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Abstract

Recently, there has been much interest in studying certain graph partitions that generalize

graph colourings and homomorphisms. They are described by a pattern, usually viewed

as a symmetric {0, 1, ∗}-matrix M . Existing results focus on recognition algorithms and

characterization theorems for graphs that admit such M -partitions, or M -partitions in which

vertices of the input graph G have lists of admissible parts. For (homomorphism) problems

with costs, researchers have also investigated the approximability of the problem.

In this thesis, we study the complexity of these matrix partition problems. First, we

investigate the complexity of counting M -partitions. The complexity of counting problems

for graph colourings and graph homomorphisms has been previously classified, and most

turned out to be # P-complete, with only trivial exceptions. By contrast, we exhibit many

M -partition problems with interesting non-trivial counting algorithms; moreover these al-

gorithms appear to depend on highly combinatorial tools. In fact, our tools are sufficient to

classify the complexity of counting M -partitions for all matrices M of size less than four.

Then, we turn our attention to the homomorphism problems with costs. Previous results

include partial classification of approximation complexity for doubly convex bipartite graphs.

We complete these results and extend them to all digraphs. We prove that if H is a co-

circular arc bigraph, then the minimum cost graph homomorphism problem to H admits

a polynomial time constant ratio approximation algorithm. This solves a problem posed

in an earlier paper. Our algorithm is obtained by derandomizing a two-phase randomized

procedure.

In the final third of the thesis, we present a partial dichotomy for the complexity of

exact minimization of homomorphism costs, when the cost function is a constant across the

vertices of the input graph. We show that the dichotomy is complete when the target graph

is a tree.

Keywords. partitions; homomorphisms; counting problems; approximation algorithms;

polynomial algorithms; dichotomy

iii



Acknowledgments

First of all, I would like to extend my utmost gratitude to my senior supervisor, Dr. Pavol Hell,

who has supported me with his broad knowledge, guidance, and encouragements during my

graduate studies at Simon Fraser University. I have learnt a lot from him, not only from

his technical skills in computer science, but also from his way of thinking and his attitudes

toward research.

I would like to thank my supervisor, Dr. Joseph G. Peters. I am grateful to Dr. Ladislav Sta-

cho and Dr. Barnaby Martin who kindly accepted to be my examiners. I would also like to

thank Dr. Binay Bhattacharya who accepted to be the chair of the examining committee. I

am grateful to Dr. Arthur L. Liestman and Dr. Funda Ergun who helped me with valuable

comments and discussions.

Part of the results presented in this thesis were joint work. I am grateful to my collab-

orators: Dr. Arash Rafiey, Dr. Monaldo Mastrolilli, and Dr. Miki Hermann.

Last but not least, I am grateful to my parents, Fatemeh and Ahmad, and my wife,

Atefeh Mirsafian, for their unconditional support and strong motivations during my entire

academic studies. Their support has been invaluable to me.

iv



Contents

Approval ii

Abstract iii

Acknowledgments iv

Contents v

List of Tables vii

List of Figures viii

List of Algorithms ix

1 Introduction 1

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Theory of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Graphs and Digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 15

2.1 Graph Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 List Homomorphisms and Retractions . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Surjective Homomorphisms and Compactions . . . . . . . . . . . . . . . . . . 21

2.4 Digraph Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Minimum Colour Sum and Optimum Cost Chromatic Partitions . . . . . . . 24

v



2.6 Minimum Cost Graph Homomorphisms . . . . . . . . . . . . . . . . . . . . . 25

2.7 Matrix Partition of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Counting Graph Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Counting Complexity 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Decomposition Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Counting Split Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 The Dichotomy for Small Matrices . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 New Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Counting List Matrix Partitions of Graphs . . . . . . . . . . . . . . . 52

3.5.2 Counting 4× 4 Matrix Partitions of Graphs . . . . . . . . . . . . . . . 54

4 Approximation Algorithms 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Bottleneck Minimum Cost Graph Homomorphism Problems . . . . . . . . . . 58

4.3 An Exact Algorithm for Proper Interval Bigraphs . . . . . . . . . . . . . . . . 60

4.4 An Approximation Algorithm for Co-Circular Arc Bigraphs . . . . . . . . . . 62

4.5 An Approximation Algorithm for Interval Graphs . . . . . . . . . . . . . . . . 68

5 Graph Homomorphisms with Constrained Costs 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Vertex Weights and Minimum Cost Graph Homomorphism Problems . . . . . 75

5.3 The Hexagon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Large Even Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 The Dichotomy For Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Conclusion and Future Work 93

6.1 Counting Matrix Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Approximation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Minimum Constrained Cost Graph Homomorphisms . . . . . . . . . . . . . . 95

Bibliography 96

Index 106

vi



List of Tables

5.1 contribution of vertices in V4 to the cost of homomorphism fI . . . . . . . . . 91

vii



List of Figures

1.1 The claw, net and tent (drawn without loops) . . . . . . . . . . . . . . . . . . 7

2.1 The bi-claw, bi-net and bi-tent . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Matrices for the homogeneous set, skew partition, clique cutset and stable

cutset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 A gadget in G′ for a vertex v ∈ V (G) with a singleton list L(v) = {3} . . . . 79

5.2 A hexagon in H together with associated homomorphism costs (left), and a

gadget in G′ together with vertex weights (right). . . . . . . . . . . . . . . . . 82

5.3 A gadget in G′ corresponding to a vertex v with a singleton list L(v) = {c3}
(k = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Vertex weights for a gadget in G′ (k = 5) . . . . . . . . . . . . . . . . . . . . 84

5.5 An even cycle in H with costs (k = 4) . . . . . . . . . . . . . . . . . . . . . . 85

5.6 A 3-partite graph G with parts V1 = {x1, x2}, V2 = {y1, y2}, V3 = {z1} (left)

and its corresponding bipartite graph G′ (right) . . . . . . . . . . . . . . . . . 88

5.7 A bipartite claw, with homomorphism costs . . . . . . . . . . . . . . . . . . . 89

viii



List of Algorithms

3.1 CountModules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ix



Chapter 1

Introduction

In this chapter, we first briefly review the definitions required throughout the thesis in Sec-

tion 1.1. Then, we summarize our contributions in Section 1.2 and explain the organization

of the thesis in Section 1.3.

1.1 Definitions

In this section, we bring the definitions required in the rest of the thesis. This is accomplished

in two parts. In the first part, we briefly review the main concepts of the computational

complexity theory. In the second part, we continue with the definitions and terminology

required in the context of graph theory for directed and undirected graphs.

1.1.1 Theory of Computation

We assume the reader is familiar with the standard computational model, particularly, with

the definitions of decision problems, deterministic and nondeterministic Turing machines,

the computational complexity classes P and NP, the concepts of complete problems for a

class, and polynomial time many to one (Karp) reductions [90]. We refer the interested

reader to the text book [5] for further reading.

A function problem is a problem that can be formulated as a function. In other words, a

problem P is a function problem if there exists a function f such that the solution of every

instance x of P can be represented by f(x). For convenience, we assume that the instance

is encoded as a binary string, or a tuple of binary strings, and also every feasible solution

1



CHAPTER 1. INTRODUCTION 2

is encoded as a binary string as well. Let P be a function problem and f : Un → U be

its corresponding function (where U is {0, 1}∗, the set of all binary strings, and n is any

positive integer). A Turing machine M computes f (or, solves P) if it writes f(x) on the

output tape and halts whenever started with binary string x written on the input tape for

every possible input x. Furthermore, M runs (i.e., computes f) in time T : N → N when,

for every input x, M requires at most T (|x|) computational steps to compute f(x). If, for

some function T ′, T ∈ O(T ′), we may also say that M runs in time O(T ′).

The analogue of the class P for function problems is the complexity class FP, the set

of all function problems that can be solved efficiently, i.e., using deterministic Turing ma-

chines that run in polynomial time. Some function problems involve finding a solution that

minimizes (or maximizes) a cost function c(x) : {0, 1}∗ → N over all feasible solutions x.

For example, consider the following function problem. Given an input graph G, find the

maximum size of any independent set in G. In this case, for every feasible solution, which

is an independent set in G, the cost function is the size of the independent set, and the goal

is to maximize this cost function. These kind of problems are called optimization problems.

For every optimization problem, there is a corresponding decision problem that takes an

additional input parameter k, and asks whether there is a solution of cost k. For example,

the decision version of the independent set problem can be formulated as follows. Given a

simple graph G and an integer k, does G have an independent set of size (at least) k?

Let P be an optimization problem. An approximation algorithm for P is an algorithm

that finds an approximate solution. A c-approximation algorithm is an approximation algo-

rithm with a multiplicative guarantee c. That is, when P is a minimization problem, the

algorithm finds a solution which is at most c times the optimum solution, and when P is a

maximization problem, it finds a solution which is at least c times the optimum solution.

(For minimization problems, c > 1 and for maximization problems, c < 1). In general, c

can be expressed as a function of the input size, n.

A constant-ratio (or constant-factor) approximation algorithm is a c-approximation algo-

rithm for some constant c. The set of optimization problems that admit a polynomial time

constant-ratio approximation algorithm is denoted by APX. We say that P has a polynomial

time approximation scheme when there is a constant-ratio (1 + ε)-approximation algorithm

for every ε > 0 (ε-approximation for maximization problems). The set of optimization

problems that admit a polynomial time approximation scheme is denoted by PTAS. By

definition, PTAS ⊆ APX. Arora, Lund, Motwani, Sudan and Szegedy proved that unless
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P = NP, there are problems in APX that do not admit a polynomial time approximation

scheme [6]. In the rest of this thesis, we only discuss polynomial time approximation al-

gorithms and when we say approximation algorithm, we always mean a polynomial time

approximation algorithm. We say that a problem is not approximable when, unless P = NP,

there is no polynomial time approximation algorithm with a multiplicative guarantee pos-

sible for it.

Some function problems involve finding the number of solutions of a specific problem.

These kind of problems are called counting problems. A counting Turing machine is a

special non-deterministic Turing machine that outputs the number of accepting paths, for

every given input, on an additional output tape. Counting Turing machines were introduced

by Valiant in 1979 [127]. He also defined the complexity class # P as the class of functions

f that can be computed using counting Turing machines that run in polynomial time.

It turns out that for some of the NP-complete problems, the many to one (Karp) reduc-

tions do not maintain a tractable relation between the number of solutions of the problems

(there is not a straightforward mapping between the exact number of solutions of the prob-

lems involved in the reduction). Denote by XO the class of all function problems with

Turing machines that belong to complexity class X and consult oracle O. A problem P is

# P-hard if for every problem Q in # P, there is a counting reduction from the problem Q
to the problem P, or equivalently, if # P ⊂ FPP . Furthermore, P is # P-complete if P is

# P-hard and P ∈ # P [127]. A counting reduction is very similar to the reductions between

NP-complete problems. The only difference is that we should be able to keep track of the

number of solutions. Formally, a counting reduction consists of two parts. The first part is

a polynomial time computable function that maps an instance a of Q to an instance b of P.

The second part is another polynomial time computable function that maps the number of

solutions of b to the number of solutions of a.

1.1.2 Graphs and Digraphs

An undirected graph G is an ordered pair of two sets, a set of vertices V (G) and a set of

edges E(G), and every edge is associated with an unordered pair of two (not necessarily

different) vertices.

Let G be an undirected graph, e ∈ E(G) be an edge and {u, v} be its associated pair of

vertices. We call u and v the ends of the edge e and say that e joins u and v. Also, we say

that u and v are adjacent in G, and e is incident with u and v. Moreover, we say that u is
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a neighbour of v (and vice versa). For convenience, we will often use uv to implicitly refer

to the edge joining u and v. The open neighbourhood (or simply, the neighbourhood) of a

vertex v ∈ V (G), denoted NG(v), is the set of all vertices u such that u and v are adjacent.

The closed neighbourhood of v, denoted NG[v], is NG(v) ∪ {v}. The degree of a vertex v in

G, denoted dG(v), is the size of its open neighbourhood.

In the rest of this thesis, we will often omit the word undirected and use graph for

undirected graphs. We will use letters G and H to denote (undirected) graphs and letter D

to denote digraphs (defined below). For simplicity, and when G can clearly be recognized

from the context, we may use V and E instead of V (G) and E(G), respectively. Also, we

may omit G and use N(v), N [v], and d(v) to refer to the open and closed neighbourhoods,

and the degree of vertex v, respectively. Similarly, we may use V , A, N−(v), N+(v), d−(v)

and d+(v) when the digraph D can be identified clearly.

A loop is an edge that joins a vertex to itself. Two or more edges are parallel when they

have the same pair of ends. A simple graph is a graph without loops and parallel edges.

An irreflexive graph is a graph with no loops (but possibly with parallel edges). A reflexive

graph is a graph in which every vertex has a loop. A graph is finite when its vertex set

and edge set are both finite sets. In this thesis, we assume all graphs are finite and without

parallel edges.

Graphs are usually represented by their adjacency list or by their adjacency matrix. In

the adjacency list representation, there is a set for every vertex v ∈ V (G) which contains

the vertices that are adjacent to v, while in the adjacency matrix representation, a matrix

A is used whose rows and columns are indexed by vertices of G, and Aij gives the number

of edges between vertex i and j.

A subgraph of a graph G = (V,E) is a graph whose set of vertices and edges are subsets

of V and E, respectively. Equivalently, H is a subgraph of G if it can be obtained from G

by deleting some edges and/or some vertices (together with their incident edges) of G. An

induced subgraph of G is a subgraph of G that can be obtained from G using only vertex

deletions. Moreover, we denote by G[S] the induced subgraph of G whose vertex set is S,

by G− v the induced subgraph G[V − {v}], and by G− S the induced subgraph G[V − S].

A graph G is connected if for every partition of its vertices into two non-empty disjoint

parts X and Y , there is at least one edge with one end in X and one end in Y . Otherwise,

the graph is disconnected. A component (or connected component) of G is a maximal in-

duced connected subgraph of G. Thus, a connected graph consists of one single connected
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component. Furthermore, up to order, there is a unique representation of every graph by

its connected components.

A walk is a sequence W = v0v1 · · · vk of (not necessarily distinct) vertices, in which every

two consecutive vertices in the sequence (vi and vi+1, 0 ≤ i < k) are adjacent. We call v0

and vk the ends of the walk and v1, · · · , vk−1 the internal vertices, and say that W connects

v0 to vk, or W is a v0vk-walk. A walk is closed when its ends are identical, and is a trail

when its edges are all distinct.

A k-path is a simple graph with k vertices v1, · · · , vk and k − 1 edges ei = vivi+1

(1 ≤ i < k). A path is a k-path for some k ≥ 1. Equivalently, a path is a walk in which all

vertices are distinct. A k-cycle (k > 2) is a simple graph with k vertices {v0, v1, · · · , vk−1}
and k edges ei = vivi+1 (0 ≤ i ≤ k − 1, indices modulo k). A 1-cycle consists of a single

vertex and a loop, and a 2-cycle consists of two vertices with two parallel edges joining

them. A cycle is a k-cycle for some positive integer k. We refer to the number of edges in

a path or cycle as its length. Hence, a path on k + 1 vertices, denoted Pk+1, and a cycle on

k vertices, denoted Ck, have length k. We say that a cycle or a path is even if it is of even

length, and is odd otherwise.

A bipartite graph is a graph whose vertex set can be partitioned into two parts X and

Y so that no edge has both ends in the same part. Hence, bipartite graphs are irreflexive

by definition. We also call (X,Y ) a bipartition of G and reserve the word bigraph (and

the notation G[X,Y ]) for a bipartite graph G with a given bipartition (X,Y ). When the

bipartition is given, we may refer to the vertices in part X as white vertices, and to the

vertices in part Y as black vertices. It is well known that a graph is bipartite if and only if

it does not contain any odd cycle (See [14]).

The definition of bipartite graphs is generalized as follows. For every k ≥ 2, a k-partite

graph is a graph whose vertex set can be partitioned into k parts so that no edge has both

ends in the same part. Again, k-partite graphs are irreflexive by definition.

A tree is a simple connected graph which does not have any subgraph which is a cycle.

There is always a unique path between any two vertices in a tree (as otherwise, the graph

would be disconnected, or have a cycle as a subgraph). The vertices of a tree are sometimes

called its nodes. A leaf in a tree is a node with degree one. A rooted tree is a tree with a

designated vertex called its root. Let T be a tree with root r. For any vertex v ∈ V (T ), level

of v is the length of the path from v to r. Let p(v) denote the the immediate vertex after v

in the path from v to r. We say that p(v) is the parent (or predecessor) of v, and v is a child
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(or successor) of p(v). The vertices whose parents are the same vertex are called siblings.

A forest is a simple graph in which every component is a tree. A reflexive tree is a graph in

which every vertex has a loop, and removing all the loops gives a tree. A partially reflexive

tree is a connected graph (with loops allowed) that does not contain any subgraph which

is a k-cycle for every k > 1. A partially reflexive tree is loop-connected when the subgraph

induced on vertices with loops is connected.

A complete graph is a simple graph in which every two distinct vertices are adjacent. A

reflexive complete graph is a graph in which every vertex has a loop, and removing all the

loops leaves a complete graph. The clique covering number of a graph G is the minimum

number of cliques in G required to cover all of its vertices. A complete bigraph is a bipartite

graph where every white vertex is adjacent to every black vertex. An empty graph is a

graph with no edges. A complete subgraph is often called a clique (or k-clique when it has

k vertices), and a complete bipartite subgraph is called a biclique (or (k, l)-biclique when it

has k white vertices and l black vertices). An empty subgraph is called an independent set

or a stable set. We let Kn stand for the complete graph on n vertices, Kref
n for the complete

reflexive graph on n vertices, and Kp,q for the complete bigraph on p white vertices and q

black vertices.

A cut vertex is a vertex v that its removal from the graph disconnects (eliminates all

paths between) two vertices in G. Equivalently, v is a cut vertex if there are distinct vertices

x 6= y (in the same component of G) such that there is no path between them in G− v. A

cutset is a set of vertices that disconnect G. Not all graphs have cut vertices or cutsets, for

example, a cycle has no cut vertices, and a complete graph has no cutsets. A clique cutset is

a cutset whose vertices induce a clique. Similarly, a stable cutset is a cutset whose vertices

induce an independent set (stable set).

A homogeneous set of a graph G is a non-empty subset S ⊂ V that shares the same

neighbourhood outside S: every vertex in V − S is either adjacent to all vertices in S, or is

not adjacent to any of them. A skew partition of a graph G is a partition of its vertex set

into two non-empty parts such that one part induces a disconnected subgraph of G and the

other induces a disconnected subgraph in the complement of G.

Let G = (V,E) be a simple graph. The complement of G, denoted G, is defined on the

same vertex set V as follows. Two distinct vertices are adjacent in G if and only if they are

not adjacent in G. A component of G is often called a co-component.

When G is bipartite, we also define a bipartite form of complement graph. Formally, let
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G[X,Y ] = (V,E) be a bipartite graph. The bipartite complement of G, denoted G[X,Y ],

is the bipartite graph with the same bipartition as G, in which a white vertex x ∈ X is

adjacent to a black vertex y ∈ Y if and only if x and y are not adjacent in G. When there

is no chance of ambiguity, we may use G to denote the bipartite complement of G.

Given a family S = {S1, S2, · · · , Sn} of sets, its intersection graph is the graph whose

vertex set is S and edge set is all pairs of vertices (sets) that intersect. That is, Si and Sj

are adjacent if and only if |Si ∩ Sj | > 0. As every set intersects itself, intersection graphs

are reflexive by definition.

An interval graph is an intersection graph of a set of intervals on the real line. That is,

each vertex in an interval graph is represented by an interval, and two vertices are adjacent

if and only if their corresponding intervals intersect. Lekkerkerker and Boland proved in [98]

that a graph has an interval representation if and only if it does not contain as an induced

subgraph any cycle of length at least four, or an asteroidal triple; a set of three distinct

vertices such that there is path between any two of them that does not contain any neighbour

of the third vertex. A proper interval graph is a graph that admits an inclusion-free interval

representation.

It is well known that interval graphs and proper interval graphs can be recognized in

linear time (see for example [16, 93] for interval graphs and [28, 33, 34] for proper interval

graphs). Wegner studied proper interval graphs in his PhD thesis ([135]) and proved the

following result.

Lemma 1.1. [135] A graph has a proper interval representation if and only if it does not

contain as an induced subgraph a cycle of length at least four, a claw, a net, or a tent.

Claw, net and tent are depicted in Figure 1.1.

Figure 1.1: The claw, net and tent (drawn without loops)
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A bipartite graph G[X,Y ] is an interval bigraph when there is an interval representation

of vertices such that x ∈ X and y ∈ Y are adjacent if and only if their corresponding intervals

intersect. Interval bigraphs can be recognized in polynomial time [110]. An interval bigraph

is proper if it admits an interval representation such that the set of intervals representing its

white vertices and the set of intervals representing its black vertices are both inclusion-free.

Spinrad, Brandstädt and Stewart showed that proper interval bigraphs can be recognized

in linear time [119].

A graph G is a circular arc graph if it is the intersection graph of a family of arcs on a

circle; every vertex is represented by an arc on the circle, and two vertices are adjacent if and

only if their corresponding arcs intersect. Circular arc graphs are a natural generalization

of interval graphs, going from the intervals on the line to the arcs on the circle. In fact, an

interval representation can be obtained from a circular arc representation when at least one

point on the circle is not covered by any arc, by cutting the circle at that point. Circular arc

graphs can be recognized in linear time (see [107]). Recently, Francis, Hell and Stacho [54]

presented a forbidden structure characterization of circular arc graphs and developed the

first polynomial time certifying algorithm for recognition of circular arc graphs (that outputs

an obstruction subgraph in case the input does not admit a circular arc representation). For

a recent survey on circular arc graphs see [35].

A circular arc graph is proper if it admits a circular arc representation in which no arc

contains another. Tucker [125] characterized proper circular arc graphs using an infinite

family of minimal induced forbidden subgraphs. Later, Deng, Hell and Huang developed

linear time algorithms for recognition of proper circular arc graphs [34].

