Implementation of a Wearable Feedback System

Monitoring the Activities of Upper-extremities

by
Dong Yang
B.Eng., Xi'an Jiao Tong University, 2001

Project Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Engineering

in the
School of Engineering Science
Faculty of Applied Sciences

© Dong Yang 2015
SIMON FRASER UNIVERSITY
Spring 2015

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may
be reproduced, without authorization, under the conditions for
“Fair Dealing.” Therefore, limited reproduction of this work for the
purposes of private study, research, criticism, review and news reporting
is likely to be in accordance with the law, particularly if cited appropriately.

Approval

Name:
Degree:
Title:

Examining Committee:

Dr. Carlo Menon, P.Eng
Senior Supervisor
Associate Professor

Fabio Campi
Supervisor
Lecturer

Dong Yang
Master of Engineering

Implementation of a Wearable Feedback System
Monitoring the Activities of Upper-extremities

Chair: Dr. Ash Parameswaran, P.Eng.
Professor

Date Defended/Approved: April 21%, 2015

Partial Copyright Licence S F U

The author, whose copyright is declared on the title page of this work, has granted to
Simon Fraser University the non-exclusive, royalty-free right to include a digital copy of
this thesis, project or extended essay[s] and associated supplemental files (“Work”)
(title[s] below) in Summit, the Institutional Research Repository at SFU. SFU may also
make copies of the Work for purposes of a scholarly or research nature; for users of the
SFU Library; or in response to a request from another library, or educational institution,
on SFU’s own behalf or for one of its users. Distribution may be in any form.

The author has further agreed that SFU may keep more than one copy of the Work for
purposes of back-up and security; and that SFU may, without changing the content,
translate, if technically possible, the Work to any medium or format for the purpose of
preserving the Work and facilitating the exercise of SFU’s rights under this licence.

It is understood that copying, publication, or public performance of the Work for
commercial purposes shall not be allowed without the author’s written permission.

While granting the above uses to SFU, the author retains copyright ownership and moral
rights in the Work, and may deal with the copyright in the Work in any way consistent
with the terms of this licence, including the right to change the Work for subsequent
purposes, including editing and publishing the Work in whole or in part, and licensing the
content to other parties as the author may desire.

The author represents and warrants that he/she has the right to grant the rights
contained in this licence and that the Work does not, to the best of the author’s
knowledge, infringe upon anyone's copyright. The author has obtained written copyright
permission, where required, for the use of any third-party copyrighted material contained
in the Work. The author represents and warrants that the Work is his/her own original
work and that he/she has not previously assigned or relinquished the rights conferred in
this licence.

Simon Fraser University Library
Burnaby, British Columbia, Canada

revised Fall 2013

Abstract

In the previous work done by ZG.Xiao and C.Menon, the novel idea of using a strap with
8 Force Sensing Resistor (FSR) sensors for monitoring activities of upper-extremities
was proposed. The goal of my research is to implement such a system for a low-cost,
low power embedded system, a band module, together with a hand-held user interface
for rehabilitation related application. For hand gesture classification, the Linear
Discriminate Analysis (LDA) method is used. The training and predicting can be done on
either a band module or a hand-held user interface. Two system configurations are
proposed: real-time band module data sampling and hand-held user interface data
analysis, or real-time band module data sampling and analysis. On top of this, the LDA
algorithm in C language used in our system has been profiled on an Intel Galileo Gen2
board in order to evaluate its performance on 32-bit embedded platforms for the next

generation of our system.

Keywords: Force Sensing Resistor; Linear Discriminate Analysis; embedded system;
rehabilitation; profiling

Acknowledgements

I would like to thank my senior supervisor, Professor Carlo Menon, for this amazing
opportunity, valuable suggestions and being very patient and supportive of my work.
Also | would like to thank my supervisor, Fabio Campi, for guidance and suggestions
throughout my project especially during writing of this report. And | would like to thank

Professor Parameswaran as the chair of my supervisory committee.

| then would like to express my appreciation to Lukas-Karim Merhi for his coordination of
this project, ZhenGang Xiao for his help and support as the original researcher of this
topic, Tanner Frison, Pawan Tejwani, Bryan Chong for their
hardware/software/debugging effort on the prototypes and other team members in

MENRVA group at SFU for their support of my project.

I would also like to thank Renee Anne McCallum for her excellent proof reading on this
report. And | would like to thank Catherine Louie for her advices on formatting this
report.

Last but not least, | would like to thank all my family members for their support and
understanding during my school years throughout the MEng program.

Table of Contents

Y 0] 0] (0 1Y | PSP ii
o T I O0] o) Y/ [0 | 01 N Tot= o o - iii
Y 013 (= od SO P PO PPPRPP PP iv
ACKNOWIEAGEIMENTS ...ttt e e e e e e e e e e e e e st r e e e e e e e e e annes iv
Table Of CONtENTS.. ... Vi
LISt Of TADIES ... viii
LISt Of FIQUIES. ...ttt e et e e e e e e e e e e e e e e e e iX
IS o) o 0])Y/ 0 1 T X
Chapter 1. INTrOAUCTION oo 1
IR R |V 0 1Y 1) o 1
O o 0] = Tox Yo o] o 1= 2
1.3. Technical REPOrt OULIINE.........cooviiiiiiiiiiiiiiiieieiieeeieeveeesveeaeeeaveeeseeeseereeeeeserrsrrearennrennne 3
Chapter 2. SYSTEM OVEIVIEW ...t 4
2.1, M@aJOr COMPONEINTS ...ceiiieiiiiiiiitit e e e e e ettt e e e e e e e e r e e e e e e s s bbb e e e e e e e e e e annb e e eaaeens 5
2.2, TraiNING PrOCESS ...ciceiiiiiiii i ee e e et s e e e e e e e e et s e e e e e e e e e aa e s e e e e e e e e annan e aeees 6
Chapter 3. Hand-held User INterfaceoouciiiiiiiiieecie e 8
3.1. Hardware/Software Platform Selection ... 9
3.2. DeVvelopMENT TOOIS ...uuuiii e e e et e e e e e e e e 9
3.3. Major Software COMPONENES.........cooeeeiiiiei e 10
3.3 L. S A e e e e e 10
3.3.2. WEDBVIBW .t renne 11
3.3.3. Gnu Octave Application for ANdroid..........c.cccceevvveiiiiiiiiiiiieiiieieeeeeeeeeeeeee, 11
3.3.4. Python Octave COMMUNICALIONceeeiiiiiiiiiiiiieee et 11
L4, PYNON SCIIPL. .t e e e e e e e e e 14
G 2 S - 1 U o 14
G /T 11 N (o To T o PPN 16
3.5. HTML File for WebVIBWcoooeeiiiieeeee 17
G TR T SN - V= o] o AR = 1 ol U] o 17
3.5.2. Javascript MeSSAgE LOOPceevviviiiiiiiiiiiiiereieesseesiesssssssesssessssssrresnnnrnnnnnnne 18
3.6, OCTAVE SCIIPL. .ttt e e e e e et e e e e e s s e e e e e e e e e nnnnneees 19
Chapter 4. FSR Band MOGUIEcccooiiiiiiiiiiiiece et 21
4.1, MOAUIE OVEIVIBW.cciiiiiiieie e 21
O R o S Y= g Yo gl = -V g o 22
o O AN {0 01T To 3 o /1 o 23
4.1.3. OLED DIiSPIAY ..etttiiiiiiiiiiiiiiiiae e ettt e e et e e e e e e e e e e e e e e nne 24
I S T 11 (=] VPPN 25
4.1.5. BlUELOOIN MOAUIEeeieeeee e 25

Vi

4.2. Firmware Development tO0ISuuuuuiiiiiiiiiiiii e 26

4.3. AtMEQGA328P FilMWAIEuuuuiiiuiiiiiiiiiiieiiii bbb ebesnnnnnsnnnnne 27
4.3.1. Graphic Library for OLED DiSplay.........cccvvvuriiiiiiiieeeeeeeiiiiee e 27
B 1 - 1 L U | o RPN 28
4.3.3. M@UN JOOP ..ttt 29

Chapter 5. Linear Discriminate Analysis (LDA)uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieinennees 31

L0t S I =T Y2 31

5.2. C Language IMpPIemMENtAtiON............uuuuueeeeieiiiiiiiiiiiiiieeeeieeeneeeenseeeeeeeeeenennnseeeeennnnnne 31

5.3. CROUT Algorithm for Matrix Determinant....................uueeeereermmmmmreeieieeiiinnneee. 34

Chapter 6. Profiling on Intel Galileo Gen2 Board...............euuveumiiiiiiiimiiiiiiiiiiiiieennnns 36

6.1. Linux Profiling ENVIFONMENTuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiebeeeeeieeeebeseeeeeeneseeeeennennee 37

LS €1] (o] TP TP TTPPPTRPOPPTRTROt 38

6.3, Profiling FESUILSi i e 38

Chapter 7. CONCIUSIONS ...uuiiiiiiiiiiiiiiiitiieiie bbb nnennnnnee 39

Chapter 8. FULUIE WOTIK ..o e 40

8.1. Support MOre FSR SENSOISccciiiiiieiiiie e e e 40

8.2. Compile LDA C code in Android Native Development Kit (NDK) for PY4A............ 40

REIEIENCES o 41

Appendix A. DeVvelopmMENt FESOUICESuuvuiei e eeeeeeeeiee e e e 44
Flot: Attractive JavaScript plotting for JQUETYccovviviiiiiiiiiiiiiieeeeee 44
(T[T @ oxr= 1Y (o] QY o To [oo IR 44
Python script debUQ PrOCESS.......ooviiiiii i e e e e eanees 44

Appendix B. SOUICE COE......cooiiiiiiiiii 45
B0 0T o1 o 1 o)V PSS 45
B 1= o T8 10 1 53
“octaveMain.java” diff OUtPUL............uuuuiiiiiiiiiiiii e 56
B0 T3 = 1Y oS 58
201 .1 PP PP PSP PPPPPPPPPPPPP 59
“Atmega328 AVRSIUAIO TeSE.C . ..uuiiiiiiiiiiiiiiiiiiiiiii e 65
“CroUt.C” diff OUEPUL.uiiiiiiii e 72
B 7N o 01T = 1 (o] = o U 74
B 7N o 01T = (o] oSSR 75
MNALTICES. N . e 79
B 00 F= (1073 PR 80
MY COMMION. N L 83

vii

List of Tables

Table 2.1.
Table 3.1.
Table 3.2.
Table 4.1.
Table 6.1.

User settings for Android Application............coooooeooiieeeeeen 6
Main Hardware SPecCifiCation...........ccooeeeeeeiieee e 9
ComMMANG IIST ... 12
Hardware SUMIMAIYcoooiiieeeeeee e 24
GProf results (sensor: 8, sample/class: 100)ccuvvvviiiiiiiiiiiiiiiiieeennn. 38

viii

List of Figures

Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
Figure 4.6.
Figure 4.7.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 5.4.
Figure 6.1.
Figure 6.2.

SYSIEM DIAGIAM....ceiiiiiiiiiiiiiiiie ettt 4
Band MOQUIEiii e e e e e e eeeees 5
User interface [ayOULuuciiiiiiiiiece e 5
(a) Gesture number 1; (b) Gesture nUMber 2ccoovvviviiiiiiiiiiiiee e 6
ANAroid ArChItECIUNE.cee e 9
Android Development TOOISuciiii i 10
Android Application and Gnu Octave Interactioncccceeeeeevvvveeinnnnnn.. 12
Python script start up flow chart ..., 14
Python script main loop flow chart...........cccoooiiiiiiiiic e, 16
Javascript Start-up flow chartcccciiiiii e, 17
Javascript message [00p flow chart................eevviiiiiiiiiiiiiiiiiie 18
Octave script flow Chart............ooovviiiiiiiii 19
Band module block diagram ..., 21
System Schematicl...........coiiiie 22
OLED graphic diSplayccouuviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 24
AVR STUIO B .oevvieeeeeiiiiiiiie ettt e e e e e e e e r e e e e e e e e 26
ATMEI-ICE oo e e e e e e e e r e e e e e e aaaan 26
AVR firmware start-up flow Chart.............cccocoiiiiiiiiiiie 28
AVR firmware main loop flow chart...........cccoooooiiiiiiiii e, 29
Calculation for linear discriminate coefficients flow chart........................ 32
Matrix inversion flow Chart.............oooviiiiiiiiii e 33
Laplace algorithm flow chart.............ooooooooeo 34
Crout algorithm flow chartcoiiiiiii e, 35
Intel Galileo GeN2 BOAIdccooiieieiieeeeeeee e 36
Galileo System Diagram............ccueiviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 37

List of Acronyms

ADC
ADT
ANOVA
CES
CSv
ELM
FMG
FSR
HTML
IDE
ISA
LDA
LED
MAP
OLED
PCA
PCB
PY4A
SL4A
SRAM
SVM
UART
WMFT

Analog to Digital Converter
Android Development Tools
ANalysis Of VAriance

Consumer Electronics Show
Comma-Separated Values
Extreme Learning Machine
Force MyoGraphy

Force Sensing Resistor
HyperText Markup Language
Integrated Development Environment
Instruction Set Architecture
Linear Discriminate Analysis
Light-Emitting Diode

Maximum A Posteriori probability
Organic Light-Emitting Diode
Principal Component Analysis
Printed Circuit Board

Python for Android

Scripting Layer for Android

Static Random-Access Memory
Supported Vector Machine
Universal Asynchronous Receiver/Transmitter
Wolf Motor Function Test

Chapter 1.
Introduction

In this chapter, the background information of this project is introduced including

the motivation, the project scope and the outline of this technical report.

