
Applications of Reinforcement Learning
to Routing and Virtualization in

Computer Networks
by

Soroush Haeri

B. Eng., Multimedia University, Malaysia, 2010

Dissertation Submitted in Partial Fulfillment
of the Requirements for the Degree of

Doctor of Philosophy

in the
School of Engineering Science
Faculty of Applied Sciences

© Soroush Haeri 2016
SIMON FRASER UNIVERSITY

Spring 2016

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, criticism, review and news reporting is likely to be in accordance with

the law, particularly if cited appropriately.

Abstract

Computer networks and reinforcement learning algorithms have substantially advanced over
the past decade. The Internet is a complex collection of inter-connected networks with
a numerous of inter-operable technologies and protocols. Current trend to decouple the
network intelligence from the network devices enabled by Software-Defined Networking
(SDN) provides a centralized implementation of network intelligence. This offers great
computational power and memory to network logic processing units where the network
intelligence is implemented. Hence, reinforcement learning algorithms viable options for
addressing a variety of computer networking challenges. In this dissertation, we propose
two applications of reinforcement learning algorithms in computer networks.

We first investigate the applications of reinforcement learning for deflection routing in buffer-
less networks. Deflection routing is employed to ameliorate packet loss caused by contention
in buffer-less architectures such as optical burst-switched (OBS) networks. We present a
framework that introduces intelligence to deflection routing (iDef). The iDef framework
decouples design of the signaling infrastructure from the underlying learning algorithm. It
is implemented in the ns-3 network simulator and is made publicly available. We propose
the predictive Q-learning deflection routing (PQDR) algorithm that enables path recov-
ery and reselection, which improves the decision making ability of the node in high load
conditions. We also introduce the Node Degree Dependent (NDD) signaling algorithm.
The complexity of the algorithm only depends on the degree of the node that is NDD
compliant while the complexity of the currently available reinforcement learning-based de-
flection routing algorithms depends on the size of the network. Therefore, NDD is better
suited for larger networks. Simulation results show that NDD-based deflection routing al-
gorithms scale well with the size of the network and outperform the existing algorithms.
We also propose a feed-forward neural network (NN) and a feed-forward neural network
with episodic updates (ENN). They employ a single hidden layer and update their weights
using an associative learning algorithm. Current reinforcement learning-based deflection
routing algorithms employ Q-learning, which does not efficiently utilize the received feed-
back signals. We introduce the NN and ENN decision-making algorithms to address the
deficiency of Q-learning. The NN-based deflection routing algorithms achieve better results
than Q-learning-based algorithms in networks with low to moderate loads.

iii

The second application of reinforcement learning that we consider in this dissertation is for
modeling the Virtual Network Embedding (VNE) problem. We develop a VNE simulator
(VNE-Sim) that is also made publicly available. We define a novel VNE objective function
and prove its upper bound. We then formulate the VNE as a reinforcement learning prob-
lem using the Markov Decision Process (MDP) framework and then propose two algorithms
(MaVEn-M and MaVEn-S) that employ Monte Carlo Tree Search (MCTS) for solving the
VNE problem. In order to further improve the performance, we parallelize the algorithms
by employing MCTS root parallelization. The advantage of the proposed algorithms is
that, time permitting, they search for more profitable embeddings compared to the avail-
able algorithms that find only a single embedding solution. The simulation results show
that proposed algorithms achieve superior performance.

Keywords: Computer networks; machine learning; reinforcement learning; deflection rout-
ing; virtual network embedding

iv

For Inga, Baba, Maman, and Sina

v

Acknowledgements
Writing this dissertation would not have been possible without the intellectual and emo-
tional contributions of the generous individuals I met throughout this journey.

I would like to thank my Senior Supervisor Dr. Ljiljana Trajković who dedicated count-
less hours of hard work for reviewing my works and guiding my research. She was very
generous and encouraging to allow me to explore my ideas and I am truly grateful for the
confidence she invested in me and my research. I would also like to thank my committee
members Dr. Hardy, Dr. Gu, Dr. Peters, and Dr. Boukerche for reviewing my dissertation
and providing constructive suggestions and comments.

I would like to thank Dr. Wilson Wang-Kit Thong. He piqued my interest in deflection
routing and introduced me to the ns-3 tool. The ideas in the first portion of this dissertation
were conceived during the time he was a visiting Ph.D. student at the Communication
Networks Laboratory at Simon Fraser University.

I would like to express my gratitude to Marilyn Hay and Toby Wong of BCNET as well
as Nabil Seddigh and Dr. Biswajit Nandy of Solana Networks, with whom I collaborated
on industry-based projects. Although these projects are not part of this dissertation, many
subjects I learned during our collaborations helped me develop my research skill.

I would like to thank my brother Dr. Sina Haeri who has always been a source of support
and encouragement. His excellence in parallel programming helped me develop the parallel
Monte-Carlo Tree Search that is used in this dissertation.

I would like to thank my Mom and Dad for their unconditional love and support through-
out my life. Their support enabled me to study and pursue my educational goals.

I would also like to thank the scuba divers of Vancouver’s Tec Club, especially John
Nunes, Roger Sonnberger, and Eli Wolpin. Furthermore, I would like to extend my gratitude
to Royse Jackson and Alan Johnson of the International Diving Center as well as Paul
Quiggle of Vancouver’s Diving Locker. Many ideas presented in this dissertation were
conceived exploring the majestic waters of Vancouver.

I would like to extend my gratitude to my friends Majid Arianezhad, Alireza Jafarpour,
Shima Nourbakhsh, Kenneth Fenech, and Luis Domingo Suarez Canales who have helped
me and provided support in countless ways.

Last but not least, I would like to thank my lovely wife Inga. You supported me through
the toughest times of my life. Without you, I would not have made it this far.

vi

Table of Contents

Approval ii

Abstract iii

Dedication v

Acknowledgements vi

Table of Contents vii

List of Tables x

List of Figures xi

List of Abbreviations xv

1 Introduction 1
1.1 Optical Burst-Switching and Deflection Routing 3
1.2 Virtual Network Embedding . 4
1.3 Roadmap . 5

2 Reinforcement Learning 6
2.1 Q-Learning . 7
2.2 Feed-Forward Neural Networks for Reinforcement Learning 7
2.3 Markov Decision Process . 9

2.3.1 Solution of Markov Decision Processes: The Exact Algorithms . . . 9
2.3.2 Solution of Large Markov Decision Processes and Monte Carlo Tree

Search . 11
2.3.3 Parallel Monte Carlo Tree Search . 14

3 Reinforcement Learning-Based Deflection Routing in Buffer-Less Net-
works 16
3.1 Buffer-Less Architecture, Optical Burst Switching, and Contention 18

3.1.1 Optical Burst Switching and Burst Traffic 18

vii

3.1.2 Contention in Optical Burst-Switched Networks 20
3.2 Deflection Routing by Reinforcement Learning 21
3.3 The iDef Framework . 23
3.4 Predictive Q-Learning-Based Deflection Routing Algorithm 24
3.5 The Node Degree Dependent Signaling Algorithm 27
3.6 Neural Networks for Deflection Routing . 30

3.6.1 Feed-Forward Neural Networks for Deflection Routing with Single-
Episode Updates . 30

3.6.2 Feed-Forward Neural Networks for Deflection Routing with k-Episode
Updates . 33

3.6.3 Time Complexity Analysis . 34
3.7 Network Topologies: A Brief Overview . 34
3.8 Performance Evaluation . 36

3.8.1 National Science Foundation Network Scenario 37
3.8.2 Complex Network Topologies and Memory Usage 39

3.9 Discussion . 43

4 Reinforcement Learning-Based Algorithms for Virtual Network Em-
bedding 46
4.1 Virtual Network Embedding Problem . 48

4.1.1 Objective of Virtual Network Embedding 49
4.1.2 Virtual Network Embedding Performance Metrics 52

4.2 Available Virtual Network Embedding Algorithms 53
4.2.1 Virtual Node Mapping Algorithms 53
4.2.2 Virtual Link Mapping Algorithms 57

4.3 Virtual Network Embedding Algorithms and Data Center Networks 59
4.3.1 Data Center Network Topologies . 60

4.4 Virtual Network Embedding as a Markov Decision Process 61
4.4.1 A Finite-Horizon Markov Decision Process Model for Coordinated

Virtual Node Mapping . 61
4.4.2 Monte Carlo Tree Search for Solving the Virtual Node Mapping . . . 62
4.4.3 MaVEn Algorithms . 63
4.4.4 Parallelization of MaVEn . 66

4.5 Performance Evaluation . 67
4.5.1 Simulation Environment . 67
4.5.2 Internet Service Provider Substrate Network Topology 68
4.5.3 Variable Virtual Network Request Arrival Rate Scenarios 70
4.5.4 Parallel MaVEn Simulation Scenarios 75
4.5.5 Data Center Substrate Networks . 77

viii

4.6 Discussion . 84

5 VNE-Sim: A Virtual Network Embedding Simulator 86
5.1 The Simulator Core: src/core . 89

5.1.1 Network Component Classes . 90
5.1.2 Virtual Network Embedding Classes 91
5.1.3 Discrete Event Simulation Classes 92
5.1.4 Experiment and Result Collection Classes 93
5.1.5 Operation Related Classes . 93

6 Conclusion 95

Bibliography 97

Appendix A iDef: Selected Code Sections 109

Appendix B VNE-Sim: Selected Code Sections 119

ix

List of Tables

Table 3.1 Summary of the presented algorithms. 17
Table 3.2 Comparison of Memory and CPU Usage of NN-NDD, ENN-NDD, Q-

NDD, PQDR, and RLDRS . 44

Table 4.1 Summary of the presented algorithms. 48

x

List of Figures

Figure 2.1 Root and leaf Monte Carlo Tree Search parallelizations. 14

Figure 3.1 A network with buffer-less nodes. 20
Figure 3.2 iDef building blocks: The iDef is composed of deflection manager,

mapping, signaling, and decision-making modules. The deflection
manager module coordinates the communication between modules.
Its purpose is to remove dependencies among modules. 23

Figure 3.3 The flowchart of the proposed signaling algorithm. The DN timer
denotes the drop notification timer. Nodes wait for feedback signals
until this timer reaches DHCmax. DHC denotes the deflection hop
counter. This counter is a field in the burst header that is incre-
mented by one each time the burst is deflected. DHCmax is set in
order to control the volume of deflected traffic. A burst is discarded
when its DHC value reaches the maximum. 28

Figure 3.4 The proposed design of the feed-forward neural network for deflection
routing. The input layer consists of two partitions denoted by binary
vectors Il = [il1 . . . iln] and Id = [ild . . . idn]. The Il partition of the
input has weighted connections to the output layer. The binary
vector Zm = [zm1 . . . zmn] denotes the mid-layer of the proposed feed-
forward neural network while Zo denotes the output layer. 31

Figure 3.5 Topology of the NSF network after the 1989 transition. Node 9 and
node 14 were added in 1990. 36

Figure 3.6 Burst loss probability as a function of the number of Poisson flows
in the NSF network simulation scenario. For readability, two cases
are plotted: 1,000 (≈ 35% load) to 2,000 (≈ 65% load) Poisson
flows (top) and 2,000 (≈ 65% load) to 3,000 (≈ 100% load) Poisson
flows (bottom). The NDD algorithms perform better than RLDRS
and PQDR in case of low to moderate traffic loads. In the cases of
higher traffic loads, ENN-NDD has smaller burst-loss compared to
other NDD algorithms. 38

xi

Figure 3.7 Average number of deflections as a function of the number of Poisson
flows in the NSF network simulation scenario. For readability, two
cases are plotted: 1,000 (≈ 35% load) to 2,000 (≈ 65% load) Poisson
flows (top) and 2,000 (≈ 65% load) to 3,000 (≈ 100% load) Poisson
flows (bottom). The PQDR and RLDRS algorithms perform better
than the NDD algorithms in all cases. The PQDR algorithm has the
smallest number of deflections. 39

Figure 3.8 Average end-to-end delay (top) and average number of hops travelled
by bursts (bottom) as functions of network traffic load in the NSF
network scenario with 64 wavelengths. RLDRS and PQDR achieve
better performance in both cases. 40

Figure 3.9 Burst loss probability as a function of the number of nodes in the
Waxman graphs at 40% traffic load. These results are consistent
with the results shown in Fig. 3.6, which were derived for the NSF
network consisting of 14 nodes. Shown burst loss probabilities for
networks of similar size (14 nodes) illustrate that NN-NDD, ENN-
NDD, and Q-NDD algorithms have comparable performance to other
algorithms. 41

Figure 3.10 Number of deflections as a function of the number of nodes in the
Waxman graphs at 40% traffic load. 42

Figure 3.11 Average end-to-end delay (top) and average number of hops trav-
elled by bursts (bottom) as functions of the number of nodes in the
Waxman graphs at 40% traffic load. 43

Figure 3.12 Memory used in the network with 1,000 nodes. The graphs were
generated by using 100 equally spaced time instances over each sim-
ulation run. 44

Figure 4.1 Examples of data center topologies: BCube(2, 4) (top) and Fat-Tree4

(bottom) network topologies. 60
Figure 4.2 Example of a VNoM search tree for embedding a VNR Ψi with 3

nodes onto a substrate network with 5 nodes. 63
Figure 4.3 Comparison of the algorithms with a VNR traffic load of 20 Erlangs.

Shown are the acceptance ratios as functions of computation budged
β. 69

Figure 4.4 Comparison of the algorithms with a VNR traffic load of 20 Erlangs.
Shown are the revenue to cost ratios (middle) as functions of com-
putational budget β. 69

Figure 4.5 Comparison of the algorithms with a VNR traffic load of 20 Erlangs.
Shown are the profitabilities as functions of computational budget β. 70

xii

Figure 4.6 Comparison of the algorithms with a VNR traffic load of 20 Erlangs.
Shown are node utilization (top) and link utilization (bottom) as
functions of computational budget β. 71

Figure 4.7 Comparison of the algorithms with a VNR traffic load of 20 Erlangs.
Shown are the average processing times per VNR as functions of
computational budget β. 72

Figure 4.8 Performance of the algorithms with various VNR traffic loads. The
MaVEn computational budget is β = 40 samples per virtual node
embedding. Shown are the acceptance ratios as functions of VNR
traffic load. 72

Figure 4.9 Performance of the algorithms with various VNR traffic loads. The
MaVEn computational budget is β = 40 samples per virtual node
embedding. Shown are revenue to cost ratios as functions of VNR
traffic load. 73

Figure 4.10 Performance of the algorithms with various VNR traffic loads. The
MaVEn computational budget is β = 40 samples per virtual node
embedding. Shown are profitabilities as functions of VNR traffic load. 73

Figure 4.11 Performance of the algorithms with various VNR traffic loads. The
MaVEn computational budget is β = 40 samples per virtual node
embedding. Shown are node (top) and link (bottom) utilities as
functions of VNR traffic load. 74

Figure 4.12 Average execution time of the algorithms per VNR embedding. Ex-
ecution times are averaged for all VNR traffic load scenarios. 75

Figure 4.13 Acceptance ratio, revenue to cost ratio, and profitability of the par-
allel MaVEn-M algorithm with various VNR traffic loads using 1, 2,
4, 6, and 8 processors. The computation budget is β = 40 samples
per virtual node embedding. 76

Figure 4.14 Average processing time of the parallel MaVEn-M algorithm per
VNR embedding with various VNR traffic loads using 1, 2, 4, 6,
and 8 processors. The computation budget is β = 40 samples per
virtual node embedding. 77

Figure 4.15 Acceptance ratio, revenue to cost ratio, and profitability of the par-
allel MaVEn-S algorithm with various VNR traffic loads using 1, 2,
4, 6, and 8 processors. The computation budget is β = 40 samples
per virtual node embedding. 78

Figure 4.16 Average processing time of the parallel MaVEn-S algorithm per VNR
embedding with various VNR traffic loads using 1, 2, 4, 6, and 8
processors. The computation budget is β = 40 samples per virtual
node embedding. 79

xiii

Figure 4.17 Performance of the algorithms with various VNR traffic loads. The
MaVEn computational budget is β = 5 samples per virtual node
embedding. Shown are the acceptance ratios as functions of VNR
traffic load in the BCube (top) and Fat-Tree (bottom) scenarios. . . 80

Figure 4.18 Performance of the algorithms with various VNR traffic loads. The
MaVEn computational budget is β = 5 samples per virtual node
embedding. Shown are the revenue to cost ratios as functions of
VNR traffic load in the BCube (top) and Fat-Tree (bottom) scenarios. 81

Figure 4.19 Performance of the algorithms with various VNR traffic loads. The
MaVEn computational budget is β = 5 samples per virtual node
embedding. Shown are the profitabilities as functions of VNR traffic
load in the BCube (top) and Fat-Tree (bottom) scenarios. 82

Figure 4.20 Average execution time of the algorithms per VNR embedding in the
BCube (top) and Fat-Tree (bottom) scenarios. Execution times are
averaged for all VNR traffic load scenarios. 83

Figure 5.1 Hierarchy of the VNE-Sim directory. 87
Figure 5.2 The dependencies of VNE-Sim components. 88
Figure 5.3 Content of the core directory. 89

xiv

List of Abbreviations

BFS Breadth First Search

BHP Burst Header Packet

DEVS Discrete Event System Specification

DfT Deflection Time

DHC Deflection Hop Counter

DN Drop Notification

DrT Drop Time

ENN-NDD The Episodic Neural Network-based Node Degree Dependent Algorithm

FIFO First In First Out

GRC The Global Resource Capacity Algorithm

HMM Hidden Markov Model

iDef Intelligent Deflection Framework

InP Infrastructure Provider

ISP Internet Service Provider

MaVEn-M Monte Carlo Virtual Network Embedding with Multimedia Flow

MaVEn-S Monte Carlo Virtual Network Embedding with Shortest Path

MCF Multicommodity Flow

MCTS Monte Carlo Tree Search

MDP Markov Decision Process

MIP Mixed Integer Program

xv

NDD The Node Degree Dependent Algorithm

NN-NDD The Neural Network-based Node Degree Dependent Algorithm

NSF National Science Foundation

OBS Optical Burst-Switched/Optical Burst Switching

OSPF Open Shortest Path First

OXC Optical Cross-Connect

PQDR The Predictive Q-learning-based Deflection Routing Algorithm

PQR Predictive Q-Routing

Q-NDD The Q-learning-based Node Degree Dependent Algorithm

RLDRS Reinforcement Learning-Based Deflection Routing Scheme

SDH Synchronous Digital Hierarchy

SDN Software Defined Networking

SONET Synchronous Optical Network

SP Service Provider

SVM Support Vector Machine

TCP Transport Control Protocol

TTT Total Travel Time

UCT Upper Confidence Bounds for Trees

VLiM Virtual Link Mapping

VN Virtual Network

VNE Virtual Network Embedding

VNoM Virtual Node Mapping

VNR Virtual Network Request

xvi

Chapter 1

Introduction

Machine learning is a branch of artificial intelligence. Its focus is to improve machine
behavior by analyzing examples of correct behavior rather than directly programming the
machine. One application of machine learning algorithms is in situations when a precise
specification of the desired behavior is unknown while examples of the desired behavior
are available. Another application of machine learning algorithms is when the required
behavior may vary over time or between users and, therefore, the system behavior may not
be anticipated [31].

Supervised, unsupervised, and reinforcement learning are three major subcategories of
machine learning algorithms. The goal of supervised learning algorithms is to learn a desired
input-to-output mapping when samples of such mappings are available. Regression and var-
ious classification algorithms are examples of supervised learning algorithms. Unsupervised
learning algorithms, in contrast, attempt to find regularities or certain patterns in a given
input set. Clustering algorithms are examples of unsupervised learning algorithms [23].
Reinforcement learning algorithm attempt to learn a situation-to-action mapping with the
main objective of maximizing a numerical reward. The learning agent is required to discover
rewarding actions in various situations by executing trials [129].

Machine learning algorithms have not been used widely in computer networks. For
example, various machine learning-based approaches proposed for routing in computer net-
works during the 1990’s and early 2000’s [41], [50], [109], [115] remained isolated and failed
to receive much attention from the mainstream computer communication community. Ma-
chine learning algorithms, as a branch of machine intelligence algorithms, were mostly
designed to solve problems with a high degree of complexity where the notion of probability
and uncertainty plays an important role [119]. Therefore, such algorithms often required
high computational power and/or large memory space. Early computer networks, in con-
trast, were mostly operated in controlled environments with a low degree of uncertainty
involved [61]. As a result, the high level of complexity that machine learning and machine
intelligence algorithms were designed to facilitate was not required in computer networks.

1

Traditionally, network intelligence was residing in the network nodes that were usually de-
vices with rather limited computational power and memory. This made the network devices
incapable of processing machine learning algorithms.

Computer networks have evolved over the years. The Internet, as we know it today, is a
complex collection of inter-connected networks where a countless number of inter-operable
technologies and protocols operate. The advent of Software-Defined Networking (SDN) and
the current trend to decouple the network intelligence from the network devices enables a
centralized implementation of the network intelligence unit. This centralized implementa-
tion may provide computational power and memory to the network logic processing units.
Therefore, the increasing complexity of the computer networks and network processing en-
tities, which have access to additional computational power and memory, make machine
learning algorithms a viable option for solving computer networking problems.

Reinforcement learning algorithms have been proposed for deflection routing in opti-
cal burst-switching networks [33], [88]. Support Vector Machine (SVM), Hidden Markov
Models (HMM), and Bayesian models have been employed to detect the Internet rout-
ing anomalies [21], [22]. HMM and Expectation Maximization have been used to identify
the losses due to congestion and contention in optical burst-switching networks [85]. This
identification may help improve the performance of Transport Control Protocol (TCP)
in optical burst-switching networks. Support Vector Regression is used to predict TCP
throughput [106].

Reinforcement learning algorithms enable development of self-improving agents that
learn through interactions with their environment. This interaction-based learning capabil-
ities is sought-after in computer networking because the issues that often arise in this area
are required to be solved in real time based on interactions with the network.

In this Dissertation, we propose two applications of reinforcement learning algorithms in
computer networks. We first investigate the applications of reinforcement learning for de-
flection routing in buffer-less networks. Deflection routing is employed to ameliorate packet
loss caused by contention in buffer-less architectures such as optical burst-switched (OBS)
networks. The main goal of deflection routing is to successfully deflect a packet based only
on a limited knowledge that network nodes possess about their environment. We propose
the iDef framework that introduces intelligence to deflection routing. The term “intelli-
gence” refers to the class of machine intelligence algorithms. iDef decouples the design of
the signaling infrastructure from the underlying learning algorithm. It consists of a signal-
ing and a decision-making module. Signaling module implements a feedback management
protocol while the decision-making module implements a reinforcement learning algorithm.
iDef is compliant with the current Software-Defined Networking architecture that decou-
ples the network intelligence from network devices. We also propose several learning-based
deflection routing protocols, implement them in iDef using the ns-3 network simulator [17],
and compare their performance.

2

We also consider applications of reinforcement learning for Virtual Network Embed-
ding (VNE). Network virtualization helps overcome shortcomings of the current Internet
architecture. The virtualized network architecture enables coexistence of multiple virtual
networks on a physical infrastructure. The VNE problem, which deals with the embedding
of virtual network components onto a physical network, is known to be NP-hard [151]. We
formulate the VNE as a reinforcement learning problem and then propose two VNE algo-
rithms: MaVEn-M and MaVEn-S. These algorithms formalize the Virtual Node Mapping
(VNoM) problem by using the Markov Decision Process (MDP) framework and devise ac-
tion policies (node mappings) for the proposed MDP using the Monte Carlo Tree Search
(MCTS) algorithm. We develop a discrete event VNE simulator named VNE-Sim to im-
plement and evaluate performance of MaVEn-M, MaVEn-S, and several recently proposed
VNE algorithms.

1.1 Optical Burst-Switching and Deflection Routing

The Internet is an example of a complex network that has been extensively studied [99],
[108], [127], [133]. Optical networks are part of the Internet infrastructure intended to
carry high-bandwidth backbone traffic. Optical networks carry the majority of TCP/IP
traffic in the Internet. Optical burst switching [117] combines the optical circuit switching
and the optical packet switching paradigms. In optical burst-switched (OBS) networks,
data are optically switched. Optical burst switching offers the reliability of the circuit
switching technology and the statistical multiplexing provided by packet switching networks.
Statistical multiplexing of bursty traffic enhances the network utilization. Various signaling
protocols that have been proposed enable statistical resource sharing of a light-path among
multiple traffic flows [27], [47].

Deflection routing is a viable contention resolution scheme that may be employed to
ameliorate packet loss caused by contention in buffer-less architectures such as networks on
chips or OBS networks. It was first introduced as “hot-potato” routing [30] because packets
arriving at a node should be immediately forwarded [18], [104]. Contention occurs when
according to a routing table, multiple arriving traffic flows at a node need to be routed
through a single outgoing link. In this case, only one flow is routed through the optimal
link defined by the routing table. In the absence of a contention resolution scheme, the
remaining flows are discarded because the node possesses no buffers. Instead of buffering
or discarding packets, deflection routing helps to temporarily deflect them away from the
path that is prescribed by the routing table.

Deflection routing may benefit from the random nature of reinforcement learning algo-
rithms. A deflection routing algorithm coexists in the network along with an underlying
routing protocol that usually generates a significant number of control signals. Therefore,
it is desired that deflection routing protocols generate few control signals. Reinforcement

3

learning algorithms enable a deflection routing protocol to generate viable deflection deci-
sions by adding a degree of randomness to the decision-making process.

1.2 Virtual Network Embedding

The best-effort service, supported by the current Internet architecture, is not well-suited
for all applications. A significant barrier to innovation has been imposed by the inability of
the current Internet architecture to support a diverse array of applications [134]. The great
success of the Internet has increased its ubiquity that, consequently, has lead to various
challenges that the current Internet architecture is unable to address [25]. Network virtu-
alization overcomes these shortcomings [62], [134]. The virtualized network model divides
the role of Internet Service Providers (ISPs) into two independent entities: Infrastructure
Providers (InPs) and Service Providers (SPs). The InPs manage the physical infrastructure
while the SPs aggregate resources from multiple InPs into multiple Virtual Networks (VNs)
to provide end-to-end services [52], [62].

In the virtualized network architecture, an InP owns and operates a substrate network
composed of physical nodes and links that are interconnected in an arbitrary topology.
Combinations of the substrate network nodes and links may be used to embed various vir-
tualized networks. Virtual networks that are embedded in a substrate network are isolated
thus enabling end-to-end service provisioning without requiring unified protocols, applica-
tions, or control and management planes [35].

An InP’s revenue depends on the resource utilization within the substrate network that,
in turn, depends on the efficiency of the algorithm that allocates the substrate network
resources to virtual networks [52]. This resource allocation is known as the virtual network
embedding (VNE) [159], which may be formulated as a mixed-integer program (MIP) [51] or
may be reduced to the multiway separator problem [24], [151]. Both problems are NP-hard
making the VNE problem is also NP-hard. This is one of the main challenges in network
virtualization.

MIPs have been employed to solve the VNE problem [40], [51], [79]. The R-Vine and
D-Vine algorithms use a rounding-based approach to attain a linear programming relax-
ation of the MIP that corresponds to the VNE problem [51]. Their objective is to minimize
the cost of accommodating the Virtual Network Requests (VNRs). Node-ranking-based
algorithms are among the most recent approaches to solve the VNE [48], [69], [157]. This
family of algorithms computes a score/rank for substrate and virtual nodes based on various
heuristics. Then, using the computed rank, a large-to-large and small-to-small [48] map-
ping scheme is employed to map the virtual nodes to substrate nodes. The Global Resource
Capacity (GRC) [69] is among the most recent node-ranking-based algorithms that outper-
forms the earlier similar algorithms. Subgraph isomorphism detection [96], particle swarm
optimization [158], and ant colony optimization [59] are among other employed methods.

4

1.3 Roadmap

The reminder of this Dissertation is organized as follows.
In Chapter 2, we present a brief survey of reinforcement learning algorithms. We also

describe the Q-learning algorithm and applications of feed-forward neural networks for re-
inforcement learning. We then present MDP as a framework for modeling decision-making
problems, present two exact algorithms for solving MDPs and their computational com-
plexity, and finally describe the MCTS algorithm as a promising approach for finding near-
optimal solutions for large MDPs. Most algorithms and approaches discussed in Chapter 2
are employed in this Dissertation.

In Chapter 3, we describe the OBS technology and introduce deflection routing as a
viable scheme to reduce burst loss probability in OBS networks. We then introduce the iDef
framework for implementing reinforcement learning-based deflection routing algorithms and
propose the Predictive Q-learning-based deflection routing algorithm (PQDR). We then
propose the Node Degree Dependent (NDD) signaling algorithm whose complexity depends
on a node degree rather than the size of the network. We combine the NDD signalling
algorithm with two feed-forward neural network-based reinforcement learning algorithms
into two deflection routing algorithms: NN-NDD and ENN-NDD. The feed forward neural
network of NN-NDD operates on single episodes while ENN-NDD operates based on episodic
updates. In the remainder of Chapter 3, we compare the performance of the algorithms
using the National Science Foundation (NSF) network topology [11], [105] as well as using
larger synthetic network topologies that are generated by the Waxman [140] algorithm.

In Chapter 4, we first present the VNE problem and its objective function, establish its
upper bound, and introduce profitability as a performance metric. Some of the known VNE
algorithms are then presented in detail. We propose an MDP formulation of the VNoM
problem and introduce two MaVEn algorithms that utilize MCTS for finding optimal ac-
tion policies for the proposed MDP. In order to improve the performance of the MaVEn
algorithms by employing MCTS root parallelization [44], [45]. We then evaluate the per-
formance of the MaVEn algorithms and compare them with the existing VNE algorithms
using a synthesized network topology as well as BCube [71] and Fat-Tree [20], [92] data
center network topologies. We conclude the Chapter with discussions.

In Chapter 5, a brief user’s manual of the virtual network embedding simulator VNE-
Sim is presented. The overall structure of the simulator is first described including a list of
external libraries that are required by VNE-Sim. Various packages that VNE-Sim comprises
and their dependencies are then described. Finally, we describe in details the content of the
simulator’s core package that defines the basic operation and classes required for simulating
a virtual network embedding algorithm.

Finally, we conclude this Dissertation with Chapter 6.

5

Chapter 2

Reinforcement Learning

Reinforcement learning algorithms perform situation-to-action mappings with the main ob-
jective to maximize numerical rewards. These algorithms may be employed by agents
that learn to interact with a dynamic environment through trial-and-error [86]. Reinforce-
ment learning encompasses three abstract events irrespective of the learning algorithm: 1)
an agent observes the state of the environment and selects an appropriate action; 2) the
environment generates a reinforcement signal and transmits it to the agent; 3) the agent
employs the reinforcement signal to improve its subsequent decisions. Therefore, a reinforce-
ment learning agent requires information about the state of the environment, reinforcement
signals from the environment, and a learning algorithm.

Some of the reinforcement leaning algorithms presented in this Chapter are used in this
Dissertation. Q-learning [138] introduced in Section 2.1 is a simple table-based reinforce-
ment learning algorithm. It is used in Chapter 3 for designing reinforcement learning-based
deflection routing algorithms. Feed-forward neural networks and the REINFORCE algo-
rithm [141], which are presented in Section 2.2, are also used in Chapter 3 for designing
the NN-NDD and ENN-NDD deflection routing algorithms. In Section 2.3, we first present
Markov Decision Processes (MDPs) [116], [130] and exact algorithms for solving them. We
then present the Monte Carlo Tree Search (MCTS) [53], [89] algorithm as an approach
for solving large MDPs that are computationally challenging. We then present two MCTS
parallelization techniques: root and leaf parallelizations. In Chapter 4, MDP is used to
formulate the Virtual Network Embedding (VNE) problem as a reinforcement learning
process. For realistic cases, the size of the MDP that corresponds to the VNE problem is
prohibitively large. Hence, exact methods are not applicable for solving such MDPs. There-
fore, we employ MCTS to solve the proposed MDP. Root parallelization is also employed
in Chapter 2.3 to enhance the MCTS solution.

6

2.1 Q-Learning

Q-learning [138] is a simple reinforcement learning algorithm that has been employed for
path selection in computer networks. The algorithm maintains a Q-value Q(s, a) in a Q-
table for every state-action pair. Let st and at denote the state and the action executed by
an agent at a time instant t, respectively. Furthermore, let rt+1 denote the reinforcement
signal that the environment has generated for performing action at in the state st. When
the agent receives the reward rt+1, it updates the Q-value that corresponds to the state st
and action at as:

Q(st, at)← Q(st, at) + α×
[
rt+1 + γmax

at+1
Q(st+1, at+1)−Q(st, at)

]
, (2.1)

where 0 < α ≤ 1 is the learning rate and 0 ≤ γ < 1 is the discount factor.
Q-learning has been considered as an approach for generating routing policies. The

Q-routing algorithm [41] requires that nodes make their routing decisions locally. Each
node learns a local deterministic routing policy using the Q-learning algorithm. Generating
the routing policies locally is computationally less intensive than finding a global routing
solution. However, the Q-routing algorithm does not generate an optimal routing policy in
networks with low traffic loads nor does it learn new optimal policies in cases when network
load decreases. Predictive Q-routing [50] addresses these shortcomings by recording the
best experiences learned, which may then be reused to predict traffic behavior.

2.2 Feed-Forward Neural Networks for Reinforcement Learn-
ing

In a neural network of learning agents with weighted interconnections, the following steps
are executed for each decision made:

• neural network receives an input from its environment;

• the input propagates through the network and it is mapped to an output;

• the output is fed to the environment for evaluation;

• environment evaluates the output signal and generates a reinforcement signal r;

• based on a learning algorithm, each neural network unit modifies its weights using the
received reinforcement signal.

Let wij denote the weight of the connection between agents i and j. The behavior of
the agent i is defined by a vector wi that contains the weights of all connections to the ith
agent. The agent i receives an input vector xi from the environment and/or other agents

7

and then maps the input to an output yi according to a probability distribution function
gi(ζ, wi, xi) = Pr{yi = ζ | wi, xi} [141]. In case of binary agents where the input is mapped
to either 0 or 1 with probabilities pi and 1 − pi, respectively, gi is defined as a Bernoulli
semilinear unit:

gi(ζ, wi, xi) =
{

1− pi if ζ = 0
pi if ζ = 1

, (2.2)

where

pi = fi(wT
i xi)

= fi
(∑

j

wijxj
)
. (2.3)

Function fi is a differentiable squashing function. A commonly used function is the logistic
map:

fi
(∑

j

wijxj
)

= 1
1 + e

−
∑

j
wijxij

, (2.4)

where xij is the jth element of the input vector xi. Agents that use Bernoulli semilinear
unit along with the logistic function are called Bernoulli-logistic units.

Upon receiving a feedback signal r, the neural network updates its weights. The update
rule for Bernoulli-logistic units suggested by the REINFORCE algorithm [141] updates the
weights wij as:

∆wij = αr(yi − pi)xij , (2.5)

where α is a non-negative rate factor, yi is the output of the ith agent, pi is the probability of
yi = 1 given the input vector xi and weight vector wi, and xij is the jth element of the input
vector xi. Let matrix W denote the collection of weights that determines the behavior of an
arbitrary feed-forward network. Under the assumption that the environment’s inputs to the
network and the received reinforcement signals for any input/output pair are determined by
stationary distributions, (2.5) maximizes the expected value E of the reinforcement signal
r, given the weight matrix W:

E{r |W}. (2.6)

The REINFORCE algorithm utilizes an episodic update rule in order to operate in
environments where delivery of the reinforcement signals has unknown delays. A k-episode is
defined when a network selects k actions between two consecutive reinforcement receptions.
The k-episode is terminated upon receiving a reinforcement signal. The REINFORCE
algorithm suggests that a network may update its weighs at the end of the k-episode as:

∆wij = αr
k∑
l=1

[(yi(l)− pi(l))xj(l − 1)]. (2.7)

8

2.3 Markov Decision Process

MDP may be used to model a sequential decision-making problem. A discrete time MDP
M is a quintuple (T , Φ,A,R,P), where T is the set of decision-making instances, Φ is the
state space, A is the action space, R : S ×A → R is the reward function that assigns real-
valued rewards to state-action pairs, and P : Φ×A× Φ→ [0, 1] is a transition probability
distribution. Therefore, R(φt = φ, at = a) is the reward for performing action a in state φ
and

P (φ′, a,φ) = Pr(φt+1 = φ′|at = a,φt = φ) ∼ P (2.8)

is the probability of a transition to state φ′ when selecting action a in state φ. A state ρ is
called a terminal state if P (ρ, a, ρ) = 1. We denote the reward of entering a terminal state
by Rρ. An MDPM is called episodic if it possesses a terminal state [130].

The behavior of a decision-making agent may be defined by its policy π for selecting
actions. The overall return of a given policy π may be calculated as the terminal reward
Rρ plus the discounted sum of all step rewards:

Rπ = Rπρ +
T∑
t=0

γtRπφt , (2.9)

where T defines the decision-making horizon and 0 ≤ γ ≤ 1 is a discount factor. If T <∞,
the MDP is called finite-horizon while T → ∞ defines an infinite-horizon MDP. The goal
of the decision-making agent is to find policy π∗ that maximizes the expected cumulative
rewards given an initial state φ1 calculated as:

E(π|φ) = Rπφ + γ
∑
φ′∈Φ

P
(
φ′,π(φ),φ

)
E(π|φ′) ∀φ ∈ Φ, (2.10)

where π(φ) is the preferred action in state φ according to the policy π [116], [130].

2.3.1 Solution of Markov Decision Processes: The Exact Algorithms

Linear programming and iterative methods are employed to find solutions of MDPs. The
two major iterative algorithms that are widely used are the policy and value iteration
algorithms.

Linear Programming

Finding an optimal reward function may be formulated as a linear program [56]. Linear
programming is a general technique and, therefore, it does not take advantage of the special
structure of MDPs. The primal linear program may be defined as:

9

Objective:
maximize

∑
φ∈Φ

vφ (2.11)

Constraints:

vφ ≤ Raφ + γ
∑
φ′∈Φ

P
(
φ′, a,φ

)
vφ′ ∀φ ∈ Φ, ∀a ∈ A, (2.12)

where vφ, ∀φ ∈ Φ are the linear program variables that determine the optimal reward
function of the original MDP.

The Policy Iteration Algorithm

This iterative algorithm is executed in two-stages: value determination and policy improve-
ment [80]. In the value determination phase, current policy is evaluated. Then in the policy
improvement phase, an attempt is made to improve the current policy. The computational
complexity of the value determination phase is O(|Φ|3) while the complexity of the policy
improvement phase is O(|A||Φ|2), where |Φ| denotes the size of state space and |A| denotes
the size of the action space [97].

The pseudocode of the policy iteration method is shown in Algorithm 1. The value of
every improved policy is strictly larger than the previous one. Furthermore, there are |A||Φ|

distinct policies for an MDP with |Φ| states and |A| actions. Hence, termination of the
algorithm is guaranteed in at most an exponential number of steps [97], [116].

Algorithm 1 Pseudocode of the policy iteration algorithm
1: procedure PolicyIteration
2: Select a random policy π′
3: π ← ∅
4: while π 6= π′ do
5: π ← π′

6: ∀φ ∈ Φ Calculate E(π|φ) by solving |Φ| × |Φ| system of linear equations (2.10)
7: for all φ ∈ Φ do

8: if ∃a ∈ A such that
[
Raφ +

∑
φ′∈Φ

P (φ′, a,φ)E(π|φ′)
]
< E(π|φ) then

9: π′(φ) = a
10: else
11: π′(φ) = π(φ)
12: end if
13: end for
14: end while
15: return π
16: end procedure

The Value Iteration Algorithm

This is a successive approximation algorithm [36] . The optimal value function is computed
by successively expanding the horizon. This calculation method is guaranteed to converge
to the optimal value function as the horizon is expanded. The policy that is associated with

10

the value function will also converge to the optimal policy in finite number of iterations [37],
[97].

The value iteration algorithm is shown in Algorithm 2. The maximum number of it-
erations max_itr may be set in advance or an appropriate stopping condition may be
employed. A stopping condition that guarantees an ε-optimal policy may be achieved [142]
by terminating the main loop when:

max
φ∈Φ

∣∣En(φ)− En−1(φ)
∣∣ < ε(1− γ)

2γ . (2.13)

The computational complexity of each iteration of the value iteration algorithm isO(|A||Φ|2).
Hence, the total computational time is polynomial if total number of required iterations is
polynomial [97].

Algorithm 2 Pseudocode of the value iteration algorithm. The maximum number of
iterations max_itr may either be set in advance or an appropriate stopping rule may be
employed.
1: procedure ValueIteration
2: Initialize E0(φ) ∀φ ∈ Φ
3: n← 1
4: while n < max_itr do
5: for all φ ∈ Φ do
6: for all a ∈ A do
7: En(φ, a)

[
Raφ +

∑
φ′∈Φ

P (φ′, a,φ)En−1(φ′)
]

8: end for
9: En(φ) = max

a∈A
En(φ, a)

10: end for
11: n← n+ 1
12: end while
13: for all doφinΦ
14: π(φ) = argmax

a∈A
En(φ, a)

15: end for
16: return π
17: end procedure

2.3.2 Solution of Large Markov Decision Processes and Monte Carlo Tree
Search

The size of the MDP state space grows exponentially with the number of state variables.
Complexity of the exact algorithms for solving MDP is polynomial in the size of the state
space [97]. Therefore, finding exact solutions for MDPs with large number of state variables
is intractable. Solving such MDPs often involves finding a near-optimal solution.

Various approaches have been proposed for finding near-optimal solutions of large MDPs
[26], [87], [126], [129]. Recent approaches [26], [126] are based on the Monte Carlo Tree
Search (MCTS) [53], [89]. They assume that the decision-making agent has access to a
generative model G of the MDP. The model is capable of generating samples of successor

11

states and rewards given a state and an action [126]. The agent uses the model G to
perform a sampling-based look-ahead search [87]. MCTS builds a sparse search tree and
selects actions using Monte Carlo samplings. These actions are used to deepen the tree in
the most promising direction [26].

The MCTS algorithm is shown in Algorithm 3. It begins with a tree that only consists
of the root node. It then executes four phases until a predefined computational budget β
is exhausted:

Algorithm 3 Pseudocode of the MCTS algorithm
1: procedure MCTS(root)
2: while β > 0 do
3: current_node← root
4: while current_node ∈ search_tree do . Tree Traversal Phase
5: last_node← current_node
6: current_node← Select(current_node)
7: end while
8: last_node← Expandlast_node . A node is added to the search tree
9: Reward← Simulate(last_node) . A simulated game is played

10: current_node← last_node . The Reward is backpropagated
11: while current_node ∈ search_tree do
12: Backpropagatio(current_node,Reward)
13: current_node← current_node.parent
14: end while
15: β ← β − 1
16: end while
17: return The action that leads to the root’s child with highest Reward
18: end procedure

1. Selection: The tree is traversed from the root until a non-terminal leaf node is reached.
At each level of the tree, a child node is selected based on a selection strategy. A
selection strategy may be exploratory or exploitative. An exploratory strategy probes
the undiscovered sections of the search tree to find better actions while an exploitative
strategy focuses on the promising subtrees that have already been discovered. The
exploration vs. exploitation trade-off [101] must be considered when employing a
selection strategy [86].

The Upper Confidence Bounds for Trees (UCT) [89] is one of the most commonly
used selection strategies. Let u denote the current node of the search tree and I the
set of all its children. Furthermore, let vi and σi denote the value and visit count of
a node i. UCT selects a child κ from:

κ ∈ arg max
i∈I

(vi
σi

+D

√
ln σu
σi

)
, (2.14)

where D is an exploration constant that determines the balance between exploration
and exploitation. If D = 0, the selection strategy is strictly exploitative.

The MCTS algorithm was originally introduced to design intelligent computer-based
Go players [53]. Go is a two-player board game with possible outcomes: win, draw, or

12

loss that may be encoded as 1, 0, or -1, respectively. It is considered as one of the most
challenging games to be played by computer agents. It has more than 10170 states
and up to 361 legal moves [68]. Value of nodes in a search tree of a two-player game
belong to the interval [−1, 1]. In contrast, in single-player puzzle games, the objective
of the player is not to win the game but rather to achieve a high score. Therefore,
the values of search tree nodes in such games belong to the interval [0,Max_Score],
where Max_Score is the maximum possible score in the game. For example, the
maximum score in the single-player puzzle SameGame may be as high as 6, 000 [122].