A graph G is a subtree graph if it is an intersection graph of a family of subtrees of a

tree T ; every vertex of G is represented by a subtree of T and two vertices are adjacent if

and only if their corresponding subtrees intersect (share a vertex).

A chordal graph is a graph in which every cycle of length at least four has a chord, an

edge that joins two non-adjacent vertices in the cycle. Equivalently, a graph is chordal if and

only if it does not have any induced cycle of length greater than three. Gavril [57] proved

that a graph is chordal if and only if it has a subtree representation. A vertex v is called a

simplicial vertex if the induced subgraph G[N [v]] is a clique. An ordering v1, v2, · · · , vn of

vertices of G is a perfect elimination ordering if vi is a simplicial vertex in G[{vi, vi+1, vn}].
It is also known that a graph is chordal if and only if it admits a perfect elimination ordering.

Chordal graphs can be recognized in linear time [117, 122, 123].
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A split graph is a graph whose vertices can be partitioned into two sets, an independent

set and a clique. It is easy to see that split graphs cannot contain any induced cycle of

length at least four, and hence they are chordal.

Bang-Jensen and Hell refined Wegner’s characterization [9]. For graphs G and H, they

said that G is a multiple of H when it can be obtained from H by replacing each vertex

u ∈ V (H) by a complete graph Ku and joining vertices of Ku and Kv whenever u and v are

adjacent in H. They showed that a chordal graph G that is both claw-free and net-free but

contains a tent as an induced subgraph is indeed a multiple of tent. Thus, they deduced

the following characterization of proper interval and proper circular arc graphs.

Corollary 1.1. [9] A chordal graph G is a proper interval graph if and only if it is claw-free

and net-free and is not a multiple of the tent.

Corollary 1.2. [9] A chordal graph G is a proper circular arc graph if and only if it is

claw-free and net-free.

A colouring (also, vertex-colouring) of a graph G is a mapping f : V (G) → N, i.e.,

an assignment of colours (represented by positive integers) to the vertices of G. A proper

colouring is a colouring in which all adjacent vertices map to different colours. We usually

omit the word proper for simplicity as we only discuss proper colourings. A k-colouring

is a colouring that uses at most k different colours. A graph is k-colourable if it admits a

k-colouring. The chromatic number of a graph G is the smallest integer k such that G is

k-colourable.

The colouring problem for graphs is the decision problem that asks, for a simple input

graph G and an integer k, whether G admits a k-colouring. Karp proved that this problem

is NP-complete [90]. For every positive integer k, the k-colouring problem, denoted k-COL,

is the decision problem that asks whether an input graph G is k-colourable. The k colouring

problem is NP-complete in general unless k = 1, 2 [56].

A directed graph, also called digraph, is an ordered pair (V (G), A(G)) where V (G) is the

set of vertices, and A(G) is the set of arcs, or directed edges, disjoint from V (G). While

every edge in an undirected graph is an unordered pair, the vertices associated with an arc

in a directed graph are ordered, hence defining a direction on the edge from one vertex to

the other. For any digraph D, we can define an undirected graph by removing directions

from its arcs. This is called the underlying graph of D and is denoted by G(D). It is also

possible to construct a directed graph D based on any undirected graph G by assigning an
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arbitrary direction to every edge. This is called an orientation of G. Similarly, an oriented

walk, an oriented path and an oriented cycle are a walk, path and a cycle with edges oriented

in arbitrary directions.

Let D be a directed graph, e ∈ E(G) be an arc and (u, v) be its associated pair of

vertices. We say that u dominates v, and v is dominated by u. We call u the head of e and v

the tail of it. Also, we say that v is an out-neighbour of u and u is an in-neighbour of v. We

denote by N−D (v) the set of all in-neighbours of v, and by N+
D (v) the set of all out-neighbours

of v. The in-degree (similarly, out-degree) of v is the size of N−D (v) (respectively, N+
D (v))

and is denoted by d−D(v) (respectively d+D(v)).

Many concepts primarily defined for graphs can be extended to digraphs as well. In

particular, a loop is an arc with the same head and tail, and two arcs are parallel if they

join the same head to the same tail. A digraph is reflexive, irreflexive, or finite when its

underlying graph is reflexive, irreflexive or finite, respectively. A directed path is a directed

graph whose underlying graph is a path with all arcs oriented in the same direction. A

directed cycle is a directed graph whose underlying graph is a cycle, and all arcs are oriented

in the same direction.

A digraph D is semicomplete if for every pair of vertices x, y ∈ V (D), x dominates y, or

y dominates x (or both).

1.2 Our Contribution

We study certain graph partition problems that generalize graph colourings and graph

homomorphisms. These partition problems require certain parts to be cliques or independent

sets. They may also require two parts to be fully adjacent, or have no edges joining them.

These constraints are usually encoded by a symmetric {0, 1, ∗}-matrix M . Diagonal values

define the constraints on the parts: Mi,i = 1 means part i must be a clique and Mi,i = 0

means it must be an independent set, while Mi,i = ∗ does not signify any restrictions. Off-

diagonal values define the constraints between parts. Again, Mi,j = 1 means that every

vertex in part i must be adjacent to every vertex in part j, Mi,j = 0 means there are no

edges between parts i and j, and Mi,j = ∗ means there is no restriction on the edges between

those two parts.

When M has no 1s, the problem corresponds to a graph homomorphism problem. When

all diagonal values of M are 0, and all off-diagonal values are ∗, then it corresponds to a
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graph colouring problem. For homomorphism problems, there are optimization problems

with respect to minimizing costs.

In this thesis, we study three graph partition problems closely connected under the

umbrella notion of matrix partitions. For (homomorphism) problems with costs, researchers

have also investigated the approximability of the problem.

• First, we investigate the complexity of counting M -partitions [69]. The complexity

of counting problems for graph colourings and graph homomorphisms (special cases

of M -partitions) have been previously classified, and most turned out to be # P-

complete, with only trivial exceptions where the counting problems are easily solvable

in polynomial time [128, 38]. By contrast, we exhibit many otherM -partition problems

with interesting non-trivial counting algorithms; moreover, these algorithms appear to

depend on highly combinatorial tools. In fact, our tools are sufficient to classify the

complexity of counting M -partitions for all matrices M of size less than four. In the

process of determining the complexity of counting matrix partition problems:

– We present a novel polynomial time algorithm for counting the number of bisplit

partitions of any input graph. A bisplit partition is a partition of a graph into

an independent set, and a biclique.

– We present algorithms for counting (non-empty) modules of graphs, or counting

modules of graphs with special properties. By special properties, we mean re-

quiring the module itself, its set of neighbours, or its set of non-neighbours to be

an independent set, or a clique. Modules of graphs are explained in Section 3.2.

It turns out that, among matrices not accounted for by the existing results on counting

homomorphisms, all matrices which do not contain the matrices for independent sets or

cliques yield tractable counting problems. Motivated by our results, Gobel, Goldberg,

McQuillan, Richerby and Yamakami investigated one variant of this problem where

every vertex of the input graph is equipped with a list of admissible parts [58] and

proved that there is a dichotomy classification for this variant. Later, Dyer, Goldberg

and Richerby extended our results for small matrices to matrices of size 4 [37]. We

discuss these two works as well.

• Then, we turn our attention to the homomorphism problems with costs. Previous

results include a 2-approximation algorithm for the so-called doubly convex bipartite
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graphs, as well as hardness of approximation when the corresponding list homomor-

phism problem is NP-complete [105]. We extend these results by proving that the

converse of the latter is also true, thus, showing that there is a dichotomy classifi-

cation for the problem of approximately finding the minimum cost graph homomor-

phisms to any target (directed) graph H. In the process, we investigate the bottleneck

version of the homomorphism problem with costs, and provide a complete dichotomy

classification for it. The dichotomy coincides with the well-known dichotomy of list ho-

momorphism problems for graphs. We then present a polynomial time approximation

algorithm that requires oracle access to an algorithm for the corresponding bottleneck

minimum cost graph homomorphism problem. The approximation ratio guaranteed

by our oracle algorithm is n, the number of vertices in the input graph. In search

for better approximation ratios, we focus on simple target graphs with tractable list

homomorphism problems. We prove that if H is a co-circular arc bigraph, then the

minimum cost graph homomorphism problem to H admits a polynomial time constant

ratio approximation algorithm. This solves a problem posed in an earlier paper [105].

Our algorithm is obtained by derandomizing a two-phase randomized procedure. We

show a similar result for graphs H in which all vertices have loops: if H is an interval

graph, then the minimum cost homomorphism problem to H admits a polynomial

time constant ratio approximation algorithm.

• Minimum cost graph homomorphism problems have been viewed as generalizations of

list homomorphism problems. They also generalize two well-known graph colouring

problems: the minimum colour sum problem (MCS) [95], and the optimum cost chro-

matic partition problem (OCCP) [94]. In both of these problems, the cost function

meets a specific constraint: the cost of using a specific colour is the same for every

vertex of the input graph. We study the minimum cost graph homomorphism prob-

lems with cost functions having the same property. It is not hard to see that when

the original problem is polynomial time solvable, the problem with constrained costs

is also polynomial. It turns out that, in most cases, when the original problem is

NP-complete, the problem with constrained costs is also NP-complete. Specifically,

we prove that this is case for trees and the dichotomy of the minimum cost graph

homomorphism problems to trees coincides with the dichotomy of the problem with

constrained costs. We also prove that when H is not chordal bipartite, then the
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minimum constrained cost graph homomorphism problem is NP-complete.

1.3 Organization of the thesis

The rest of this thesis is organized as follows.

Chapter 2 is dedicated to preliminaries. We survey a wide range of related problems, and

present existing results. We start by looking into graph homomorphism problems in Sec-

tion 2.1. Then, we turn our attention to variants of homomorphism problems, including list

homomorphism problems, surjective homomorphism problems, and digraph homomorphism

problems in the following three sections. Then, we discuss problems with costs. We start

with colouring problems that involve costs in Section 2.5. This consists of the minimum

colour sum problem and the optimum cost chromatic partition problem. Then, we review

the background on their generalization to graph homomorphisms in Section 2.6. Finally, we

discuss the matrix partition problems and counting graph homomorphism problems in the

last two sections.

In Chapter 3, we study the complexity of counting matrix partition problems. This is

accomplished in three parts. First, we present decomposition techniques that we use to

present polynomial counting algorithms for some matrix partition problems. These tech-

niques fall into two categories. In the first category, our counting algorithms are based on

the so-called sparse-dense partitions first introduced by Feder and Hell [50] in studying list

matrix partition problems. For matrices in the second group, we present efficient counting

algorithms by extending the well-known result of Gallai [55] on modular decomposition of

a graph. These are accomplished in Section 3.2. Our last polynomial counting algorithm

is for the matrix M that corresponds to counting bi-split partitions (partitions of a graph

into an independent set, and a complete biclique) and is presented in Section 3.3. Finally,

we provide a dichotomy classification for small matrices in Section 3.4. We also discuss

two recent developments in studying counting matrix partitions that are published very re-

cently. In particular, the dichotomy for list matrix partition problems by Gobel, Goldberg,

McQuillan, Richerby and Yamakami, and a computer assisted proof that extends our results

to matrices of size 4.

In the following two chapters, our focus is on matrix partition problems that correspond

to graph homomorphism problems. In particular, we investigate the minimum cost graph

homomorphism problems in Chapter 4. We start by studying the bottleneck version of
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the problem in Section 4.2 and presenting a polynomial time approximation algorithm for

all (directed) graphs. In Section 4.3, we bring the polynomial algorithm for MinHOM(H)

first discovered by Gutin, Hell, Rafiey, and Yeo [62] and discuss an equivalent integer linear

program for it. Finally, we present our constant ratio approximation algorithms for co-

circular arc bigraphs and reflexive interval graphs in Sections 4.4 and 4.5, respectively.

In Chapter 5, we introduce the minimum constrained cost graph homomorphism prob-

lem. First, we argue in Section 5.2 that the weighted version of the problem (with polynomi-

ally bounded vertex weight) is equivalent to the problem without weights. Then, we prove

in the following two sections that the problem with constrained costs remains NP-complete

when H is not a chordal bipartite graph. Finally, we show a complete dichotomy for trees

in Section 5.5.

In Chapter 6, we present a summary of the thesis and discuss some open problems and

possible directions for future work.



Chapter 2

Background

This chapter is dedicated to presenting the background of matrix partition problems. We

survey problems related to M -partition problems and present known results. These prob-

lems are organized as follows. First, we consider matrix partition problems for matrices that

represent graphs, i.e., graph homomorphism problems. This includes the graph homomor-

phism problem in Section 2.1, list homomorphism and retraction problems in Section 2.2,

surjective homomorphism and compaction problems in Section 2.3, and the homomorphism

problem for digraphs in Section 2.4. Then, we investigate matrix partition problems that

involve costs of mappings, or costs of colouring. To be specific, Section 2.5 is dedicated to

the minimum colour sum and optimum cost chromatic partition problems, and Section 2.6 is

devoted to the minimum cost graph homomorphism problem. Then, we turn our attention

to general matrix partition problems (with and without lists), where matrices are taken

over {0, 1, ∗} in Section 2.7. Finally, we explore the corresponding counting problems in the

last three Sections. In particular, we review the counting problems for matrix partitions

that represent graphs, i.e., counting graph homomorphism and counting graph list homo-

morphism problems in Section 2.8, and discuss counting matrix partitions of graphs (both

with and without lists) in Section 3.5.

2.1 Graph Homomorphisms

Let G and H be two undirected graphs. We say that a mapping f : V (G) → V (H) is a

homomorphism if it preserves the edges, that is, for every uv ∈ E(G), f(u)f(v) ∈ V (H).

When f is a homomorphism of G to H, we say that H is the target (of the homomorphism).

15
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For a fixed graph H, the homomorphism problem for H, denoted HOM(H), asks whether an

input graph G admits a homomorphism to H. Homomorphism problems generalize graph

colouring problems. In fact, the k-colouring problem is exactly the homomorphism problem

to the complete graph on k vertices. Hence, the homomorphism problem is also often called

the H-colouring problem. The same problem can be formulated for digraphs G and H, and,

in fact, for the more general relational structures [53].

We have already mentioned in Section 1.1 that the k-colouring problem is NP-complete

for every k ≥ 3. As a consequence, the graph homomorphism problem is NP-complete

whenever H is the complete graph Kk (for any k > 2). On the other hand, a number of

tractable cases are easily identified. In particular, when H is an empty graph or has a loop,

the homomorphism problem is trivial. This is because, when H is empty, the answer is yes

if and only if G is empty, and when H has a loop, the answer is always yes, as all vertices

of the input graph G can be mapped to a vertex in H that has a loop. So, we assume

that H is a simple graph with at least one edge. It is not hard to see that when H is a

bipartite graph, then the homomorphism problem can be solved in linear time [106]. The

reason is that if G is not bipartite, then the answer is always no, and if G is bipartite, then

the answer is always yes as we can choose any edge in H and map all vertices of G to its

ends. Interestingly, these are the only tractable cases as Hell and Nešetřil proved that all

the remaining cases are NP-complete.

Theorem 2.1. [75] If H is bipartite then the H-colouring problem is in P. If H is not

bipartite then the H-colouring problem is NP-complete.

Maurer, Sudborough and Welzl conjectured Theorem 2.1 (also known as the H-colouring

dichotomy) in 1981. They proved the NP-completeness of the problem in the special case

that H is an odd cycle. Feder and Vardi [53] conjectured a general dichotomy for all

relational systems. Bulatov, Jeavons and Krokhin [19] developed an algebraic machinery to

study the problem and formulated Feder and Vardi’s conjecture in algebraic terms. Bulatov

revisited the above graph homomorphism dichotomy theorem fifteen years later and reproved

it using general methods for studying constraint satisfaction problems [21]. Recently, Siggers

has presented another proof of the H-colouring dichotomy [118]. His proof is shorter than

the original proof of Hell and Nešetřil and does not need the algebraic machinery used in

Bulatov’s proof.

Recall that a bigraph is a bipartite graph with a fixed partition of vertices into white
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and black vertices. We say that a homomorphism f is colour-preserving if it preserves the

vertex colours of G, that is, f maps white vertices of G only to white vertices of H and

black vertices of G only to black vertices of H.

2.2 List Homomorphisms and Retractions

The classic application of graph colouring is the problem of scheduling; we are given a set of

tasks and a positive integer k, and want to know whether all the tasks can be scheduled to

be executed in k time slots. Two tasks may interfere, i.e., they cannot be executed at the

same time, probably because they need the same resource. This problem can be modelled

as a conflict graph, a graph whose vertex set is the set of tasks with two vertices adjacent

if and only if their corresponding tasks interfere. Clearly, every scheduling of the tasks

gives a proper k-colouring of the conflict graph; we can use colour i for a vertex when its

corresponding task is scheduled to run in time slot i. Conversely, every k-colouring gives a

feasible scheduling of the tasks, as the tasks corresponding to every vertex coloured i are

independent, and thus, they can be executed in the same time slot i. Hence, the scheduling

problem defined above is exactly the colouring problem.

Biro, Hujter and Tuza, motivated by applications in scheduling and VLSI theory, intro-

duced a generalization of the k-colouring problem called precolouring extension and denoted

PrExt [12]. In this modified version, part of the input graph G is properly coloured (with

at most k colours) and the question is whether this prescribed colouring can be extended to

a proper k-colouring for the whole graph G. In a series of papers, the same authors studied

this problem and its variants for some important classes of graphs including interval graphs,

some classes related to bipartite graphs, and some classes of perfect graphs [12, 81, 82].

Since then, the precolouring extension problem has attracted many researchers and has

been studied extensively [3, 2, 104, 103, 133, 134, 115, 40].

A further generalization is to restrict the set of admissible colours at each vertex as

follows. Together with the graph G = (V,E), there are lists L(v) ⊂ {1, 2, · · · , k} for every

vertex v ∈ V as part of the input, and the question is whether there exists a k-colouring

of G with respect to the lists L. This is called the list colouring problem. Indeed, list

colouring was introduced earlier than the precolouring extension by both Vizing [132] and

nearly simultaneously by Erdos, Rubin and Taylor [41] and has been studied extensively for

decades (see, for example, the surveys [126, 15], or the book [87]).
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Similarly, graph homomorphism problems have also been considered with local con-

straints. Let G and H be two graphs. A natural and practical approach to the graph

homomorphism problem is, exactly similar to the generalization of the k-colouring problem

with lists, introducing lists of admissible vertices of the target graph H for every vertex of

the input graph G as follows. Given graphs H and G, and lists L(v) ⊂ V (H) for all vertices

v ∈ V (G), a list homomorphism of G to H with respect to the lists L, is a homomorphism

f : V (G) → V (H) such that f(v) ∈ L(v) for all v ∈ V (G). For a fixed graph H, the list

homomorphism problem for H, denoted LHOM-H, asks whether an input graph G together

with lists L admits a list homomorphism to H. The list homomorphism problem was in-

troduced by Feder and Hell in [43]. It generalizes graph homomorphism, list colouring, and

precolouring extension problems.

The complexity of the list homomorphism problem for graphs has already been classi-

fied. For reflexive graphs H, Feder and Hell [43] proved that the problem is NP-complete

when H contains a chordless cycle (of length at least 4), or an asteroidal triple. Recall from

Section 1.1 that a (reflexive) graph is an interval graph if and only if it does not contain any

chordless cycle or an asteroidal triple. Hence, they concluded that the list homomorphism

problem for reflexive graphs is NP-complete when H is not an interval graph. They also pro-

vided a polynomial time reduction of the problem for interval graphs H to the 2-satisfiability

problem which is known to be solvable efficiently [56].

Theorem 2.2. [43] Let H be a reflexive graph. If H is an interval graph, then LHOM-H

is polynomial time solvable. If H is not an interval graph, then LHOM-H is NP-complete.

The H-colouring dichotomy (Theorem 2.1) implies that, in the case of irreflexive graphs,

LHOM-H is NP-complete when H is not bipartite, i.e., contains an odd cycle. Feder, Hell

and Huang [46] proved that there are also other structures that make the list homomorphism

problem intractable, including large even cycles (with size at least 6), and special edge-

asteroids. An edge-asteroid in a bipartite graph G = [X,Y ] is a set of 2k+ 1 edges uivi and

2k+ 1 paths Pi (0 ≤ i ≤ 2k+ 1, k > 0, ui ∈ X, vi ∈ Y ) that meet the following criteria for

every 0 ≤ i ≤ 2k + 1.

• Each path Pi joins ui to ui+1

• V (Pi) ∪ {vi, vi+1} does not contain any neighbours of ui+k+1 or vi+k+1

where all indices are module 2k + 1. An edge-asteroid is special if it has no edges between
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the ends of the first edge (u0v0) and V (Pi) ∪ vi for every 0 < i ≤ 2k + 1. The authors

then took advantage of the forbidden structure for the graphs that are the complement of

circular arc graphs by Trotter and Moore [89] and concluded the following classification for

irreflexive graphs.

Theorem 2.3. [46] Let H be a graph (without loops). The list homomorphism problem

to H is polynomial time solvable if the complement of H is a circular arc graph of clique

covering number two, and is NP-complete otherwise.

A graph has clique covering number two if and only if its complement is a bipartite

graph, hence, the term co-circular arc bigraph has been equivalently used to refer to the

class of graphs whose complement is a circular arc graph with clique covering number two,

i.e., graphs H for which LHOM-H is tractable. Despite the apparent differences in their

definition, co-circular arc graphs and interval graphs exhibit certain natural similarities (See

[43, 46] for example).

Feder, Hell and Huang studied the list homomorphism problem for graphs with loops

allowed. They introduced a new geometric representation called bi-arc representation [47]

that generalized both interval graph representation and co-circular arc representation. Let

C be a circle with two fixed points p and q. A bi-arc is an ordered pair of arcs (N,S) on

C such that N contains p but not q, and S contains q but not p. The points p and q are

often referred to as the north pole and south pole, respectively. A graph is a bi-arc graph if

vertices of H can be represented by bi-arcs such that for any two vertices x, y, represented

by (Nx, Sx), (Ny, Sy) respectively, Nx and Sy intersect if and only if x and y are adjacent

(same for Ny and Sx). It turns out that the complexity of the list homomorphism problem

for general graphs (in which loops are allowed) is closely related to the bi-arc graphs, as

stated in Theorem 2.4.

