grid, and has mn vertices and
(m− 1)n+ (n− 1)m edges.

An m × n grid has a unique planar representation with m horizontal (rows) and n

vertical (columns) simple straight line segments, orthogonal to each other. The planar
representation is called a square grid, if it tiles a rectangular area of the plane with identical
squares [62].
Figure 2.3 shows two path graphs of sizesm and n and the grid, resulting from the Cartesian
graph product of those paths.

2.4 A* Algorithm

Before presenting the A* algorithm, it is easier to remind the reader of the Dijkstra algorithm
for finding a shortest path from a vertex (source) to another vertex (destination) of a graph.
The algorithm starts by selecting the source as the current vertex, setting its distance upper
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Figure 2.3: Grid graph Gm,n is the Cartesian graph product of path graphs Pm and Pn
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bound to itself to zero and its distance upper bound to other vertices to infinity. At each
iteration, the distance upper bound from the source to each unvisited neighbour of the
current node is updated, if its path to the source, going through the current vertex, is
shorter than its currently known path. The current vertex is then marked as visited, and
unless the current vertex is also the destination, the next unvisited vertex, with the smallest
distance upper bound to the source, is selected as the current vertex, and the next iteration
begins (the graph is assumed to be connected).
A* extends the Dijkstra algorithm by adding a new component to it, which helps explore
the more "promising" branches of the search tree earlier than the rest. The prioritization is
carried out using a heuristic h, which estimates the distance between each vertex and the
destination. At each iteration of the A* algorithm, similar to the Dijkstra algorithm, one
vertex must be chosen to be the current vertex of the next iteration. The unvisited vertex
v minimizing g(v) + h(v) will be selected, where g(v) indicates the distance upper bound
between the source and v.
The asymptotic time complexity of A* is exponential in the length l of the shortest path,
in the worst case. The average number of possible choices at each node of a decision tree is
called the branching factor (b) of that tree. The worst-case time complexity of A* is O(bl),
which corresponds to a scenario in which, all possible choices are explored by the algorithm,
in a way that the last possible choice leads to finding the shortest path between the two
points. The heuristic is supposed to prune as many of those possible branches as possible.
If the branching factor is finite, and edge costs are positive, A* is complete. Furthermore, if
the heuristic does not overestimate the distances of nodes to the destination (is admissible),
A* will always find the optimal path [56].
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2.5 The D-Wave Algorithm for Minor-Embedding Problem

Cai et. al. [12] introduced a heuristic minor-embedding algorithm, designed for instances
in which the target graph is a Chimera graph. This heuristic will be referred to as the
D-Wave algorithm, hereinafter. Given graphs G and H as input, it employs a heuristic
based on pathfinding algorithms to try minor-embedding H in G. One way of looking at
minor-embedding is in terms of vertex-models. Given the input graph H = (VH , EH) and
the target graph G = (VG, EG), for each vertex x ∈ VH , φ(x) ⊂ VG denotes the vertex-model
of x. The set of vertex-models of VH in VG is defined as follows:

Definition 2.6. Vertex-models of VH are disjoint subsets of VG, which satisfy the following
conditions:

• For each x ∈ VH , there must exist at least one connected subtree of G, containing
exactly φ(x).

• For each edge (x, y) ∈ EH , there must exist an edge (u, v) ∈ EG, such that u ∈ φ(x)
and v ∈ φ(y).

There is a minor-embedding of H in G, if and only if there exists a set of vertex-models
of VH in VG [12].
The algorithm finds vertex-models iteratively. Finding a minor-embedding of H in G is the
first priority of the heuristic, however it is desirable if each vertex-model is as small as pos-
sible, so that more vertices are left in the target graph for embedding the remaining vertices
of H. The algorithm runs in two phases. In the first phase, VH is randomly ordered and
iterated over. For each v ∈ VH , if no neighbours of v have been embedded yet, a random
vertex in G is assigned to be φ(v). Otherwise, the vertex in G, "closest" to the vertex-models
of all embedded neighbours of v, is selected to be the root rv of φ(v). The root is found
using pathfinding algorithms, and the vertices in the shortest paths are also added to either
φ(v) or the neighbouring vertex-models. The random ordering of vertices and random as-
signment of vertex-models to vertices without embedded neighbours determine the chance
of finding vertex-models for all v ∈ VH , in a way that the set of vertex-models constitute
a minor-embedding of H in G. In particular, two or more vertex-models are infeasible and
cannot be in the set of vertex-models if they are not disjoint. In the first phase, infeasible
vertex-models are allowed, but penalized by added costs.
In the second phase, the algorithm iterates over the vertices multiple times. At each iter-
ation, the vertex-model is cleared, and the vertex is embedded again in hopes of reducing
the number of non-disjoint vertex-models and improving the quality of the solution. In this
phase, regardless of the order of vertices, neighbours of each vertex are already embedded.
Therefore, at every iteration, vertices which had been embedded randomly get a chance
to be assigned to more "relevant" vertex-models, and the algorithm tries to decrease the
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number of infeasible vertex-models.
Following are a few points crucial to understanding each phase of the algorithm:

Phase One - For each x ∈ VH , the root rx of φ(x) is found by minimizing a function
fdist. This function accepts a vertex vg ∈ VG and the set of all embedded vertex-models,
adjacent to x, as inputs and represents a notion of distance between vg and all the given
vertex-models. Let Nx be the set of vertex-models passed as input to fdist. The vertex in
the target graph, minimizing fdist, will be the rx. fdist is defined as follows:

fdist(vg, Nx) = max
vm∈Nx

dist(vg, vm)

where dist(u,A) is the shortest path from u ∈ VG to any vertex in A ⊂ VG.
One of the requirements of all pathfinding algorithms is a function to calculate the cost of
each edge of the search graph, or a matrix of predefined costs for all edges. The edge costs
for the minor-embedding problem are expected to help find the shortest path between the
source and the destination and also heavily penalize crossings, which occur when two or
more vertex-models have a non-empty intersection. Therefore, for each v ∈ VG, a vertex-
weight W (v) = Dnv is defined, where D is the diameter of the target graph, and nv is the
number of vertex-models containing v. Now, the edge cost for each (u, v) ∈ EG is equal to
W (v), which might be different from W (u) and cost of (v, u) ∈ EG.
The shortest path between rx and each vertex-model vm ∈ Nx may contain vertices of
G, other than rx or vertices in vm. For each vm ∈ Nx, a set containing these vertices is
maintained, and the algorithm adds each vertex vg in the union of these sets

• to vm ∈ Nx, if vg appears only in the shortest path, between rx and vm, or

• to φ(x), otherwise.

A naive way of finding the vertex v ∈ VG minimizing fdist(v,Nx) is to compute this value
for all vertices in G, and find the rx. Dijkstra’s algorithm and A* are among the algorithms
which can be utilized for this purpose. The authors of [12] also suggested an alternative to
this approach, which expands shortest path trees (using Dijkstra or A* algorithms) from
each vm ∈ Nx, and for each vertex in VG, keeps records of being visited by each of the
shortest path trees. Once a vertex is visited by all trees, the expansion of trees stops, and
that vertex is selected as rx. The visited paths, leading back from rx to each vm ∈ Nx, will
be the shortest paths from rx to the corresponding vertex-model. If A* is used to expand
the shortest path trees, this method is referred to as multisource A* [12].

Phase Two - This phase of the algorithm consists of an uncertain number of rounds. In
each round, all vertices of the input graph are embedded again in the same random order
as the first phase. It is safe to assume that the input graph does not contain any isolated
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vertices, because in that case, we can simply separate those vertices from the graph, minor-
embed the separated subgraph, and finally find random vertices of G with vertex-weights
of 1 to represent the isolated vertices of the input graph. Based on that assumption, in
all iterations of all rounds in the second phase, Nx 6= ∅, and so vertices which have been
embedded randomly earlier will be assigned vertex-models in relevance to the vertex-models
of all their neighbours. Therefore, not only the number of crossings are expected to decrease,
but also the sum of cardinalities of all vertex-models will be reduced to some point, as a
result of multiple rounds of re-embedding all vertices.
At the end of each round, the algorithm determines if any improvements have been made
to the solution by measuring the following parameters of the embedding and comparing
them with those of the best known solution. Checking parameters for reduction in values is
conducted in the following order, and as soon as one measurement indicates improvement,
the remaining comparisons are aborted:

1. The number of vertices in VG that appear in two or more vertex-models (number of
crossings)

2. The sum of the cardinalities of all vertex-models (also referred to as the minor-
embedding size or the solution size)

3. The size of the vertex-model with the maximum cardinality

The algorithm will return a minor-embedding if the best found solution has zero crossings,
and will return failure if a consecutive number of rounds end without any improvements.
As was stated earlier, despite the fact that the heuristic is not limited to a fixed target graph,
such as a Chimera graph, the effectiveness of the heuristic depends on several attributes
of both graphs. As the target graph gets more dense, the costs of pathfinding algorithms
grow [56], and the sparseness of the Chimera graph makes it suitable for this heuristic. Fur-
thermore, since the Chimera can be looked at as a number of connected isomorphic blocks
of K4,4 graphs, the random choices on the order and representation of the vertices of H
have relatively small chances at affecting the success probability of the heuristic negatively.
These attributes of a Chimera graph, as the target graph, boost the effectiveness of the
algorithm, however the heuristic is reported to be successful only when the input graph is
much smaller than the target graph [12].
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Chapter 3

Minor-Embedding Based on a
Planar Embedding

In this chapter, a new minor-embedding algorithm is introduced, which utilizes information
extracted from a planar representation of the input graph, contingent on specific condi-
tions being satisfied by the planar representation. A linear-time algorithm for planarity
testing of graphs inspired us to define a restricted planar representation of a planar graph
H, which will be used for minor-embedding it in a grid graph G. Contingent on being
provided with a qualified planar representation, the algorithm can minor-embed all planar
graphs in a bounded grid graph. A new technique to manage construction of vertex-models,
called dynamic arm assignment, is introduced to reduce the solution size. For each minor-
embedding, the area of the smallest axis-aligned rectangle in the target grid confining all
the vertex-models is referred to as the embedding area of the solution. Using the dynamic
arm assignment technique, the algorithm achieves an arguably desirable upper bound on
the embedding area, which does not depend on the number of edges of the input graph.