1.1. Motivation

Patients affected by chronic diseases such as a stroke face several problems

during their rehabilitation process:

Limited access to rehabilitation services. A survey done by Centers for Disease
Control in the U.S. in 2005 revealed that only 31% of the stroke survivors received
outpatient rehabilitation]. Even when patients receive rehabilitation, it is often
unstructured, hard to follow and it lacks clear goals for walking and functional use of the

upper-extremitiest?: 3,

Availability of home-based therapies. Oral instructions and evaluation methods
used by physiotherapists in existing home-based therapies are often difficult to follow
and hard to measure. Also, existing therapies rely on the patients themselves to achieve
a certain number of accurate gestures on a daily basis, which is also a challenge. Still,
there is evidence showing that increased activity significantly helps patients regain the

ability to walk and increased functional use of the upper-extremitiest® 14 1,

Clinical trials for the functional use of the upper-extremities. The effectiveness of
clinical trials on the upper-extremities are often affected by the physical setting of the

trial. The results of the frequently used Wolf Motor Function Test® (WMFT) can be

interpreted subjectively. A more objective and easily accessed tool can be helpful for the

clinical trial.

In the research done by ZG.Xiao and C.Menon!), a novel idea towards the
development of a wearable feedback system using FSR sensors was proposed. The
work introduces objective data analysis on Force MyoGraphy (FMG) signals to predict
upper-extremities gestures. The key parts of the proposed feedback system are: Force
Sensing Resistor (FSR) strap as hardware for FMG data collecting and a test protocol
designed to classify 6 upper-extremities gestures for a drinking task.

The work presented in this report is aimed at developing software for a prototype
system as a step forward in implementing the proposed wearable feedback system. In
order to provide a monitoring device which can be easily used by patients at home, a
low-cost, low-power FSR band module is put together to predict upper-extremities
gestures in real-time. Also because the instant feedback of the system may promote
more repetitive exercise by the patient, a display is added to the band module.
Furthermore, to help facilitate the rehabilitation process guided by a physician or a
physiotherapist during their collaboration with their patient, an Android application which
plots real-time FMG data was used. It has user configurable settings and displays

prediction result real-time is developed for tablet computer as hand-held user interface.

1.2. Project Scope

The development of the wearable feedback system involves a mechanical design
which includes a strap with FSR sensors and Velcro, a case for the band module, and a
Printed Circuit Board (PCB); hardware design including prototype circuits for the
sensors, Organic Light-Emitting Diode (OLED) display and battery and software design
including an embedded firmware for the band module, and an Android Application on
Android Tablet.

My role in this project was mainly around software design focused on the

following aspects:

1.3.

Firmware development for the band module.
Software development for the Android application.

Discussed and implemented requirements reported from mechanical and
hardware team.

Feedback on the hand-held user interface are properly discussed and
implemented.

Technical Report Outline

The Technical Report is organized as follows:

Chapter 2 provides a system overview and the system’s configuration.
Chapter 3 describes the hand-held user interface.

Chapter 4 presents the FSR band module.

Chapter 5 introduces the Linear Discriminate Analysis (LDA).

Chapter 6 describes the profiling on Galileo Gen2 board.

Chapter 7 presents future work.

Appendix A has all the information related to the Android Application
development.

Appendix B has all the information related to the Atmega328 firmware
development.

Appendix C has all the source codes.

Chapter 2.
System Overview
In this chapter, the overview of the wearable feedback system is described with

the major system components and their interactions. A greater detailed description of

each major component is introduced in the following chapters.

Band User
Module BlUEicoi Interface
Band

Figure 2.1. System Diagram

As shown in Figure 2.1, the wearable feedback system includes a band module
for stand-alone application and a hand-held user interface for more detailed user
interaction. The objective of the system is to not only promote upper-extremities
exercises when a patient is fulfilling his rehabilitation at home, but also to provide more

detail on in-clinic patient performance for physicians and physiotherapists.

2.1. Major Components

Figure 2.2. Band Module

The band module shown in Figure 2.2 is composed of the main enclosure for the
electronics and a band made of FloTex foam where 8 FSR sensors are embedded.

When a patient wears it, the Velcro on the band is properly attached and the band itself

is a bit stretched.

B N 54%5 9:07 AM

FSR Graph

1000

800

600

400

200

0

Current Class:

1

Current Parameter: Sensor#: 8, Sample#: 8, Class#: 2

Quit ‘ Train Next Train Cur

Predict

Class#2 Done!

Figure 2.3. User interface layout

The hand-held user interface (shown in Figure 2.3) plots real time FMG data;

does training and real time prediction with more user configurable parameters.

Table 2.1. User settings for Android Application

User Setting User Options
Number of Sensors | 2,3,4,5,6,7,8
Number of Samples | 8,16,32

Number of Classes | 2,3,4,5,6,7,8,9,10

Table 2.1 is the list of user settings. The number of sensors is settable and FMG
data from the number of sensors are selected for training and predicting phases. The
number of samples is the number of samples taken for each gesture during the training
phase. The number of classes is the total number of gestures for the training phase.

2.2. Training Process

(b)

Figure 2.4. (a) Gesture number 1; (b) Gesture number 2

Before using the band module to evaluate their gesture, the patients need to
perform a “training” phase to tune the machine learning algorithm. After the training
phase, the patients can then perform the gestures that are properly trained and the
system is able to count and notify patients the predicted gesture.

At the start of the training phase, the patients first put the band on their forearm;
relax their forearm and keep that gesture for 3 seconds after the triggering training
phase for gesture number 1 (shown in Figure 2.4 (a)). In this prototype, the training
phase is triggered from a host PC through Bluetooth. A button can be added to allow the
patients perform the triggering themselves. Then they relax their forearm, and changes
their gesture, for example, make a fist (shown in Figure 2.4 (b)), and then keep the

gesture for 3 seconds after the triggering training phase for gesture number 2.

After the training phase is done, the algorithm is then able to predict the current

gesture number in real-time and present the predicted gesture number.

Chapter 3.
Hand-held User Interface

This chapter describes the user interface of the hand-held device used to control
the wearable feedback system, and to collect/process its results. In particular, this
chapter will introduce software implementation details and features. The objective of the
hand-held user interface is to provide real-time FMG data to the physician and
physiotherapist and to handle more hand gestures compared to home based
rehabilitation.

As described in the previous section, two alternative methods for the utilization of
the wearable band are made available: one is based on a host system, and one is
“stand-alone”. In the host-controlled solution, the user (physician or physiotherapist)
uses a tablet that collects all user information with a wireless (Bluetooth) interface and
performs all the necessary processing steps to guide the user through the rehabilitation

exercise.

In some cases though, it is not possible to assume that the users will have at
their disposal a tablet device and/or the ability to use it especially in home based
therapy. To complement the above strategy, an alternate strategy was introduced where
the band is used as a stand-alone device, and some degree of processing power is
embedded in the band by means of a small microcontroller with a local display. This
chapter describes the tablet-based software development related to the first solution
while Chapter 4 describes the microcontroller-based software development related to

solution 2.

3.1. Hardware/Software Platform Selection

Because the Android Operation System is open source® and covers a major
section of the smart phone/tablet market?, it was chosen as the reference software
development environment for this project.

Table 3.1. Main Hardware Specification
Operating System | Android Jelly Bean (4.3)
Display 7
Camera 3 Mega Pixels
Battery 4000mAh
Wi-Fi 802.11a/b/g/n 2,4 + 5GHz

The Samsung Galaxy Tab3 was chosen as the hardware platform for this project
because of its superior hardware feature. Its main hardware specifications are in Table
3.1.

3.2. Development Tools

APP1 APP1 APP1 APP1

APPLICATION FRAMEWORK

ADNROID
LIBRARIES RUNTIME
KERNEL
HARDWARD

Figure 3.1. Android Architecture

Figure 3.1 is the architectural diagram of an android system. The user interface
Application is running on the top level supported by an application framework in Android
os.

7 WA AENLANETER . N\
Figure 3.2. Android Development Tools

Figure 3.2 is a screen capture of Android Development Tools (ADT). In this
Integrated Development Environment (IDE), the developer uses Java-like language for
Android application development.

ADT is used in packaging the Python script, the supported library from Python for
Android (PY4A) and the Scripting Layer for Android (SL4A) into an Android Application.

It is also used to repackage the modified version of the GNU Octave for Android.

3.3. Major Software Components

3.3.1. SL4A

The first task that must be realized by the application software running on the
tablet is to access FMG data sent from the band module through Bluetooth. A high level

support for Android API is desirable for access functionalities such as Bluetooth. Once

10

the FMG data is appropriately collected on the host tablet, the system can focus more on

data representation and the prediction process.

SL4A brings scripting languages to the Android by allowing editing and executing
scripts and interactive interpreters directly on the Android device. These scripts have
access to many of the APIs available to full-fledged Android applications, but with a
greatly simplified interface. A number of scripting languages are supported by SL4a
including Python. Python is chosen to be the scripting language for this particular
application because of its popularity in the programming community and ease of use.

PY4A is a Python language support running on top of SL4A. The Python version
used in this project is 2.7.1. The debugging process for the python script development is

covered in Appendix A.

3.3.2. Webview

SL4A also provides support for web technologies to build a graphical user
interface for native applications. Such a method is called Webview 1% which is a view
that displays web pages. A HyperText Markup Language (HTML) file is created to
perform real time FMG data plotting and also to allow the user to trigger the training and
predicting phases of the classification process. The Webview and Python script

communicates through messages via SL4A.

3.3.3. Gnu Octave Application for Android

Gnu Octave® is an open-source software package for science computing and is
compatible with Matlab language. An Android version of Gnu Octave has been
developed by C.Champion™*2. For this project, a script is developed to communicate with
Python script and to train and predict on the FMG data.

3.3.4. Python Octave Communication

Comma-Separated Values (CSV) has been used as the reference format for the

communication between the band module and the user interface. In order to ease the

11

interfacing work between the band module and Android application, all messages are in
ASCII with the following format, with each Analog to Digital Convertor (ADC) value being

a maximum of 4 digits from 0 to 1023:

[ADC#1],[ADC#2],|[ADC#3],JADC#4],[ADC#5],|ADC#6],[ADC#7],[ADC#8]

—»C shared_file
C Android App] C GNU Octave D

—C shared_output >7

Figure 3.3. Android Application and Gnu Octave Interaction

As shown in Figure 3.3, once the data from the band module is received by the
tablet by means of the Bluetooth interface, it will be loaded on to the Gnu Octave
software through a file. Once the data is trained and starts predicting, the result will be
passed back to the python script through another file so that the Python script can then

pass the information to Webview for the user interface.

Table 3.2. Command list

Command name | Letter in file messaging
Data d
Train S
Predict P

Table 3.2 is the list of commands and the letter in the file messaging. The

following is the message format in the file to pass data from the Python script to Octave:

[Command][ADC#1], [ADC#2], [ADC#3], [ADC#4], [ADC#5], [ADC#6], [ADC#7],
[ADC#8],[Time Stamp]

12

The following is the message format in the file to pass data from Octave back to
the Python script:

[Command],[Predicted Class],[Time Stamp]

Note: time stamp format: YYYY-MM-DD_hh:mm:ss

13

3.4. Python Script

3.4.1. Start-up

e

Start Gnu Octave

Option menu for
number of sensors

Option menu for
number of samples

Option menu for
number of classes

Option menu for
Bluetooth devices
selection

[Start Main loop]

Figure 3.4. Python script start up flow chart

14

Figure 3.4 is the flow chart for the Android Application that is the result of the
described work. At the beginning, the application starts Gnu Octave, waits 2 seconds,

and then pops up a menu for the user to choose the relevant design options:

the number of sensors
the number of samples
the number of classes

AP w DN PRE

Bluetooth device (Band Module) selection

Only one Bluetooth device (Band Module) can be connected at once due to the
fact that Bluetooth is a point to point link network. Finally, the user interface starts with
real time data plotting, and options for training as well as predicting. Detailed user

settings are shown in Table 2.1.