Theorem 2.4. [47] When H is any bi-arc graph, LHOM-H is polynomial time solvable.

Otherwise LHOM-H is NP-complete.

We explain the polynomial algorithm as in [47] (see also [53]), below. First, remove from

L(u) any vertex a ∈ V (H) that does not have a loop, for all vertices u ∈ V (G) that have a

loop. Then, for each pair u, v ∈ V (G), define Suv = {L(u)×L(v)}∩E(H) when uv ∈ E(G),

and Suv = {L(u)× L(v)} otherwise. Notice that if there exists a homomorphism f of G to

H with respect to the lists L, then we must have f(u), f(v) ∈ Suv. Then, for every three
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distinct vertices u, v, w ∈ V (G) perform the following update operation until there are no

more updates possible or one of the sets becomes empty.

Suv ← {ab ∈ Suv : ∃c ∈ V (H), ac ∈ Suw and bc ∈ Svw}

Obviously, f(u)f(v) ∈ Suv holds after every update operation. Thus, if any set becomes

empty, then there is no homomorphism of G to H with respect to the lists L and the answer

is no. Interestingly, the authors in [47] showed that the converse is also true for bi-arc

graphs, and if the algorithm stops with all lists being non-empty, then the answer is yes:

start with an arbitrary set of two vertices U = {u, v}, choose any pair (a, b) ∈ Suv, and set

f(u) = a and f(v) = b. Then start adding vertices w of V (G)−U to U one by one. At each

step, select a vertex c such that f(u)c ∈ Suw for all u ∈ U and set f(w) = c.

Bi-arc graphs contain both interval graphs and co-circular arc bigraphs. Furthermore,

interval graphs are the only reflexive graphs with bi-arc representation, and co-circular arc

bigraphs are the only irreflexive graphs with bi-arc representation [47]. Hence, the bi-arc

representation seems to be a natural generalization of both the interval representation and

the co-circular arc bigraph representation.

In addition to the original version mentioned above, researchers have shown interest in

variants of the list homomorphism problem, where the input is required to meet certain

conditions.

Let H be a fixed graph.

The connected list homomorphism problem to H, is the problem that, given a graph

G together with lists L such that each list L(v) induces a connected subgraph of H, asks

whether there is a list homomorphism of G to H. In the case of reflexive graphs, the authors

in [43] proved that this problem is polynomial time solvable when H is a chordal graph, and

is NP-complete otherwise.

In the complete list homomorphism problem to H, the input is a graph G and lists L such

that each list L(v) induces a complete subgraph of H, and the question is, again, whether

there is a homomorphism of G to H with respect to the lists L. When H is an irreflexive

graph, the authors in [46] proved that the problem is polynomial time solvable when H is a

triangle free graph, and is NP-complete otherwise.

The one-or-all list homomorphism problem is the problem that, for an input graph G

and lists L such that each list L(v) is either a single vertex of H or the entire set V (H),
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asks if there is a list homomorphism of G to H. One-or-all list homomorphism problems

generalize precolouring extension problems (with H being a complete graph). Feder and

Hell proved that the problem is NP-complete when H is a reflexive cycle of length k ≥ 4 [43].

Another interesting related problem is the graph retraction problem. Let G be a graph

and H be an induced subgraph of G. A homomorphism r of G to H is a retraction if for

every vertex v ∈ V (H), r(v) = v. When there exists a retraction of G to H, we say that

H is a retract of G and G retracts to H. Let H be a fixed graph. The retraction problem

for H, denoted RET-H, asks whether an input graph G, that contains H as an induced

subgraph, retracts to H. Hell studied graph retractions in his Ph.D. thesis in 1972 [68]. Since

then, retraction problems have gained noticeable amount of interest from the researchers

[113, 28, 111, 8, 112, 7, 91, 130, 129, 131, 18, 101, 92].

The complexity of the retraction problems is an open problem in general, but several

special cases have been classified. When H is a reflexive k-cycle (k ≥ 4), the retraction

problem is known to be NP-complete, and when H is a reflexive chordal graph, RET-H

is polynomial time solvable [43]. In the case of irreflexive graphs, Bandelt, Dahlmann and

Schutte proved that the problem is polynomial time solvable when H is a chordal bipartite

graph [8]. Feder, Hell and Huang proved that RET-H is NP-complete when H is an even

cycle of length at least 6 [46]. Vikas classified the retraction problem to all graphs with at

most four vertices [131].

Feder and Hell proved in [43] that, for every fixed graph H, the retraction problem for

H and the one-or-all list homomorphism problem to H are polynomially equivalent.

2.3 Surjective Homomorphisms and Compactions

Other related problems are the vertex-surjective homomorphism and the edge-surjective

homomorphism problems. Let G and H be two graphs. A homomorphism h of G to H is

vertex-surjective if for every vertex a of the target graph H, there is at least one vertex u

of G such that h(u) = a. Moreover, if h is a vertex-surjective homomorphism and for every

edge ab ∈ E(H) (a 6= b) there is an edge uv ∈ E(G) such that h(u) = a and h(v) = b, then

h is an edge-surjective homomorphism.

For a fixed graph H, the surjective homomorphism problem, also called as the Surjective

H-Colouring problem, asks whether an input graph G admits a vertex-surjective homo-

morphism to H. Analogously, the edge-surjective homomorphism problem, also often called
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the compaction problem and denoted COMP-H, asks whether an input graph G admits an

edge-surjective homomorphism to H. For historical reasons, in the compaction problem,

the loops are exempt from the surjectivity constraint, i.e., the required homomorphism is

surjective on all edges but not necessarily all loops.

The complexity of surjective homomorphism problems, and of compaction problems

has not been completely classified (see [13]). Chen [26] has extended some of the alge-

braic machineray developed for the homomorphism problems to surjective homomorphisms.

Golovach, Paulusma and Song proved a dichotomy when H is a partially reflexive tree [59]

as follows.

Theorem 2.5. [59] For any fixed tree H, the Surjective H-Colouring problem is polynomial

time solvable if H is loop-connected, and NP-complete otherwise.

Recently, Martin and Paulusma proved that when H is the reflexive 4-cycle, the surjec-

tive homomorphism problem to H is NP-complete [102].

There is a close relation between compaction and retraction problems. In particular,

it is known that, for every fixed graph H, COMP-H is polynomial time solvable when the

corresponding retraction problem, RET-H, is polynomial time solvable [129]. But it is not

known if the converse is true. Vikas showed that for every fixed reflexive (or bipartite)

graph H, there exists a reflexive (resp. bipartite) graph H ′ so that the problems RET-H

and COMP-H ′ are polynomially equivalent [129].

2.4 Digraph Homomorphisms

The definition of graph homomorphism can easily be extended to digraphs. Let D and H

be digraphs. A mapping h : V (D)→ V (H) is a homomorphism of D to H if it preserves the

arcs, that is, h is a homomorphism if for every arc uv ∈ A(G) we have f(u)f(v) ∈ A(H).

Similarly, we can define list homomorphisms for digraphs when there is a list of admissible

vertices of H for every vertex of D. The homomorphism and list homomorphism problems

for digraphs are defined analogously.

The complexity of the digraph homomorphism problem is an open problem and only

special cases have been settled. In particular, Feder studied the problem when the target

digraph H is an oriented cycle [42].

In contrast to the digraph homomorphism problem, the complexity of the list homomor-

phism problem for directed graphs has been classified. Recall that in the case of undirected
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graphs, existence of certain structures in the target graph makes the problem NP-complete.

In the case of directed graphs, Hell and Rafiey proved that the complexity of the list homo-

morphism problem depends on existence of a fairly complicated structure that they called

directed asteroidal triple defined below.

Theorem 2.6. [79] Let H be a digraph.

If H contains a DAT, then LHOM-H is NP-complete.

If H is DAT-free, then LHOM-H is polynomial time solvable.

The dichotomy for list homomorphisms was later extended by Bulatov [20] to all con-

straint satisfaction problems.

Let H be a digraph. We say that uv is a forward arc (or an arc) and vu is a backward

when u dominates v. We say that W is a walk in D if its underlying graph is a walk in

G(D). We say that two walks are congruent when they have the same sequence of forward

and backward arcs (so they must have the same length). An invertible pair is H is a pair of

vertices u, v ∈ V (H) such that the following conditions are met.

• there exists walks P and P ′ from u to v

• there exists walks Q and Q′ from v to u

• P and Q are congruent, and P avoids Q

• P ′ and Q′ are congruent, and P ′ avoids Q′

A permutable triple is a triple of vertices u, v, w ∈ V (H), together with three pairs s(x), b(x)

for each x ∈ {u, v, w} that meet the following condition for every permutation x, y, z of

u, v, w.

• there exists a walk Px from x to s(x)

• there exists a walk Py from y to b(x) congruent to Px

• there exists a walk Pz from z to b(x) congruent to Py

• Px avoids Py

• Px avoids Pz

A directed asteroidal triple (DAT for short) is a permutable triple u, v, w such that each of

the three pairs (s(x), b(x)) is an invertible pair (x ∈ {u, v, w}).
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2.5 Minimum Colour Sum and Optimum Cost Chromatic

Partitions

In the classical colouring problem the quality of a colouring c : V (G)→ N is measured by the

maximum colour used in (the range of) c. But in real world applications, we may encounter

problems that benefit from colourings that may use more colours than the minimum number

of colours possible. For example, in the scheduling problem discussed in Section 2.2, we

might be interested in minimizing the total (average) wait time of the tasks instead of

minimizing the maximum wait time. Again, an instance of the scheduling problem can be

modelled as a conflict graph, with vertices representing the tasks and edges representing the

conflicts. As before, there is a one to one correspondence between the proper colourings of

the conflict graph and the scheduling of the tasks, and the wait time for every task is the

colour assigned to its corresponding vertex. Hence, to minimize the total (average) wait

time of the tasks, we shall find a colouring c that minimizes the sum of the colours assigned

to V (G).

Formally, the minimum colour sum problem, denoted MCS, is the problem that, for any

input graph G together with an integer k, asks whether there exists a proper colouring

of vertices of G such that the sum of all assigned colours is at most k. The minimum

colour sum problem has applications in distributed resource allocation, VLSI routing and

compiler design (See [10]) and was first introduced by Kubicka and Schwenk in [95]. There,

they proved that the problem is NP-complete by a reduction from the chromatic number

problem. Moreover, they generated a family of trees to demonstrate that for every positive

integer k, there exist trees that require at least k colours to achieve the minimum colour

sum. Finally, they provided a linear time algorithm for the minimum colour sum problem

for trees. Later, Bar-Noy and Kortsarz proved that this problem admits no polynomial time

approximation scheme, unless P = NP, even for the bipartite graphs. Their result indicates

that this problem is essentially harder than the original colouring problem, which can be

solved efficiently for bipartite graphs [11].

The minimum colour sum problem can be generalized by introducing costs of colours.

Let G be a graph with n vertices and si be the cost of using colour i (1 ≤ i ≤ n). The

optimum cost chromatic partition of G is a proper colouring c : V (G) → {1, 2, · · · , n}
such that the total cost of colouring,

∑
u∈V (G) sc(u), is minimum. The decision problem

optimum cost chromatic partition problem, denoted OCCP, asks whether an input graph



CHAPTER 2. BACKGROUND 25

G together with costs si and an integer k admits a colouring that costs at most k. This

problem was first defined by Supowit in the context of VLSI [120]. In [94], Kroon, Sen,

Deng and Roy showed that when the input graph is an interval graph, the optimum cost

chromatic partition problem is equivalent to the fixed interval scheduling problem with

machine-dependent processing costs. They developed a linear time algorithm for trees and

polynomial time algorithm for interval graphs when there are only two different values for

the colouring costs. They also proved that the problem becomes NP-complete as soon as

four distinct values for colouring costs are permitted, even for interval graphs.

Jansen [84] studied this problem for special classes of graphs. He proved that the problem

can be solved in linear time for P4-free graphs, and in time O(n.log(n)k+1) for graphs with

constant treewidth k. He also proved that this problem is NP-complete for bipartite graphs

and permutation graphs. He has also investigated the approximability of this problem and

proved that there is no polynomial time O(n0.5−ε)-approximation algorithm even when the

input is restricted to bipartite graphs or interval graphs, unless P = NP and developed

O(n0.5)-approximation algorithms for bipartite, interval and unimodular graphs.

2.6 Minimum Cost Graph Homomorphisms

Let H be a fixed graph. In the minimum cost homomorphism problem to H, the input is

a graph G together with cost functions ci : V (G) → N for all vertices i ∈ V (H), and the

problem is to find a homomorphism f of G to H that minimizes the cost
∑

u∈V (G) cf(u)(u).

For every vertex i in V (H), the function ci gives the cost of mapping vertices of G to

the vertex i. We assume that the costs ci(u) are non-negative integers and refer to the

summation
∑

u∈V (G) cf(u)(u) as the cost of homomorphism f . We also assume that both

the input graph G and the target graph H are connected. Note that if G is disconnected,

then the minimum cost for every connected component of G is an independent sub-problem

that can be solved individually, and when H is disconnected, every connected component

of G must map to a component of H that gives the minimum cost for that component.

Moreover, there are a constant number of components in H (as H is fixed) and at most a

linear number of components in G.

The minimum cost homomorphism problem for graphs was first introduced by Gutin,

Rafiey, Yeo and Tso in 2006 [64] where it was motivated by a real world application of min-

imizing the cost of a repair and maintenance schedule for large machinery. Nevertheless,
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the minimum cost homomorphism problem provides a natural and practical way to model

many optimization problems. It generalizes many other problems such as list homomor-

phism problems, and as a consequence, list colouring problems and precolouring extension

problems, retraction problems, and various optimum cost chromatic partition problems (see

for example [49, 84, 85, 94]).

Gutin, Hell, Rafiey and Yeo studied the complexity of the minimum cost homomorphism

problem for graphs, denoted MinHOM(H), in [62]. They considered the corresponding

decision version, stated below. Let H be a fixed graph with loops allowed. For an input

graph G, together with homomorphism cost function c, and an integer k, decide if G admits

a homomorphism to H of cost less than or equal to k. They showed that while certain

minimum cost homomorphism problems have polynomial time algorithms, most are NP-

complete. In particular, they showed that when H is a reflexive graph, there is a polynomial

time algorithm when H is a proper interval graph; and when H is an irreflexive graph, the

problem is in P when H is a proper interval bigraph. They also proved that MinHOM(H)

is NP-complete in all other cases.

Theorem 2.7. [62] Let H be a fixed graph. The minimum cost homomorphism problem to

H is in P if every connected component of H is either a reflexive proper interval graph, or

an irreflexive proper interval bigraph. In all other cases, the problem is NP-complete.

It is worth noting that both the list homomorphism problem and the minimum cost

homomorphism problem have the monotonicity property, in the sense that if one of the

problems is NP-hard for some H, it is also NP-hard for all graphs H ′ that contain H as an

induced subgraph. This is because one can solve the problem for H using the problem for

H ′ by using empty lists, or relatively large costs on vertices not in H.

When H is an irreflexive graph, the proof of hardness for the minimum cost homomor-

phism problem (as in [64]) is by first proving that the problem is NP-complete when H is

any of the forbidden structures obtained from Lemma 2.1 and then taking advantage of the

monotonicity property explained above.

Lemma 2.1. [71] A bipartite graph H is a proper interval bigraph if and only if it does not

contain a cycle of length at least six, or a bipartite claw, or a bipartite net, or a bipartite

tent.
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Figure 2.1: The bi-claw, bi-net and bi-tent

The bipartite claw, bipartite net and bipartite tent are depicted in Figure 2.1. When

white and black vertices are distinguished, we refer to these graphs as bi-claw, bi-net and

bi-tent, respectively.

The minimum cost homomorphism problems generalize the list homomorphism prob-

lems; so the hardness for large cycles follows from the hardness results on cycles in [43].

Hence, it suffices to prove that the problem is hard for the bi-claw, bi-net, and bi-tent.

The authors proved that these problems are NP -complete by reductions from the problem

of finding a maximum independent set in a 3-coloured graph G, which they showed to be

NP-complete as an immediate result of Alekseev and Lozin [4].

In the case of reflexive graphs, the authors in [64] transformed the problem into the

irreflexive case. Nevertheless, the forbidden structures that make the problem intractable

for reflexive graphs are large induced cycles (with size at least four), the claw, the net, and

the tent. Thus, Lemma 1.1 implies that, for a reflexive graph H, MinHom(H) is polynomial

time solvable if H is a proper interval graph, and is NP-complete otherwise.

In the case of general graphs where there are both vertices with loops and vertices without

loops (otherwise the graph is either irreflexive or reflexive, respectively), the problem is NP-

complete by a reduction from the maximum independent set problem.

A graph (digraph) H is said to have the min-max ordering if its vertices can be ordered

such that u < v, w < t and ut, vw ∈ E(H) imply that uw, vt ∈ E(H). That is, whenever

two edges cross, both the minimum ends and the maximum ends must also be edges of H.

Observe that none of the forbidden structures from Lemma 2.1 admit a min-max ordering.

Spinrad and Stewart first introduced min-max ordering for bipartite graphs (which they

called strong orderings in their paper) and proved that bipartite permutation graphs are

exactly the bipartite graphs that admit such an ordering [119]. A permutation graph is

a graph that has a permutation representation; each vertex is represented by an element

of the permutation and two vertices are adjacent if and only if their relative order in the

permutation is reversed (compared to the original order). A bipartite permutation graph is
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a permutation graph that is also bipartite.

Later, Deng, Hell and Huang proved that the class of reflexive graphs with the min-max

property coincides with the class of proper interval graphs (see [34]). Hell and Huang further

improved this by showing that the class of proper interval bigraphs is the same as the class

of bipartite permutation graphs, and hence the class of irreflexive graphs with the min-max

property coincides with the class of proper interval bigraphs (see [70, 71]).

The polynomial algorithm for the minimum cost homomorphism problem takes advan-

tage of the min-max property and is by a reduction to the weighted minimum cut problem.

We describe the algorithm for reflexive graphs from [62]. The algorithm for bipartite graphs

that admit min-max orderings is similar.

Let H be a proper interval graph, with a1, a2, · · · , ap being a min-max ordering of its

vertices. Denote by `(i) the smallest subscript j such that aiaj is an edge in E(H).

Let G be the input graph of which we seek a homomorphism to H with a homo-

morphism cost function c. We construct an auxiliary (directed) network with vertex set

{s, t} ∪ {(u, i)|u ∈ V (G) and ai ∈ V (H)} (s and t are the source and sink, respectively),

and the following weighted arc set.

• an arc from the source vertex s to (u, 1), of weight ∞, for every u ∈ V (G),

• an arc from (u, i) to (u, i + 1), of weight ci(u), for every vertex u ∈ V (G) and every

i < p,

• an arc from (u, p) to the sink vertex t, of weight cp(u), for every u ∈ V (G),

• an arc from (u, i) to (v, `(i)), of weight ∞, for every edge uv ∈ E(G) and every i ≤ p.

The authors in [62] proved that the finite weighted cuts in the auxiliary network above

correspond to the homomorphisms of G to H, and hence, the weight of the minimum cut

is equal to the minimum cost homomorphism. Thus, standard (polynomial time) network

flow algorithms may be employed to obtain minimum cost homomorphisms when H is a

reflexive proper interval graph.

The minimum cost homomorphism problem has also been investigated for digraphs.

Gurin, Rafiey and Yeo provided a dichotomy classification when H is a fixed semicomplete

digraph; the problem is tractable when H is acyclic, or H is a cycle of length 2, or a H

is a cycle of length 3. In all other cases, MinHOM(H) is NP-complete [63]. For general
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digraphs, the same authors conjectured that MinHOM(H) is polynomial time solvable if H

has an extended min-max ordering (defined below); and is NP-complete otherwise.

Let k be a positive integer and H a digraph that is homomorphic to the directed cycle

~Ck with vertex set V (H) = V1 ∪ V2 ∪ · · · ∪ Vk where every set Vi maps to the same vertex

ai. We say that H admits a k-min-max ordering if there exists an ordering of every set Vi

which is a min-max ordering for every induced subgraph H[Vi ∪ Vi+1] (indices modulo k).

When k = 1 this corresponds to the usual min-max ordering of H because every digraph is

homomorphism to the directed cycle ~C1. Digraph H admits an extended min-max ordering

if it admits a k-min-max ordering for a positive integer k.

In [105], the authors studied the approximability of the minimum cost graph homomor-

phism problem when H is a bipartite graph. They showed that when the list homomorphism

problem is NP-complete for some fixed bipartite graph H, then the corresponding minimum

cost homomorphism problem is not approximable (with any multiplicative guarantee) unless

P = NP.

Theorem 2.8. [105] Let H be a fixed graph. If the list homomorphism problem to H is

NP-complete, then there is no polynomial time approximation algorithm for MinHOM(H),

unless P = NP.

As an immediate result, they also concluded that when H contains a cycle of length at

least six as an induced subgraph, no polynomial time approximation algorithm is possible.

Further, they suggested an integer linear formulation for this problem. This formulation

is equivalent to the weighted network flow construction used for the polynomial algorithm

in [62] discussed above. Using this equivalent formulation, they presented a randomized

polynomial time 2-approximation algorithm for a subclass of proper interval bigraphs that

include bipartite net and bipartite tent.

Theorem 2.9. [105] Let H be a bipartite graph. If H admits a min ordering such that the

neighbourhood of each vertex is an interval (a set of consecutive vertices in the other part

of the graph), then there is a (randomized) 2-approximation algorithm for MinHOM(H).

We will define min orderings in Section 4.1.
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2.7 Matrix Partition of Graphs

Homomorphisms to H can be viewed as partitions of the input graph G into parts corre-

sponding to the vertices of H. Specifically, if x ∈ V (H) has no loop, the corresponding part

Px is an independent set in G, and if xy 6∈ E(H), then there are no edges between the parts

Px and Py. A further generalization of homomorphisms allows us to specify that certain

parts Px must be cliques, and between certain parts Px and Py there must be all possible

edges.