3.1 Planar Embedding Algorithm

Basic definitions of planarity and planar embedding have been provided earlier. Boyer and
Myrvold introduced a linear-time planar embedding method [10], which will be referred to
as the BM algorithm henceforth. A planar embedding can be viewed as a set of specified
clockwise orders for edges incident to each vertex. Given a simple, undirected graph G as
input, the BM algorithm’s output is either a planar embedding (the edge ordering for each
vertex), or an isolated Kuratowski subgraph of G. What made this algorithm intriguing for
us was the process of generating a planar embedding.
The BM algorithm iterates over the vertices of the input graph in a reverse DFS visit order.
We assume the reader is familiar with the depth first search (DFS) algorithm, however
a short reminder of the concept is presented here. The depth first search algorithm is a
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linear-time method of traversing a graph, in which the first vertex to visit is called the
root and is added to a stack S. Vertices in S are popped out and visited, one by one, and
before marking each vertex as visited, its unvisited neighbours are pushed onto to S. The
algorithm terminates, when all vertices have been visited.
The BM algorithm creates a data structure for the embedding, which contains a set of
biconnected components of the embedding and is constructed and maintained, as the edges
of the input graph are added to it. Addition of edges to the embedding occurs, while
iterating over the vertices of the input graph. During each iteration, a number of edges
might be added to the embedding, and the embedded components are then manipulated
in a way that either the planarity is preserved, or a forbidden subgraph is isolated. This
goal is achieved by recognizing the externally active vertices, and keeping them on the
outer face of the embedding. As the algorithm iterates over vertices, planar biconnected
components are created and merged together, while realizing edges with endpoints in two
different components. A component might be flipped to prevent an edge from altering the
outer face while it includes externally active vertices. As pointed out in Chapter 1, the
technique employed in the BM algorithm is referred to as the edge addition technique. For
a planar input graph, the final output of the BM algorithm is the specific order of edges,
which are generated through iterating over vertices in the reverse DFS order and finding
specific vertical and horizontal orderings for embedding them in the plane, while connecting
neighbouring vertices with non-crossing simple arcs.
Inspired by the edge addition technique, we define a restricted planar graph representation
to be utilized by the minor-embedding algorithm. Such a planar representation may not
exist for all planar graphs. However, any planar graph H = (VH , EH) which has a planar
representation D, satisfying the following conditions, can be minor-embedded in a bounded
grid graph, using the minor-embedding algorithm to be introduced.

• The X coordinate of D(v) in the plane is the same for all v ∈ VH , and vertices are
represented on a virtual vertical line ` in the plane.

• For each edge (u, v) ∈ EH ,

– if D(u) appears exactly before or after D(v), in the ordering of vertices on `,
D(u, v) is a vertical line segment, connecting the two;

– otherwise, D(u, v) is a simple arc, located entirely either on the left or the right
side of `.

A planar representation D of graph H that satisfies the above conditions is referred to as
a columnar planar representation of H, which also realizes a 2-page book embedding of H.
In that context, ` is called the spine of the book embedding, which is shared by the two
half planes (pages) on its sides, and the representation of each edge must be entirely in
one page. A planar graph H = (VH , EH) has a 2-page book embedding if and only if it
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Figure 3.1: Figures a and b depict a graph and a columnar planar representation of it,
satisfying the required conditions for being an input for the minor-embedding algorithm.

is a sub-Hamiltonian graph, which means it is either Hamiltonian or can be turned into a
Hamiltonian graph by adding edges to EH , without making H non-planar[41].
Figure 3.1 illustrates a planar representation of a graph that satisfies the above con-

ditions. A columnar planar representation of the input graph is the foundation of the
minor-embedding algorithm presented in this chapter. Given a columnar planar represen-
tation of a planar graph H with n vertices, the algorithm finds a minor-embedding of H in
a grid graph G with maximum area of n× (n−1). In fact, it will be explained how the grid
will have n rows, and it usually will have fewer than n− 1 columns.
The algorithm utilizes the vertical order of vertices in the planar representation, along with
the orientation of each edge, indicating the side (right or left) of the stack of vertices on
which the simple arc representing the edge is located. Orientation is not defined for the
edges which are represented by vertical line segments.
Verifying the existence and generating a columnar planar representation of H may not be
trivial. In general, the problem of determining if a given planar graph H has a 2-page
book embedding is NP-complete[41]. There might be several approaches for obtaining the
required information to generate a columnar planar representations of the input graph, de-
pending on the case. For instance, suppose the vertical order of vertices of the required
planar representation D of the input graph H is known, and D realizes the output of run-
ning the BM algorithm with H as the input. If a vertex v ∈ VH is adjacent to the two
vertices, appearing before and after it in the vertical order of vertices in D, it is possible to
compute the orientation of edges, incident to v, which connect it to its other neighbours.
That is because D realizes the output of the BM algorithm, which provides a clockwise
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ordering of edges incident to v. We know two edges, incident to v, will be represented by
two vertical line segments, connecting D(v) to the representations of its neighbours above
and below it. Applying the known clockwise ordering to the edges, incident to v, will de-
termine the orientation of edges which will be represented by simple arcs. If for each edge
(u, v) ∈ EH , either of u or v are adjacent to the two vertices, represented above and below
its representation, the orientation of e = (u, v) can be determined. In this instance, if the
adjacency matrix of H makes it possible to determine the orientations of all edges in EH ,
D satisfies the required conditions for being used in the minor-embedding algorithm.
In the next section, a method for managing vertex-models will be introduced, which can be
employed in minor-embedding algorithms based on finding shortest paths between vertex-
models. Afterwards, the minor-embedding algorithm which uses this technique and a colum-
nar planar representation of the input graph will be explained in detail.

3.2 Constructing Vertex-Models Using Dynamic Arm As-
signment

This method can be used in any arbitrary minor-embedding algorithm that embeds the
roots of vertex-models (root-vertices) in the target graph and then adds the vertices, form-
ing the shortest paths between root-vertices, to appropriate vertex-models. The sum of
sizes of vertex-models is influenced by the strategy of adding vertices of the target graph
to the vertex-models. Consider the example illustrated in Figure 3.2, in which the dif-
ference between the various strategies and their impact can be observed. In the D-Wave
algorithm, vertices are added permanently to vertex-models right after finding the shortest
paths between a root-vertex and its adjacent root-vertices. It will be demonstrated that
in many cases a finalized addition can be delayed, and deferring the definite addition of a
vertex vg ∈ VG to a vertex-model can contribute to better solutions. In the dynamic arm
assignment technique, we make partial decisions for each vertex vg ∈ VG first, limiting the
possibilities for vg only as much as it is required, and then, at the final stage, the vertex is
added to a vertex-model.
Before describing this technique, we should introduce some terminology. For a vertex
vg ∈ VG, we can make vg unavailable or inaccessible by assigning infinite weights to all
or some of the edges incident to vg. In addition, we can make an edge unavailable and
prohibit it from appearing in a shortest path by simply setting its weight to infinity. In
order to make vg, available again, we need to reverse the changes made to make the vertex
unavailable in the first place. Depending on the context, some or all of the edges incident
to vg must be modified.
The dynamic arm assignment technique is implemented using two different data structures.
The first of these data structures consists of, for each vertex v ∈ VH , a set Av of vertices of
G, called the available points or the arm of v. Av is initialized to contain only the root rv of
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Figure 3.2: Blue(circle) vertex is adjacent to other vertices, and a minor-embedding algo-
rithm embeds the edges adjacent to the red (square), green (triangle), and orange (pen-
tagon) vertices, in that order. Figures depict the results of two possible strategies for adding
vertices to the vertex-models.

φ(v) and then extended over time to be a potential vertex-model of v. Each vertex vg ∈ Av
can be contained only in shortest paths between rv and other root-vertices, unless vg also
belongs to sets of available points of vertices other than v. The arms of vertices of H are
used to restrict the set of edges of G that must be available before finding a shortest path
between any two root-vertices. After a shortest path is found between two root-vertices,
some modifications might be made to the available points of a subset of vertices of H.
Initially, all vertices in all arms are unavailable, which means all edges incident to those
vertices have infinite weights. Given v, u ∈ VH , before searching for a shortest path between
ru and rv, roots of φ(u) and φ(v), Au and Av are made available, without making vertices
of G in arms of other vertices of H available. Before finding the shortest path between
ru and rv, only the proper set of edges incident to each vertex in Au and Av can be made
available. Given ru and rv are the source and the destination of the shortest path to be
found, the set of edges of G incident to a vertex g in Av or Au, and which are not incident
to vertices in arms of vertices other than u and v, are referred to as the proper set of edges
incident to g. Figure 3.3 depicts an example of how making the arm of one vertex available
can accidentally make an unwanted vertex available.
The second data structure consists of, for each vertex vg ∈ VG, a set of vertices of H that
have vg in their available points and is referred to as the point-permit of vg. Point-permits
of vertices of G are crucial to maintaining arms of vertices of H because they are used
to determine the permitted modifications to available points of vertices. The point-permit
of each vertex can only have three states, and each of these states provide the following
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Figure 3.3: Vertices illustrated by circles and a square, belong to available points of two
different vertices. If all edges incident to the circles are made available in the grid, an
unwanted path can contain the vertex marked by the square.

information. If the point-permit, Pvg , of a vertex vg is empty, vg is permitted to be a part
of a shortest path between any two root-vertices. That is because no other paths have
contained vg so far. On the other hand, if the point-permit of a vertex vg contains only the
index of one vertex v, it must be that vg ∈ φ(v). The other possible state for a point-permit
corresponds to making partial decisions. In this state the point-permit contains two vertices
of H and vg is not immediately added to the vertex-model of either one of them.
The status of the point-permits and arms of vertices will change by a certain set of transi-
tions. After embedding only the roots of vertex-models, point-permits of all vertices of G
are empty, except for the point-permit of each root-vertex rv which contains only the index
of v. Every time a new shortest path is chosen between two root-vertices ru and rv, the
point-permit of each g ∈ VG in the chosen path will be updated as follows:

• if Pg = ∅, then both u and v are added to Pg. Also, g is added to both Au and Av.

• if Pg = {u} or Pg = {v} no changes are made to either Pg or arms of the vertices. At
this point, it is certain that g belongs to the vertex-model of the only vertex in Pg.

• if Pg has two elements, including only one of u and v and another vertex w ∈ VH , the
decision about the vertex-model which will contain g must get finalized. This is done
by removing w from Pg and also removing g from the available points of w.