The UCT selection strategy (2.14) does not consider possible deviations in the values
of children nodes. In a two-player game, this deviation does not play an important role
because the node values are in [−1, 1] and the deviation from the mean is small. The
deviation becomes more important in single-player games. Single-Player MCTS (SP-
MCTS) [122] is a variant of MCTS that has been proposed for solving single-player
puzzles. It introduces a deviation term to UCT (2.14). Hence:

κ ∈ arg max
i∈I

(vi
σi

+D

√
ln σu
σi

+
√∑

r2
i − σivi + C

σi

)
(2.15)

is used as the selection strategy, where r2
i is the sum of the squared rewards that the

ith child node has received so far and C is a large positive constant.

2. Expansion: After a non-terminal leaf node is selected, one or more of its successors
are added to the tree. The most common expansion strategy is to add one node for
every execution of the four MCTS phases. The new node corresponds to the next
state [53].

3. Simulation: From the given state of the non-terminal node that has been selected,
a sequence of actions is performed until a terminal state is reached. Even though
MCTS converges with randomly selected actions [89], utilizing domain knowledge
may improve the convergence time [26].

4. Backpropagation: The reward is calculated after a terminal state is reached in the
Simulation phase. This reward is then propagated from the terminal node to the
root. Every tree node in the current trajectory is updated by adding the reward to
its current value v and incrementing its count σ.

The computational budget β may be defined as the number of evaluated action samples
per selection cycle. After repeating the four phases of MCTS β times, the child of the root
with the highest average value is selected as the optimal action. The MDP then enters its
next state and the selected child is chosen to be the new root of the search tree.

13

2.3.3 Parallel Monte Carlo Tree Search

There are various available techniques for parallelizing the MCTS algorithm. We consider
a symmetric multiprocessor (SMP) system as the platform for parallelization. Since the
memory is shared in such platforms, mutual exclusions (mutex) should be employed in
order to avoid corruption of the search tree when multiple threads attempt to access and
modify the search tree during the 1st, 2nd, and 4th phases of the MCTS algorithm. The
simulation phase (3rd phase) of the MCTS algorithm does not require any information from
the search tree. Hence, the simulations may be executed independently without any mutex
requirements [45]. Root and leaf parallelizations [44] are the common techniques that do
not require any mutex. Hence, they are simpler to implement and may be implemented on
distributed memory architectures such as clusters. Root and leaf parallelization techniques
are shown in Fig. 2.1 left and right, respectively.

Root Parallelization

Leaf Parallelization

Search tree node of Proccess #1

Search tree node of Proccess #2

Search tree node of Proccess #3

Search tree node selected by UCT

Current location of Proccess #1

Current location of Proccess #2

Current location of Proccess #3

Figure 2.1: Root and leaf Monte Carlo Tree Search parallelizations.

In root parallelization, each process creates its own search tree and the processes do
not share information. Each process should be initialized with a unique random number
generator seed to ensure that the constructed search trees are not identical. When the pre-
allocated time for simulations (β) is over. Each process communicates to the master process
the value v and count σ of the children of its root. The master process then calculates the
best action based on the information it receives from other processes [44].

In leaf parallelization, only one process traverses and adds nodes to the tree (1st and 2nd
MCTS phases). When the master process reaches a leaf node, it distributes the simulation
tasks among the available processes. Each process executes the 3rd MCTS phase in isolation.

14

When the simulations are completed, the master process collects the outcomes from other
processes and propagates the results up the tree to the root (4th MCTS phase) [44].

Root parallelization requires less coordination and communication between the processes
compared to the leaf parallelization. Furthermore, performance evaluations have shown that
root parallelization produces superior results [44], [45].

15

Chapter 3

Reinforcement Learning-Based
Deflection Routing in Buffer-Less
Networks

Reinforcement learning-based algorithms were proposed in the early days of the Internet to
generate routing policies [41], [50], [115]. Q-learning [138] is a reinforcement learning algo-
rithm that has been employed for generating routing policies. The Q-routing algorithm [41]
requires that nodes locally make their routing decisions. Each node learns a local determin-
istic routing policy using the Q-learning algorithm. Generating the routing policies locally
is computationally less intensive. However, the Q-routing algorithm does not generate an
optimal routing policy in networks with low loads nor does it learn new optimal policies
in cases when network load decreases. The Predictive Q-routing algorithm [50] addresses
these shortcomings by recording the best experiences learned that may then be reused to
predict traffic behavior. Packet routing algorithms in large networks such as the Internet
have to consider the business relationships between Internet Service Providers. Therefore,
in such environment, randomness is not a desired property of a routing algorithm. Conse-
quently, Internet routing algorithms have not employed reinforcement learning because of
its inherent randomness.

In this Chapter, we present related applications of reinforcement learning algorithms for
deflection routing in OBS networks [74]–[78]. The contributions are:

1. We develop a framework named iDef that simplifies implementation and testing of
deflection routing protocols by employing a modular architecture. The ns-3 [17] im-
plementation of iDef is made publicly available [16].

2. The predictive Q-learning deflection routing (PQDR) [74] algorithm that combines
the learning algorithm of the predictive Q-routing [50] and the signaling algorithm
of the Reinforcement Learning-Based Deflection Routing Scheme (RLDRS) [33] is

16

proposed. PQDR enables a node to recover and reselect paths that have small Q-
values as a results of a link failure or congestion. This improves the decision making
ability of the node in high load conditions. When deflecting a traffic flow, the PQDR
algorithm stores in a Q-table the accumulated reward for each deflection decision. It
also recovers and reselects decisions that are not well rewarded and have not been
used over a period of time.

3. We introduce the novel Node Degree Dependent (NDD) signaling algorithm [75]. The
complexity of the algorithm only depends on the degree of the node that is NDD
compliant while the complexity of the other currently available reinforcement learning-
based deflection routing algorithms depends on the size of the network. Therefore,
NDD is better suited for larger networks. Simulation results show that NDD-based
deflection routing algorithms scale well with the size of the network and perform better
than the existing algorithms. Furthermore, the NDD signaling algorithm generates
fewer control signals compared to the existing algorithms.

4. For the decision-making, we propose a feed-forward neural network (NN) and a feed-
forward neural network with episodic updates (ENN) [78]. They employ a single
hidden layer neural network that updates its weights using an associative learning
algorithm. Currently available reinforcement learning-based deflection routing algo-
rithms employ Q-learning, which does not utilize efficiently the gathered feedback sig-
nals. NN and ENN decision-making algorithms address the deficiency of Q-learning by
introducing a single hidden layer NN to generate deflection decisions. The NN-based
deflection routing algorithms achieve better results than Q-learning-based algorithms
in networks with low to moderate loads. Efficiently utilizing control signals in such
cases is important because the number of deflections is small and a deflection routing
algorithm receives fewer feedback signals.

The algorithms presented in this Chapter are summarized in Table 3.1.

Table 3.1: Summary of the presented algorithms.
Deflection routing
algorithm Signaling algorithm Signaling algorithm

complexity Learning algorithm

NN-NDD [78] NDD Degree of a node Neural network-based using
REINFORCE algorithm [141]

ENN-NDD [78] NDD Degree of a node
Neural network-based
with episodic updates using
REINFORCE algorithm [141]

Q-NDD [75] NDD Degree of a node Q-Learning
PQDR [74] RLDRS Size of the network Predictive Q-Learning
RLDRS [33] RLDRS Size of the network Q-Learning

The remainder of this Chapter is organized as follows. In Section 3.1, we describe buffer-
less network architectures and contention in such networks. In Section 3.2, we introduce

17

deflection routing as a contention resolution scheme and provide a brief survey of work
related to applications of reinforcement learning in deflection routing. We present the
iDef framework in Section 3.3. The PQDR algorithm is then introduced in Section 3.4.
We present the NDD signaling algorithm in Section 3.5. Designs of the NN and ENN
decision-making modules are presented in Section 3.6. The performance of the algorithms
is evaluated in Section 3.8. We conclude this Chapter with discussions in Section 3.9.

3.1 Buffer-Less Architecture, Optical Burst Switching, and
Contention

Nodes in buffer-less networks do not posses memory (buffer) to store packets. Buffers
are usually implemented as first-in-first-out (FIFO) queues that are used to store packets
contending to be forwarded to the same outgoing link. Examples of buffer-less architectures
are OBS networks and network-on-chips. OBS is a technology designed to share optical
fiber resources across data networks [117]. Other optical switching technologies for data
communication such as Synchronous Optical Network (SONET) and Synchronous Digital
Hierarchy (SDH) [114] reserve the entire light-path from a source to a destination. Even
though a light-path is not fully utilized, it may not be shared unless its reservation is
explicitly released. The OBS technology overcomes these limitations. Switching in OBS
networks is performed optically, allowing the optical/electrical/optical conversions to be
eliminated in the data plane. This permits high capacity switching with simpler switching
architecture and lower power consumption [146].

3.1.1 Optical Burst Switching and Burst Traffic

In OBS networks, data are optically switched. At an ingress node of such a network,
multiple packets are aggregated into one optical burst. Before transmitting the burst, a
burst header packet (BHP) is created and sent ahead of the burst with an offset time toffset .
The BHP contains information needed to perform OBS switching and IP routing, such as
the burst length tlength , offset time toffset , and the destination IP address. When an OBS
node receives a BHP, it has toffset time to locate the outgoing link lo in the routing table,
reserve the link for the burst to pass through, and reconfigure the optical cross-connect
(OXC) module that connects the incoming and the outgoing links. The duration of toffset

should be selected based on the processing time of the routing and switching algorithms. In
simulations scenarios presented in this dissertation, we do not consider the effect of toffset

on the performance of the algorithms.
Simulation of computer networks requires adequate models of network topologies as well

as traffic patterns. Traffic measurements help characterize network traffic and are basis for
developing traffic models. They are also used to evaluate performance of network protocols

18

and applications. Traffic analysis provides information about the network usage and helps
understand the behavior of network users. Furthermore, traffic prediction is important to
assess future network capacity requirements used to plan future network developments.

It has been widely accepted that Poisson traffic model that was historically used to
model traffic in telephone networks is inadequate to capture qualitative properties of modern
packet networks that carry voice, data, image, and video applications [112]. Statistical
processes emanating from traffic data collected from various applications indicate that traffic
carried by the Internet is self-similar in nature [93]. Self-similarity implies a “fractal-like”
behavior and that data on various time scales have similar patterns. Implications of such
behavior are: no natural length of bursts, bursts exist across many time scales, traffic does
not become “smoother” when aggregated, and traffic becomes more bursty and more self-
similar as the traffic volume increases. This behavior is unlike Poisson traffic models where
aggregating many traffic flows leads to a white noise effect.

A traffic burst consists of a number of aggregated packets addressed to the same des-
tination. Assembling multiple packets into bursts may result in different statistical char-
acteristics compared to the input packet traffic. Short-range burst traffic characteristics
include distribution of burst size and burst inter-arrival time. Two types of burst assembly
algorithms may be deployed in OBS networks: time-based and burst length-based. In time-
based algorithms, burst inter-arrival times are constant and predefined. In this case, it has
been observed that the distribution of burst lengths approaches a Gamma distribution that
reaches a Gaussian distribution when the number of packets in a burst is large. With a
burst length-based assembly algorithms, the packet size and burst length are predetermined
and the burst inter-arrival time is Gaussian distributed. Long-range traffic characteristics
deal with correlation structures of traffic over large time scales. It has been reported that
long-range dependency of incoming traffic will not change after packets are assembled into
bursts, irrespective of the traffic load [152].

A Poisson-Pareto burst process has been proposed [19], [160] to model the Internet traf-
fic in optical networks. It may be used to predict performance of optical networks [75]. The
inter-arrival times between adjacent bursts are exponentially distributed (Poisson) while
the burst durations are assumed to be independent and identically distributed Pareto ran-
dom variables. Pareto distributed burst durations capture the long-range dependent traffic
characteristics. Poisson-Pareto burst process has been used to fit the mean, variance, and
the Hurst parameter of measured traffic data and thus match the first order and second
order statistics. The Hurst parameter H expresses the speed of decay of the autocorrelation
function of a time series. Self-Similar series with long-range dependencies have Hurst pa-
rameters in the range 0.5 < H < 1. The degree of self-similarity and long-range dependency
increases as H increases [55], [93].

Traffic modeling affects evaluation of OBS network performance. The effect of the ar-
rival traffic statistics depends on the time scale. Short time scales greatly influence the

19

behavior of buffer-less high-speed networks. Self-similarity does not affect blocking prob-
ability even if the offered traffic is long-range dependent over large time scales. Poisson
approximation of the burst arrivals provides an upper bound for blocking probability [84].
Furthermore, assuming Poisson arrival processes introduces errors that are shown to be
within acceptable limits [154]. Hence, we adopt this approach commonly accepted in the
literature and consider Poisson inter-arrival times. The impact of traffic self-similarity on
the performance of the algorithms presented in this dissertation remains an open research
topic.

3.1.2 Contention in Optical Burst-Switched Networks

Consider an arbitrary OBS network shown in Fig. 3.1, where N = {x1,x2, . . . ,xn} denotes
the set of all network nodes. Node xi routes the incoming traffic flows f1 and f2 to the
destination nodes xd1 and xd2 , respectively. According to the shortest path routing table
stored in xi, both flows f1 and f2 should be forwarded to node xj via the outgoing link
l0. In this case, the flows f1 and f2 are contending for the outgoing link l0. The node xi
forwards flow f1 through l0 to the destination xd1. However, in the absence of a contention
resolution scheme, the flow f2 is discarded because node xi is unable to buffer it. Deflection
routing [154] is a contention resolution scheme that may be employed to reduce packet loss.
Contention between the flows f1 and f2 is resolved by routing f1 through the preferred
outgoing link l0 while routing f2 through alternate outgoing link l ∈ L\{l0}, where the
set L denotes the set of all outgoing links connected to x1. Various other methods have
been proposed to resolve contention. Wavelength conversion [98], fiber delay lines [136],
and control packet buffering [57] are among the contention resolution schemes that are
applicable to optical networks.

f2 xi

xj

xk

xl

l0

l1

lm

f1

xd1

xd2

Figure 3.1: A network with buffer-less nodes.

When employing deflection routing, two routing protocols should operate simultane-
ously: an underlying routing protocol such as the Open Shortest Path First (OSPF) that
primarily routes packets and a deflection routing algorithm that only deflects packets in
case of a contention.

20

Slotted and unslotted deflection schemes were compared [39], [49] and performance of
a simple random deflection algorithm and loss rates of deflected data were analyzed [38],
[70], [144], [155]. Integrations of deflection routing with wavelength conversion and fiber
delay lines were also proposed [149], [154]. Deflection routing algorithms generate deflection
decisions based on a deflection set, which includes all alternate links available for deflection.
Several algorithms have been proposed to populate large deflection sets while ensuring no
routing loops [83], [147].

3.2 Deflection Routing by Reinforcement Learning

Deflection routing has attracted significant attention as a viable method to resolve con-
tention in buffer-less networks [42], [94], [95]. Studies show that multiple deflections may
significantly improve utilization in networks with multiple alternate routes such as fully
meshed networks [144]. Performance evaluation of various deflection routing algorithms
using scale-free Barabási-Albert [29] topologies, which resemble the autonomous system-
level view of the Internet, shows that deflection routing effectively reduces the burst loss
probability in optical networks [76].

Deflection routing algorithms generate deflection decisions based on a deflection set D,
which includes all viable alternate links available for deflection. The size of the set D deter-
mines the flexibility of deflection module in resolving contention. One approach includes all
available links in the set D, which would maximize the flexibility while possibly introduc-
ing routing loops. Another approach includes only outgoing links that lie on the shortest
path, which avoids routing loops while reducing the flexibility in decision-making [38]. Sev-
eral algorithms have been proposed to populate large deflection sets D while ensuring no
routing loops [83], [147]. The proposed NDD signaling algorithm begins by including all
outgoing links in the deflection set D. As time progresses and deflection module receives
feedback signals, the probability of selecting alternate links that may result in routing loops
decreases.

Performance analysis of deflection routing based on random decisions shows that ran-
dom deflection may effectively reduce blocking probability and jitter in networks with light
traffic loads [131]. Advanced deflection routing algorithms improve the quality of decision-
making by enabling neighboring nodes to exchange traffic information [33], [66], [88], [113],
[132]. This information provides to the deflection module an integral neighborhood view
for decision-making. Heuristic methods may then be employed to make deflection decisions
based on the collected traffic information. Reinforcement learning provides a systematic
framework for processing the gathered information. Various deflection routing protocols
based on reinforcement learning [33], [88] employ the Q-learning algorithm or its variants.

Enhancing a node in buffer-less networks with a reinforcement learning agent that gen-
erates deflection decisions requires three components: function that maps a collection of

21

the environment variables to an integer (state); decision-making algorithm that selects an
action based on the state; and signaling mechanism for sending, receiving, and interpreting
the feedback signals. The decision-making instances in deflection routing are intermittent.
Hence, a learning algorithm need not consider the effect of all possible future system tra-
jectories for making its decisions. Agents that do not consider future system trajectories
for decision-making are known as immediate reward or associative learning agents.

The Q-learning Path Selection algorithm [88] calculates a priori a set of candidate paths
P = {p1, . . . , pm} for tuples (si, sj), where si, sj ∈ S and S = {s1, . . . , sn} denotes the
set of all edge nodes in the network. The Q-table stored in the ith edge node maintains a
Q-value for every tuple (sj , pk), where sj ∈ S\{si} and pk ∈ P . The sets S and P are states
and actions, respectively. The Q-value is updated after each decision is made and the score
of the path is reduced or increased depending on the received rewards. The algorithm does
not specify a signaling method or a procedure for handling the feedback signals. RLDRS [33]
also employs the Q-learning algorithm for deflection routing. The advantages of RLDRS
are its precise signaling and rewarding procedures.

The Q-learning Path Selection algorithm and RLDRS have two drawbacks: they are not
scalable and their underlying learning algorithms are inefficient.

Scalability

Q-learning Path Selection algorithm and RLDRS are not scalable because their space com-
plexity depends on the network size. For example, the size of the Q-table generated by the
Q-learning Path Selection algorithm [88] depends on the size of the network and the set of
candidate paths. Therefore, it may be infeasible to store a large Q-table emanating from a
large network.

Learning Deficiency

Q-learning is the only learning algorithm that has been employed for the deflection rout-
ing [33], [88]. Q-learning has two deficiencies:

1. Decisions that repeatedly receive poor rewards have low Q-values. Certain poor re-
wards might be due to a transient link failure or congestion and, hence, recovery and
reselection of such decisions may improve the decision-making. Q-learning-based de-
flection routing algorithms do not provide a procedure to reselect the paths that have
low Q-values as a consequence of transient network conditions [50];

2. Even though Q-learning guarantees eventual convergence to an optimal policy when
finding the best action set, it does not efficiently use the gathered data. Therefore, it
requires gaining additional experience to achieve good results [86].

22

The proposed NDD signaling algorithm addresses the scalability issue of the current
reinforcement learning-based deflection routing algorithms. Its complexity depends only
on a node degree. The NN and ENN decision-making modules are introduced to address
the learning deficiency of Q-learning. They learn based on the REINFORCE associative
learning algorithm [141], [143] that utilizes the gained experience more efficiently than Q-
learning.

3.3 The iDef Framework

The proposed iDef framework is designed to facilitate development of reinforcement learning-
based deflection routing protocols. We implemented the iDef framework in the ns-3 net-
work simulator. In iDef, a reinforcement learning-based deflection routing algorithm is
abstracted using mapping, decision-making, and signaling modules. iDef is designed to
minimize the dependency among its modules. This minimal dependency enables implemen-
tation of portable deflection routing protocols within the iDef framework, which enables
modules to be replaced without changing the entire design. For example, replacing the
decision-making module requires no changes in the implemented signaling module. iDef
components are shown in Fig. 3.2.

Input Output
OBS Interface Card

IP Routing

iDef

Deflection Manager

Mapping Decision-Making Signaling

Figure 3.2: iDef building blocks: The iDef is composed of deflection manager, mapping,
signaling, and decision-making modules. The deflection manager module coordinates the
communication between modules. Its purpose is to remove dependencies among modules.

A deflection manager glues together the iDef modules. It has access to the OBS network
interface cards and the IP routing table. The deflection manager makes iDef portable

23

by eliminating communication among mapping, decision-making, and signaling modules.
The burst header messages received by a node are passed to the deflection manager. The
deflection manager inspects the IP routing table for the next hop and then checks the
status of the optical interfaces. If the desired optical interface is available, the optical cross-
connects are configured according to the path defined by the IP routing table. If the interface
is busy, the deflection manager passes the environment variables such as destination of the
burst, output links blocking state, and the next hop on the shortest path, to the mapping
module.

The mapping module maps all or a subset of the received variables to an integer called
the state. For example, in the proposed NDD signaling algorithm, one possibility of such
mapping is to append the binary ID of the port number obtained from the routing table to
a string of 0s and 1s that represents the outgoing links status. This binary string may then
be converted to an integer.

The decision-making module implements the learning algorithm. Therefore, the statis-
tics, the history, and other required information for decision-making are stored in this
module. It implements two main functions that are used by the deflection manager: a
function that generates actions given a state and a function that updates the statistics
when a reinforcement signal is received. The mapped state is passed to the decision-making
module where an alternate output link (action) is selected for the burst. The generated
decisions are then passed to the deflection manager. The signaling module passes the re-
ceived reinforcement signals to the decision-making module where they are used for statistic
updates.

The signaling module adds header fields to the deflected bursts. It also inspects the burst
headers received by the deflection manager for special deflection header fields and tags. It
assembles and sends feedback messages when required. Upon receiving a feedback message,
the signaling module interprets the reinforcement signal and translates it to a scalar reward.
This reward is then used by the deflection manager to enhance the decision-making module.

3.4 Predictive Q-Learning-Based Deflection Routing Algo-
rithm

In this Section, we present details of the predictive Q-learning deflection routing algorithm
(PQDR) [74]. PQDR determines an optimal output link to deflect traffic flows when con-
tention occurs. The algorithm combines the predictive Q-routing (PQR) algorithm [50]
and RLDRS [33] to optimally deflect contending flows. When deflecting a traffic flow, the
PQDR algorithm stores in a Q-table the accumulated reward for every deflection decision.
It also recovers and reselects decisions that are not well rewarded and have not been used
over a period of time.

24

An arbitrary buffer-less network is shown in Fig. 3.1. N = {x1,x2, . . . ,xn} denotes the
set of all network nodes. Assume that each node possesses a shortest path routing table and
a module that implements the PQDR algorithm to generate deflection decisions. Consider
an arbitrary node xi that is connected to its m neighbors through a set of outgoing links
L = {l0, l1, . . . , lm}. Node xi routes the incoming traffic flows f1 and f2 to the destination
nodes xd1 and xd2 , respectively. According to the shortest path routing table stored in xi,
both flows f1 and f2 should be forwarded to node xj via the outgoing link l0. In this case,
node xi forwards flow f1 through l0 to the destination xd1. However, flow f2 is deflected
because node xi is unable to buffer it. Hence, node xi employs the PQDR algorithm to
select an alternate outgoing link from the set L\{l0} to deflect flow f2. It maintains five
tables that are used by PQDR to generate deflection decisions. Four of these tables store
statistics for every destination x ∈ N\{xi} and outgoing link l ∈ L:

1. Qxi(x, l) stores the accumulated rewards that xi receives for deflecting packets to desti-
nations x via outgoing links l.

2. Bxi(x, l) stores the minimum Q-values that xi has calculated for deflecting packets to
destinations x via outgoing links l.

3. Rxi(x, l) stores recovery rates for decisions to deflect packets to destinations x via out-
going links l.

4. Uxi(x, l) stores the time instant when xi last updated the (x, l) entry of its Q-table after
receiving a reward.

Each node stores a record for each of the n− 1 other nodes in the network. Hence, the size
of each table is m× (n−1), where m and n are the number of elements in the sets L and N ,
respectively. The fifth table Pxi(l) records the blocking probabilities of the outgoing links
connected to the node xi. A time window τ is defined for each node. Within each window,
the node counts the successfully transmitted packets λli and the discarded packets ωli on
every outgoing link li ∈ L. When a window expires, node xi updates entries in its Pxi table
as:

Pxi(li) =

ωli

λli + ωli
λli + ωli > 0

0 otherwise
. (3.1)

The PQDR algorithm needs to know the destination node xd2 of the flow f2 in order to
generate a deflection decision. For every outgoing link li ∈ L, the algorithm first calculates
a ∆t value as:

∆t = tc − Uxi(xd2 , łi), (3.2)

where tc represents the current time and Uxi(xd2 , li) is the last time instant when xi had
received a feedback signal as a result of selecting the outgoing link li for deflecting a traffic

25

flow that is destined for node xd2 . The algorithm then calculates Q′xi(xd2 , li) as:

Q′xi(xd2 , li) = max
(
Qxi(xd2 , li) + ∆t×Rxi(xd2 , li),Bxi(xd2 , li)

)
. (3.3)

Qxi(xd2 , li) is then used to generate the deflection decision (action) ζ:

ζ ← arg min
li∈L
{Q′xi(xd2 , li)}. (3.4)

The deflection decision ζ is the index of the outgoing link of node xi that may be used to
deflect the flow f2. Let us assume that ζ = l1 and, therefore, node xi deflects the traffic flow
f2 via l1 to its neighbor xk. When the neighboring node xk receives the deflected flow f2, it
either uses its routing table or the PQDR algorithm to forward the flow to its destination
through one of its neighbors (xl). Node xk then calculates a feedback value ν and sends it
back to node xi that had initiated the deflection:

ν = Qxk(xd2 , lkl)×D(xk,xl,xd2), (3.5)

where lkl is the link that connects xk and xl, Qxk(xd2 , lkl) is the (xd2 , lkl) entry in xk’s
Q-table, and D(xk,xl,xd2) is the number of hops from xk to the destination xd2 through
the node xl. Node xi receives the feedback ν for its action ζ from its neighbor xk and then
calculates the reward r:

r = ν × (1− Pxi(ζ))
D(xi,xk,xd2) , (3.6)

where D(xi,xk,xd2) is the number of hops from xi to the destination xd2 through xk while
Pxi(ζ) is the entry in the xi’s link blocking probability table Pxi that corresponds to the
outgoing link ζ (l1). The reward r is then used by the xi’s PQDR module to update the
(xd2 , ζ) entries in the Qxi , Bxi , and Rxi tables. The PQDR algorithm first calculates the
difference φ between the reward r and Qxi(xd2 , ζ):

φ = r −Qxi(xd2 , ζ). (3.7)

The Q-table is then updated using φ as:

Qxi(xd2 , ζ) = Qxi(xd2 , ζ) + α× φ, (3.8)

where 0 < α ≤ 1 is the learning rate. Table Bxi keeps the minimum Q-values and, hence,
its (xd2 , ζ) entry is updated as:

Bxi(xd2 , ζ) = min(Bxi(xd2 , ζ),Qxi(xd2 , ζ)). (3.9)

26

Table Rxi is updated as:

Rxi(xd2 , ζ) =

 Rxi(xd2 , ζ) + β
φ

tc − Uxi(xd2 , ζ) φ < 0

γRxi(xd2 , ζ) otherwise
, (3.10)

where tc denotes the current time and 0 < β ≤ 1 and 0 < γ ≤ 1 are recovery learning and
decay rates, respectively. Finally, the PQDR algorithm updates table Uxi with current time
tc as:

Uxi(xd2 , ζ) = tc. (3.11)

Signaling algorithms implemented in RLDRS and PQDR are similar. Their main dif-
ference is in the learning algorithm. RLDRS uses the Q-learning algorithm and, therefore,
it only stores a Q-table Qxi(x, l) that records the accumulated rewards that the node xi
receives for deflecting packets to destinations x via outgoing links l. As a result, a deflection
decision ζ is generated using only the Q-table. Hence, instead of (3.3) and (3.4), RLDRS
generates a deflection decision using:

ζ ← arg max
li∈L
{Qxi(xd2 , li)}. (3.12)

3.5 The Node Degree Dependent Signaling Algorithm

We describe here the proposed NDD [75] signaling algorithm and the messages that need
to be exchanged in order to enhance a buffer-less node with a decision-making ability. The
NDD algorithm provides a signaling infrastructure that nodes require in order to learn and
then optimally deflect packets in a buffer-less network. It is a distributed algorithm where
nodes make deflection decisions locally.

The flowchart of the signaling algorithm is shown in Fig. 3.3. We consider a buffer-
less network with |N | nodes. All nodes are iDef compatible and, hence, possess mapping,
decision-making, and signaling modules. The headers of the packets received by a node are
passed to the signaling module. The module inspects the routing table for the next hop
and then checks the status of the network interfaces. If the desired interface is available,
the packet is routed according to the path defined by the routing table. If the interface is
busy and the packet has not been deflected earlier by any other node, the current states of
the network interfaces and the output port obtained from the routing table are passed to
the mapping module. The mapping module maps these inputs to a unique representation
known as the system state. It then passes this information (state) to the decision-making
module. The state representation depends on the underlying learning algorithm. There-
fore, it may change based on the design of the decision-making module. Various decision-
making modules require specifically designed compatible mapping modules. For example,
Q-learning-based decision-making module requires a mapping module that transforms the

27

B
eg
in

C
he
ck

th
e

ro
ut
in
g
ta
bl
e

C
he
ck

th
e
ou

tp
ut

po
rt
s

Is
th
e

pr
im

ar
y
po

rt
av
ai
la
bl
e?

W
as

th
e
bu

rs
t

de
fle
ct
ed

ea
rl
ie
r?

Is
th
e
de
ci
si
on

m
ak

er
bu

sy
?

Se
le
ct

th
e
pr
ev
i-

ou
s
be

st
ac
ti
on

D
efl
ec
t
th
e
bu

rs
t

D
H
C

le
ss

th
an

D
H
C
m
a
x
?

D
is
ca
rd

th
e
bu

rs
t

A
ss
em

bl
e
a
fe
ed
-

ba
ck

m
es
sa
ge

Se
nd

th
e
fe
ed
ba

ck
m
es
sa
ge

to
th
e

de
fle
ct
io
n
in
it
ia
to
r

Se
le
ct

th
e
pr
ev
i-

ou
s
be

st
ac
ti
on

In
cr
em

en
t
th
e
bu

rs
t

he
ad

er
’s
D
H
C

D
efl
ec
t
th
e
bu

rs
t

P
as
s
th
e
st
at
e
to

de
ci
si
on

m
ak

er
an

d
ge
t

a
po

rt
fo
r
de
fle
ct
io
n

A
ss
em

bl
e
a

bu
rs
t
he
ad

er

St
ar
t
th
e
D
N

ti
m
er

D
efl
ec
t
th
e
bu

rs
t

D
N

le
ss

th
an

D
N
m
a
x
?

Fe
ed
ba

ck
is

re
ce
iv
ed
?

G
en
er
at
e
th
e

be
st

fe
ed
ba

ck

U
pd

at
e
th
e
de
-

ci
si
on

m
ak

er

Se
nd

th
e
bu

rs
t
on

th
e
pr
im

ar
y
ou

tp
ut

n
o

y
es y
es

n
o

y
es

n
o

y
es

n
o

y
es

n
o

y
es

n
o

Fi
gu

re
3.
3:

T
he

flo
wc

ha
rt

of
th
e
pr
op

os
ed

sig
na

lin
g
al
go

rit
hm

.
T
he

D
N

tim
er

de
no

te
s
th
e
dr
op

no
tifi

ca
tio

n
tim

er
.
N
od

es
wa

it
fo
r
fe
ed

ba
ck

sig
na

ls
un

til
th
is

tim
er

re
ac
he

s
D
H
C
m
a
x
.
D
H
C

de
no

te
s
th
e
de

fle
ct
io
n

ho
p

co
un

te
r.

T
hi
s
co
un

te
r
is

a
fie

ld
in

th
e
bu

rs
t
he

ad
er

th
at

is
in
cr
em

en
te
d
by

on
e
ea
ch

tim
e
th
e
bu

rs
t
is

de
fle

ct
ed

.
D
H
C
m
a
x
is

se
t
in

or
de

r
to

co
nt
ro
lt

he
vo
lu
m
e
of

de
fle

ct
ed

tr
affi

c.
A

bu
rs
t
is

di
sc
ar
de

d
w
he

n
its

D
H
C

va
lu
e
re
ac
he

s
th
e
m
ax

im
um

.

28

current states of the network interfaces and the output port suggested by the routing table
to a real number while NN and ENN-based decision-making modules require binary vectors.
The mapping module maps the states of the network interfaces to an ordered string of 0s
and 1s, where idle and busy interfaces are denoted by 0 and 1, respectively.

The decision-making module returns the index of the best network interface for deflecting
the packet based on the current state. The signaling module adds the following information
to the packet header: a unique ID number used to identify the feedback message that
pertains to a deflection; the address of the node that initiated the deflection, to be used by
other nodes as the destination for the feedback messages; a deflection hop counter DHC,
which is incremented each time other nodes deflect the packet.

When a packet is to be deflected at a node for the first time, the node records the
current time as the deflection time DfT along with the ID assigned to the packet. The
Drop Notification DN timer is initiated and the packet is deflected to the network interface
that is selected by the decision-making module. The maximum value of the DN timer is set
to DNmax, which indicates expiration of the timer. The purpose of the timer is to reduce
the number of feedback signals.

After a deflection decision is made, the decision-making module waits for the feedback.
It makes no new decisions during this idle interval. The deflected packet is discarded when
either it reaches a fully congested node or its DHC reaches the maximum permissible number
of deflections DHCmax.

The node that discards the deflected packet assembles a feedback message consisting
of the packet ID, DHC, and the time instant DrT when the packet was discarded. The
feedback message is then sent to the node that initiated the deflection.

When the node that initiated the deflection receives the feedback message, it calculates
the total travel time TTT that the packet has spent in the network after the first deflection:

TTT = DrT −DfT . (3.13)

The TTT and DHC values are used by the decision-making module to update its statistics.
If no feedback message is received until the DN timer expires, the node assumes that the
packet has arrived successfully to its destination. The node may then update its decision-
making module with the reinforcement signal having TTT = 0 and DHC = 0. A decreasing
function with the global maximum at (0, 0) is used as a reward function to map TTT and
DHC to a real value r.

A node records the best action selected by the decision-making module. These records
are used if a node needs to deflect a packet that has been deflected earlier or during an idle
interval.

29

In order to reduce the excess traffic generated by the number of feedback messages, a
node receives feedback messages only when it deflects packets that have not been deflected
earlier. Hence, only deflecting such packets enhances the node’s decision-making ability.

3.6 Neural Networks for Deflection Routing

In this Section, we propose the feed-forward neural networks that is used for generating
deflection decisions. The neural network decision-making module implements a network
of interconnected learning agents and uses the REINFORCE algorithm [141] described in
Section 2.2.

3.6.1 Feed-Forward Neural Networks for Deflection Routing with Single-
Episode Updates

We propose a single-hidden-layer feed-forward neural network for deflection routing because
fewer number of algebraic operations are required when the neural network selects actions
and updates its weights. Furthermore, such neural networks have reasonable learning ca-
pabilities [81], [82]. The proposed single hidden-layer neural network achieves acceptable
performance and, hence, we did not consider larger neural networks. The feed-forward neu-
ral network for generating deflection decisions is composed of the input, middle, and output
layers, as shown in Fig. 3.4.

Consider a buffer-less node with n outgoing links. The input layer of such a node consists
of two partitions denoted by binary vectors Il = [il1 . . . iln] and Id = [id1 . . . idn]. If the kth

outgoing link of the node is blocked, ilk is set to 1. It is 0 otherwise. If the burst that is to
be deflected contends for the jth outgoing link of the node, the jth entry of the input vector
Id is set to 1 while the remaining elements are set to 0. The Il partition of the input has
weighted connections to the output layer. The n× n matrix of wights Wlo is defined as:

Wlo =

wlo11 0 · · · 0
0 wlo22 · · · 0
...

...
...

0 0 · · · wlonn

 . (3.14)

Selecting a link that is blocked for deflection should be avoided because it results in an
immediate packet loss. Let us assume that the ith outgoing link of the buffer-less node is
selected as the preferred link for deflection when the output yi of the feed-forward neural
network is 1. If Bernoulli-logistic agents are employed, selecting a blocked link for deflection
may be prohibited by setting the elements wlokk, k = 1, . . . ,n, of the weight matrix Wlo to
a large negative value. Regardless of the state of the buffer-less network and its behavior,
selecting a blocked link will always result in immediate packet drop. This behavior does

30

y
1z m

1

z m
n

W
dm

z o
1

z o
n

di
1

di
n

W
mo

W
l o

y
2

y
n

y
n-1

i l
1

i l
n

Figure 3.4: The proposed design of the feed-forward neural network for deflection routing.
The input layer consists of two partitions denoted by binary vectors Il = [il1 . . . iln] and
Id = [ild . . . idn]. The Il partition of the input has weighted connections to the output layer.
The binary vector Zm = [zm1 . . . zmn] denotes the mid-layer of the proposed feed-forward
neural network while Zo denotes the output layer.

not change with time and does not depend on the reinforcement signals received from
the environment. Hence, Wlo is a deterministic weight matrix that is not updated when
reinforcement signals are received.

Let the binary vector Zm = [zm1 . . . zmn] denote the mid-layer of the proposed feed-
forward neural network shown in Fig. 3.4. This layer is connected to the input and the
output layers using the weight matrices:

Wdm =

wdm11 wdm12 · · · wdm1n
wdm21 wdm22 · · · wdm2n
...

...
...

wdmn1 wdmn2 · · · wdmnn

 (3.15)

and

Wmo =

wmo11 wmo12 · · · wmo1n
wmo21 wmo22 · · · wmo2n
...

...
...

wmon1 wmon2 · · · wmonn

 . (3.16)

These matrices reflect the preferences for deflection decisions. If there is no initial pref-
erence for the output links, a uniform distribution of the output links is desirable. This

31

is achieved by setting Wdm = Wmo = 0. However, these weight matrices get updated
and new probability distributions are shaped as reinforcement signals are received from the
environment. For an arbitrary h× k matrix Q, we define the Bernoulli semilinear operator
F as:

F(Q) =

1

1+eq11 · · · 1
1+eq1k

1
1+eq21 · · · 1

1+eq2k
...

...
1

1+eqh1 · · · 1
1+eqhk

 . (3.17)

In each decision-making epoch, a probability vector Pm = [pm1 . . . pmn] is calculated using
the Bernoulli semilinear operator as:

Pm = F
(
Id ×Wmo). (3.18)

Each zmk ∈ Zm is then calculated as:

zmk =

0 if pmk < 0.5
U(0, 1) if pmk = 0.5
1 if pmk > 0.5

, (3.19)

where U(0, 1) denotes 0 or 1 sampled from a uniform distribution.
Let the 1 × 2n row vector Io = [Il Zm] denote the input to the output layer Zo. The

n × 2n matrix Wo = [Wlo Wmo] denotes the weight matrix of the output layer Zo. The
probability vector Po = [po1 . . . pon] is first calculated as:

Po = F
(
Io ×

(
Wo)T). (3.20)

We then calculate the binary output vector Zo = [zo1 . . . zon] (3.19). Indices of 1s that
appear in the output vector Zo may be used to identify an outgoing link for the burst to be
deflected. If Zo contains multiple 1s, then the tie-break procedure described in Algorithm 4
is used for selecting the outgoing link. The output vector Zo and associated probability
vector Po are the inputs to the algorithm. Multiple indices of 1s in Zo may have different
values in Po because (3.19) maps to 1 all Po elements greater than 0.5 when updating Zo.
Therefore, in order to break a tie, Algorithm 4 considers all indices of 1s in Zo and selects
the index that has the maximum value in Po. If there are multiple indices with the same
maximum value, Algorithm 4 randomly selects one of these indices according to a uniform
distribution. It then sets to 0 the value of the elements of Zo that were not selected. The
algorithm needs to inspect the values of Zo and Po at most once. Furthermore, since vectors
Zo and Po of a buffer-less node with n outgoing links have n elements, the time complexity
of Algorithm 4 is O(n).

32

Algorithm 4 The tie-break procedure used to select an action based on the output vector
Zo of the feed-forward neural network
Input: Output vector: Zo = [zo1 . . . zon]

Probability vector: Po = [po1 . . . pon]
Output: Index of the outgoing link for the burst to be deflected: a
1: pmax ← 0
2: S ← ∅
3: for k ∈ {1, 2, . . . ,n} do
4: if zok = 1 && pok = pmax then
5: S ← k
6: else if zok = 1 && pok > pmax then
7: S ← ∅
8: S ← k
9: pmax ← pok

10: end if
11: end for
12: a← sample uniformly from S
13: for k ∈ {1, 2, . . . ,n}\{a} do
14: zok ← 0
15: end for
16: return a

After the reinforcement signal is received from the environment, the neural network
updates its weight matrices Wdm and Wmo according to (2.5):

∆wij = αr(yi − pi)xij ,

where α is a non-negative rate factor, yi is the output of the ith agent, pi is the probability
of yi = 1 given the input vector xi and weight vector wi, and xij is the jth element of the
input vector xi.

3.6.2 Feed-Forward Neural Networks for Deflection Routing with k-Episode
Updates

The difference between an episodic feed-forward neural network decision-making module
and a single-episode module is that the episodic neural network may generate deflection
decisions while it waits for reward signals that belong to its previous decisions. An episodic
neural network generates deflection decisions similar to the feed-forward neural network
with a single-episode. It keeps an episode counter Cepisode that is incremented when the
network generates a deflection decision and a reward counter Cr that is incremented when
the neural network receives a reward signal from the environment.

An episode starts when Cepisode = 0 and terminates when the neural network receives a
reward signal for all generated deflection decisions (Cepisode = Cr). During an episode, the
decision-making module maintains the input vector Id, weight matrices Zm and Zo, and
probability vectors Pm and Po.

Let us assume that an episode terminates after k decisions. Let Rk denote the sum of
all k reward signals that have been received from the environment. When the k-episode
terminates, the feed-forward neural network resets the counters Cepisode and Cr to zero.

33

Furthermore, it updates its weights as:

wdmuv ← wdmuv +
(
αRk

k∑
q=2

[(
(zmu)q − (pmu)q

)
(idv)q−1

])
(3.21)

wmouv ← wmouv +
(
αRk

k∑
q=2

[(
(zou)q − (pou)q

)
(zmv)q−1

])
, (3.22)

where wdmuv and wmouv are elements in the uth row and vth column of the weight matrices Wdm

and Wmo, respectively, and (zmu)q is the uth element of the vector Zm that was calculated
during the qth decision of the current episode.

3.6.3 Time Complexity Analysis

Q-NDD, PQDR, and RLDRS employ the table-based Q-learning algorithm. Hence, selecting
an action depends on the table implementation. If the Q-table is implemented as a hash
table, then an actions may be generated in constant time O(1). The update procedure
executed after receiving a reward signal may also be completed in constant time. The NN-
NDD and ENN-NDD algorithms employ the neural network shown in Fig. 3.4. In the case of
NN-NDD, time complexity of selecting an action and updating the neural network weights
after receiving a reward signal is no longer constant. When selecting an action, the neural
network needs to calculate vectors Pm and Po using (3.18) and (3.20), respectively. This
results in O(n2) complexity, where n is the number of a buffer-less node neighbors. The
reward procedure requires inspection of elements of the weight matrices Wdm and Wmo.
Each of these inspections is quadratic in n, yielding a complexity of O(n2) for the update
procedure. In the case of ENN-NDD, the complexity of selecting an action is also O(n2)
while the complexity of the update procedure is O(kn2), where k is the length of an episode.

The polynomial time complexity of the NN-NDD and ENN-NDD algorithms may affect
their real-time decision-making performance. However, this complexity only depends on
the degree of a buffer-less node. For example, the neural network of a node with the degree
equal to 1,000 performs 106 operations for an action selection or for an update. An average
general-purpose 2 GHz CPU is capable of processing 2 × 109 operations per second and,
therefore, it is capable of processing the neural network in less than 0.5 ms.