Let M be a symmetric m by m matrix over {0, 1, ∗}. An M -partition of a graph G is a

partition of vertices of G into m parts P1, P2, . . . , Pm, such that for any two distinct vertices

u, v ∈ V (G) in (not necessarily different) parts Pi, Pj , they are adjacent when Mi,j = 1 and

are not adjacent when Mi,j = 0; Mi,j = ∗ does not enforce any restriction. It follows that

the diagonal values define the constraints on the parts; in any M -partition of G, Pi induces

an independent set in G if Mi,i = 0 and a clique if Mi,i = 1. Similarly, the off-diagonal values

define the constraints between two different parts; Mi,j = 1 means that every vertex in Pi is

adjacent to every vertex in Pj in any M -partition. Also, Mi,j = 0 means that there are no

edges in E(G) joining a vertex in Pi to a vertex in Pj . We usually refer to Pi as the i-th part.

Note that when M has no 1’s, the matrix M corresponds to an adjacency matrix of a graph

H, if we interpret ∗ as adjacent and 0 as non-adjacent; and in this case an M -partition of G

is precisely a homomorphism of G to H. Thus M -partitions generalize homomorphisms and

hence also graph colourings. Let M be a symmetric {0, 1, ∗} matrix. The graph partition

problem for matrix M , also called the M -partition problem, asks whether an input graph G

admits an M -partition.

We say that M is a partition matrix when it meets the conditions mentioned above,

that is, when M is a symmetric m by m matrix over {0, 1, ∗}. Furthermore we always

assume that the rows and columns are both indexed by {1, 2, · · · ,m} = [m]. For any two

sets X,Y ⊆ [m] of indices of M , we denote by MX,Y the submatrix obtained from M by

eliminating from M the set of rows that do not appear in X and the set of columns that

do not appear in Y . When X = Y , we say that MX,Y is a principal submatrix of M (and

denote it by MX for simplicity). We denote by M the matrix obtained from M be replacing

each 0 by 1 and vice versa, and call it the complement of M .

Matrix partition problems are frequently encountered in the study of perfect graphs.

A simple example is the matrix M =
(
0 ∗
∗ 1

)
: in this case a graph G is M -partitionable if
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and only if it is a split graph. Other examples of matrices M such that M -partitions are

of interest in the study of perfect graphs can be found in [50]. They include the existence

of a homogeneous set [60] (M has size three), the existence of a clique cutset (M has

size three), the existence of a skew cutset (M has size four), and many other popular

problems [27, 50, 32, 72, 121]. If M has a diagonal ∗, it is usual for the existence problems

to focus on M -partitions with all parts non-empty, otherwise the problems become trivial;

this is in particular the case in the previous three examples. In any event, we emphasize the

fact thatM -partition problems tend to be difficult and interesting even for small matricesM .

The matrices that translate some of these problems into M -partition problems are depicted

in Figure 2.2.

∗ 0 1
0 ∗ ∗
1 ∗ ∗



∗ 0 ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ 1
∗ ∗ 1 ∗


∗ 0 ∗

0 ∗ ∗
∗ ∗ 1

 ∗ 0 ∗
0 ∗ ∗
∗ ∗ 0



Figure 2.2: Matrices for the homogeneous set, skew partition, clique cutset and stable cutset

In [50], the authors studied the graph partition problem and its list variant. They

developed tools and techniques to attack these problems and used those tools to classify the

M -partition and list M -partition problems for small matrices M . In particular, we refer to

sparse-dense partitions, which we will cover in Chapter 3. They presented a dichotomy for

the M -partition problem when M has size four (Theorem 2.11) and for the list version when

M has size three (Theorem 2.10). Moreover, they found classifications for the list version

when M has size 4 but does not have any ∗ on the main diagonal. Also, for arbitrary large

matrices, their results include a complete classification for ∗-free matrices and a reduction

to nO(log(n)) H-colouring problems (Theorems 2.12, 2.13). In the rest of this Section, we

assume that M is a fixed matrix of size m over {0, 1, ∗}.

Theorem 2.10. [50] Suppose m = 3. Then the list M -partition problem is NP-complete

when M or its complement is the matrix for 3-colouring or the stable cutset, and is polyno-

mial time solvable otherwise.

Theorem 2.11. [50] Suppose m = 4. The M -partition problem (without lists) is NP-

complete when M has no diagonal ∗s and contains the matrix of 3-colouring or its comple-

ment, and is polynomial time solvable otherwise.
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Theorem 2.12. [50] If M is a (0, 1)-matrix, then the list M -partition problem is polynomial

time solvable.

Theorem 2.13. [50] Each list M -partition problem can be reduced to nO(log(n)) instances

of the list H-colouring problems (each with possible additional restrictions on the allowed

lists).

Later, Cameron et al. in [24] improved their results, and classified the list M -partition

problem for all remaining matrices of size 4, except for the matrix for the stubborn problem,

and its complement. Recently, Cygan et al. solved the last remaining case, the stubborn

problem, by providing a polynomial time algorithm, and hence completed the classification

of the list M -partition problem for matrices of size four, as stated in Theorem 2.14 below.

Theorem 2.14. [30] Suppose k = 4. The list M -partition problem is solvable in polynomial

time, except when M contains the matrix for 3-colourability, stable cutset, or their comple-

ments, or M is the matrix for stable cutset pair, 2K2, or their complements, in which case

the problem is NP-complete.

In addition to the general graph partition problems mentioned above, in which the input

graph is not restricted, there are results on some restricted versions. Among which, we may

refer to the the graph partition problem considered for chordal graphs, perfect graphs or co-

graphs (see [45, 51, 44] for some examples). The directed versions have also been studied (see

[52, 80, 79]).

2.8 Counting Graph Homomorphisms

Another related problem that has been studied widely is the counting problem for graph

homomorphisms (and graph colourings). Let H be a fixed graph. The problem of counting

homomorphisms to H, also called counting H-colourings and denoted # HOM(H), asks for

the number of homomorphisms of an input graph G to a fixed graph H. Homomorphism

numbers can be used to describe large parts of extremal graph theory, and they can be used

to characterize graphs (See [17]). This problem has also applications in statistical physics;

cf. [38].

It is well known that counting the number of graph k-colourings is polynomial when

k < 3 and is # P-complete otherwise. Dyer and Greenhill proved that counting the number
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of graph homomorphisms is # P-complete in general, with polynomial algorithms possible

only in trivial cases when every connected component of H is a complete reflexive graph,

or a complete irreflexive bipartite graph [38] (Theorem 2.15). They also proved that when

counting homomorphisms is NP-complete for some graph H, then there exists a constant

∆ for which the problem remains NP-complete for input graphs with maximum degree ∆,

and showed that in some practical cases ∆ = 3.

Theorem 2.15. [38] Let H be a fixed graph. The problem of counting H-colourings of

graphs is # P-complete if H has a connected component which is not a complete reflexive

graph or a complete bipartite graph. Otherwise, the problem is polynomial time solvable.

Later, Hell and Nešetřil proved a similar result for counting list homomorphisms of

graphs.

Theorem 2.16. [76] Let H be a fixed graph. # ListHOM(H) is # P-complete if H has a

connected component which is not a complete reflexive graph or a complete bipartite graph.

Otherwise, the problem is polynomial time solvable.



Chapter 3

Counting Complexity

3.1 Introduction

It is well known that the number of bipartitions of a graph G can be computed in polynomial

time. Indeed, we can first check, in polynomial time, if G is bipartite, and if not, the answer

is 0. IfG is bipartite, we can find, in polynomial time, the number c of connected components

of G. Since each such component admits exactly two bipartitions, the answer in this case

is 2c. Interestingly, the number of bipartitions can also be computed using linear algebra:

if each vertex v is associated with a variable xv over the field F2 = {0, 1}, and each edge

uv with the equation xu + xv = 1 in F2 (i.e., modulo 2), then the number of solutions of

this system is precisely the number of bipartitions of G. Thus 2-colourings of graphs can be

counted in polynomial time. It is also known that the counting problem for m-colourings

of G with m > 2 is # P-complete [99]. This is the dichotomy of the counting problems for

graph colourings.

Dichotomy of counting homomorphisms to graphs H has been established by Dyer and

Greenhill [38]. Namely, if each connected component of H is either a reflexive complete

graph, or an irreflexive complete bipartite graph, then counting homomorphisms to H can

be solved by trivial methods, as in the above example (or, once again, by linear algebra).

In all other cases, counting homomorphisms to H is # P-complete [38]. Other dichotomies

for homomorphism counting problems, in bounded degree graphs, or for homomorphisms

with lists, are discussed in [76]. (In the list version of the problem, the graph G has a list

L(v) ⊆ V (H) for each vertex v ∈ V (G) and only homomorphisms f that satisfy f(v) ∈ L(v),

for all v ∈ V (G), are counted.) In particular, it is proved in [76], that, as without lists, if each

34
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connected component of H is either a reflexive complete graph, or an irreflexive complete

bipartite graph, then counting list homomorphisms to H can be solved by easy polynomial

time methods, and in all other cases counting list homomorphisms to H is # P-complete [76].

We note for future reference the following complementarity of M -partitions. Denote

by M the matrix obtained from M be replacing each 0 by 1 and vice versa. Then an

M -partition of a graph G is precisely an M -partition of the complement G.

In the literature there are several papers dealing with algorithms and characterizations

of graphs admitting M -partitions (or list M -partitions) [30, 31, 50, 32]; these are detailed

in a recent survey [67], cf. also a slightly older survey [78], or the book [77]. We focus

on the counting problem for M -partitions. Recall that for homomorphism problems, ex-

cept for trivial cases, counting homomorphisms turned out to be # P-complete [38]. More

generally, the complexity of counting solutions of constraint satisfaction problems has also

been classified [22]. We contrast these facts by exhibiting several counting problems for

M -partitions, where highly combinatorial methods seem to be needed. In the process, we

completely classify the complexity of counting the number of M -partitions for all matrices

of size less than four.

Given a matrix M , we want to know how hard it is to count the number of M -partitions.

As a warm-up, we prove the following classification for two by two matrices M =

(
a c

c b

)
.

Theorem 3.1. If c and exactly one of a, b is ∗, then the problem of determining the number

of M -partitions is # P-complete. Otherwise there is a polynomial algorithm to count M -

partitions.

Proof. If, say, a = c = ∗ and b = 0, then the number of M -partitions of G is precisely

the number of independent sets in G, which is known to be # P-complete [114]. Similarly,

if a = c = ∗ and b = 1, we are counting the number of cliques in G, which is also # P-

complete [114] (or by complementarity).

If M has no 1, the result follows by [38], so we assume that M contains at least one 1,

and, by complementarity, also at least one 0. If c = 0, the two parts have no edges joining

them, and at least one part is a clique. The number of M -partitions can easily be determined

once the connected components of G have been computed. (For instance if a = 1, b = ∗,
and t connected components of G are cliques, then G has t M -partitions. When a = 1,

b = 0, the counting is even easier.) If c = 1, the result follows by complementation.
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Thus we assume that c = ∗. By symmetry, we may assume without loss of generality

that a = 0 and b = 1. Such an M -partition of G is called a split partition. It follows

from [50] that the number of split partitions is polynomial, and can be found in polynomial

time (see Theorem 3.1 in [50]). Therefore they can also be counted in polynomial time.

The two matrices
( ∗ ∗
∗ 0

)
and

( ∗ ∗
∗ 1

)
from the first paragraph of the proof will play a role

in the sequel, and we will refer to the as the matrices for independent sets, and cliques.

3.2 Decomposition Techniques

The last two by two matrix, corresponding to split partitions, illustrates the fact that

there are interesting combinatorial algorithms for counting M -partitions. In this section we

examine a few other examples, in this case of three by three matrices, documenting this

fact.

In the remainder of this part, we assume we have the matrix M =


a d e

d b f

e f c

.

We begin by discussing some cases related to the example of split partitions at the end

of the previous section. In fact, the general technique of Theorem 3.1 from [50] is formulated

in the language of so-called sparse-dense partitions as follows.

Let G be a graph with n vertices, and S and D be two families of subsets of V (G) that

meet the following conditions.

• They are closed under taking subsets,

• There exists a constant c such that for every S ∈ S and D ∈ D, the intersection S∩D
has size at most c,

• They can be recognized in polynomial time.

Then there are at most n2c partitions of V (G) into two sets S and D with S ∈ S, D ∈ D,

and all those partitions can be generated in polynomial time (O(n2c+2)) [50]. For split

partitions, we take S to be all independent sets, D all cliques, and c = 1. If we take for S all

bipartite induced subgraphs, for D all cliques, and c = 2, we can conclude that any graph

G has only a polynomial number of partitions V (G) = B ∪ C, where B induces a bipartite
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graph and C induces a clique, and all these partitions can be generated in polynomial time.

This result is sufficient to cover a number of polynomial cases.

Theorem 3.2. If a, b, c are not all the same and none is ∗, then the number of M -partitions

can be counted in polynomial time.

Proof. Up to symmetry and complementarity we may assume that a = b = 0, c = 1. For

each sparse-dense partition V (G) = S∪D, we shall test how many partitions of the subgraph

induced by S, into the first part and the second part, satisfy the constraints induced by

the entries d, e, and f of the matrix M . We impose the constraints due to e and f by

introducing lists on the vertices in S. (If, say, e = 1, then only vertices completely adjacent

to D will have the third part in their lists, and similarly for other values of e and f .) If

d is 0 or ∗, this corresponds to counting list homomorphisms to an empty graph (I2) or a

complete bipartite graph (K2), both of which are polynomial by [50], as noted above. When

d = 1, there are at most two different partitions of S to consider, so we can check these as

needed.

The next result deals with a class of problems related to homogeneous sets and modular

decomposition [60]. A module in a graph G is a subset A of its vertices with the following

property. Every vertex not in A is either adjacent to every vertex in A, or is not adjacent

to any of them. Every vertex of G is clearly a module, as is the empty set, and the whole

set V (G). These are called trivial modules. A graph is prime when all of its modules are

trivial. Non-trivial modules are also often called homogeneous sets.

Two modules overlap if their intersection is not empty and none of them is a subset of

the other one. A non-empty module is a strong module if it does not overlap with any other

module, and is a weak module otherwise. Let S = {S1, S2, · · · , Sk} be the family of strong

modules of G. The definition of the strong modules implies that for any two distinct strong

modules Si and Sj , one of the following three cases must occur.

• Si and Sj are disjoint (That is, Si ∩ Sj = ∅)

• Si ⊂ Sj

• Sj ⊂ Si

This containment relation can be used to define a tree on S with its root being V (G):

Consider a vertex for every member of S, and join two vertices if and only if one is the
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smallest superset of the other in S. This is called the modular decomposition tree of G and

is denoted by MD(G). It turns out that the leaves of the tree are precisely the singleton

subsets of S (which correspond to vertices of G).

If G is disconnected, then every component of G is a module of G as it is not adjacent to

any other vertex in G. Interestingly, it turns out that every such module is a maximal strong

module, and hence, its corresponding vertex in the modular decomposition tree is adjacent

to the root vertex corresponding V (G). Similarly, when G is disconnected, maximal strong

modules of G are precisely the co-components of G. It turns out that when both G and

G are connected, there is also a decomposition of V (G) into maximal strong modules. In

fact, Gallai proved that there is always a unique representation of G by its maximal strong

modules (up to order) as stated in the following theorem.

Theorem 3.3 ([55]). For any graph G one of the following three cases must occur.

1. G is disconnected, with components G1, G2, . . . Gk.

Each union of the sets V (Gi) is a module of G, and the other modules of G are precisely

all the modules of individual components Gi.

2. The complement of G is disconnected, with components H1, H2, . . . ,H`.

Each union of the sets V (Hj) is a module of G, and the other modules of G are

precisely all the modules of individual subgraphs Hj.

3. Both G and its complement are connected.

There is a partition S1, S2, . . . , Sr of V (G) such that all the modules of G are precisely

all the modules of individual subgraphs induced by the sets St, t = 1, . . . , r, plus the

module V (G).

We will call the sets V (Gi), V (Hj), and St from the theorem the blocks of G. According

to the theorem, all modules are modules of the blocks, except for modules that are unions

of (at least two) blocks when G or its complement is disconnected. We call these latter

modules cross modules. Also, we distinguish two types of nodes in MD(G); prime nodes

and degenerate nodes. A node is prime when no union of its children is a module, and is

degenerate otherwise (which by the above theorem, means that every union of its children

is a module).
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Based on this theorem, one can recursively decompose any graph into modules. Even

though the number of modules of G can be exponential (for instance if G = Kn), the modular

decomposition tree has polynomial size and can be computed in linear time [65]. The

first polynomial-time algorithm (O(n4)) for computing the modular decomposition tree was

developed by James et al. [83] in 1972. Since then, a number of algorithms were published

that improved the running time, including linear-time algorithms [29, 108, 109, 124]. For a

recent survey on algorithmic aspects of modular decomposition see [65].

For our purposes in this thesis, we take advantage of existing linear-time algorithms for

computing the modular decomposition tree, by making calls to a subroutine called MDTree.

We assume that MDTree takes as input a simple graph G, and returns MD(G), the modular

decomposition tree of G.

We note that there is a natural linear time algorithm that counts the non-empty modules

directly on the modular decomposition tree. Let T (G) denote the total number of non-empty

modules of a graph G. We first compute the decompositions (1, 2, or 3) in Theorem 3.3. In

cases 1 and 2, we have T (G) = 2t − t − 1 +
∑
T (B), where t is the number of blocks, and

the sum is over all blocks B. In case 3, we have T (G) = 1 +
∑
T (B). Indeed the number of

cross modules is 1 in the case 3 (only the module V (G) is a cross module), and is 2t − t− 1

in the other two cases (subtracting one for the empty set and one for each individual block).

Since the sizes of the blocks for the recursive calls sum up to n, this yields a recurrence for

the running time whose solution is linear in n. This shows that the number of modules of

G can be counted in polynomial time. This algorithm is depicted in Algorithm 3.1.

Corollary 3.1. Let G be a simple graph. Algorithm 3.1 runs in linear time and computes

the number of non-empty modules of G.

Once the non-empty modules are counted, counting M -partitions becomes easy. Indeed,

counting the number of M -partitions when the first part is empty is trivial; there are exactly

2n partitions of G (n = |V |) into the second and third parts, as there is no restriction on

the parts, or between them.

Corollary 3.2. If d, e, f are all different, and a = b = c = ∗, then the number of M -

partitions can be computed in polynomial time.

We note that a number of variants can be counted the same way. Consider, for instance,

the number of modules that are independent sets. In case 1, if s of the blocks consist of a
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Input : Simple graph G and its modular decomposition tree, md = MDTree(G)
Output: Number of modules of G

1 count← 0
2 t← md.children

3 if |V (G)| = 0 then
4 return 0
5 end
6 if t = 0 then
7 return 1
8 end
9 if md.type = prime then

// there are no cross modules in a prime node

// count the module that corresponds to the union of all blocks

10 count← 1

11 else
// counting cross modules: unions of (at least two) blocks

12 count← (2t − t− 1)

13 end

// counting modules of the blocks recursively

14 for s← 1 to t do
15 count← count + CountModules(md.child[i])
16 end
17 return count

Algorithm 3.1: CountModules
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single vertex, then the number of cross modules changes to 2s − s− 1. In case 2, as well as

3, there are no cross module in this case (unless G has no edges). Moreover, it is easy to see

that the number of non-empty independent modules of G inside a block B is precisely the

number of non-empty independent modules of the graph induced by B, in all three cases.

Thus the number of independent non-empty modules of G is T (G) = 2s − s− 1 +
∑
T (B)

in case 1, and T (G) =
∑
T (B) in cases 2 and 3. Of course, the number of modules that are

cliques can be counted in a similar way, or by looking at the complement.

Consider next counting the number T (G) of non-empty modules S such that the set

R of vertices adjacent to S is a clique, and the set Q of vertices non-adjacent to S is

independent. (We say briefly that S satisfies the restriction that it has neighbours in a

clique and non-neighbours in an independent set.) To count the number of non-empty cross

modules satisfying the restriction in case 1, we assume again that there are t blocks Gi

and that s of them consist of a single vertex, and for simplicity assume that s < t − 1.

(If s = t, t − 1, an obvious modification will work.) Then the number of non-empty cross

modules that satisfy the restriction (as there are no neighbours, the restriction in this

case only requires the non-neighbours to form an independent set) is 2s. In case 2, again

assuming there are s < t− 1 blocks V (Hj) that are singletons, we obtain the same number

of non-empty cross modules that satisfy the restriction, 2s. (And once again, in case 3,

there is just one cross module.) Consider now the number of modules of a block B that

satisfy the restriction. First of all, the block B itself must satisfy the restriction (of having

neighbours in a clique and non-neighbours in an independent set), otherwise no module of

B will satisfy the restriction in G. Because of this, it is easy to see that any module of B

satisfying the restriction in B will also satisfy the restriction in G. We obtain the recurrences

T (G) = 2s +
∑
T (B) in case 1 and 2, and T (G) = 1 +

∑
T (B) in case 3. In both cases, the

summation is taken over all blocks B that satisfy the restriction.

As a last example, we consider counting the number T (G) of non-empty modules S

such that S, as well as its set R of neighbours, and its set Q of non-neighbours in G, are

independent sets. The number of cross blocks is zero in case 1, unless G has no edges. In

case 2, it is also zero, unless G is a complete bipartite graph, in which case it is 2. In case

3, it is again zero, unless G has no edges. As before, it is easy to see that only modules

of a block B that itself satisfies the restriction are to be counted. Suppose B satisfies the

restriction and has a non-empty set of neighbours in G. Then only modules of B that have

an empty set of neighbours in B count as modules of G. Indeed, a module with a neighbour



CHAPTER 3. COUNTING COMPLEXITY 42

in B together with a neighbour of B in G would not form an independent set. Such modules

of B only exist (and are easy to count) if B has no edges. If B itself has no neighbours,

then B is an independent set and any subset of it is a module. With these observations, the

number of non-empty modules of this type are also easy to count in polynomial time.