15

3.4.2. Main loop

4»[Main Loop }

Check command
from Webview

s there

data from No
Yes
v
Get FMG data from
Bluetooth Delay 100ms

Send FMG data to
Octave with
command

Check result from
Octave

Send FMG data and
result to Webview

Figure 3.5. Python script main loop flow chart

Figure 3.5 describes the flow chart of the main loop in the Python script: the
script first checks if there are commands from Webview. The commands are train,
predict and quit. It then checks if Bluetooth data is available; if so, it gets FMG data from
Bluetooth; if not, it delays 100ms and goes back to the start of the main loop. If there is

Bluetooth data, it takes the data, sends the data to Octave with the command from

16

Webview. Next it checks the results coming back from Octave and finally it sends the

data to Webview with result from Octave.

3.5. HTML File for Webview

The goal of the HTML file is to provide a platform for not only displaying FMG
data and user feedback but also taking commands from the user. In order to change the
content of the HTML layout, Javascript is used to interact with the Python script via
SL4A.

3.5.1. Javascript Start-up

E

Init variables

Register SL4A
message callback
function

Enter message
loop

Figure 3.6. Javascript Start-up flow chart

Figure 3.6 shows the start-up sequence of the javascript: first of all, all variables
are initialized; and then the SL4A message call back function is registered; finally, the

main loop is entered.

17

3.5.2. Javascript Message Loop

Message
avaiable

Is this a data

Yes
message?
s this a user Update data
AVAY
info. message? i buffer for real-
time plotting
No
Update user
) information Plot data
Is this a start fes text box

message?

Reinitialize
variables

Figure 3.7. Javascript message loop flow chart

Figure 3.7 is the loop which javascript gets messages from or sends messages
to the Python script. There are a total of 3 commands: start, data and user information.
The start command re-initializes variables corresponding to user settings, the data
command is used to plot FMG data on the web page, and the information command

displays information to the user during the training and predicting phases.

18

3.6. Octave Script

Start

Init variables

main loop

Figure 3.8.

s‘command fi
reeading

Is it a class#1
raining command

Is it a class#2
raining command

<
w

Init variables

Write
confirmation
to output file

Train class#2

Train class#1

Start
predicting and
writing output

file

Write
confirmation
to output file

Octave script flow chart

19

Figure 3.8 is the flow chart of the Octave script running in GNU Octave on the
Android. After initialization of all the variables, it detects if there is information in the
command file from the Python script. If so, the command and data are parsed into
Octave and they are processed and the results are output back to the Python script via
the output file.

20

Chapter 4.

FSR Band Module

In this chapter, the FSR band module is introduced and details are covered on all
major hardware components, the software development environment and how firmware
is implemented. The objective of the band module is to provide a low-cost, low power
device which not only monitors the rehabilitation process of the patient; but also gives

instant feedback to promote more repetitive exercise.

4.1. Module Overview

OLED
Display

Arduino
Pro Mini

Battery &

25l Charging

v

Bluetooth

Figure 4.1. Band module block diagram

Figure 4.1 is the block diagram of the band module. There are five major
hardware components: an Arduino Pro Mini board, the band, an OLED display, a battery

and the Bluetooth module.

21

3.3% Switching regulatar symbal names
i do not correspond to actual pinout

W+ GND
LTC2531-3.2
v 5 1w wour B . T T 5T
BLUETOOT:' —g EMI voUTZ | 3 120
: 5 % I Rl ERZ GMD] GND]
-lo o 2 i LFo
- -2U SWITCH
T D ELT; -
il
Mote positions of T and GHD
R far programmin GHO
prog 0 SHD
ARDUINO_FRO_MINI_SY/16MHEZ
1 24 g] ro
- o Raw [Ei—<EEw]
B R N = 5
DISPLAY FSR_BAND_HEADER R1
1 =] 4 il 1
GHD ——) = GMND YT - R3
% %—(g) @ A3 fg &) (3 -] % 9
- 7 2] “Ti =2
D10 _SO 4 AR a1 1=
05 p——0) [0S 5 A0 <] -1 RS
o8 p——C 13 -1
5 11 14 1= RE
e 50 02— 8 A [1=
_—Om [, g *10 X0 -] a7
—E5
[Fap—44 a4 a7 (AL_G)] Rg
25 AS B (2 |

R1 through RS are 22k Resistors EHO
to form a resistive voltage divider
for analog F5R readings

Figure 4.2. System Schematic*3

Figure 4.2 is the schematic of the prototype system. The component in the center
of the schematic is Arduino Pro Mini. The connectors on the left are connector for
Bluetooth and connector for display. The connector on the bottom is the connector for
the band. The circuit on the right is the circuit for FSR sensors. And on the top, there are
circuits for voltage regulator and battery. The following components/modules are directly
powered by 3.7V from the battery: the display, the Bluetooth module, the switching
regulator and the LED. The Arduino Pro Mini is powered by 3.3V from the output of the
switching regulator. The FSR sensors are powered by 3.3V from the Arduino Pro Mini.

4.1.1. FSR Sensor Band

The band is made of FloTex foam with Velcro so that the user can easily wear it
and take it off. Also the flexibility of the band helps holding the FSR sensors against the
skin on the forearm in order to obtain good quality FMG signals. The 8 FSR sensors are

placed on the band at equal distance so that there is no wearing preference.

Each FSR sensor is composed of a piezoelectric plate which changes its

resistance when force is applied to its surface. It is light weight and can be embedded

22

into textiles 4 for wearable applications. The signal generated by the FSR sensor is
called the FMG signal which is proven to be useful in human limb muscle monitoring

including lower extremities [and upper extremities 16,

In Figure 2.2, a band made of FloTex is used to group 8 FSR sensors
(embedded into the material) so that it can be worn at any location on the forearm of the
patient. The band is holding the surface of the sensors against the skin in such way that
contraction or relax of the muscle on the sensor area can be converted into a FMG
signal.

In Figure 4.2, the circuit diagram of 8 FSR sensors is shown. Each FSR circuit is
composed of a 22kOhm resistor in series with the FSR to form a voltage divider. Signals
ADC 1 to ADCS8 are output to the analog to digital pins on an embedded microcontroller
chip that is used for signal processing in the digital domain. When force is applied to the
surface of an FSR sensor, the ratio of the voltage divider is increased due to the fact that
the resistance of the FSR is decreasing. Vice versa, when force is taken away from the
surface of the FSR sensor, the ratio of the voltage divider is decreased due to the fact
that the resistance of the FSR is increasing. As the result, the ADC reading of the
voltage divider changes accordingly.

4.1.2. Arduino Pro Mini

23

Table 4.1. Hardware summary

Microcontroller ATmega328
Operating Voltage 5V

Input Voltage 5V-12V
Digital I/O Pins 14

Analog Input Pins 6

DC Current per I/O Pin | 40mA
Flash Memory 32kB
SRAM 2kB
EEPROM 1kB

Clock Speed 16MHz

With the idea of low-cost and low power hardware in mind, an Arduino Pro Minil*"]
board is chosen as the main board for the band module. As a very popular fast
prototyping hardware platform, Arduino Pro Mini is very competitive in terms of
dimensions (0.7"x1.3”) compared with other models in the family. Table 4.1 is the
hardware summary of the Arduino Pro Mini board. Its 8MHz clock handles the computing
power needed for this application.

4.1.3. OLED Display

- EAEy £ e ‘
g : . ClkDC Rst . 3v3 Gnd

'EAY

READY

Figure 4.3. OLED graphic display

Figure 4.3 is the monochrome 0.96” 128x64 OLED graphic display® from
Adafruit. This display is chosen not only because of its small dimensions (about 1"

diameter), but also because it is very readable due to the high contrast of the OLED

24

display. No backlight is required because the display makes its own light. This reduces
the power required to run the OLED and is why the display has such high contrast.
There are a total of 8 pins on the OLED module: “Data”, “Clk”, “SA0”, “Rst” and “CS” pins
are for Serial Peripheral Interface (SPI) communication; and ‘Vin’ and ‘Gnd’ pins are for

power.

4.1.4. Battery

For the power source of the system, the battery must be very light and high
density in power. A polymer lithium ion battery®*® is used for powering the system. It is
only 22g with a power output from each cell of 3.7V at 1000mAh. With the assumption
that the Arduino Pro Mini draws 10mA current and OLED Light-Emitting Diode (LED)
draws 20mA current, the system (5V power supply) should be able to run at least 24

hours. After that, the battery needs to be recharged.

4.1.5. Bluetooth Module

In order to keep a reliable and robust wireless link between the band module and
hand-held user interface, due to the fact that most of the tablet computer comes with
Bluetooth support, a Bluetooth module is needed. The HC-06 Bluetooth module®® can
only work in Salve mode and accepts only 3.3V on TX and RX pins. The modem works

as a serial (RX/TX) pipe with a serial stream from 2400 to 115200bps.

25

4.2. Firmware Development tools

ful: Doy Tk Wacws Hop
R |- LN = B =l e P] b e S SR AP
Pl p o wou kWL e T ke g il W B TS T S ATRE an Al XELSONEE)

i [-

EI.
I — s e e [
St W anger e e

e KT 01 S.vmae Pk | Pt 2B

Figure 4.4. AVR Studio 6

Figure 4.4 is the layout of the Atmel IDE, the AVR Studio 62!, which is used for
developing firmware for Atmega328P on the band module.

Figure 4.5. Atmel-ICE

26

Ateml-ICE®”? (shown in Figure 4.5) is the debugger/programmer used for

developing firmware for Atmega328P.

4.3. Atmega328P Firmware

4.3.1. Graphic Library for OLED Display

U8glib is a library with support of SSD1306, the Dot Matrix OLED
Common Driver with Controller used on Monochrome 0.96" 128x64 OLED graphic
display from Adafruit. The library supports AVR, ARM and Arduino platforms.

To program the OLED display using this library, there are 3 main steps:

1. Call an U8glib constructor
2. Add the “picture loop”
3. Write a graphics “draw” procedure

Call an U8glib constructor. u8g_dev_ssd1306_adafruit_128x64 hw_spi is used
as the parameter for function u8g_InitHWSPI().

Add the “picture loop”. draw_initial() function is used at the start of the program to
display the project name and author information, when the program is in the main loop,
the draw_lda() function is called to display the current state of the program (IDLE,

training and predicting) with the corresponding result.

27

4.3.2. Start-up

e

Init microcontroller

Init OLED Display

Init ADC

Init UART

Display startup
message

[Enter main Ioop]

Figure 4.6. AVR firmware start-up flow chart

Figure 4.6 is the flow chart of the start-up process of the firmware. At first, the
microcontroller is initialized, then the OLED graphic display library is initialized, after that,
the ADC and Universal Asynchronous Receiver/Transmitter (UART) are initialized and

the start-up message is displayed before entering the main loop.

28

4.3.3. Main loop

(Start of the main
K loop

Yes

s time
counter <
100ms

No

1

Check UART input
for command

If training for
class#1 received,
init LDA and start

training

If training for
class#2 received,
start training

If training for
class#2 is done,
start predicting,

output the result to
UART

Figure 4.7. AVR firmware main loop flow chart

29

Figure 4.7 is the flow chart for the main loop in the firmware. At the start of the
main loop, a timer counter is checked to make sure the rest of the routine is executed
every 100ms. After that, if the timer check shows 100ms has passed, firmware checks
the UART input for the user command. Then if command training for class number 1 is
received, the LDA library is initialized and the training is started. Also if command
training for class number 2 is received, the training is started. After training for class
number 2 is done, predicting is started and the result is output to both the UART and the

OLED graphic display.

More detailed description on LDA C code is covered in Chapter 5.

30

Chapter 5.
Linear Discriminate Analysis (LDA)

In this chapter, LDA is introduced with details on its theory, C language
implementation and an improvement by using Crout algorithm to calculate matrix
determinant. LDA is originally chosen as the classification algorithm for this application
because it's less complex compared to other classification algorithms, such as
Supported Vector Machine (SVM) and Extreme Learning Machine (ELM). Less
complexity helps lower the cost of implementing the algorithm on a low-cost, low power

microcontroller system.