Figure 3.4 demonstrates a possible scenario under which all these transitions take place,
and how this method can lead to smaller sizes for vertex-models, compared to methods
which make the assignments (addition of vertices of G to vertex-models) right after finding
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Figure 3.4: Populating vertex-models 1-4, using the dynamic arm assignment technique.
Edges (v1, v2), (v1, v3), and (v2, v4) are embedded, respectively. Each number indicates the
vertices in the point-permit of the grid vertex, next to it.
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each shortest path. Suppose dynamic arm assignment is to be used for minor-embedding
a planar graph H in a grid graph G. The scenario involves embedding some of the edges,
incident to 4 vertices of H, which are referred to as vertices 1 to 4.
In Figure 3.4, picture a illustrates embedding of roots of vertex-models of vertices 1 to 4.
The numbers close to each vertex g of the grid indicate the indices of vertices in the point-
permit of g. No numbers are presented for vertices with empty point-permits. In picture

23



b, the edge between vertices 1 and 2 is embedded, and all grid vertices in the shortest path
between 1 and 2 have been labelled by both 1 and 2 (vertices 1 and 2 are added to the
point-permits of those grid vertices). Vertex 3 is only adjacent to 1, and vertex 4 is only
adjacent to 2. The two edges connecting vertices 1 and 3 to their neighbours are embedded
in G in two different iterations, using the available points of the two end points of each edge,
at each iteration. The resulting paths and the updated point-permits can be observed in
picture c. There is still one vertex in the grid with both vertices 1 and 2 in its point-permit.
As illustrated in picture d, it can be employed later for connecting the root-vertex of either
1 or 2 to one of their neighbouring root-vertices.
A reasonable probability exists for any algorithm, using dynamic arm assignment method,
to embed all edges of the input graph and end up with a number of labelled, but not
finalized, vertices in the target graph. These vertices with point-permits of size 2 can be
assigned to any of the two possible vertex-models at the end, as long as the feasibility of
the solution is preserved. This fact introduces an opportunity to apply application-specific
preferences and strategies, such as minimizing the maximum size among all vertex-models
in the D-Wave Two quantum computer application. In case no preferences are enforced by
the application, the fates of dually labelled vertices can be determined arbitrarily, as long
as the solution remains feasible.

3.3 Minor-Embedding Algorithm

Before presenting the minor-embedding algorithm, one point needs to be explained about
the target graph, an m×n grid graph, where m,n ∈ Z. Let Gm,n = (VG, EG) be the target
graph. One method of referring to a vertex vg ∈ VG is to provide the coordinates of D′(vg),
where D′ is the planar representation of G, which is a square grid with unit length edges in
the Cartesian coordinates system, and its leftmost column and lowest row contain the origin
of the quarter-plane. In this context, a column (row) of G refers to the set of vertices of G
that are being represented on the respective column (row) of D′(vg). Since the algorithm is
going to generate a minor-embedding based on a planar representation, referring to vertices
of the target graph will be much easier using this convention.
The algorithm starts with labelling vertices of H in the sequence S = {v1, v2, . . . vn}, in the
ascending vertical order of their representations in the provided columnar planar represen-
tation D. Root-vertices are embedded on adjacent vertices of a single column of G based
on the order in S. For each v ∈ VH , the root of φ(v) is denoted by rv. Av is initialized to
contain only rv, and the point-permit of rv, Prv is set to {v}. The set of edges between root-
vertices in EG are called the spine of the minor-embedding, and if two vertices vi, vi+1 ∈ S
are adjacent to each other, the edge between them will be represented by an edge on the
spine, which connects rvi to rvi+1 . Then, given the orientation of edges, the algorithm em-
beds the remaining edges of H around the spine. Further details of these operations will be
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presented shortly.
The Y coordinate of each root-vertex can be directly derived from its position in S. For
each vertex vi ∈ S, we embed ri on a grid vertex with coordinates (x, i). The value of
x is the same for all vertices, and we will discuss how it is determined, shortly. When
finding shortest paths to represent edges, it is necessary to enforce the edge orientations to
prevent the paths from trapping other vertices. A vertex is said to be trapped, when due
to the arrangement of other found paths in the target graph, it is not possible to find a
path between that vertex and at least one of its neighbours, through the available vertices
in the target graph. The algorithm iterates over vertices in S in the ascending order. For
each vertex vi ∈ S, the set of low neighbours of vi, denoted NBi, is defined as the set of all
vertices vj ∈ S, where j < i and (vi, vj) ∈ EH . In iteration i, for 1 ≤ i ≤ |S|, a shortest
path is found between ri and the root-vertex of each vertex in NBi, using the dynamic arm
assignment technique and the A* algorithm. The edges are embedded on the predetermined
sides of the spine in the following order. NBi is sorted in the reverse order of appearance of
vertices in S, and based on that, the algorithm embeds incident edges to vi. This way, ri is
connected to the closer neighbouring root-vertices first. After embedding each edge, arms
of all vertices are made unavailable. It will shortly be discussed why embedding edges in
this order will not trap other vertices and results in finding a minor-embedding of H in G.
Each m × n grid has n columns of m − 1 vertical edges, and m rows of n − 1 horizontal
edges. If there exists a column (row) for which non of its vertical (horizontal) edges have
been a part of at least one of the shortest paths found between two root-vertices, that
column (row) can be eliminated from the grid without affecting the feasibility of the final
solution. On the other hand, a used column is one containing an edge of a shortest path,
and hence, cannot be removed. Removing a column that crosses the point (i, 0) of the
plane is equivalent to replacing each vertex v ∈ VG, with X coordinate xv > i in any of the
vertex-models, by a vertex with coordinates (xv − 1, yv) and removing vertices with xv = i

from all vertex-models. A similar statement holds for removing a row of the grid. Each
removed row or column decreases the consumed area of the embedding, and also reduces
the total size of vertex-models by the number of shortest paths through it.
Using the dynamic arm assignment technique, the algorithm adds at most one used column
on each side of the spine at each iteration i. This can be shown, using the ordering of S
and the optimality of A*. First we need to show that the A* algorithm used for finding
shortest paths in the minor-embedding algorithm is optimal. We use Manhattan distances
of vertices of G as the A* heuristic. The definition of the Manhattan distance of two vertices
P1, P2 ∈ VG, with respective coordinates of (x1, y1) and (x2, y2) follows:

dM (P1, P2) = |x2 − x1|+ |y2 − y1|
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This value is exactly equal to the cost of the shortest path between P1 and P2, if all edges
in EG are available and have a unit weight. Further, considering the search graph is a grid
graph, the Manhattan distance is an admissible heuristic which guarantees A* optimality.
At each iteration i, due to the order of iterations over VH and optimality of A*, all grid
vertices on the same row as ri have empty point-permits, except for ri itself. Moreover,
incident edges to each vertex are embedded exactly in the order in which their corresponding
simple arcs appear in the columnar planar representation. Since no two simple arcs cross
each other, anytime the algorithm attempts to find a shortest path between ri and the
root-vertex of an element in NBi, the grid vertex adjacent to the root of that neighbour
either has an empty point-permit or is in the available points of the neighbour. Each path
of length more than one starts and ends with at least one horizontal edge in the grid with a
sequence of vertical and horizontal edges in between. Suppose a shortest path is to be found
between ri and rj , where j < i, on a specific side of the spine. Provided by the vertical
ordering of vertices and the clockwise ordering of arcs in the columnar planar representation
of the input graph, for any j < k < i, no paths can exits between rk and another root rl,
such that l > i, l < j, on the same side of the spine. rk is referred to as a covered vertex on
that specific side of the spine. All paths on each side of the spine, originating from ri, are
subgraphs of a sub-tree of G for which ri is the tree root, and root-vertices corresponding
to vertices in NBi are its leaves. All such subgraphs have an even number of horizontal
edges. In the ith iteration, the only possible destinations for a shortest path, on each side
of the spine, are the non-covered vertices on that side of the spine. Non-covered vertices
either do not belong to trees on the same side, corresponding to paths originating from
other root-vertices, or are the highest or the lowest grid vertices of such trees, in G. The
minor-embedding has the maximum number of used columns if the generated tree, at each
iteration, covers only the vertices in the most recently embedded tree on the same side of
the spine by finding a path around that tree, from one vertex above its highest point to
one vertex below the lowest point of the covered tree. Each such tree needs to use only 1
extra column of the grid, as a result of applying the dynamic arm assignment technique. If
the formations of trees on both sides of the spine follow this scenario, the embedding will
require 2(n/2) − 1 or n − 1 columns. Figure 3.5 demonstrates examples of the occurrence
of the extreme cases for graphs with 6(even) and 7(odd) vertices. It should be noted that
there exist other configurations of paths that result in the same embedding area.
Now, it is clear how the X coordinate of the spine of the minor-embedding is determined.
At the beginning, n columns are made available to the embedding, and the spine is embedded
on the dn2 e

th column. In the most extreme case, one column, and usually more columns
remain unused which are simply removed from the grid.
The only edge of H for which knowing the orientation is not necessary, is the one connecting
the highest vertex on the spine to the lowest one, if it exists. That edge is the last edge to
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Algorithm 1 Algorithm A for minor-embedding a planar graph based on a columnar planar
representation of it
Input: Planar input graph H = (VH , EH) and a columnar planar representation of H
Output: Minor-embedding ofH in a grid graph G with maximum dimensions of n×(n−1),

where n = |VH |
1: for i = 0 to length(S)− 1 do
2: Set rvi = vgi , where vgi ∈ VG has the coordinates (d |VH |

2 e, i).
3: Set Avi = {rvi} and make rvi unavailable.
4: Set point-permit of rvi to contain only vi.
5: end for
6: for all v ∈ VH , in the ascending order of S do
7: for all u ∈ NBv, in the descending order of Y coordinates of their root-vertices do
8: Make vertices in Av and Au available, by setting the weights of the proper set of

edges incident to each vertex to the unit weight.
9: Use A* with Manhattan distance heuristic to find the shortest path between rv and

ru, considering the orientation of (u, v) ∈ EH .
10: Update the point-permit of all vertices in the chosen path, and also arms of all

affected vertices in VH , using the defined transitions (Dynamic Arm Assignment).
11: Re-set the weights of edges incident to vertices in Av and Au to ∞.
12: end for
13: end for

Figure 3.5: Minor-embedding two graphs with n = 6 and n = 7 vertices in a grid graph.
Each embedding requires n rows, and at most n− 1 columns

be embedded and cannot trap any vertices. Algorithm 1 summarizes the minor-embedding
algorithm, which will be referred to as Algorithm A henceforth.
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3.4 Experiments and Analysis