We can in fact handle all restrictions of this type on the module S, its set of neighbours

R, and its set of non-neighbours Q. The above examples are respectively: (i) S,R,Q

unrestricted; (ii) S independent, R,Q unrestricted; (iii) S a clique, R,Q unrestricted; (iv)

S,Q,R independent; and (by complementation) (v) S,Q,R cliques. It turns out that all

the remaining combinations of restrictions (independent, clique, or unrestricted) for the sets

S,Q,R can be treated in similar ways. Our examples illustrate all the kinds of arguments

needed in these proofs.

Note that the arguments are written so as to count the number of non-empty modules

of the various kinds. Of course by adding 1, we can count all such modules.

Theorem 3.4. There is a polynomial time algorithm to count the number of modules satis-

fying any combination of restrictions where the module itself, its set of neighbours, and its

set of non-neighbours are an independent set, a clique, or unrestricted.

It is easy to see that each restricted kind of module corresponds to an M -partition in

which d = 1, e = 0, f = ∗, and a is determined by the constraint on S (a = 0 if R is to be

independent, a = 1 if it is to be a clique, and a = ∗ if S is unrestricted), b is determined by

the constraint on R, and c by the constraint on Q.

Corollary 3.3. If d = 1, e = 0, f = ∗, then the number of M -partitions with non-empty

first part can be computed in polynomial time.

However, the number of M -partitions must also take into account the partitions with the

first part empty. By applying Theorem 3.1, we conclude that the number of M -partitions

with empty first part can also be counted in polynomial time, unless the second and third

part form the matrix for independent sets or cliques.

Theorem 3.5. If d, e, f are all different, and M does not contain, as a principal submatrix,

the matrix for independent sets or cliques, then the number of M -partitions can be counted

in polynomial time.

The last kind of decomposition refers to the matrices M with two off-diagonal 0s. In
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these cases, M can be viewed as consisting of two submatrices and the M -partition problem

can be reduced to the corresponding problems for these two matrices.

Theorem 3.6. Assume that two of d, e, f are 0 and M does not contain as a principal

submatrix the matrix for independent sets or cliques. Then counting the number of M -

partitions is polynomial.

Proof. We may assume that there is at least one 1 in M . Otherwise, the result follows

from [38], since the classification is given in terms of connected components. Recall that for

any subset S ⊂ {1, 2, 3}, MS denotes the principal submatrix of M on rows and columns

specified by S. Without loss of generality, let d = e = 0 and assume M{2,3} is not the matrix

for independent sets or cliques.

If a = 1, then only a clique component can be placed in P1. The clique components of

G can be found in polynomial time, there is only a linear number of them, and for each

of these candidates, the number of M{2,3}-partitions can be counted in polynomial time by

Theorem 3.1.

If f = 1, in any partition of G with both P2 and P3 non-empty, only one component of

G can be placed into P2 ∪ P3, because every vertex in P2 must be adjacent to every vertex

in P3. Hence, counting non-trivial partitions is polynomial: for each connected component

C of G, multiply the number of partitions of C to M{1} by the number of partitions of

G− C to M{2} (which is one, unless a = 1 and C is not a clique, or a = 0 and C is not an

independent set, in which case it is zero). Counting partitions with empty sets P2 or P3 is

also polynomial, by Theorem 3.1.

If f = 0, then there are no edges between the parts, and hence, every connected com-

ponent of G must be placed entirely into one part in any M -partition. Moreover, M has

at least one 1 that means at least one part is a clique. Thus, the M -partitions of G can be

counted in polynomial time once the connected components of G are known (similar to the

case where a = 1).

For the remaining cases, we can assume that a 6= 1 and f = ∗. We can also assume

without loss of generality that b = 1 (up to symmetry) and c 6= ∗ (as M{2,3} is not the

matrix for cliques). If c = 1, at most two connected components of G can be placed into

P2 ∪ P3, thus, all of the candidates can be found in polynomial time. For each of these

candidates (which are the empty set, any single component, or any two components of G),

counting the number of M{2,3}-partitions is easy by Theorem 3.1, and deciding whether the
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rest of the graph can be placed into P1 is trivial.

In all of the remaining cases, c = 0. This case is similar to the previous case (c = 1)

when G does not have any isolated vertices, as the maximum number of components that

can be placed into P2∪P3 is one. We handle the case that G has isolated vertices separately.

Assume that G has t isolated vertices and denote by G′ the maximal subgraph of G with no

isolated vertices. If G′ is empty (with no vertices), at most one vertex can be in P2, and the

number of M -partitions is simply 2t + t ∗ 2t−1. If G′ is not empty, it has at least one edge,

and so, at least one vertex in P2. This further implies that no isolated vertex of G−G′ can

be in P2 and there are exactly 2t M -partitions of G for every M -partition of G′.

3.3 Counting Split Partitions

Our final example of a polynomial counting problem deals with the following matrix

M =


0 ∗ ∗
∗ 0 1

∗ 1 0

.

First, we present a polynomial time algorithm for counting M -partitions of bipartite

input graphs in Theorem 3.7. Then we show that when the input graph is not bipartite,

the problem can be reduced in polynomial time to the problem with bipartite inputs in

Theorem 3.8.

Theorem 3.7. The number of M -partitions of bipartite input graphs can be computed in

polynomial time.

Let G = (X,Y ) be a bipartite graph. Parts X,Y are independent sets, and thus, none of

them can have vertices in parts P2 and P3 simultaneously; each part must be placed either

entirely in P1 ∪ P2 or entirely in P1 ∪ P3, and we focus, without loss of generality, on the

case when the vertices of X are placed in P1 ∪ P2, and the vertices of Y in P1 ∪ P3.

A universal vertex in a bipartite graph is a vertex that is adjacent to all vertices in the

opposite part of the graph. A graph is 2K2-free if it does not contain an induced 2K2. It is

shown in [100] that a 2K2-free bipartite graph G contains a universal vertex.

Lemma 3.1. Let uv be an edge in an induced 2K2 in a graph G. In any proper M -partition

of G, exactly one of the vertices u or v is placed in part P1.
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Proof. Vertices u and v must not be placed in the same part, because they are adjacent.

Assume for a contradiction that they are placed to P2 and P3 respectively. Let u′v′ be the

other edge in the 2K2. Note that u′ and v′ are both nonadjacent to u and v (in parts P2 and

P3), so they can neither be in P2 nor in P3. So, both must be in P1, which is impossible, as

they are adjacent.

Suppose we have a partial M -partition f of G, i.e., a partition of an induced subgraph

of G. In other words, some vertices v of G have an assigned part f(v); moreover, vertices

u ∈ X have f(u) = P1 or f(u) = P2 and vertices v ∈ Y have f(v) = P1 or f(v) = P3. This

partial M -partition can be expanded uniquely as long as one of the following conditions is

met.

• There are vertices in G adjacent to some vertices in part P1.

• There are vertices in G nonadjacent to a vertex of different colour (X or Y ) in P2 or

P3.

This is because, when there exist a vertex u ∈ X that is adjacent to a vertex v ∈ Y with

f(v) = P1, it can only be assigned to part P2 because part P1 must be an independent set.

Similarly, when v ∈ Y is adjacent to any u ∈ X with f(u) = P1, v can only be assigned to

part P3. Furthermore, parts P2 and P3 must be fully adjacent, hence, any unassigned vertex

u ∈ X that is not adjacent to some v ∈ Y with f(v) = P3 can only be assigned to part P1,

and any unassigned vertex v ∈ Y that is not adjacent to some u ∈ X with f(u) = P2 can

only be assigned to part P1 as well.

It is easy to see that both types of expansions explained above can be tested in polynomial

time (no more than, say, O(n3)). After each step, we try to find a new vertex to expand the

partial M -partition and we continue this process of assignment until every remaining vertex

in part X (respectively Y ) is fully adjacent to all vertices in P3 (respectively in P2), and is

not adjacent to any vertex in part P1. (Otherwise we can continue to extend the partition).

Let f be a proper partial partition, and f∗ be the final extension using the above rules. It

is easy to see that the above extension assigns a unique part to all assigned vertices. Hence,

we have the following lemma.

Lemma 3.2. The number of partitions of G consistent with the partial partition f , is

precisely the number of partitions of G −D, where D is the domain of the final extension

f∗.
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We now complete the proof of Theorem 3.7.

Proof. First, assume that G has a universal vertex u. If u is assigned to P1, then all vertices

from the other part of the bipartition of G must be placed entirely in P3 when u ∈ X, or

entirely in P2 when u ∈ Y . Also, only remaining universal vertices (that have the same

colour as u) may go to P2 (respectively, to P3). This gives a total of 2k possible solutions,

where k is the number of remaining universal vertices. If u is placed in P2, then every

solution is also a solution for G− u. In this case, let G1 = G− u and let G2 be the empty

graph. Notice that finding a universal vertex, if any, and constructing G1 and G2 can be

performed in O(n+m).

Second, assume that G does not have a universal vertex, and hence contains an induced

2K2. We can find such an induced 2K2 in polynomial time. Let uv be an edge of a 2K2

and assume without loss of generality that u ∈ X. There are two ways to assign u and v to

parts in M . Either u is in part P1 and v is in P3, or u is in P2 and v is in P1. We shall count

the number of partitions by extending both cases. Let X1 and Y1 be the set of remaining

vertices (from parts X and Y , respectively), after extending the first case, and X2 and Y2

be the set of remaining vertices after extending the second case. Let G1 = G[X1 ∪ Y1] and

G2 = G[X2 ∪ Y2]. We can count the number of partitions recursively on subgraphs G1 and

G2. Observe that X1 is fully adjacent to v, and X2 is not adjacent to v. Hence X1 and X2

are disjoint. Similarly, Y1 and Y2 are also disjoint. These can also be done in polynomial

time (at most O(n4) in the trivial way).

In both cases, the maximum time needed to count the solutions can be computed using

the following recursive formula.

t(n) = t(n1) + t(n2) +O(nr)

where n1 is the size of G1, n2 is the size of G2, and nr is an upper bound for the time needed

to find G1 and G2 and calculate the final result (where r is a constant less than or equal

to 5). Observe that in both cases, n1 + n2 < n, so t(n) ∈ O(nr+1).

We are ready to prove the main result of this part, Theorem 3.8.

Theorem 3.8. The number of M -partitions of any graph G can be computed in polynomial

time.
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Proof. By Theorem 3.7, we may assume that G is not bipartite. If it does not contain a

triangle, then the shortest odd cycle has at least five vertices. In such a case, the number

of M -partitions of G is zero. Indeed, the largest complete bipartite subgraph of the cycle

has three (consecutive) vertices, and hence at least two adjacent vertices of the cycle must

be placed in P1 in any M -partition of G, which is impossible.

Otherwise, we find a triangle uvw in G, in polynomial time, and then add the numbers

of M -partitions of G with the six possible assignments of u, v, w to P1, P2, P3. (Since the

parts are independent, u, v, w must be placed in distinct parts.) For each such assignment,

we shall first extend the assignment by placing vertices that are forced to certain parts

uniquely.

In the first phase, we proceed as follows:

• a vertex with neighbours in two different parts is placed in the third part;

• a vertex with a non-neighbour in P2 as well as a non-neighbour in P3 is placed in P1;

• a vertex with both a neighbour and a non-neighbour in P2 (respectively P3) is placed

in P1.

It is clear that these are forced assignments in any M -partition of G extending the

given assignment on u, v, w. If at any time these assignments (or those below) violate the

requirements of an M -partition, the corresponding count is zero.

The first rule ensures that every remaining vertex is adjacent to at most one part, while

the second rule ensures that it is adjacent to at least one vertex in P2 ∪ P3. Hence, after

the first phase, every vertex is either fully adjacent to P2 and not adjacent to any vertex of

P1 ∪P3, forming a set called X, or is fully adjacent to P3 and not adjacent to any vertex of

P1 ∪ P2, forming a set called Y . Note that the vertices of X must be placed in P1 ∪ P3 and

the vertices of Y in P1 ∪ P2.

In the second phase, we extend the assignment using the following rules. (In brackets

we explain why these rules are forced.)

Assume uv is an edge with u, v ∈ X, and w is any vertex in Y . (Symmetric rules apply

for edges uv with u, v ∈ Y , and any w ∈ X.)

• If w is adjacent to both u and v then w will be placed in P2. (This is forced because

u and v must be in different parts P1 and P3, and w is adjacent to both of them.)
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• if w is nonadjacent to both u and v, then w is placed in P1. (This is forced because u

and v must be in different parts P1 and P3, and w is not adjacent to either of them,

so it is nonadjacent to at least one vertex in P3 in the final partition.)

• if w is adjacent to u but not to v, then u is placed in P3 and v is placed in P1. (This

is forced because if v ∈ P3 then u ∈ P1 and w ∈ P2, which is impossible as vw is not

an edge of G.)

When there are no more choices remaining, either we have X or Y empty, or the graph

induced by X ∪ Y is bipartite. The former case corresponds to partitions of the remaining

vertices into two of the three parts, counted in polynomial time by Theorem 3.1. The latter

case is counted by Theorem 3.7.

3.4 The Dichotomy for Small Matrices

Our main result in this section is the following dichotomy. Notice that when M does not

contain any 1’s (or does not contain any 0’s), then the matrix M represents a simple graph

(or its complement) and hence, the dichotomy follows from [38].

Theorem 3.9. Suppose M is a partition matrix of size m with m < 4, and assume M

contains both a 0 and a 1.

If M contains, as a principal submatrix, the matrix for independent sets, or the matrix

for cliques, then the counting problem for M -partitions is # P-complete.

Otherwise, there is a polynomial time algorithm to count the number of M -partitions.

Proof. We first derive the polynomial cases from our existing results. We assume throughout

that M contains both a 0 and a 1.

For m = 2 this follows from Theorem 3.1. Thus we assume that m = 3, say M =
a d e

d b f

e f c

, and M does not contain as a principal submatrix the matrix for independent

sets, or the matrix for cliques. If d, e, f are all different, then the number of M -partitions

is computed by Theorem 3.5. If at least two of d, e, f are 0 (or at least two are 1), then

M -partitions are counted by Theorem 3.6.

Hence, in all the remaining cases, we may assume that d = e = ∗, f 6= 0, by symmetry

and complementarity. Notice that M contains both a 0 and a 1; hence, f 6= 0 implies that



CHAPTER 3. COUNTING COMPLEXITY 49

at least one of a, b, c is 0. Moreover, d = ∗ implies that a = ∗ if and only if b = ∗, because

M does not contain the principal submatrices for independent sets or cliques, and similarly,

e = ∗ implies that a = ∗ if and only if c = ∗. Thus, we note that none of a, b, c is ∗ and

we conclude by Theorem 3.8 (f = 1, a = b = c = 0) or Theorem 3.2 (otherwise) that the

number of M -partitions can be computed in polynomial time.

It remains to show that if M contains, as a principal submatrix, the matrix for indepen-

dent sets or cliques (cf. the definition at the end of Section 3.1), then counting M -partitions

is # P-complete. We shall again use the notation M ′ =
( b f
f c

)
. We shall assume that M ′ is

the matrix for independent sets, without loss of generality, say, that b = f = ∗, c = 0.

We consider two distinct cases, depending on the value of a. Our proof is completed by

the following two lemmas.

For the purposes of the lemmas we introduce two constructions. The universal vertex

extension G∗ of a graph G is a graph obtained from G by adding a new vertex u, adjacent

to all vertices of G. The isolated vertex extension Go of G is a graph obtained from G by

adding a new isolated vertex u.

Lemma 3.3. If a 6= 0, b = f = ∗, c = 0, then counting the number of M -partitions is

# P-complete.

Proof. We reduce from the number of independent sets in graph G using the isolated vertex

extension of G. Let #I(G) denote the number of independent sets of G, and #M(G) the

number of M -partitions of G.

Given an input graph G, we first construct Go. We count the number of M -partitions

of Go according to the placement of the isolated vertex u. When a = 1, we consider the two

following cases:

If both d, e are different from 1, then #M(Go) = #I(G) + 2#M(G). Indeed, if u is

placed in P1, then all other vertices must be placed in P2 or P3 (since a = 1 and u is an

isolated vertex). The number of such M -partitions is exactly #I(G): any independent set

in G will be placed in P3 and the remaining vertices in P2. The number of M -partitions

with u placed in P2 or P3 is #M(G) each, since there is no restriction on where the other

vertices will be. This gives 2#M(G).

Otherwise, assume d = 1. (The argument for e = 1 is analogous). The number of

M -partitions of Go with u is placed in P1 is 0 or 1 (the latter only if G has no edges), since

the vertices of G must not be placed in P2. If u is placed in P2, then all vertices of G must



CHAPTER 3. COUNTING COMPLEXITY 50

be placed in P2 and P3, and there are exactly #I(G) ways to do that. Placing u in P3

does not restrict any other vertices, and we will have #M(G) possible partitions. Hence

#M(Go) = #I(G) + #M(G) + k where k is 0 or 1 as explained above.

The argument is similar when a = ∗.
If d = 1, e = ∗, then #M(Go) = 2 ×#I(G) + #M(G). This is because the number of

M -partitions with u in P1 or P2 is equal to the number of independent sets of G (because

P2 or P1 respectively must be empty), and placing u in P3 implies no restriction.

The argument for d = ∗, e = 1 is similar. We have #M(Go) = 2n + #I(G) + #M(G)

because the number of M -partitions with u in P1 is the number of subsets of V (G) (since

P3 must be empty). Similarly, the number of M -partitions with u in P3 is the number of

independent sets in G, and placing u to P2 does not force any restriction and gives #M(G).

When d = e = 1, placing u to P1 will make both P2 and P3 empty and gives at most

one trivial partition. Also, placing u to P2 (or P3) will make P1 empty, and thus, gives an

instance of the independent set problem.

The only remaining cases are d = 1, e = 0 and d = 0, e = 1. Since f = ∗, these

correspond to a special case of the modules from Theorem 3.4. According to Corollary

3.3, the number of such M -partitions with the first part non-empty is polynomial; on the

other hand, the number of such M -partitions with the first part empty is #P-complete by

Theorem 3.1. Since the total number of M -partitions is the sum of these two numbers, it

must also be #P-complete.

Hence, in all cases, #I(G) can be reduced in polynomial time to #M(G).

Lemma 3.4. If a = 0, b = f = ∗, c = 0, then counting the number of M -partitions is

# P-complete.

Proof. Note that if d = ∗, then M will contain, as a principle submatrix, the matrix for

independent sets and we conclude by Lemma 3.3. Also, a = 0 implies that at least one of d

or e would be 1.

For all remaining cases, we reduce from the number of independent sets in a graph G.

We consider two different cases separately.

If d = 1 and e 6= 0, then we use the universal vertex extension G∗ of G. Observe that

placing the universal vertex u in P1 implies that all other vertices must be placed in P2 or

P3 without any further restrictions. This coincides with the partitions of G according to the

matrix for independent sets. Placing u in P2 does not restrict vertices of G, because b, c, d,
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and e are all from {1, ∗}, so it yields #M(G). Finally, mapping u to C forbids vertices of

G from mapping to C (as c = 0), and this gives a polynomial time two by two case because

a = 0, d = 1 (Theorem 3.1).

Otherwise, we either have d = 1, e = 0, or, d = 0, e = 1. This time, we use the isolated

vertex extension Go of G for our reduction. Notice that placing u in P1 gives a tractable

two by two sub-problem. When d = 1, placing u in P2 restricts vertices of G from mapping

to A and placing u in P3 does not enforce any restrictions. When e = 1, placing u in P3

forbids mapping vertices of G to A, while placing it in P2 does not enforce any restrictions.

In both cases, the number of M -partitions is #I(G) + #M(G).

This completes the proof of Theorem 3.9.

3.5 New Results

In this Chapter, we studied the counting complexity of matrix partition problems. We

completely classified time complexity of counting matrix partition problems for matrices of

size less than 4. We showed that for any such partition matrix M , the problem of counting

M -partition problems is either polynomial time solvable or # P-complete.

After our results were published in [69], Gobel, Goldberg, McQuillan, Richerby and

Yamakami investigated one variant of this problem where every vertex of the input graph is

equipped with a list of admissible parts [58]. This is called counting list matrix partitions of

graphs and denoted by # List-M-partition. They determined the complexity of # List-M-

partition problems. They reported that for every partition matrix M , the corresponding

# List-M-partition problem is # P-complete or polynomial time computable.

Very recently, Dyer, Goldberg and Richerby extended our results for small matrices to

matrices of size 4 [37]. They classified the counting complexity of M -partition problems

(without lists) for matrices of size 4 by a computer-assisted proof and discovered that for

every matrix M of size at most 4, the # M-partition and # List-M-partition problems are

polynomially equivalent.

In the rest of this section, we discuss these new results in more detail.
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3.5.1 Counting List Matrix Partitions of Graphs

Let M be a fixed partition matrix and denote by # List-M-partition the following problem.

Name: # List-M-partition

Input: A graph G together with lists L(v) of admissible parts for every vertex v

Output: The number of M -partitions of G that respect lists L

Gobel, Goldberg, McQuillan, Richerby and Yamakami investigated this problem in [58].

They provided a polynomial time algorithm to solve tractable cases and proved that all the

remaining cases are # P-complete.

Theorem 3.10. [58] Let M be a partition matrix. Then # List-M is # P-complete or

polynomial time computable.

In fact, they studied a more general problem in which each list can only be selected from

a predefined set of lists with specific conditions. Let M be a partition matrix of size m, and L
be a family of sets over [m]. We say that L is subset-closed if for every set A ∈ L, all subsets

of A are also in L. For fixed M and (fixed) subset-closed L they denoted by #L-M-Part

the problem of counting list M -partitions of graphs in which every list of the input graph

G is restricted to be selected from L. It follows that counting list matrix partition problem

is the special case of #L-M-Part with L = P([m]), i.e., there is no restriction on lists.

Theorem 3.11. [58] Let M be a partition matrix and L ⊆ P([m]) be subset-closed. Then

#L-M-Part is # P-complete or polynomial time computable.

We have already mentioned in Section 2.7 that matrix partition problems generalize

graph homomorphism problems. Indeed, when M has no 1s, it can be interpreted as the

adjacency matrix of a graph by replacing ∗ with 1s, and the M -partition problem and all

its variants, including problems with lists and counting problems, are equivalent to the

corresponding (list or counting) graph homomorphism problem. Similarly, when M has no

0s, it can be interpreted as the adjacency matrix of the complement of a graph, by first

converting all 1s to 0s, and then all ∗s to 1s. The authors in [58] generalized this concept

as follows.