5.1. Theory

LDA is related to Analysis of Variance (ANOVA) and Principal Component
Analysis (PCA) &, It is used in statistics, pattern recognition and machine learning. It is
the result of a Maximum A Posteriori probability (MAP) estimate with the assumption that
the classes are normally distributed with the same variance 2. It was originally
proposed by R.Fisher 24 in his research solving plant taxonomic problems to maximize
between class mean while minimizing within class variance without the assumptions of

normal distribution and equal variance.
5.2. CLanguage Implementation

The algorithm used in this project was originally written by W.Dwinnel 2 in

Matlab. Then it was converted to C language by F.Campi and A. Shamshuddin 6!,

31

Start

Init variables

Set prior probability

Calculate pooled
covariance matrix

Invert the pooled
covariance matrix

Calculate linear
discriminate
coefficients

Output coefficients

Figure 5.1. Calculation for linear discriminate coefficients flow chart

Figure 5.1 is the flow chart for calculating the LDA coefficients: at the start of the
function, all global variables are initialized with their proper value; then prior probability
for each class is set to be equal; after that, a pooled covariance matrix is calculated and
inverted; and finally linear discriminate coefficients are calculated and output to the main

loop.

32

e

Calculate the
matrix of minors of
input matrix A

Turn the matrix of
minors into matrix
of cofactors

Calculate adjugate
matrix

Multiply adjugate
matrix by 1/det(A)

Output inverted
matrix

Figure 5.2. Matrix inversion flow chart

Figure 5.2 is the flow chart for matrix inversion: first of all, the matrix of minors of
input matrix A is calculated; then it is turned into a matrix of cofactors; then the adjugate
matrix is calculated and multiplied by 1/det(A) (det(A) is the determinant of matrix A);

and the product is the inverted matrix.

33

5.3. CROUT Algorithm for Matrix Determinant

Go to ne

Determinant(float
A[DIM][DIM],int

size)

Is the last
column?

v

No

h 4

xt column . .
Calculate minor matrix

for all elements of the
first row

det += sign * (A[O][col] *
Determinant(m_minor,size-1));
sign = -1*sign;

Figure 5.3. Laplace algorithm flow chart

34

Yes

[Return det)

Start

LU decompose the
input matrix

Use LU decomposed
matrix for back
substitution

Use LU
decomposed matrix
for matrix inversion

Output inverted
matrix

Figure 5.4. Crout algorithm flow chart

Originally the C code used the Laplace formula (Figure 5.3), a recursive method
to get the determinant of a matrix. Improvement is made when using the Crout algorithm
(Figure 5.4) to first decompose the matrix to upper and lower triangular matrices and
then calculate their determinant by multiply all its diagonal elements. The Crout
algorithm is non recursive therefore the number of calls to the function is reduced to get
the inverse of a matrix especially when class numbers are high. In the Crout algorithm C
implementation?”, a singular matrix (non invertible) can be detected and the minimum

matrix value is defined to avoid overflow.

More details on the difference between the Crout algorithm and the Laplace

formula in terms of performance during profiling are covered in the next chapter.

35

Chapter 6.
Profiling on Intel Galileo Gen2 Board

Due to the maximum 6 FSR sensor allowed during training with the stand-alone
band module, a more powerful microcontroller (32-bit versus 8-bit) is preferred for
training and predicting with more FSR sensors. In this chapter, profiling work on an Intel
Galileo Gen2 board is introduced including a Linux profiling environment, GProf and
profiling results. The objective of the profiling work is to evaluate the performance of the
LDA algorithm on a 32-bit microcontroller with a larger data set (class number, sensor

number and sample per class number)

In January 2015, on an international Consumer Electronics Show (CES), Intel
presented its Intel Curie Modulel?® designed for compact wearable technologies. In order
to evaluate its performance as our next generation hardware platform, but not wanting to
wait until it's available for the development community, an Intel Galileo Gen2 board® is

chosen because it has the same Quark microcontroller as the Curie Module.

—< DIGLTAL(P

@D Gatieo

. DESIGNED
IN - N

Figure 6.1. Intel Galileo Gen2 Board

36

Figure 6.1 is the Intel Galileo Gen2 board. The following are the main hardware

features:

400MHz 32-bit Intel Pentium Instruction Set Architecture (ISA)-compatible
processor 0 16 KBytes on-die L1 cache

512 KBytes of on-die embedded Static Random-Access Memory (SRAM)
10/100 Ethernet connector
USB 2.0 Host connector

USB Device connector, used for programming

6.1. Linux Profiling Environment

(inteD Galileo

Figure 6.2. Galileo System Diagram

In order to have a development environment for the Intel Galileo Gen 2 board, a

Debian Linux distribution specifically for the Galileo Gen 2 board called Galileo Debian is

used. This project provides a SD card image of the Debian Wheezy for the Intel Galileo

Gen 2 board. It uses the Linux 3.8.7 kernel that was released for this board, but is

otherwise a full Debian system with C language development/debug tools such as the
GNU Compiler Collection (GCC) B% GNU Project Debugger (GDB) BY and gprof [#2],

Once the Linux system is up and running, the developer uses his host PC to remotely

log into the Linux system using Secure SHell (SSH) as shown in Figure 6.2.

37

6.2. Gprof

Gprof is a Unix tool for application performance analysis. When an application is
compiled with GCC, special instrumentation code is inserted by adding ‘-pg’ option. The
sample data is stored in ‘gmon.out’ and can be analyzed later by Gprof. With the ‘-s’
option, several output files can be combined by Gprof for cumulative analysis on several

runs of the application.

The output of Gprof are in two parts: flat profile and text call graph. The flat
profile provides total execution time of each function and the percentage of the total
running time. The functions list in flat profile is sorted by percentage. And the text call
graph shows, for each function, who called it (parent) and who it called (child

subroutines).

6.3. Profiling results

Table 6.1. GProf results (sensor: 8, sample/class: 100)
Laplace formula | CROUT
Execution time (microseconds) | 830 0
Number of calls (8 sensors) 623521 1

Note: 0in the second row and third column means the execution time for dett() is less than 0.01ms.

Table 6.1 is the GProf results comparing the performance of the LDA by using the
original Laplace formula and the CROUT algorithm for matrix determinant. In terms of
execution time, CROUT algorithm takes less than 0.01ms versus 830 ms from Laplace
formula for 8 sensors and 100sample/class. In terms of number of calls, the Crout
algorithm takes only 1 call versus 623521 from the Laplace formula. This optimization
speeds up the training stage of the LDA algorithm.

38

Chapter 7.
Conclusions

In this MENng project, software for a wearable feedback system has been implemented.
This system helps stroke patients, their physicians and their physiotherapists during the

rehabilitation process.

There are two hardware platforms: an Android tablet and a band module with
microcontroller in it. Two system configurations are proposed: one is to use the band
module alone in patients’ home while they are doing their daily exercises, and the other
one is to use both band modules with patients and Android application on a tablet with

their physician or physiotherapist to present detailed information.

In the Android application, a Python script is developed to get data from the band
module, display such data on the tablet and communicate with the Gnu Octave
application on the same tablet for real-time gesture prediction. A HTML file is developed
for real-time data plotting and presenting user information. The python script and HTML
file are packed into a stand-alone Android application for ease of use.

In the band module, a firmware is developed to get data from the FSR sensors, send
data through Bluetooth module to the tablet, use LDA algorithm for training and gesture
predicting. The LDA algorithm is presented and an optimization is made to reduce the

number of calls and time consumption.

Finally, the performance of LDA algorithm is profiled on an Intel Galileo Gen2 board to
evaluate for the next generation hardware platform of this system. With more powerful
hardware, more information can be processed by the LDA algorithm such as more

sensor number, more sample number and more class number.

39

Chapter 8.
Future Work

In this chapter, future work is introduced. The objective of this future work is to
not only improve the existing system in terms of performance, but also to reduce the

complexity of the current software framework.

8.1. Support more FSR sensors

It is possible to put a greater number of smaller FSR sensors on to the band so
that, with a much more powerful microcontroller on the band module, detailed

information from different muscle groups can be used in gesture training and predicting.

8.2. Compile LDA C code in Android Native Development
Kit (NDK) for PY4A

The complicity of the current combination of the Android Application and the Gnu
Octave for Android solution can be greatly reduced by compiling the LDA C code in
Android NDKE®! as a module for PY4A and called directly in the Python script.

40

References

10.

11.

Centers for Disease Control. Outpatient rehabilitation among stroke survivors: 21
states and the District of Columbia, 2005. MMWR Morb Mortal Wkly Rep.
2007;56:504-507.

Management of Stroke Rehabilitation Working Group.VA/DaD clinical practice
guidelines for the management of stroke rehabilitation.
http://www.rehab.research.va.gov/jour/10/479/pdf/VADODcliniaclGuidlines479.pd
f. Accessed September 20, 2011.

Duncan P, Sullivan K, Behrman A, et al. Body-weight-supported treadmill
rehabilitation program after stroke. N Engl J Med. 2011;364:2026-2036.

Duncan P, Studenski S, Richards L, et al. Randomized clinical trial of therapeutic
exercise in subacute stroke. Stroke. 2003;34:2173-2180.

Wolf SL, Winstein CJ, Miller JP, et al. Effect of constraintinduced movement
therapy on upper extremity function 3 to 9 months after stroke: the EXCITE
randomized clinical trial. JAMA. 2006;296:2095-2104.

Wolf SL, Thompson PA, Morris DM, et al. The EXCITE Trial: attributes of the
Wolf Motor Function Test in patients with subacute stroke. Neurorehabil Neural
Repair. 2005;19:194-205.

Xiao ZG and Menon C (2014) Towards the development of a wearable feedback
system for monitoring the activities of the upper-extremities, Journal of
Neuroengineering and Rehabilitation, Vol.11, No.2, 13pp.

“Android Open Source Project” Internet: https://source.android.com/, [Apr. 17%,
2015].

“Smartphone OS Market Share, Q4 2014” Internet:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp, [Apr. 17, 2015].

“Webview | Android Developers” Internet:
http://developer.android.com/reference/android/webkit/WebView.html, Apr. 3'9,
2015 [Apr. 5, 2015].

“GNU Octave” Internet: https://www.gnu.org/software/octave/, [Apr. 5", 2015].

41

http://developer.android.com/reference/android/webkit/WebView.html
https://www.gnu.org/software/octave/

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

C. Champion. “Octave — Android Apps on Google Play” Internet:
https://play.google.com/store/apps/details?id=com.octave&hl=en, Feb. 27", 2015
[Apr. 5", 2015].

T. Frison. “Re: Band module for Dong”. Personal Communication (Apr. 8", 2015).

J. Meyer, P. Lukowicz, and G. Tr oster. Textile pressure sensor for muscle
activity and motion detection. In ISWC 2006: Proceedings of the 10th IEEE
International Symposium on Wearable Computers, October 2006.

P. Lukowicz, F. Hanser, C. Szubski, and W. Schobersberger. Detecting and
interpreting muscle activity with wearable force sensors. In Pervasive 2006,
pages 101-116, May 2006.

Ogris, G., Kreil, M., Lukowicz, P.: Using FSR based muscle activity monitoring to
recognize manipulative arm gestures. In: Int. Symp. on Wear. Comp. (Octover
2007).

“Arduino Pro Mini” Internet: http://www.arduino.cc/en/Main/arduinoBoardProMini,
[Apr. 171, 2015].s

“Monochrome 0.96" 128x64 OLED graphic display” Internet:
https://www.adafruit.com/products/326, [Apr. 51, 2015].

“Polymer Lithium lon Battery - 1000mAh” Internet:
https://www.sparkfun.com/products/339, [Apr. 51, 2015].

“Arduino with HC-05 bluetooth module” Internet:
http://www.martyncurrey.com/tag/hc-05/, Oct. 27", 2014 [Apr. 5", 2015].

“Atmel Studio 6 - The Integrated Development Environment” Internet:
http://atmega32-avr.com/download-avr-studio-6/, Oct 30", 2012 [Apr. 5", 2015].

“Atmel-ICE” Internet: http://www.atmel.com/tools/atatmel-ice.aspx, [Apr. 5,
2015].

“Linear discriminant analysis” Internet:
http://en.wikipedia.org/wiki/Linear_discriminant_analysis, Mar. 28", 2015 [Apr.
5, 2015].

R.A. Fisher. “The Use of Multiple Measurements in Taxonomic Problems”.
Annals of Eugenics, 7: 179-188, (1936).