3.7 Network Topologies: A Brief Overview

In this Section, we present a historical overview of the Internet topology research as a
motivation and background for the topologies used in Section 3.8.

Many natural and engineering systems have been modeled by random graphs where
nodes and edges are generated by random processes. They are referred to as Erdös and
Rényi models [58]. Waxman [140] algorithm is commonly used to synthetically generate

34

such random network topologies. In a Waxman graph, an edge that connects nodes u and
v exists with a probability:

Pr
(
{u, v}

)
= η exp

(−d(u, v)
Lδ

)
, (3.23)

where d(u, v) is the distance between nodes u and v, L is the maximum distance between
the two nodes, and η and δ are parameters in the range (0, 1]. Graphs generated with larger
η and smaller δ values contain larger number of short edges. These graphs have longer hop
diameter, shorter length diameter, and larger number of bicomponents [156]. Graphs gener-
ated using Waxman algorithm do not resemble the backbone and hierarchal structure of the
current Internet. Furthermore, the algorithm does not guarantee a connected network [43].

Small-world graphs where nodes and edges are generated so that most of the nodes are
connected by a small number of nodes in between were introduced rather recently to model
social interactions [139]. A small-world graph may be created from a connected graph that
has a high diameter by randomly adding a small number of edges. (The graph diameter is
the largest number of vertices that should be traversed in order to travel from one vertex to
another.) This construction drastically decreases the graph diameter. Generated networks
are also known to have “six degrees of separation.” It has been observed in social network
that any two persons are linked by approximately six connections.

Most computer networks may be modeled by scale-free graphs where node degree dis-
tribution follows power-laws. Nodes are ranked in descending order based on their degrees.
Relationships between node degree and node rank that follow various power-laws have been
associated with various network properties. Eigenvalues vs. the order index as well as num-
ber of nodes within a number of hops vs. number of hops also follow various power-laws
that have been associated with Internet graph properties [46], [60], [108], [125], [127]. The
power-law exponents are calculated from the linear regression lines 10(a)x(b), with segment
a and slope b when plotted on a log-log scale. The model implies that well-connected net-
work nodes will get even more connected as Internet evolves. This is commonly referred as
the “rich get richer” model [29]. Analysis of complex networks also involves discovery of
spectral properties of graphs by constructing matrices describing the network connectivity.

Barabási-Albert [29] algorithm generates scale-free graphs that possess power-law dis-
tribution of node degrees. It suggests that incremental growth and preferential connectivity
are possible causes for the power-law distribution. The algorithm begins with a connected
network of n nodes. A new node i that is added to the network connects to an existing
node j with probability:

Pr(i, j) = dj∑
k∈N dk

, (3.24)

where dj denotes the degree of the node j, N is the set of all nodes in the network, and∑
k∈N dk is the sum of all node degrees.

35

0

1

2

3

4 5 7
10

11

13

12

8

6

14

9

Figure 3.5: Topology of the NSF network after the 1989 transition. Node 9 and node 14
were added in 1990.

The Internet is often viewed as a network of Autonomous Systems. Groups of networks
sharing the same routing policy are identified by Autonomous System Numbers [12]. The
Internet topology on Autonomous System-level is the arrangement of autonomous systems
and their interconnections. Analyzing the Internet topology and finding properties of associ-
ated graphs rely on mining data and capturing information about the Autonomous Systems.
It has been established that Internet graphs on the Autonomous System-level exhibit the
power-law distribution properties of scale-free graphs [60], [108], [127]. Barabási-Albert
algorithm has been used to generate viable Internet-like graphs.

In 1985, NSF envisioned creating a research network across the United States to con-
nect the recently established supercomputer centers, major universities, and large research
laboratories. The NSF network was established in 1986 and operated at 56 kbps. The
connections were upgraded to 1.5 Mbps and 45 Mbps in 1988 and 1991, respectively [11].
In 1989, two Federal Internet Exchanges (FIXes) were connected to the NSF network: FIX
West at NASA Ames Research Center in Mountain View, California and FIX East at the
University of Maryland [105]. The topology of the NSF network after the 1989 transition
is shown in Fig. 3.5.

3.8 Performance Evaluation

We evaluate performance of the proposed deflection routing protocols and RLDRS [33]
by implementing them within the iDef framework. We compare the algorithms based on
burst loss probability, number of deflections, average end-to-end delay, and average number
of hops traveled by bursts. We first use the National Science Foundation (NSF) network
topology shown in Fig. 3.5, which has been extensively used to evaluate performance of
OBS networks [32]–[34], [88], [95], [144], [145]. We also use network topologies generated
by the Waxman algorithm [140]. These networks consist of 10, 20, 50, 100, 200, 500, and

36

1,000 nodes. We compare the deflection routing algorithms in terms of memory and Central
Processing Unit (CPU) time using the larger Waxman graphs. In all simulation scenarios,
we allow up to two deflections per burst (DHCmax = 2). The burst header processing time
is set to 0.1 ms.

3.8.1 National Science Foundation Network Scenario

The topology of the NSF network is shown in Fig. 3.5. The nodes are connected using
bidirectional 1 Gbps fiber links with 64 wavelengths. The learning rate is set to α = 0.1
and the maximum drop notification timer to DNmax = 50 ms.

Multiple Poisson traffic flows with a data rate of 0.5 Gbps are transmitted randomly
across the network. Each Poisson flow is 50 bursts long with each burst containing 12.5
kB of payload. While the burst arrival process depends on the aggregation algorithm [107]
deployed in a node, the Poisson process has been widely used for performance analysis of
OBS networks because it is mathematically tractable [152], [153].

The simulation scenarios are repeated with five random assignments of nodes as sources
and destinations. The simulation results are averaged over the five simulation runs. The
burst loss probability and the average number of deflections as functions of the number of
Poisson flows for 64 wavelengths scenarios are shown in Fig. 3.6 and Fig. 3.7, respectively.

Even though the space complexity of the NDD algorithm is reduced to the degree of
a node, simulation results show that NDD-based protocols perform better than RLDRS
and PQDR in the case of low to moderate traffic loads. However, NN-NDD and Q-NDD
protocols initiate larger number of deflections compared to RLDRS and PQDR. In moderate
to high loads, PQDR exhibits the best performance. It deflects fewer bursts and its burst-
loss probability is lower compared to other algorithms. In the cases of higher traffic loads,
ENN-NDD algorithm discards fewer bursts while deflecting more bursts compared to other
NDD-based algorithms.

In scenarios with lower traffic loads, the bursts are deflected less frequently and, there-
fore, the decision-making modules (learning agents) learn based on a smaller number of
trials and errors (experience). The learning deficiency of Q-learning based algorithms in
these cases results in higher burst-loss probabilities. In the cases of low to moderate traffic
loads, the NN-NDD algorithm has the lowest burst-loss probability. In scenarios with higher
traffic loads, decision-making modules (learning agents) deflect bursts more frequently. This
enables the learning agents to gain additional experience and make more informed decisions.
In these cases, RLDRS and the PQDR algorithm make optimal decisions, which result in
lower burst-loss probabilities because they collect and store additional information about
the network dynamics.

The RLDRS and PQDR signaling algorithms take into account the number of hops
to destination when they generates feedback signals. Therefore, RLDRS and PQDR have
smaller average end-to-end delay and average number of hops traveled by bursts. The

37

34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
0.00

0.20

0.40

0.60

0.80

1.00

1.20
·10−2

Network load (%)

B
ur

st
lo

ss
pr

ob
ab

ili
ty

NN-NDD

ENN-NDD

Q-NDD

PQDR

RLDRS

68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98
0.00

0.05

0.10

0.15

0.20

Network load (%)

B
ur

st
lo

ss
pr

ob
ab

ili
ty

NN-NDD

ENN-NDD

Q-NDD

PQDR

RLDRS

Figure 3.6: Burst loss probability as a function of the number of Poisson flows in the NSF
network simulation scenario. For readability, two cases are plotted: 1,000 (≈ 35% load) to
2,000 (≈ 65% load) Poisson flows (top) and 2,000 (≈ 65% load) to 3,000 (≈ 100% load)
Poisson flows (bottom). The NDD algorithms perform better than RLDRS and PQDR in
case of low to moderate traffic loads. In the cases of higher traffic loads, ENN-NDD has
smaller burst-loss compared to other NDD algorithms.

average end-to-end delay and average number of hops travelled by bursts as functions of
traffic load are shown in Fig. 3.8 (top) and Fig. 3.8 (bottom), respectively.

Simulation results indicate that in the case of moderate loads (40%–65%), the NDD
algorithms have much smaller burst-loss probability than RLDRS and PQDR, as shown
in Fig. 3.6 (top). For example, at 65% load, the burst-loss probability of the NN-NDD
algorithm is approximately 0.003, which is four times better than performance of PQDR (≈
0.012). The NDD algorithms maintain comparable performance in terms of end-to-end
delay (within ≈ 0.04 ms), as shown in Fig. 3.8 (top). Similar trend is observed in the
average number of hops travelled by bursts, as shown in Fig. 3.8 (bottom). In the case
of high loads (80%–100%), the maximum difference in burst-loss probabilities is between

38

34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
0

2

4

6
·103

Network load (%)

A
ve

ra
ge

nu
m

be
ro

fd
efl

ec
tio

ns

NN-NDD

ENN-NDD

Q-NDD

PQDR

RLDRS

68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98
0

20

40

60

80

·103

Network load (%)

A
ve

ra
ge

nu
m

be
ro

fd
efl

ec
tio

ns

NN-NDD

ENN-NDD

Q-NDD

PQDR

RLDRS

Figure 3.7: Average number of deflections as a function of the number of Poisson flows in
the NSF network simulation scenario. For readability, two cases are plotted: 1,000 (≈ 35%
load) to 2,000 (≈ 65% load) Poisson flows (top) and 2,000 (≈ 65% load) to 3,000 (≈ 100%
load) Poisson flows (bottom). The PQDR and RLDRS algorithms perform better than the
NDD algorithms in all cases. The PQDR algorithm has the smallest number of deflections.

NN-NDD (≈ 0.18) and PQDR (≈ 0.13) at 100% load, as shown in Fig. 3.6 (bottom). The
maximum difference in end-to-end delays at 100% load is between Q-NDD (≈ 0.5 ms) and
RLDRS (≈ 0.42 ms), as shown in Fig. 3.8 (top). Superior performance of NDD algorithms
in case of moderate loads makes them a viable solution for deflection routing because the
Internet backbone was engineered to keep link load levels below 50% [83]. Studies show
that the overloads of over 50% occur less than 0.2% of a link life-time [64], [83].

3.8.2 Complex Network Topologies and Memory Usage

We use the Boston University Representative Internet Topology Generator (BRITE) [13]
to generate random Waxman graphs [140] with 10, 20, 50, 100, 200, 500, and 1,000 nodes.
In simulation scenarios, we use the Waxman parameters (3.23) η = 0.2 and δ = 0.15 [156].

39

35 40 45 50 55 60 65 70 75 80 85 90 95
0.4

0.42

0.44

0.46

0.48

0.5

0.52

Network load (%)

A
ve

ra
ge

en
d-

to
-e

nd
de

la
y

(m
s)

NN-NDD

ENN-NDD

Q-NDD

PQDR

RLDRS

35 40 45 50 55 60 65 70 75 80 85 90 95

1.2

1.3

1.4

1.5

1.6

Networks load (%)

A
ve

ra
ge

nu
m

be
ro

fh
op

s

NN-NDD

ENN-NDD

Q-NDD

PQDR

RLDRS

Figure 3.8: Average end-to-end delay (top) and average number of hops travelled by bursts
(bottom) as functions of network traffic load in the NSF network scenario with 64 wave-
lengths. RLDRS and PQDR achieve better performance in both cases.

Nodes are randomly placed and each node is connected to three other nodes using bidirec-
tional single wavelength fiber links. Sources and destinations of traffic flows are randomly
selected. For all scenarios, we keep the network load at 40%. Hence, scenarios with 10,
20, 50, 100, 200, 500, and 1,000 nodes have 24, 48, 120, 240, 480, 1,200, and 2,400 Poisson
traffic flows, respectively. Simulations were performed on a Dell Optiplex-790 with 16 GB
memory and the Intel Core i7 2600 processor.

Burst-Loss Probability

Performance of deflection routing algorithms in terms of burst-loss probability as a function
of number of nodes is shown in Fig. 3.9. Note that the burst-loss probability has a logarith-
mic trend. The NN-NDD and Q-NDD algorithms scale better as the size of the network
grows.

40

101 102 103

0.2

0.4

0.6

0.8

Number of nodes

B
ur

st
lo

ss
pr

ob
ab

ili
ty

NN-NDD

ENN-NDD

Q-NDD

PQDR

RLDRS

Figure 3.9: Burst loss probability as a function of the number of nodes in the Waxman
graphs at 40% traffic load. These results are consistent with the results shown in Fig. 3.6,
which were derived for the NSF network consisting of 14 nodes. Shown burst loss prob-
abilities for networks of similar size (14 nodes) illustrate that NN-NDD, ENN-NDD, and
Q-NDD algorithms have comparable performance to other algorithms.

The burst-loss probability of the NN-NDD and Q-NDD algorithms is smaller and bursts
are deflected less frequently in larger networks. However, bursts travel through additional
hops and thus experience longer end-to-end delays. Therefore, smaller burst-loss probability
and smaller number of deflections come at the cost of selecting longer paths, which are less
likely to be congested. RLDRS and the PQDR algorithm consider the number of hops to
destination when deflecting bursts, which causes the bursts to travel through shorter paths.
The probability of congestion along shorter paths is usually higher because the majority
of the routing protocols tend to route data through such paths. As a result, burst-loss
probability and probability of deflecting bursts is higher along the paths that PQDR and
RLDRS select for deflection.

Number of Deflections

Although burst deflection reduces the burst-loss probability, it introduces excess traffic
load in the network. This behavior is undesired from the traffic engineering point of view.
Therefore, the volume of the deflected traffic should also be considered as a performance
measure. Performance of the deflection routing algorithms in terms of number of deflections
as a function of number of nodes is shown in Fig. 3.10. Simulation results show that the
NN-NDD and Q-NDD algorithms deflect fewer bursts compared to RLDRS and the PQDR
algorithm.

41

101 102 103
0

0.5

1

·105

Number of nodes

A
ve

ra
ge

nu
m

be
ro

fd
efl

ec
tio

ns
NN-NDD

ENN-NDD

Q-NDD

PQDR

RLDRS

Figure 3.10: Number of deflections as a function of the number of nodes in the Waxman
graphs at 40% traffic load.

End-to-End Delay and Average Number of Hops

Average end-to-end delay and average number of hops travelled by bursts as functions of the
number of nodes are shown in Fig. 3.11 (top) and Fig. 3.11 (top), respectively. Simulation
results indicate that in the case of NDD algorithms, bursts travel through additional hops
compared to RLDRS and the PQDR algorithm. When deflecting a burst, RLDRS and
the PQDR algorithm consider the number of hops to the destination. Furthermore, the
underlying topology and the connectivity of nodes affect the number of hops traveled by
bursts [76].

Memory and CPU Requirements

The memory and CPU time requirements of NN-NDD, ENN-NDD, Q-NDD, RLDRS, and
PQDR are shown in Table 3.2. These values are based on the executed simulation scenarios.

All algorithms initially have comparable memory requirements. However, as the simula-
tions proceed and the Q-tables are populated by new entries, the memory usage of RLDRS
and the PQDR algorithm grows faster compared to NN-NDD and Q-NDD. The ENN-NDD
algorithm memory usage grows faster than NN-NDD, Q-NDD, and RLDRS. This may be
attributed to a larger number of bursts that ENN-NDD deflects, as shown in Fig. 3.10. The
simulation results also show that NDD-based algorithms require less CPU time compared
to RLDRS and PQDR. The memory usage of algorithms in the network with 1,000 nodes is
shown in Fig. 3.12. The graphs were generated by using 100 equally spaced time instances
over each simulation run.

42

101 102 103
0.2

0.4

0.6

0.8

1
·10−3

Number of nodes

A
ve

ra
ge

en
d-

to
-e

nd
de

la
y

(s
)

NN-NDD

ENN-NDD

Q-NDD

PQDR

RLDRS

101 102 103
0

1

2

3

Number of nodes

A
ve

ra
ge

nu
m

be
ro

fh
op

s

NN-NDD

ENN-NDD

Q-NDD

PQDR

RLDRS

Figure 3.11: Average end-to-end delay (top) and average number of hops travelled by
bursts (bottom) as functions of the number of nodes in the Waxman graphs at 40% traffic
load.

3.9 Discussion

In this Chapter, we introduced the iDef framework that was implemented in the ns-3 net-
work simulator. iDef may be employed for implementation and testing of various reinforce-
ment learning-based deflection routing algorithms. Its independent modules enable users to
integrate various learning and signaling algorithms when designing deflection routing pro-
tocols. We then introduced the PQDR algorithm that employs the predictive Q-routing to
generate optimal deflection decisions. The proposed algorithm recovers and reselects paths
to generate viable deflection decisions. We also introduced the NDD signaling algorithm
for deflection routing. Its space complexity depends only on the node degree. Further-
more, we proposed a neural network-based associative learning algorithm and an NN-based
associative learning algorithm with episodic updates. We combined the NDD signaling
algorithm with neural network (NN-NDD), Episodic Neural Network (ENN-NDD), and a
Q-learning-based (Q-NDD) decision-making modules for deflection routing.

43

Table 3.2: Comparison of Memory and CPU Usage of NN-NDD, ENN-NDD, Q-NDD,
PQDR, and RLDRS

Number Number Number Minimum Maximum Average Total
Algorithm of of of memory memory CPU CPU time

nodes links flows usage (MB) usage (MB) usage (%) (mm:ss)

NN-NDD 500 1,500 1,200 264 271 8.1 8:28.23
1,000 3,000 2,400 983 1,001 14.03 32:47.91

ENN-NDD 500 1,500 1,200 264 294 7.74 12:03.48
1,000 3,000 2,400 989 1,050 12.69 42:40.16

Q-NDD 500 1,500 1,200 264 271 8.22 8:25.29
1,000 3,000 2,400 987 1,000 13.56 32:35.44

PQDR 500 1,500 1,200 264 290 9.83 13:28.11
1,000 3,000 2,400 987 1,048 15.93 52:58.90

RLDRS 500 1,500 1,200 264 276 9.53 14:27.04
1,000 3,000 2,400 987 1,013 15.41 56:13.34

0 10 20 30 40 50 60 70 80 90 100
980

1,000

1,020

1,040

Sample number

M
em

or
y

us
ed

(M
B

)

NN-NDD

ENN-NDD

Q-NDD

PQDR

RLDRS

Figure 3.12: Memory used in the network with 1,000 nodes. The graphs were generated by
using 100 equally spaced time instances over each simulation run.

Performance of the NN-NDD, ENN-NDD, and Q-NDD and PQDR algorithms was com-
pared with the existing RLDRS algorithm. We implemented these algorithms within the
iDef framework. For simulations, we employed the National Science Foundation (NSF) net-
work topology and random graphs that consisted of 10, 20, 50, 100, 200, 500, and 1,000
nodes. These graphs were generated using the Waxman algorithm.

In simulations using the NSF network topology, NN-NDD achieves the lowest burst loss
probability in the cases of low to moderate loads. Simulations with Waxman topologies in-
dicate that NN-NDD and Q-NDD achieve smaller burst-loss probabilities while they deflect
bursts less frequently. However, bursts travel through additional hops and thus experience
longer end-to-end delays. Therefore, smaller burst-loss probability and smaller number of
deflections come at the cost of selecting longer paths, which are less likely to be congested.
RLDRS and the PQDR algorithm consider the number of hops to destination when deflect-

44

ing bursts. This, in turn, causes the bursts to travel through shorter paths. However, the
probability of congestion along shorter paths is usually higher because the majority of the
routing protocols tend to route data through such paths. Consequently, burst-loss proba-
bility and probability of deflecting bursts are higher along the paths that RLDRS and the
PQDR algorithm select for deflection. The proposed NDD signaling algorithm also requires
less memory and CPU resources, which are more significant as the size of the network grows.

Several OBS testbed implementations that have been reported [91], [128] are rather small
and use field-programmable gate arrays (FPGA) for optical cross-connect implementation.
Furthermore, only a simple deflection routing algorithm [137] was considered. Most existing
deflection routing algorithms have been evaluated using simulation and analytical methods.
Experimental performance evaluation of deflection routing algorithms using larger testbeds
remains an open research topic.

45

Chapter 4

Reinforcement Learning-Based
Algorithms for Virtual Network
Embedding

The VNE problem may be divided into two subproblems: Virtual Node Mapping (VNoM)
and Virtual Link Mapping (VLiM). VNoM algorithms map virtual nodes onto substrate
nodes while VLiM algorithms map virtual links onto substrate paths. Algorithms that
have been proposed for solving VNE are categorized into three categories depending on
the approaches taken to solve these two subproblems [63]. The uncoordinated two-stage
algorithms first solve the VNoM problem and provide a node mapping to the VLiM solver.
In these approaches, the VNoM and VLiM solvers operate independently without any co-
ordination [118], [151]. The coordinated two-stage algorithms also first solve the VNoM
problem. Unlike the uncoordinated solutions, these algorithms consider the virtual link
mappings when solving the VNoM problem [48], [51], [69]. The coordinated one-stage algo-
rithms solve the VNoM and VLiM problems simultaneously. When two virtual nodes are
mapped, also mapped is the virtual link connecting the two nodes [150].

Most VNE algorithms proposed in the literature address the VNoM while solving the
VLiM using the shortest-path algorithms (k-shortest path, Breadth-First Search (BFS), and
Dijkstra) or the Multi-Commodity Flow (MCF) algorithm. Unlike the MCF algorithm, the
shortest-path algorithms do not allow path splitting. Path splitting [151] enables a virtual
link to be mapped onto multiple substrate paths.

The contributions of this Chapter are:

• We model the VNoM problem as a Markov Decision Process (MDP). MDPs decom-
pose sequential decision-making problems into states, actions, transition probabilities
between the states given the actions, and the received rewards for performing actions
in given states. We have selected MDP to model VNE to show that the VNE is inher-

46

ently a decision making problem and, therefore, may be solved using reinforcement
learning algorithms.

• We introduce two Monte Carlo Tree Search-based V irtual Network Embedding algo-
rithms: MaVEn-M and MaVEn-S. They are coordinated two-stage VNE algorithms
that solve the proposed MDP for VNoM using the Monte Carlo Tree Search (MCTS)
algorithm [53], [89]. In order to improve performance of the MaVEn algorithms, we
parallelize them by employing the MCTS root parallelization technique [44], [45].

Classical tree search algorithms such as A* [111] and IDA* [90] require an admissible
heuristic function that is capable of accurately computing the value of tree nodes at
any given depth. In many applications, such as VNE, identifying a heuristic function
is infeasible. An advantage of MCTS is that it does not require accurate evaluation
functions [122]. MCTS is a recent algorithm that has been successfully employed to
solve NP-complete puzzles [123]. It has also revolutionized the computer Go game [54],
[67] and is rapidly replacing classical search algorithms as the method of choice in
challenging domains [68].

The proposed MaVEn-M algorithm employs the MCF algorithm to coordinate VNoM
and VLiM when solving the VNoM subproblem. It also employs MCF to solve the
VLiM subproblem after it obtains the VNoM solution. MaVEn-S employs a simple
BFS algorithm. A number of existing VNE algorithms find only one solution for
virtual network mapping and they are unable to improve the solution even if additional
execution time is available [48], [51], [69], [157]. One advantage of the proposed
algorithms is that their runtime may be adjusted according to the VNR arrival rates.
If the VNR arrival rate is low, their execution time may be increased to find more
profitable embedding solutions.

• We develop a VNE simulator VNE-Sim written in C++. It is based on the Dis-
crete Event System Specification (DEVS) framework [135] and employs the Adevs
library [110]. For performance evaluation, we implement the proposed MaVEn-M and
MaVEn-S algorithms, the existing MIP-based R-Vine and D-Vine algorithms [51],
and the node-ranking-based GRC algorithm [69]. We also introduce profitability as a
new metric for comparing VNE algorithms.

The VNE algorithm presented in this chapter are summarized in Table 4.1.
The remainder of this Chapter is organized as follows. In Section 4.1, we present the

VNE problem and its objective function, establish its upper bound, and introduce prof-
itability as a performance metric. The available Vine [51] and GRC [69] node mapping, a
Breadth-First Search-based link mapping, and the MCF link mapping algorithms are pre-
sented in Section 4.2. An MDP formulation of the VNoM problem is proposed in Section 4.4.
To solve the VNE problem, we then introduce two MaVEn algorithms that utilize MCTS

47

Table 4.1: Summary of the presented algorithms.
VNE algorithm VNoM algorithm VLiM algorithm
MaVEn-M Based on MCTS MCF
MaVEn-S Based on MCTS BFS-based shortest-path
Parallel MaVEn-M Based on MCTS with root parallelization MCF
Parallel Maven-S Based on MCTS with root parallelization BFS-based shortest-path
R-Vine Based on MIP with randomized rounding MCF
D-Vine Based on MIP with deterministic rounding MCF
GRC Based on Node-Ranking BFS-based shortest-path

for finding optimal action policies for the proposed MDP. In Section 4.5, performance of the
MaVEn algorithms is compared to the existing VNE algorithms. We conclude this Chapter
with discussions in Section 4.6.

4.1 Virtual Network Embedding Problem

Let Gs(N s,Es) denote the substrate network graph, where N s = {ns1,ns2, . . . ,nsj} is the set
of j substrate nodes (vertices) while Es = {es1, es2, . . . , esk} is the set of k substrate edges
(links). We denote by es(nsa,nsb) a substrate edge between substrate nodes nsa and nsb. Let
the ith VNR be denoted by a triplet Ψi(GΨi ,ωΨi , ξΨi), where GΨi(NΨi ,EΨi) is the virtual
network graph with NΨi = {nΨi

1 ,nΨi
2 , . . . ,nΨi

` } and EΨi = {eΨi
1 , eΨi

2 , . . . , eΨi
m } denoting the

set of ` virtual nodes andm virtual edges, respectively. Furthermore, ωΨi is the VNR arrival
time and ξΨi is its life-time according to distributions Ω and Ξ, respectively. We denote by
eΨi(nΨi

a ,nΨi
b) a virtual edge between virtual nodes nΨi

a and nΨi
b . We assume that a substrate

node ns ∈ N s possesses resources such as residual CPU capacity C(ns) while a VNR node
nΨi ∈ NΨi requires a CPU capacity C(nΨi). Similarly, a substrate edge es ∈ Es possesses
a set of properties such as its residual bandwidth B(es) while a virtual edge eΨi ∈ EΨi is
constrained by a set of requirements such as bandwidth B(eΨi).

VNoM algorithms assign a virtual node nΨi to a substrate node ns that satisfies re-
quirements of the virtual node. We denote such mapping by a tuple (nΨi ,ns). A complete
virtual node map for Ψi is denoted by π:

π = {(nΨi ,ns)|∀nΨi ∈ NΨi} (4.1)

VLiM algorithms establish a virtual link using one or more substrate links. If a virtual
link eΨi is established using q substrate links {es1, es2, . . . , esq}, we denote such mapping by
a tuple

(
eΨi , {es1, es2, . . . , esq}

)
. The goal of VNoM and VLiM algorithms is to optimize an

objective function.
We assume that substrate nodes possess residual CPU capacities C(ns) and are located

at coordinates L(ns) = (xns , yns). Virtual nodes require a CPU capacity C(nΨi) and have
a location preference L(nΨi) = (xΨi , yΨi). The only assumed substrate link resource is

48

the residual link bandwidth B(es). Virtual links have bandwidth requirements B(eΨi) [51].
Assuming that path splitting [151] is not permitted for link mapping, a substrate node is
eligible to host a virtual node if:

C(ns) ≥ C(nΨi), (4.2)

d
(
L(ns),L(nΨi)

)
≤ δΨi , (4.3)

ns : ∀ eΨi ∈ EnΨi ∃ es ∈ Ens | B(es) ≥ B(eΨi), (4.4)

where d(., .) is the Euclidean distance function, δΨi is a predetermined maximum allowable
distance for the node embeddings of Ψi, Ens is the set of all substrate links connected to a
substrate node ns, and EnΨi is the set of all virtual links connected to a virtual node nΨi .
If path splitting is permitted, (4.4) becomes:

∑
es∈Ens

B(es) ≥
∑

eΨi∈E
nΨi

B(eΨi). (4.5)

The substrate nodes that satisfy (4.2) to (4.5) form the set of candidate nodes N s(nΨi) for
embedding the virtual node nΨi .

4.1.1 Objective of Virtual Network Embedding

Majority of the proposed VNE algorithms have the objective to maximize the profit of
InPs [48], [51], [69], [157]. Embedding revenue, cost, and the VNR acceptance ratio are the
three main contributing factors to the generated profit.

Revenue

InPs generate revenue by embedding VNRs. The revenue generated by embedding a VNR
Ψi is calculated as a weighted sum of VNR resource requirements:

R(GΨi) = wc
∑

nΨi∈NΨi

C(nΨi) + wb
∑

eΨi∈EΨi

B(eΨi), (4.6)

where wc and wb are the weights for CPU and bandwidth requirements, respectively [157].
The network provider receives a revenue only if the virtual network request is accepted for
embedding. No revenue is generated in the case the request is rejected. In this Chapter,
we assume that requests are served one at a time [69], [157]. Furthermore, we are not
considering future VNR arrivals. Hence, to maximize the revenue, the service provider
should try to accept as many requests as possible. The generated revenue only depends on
whether or not the request is accepted. If a request is accepted for embedding, the generated
revenue (4.6) does not depend on the substrate resources used to serve the request.

49

Cost

For embedding a VNR Ψi, the InP incurs a cost based on the resources it allocates for
embedding the VNR. The incurred cost is calculated as:

C(GΨi) =
∑

nΨi∈NΨi

C(nΨi) +
∑

eΨi∈EΨi

∑
es∈Es

fe
Ψi
es , (4.7)

where feΨies denotes the total bandwidth of the substrate edge es that is allocated for the
virtual edge eΨi [51], [151]. Unlike the revenue function (4.6), the cost (4.7) depends on the
embedding configuration. Hence, if a VNR Ψi is accepted, the cost C(GΨi) values depend
on the embedding configuration within the substrate network.

Acceptance Ratio

In a given time interval τ , the ratio of the number of accepted VNRs |Ψa(τ)| to the total
number of VNRs that arrived |Ψ(τ)| defines the acceptance ratio or the probability of
accepting a VNR:

pτa = |Ψ
a(τ)|
|Ψ(τ)| . (4.8)

Node and Link Utilizations

Node utilization U(N s) is defined as:

U(N s) = 1−

∑
ns∈Ns

C(ns)∑
ns∈Ns

Cmax(ns)
, (4.9)

where C(ns) is the available CPU resources of a substrate node ns while Cmax(ns) is the
maximum CPU resources of the node. Similarly, link utilization U(Es) is defined as:

U(Es) = 1−

∑
es∈Es

B(es)∑
es∈es

Bmax(es)
, (4.10)

where B(es) is the available bandwidth of a substrate link es while Bmax(es) is the maximum
bandwidth of the link.

Similar to other proposed algorithms [48], [51], [69], we also aim to maximize the InP
profit defined as the difference between the generated revenue and cost. Maximizing the
revenue and acceptance ratio while minimizing the cost of VNR embeddings maximizes the
generated profit of InPs. Therefore, we define the objective of embedding a VNR Ψi as

50

maximizing the following objective function:

F(Ψi) =
{

R(GΨi)−C(GΨi) successful embeddings
Γ otherwise

, (4.11)

where Γ defines the greediness of the embedding. Assuming that R(GΨi)−C(GΨi) ∈ [a, b],
setting Γ to a value smaller than a results in a greedy VNR embedding because in this case
Γ is the lower bound of F . Hence, to maximize F (4.11), any successful embedding is better
than rejecting the VNR. Assigning Γ ∈ [a, b] introduces a preferential VNR acceptance and
thus if

R(GΨi)−C(GΨi) < Γ, (4.12)

rejecting the VNR Ψi maximizes F(Ψi). We only consider the greedy approach by assigning
a large negative penalty for unsuccessful embeddings (Γ→ −∞).

In order to define the upper bound of the objective function, let us consider the case
where path splitting is not permitted. In this case, (4.7) becomes:

C(GΨi) =
∑

nΨi∈NΨi

C(nΨi) +
∑

eΨi∈EΨi

ηeΨiB(eΨi), (4.13)

where ηeΨi denotes the length of the substrate path used to accommodate the virtual edge
eΨi . Hence:

R(GΨi)−C(GΨi) = wc
∑

nΨi∈NΨi

C(nΨi)−
∑

nΨi∈NΨi

C(nΨi)

+ wb
∑

eΨi∈EΨi

B(eΨi)−
∑

eΨi∈EΨi

ηeΨiB(eΨi)

= (wc − 1)
∑

nΨi∈NΨi

C(nΨi)

+
∑

eΨi∈EΨi

(wb − ηeΨi)B(eΨi). (4.14)

The substrate path lengths ηeΨi∀eΨi ∈ EΨi are the only parameters that depend on the
embedding configuration. Therefore, (4.14) is maximized when the path lengths are min-
imized. The minimum substrate path length for embedding a virtual link is equal to 1.
Hence:

max{R(GΨi)−C(GΨi)} = (wc − 1)
∑

nΨi∈nΨi

C(nΨi)

+ (wb − 1)
∑

eΨi∈EΨi

B(eΨi). (4.15)

51

In order to remove the influence of the weights on the calculations of the upper bound, we
assume wc = wb = 1 [48], [51], [151]. Hence:

max{R(GΨi)−C(GΨi)} = 0. (4.16)

The upper bound of the objective function is achieved when Ψi is successfully embed-
ded (4.11). Therefore, we define the upper bound for the objective function as:

max{F(Ψi)} = max{R(GΨi)−C(GΨi)} (4.17)

, Fub(Ψi).

The same upper bound would be achieved if path splitting was permitted because the
minimum substrate path length for embedding a virtual link might not be less than 1.

4.1.2 Virtual Network Embedding Performance Metrics

Acceptance ratio, revenue to cost ratio, and substrate network resource utilization are the
main VNE performance metrics [51], [69], [157]. Considering acceptance and revenue to cost
ratios independently does not adequately estimate performance of VNE algorithms. For
example, high acceptance ratio when the average revenue to cost ratio is low is undesirable
because it leaves the substrate resources underutilized [51]. The same applies to having a
high revenue to cost ratio while having a low acceptance ratio. Therefore, acceptance and
average revenue to cost ratios should be considered simultaneously. Hence, we introduce
profitability θ as a new performance measure. The profitability θ in a time interval τ is
calculated as a product of acceptance and revenue to cost ratios:

θ = pτa ×

∑
Ψi∈Ψa(τ)

R(GΨi)

∑
Ψii∈Ψa(τ)

C(GΨi)
, (4.18)

where pτa is the acceptance ratio during the interval τ (4.8) and Ψa(τ) is the set of all accepted
VNRs in the interval τ . Since the CPU and bandwidth revenue weights are wc = wb = 1,
the maximum profitability θmax = 1. Higher profitability implies that the algorithm has
high acceptance and high revenue to cost ratios. Therefore, VNE algorithms are desired to
have profitability values close to 1.

52

4.2 Available Virtual Network Embedding Algorithms

In this section, we first describe the node mapping procedures of R-Vine, D-Vine [51], and
GRC [69] algorithms. We then describe the Breadth-First Search-Based (BFS) shortest-
path and MCF algorithms that are often employed for solving the VLiM problem.

4.2.1 Virtual Node Mapping Algorithms

R-Vine and D-Vine Algorithms

In order to identify a viable virtual node embedding for a VNR Ψi, R-Vine and D-Vine
algorithms first create an augmented substrate graph based on the location preferences of
the virtual nodes. We first define a cluster Λ(nΨi) for every virtual node nΨi :

Λ(nΨi) =
{
ns ∈ N s | d

(
L(ns),L(nΨi)

)
≤ δΨi}. (4.19)

Meta nodes ν(nΨi) are then created ∀nΨi ∈ NΨi . A meta node ν(nΨi
k) is then connected to

all substrate nodes in Λ(nΨi
k) using meta edges of infinite bandwidth capacities. Hence, the

augmented substrate graph Gs′(N s′ ,Es′) is generated, where

N s′ = N s ∪ {ν(nΨi) | nΨi ∈ NΨi} (4.20)

and
Es
′ = Es ∪ {es′

(
ν(nΨi),ns

)
| nΨi ∈ NΨi ,ns ∈ Λ(nΨi)}. (4.21)

The VNE problem may be formulated as a mixed integer |EΨi |-commodity flow problem,
where each virtual link eΨi ∈ EΨi is a commodity with source seΨi and destination teΨi .
Sources and destinations of the flows are the meta nodes ν(nΨi) ∀nΨi ∈ NΨi . Assuming
ε << 1, the VNE MIP is formulated as:
VNE MIP
Variables:

• fe
Ψi
es(nsj ,n

s
k
): flow variables that denote the bandwidth of the substrate link es(nsj ,nsk)

that is allocated for the virtual link eΨi .

• xnsj ,n
s
k
: binary variables that are set to “1” if

∑
eΨi∈EΨi

fe
Ψi
es(nsj ,n

s
k
) + fe

Ψi
es(ns

k
,nsj)

> 0.

Objective:

minimize
∑
es∈Es

1
B(es) + ε

∑
eΨi∈EΨi

fe
Ψi
es +

∑
ns∈Ns

1
C(ns) + ε

∑
ns′∈Ns′\Ns

xns,ns′Cmax(ns′).

(4.22)

53

Constraints:
Domain:

fe
Ψi
es(ns′j ,ns′

k
) ≥ 0 ∀eΨi ∈ EΨi , ∀ns′j , ∀ns′k ∈ N s′ ; (4.23)

x
ns
′
j ,ns′

k
∈ {0, 1} ∀ns′j , ∀ns′k ∈ N s′ . (4.24)

Meta and Binary:

∑
ns∈ΛnΨi

xns,νnΨi = 1 ∀nΨi ∈ NΨi ; (4.25)

∑
nΨi∈NΨi

xνnΨi ,ns ≤ 1 ∀ns ∈ N s; (4.26)

x
ns
′
j ,ns′

k
= x

ns
′
k

,ns′j
∀ns′j , ∀ns′k ∈ N s′ . (4.27)

Capacity:

∑
eΨi∈EΨi

(
fe

Ψi
es(nsj ,n

s
k
) + fe

Ψi
es(ns

k
,nsj)

)
≤ B

(
es(nsj ,nsk)

)
· xnsj ,nsk ∀nsj ,nsk ∈ N s′ ;

(4.28)

C(nsj) ≥ xnsj ,nskCmax
(
nsk
)

∀nsk ∈ N s′ \N s, ∀nsj ∈ N s.
(4.29)

Flow Conservation:

∑
nsj∈Ns

fe
Ψi
es(nsj ,n

s
k
) −

∑
nsj∈Ns

fe
Ψi
es(ns

k
,nsj)

= 0 ∀eΨi ∈ EΨi , ∀nsk ∈ N s \ {seΨi , teΨi}. (4.30)

Demand Satisfaction:

∑
nsj∈Ns

fe
Ψi
es(s

eΨi ,n
s
j)
−

∑
nsj∈Ns

fe
Ψi
es(nsj ,seΨi)

= B
(
eΨi) ∀eΨi ∈ EΨi ; (4.31)

∑
nsj∈Ns

fe
Ψi
es(t

eΨi ,n
s
j)
−

∑
nsj∈Ns

fe
Ψi
es(nsj ,teΨi)

= −B
(
eΨi) ∀eΨi ∈ EΨi . (4.32)

The Domain Constraint (4.24) is the integer constraint that makes the problem an MIP.
Finding solution of MIPs is NP-hard and, therefore, computationally intractable [124].
Linear Programming is computationally simpler than MIP and may be solved in polynomial

54

time. Therefore, in order to solve MIPs, relaxation methods [124] are employed to obtain a
linear program from the original MIP. When a solution for the corresponding linear program
is found, rounding techniques are employed to translate the solution of the linear program
to the solution of the original MIP. Vine algorithms solve VNE LP, which is obtained by
relaxing the integer constraint (4.24):
VNE LP:

x
ns
′
j ,ns′

k
∈ [0, 1] ∀ns′j , ∀ns′k ∈ N s′ . (4.33)

Let us define flow(ns′ ,ns) as:

flow(ns′ ,ns) =
∑

eΨi∈EΨi

(
fe

Ψi
es(ns′ ,ns) + fe

Ψi
es(ns,ns′)

)
. (4.34)

The pseudocode of R-Vine and D-Vine node mapping algorithms are listed in Algorithm 5
and Algorithm 6, respectively.

Algorithm 5 R-Vine: Randomized virtual
network embedding algorithm
1: procedure R-Vine(Ψi)
2: π ← ∅
3: Create augmented substrate graph Gs′

4: Solve VNE LP
5: for all ns ∈ Ns do
6: ϕ(ns)← 0
7: end for
8: for all nΨi ∈ NΨi do
9: if Λ(nΨi) \ {ns ∈ Ns | ϕ(ns) = 1} = ∅ then

10: Reject Ψi
11: return
12: end if
13: %max ← 0
14: for all ns ∈ Λ(nΨi) do
15: %ns ← flow(ν(nΨi),ns) · xν(nΨi)ns

16: %max ← %max + %ns

17: end for
18: for all ns ∈ Λ(nΨi) do
19: %ns ← %ns/%max

20: end for
21: nsmax = argmax

ns∈Λ(nΨi)
{%ns | ϕ(ns) = 0}

22: add (nΨ
i ,nsmax) to π with probability %ns

23: ϕ(nsmax)← 1 with probability %ns

24: end for
25: return π

26: end procedure

Algorithm 6 D-Vine: Deterministic virtual
network embedding algorithm
1: procedure D-Vine(Ψi)
2: π ← ∅
3: Create augmented substrate graph Gs′

4: Solve VNE LP
5: for all ns ∈ Ns do
6: ϕ(ns)← 0
7: end for
8: for all nΨi ∈ NΨi do
9: if Λ(nΨi) \ {ns ∈ Ns | ϕ(ns) = 1} = ∅ then

10: Reject Ψi
11: return
12: end if
13: for all ns ∈ Λ(nΨi) do
14: %ns ← flow(ν(nΨi),ns) · xν(nΨi)ns

15: end for
16: nsmax = argmax

ns∈Λ(nΨi)
{%ns | ϕ(ns) = 0}

17: add (nΨ
i ,nsmax) to π

18: ϕ(nsmax)← 1
19: end for
20: return π

21: end procedure

55

The Global Resource Capacity Algorithm

Let Adj(nsi) denote the set of substrate nodes adjacent to nsi and es(nsi ,nsj) denote the
substrate link that connects the substrate nodes nsi and nsj . The GRC algorithm first
calculates the embedding capacity r(nsi) for a substrate node nsi as:

r(nsi) = (1− d)Ĉ(nsi) + d
∑

nsj∈Adj(n
s
i)

B
(
es(nsi ,nsj)

)
· r(nsj)∑

ns
k
∈Adj(nsj)

B
(
es(nsj ,nsk)

) , (4.35)

where 0 < d < 1 is a constant damping factor and Ĉ(nsi) is the normalized CPU resources
of nsi :

Ĉ(nsi) = C(nsi)∑
ns∈Ns C(ns)

. (4.36)

Let us assume that a substrate network is composed of p nodes. The vector form of the
embedding capacity for all substrate nodes in the substrate network is:

r = (1− d)c + dMr, (4.37)

where c =
(
Ĉ(ns1), . . . , Ĉ(nsp)

)T , r =
(
r(ns1), . . . , r(nsp)

)T , and M is a p × p square matrix.
The mij element of M is calculated as:

mij =

B
(
es(nsi ,nsj)

)∑
ns
k
∈Adj(nsj)

B
(
es(nsj ,nsk)

) es(nsi ,nsj) ∈ Es

0 otherwise

. (4.38)

The GRC algorithm iteratively calculates r by initially setting r0 = ĉ and calculating rk+1

as:
rk+1 = (1− d)c + dMrk, (4.39)

where r0 is the value of r after k iterations. The iterative process is terminated when:

|rk+1 − rk| < σ, (4.40)

where σ << 1 is a predefined stopping threshold. The procedure for calculating the GRC
vector r is shown in Algorithm 7. When the embedding capacity vectors for substrate
and virtual nodes are calculated, the nodes are ranked based on their capacity. The GRC
algorithm then selects the substrate node with the highest rank to embed the virtual node
with the highest rank, provided that the substrate node satisfies the virtual node CPU
requirement. Otherwise, the substrate node with the second highest rank is selected. If no

56

Algorithm 7 GRC vector calculation: The input graph may be a substrate or a virtual
network graph.
1: procedure GRCVecCalc(G(N ,E),σ)
2: Initialize c and M
3: r0 = c
4: k = 0
5: ∆ =∞
6: while ∆ > σ do
7: rk+1 = (1− d)c + dMrk
8: ∆ =‖ rk+1 − rk ‖
9: k = k + 1

10: end while
11: return rk
12: end procedure

substrate node satisfies the virtual node CPU requirement, the VNR is denied. The GRC
virtual node mapping is listed in Algorithm 8.