Let M be a partition matrix of size m and M ′ be a submatrix of M . The authors in

[58] say that M ′ is pure when it has no 1s, or when it has no 0s. A family L ⊆ P([m]) is



CHAPTER 3. COUNTING COMPLEXITY 53

M -purifying if for every X,Y ∈ L, MX,Y is pure. For any set L, its subset closure S(L) is

the set defined below.

S(L) = {X | ∃Y ∈ L such that X ⊆ Y }.

Clearly, if L is an M -purifying set, then S(L) is also M -purifying.

For instance, while the matrix for clique cutset (depicted in Figure 2.2) is not a pure

matrix itself, L = {{1, 2}, {2, 3}} is a purifying set for it. As is its subset closure

S(L) = {{1}, {2}, {3}, {1, 2}, {2, 3}}.

A relationR ⊆ A×B is rectangular if for every a, a′ ∈ A and b, b′ ∈ B, (a, b), (a, b′), (a′, b) ∈
R implies that (a′, b′) is also in R. Rectangular relations were first introduced by Bulatov

and Dalmau in studying the complexity of counting constraint satisfaction problems [23].

It turns out that rectangular relations are also useful in determining the complexity of the

#L-M-Part problems. For X,Y ⊆ [m], a binary relation can be defined based on submatrix

MX,Y as follows.

HM
X,Y = {(i, j) ∈ X × Y |Mi,j = ∗} .

A #L-M-derectangularising sequence is a sequence {Di} of k elements in L such that

D = {D1, D2, · · · , Dk} is M -purifying and the relation HM
D defined below is not rectangular.

HM
D = HM

D1,D2
◦HM

D2,D3
◦ · · ·HM

Dk−1,Dk
.

Back to the clique cutset example, it is not hard to see that for X = Y = {1, 2},
HM
X,Y = {(1, 1), (2, 2)} is a rectangular relation, while forX = {1, 2} and Y = {2, 3}, HM

X,Y =

{(1, 3), (2, 2), (2, 3)} is not a rectangular relation. So, we have a #L-M-derectangularising

sequence with L = {{1}, {2}, {3}, {1, 2}, {2, 3}} by choosing k = 2 and let D1 = {1, 2} and

D2 = {2, 3} .

The dichotomy condition for counting list matrix partitions of graphs can now be ex-

pressed using derectangularising sequences.

Theorem 3.12. [58] Let M be a partition matrix and L ⊆ P([m]) be subset-closed. If there

is an #L-Mderectangularising sequence then #L-M-Part is # P-complete. Otherwise, it

is polynomial time computable.
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When L is M -purifying, they first reduce the problem to an instance of a related counting

constraint satisfaction problem and then show that the CSP instance has a number of nice

characteristics that makes it simple enough to be solved efficiently using standard arc-

consistency techniques. In the case that L is not M -purifying, they develop data structures

and algorithms to solve #L-M-Part using a series of #Li-M-Part problems in which every

Li is M -purifying. The data structures are based on a special case of sparse-dense partitions

that were introduced in [50] and subcube decompositions of bipartite graphs.

They also studied the complexity of testing the dichotomy condition. They showed that

for a given matrix M and L ⊆ P([m]) (as input), the problem of deciding whether there

exists an M -derectangularising sequence in L is NP-complete.

3.5.2 Counting 4× 4 Matrix Partitions of Graphs

In this part, we briefly review new results of Dyer, Goldberg and Richerby on counting

partitions of graphs as published in [37]. For a formal definition of the problem we refer the

reader to Chapter 3. Their main result is the following theorem.

Theorem 3.13. [37] Let M be a partition matrix of size 4. Then, # M-partition is # P-

complete if M has a derectangularising sequence, and is polynomial time computable other-

wise.

Theorem 3.13 implies that the counting complexity of M -partition problems coincides

with the counting complexity of list M -partition problems for all matrices of size 4. In fact,

they conjecture that this is true for every partition matrix.

Conjecture 3.1. [37] Let M be any partition matrix. Then # M-partition and list #L-M-Part

problems have the same complexity.

To prove # P-completeness, the authors in [37] develop gadget-based techniques to re-

duce from # M′-partition problem when matrix M ′ is a principal submatrix of M with size

less than 4. To find the appropriate matrix M ′ for every matrix M , they use a computer pro-

gram which employs interpolation techniques with equations obtained from adding gadgets

of different sizes and types to an arbitrary input graph G.

To show that the problem is polynomial time solvable, they prove that when a certain

set of conditions is satisfied for a matrix M , it cannot have a derectangularising sequence,
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and hence, counting M -partitions will be easy as a result of Theorem 3.12. Again, they use

a computer search to find the matrices that meet these conditions.

These help them classify the counting complexity of M -partition problems for all but

a small number of 4 by 4 matrices. Finally, they present individual proofs for each of the

remaining cases.



Chapter 4

Approximation Algorithms

4.1 Introduction

We introduced the minimum cost homomorphism problem for graphs in Section 2.6. We

mentioned there that certain minimum cost homomorphism problems have polynomial time

algorithms [61, 64, 62, 116], but most are NP-hard. Therefore we investigate the approx-

imability of these problems.

For a fixed bipartite graph H, it is known that when the list homomorphism problem

to H is not tractable, then there is no polynomial time approximation algorithm (with a

multiplicative guarantee) for the minimum cost graph homomorphism problem to H (see

Theorem 2.8).

Theorem 4.1. [105] Let H be a fixed bipartite graph. Unless P = NP, there is no polynomial

time approximation algorithm for MinHOM(H) when H is not a proper interval bigraph.

Indeed, the inference of the authors in [105] is valid for all (directed) graphs.

Theorem 4.2. Let H be a fixed digraph. If the list homomorphism problem to H is NP-

complete, then there is no polynomial time approximation algorithm for MinHOM(H), un-

less P = NP.

Proof. We show how to solve the list homomorphism problem to H using an approximation

algorithm for MinHOM(H). Let G, Lv (v ∈ V (G)) be an instance of the LHOM(H).

Construct an instance of the MinHOM(H) problem with the same input graph G and

the homomorphism cost function c defined below. For every v ∈ V (G), a ∈ V (H), let

56
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c(v, a) = 0 when a ∈ Lv and c(v, a) = 1 otherwise. Observe that when there is a list

homomorphism of G to H, then there is a homomorphism of G to H with cost 0. Otherwise,

every homomorphism of G to H costs at least 1. Thus, any polynomial time approximation

algorithm for MinHOM(H) with a multiplicative guarantee can be employed to solve any

instance of the corresponding list homomorphism problem.

In this Chapter, we prove that the converse is also true.

Theorem 4.3. Let H be a fixed digraph. If the list homomorphism problem to H is polyno-

mial time solvable, then there is a polynomial time approximation algorithm for the minimum

cost graph homomorphism problem to H.

Hence, we conclude that there is a dichotomy classification for the problems of approxi-

mately finding minimum cost graph homomorphisms to directed graphs, and interestingly,

this classification coincides with the dichotomy classification for list homomorphism prob-

lems. In the process, we investigate the complexity of the bottleneck version of the minimum

cost graph homomorphism problems.

The approximation ratio guaranteed by our general algorithm for minimum cost graph

homomorphism problems is n, the number of vertices in the input graph G. We improve

this ratio for the approximable cases where the target graph is a simple graph without

loops. Theorems 2.3 and 4.3 imply that when H is not a co-circular arc bigraph, there is

no polynomial time approximation algorithm for MinHOM(H) unless P = NP. We show

that when H is a co-circular arc bigraph, there is a constant ratio approximation algorithm

for MinHOM(H). For the purposes of the approximation, we use the characterization of

co-circular arc bigraphs by the existence of min orderings (see Theorem 4.4 below). A min

ordering of a graph H is an ordering of its vertices a1, a2, · · · , an, such that the existence of

the edges aiaj , ai′aj′ with i < i′, j′ < j implies the existence of the edge aiaj′ . For bigraphs,

it is more convenient to speak of two orderings, and we define a min ordering of a bigraph

H to be an ordering a1, a2, . . . , ap of the white vertices and an ordering b1, b2, . . . , bq of the

black vertices, such that the existence of the edges aibj , ai′bj′ with i < i′, j′ < j implies

the existence of the edge aibj′ ; and a min-max ordering of a bigraph H to be an ordering

of a1, a2, . . . , ap of the white vertices and an ordering b1, b2, . . . , bq of the black vertices, so

that the existence of the edges aibj , ai′bj′ with i < i′, j′ < j implies the existence of the

edges aibj′ , ai′bj . (Both definitions are instances of a general definition of min ordering for

directed graphs [79].)
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Theorem 4.4. [74] A bigraph H is a co-circular arc graph if and only if it admits a min

ordering.

We present a constant ratio approximation algorithm for MinHOM(H) when H is a

bigraph that admits a min ordering. Our algorithm is based on the method of randomized

rounding, a novel technique of randomized shifting, and then a derandomization process.

The constant only depends on the structure of the fixed target graph H, and is bounded by

the number of vertices in H.

In the realm of reflexive graphs, it is known that the class of interval graphs are precisely

the reflexive graphs that admit a min ordering [77].

Theorem 4.5. [77] A reflexive graph H is a proper interval graph if and only if it admits

a min ordering.

This enables us to provide an analogous constant ratio approximation algorithm for

MinHOM(H) when H is any fixed interval graph.

The rest of this Chapter is organized as follows. In Section 4.2 we present our general

approximation algorithm for minimum cost graph homomorphism problems and show that

its worst case approximation ratio is at most n, the number of vertices in the input graph

G. In Section 4.3 we discuss an integer linear program that computes an exact solution

to MinHOM(H) when H has a min-max ordering. Recall that the authors in [62] used a

minimum weighted cut problem equivalent to this linear program, to solve MinHOM(H)

when H admits a min-max ordering. Our constant ratio approximation algorithms for

(irreflexive) proper interval bigraphs and (reflexive) proper interval graphs are based on

this integer linear program formulation. In Section 4.4 we present our novel constant ratio

approximation algorithm for co-circular arc graphs with clique covering number two. In

Section 4.5 we extend our results to reflexive graphs and show that there exists a |V (H)|-
approximation algorithm when H is an interval graph. This algorithm is the analogue of

our algorithm for irreflexive graphs.

4.2 Bottleneck Minimum Cost Graph Homomorphism Prob-

lems

Let H be a fixed digraph. The bottleneck minimum cost graph homomorphism problem to

H is the optimization problem that, for an input graph G together with homomorphism



CHAPTER 4. APPROXIMATION ALGORITHMS 59

cost function c : V (G) × V (H) → N , asks for a homomorphism f that minimizes the

maximum cost of mapping any vertex u in G to to its image f(u), i.e., its goal is to minimize

maxu∈V (G) {c(u, f(u))}. In this Section, we investigate the corresponding decision version,

denoted BMinHom(H), which takes as input a graph G, a homomorphism cost function c

and an integer k and asks if there is a homomorphism of G to H, such that c(u, f(u)) ≤ k

for every vertex u ∈ V (G). We refer to maxu∈V (G) {c(u, f(u))} as the bottleneck cost of f .

We present a complete dichotomy for BMinHOM(H) problems that, again, coincides

with the dichotomy of list homomorphism problems.

Theorem 4.6. Let H be a fixed directed graph. The bottleneck minimum cost graph homo-

morphism problem to H and the list homomorphism problem to H are polynomially equiva-

lent.

Proof. First, we reduce BMinHOM(H) to LHOM(H). Let a digraph G together with a

homomorphism cost function c and an integer k be an instance of BMinHOM(H). Construct

an instance (G′, L) with G′ = G and L(v) = {a ∈ V (H)|c(u, a) ≤ k}. Observe that every

homomorphism f : V (G′)→ V (H) with respect to the lists L is also a homomorphism of G

to H with bottleneck cost at most k, and vice versa.

Now, we reduce LHOM(H) to BMinHOM(H). Given an instance (G,L) of LHOM(H),

construct an instance (G′, c, k) of BMinHOM(H) as follows. Again, let G′ = G and c be

the binary function that represents the (complement of the) lists L(u), i.e., let c(u, a) = 0

whenever a ∈ L(u) and c(u, a) = 1 otherwise. Finally, let k = 0. Again, it is not hard to

see that f is a homomorphism of G to H with respect to the lists L if and only if it is a

homomorphism of G′ to H with bottleneck cost 0.

The rest of this Section is dedicated to the proof of Theorem 4.3. For the purposes

of the approximation, we construct a sequence of instances of the corresponding bottleneck

minimum cost graph homomorphism problem, in a particular order, until we find an instance

with a yes answer, and then, we return that as the approximate solution.

Proof. Let H be any fixed digraph and let a digraph G together with a homomorphism cost

function c be an instance of MinHOM(H). Denote by Rc = {c0, c1, · · · , ck} the range of

the function c, i.e., the set of all values c(u, i) for every u and i. Without loss of generality,

assume that c0 ≤ c1 ≤ · · · ≤ ck.
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For every 0 ≤ i ≤ k, let Pi denote an instance of BMinHOM(H) with input graph G

together with cost function c and bottleneck cost ci. Let t be the smallest index such that

Pt has a yes answer.

Notice that k ≤ |V (G)| × |V (H)| is linear in size of G (since H is fixed), and hence,

the algorithm generates at most a linear number of instances of the bottleneck minimum

cost homomorphism problem. (Employing a binary search will in fact reduce the number

of queries to LHOM(H) to at most O(log(|V (G)|).) Moreover, finding Rc, sorting all its

elements and constructing all the instances Pi can also be performed in polynomial time.

So, as long as BMinHOM(H) can be solved in polynomial time, this algorithm also runs in

polynomial time.

Claim: Every solution of Pt costs at most |V (G)| times the minimum cost of any

homomorphism of G to H.

Observe that if t = 0, then all lists consist of only one element, c0, which is the smallest

possible cost for all vertices, and hence, any solution of P0 is in fact an optimum solution. So,

we may assume that t > 0. Thus, the answer to Pt−1 is no and there is no homomorphism

of G to H with bottleneck cost ct−1. This implies that any homomorphism of G to H will

cost at least ct. On the other hand, any solution of Pt costs at most |V (G)| × ct.
This, together with Theorem 4.6, completes the proof of Theorem 4.3.

4.3 An Exact Algorithm for Proper Interval Bigraphs

It is known that when H is a fixed bigraph with a min-max ordering, there is an exact

algorithm for the problem MinHOM(H). In fact, the authors in [62] provided a transfor-

mation of this problem to a minimum weighted cut problem for every such graph H. In

this Section, we discuss a linear program that is equivalent to the minimum weighted cut

formulation discussed in [62].

Suppose H admits a min-max ordering, with the white vertices ordered a1, a2, · · · , ap,
and the black vertices ordered b1, b2, · · · , bq. Define `(i) to be the smallest subscript j such

that bj is a neighbour of ai (and `′(i) to be the smallest subscript j such that aj is a

neighbour of bi) with respect to the ordering. Suppose G is a bigraph with white vertices

u and black vertices v. We seek a minimum cost homomorphism of G to H that preserves

colours, i.e., maps white vertices of G to white vertices of H and similarly for black vertices.

We define a set of variables xu,i, xv,j for all vertices u and v of G and all i = 1, 2, . . . , p+
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1, j = 1, 2, . . . , q + 1, and the following linear system S.

For all vertices u (respectively v) in G and i = 1, . . . , p (respectively j = 1, . . . , q)

• xu,i ≥ 0 (respectively xv,j ≥ 0)

• xu,1 = 1 (respectively xv,1 = 1)

• xu,p+1 = 0 (respectively xv,q+1 = 0)

• xu,i+1 ≤ xu,i (respectively xv,j+1 ≤ xv,j).

For all edges uv of G and i = 1, 2, . . . , p, j = 1, 2, . . . , q

• xu,i ≤ xv,`(i)

• xv,j ≤ xu,`′(j)

Theorem 4.7. There is a one-to-one correspondence between homomorphisms of G to

H and integer solutions of S. Furthermore, the cost of the homomorphism is equal to∑
u,i
c(u, i)(xu,i − xu,i+1) +

∑
v,j
c(v, j)(xv,j − xv,j+1).

Proof. If f : G → H is a homomorphism, we set the value xu,i = 1 if f(u) = at for some

t ≥ i, otherwise we set xu,i = 0; and similarly for xv,j . Now all the variables are non-

negative, we have all xu,1 = 1, xu,p+1 = 0, and xu,i+1 ≤ xu,i; and similarly for xv,j . It

remains to show that xu,i ≤ xv,`(i) for any edge uv of G and any subscript i. (The proof of

xv,j ≤ xu,`′(j) is analogous.) Suppose for a contradiction that xu,i = 1 and xv,`(i) = 0, and

let f(u) = ar, f(v) = bs. This implies that xu,r = 1, xu,r+1 = 0, whence i ≤ r; and that

xv,s = 1, whence s < `(i). Since both aib`(i), arbs are edges of H, the fact that we have a

min ordering implies that aibs must also be an edge of H, contradicting the definition of

`(i).

Conversely, if there is an integer solution for S, we define a homomorphism f as follows:

we let f(u) = ai when i is the largest subscript with xu,i = 1 (and similarly, f(v) = bj

when j is the largest subscript with xv,j = 1). Clearly, every vertex of G is mapped to

some vertex of H, of the same colour. We prove that this is indeed a homomorphism by

showing that every edge of G is mapped to an edge of H. Let e = uv be an edge of G,

and assume f(u) = ar, f(v) = bs. We will show that arbs is an edge of H. Observe that

1 = xu,r ≤ xv,`(r) ≤ 1 and 1 = xv,s ≤ xu,`′(s) ≤ 1, so we must have xu,`′(s) = xv,`(r) = 1.
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Also observe that xu,i = 0 for all i > r, and xv,j = 0 for all j > s. Thus, `(r) ≤ s and

`′(s) ≤ r. Since arb`(r) and a`′(s)bs are edges in H, we must have the edge arbs, as we have

a min-max ordering.

Furthermore, f(u) = ai if and only if xu,i = 1 and xu,i+1 = 0, so, c(u, i) contributes to

the sum if and only if f(u) = ai (and similarly, if f(v) = bj).

We have translated the minimum cost homomorphism problem to an integer linear pro-

gram: minimize the objective function in Theorem 4.7 over the linear system S. In fact, this

integer linear program corresponds to a minimum cut problem in an auxiliary network, and

can be solved by network flow algorithms [62, 105]. We shall enhance the above system S to

obtain an approximation algorithm for the case H is only assumed to have a min ordering.

4.4 An Approximation Algorithm for Co-Circular Arc Bi-

graphs

In this section we describe our approximation algorithm for MinHOM(H) in the case the

fixed bigraph H has a min ordering, i.e., is a co-circular arc bigraph, cf. Theorem 4.4.

We recall that if H is not a co-circular arc bigraph, then the list homomorphism problem

ListHOM(H) is NP-complete [46], and this implies that MinHOM(H) is not approximable

for such graphs H [105]. By Theorem 4.4 we conclude the following.

Theorem 4.8. If a bigraph H has no min ordering, then MinHOM(H) is not approximable.

Our main result is the following converse: if H has a min ordering (is a co-circular arc

bigraph), then there exists a constant ratio approximation algorithm. (Since H is fixed,

|V (H)| is a constant.)

Theorem 4.9. If H is a bigraph that admits a min ordering, then MinHOM(H) has a

|V (H)|-approximation algorithm.

Proof. Suppose H has a min ordering with the white vertices ordered a1, a2, · · · , ap, and

the black vertices ordered b1, b2, · · · , bq. Let E′ denote the set of all pairs aibj such that

aibj is not an edge of H, but there is an edge aibj′ of H with j′ < j and an edge ai′bj of H

with i′ < i. Let E = E(H) and define H ′ to be the graph with vertex set V (H) and edge

set E ∪ E′. (Note that E and E′ are disjoint sets.)
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Observation 1. The ordering a1, a2, · · · , ap, and b1, b2, · · · , bq is a min-max ordering of H ′.

We show that for every pair of edges e = aibj′ and e′ = ai′bj in E ∪ E′, with i′ < i and

j′ < j, both f = aibj and f ′ = ai′bj′ are in E ∪ E′.
If both e and e′ are in E, f ∈ E ∪ E′ and f ′ ∈ E.

If one of the edges, say e, is in E′, there is a vertex bj′′ with aibj′′ ∈ E and j′′ < j′, and

a vertex ai′′ with ai′′bj′ ∈ E and i′′ < i. Now, ai′bj and aibj′′ are both in E, so f ∈ E ∪ E′.
We may assume that i′′ 6= i′, otherwise f ′ = ai′′bj′ ∈ E. If i′′ < i′, then f ′ ∈ E ∪E′ because

ai′bj′′ ∈ E; and if i′′ > i′, then f ′ ∈ E because ai′bj ∈ E.

If both edges e, e′ are in E′, then the earlier neighbours of ai and bj in E imply that

f ∈ E ∪ E′, and the earlier neighbours of ai′ and bj′ in E imply that f ′ ∈ E ∪ E′.
Observation 2. Let e = aibj ∈ E′. Then ai is not adjacent in E to any vertex after bj , or

bj is not adjacent in E to any vertex after ai.

This easily follows from the fact that we have a min ordering.

Our algorithm first constructs the graph H ′ and then proceeds as follows. Consider

an input bigraph G. Since H ′ has a min-max ordering, we can form the system S of

linear inequalities for H ′. By Theorem 4.7, homomorphisms of G to H ′ are in a one-to-one

correspondence with integer solutions of S. However, we are interested in homomorphisms

of G to H, not H ′. Therefore we shall add further inequalities to S to ensure that we only

admit homomorphisms of G to H, i.e., avoid mapping edges of G to the edges in E′.

For every edge e = aibj ∈ E′ and every edge uv ∈ E(G), two of the following inequalities

will be added to S.