W. Dwinnell. “Data Mining in MATLAB: Linear Discriminant Analysis (LDA)".
Internet: http://matlabdatamining.blogspot.de/2010/12/linear-discriminant-
analysis-lda.html. Dec. 11, 2010 [Dec 4, 2014].

42

https://play.google.com/store/apps/details?id=com.octave&hl=en
https://www.adafruit.com/products/326
https://www.sparkfun.com/products/339
http://atmega32-avr.com/download-avr-studio-6/
http://en.wikipedia.org/wiki/Linear_discriminant_analysis
http://matlabdatamining.blogspot.de/2010/12/linear-discriminant-analysis-lda.html
http://matlabdatamining.blogspot.de/2010/12/linear-discriminant-analysis-lda.html

26

27.

28.

29.

30.

31.

32.

33

. F. Campi, A. Shamshuddin. “LDA C Code”. Personal Communication (Jan 20™,
2015).

Internet: http://algorithm.narod.ru/ln/crout.c, [Dec 4, 2014].

“Intel® Curie™ Module: Unleashing Wearable Device Innovation” Internet:
http://www.intel.com/content/www/us/en/wearables/wearable-soc.html, [Apr. 17",
2015].

“Intel® Galileo Gen 2 Development Board—Empower Your Prototype” Internet:
http://www.intel.com/content/www/us/en/do-it-yourself/galileo-maker-quark-
board.html, [Apr. 5, 2015].

“GCC, the GNU Compiler Collection” Internet: https://gcc.gnu.org/, Mar. 20",
2015 [Apr. 5™, 2015].

“GDB: The GNU Project Debugger” Internet: https://www.gnu.org/software/gdb/,
Feb. 20", 2015 [Apr. 5™, 2015].

“GNU gprof” Internet: https://sourceware.org/binutils/docs/gprof/, [Apr. 51, 2015].

. “Android NDK” Internet: https://developer.android.com/tools/sdk/ndk/index.html,
[Apr. 17", 2015].

43

http://algorithm.narod.ru/ln/crout.c
http://www.intel.com/content/www/us/en/do-it-yourself/galileo-maker-quark-board.html
http://www.intel.com/content/www/us/en/do-it-yourself/galileo-maker-quark-board.html
https://gcc.gnu.org/
https://www.gnu.org/software/gdb/
https://sourceware.org/binutils/docs/gprof/

Appendix A.

Development resources

Flot: Attractive JavaScript plotting for jQuery

http://www.flotcharts.org/

Gnu Octave for Android

https://github.com/corbinlc/octave4android/commit/b3bb7f6de607a99840f8b4e6d
d40ae12460d2563

Python script debug process

Edit python script
on PC

Upload Python
script to Android
Tablet

Run Python script
with terminal in
SL4A

Check execution
result

Figure A.1. Debug process for Python script

Figure A.1 is a typical debug process for Python scripts: the script is edited on a
host PC first. Then by using ADT, the script is uploaded onto the Android device,
and then it is executed with a terminal so that debug/error message can be
displayed. At the end of the process, either the execution is successful or it exits
with debug/error messages that can eventually help track down problems.

U8glib setup in AVR Studio 6
To properly set up AVR Studio for u8glib, please follow the following link:
https://code.google.com/p/m2tklib/wiki/as6

44

Appendix B.

Source Code

“dump-py”

Python script for FSR sensor system
Python 2.7, Android 4.0.3

System overview:
Arduino + BT shield <--> Python for Android <--> web view

Python for Android --> file in /storage/emulated/0/shared file -->
ctave script

H= O #= % S S S e S

Python for Android <-- file in /storage/emulated/0O/shared output <--
Octave script

#

Dong Yang, 2015-1-2

import android
import time

import datetime
import random
import json

import os

import sys, string
import socket
import select

#DEBUGiPYTHON70CTAVE = True
DEBUG_PYTHON_OCTAVE = False
octavelnstalled = True

DATA NUM = 8

buffer for real time plotting

PLOT DATA = []

data channel number supported

PLOT DATA NUM = DATA NUM

prepare matrix for data plotting

for i in range (PLOT_ DATA NUM) :
PLOT_ DATA.append([])

total points in graph

TOTAL POINTS = 30

feedback message length from Octave

OCTAVE OUTPUT SIZE = 19

#fmt = '$Y-%m-%d SH:%M:%S'
time stamp format

fmt = 'SH:3M:%S!

file handle

f =0

45

shared foler = '/storage/emulated/legacy/'

file to octave = 'shared file'
file from octave = 'shared output'
CMD = 'a'

if DEBUG PYTHON OCTAVE:

webviewDir = 'file://'+shared foler+'sl4a/scripts/graph.html’
else:

webviewDir =
'file:///data/data/com.android.python27/files/graph.html"

sensorNumOpt = ["1'", "2, "3 "w4m nwor g ngmn ngng
sensorNumOptInt = range(l, 8+1)

sensorNumDefault = 7

sampleNumOpt = ["8","16™,"32"]

sampleNumOptInt = [8,16,32]

sampleNumDefault = 0

classNumOpt = ["2", "3", m4m w5 g ey g
classNumOptInt = range (2, 8+1)

classNumDefault = 0

def get device list(droid):
droid.dialogCreateHorizontalProgress('Search For Bluetooth
Devices', 'Progress', 100)
droid.dialogShow ()

device list = []

droid.eventRegisterForBroadcast ("android.bluetooth.device.action.FOUND"
, True)
droid.bluetoothDiscoveryStart() # start BT discovery
timeout = 0
while timeout<2000:
timeout = timeout + 1
droid.dialogSetCurrentProgress (timeout/20)
event = droid.eventPoll(l) .result # new device detected!
if not event:
continue
print event

if event[0] !'= None:
bt str = event[0]['data']
if bt str.find('null')>=0:
print ' [WARNING]: replace null with None in device
name'
print 'original:', bt str
bt str = bt str.replace('null', 'None')

print 'new: ', bt str
device list.append(eval (bt str))
else:
break

droid.dialogDismiss ()

46

droid.eventUnregisterForBroadcast ("android.bluetooth.device.action.FOUN
Dll)
return device list

def cleanUpExit():
global octavelInstalled

print octavelnstalled
if octavelnstalled:
clean up
file open failure = False
try:
f = open(shared foler+file to octave, 'w', 0)
except IOError:
print 'File open failed'
file open failure = True

if not file open failure:
f.close()
else:
sock.close()
sock2.close()

sys.exit ()

def getUserChoice(title, options, defaultNum, positive text):
droid.dialogCreateAlert(title)
droid.dialogSetSingleChoiceltems (options, defaultNum)
droid.dialogSetPositiveButtonText (positive text)
droid.dialogShow ()
r = droid.dialogGetResponse () .result
r = droid.dialogGetSelectedItems () .result[0]
droid.makeToast ("%s: %s" % (title, options[r]))
while True: # Wait for events from the menu.
response=droid.eventWait (10000) .result
if response==None:
break
if response["name"]=="dialog":
break
return r

droid = android.Android()

if not DEBUG_PYTHON_OCTAVE:

octaveName = ""
octaveVer =
r = droid.getPackageVersion("com.octave')
if r.error == None:

octaveName = r.result
ver = droid.getPackageVersionCode ("com.octave'™)
if r.error == None:

octaveVer = r.result

a7

droid.makeToast ("Octave Packet Name: %s Version: %s" % (octaveName,
octaveVer))

if octaveName!="" and octaveVer!="" and octaveName'!=None and
octaveVer !'=None:
droid.startActivity("android.intent.action.MAIN", None, None,
None, False, 'com.octave', 'com.octave.octaveMain')
else:
octaveInstalled = False

if octavelnstalled:
try:
f = open(shared foler+file to octave, 'w', 0)
f.close()
except IOError:
print 'File open failed'
else:
UDP IP UBUNTO = "192.168.56.102"
UDP_IP RCV = "192.168.56.101"
UDP_PORT = 12345
UDP_PORT RCV = 12346

sock = socket.socket (socket.AF INET, # Internet
socket.SOCK_DGRAM) # UDP

sock2 = socket.socket (socket.AF INET, # Internet
socket.SOCK_DGRAM) # UDP
try:
sock2.bind ((UDP_IP RCV, UDP_PORT RCV))
sock2.setblocking(0)
except socket.error, e:

print e
sensorNum = 4
sampleNum = 5
classNum = 6

if not DEBUG PYTHON OCTAVE:

sensorNumInt = getUserChoice ("Sensor Number", sensorNumOpt,
sensorNumDefault, "Conitnue')

sensorNum = sensorNumOptInt[sensorNumInt]

sampleNumInt = getUserChoice("Sample Number", sampleNumOpt,
sampleNumDefault, "Conitnue™)

sampleNum = sampleNumOptInt [sampleNumInt]

classNumInt = getUserChoice("Class Number", classNumOpt,
classNumDefault, "Conitnue')

classNum = classNumOptInt[classNumInt]

droid.toggleBluetoothState (True) # turn on bluetooth
d list = get device list(droid)
if d list == []:

droid.makeToast ("No Bluetooth Device Found, Exit")
cleanUpExit ()

48

dev_list = []
for d in d list:

dev_list.append("Name: %s, Address: %s" %
(d["android.bluetooth.device.extra.NAME"],
d["android.bluetooth.device.extra.DEVICE"]))

devNum = getUserChoice("Bluetooth Device List", dev_list, 0, "Connect")
deviceName = d list[devNum] ["android.bluetooth.device.extra.NAME"]

deviceAddr = d list[devNum] ["android.bluetooth.device.extra.DEVICE"]

ret = droid.bluetoothConnect ('00001101-0000-1000-8000-00805F9B34FB",

deviceAddr)
if ret.error == None:
droid.makeToast ("Bluetooth Device (%s) Successfully Connected" %
deviceName)
else:

droid.makeToast ("Bluetooth Device (%s) Connect Failed, Exit" %
deviceName)
cleanUpExit () ;

droid.webViewShow (webviewDir)
time.sleep(2)

send start info to webview

da={}

da['name'] = 'start'
da['sensorNum']=sensorNum
da['sampleNum']=sampleNum
da['classNum']=classNum

droid.eventPost ("respond",json.dumps (da))

while True:
datai = []
cpos = 0
check data from BT
if droid.bluetoothReadReady () .result == True:
try:
MESSAGE = str(droid.bluetoothReadLine () .result)
except UnicodeEncodeError:
print "UnicodeEncodeError"
continue
process BT data
da = MESSAGE.split(',');
if len(da)==8 and da[0]'="":
for i in range (DATA NUM) :
try:
datai.append(int(da[i]))
except ValueError:
print da

d = datetime.datetime.now()

d string = '"$s:%6d\r' % (d.strftime(fmt),d.microsecond)
#print datai, d _string

49

initialization

if CMD=='"a':
datai[0] = sensorNum
datai[l] = sampleNum
datai[2] = classNum

if octavelInstalled:
file open failure = False
try:
f = open(shared foler+file to octave,
except IOError:
print 'File to Octave open failed'
file open failure = True

1

w', 0)

if not file open failure:

write BT data to file
f.write("%c%4d,%4d," % (CMD, datai[0], datai[l]))
f.write("%4d, %4d," % (datai[2], datai[3]))
f.write("%4d, %4d," % (datai[4], datai[5]))
f.write("%4d,%4d," % (datail[6], datail[7]1))
f.write(d string)
f.write("\r");
f.close()

else:

try:

sock.sendto(CMD, (UDP_IP UBUNTO, UDP_PORT)) ;
for i in range (DATA NUM) :
sock.sendto("%4d," % datai[i], (UDP_IP UBUNTO,
UDP_PORT))
if i==DATA_NUM—l:
sock.sendto(d string, (UDP_IP UBUNTO,
UDP_PORT)) ;
except socket.error, e:
print e

if CMD=='s' or CMD=='t' or CMD=='r':
CMD = 'd'

from octave failure = False
if octavelnstalled:
try:
f = open(shared foler+file from octave, 'r', 0)
except IOError:
print 'File from Octave open failed'
from octave failure = True

if not from octave failure:

get Octave result from file

f.seek (0, os.SEEK_END)

size = f.tell()

if (size>=OCTAVE_OUTPUT_SIZE):

try:

f.seek (-OCTAVE OUTPUT SIZE, os.SEEK END)
except IOError:

from octave failure = True

50

rline = f.readline()

if len(rline) !'= OCTAVE OUTPUT SIZE:

from octave failure = True
else:
from octave failure = True
else:
try:

rline, svr_info = sock2.recvfrom(1024) # buffer size is
1024 bytes

except socket.error, e:
from octave failure = True

if not from octave failure:
#print rline

c = rline[0]
rs = rline[l:].split (', ")
try:

num = int(rs[0])
except ValueError:
print rs
if c=="c':
Ccpos = num
elif c=='s"':
da = {}
da['name'] = 'msg'
da['data'] = 'Training for Class#'