Algorithm A can successfully minor-embed a planar graph H with n vetices in an n×(n−1)
grid graph G, being provided with a columnar planar representation of H. The time com-
plexity of the algorithm can be analyzed, assuming that the columnar planar representation
of H is provided in the input. The running time of the algorithm is bottlenecked by running
A* for each edge e ∈ EH . G has n2 vertices, so running A* requires a priority queue with
the distance estimates for at most n2 vertices. Hence, removing the vertex with the mini-
mum distance estimate from the priority queue, or updating the distance estimate of each
vertex in the priority queue is done in O(logn2) = O(logn) time. Each single A* search
requires O(n2) stages, because of the number of vertices in G. At each stage, the vertex
with the minimum distance estimate is removed from the priority queue, and the distance
estimates of its (at most) 3 unvisited neighbours are updated with a cost of O(logn) time.
Therefore, the time complexity of each A* search in Algorithm A is O(n2 logn). Moreover,
we know that H is a planar graph, and if n ≥ 3, m ≤ 3n − 6, where m = |EH |. Based on
that the run time of all A* searches in Algorithm A is O(n3 logn), for n ≥ 3.
In practice, the algorithm’s performance is expected to be much better than would be im-
plied by the proven upper bound, for the following reason. As discussed earlier in Section
2.4, the worst-case time complexity of A* is O(bl), where b is the branching factor of the
search problem and l is the length of the shortest path between source and destination.
Furthermore, we know that a heuristic is optimal, if it indicates the exact distance between
a vertex and the destination, and in that case, the effective branching factor is equal to
1 [56]. If the search space is a grid graph, Manhattan distance is an optimal heuristic, if
there are no unavailable edges in the graph, and even otherwise, it is still fairly close to
an optimal heuristic for the application of A* in Algorithm A. Based on that, in practice,
Algorithm A is expected to run in close-to-linear time in |EH |.
The main limitation of Algorithm A is its dependence on the columnar planar representa-
tion of the input graph. The two key pieces of information to be extracted from the planar
representation are the ordered sequence of vertices, and the orientations of edges located
on the sides of vertices. Figure 3.6 depicts the result of minor-embedding the grid graph
G3,3, as an example of a relatively small graph for which we can generate a columnar planar
representation and minor-embed it in a grid graph. For this purpose, an implementation of
the BM algorithm [8] was used to output a planar embedding of the G3,3 alongside the DFS
visit order, employed by the BM algorithm, which was used to hand generate a columnar
planar representation of G3,3. The vertical ordering of vertices and the edge orientations of
the planar representation were passed to an implementation of Algorithm A, leading to the
illustrated minor-embedding in Figure 3.6.
A strategy is required to make Algorithm A applicable to all planar graphs. We present

two approaches to this problem, shortly. A sketch of the first approach is provided for
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Figure 3.6: Minor-embedding of G3,3,with 9 vertices, in a G9,4. Shortest paths found by
Algorithm A are depicted in the figure.

further investigation in future, and the second approach is pursued in the next chapter.
The first approach uses the BM algorithm to generate a columnar planar representations
for subgraphs of the input graph, which can be minor-embedded separately in the target
graph. After that, finding paths between certain vertices, in different embedded subgraphs
of the input, can generate a solution for the main problem.
Recalling the outlined employed technique by the BM algorithm, biconnected components
of the planar embedding are merged together, when an edge is to be added to the embed-
ding which connects the two components. For each two biconnected components which are
supposed to be merged together, a vertex is represented in both components, as the root of
one and an element on the outer face of the other one. Merging the two components occurs
by possibly flipping the one which has the vertex representation as its root, merging the
two representations of the same vertex, and embedding the connecting edge between the
two components. The root of each component has a flag, which indicates if the component
was flipped in the merge process. The resulting component is a biconnected component,
as well, with all its externally active vertices on its outer face. If Algorithm A is used to
minor-embed two components, which are required to be merged together, instead of merg-
ing root-vertices which correspond to the representations of vertex v ∈ VH , we can find a
path between them in the target graph and add the vertices in the path to φ(v). Moreover,
both components keep their externally active vertices on their outer faces, which makes it
possible to find a path between available points of the two end points of the edge, connecting
the two components.
The key to making this strategy work is to generate the described set of planar represen-
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tations of subgraphs of the input graph. Trivially it is preferred to keep the number of
separated planar representations as small as possible. An algorithm for generating the pla-
nar representation(s), based on the BM algorithm, will probably have a certain set of steps
per each step of the BM algorithm. The vertical order of each planar representation can be
determined, using the BM reverse DFS visit order, and the collection of flip flags of roots
of biconnected components is expected to determine the edge orientations of planar repre-
sentations. The important attribute of any such algorithm should be to avoid unnecessary
increase in number of planar representations. While iterating over vertices of the input
graph, each vertex should be represented in an existing planar representation, if the result
will remain a columnar planar representation of the subgraph. If doing so is not possible
(mainly caused by backtracks in the DFS leading to tree nodes with degrees greater than
2), adding a new planar representation to the set might be involved in the algorithm steps,
taken upon the corresponding merge step in the BM algorithm.
The second strategy involves an extension of the BM algorithm, introduced by Boyer to
calculate a visibility representation of the input graph, besides finding a planar embedding
for it [9]. In [9], vertices are assigned with labels above or between, compared to a subset
of their DFS ancestors when the BM algorithm is merging the biconnected components.
The vertices are post-processed by being traversed in pre-order DFS, and then using the
assigned labels, a finalized vertical order of vertices is generated. To compute the correct
arrangement of vertical lines of the visibility representation, the algorithm connects the
DFS tree root to its neighbours, and keeps track of the first edge connected to each vertex
as its generator edge. Since the BM algorithm generates the edge ordering for all vertices,
it can draw the vertical lines corresponding to edges in the correct order just with a 360
degree sweep around the generator edge of each vertex.
Applications of visibility representation in generating graph drawings is well studied in the
literature. The second approach is to use a specific visibility representation of the input
graph to minor-embed it in a bounded grid graph. A detailed presentation of a minor-
embedding algorithm based on this approach is presented in the following chapter.
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Chapter 4

Minor-Embedding Based on
Visibility Representation

In this chapter, we introduce an efficient algorithm for minor-embedding a graph H in a grid
graph, using a visibility representation of H. As stated earlier, a graph H has a visibility
representation in the R2 plane, if and only if H is planar. The following algorithm will
minor-embed any planar graph in a bounded grid graph.

4.1 Application of Visibility Representations to
Minor-Embedding Problem

Visibility representations are widely employed in graph drawing algorithms. In this section,
it is shown how a visibility representation of a graph can be used in minor-embedding it
in a grid graph. The orthogonal drawing algorithms usually start by computing a visibility
representation of the planar graph in linear time. Most of these algorithms are limited to
graphs of maximum degree 4. In a visibility representation, each vertical line segment has
two end points, which belong to two horizontal line segments. If ` is one of the two hori-
zontal line segments, the other one is either above or below ` in the plane. In a visibility
representation of a graph with maximum degree of 4, there exist only

(4
2
)

= 6 different
cases of connecting a horizontal line segment to (at most) 4 others, based on their relative
positions in the plane (counting symmetrical cases as one). Since most drawing algorithms
represent each vertex with exactly one point, six schemes of gateway assignment are de-
signed by embedding 4 edges incident to a vertex, based on the 6 possible positionings of
the representation of the vertex relative to the line segments, representing its 4 neighbours,
in the visibility representation [28].
The problem of minor-embedding a planar graph H in a grid graph G has a different defi-
nition than planar embedding H in G. In particular, to find a minor-embedding of H in G
a vertex-model needs to be found for each vertex, and a vertex-model can contain a subset
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of vertices of G, as opposed to only one vertex. This difference allows minor-embedding
planar graphs with maximum degrees of more than 4, in a grid graph and is the basis of
our minor-embedding algorithm to be introduced.
A visibility representation ΓH of H can be used to generate a minor-embedding of H in G.
If the lengths of all line segments of ΓH are made divisible by a real number ι, then ΓH can
overlap a square grid with edge lengths of ι, representing G, such that the end points of all
line segments of ΓH are exactly placed on points, representing vertices of G. It is easy to
map each horizontal (vertical) line segment of ΓH to the path in G, which is represented by
the sequence of horizontal (vertical) edges of the square grid, overlapping the line segment,
and also map that specific path in G to the line segment which is mapped to the path. For
a vertex v ∈ VH , vertices of G on the path which is mapped to the horizontal line segment
Γ(v) are added to φ(v). Given (u, v) ∈ EH , vertices of G on the path which is mapped to
the vertical line segment Γ(u, v) can be added to either φ(v) or φ(u). The set of generated
vertex-models satisfies all conditions to be a minor-embedding of H in G. In this chapter,
we will refer to this method of minor-embedding H in G, using ΓH , as the simple method.
Implemented in [8], the extension of the BM algorithm can generate a visibility represen-
tation ΓH of H and output it in the format of an ASCII art representation of ΓH . In the
generated visibility representation, vertices of the input graph are represented by ordered
horizontal line segments with unique Y coordinates in the Cartesian plane and specific
lengths. Edges of the input graph are represented by ordered vertical line segments with
unique X coordinates in the plane, terminating at the two horizontal line segments which
represent the end points of each edge. Furthermore, the distances between consecutive hor-
izontal (vertical) line segments of the visibility representation are set to a unit value [9, 8].
The generated ΓH , for a planar graph H = (VH , EH), can be drawn in a grid area of di-
mensions |VH | by |EH |. Figure 4.1 depicts the ASCII art of ΓH for graph H with |VH | = 14
and |EH | = 36.
Since each planar graph H has a visibility representation, and the BM algorithm extension
can be used to find a visibility representation ΓH of H as presented, the simple method for
minor-embedding H in the grid graph Gm,n, where m = |EH | and n = |VH | is complete.
However, we believe that almost always using the simple method will not lead to the optimal
solution in terms of the solution size, because of the following reason. In a visibility rep-
resentation, edges of H are represented by non-crossing vertical line segments, and each of
these segments contribute to disjoint sets of vertices of G being added to the vertex-models.
Several paths in G which represent vertical line segments of ΓH could be replaced with
paths which have shared subtrees, without affecting the feasibility of the minor-embedding.
Figure 4.1 illustrates several parallel vertical lines, originating from one horizontal line to
connect it to other horizontal lines. Mapping each of these parallel line segments to disjoint
sequences of vertices, which will be added to the vertex-models, is not necessary to generate
a minor-embedding.
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Figure 4.1: ASCII art of ΓH . |VH | = 14, |EH | = 36.
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In the next sections, we introduce the two phases of an algorithm to find and optimize
a minor-embedding of H in G, using a valid visibility representation of H. The minor-
embedding algorithm is called the VRM algorithm and runs in two phases. The goal of
the first phase, also referred to as the embedding phase, is to find a minor-embedding of
H in G. The presented method in Section 4.2 for achieving this goal will be referred to as
the advanced method, in the remaining of this chapter. In the second phase, known as the
optimization phase, the obtained embedding will be optimized to decrease the solution size
and the embedding area, while preserving the feasibility of the solution. The optimization
phase of the algorithm will be presented in Section 4.3.
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4.2 The Minor-Embedding Algorithm (First Phase)