• if as is the first neighbour of bj after ai, we add the inequality

xv,j ≤ xu,s +
∑

atbj∈E, t<i
(xu,t − xu,t+1)

• else if bj has no neighbours after ai, we add the inequality

xv,j ≤ xv,j+1 +
∑

atbj∈E, t<i
(xu,t − xu,t+1)

• if bs is the first neighbour of ai after bj , we add the inequality

xu,i ≤ xv,s +
∑

aibt∈E, t<j
(xv,t − xv,t+1)

• else if ai has no neighbour after bj , we add the inequality

xu,i ≤ xu,i+1 +
∑

aibt∈E, t<j
(xv,t − xv,t+1).
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Claim: There is a one-to-one correspondence between homomorphisms of G to H and

integer solutions of the expanded system S.

The correspondence between the integer solutions and the homomorphisms is defined as

before. Thus we have a homomorphism of G to H ′ if and only if the old inequalities are

satisfied. We shall show that the additional inequalities are also satisfied if and only if each

edge of G is mapped to an edge in E, i.e., we have a homomorphism to H.

Suppose f is a homomorphism of G to H ′, obtained from an integer solution for S, and,

for some edge uv of G, let f(u) = ai, f(v) = bj (recall that aibj ∈ E′). We have xu,i = 1,

xu,i+1 = 0, xv,j = 1, xv,j+1 = 0, and for all atbj ∈ E with t < i we have xu,t − xu,t+1 = 0.

If as is the first neighbour of bj after ai, then we will also have xu,s = 0, and so the first

inequality fails. Else if bj is not adjacent to any vertex after ai, and the second inequality

fails. The remaining two other cases are similar.

Conversely, suppose f is a homomorphism of G to H (i.e., f maps the edges of G

to the edges in E). For a contradiction, assume that the first inequalities fails (the other

inequalities are similar). This means that for some edge uv ∈ E(G) and some edge aibj ∈ E′,
we have xv,j = 1, xu,s = 0, and the sum of (xu,t − xu,t+1) = 0, summed over all t < i such

that at is a neighbour of bj . The latter two facts easily imply that f(u) = ai. Since bj

has a neighbour after ai, Observation 2 tells us that ai has no neighbours after bj , whence

f(v) = bj and thus aibj ∈ E, contradicting the fact that aibj ∈ E′. This proves the Claim.

At this point, our algorithm will minimize the cost function over S in polynomial time

using a linear programming algorithm. This will generally result in a fractional solution.

(Even though the original system S is known to be totally unimodular [105] and hence

have integral optima, we have added inequalities, and hence lost this advantage.) We will

obtain an integer solution by a randomized procedure called rounding. We choose X ∈ [0, 1],

uniformly at random, and define the rounded values x′u,i = 1 when xu,i ≥ X, and x′u,i = 0

otherwise; and similarly for x′v,j . It is easy to check that the rounded values satisfy the

original inequalities, i.e., correspond to a homomorphism f of G to H ′.

Now the algorithm will once more modify the solution f to become a homomorphism of

G to H, i.e., to avoid mapping edges of G to the edges in E′. This will be accomplished by

another randomized procedure, which we call shifting. We choose another variable Y ∈ [0, 1],

again, uniformly at random, which will guide the shifting. Let F denote the set of all edges

in E′ to which some edge of G is mapped by f . If F is empty, we need no shifting.

Otherwise, let aibj be an edge of F with maximum sum i + j (among all edges of F ). By
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the maximality of i+ j, we know that aibj is the last edge of F from both ai and bj . Since

F ⊆ E′, Observation 2 implies that e = aibj is also the last edge of E′ from ai or from bj .

Suppose e is the last edge of E from ai. (The shifting process is similar in the other case.)

So ai does not have any edges of F or of E after aibj . (There could be edges of E′ − F ,

but since no edge of G is mapped to such edges, they don’t matter.) We now consider, one

by one, vertices u in G such that f(u) = ai and u has a neighbour v in G with f(v) = bj .

(Such vertices u exist by the definition of F .) For such a vertex u, consider the set of all

vertices at with t < i such that atbj ∈ E. This set is not empty, since e is in E′ because of

two edges of E. Suppose the set consists of at with subscripts t ordered as t1 < t2 < . . . tk.

The algorithm now selects one vertex from this set as follows. Let Pu,t =
xu,t−xu,t+1

Pu
, where

Pu =
∑

atbj∈E, t<i
(xu,t − xu,t+1).

Then atq is selected if
q∑
p=1

Pu,tp < Y ≤
q+1∑
p=1

Pu,tp . Thus a concrete at is selected with

probability Pu,t, which is proportional to the difference of the fractional values xu,t−xu,t+1.

When the selected vertex is at, we shift the image of the vertex u from ai to at. This

modifies the homomorphism f , and hence the corresponding values of the variables. Namely,

x′u,t+1, . . . , x
′
u,i are reset to 0, keeping all other values the same. Note that these modified

values still satisfy the original constraints, i.e., the modified mapping is still a homomor-

phism.

We repeat the same process for the next u with these properties, until aibj is no longer

in F (because no edge of G maps to it). This ends the iteration on aibj , and we proceed to

the next edge ai′bj′ with the maximum i′+ j′ for the next iteration. Each iteration involves

at most |V (G)| shifts. After at most |E′| iterations, the set F is empty and we no longer

need to shift.

We now claim that because of the randomization, the cost of this homomorphism is at

most |V (H)| times the minimum cost of a homomorphism. We denote by w the value of

the objective function with the fractional optimum xu,i, xv,j , and by w′ the value of the

objective function with the final values x′u,i, x
′
v,j , after the rounding and all the shifting. We

also denote by w∗ the minimum cost of a homomorphism of G to H. Obviously we have

w ≤ w∗ ≤ w′.
We now show that the expected value of w′ is at most a constant times w. We focus
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on the contribution of one summand, say x′u,t − x′u,t+1, to the calculation of the cost. (The

other case, x′v,s − x′v,s+1, is similar.)

In any integer solution, x′u,t − x′u,t+1 is either 0 or 1. The probability that x′u,t − x′u,t+1

contributes to w′ is the probability of the event that x′u,t = 1 and x′u,t+1 = 0. This can

happen in the following situations.

1. u is mapped to at by rounding, and is not shifted away. In other words, we have

x′u,t = 1 and x′u,t+1 = 0 after rounding, and these values don’t change by shifting.

2. u is first mapped to some ai, i > t, by rounding, and then re-mapped to at by shifting.

This happens if there exist j and v such that uv is an edge of G mapped to aibj ∈ F ,

and then the image of u is shifted to at, where atbj ∈ E. In other words, we have

x′u,i = x′v,j = 1 and x′u,i+1 = x′v,j+1 = 0 after rounding; and then u is shifted from ai

to at.

For the situation in 1, we compute the expectation as follows. The values x′u,t = 1,

x′u,t+1 = 0 are obtained by rounding if xu,t+1 < X ≤ xu,t, i.e., with probability xu,t−xu,t+1.

The probability that they are not changed by shifting is at most 1, whence this situation

occurs with probability at most xu,t − xu,t+1, and the expected contribution is at most

c(u, t)(xu,t − xu,t+1).

For the situation in 2, we first compute the contribution for a fixed i (for which there

exist j and v as described above). The values x′u,i = x′v,j = 1 and x′u,i+1 = x′v,j+1 = 0 are

obtained by rounding if X satisfies max{xu,i+1, xv,j+1} < X ≤ min{xu,i, xv,j}, i.e., with

probability min{xu,i, xv,j} −max{xu,i+1, xv,j+1} ≤ xv,j − xu,i+1 ≤ xv,j − xu,s ≤ Pu. In the

last two inequalities above we have assumed that as is the first neighbour of bj after ai, and

used the first inequality added above the Claim. If bj has no neighbours after ai, the proof is

analogous, using the second added inequality. When uv maps to aibj , we shift u to at with

probability Pu,t =
(xu,t−xu,t+1)

Pu
, so the overall probability is also at most xu,t − xu,t+1, and

the expected contribution for a fixed i (with its j and v) is also at most c(u, t)(xu,t−xu,t+1).

Let r denote the number of vertices of H, of the same colour as at, that are incident

with some edges of E′. Clearly the situation in 2 can occur at for at most r different values

of i. Therefore a fixed u in G contributes at most (1+r)c(u, t)(xu,t−xu,t+1) to the expected
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value of w′. Thus the expected value of w′ is at most

(1 + r) (
∑
u,i

c(u, i)(xu,i − xu,i+1) +
∑
v,j

c(v, j)(xv,j − xv,j+1)) ≤ (1 + r)w.

Since we have w ≤ w∗, this means that the expected value of w′ is at most (1 + r)w∗. Note

that 1 + r ≤ 1 + |E′|, and also 1 + r < |V (H)| because a1 (and b1) are not incident with any

edges of E′ by definition.

At this point we have proved that our two-phase randomized procedure produces a

homomorphism whose expected cost is at most (1 + r) times the minimum cost. It can

be transformed to a deterministic algorithm as follows. There are only polynomially many

values xu,t (at most |V (G)||̇V (H)|). When X lies anywhere between two such consecutive

values, all computations will remain the same. Thus we can derandomize the first phase

by trying all these values of X and choosing the best solution. Similarly, there are only

polynomially many values of the partial sums
q∑
p=1

Pu,tp (again at most |V (G)||̇V (H)|), and

when Y lies between two such consecutive values, all computations remain the same. Thus

we can also derandomize the second phase by trying all possible values and choosing the

best. Since the expected value is at most (1 + r) times the minimum cost, this bound also

applies to this best solution.

Corollary 4.1. Let H be a co-circular arc bigraph in which at most r vertices of either

colour are incident to edges of E′, and let c ≥ 1 + r be any constant.

Then the problem MinHOM(H) has a c-approximation algorithm.

Note that c can be taken to be |V (H)|, or 1 + |E′|, as noted above. For c = 1 + |E′|, we

have an approximation with best bound when E′ is small, in particular, an exact algorithm

when E′ is empty.

Finally, we conclude the following classification for the complexity of approximation of

minimum cost homomorphism problems for irreflexive graphs.

Corollary 4.2. Let H be an irreflexive graph.

Then the problem MinHOM(H) has a polynomial time constant ratio approximation

algorithm if H is a co-circular arc bigraph, and is not approximable otherwise.
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4.5 An Approximation Algorithm for Interval Graphs

Interestingly, all our steps can be repeated verbatim for the case of reflexive graphs. If H is

a reflexive graph with min-max ordering a1, a2, . . . , an, we again define `(i) as the smallest

subscript j, with respect to this ordering, such that aj is a neighbour of ai. For an input

graph G, we again define variables xu,i, for u ∈ V (G), i = 1, 2, . . . , n, and the same system

of linear inequalities S (restricted to the u’s), and obtain an analogue of Theorem 4.7.

Provided H has a min ordering, we can again add edges E′ as above to produce a reflexive

graph H ′ with a min-max ordering, with the analogous properties expressed in Observations

1 and 2. We can add the corresponding inequalities to S as above, and there will again be

a one-to-one correspondence between homomorphisms of G to H and the integer solutions

to the system. Finally, we can define the approximation by the same sequence of rounding

and shifting. Everything works exactly as before because it only depends on the definition

of min (and min-max) ordering, which are the same. Finally, we use the fact that a reflexive

graph has a min ordering if and only if it is an interval graph [43, 77], and the fact that the

list homomorphism problem ListHOM(H) is NP-complete if the reflexive graph H is not an

interval graph [43]. The last facts implies, as in [105], that the problem MinHOM(H) is not

approximable if H is a reflexive graph that is not an interval graph.

Theorem 4.10. Let H be a reflexive graph.

The problem MinHOM(H) has a polynomial time |V (H)|-approximation algorithm if H

is an interval graph, and is not approximable otherwise.

Before we proceed to the proof of Theorem 4.10, we shall give an analogous system of

linear equations to find the exact solution of MinHOM(H) for reflexive graphs H that admit

a min-max ordering.

Again, we define a set of variables xu,i for each vertex u of G and all i = 1, 2, . . . , n, n+1,

and the following linear system S.

For every vertex u in G and all i = 1, . . . , n, n+ 1

• xu,i ≥ 0

• xu,1 = 1

• xu,n+1 = 0

• xu,i+1 ≤ xu,i .
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For all edges uv of G and all i = 1, 2, . . . , n

• xu,i ≤ xv,`(i)

Theorem 4.11. There is a one-to-one correspondence between homomorphisms of G to

H and integer solutions of S. Furthermore, the cost of the homomorphism is equal to∑
u,i
c(u, i)(xu,i − xu,i+1).

Proof. If f : G → H is a homomorphism, we set the value xu,i = 1 if f(u) = at for some

t ≥ i, otherwise we set xu,i = 0. We show that xu,i ≤ xv,`(i) for any edge uv of G and any

subscript i. Observing that other equations are satisfied is straight forward. Suppose for

a contradiction that xu,i = 1 and xv,`(i) = 0, and let f(u) = ar, f(v) = as. This implies

that xu,r = 1, xu,r+1 = 0, whence i ≤ r; and that xv,s = 1, whence s < `(i). Since both

aia`(i), aras are edges of H, the fact that we have a min ordering implies that aias must also

be an edge of H, contradicting the definition of `(i).

Conversely, if there is an integer solution for S, we define a homomorphism f as follows:

we let f(u) = ai when i is the largest subscript with xu,i = 1. Clearly, every vertex

of G is mapped to some vertex of H, We prove that this is indeed a homomorphism by

showing that every edge of G is mapped to an edge of H. Let e = uv be an edge of G,

and assume f(u) = ar, f(v) = as. We will show that aras is an edge of H. Observe that

1 = xu,r ≤ xv,`(r) ≤ 1 and 1 = xv,s ≤ xu,`(s) ≤ 1, so we must have xu,`(s) = xv,`(r) = 1. Also

observe that xu,i = 0 for all i > r, and xv,j = 0 for all j > s. Thus, `(r) ≤ s and `(s) ≤ r.

Since ara`(r) and a`(s)as are edges in H, we must have the edge aras, as we have a min-max

ordering.

Furthermore, f(u) = ai if and only if xu,i = 1 and xu,i+1 = 0, so, c(u, i) contributes to

the sum if and only if f(u) = ai.

Now, we can explain the proof of Theorem 4.10.

Proof. Suppose H has a min ordering with the vertices ordered a1, a2, · · · , an. Let E′ denote

the set of all pairs aiaj such that aiaj is not an edge of H, but there is an edge aiaj′ of H

with j′ < j and an edge ai′aj of H with i′ < i. Let E = E(H) and define H ′ to be the

graph with vertex set V (H) and edge set E ∪ E′.
Similar to the case of bipartite graphs, it is easy to note the following facts.

Observation 1. The ordering a1, a2, · · · , an is a min-max ordering of H ′.
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Observation 2. Let e = aiaj ∈ E′. Then ai is not adjacent in E to any vertex after aj , or

aj is not adjacent in E to any vertex after ai.

Our algorithm once again constructs the graph H ′ and then proceeds by forming the

system S of linear inequalities for H ′. By Theorem 4.11, homomorphisms of G to H ′ are in

a one-to-one correspondence with integer solutions of S. Similar to the case of irreflexive

graphs, we shall add further inequalities to S to ensure that we avoid mapping edges of G

to the edges in E′.

For every edge e = aiaj ∈ E′ and every edge uv ∈ E(G), we add one of the following

inequalities to S.

• if as is the first neighbour of aj after ai, we add the inequality

xv,j ≤ xu,s +
∑

ataj∈E, t<i
(xu,t − xu,t+1)

• else if aj has no neighbours after ai, we add the inequality

xv,j ≤ xv,j+1 +
∑

ataj∈E, t<i
(xu,t − xu,t+1)

An analogous deduction can be used to show that there is again a one-to-one correspon-

dence between homomorphisms of G to H and integer solutions of the expanded system S,

where the correspondence between the integer solutions and the homomorphisms is defined

as before.

At this point, our algorithm will minimize the cost function over S in polynomial time

using a linear programming algorithm. This will generally result in a fractional solution. We

will obtain an integer solution by running exactly the same randomized rounding and shifting

procedures discussed earlier for irreflexive graphs, guided by random variables X,Y ∈ [0, 1],

respectively. When shifting vertices with edges mapped to an edge aiaj , we use the same

probabilities Pu,t =
xu,t−xu,t+1

Pu
, where

Pu =
∑

ataj∈E, t<i
(xu,t − xu,t+1)

and select a particular target atq when
q∑
p=1

Pu,tp < Y ≤
q+1∑
p=1

Pu,tp . This gives an integer

solution that satisfies the extended system S and corresponds to a homomorphism f of G

to H.
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We now claim that because of the randomization, the cost of this homomorphism is at

most |V (H)| times the minimum cost of a homomorphism. We denote by w the value of the

objective function with the fractional optimum xu,i, and by w′ the value of the objective

function with the final values x′u,i, after the rounding and all the shifting. We also denote

by w∗ the minimum cost of a homomorphism of G to H. Obviously we have w ≤ w∗ ≤ w′.
We now show that the expected value of w′ is at most a constant times w. We focus on

the contribution of one summand, say x′u,t − x′u,t+1, to the calculation of the cost.

In any integer solution, x′u,t − x′u,t+1 is either 0 or 1. The probability that x′u,t − x′u,t+1

contributes to w′ is the probability of the event that x′u,t = 1 and x′u,t+1 = 0. This can

happen in the following situations.

1. u is mapped to at by rounding, and is not shifted away. In other words, we have

x′u,t = 1 and x′u,t+1 = 0 after rounding, and these values don’t change by shifting.

2. u is first mapped to some ai, i > t, by rounding, and then re-mapped to at by shifting.

This happens if there exist j and v such that uv is an edge of G mapped to aiaj ∈ E′,
and then the image of u is shifted to at, where ataj ∈ E. In other words, we have

x′u,i = x′v,j = 1 and x′u,i+1 = x′v,j+1 = 0 after rounding; and then u is shifted from ai

to at.

For the situation in 1, we compute the expectation as follows. The values x′u,t = 1,

x′u,t+1 = 0 are obtained by rounding if xu,t+1 < X ≤ xu,t, i.e., with probability xu,t−xu,t+1.

The probability that they are not changed by shifting is at most 1, whence this situation

occurs with probability at most xu,t − xu,t+1, and the expected contribution is at most

c(u, t)(xu,t − xu,t+1).

For the situation in 2, we first compute the contribution for a fixed i (for which there

exist j and v as described above). The values x′u,i = x′v,j = 1 and x′u,i+1 = x′v,j+1 = 0 are

obtained by rounding if X satisfies max{xu,i+1, xv,j+1} < X ≤ min{xu,i, xv,j}, i.e., with

probability min{xu,i, xv,j} −max{xu,i+1, xv,j+1} ≤ xv,j − xu,i+1 ≤ xv,j − xu,s ≤ Pu. In the

last two inequalities above we have assumed that as is the first neighbour of bj after ai, and

used the first inequality added above the Claim. If bj has no neighbours after ai, the proof is

analogous, using the second added inequality. When uv maps to aibj , we shift u to at with

probability Pu,t =
(xu,t−xu,t+1)

Pu
, so the overall probability is also at most xu,t − xu,t+1, and

the expected contribution for a fixed i (with its j and v) is also at most c(u, t)(xu,t−xu,t+1).
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Let r denote the number of vertices of H that are incident with some edges of E′. Clearly

the situation in 2 can occur at for at most r different values of i. Therefore a fixed u in

G contributes at most (1 + r)c(u, t)(xu,t − xu,t+1) to the expected value of w′. Thus the

expected value of w′ is at most

(1 + r) (
∑
u,i

c(u, i)(xu,i − xu,i+1) ≤ (1 + r)w.

Since we have w ≤ w∗, this means that the expected value of w′ is at most (1 + r)w∗.

At this point we have proved that our two-phase randomized procedure produces a

homomorphism whose expected cost is at most (1 + r) times the minimum cost. It can

be transformed to a deterministic algorithm as follows. There are only polynomially many

values xu,t (at most |V (G)||̇V (H)|). When X lies anywhere between two such consecutive

values, all computations will remain the same. Thus we can derandomize the first phase

by trying all these values of X and choosing the best solution. Similarly, there are only

polynomially many values of the partial sums
q∑
p=1

Pu,tp (again at most |V (G)||̇V (H)|), and

when Y lies between two such consecutive values, all computations remain the same. Thus

we can also derandomize the second phase by trying all possible values and choosing the

best. Since the expected value is at most (1 + r) times the minimum cost, this bound also

applies to this best solution.



Chapter 5

Graph Homomorphisms with

Constrained Costs

5.1 Introduction

The minimum cost graph homomorphism problem MinHOM(H) has a fixed target graph H

and its input is a graphG together with a homomorphism cost function c : V (G)×V (H)→ N
(with c(u, i) being the cost of mapping a vertex u ∈ V (G) to a vertex i ∈ V (H)), and the

goal is to find a homomorphism f of G to H that minimizes
∑

u∈V (H) c(u, f(u)).

In this Chapter, we study the minimum cost graph homomorphism problem with con-

strained costs. Recall from Chapter 2 that for each instance of MinHOM(H), the function

ci : V (G)→ N denotes the function that gives the cost of mapping vertices of G to a specific

vertex i ∈ V (H), thus, ci(u) = c(u, i) for every vertex u ∈ V (G). We consider instances of

the problem for which the input meets the following criteria. For every vertex i ∈ V (H),

the cost of mapping all vertices of G to i is the same, that is, ci is a constant function for

every vertex i ∈ V (H). Nevertheless, we still assume that these costs are part of the input

(G, c).

There is a broad literature on similar problems in graph colouring. In particular, the

minimum colour sum problem and the optimum cost chromatic partition problem discussed

in Section 2.5 are both special cases of the minimum constrained cost graph homomorphism

problem that we study in this chapter. Indeed, one can transform an instance of these

problems into an instance of the minimum cost homomorphism problem by choosing the

73
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complete graph Kn as the target graph (where n is the number of vertices in input graph

G), and appropriate costs.

In the original problem when there are no restrictions on the values that the cost function

can take, the list homomorphism problem sits nicely between the homomorphism problem

and the minimum cost homomorphism problem. It generalizes the graph homomorphism

problem by introducing lists of admissible vertices, while it can still be transformed con-

veniently into an instance of the MinHOM(H) using boolean cost values to simulate the

constraints enforced by lists. On the contrary, there is no trivial way to transform an in-

stance of a list homomorphism problem into an instance of the minimum constrained cost

graph homomorphism problem.