+ str(num+1)

droid.eventPost ("respond", json.dumps(da));

elif c=="t":
da = {}
da['name'] = 'msqg'

da['data']l] = 'Class#' + str(num) +

' Done!'

droid.eventPost ("respond"”, json.dumps(da)) ;

elif c=='a':
CMD = 'd'
scape this round
continue
elif c=="x":
break

if octavelInstalled:
f.close()

send result to webview
if CMD!="a' and len(datai)>0:
display results
da={}
da['name'] = 'data'
da['cp']=cpos
da['wh']=datai
droid.eventPost ("respond",json.dumps (da))

e = droid.eventWaitFor ('check', 100).result
if e==None:

continue
ei = eval(e['data']l):;

51

if ei['name']=="train next':

CMD = 's'
if ei['name']=="train current':
CMD = 'r'
elif ei['name']=='predict':
CMD = 't'
exit if user clicked quit
elif ei['name']=="quit':
CMD = 'x'

cleanUpExit ()

“graph.html”

<html>
<head>
<title></title>
<lI-=
<script language="javascript" type="text/javascript"
src="jquery.min.js"></script>
<script language="javascript" type="text/javascript"
src="7jquery.flot.min.js"></script>
-—>
<script language="javascript" type="text/javascript"
src="file:///data/data/com.android.python27/files/jquery.min.js"></scri
pt>
<script language="javascript" type="text/javascript"
src="file:///data/data/com.android.python27/files/jquery.flot.min.js"><
/script>
<!-— (c¢) 2011 Emant Pte Ltd -->
</head>
<body>
<h1>FSR Graph</hl>
<div id="egraph"
style="width:500px;height:300px;"></div>
Current Parameter: <ul id="pa">
<hl>Current Class: <hl id="cp"/></hl>
<div>
<button id="Quit" onClick='quit() ;'
style="height:50px; width:100px">Quit</button>
<button id="Train Next"
onClick="'startTrainNext() ;' style="height:50px; width:100px">Train
Next</button>
<button id="Train Current"
onClick="'startTrainCurrent();' style="height:50px; width:100px">Train
Cur</button>
<button id="predict" onClick='startPredict() ;'
style="height:50px; width:100px">Predict</button>
</div>
<textarea id="msgTextBox" cols="30" rows="1"
style="height:50px; width:400px; font-size: 2em; font-weight: bold;
font-family: Verdana, Arial, Helvetica, sans-serif; border: 1lpx solid
black"></textarea>
<script type="text/javascript">

var data = [];

var res = [];

var total data points = 30;
var data num max = §;

var data num = §;

var timerOn = 0;

var timerInterval = 100;

var myFlag = true;
var droid = new Android() ;

var options = {

53

series: {

shadowSize: 0 // Drawing is faster
without shadows

},

yaxis: {
min: O,
max: 1024

},

xaxis: {
show: false

}

};

// initialize matrix for data plotting
for (var i=0;i<data num;i++) {

data[i] = [I];

res[i] = [];

}

function getBtData (wh) {
for (var i=0; i<data_num; i++) {
if (data[i].length >
total _data_points)
data[i] =
data[i] .slice(1);

data[i] .push(wh[i]) ;

// Zip the generated y values
with the x values
res[i] = [];
for (var j = 0; j <
data[i] .length; ++j) {
res[i] .push([],
data[i] [3]11)

}

return res;

}

var display = function(result) {
var json_data = eval(" (" + result.data +
"))
if (json_data.name=='data') {
if (myFlag) {
$.plot($("#egraph"),
getBtData(json_data.wh), options);

document.getElementById("cp") .innerHTML = json_data.cp;
}

} else if(json_data.name=='msg') {

document.getElementById ("msgTextBox") .value = json_data.data;
} else if(json_data.name=='start') {

54

data_num = json_data.sensorNum;
for (var i=0;i<data num;i++) {
datal[i] = []-;
res[i] = [1;
}
document.getElementById("pa") .innerHTML
= "Sensor#: " + Jjson_data.sensorNum + ", Sample#: " +
json_data.sampleNum + ", Class#: " + json_data.classNum;
}
}

droid.registerCallback ("respond", display) ;

function quit() {
clearInterval (timerOn) ;
droid.eventPost ("check",
"{\"name\":\"quit\"}");
}

function startTrainNext () {
droid.eventPost ("check",
"{\"name\":\"train next\"}");

}

function startTrainCurrent () {
droid.eventPost ("check",
"{\"name\":\"train current\"}");

}

function startPredict () {
droid.eventPost ("check",
"{\"name\":\"predict\"}");
}
</script>
</body>
</html>

55

“octaveMain.java” diff output

23d22
< import java.io.FileOutputStream;
26d24
< import java.io.InputStream;
28d25
< import java.io.OutputStream;
38d34
< import android.content.res.AssetManager;
154,191d149
< private void copyAsset (String filename, String target name) {
AssetManager assetManager = getAssets();
InputStream in = null;
OutputStream out = null;
try {
in = assetManager.open (filename) ;
File outFile = new
File (Environment.getExternalStorageDirectory () .getAbsolutePath () +
"/freeRoot", target name) ;
< out = new FileOutputStream(outFile);
copyFile (in, out);
} catch (IOException e) {

AN NN AN A

A

Log.e("tag", "Failed to copy asset file: " + filename,
);
}
finally {
if (in !'= null) {
try |

in.close();
} catch (IOException e) {
// NOOP
}
}
if (out != null) {
try {
out.close () ;
} catch (IOException e) {
// NOOP
}

}

ANNNNANANNNANANNNANANNNANANANNNANANNNANANDANNANNAN

private void copyFile (InputStream in, OutputStream out) throws
IOException {

byte[] buffer = new byte[1024];

int read;

while ((read = in.read(buffer)) != -1){

out.write (buffer, 0, read);

<
<

<

<

< }
< }
<

2

00,204d157

56

< } else {

< //delete freeRoot to get a clean update
< exec("rm -f " +
Environment.getExternalStorageDirectory () .getAbsolutePath()+"/freeRoot/
octaverc");

< exec("rm -f " +
Environment.getExternalStorageDirectory () .getAbsolutePath()+"/freeRoot/
k.m") ;

< exec("rm -f " +

Environment.getExternalStorageDirectory () .getAbsolutePath()+"/freeRoot/
LDA.m") ;
206,210d158

<

< // copy script

< copyAsset ("octaverc", ".octaverc");
< copyAsset ("k.m", "k.m");

< copyAsset ("LDA.m", "LDA.m");

57

“octaverc”

cd /storage/sdcard0/freeRoot
k
exit

58

“k‘m”

o d° o oe

o\

Dong Yang, 2014-1-2

Q

% turn off buffer while print
more off

CLASS NUM = 2

Octave/Matlab script for data processing using LDA algorithm
getting data from /storage/emulated/0/shared file
writting result to /storage/emulated/0/shared output

SENSOR _NUM = 8;

SAMPLE NUM = &;

DATA LEN = 56;

time str = '00:00:00:000000";

home dir socket = '/home/octave/Octave'

cmd _file str = '/storage/emulated/legacy/shared file';
output file str = '/storage/emulated/legacy/shared output';
cmd = '0';

cnt = 07

posture = 0;

tData = [];
w = [];
y = [1;

home dir = pwd;

if strcmp(home dir, home dir socket)
comm_socket = 1

else
comm_socket = 0

endif

if comm_ socket==
ANDROID IP = "192.168.56.101";
ANDROID PORT = 12346;
server info = struct("addr", ANDROID IP,

s=socket (AF_INET, SOCK DGRAM, 0);
bind(s,12345);
s2=socket (AF_INET, SOCK DGRAM, O0);

connect (s2, server info);

len=56;
rcv _data = [];
rcv _len = 0;
else
fh = fopen (output file str, "w");
if !is valid file id(fh)
'shared output is not wvalid'
endif

fclose (fh)

59

"port", ANDROID PORT) ;

endif
testing = false;
while (1)

% get user command

c = kbhit(1);

if c=="x"
disp('Exit"'");
break;

endif

if comm socket==
[data,count]=recv (s, len);
fflush (stdout) ;

rcv_data = [rcv_data datal;
rcv_len = rcv_len + count;
if rcv_len>DATA LEN+1
['wrong data size:', rcv_len, ' ', rcv _data]
rcv_data = [];
rcv_len = 0;
continue;
elseif rcv len==DATA LEN+l1

line = char(rcv_data);
rcv_data = [];
rcv_len = 0;

else
continue;

endif

else
f = fopen(cmd file str, "r");

if !is valid file id(f)
'shared file is not valid'
continue;

endif

% get BT data
11 = fseek(f, -DATA LEN-2, 'eof');

% 'Fseek failed'
fclose (f);
continue;

endif

line = fgetl (f);

if line==-1
'line==-1, Error'
continue;

endif

fclose (f);

endif

si = size(line, 2);
if (SiNZDATA_LEN)

60

'Line Length Incorrect:'
si
line
continue;
endif

%$line
t cmd = line(1l);

s[cmd t cmd]

if t cmd=="x'
disp('Exit"'");
break;

endif

% continue process user input

if c=='s"
t cmd = c;
elseif c=='t'

printf ('start testing');
t cmd = c;
elseif c=='r'
printf ('restart training with class#%d', posture+l);
t cmd = c;

endif
if cmd == '0' && (t_cmd=='s' || t cmd=="'t' || t cmd=='a' ||
t cmd=='r"'")
cmd = t cmd;
if t cmd == 's' && (posture==0 || posture==CLASS NUM)

tData = [];
y = zeros (SAMPLE NUM, 1);
for i=2:CLASS NUM

y = [y; (i-1).*ones (SAMPLE NUM, 1)];
end
size (y)
testing = false;
posture = 0;

elseif t cmd=='r'
if posture~=0
if posture == 1
tData = [1;
else
tData = tData(l: (posture-1)*SAMPLE NUM, :);
cmd = 's';
endif
posture--—;
testing = false;
else
cmd = '0"'
endif
endif
endif
line = substr(line, 2, DATA LEN-1);

61

Q

% transfer data into matrix

tline = strtrunc(line, 39);
11 = strsplit(line, ","):;
si = size(1li);
if si(l, 1)==1 && si(l, 2)==9 && strcmp(time str, 1i{1l,9})==
if comm socket==
fh = fopen (output file str, "w");
if !is valid file id(fh)
'shared output is not wvalid'
continue;
endif
endif
time str = 1i{1,9};
datas = str2double (strsplit(tline, ",™));
if cmd=="'s'
if cnt++<SAMPLE NUM
tData = [tData; datas (1:SENSOR _NUM)]
if comm socket==
s ret = sprintf('s%2d,%s', posture, time str);
send(s2, s _ret);
else
fprintf (fh, 's%2d,%s', posture, time str);
endif
elseif posture<CLASS NUM-1
posture++;
cmd = '0';
cnt = 0;

if comm socket==

s _ret = sprintf('t%2d,%s', posture, time str);

send(s2, s _ret);
else

fprintf (fh, 't%2d,%s', posture, time str)

endif

printf ('Training for Class#%d is done,

training the next class\r\n', posture);

else
posture++;
printf('training is done, hit t start

if comm socket==

hit s again for

testing\r\n');

s _ret = sprintf('t%2d,%s', posture, time str);
send(s2, s _ret);

else
fprintf (fh, 't%2d,%s', posture, time str)

endif

cmd = '0';

cnt = 0;

w = LDA (tData, V)

endif

elseif cmd=='t"
if size(w, 2)::SENSOR_NUM+1

62

testing = true;

else
printf ('Incorrect w size: %d\r\n', size(w,
endif
cmd = '0';
elseif cmd=='a'
SENSOR_NUM = datas(1);
SAMPLE NUM = datas (2);
CLASS NUM = datas(3);
cnt = 0;
posture = 0;
cmd = '0';
if comm socket==
s ret = sprintf('a 0,%s', time str);
send(s2, s _ret);
else
fprintf (fh, 'a 0,%s', time str);
endif
testing = false;
endif
if testing
pyo = [1 datas (1:SENSOR NUM)] *w'
[pym, pymi] = max (pyo)
if comm socket==
s _ret = sprintf('c%2d,%s', pymi, time str);
send(s2, s ret);
else
fprintf (fh, 'c%2d,%s', pymi, time str);
endif
endif

if comm socket==0
fclose (fh);

endif
else

%$Line Parse Error"