Algorithm 8 GRC Virtual Node Mapping
1: procedure GRCVNoM(Gs,Ψi)
2: π ← ∅
3: rs ← GRCVecCalc(Gs,σ)
4: rΨi ← GRCVecCalc(GΨi ,σ)
5: Sort rs in descending order to get rssort
6: Sort rΨi in descending order to get rΨi

sort

7: for each virtual node nΨi in the order of rΨi
sort do

8: for each unselected substrate node ns in the order of rssort do
9: if C(ns) ≥ C(nΨi) then

10: add (nΨ
i ,ns) to π

11: mark ns as selected
12: Count← Count+ 1
13: break
14: end if
15: end for
16: end for
17: if Count < |NΨi | then
18: Reject Ψi
19: end if
20: return π
21: end procedure

4.2.2 Virtual Link Mapping Algorithms

VLiM algorithms take as the input a virtual node mapping π and identify a virtual link
mapping.

Breadth-First Search Algorithm

BFS is a graph traversal algorithm. Starting at a given node, BFS first visits all its neigh-
bors. The visited nodes are marked and then all their neighbors that are not yet visited are
traversed. BFS may be implemented using a first-in-first-out (FIFO) queue. An important
property of the BFS algorithm is that the first encounter of a node marks the shortest path

57

of arriving at that node in terms of number of hops. The BFS-Based VLiM algorithm is
listed in Algorithm 9.

Algorithm 9 BFS-Based VLiM algorithm
1: procedure BFS(Gs,Ψi,π)
2: LinkMap← ∅
3: CurrentPath← ∅
4: Queue← ∅
5: for all ns ∈ Ns do
6: predecessor[ns]← ∅
7: end for
8: for all eΨi (nΨi

a ,nΨi
b

) ∈ EΨi do
9: nssource ← π(nΨi

a)
10: nsdest ← π(nΨi

b
)

11: nscurrent ← nssource
12: Queue.add(nscurrent)
13: while Queue.size() > 0 do
14: nscurrent ← Queue.pop()
15: if nscurrent is not marked visited then
16: mark nscurrent as visited
17: for all dons ∈ Adj(nscurrent)
18: if B(es(nscurrent,ns)) ≥ B(eΨi) then
19: Queue.add(ns)
20: predecessor[ns] = nscurrent
21: end if
22: end for
23: end if
24: end while
25: if predecessor[nsdest] = ∅ then
26: Reject Ψi
27: end if
28: CurrentPath.add(nsdest)
29: nscurrent ← predecessor[nsdest]
30: while nscurrent 6= nssource do
31: CurrentPath.add(nscurrent)
32: nscurrent ← predecessor[nsdest]
33: end while
34: LinkMap.add(CurrentPath)
35: end for
36: end procedure

Multicommodity Flow Algorithm

Let us assume that the virtual nodes nΨi
a and nΨi

b are mapped by VNoM onto substrate
nodes nsa and nsb, respectively. A virtual link eΨi(nΨi

a ,nΨi
b) between the virtual nodes nΨi

a

and nΨi
b is a flow between the substrate nodes nsa and nsb. In MCF terminology, a flow

is a commodity ki = (si, ti, di), where si, ti, and di are the flow source, destination, and
demand, respectively [24]. The virtual link eΨi(nΨi

a ,nΨi
b) that connects nΨi

a and nΨi
b may

be denoted as a commodity keΨi
(
seΨi = nsa, teΨi = nsb, deΨi = B(eΨi)

)
. Hence, assuming

ε << 1, MCF may be formulated as the following linear program:
Objective:

minimize
∑
es∈Es

1
B(es) + ε

∑
eΨi∈EΨi

fe
Ψi
es . (4.41)

58

Constraints:
Capacity:

∑
eΨi∈EΨi

(feΨies(nsj ,n
s
k
) + fe

Ψi
es(ns

k
,nsj)

) ≤ B(es(nsj ,nsk)) ∀nsj , ∀nsk ∈ N s. (4.42)

Flow Conservation:

∑
nsj∈Ns

fe
Ψi
es(nsj ,n

s
k
) −

∑
nsj∈Ns

fe
Ψi
es(ns

k
,nsj)

= 0

∀eΨi ∈ EΨi , ∀nsk ∈ N s \ {seΨi , teΨi}. (4.43)

Demand Satisfaction:

∑
nsj∈Ns

fe
Ψi
es(s

eΨi ,n
s
j)
−

∑
nsj∈Ns

fe
Ψi
es(nsj ,seΨi)

= deΨi ∀eΨi ∈ EΨi , (4.44)

∑
nsj∈Ns

fe
Ψi
es(t

eΨi ,n
s
j)
−

∑
nsj∈Ns

fe
Ψi
es(nsj ,teΨi)

= −deΨi ∀eΨi ∈ EΨi . (4.45)

4.3 Virtual Network Embedding Algorithms and Data Cen-
ter Networks

Various algorithms have been proposed to find profitable virtual network embeddings given
arbitrary substrate and virtual network topologies [48], [51], [69]. Performance of these
algorithms has been evaluated using synthetic topologies that resemble ISP networks. These
algorithms were designed without assumptions regarding the structure of substrate and
virtual networks. Therefore, they may be employed for any given substrate and virtual
network topology. They are often complex because assuming a specific structure of substrate
and virtual topologies may simplify the embedding process. A study that considered the
impact of common ISP topologies (Ladder, Star, and Hub and Spoke) on VNE revealed
that topological features significantly affect quality of the solution [100].

The advent of Software Defined Networking (SDN) has recently enabled cloud providers
such as the Amazon Web Services (AWS) [1] to offer network virtualization services that
requires embedding of the virtual networks in data center networks. Even though the defined
topologies of data center network permit designing specialized VNE algorithms [28], [72], we
employ the BCube [71] and Fat-Tree [20] data center topologies to compare the performance
of the proposed algorithms.

59

BCube(0,1) BCube(0,2) BCube(0,3) BCube(0,4)

POD 1 POD 2 POD 3 POD 4

Switch Host

Figure 4.1: Examples of data center topologies: BCube(2, 4) (top) and Fat-Tree4 (bottom)
network topologies.

4.3.1 Data Center Network Topologies

They are often designed to be scalable to a large number of servers and to have fault
tolerance against various failures such as link or server rack failure. Furthermore, data center
networks should provide high network capacity to support services with high bandwidth
requirements [73]. Data center networks consist of hosts, switches, and links. Hosts may be
used for virtual node embeddings while switches are used only for traffic forwarding.

We denote a BCube [71] topology with BCube(k,n) where k is the BCube level and n is
the number of hosts in the level-0 BCube. This topology is recursively structured. BCube
level-0 consists of n hosts connected to an n-port switch. In this topology, switches are
not directly connected to each other and servers perform packet forwarding functions. The
BCube(2, 4) network topology is shown in Fig. 4.1 (top).

Fat-Tree topology is a special Clos architecture that was initially proposed to intercon-
nect processors of parallel supercomputers [92]. It has been recently used for data center
networks [20]. A Fat-Treek topology is constructed using (k/2)2 + k2 k-port switches and
supports k3/4 hosts. An example of a Fat-Tree4 is shown in Fig. 4.1 (bottom).

60

4.4 Virtual Network Embedding as a Markov Decision Pro-
cess

The VNE problem may be modeled as a sequential decision-making problem where a
decision-making agent (VNE algorithm) receives VNRs. The agent solves the VNoM and
VLiM for each VNR Ψi and receives a reward F(Ψi) for these mappings. The agent’s ob-
jective is to maximize this reward. (Throughout this chapter, we interchangeably use terms
agent and decision-making agent.)

4.4.1 A Finite-Horizon Markov Decision Process Model for Coordinated
Virtual Node Mapping

Let us consider a substrate network with j nodes and k links. At an arbitrary time instant
ωΨi , the VNE solver receives for embedding a VNR Ψi that requires ` virtual nodes and
m virtual links. We define the MDP for VNoM of Ψi as a finite-horizon MDP MΨi . The
decision-making agent consecutively selects ` substrate nodes for embedding nodes of Ψi,
yielding to ` decision-making instances at discrete times t until the horizon T = ` is reached.
If all nodes are successfully mapped, the process reaches its terminal state at t = `+ 1.

The initial state ofMΨi is defined by the tuple:

φΨi
1 = (NΨi

1 ,N s
1), (4.46)

where NΨi
1 is the ordered set of all virtual nodes that are yet to be embedded. Similarly,

N s
1 is the set of substrate nodes that are initially available for embedding virtual nodes. We

assume that in a given state φq, the agent tries to identify a substrate node ns ∈ N s
q for

embedding the first element nΨi
q of the set NΨi

q . In the initial state, no virtual node has been
embedded and thus all substrate nodes are available for embedding the first virtual node.
Hence, NΨi

1 = NΨi and N s
1 = N s. The agent selects a substrate node ns ∈ {N s(nΨi

1)∩N s
1}.

Therefore, the set of actions is:

AΨi
1 = {ε} ∪

{
(nΨi

1 ,ns) : ∀ns ∈ {N s(nΨi
1) ∩N s

1}
}
, (4.47)

where ε denotes an arbitrary action that forces the transition to a terminal state. As the
result of selecting a substrate node nsa for embedding the virtual node nΨi

1 , the agent receives
a reward andMΨi transits to state:

φΨi
2 =

(
NΨi

2 = NΨi
1 \ {n

Ψi
1 },N s

2 = N s
1 \ {nsa}

)
. (4.48)

This state transition occurs because multiple virtual nodes cannot be embedded into one
substrate node. Depending on the choice of the substrate node for embedding the first
virtual node nΨi

1 , there are |AΨi
1 | possibilities for the next state, where |AΨi

1 | denotes the

61

number of viable actions in state φΨi
1 . The probability of the state transition is:

Pr(φΨi
2 | n

s
a,φΨi

1) = 1. (4.49)

The second action is then selected from the set:

AΨi
2 = {ε} ∪

{
(nΨi

2 ,ns) : ∀ns ∈ {N s(nΨi
2) ∩N s

2}
}
. (4.50)

This process continues untilMΨi transits to the `th state:

φΨi
` =

(
NΨi
` = NΨi

`−1 \ {n
Ψi
`−1},N

s
` = N s

`−1 \ {nsz}
)
, (4.51)

where nsz denotes the substrate node selected for embedding the virtual node nΨi
`−1. The

agent finally selects a substrate node for embedding the last virtual node from:

AΨi
` = {ε} ∪

{
(nΨi
` ,ns) : ∀ns ∈ {N s(nΨi

`) ∩N s
` }
}
. (4.52)

The decision-making horizon has been now reached and MΨi transits to a terminal state
where the reward Rρ is calculated. We assume that the immediate rewards Rt ∀t ≤ ` are
zero and the agent receives a reward Rρ only when it reaches a terminal state because
partially mapping a virtual network does not necessarily lead to a successful full mapping.
Reaching a terminal state when t < ` implies that for a virtual node nΨi , N s(nΨi) = ∅.
Therefore, ε that forces MΨi to its terminal state has been selected. This implies that
the VNoM has been unsuccessful. Therefore, Rρ = Γ (4.11). On the contrary, reaching a
terminal state when t = `+ 1 implies that the VNoM has been successful. The agent may
then proceed to solve VLiM. If VLiM is successful, the VNR is accepted for embedding and
the agent receives the reward Rρ = R(GΨi)−C(GΨi). Otherwise, the VNR is rejected and
Rρ = Γ (4.11).

Link mappings are not considered at the intermediate states of MΨi . However, the
agent is unable to select an optimal action policy π∗ without knowing the final reward Rρ,
which requires solving the VLiM problem. Hence, finding π∗ forMΨi results a coordinated
VNoM solution [63].

4.4.2 Monte Carlo Tree Search for Solving the Virtual Node Mapping

The number of state variables of the proposed MDPMΨi depends on the number of sub-
strate and virtual nodes |N s| and |NΨi |, respectively. Consequently, the number of states
ofMΨi grows exponentially with |N s| and |NΨi |. Hence, finding an exact solution forMΨi

is intractable for even a fairly small |N s| and |NΨi |.
We employ the MCTS algorithm [89] for solving the proposed MDP. Consider the search

tree for solvingMΨi . Its depth is equal to the horizon T ofMΨi . The nodes and edges of

62

v
σ

φΨi

1

v
σ

φΨi

2,1

v
σφΨi

3,1

R1
ρ

(n
Ψ
i

2
,n
s 2)

v
σ

R5
ρ

(n Ψ i2 ,n s5)

(n
Ψ

i

1
,n
s
1)

v
σ

φΨi

2,5

v
σ

R15
ρ

(n
Ψ
i

2
,n
s 1)

v
σ φΨi

3,20

R20
ρ

(n Ψ i2 ,n s4)

(n Ψ i
1 ,n s5)

. . .

.

.

Figure 4.2: Example of a VNoM search tree for embedding a VNR Ψi with 3 nodes onto a
substrate network with 5 nodes.

the tree correspond to states and actions, respectively. The root of the tree corresponds to
the initial state φΨi

1 ofMΨi . Let |AΨi
m | be the number of available actions at a given state

φΨi
m . The search tree node that corresponds to the state φΨi

m is followed by |AΨi
m | nodes,

each corresponding to a possible next state φΨi
m+1 that is encountered as a result of selecting

an action (nΨi
m ,ns) ∈ AΨi

m . Each tree node stores a value and a visit count. The value of
a non-terminal tree node is the cumulative sum of the rewards that have been received in
the discovered and reachable terminal nodes. A path from the root to a leaf node defines
an action policy π. An example of a VNoM search tree for embedding a VNR with 3 nodes
onto a substrate network with 5 nodes is shown in Fig. 4.2.

4.4.3 MaVEn Algorithms

The proposed MaVEn-M and MaVEn-S algorithms employ MCTS to solve the MDPMΨi .
Their pseudocode is listed in Algorithm 10. MaVEn-M uses MCF to solve VLiM and to
calculate values of terminal states while MaVEn-S uses a breadth first search shortest path
algorithm.

Two implementation details should be considered when implementing Algorithm 10:
(They have been omitted from the pseudocode due to space constrains.)

Node Creation

When creating the root or creating new nodes (lines 3 and 45), the child array of the node
should be initialized. It is important to note that these child nodes are not yet part of
the tree. Therefore, although they should have value v and visit count σ, they should be

63

distinguishable from the nodes that are part of the tree (line 44). This is achieve by setting
v and σ while not setting their states.

Child Initialization

When initializing the child array of a node, value v and visit count σ of these child nodes
should be set. In this stage, we may rule out the actions that are not viable in the state that
corresponds to the parent node. Let us assume that the parent node corresponds to a state
(NΨi

x ,N s
x). In this state, the goal is to find a substrate node ns ∈ N s

x for embedding the first
element of NΨi

x denoted by nΨi
current. Since the viable actions are {ns : ∀ns ∈ N s(nΨi

current)},
we may set v = 0 and σ = 0 for the child nodes that correspond to these substrate nodes
while setting the v and σ of all other child nodes to large negative and positive values,
respectively. This ensures that only substrate nodes in N s(nΨi

current) are considered as viable
choices for embedding. Hence, the UCT strategy (2.14) will not select actions that are not
viable.

64

Algorithm 10 Pseudocode of MaVEn algorithm: MaVEn-M employs the MCF algorithm
while MaVEn-S uses a breadth first search-based shortest path algorithm to solve VLiM
(lines 21, 64, and 87). The head keyword (lines 56, 78) refers to the first element of the set
NΨi .
1: procedure MaVEn(Ψi,Gs(Ns,Es))
2: φ← (NΨi ,Ns)
3: Create Root (v = 0,σ = 0,State = φ)
4: nodesMap[] ← ∅
5: vnI ← 1
6: do
7: snI ← MCTS (Root)
8: if snI 6= ε then
9: nodesMap.Add (nΨi

vnI ,nssnI)
10: if Root.child[snI].State is terminal then
11: terminate← true

12: else
13: vnI ← vnI + 1
14: Root← Root.child[snI]
15: end if
16: else
17: terminate ← true
18: end if
19: while terminate 6= true
20: if nodesMap.Size = |NΨi | then
21: Solve VLiM given using nodesMap[]
22: else
23: Reject Ψi

24: end if
25: end procedure
26: procedure MCTS(Tree Node TN)
27: while β > 0 do
28: Reward← Simulate (TN)
29: if Reward = Γ then
30: return ε

31: end if
32: TN .v ← TN .v +Reward

33: TN .σ ← TN .σ + 1
34: β ← β − 1
35: end while
36: return argmax

i

(TN .child[i].v
TN .child[i].σ

)
37: end procedure
38: procedure Simulate(Tree Node TN)
39: snI =

argmax
i

(
TN .child[i].v
TN .child[i].σ

D

√
ln(TN .σ)

TN .child[i].σ

)
40: (φnext,Reward)←

SampleNextState (TN , snI)
41: if φnext is a terminal state then
42: return Reward

43: end if
44: if TN .child[snI] does not exist then
45: Create a Tree Node:

TN ′(v = 0,σ = 0,State = φnext)

46: TN .child[i]← TN ′

47: Reward← Rollout (TN .child[snI])
48: else
49: Reward← Simulate (TN .child[snI])
50: end if
51: TN .child[snI].v ← TN .child[snI].v +Reward

52: TN .child[snI].σ ← TN .child[snI].σ + 1
53: return Reward

54: end procedure
55: procedure SampleNextState(Tree Node TN , snI)
56: n

Ψi
current ← TN .State.NΨi .head

57: if nssnI ∈ N
s(nΨi

current) then
58: φnext ← TN .State
59: φnext.NΨi \ {nΨi

current}
60: φnext.Ns \ {nssnI}
61: if φnext is a terminal state then
62: Find the current policy π by traversing

the tree from the root to TN
63: Add the action (nΨi

current,nssnI) to π
64: Solve VLiM (SP or MCF) using π
65: Calculate Reward based on

π and the solution of VLiM
66: return (φnext,Reward)
67: else
68: return (φnext, 0)
69: end if
70: else
71: return (ρ, Γ)
72: end if
73: end procedure
74: procedure Rollout(Tree Node TN)
75: φcurrent ← TN .State
76: Find the current policy π by traversing

the tree from the root to TN
77: while φcurrent is not terminal do
78: n

Ψi
current ← φcurrent.NΨi .head

79: Select a random substrate node:
nscurrent ∈ Ns(nΨi

current)
80: if nscurrent = ε then
81: return Γ
82: end if
83: Add the action (nΨi

current,nscurrent) to π
84: φcurrent.NΨi \ {nΨi

current}
85: φnext.Ns \ {nscurrent}
86: end while
87: Solve VLiM (SP or MCF) using π
88: Calculate Reward based on

π and the solution of VLiM
89: return Reward

90: end procedure

65

4.4.4 Parallelization of MaVEn

MCTS is highly parallelisable [126] and parallelization improves its performance. There
are various techniques to successfully parallelize the MCTS process and improve the tree
search execution time [45]. Root parallelization is one of the most successful methods to
parallelize MCTS [44], [45]. Therefore, we parallelize MaVEn using root parallelization.
Let us assume we have p available processors for parallelization. Each processor will be
assigned a unique integer number rank ∈ {0, . . . , p}. We assume that the processor with
rank = 0 is the master processor that is responsible for collecting the information from
other processors and selecting the best action.

Unique seed numbers must be assigned to each processor in order to avoid processors
from generating identical search trees. For simplicity, we assume that the seed number that
is assigned to each processor is equal to its rank. The pseudocode of the parallel MaVEn
algorithm is shown in Algorithm 11.

Algorithm 11 Pseudocode of parallelized MaVEn algorithm.
1: procedure Parallel_MaVEn(p, Ψi,Gs(Ns,Es))
2: if my_rank ∈ {0, . . . , p} then
3: φ← (NΨi ,Ns)
4: Create Root (v = 0,σ = 0,State = φ)
5: nodesMap[] ← ∅
6: vnI ← 1
7: do
8: snI ← MCTS (Root)
9: if snI 6= ε then

10: nodesMap.Add (nΨi
vnI ,nssnI)

11: if Root.child[snI].State is terminal then
12: terminate← true
13: else
14: vnI ← vnI + 1
15: Root← Root.child[snI]
16: end if
17: else
18: terminate ← true
19: end if
20: while terminate 6= true
21: if nodesMap.Size = |NΨi | then
22: linksMap[]← VLiM (Gs, Ψi,nodesMap[])
23: Calculate F(GΨi) using linksMap[] and nodesMap[])
24: if my_rank 6= 0 then
25: Send my_rank and F (GΨi) to the master processor (rank = 0)
26: else
27: Receive Fm(GΨi) from processors rank = m ∀m ∈ {1, . . . , p}
28: Identify the rankmax of the processor that has the highest F (GΨi)
29: Receive linksMapmax[] and nodesMapmax[] from the processor rankmax
30: Send the linksMapmax[] and nodesMapmax[] to all other processors
31: end if
32: else
33: Reject Ψi
34: end if
35: end if
36: end procedure

66

4.5 Performance Evaluation

In this Section, we present the simulation results that are used to compare the proposed and
the existing VNE algorithms. Simulations were performed on a Dell Optiplex-790 with 16
GB memory and the Intel Core i7 2600 processor. The simulation scenarios are organized
based on the topology of the substrate network:

1. We present the simulation scenarios that employ a substrate network resembling an
ISP network topology. The parameters used in these scenarios are adopted from
the literature [48], [51], [69]. In these scenarios, we first compare the algorithms by
keeping the VNR traffic load constant while varying the MCTS computational budget
β from 5 to 250 samples per node embedding. We then compare the algorithms by
increasing the VNR traffic load. We also evaluate the Parallel MaVEn-M and MaVEn-
S algorithms using 2, 4, 6, and 8 processes by increasing the VNR traffic load and
compare their performance with the serial MaVEn-M and MaVEn-S algorithms.

2. We present the scenarios that employ the BCube and Fat-Tree data center network
topologies. First we compare the performance of the algorithms. We then compare the
two data center network topologies to determine the topology better suited for virtual
network embeddings. These topologies have not been employed yet for comparing
VNE algorithms. Therefore, for selecting the substrate network resource capacities
and virtual network requests resource requirements, we use parameters that resemble
a realistic scenario.

4.5.1 Simulation Environment

In order to evaluate performance of the proposed MaVEn-M and MaVEn-S algorithms,
we developed a discrete event simulator VNE-Sim based on the DEVS framework [135].
VNE-Sim is written in C++ and provides the base classes and operations needed to sim-
ulate VNE algorithms. We implement MaVEn-M, MaVEn-S, D-Vine [51], R-Vine [51],
and GRC [69] algorithms and compare their acceptance ratio (4.8), revenue to cost ratio,
profitability (4.18), and average execution time per VNR embedding. In simulations, the
exploration constant is set to D = 0.5 [122]. Parameters for Vine and GRC algorithms are
adopted from [51] and [69], respectively. The implemented GRC algorithm is modified to
consider the preference criteria of the virtual node location (4.3).

The GNU Scientific Library’s random number generator [15] is used to generate random
numbers and the necessary distributions. We use the MT19937 Mersenne Twister [103]
random number generator with the seed value 0. The GNU Linear Programming Kit
(GLPK) [14] is used for solving the MCF problem.

67

4.5.2 Internet Service Provider Substrate Network Topology

In simulations, we use topology, substrate resources, and VNR requirements that have been
adopted in the literature [48], [51], [69]. The Boston University Representative Topol-
ogy Generator (BRITE) [13] is used to generate the substrate and VNR network graphs.
The substrate graph consists of 50 nodes that are randomly placed on a 25×25 Cartesian
plane [51]. Connections between the nodes are generated based on the Waxman algo-
rithm [140] with the parameter α = 0.5 and the exponential parameter β = 0.2 [156]. Each
substrate node is connected to a maximum of 5 nodes. The generated substrate network
graph has 221 edges. The VNR graphs are generated using the same process. The number
of nodes in VNR graphs is uniformly distributed between 3 and 10 [51]. Each virtual node
is connected to a maximum of 3 virtual nodes.

The CPU capacity of substrate nodes and the bandwidth of substrate links are uniformly
distributed between 50 and 100 units. The CPU requirements of the virtual nodes are
uniformly distributed between 2 and 20 while the bandwidth requirements of the virtual
links are uniformly distributed between 0 and 50 [51]. The maximum allowable distance δ
for embedding VNR nodes is uniformly distributed between 15 and 25 distance units.

We assume that the VNRs arrive according to a Poisson process with a mean arrival rate
of λ requests per unit time. Their life-times are exponentially distributed with a mean 1

µ

yielding to a VNR traffic of λ× 1
µ Erlangs. For simulation scenarios, we assume 1

µ = 1, 000.
The duration of each simulation scenario is 50,000 time units [48], [51], [69].

MaVEn Computational Budget Scenarios

In these simulation scenarios, we assume the constant VNR arrival rate of 2 requests per
100 time units yielding to traffic load of 20 Erlangs. We vary the computational budget β
between 5 and 250 samples per node embedding. Acceptance ratio, revenue to cost ratio,
and profitability of the algorithms are shown in Fig. 4.3, Fig. 4.4, and Fig. 4.5, respectively.

MaVEn algorithms are capable of finding VNE embeddings that are more profitable
than those found by the existing algorithms. The proposed MaVEn-M algorithm achieves
the highest acceptance ratio even with a small computational budget. It further improves
the revenue to cost ratio as the computational budget β increases, which results in higher
profitability. With the smallest computational budget β = 5, the VNE embeddings gen-
erated by MaVEn-M are 45% and 65% more profitable than those identified by Vine and
GRC algorithms, respectively. The performance of MaVEn-S algorithm in terms of ac-
ceptance ratio is comparable to R-Vine and D-Vine algorithms. However, MaVEn-S finds
embeddings with lower revenue to cost ratios, which results in higher profitability.

Node and link utilizations of the algorithms as functions of computation budged β

are shown in Fig. 4.6 (top) and Fig. 4.6 (bottom), respectively. Even though high node

68

0 20 40 60 80 100 120 140 160 180 200 220 240
0.5

0.6

0.7

0.8

Computational budget β

A
cc

ep
ta

nc
e

ra
tio
p
a

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.3: Comparison of the algorithms with a VNR traffic load of 20 Erlangs. Shown
are the acceptance ratios as functions of computation budged β.

0 20 40 60 80 100 120 140 160 180 200 220 240

0.6

0.7

0.8

0.9

Computational budget β

R
ev

en
ue

to
co

st
ra

tio

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.4: Comparison of the algorithms with a VNR traffic load of 20 Erlangs. Shown
are the revenue to cost ratios (middle) as functions of computational budget β.

69

0 20 40 60 80 100 120 140 160 180 200 220 240
0.3

0.4

0.5

0.6

0.7

Computational budget β

P
ro

fit
ab

lil
ity
θ

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.5: Comparison of the algorithms with a VNR traffic load of 20 Erlangs. Shown
are the profitabilities as functions of computational budget β.

utilization is always desirable, the link utilization should be as small as possible. In the
case of MaVEn-M, average node utilization is high as a result of the high acceptance ratio.
As the computational budget is increased, MaVEn-M finds less costly embeddings thus
reducing the link utilization.

The average processing time per VNR as a function of computational budget β is shown
in Fig. 4.7. MaVEn-M requires considerably higher computational time compared to the
other algorithms. The GRC algorithm achieves the best performance.

4.5.3 Variable Virtual Network Request Arrival Rate Scenarios

In these simulation scenarios, we assume that the computational budget β is 40 samples
per node embedding while the VNR arrival rate is varied between 1 and 8 requests per 100
time units yielding to traffic loads of 10, 20, 30, 40, 50, 60, 70, and 80 Erlangs [69].

Acceptance ratio, revenue to cost ratio, and profitability of the algorithms are shown
in Fig. 4.8, Fig. 4.9, and Fig. 4.10, respectively. The proposed algorithms achieve better
performance compared to the existing algorithms. MaVEn-M has the best acceptance ratio
in all scenarios while its revenue to cost ratio drops quickly below MaVEn-S at traffic load
of 60 Erlangs. This leads to profitability comparable to MaVEn-S. Because the substrate
network resources become scarce at higher VNR traffic loads, there is a higher likelihood of
embedding virtual nodes onto substrate nodes that are further apart, which results in more
costly embeddings [69]. Although at higher traffic loads the profitabilities of MaVEn-M and
MaVEn-S are comparable, MaVEn-M may be preferred because it has higher acceptance
ratio, which may result in higher customer satisfaction.

Node and link utilizations of the algorithms as functions of VNR traffic load are shown
in Fig. 4.11 (top) and Fig. 4.11 (bottom), respectively. MaVEn-M achieves the highest node

70

0 20 40 60 80 100 120 140 160 180 200 220 240

20

25

30

Computational budget β

A
ve

ra
ge

no
de

ut
ili

za
tio

n
U

(N
s
)

(%
) MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

0 20 40 60 80 100 120 140 160 180 200 220 240

14

16

18

20

22

24

Computational budget β

A
ve

ra
ge

lin
k

ut
ili

za
tio

n
U

(E
s
)

(%
)

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.6: Comparison of the algorithms with a VNR traffic load of 20 Erlangs. Shown are
node utilization (top) and link utilization (bottom) as functions of computational budget
β.

71

0 20 40 60 80 100 120 140 160 180 200 220 240
10−2

10−1

100

101

102

103

Computational budget β

A
ve

ra
ge

pr
oc

es
si

ng
tim

e
pe

rV
N

R
(s

)

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.7: Comparison of the algorithms with a VNR traffic load of 20 Erlangs. Shown
are the average processing times per VNR as functions of computational budget β.

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0.4

0.5

0.6

0.7

0.8

Traffic load (Erlang)

A
cc

ep
ta

nc
e

ra
tio
p
a

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.8: Performance of the algorithms with various VNR traffic loads. The MaVEn
computational budget is β = 40 samples per virtual node embedding. Shown are the
acceptance ratios as functions of VNR traffic load.

72

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0.5

0.6

0.7

0.8

0.9

Traffic load (Erlang)

R
ev

en
ue

to
co

st
ra

tio

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.9: Performance of the algorithms with various VNR traffic loads. The MaVEn
computational budget is β = 40 samples per virtual node embedding. Shown are revenue
to cost ratios as functions of VNR traffic load.

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0.2

0.3

0.4

0.5

0.6

0.7

Traffic load (Erlang)

P
ro

fit
ab

lil
ity
θ

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.10: Performance of the algorithms with various VNR traffic loads. The MaVEn
computational budget is β = 40 samples per virtual node embedding. Shown are profitabil-
ities as functions of VNR traffic load.

73

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

20

40

60

80

Traffic load (Erlang)

A
ve

ra
ge

no
de

ut
ili

za
tio

n
U

(N
s
)

(%
)

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

20

40

60

80

Traffic load (Erlang)

A
ve

ra
ge

lin
k

ut
ili

za
tio

n
U

(E
s
)

(%
)

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.11: Performance of the algorithms with various VNR traffic loads. The MaVEn
computational budget is β = 40 samples per virtual node embedding. Shown are node (top)
and link (bottom) utilities as functions of VNR traffic load.

utilization in all scenarios. MaVEn-S utilizes the nodes better than R-Vine, D-Vine, and
GRC algorithms. The small link utilization of GRC is attributed to its small node utiliza-
tion. Therefore, in this case, small link utilization is not desirable because this situation
leaves the resources under utilized. MaVEn-S achieves small link utilizations in all scenarios
while achieving high node utilization. This is translated to large acceptance and revenue to
cost ratios for MaVEn-S, as shown in Fig. 4.8 and Fig. 4.9, respectively.

The average execution time of the algorithms per VNR embedding is shown in Fig. 4.12.
Although GRC achieves the smallest execution time, it does not utilize the substrate network
resources efficiently. MaVEn-S achieves an average execution time comparable to the Vine
algorithms while better utilizing the resources.

74

10−2 10−1 100 101 102

MaV
En-

M

MaV
En-

S

R-V
ine

D-V
ine

GRC

Average processing time per VNR (s)

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.12: Average execution time of the algorithms per VNR embedding. Execution
times are averaged for all VNR traffic load scenarios.

4.5.4 Parallel MaVEn Simulation Scenarios

In these simulation scenarios, we employ root parallelization and execute the MaVEn algo-
rithms in parallel on 2, 4, 6, and 8 processors. We assume that the seed number assigned
to each processor is equal to its rank. We employ the MPICH2 library [7] that implements
the Message Passing Interface (MPI) standard [6]. All simulations were executed on a
single Intel Core i7 2600 Quad-Core CPU that employs the Hyper-Threading technology
enabling it to execute up to 8 parallel threads. The computational budget and VNR ar-
rival rates are similar to the Variable VNR Arrival Rate Simulation Scenarios described in
Subsection 4.5.3.

Performance of the parallel MaVEn-M algorithm is shown in Fig. 4.13 and Fig. 4.14.
While the parallelization does not have a large impact on the acceptance ratio, it improves
the revenue to cost ratio up to 10%. Hence, it results in identifying more profitable virtual
network embeddings. The processing time of the algorithms is proportional to the number
of used processors. Two factors contribute to the increase in the MaVEn-M processing
time: disk I/O operations required by the MCF solver and the communication between
processors. The I/O operations have the prevailing effect on the increase in processing
time. Since the simulations were executed on a single machine, all processors share a
common disk. Therefore, it is impossible to perform the disk I/O operations in parallel. As
the number of processors increases, the likelihood of multiple processors accessing the disk
at the same time increases, resulting in higher execution time.

Performance of the parallel MaVEn-S algorithm is shown in Fig. 4.15 and Fig. 4.16.
Parallelization improves its acceptance and revenue to cost ratios resulting in increased
profitability by up to 10%. The Intel Core i7 2600 Quad-Core CPU used for simulations
employs hyper-threading where the operating system views each physical processor (core)

75

0 10 20 30 40 50 60 70 80 90
0.5

0.6

0.7

0.8

Traffic load (Erlang)

A
cc

ep
ta

nc
e

ra
tio
p
a

MaVEn-M: 1 processor

MaVEn-M: 2 processors

MaVEn-M: 4 processors

MaVEn-M: 6 processors

MaVEn-M: 8 processors

0 10 20 30 40 50 60 70 80 90
0.5

0.6

0.7

0.8

0.9

Traffic load (Erlang)

R
ev

en
ue

to
co

st
ra

tio

MaVEn-M: 1 processor

MaVEn-M: 2 processors

MaVEn-M: 4 processors

MaVEn-M: 6 processors

MaVEn-M: 8 processors

0 10 20 30 40 50 60 70 80 90
0.3

0.4

0.5

0.6

0.7

Traffic load (Erlang)

P
ro

fit
ab

ili
ty
θ

MaVEn-M: 1 processor

MaVEn-M: 2 processors

MaVEn-M: 4 processors

MaVEn-M: 6 processors

MaVEn-M: 8 processors

Figure 4.13: Acceptance ratio, revenue to cost ratio, and profitability of the parallel MaVEn-
M algorithm with various VNR traffic loads using 1, 2, 4, 6, and 8 processors. The compu-
tation budget is β = 40 samples per virtual node embedding.

76

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

1

2

4

6

8

Average processing time per VNR (s)

N
um

be
ro

fp
ro

ce
ss

or
s

MaVEn-M: 1 processor

MaVEn-M: 2 processors

MaVEn-M: 4 processors

MaVEn-M: 6 processors

MaVEn-M: 8 processors

Figure 4.14: Average processing time of the parallel MaVEn-M algorithm per VNR embed-
ding with various VNR traffic loads using 1, 2, 4, 6, and 8 processors. The computation
budget is β = 40 samples per virtual node embedding.

as two logical processors. In a hyper-threaded architecture, physical execution resources
are shared and the architecture state is duplicated [102]. Parallelization with MPI on a
hyper-threaded architecture increases competition for accessing network and for the mem-
ory hierarchy resources [120]. Therefore, using up to 4 processors has no impact on the
processing time of MaVEn-S because all threads are executed on physical processors. How-
ever, processing time of the algorithm increases when utilizing 6 or 8 processors because in
these cases hyper-threading is employed.

4.5.5 Data Center Substrate Networks

Fast Network Simulation Setup (FNSS) [121] is used to generate the BCube and Fat-Tree
substrate topologies. The BCube topology is a two-level (k = 2) topology with 4 hosts
per BCube level-0 (n = 4) that consists of 64 hosts, 48 switches, and 192 link. The Fat-
Tree substrate network graphs is generated using 6-port switches (k = 6). It consists of 54
hosts, 45 switches, and 162 links. The BCube and Fat-Tree topologies were selected to have
comparable number of hosts, switches, and links. Because of the memory and simulation
duration requirements, we have simulated data center topologies that are much smaller
than deployed data centers. The VNR graphs are generated using the Boston University
Representative Topology Generator (BRITE) [13]. Connections between the nodes in VNR
graphs are generated based on the Waxman algorithm [140] with the parameter α = 0.5
and the exponential parameter β = 0.2 [156]. The number of nodes is uniformly distributed
between 3 and 10 [51]. Each virtual node is connected to a maximum of 3 virtual nodes.

The CPU capacity of all substrate hosts and the available bandwidth of all substrate
links is initially set to 100 units. In our implementation, the substrate network switches
have no CPU capacity because they may not be used for virtual node embedding. The CPU

77

0 10 20 30 40 50 60 70 80 90
0.4

0.5

0.6

0.7

Traffic load (Erlang)

A
cc

ep
ta

nc
e

ra
tio
p
a

MaVEn-S: 1 processor

MaVEn-S: 2 processors

MaVEn-S: 4 processors

MaVEn-S: 6 processors

MaVEn-S: 8 processors

0 10 20 30 40 50 60 70 80 90
0.5

0.6

0.7

0.8

Traffic load (Erlang)

R
ev

en
ue

to
co

st
ra

tio

MaVEn-S: 1 processor MaVEn-S: 2 processors

MaVEn-S: 4 processors MaVEn-S: 6 processors

MaVEn-S: 8 processors

0 10 20 30 40 50 60 70 80 90
0.3

0.4

0.5

0.6

Traffic load (Erlang)

P
ro

fit
ab

ili
ty
θ

MaVEn-S: 1 processor

MaVEn-S: 2 processors

MaVEn-S: 4 processors

MaVEn-S: 6 processors

MaVEn-S: 8 processors

Figure 4.15: Acceptance ratio, revenue to cost ratio, and profitability of the parallel MaVEn-
S algorithm with various VNR traffic loads using 1, 2, 4, 6, and 8 processors. The compu-
tation budget is β = 40 samples per virtual node embedding.

78

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

1

2

4

6

8

Average processing time per VNR (s)

N
um

be
ro

fp
ro

ce
ss

or
s

MaVEn-S: 1 processor

MaVEn-S: 2 processors

MaVEn-S: 4 processors

MaVEn-S: 6 processors

MaVEn-S: 8 processors

Figure 4.16: Average processing time of the parallel MaVEn-S algorithm per VNR embed-
ding with various VNR traffic loads using 1, 2, 4, 6, and 8 processors. The computation
budget is β = 40 samples per virtual node embedding.

requirements of the virtual nodes are uniformly distributed between 2 and 20 [51] while the
bandwidth requirements of the virtual links are uniformly distributed between 1 and 10.
The assigned bandwidth values are chosen to resemble a substrate network with 10 Gbps
links and virtual networks with 100 Mbps to 1 Gbps links.

In these simulation scenarios, we assume that the computational budget β is 5 samples
per node embedding while the VNR arrival rate is varied between 1 and 8 requests per 100
time units yielding to traffic loads of 10, 20, 30, 40, 50, 60, 70, and 80 Erlangs [69].

Acceptance ratio, revenue to cost ratio, profitability, and average execution time per
VNR embedding of the algorithms are shown in Fig. 4.17, Fig. 4.18, Fig. 4.19, and Fig. 4.20,
respectively. The MaVEn algorithms achieve superior performance in both BCube and Fat-
Tree substrate networks. They achieve high acceptance and revenue to cost ratios yielding
to high profitability. The margin of the performance improvement increases as the VNR
traffic load is increased. For example, as shown in Fig. 4.17 (top), all algorithms achieve
acceptance ratio close to 1 when VNR traffic load is 10 Erlangs. However, in the case of
60 Erlangs, MaVEn algorithms achieve acceptance ratios close to 0.95 while the acceptance
ratios of other algorithms are below 0.7.

Comparing the BCube and Fat-Tree topologies reveals that in the case of Vine and GRC
algorithms, the Fat-Tree topology results in up to 10% higher acceptance ratio as the VNR
traffic load increases. This yields to up to 20% higher node utilization and up to 10% higher
link utilization in the case of Fat-Tree topology. The revenue to cost ratio of the Fat-Tree
topology is slightly lower than the BCube topology. Note that a desirable VNE should
exhibit high acceptance ratio, substrate resource utilization, and revenue to cost ratio.

An explanation of the simulation results is that in BCube topologies, hosts perform
traffic forwarding functions while in Fat-Tree topologies, traffic forwarding is only performed

79

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0.5

0.6

0.7

0.8

0.9

1

Traffic load (Erlang)

A
cc

ep
ta

nc
e

ra
tio
p
a

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0.6

0.7

0.8

0.9

1

Traffic load (Erlang)

A
cc

ep
ta

nc
e

ra
tio
p
a

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.17: Performance of the algorithms with various VNR traffic loads. The MaVEn
computational budget is β = 5 samples per virtual node embedding. Shown are the accep-
tance ratios as functions of VNR traffic load in the BCube (top) and Fat-Tree (bottom)
scenarios.

80

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0.4

0.45

0.5

0.55

Traffic load (Erlang)

R
ev

en
ue

to
co

st
ra

tio

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0.38

0.4

0.42

0.44

Traffic load (Erlang)

R
ev

en
ue

to
co

st
ra

tio MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.18: Performance of the algorithms with various VNR traffic loads. The MaVEn
computational budget is β = 5 samples per virtual node embedding. Shown are the revenue
to cost ratios as functions of VNR traffic load in the BCube (top) and Fat-Tree (bottom)
scenarios.

81

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0.2

0.3

0.4

0.5

Traffic load (Erlang)

P
ro

fit
ab

lil
ity
θ

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0.25

0.3

0.35

0.4

Traffic load (Erlang)

P
ro

fit
ab

lil
ity
θ

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.19: Performance of the algorithms with various VNR traffic loads. The MaVEn
computational budget is β = 5 samples per virtual node embedding. Shown are the prof-
itabilities as functions of VNR traffic load in the BCube (top) and Fat-Tree (bottom)
scenarios.

82

10−2 10−1 100 101 102

MaV
En-

M

MaV
En

R-V
ine

D-V
ine

GRC

Average processing time per VNR (s)

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

10−2 10−1 100 101 102

MaV
En-

M

MaV
En

R-V
ine

D-V
ine

GRC

Average processing time per VNR (s)

MaVEn-M

MaVEn-S

R-Vine

D-Vine

GRC

Figure 4.20: Average execution time of the algorithms per VNR embedding in the BCube
(top) and Fat-Tree (bottom) scenarios. Execution times are averaged for all VNR traffic
load scenarios.

83

by the switches. In the case of BCube topology, this introduces additional traffic over the
links that are connected to the hosts. These links are important for the virtual network
embeddings especially for embedding virtual nodes that require multiple connections to
other virtual nodes. Therefore, performing traffic forwarding using only the core switches
instead of the hosts could potentially lead to higher VNR acceptance ratio. The generated
Fat-Tree topology has higher switch to host ratio (0.84) compared to the BCube topology
(0.75). This provides additional paths between the hosts that, in turn, may result in higher
acceptance ratio.