The first step of the VRM algorithm is to generate the visibility representation ΓH , using the
extension of the BM algorithm [9]. The distances between each two lines in both sequences
of vertical and horizontal lines of ΓH , are set to 1 unit which is equal to the edge length of
a square grid representing the target graph. Having that, we use the coordinates of each
line segment to find the roots of vertex-models. For each vertex v ∈ VH , we denote by
rv the root of φ(v) and by Γ(v) the horizontal line segment of length `v representing v in
ΓH . The coordinates of rv in the target graph are denoted by (xv, yv). For all v, yv is
equal to the distance of Γ(v) from the x−axis of the plane, and xv is set to the floor of
the X coordinate of the point in the middle of Γ(v). The algorithm continues by setting
Av = {rv}, Prv = {v}, and making rv unavailable.
After finding the roots of vertex-models, the algorithm iterates over vertices in the ascending
vertical order of their root-vertices. For each vertex v, let the set of its neighbours with their
root-vertices below rv be denoted by NBv. Iterating over v involves embedding all edges
between v and vertices in NBv in the reverse vertical order of neighbours’ root-vertices.
Dynamic arm assignment is employed here as well to manage the sets of available points of
vertices, during the process of embedding each edge. A*, employing the Manhattan distance
heuristic, is used by the algorithm to find the shortest path between two root-vertices. In
the first phase of the VRM algorithm, a unit weight is assigned to all available edges of the
target graph. The proper sets of edges incident to vertices in the arms of a pair of vertices
of H are made available, before finding the shortest path between their root-vertices. After
finding each shortest path, the steps of the dynamic arm assignment technique are followed
by the algorithm. Before the process of embedding an edge is complete, all edges of the
target graph made available for finding the shortest path between the two root-vertices are
made unavailable again.

4.3 Optimizing a Minor-Embedding (Second Phase)

In the optimization phase, two main techniques are used to reduce the embedding area
and the sizes of vertex-models. In this phase, the algorithm iterates over all vertices in a
random order, and in each iteration, the set of available points of one vertex is eliminated
and replaced with a new one. This process can be referred to as re-embedding the vertex.
Once the algorithm re-embeds all vertices of H, in |VH | iterations, a round is completed.
The stopping criteria for the optimization phase is termination after a fixed number of
rounds.
Re-embedding a vertex v ∈ VH has three key steps. The first step is to find a new root-
vertex for v which will be the root of the new φ(v). The first of the two main techniques
is employed in this step to reduce the embedding area and the solution size. The second
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key step is to safely remove the existing available points of v and initializing the new Av.
Available points of different vertices of H and point-permits of vertices of the target graph
are related to each other, and this is taken into account in the second step of re-embedding
a vertex. The third step is to embed the edges incident to v, using the A* algorithm and
the dynamic arm assignment technique. The second main technique of the optimization
phase is used in this step and contributes to reducing the solution size.
The first key step of re-embedding each vertex in the optimization phase is choosing a vertex
in G as its new root-vertex. This choice must be made carefully because it is probable that
changing the relative vertical or horizontal ordering of a few root-vertices will lead to failure
in embedding a number of edges. During an iteration in which a vertex is re-embedded,
if the algorithm fails at embedding an edge or if the result of that iteration is not better
than the best found solution to that point, the iteration is referred to as an unsuccessful
iteration. Since the optimization phase begins with a minor-embedding, the algorithm only
accepts the successful modifications and reverts the unsuccessful iterations by not replacing
the already existing arm with the new one. However, the more successful re-embedding of
vertices occur during each round, the more the quality of the solution tends to improve.
Hence, the method used for choosing new root-vertices needs to contribute to making that
iteration successful, as much as possible. That is why the first main technique of the
optimization phase is employed in this step to try to reduce the embedding area, while
trying to preserve the feasibility of the solution. In order to re-embed a vertex v ∈ VH ,
the new rv is selected from the existing set Av. For each vertex u ∈ Av, which has only
v in its point-permit (is permanently labelled), a proximity value, ψ(u), is computed to
measure a notion of closeness between each vertex in the available points and the arms of
all neighbours of v.

ψ(u) = max
w∈Nv

( min
x∈Aw

dE(u, x))

In the presented function ψ, Nv denotes the set of all neighbours of v in the input graph,
and dE represents the Euclidean distance between any two vertices in G. Then, we set
rv = argminu∈Av ,|Pu|=1 ψ(u). Each permanently labelled vertex in Av is already connected
to the roots of all the neighbouring vertex-models, meaning that finding a shortest path
between the newly selected root-vertex rv and each of the root-vertices of neighbours of v
is guaranteed to be possible. However, the probability still exists that the shortest paths
found between the new rv and the root-vertices of a subset of Nv trap the roots of some
other vertices in Nv. In that case the re-embedding is unsuccessful, and the result of that
iteration is not applied to the solution.
In the second key step, after finding a new root-vertex, the existing set of available points
of the vertex needs to be removed. Each vertex of H might share a subset of its available
points with available points of other vertices, and also affect the point-permits of a subset
of VG; hence, re-embedding a vertex must be accompanied by necessary modifications to
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other structures which depend on it. Upon finding a new root-vertex for v ∈ VH , the
algorithm starts with the process of safely removing vertices of G from Av, following the
required steps to be explained shortly. Vertices in Av can be divided into two groups: those
permanently assigned to φ(v) with their point-permits containing only v, and those shared
between v and another vertex u. If Pg = {u, v} for a vertex g ∈ VG, it means g is only
contained in the path between rv and ru. Therefore, when elements of Av are being cleared,
g and other vertices in Av that also appear in the available points of another vertex, can be
removed from both sets of available points, and the point-permit of the shared vertex must
be emptied. Trivially, point-permits of permanently labelled vertices of G that are only in
Av, must also be emptied, after being removed from Av. As a vertex g ∈ G is being removed
from Av, the weights of any edge (x, g) ∈ EG must be set to the unit weight, if Px = ∅.
After following the explained procedure to remove all vertices from Av, the algorithm sets
Av = {rv}, makes rv unavailable, and sets Prv = {v}.
In the third step, after selecting a new rv and clearing the previous available points of v, the
optimization phase proceeds to embed the edges incident to v. The Euclidean distance of
the new rv to the neighbouring root-vertices determines the order of embedding the edges,
by prioritizing the closest neighbours over the farthest ones.
The second main technique of the optimization phase tries to reduce the solution size by
assigning different weights to edges which are to be made available. In the embedding phase,
all shortest paths between a pair of root-vertices are equally acceptable to be found by A*,
whereas in the optimization phase, the second technique aims to encourage A* to find a
shortest path which uses as many available points of the two vertices as possible. Assuming
the algorithm is re-embedding v and needs to find a shortest path between rv and ru, for
(u, v) ∈ EH , the arms of u and v must be made available first. Using the second technique,
this is done by setting the weights of proper sets of edges, incident to vertices in available
points of u and v, to a small real number ε > 0. After finding the rv-ru path and applying
the dynamic arm assignment steps, the modified weights are set to ∞, and the arms are
made unavailable again.
With this modification, for a vertex w ∈ VH , connecting a vertex z /∈ Aw to any of the
vertices in Aw costs approximately the same. In other words, this tends to make the cost
of the selected shortest path between rv and ru very close to the cost of the shortest path
between the two closest vertices in available points of v and u. The result is significant
reduction in the solution size as will be demonstrated in our experiments.
Algorithms 2 and 3 summarize the two phases of the VRM algorithm.
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Algorithm 2 The embedding phase of the VRM algorithm
Input: Planar input graph H = (VH , EH)
Output: Minor-embedding of H in a grid graph G, and meta-data: the root-vertices and

available points of vertices of H, point-permits of vertices of G, and found shortest
paths

1: Obtain the visibility representation ΓH of H
2: for all v ∈ VH do
3: Find rv in G using coordinates of Γ(v).
4: Set Av = {rv} and make rv unavailable.
5: Set Prv = {v}
6: end for
7: for all v ∈ VH in the ascending vertical order of root-vertices do
8: for all u ∈ NBv in the descending vertical order of root-vertices do
9: Make vertices in Av and Au available by setting the weights of the proper set of

edges incident to each vertex to the unit weight.
10: Use A* with Manhattan distance heuristic to find the shortest path between rv and

ru.
11: Apply the dynamic arm assignment steps to the vertices in the chosen path.
12: Set the weights of edges, made available, to ∞.
13: end for
14: end for

4.4 Completeness and Time Complexity

The VRM algorithm is complete, meaning that it always succeeds at minor-embedding a
planar graph H = (VH , EH), in a |VH | × |EH | grid graph G. The proof relies on the fact
that the algorithm operates in two phases. In the first phase, the objective is to find a
minor-embedding of H in G. First, the advanced method is used to find a feasible solution.
If the advanced method fails at doing so, the simple method, explained and proved to be
complete at the beginning of this chapter, is used to find a minor-embedding of H in G.
It will be shown in Chapter 5 that the advanced method was successful at finding a feasi-
ble solution for all instances used in our experiments. The second phase of the algorithm
accepts a feasible solution as the input and tries to improve it, in multiple rounds. Each
round consists of |VH | iterations, and re-embedding one vertex at each iteration may lead
to a change in the minor-embedding. The solution is modified at the end of each iteration,
only if the newly found solution is both feasible and reduces the total size of the vertex-
models. Hence, it is not possible for the second phase of the algorithm to make the solution
infeasible, and the algorithm is complete.
The time complexity of the algorithm can also be analyzed, separately for the two phases.
The visibility representation, required for the first phase, is computed in linear time [9].
The analysis of the remaining steps of the advanced method, follows a similar analysis to
Algorithm A, introduced in Chapter 3. That is because the running time of the first phase
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Algorithm 3 The optimization phase of the VRM algorithm (one round)
Input: The output of the first phase, containing the root-vertices and available points of

vertices of the input graph H = (VH , EH), point-permits of vertices of the target graph
G = (VG, EG), and the found shortest paths

Output: Optimized minor-embedding solution
1: O = a random permutation of VH
2: for all v ∈ O, in order do
3: for all u ∈ Av, satisfying |Pu| = 1 do
4: Compute ψ(u).
5: end for
6: rv = argminu∈Av ,|Pu|=1 ψ(u).
7: for all u ∈ Av do
8: for all w ∈ Pu do
9: Remove u from Aw.