$si

$[time str, " ", 1i{1,9}]
endif
% sleep for 100ms
usleep (100000) ;

endwhile

if comm_ socket==
s.close();
s2.close();
else
% clean up
fh = fopen (output file str, "w");

63

fprintf (fh, 'x 0,%s', time str);
if is _valid file id(fh)
fclose (fh);
endif
endif

64

“Atmega328 AVRStudio_Test.c”

/*
* Atmega328 AVRStudio Test.c

Created: 2/27/2015 9:53:52 PM
Author: Dong Yang
*/

wiring oled <-> Arduino Uno:
'data' <-> 11

'Clk' <-> 13

'a0' <-> 8

'Rst' <-> 9

'Cs' <-> 10
/
#include "u8g.h"

b S I . S

#include <avr/io.h> //This contains definitions for all the
registers locations and some other things, must always be included

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "LDA operators.h"

#define BAUDRATE 9600
#define MYUBRR (((((F_CPU * 10) / (16L * BAUDRATE)) + 5) / 10) - 1)

#define STATE IDLE (0)

#define STATE TRAIN (1)

#define STATE PREDICT (2)

static int uart putchar(unsigned char c, FILE *stream);
static FILE mystdout = FDEV SETUP STREAM(uart putchar, NULL,
_FDEV_SETUP_WRITE) ;

float lda class[NCLASS] [NSAMPLE] [DIM];
int class_elements[NCLASS];

float lda priors[NCLASS];
float lda coeff[NCLASS][DIM+1];

int gClass[NSAMPLE];

float lda result[NSAMPLE] [NCLASS];

uintlé t adc valuel[6]; //Variable used to store the value
read from the ADC

char buffer[5]; //Output of the itoa function

int nClass = 0;

int nSample = 0;
int nState = STATE IDLE;

65

int pClass = 0;

u8g_t u8g;
char str bufl[13] = "";
char str buf2[13] = "";

void adc_init(void); //Function to initialize/configure the
ADC

uintl6é t read adc(uint8 t channel); //Function to read an arbitrary
analog ic channel/pin

void USART init(void); //Function to initialize and
configure the USART/serial

void USART send(unsigned char data); //Function that sends a char
over the serial port

void USART putstring(char* StringPtr); //Function that sends a
string over the serial port

void u8g setup(void)
{

uB8g_ SetPinOutput (PN(1,5)) ;u8g SetPinOutput (PN(1,3)) ;u8g SetPinOutput (PN
(1,2));u8g SetPinOutput (PN(1,1)) ;u8g SetPinOutput (PN(1,0));

//u8g InitSPI(&u8g, &u8g dev ssdl306 128x64 hw spi, PN(1l, 5), PN(1,
3), PN(1, 2), PN(1, 1), PN(1,0));

u8g InitHWSPI (&u8g, &u8g dev ssdl306 adafruit 128x64 hw spi, PN(1,
2), PN(L, 0), PN(L1, 1));

u8g_SetColorIndex (&u8g, 1);
u8g SetFont (&u8g, u8g font 8x13);
}

void sys _init(void)

{

#if defined(AVR)
/* select minimal prescaler (max system speed) */
CLKPR = 0x80;
CLKPR = 0x00;

#endif

}

static int uart putchar(unsigned char c, FILE *stream)

{
if (c == '"\n'")
uart putchar('\r', stream);

while (! (UCSROA & (I1<<UDREO)));
UDRO = c;

return 0O;

}
void initLDA()
{
int n=0;
int i=0;

66

nClass = 0;

// Initializing Global Variables
for (n=0;n<NCLASS ;n++)

{
class_elements[n]=0;
for (i=0; i<NSAMPLE_PER_CLASS; i4++)
{
gClass[n*NSAMPLE_PER_CLASS+i] = n;
}
}
}
void draw_project name(void)
{
u8g_ SetFont (&u8g, u8g font 6x10);
//u8g DrawStr (&u8g, 0, 15, "Hello World!");
u8g DrawStr(&u8g, 0, 20, "Wearable Electronic");
u8g DrawStr (&u8g, 0, 40, "Platform Project for");
u8g DrawStr (&u8g, 0, 60, "FSR Strap");
}
void draw_author(void)
{
u8g_ SetFont (&u8g, u8g font 6x10);
//u8g DrawStr (&u8g, 0, 15, "Hello World!");
u8g DrawStr(&u8g, 0, 20, "SIMON FRASER");
u8g DrawStr (&u8g, 0, 40, "UNIVERSITY");
u8g DrawStr (&u8g, 0, 60, "version 1.2.1");
}
void clearScreen ()
{
u8g FirstPage (&u8qg) ;
do
{
} while (u8g NextPage (&u8g));
}

void draw_initial()
{

int cnt = 0;

while (cnt++<100)

{

uB8g FirstPage (&u8g) ;

do

{

draw project name();

} while Y u8g7Ne§tPage(&u8g)) ;
}
cnt = 0;

67

while (cnt++<100)

{
u8g FirstPage (&u8g) ;
do
{
draw_author () ;
} while (u8g NextPage (&u8g));
}
}
void draw_1lda()
{
if (nState == STATE IDLE)
{
sprintf (str bufl, "Ready for");
sprintf(str buf2, "Training");
}
else if(nState == STATE_TRAIN)
{
sprintf(str bufl, "Training");
sprintf(str buf2, "for c# 3d", nClass);
}
else if(nState == STATE_PREDICT)
{
sprintf(str bufl, "Predicted", pClass);
sprintf(str buf2, "class# 3d", pClass);
}
u8g FirstPage (&u8g) ;
do
{
u8g_ SetFont (&u8g, u8g font 10x20);
u8g DrawStr(&u8g, 0, 20, str bufl);
u8g DrawStr(&u8g, 0, 40, str buf2);
} while (u8g NextPage (&u8g));
}
int main(void) { //In ANSI C, the main function as always an

int return and using void will give you an warning

char c;

float lda temp[NCLASS];

int adec = 0;

//DDRB = (1 << PBb5);

//Configure timer

// Target Timer Count = (((Input Frequency / Prescaler)
Frequency) - 1)

int i1,3j,n; // To ease code readability I use i for samples, j for
samples dimensions, n for classes

//Input frequency is 16Mhz
//Target frequency is 10Hz
TCCR1B = (1<<CS12); //1:256 prescaler

sys_init();

68

/ Target

u8g setup();

adc_init(); //Setup the ADC
USART_ init(); //Setup the USART

draw_initial();

while (1) {
//Read timer value and act according with it
if (TCNT1 < 6249){ //Our pre-calculated timer count
continue;
}
//PORTB "= (1<<PB5) ; //Toggle the led state
TCNT1 = O; //Reset the timer value
c =0y
if (UCSROA & (1 << RXCO))
{

¢ = UDR0O; // Fetch the received byte value into the
variable "ByteReceived"
//printf ("%c ", c);

}
if(c=="'s")
{
initLDA() ;
nState = STATE TRAIN;
}
else if(c=='t")
{
nState = STATE TRAIN;
}
else
{
draw_1lda() ;
}
for (i=0; 1i<6; i++) {
adc = read adc(i);
adc_valuel[i] = adc; //Read one ADC channel

if (nSample<NSAMPLE PER CLASS && nState==STATE TRAIN) {

lda class[gClass[nClass*NSAMPLE PER CLASS+nSample]][class elements[nCla
ss]][i] = adc;

}

//printf ("%4d,", adc);

}

if(nSample<NSAMPLE_PER_CLASS && nState==STATE_TRAIN) {
class_elements[nClass]++;

nSample++;
if(nSample==NSAMPLE7PER7CLASS) {
nClass++;

nState = STATE IDLE;

69

if (nClass>=NCLASS)
{
// In case we dont have prior probability info, we
determine class probability
// as #class elements / #total samples
for (n=0;n<NCLASS;n++) lda priors[n] =
(float)class_elements[n]/NSAMPLE;

// Running the LDA Coefficients calculation
//1lda coefficients(lda coeff,lda class,class elements,lda priors);
lda coefficients N(lda coeff,lda class,class_elements,lda priors);

nClass = 0;
nState = STATE PREDICT;

}
nSample = 0;
}
}
#if 1
if(nState!=STATE_PREDICT)
{
//printf ("\r\n");
continue;
}

for (j=0; J<NCLASS; j++)
{
lda temp[j] = lda coeff[j][0];
for (n=0; n<DIM; n++)
{
lda temp[j] = lda_temp[j] +
lda coeff[j]l[n+l]*adc valuel[n];
}
}

if (lda temp[0]>=lda temp[l])
{

pClass 0;

}

else

{

pClass 1;

}
//printf ("$4d\r\n", pClass);
#endif
}

return |;

}

void adc_init(void) {

ADCSRA |= ((1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0)) ; //16Mhz/128 = 125Khz
the ADC reference clock

ADMUX |= (1<<REFSO0) ; //Voltage reference from Avcc (5v)
ADCSRA |= (1<<ADEN) ; //Turn on ADC

70

ADCSRA |= (1<<ADSC); //Do an initial conversion because
this one is the slowest and to ensure that everything is up and running

}

uintl6é t read adc(uint8 t channel){

ADMUX &= 0xF0; //Clear the older channel that was

read

ADMUX |= channel; //Defines the new ADC channel to be

read

ADCSRA |= (1<<ADSC); //Starts a new conversion

while (ADCSRA & (1<<ADSC)); //Wait until the conversion is

done

return ADCW; //Returns the ADC value of the chosen
channel

}

void USART init(void)
{

UBRROH = (uint8 t) (MYUBRR>>S) ;

UBRROL = (uint8 t) (MYUBRR) ;

UCSROB = (1<<RXENO) | (1<<TXENO) ;

UCSROC = BV(UCSz01) | _BV(UCSZ00); /* 8-bit data */
stdout = &mystdout; //Required for printf init

71

“crout.c” diff output

4c4

< int LU decompos (float **a,int n,int *indx, int *d, float *vv);

> int LU decompos (double **a,int n,int *indx,int *d,double *vv);
17c¢c17

< void LU backsub(float **a,int n,int *indx, float *b);

> void LU backsub(double **a,int n,int *indx,double *Db);

29c29

< void LU invert (float **a,int n,int *indx,float **inv,float *col);
> void LU invert (double **a,int n,int *indx,double **inv,double
*col) ;

42c42

< float LU determ(float **a,int n,int *indx,int *d);

> double LU determ(double **a,int n,int *indx,int *d);

57,59d56

<

< #include "mycommon.h"

<

63c60

< int LU decompos (float **a,int n,int *indx,int *d, float *vv) {

> int LU decompos (double **a,int n,int *indx,int *d,double *vv) {
65c62

< float big,sum, temp;

> double big, sum, temp;

88c85
< for (k=0;k<j;k++) sum-=a[i] [k]*al[k][]];

> for (k=0;k<j;k++) sum-=ali] [k]*al[k][J];
112c109

< void LU backsub(float **a,int n,int *indx, float *b) {

> void LU backsub (double **a,int n,int *indx,double *b) {

114cl11

< float sum;

> double sum;

133¢130

< void LU invert(float **a,int n,int *indx, float **inv,float *col) {
> void LU invert (double **a,int n,int *indx,double **inv,double *col) {
143c140

< float LU determ(float **a,int n,int *indx,int *d) {

> double LU determ(double **a,int n,int *indx,int *d) {

145c142

< float res=(float) (*d);

72

>
14

A

ANAANNNANNANANNANANNNANNANNNANANNNANNANNANNANANNNANNNNANNANNAN

double res=(double) (*d);
8,181d144

-

int Inverse N(float inv[DIM] [DIM], float orig[DIM] [DIM],

{
float *mo[DIM], *mi[DIM];
float vv[DIM];
int i, d;
int indx[DIM];
int ret;
float col[DIM];

for (i = 0; 1 < size; i++)
{

mo[i] = orig[i];

mi[i] = inv[i];

}

//showmat ("Orignal Matrix:", mo, size);

ret = LU decompos (mo, size, indx, &d,vv) ;
if (!'ret)
{
printf ("LU decompos () failed, return!");

return 0;
}
//printf ("LU decompos(): %d\r\n", ret);
//showmat ("Matrix after LU:", mo, size);
LU invert (mo,size,indx,mi,col);

//showmat ("Matrix after inv:", mi, size);

return 1;