4.6 Discussion

In this Chapter, we modeled the Virtual Network Embedding (VNE) problem as a Markov
Decision Process (MDP) and proposed two new VNE algorithms (MaVEn-M and MaVEn-
S) that solve the proposed MDP by utilizing the Monte Carlo Tree Search. We developed
a discrete event simulator for simulating VNE algorithms and implemented MaVEn-M,
MaVEn-S, R-Vine, D-Vine, and GRC algorithms for comparisons. The simulation results
show that MaVEn-M and MaVEn-S exhibit promising performance. The advantage of the
proposed algorithms is that, time permitting, they search for more profitable embeddings
compared to the available algorithms that identify only a single embedding solution.

The MaVEn-S and GRC algorithms use a shortest-path-based algorithm without path
splitting to solve VLiM, which is stricter than the MCF algorithm that enables path splitting
utilized by MaVEn-M and Vine algorithms. For example, consider a virtual node nΨi

x

attached to a virtual link that requires 5 units of bandwidth and a substrate node nsy
attached to two substrate links with available bandwidths of 4 and 1. While utilizing MCF
permits embedding nΨi

x onto nsy, such embedding is infeasible without path splitting.
Superior performance of the proposed algorithms comes at the cost of higher execution

time. The GRC algorithm has the lowest execution time. However, the solutions found are
less profitable compared to other algorithms. The stochastic processes governing the VNRs
arrival and life-time distributions have not been well investigated [51]. Hence, it is difficult
to estimate a reasonable trade-off between execution time and profitability. A five-year
traffic analysis (2002 to 2007) of the research-based ProtoGENI project [9] identified an
average of 4 VNR arrivals per hour [148]. Based on this low arrival rate, we may assume
that allocating a few minutes of processing time is feasible. Even though we have not
considered varying the computational budget during simulations, InP operators may adjust
the execution time of the MaVEn algorithms according to VNR arrival rates and the size of
VNR graphs to avoid long queuing delays. Furthermore, MCTS is highly parallelisable [126]
and, therefore, larger number of processors may be employed to achieve scalability in larger
network topologies.

84

We have used the GLPK to solve the MCF problem, which currently does not support
distributed computing. Furthermore, our implementation of the shortest-path algorithm
relies only on the random access memory while the MCF implementation relies on slow
disk I/O operations. Parallelizing the MCF and eliminating the disk I/O improves the
performance of MaVEn-M and Vine algorithms.

MCTS parallelization improves performance of the MaVEn algorithms. We simulated
the parallel MaVEn algorithms using multiple threads of a single CPU. However, the par-
allelized algorithms may be executed on clusters that are highly optimized for parallel
computing and comprise large number of processors.

We simulated data center topologies that are much smaller than the currently deployed
data center networks. Larger data center topologies possess the same structure as employed
in simulations. However, we did not evaluate the effects of topology size on performance of
VNE algorithms.

The VNE algorithms considered in this dissertation are designed without assuming
any specific structure of substrate and virtual networks that may simplify the embedding
process. The complexity of these algorithms imposes a barrier on their scalability. For
example, it has been reported that the execution time of Vine algorithms for embedding
virtual networks in a BCube network topology with 512 servers is prohibitively high [72].
Therefore, considering network structure will help achieve scalability. The MCTS algorithm,
employed by the MaVEn algorithms, may easily be extended to consider network structure
(domain knowledge). Employing domain knowledge enables MCTS to direct the search
to promising subtrees without affecting asymptotic convergence [126] and, hence, achieve
better performance.

85

Chapter 5

VNE-Sim: A Virtual Network
Embedding Simulator

VNE-Sim is a discrete event simulator written in C++. It is based on the 2011 C++ stan-
dard (C++11) that introduces smart pointers and lambda functions. These new facilities
are extensively employed in the VNE-Sim. The hierarchy of the VNE-Sim directories is
shown in Fig. 5.1.

The CMake build system [3] is employed for compiling the simulator. The CMake-
Lists.txt file that resides in the root directory includes the build instructions such as select-
ing the compiler, setting the correct build paths, and searching for the required external
libraries.

VNE-Sim relies on several external libraries. While some required libraries are down-
loaded and installed automatically by CMake during the build process, some required exter-
nal libraries are expected to be installed on the system prior to initiating the build process.

The libraries that are automatically installed by CMake are:

• Fast Network Simulation Setup (FNSS) [4] used for generating data center network
topologies;

• Hiberlite library [5] used for writing the simulation results to disk;

• The Adevs library [110] employed for modeling the virtual network embedding process
as a discrete event system.

The libraries that must exist on the system prior to compilation are:

• Boost File System, Log, Thread, and Unit Test Framework libraries [2] are mainly
used in the core classes for file handling, logging, testing, and debugging. The test
cases and experiments are written using the Unit Test Framework.

• GNU Scientific Library [15] is used for generating random numbers. The required
random numbers and distributions are generated using this library.

86

root

CMakeLists.txt

configurations.xml

cmake

modules

patches

external-libs

adevs

BRITE

fnss

hiberlite

src

...

src

core

test

experiments

test

grc

mcts

mcvne

network-file-generator

test

utilities

Vineyard

test

files

lp

CNLM-LP.mod

MCF.mod

Figure 5.1: Hierarchy of the VNE-Sim directory.

• GNU Linear Programming Kit (GLPK) [14] is used for solving the MCF problem. It
is also employed by the Vine algorithms.

• The Message Passing Interface (MPI) standard is used for MCTS parallelization.
Therefore, either the OpenMPI [8] or MPICH [7] libraries should be installed the
system for compilation of the MCTS in a parallel mode.

• SQLite3 library [10] is used for handling simulation results. The simulation results
are exported automatically as SQLite3 databases.

CMake uses scripts to search for the libraries. Certain scripts are not included in the default
installation of CMake. They reside in the cmake/modules directory.

VNE-Sim uses a modified versions of the Hiberlite and FNSS libraries. Therefore,
CMake applies the required modifications after downloading the libraries. The patches
that CMake uses for these two libraries reside in cmake/patches. VNE-Sim also contains a
modified version of the Boston University Representative Topology Generator (BRITE) [13]

87

that is compiled as a part of the simulator. External libraries that are installed by CMake
and the BRITE library reside in the external-libs directory.

The src directory contains the simulator source code. Various components of VNE-Sim
and their dependencies are shown in Fig. 5.2.

Core

Adevs

Boost

Hiberlite

GSL

MCVNE

MCTS

MPI

Vineyard

GLPK

GRC

Experiments NFG

BRITE

FNSS

Figure 5.2: The dependencies of VNE-Sim components.

The components are located in various subdirectories of src:

• src/core contains the classes and interfaces required for implementing various virtual
network embedding algorithms. It also contains the discrete event simulation system
that models the process of embedding virtual networks as a discrete event system.

• src/experiments contains various simulation scenarios presented in Chapter 4.

• src/grc contains the implementation of the Global Resource Capacity (GRC) algo-
rithm [69].

• src/mcts contains a modular implementation of the Monte Carlo Tree Search (MCTS)
algorithm [53], [89]. We have adopted a similar structure to an available MCTS
simulator [126].

• src/mcvne contains the implementation of the MaVEn algorithms.

• src/network-file-generator contains the network file generator package. This package
may be used for generating various network topologies and virtual network requests.
This package employs the BRITE [13] and FNSS [4] libraries for generating network
topologies. It also uses the GNU Scientific Library [15] for generating distributions of
VNR arrival times, life-times, and resource requirements.

88

• src/utilities contains the logging system and the Unit Test Framework initializer.

• src/Vineyard contains the implementation of R-Vine and D-Vine algorithms [51].

In Section 5.1, we describe the implementation of the core classes of the simulator and
their usage.

5.1 The Simulator Core: src/core

The content of the core directory is shown in Fig. 5.3.

core

coordinate.h

resources.h

link-embedding-algorithm.h

link.h

node.h

substrate-link.h

substrate-node.h

virtual-link.h

virtual-node.h

virtual-network-request.h

network.h

network-builder.h

...

embedding-algorithm.h

two-stage-embedding-algo.h

link-embedding-algorithm.h

node-embedding-algorithm.h

release-algorithm.h

vnr-embedding-processor.h

vnr-generator.h

vnr-process-digraph.h

vnr-process-observer.h

vnr-release-processor.h

experiment.h

experiment-parameters.h

experiment-parameters.cc

statistics-subscriber.h

...

config-manager.cc

config-manager.h

config.h.in

core-types.h

db-manager.h

db-manager.cc

id-generator.h

id-generator.cc

rng.h

rng.cc

Figure 5.3: Content of the core directory.

The facilities required to simulate VNE algorithms are implemented as abstract template
classes in the core directory. They may be divided into five categories:

1. Network Component Classes provide a framework for defining substrate and virtual
nodes and links, networks, and virtual network requests. The files that are in this
groups are listed in the gray box shown in Fig. 5.3.

2. Virtual Network Embedding Classes define an interface for embedding algorithms.
They are listed in the cyan box shown in Fig. 5.3.

89

3. Discrete Event Simulation Classes model the virtual network embedding process as
a discrete event system. All these classes are derived from Adevs library [110]. The
files corresponding to these classes are listed in the yellow box shown in Fig. 5.3.

4. Experiment and Result Collection Classes connect various components to define simu-
lation scenarios that the user requires. They create SQL database tables for simulation
parameters and presenting simulation results. The corresponding files are listed in the
green box shown in Fig. 5.3.

5. Operation Related Classes provide the basic required functionalities such as managing
the configuration file, database access, type definitions, and random number genera-
tion. These classes are listed in the red box shown in Fig. 5.3.

5.1.1 Network Component Classes

Substrate and Virtual Nodes and Links

Substrate and virtual nodes and links are derived from the node (core/node.h) and link
(core/link.h) base template classes, respectively. They are implemented as C++ variadic
templates where the resources of the substrate and virtual elements are defined by the
template arguments. For example, the SubstrateNode<typename...> template class is listed in
Listing 5.1

Listing 5.1: Implementation of the SubstrateNode base class.

1 template < typename ... NODERES >
2 class SubstrateNode : public Node < NODERES ...>
3 {
4 ...
5 };

A substrate node that possesses CPU capacity of type double and memory of type int is de-
fined by a <double,int> specialization of the SubstrateNode template class. The VYSubstrateNode<

> template class (src/Vineyard/vy-substrate-node.h) is an example of a class that is de-
rived from a <double> specialization of the SubstrateNode template class. The SubstrateLink<

typename...>, VirtualNode<typename...>, and VirtualLink<typename...> template classes are
similar to SubstrateNode<typename...>.

Networks and Virtual Network Requests

In VNE-Sim, a network is defined by the Network<typename,typename> template class (core/net-
work.h). Its definition is shown in Listing 5.2:

90

Listing 5.2: Definition of the Network base class.

1 template < typename ... NodeT , template < typename ...> class NodeC ,
2 typename ... LinkT , template <typename ...> class LinkC >
3 class Network <NodeC <NodeT ...>, LinkC <LinkT ...>>
4 {
5 ...
6 };

The network template class requires two arguments: a Node class and a Link class. This
enables implementing substrate and virtual networks using the same template class. For
example, in the Vineyard package (src/Vineyard/), a substrate network is defined by spe-
cializing the Network class with template arguments: VYSubstrateNode<> and VYSubstrateLink<>.
Similarly, a virtual network is defined by using VYVirtualNode<> and VYVirtualLink<> template
arguments. Declaration of pointers to substrate and virtual networks is shown in Listing 5.3.

Listing 5.3: Declaration of pointers to substrate and virtual networks.

1 std :: shared_ptr <Network < VYSubstrateNode <>, VYSubstrateLink <>>> substrate_net ;
2 std :: shared_ptr <Network < VYVirtualNode <>, VYVirtualLink <>>> virtual_net ;

VNRs are derived from the VirtualNetworkRequest<typename> template class (core/
virtual-network-request.h). This class maintains a pointer to a virtual network. Its definition
is shown in Listing 5.4. This class requires a template argument that defines the type of
the virtual networks that it entails.

Listing 5.4: Definition of the VirtualNetworkRequest base class.

1 template < typename ... NODERES , template <typename ...> class NODECLASS ,
2 typename ... LINKRES , template <typename ...> class LINKCLASS >
3 class VirtualNetworkRequest <Network <NODECLASS < NODERES ...>, LINKCLASS < LINKRES ...>>>
4 {
5 ...
6 };

5.1.2 Virtual Network Embedding Classes

These classes define an interface for implementing VNE algorithms. The backbone of these
classes is the EmbeddingAlgorithm<typename, typename> abstract template class (src/embedding-
algorithm.h). The first template argument is a specialization of the Network<typename,

typename> while the second argument is a specialization of the VirtualNetworkRequest tem-
plate class. The classes that are derived from EmbeddingAlgorithm should implement the
embedVNR virtual function. The definition of this template is shown in Listing 5.5.

91

Listing 5.5: Definition of the EmbeddingAlgorithm template class.

1 template <typename ,typename > class EmbeddingAlgorithm ;
2
3 template <typename ... SNODERES , template <typename ...> class SNODECLASS ,
4 typename ... SLINKRES , template <typename ...> class SLINKCLASS ,
5 typename ... VNODERES , template <typename ...> class VNODECLASS ,
6 typename ... VLINKRES , template <typename ...> class VLINKCLASS ,
7 template <typename > class VNRCLASS >
8 class EmbeddingAlgorithm <
9 Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES ...>>,
10 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>> {
11 public :
12 typedef VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>

VNR_TYPE ;
13 typedef Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES ...>>

SUBSTRATE_TYPE ;
14
15 virtual Embedding_Result embedVNR (std :: shared_ptr <VNR_TYPE > vnr) = 0;
16
17 protected :
18 EmbeddingAlgorithm (NetworkBuilder < SUBSTRATE_TYPE >& _sb) : substrate_network (

_sb. getNetwork ()) {};
19 EmbeddingAlgorithm (std :: shared_ptr < SUBSTRATE_TYPE > _sn) : substrate_network (

_sn) {};
20 std :: shared_ptr < SUBSTRATE_TYPE > substrate_network ;
21 };

Two stage VNE algorithms employ a node mapping algorithm to map the virtual nodes
onto substrate nodes. They also employ a link mapping algorithm for mapping virtual links
onto substrate paths. Two stage embedding algorithms may be implemented in VNE-Sim us-
ing the TwoStageEmbeddingAlgo<typename,typename> template class (core/two-stage-embedidng-
algo.h). Since TwoStageEmbeddingAlgo is derived from EmbeddingAlgorithm<typename, typename>,
its first and second template arguments identify the types of substrate network and vir-
tual network requests that it recognizes for operation, respectively. NodeEmbeddingAlgorithm<

typename,typename> (core/node-embedidng-algorithm.h) and LinkEmbeddingAlgorithm<typename,

typename> (core/link-embedidng-algorithm.h) are interfaces for virtual node and link mapping
algorithms, respectively. The constructor of specializations of the TwoStageEmbeddingAlgo<

typename,typename> requires pointers to a NodeEmbeddingAlgorithm<typename,typename> and a
LinkEmbeddingAlgorithm<typename,typename>. The template arguments of the node and link
embedding algorithms are similar to those of the two stage embedding algorithm. The im-
plementations of TwoStageEmbeddingAlgo, NodeEmbeddingAlgorithm, and LinkEmbed-
dingAlgo are presented in Appendix B Listings B.1, B.2, and B.3, respectively.

5.1.3 Discrete Event Simulation Classes

The VNR embedding process may be modeled using three discrete event processes. The
VNRs are first generated based on an arrival process. The arrived VNRs are then passed

92

to an embedding algorithm. During the embedding processes, the VNRs are subjected to
queuing and processing delays. Based on the outcome of the embedding process, a VNR may
either be accepted or rejected for embedding. Finally, when the life-time of an embedded
VNR expires, the release process begins, where an algorithm release the resources occupied
by the VNR.

The template class VNRGenerator<typename> is used to generate virtual network requests.
It implements VNR generation process. The required template argument is a specializa-
tion of the VirtualNetworkRequest template class. VYVNRGenerator<> is a specialization of the
VNRGenerator template class. It may be found in the Vineyard package. The embedding and
release processes are implemented using the VNREmbeddingProcessor<typename,typename> and
VNRReleaseProcessor<typename,typename> template classes, respectively. Their first template
argument is a specialization of the Network class that represents a substrate network while
the second template argument is a VirtualNetworkRequest specialization.

The VNRProcessObserver implements the Observer design pattern [65]. It is mainly used for
logging, collecting statistics, and recording the embedding outcomes. The events that occur
in the three VNR embedding phases are transparent to the Observer. The VNRProcessDigraph

connects the three main processes and the observer. It requires four template arguments.
They are specializations of a generator, embedding, release, and observer template classes.

5.1.4 Experiment and Result Collection Classes

A simulation scenario in VNE-Sim is defined using the Experiment<typename> template class.
The required template argument is a specialization of VNRProcessDigraph template class. The
Experiment class also maintains statistics that are collected during a simulation and writes
them to disk when the simulation is completed. Various examples of specializations of the
Experiment template class may be found in src/experiment directory.

5.1.5 Operation Related Classes

The ConfigManager class reads the configuration file (root/configurations.xml) and maintains
a structured Boost Property Tree of the configurations. This class is a singleton [65]. There-
fore, a pointer to its instance must be acquired first. After obtaining the pointer, a property
value may be acquired by calling the ConfigManager::getConfig function. For example, ac-
quiring the core.dbPath property from configuration file is demonstrated in Listing 5.6.

Listing 5.6: Example of ConfigManger usage.

1 std :: string dbPath = ConfigManager :: Instance () ->
2 getConfig <std :: string >("core. dbPath ");

The DBManager class creates instances of hiberlite::Database class [5] and maintains point-
ers to the created databases in a map data structure. This class is also implemented as

93

singleton and a pointer to its instance should be acquired first using the Instance() function.
Its interface contains two main functions: createDB and getDB. The createDB function requires
a name as an std::string argument. It creates a database using the given name and returns
a pointer to the created database. Pointers to the created databases may also be acquired
using the getDB function, which requires the name of a database as an std::string argument.

All network component classes require identification numbers for operation. Classes
that have similar types should not possess identical identification numbers. The IdGenerator

class produces such type-based unique numbers. It is also singleton and acquisition of a
pointer to its instance is similar to the previously described singleton classes. The generated
identification numbers are naturally ordered. The IdGenerator interface consists of two
template functions: the getId<typename> function that generates a unique ID for a class type
that is given as its template argument, and the peekId<typename> function that returns the
next ID that will be generated for the type given as its template argument. For example,
the constructor of VYVirtualNode<>, where a unique ID for this class is acquired is shown in
Listing 5.7.

Listing 5.7: Example of ConfigManger usage.

1 typedef VYVirtualNode <> this_t ;
2
3 template <>
4 VYVirtualNode <>:: VYVirtualNode (double cpu , int _x , int _y) :
5 VirtualNode <double >(cpu ,true),
6 coordinate (VYCoordinate (_x , _y))
7 {
8 this ->id = vne :: IdGenerator :: Instance () ->getId <this_t >(this);
9 }

The RNG class employs the GNU Scientific Library [15]. It may be used to generate
random numbers and various probability distributions. The seed and type of the random
number generator are defined by core.rngSeed and core.rngType fields in the configuration
file, respectively. Classes using RNG may either use a general purpose random number gen-
erator by calling the getGeneralRNG function or they may subscribe to RNG to get their own
specific random number generator. Only the derivatives of RNGSubscriber may subscribe to
RNG and possess their specific random number generator.

94

Chapter 6

Conclusion

In this Dissertation, we investigated applications of reinforcement learning algorithms
to two research areas in computer networks: deflection routing in Optical Burst-Switched
(OBS) networks and solving the Virtual Network Embedding (VNE) problem. The deflec-
tion routing problem is time-sensitive and decisions should be identified in real-time while
a VNE algorithm is permitted to have additional processing time for finding a profitable
embedding. This difference has a major impact on the employed learning algorithms and
the design choices.

The first application we considered was deflection routing in buffer-less networks. We
proposed a Predictive Q-learning-based Deflection Routing (PQDR) algorithm to improve
performance of the existing Reinforcement Learning-Based Deflection Routing Scheme (RL-
DRS), which employs Q-learning and whose complexity depends on the size of the network.
Even though employing Predictive Q-learning instead of Q-learning improved the burst loss
probability in high traffic loads, it had no large impact on the networks with low to mod-
erate loads. We attribute this behaviour to the nature of the Q-learning algorithm, which
inefficiently processes the feedback (reinforcement) signals. Even though more efficient re-
inforcement learning algorithms have been proposed, higher efficiency comes at the cost of
higher processing time. Therefore, the dependence of PQDR and RLDRS complexity on
the size of the network (number of nodes and links) quickly becomes a bottleneck in larger
network topologies. In order to be able to employ more efficient reinforcement learning
algorithms, we proposed the Node Degree Dependent (NDD) signalling algorithm whose
complexity depends on a node degree rather than the network size. We then proposed a
three-layer feed-forward neural network for generating deflection decisions and introduced
two deflection routing algorithms named NN-NDD and ENN-NDD that employ the designed
neural network. The NN-NDD and ENN-NDD algorithms discard fewer bursts than the
PQDR algorithm and RLDRS in low to moderate traffic loads because the underlying neural
network is able to process the reinforcement signals more efficiently. Performance evalua-

95

tions showed promising performance using a single hidden-layer neural network. Therefore,
we did not consider networks with multiple hidden layer. Experimenting with larger neural
networks may be considered for future work. We also did not consider burst aggregation al-
gorithms in simulation scenarios. Future work may include investigating various aggregation
algorithms and their effect on performance of deflection routing algorithms.

The second application we considered was modeling VNE as a reinforcement learning
process using the Markov Decision Process (MDP) framework. We also showed that the
complexity of finding an optimal policy for the proposed MDP is exponential in the size of
the substrate network and in the size of requested virtual networks. Hence, we introduced
two MaVEn algorithms that employ Monte Carlo Tree Search (MCTS) for finding near-
optimal solutions. We improved the performance of the MaVEn algorithms by employing
MCTS root parallelization. Performance of the proposed algorithms was evaluated using a
synthesized network topology that resembled an Internet Service Provider network topology.
We also considered BCube and Fat-Tree data center network topologies. Simulation results
indicated that the MaVEn algorithms have superior performance compared to the Vine and
Global Resource Capacity (GRC) VNE algorithms. Future work may include improving
the performance of MaVEn-M algorithm by parallelizing the Multicommodity Flow (MCF)
algorithm and eliminating the disk I/O operations. Furthermore, executing the parallelized
MaVEn algorithms on large clusters that are highly optimized for parallel computing will
better reveal the dependence of the their performance on the number of processors. We
simulated data center topologies that are much smaller than the currently deployed data
center networks because of the memory and execution time limitations. Using path selection
algorithms that are specifically designed for data center network topologies will improve the
performance of the MaVEn algorithms. This will, in turn, enable simulating larger and more
realistic data center network topologies. The size and the structure of the requested virtual
network topologies also affect scalability and performance of the algorithms. Evaluation of
these effects are also of interest and may be topic of future research.

We also developed VNE-Sim for simulating VNE algorithms. VNE-Sim formalizes the
VNE process as a discrete event system based on the DEVS framework and uses the Adevs
library. The modular and scalable design of VNE-Sim enables researchers to seamlessly
implement new VNE algorithms and evaluate their performance. The initial development
phase of VNE-Sim has been completed. The future work includes implementing other exist-
ing VNE algorithms, implementing a source code documentation system such as Doxygen,
in depth comparison of VNE-Sim and Alevin in terms of memory usage and capabilities,
and implementing a scripting infrastructure for visualization of results.

While reinforcement learning algorithms have found applications in various fields, they
are still not widely employed for computer networking applications. The results and algo-
rithms presented in this Dissertation have demonstrated that learning algorithms provide
viable solutions and may be implemented in computer networks.

96

Bibliography

[1] (2015, Sept.) Amazon Web Services [Online]. Available: https://aws.amazon.com/.

[2] (2015, Dec.) Boost C++ Libraries [Online]. Available: http://www.boost.org/.

[3] (2015, Dec.) Cmake Build System [Online]. Available: https://cmake.org/.

[4] (2015, Dec.) Fast Network Simulation Setup [Online]. Available: http://fnss.github.
io/.

[5] (2015, Dec.) Hiberlite Library [Online]. Available: https://github.com/paulftw/
hiberlite/.

[6] (2015, Dec.) Message Passing Interface Forum [Online]. Available: http:
//www.mpi-forum.org/.

[7] (2015, Dec.) MPICH: High-Performance Portable MPI [Online]. Available:
https://www.mpich.org/.

[8] (2015, Dec.) Open MPI: Open Source High Performance Computing [Online].
Available: http://www.open-mpi.org/.

[9] (2015, July) ProtoGENI [Online]. Available: http://www.protogeni.net/.

[10] (2015, Dec.) SQLite: Small. Fast. Reliable. Choose any three [Online]. Available:
https://www.sqlite.org/.

[11] (2016, Jan.) A special report: a brief history of NSF and the Internet [Online].
Available: http://www.nsf.gov/news/special_reports/cyber/internet.jsp/.

[12] (2016, Jan.) Autonomous system numbers [Online]. Available: http://www.iana.org/
assignments/as-numbers/.

[13] (2016, Jan.) Boston University Representative Internet Topology Generator. [Online]
Available: http://www.cs.bu.edu/brite/.

[14] (2016, Jan.) GLPK–GNU Linear Programming Kit [Online]. Available: http:
//www.gnu.org/software/glpk/.

[15] (2016, Jan.) GSL–GNU Scientific Library [Online]. Available: https://www.gnu.org/
software/gsl/.

[16] (2016, Jan.) iDef ns-3 implementation repository [Online]. Available: http:
//bitbucket.org/shaeri/hmm-deflection/.

97

https://aws.amazon.com/.
http://www.boost.org/.
https://cmake.org/.
http://fnss.github.io/.
http://fnss.github.io/.
https://github.com/paulftw/hiberlite/.
https://github.com/paulftw/hiberlite/.
http://www.mpi-forum.org/.
http://www.mpi-forum.org/.
https://www.mpich.org/.
http://www.open-mpi.org/.
http://www.protogeni.net/.
https://www.sqlite.org/.
http://www.nsf.gov/news/special_reports/cyber/internet.jsp/.
http://www.iana.org/assignments/as-numbers/.
http://www.iana.org/assignments/as-numbers/.
http://www.cs.bu.edu/brite/.
http://www.gnu.org/software/glpk/.
http://www.gnu.org/software/glpk/.
https://www.gnu.org/software/gsl/.
https://www.gnu.org/software/gsl/.
http://bitbucket.org/shaeri/hmm-deflection/.
http://bitbucket.org/shaeri/hmm-deflection/.

[17] (2016, Jan.) The ns-3 network simulator [Online]. Available: http://www.nsnam.org/.

[18] A. S. Acampora and S. I. A. Shah, “Multihop lightwave networks: a comparison of
store-and-forward and hot-potato routing,” in Proc. IEEE INFOCOM, vol. 1, Bal
Harbour, FL, USA, Apr. 1991, pp. 10–19.

[19] R. G. Addie, T. D. Neame, and M. Zukerman, “Performance evaluation of a queue
fed by a Poisson Pareto burst process,” Comput. Netw., vol. 40, no. 3, pp. 377–397,
Oct. 2002.

[20] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center net-
work architecture,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp.
63–74, Oct. 2008.

[21] N. Al-Rousan, S. Haeri, and Lj. Trajković, “Feature selection for classification of BGP
anomalies using bayesian models,” in Proc. ICMLC 2012, Xi’an, China, July 2012,
pp. 140–147.

[22] N. Al-Rousan and Lj. Trajković, “Machine learning models for classification of BGP
anomalies,” in Proc. IEEE Conf. High Performance Switching and Routing, Belgrade,
Serbia, June 2012, pp. 103–108.

[23] E. Alpaydin, Introduction to Machine Learning, 2nd ed., ser. Adaptive Computation
and Machine Learning series. Cambridge, MA, USA: MIT Press, 2010.

[24] D. G. Andersen, “Theoretical approaches to node assignment,” Dec. 2002,
Unpublished Manuscript [Online]. Available: http://repository.cmu.edu/compsci/86/.

[25] T. Anderson, L. Peterson, S. Shenker, and J. S. Turner, “Overcoming the Internet
impasse through virtualization,” Computer, vol. 38, no. 4, pp. 34–41, Apr. 2005.

[26] H. Baier and M. H. M. Winands, “Nested Monte-Carlo Tree Search for online planning
in large MDPs,” in Proc. 20th European Conf. Artificial Intelligence, Montpellier,
France, Aug. 2012, pp. 109–114.

[27] I. Baldine, G. N. Rouskas, H. G. Perros, and D. Stevenson, “Jumpstart: a just-in-
time signaling architecture for wdm burst-switched networks,” IEEE Commun. Mag.,
vol. 40, no. 2, pp. 82–89, Feb. 2002.

[28] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards predictable datacen-
ter networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 242–253,
Oct. 2011.

[29] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science,
vol. 286, no. 5439, pp. 509–512, Oct. 1999.

[30] P. Baran, “On distributed communications networks,” IEEE Trans. Commun. Syst.,
vol. CS–12, no. 1, pp. 1–9, Mar. 1964.

[31] A. G. Barto and T. G. Dietterich, “Reinforcement learning and its relationship to
supervised learning,” in Handbook of Learning and Approximate Dynamic Program-
ming, J. Si, A. G. Barto, W. Powell, and D. Wunsch, Eds. Piscataway, NJ, USA:
Wiley-IEEE Press, 2004, pp. 45–63.

98

http://www.nsnam.org/.
http://repository.cmu.edu/compsci/86/.

[32] B. G. Bathula and V. M. Vokkarane, “QoS-based manycasting over optical burst-
switched (OBS) networks,” IEEE/ACM Trans. Netw., vol. 18, no. 1, pp. 271–283,
Feb. 2010.

[33] A. Belbekkouche, A. Hafid, and M. Gendreau, “Novel reinforcement learning-based
approaches to reduce loss probability in buffer-less OBS networks,” Comput. Netw.,
vol. 53, no. 12, pp. 2091–2105, Aug. 2009.

[34] A. Belbekkouche, A. Hafid, M. Tagmouti, and M. Gendreau, “Topology-aware wave-
length partitioning for DWDM OBS networks: a novel approach for absolute QoS
provisioning,” Computer Networks, vol. 54, no. 18, pp. 3264–3279, Dec. 2010.

[35] A. Belbekkouche, M. M. Hasan, and A. Karmouch, “Resource discovery and allocation
in network virtualization,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4,
pp. 1114–1128, 2012.

[36] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton University
Press, 1957.

[37] D. P. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models. En-
glewood Cliffs, NJ, USA: Prentice-Hall, 1987.

[38] F. Borgonovo, Routing in Communications Networks. NJ, USA: Prentice-Hall, 1995.

[39] F. Borgonovo, L. Fratta, and J. Bannister, “Unslotted deflection routing in all-optical
networks,” in Proc. IEEE GLOBECOM, Houston, TX, USA, Dec. 1993, pp. 119–125.

[40] J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer,
“Energy efficient virtual network embedding,” IEEE Commun. Lett., vol. 16, no. 5,
pp. 756–759, May 2012.

[41] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing networks:
a reinforcement learning approach,” in Advances in Neural Inform. Process. Syst.,
J. Jack, D. Cowan, G. Tesauro, and J. Alspector, Eds. San Francisco, CA, USA:
Morgan Kaufmann Publishers, 1994, vol. 6, pp. 671–678.

[42] S. Bregni, A. Caruso, and A. Pattavina, “Buffering-deflection tradeoffs in optical burst
switching,” Photon. Netw. Commun., vol. 20, no. 2, pp. 193–200, Aug. 2010.

[43] K. L. Calvert, M. B. Dora, and E. W. Zegura, “Modeling Internet topology,” IEEE
Commun. Mag., vol. 35, no. 6, pp. 160–163, June 1997.

[44] T. Cazenave and N. Jouandeau, “On the parallelization of UCT,” in Proc. Computer
Games Workshop 2007 (CGW 2007), H. J. van den Herik, J. W. Uiterwijk, and M. H.
Winands, Eds. Universiteit Maastricht, 2007, vol. 5131, pp. 93–101.

[45] G. Chaslot, M. Winands, and H. J. Herik, “Parallel Monte-Carlo tree search,” in
Lecture Notes in Computer Science: Computers and Games, H. J. Herik, X. Xu,
Z. Ma, and M. Winands, Eds. Springer, 2008, vol. 5131, pp. 60–71.

[46] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Willinger, “The
origin of power laws in Internet topologies revisited,” in Proc. INFOCOM, New York,
NY, USA, Apr. 2002, pp. 608–617.

99

[47] Y. Chen, C. Qiao, and X. Yu, “Optical burst switching: a new area in optical net-
working research,” IEEE Netw., vol. 18, no. 3, pp. 16–23, June 2004.

[48] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network
embedding through topology-aware node ranking,” Comput. Commun. Rev., vol. 41,
pp. 38–47, Apr. 2011.

[49] T. Chich, J. Cohen, and P. Fraigniaud, “Unslotted deflection routing: a practical and
efficient protocol for multihop optical networks,” IEEE/ACM Trans. Netw., vol. 9,
no. 1, pp. 47–59, Feb. 2001.

[50] S. P. M. Choi and D. Y. Yeung, “Predictive q-routing: a memory-based reinforcement
learning approach to adaptive traffic control,” in Advances in Neural Inform. Process.
Syst., D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA,
USA: The MIT Press, 1996, vol. 8, pp. 945–951.

[51] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual network em-
bedding algorithms with coordinated node and link mapping,” IEEE/ACM Trans.
Netw., vol. 20, no. 1, pp. 206–219, Feb. 2012.

[52] N. M. M. K. Chowdhury and R. Boutaba, “Network virtualization: state of the art
and research challenges,” IEEE Commun. Mag., vol. 47, no. 7, pp. 20–26, July 2009.

[53] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo Tree Search,”
in Proc. 5th Int. Conf. Comput. and Games (CG’06), Turin, Italy, May 2006, pp.
72–83.

[54] R. Coulom, “Computing Elo ratings of move patterns in the game of Go,” Int. Comput.
Games Association Journal, vol. 30, no. 4, pp. 198–208, Dec. 2007.

[55] M. E. Crovella and A. Bestavros, “Self-Similarity in World Wide Web traffic: Evidence
and possible causes,” IEEE/ACM Trans. Netw., vol. 5, no. 6, pp. 835–846, Dec. 1997.

[56] F. D’Epenoux, “A probabilistic production and inventory problem,” Management
Science, vol. 10, pp. 98–108, 1963.

[57] A. I. A. El-Rahman, S. I. Rabia, and H. M. H. Shalaby, “Mac-layer performance
enhancement using control packet buffering in optical burst-switched networks,” J.
Lightwave Technol., vol. 30, no. 11, pp. 1578–1586, June 2012.

[58] P. Erdös and A. Reńyi, “On the evolution of random graphs,” Publ. Math. Inst. Hung.
Acad. Sci., vol. 5, pp. 17–61, 1960.

[59] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “VNE-AC: Virtual network
embedding algorithm based on ant colony metaheuristic,” in Proc. IEEE ICC 2011,
Kyoto, Japan, June 2011, pp. 1–6.

[60] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the
Internet topology,” ACM SIGCOMM Comput. Commun. Rev., vol. 29, no. 4, pp.
251–262, Aug. 1999.

100

[61] P. Faratin, D. Clark, S. Bauer, W. Lehr, P. Gilmore, and A. Berger, “The growing
complexity of Internet interconnection,” Communications and Strategies, no. 72, pp.
51–71, Dec. 2008.

[62] N. Feamster, L. Gao, and J. Rexford, “How to lease the Internet in your spare time,”
Comput. Commun. Rev., vol. 37, no. 1, pp. 61–64, Jan. 2007.

[63] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach, “Virtual network
embedding: a survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp.
1888–1906, 2013.

[64] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely,
and C. Diot, “Packet-level traffic measurements from the Sprint IP backbone,” IEEE
Netw., vol. 17, no. 6, pp. 6–16, Dec. 2003.

[65] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, 1st ed., ser. Addison-Wesley Professional Com-
puting Series. Boston, MA, USA: Addison-Wesley, 1994.

[66] X. Gao and M. Bassiouni, “Improving fairness with novel adaptive routing in optical
burst-switched networks,” J. Lightw. Technol., vol. 27, no. 20, pp. 4480–4492, Oct.
2009.

[67] S. Gelly and D. Silver, “Achieving master level play in 9 x 9 computer Go,” in Proc.
23rd Conf. Artificial Intelligence, Chicago, IL, USA, July 2008, pp. 1537–1540.

[68] S. Gelly and D. Silver, “Monte-Carlo tree search and rapid action value estimation in
computer Go,” Artificial Intelligence, vol. 175, no. 11, pp. 1856–1875, July 2011.

[69] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual network em-
bedding algorithm via global resource capacity,” in Proc. IEEE INFOCOM, Toronto,
ON, Canada, Apr. 2014, pp. 1–9.

[70] A. Greenberg and B. Hajek, “Deflection routing in hypercube networks,” IEEE Trans.
Commun., vol. 40, no. 6, pp. 1070–1081, June 1992.

[71] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu,
“Bcube: A high performance, server-centric network architecture for modular data
centers,” ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 63–74, Oct.
2009.

[72] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang, “Second-
Net: a data center network virtualization architecture with bandwidth guarantees,”
in Proc. ACM CoNEXT 2010, Philadelphia, PA, USA, Dec. 2010, p. 15.

[73] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a scalable and fault-
tolerant network structure for data centers,” ACM SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, pp. 75–86, Oct. 2008.

[74] S. Haeri, M. Arianezhad, and Lj. Trajković, “A predictive q-learning-based algorithm
for deflection routing in buffer-less networks,” in Proc. IEEE Int. Conf. Syst., Man,
and Cybern., Manchester, UK, Oct. 2013, pp. 764–769.

101

[75] S. Haeri, W. W.-K. Thong, G. Chen, and Lj. Trajković, “A reinforcement learning-
based algorithm for deflection routing in optical burst-switched networks,” in Proc.
The 14th IEEE Int. Conf. Inform. Reuse and Integration (IRI 2013), San Francisco,
USA, Aug. 2013, pp. 474–481.

[76] S. Haeri and Lj. Trajković, “Deflection routing in complex networks,” in Proc. IEEE
Int. Symp. Circuits and Systems, Melbourne, Australia, June 2014, pp. 2217–2220.

[77] S. Haeri and Lj. Trajković, “Deflection routing in complex networks,” in Complex
Systems and Networks, J. Lu, X. Yu, G. Chen, and W. Yu, Eds. Berlin: Springer,
2015, pp. 395–422.

[78] S. Haeri and Lj. Trajković, “Intelligent deflection routing in buffer-less networks,”
IEEE Tran. Cybern., vol. 45, no. 2, pp. 316–327, Feb. 2015.

[79] I. Houidi, W. Louati, W. Ben Ameur, and D. Zeghlache, “Virtual network provisioning
across multiple substrate networks,” Computer Networks, vol. 55, no. 4, pp. 1011–
1023, Mar. 2011.

[80] R. A. Howard, Dynamic Programming and Markov Processes. Cambridge, Mas-
sachusetts, USA: MIT Press, 1960.

[81] G.-B. Huang and H. A. Babri, “Upper bounds on the number of hidden neurons in
feedforward networks with arbitrary bounded nonlinear activation functions,” IEEE
Trans. Neural Netw., vol. 9, no. 1, pp. 224–229, Jan. 1998.

[82] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: a new learning
scheme of feedforward neural networks,” in Proc. IEEE Int. Joint Conf. Neural Netw.,
Budapest, Hungary, July 2004, pp. 985–990.

[83] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot, “An approach to alleviate link over-
load as observed on an IP backbone,” in Proc. IEEE INFOCOM, vol. 1, Stanford,
CA, USA, Mar. 2003, pp. 406–416.

[84] M. Izal and J. Aracil, “On the influence of self-similarity on optical burst switching
traffic,” in Proc. IEEE GLOBECOM, vol. 3, Taipei, Taiwan, Nov. 2002, pp. 2308–
2312.

[85] A. Jayaraj, T. Venkatesh, and C. S. R. Murthy, “Loss classification in optical burst
switching networks using machine learning techniques: improving the performance of
tcp,” IEEE J. Sel. Areas Commun., vol. 26, no. 6, pp. 45–54, Aug. 2008.

[86] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: a survey,”
J. Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

[87] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm for near-optimal
planning in large Markov decision processes,” Machine Learning, vol. 49, no. 2, pp.
193–208, 2002.

[88] Y. Kiran, T. Venkatesh, and C. Murthy, “A reinforcement learning framework for
path selection and wavelength selection in optical burst switched networks,” IEEE J.
Sel. Areas Commun., vol. 25, no. 9, pp. 18–26, Dec. 2007.

102

[89] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in Lecture Notes
in Computer Science: Proc. 17th European Conference on Machine Learning (ECML),
J. Furnkranz, T. Scheffer, and M. Spiliopoulou, Eds. Springer, 2006, vol. 4212, pp.
282–293.

[90] R. E. Korf, “Depth-first iterative deepening: An optimal admissible tree search,”
Artificial Intelligence, vol. 27, no. 1, pp. 97–109, Sept. 1985.

[91] T. Legrand, H. Nakajima, P. Gavignet, and B. Cousin, “Labelled OBS test bed for
contention resolution study,” in Proc. 5th Int. Conf. Broadband Communications,
Networks and Systems, London, UK, 2008, pp. 82–87.

[92] C. E. Leiserson, “Fat-Trees: universal networks for hardware-efficient supercomput-
ing,” IEEE Trans. Comput., vol. 30, no. 10, pp. 892–901, Oct. 1985.

[93] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-similar
nature of ethernet traffic (extended version),” IEEE/ACM Trans. Netw., vol. 2, no. 1,
pp. 1–15, Feb. 1994.

[94] M. Levesque, H. Elbiaze, and W. Aly, “Adaptive threshold-based decision for efficient
hybrid deflection and retransmission scheme in obs networks,” in Proc. 13th Int. Conf.
Optical Network Design and Modeling, Braunschweig, Germany, Feb. 2009, pp. 55–60.

[95] S. Li, M. Wang, E. W. M. Wong, V. Abramov, and M. Zukerman, “Bounds of the over-
flow priority classification for blocking probability approximation in obs networks,”
J. Opt. Commun. Netw., vol. 5, no. 4, pp. 378–393, Apr. 2013.

[96] J. Lischka and H. Karl, “A virtual network mapping algorithm based on subgraph
isomorphism detection,” in Proc. ACM VISA, Barcelona, Spain, Aug. 2009, pp. 81–88.

[97] M. L. Littman, T. L. Dean, and L. P. Kaelbling, “On the complexity of solving Markov
decision problems,” in Proc. Eleventh Conf. Uncertainty in Artificial Intell., Montreal,
QU, Canada, Aug. 1995, pp. 394–402.

[98] H.-L. Liu, B. Zhang, and S.-L. Shi, “A novel contention resolution scheme of hybrid
shared wavelength conversion for optical packet switching,” J. Lightwave Technol.,
vol. 30, no. 2, pp. 222–228, Jan. 2012.

[99] J. Lü, G. Chen, M. Ogorzalek, and Lj. Trajković, “Theories and applications of com-
plex networks: advances and challenges,” in Proc. IEEE Int. Symp. Circuits and Syst.,
Beijing, China, May 2013, pp. 2291–2294.

[100] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary, “Charac-
terizing the impact of network substrate topologies on virtual network embedding,”
in Proc. 9th Int. Conf. Netw. and Service Manag. (CNSM 2013), Zurich, Switzerland,
Oct. 2013, pp. 42–50.

[101] J. G. March, “Exploration and exploitation in organizational learning,” Organization
Science, vol. 2, no. 1, pp. 71–87, Feb. 1991.

[102] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and M. Upton,
“Hyper-Threading technology architecture and microarchitecture,” Intel Technol. J.,
vol. 6, no. 1, pp. 4–15, Feb. 2002.