10: end for
11: Set Pu = ∅.
12: for all edges (x, u) ∈ EG incident to u do
13: if Px = ∅ then
14: Set the weight of (x, u) to unit weight.
15: end if
16: end for
17: end for
18: Set Av = {rv}, and make rv unavailable.
19: Prv = {v}.
20: for all z ∈ Nv do
21: Compute dE(rv, rz).
22: end for
23: Initiate a priority queue pq of elements of Nv, prioritizing neighbours with minimum

Euclidean distance of root-vertices to rv.
24: while pq is not empty do
25: z = find and remove the minimum element from pq.
26: Make vertices in Av and Az available by setting the weights of the proper sets of

edges incident to each vertex to ε > 0.
27: Use A* with Manhattan distance heuristic to find the shortest path between rv and

rz.
28: Apply the dynamic arm assignment steps to the vertices in the found path.
29: Set the weights of edges made available to ∞.
30: end while
31: if iteration was unsuccessful then
32: Do not modify the existing solution.
33: end if
34: end for
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is dominated by running the A* algorithm, for |EH | times, and G has |VH | ∗ |EH | vertices.
Using an argument similar to the one employed in Section 3.4, in the VRM algorithm, each
A* search has O(|VH |x|EH |) stages, and each stage runs in O(log |VH ||EH |) time. Further-
more, H is a planar graph, so for |VH | > 3, each A* search runs in O(|VH |2 log |VH |), and
the time complexity of the embedding phase is O(|VH |3 log |VH |). Also in the VRM algo-
rithm, similar to Algorithm A, the target graph is a grid graph, and Manhattan distance
of vertices is used as the heuristic for A*. As a result, the branching factor is expected to
be close to 1, and in practice, the embedding phase using the advanced method is expected
to run in close-to-linear time in EH .
In order to analyze the time complexity of the second phase, time complexities of the three
described steps of each iteration of each round of the optimization phase are analyzed sep-
arately. At each iteration, a vertex v ∈ VH is re-embedded, in 3 steps. In the first step,
a new root-vertex rv is selected for the vertex-model to replace the previous one. In the
second step, the existing set of available points Av is safely removed, as described in sec-
tion 4.3. In the third step, the computed distances between the selected rv and the roots
of neighbouring vertex-models are employed to initialize a priority queue of vertices of H
adjacent to v, based on the minimum distances of their root-vertices to rv. Finally, edges
incident to v are embedded, in the same way that edges are embedded in the embedding
phase, except for the assignment of weights to the available edges of G and the order of
embedding edges, incident to v, which is determined by the priority queue.
While iterating over VH , for each v ∈ VH , the first step requires |Av|

∑
u∈Nv

|Au| O(1) com-
putations (calculating the Euclidean distance of two vertices), where Nv denotes the set
of vertices of H adjacent to v. Throughout the first steps of all iterations of one round,∑
v∈VH

|Av|
∑
u∈Nv

|Au| of such computations are carried out. For each v ∈ VH , the value
of
∑
u∈Nv

|Au| can be upper bounded by C1|VG|, where C1 is a constant. This will upper
bound the number of computations of one round, required for the first steps of all itera-
tions, to

∑
v∈VH

|Av| ∗ C1|VG| = C1|VG| ∗
∑
v∈VH

|Av|. Moreover, the value of
∑
v∈VH

|Av|
can also be upper bounded by C2|VG|, where C2 is a constant. Therefore, the first step of
re-embedding vertices, throughout all iterations of one round, runs in O(|VG|2) time. The
second step runs in O(|VG|) time for each round. In the third step, the priority queue is
initiated in O(|VH |) time for each of the |VH | iterations. The time complexity of embedding
edges incident to v is similar to the time complexity of embedding edges in the embedding
phase, except for the required time for removing the neighbour with the minimum distance
from the priority queue, which runs in O(log |VH |) time. The time of the optimization phase
is an added O(|VG|2 + |VH |2) per round. However, since |VG| > |VH |, it can be simply stated
as O(|VG|2) = O(|VH |4).
It should be mentioned that this is a rather naive implementation of the idea, and improving
the running time is suggested as future work using pre-computations and different choice
of data structures. On the other hand, in practice, due to the sparseness of input graphs,
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running time is much faster than the introduced upper bound.
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Chapter 5

Numerical Results

This chapter presents an experimental evaluation of the VRM algorithm. Necessary defi-
nitions and outline of experiments are presented, followed by the essential information for
replicating these experiments. Empirical results and analysis will conclude the chapter.

5.1 Definitions and Outline

The conducted experiments aimed to test the effectiveness of the introduced techniques in
the VRM algorithm, and also compare the VRM with the D-Wave algorithm on the same
input and target graphs. We will define a set of measurements for the output solution of
any algorithm that minor-embeds planar graphs in grid graphs, and compare the solutions
produced by the two algorithms on the basis of those measurements. Also to evaluate the
performance of the optimization techniques in the second phase of the VRM, the outputs
of phase 1 (before optimization) and phase 2 (optimized embedding) of the algorithm will
be compared using the same measures.
For assessment of both algorithms, our experiments are carried out on graphs of 6 different
families, and a number of individually named graphs from the literature. Shortly, we will
observe that the structural attributes of the input graph can have a significant role in the
probability of success and quality of the minor-embedding.
Following are the measurements based on which we can assess and compare outputs of the
algorithms. The first two are the primary ones, which we focus on more, and the other
three will help with further analysis.

5.1.1 Sum of Sizes of Vertex-Models (Solution Size)

This parameter was also used in [12] as an indicator of the quality of a minor-embedding.
Reducing the sizes of vertex-models is directly related to the capability of the algorithm in
minor-embedding larger input graphs in a fixed size target graph. Minimizing the solution
size is one of the main objectives of both algorithms.
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5.1.2 Probability of Success

The simplest indicator of effective performance of a minor-embedding algorithm is the ratio
of successful runs, in which a feasible solution is found, to all attempts. This parameter
states the success rate of the algorithm which can be influenced by certain attributes of an
input graph such as maximum degree, number and boundaries of faces, as well as number of
vertices and edges. The two algorithms under analysis here are able to manage the effects
of these factors to different extents.

5.1.3 Embedding Area

Suppose we find the minimum axis-aligned rectangular surface on the plane containing G,
which confines all vertex-models of the minor-embedding. The number of all the grid vertices
on and inside this rectangle is called the embedding area. This definition is derived from
that of the area of a grid drawing [28]. The planar embedding area is important in many
applications, such as VLSI design in which embedding in the smallest physical rectangular
surface is desirable [26]. Similarly, in case of minor-embedding, smaller embedding area is
preferable.
In almost all existing and many probable applications, more consumed area, e. g. a larger
chip, or a larger subset of qubits of a quantum computer, implies greater costs. Furthermore,
employed techniques to reduce the embedding area have a high probability of reducing the
average length of paths representing edges. Particularly in the D-Wave application, long
paths are discouraged since they have a negative effect on the annealing process.

5.1.4 Area Utilization Percentage

This parameter represents a notion of compactness. We define the area utilization to be the
ratio of the solution size to the embedding area, expressed as a percentage. It is important
to discuss why area usage can illustrate a quality aspect of the embedding, but should not
be an independent optimization target. Higher area usage indicates that a smaller number
of "unused" vertices are enclosed in the embedding area. Any vertex in the embedding area,
and not in a vertex-model, is considered unused by the solution, and utilizing them for other
purposes faces many limitations, particularly those inside the faces of the embedding. For
instance, an unused vertex inside a face cannot be used for minor-embedding another input
graph in the same grid, unless a complete embedding is to be found in that specific face.
Although this parameter can assess the density of an embedding, the changes made to
it by the optimization phase does not essentially convey a meaningful message. Consider
a case in which the optimization procedure has decreased both the size of vertex-models
and the embedding area. Both are positive changes, however, if the former parameter
is reduced more than the later, the changes made to the area usage percentage will be
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Figure 5.1: Perfect minor-embedding of G3,3

negative.Therefore, this parameter will not be deployed as a global indicator of the quality
of the embedding, but it helps us to carry out a deeper analysis in some cases.

5.1.5 Expansion Ratio

Another way of assessing a minor-embedding is by measuring certain attributes of the
solution, in regards to similar attributes of the input graph. Informally, the goal is to
compare the size of the embedding with that of H. An intuitive way of measuring the size
of H = (VH , EH) is using n = |VH | and m = |EH |. Then, since a minor-embedding can be
considered as expanding each vertex to a vertex-model, satisfying the same adjacency matrix
as the original graph, we can define the two similar measurements of n′ =

∑
v∈VH

|φ(v)| and
m′ = m = |EH | for the minor-embedding.
The expansion ratio of a minor-embedding is defined as follows:

η = n′ +m

n+m

Although m represents the same value for both the graph and its minor-embedding, leaving
it out of the equation will lead to losing information about the quality of the solution. For
example, a relatively dense graph of n vertices is more likely to have larger vertex-models
versus a sparse graph with the same number of vertices. Judging the quality of a minor-
embedding, based only on a comparison of n and n′, will not take into account the density of
the input graph. Moreover, the introduced η has a meaningful range, as it takes a minimum
value of 1, which corresponds to the perfect solution in which the size of each vertex-model
is exactly 1. Figure 5.1 illustrates a perfect minor-embedding of H = G3,3 with embedding
area of 9.

43



5.2 Experiment Details

The details of implementation and experimental parameters of both algorithms are pre-
sented in this section. Features of both algorithms are implemented, as presented in earlier
chapters. However, the time complexity and the used implementation techniques might
be different than what was presented, and we will report the major differences, shortly.
The main reason for such differences was to make the implementation simpler and more
testable. In a particular case, an additional step has been added to the implementation of
the D-Wave algorithm to make sure that the presented feature is exactly carrying out what
is expected of it.