73

int size)

“LDA_operators.h”

// Matrices.h
// Header file for library LDA operators.c

//#define NSAMPLE 20
//#define DIM 3
//#define NCLASS 2
#include "mycommon.h"

void vect mean(float mean[DIM],float v[NSAMPLE][DIM],int elements);
void vect var(float var[DIM], float v[NSAMPLE] [DIM],int elements);
void vect cov(float cov[DIM][DIM], float v[NSAMPLE][DIM], int
elements) ;

void pooled cov(float pool cov matrix[DIM][DIM], float
classes[NCLASS] [NSAMPLE] [DIM],int elements[NCLASS]);

void lda coefficients(float coeff[NCLASS][DIM+1],float
classes[NCLASS] [NSAMPLE] [DIM],int elements[NCLASS], float
priors[NCLASS]) ;

74

“LDA_operators.c”

/**
R S dh b b b b gh gh 4

LDA operators.C
R IR IR b b b b S dh b 2 dh b b S Sh b b dh b b db Sh b b Sh b b S Ih b b db b b SR b b b SE b b S Sh b b SE b b S Sh b b db b b S Sh b b S Sb b Sh b b 4b i 4

*************/

//fcampi@sfu.ca
// Collection of N-Dimensional Matrix operators used for LDA
calculation

#include <math.h>
#include "matrices.h"
#include "LDA operators.h"

void vect mean(float mean[DIM], float v[NSAMPLE][DIM], int elements) {
int 1,37
for (7=0;j<DIM;j++) mean[j]=0;
for (i=0;i<elements;i++)
for (=0, j<DIM; j++)
mean[j] += v[i][j]/elements;

}

void vect var(float var[DIM], float v[NSAMPLE][DIM], int elements) {
int 1,37
float mean[DIM];
for (§j=0;3J<DIM;j++) var[j]=0;
vect mean(mean,v,elements);
for (i=0;i<elements;i++)
for (=0, j<DIM; j++)
var[j] += (vIil[Jjl-mean[j])*(vI[i]l[J]-
mean[j])/ (elements-1) ;

}

void vect cov(float cov[DIM][DIM], float v[NSAMPLE][DIM], int elements)
{
// cov(i,J) = mean(xi.*x]j) - mean(xi)*mean (x7j);
int x,y,1i;
float mean[DIM];
// Initializing Covariance Matrix
for (x=0;x<DIM;x++) for(y=0;y<DIM;y++) cov[x][y]=0;
// Calculating Mean Vector
vect mean(mean,v,elements) ;
// Determining Covariance Matrix
for (x=0;x<DIM; x++)
for (y=0;y<DIM;y++) {
for (i=0;i<elements;i++)
cov[x][y] +=
(vIil1[x]1*v[i][y])/elements;
cov[x][y] -= mean[x]*mean[y];
cov[x][y] = cov[x][y] * elements /
(elements-1) ;

75

}

void pooled cov(float pool cov matrix[DIM][DIM],float
classes[NCLASS] [NSAMPLE] [DIM], int elements[NCLASS]) {

// The pooled Covariance Matrix is a DIMxDIM matrix that is derived
by the combination

// of covariance matrices for all the classed in the set of
samples, according to the equation:

// PooledCov = PooledCov + ((nGroup(n) - 1) / (NSAMPLES - NCLASS)
) .* cov (Input (Group, :)):

int n,x,vy;

float cov[DIM][DIM];

// Initializing Output Matrix

for (x=0;x<DIM;x++) for(y=0;y<DIM;y++) pool cov matrix[x][y]l=0;

for (n=0;n<NCLASS ;n++) {
// Calculating Covariance Matrices for each class
vect cov(cov,classes[n],elements[n]);
// Deriving Pooled Covariance
for (x=0;x<DIM;x++)
for (y=0; y<DIM; y++)
pool cov matrix[x][y] += (((float)elements[n]-1) /
(float) (NSAMPLE-NCLASS)) * covI[x]I[vl;
}
}

void lda coefficients(float coeff[NCLASS][DIM+1], float
classes[NCLASS] [NSAMPLE] [DIM],
int elements[NCLASS], float priors[NCLASS]) {

int x,vy,n;
float poolcov[DIM][DIM], poolcovInv[DIM][DIM];
float mean[DIM], temp[DIM];

// Calculating Pooled Cov Matrix, that is a combination of the Cov
Matrices for each class
pooled cov(poolcov, classes, elements);

// Inverting Pooled Cov Matrix
Inverse(poolcovInv,poolcov,DIM) ;
//ShowMat ("poolcovInv", poolcovInv, DIM);

// Calculating linear discriminant coefficients
// Step 1: W(n,2:end) = GroupMean(n,:) * inv (PooledCov)
// Step 2: W(n,1) = -0.5 * [W(n,2:end) * GroupMean(n,:)'] +
log(PriorProb (n));
for (n=0;n<NCLASS;n++) {
for (y=0;y<DIM;y++) temp[y]=0;
vect mean(mean,classes[n],elements[n]);

// Step 1

for (x=0;x<DIM; x++) for(y=0;y<DIM;y++) temp[x] += mean[y] *
poolcovInv[y] [x];

76

// Step 2
coeff[n][0] = log(priors[n]);
for (y=0;y<DIM;y++) {
coeff[n][0] += -0.5 * temp[y] * mean[y];
coeff[n] [y+]l] = temply];

}
}

}
void reset array(float a[DIM])
{

int y;

for (y=0;y<DIM;y++) alyl=0;
}

void cal temp(float temp[DIM], float mean[DIM], float
poolcovInv[DIM] [DIM])
{

int x,y;

for (x=0;x<DIM;x++) for(y=0;y<DIM;y++) temp[x] += mean[y] *
poolcovInv([y] [x];
}

void lda coefficients N(float coeff[NCLASS][DIM+1], float
classes[NCLASS] [NSAMPLE] [DIM],
int elements[NCLASS], float priors[NCLASS]) {

int x,vy,n;
float poolcov[DIM][DIM], poolcovInv[DIM][DIM];
float mean[DIM], temp[DIM];

// Calculating Pooled Cov Matrix, that is a combination of the Cov
Matrices for each class
pooled cov(poolcov, classes, elements);

// Inverting Pooled Cov Matrix
Inverse N(poolcovInv,poolcov,DIM) ;
//ShowMat ("poolcovInv", poolcovInv, DIM);

// Calculating linear discriminant coefficients
// Step 1: W(n,2:end) = GroupMean(n,:) * inv(PooledCov)
// Step 2: W(n,1l) = -0.5 * [W(n,2:end) * GroupMean(n,:)'] +
log(PriorProb (n));

for (n=0;n<NCLASS;n++) {
//for (y=0;y<DIM;y++) temp[y]=0;
reset array(temp);
vect mean(mean,classes[n],elements[n]);

// Step 1
cal temp(temp, mean, poolcovInv);

// Step 2
coeff[n][0] = log(priors[n]);
for (y=0;y<DIM;y++) {
coeff[n][0] += -0.5 * temp[y] * mean[y]:;

77

coeff[n] [y+l] = templyl;
}

78

“matrices.h”

// Matrices.h

// Header file for library matrices.c

#include "mycommon.h"

//#define DIM 2

float Determinant (float A[DIM][DIM],int size);

void Inverse(float B[DIM][DIM], float A[DIM][DIM], int size);
void Transpose(float B[DIM][DIM], float A[DIM][DIM], int size);

79

“matrices.c”

/**
Ak khkrkkhkrkkkx kK

MATRICES.C
KK R AR AR AR A A A A A A A A A A A A A AR AR A AR A A AR A AR A KRR A A A AR A AR AR A AR A AR A A AR AR A AR A AR Ak kK

*************/

//fcampi@sfu.ca
// Collection of N-Dimensional Matrix operators

// Note: This set of operators is planned for small environments where
no malloc is available.

// Matrix spaces are allocated statically! This is because we do not
want

// to use MALLOC. Since we need to build sub-adjoint matrices to
calculate the cofactor matrix,

// without malloc we need to define them of fixed width! Of course, this
can require high memory

// occupation if size becomes too big

#include <stdio.h>
#include <math.h>
#include "matrices.h"

/* calculate determinate of generic n-sized matrix using the recursize
Laplace's formula:
The determinant of a matrix is the sum of any row or colum the
elements multiplied by their co-factors
The cofactor i,j is the minor i,J *-17(i+j). In the following, we
just choose row 0 as reference */
float Determinant (float A[DIM][DIM],int size)
{
float sign=l,det=0,m minor[DIM] [DIM];
int i,j,m,n,col;
// End-of-Recursion Condition
if (size==1)
return (A[0][0]);
else {
for (col=0;col<size;col++){
m=0;n=0;
// Calculating "Minor Matrix" for all elements of
the first row (row 0)
// we parse the current matrix and eliminate Row 0
and Column Col
for (i=0;i<size;i++)
for (j=0;j<size;j++) {
m minor[i][J]=0;
if (1 '= 0 && J '= col) {
m_minor[m] [n]1=A[i][J]:
if (n<(size-2)) n++;
else { n=0,m++;}

80

det += sign * (A[0][col] * Determinant(m minor,size-1));
sign = =-1*sign;
}
}
return (det);

}

// Transpose the input matrix
void Transpose(float B[DIM][DIM], float A[DIM][DIM], int size) {
int i,3;
for (i=0;i<size;i++)
for (j=0;j<size;j++)
B[i]1[3] = A[31[1];
}

// Calculate the inverse matrix using the Cofactors Matrix
// Methodology:1) calculate the Matrix of Minors of the input matrix A

// 2) Turn that into the Matrix of Cofactors (Apply signs
to the above)

// 3) Calculate then the Adjugate (Transpose the above)
// 4) Multiply that by 1/Determinant (A).

void Inverse(float B[DIM][DIM], float A[DIM][DIM], int size) {
float minor[DIM] [DIM],cofactor[DIM] [DIM];
float det;
int p,q,m,n,1i,3;
// Calculate the cofactor sub-Matrix for all elements of the
Input matrix A
for (g=0;g<size;qgt++)
for (p=0;p<size;p++) {
m=0,;n=0;
for (i=0;i<size;i++)
for (j=0;j<size;j++) {
if (1 '= g && 7 '= p) {
minor[m] [n]=A[i][J];
if (n<(size-=2)) n++;
else { n=0;m++; }
}

//ShowMat ("minor", minor, size-1);

//det = Determinant (minor, size-1);

//printf ("$f\r\n", det);

//det = dett (minor, size-1);

//printf ("$f\r\n", det);

cofactor[q] [p] = pow(-1,g + p) *
Determinant (minor,size-1);

}

det=Determinant (A,size);

Transpose (B,cofactor,size);

for (g=0;g<size;qg++) for (p=0;p<size;p++) B[pll[ql=B[pl[ql/det ;
}

void ShowMat (char* n, float m[DIM] [DIM], int size)
{

81

int i, 3

’

printf("ss\r\n", n);
i<size; i++)

for (i=0;
{
for (

{
}

J=0; j<size;

j4+)

printf("sf ", m[i]1[3]);

printf("\r\n");

}

#1f 0
float Det;

//Matlab: M=

021 3.1 2]

float B[51[51,M[51[51={ {1,2,2.2,1,1},
Ay AL, 5,2,2,5),

{1,1,0,8.2,1
int main () {

[123.211

’

I

ShowMat ("M[]", M, DIM);

Det = Determinant (M,DIM) ;

printf("sf\r\n", Det);
Det = dett(M, DIM);
printf("sf\r\n", Det);
Inverse(B,M,DIM) ;

ShowMat ("B[]", B, DIM);
Inverse N(B,M,DIM);
ShowMat ("B[]", B, DIM);
// Expected result from
bit)
// 0.3779 -0.3508 0
// 0.2445 -0.4374 0
// 0.1336 0.3051 -0
// -0.0309 0.0646 0
// -0.2633 0.1847 -0
}
#endif

2 3 4.45 7.3

matlab

L4757
.0846
.1933
.0701
.0967

{2,3,4.4,5,7.3},
{0,2,1,3.1,2}};

1108.2 1.4

// Expected result -177.1280

I

132 25;

(Will be slightly different in 32-

82

.8481
.5457
.5505
.1684
.0095

O O O O

.3616
.0508
.3312
.1515
.0488

“mycommon.h”

#ifndef
#define

#define
#define
#define
#define

#endif

COMMON_H
COMMON H

DIM 6
NCLASS 2

NSAMPLE PER CLASS (10)

NSAMPLE

(NCLASS*NSAMPLE PER CLASS)

83