103

[103] M. Matsumoto and T. Nishimura, “Mersenne Twister: a 623-dimensionally equidis-
tributed uniform pseudorandom number generator,” ACM Trans. Modeling and Com-
puter Simulation, vol. 8, no. 1, pp. 3–30, Jan. 1998.

[104] N. F. Maxemchuk, “Comparison of deflection and store and forward techniques in the
manhattan street and shuffle exchange networks,” in Proc. IEEE INFOCOM, vol. 3,
Ottawa, ON, Canada, Apr. 1989, pp. 800–809.

[105] Merit/NSFNET Information Services, “The technology timetable,” Link Letter, vol. 7,
no. 1, pp. 8–11, July 1994.

[106] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning approach to TCP
throughput prediction,” IEEE/ACM Trans. Netw., vol. 18, no. 4, pp. 1026–1039, Aug.
2010.

[107] X. Mountrouidou and H. Perros, “On the departure process of the burst aggregation
algorithms in optical burst switching,” J. of Comput. Netw., vol. 53, no. 3, pp. 247–
264, Feb. 2009.

[108] M. Najiminaini, L. Subedi, and Lj. Trajković, “Spectral analysis of Internet topology
graphs,” in Proc. IEEE Int. Symp. Circuits and Syst., Taipei, Taiwan, May 2009, pp.
1697–1700.

[109] A. Nowe, K. Steenhaut, M. Fakir, and K. Verbeeck, “Q-learning for adaptive load
based routing,” in Proc. IEEE Int. Conf. Syst., Man, and Cybern., vol. 4, San Diego,
CA, USA, Oct. 1998, pp. 3965–3970.

[110] J. J. Nutaro, Building Software for Simulation: Theory and Algorithms, with Appli-
cations in C++. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010.

[111] N. J. N. P. E. Hart and B. Raphael, “A formal basis for the heuristic determination
of minimum cost paths,” IEEE Trans. Syst., Science, and Cybern., vol. 4, no. 2, pp.
100–107, July 1968.

[112] V. Paxson and S. Floyd, “Wide-area traffic: The failure of poisson modeling,”
IEEE/ACM Trans. Netw., vol. 3, no. 3, pp. 226–244, June 1995.

[113] J. Perelló, F. Agraz, S. Spadaro, J. Comellas, and G. Junyent, “Using updated neigh-
bor state information for efficient contention avoidance in OBS networks,” Comput.
Commun., vol. 33, no. 1, pp. 65–72, Jan. 2010.

[114] H. G. Perros, Connection-Oriented Networks: SONET/SDH, ATM, MPLS and Op-
tical Networks. Chichester, UK: John Wiley & Sons, Inc., 2005.

[115] L. Peshkin and V. Savova, “Reinforcement learning for adaptive routing,” in Proc.
Int. Joint Conf. Neural Netw., vol. 2, Honolulu, HI, USA, May 2002, pp. 1825–1830.

[116] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming, ser. Wiley Series in Probability and Statistics. Hoboken, NJ, USA: John Wiley
& Sons, Inc., 1994.

[117] C. Qiao and M. Yoo, “Optical burst switching (OBS)—a new paradigm for an optical
Internet,” J. of High Speed Netw., vol. 8, no. 1, pp. 69–84, Mar. 1999.

104

[118] A. Razzaq and M. Rathore, “An approach towards resource efficient virtual network
embedding,” in Proc. INTERNET 2010, Valencia, Spain, Sept. 2010, pp. 68–73.

[119] S. Russell and P. Norvig, Artificial Intelligence: a Modern Approach, 2nd ed., ser.
Prentice Hall Series in Artificial Intelligence. Upper Saddle River, NJ, USA: Pearson
Education, Inc., 2002.

[120] S. Saini, H. Jin, R. Hood, D. Barker, P. Mehrotra, and R. Biswas, “The impact of
hyper-threading on processor resource utilization in production applications,” in Proc.
18th Int. Conf. High Performance Computing (HiPC 2011), Bengaluru, India, Dec.
2011, pp. 18–21.

[121] L. Saino, C. Cocora, and G. Pavlou, “A toolchain for simplifying network simulation
setup,” in Proc. 6th Int. ICST Conf. Simulation Tools and Techniques (SIMUTools
2013), Cannes, French Riviera, France, Mar. 2013, pp. 82–91.

[122] M. P. D. Schadd, M. H. M. Winands, M. J. W. Tak, and J. W. H. M. Uiterwijk,
“Single-player Monte-Carlo tree search for SameGame,” Knowledge-Based Systems,
vol. 34, pp. 3–11, Oct. 2012.

[123] M. P. D. Schadd, M. H. M. Winands, H. J. van den Herik, and H. Aldewereld, “Ad-
dressing NP-complete puzzles with Monte-Carlo methods,” in Proc. AISB Symposium
on Logic and the Simulation of Interaction and Reasoning, vol. 9, Aberdeen, Scotland,
Apr. 2008, pp. 55–61.

[124] A. Schrijver, Theory of Linear and Integer Programming, 1st ed. Chichester, UK:
John Wiley & Sons, Inc., 1998.

[125] G. Siganos, M. Faloutsos, P. Faloutsos, and C. Faloutsos, “Power-laws and the AS-
level Internet topology,” IEEE/ACM Trans. Networking, vol. 11, no. 4, pp. 514–524,
Aug. 2003.

[126] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” in Advances in
Neural Inform. Process. Syst. 23: 24th Annual Conference on Neural Information
Processing Systems, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta, Eds. Curran Associates, Inc., 2010, vol. 3, pp. 2164–2172.

[127] L. Subedi and Lj. Trajković, “Spectral analysis of Internet topology graphs,” in Proc.
IEEE Int. Symp. Circuits and Syst., Paris, France, June 2010, pp. 1803–1806.

[128] Y. Sun, T. Hashiguchi, V. Q. Minh, X. Wang, H. Morikawa, and T. Aoyama, “Design
and implementation of an optical burst-switched network testbed,” IEEE Commu-
nions Magazine, vol. 43, no. 11, pp. 48–55, Nov. 2005.

[129] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning. Cambridge,
MA, USA: MIT Press, 1998.

[130] C. Szepesvári, “Reinforcement learning algorithms for MDPs—a survey,” Department
of Computing Science, University of Alberta, Tech. Rep. TR09-13, 2009.

[131] W. W.-K. Thong and G. Chen, “Jittering performance of random deflection routing in
packet networks,” Communications in Nonlinear Science and Numerical Simulation,
vol. 18, no. 3, pp. 616–624, Mar. 2013.

105

[132] W. W.-K. Thong, G. Chen, and Lj. Trajković, “Red-f routing protocol for complex
networks,” in Proc. IEEE Int. Symp. Circuits and Systems, Seoul, Korea, May 2012,
pp. 1644–1647.

[133] Lj. Trajković, “Analysis of Internet topologies,” IEEE Circuits and Syst. Mag., vol. 10,
no. 3, pp. 48–54, July 2010.

[134] J. S. Turner and D. E. Taylor, “Diversifying the Internet,” in Proc. IEEE GLOBE-
COM 2005, vol. 2, St. Louis, MO, USA, Dec. 2005, pp. 755–760.

[135] A. M. Uhrmacher, “Dynamic structures in modeling and simulation: a reflective ap-
proach,” ACM Trans. Modeling and Computer Simulation, vol. 11, no. 2, pp. 206–232,
Apr. 2001.

[136] X. Wang, X. Jiang, and A. Pattavina, “Efficient designs of optical lifo buffer with
switches and fiber delay lines,” IEEE Trans. Commun., vol. 59, no. 12, pp. 3430–
3439, Dec. 2011.

[137] X. Wang, H. Morikawa, and T. Aoyama, “Burst optical deflection routing protocol
for wavelength routing WDM networks,” Opt. Netw. Mag., vol. 3, no. 6, pp. 12–19,
Nov. 2002.

[138] C. J. C. H. Watkins and P. Dayan, “Technical note, Q-learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, May 1992.

[139] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-world networks,” Na-
ture, vol. 393, pp. 440–442, June 1998.

[140] B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel. Areas Commun.,
vol. 6, no. 9, pp. 1617–1622, Dec. 1988.

[141] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist re-
inforcement learning,” Machine Learning, vol. 8, no. 3, pp. 229–256, May 1992.

[142] R. J. Williams and L. C. Baird, “Tight performance bounds on greedy policies based
on imperfect value functions,” College of Computer Science, Northeastern University,
Tech. Rep. NU-CCS-93-13, 1993.

[143] R. J. Williams and J. Peng, “Function optimization using connectionist reinforcement
learning algorithms,” Connection Science, vol. 3, no. 3, pp. 241–268, 1991.

[144] E. W. M. Wong, J. Baliga, M. Zukerman, A. Zalesky, and G. Raskutti, “A new method
for blocking probability evaluation in obs/ops networks with deflection routing,” J.
Lightwave Technol., vol. 27, no. 23, pp. 5335–5347, Dec. 2009.

[145] G. Wu, W. Dai, X. Li, and J. Chen, “A maximum-efficiency-first multi-path route
selection strategy for optical burst switching networks,” Optik—Int. J. Light and
Electron Optics, vol. 125, no. 10, pp. 2229–2233, May 2014.

[146] Y. Xiong, M. Vandenhoute, and H. C. Cankaya, “Control architecture in optical
burst-switched WDM networks,” IEEE J. Sel. Areas Commun., vol. 18, no. 10, pp.
1838–1851, Aug. 2000.

106

[147] X. Yang and D. Wetherall, “Source selectable path diversity via routing deflections,”
in Proc. ACM SIGCOMM, New York, NY, USA, Oct. 2006, pp. 159–170.

[148] Q. Yin and T. Roscoe, “VF2x: Fast, efficient virtual network mapping for real testbed
workloads,” in Proc. 8th Int. ICST TridentCom 2012, Thessaloniki, Greece, June
2012, pp. 271–286.

[149] M. Yoo, C. Qiao, and S. Dixit, “Comparative study of contention resolution policies
in optical burst-switched WDM networks,” in Proc. SPIE, vol. 4123, Boston, MA,
USA, Oct. 2000, pp. 124–135.

[150] H. Yu, V. Anand, C. Qiao, H. Di, and X. Wei, “A cost efficient design of virtual
infrastructures with joint node and link mapping,” J. Netw. and Syst. Management,
vol. 20, no. 1, pp. 97–115, Sept. 2012.

[151] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network embedding:
substrate support for path splitting and migration,” Comput. Commun. Rev., vol. 38,
no. 2, pp. 19–29, Mar. 2008.

[152] X. Yu, J. Li, X. Cao, Y. Chen, and C. Qiao, “Traffic statistics and performance
evaluation in optical burst switched networks,” J. Lightw. Technol., vol. 22, no. 12,
pp. 2722–2738, Dec. 2004.

[153] A. Zalesky, H. Vu, Z. Rosberg, E. W. M. Wong, and M. Zukerman, “Modelling and
performance evaluation of optical burst switched networks with deflection routing and
wavelength reservation,” in Proc. IEEE INFOCOM, vol. 3, Hong Kong SAR, China,
Mar. 2004, pp. 1864–1871.

[154] A. Zalesky, H. Vu, Z. Rosberg, E. W. M. Wong, and M. Zukerman, “Obs contention
resolution performance,” Perform. Eval., vol. 64, no. 4, pp. 357–373, May 2007.

[155] A. Zalesky, H. Vu, Z. Rosberg, E. W. M. Wong, and M. Zukerman, “Stabilizing
deflection routing in optical burst switched networks,” IEEE J. Sel. Areas Commun.,
vol. 25, no. 6, pp. 3–19, Aug. 2007.

[156] E. W. Zegura, K. L. Calvert, and M. J. Donahoo, “A quantitative comparison of
graph-based models for Internet topology,” IIEEE/ACM Trans. Netw., vol. 5, no. 6,
pp. 770–783, Dec. 1997.

[157] S. Zhang, Y. Qian, J. Wu, and S. Lu, “An opportunistic resource sharing and topology-
aware mapping framework for virtual networks,” in Proc. IEEE INFOCOM, Orlando,
FL, USA, Mar. 2012, pp. 2408–2416.

[158] Z. Zhang, X. Cheng, S. Su, Y. Wang, K. Shuang, and Y. Luo, “A unified enhanced par-
ticle swarm optimization-based virtual network embedding algorithm,” Int. J. Com-
mun. Syst., vol. 26, no. 8, pp. 1054–1073, Aug. 2012.

[159] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network resources to
virtual network components,” in Proc. IEEE INFOCOM, Barcelona, Spain, Apr. 2006,
pp. 1–12.

107

[160] M. Zukerman, T. D. Neame, and R. G. Addie, “Internet traffic modeling and future
technology implications,” in Proc. IEEE INFOCOM, vol. 1, San Francisco, CA, USA,
Mar. 2003, pp. 587–596.

108

Appendix A

iDef: Selected Code Sections

Listing A.1: deflector.h: Deflector Base Class
1 /* -*- Mode:C++; c-file -style :" gnu "; indent -tabs -mode:nil; -*- */
2 /*
3 * Copyright (c) 2011 Centre for Chaos and Complex Networks ,
4 * Department of Electronic Engineering ,
5 * City University of Hong Kong;
6 * Communication Networks Laboratory ,
7 * School of Engineering Science ,
8 * Simon Fraser University , Burnaby , BC , Canada
9 *
10 * This program is free software ; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation ;
13 *
14 * This program is distributed in the hope that it will be useful ,
15 * but WITHOUT ANY WARRANTY ; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
17 * GNU General Public License for more details .
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program ; if not , write to the Free Software
21 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA
22 *
23 * Author : Wilson Wang -Kit Thong <wilsonwk@ee .cityu.edu.hk >
24 * Soroush Haeri <soroosh . haeri@me .com >
25 */
26 # ifndef DEFLECTOR_H
27 # define DEFLECTOR_H
28
29 # include "ns3/ipv4.h"
30 # include "ns3/ipv4 -l3 - protocol .h"
31 # include "ns3/ packet .h"
32 # include "ns3/net - device .h"
33 # include "ns3/ uinteger .h"
34
35 namespace ns3 {
36
37 class Ipv4DeflectionRouting ;
38
39 class Deflector : public Object {
40 public :
41 static TypeId GetTypeId (void);
42
43 Deflector ();
44

109

45 /**
46 * Set the node for which this PomcpDeflector serves
47 */
48 void SetNode (Ptr <Node > node);
49 virtual void SetIpv4DeflectionRouting (Ptr < Ipv4DeflectionRouting > routing) = 0;
50 Ptr <Ipv4 > GetIpv4 () const;
51 /*
52 * this method must be implemented in any instance of
53 * class derived from deflector
54 */
55 virtual Ptr <Ipv4Route > GetDeflectionRoute (Ptr <const Packet > p,
56 const Ipv4Header &header ,
57 Ptr <Ipv4Route > defaultRoute ,
58 Ptr <const NetDevice > idev) = 0;
59 virtual void ProcessPacketAfterArrivalCallback (const Ipv4Header &header ,
60 Ptr <const Packet > p,
61 uint32_t rxif) = 0;
62 virtual void DropCallback (const Ipv4Header &header , Ptr <const Packet > _p ,
63 Ipv4L3Protocol :: DropReason reason , Ptr <Ipv4 > ipv4 ,
64 uint32_t dropif) = 0;
65 virtual void PacketTxCallback (Ptr <const Packet > _p , Ptr <Ipv4 > ipv4 ,
66 uint32_t txif) = 0;
67 virtual void PacketRxCallback (Ptr <const Packet > _p , Ptr <Ipv4 > ipv4 ,
68 uint32_t rxif) = 0;
69
70 private :
71 Ptr <Ipv4 > m_ipv4 ;
72 };
73
74 } /* namespace ns3 */
75 #endif /* DEFLECTOR_H */

Listing A.2: rl-deflector.h: Deflection Manager Base Class
1 /* -*- Mode:C++; c-file -style :" gnu "; indent -tabs -mode:nil; -*- */
2 /*
3 * Copyright (c) 2012 Communication Networks Laboratory ,
4 * School of Engineering Science ,
5 * Simon Fraser University , Burnaby , BC , Canada
6 *
7 * This program is free software ; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation ;
10 *
11 * This program is distributed in the hope that it will be useful ,
12 * but WITHOUT ANY WARRANTY ; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
14 * GNU General Public License for more details .
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program ; if not , write to the Free Software
18 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA
19 *
20 * Author : Wilson Wang -Kit Thong <wilsonwk@ee .cityu.edu.hk >
21 * Soroush Haeri <soroosh . heri@me .com >
22 *
23 */
24 # ifndef RL_DEFLECTOR_H_
25 # define RL_DEFLECTOR_H_
26
27 # include "ns3/ deflector .h"
28 # include "ns3/signal - manager .h"
29 # include "ns3/object -base.h"
30 # include "ns3/node.h"
31 # include "ns3/ pointer .h"

110

32 # include "ns3/ipv4 -route.h"
33 # include "ns3/ packet .h"
34 # include "ns3/ipv4 - header .h"
35 # include "ns3/net - device .h"
36 # include "ns3/ socket .h"
37 # include "ns3/rl - header .h"
38 # include "ns3/rl -tag.h"
39 # include "ns3/decision -maker - abstract .h"
40 # include "ns3/rl - mappings .h"
41 # include "ns3/ipv4 -l3 - protocol .h"
42 # include "ns3/inet -socket - address .h"
43 # include "ns3/pseudo -obs -net - device .h"
44 # include <vector >
45
46 namespace ns3 {
47 class DecisionMaker ;
48 class SignalManager ;
49 class RLMappings ;
50
51 class RLDeflector : public Deflector {
52 private :
53 typedef Callback <Ptr <Ipv4Route >, Ptr <const Packet >, const Ipv4Header &,
54 Ptr <Ipv4Route >, Ptr <const NetDevice >> DeflectionCallback_t ;
55
56 public :
57 static const uint32_t RL_PORT ;
58
59 static TypeId GetTypeId (void);
60
61 RLDeflector ();
62
63 /**
64 * Set the decision maker process
65 * and set the update callback from within
66 */
67 void SetDecisionMaker (Ptr < DecisionMaker > DM);
68 /**
69 * Set the signal manager
70 * and set the signal manager updateDM callback from within
71 */
72 void SetSignalManager (Ptr < SignalManager > SM);
73 /**
74 * Set the signal manager
75 * and set the signal manager updateDM callback from within
76 */
77 void SetMappings (Ptr <RLMappings > mapping);
78 /**
79 * Set the callback function to return an alternate
80 * route (deflect) when the default route is blocked
81 *
82 * \param cb the callback to handle deflection
83 */
84 void SetDeflectionCallback (DeflectionCallback_t cb);
85 void SetIpv4DeflectionRouting (Ptr < Ipv4DeflectionRouting > routing);
86 /**
87 * Given an input net - device and a default route , return
88 * a route to deflect packet away from the default route
89 *
90 * \param p the packet being deflected
91 * \param header the IPv4 header of the deflected packet
92 * \param defaultRoute the default route which is not to be used
93 * \param dev the net - device from which the packet comes to
94 * the node
95 * \ return the deflected route for the packet to leave the node
96 */
97 Ptr <Ipv4Route > GetDeflectionRoute (Ptr <const Packet > p,
98 const Ipv4Header &header ,

111

99 Ptr <Ipv4Route > defaultRoute ,
100 Ptr <const NetDevice > idev);
101 Ptr < DecisionMaker > GetDecisionMaker () const;
102 Ptr < SignalManager > GetSignalManager () const;
103 Ptr <RLMappings > GetMappings () const;
104 Ptr <Node > GetNode () const;
105
106 /**
107 * Send notification packet back to the first deflector when
108 * the packet is dropped , if it has been deflected at all
109 *
110 * \param header the header of the dropped packet
111 * \param p the dropped packet itself
112 * \param reason the reason of why the packet is dropped
113 * \param ipv4 the node from which the packet is dropped
114 * \param dropif the IPv4 interface index from which the packet is dropped
115 */
116 void DropCallback (const Ipv4Header &header , Ptr <const Packet > p,
117 Ipv4L3Protocol :: DropReason reason , Ptr <Ipv4 > ipv4 ,
118 uint32_t dropif);
119 /**
120 * When a packet is transmitted this function is called
121 * it is used to update the nodes statistics
122 *
123 * \param p the dropped packet itself
124 * \param ipv4 the node from which the packet is dropped
125 * \param txif the IPv4 interface index from which the packet is transmitted
126 */
127 void PacketTxCallback (Ptr <const Packet > _p , Ptr <Ipv4 > ipv4 , uint32_t txif);
128 /**
129 * When a packet is received this function is called
130 * it is used to update the nodes statistics or send back
131 * feedbacks .
132 *
133 * \param p the dropped packet itself
134 * \param ipv4 the node from which the packet is dropped
135 * \param rxif the IPv4 interface index from which the packet is recieved
136 */
137 void PacketRxCallback (Ptr <const Packet > _p , Ptr <Ipv4 > ipv4 , uint32_t rxif);
138 /**
139 * Used to clean PacketTags
140 *
141 * \param header the header of the arrival packet
142 * \param p the arrived packet
143 * \param rxif the IPv4 interface index from at which the packet arrives
144 */
145 void ProcessPacketAfterArrivalCallback (const Ipv4Header &header ,
146 Ptr <const Packet > p, uint32_t rxif);
147 /**
148 * \ return true if the route is blocked by an busy net - device ; false
149 * otherwise
150 */
151 bool IsBlocked (Ptr <Ipv4Route > route);
152
153 Ptr <Socket > GetSocket ();
154
155 private :
156 /*
157 * TODO:
158 * this is the compatibility checking map to make sure
159 * the selected signal manager , decision maker and state mappings are
160 * compatible .
161 * it is to be implemented .
162 */
163 void ReceiveControl (Ptr <Socket > socket);
164
165 /**

112

166 * Setup UDP socket for sending and receiving control packets
167 */
168 void RLSocketSetup ();
169
170 /// For sending and receiving control packets
171 Ptr <Socket > m_socket ;
172
173 /*
174 * an instance of the decision maker.
175 */
176 Ptr < DecisionMaker > m_decisionMaker ;
177 Ptr < SignalManager > m_signalManager ;
178 Ptr <RLMappings > m_mappings ;
179
180 /*
181 * this is the call back set for updating the decision maker
182 * it is set to call the decision maker 's update function .
183 * this call back is set upon initializing the decision maker of
184 * the deflector .
185 */
186
187 // this callback is set by the signal manager
188 // before each deflection this callback is set
189 DeflectionCallback_t DeflectionCallback ;
190 };
191 }
192
193 #endif /* RL_DEFLECTOR_H_ */

Listing A.3: decision-making-abstract.h: Decision Maker Module Base Class
1 /* -*- Mode:C++; c-file -style :" gnu "; indent -tabs -mode:nil; -*- */
2 /*
3 * Copyright (c) 2012 Communication Networks Laboratory ,
4 * School of Engineering Science ,
5 * Simon Fraser University , Burnaby , BC , Canada
6 *
7 * This program is free software ; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation ;
10 *
11 * This program is distributed in the hope that it will be useful ,
12 * but WITHOUT ANY WARRANTY ; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
14 * GNU General Public License for more details .
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program ; if not , write to the Free Software
18 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA
19 *
20 * Author : Soroush Haeri <soroosh . heri@me .com >
21 *
22 */
23 # ifndef DECISION_MAKER_ABSTRACT_H_
24 # define DECISION_MAKER_ABSTRACT_H_
25
26 # include <tr1/tuple >
27
28 //# include "generative -model - abstract .h"
29 # include "ns3/ pointer .h"
30 # include "ns3/node.h"
31 # include "ns3/rl - deflector .h"
32
33 using namespace std;
34 namespace ns3 {

113

35
36 class RLDeflector ;
37 /*
38 * This is the class abstraction for implementation of
39 * any decision making class.
40 * the deflection routing module may use any of the
41 * Implementations of this class abstraction .
42 */
43
44 class DecisionMaker : public Object {
45
46 public :
47 // constructor
48 DecisionMaker ();
49 // DecisionMaker (uint32_t numActions_ , uint32_t numStates_ , uint32_t dmType_)
50 //: numActions (numActions_),
51 // numStates (numStates_),
52 // dmType (dmType_)
53 //{
54 //}
55 // destructor
56 // virtual ~ DecisionMaker ();
57 static TypeId GetTypeId (void);
58 /*
59 * \brief any implementation of the DecisionMaker
60 * must have select action . selectAction gets the
61 * current states of a node and returns the best
62 * action selected by the underlying Reinforcement Learning algorithm .
63 *
64 * \param state current state of the node.
65 * \ return the action chosen by the underlying RL algorithm .
66 *
67 */
68 virtual uint32_t selectAction (uint64_t state) = 0;
69 /*
70 * \brief this function updates the decision maker after an action
71 * has been performed and the result of performing the action is
72 * seen on the channel .
73 *
74 * \param state the state of the node at which decision has been made if state
75 * is -1.
76 * \param action the action that was prescribed by the decision maker.
77 * \param reward the reward recieved as the result of performing the action .
78 */
79 virtual void update (uint64_t state , uint32_t action , double reward) = 0;
80 /*
81 * \brief this function updates an associative learning decision makers
82 * weight matrices
83 * after an action has been performed and the result of performing the action
84 * is
85 * seen on the channel .
86 *
87 * \param reward the reward recieved as the result of performing the action .
88 */
89 // virtual void update (double reward);
90 /**
91 * Set ns3 :: Node to this simulator . It must be called after this simulator is
92 * constructed .
93 *
94 * \param node the ns3 :: Node to which this simulator attaches
95 */
96 // virtual void SetNode (Ptr <Node > node);
97 bool IsBusy ();
98 void SetMaster (Ptr < RLDeflector > _master);
99 Ptr < RLDeflector > GetMaster ();
100 /* any necessary operation that is needed to be done to make
101 * the decision maker ready to operate must be implemented in this function

114

102 * it is callsed from set master when the decision maker knows to which node
103 * it belongs it may initialize the required matrices or variables .
104 */
105 virtual void Initialize () = 0;
106 /*
107 * \brief this function may be implemented by Q learning based algorithms
108 * where Q value needs to be passed out to other modules .
109 * see RldrsSignalManager and RldrsQlearningDecisionMaker .
110 * \param state the state the Q value of which is required .
111 * \param action the action the Q value of which is required .
112 *
113 * \ return double the query result . (Q value)
114 */
115 virtual double GetLastReward (uint64_t state , uint32_t action);
116
117 protected :
118 Ptr < RLDeflector > master ;
119 /**
120 * \ return Count the number of devices in specific type attached to the ns -3
121 * node
122 */
123 template <typename Device >
124 uint32_t GetNumberOfNeighbors (Ptr <Node > node) const ;
125 /*
126 * \param numStates maximum number of states that a node may find itself at.
127 * \param numActions maximum number of actions available to a node.
128 * \param dmType is an integer defining the type of the decision making entity
129 * this variable is used to determine the behavior of
130 * the update function and if a simulator is needed
131 * 0: refers to class of associative learning algorithms such as
132 * neural network algorithm where update function only requires one

argument .
133 * \param nodeId keeps the id of the node this decision maker belongs to.
134 * \param numNeighbors keeps the number of neighbors of the node it is set at
135 * the initialization time.
136 */
137 uint64_t numStates ;
138 // const uint32_t dmType ;
139 uint32_t numNeighbors ;
140 uint32_t nodeId ;
141 /**
142 *\ param reward the reward generated by Hmm
143 *\ param nodeId the node ID from which the reward is found
144 */
145 // TracedCallback <double , uint32_t > m_rewardGeneratedTrace ;
146 /**
147 * \param obs the observation generated by Hmm
148 * \param nodeId the node ID from which the observation is found
149 */
150 // TracedCallback <uint32_t , uint32_t > m_observationGeneratedTrace ;
151 bool isBusy ;
152 };
153 } // namespace ns3
154
155 #endif /* DECISION_MAKER_ABSTRACT_H_ */

Listing A.4: signal-manager.h: Signalling Module Base Class
1 /* -*- Mode:C++; c-file -style :" gnu "; indent -tabs -mode:nil; -*- */
2 /*
3 * Copyright (c) 2012 Communication Networks Laboratory ,
4 * School of Engineering Science ,
5 * Simon Fraser University , Burnaby , BC , Canada
6 *
7 * This program is free software ; you can redistribute it and/or modify

115

8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation ;
10 *
11 * This program is distributed in the hope that it will be useful ,
12 * but WITHOUT ANY WARRANTY ; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
14 * GNU General Public License for more details .
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program ; if not , write to the Free Software
18 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA
19 *
20 * Author : Soroush Haeri <soroosh . heri@me .com >
21 *
22 */
23 # ifndef SIGNAL_MANAGER_H_
24 # define SIGNAL_MANAGER_H_
25
26 # include "ns3/rl - header .h"
27 //# include "ns3/decision -maker - abstract .h"
28 //# include "ns3/rl - mappings .h"
29 # include "ns3/reward -code -book.h"
30 # include "ns3/rl - deflector .h"
31 # include "ns3/ object .h"
32 # include "ns3/ipv4.h"
33 # include "ns3/ packet .h"
34 # include "ns3/node.h"
35 # include "ns3/ptr.h"
36 # include "ns3/ipv4 -l3 - protocol .h"
37
38 namespace ns3 {
39 class DecisionMaker ;
40 class RLDeflector ;
41
42 class SignalManager : public Object {
43 public :
44 typedef Callback <void , uint64_t , uint32_t , double > UpdateDM_t ;
45
46 public :
47 SignalManager ();
48 static TypeId GetTypeId (void);
49 virtual ~ SignalManager ();
50 void setUpdateDMCallBack (UpdateDM_t _updateDM);
51 void SetMaster (Ptr < RLDeflector > _master);
52 Ptr < RLDeflector > GetMaster ();
53 /*
54 * called from recieve control it is the function that processes feedback
55 * messages
56 * received from RL socket
57 */
58 virtual void PostProcessFeedBack (Ptr <Packet > p) = 0;
59 virtual void PreProcessPacketTags (Ptr <Packet > p) = 0;
60 virtual void ProcessDrop (const Ipv4Header &header , Ptr <const Packet > _p ,
61 Ipv4L3Protocol :: DropReason reason , Ptr <Ipv4 > ipv4 ,
62 uint32_t dropif) = 0;
63 virtual void ProcessPacketAfterArrival (Ptr <const Packet > p) = 0;
64 virtual void ProcessTransmit (Ptr <const Packet > _p , Ptr <Ipv4 > ipv4 ,
65 uint32_t txif) = 0;
66 virtual void ProcessReceive (Ptr <const Packet > _p , Ptr <Ipv4 > ipv4 ,
67 uint32_t rxif) = 0;
68
69 protected :
70 Ptr < RLDeflector > master ;
71 /*
72 * Callback to update decision maker
73 */
74 UpdateDM_t updateDM ;

116

75
76 private :
77 };
78 }
79
80 #endif /* SIGNAL_MANAGER_H_ */

Listing A.5: rl-mappings.h: Mapping Module Base Class
1 /* -*- Mode:C++; c-file -style :" gnu "; indent -tabs -mode:nil; -*- */
2 /*
3 * Copyright (c) 2012 Communication Networks Laboratory ,
4 * School of Engineering Science ,
5 * Simon Fraser University , Burnaby , BC , Canada
6 *
7 * This program is free software ; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation ;
10 *
11 * This program is distributed in the hope that it will be useful ,
12 * but WITHOUT ANY WARRANTY ; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
14 * GNU General Public License for more details .
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program ; if not , write to the Free Software
18 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA
19 *
20 * Author : Soroush Haeri <soroosh . heri@me .com >
21 *
22 */
23 # ifndef RL_MAPPINGS_H_
24 # define RL_MAPPINGS_H_
25 # include "ns3/rl - deflector .h"
26 # include "ns3/ object .h"
27 # include "ns3/ptr.h"
28 # include "ns3/ integer .h"
29 # include "ns3/node.h"
30 # include "ns3/ipv4 -route.h"
31 # include "ns3/ packet .h"
32 # include "ns3/ipv4 - header .h"
33 # include "ns3/net - device .h"
34 # include "ns3/ipv4 - address .h"
35 # include <map >
36 # include <tr1/tuple >
37 /*
38 * This class is used to define states for a reinforcement - learning
39 * agent that is making deflection decisions .
40 * For example one may decide to define the state as the destination of a
41 * packet while another define the state as the nodes link state.
42 * The decision making agent however does not need to know the definition of the
43 * state but only a number representing a state.
44 * All decision making agents must have a state - integer mapping that is derived
45 * from this class.
46 * we assume 5 arguments maximum however the user may pass any number of
47 * arguments up to 4
48 * and the may handle it in their Getstate () function implemention .
49 */
50 namespace ns3 {
51
52 class RLDeflector ;
53
54 class RLMappings : public Object {
55 public :
56 RLMappings ();

117

57 static TypeId GetTypeId (void);
58 virtual ~ RLMappings ();
59 virtual uint64_t GetState (Ptr <const Packet > p, const Ipv4Header &header ,
60 Ptr <Ipv4Route > defaultRoute ,
61 Ptr <const NetDevice > idev);
62 virtual uint64_t GetState (Ipv4Address destAddr);
63 Ptr <NetDevice > GetNetDeviceFromActionIndex (uint32_t action);
64 uint32_t GetActionIndexFromNetDevice (Ptr <NetDevice > net);
65 uint32_t GetNActions ();
66 void SetMaster (Ptr < RLDeflector >);
67 Ptr < RLDeflector > GetMaster ();
68
69 protected :
70 Ptr < RLDeflector > master ;
71 void Initialize ();
72 };
73 }
74 #endif

118

Appendix B

VNE-Sim: Selected Code Sections

Listing B.1: two-stage-embedding-algo.h: Two stage embedding algorithm interface imple-
mentation.

1 /**
2 * @file two -stage -embedding -algo.h
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date Jun 12, 2014
5 *
6 * @copyright Copyright (c) Jun 12, 2014 SOROUSH HAERI
7 * All Rights Reserved
8 *
9 * Permission to use , copy , modify , and distribute this software and its
10 * documentation for any purpose and without fee is hereby granted , provided
11 * that the above copyright notice appear in all copies and that both that
12 * copyright notice and this permission notice appear in supporting
13 * documentation , and that the name of the author not be used in advertising
14 * or publicity pertaining to distribution of the software without specific ,
15 * written prior permission .
16 *
17 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
18 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
19 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
20 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
21 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
22 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
23 **/
24
25 # ifndef TWO_STAGE_EMBEDDING_ALGO_H_
26 # define TWO_STAGE_EMBEDDING_ALGO_H_
27
28 # include "embedding - algorithm .h"
29 # include "node -embedding - algorithm .h"
30 # include "link -embedding - algorithm .h"
31
32 namespace vne {
33 template < typename SUBNET , typename VNR >
34 class TwoStageEmbeddingAlgo : public EmbeddingAlgorithm <SUBNET , VNR >
35 {
36 public :
37 virtual Embedding_Result embeddVNR (std :: shared_ptr < typename

EmbeddingAlgorithm <SUBNET , VNR >:: VNR_TYPE > vnr);
38 virtual ~ TwoStageEmbeddingAlgo () {};
39

119

40 protected :
41 TwoStageEmbeddingAlgo (NetworkBuilder < typename EmbeddingAlgorithm <SUBNET , VNR

>:: SUBSTRATE_TYPE >& _sb ,
42 std :: shared_ptr < NodeEmbeddingAlgorithm <SUBNET , VNR >>

_node_embedding_algo ,
43 std :: shared_ptr < LinkEmbeddingAlgorithm <SUBNET , VNR >>

_link_embedding_algo);
44 TwoStageEmbeddingAlgo (std :: shared_ptr < typename EmbeddingAlgorithm <SUBNET , VNR

>:: SUBSTRATE_TYPE > _sn ,
45 std :: shared_ptr < NodeEmbeddingAlgorithm <SUBNET , VNR >>

_node_embedding_algo ,
46 std :: shared_ptr < LinkEmbeddingAlgorithm <SUBNET , VNR >>

_link_embedding_algo);
47 std :: shared_ptr < NodeEmbeddingAlgorithm <SUBNET , VNR >> node_embedding_algo ;
48 std :: shared_ptr < LinkEmbeddingAlgorithm <SUBNET , VNR >> link_embedding_algo ;
49
50 };
51 template < typename SUBNET , typename VNR >
52 TwoStageEmbeddingAlgo <SUBNET ,VNR >:: TwoStageEmbeddingAlgo (NetworkBuilder < typename

EmbeddingAlgorithm <SUBNET , VNR >:: SUBSTRATE_TYPE >& _sb ,
53 std :: shared_ptr < NodeEmbeddingAlgorithm <SUBNET , VNR >> _node_embedding_algo ,
54 std :: shared_ptr < LinkEmbeddingAlgorithm <SUBNET , VNR >> _link_embedding_algo):
55 EmbeddingAlgorithm <SUBNET , VNR >:: EmbeddingAlgorithm (_sb),
56 node_embedding_algo (_node_embedding_algo),
57 link_embedding_algo (_link_embedding_algo)
58 {
59 }
60 template < typename SUBNET , typename VNR >
61 TwoStageEmbeddingAlgo <SUBNET ,VNR >:: TwoStageEmbeddingAlgo (std :: shared_ptr < typename

EmbeddingAlgorithm <SUBNET , VNR >:: SUBSTRATE_TYPE > _sn ,
62 std :: shared_ptr < NodeEmbeddingAlgorithm <SUBNET , VNR >> _node_embedding_algo ,
63 std :: shared_ptr < LinkEmbeddingAlgorithm <SUBNET , VNR >> _link_embedding_algo):
64 EmbeddingAlgorithm <SUBNET , VNR >:: EmbeddingAlgorithm (_sn),
65 node_embedding_algo (_node_embedding_algo),
66 link_embedding_algo (_link_embedding_algo)
67 {
68 }
69 template < typename SUBNET , typename VNR >
70 Embedding_Result TwoStageEmbeddingAlgo <SUBNET ,VNR >
71 :: embeddVNR (std :: shared_ptr < typename EmbeddingAlgorithm <SUBNET , VNR >:: VNR_TYPE >

vnr)
72 {
73 if (node_embedding_algo -> embeddVNRNodes (this -> substrate_network , vnr) ==

Embedding_Result :: SUCCESSFUL_EMBEDDING
74 &&
75 link_embedding_algo -> embeddVNRLinks (this -> substrate_network , vnr) ==

Embedding_Result :: SUCCESSFUL_EMBEDDING)
76 {
77 // finalize the node mappings
78
79 for (auto it = vnr -> getNodeMap () ->begin (); it != vnr -> getNodeMap () ->end ()

; it ++)
80 {
81 assert (this -> substrate_network -> getNode (it -> second)->embedNode (vnr ->

getVN () ->getNode (it ->first)) == Embedding_Result ::
SUCCESSFUL_EMBEDDING && " Trying to map to a more than you have
resources !!");

82 }
83 // finalize the link mappings
84 for(auto it1 = vnr -> getLinkMap () ->begin (); it1 != vnr -> getLinkMap () ->end ()

; it1 ++)
85 {
86 for(auto it2 = it1 -> second .begin (); it2 != it1 -> second .end () ;it2 ++)
87 {
88 assert (this -> substrate_network -> getLink (it2 ->first)->embedLink (

vnr ->getVN () ->getLink (it1 ->first), it2 -> second)==

120

Embedding_Result :: SUCCESSFUL_EMBEDDING && " Trying to map to a
link more than you have resources !!");

89 }
90 }
91 return Embedding_Result :: SUCCESSFUL_EMBEDDING ;
92 }
93 return Embedding_Result :: NOT_ENOUGH_SUBSTRATE_RESOURCES ;
94 }
95 }
96 #endif

Listing B.2: node-embedding-algorithm.h: Node embedding algorithm interface implemen-
tation.

1 /**
2 * @file node -embedding - algorithm .h
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date Jun 12, 2014
5 *
6 * @copyright Copyright (c) Jun 12, 2014 SOROUSH HAERI
7 * All Rights Reserved
8 *
9 * Permission to use , copy , modify , and distribute this software and its
10 * documentation for any purpose and without fee is hereby granted , provided
11 * that the above copyright notice appear in all copies and that both that
12 * copyright notice and this permission notice appear in supporting
13 * documentation , and that the name of the author not be used in advertising
14 * or publicity pertaining to distribution of the software without specific ,
15 * written prior permission .
16 *
17 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
18 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
19 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
20 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
21 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
22 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
23 **/
24
25 # ifndef NODE_EMBEDDING_ALGORITHM_H_
26 # define NODE_EMBEDDING_ALGORITHM_H_
27
28 # include " network .h"
29 # include "substrate -link.h"
30 # include "substrate -node.h"
31 # include "virtual -network - request .h"
32 # include "network - builder .h"
33 # include "config - manager .h"
34
35 namespace vne {
36 template <typename ,typename > class NodeEmbeddingAlgorithm ;
37
38 template <
39 typename ... SNODERES , template <typename ...> class SNODECLASS ,
40 typename ... SLINKRES , template <typename ...> class SLINKCLASS ,
41 typename ... VNODERES , template <typename ...> class VNODECLASS ,
42 typename ... VLINKRES , template <typename ...> class VLINKCLASS ,
43 template <typename > class VNRCLASS >
44 class NodeEmbeddingAlgorithm <Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES

...>>,
45 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>>
46 {
47 static_assert (std :: is_base_of < SubstrateNode < SNODERES ...>, SNODECLASS < SNODERES

... > >:: value ,
48 " Template arguments are not correctly set.");

121

49 static_assert (std :: is_base_of < VirtualNode < VNODERES ...>, VNODECLASS < VNODERES
... > >:: value ,

50 " Template arguments are not correctly set.");
51 static_assert (std :: is_base_of < SubstrateLink < SLINKRES ...>, SLINKCLASS < SLINKRES

... > >:: value ,
52 " Template arguments are not correctly set.");
53 static_assert (std :: is_base_of < VirtualLink < VLINKRES ...>, VLINKCLASS < VLINKRES

... > >:: value ,
54 " Template arguments are not correctly set.");
55 static_assert (std :: is_base_of < VirtualNetworkRequest <Network <VNODECLASS <

VNODERES ...>, VLINKCLASS < VLINKRES ...>>>,
56 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES

...>>>>:: value , " Template arguments are not correctly set."
);

57
58 public :
59 const static bool IgnoreLocationConstrain ();
60
61 typedef VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>

VNR_TYPE ;
62 typedef Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES ...>>

SUBSTRATE_TYPE ;
63
64 virtual Embedding_Result embeddVNRNodes (std :: shared_ptr < SUBSTRATE_TYPE >

substrate_net , std :: shared_ptr <VNR_TYPE > vnr) = 0;
65
66 protected :
67 NodeEmbeddingAlgorithm () {};
68 static int ignoreLocationConstrain ;
69 };
70
71 template <
72 typename ... SNODERES , template <typename ...> class SNODECLASS ,
73 typename ... SLINKRES , template <typename ...> class SLINKCLASS ,
74 typename ... VNODERES , template <typename ...> class VNODECLASS ,
75 typename ... VLINKRES , template <typename ...> class VLINKCLASS ,
76 template <typename > class VNRCLASS >
77 int NodeEmbeddingAlgorithm <Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES

...>>,
78 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>>::

ignoreLocationConstrain = -1;
79
80 template <
81 typename ... SNODERES , template <typename ...> class SNODECLASS ,
82 typename ... SLINKRES , template <typename ...> class SLINKCLASS ,
83 typename ... VNODERES , template <typename ...> class VNODECLASS ,
84 typename ... VLINKRES , template <typename ...> class VLINKCLASS ,
85 template <typename > class VNRCLASS >
86 const bool NodeEmbeddingAlgorithm <Network <SNODECLASS < SNODERES ...>, SLINKCLASS <

SLINKRES ...>>,
87 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>>::

IgnoreLocationConstrain ()
88 {
89 if (ignoreLocationConstrain == -1)
90 ignoreLocationConstrain = (int) ConfigManager :: Instance () ->getConfig <

bool >("core. ignoreLocationConstrain ");
91 return (bool) ignoreLocationConstrain ;
92 }
93 }
94
95 #endif

Listing B.3: link-embedding-algorithm.h: Link embedding algorithm interface implementa-
tion.