5.2.1 The D-Wave Algorithm

The D-Wave algorithm was implemented in MATLAB 2015b, as explained in Section 2.5.
The implementations of some graph algorithms, such as A* search, in MatlabBGL library
[37] were used in the implementation of the D-Wave algorithm. The D-Wave algorithm
requires both the input and the target graphs as inputs. Input graph is set to an arbitrary
planar graph H, and the target graph will be a grid graph G of the same dimensions as
required by the VRM algorithm for the given input graph. In a number of experiments, the
D-Wave algorithm is provided with larger target grid graphs to test if this leads to higher
rates of success.
Recall that the D-Wave method runs in two phases. The second phase is in charge of trans-
forming the possibly infeasible output of the first phase into a feasible minor-embedding.
The second phase is finished after t consecutive iterations without any further improvement.
In our experiments, t = 10, exactly as used in [12]. Considering the randomness in the D-
Wave algorithm, to get a better understanding of the algorithm’s performance we run it
more than once, to be exact, 25 times for each instance. The average of the best results,
found in each run, will be the reported result of the experiment. The best minor-embedding
is the one which minimizes the solution size. The success rate of the algorithm for each
instance is trivially the percent of successful runs out of 25.
In [12], the details of the main technique for computing the vertex-models was presented,
but this description is ambiguous in parts. The multisource A* procedure, as outlined ear-
lier in Section 2.5, was introduced in [12] to find the root of each vertex-model and the
shortest path tree, connecting a vertex to its neighbours. We implemented the primary
well-presented parts of this technique, along with the Dijkstra algorithm to make sure the
algorithm reaches the desired output, in the sense that it minimizes the distance function
and the crossings, as presented in [12].
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5.2.2 The VRM algorithm

The VRM algorithm was implemented in MATLAB 2014a. The implementations in Mat-
labBGL library [37] were also employed in the implementation of the VRM algorithm. The
only parameter required to be set for the VRM is the length of the optimization phase. As
for the D-Wave algorithm, due to the random behaviour of the VRM in optimization phase,
it has been set to run 20 times on any given instance, and the optimization phase of each
run has 25 rounds. The reported output sizes are the average of all 20 runs. Having the
algorithm outlined in Chapter 4, we continue with further details of implementation.
The dimensions of the target graph are always set to n+ 2 rows and m+ 2 columns, where
n = |VH | and m = |EH |. The extra constant 2 rows and columns are simply added because
doing so made the experimental implementation easier, by making it possible for us to reuse
parts of our earlier implementations of other experimental algorithms. However, as men-
tioned earlier, the required grid dimensions are m×n. Since our algorithm will optimize the
area after the embedding phase, and these extra rows and columns are omitted afterwards,
we chose to take this opportunity to simplify our implementation. The same grids, with
extra 2 rows and columns, are provided to the D-Wave algorithm as inputs.
Another point concerns the use of priority queues, in the optimization phase of the VRM,
to improve the time complexity of this phase as proposed in 3. Our implementation uses
a slightly less efficient approach, based on sorting the vector of neighbours. While this
modification had no practical effects on our experiments, it made the implementation of
the feature much simpler.

5.3 Results and Analysis

In this section, the results of applying the D-Wave and the VRM algorithms to instances
of several families of graphs are presented. The families are:

• k × k Grid graphs, k ∈ N,

• Random planar graphs, generated by initializing a set of vertices of a fixed size, and
adding a fixed number of randomly selected edges to the graph, one-by-one, without
violating the planarity.

• Wheel graphs: A wheel graph with n vertices is denoted byWn in which n−1 vertices,
forming a cycle, are adjacent to another vertex in a way that n − 1 vertices are of
degree 3, and the other vertex is of degree n− 1;

• Random Apollonian networks: A random Apollonian network can be generated by
embedding a triangle in the 2D-plane, and for an arbitrary number of times, adding
a vertex in a random face of the embedding and connecting it to the three vertices
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bounding that face. The degree distributions of these graphs obey a power law, and
the average distance between the vertices is relatively small;

• Random series-parallel graphs: These st-graphs (graphs with two terminals, referred
to as source and sink) are generated recursively. A path graph P2 is the smallest
series-parallel graph(sp-graph) with its ends as the sink(t) and the source(s). On two
sp-graphs, performing a series composition (merging one’s sink with the other’s source)
or a parallel composition (merging ones source and sink with other’s counterparts)
generates a new sp-graph;

• A family of maximal sp-graph: Given a sp-graph Hsp, if addition of any extra edges to
Hsp does not preserve its status of being a series-parallel graph, then Hsp is a maximal
series-parallel graph;

• Several graphs from the literature, plus two of our own construction. The graphs from
the literature are Dürer graph, Frucht graph, Errera graph, and Bidiakis cube.

Considering the success rate and the solution size as the high priority parameters, the fol-
lowing figures illustrate the total size of vertex-models generated by the D-Wave algorithm
and the VRM, along with the probability of success for the D-Wave algorithm in finding
a feasible solution for each instance. Given a planar graph, the VRM algorithm is always
successful at finding a minor-embedding, and hence, there is no change of performance to
be reported on the plots. We remind the reader that in Chapter 4, the introduced algorithm
for finding a feasible solution was referred to as the advanced method, and a less efficient
complete alternative, called the simple method, was described to verify the completeness
of the VRM. In our experiments, the advanced method was always successful at finding a
minor-embedding, and we never had to use the simple method on an instance.
The D-Wave algorithm failed to minor-embed any instance of the random Apollonian net-
works. Figure 5.2 depicts the average sizes of solutions for each instance of this family,
found by the VRM algorithm.
Figure 5.3 illustrates the performance of both algorithms on instances of grid graphs, using
the average vertex-model sizes and the success rate of the D-Wave algorithm. When it was
successful at finding a feasible embedding of a grid graph, the D-Wave embedding strategy
generated a smaller size solution than VRM.
The size of vertex-models reported for each instance of the families of random and random
sp-graphs is the average of solution sizes of ten random instances with the same number of
vertices and edges. Figure 5.4 indicates the success rate of the D-Wave algorithm in minor-
embedding only one instance of the random graphs. As can be seen by comparing Figures
5.5 and 5.3, the differences between average solution sizes of the two algorithms, for each
instance of the random sp-graphs, are not as large as those of the grid graphs. Further, the
probability of success of the D-Wave algorithm is fairly low, even for very small instances.
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Figure 5.2: The D-Wave algorithm fails at minor-embedding any of the random Apollonian
networks. The average sizes of solutions, found by the VRM algorithm, for each instance
of this family, is depicted in this figure.

In the plots, instances of each family are represented by the number of their vertices. That
is because for most graph families used in our experiments, instances with more vertices are
larger instances and have more edges as well. Based on our experiments, minor-embedding
of instances of a family with more vertices and edges have larger solution sizes, comparing
to instances with fewer vertices and edges. However, for random planar graphs, there is
no strict correlation between the growth in numbers of edges and vertices. That is why in
Figure 5.4, the sizes of vertex-models for random instances with 19 and 21 vertices are less
than those instances with 18 vertices. To make sense of this observation, we will borrow our
rationalization for presenting the expansion ratio, and compare the sums of edges and ver-
tices of these instances. The count of edges for random graphs with 18, 19, and 21 vertices
are 48,23, and 33, respectively. Now, we can observe that the total sizes of vertex-models
grow with the sequence of 19 + 23 = 42, 21 + 33 = 54, and 18 + 48 = 66. Same situation
applies to instances with 25 and 27 vertices which have 69 and 43 edges, respectively.
The results indicate that as the size of instances grow, the success rate of the D-Wave
algorithm decreases rapidly. In fact, for all graph families, the D-Wave algorithm might
minor-embed only the very small instances of each, but if it is successful, the results are
often better than those of the VRM. That is mainly because the D-Wave algorithm em-
beds the vertices in a random order, but embeds each root-vertex as close as possible to
its already embedded neighbours. This embedding strategy is not guaranteed to find a
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Figure 5.3: Average vertex-model sizes of grid graph instances, found by the two algorithms,
and the success rate of the D-Wave algorithm.

feasible solution, but its greedy nature might make the results of successful attempts fairly
desirable. The relative positioning of vertex-models of a minor-embedding in the grid can
be associated with a planar embedding of H. As the number of vertices and edges of H
are increased, the probability of generating a solution by the D-Wave algorithm, associ-
ated with a planar embedding, is reduced. Table 5.1 represents the results for all instances
on which the D-Wave algorithm had a non-zero success rate. Table 5.2 demonstrates the
D-Wave results for all instances minor-embedded at least once by the D-Wave algorithm,
when the dimensions of the target graph were multiplied by 2. This means a target grid
area 4 times bigger than the original area is made available to the D-Wave method to assess
its performance and probability of success with more available resources. Comparing tables
5.1 and 5.2 indicates no meaningful difference of obtained results, and all instances in table
5.2 also appear in table 5.1. The comparison confirms that low success rates of the D-Wave
algorithm are not caused by lack of available embedding area.
Comparing the expansion ratios for different algorithms is not necessary, since comparison
of solution sizes will convey the same message. However, among different families of graphs,
growth rates of expansion ratios as instance size increases are interesting to compare. This
comparison is conducted only for the VRM, since the other algorithm fails too often as
the instance size grows. In all families, the expansion ratio tends to increase as the sum
of number of edges and vertices grows larger. However the rate of increase in almost all
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Table 5.1: Comparison of results of the VRM and the D-Wave algorithm, on all instances
which were minor-embedded by the D-Wave algorithm at least once. For each instance,
target graphs of the same dimensions were made available to each algorithm.

Graph
Family

No.
of
Vertices

Avg. Size of
Vertex-Models
Before
Optimization
(VRM)

Avg. Size of
Vertex-Models
After
Optimization
(VRM)

Avg. Size of
Vertex-Models
(D-Wave
Algorithm)

Success Rate
(D-Wave
Algorithm)

Grid 9 49 37.8 19.1 64

Grid 16 141 86.1 17 8

Grid 25 322 184.9 30 4

Wheel 5 24 16.9 14.5 88

Wheel 10 70 55.9 24 4

Maximal
Series-
Parallel

5 29 16.8 15.05 68

Dürer 12 101 68.4 47.5 8

Frucht 12 83 56.4 56.8 28

Random
Series-
Parallel

13 79.90 58.8 50.8 26.8

Random
Series-
Parallel

16 104.5 83.6 55.7 19.2

Random
Series-
Parallel

19 137.6 108.2 100.5 0.4

Random
Planar 19 144.5 120.8 79 4
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Table 5.2: Comparison of results of the VRM and the D-Wave algorithm on all the instances
which were minor-embedded by the D-Wave algorithm at least once. For each instance, the
dimensions of the target graph made available to the D-Wave algorithm are twice as large
as those assigned to the VRM.