122

1 /**
2 * @file link -embedding - algorithm .h
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date Jun 12, 2014
5 *
6 * @copyright Copyright (c) Jun 12, 2014 SOROUSH HAERI
7 * All Rights Reserved
8 *
9 * Permission to use , copy , modify , and distribute this software and its
10 * documentation for any purpose and without fee is hereby granted , provided
11 * that the above copyright notice appear in all copies and that both that
12 * copyright notice and this permission notice appear in supporting
13 * documentation , and that the name of the author not be used in advertising
14 * or publicity pertaining to distribution of the software without specific ,
15 * written prior permission .
16 *
17 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
18 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
19 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
20 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
21 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
22 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
23 **/
24
25 # ifndef LINK_EMBEDDING_ALGORITHM_H_
26 # define LINK_EMBEDDING_ALGORITHM_H_
27
28 # include <list >
29
30 # include " network .h"
31 # include "substrate -link.h"
32 # include "substrate -node.h"
33 # include "virtual -network - request .h"
34 # include "network - builder .h"
35
36 namespace vne {
37 template <typename ,typename > class LinkEmbeddingAlgorithm ;
38
39 template <
40 typename ... SNODERES , template <typename ...> class SNODECLASS ,
41 typename ... SLINKRES , template <typename ...> class SLINKCLASS ,
42 typename ... VNODERES , template <typename ...> class VNODECLASS ,
43 typename ... VLINKRES , template <typename ...> class VLINKCLASS ,
44 template <typename > class VNRCLASS >
45 class LinkEmbeddingAlgorithm <Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES

...>>,
46 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>>
47 {
48 static_assert (std :: is_base_of < SubstrateNode < SNODERES ...>, SNODECLASS < SNODERES

... > >:: value ,
49 " Template arguments are not correctly set.");
50 static_assert (std :: is_base_of < VirtualNode < VNODERES ...>, VNODECLASS < VNODERES

... > >:: value ,
51 " Template arguments are not correctly set.");
52 static_assert (std :: is_base_of < SubstrateLink < SLINKRES ...>, SLINKCLASS < SLINKRES

... > >:: value ,
53 " Template arguments are not correctly set.");
54 static_assert (std :: is_base_of < VirtualLink < VLINKRES ...>, VLINKCLASS < VLINKRES

... > >:: value ,
55 " Template arguments are not correctly set.");
56 static_assert (std :: is_base_of < VirtualNetworkRequest <Network <VNODECLASS <

VNODERES ...>, VLINKCLASS < VLINKRES ...>>>,
57 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES

...>>>>:: value , " Template arguments are not correctly set."
);

58 // TwoStageEmbeddingAlgo is a friend
59 template < typename SUBNET , typename VNR >

123

60 friend class TwoStageEmbeddingAlgo ;
61 public :
62 typedef VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>

VNR_TYPE ;
63 typedef Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES ...>>

SUBSTRATE_TYPE ;
64
65 virtual Embedding_Result embeddVNRLinks (std :: shared_ptr < SUBSTRATE_TYPE >

substrate_net , std :: shared_ptr <VNR_TYPE > vnr) = 0;
66 // implementing this funciton is optional . However , for using MCTS this

function must be implemented .
67 // This function works on the given id sets insetad of the vnr default id sets.
68 virtual Embedding_Result embeddVNRLinksForIdSets (std :: shared_ptr <

SUBSTRATE_TYPE > substrate_net , std :: shared_ptr <VNR_TYPE > vnr ,
69 const std ::map <int ,int >* nodeIdMap ,
70 std ::map <int ,std ::list <std ::pair <int , std :: shared_ptr <Resources < SLINKRES

...>>>>>* linkMap)
71 { return embeddVNRLinks (substrate_net ,vnr);};
72
73 Link_Embedding_Algo_Types getType () const { return type ;};
74
75 protected :
76 LinkEmbeddingAlgorithm (Link_Embedding_Algo_Types t) : type (t) {};
77 Link_Embedding_Algo_Types type;
78
79 };
80 }
81
82 #endif

Listing B.4: mcvne-node-embedding-algo.h: MaVEn Node Mapping Algorithm Header File
1 /**
2 * @file mcvne -node -embedding -algo.h
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
7 * All Rights Reserved
8 *
9 * Permission to use , copy , modify , and distribute this software and its
10 * documentation for any purpose and without fee is hereby granted , provided
11 * that the above copyright notice appear in all copies and that both that
12 * copyright notice and this permission notice appear in supporting
13 * documentation , and that the name of the author not be used in advertising or
14 * publicity pertaining to distribution of the software without specific ,
15 * written prior permission .
16 *
17 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
18 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
19 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
20 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
21 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
22 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
23 **/
24
25 # ifndef MCVNE_MCVNE_NODE_EMBEDDING_ALGO_
26 # define MCVNE_MCVNE_NODE_EMBEDDING_ALGO_
27
28 # include "mcvne/mcvne - simulator .h"
29
30 # include "core/node -embedding - algorithm .h"
31
32 using namespace vne :: vineyard ;
33

124

34 namespace vne {
35 namespace mcvne {
36 template < typename = Network < VYSubstrateNode <>, VYSubstrateLink <>> ,
37 typename = VYVirtualNetRequest <>>
38 class MCVNENodeEmbeddingAlgo : public NodeEmbeddingAlgorithm
39 <Network < VYSubstrateNode <>, VYSubstrateLink <>>,

VYVirtualNetRequest <>>
40 {
41 public :
42 MCVNENodeEmbeddingAlgo ();
43 ~ MCVNENodeEmbeddingAlgo ();
44 virtual Embedding_Result embeddVNRNodes (std :: shared_ptr < SUBSTRATE_TYPE >

substrate_network , std :: shared_ptr <VNR_TYPE > vnr);
45 private :
46 std :: shared_ptr < LinkEmbeddingAlgorithm < SUBSTRATE_TYPE , VNR_TYPE >>

link_embedder ;
47 };
48 }
49 }
50 #endif /* defined (__vne_mcts__mcvne_node_embedding_algo__) */

Listing B.5: mcvne-node-embedding-algo.h: MaVEn Node Mapping Algorithm Source File
1 /**
2 * @file mcvne -node -embedding -algo.cc
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
7 * All Rights Reserved
8 *
9 * Permission to use , copy , modify , and distribute this software and its
10 * documentation for any purpose and without fee is hereby granted , provided
11 * that the above copyright notice appear in all copies and that both that
12 * copyright notice and this permission notice appear in supporting
13 * documentation , and that the name of the author not be used in advertising or
14 * publicity pertaining to distribution of the software without specific ,
15 * written prior permission .
16 *
17 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
18 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
19 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
20 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
21 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
22 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
23 **/
24
25 # include "mcvne -node -embedding -algo.h"
26 # include "mcvne -bfs -link -embedding -algo.h"
27
28 # include "mcts/mcts.h"
29 # include " Vineyard /vy -vine -link -embedding -algo.h"
30 # include "core/config - manager .h"
31
32 namespace vne {
33 namespace mcvne {
34
35 template <>
36 MCVNENodeEmbeddingAlgo <>:: MCVNENodeEmbeddingAlgo ()
37 : NodeEmbeddingAlgorithm <Network < VYSubstrateNode <>, VYSubstrateLink <>>,
38 VYVirtualNetRequest <>>() {
39 std :: string linkEmbedderName =
40 ConfigManager :: Instance () ->getConfig <std :: string >(
41 "MCVNE. NodeEmbeddingAlgo . LinkEmbedder ");
42

125

43 if (linkEmbedderName . compare ("MCF") == 0)
44 link_embedder = std :: shared_ptr < VYVineLinkEmbeddingAlgo <>>(
45 new VYVineLinkEmbeddingAlgo <>());
46 else if (linkEmbedderName . compare ("BFS -SP") == 0)
47 link_embedder = std :: shared_ptr < MCVNEBFSLinkEmbeddingAlgo <>>(
48 new MCVNEBFSLinkEmbeddingAlgo <>());
49 else
50 link_embedder = std :: shared_ptr < VYVineLinkEmbeddingAlgo <>>(
51 new VYVineLinkEmbeddingAlgo <>());
52 };
53
54 template <> MCVNENodeEmbeddingAlgo < >::~ MCVNENodeEmbeddingAlgo () {};
55
56 template <>
57 Embedding_Result MCVNENodeEmbeddingAlgo <>:: embeddVNRNodes (
58 std :: shared_ptr < SUBSTRATE_TYPE > substrate_network ,
59 std :: shared_ptr <VNR_TYPE > vnr) {
60 std :: shared_ptr < MCVNESimulator <>> sim(
61 new MCVNESimulator <>(substrate_network , vnr , link_embedder));
62 MCTS mcts(sim);
63
64 std :: shared_ptr <VNENMState > st =
65 std :: static_pointer_cast <VNENMState >(sim -> createStartState ());
66
67 bool terminate ;
68 double reward ;
69 int action ;
70 do {
71 action = mcts. selectAction ();
72 terminate = sim ->step(st , action , reward);
73 if (reward <= -Infinity)
74 terminate = true;
75 else {
76 if (st -> getNodeMap () ->size () < vnr ->getVN () ->getNumNodes ())
77 mcts. update (action , reward);
78 }
79 } while (! terminate);
80
81 #ifdef ENABLE_MPI
82 if (ConfigManager :: Instance () ->getConfig <int >(
83 "MCTS. MCTSParameters . ParallelizationType ") == 1) {
84 struct {
85 double val;
86 int rank;
87 } ObjectiveValueIn , ObjectiveValueOut ;
88 ObjectiveValueIn .val = reward ;
89 ObjectiveValueIn .rank = MPI :: COMM_WORLD . Get_rank ();
90 MPI :: COMM_WORLD . Allreduce (& ObjectiveValueIn , & ObjectiveValueOut , 1,
91 MPI :: DOUBLE_INT , MPI :: MAXLOC);
92
93 int nodeMapSize ;
94 if (ObjectiveValueOut .rank == ObjectiveValueIn .rank) {
95 nodeMapSize = (int)st -> getNodeMap () ->size ();
96 }
97
98 MPI :: COMM_WORLD .Bcast (& nodeMapSize , 1, MPI ::INT , ObjectiveValueOut .rank);
99
100 if (nodeMapSize != vnr ->getVN () ->getNumNodes ())
101 return Embedding_Result :: NOT_ENOUGH_SUBSTRATE_RESOURCES ;
102
103 struct {
104 int sNodeId ;
105 int vNodeId ;
106 } nodeMap [nodeMapSize];
107
108 if (ObjectiveValueOut .rank == ObjectiveValueIn .rank) {
109 int count = 0;

126

110 for (auto it = st -> getNodeMap () ->begin (); it != st -> getNodeMap () ->end ();
111 it ++) {
112 nodeMap [count]. sNodeId = it -> second ;
113 nodeMap [count]. vNodeId = it ->first;
114 count ++;
115 }
116 }
117
118 MPI :: COMM_WORLD .Bcast(nodeMap , nodeMapSize , MPI_2INT ,
119 ObjectiveValueOut .rank);
120
121 for (int i = 0; i < nodeMapSize ; i++) {
122 vnr -> addNodeMapping (nodeMap [i]. sNodeId , nodeMap [i]. vNodeId);
123 }
124 } else {
125 if (st -> getNodeMap () ->size () != vnr ->getVN () ->getNumNodes ())
126 return Embedding_Result :: NOT_ENOUGH_SUBSTRATE_RESOURCES ;
127 for (auto it = st -> getNodeMap () ->begin (); it != st -> getNodeMap () ->end ();
128 it ++) {
129 vnr -> addNodeMapping (it ->second , it ->first);
130 }
131 }
132 #else
133 if (st -> getNodeMap () ->size () != vnr ->getVN () ->getNumNodes ())
134 return Embedding_Result :: NOT_ENOUGH_SUBSTRATE_RESOURCES ;
135 for (auto it = st -> getNodeMap () ->begin (); it != st -> getNodeMap () ->end ();
136 it ++) {
137 vnr -> addNodeMapping (it ->second , it ->first);
138 }
139 #endif
140 return Embedding_Result :: SUCCESSFUL_EMBEDDING ;
141 }
142 }
143 }

Listing B.6: mcts.h: MCTS Header File
1 /**
2 * @file mcts.h
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @note This class is based on the POMCP implementation by David Silver and
7 * Joel Veness .
8 * POMCP is published in NIPS 2010:
9 * " Online Monte -Carlo Plannin /g in Large POMDPs ".
10 *
11 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
12 * All Rights Reserved
13 *
14 * Permission to use , copy , modify , and distribute this software and its
15 * documentation for any purpose and without fee is hereby granted , provided
16 * that the above copyright notice appear in all copies and that both that
17 * copyright notice and this permission notice appear in supporting
18 * documentation , and that the name of the author not be used in advertising
19 * or publicity pertaining to distribution of the software without specific ,
20 * written prior permission .
21 *
22 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
23 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
24 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
25 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
26 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
27 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
28 **/

127

29
30 # ifndef MCTS_MCTS_
31 # define MCTS_MCTS_
32
33 # include "mcts/tree -node.h"
34
35 # include "mcts/mcts - simulator .h"
36 # include "mcts/mcts - statistics .h"
37
38 #if ENABLE_MPI
39 # include <mpi.h>
40 #endif
41
42 namespace vne {
43 namespace mcts {
44
45 class MCTS {
46 public :
47 struct Parameters {
48 Parameters ();
49
50 int MaxDepth ;
51 int NumSimulations ;
52 /** How many nodes to add at each expansion step */
53 int ExpandCount ;
54 bool AutoExploration ;
55 /** One option is to set Exploration Constant c = R_{hi}-R_{lo}*/
56 double ExplorationConstant ;
57 bool UseRave ;
58 double RaveDiscount ;
59 double RaveConstant ;
60 /** When set , the baseline rollout algorithm is run. */
61 bool DisableTree ;
62 bool UseSinglePlayerMCTS ;
63 double SPMCTSConstant ;
64
65 // 0: Root Parallelization with synchronizaiton after each action
66 // 1: Root Parallelization without synch
67 int ParalleizationType ;
68 };
69
70 MCTS(std :: shared_ptr < MCTSSimulator > sim);
71 ~MCTS ();
72
73 int selectAction ();
74 bool update (int action , double reward);
75
76 void UCTSearch ();
77 void rolloutSearch ();
78
79 double rollout (std :: shared_ptr <State > st);
80
81 const MCTSSimulator :: Status & getStatus () const { return status ; }
82
83 static void initFastUCB (double exploration);
84
85 private :
86 const std :: shared_ptr < MCTSSimulator > simulator ;
87 std :: vector <int > history ;
88 int treeDepth , peakTreeDepth ;
89 Parameters params ;
90 std :: shared_ptr <TreeNode > root;
91 MCTSSimulator :: Status status ;
92
93 void clearStatistics ();
94 MCTSStatistics statTreeDepth ;
95 MCTSStatistics statRolloutDepth ;

128

96 MCTSStatistics statTotalReward ;
97
98 int greedyUCB (std :: shared_ptr <TreeNode > node , bool ucb) const;
99 int selectRandom () const;
100 double simulateNode (std :: shared_ptr <TreeNode > node);
101 void addRave (std :: shared_ptr <TreeNode > node , double totalReward);
102 std :: shared_ptr <TreeNode > expandNode (const std :: shared_ptr <State > state);
103
104 // Fast lookup table for UCB
105 static const int UCB_N = 10000 , UCB_n = 100;
106 static double UCB[UCB_N][UCB_n];
107 static bool initialisedFastUCB ;
108
109 double fastUCB (int N, int n, double logN) const;
110 };
111 }
112 }
113 #if ENABLE_MPI
114 void sumFunction (const void *input , void *inoutput , int len ,
115 const MPI :: Datatype & datatype);
116 #endif
117 #endif

Listing B.7: mcts.cc: MCTS Source File
1 /**
2 * @file mcts.cc
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @note This class is based on the POMCP implementation by David Silver and
7 * Joel Veness .
8 * POMCP is published in NIPS 2010:
9 * " Online Monte -Carlo Plannin /g in Large POMDPs ".
10 *
11 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
12 * All Rights Reserved
13 *
14 * Permission to use , copy , modify , and distribute this software and its
15 * documentation for any purpose and without fee is hereby granted , provided
16 * that the above copyright notice appear in all copies and that both that
17 * copyright notice and this permission notice appear in supporting
18 * documentation , and that the name of the author not be used in advertising
19 * or publicity pertaining to distribution of the software without specific ,
20 * written prior permission .
21 *
22 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
23 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
24 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
25 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
26 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
27 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
28 **/
29
30 # include "mcts.h"
31 # include "core/config - manager .h"
32 # include " utilities / logger .h"
33
34 # include <math.h>
35 # include <algorithm >
36
37 using namespace std;
38
39 namespace vne {
40 namespace mcts {

129

41 MCTS :: Parameters :: Parameters ()
42 : MaxDepth (ConfigManager :: Instance () ->getConfig <int >(
43 "MCTS. MCTSParameters . MaxDepth ")),
44 NumSimulations (ConfigManager :: Instance () ->getConfig <int >(
45 "MCTS. MCTSParameters . NumSimulations ")),
46 ExpandCount (ConfigManager :: Instance () ->getConfig <int >(
47 "MCTS. MCTSParameters . ExpandCount ")),
48 AutoExploration (ConfigManager :: Instance () ->getConfig <bool >(
49 "MCTS. MCTSParameters . AutoExploration ")),
50 ExplorationConstant (ConfigManager :: Instance () ->getConfig <double >(
51 "MCTS. MCTSParameters . ExplorationConstant ")),
52 UseRave (ConfigManager :: Instance () ->getConfig <bool >(
53 "MCTS. MCTSParameters . UseRave ")),
54 RaveDiscount (ConfigManager :: Instance () ->getConfig <double >(
55 "MCTS. MCTSParameters . RaveDiscount ")),
56 RaveConstant (ConfigManager :: Instance () ->getConfig <double >(
57 "MCTS. MCTSParameters . RaveConstant ")),
58 DisableTree (ConfigManager :: Instance () ->getConfig <bool >(
59 "MCTS. MCTSParameters . DisableTree ")),
60 UseSinglePlayerMCTS (ConfigManager :: Instance () ->getConfig <bool >(
61 "MCTS. MCTSParameters . UseSinglePlayerMCTS ")),
62 SPMCTSConstant (ConfigManager :: Instance () ->getConfig <double >(
63 "MCTS. MCTSParameters . SPMCTSConstant ")),
64 ParalleizationType (ConfigManager :: Instance () ->getConfig <int >(
65 "MCTS. MCTSParameters . ParallelizationType ")) {}
66 MCTS :: MCTS(const std :: shared_ptr < MCTSSimulator > sim)
67 : simulator (sim), params (Parameters ()), treeDepth (0) ,
68 history (vector <int >()) {
69 if (params . AutoExploration) {
70 if (params . UseRave) {
71 params . ExplorationConstant = 0;
72 } else
73 params . ExplorationConstant = simulator -> getRewardRange ();
74 }
75 initFastUCB (params . ExplorationConstant);
76 TreeNode :: NumChildren = simulator -> getNumActions ();
77 root = expandNode (simulator -> createStartState ());
78 }
79
80 MCTS ::~ MCTS () {}
81
82 bool MCTS :: update (int action , double reward) {
83 BOOST_LOG_TRIVIAL (debug) << "Roots value: " << root ->value. getValue ()
84 << std :: endl;
85 history . push_back (action);
86 // Find matching vnode from the rest of the tree
87 std :: shared_ptr <TreeNode > child_node = root ->child(action);
88 BOOST_LOG_TRIVIAL (debug) << "Child 's node value: "
89 << child_node ->value. getValue () << std :: endl;
90
91 // Delete old tree and create new root
92 if (child_node -> getState () == nullptr) {
93 const std :: shared_ptr <State > st = root -> getState () ->getCopy ();
94 double dummyReward ;
95 bool terminal = simulator ->step(st , action , dummyReward);
96 if (! terminal) {
97 * child_node = *(expandNode (st));
98 }
99 }
100 *root = * child_node ;
101 return true;
102 }
103
104 int MCTS :: selectAction () {
105 if (params . DisableTree)
106 rolloutSearch ();
107 else {

130

108 UCTSearch ();
109 #ifdef ENABLE_MPI
110 if (params . ParalleizationType == 0) {
111 int numChildren = (int)simulator -> getNumActions ();
112 int childrenCounts [numChildren];
113 double childrenValues [numChildren];
114 int childrenCountsGlobal [numChildren];
115 double childrenValuesGlobal [numChildren];
116
117 for (int i = 0; i < numChildren ; i++) {
118 childrenCounts [i] = root ->child(i)->value. getCount ();
119 childrenValues [i] = root ->child(i)->value. getValue ();
120 }
121
122 MPI ::Op customSumOp ;
123 customSumOp .Init (& sumFunction , true);
124
125 MPI :: COMM_WORLD . Allreduce (childrenCounts , childrenCountsGlobal ,
126 numChildren , MPI ::INT , customSumOp);
127 MPI :: COMM_WORLD . Allreduce (childrenValues , childrenValuesGlobal ,
128 numChildren , MPI :: DOUBLE , customSumOp);
129
130 for (int i = 0; i < numChildren ; i++) {
131 root ->child (i)->value.set(childrenCountsGlobal [i],
132 childrenValuesGlobal [i] /
133 (double) childrenCountsGlobal [i]);
134 }
135 }
136 #endif
137 }
138 #ifdef ENABLE_MPI
139 // this is to make sure all processes are on the same page
140 // because sometimes UCB might return different values if there are more
141 // than one actions with maximum average value
142 if (params . ParalleizationType == 0) {
143 int action = -1;
144 int rank = MPI :: COMM_WORLD . Get_rank ();
145 if (rank == 0)
146 action = greedyUCB (root , false);
147 MPI :: COMM_WORLD .Bcast (& action , 1, MPI ::INT , 0);
148 assert (action != -1);
149 return action ;
150 } else
151 return greedyUCB (root , false);
152 #else
153 return greedyUCB (root , false);
154 #endif
155 }
156
157 void MCTS :: rolloutSearch () {
158 int historyDepth = (int) history .size ();
159 std :: vector <int > legal;
160 assert (root -> getState () != nullptr);
161 simulator -> generateLegal (root -> getState (), history , legal , status);
162 random_shuffle (legal.begin (), legal.end ());
163
164 for (int i = 0; i < params . NumSimulations ; i++) {
165 int action = legal[i % legal.size ()];
166 std :: shared_ptr <State > st = root -> getState () ->getCopy ();
167 simulator -> validate (st);
168
169 double immediateReward , delayedReward , totalReward ;
170 bool terminal = simulator ->step(st , action , immediateReward);
171
172 std :: shared_ptr <TreeNode > node = root ->child(action);
173 if (node -> getState () == nullptr && ! terminal) {
174 *node = *(expandNode (st));

131

175 }
176
177 history . push_back (action);
178 delayedReward = rollout (st -> getCopy ());
179 totalReward = immediateReward + (simulator -> getDiscount () * delayedReward);
180 root -> child(action)->value.add(totalReward);
181 st.reset ();
182 history . resize (historyDepth);
183 }
184 }
185
186 void MCTS :: UCTSearch () {
187 clearStatistics ();
188
189 int historyDepth = (int) history .size ();
190
191 for (int n = 0; n < params . NumSimulations ; n++) {
192 status .Phase = MCTSSimulator :: Status :: TREE;
193
194 treeDepth = 0;
195 peakTreeDepth = 0;
196
197 double totalReward = simulateNode (root);
198 root -> value.add(totalReward);
199
200 // addRave (root , totalReward);
201 statTotalReward .Add(totalReward);
202 statTreeDepth .Add(peakTreeDepth);
203
204 history . resize (historyDepth);
205 }
206 }
207
208 double MCTS :: simulateNode (std :: shared_ptr <TreeNode > node) {
209 double immediateReward , delayedReward = 0;
210
211 int action = greedyUCB (node , true);
212
213 peakTreeDepth = treeDepth ;
214
215 if (treeDepth >= params . MaxDepth) // search horizon reached
216 return 0;
217
218 std :: shared_ptr <State > st = node -> getState () ->getCopy ();
219 bool terminal = simulator ->step(st , action , immediateReward);
220 history . push_back (action);
221 std :: shared_ptr <TreeNode > child_node = node ->child(action);
222
223 if (child_node -> getState () == nullptr && ! terminal &&
224 node ->value. getCount () >= params . ExpandCount)
225 * child_node = *(expandNode (st));
226
227 if (! terminal) {
228 treeDepth ++;
229 if (!(child_node -> getState () == nullptr))
230 delayedReward = simulateNode (child_node);
231 else
232 delayedReward = rollout (st -> getCopy ());
233 treeDepth --;
234 }
235 double totalReward =
236 immediateReward + simulator -> getDiscount () * delayedReward ;
237
238 child_node ->value.add(totalReward);
239 addRave (node , totalReward);
240 return totalReward ;
241 }

132

242
243 void MCTS :: addRave (std :: shared_ptr <TreeNode > node , double totalReward) {
244 double totalDiscount = 1.0;
245 for (int t = treeDepth ; t < history .size (); ++t) {
246 std :: shared_ptr <TreeNode > child_node = node ->child(history [t]);
247 child_node ->AMAF.add(totalReward , totalDiscount);
248 totalDiscount *= params . RaveDiscount ;
249 }
250 }
251
252 std :: shared_ptr <TreeNode > MCTS :: expandNode (const std :: shared_ptr <State > state) {
253 std :: shared_ptr <TreeNode > node(new TreeNode (state));
254 node ->value.set (0, 0);
255 simulator ->prior(node , history , status);
256 return node;
257 }
258
259 int MCTS :: greedyUCB (std :: shared_ptr <TreeNode > node , bool ucb) const {
260 static vector <int > besta;
261 besta.clear ();
262 double bestq = -Infinity ;
263 int N = node ->value. getCount ();
264 double logN = log(N + 1);
265
266 // these values will only change if partitioning is enabled ;
267 int mystart = 0;
268 int myend = simulator -> getNumActions ();
269 for (int action = mystart ; action < myend; action ++) {
270 double q;
271 int n;
272
273 std :: shared_ptr <TreeNode > child_node = node ->child(action);
274 q = child_node ->value. getValue ();
275 n = child_node ->value. getCount ();
276
277 if (params . UseRave && child_node ->AMAF. getCount () > 0) {
278 double n2 = child_node ->AMAF. getCount ();
279 double beta = n2 / (n + n2 + params . RaveConstant * n * n2);
280 q = (1.0 - beta) * q + beta * child_node ->AMAF. getValue ();
281 }
282
283 if (ucb)
284 q += fastUCB (N, n, logN);
285
286 if (params . UseSinglePlayerMCTS && child_node ->value. getCount () > 0 &&
287 child_node ->value. getValue () > -Infinity)
288 q += sqrt(
289 (child_node ->value. getSumSquaredValue () -
290 n * child_node ->value. getValue () * child_node ->value. getValue () +
291 params . SPMCTSConstant) /
292 n);
293
294 if (q >= bestq) {
295 if (q > bestq)
296 besta.clear ();
297 bestq = q;
298 besta. push_back (action);
299 }
300 }
301
302 assert (! besta.empty ());
303 int randomIndex =
304 (int) gsl_rng_uniform_int (RNG :: Instance () ->getGeneralRNG (), besta.size ());
305 return besta[randomIndex];
306 }
307
308 double MCTS :: rollout (std :: shared_ptr <State > state) {

133

309 status .Phase = MCTSSimulator :: Status :: ROLLOUT ;
310
311 double totalReward = 0.0;
312 double discount = 1.0;
313 bool terminal = false;
314 int numSteps ;
315 for (numSteps = 0; numSteps + treeDepth < params . MaxDepth && ! terminal ;
316 ++ numSteps) {
317 double reward ;
318
319 int action = simulator -> selectRandom (state , history , status);
320 terminal = simulator ->step(state , action , reward);
321
322 totalReward += reward * discount ;
323 discount *= simulator -> getDiscount ();
324 }
325
326 statRolloutDepth .Add(numSteps);
327
328 return totalReward ;
329 }
330
331 double MCTS :: UCB[UCB_N][UCB_n];
332 bool MCTS :: initialisedFastUCB = false;
333
334 void MCTS :: initFastUCB (double exploration) {
335 for (int N = 0; N < UCB_N; ++N)
336 for (int n = 0; n < UCB_n; ++n)
337 if (n == 0)
338 UCB[N][n] = Infinity ;
339 else
340 UCB[N][n] = exploration * sqrt(log(N + 1) / n);
341 initialisedFastUCB = true;
342 }
343
344 inline double MCTS :: fastUCB (int N, int n, double logN) const {
345 if (initialisedFastUCB && N < UCB_N && n < UCB_n)
346 return UCB[N][n];
347
348 if (n == 0)
349 return Infinity ;
350 else
351 return params . ExplorationConstant * sqrt(logN / n);
352 }
353
354 void MCTS :: clearStatistics () {
355 statTreeDepth .Clear ();
356 statRolloutDepth .Clear ();
357 statTotalReward .Clear ();
358 }
359 }
360 }
361 #if ENABLE_MPI
362 void sumFunction (const void *input , void *inoutput , int len ,
363 const MPI :: Datatype & datatype) {
364 for (int i = 0; i < len; i++) {
365 if (datatype == MPI :: INT) {
366
367 int * currentInPtr = (int *) input;
368 currentInPtr += i;
369 int * currentOutPtr = (int *) inoutput ;
370 currentOutPtr += i;
371 if ((* currentInPtr < LargeInteger) && (* currentOutPtr < LargeInteger)) {
372 *(currentOutPtr) = * currentInPtr + (* currentOutPtr);
373 } else if (* currentInPtr < LargeInteger &&
374 (* currentOutPtr >= LargeInteger)) {
375 *(currentOutPtr) = *(currentInPtr);

134

376 }
377 } else if (datatype == MPI :: DOUBLE) {
378 double * currentInPtr = (double *) input;
379 currentInPtr += i;
380 double * currentOutPtr = (double *) inoutput ;
381 currentOutPtr += i;
382 if ((* currentInPtr > -Infinity) && (* currentOutPtr > -Infinity)) {
383 *(currentOutPtr) = * currentInPtr + (* currentOutPtr);
384 } else if (* currentInPtr > -Infinity && (* currentOutPtr <= -Infinity)) {
385 *(currentOutPtr) = *(currentInPtr);
386 }
387 }
388 }
389 };
390 #endif

Listing B.8: tree-node.h: MCTS Tree Node Class Header File
1 /**
2 * @file tree -node.h
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @note This class is based on the POMCP implementation by David Silver and
7 * Joel Veness .
8 * POMCP is published in NIPS 2010:
9 * " Online Monte -Carlo Plannin /g in Large POMDPs ".
10 *
11 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
12 * All Rights Reserved
13 *
14 * Permission to use , copy , modify , and distribute this software and its
15 * documentation for any purpose and without fee is hereby granted , provided
16 * that the above copyright notice appear in all copies and that both that
17 * copyright notice and this permission notice appear in supporting
18 * documentation , and that the name of the author not be used in advertising
19 * or publicity pertaining to distribution of the software without specific ,
20 * written prior permission .
21 *
22 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
23 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
24 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
25 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
26 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
27 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
28 **/
29
30 # ifndef MCTS_TREE_NODE_
31 # define MCTS_TREE_NODE_
32
33 # include <memory >
34 # include <vector >
35
36 # include "core/core -types.h"
37
38 # include <mcts/state.h>
39
40 namespace vne {
41 namespace mcts {
42 template <class COUNT > class Value {
43 public :
44 void set(COUNT count , double value) {
45 Count = count;
46 Total = value * count;
47 // Total = value;

135

48 SumSquaredValue = count * value * value;
49 }
50
51 void add(double totalReward) {
52 Count += 1.0;
53 Total += totalReward ;
54 // if (Total == 0)
55 // Total = totalReward ;
56 // else if (totalReward > Total)
57 // Total = totalReward ;
58 SumSquaredValue += totalReward * totalReward ;
59 }
60
61 void add(double totalReward , COUNT weight) {
62 Count += weight ;
63 Total += totalReward * weight ;
64 SumSquaredValue += totalReward * totalReward * weight ;
65 }
66
67 double getValue () const {
68 return Count == 0 ? Total : Total / Count;
69 // return Total;
70 }
71
72 double getSumSquaredValue () const { return SumSquaredValue ; }
73
74 COUNT getCount () const { return Count; }
75
76 private :
77 COUNT Count;
78 double Total;
79 long double SumSquaredValue ;
80 };
81
82 class TreeNode {
83 public :
84 Value <int > value;
85 Value <double > AMAF;
86
87 void setChildren (int count , double value);
88 std :: shared_ptr <TreeNode > child(int c);
89
90 const std :: shared_ptr <State > getState () const;
91
92 static int NumChildren ;
93
94 ~ TreeNode ();
95 TreeNode (std :: shared_ptr <State > st);
96
97 protected :
98 TreeNode ();
99 void Initialize ();
100 std :: shared_ptr <State > state;
101 std :: vector <std :: shared_ptr <TreeNode >> Children ;
102 };
103 }
104 }
105 #endif

Listing B.9: tree-node.cc: MCTS Tree Node Source Header File
1 /**
2 * @file tree -node.cc
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14

136

5 *
6 * @note This class is based on the POMCP implementation by David Silver and
7 * Joel Veness .
8 * POMCP is published in NIPS 2010:
9 * " Online Monte -Carlo Plannin /g in Large POMDPs ".
10 *
11 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
12 * All Rights Reserved
13 *
14 * Permission to use , copy , modify , and distribute this software and its
15 * documentation for any purpose and without fee is hereby granted , provided
16 * that the above copyright notice appear in all copies and that both that
17 * copyright notice and this permission notice appear in supporting
18 * documentation , and that the name of the author not be used in advertising
19 * or publicity pertaining to distribution of the software without specific ,
20 * written prior permission .
21 *
22 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING
23 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
24 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
25 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
26 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
27 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
28 **/
29 # include "tree -node.h"
30
31 # include <assert .h>
32 # include <iostream >
33
34 namespace vne {
35 namespace mcts {
36 int TreeNode :: NumChildren = 0;
37 TreeNode :: TreeNode (std :: shared_ptr <State > st) : state(std :: move(st)) {
38 assert (NumChildren);
39 Children . resize (TreeNode :: NumChildren);
40 Initialize ();
41 }
42
43 TreeNode :: TreeNode () : state(nullptr) {
44 assert (NumChildren);
45 Children . resize (TreeNode :: NumChildren);
46 }
47
48 void TreeNode :: Initialize () {
49 for (int action = 0; action < Children .size (); action ++) {
50 Children [action] = std :: shared_ptr <TreeNode >(new TreeNode ());
51 }
52 }
53
54 TreeNode ::~ TreeNode () {}
55
56 const std :: shared_ptr <State > TreeNode :: getState () const { return state; }
57
58 void TreeNode :: setChildren (int count , double value) {
59 for (int action = 0; action < NumChildren ; action ++) {
60 std :: shared_ptr <TreeNode > node = Children [action];
61 node -> value.set(count , value);
62 node ->AMAF.set(count , value);
63 }
64 }
65 std :: shared_ptr <TreeNode > TreeNode :: child(int c) { return Children [c]; }
66 }
67 }

137

Listing B.10: mcts-simulator.h: MCTS Simulator Base Class Header File
1 /**
2 * @file mcts - simulator .h
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @note This class is based on the POMCP implementation by David Silver and
7 * Joel Veness .
8 * POMCP is published in NIPS 2010:
9 * " Online Monte -Carlo Plannin /g in Large POMDPs ".
10 *
11 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
12 * All Rights Reserved
13 *
14 * Permission to use , copy , modify , and distribute this software and its
15 * documentation for any purpose and without fee is hereby granted , provided
16 * that the above copyright notice appear in all copies and that both that
17 * copyright notice and this permission notice appear in supporting
18 * documentation , and that the name of the author not be used in advertising
19 * or publicity pertaining to distribution of the software without specific ,
20 * written prior permission .
21 *
22 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
23 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
24 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
25 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
26 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
27 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
28 **/
29
30 # ifndef MCTS_MCTS_SIMULATOR_
31 # define MCTS_MCTS_SIMULATOR_
32
33 # include "mcts/tree -node.h"
34 # include "mcts/state.h"
35
36 # include "core/rng.h"
37
38 # include "core/ network .h"
39 # include "core/substrate -link.h"
40 # include "core/substrate -node.h"
41 # include "core/virtual -network - request .h"
42
43 # include "core/core -types.h"
44
45 namespace vne {
46 namespace mcts {
47 class MCTSSimulator : public RNGSubscriber {
48 public :
49 struct Knowledge {
50 enum { PURE , LEGAL , SMART , NUM_LEVELS };
51
52 Knowledge ();
53
54 int RolloutLevel ;
55 int TreeLevel ;
56 int SmartTreeCount ;
57 double SmartTreeValue ;
58
59 int Level(int phase) const {
60 assert (phase < Status :: NUM_PHASES);
61 if (phase == Status :: TREE)
62 return TreeLevel ;
63 else
64 return RolloutLevel ;
65 }

138

66 };
67
68 struct Status {
69 Status ();
70
71 enum { TREE , ROLLOUT , NUM_PHASES };
72
73 int Phase;
74 };
75
76 virtual std :: shared_ptr <State > createStartState () const = 0;
77
78 // Update state according to action , and get observation and reward .
79 // Return value of true indicates termination of episode (if episodic)
80 // Action is the ID of the substrate node that will be used to host the
81 // current VNR node.
82 virtual bool step(std :: shared_ptr <State > state , int action ,
83 double & reward) const = 0;
84
85 // Sanity check
86 virtual bool validate (const std :: shared_ptr <State > state) const {
87 return true;
88 };
89
90 // Modify state stochastically to some related state
91 virtual bool localMove (std :: shared_ptr <State > state ,
92 const std :: vector <int > &history ,
93 const Status & status) const {
94 return true;
95 };
96
97 // Use domain knowledge to assign prior value and confidence to actions
98 // Should only use fully observable state variables
99 void prior(std :: shared_ptr <TreeNode > node , const std :: vector <int > &history ,
100 const Status & status) const;
101
102 // Use domain knowledge to select actions stochastically during rollouts
103 int selectRandom (const std :: shared_ptr <State > state ,
104 const std :: vector <int > &history , const Status & status) const;
105
106 // Generate set of legal actions
107 virtual void generateLegal (const std :: shared_ptr <State > state ,
108 const std :: vector <int > &history ,
109 std :: vector <int > &actions ,
110 const Status & status) const;
111
112 // Generate set of preferred actions
113 virtual void generatePreferred (const std :: shared_ptr <State > state ,
114 const std :: vector <int > &history ,
115 std :: vector <int > &actions ,
116 const Status & status) const;
117
118 virtual ~ MCTSSimulator ();
119
120 int getNumActions () { return numActions ; };
121 double getDiscount () const { return discount ; }
122 double getRewardRange () const { return rewardRange ; }
123 double getHorizon (double accuracy , int undiscountedHorizon = 100) const;
124
125 protected :
126 MCTSSimulator ();
127 MCTSSimulator (int numActions);
128
129 int numActions ;
130 Knowledge knowledge ;
131 double discount , rewardRange ;
132 inline int Random (int max) const;

139

133 };
134 }
135 }
136 #endif

Listing B.11: mcts-simulator.cc: MCTS Simulator Base Class Source File
1 /**
2 * @file mcts - simulator .cc
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @note This class is based on the POMCP implementation by David Silver and
7 * Joel Veness .
8 * POMCP is published in NIPS 2010:
9 * " Online Monte -Carlo Plannin /g in Large POMDPs ".
10 *
11 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
12 * All Rights Reserved
13 *
14 * Permission to use , copy , modify , and distribute this software and its
15 * documentation for any purpose and without fee is hereby granted , provided
16 * that the above copyright notice appear in all copies and that both that
17 * copyright notice and this permission notice appear in supporting
18 * documentation , and that the name of the author not be used in advertising
19 * or publicity pertaining to distribution of the software without specific ,
20 * written prior permission .
21 *
22 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
23 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
24 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
25 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
26 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
27 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
28 **/
29
30 # include "mcts - simulator .h"
31 # include "core/config - manager .h"
32
33 # include <math.h>
34
35 namespace vne {
36 namespace mcts {
37
38 MCTSSimulator :: Knowledge :: Knowledge ()
39 :
40
41 TreeLevel (ConfigManager :: Instance () ->getConfig <int >(
42 "MCTS. Simulator . Knowledge . TreeLevel ")),
43 RolloutLevel (ConfigManager :: Instance () ->getConfig <int >(
44 "MCTS. Simulator . Knowledge . RolloutLevel ")),
45 SmartTreeCount (ConfigManager :: Instance () ->getConfig <int >(
46 "MCTS. Simulator . Knowledge . SmartTreeCount ")),
47 SmartTreeValue (ConfigManager :: Instance () ->getConfig <double >(
48 "MCTS. Simulator . Knowledge . SmartTreeValue ")) {}
49
50 MCTSSimulator :: Status :: Status ()
51 :
52
53 Phase(TREE) {}
54
55 MCTSSimulator :: MCTSSimulator ()
56 :
57
58 knowledge (Knowledge ()),

140

59 discount (ConfigManager :: Instance () ->getConfig <double >(
60 "MCTS. Simulator . discount ")),
61 rewardRange (ConfigManager :: Instance () ->getConfig <double >(
62 "MCTS. Simulator . rewardRange ")) {
63 assert (discount > 0 && discount <= 1);
64 }
65
66 MCTSSimulator :: MCTSSimulator (int _numActions)
67 :
68
69 numActions (_numActions),
70 knowledge (Knowledge ()),
71 discount (ConfigManager :: Instance () ->getConfig <double >(
72 "MCTS. Simulator . discount ")),
73 rewardRange (ConfigManager :: Instance () ->getConfig <double >(
74 "MCTS. Simulator . rewardRange ")) {
75 assert (discount > 0 && discount <= 1);
76 }
77
78 MCTSSimulator ::~ MCTSSimulator () {}
79
80 inline int MCTSSimulator :: Random (int max) const {
81 return (int) gsl_rng_uniform_int (RNG :: Instance () ->getGeneralRNG (), max);
82 }
83
84 void MCTSSimulator :: generateLegal (const std :: shared_ptr <State > state ,
85 const std :: vector <int > &history ,
86 std :: vector <int > &actions ,
87 const Status & status) const {
88 for (int a = 0; a < numActions ; ++a)
89 actions . push_back (a);
90 }
91
92 void MCTSSimulator :: generatePreferred (const std :: shared_ptr <State > state ,
93 const std :: vector <int > &history ,
94 std :: vector <int > &actions ,
95 const Status & status) const {}
96
97 int MCTSSimulator :: selectRandom (const std :: shared_ptr <State > state ,
98 const std :: vector <int > &history ,
99 const Status & status) const {
100 static std :: vector <int > actions ;
101
102 if (knowledge . RolloutLevel >= Knowledge :: SMART) {
103 actions .clear ();
104 generatePreferred (state , history , actions , status);
105 if (! actions .empty ())
106 return actions [Random ((int) actions .size ())];
107 }
108
109 if (knowledge . RolloutLevel >= Knowledge :: LEGAL) {
110 actions .clear ();
111 generateLegal (state , history , actions , status);
112 if (! actions .empty ())
113 return actions [Random ((int) actions .size ())];
114 }
115
116 return Random (numActions);
117 }
118
119 void MCTSSimulator :: prior(std :: shared_ptr <TreeNode > node ,
120 const std :: vector <int > &history ,
121 const Status & status) const {
122 static std :: vector <int > actions ;
123 if (knowledge . TreeLevel == Knowledge :: PURE || node -> getState () == nullptr) {
124 node -> setChildren (0, 0);
125 return ;

141

126 } else {
127 node -> setChildren (+ LargeInteger , -Infinity);
128 }
129
130 if (knowledge . TreeLevel >= Knowledge :: LEGAL) {
131 actions .clear ();
132 generateLegal (node -> getState (), history , actions , status);
133
134 for (auto i_action = actions .begin (); i_action != actions .end ();
135 ++ i_action) {
136 int a = * i_action ;
137 std :: shared_ptr <TreeNode > node_child = node ->child(a);
138 node_child ->value.set (0, 0);
139 node_child ->AMAF.set (0, 0);
140 }
141 }
142
143 if (knowledge . TreeLevel >= Knowledge :: SMART) {
144 actions .clear ();
145 generatePreferred (node -> getState (), history , actions , status);
146
147 for (auto i_action = actions .begin (); i_action != actions .end ();
148 ++ i_action) {
149 int a = * i_action ;
150 std :: shared_ptr <TreeNode > node_child = node.get () ->child(a);
151 node_child ->value.set(knowledge . SmartTreeCount , knowledge . SmartTreeValue);
152 node_child ->AMAF.set(knowledge . SmartTreeCount , knowledge . SmartTreeValue);
153 }
154 }
155 }
156
157 double MCTSSimulator :: getHorizon (double accuracy ,
158 int undiscountedHorizon) const {
159 if (discount == 1)
160 return undiscountedHorizon ;
161 return log(accuracy) / log(discount);
162 }
163 }
164 }

Listing B.12: vne-mcts-simulator.h: General VNE Simulator Base Class Source File
1 /**
2 * @file vne -mcts - simulator .h
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
7 * All Rights Reserved
8 *
9 * Permission to use , copy , modify , and distribute this software and its
10 * documentation for any purpose and without fee is hereby granted , provided
11 * that the above copyright notice appear in all copies and that both that
12 * copyright notice and this permission notice appear in supporting
13 * documentation , and that the name of the author not be used in advertising or
14 * publicity pertaining to distribution of the software without specific ,
15 * written prior permission .
16 *
17 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
18 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
19 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
20 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
21 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
22 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
23 **/

142

24
25 # ifndef MCVNE_VNE_MCTS_SIMULATOR_
26 # define MCVNE_VNE_MCTS_SIMULATOR_
27
28 # include "mcts/tree -node.h"
29 # include "mcts/mcts - simulator .h"
30 # include "mcvne/vne -nm -state.h"
31
32 # include "core/rng.h"
33
34 # include "core/ network .h"
35 # include "core/substrate -link.h"
36 # include "core/substrate -node.h"
37 # include "core/virtual -network - request .h"
38 # include "core/config - manager .h"
39 # include "core/link -embedding - algorithm .h"
40
41 using namespace vne :: mcts;
42
43 namespace vne {
44 namespace mcvne {
45
46 template <typename , typename > class VNEMCTSSimulator ;
47
48 template <typename ... SNODERES , template <typename ...> class SNODECLASS ,
49 typename ... SLINKRES , template <typename ...> class SLINKCLASS ,
50 typename ... VNODERES , template <typename ...> class VNODECLASS ,
51 typename ... VLINKRES , template <typename ...> class VLINKCLASS ,
52 template <typename > class VNRCLASS >
53 class VNEMCTSSimulator <
54 Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES ...>>,
55 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>>
56 : public MCTSSimulator {
57 static_assert (std :: is_base_of < SubstrateNode < SNODERES ...>,
58 SNODECLASS < SNODERES ... > >:: value ,
59 " Template arguments are not correctly set.");
60 static_assert (
61 std :: is_base_of < VirtualNode < VNODERES ...>, VNODECLASS < VNODERES ... > >:: value ,
62 " Template arguments are not correctly set.");
63 static_assert (std :: is_base_of < SubstrateLink < SLINKRES ...>,
64 SLINKCLASS < SLINKRES ... > >:: value ,
65 " Template arguments are not correctly set.");
66 static_assert (
67 std :: is_base_of < VirtualLink < VLINKRES ...>, VLINKCLASS < VLINKRES ... > >:: value ,
68 " Template arguments are not correctly set.");
69 static_assert (
70 std :: is_base_of < VirtualNetworkRequest <Network <VNODECLASS < VNODERES ...>,
71 VLINKCLASS < VLINKRES ...>>>,
72 VNRCLASS <Network <VNODECLASS < VNODERES ...>,
73 VLINKCLASS < VLINKRES ...>>>>:: value ,
74 " Template arguments are not correctly set.");
75
76 public :
77 typedef VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>
78 VNR_TYPE ;
79 typedef Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES ...>>
80 SUBSTRATE_TYPE ;
81
82 virtual ~ VNEMCTSSimulator () {};
83
84 virtual std :: shared_ptr <State > createStartState () const override ;
85
86 // Update state according to action , and get observation and reward .
87 // Return value of true indicates termination of episode (if episodic)
88 // Action is the ID of the substrate node that will be used to host the
89 // current VNR node.
90 virtual bool step(std :: shared_ptr <State > state , int action ,

143

91 double & reward) const override ;
92
93 // Sanity check
94 virtual bool validate (const std :: shared_ptr <State > state) const override ;
95
96 // Generate set of legal actions
97 virtual void generateLegal (const std :: shared_ptr <State > state ,
98 const std :: vector <int > &history ,
99 std :: vector <int > &actions ,
100 const Status & status) const override ;
101
102 // Generate set of preferred actions
103 virtual void generatePreferred (const std :: shared_ptr <State > state ,
104 const std :: vector <int > &history ,
105 std :: vector <int > &actions ,
106 const Status & status) const override ;
107
108 protected :
109 VNEMCTSSimulator (
110 std :: shared_ptr < SUBSTRATE_TYPE > subs_net , std :: shared_ptr <VNR_TYPE > vnr ,
111 std :: shared_ptr < LinkEmbeddingAlgorithm < SUBSTRATE_TYPE , VNR_TYPE >>
112 _link_embedder);
113
114 virtual std :: shared_ptr <std ::set <int >> getValidSubstrateNodeIdSetForVNNodeId (
115 int vn_id , const std :: shared_ptr <std ::set <int >> used_sn_ids) const = 0;
116 virtual double calculateImmediateReward (std :: shared_ptr <VNENMState > st ,
117 int action) const = 0;
118 virtual double calculateFinalReward (
119 std :: shared_ptr <VNENMState > st ,
120 const std ::map <
121 int ,
122 std ::list <std ::pair <int , std :: shared_ptr <Resources < SLINKRES ...>>>>>
123 * linkMap) const = 0;
124 std :: shared_ptr < LinkEmbeddingAlgorithm < SUBSTRATE_TYPE , VNR_TYPE >>
125 link_embedder ;
126 std :: shared_ptr < SUBSTRATE_TYPE > substrate_net ;
127 std :: shared_ptr <VNR_TYPE > vnr;
128
129 bool setAlpha ;
130 bool setBeta ;
131
132 private :
133 bool isActionLegal (int action , std :: shared_ptr <VNENMState > st) const;
134 };
135
136 template <typename ... SNODERES , template <typename ...> class SNODECLASS ,
137 typename ... SLINKRES , template <typename ...> class SLINKCLASS ,
138 typename ... VNODERES , template <typename ...> class VNODECLASS ,
139 typename ... VLINKRES , template <typename ...> class VLINKCLASS ,
140 template <typename > class VNRCLASS >
141 inline bool VNEMCTSSimulator <
142 Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES ...>>,
143 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>>::
144 isActionLegal (int action , std :: shared_ptr <VNENMState > st) const {
145 std :: shared_ptr <std ::set <int >> validActionSet =
146 getValidSubstrateNodeIdSetForVNNodeId (st -> getCurrentVNId (),
147 st -> getUsedSNIds ());
148 bool ret = validActionSet ->find(action) != validActionSet ->end ();
149 return ret;
150 }
151
152 template <typename ... SNODERES , template <typename ...> class SNODECLASS ,
153 typename ... SLINKRES , template <typename ...> class SLINKCLASS ,
154 typename ... VNODERES , template <typename ...> class VNODECLASS ,
155 typename ... VLINKRES , template <typename ...> class VLINKCLASS ,
156 template <typename > class VNRCLASS >
157 VNEMCTSSimulator <

144

158 Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES ...>>,
159 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>>::
160 VNEMCTSSimulator (
161 std :: shared_ptr < VNEMCTSSimulator :: SUBSTRATE_TYPE > _substrate_net ,
162 std :: shared_ptr < VNEMCTSSimulator :: VNR_TYPE > _vnr ,
163 std :: shared_ptr < LinkEmbeddingAlgorithm < SUBSTRATE_TYPE , VNR_TYPE >>
164 _link_embedder)
165 : MCTSSimulator (_substrate_net -> getNumNodes ()),
166 substrate_net (_substrate_net), vnr(_vnr), link_embedder (_link_embedder),
167 setAlpha (ConfigManager :: Instance () ->getConfig <bool >(
168 "MCVNE. VNEMCTSSimulator . setAlpha ")),
169 setBeta (ConfigManager :: Instance () ->getConfig <bool >(
170 "MCVNE. VNEMCTSSimulator . setBeta ")) {}
171
172 template <typename ... SNODERES , template <typename ...> class SNODECLASS ,
173 typename ... SLINKRES , template <typename ...> class SLINKCLASS ,
174 typename ... VNODERES , template <typename ...> class VNODECLASS ,
175 typename ... VLINKRES , template <typename ...> class VLINKCLASS ,
176 template <typename > class VNRCLASS >
177 std :: shared_ptr <State > VNEMCTSSimulator <
178 Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES ...>>,
179 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>>::
180 createStartState () const {
181 const std :: shared_ptr <std ::set <int >> VNNodeIdSet =
182 vnr ->getVN () ->getNodeIdSet ();
183 std :: shared_ptr <VNENMState > st(
184 new VNENMState (VNNodeIdSet , vnr ->getId (), vnr -> getNodeMap ()));
185 return st;
186 }
187
188 template <typename ... SNODERES , template <typename ...> class SNODECLASS ,
189 typename ... SLINKRES , template <typename ...> class SLINKCLASS ,
190 typename ... VNODERES , template <typename ...> class VNODECLASS ,
191 typename ... VLINKRES , template <typename ...> class VLINKCLASS ,
192 template <typename > class VNRCLASS >
193 bool VNEMCTSSimulator <
194 Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES ...>>,
195 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>>::
196 step(std :: shared_ptr <State > state , int action , double & reward) const {
197 std :: shared_ptr <VNENMState > st = std :: static_pointer_cast <VNENMState >(state);
198
199 if (! isActionLegal (action , st)) {
200 reward = -Infinity ;
201 return true;
202 }
203
204 st -> addNodeMapping (action);
205
206 if (st -> isTreminal ()) {
207 std ::map <int ,
208 std ::list <std ::pair <int , std :: shared_ptr <Resources < SLINKRES ...>>>>>
209 linkMap ;
210 Embedding_Result result = link_embedder -> embeddVNRLinksForIdSets (
211 substrate_net , vnr , st -> getNodeMap (), & linkMap);
212 if (result != Embedding_Result :: SUCCESSFUL_EMBEDDING)
213 reward = -Infinity ;
214 else
215 reward = calculateFinalReward (st , & linkMap);
216 return true;
217 } else
218 reward += calculateImmediateReward (st , action);
219 return false;
220 }
221
222 template <typename ... SNODERES , template <typename ...> class SNODECLASS ,
223 typename ... SLINKRES , template <typename ...> class SLINKCLASS ,
224 typename ... VNODERES , template <typename ...> class VNODECLASS ,

145

225 typename ... VLINKRES , template <typename ...> class VLINKCLASS ,
226 template <typename > class VNRCLASS >
227 bool VNEMCTSSimulator <
228 Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES ...>>,
229 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>>::
230 validate (const std :: shared_ptr <State > state) const {
231 std :: shared_ptr <VNENMState > st = std :: static_pointer_cast <VNENMState >(state);
232 return (vnr ->getId () == st -> getVNRId ());
233 }
234
235 template <typename ... SNODERES , template <typename ...> class SNODECLASS ,
236 typename ... SLINKRES , template <typename ...> class SLINKCLASS ,
237 typename ... VNODERES , template <typename ...> class VNODECLASS ,
238 typename ... VLINKRES , template <typename ...> class VLINKCLASS ,
239 template <typename > class VNRCLASS >
240 void VNEMCTSSimulator <
241 Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES ...>>,
242 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>>::
243 generateLegal (const std :: shared_ptr <State > state ,
244 const std :: vector <int > &history , std :: vector <int > &actions ,
245 const Status & status) const {
246 std :: shared_ptr <VNENMState > st = std :: static_pointer_cast <VNENMState >(state);
247 std :: shared_ptr <std ::set <int >> validActionSet =
248 getValidSubstrateNodeIdSetForVNNodeId (st -> getCurrentVNId (),
249 st -> getUsedSNIds ());
250 actions = std :: vector <int >(validActionSet ->begin (), validActionSet ->end ());
251 }
252
253 template <typename ... SNODERES , template <typename ...> class SNODECLASS ,
254 typename ... SLINKRES , template <typename ...> class SLINKCLASS ,
255 typename ... VNODERES , template <typename ...> class VNODECLASS ,
256 typename ... VLINKRES , template <typename ...> class VLINKCLASS ,
257 template <typename > class VNRCLASS >
258 void VNEMCTSSimulator <
259 Network <SNODECLASS < SNODERES ...>, SLINKCLASS < SLINKRES ...>>,
260 VNRCLASS <Network <VNODECLASS < VNODERES ...>, VLINKCLASS < VLINKRES ...>>>>::
261 generatePreferred (const std :: shared_ptr <State > state ,
262 const std :: vector <int > &history ,
263 std :: vector <int > &actions , const Status & status) const {
264 generateLegal (state , history , actions , status);
265 }
266 }
267 }
268 #endif

Listing B.13: mcvne-simulator.h: Our VNE Simulator Implementation Header File
1 /**
2 * @file mcvne - simulator .h
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
7 * All Rights Reserved
8 *
9 * Permission to use , copy , modify , and distribute this software and its
10 * documentation for any purpose and without fee is hereby granted , provided
11 * that the above copyright notice appear in all copies and that both that
12 * copyright notice and this permission notice appear in supporting
13 * documentation , and that the name of the author not be used in advertising or
14 * publicity pertaining to distribution of the software without specific ,
15 * written prior permission .
16 *
17 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
18 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL

146

19 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
20 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
21 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
22 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
23 **/
24
25 # ifndef MCVNE_MCVNE_SIMULATOR_
26 # define MCVNE_MCVNE_SIMULATOR_
27
28 # include "mcvne/vne -mcts - simulator .h"
29 # include "core/node -embedding - algorithm .h"
30
31 # include " Vineyard /vy -substrate -link.h"
32 # include " Vineyard /vy -substrate -node.h"
33 # include " Vineyard /vy -virtual -net - request .h"
34
35 # include "core/ network .h"
36
37 using namespace vne :: vineyard ;
38
39 namespace vne {
40 namespace mcvne {
41 template <typename = Network < VYSubstrateNode <>, VYSubstrateLink <>>,
42 typename = VYVirtualNetRequest <>>
43 class MCVNESimulator
44 : public VNEMCTSSimulator <Network < VYSubstrateNode <>, VYSubstrateLink <>>,
45 VYVirtualNetRequest <>> {
46 public :
47 MCVNESimulator (
48 std :: shared_ptr < SUBSTRATE_TYPE > subs_net , std :: shared_ptr <VNR_TYPE > vnr ,
49 std :: shared_ptr < LinkEmbeddingAlgorithm < SUBSTRATE_TYPE , VNR_TYPE >>
50 _link_embedder);
51
52 ~ MCVNESimulator ();
53
54 protected :
55 virtual std :: shared_ptr <std ::set <int >> getValidSubstrateNodeIdSetForVNNodeId (
56 int vn_id , std :: shared_ptr <std ::set <int >> used_sn_ids) const override ;
57 virtual double calculateImmediateReward (std :: shared_ptr <VNENMState > st ,
58 int action) const override ;
59 virtual double calculateFinalReward (
60 std :: shared_ptr <VNENMState > st ,
61 const std ::map <
62 int , std ::list <std ::pair <int , std :: shared_ptr <Resources <double >>>>>
63 * linkMap) const override ;
64
65 private :
66 struct ReachabilityConditionWithPathSpliting {
67 bool operator ()(const std :: shared_ptr <const VYSubstrateNode <>> lhs ,
68 const std :: shared_ptr <
69 const std :: vector <std :: shared_ptr < VYSubstrateLink <>>>>
70 linksConnectedToLhs ,
71 const std :: shared_ptr <const VYVirtualNode <>> rhs ,
72 const std :: shared_ptr <const std :: vector <
73 std :: shared_ptr < VYVirtualLink <>>>> linksConnectedToRhs ,
74 double maxD ,
75 std :: shared_ptr <std ::set <int >> used_sn_ids) const {
76 double sum_sn_link_bw = 0.0;
77 double sum_vn_link_bw = 0.0;
78 for (auto it = linksConnectedToLhs ->begin ();
79 it != linksConnectedToLhs ->end (); it ++) {
80 sum_sn_link_bw += (*it)->getBandwidth ();
81 }
82 for (auto it = linksConnectedToRhs ->begin ();
83 it != linksConnectedToRhs ->end (); it ++) {
84 sum_vn_link_bw += (*it)->getBandwidth ();
85 }

147

86 if (NodeEmbeddingAlgorithm <
87 Network < VYSubstrateNode <>, VYSubstrateLink <>>,
88 VYVirtualNetRequest <>>:: IgnoreLocationConstrain ())
89 return (sum_sn_link_bw >= sum_vn_link_bw &&
90 used_sn_ids ->find(lhs ->getId ()) == used_sn_ids ->end () &&
91 lhs -> getCPU () >= rhs -> getCPU ());
92 return (sum_sn_link_bw >= sum_vn_link_bw &&
93 used_sn_ids ->find(lhs ->getId ()) == used_sn_ids ->end () &&
94 lhs -> getCoordinates (). distanceFrom (rhs -> getCoordinates ()) <=
95 maxD &&
96 lhs -> getCPU () >= rhs -> getCPU ());
97 }
98 };
99 struct ReachabilityConditionNoPathSpliting {
100 bool operator ()(const std :: shared_ptr <const VYSubstrateNode <>> lhs ,
101 const std :: shared_ptr <
102 const std :: vector <std :: shared_ptr < VYSubstrateLink <>>>>
103 linksConnectedToLhs ,
104 const std :: shared_ptr <const VYVirtualNode <>> rhs ,
105 const std :: shared_ptr <const std :: vector <
106 std :: shared_ptr < VYVirtualLink <>>>> linksConnectedToRhs ,
107 double maxD ,
108 std :: shared_ptr <std ::set <int >> used_sn_ids) const {
109 std ::map <int , double > usedSLBW ;
110 for (auto itr = linksConnectedToRhs ->begin ();
111 itr != linksConnectedToRhs ->end (); itr ++) {
112 int count = 0;
113 for (auto itl = linksConnectedToLhs ->begin ();
114 itl != linksConnectedToLhs ->end (); itl ++) {
115 if ((* itr)->getBandwidth () <=
116 ((* itl)->getBandwidth () - usedSLBW [(* itl)->getId ()])) {
117 count ++;
118 usedSLBW [(* itl)->getId ()] += (* itr)->getBandwidth ();
119 break;
120 }
121 }
122 if (count == 0)
123 return false;
124 }
125 if (NodeEmbeddingAlgorithm <
126 Network < VYSubstrateNode <>, VYSubstrateLink <>>,
127 VYVirtualNetRequest <>>:: IgnoreLocationConstrain ())
128 return (used_sn_ids ->find(lhs ->getId ()) == used_sn_ids ->end () &&
129 lhs -> getCPU () >= rhs -> getCPU ());
130 return (used_sn_ids ->find(lhs ->getId ()) == used_sn_ids ->end () &&
131 lhs -> getCoordinates (). distanceFrom (rhs -> getCoordinates ()) <=
132 maxD &&
133 lhs -> getCPU () >= rhs -> getCPU ());
134 }
135 };
136 };
137 }
138 }
139 #endif /* defined (__vne_mcts__mcvne_simulator__) */

Listing B.14: mcvne-simulator.h: Our VNE Simulator Implementation Header File
1 /**
2 * @file mcvne - simulator .cc
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
7 * All Rights Reserved
8 *

148

9 * Permission to use , copy , modify , and distribute this software and its
10 * documentation for any purpose and without fee is hereby granted , provided
11 * that the above copyright notice appear in all copies and that both that
12 * copyright notice and this permission notice appear in supporting
13 * documentation , and that the name of the author not be used in advertising or
14 * publicity pertaining to distribution of the software without specific ,
15 * written prior permission .
16 *
17 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
18 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
19 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
20 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
21 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
22 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
23 **/
24
25 # include "mcvne - simulator .h"
26
27 namespace vne {
28 namespace mcvne {
29 template <>
30 MCVNESimulator <>:: MCVNESimulator (
31 std :: shared_ptr < SUBSTRATE_TYPE > subs_net , std :: shared_ptr <VNR_TYPE > vnr ,
32 std :: shared_ptr < LinkEmbeddingAlgorithm < SUBSTRATE_TYPE , VNR_TYPE >>
33 _link_embedder)
34 : VNEMCTSSimulator <Network < VYSubstrateNode <>, VYSubstrateLink <>>,
35 VYVirtualNetRequest <>>(subs_net , vnr , _link_embedder) {}
36
37 template <> MCVNESimulator < >::~ MCVNESimulator () {}
38
39 template <>
40 std :: shared_ptr <std ::set <int >>
41 MCVNESimulator <>:: getValidSubstrateNodeIdSetForVNNodeId (
42 int vn_id , std :: shared_ptr <std ::set <int >> used_sn_ids) const {
43 double distance = vnr -> getMaxDistance ();
44 if (link_embedder -> getType () ==
45 Link_Embedding_Algo_Types :: WITH_PATH_SPLITTING)
46 return substrate_net
47 ->getNodesIDsWithConditions < ReachabilityConditionWithPathSpliting >(
48 vnr ->getVN () ->getNode (vn_id),
49 vnr ->getVN () -> getLinksForNodeId (vn_id), distance , used_sn_ids);
50 return substrate_net
51 ->getNodesIDsWithConditions < ReachabilityConditionNoPathSpliting >(
52 vnr ->getVN () ->getNode (vn_id), vnr ->getVN () -> getLinksForNodeId (vn_id),
53 distance , used_sn_ids);
54 }
55
56 template <>
57 double
58 MCVNESimulator <>:: calculateImmediateReward (std :: shared_ptr <VNENMState > st ,
59 int action) const {
60 return 0;
61 }
62
63 template <>
64 double MCVNESimulator <>:: calculateFinalReward (
65 std :: shared_ptr <VNENMState > st ,
66 const std ::map <
67 int , std ::list <std ::pair <int , std :: shared_ptr <Resources <double >>>>>
68 * linkMap) const {
69
70 double revenue = 0.0;
71 const std :: shared_ptr <std :: vector <std :: shared_ptr < VYVirtualNode <>>>>
72 vnr_node_vec = vnr ->getVN () ->getAllNodes ();
73 const std :: shared_ptr <std :: vector <std :: shared_ptr < VYVirtualLink <>>>>
74 vnr_link_vec = vnr ->getVN () ->getAllLinks ();
75 for (int i = 0; i < vnr_node_vec ->size (); i++) {

149

76 revenue += vnr_node_vec ->at(i)->getCPU ();
77 }
78 for (int i = 0; i < vnr_link_vec ->size (); i++) {
79 revenue += vnr_link_vec ->at(i)->getBandwidth ();
80 }
81 BOOST_LOG_TRIVIAL (debug)
82 << " ============= in calculateFinalReward ================== "
83 << std :: endl;
84 double cost = 0.0;
85 int count = 0;
86 for (auto it = linkMap ->begin (); it != linkMap ->end (); it ++) {
87 for (auto it2 = it -> second .begin (); it2 != it -> second .end (); it2 ++) {
88 double flow_bw = std ::get <0 >(*(it2 -> second));
89 cost += flow_bw ;
90 BOOST_LOG_TRIVIAL (debug) << "vnr link ID: " << count
91 << " SUB BW: " << std ::get <0 >(*it2 -> second)
92 << " using substrate link ID: " << it2 ->first
93 << std :: endl;
94 }
95 count ++;
96 }
97 BOOST_LOG_TRIVIAL (debug) << "total link cost: " << cost << std :: endl;
98
99 for (auto it = st -> getNodeMap () ->begin (); it != st -> getNodeMap () ->end ();
100 it ++) {
101 double vn_cpu = vnr ->getVN () ->getNode (it ->first)->getCPU ();
102 cost += vn_cpu ;
103 }
104 BOOST_LOG_TRIVIAL (debug) << "total cost: " << cost << std :: endl;
105 BOOST_LOG_TRIVIAL (debug) << "total reward : " << revenue - cost << std :: endl;
106 return (1000 + revenue - cost);
107 }
108 }
109 }

Listing B.15: state.h: MCTS Tree Node State Base Class
1 /**
2 * @file state.h
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
7 * All Rights Reserved
8 *
9 * Permission to use , copy , modify , and distribute this software and its
10 * documentation for any purpose and without fee is hereby granted , provided
11 * that the above copyright notice appear in all copies and that both that
12 * copyright notice and this permission notice appear in supporting
13 * documentation , and that the name of the author not be used in advertising
14 * or publicity pertaining to distribution of the software without specific ,
15 * written prior permission .
16 *
17 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
18 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
19 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
20 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
21 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
22 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
23 **/
24
25 # ifndef MCTS_STATE_
26 # define MCTS_STATE_
27
28 # include <memory >

150

29
30 namespace vne {
31 namespace mcts {
32 class State {
33 public :
34 virtual std :: shared_ptr <State > getCopy () const = 0;
35 virtual ~State () {};
36
37 protected :
38 State () {};
39 };
40 }
41 }
42 #endif

Listing B.16: vne-nm-state.h: VNE Node Mapping State Header File
1 /**
2 * @file vne -nm -state.h
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
7 * All Rights Reserved
8 *
9 * Permission to use , copy , modify , and distribute this software and its
10 * documentation for any purpose and without fee is hereby granted , provided
11 * that the above copyright notice appear in all copies and that both that
12 * copyright notice and this permission notice appear in supporting
13 * documentation , and that the name of the author not be used in advertising or
14 * publicity pertaining to distribution of the software without specific ,
15 * written prior permission .
16 *
17 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
18 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
19 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
20 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
21 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
22 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
23 **/
24
25 # ifndef MCVNE_VNE_NM_STATE_
26 # define MCVNE_VNE_NM_STATE_
27
28 # include "mcts/state.h"
29
30 # include "core/ network .h"
31 # include "core/virtual -network - request .h"
32
33 using namespace vne :: mcts;
34
35 namespace vne {
36 namespace mcvne {
37
38 class VNENMState : public State {
39 public :
40 VNENMState (std :: shared_ptr <std ::set <int >> _VNRNodeIdSet , int _vnrid ,
41 const std ::map <int , int > * mappedNodes);
42 virtual ~ VNENMState ();
43
44 virtual std :: shared_ptr <State > getCopy () const override ;
45
46 void addNodeMapping (int sNodeId);
47 const std ::map <int , int > * getNodeMap () const;
48

151

49 int getPreviousVNId ();
50 int getCurrentVNId () const;
51 int getNextVNId ();
52
53 int getVNRId () const;
54
55 std :: shared_ptr <std ::set <int >> getUsedSNIds ();
56
57 bool isTreminal () const;
58 bool isStartState () const;
59
60 protected :
61 VNENMState ();
62
63 private :
64 int vnrID;
65 std ::set <int >:: const_iterator VNIdSetIterator ;
66 std :: shared_ptr <std ::set <int >> VNNodeIdSet ;
67 // keeps the valid choices for embedding of the current VN.
68 // nodeMap < VirtualnodeId , SubstrateNodeId >;
69 std ::map <int , int > nodeMap ;
70 };
71 }
72 }
73 #endif

Listing B.17: vne-nm-state.cc: VNE Node Mapping State Source File
1 /**
2 * @file vne -nm -state.cc
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
7 * All Rights Reserved
8 *
9 * Permission to use , copy , modify , and distribute this software and its
10 * documentation for any purpose and without fee is hereby granted , provided
11 * that the above copyright notice appear in all copies and that both that
12 * copyright notice and this permission notice appear in supporting
13 * documentation , and that the name of the author not be used in advertising or
14 * publicity pertaining to distribution of the software without specific ,
15 * written prior permission .
16 *
17 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
18 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
19 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
20 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
21 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
22 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
23 **/
24
25 # include "vne -nm -state.h"
26
27 namespace vne {
28 namespace mcvne {
29 VNENMState :: VNENMState (std :: shared_ptr <std ::set <int >> _idSet , int vnrid ,
30 const std ::map <int , int > * mappedNodes)
31 : VNNodeIdSet (_idSet), vnrID(vnrid) {
32 if (mappedNodes ->size () > 0) {
33 for (auto it = mappedNodes ->begin (); it != mappedNodes ->end (); it ++) {
34 auto it2 = VNNodeIdSet ->find(it ->first);
35 assert (it2 != VNNodeIdSet ->end ());
36 nodeMap . insert (std :: make_pair (it ->first , it -> second));
37 VNNodeIdSet ->erase(it2);

152

38 }
39 }
40 VNIdSetIterator = VNNodeIdSet ->begin ();
41 };
42
43 VNENMState :: VNENMState () {};
44
45 VNENMState ::~ VNENMState () {};
46
47 const std ::map <int , int > * VNENMState :: getNodeMap () const { return & nodeMap ; };
48
49 int VNENMState :: getPreviousVNId () {
50 if (VNIdSetIterator == VNNodeIdSet ->begin ())
51 return -1;
52 VNIdSetIterator --;
53 int nextId = *(VNIdSetIterator);
54 VNIdSetIterator ++;
55
56 return nextId ;
57 };
58
59 int VNENMState :: getCurrentVNId () const {
60 if (VNIdSetIterator == VNNodeIdSet ->end ())
61 return -1;
62
63 return *(VNIdSetIterator);
64 };
65
66 int VNENMState :: getNextVNId () {
67 VNIdSetIterator ++;
68 if (VNIdSetIterator == VNNodeIdSet ->end ())
69 return -1;
70 int nextId = *(VNIdSetIterator);
71 VNIdSetIterator --;
72 return nextId ;
73 };
74
75 int VNENMState :: getVNRId () const { return vnrID; }
76
77 bool VNENMState :: isTreminal () const {
78 return (VNIdSetIterator == VNNodeIdSet ->end ());
79 };
80
81 bool VNENMState :: isStartState () const { return nodeMap .empty (); }
82
83 std :: shared_ptr <State > VNENMState :: getCopy () const {
84 std :: shared_ptr <VNENMState > newSt(new VNENMState ());
85 *newSt = *this;
86 return newSt;
87 }
88
89 std :: shared_ptr <std ::set <int >> VNENMState :: getUsedSNIds () {
90 std :: shared_ptr <std ::set <int >> outSet (new std ::set <int >());
91 for (auto it = nodeMap .begin (); it != nodeMap .end (); it ++) {
92 outSet -> insert (it -> second);
93 }
94 return outSet ;
95 }
96
97 void VNENMState :: addNodeMapping (int sNodeId) {
98 assert (nodeMap .find (* VNIdSetIterator) == nodeMap .end ());
99 nodeMap . insert (std :: make_pair (* VNIdSetIterator , sNodeId));
100 VNIdSetIterator ++;
101 }
102 }
103 }

153

Listing B.18: mcvne-bfs-link-embedding-algo.h: Breadth-First Search-Based Virtual Link
Embedding Algorithm Header File

1 /**
2 * @file mcvne -bfs -link -embedding -algo.h
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
7 * All Rights Reserved
8 *
9 * Permission to use , copy , modify , and distribute this software and its
10 * documentation for any purpose and without fee is hereby granted , provided
11 * that the above copyright notice appear in all copies and that both that
12 * copyright notice and this permission notice appear in supporting
13 * documentation , and that the name of the author not be used in advertising or
14 * publicity pertaining to distribution of the software without specific ,
15 * written prior permission .
16 *
17 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
18 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
19 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
20 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
21 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
22 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
23 **/
24
25 # ifndef MCVNE_BFS_LINK_EMBEDDING_ALGO_
26 # define MCVNE_BFS_LINK_EMBEDDING_ALGO_
27
28 # include "glpk.h"
29
30 # include "core/ network .h"
31 # include "core/link -embedding - algorithm .h"
32
33 # include " Vineyard /vy -substrate -node.h"
34 # include " Vineyard /vy -virtual -net - request .h"
35
36 using namespace vne :: vineyard ;
37
38 namespace vne {
39 namespace mcvne {
40
41 template <typename = Network < VYSubstrateNode <>, VYSubstrateLink <>>,
42 typename = VYVirtualNetRequest <>>
43 class MCVNEBFSLinkEmbeddingAlgo
44 : public LinkEmbeddingAlgorithm <
45 Network < VYSubstrateNode <>, VYSubstrateLink <>>,
46 VYVirtualNetRequest <>> {
47 public :
48 MCVNEBFSLinkEmbeddingAlgo ();
49 ~ MCVNEBFSLinkEmbeddingAlgo ();
50 virtual Embedding_Result
51 embeddVNRLinks (std :: shared_ptr < SUBSTRATE_TYPE > substrate_network ,
52 std :: shared_ptr <VNR_TYPE > vnr);
53 virtual Embedding_Result embeddVNRLinksForIdSets (
54 std :: shared_ptr < SUBSTRATE_TYPE > substrate_network ,
55 std :: shared_ptr <VNR_TYPE > vnr , const std ::map <int , int > *nodeIdMap ,
56 std ::map <int ,
57 std ::list <std ::pair <int , std :: shared_ptr <Resources <double >>>>>
58 * linkMap) override ;
59
60 private :
61 std :: shared_ptr <const std ::set <int >> substrateNodeIdSet ;
62 std :: shared_ptr <const std ::set <int >> substrateLinkIdSet ;
63 std :: shared_ptr <const std ::set <int >> virtualNodeIdSet ;
64 std :: shared_ptr <const std ::set <int >> virtualLinkIdSet ;

154

65
66 std :: vector <int > allNodeIds ;
67
68 bool setAlpha ;
69 bool setBeta ;
70
71 inline Embedding_Result embeddLinks (
72 std :: shared_ptr < SUBSTRATE_TYPE > substrate_network ,
73 std :: shared_ptr <VNR_TYPE > vnr ,
74 const std ::map <int , int > * nodeIdMap = nullptr ,
75 std ::map <int ,
76 std ::list <std ::pair <int , std :: shared_ptr <Resources <double >>>>>
77 * linkMap = nullptr);
78 };
79 }
80 }
81 #endif

Listing B.19: mcvne-bfs-link-embedding-algo.cc: Breadth-First Search-Based Virtual Link
Embedding Algorithm Source File

1 /**
2 * @file mcvne -bfs -link -embedding -algo.cc
3 * @author Soroush Haeri <soroosh . haeri@me .com >
4 * @date 7/16/14
5 *
6 * @copyright Copyright (c) 7/16/14 SOROUSH HAERI
7 * All Rights Reserved
8 *
9 * Permission to use , copy , modify , and distribute this software and its
10 * documentation for any purpose and without fee is hereby granted , provided
11 * that the above copyright notice appear in all copies and that both that
12 * copyright notice and this permission notice appear in supporting
13 * documentation , and that the name of the author not be used in advertising or
14 * publicity pertaining to distribution of the software without specific ,
15 * written prior permission .
16 *
17 * THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE , INCLUDING
18 * ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ; IN NO EVENT SHALL
19 * AUTHOR BE LIABLE FOR ANY SPECIAL , INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
20 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN
21 * AN ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF
22 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .
23 **/
24
25 # include "mcvne -bfs -link -embedding -algo.h"
26 # include "core/config - manager .h"
27
28 namespace vne {
29 namespace mcvne {
30 template <>
31 MCVNEBFSLinkEmbeddingAlgo <>:: MCVNEBFSLinkEmbeddingAlgo ()
32 : LinkEmbeddingAlgorithm <Network < VYSubstrateNode <>, VYSubstrateLink <>>,
33 VYVirtualNetRequest <>>(
34 Link_Embedding_Algo_Types :: NO_PATH_SPLITTING),
35 substrateLinkIdSet (nullptr), substrateNodeIdSet (nullptr) {}
36 template <> MCVNEBFSLinkEmbeddingAlgo < >::~ MCVNEBFSLinkEmbeddingAlgo () {}
37
38 template <>
39 inline Embedding_Result MCVNEBFSLinkEmbeddingAlgo <>:: embeddLinks (
40 std :: shared_ptr < SUBSTRATE_TYPE > substrate_network ,
41 std :: shared_ptr <VNR_TYPE > vnr , const std ::map <int , int > *nodeIdMap ,
42 std ::map <int , std ::list <std ::pair <int , std :: shared_ptr <Resources <double >>>>>
43 * linkMap) {
44 virtualNodeIdSet = vnr ->getVN () ->getNodeIdSet ();

155

45 virtualLinkIdSet = vnr ->getVN () ->getLinkIdSet ();
46
47 if (nodeIdMap == nullptr)
48 nodeIdMap = vnr -> getNodeMap ();
49
50 std ::map <int , double > usedSLBW ;
51 for (auto it = virtualLinkIdSet ->begin (); it != virtualLinkIdSet ->end ();
52 it ++) {
53 const std :: shared_ptr < VYVirtualLink <>> currentVL =
54 vnr -> getVN () ->getLink (*it);
55
56 int VNfromId = currentVL -> getNodeFromId ();
57 int VNtoId = currentVL -> getNodeToId ();
58
59 double vlBW = currentVL -> getBandwidth ();
60
61 int SNfromId = nodeIdMap ->find(VNfromId)->second ;
62 int SNtoId = nodeIdMap ->find(VNtoId)->second ;
63
64 std ::set <int > visitedSubstrateNodesIds ;
65
66 // Create a queue for BFS
67 // It holds the the last visited substrate node id and a list of substrate
68 // link ids
69 // used to get there
70 std ::list <std ::pair <int , std ::list <int >>> queue;
71
72 visitedSubstrateNodesIds . insert (SNfromId);
73 queue. push_back (std :: make_pair (SNfromId , std ::list <int >()));
74
75 bool foundSNtoId = false;
76 std ::list <int > shortestPath ;
77
78 while (! queue.empty () && ! foundSNtoId) {
79 int currentSNId = queue.front ().first;
80 std ::list <int > currentPath = queue.front (). second ;
81 queue. pop_front ();
82
83 const std :: shared_ptr <const std :: vector <
84 std :: shared_ptr < VYSubstrateLink <>>>> slAttachedToCurrentSN =
85 substrate_network -> getLinksForNodeId (currentSNId);
86
87 for (int i = 0; i < slAttachedToCurrentSN ->size (); i++) {
88 // check if the link meets bandwidth constrains otherwise do not
89 // consider the link
90 std :: shared_ptr < VYSubstrateLink <>> currentSL =
91 slAttachedToCurrentSN ->at(i);
92 double residualBW = currentSL -> getBandwidth ();
93 std ::list <int > currentPathCopy = currentPath ;
94 if (usedSLBW .find(currentSL ->getId ()) != usedSLBW .end ())
95 residualBW -= usedSLBW [currentSL ->getId ()];
96 if (residualBW >= vlBW) {
97 int nextSNId = -1;
98 if (slAttachedToCurrentSN ->at(i)->getNodeToId () != currentSNId)
99 nextSNId = slAttachedToCurrentSN ->at(i)->getNodeToId ();
100 else
101 nextSNId = slAttachedToCurrentSN ->at(i)->getNodeFromId ();
102
103 // if the nextnode is destination :
104 if (nextSNId == SNtoId) {
105 foundSNtoId = true;
106 currentPathCopy . push_back (currentSL ->getId ());
107 usedSLBW [currentSL ->getId ()] += vlBW;
108 shortestPath = currentPathCopy ;
109 break;
110 }
111 // if the destination node is not visited

156

112 if (visitedSubstrateNodesIds .find(nextSNId) ==
113 visitedSubstrateNodesIds .end ()) {
114 visitedSubstrateNodesIds . insert (nextSNId);
115 currentPathCopy . push_back (slAttachedToCurrentSN ->at(i)->getId ());
116 usedSLBW [currentSL ->getId ()] += vlBW;
117 queue. push_back (std :: make_pair (nextSNId , currentPathCopy));
118 }
119 }
120 }
121 }
122 if (queue.empty () && ! foundSNtoId)
123 return Embedding_Result :: NOT_ENOUGH_SUBSTRATE_RESOURCES ;
124
125 std :: shared_ptr <Resources <double >> _res(new Resources <double >(vlBW));
126 for (auto it = shortestPath .begin (); it != shortestPath .end (); it ++) {
127 if (linkMap == nullptr)
128 vnr -> addLinkMapping (*it , currentVL ->getId (), _res);
129 else
130 (* linkMap)[currentVL ->getId ()]. push_back (std :: make_pair (*it , _res));
131 }
132 }
133
134 if ((vnr -> getLinkMap () ->size () == virtualLinkIdSet ->size () ||
135 (linkMap != nullptr && (linkMap ->size () == virtualLinkIdSet ->size ()))))
136 return Embedding_Result :: SUCCESSFUL_EMBEDDING ;
137
138 return Embedding_Result :: NOT_ENOUGH_SUBSTRATE_RESOURCES ;
139 }
140
141 template <>
142 Embedding_Result MCVNEBFSLinkEmbeddingAlgo <>:: embeddVNRLinks (
143 std :: shared_ptr < SUBSTRATE_TYPE > substrate_network ,
144 std :: shared_ptr <VNR_TYPE > vnr) {
145 return (embeddLinks (substrate_network , vnr));
146 }
147
148 template <>
149 Embedding_Result MCVNEBFSLinkEmbeddingAlgo <>:: embeddVNRLinksForIdSets (
150 std :: shared_ptr < SUBSTRATE_TYPE > substrate_network ,
151 std :: shared_ptr <VNR_TYPE > vnr , const std ::map <int , int > *nodeIdMap ,
152 std ::map <int , std ::list <std ::pair <int , std :: shared_ptr <Resources <double >>>>>
153 * linkMap) {
154 return (embeddLinks (substrate_network , vnr , nodeIdMap , linkMap));
155 }
156 }
157 }

157

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Optical Burst-Switching and Deflection Routing
	Virtual Network Embedding
	Roadmap

	Reinforcement Learning
	Q-Learning
	Feed-Forward Neural Networks for Reinforcement Learning
	Markov Decision Process
	Solution of Markov Decision Processes: The Exact Algorithms
	Solution of Large Markov Decision Processes and Monte Carlo Tree Search
	Parallel Monte Carlo Tree Search

	Reinforcement Learning-Based Deflection Routing in Buffer-Less Networks
	Buffer-Less Architecture, Optical Burst Switching, and Contention
	Optical Burst Switching and Burst Traffic
	Contention in Optical Burst-Switched Networks

	Deflection Routing by Reinforcement Learning
	The iDef Framework
	Predictive Q-Learning-Based Deflection Routing Algorithm
	The Node Degree Dependent Signaling Algorithm
	Neural Networks for Deflection Routing
	Feed-Forward Neural Networks for Deflection Routing with Single-Episode Updates
	Feed-Forward Neural Networks for Deflection Routing with k-Episode Updates
	Time Complexity Analysis

	Network Topologies: A Brief Overview
	Performance Evaluation
	National Science Foundation Network Scenario
	Complex Network Topologies and Memory Usage

	Discussion

	Reinforcement Learning-Based Algorithms for Virtual Network Embedding
	Virtual Network Embedding Problem
	Objective of Virtual Network Embedding
	Virtual Network Embedding Performance Metrics

	Available Virtual Network Embedding Algorithms
	Virtual Node Mapping Algorithms
	Virtual Link Mapping Algorithms

	Virtual Network Embedding Algorithms and Data Center Networks
	Data Center Network Topologies

	Virtual Network Embedding as a Markov Decision Process
	A Finite-Horizon Markov Decision Process Model for Coordinated Virtual Node Mapping
	Monte Carlo Tree Search for Solving the Virtual Node Mapping
	MaVEn Algorithms
	Parallelization of MaVEn

	Performance Evaluation
	Simulation Environment
	Internet Service Provider Substrate Network Topology
	Variable Virtual Network Request Arrival Rate Scenarios
	Parallel MaVEn Simulation Scenarios
	Data Center Substrate Networks

	Discussion

	VNE-Sim: A Virtual Network Embedding Simulator
	The Simulator Core: src/core
	Network Component Classes
	Virtual Network Embedding Classes
	Discrete Event Simulation Classes
	Experiment and Result Collection Classes
	Operation Related Classes

	Conclusion
	Bibliography
	Appendix iDef: Selected Code Sections
	Appendix VNE-Sim: Selected Code Sections