Graph
Family

No.
of
Vertices

Avg. Size of
Vertex-Models
Before
Optimization
(VRM)

Avg. Size of
Vertex-Models
After
Optimization
(VRM)

Avg. Size of
Vertex-Models
(D-Wave
Algorithm)

Success Rate
(D-Wave
Algorithm %)

Grid 9 49 37.8 17.8 68

Grid 16 141 86.1 74 8

Grid 25 322 184.9 74.6 12

Wheel 5 24 16.9 17.4 88

Wheel 10 70 55.9 24 4

Maximal
Series-
Parallel

5 29 16.8 15.1 72

Dürer 12 101 68.4 49 48

Frucht 12 83 56.4 56.8 28

Random
Series-
Parallel

13 79.9 58.8 57.7 44.6

Random
Series-
Parallel

16 104.5 83.6 69.6 38.6

Random
Series-
Parallel

19 137.6 108.2 133 5.33

Random
Planar 19 144.5 120.8 161.9 6.6
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Figure 5.4: Comparison of the results obtained by the two algorithms on random pla-
nar graphs. Number of vertices is not enough to demonstrate the complexity of minor-
embedding an instance.

families declines as instance size increases. The difference is in the slope of the curves repre-
senting these changes. Figure 5.6 shows that the expansion ratios of the random Apollonian
networks tend to converge to a constant, fairly quickly, whereas for grid graphs, figure 5.7
shows that the curve is closer to a linear function. Other families follow a pattern similar to
that of the random Apollonian networks. While the sum of edge and vertex count of input
graph can give us some information about its minor-embedding, studying other attributes
of H, such as sequence of degrees and faces, might lead to a more universal relation than
the expansion ratio.
In our experiments, we are also interested in performance of the optimization phase of the
VRM in reducing the embedding area. For that purpose, embedding area was measured
before and after optimization, and the reduction in embedding area was recorded. Table 5.3
demonstrates the average reduction of embedding area for each family of graphs, expressed
as a percentage. The average area decreases are between 25 and 64 percent, which illus-
trates the effectiveness of the proposed technique in reducing embedding area. Figures 5.11,
5.12, 5.13 and 5.14 compare the sizes of vertex-models and embedding areas of instances
of the 4 graph families, generated by the VRM algorithm, before and after optimization.
The optimization phase was successful at decreasing the embedding area for all instances,
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Figure 5.5: Average vertex-model sizes of random sp-graph instances, found by the two
algorithms, and the success rate of the D-Wave algorithm.

in some cases up to 80 percent. Figures 5.8, 5.9 and 5.10 compare outputs of the VRM
algorithm after its first and second phases for Errera graph, a 7 × 7 grid, and a maximal
sp-graph. Both vertex-model sizes and embedding areas made improved for all instances.
Area utilization of the embedding, before and after optimization, has been computed for
the three instances to illustrate how the results of each phase can be influenced by the
input graph structure. In cases of Errera and the grid graphs, the optimization seems to
have made the embedding more compact, and the area utilization changes verify the visual
observations. It is clear, both from the figures and the changes in area utilization, that the
optimization phase was more successful at increasing the compactness of Errera graph than
the other two.
The results are different for instances of maximal sp-graph family, which have the minimum
average of area reduction after optimization. The maximal sp-graph instances used in our
experiments have a very specific structure. An instance of this family with n vertices has an
edge between the source (s) and sink (t) vertices, and all other vertices are only connected
to s and t. Hence, any instance of this family has two vertices with degree n− 1, and n− 2
vertices with degree 2. This structure will lead to a minor-embedding, similar to the one
depicted in figure a of Figure 5.9, which is then optimized to look similar to figure b. The
arrangement of vertex-models in figure a leads to greater reductions in the sizes of vertex-
models compared to the embedding area, in figure b, which results in a negative change of
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Figure 5.6: Growth rate of expansion ratio with |V | + |E| for instances of the random
Apollonian network

area utilization. However, we can observe in figure b that the number of unused vertices,
bounded by the faces of the embedding, have been reduced to almost zero.
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Figure 5.7: Growth rate of expansion ratio with |V | + |E| for instances of the grid graph
family

Figure 5.8: Generated minor-embedding by the VRM algorithm, for a 7 × 7 grid graph,
before and after optimization. Area utilization of the embedding equals 0.24 in figure a,
and 0.27 in figure b.
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Figure 5.9: Generated minor-embedding by the VRM algorithm for a maximal sp-graph,
before and after optimization. Area utilization of the embedding equals 0.25 in figure a, and
0.20 in figure b. The embedding area has not been reduced enough to result in a positive
change of area utilization.

Figure 5.10: Generated minor-embedding by the VRM algorithm for Errera graph, before
and after optimization. Area utilization of the embedding equals 0.41 in figure a, and 0.83
in figure b. The embedding density has been increased more than 100 percents.

Table 5.3: Average decrease in embedding area, for instances of each graph family, as a
result of the optimization phase of the VRM algorithm. The numbers state the ratio of
reduction in embedding area after optimization, in comparison to values before optimization,
in percentages.

Graph Family Random
Apollonian Grid Random

Planar
Random
SP

Maximal
SP Wheel Named

Graphs

Average Area
Decrease After
Optimization
(Percentage)

46.21 63.43 52.33 37.35 25.99 52.14 52.87
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Figure 5.11: Average sizes of vertex-models and embedding areas, for random Apollonian
networks, before and after the VRM optimization phase

Figure 5.12: Average sizes of vertex-models and embedding areas, for grid graphs, before
and after the VRM optimization phase
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Figure 5.13: Average sizes of vertex-models and embedding areas, for random planar graphs,
before and after the VRM optimization phase

Figure 5.14: Average sizes of vertex-models and embedding areas, for random series-parallel
graphs, before and after the VRM optimization phase
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Chapter 6

Conclusions and Future Work

In this thesis, the problem of minor-embedding a planar graph in a grid graph was studied,
inspired by its application to the process of adiabatic quantum annealing. Our approach
was to take advantage of graph embedding and drawing techniques to maximize the suc-
cess rate of finding a solution, and then applying optimization techniques to increase the
embedding quality.
The first algorithm relied on a constrained planar representation of the input graph, in-
spired by a planar embedding method which generates an embedding by adding edges to
a planar representation, while preserving its planarity. Using this minor-embedding algo-
rithm, the embedding area does not depend on the number of edges of the input graph, as
a result of applying the introduced technique called, dynamic arm assignment. The pro-
posed procedure has been designed to finalize vertex-model assignments in multiple stages
to minimize the size of the minor-embedding, and can arguably be used by a wide range
of minor-embedding heuristics. Since the first algorithm operates based on certain precon-
ditions, it is not immediately applicable to the family of all planar graphs. However, our
findings and the introduced techniques, from the first algorithm, were used in our second
and most effective minor-embedding algorithm.
The visibility representation, which can be generated for any planar graph in linear time,
was the main basis of our second algorithm. Dynamic arm assignment was applied to this
algorithm as well, and a complementary optimization procedure decreased the embedding
size and area. The introduced optimization method is also designed to be adjustable for use
in other minor-embedding algorithms. The results of experiments on the D-Wave heuristic
and our latest algorithm demonstrated our method’s success in minor-embedding all 145
instances from various graph families, while the other algorithm fails at embedding all in-
stances, except for the very small ones. Our optimization technique is also proven to be
effective in a clear improvement of the total size of the vertex-models and the embedding
area.
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The following are suggestions for future work, aimed at extending what was proposed in
this thesis:

• As explained earlier, our first algorithm works contingent on being provided with a
planar representation of the graph, which satisfies certain conditions. Two strategies
were proposed to modify and extend the algorithm to minor-embed any planar graph
in a bounded grid graph. The approach we chose to explore resulted in the presented
algorithm in Chapter 4. An outline was provided for the other approach, which did
not change the algorithm’s dependence on the specific planar representation. Instead,
it was suggested to compute a set of planar representations, corresponding to sub-
graphs of the input graph, which satisfy the conditions for minor-embedding their
associated subgraphs in the target graph. Finding certain paths between the minor-
embedded subgraphs and adding them to the solution will result in a solution for
the main minor-embedding problem. While this approach is promising, based on the
presented attributes of the BM and the minor-embedding algorithms in Chapter 3,
further investigation is required for designing a detailed algorithm which achieves the
desired objective or showing that such algorithm does not exist.

• The introduced algorithm in Chapter 4 is designed for minor-embedding a planar
graph in a grid graph, without inactive vertices. An inactive grid vertex corresponds
to an inactive qubit of the device and has no edges incident to it. The algorithm
is based on use of pathfinding techniques in order to be adjustable to compensate
for a reasonable number of inactive vertices. Inactive grid vertices cause two main
problems for the algorithm. The first problem occurs when the algorithm is embed-
ding the root-vertices, based on the coordinates of the horizontal line segment in the
visibility representation. Coordinates of a grid vertex, calculated to be the root of
a vertex-model, might belong to an inactive vertex. The second problem is that the
A* algorithm might fail to find a shortest path between two root-vertices, due to the
missing edges in the grid, especially when the input graph is rather dense.
We suggest investigation of following approaches towards resolving these problems.
For the first problem, selecting an active (not inactive) grid vertex, on the same grid
row, may resolve the problem without affecting the vertical order of vertices. The set
of grid vertices, from which an alternate is chosen, must be selected carefully so as
to preserve the ordering of paths which prevents vertices from being trapped. The
second problem can be solved by expanding the grid dimensions by increasing the
distances between certain root-vertices. The expansion can be informally explained
as inserting rows or columns in the grid graph. The problem of assigning new coordi-
nates to root-vertices, in order to resolve occurrences of the two described problems,
with minimum increase in dimensions of the target graph is suggested as the subject
of a future work to extend the minor-embedding algorithm.
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• The optimization method, explained in Chapter 4, has been designed with focus on the
optimization strategy, rather than running time efficiency. Use of additional or differ-
ent data structures, accompanied by pre-computations, while or before the embedding
phase, might reduce the current time complexity. Investigation of the prospects of
such improvements are recommended for industrial applications of the algorithm.

• Eliminating a currently existing vertex-model and replacing it with a new one describes
the basics of the optimization method, introduced in Chapter 4. Removing the vertex-
models, in the way explained, might end up leaving some extra vertices in some of
the vertex-models. An extra vertex of a vertex-model is one which can be removed
from the vertex-model, without making the minor-embedding infeasible. A subset
of permanently assigned vertices of a vertex-model, which connect the root-vertex
to at least two adjacent root-vertices, may constitute the set of extra vertices of the
vertex-model. While re-embedding a vertex v in the optimization phase, permanently
assigned vertices of arms of neighbours of v are not removed from their arms, even if
after re-embedding v there is no reason for those vertices to be permanently labelled.
Such permanently labelled vertices might remain in the arms of a vertex, as extra
vertices, even if all of its neighbours which were using those vertices to connect to its
root-vertex are re-embedded. Two approaches are suggested to deal with this issue.
First solution is to modify the algorithm, in a way that the permanently assigned
vertices can be demoted to being a shared vertex if after re-embedding a neighbour
they are connecting only two vertex-models together. The second approach is to use
a post processing technique to detect and remove extra vertices from vertex-models.
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Appendix A

Supplementary Material

The accompanying compressed file contains a Matlab implementation of the VRM algorithm
and a read me file, explaining all necessary steps and requirements for using the software.
File name: The VRM Suite.zip
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