We now give the formal definition of the problem. Let H be a fixed graph. The min-

imum constrained cost graph homomorphism problem for H is the optimization problem

that asks for the minimum cost of any homomorphism of an input graph G together with

a homomorphism cost function c : V (H)→ N to H. The cost of a homomorphism function

f : V (G) → V (H) is defined exactly as before, that is, cost(f) =
∑

u∈V (G) c(f(u)). In

this Chapter, we consider the standard decision version of this problem, that receives an

additional input parameter k, and asks whether there is a homomorphism of G to H which

costs at most k.

Our main result is a partial dichotomy classification for this problem. We prove that

when H is not a chordal bipartite graph, then the minimum constrained cost homomorphism

problem to H is NP-complete. On the other hand, when H is a proper interval bigraph, the

problem is in P, as we can simply employ the polynomial algorithm for MinHOM(H) (see

Section 4.3) to solve the problem with constrained costs efficiently.

Theorem 5.1. Let H be a fixed graph. The minimum constrained cost graph homomorphism

problem to H is NP-complete when H is not a chordal bipartite graph; and is in P when H

is a proper interval bigraph.

We also present a complete dichotomy classification for all target graphs H that are

trees. We prove that when H is a tree that is not a proper interval bigraph, the problem

remains NP-complete. Hence, we conclude that the constraints we consider do not impact

the complexity of the minimum cost homomorphism problem.

Theorem 5.2. Let H be a fixed tree. The minimum constrained cost graph homomorphism

problem to H is NP-complete when H is not proper interval bigraph; and is in P otherwise.
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We assume that both the input graph G and the target graph H are connected. Observe

that, similar to the original problem without constrained costs, when G is disconnected, the

minimum cost for every connected component of G is an independent sub-problem that can

be solved individually, and when H is disconnected, every connected component of G must

map to a component of H that gives the minimum cost for that component.

The reductions we present in the proofs of Theorems 5.1 and 5.2 work on a more

general version of the problem that allows positive integer weights w(v) on the vertices

of the input graph G and asks for a homomorphism that minimizes the weighted sum∑
u∈V (H)w(u)× c(u, f(u)). As we shall see in Section 5.2, adding vertex weights does not

affect the time complexity of the problem and will allow us shorthand the gadgets we con-

struct in our proofs.

The rest of this chapter is organized as follows. In Section 5.2, we formally introduce

the minimum cost graph homomorphism problem with vertex weights and show that when

the weights are positive integers bounded by a polynomial in the size of the input graph G,

the time complexity of the problem remains the same. Then, we prove Theorem 5.1 in the

following two sections. Specifically, we show in Section 5.3 that the (weighted) minimum

constrained cost graph homomorphism problem is NP-complete when the target graph H

contains a hexagon as an induced subgraph, and in Section 5.4 when H contains an even

cycle of length at least 8. Finally, we prove Theorem 5.2 in Section 5.5.

5.2 Vertex Weights and Minimum Cost Graph Homomor-

phism Problems

In this section, we study the minimum cost graph homomorphism problem with vertex

weights defined below. Let G,H be simple graphs and c : V (G) × V (H) → Z be a homo-

morphism cost function associated with G. Assume that w : V (G) → N is a function that

assigns to every vertex u ∈ V (G) a positive integer weight w(v). For a homomorphism f of

G to H, the cost of f is defined as the weighted sum below.

cost(f) =
∑

v∈V (G)

w(v).c(f(v)).

For a fixed graph H, the weighted minimum cost graph homomorphism problem for H

is the (optimization) problem that, given an input graph G together with a cost function
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c : V (G) × V (H) → Z and positive integer vertex weights w : V (G) → N, asks for a

homomorphism of G to H with minimum cost.

We consider the corresponding decision problem associated with the weighted minimum

cost graph homomorphism problem to H, that takes as input a graph G together with a cost

function c, vertex weights w, and an integer k and asks whether there is a homomorphism of

G to H that costs at most k. We assume that vertex weights are bounded by a polynomial

in the size of the input graph G, and show that the weighted minimum cost graph homo-

morphism problem (with constrained costs) and the minimum cost graph homomorphism

problem (with constrained costs) are polynomially equivalent.

Theorem 5.3. Let H be any fixed graph. Then, the weighted minimum cost graph homo-

morphism problem to H and MinHOM(H) are polynomially equivalent.

Proof. We show that any instance of the weighted minimum cost graph homomorphism

problem to H can be transformed, in polynomial time, into an instance of MinHOM(H).

The other direction is obvious as we can simply create an instance of the weighted problem

in which every vertex of the input graph has weight 1.

Let (G, c, w, k) be an instance of the weighted minimum cost graph homomorphism

problem, where G is the input graph, c : V (G) × V (G) → N is the homomorphism cost

function, w : V (G) → N is function that gives vertex weights, and k is the maximum

homomorphism cost we are interested in.

We construct a graph G′ as follows. For every vertex u ∈ V (G), replace u with a set of

w(u) new disjoint vertices Vu = {u1, u2, · · · , uw(u)}. Moreover, for every edge e = uv in G,

make their corresponding sets Vu, Vv in G′ fully adjacent (otherwise, there will be no edges

between them). Also, define c′(u′, a) = c(u, a) for every a ∈ V (H), u ∈ V (G), and u′ ∈ Vu.

The polynomially bounded vertex weights ensure that G′ can be constructed in polynomial

time, and c′ can be computed in polynomial time.

For every homomorphism f of G to H, it is easy to see that there exists a homomorphism

f ′ of G′ to H such that the cost of the homomorphism f (with cost function c) is equal to

the cost of homomorphism f ′ (with cost function c′ and vertex weights w(u)). In fact, f ′

can be obtained from f by mapping all vertices corresponding to any vertex u to f(u), that

is, f ′(ui) = f(u) for every ui ∈ Vu.

We also show that for any homomorphism f ′ of G′ to H, there exists a homomorphism

f of G to H such that the cost of f is not more than the cost of f ′. This implies that the
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minimum cost homomorphism of G′ to H (without vertex weights) and G to H (with vertex

weights) is equal. Let f ′(Vu) denote the set of all images of vertices in Vu, that is, f ′(Vu) =

{f ′(v)|v ∈ Vu}. Observe that when uv is an edge in G, then every a ∈ f ′(Vu) is adjacent

to every vertex b ∈ f ′(Vv) (a, b ∈ V (H)). This helps us modify f ′ such that all vertices in

Vu map to the same vertex in H without increasing the cost of homomorphism by simply

choosing a vertex a in f(Vu) that minimizes c(u, a). We can now define a homomorphism

f using this modified f ′ by setting f(u) = a where a is the only member in f ′(Vu). Notice

that this can also be performed in polynomial time.

It is possible to use a simpler construction in the proof of Theorem 5.3 that does not

modify G and converts an instance of the weighted problem to an instance without weights

only by changing the cost function, by defining c′(u, a) = c(u, a) × w(u). However, the

transformation used in the aforementioned proof has the added benefit that preserves the

constraints on the cost function. That is, whenever c is a constrained cost function (that

only depends on H), c′ will also be a constrained cost function (that only depends on H).

Thus, we can extend Theorem 5.3 to the minimum constrained cost graph homomorphism

problems as stated below.

Corollary 5.1. Let H be any fixed graph. Then, the minimum constrained cost graph homo-

morphism problem to H and the weighted minimum constrained cost graph homomorphism

problem to H are polynomially equivalent.

5.3 The Hexagon

In this section, we investigate the minimum constrained cost graph homomorphism problem

for graphs H that contain a cycle of length six as an induced subgraph. We present a

polynomial time reduction from the one-or-all list homomorphism problem to H and show

that the corresponding constrained problem with vertex weights is NP-complete for every

such graph H.

Lemma 5.1. Let H be a simple graph which contains a hexagon as an induced subgraph.

Then, the weighted minimum constrained cost graph homomorphism problem to H is NP-

complete.
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Recall from Section 2.2 that, for every fixed graph H, the one-or-all list homomorphism

problem to H is the the list homomorphism problem to H in which every list of the input

is required to be either a singleton (a list of size one) or the entire vertex set of H. In

the process of studying list homomorphism problems to reflexive graphs, Feder and Hell

proved in [43] that when H is a reflexive cycle of length k, with k ≥ 4, then the one-or-all

list homomorphism problem to H is NP-complete. In fact, as Feder, Hell and Huang have

mentioned in their closing remarks in [46], the reduction used in the proof of Theorem 3.1

in [46] can be employed to prove a similar result for irreflexive graphs, as the only lists that

they have used in their construction are either singleton lists, or the entire vertex set V (H).

Lemma 5.2. [46] Let C be the cycle of length 2k. Then, the one-or-all list homomorphism

problem to C is NP-complete when k ≥ 3.

We can now present the proof of Lemma 5.1.

Proof. The membership in NP is clear. Let C = 1, 2, · · · , 6 denote the hexagon and

h1h2 · · ·h6 be an induced subgraph of H which is isomorphic to the cycle C. We reduce

from the one-or-all list homomorphism problem to C.

Let (G,L) be an instance of the one-or-all list homomorphism problem to C. That is,

assume that G is a bipartite graph with n ≥ 2 vertices and m ≥ 1 edges, and for every vertex

v ∈ V (G), the list L(v) of admissible vertices for v is either a singleton, or the set V (C).

We construct an instance (G′, c, w, T ) of the weighted minimum cost graph homomorphism

problem to H and show that G has a list homomorphism to C with respect to the lists L if

and only if G′ has a homomorphism to H with cost less than or equal to T .

We construct the bipartite graph G′ as follows. We start with a copy of G and for every

vertex v ∈ V (G) with a singleton list L(v) = {k}, we add a gadget that is the Cartesian

product of v and the hexagon, using six new vertices (v, 1), (v, 2), · · · , (v, 6), and six new

edges (v, i)(v, i + 1) (for every 1 ≤ i ≤ 6). We also connect v to exactly two vertices of

its corresponding gadget by adding two more edges v(v, k − 1) and v(v, k + 1) (all indices

modulo 6). A vertex v and its corresponding gadget is illustrated in Figure 5.1.

We define the vertex weight function w as follows.

• for every vertex v in the copy of G, let w(v) = 1

• for every vertex v ∈ V (G) with a singleton list:
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(v, 2)

(v, 4)

(v, 6)

(v, 1)

(v, 3)

(v, 5)

v

Figure 5.1: A gadget in G′ for a vertex v ∈ V (G) with a singleton list L(v) = {3}

– w((v, 1)) = w((v, 4)) = 5× 36n3 + 1,

– w((v, 2)) = w((v, 5)) = 1,

– w((v, 3)) = 36n2,

– w((v, 6)) = 6n.

We define the homomorphism cost function c as follows.

• c(h1) = c(h4) = 0,

• c(h2) = c(h5) = 36n2,

• c(h3) = 1,

• c(h6) = 6n,

• c(hi) = 5× 36n3 + 1 for all other vertices hi ∈ V (H).

Finally, we set T = 5 × 36n3 = 180n3 and prove that there is a list homomorphism of

G to C with respect to the lists L if and only if there is a homomorphism of G′ to H with

cost less than or equal to T . First, assume that there is a homomorphism f of G to C with

respect to the lists L. We can define a homomorphism g of G′ to H as follows.

• g(u) = hi if and only if f(u) = i for every vertex u ∈ V (G) and every 1 ≤ i ≤ 6, and,
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• g((u, i)) = hi for every vertex u ∈ V (G) with a singleton list L(u) = {k} and every

1 ≤ i ≤ 6.

Claim. The function g is a homomorphism of G′ to H. Moreover, it only maps vertices

of G′ to the copy of C in H, i.e. g only uses vertices h1, h2, · · · , h6.
To prove the above claim, we distinguish three types of edges in G′.

1. Edges uv corresponding to the edges in G (u, v ∈ V (G)): These are clearly mapped

to edges in H by g as g(u) = f(u) for all vertices u ∈ V (G) and f is a homomorphism

of G to C.

2. Edges (u, i)(u, i + 1) that connect two vertices of the hexagon gadgets: These edges

map to the corresponding edge hihi+1 by definition of g (indices modulo 6).

3. Edges that connect a vertex u ∈ V (G) to two vertices in its corresponding gadget:

Notice that there is a gadget for u in G′ only when u has a singleton list L(u) =

{i}. So, we have f(u) = i. This further implies that g(u) = hi. Also, notice that

g((u, i − 1)) = hi−1 and g((u, i + 1)) = hi+1 by the definition of g (again, all indices

modulo 6). Hence, edges u(u, i − 1) and u(u, i + 1) also map to edges hi−1hi and

hihi+1, respectively.

This completes the proof of the above Claim. We now show that the cost of g is at most

T = 180n3.

• For every vertex u ∈ V (G), w(u) = 1 and c(g(u)) ≤ 36n2. Also, there are exactly n

such vertices in G′. This contributes at most 36n3 to the cost of the homomorphism.

• For every vertex u ∈ V (G) with a singleton list, its corresponding gadget contributes

exactly 4× 36n2:

– vertices (u, 1) and (u, 4) do not contribute to the sum, as c(h1) = c(h4) = 0,

– vertices (u, 2) and (u, 5) each contribute 36n2,

– vertices (u, 3) and (u, 6) each contributes 36n2 = 6n× 6n = 36n2 × 1.

There are at most n gadgets in G′ (one for every vertex u ∈ V (G)), and so, the total

contribution of all vertices of the gadgets is at most 4× 36n3.
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Therefore, the total cost of the homomorphism g is at most 5× 36n3 = 180n3 = T .

Conversely, let g be a homomorphism of G′ to H which costs at most T = 180n3. We

prove that there is a homomorphism f of G to C with respect to the lists L. First, we show

that g has the following two properties.

• It only maps vertices of G′ to the vertices of the hexagon h1, h2, · · · , h6, and,

• every gadget in G′ is mapped identically to the hexagon in H, that is, for every vertex

u ∈ V (G) with a singleton list L(u), and for every 1 ≤ i ≤ 6, g((u, i)) = hi.

The first property holds because c(a) > T for every vertex a ∈ V (H) other than the

vertices of the hexagon (and the fact that, by definition, all vertex weights are positive

integers). In fact, we must have w(u) × c(g(u)) ≤ T , or equivalently, c(g(u)) < (T+1)
w(u) , for

every vertex u ∈ V (G′). This restricts possible images of vertices with large vertex weights.

Consider vertices in the gadget of a vertex u ∈ V (G′). For instance, every (u, 4) must map

to either h1 or h4. Similarly, none of the (u, 3) vertices can map to any vertex other than h1,

h3, or h4. Given that (u, 3) and (u, 4) are adjacent in G′, their images must also be adjacent

in H. This enforces f((u, 3)) = h3 and f((u, 4)) = h4 (for every u that has a gadget in G′).

Similar to (u, 4), g must also map every (u, 1) to either h1 or h4, but g((u, 1)) = h4 is not

feasible as it does not leave any options for the image of (u, 2). Hence, g((u, 1)) = h1. This

further implies that g((u, 6)) = h6 (as it is adjacent to (u, 1)), and finally, g((u, 2)) = h2

and g((u, 5)) = h5.

It is now easy to verify that for every vertex u ∈ V (G) with a singleton list L(u) = j, we

always have g(u) = hj . This is because u is adjacent to (u, j−1) and (u, j+1) in G′ and the

only vertex in H that is adjacent to the g((u, j−1)) = hj−1 and g((u, j+1)) = hj+1 and cost

of mapping to it is less than or equal to T is hj . This completes the proof as we can define

a homomorphism f of G to C with respect to the lists L as f(v) = i ⇐⇒ g(v) = hi.

A shorthand of the construction used in the proof of Lemma 5.1 is shown in Figure 5.2.

5.4 Large Even Cycles

In this section, we extend our results in Section 5.3 to graphs H that contain even cycles of

length at least 8. We use a reduction similar to the one discussed in the previous section to

prove the following Lemma.
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0

h1

36n2

h2

1 h3

0

h4

36n2

h5

6nh6

180n3 + 1

(v, 1)

1

(v, 2)

36n2 (v, 3)

180n3 + 1

(v, 4)

1

(v, 5)

6n(v, 6)

Figure 5.2: A hexagon in H together with associated homomorphism costs (left), and a
gadget in G′ together with vertex weights (right).

Lemma 5.3. Let H be a simple bipartite graph which contains a cycle of length at least eight

as an induced subgraph. Then, the weighted minimum constrained cost graph homomorphism

problem to H is NP-complete.

Proof. Again, the membership in NP is clear. Let C = 1, 2, · · · , 2k be an even cycle, and

h1h2 · · ·h2k be an induced subgraph of H which is isomorphic to C (k ≥ 4). Again, we

reduce from the all-or-one list homomorphism problem to C.

We take an instance of the one-or-all list homomorphism problem to C, i.e., a bipartite

graph G with n ≥ 2 vertices and m ≥ 1 edges, and lists L(v) that are either a singleton,

or the entire set V (C). We construct a corresponding instance (G′, c, w, T ) of the weighted

minimum cost graph homomorphism problem to H.

The bipartite graph G′ is constructed exactly as before: start with a copy of G and for

every vertex v with a list L(v) = {t}, we add the Cartesian product of v and C using 2k new

vertices and 2k new edges. Finally, we make v adjacent to two vertices in its corresponding

gadget, (v, t − 1) and (v, t + 1) (all indices modulo 2k). An example of a vertex with a

singleton list and its gadget in G′ is shown in Figure 5.3.

We define the vertex weight function w as follows. An example of a gadget with vertex

weights is illustrated in Figure 5.4.
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(v, 2)

(v, 4)(v, 6)

(v, 8)

(v, 1)

(v, 3)

(v, 5)

(v, 7)

v

Figure 5.3: A gadget in G′ corresponding to a vertex v with a singleton list L(v) = {c3}
(k = 4)

• for every vertex v in the copy of G, let w(v) = 1

• for every vertex v ∈ V (G) with a singleton list:

– w((v, 1)) = w((v, 4)) = 50kn2,

– w((v, 2)) = w((v, 3)) = w((v, 5)) = 1,

– w((v, i)) = 9n for all 6 ≤ i ≤ 2k

We define the homomorphism cost function c as follows (See Figure 5.5).

• c(h1) = c(h4) = 0,

• c(h2) = c(h3) = c(h5) = 8kn,

• c(hi) = 1 for all 6 ≤ i ≤ 2k,

• c(hi) = 50kn2 otherwise.

Finally, we set T = 50kn2 − 1 and argue that there is a list homomorphism of G to C

with respect to the lists L if and only if there is a homomorphism of G′ to H with cost less

than or equal to T . The rest of the proof is similar to the proof of Lemma 5.1.
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50kn2

(v, 1)

1

(v, 2)

1

(v, 3)

50kn2

(v, 4)

1
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Figure 5.4: Vertex weights for a gadget in G′ (k = 5)

First, assume that there is a homomorphism f of G to C with respect to the lists L.

A homomorphism g : V (G′) → V (H) can easily be constructed by mapping each vertex

u ∈ V (G) to hi whenever f(u) = i, and mapping each gadget in G′ identically to the copy

of C in H (i.e., g((u, i)) = hi). We now show that the cost of g does not exceed T .

• For every vertex u ∈ V (G), w(u) = 1 and c(g(u)) ≤ 8kn.

• For every vertex u ∈ V (G) with a singleton list, its corresponding gadget contributes

exactly 42kn− 45n = 3× 8kn+ (2k − 5)× 9n:

– vertices (u, 1) and (u, 4) do not contribute to the sum,

– vertices (u, 2), (u, 3) and (u, 5) each contribute 8kn,

– vertices (u, i) each contribute 9n (6 ≤ i ≤ 2k).

This gives an upper bound of n× (50kn− 45n) < 50kn2 on the cost of g (given that G

has at least one vertex).
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Figure 5.5: An even cycle in H with costs (k = 4)

Conversely, let g be a homomorphism of G′ to H which costs less than 50kn2. Observe

that g can only map vertices of G′ to the copy of C in H. This is because every vertex

weight is at least 1 and the cost of all other vertices in H is 50kn2.

We show that every gadget maps identically to the copy of C in H. Again, we must have

c(g(u)) < (T+1)
w(u) for every vertex u ∈ V (G′). Hence, (u, 1) and (u, 4) must map to h1 and h4,

and they cannot map to the same vertex because they belong to different partitions in G′.

Also, for every u and every i > 5, the vertex (u, i) cannot map to h2, h3, or h5. Specifically,

(u, 2k) which is adjacent to (u, 1) can only map to a neighbour of h1 or h4 other than h2,

h3, and h5. This enforces g((u, 2k)) = h2k, which implies g((u, 1)) = h1 and g((u, 4)) = h4.

This further implies g((u, 2)) = h2 and g((u, 3)) = h3 (because the other path between h1

and h4 has length 2k− 3 ≥ 5). It is now clear that the for all remaining vertices (u, i) (with

i > 5), we have g((u, i)) = hi.

Now, we can conclude that g(u) = hj for every vertex u with a singleton list L(u) = {cj},
because u is adjacent to (u, j − 1) and (u, j + 1) in G′. This completes the proof as we can

define a homomorphism f of G to C with respect to the lists L as f(v) = i whenever

g(v) = hi for every v ∈ V (G).

Note that the proof of Lemma 5.3 does not apply when k = 3. In fact, the corre-

sponding minimum cost homomorphism problem is polynomial time solvable for the inputs
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constructed in the reduction. This is because the two paths between c1 and c4 have the

same length, and hence, no homomorphism of minimum cost will use c2 (thus, the problem

reduces to the minimum cost graph homomorphism to a path of length 6, which is known

to be efficiently solvable).

Theorem 5.4. Let H be a bipartite graph.

If H is a proper interval bigraph, then the minimum constrained cost graph homomorphism

problem to H is in P.

If H is not chordal bipartite, then the minimum constrained cost graph homomorphism

problem to H is NP-complete.

Proof. If every component of H is a proper interval bigraph, then problem without con-

strained costs, MinHOM(H), is polynomial time solvable [62] (Theorem 2.7). If H is not

chordal bipartite, then, by definition, it contains an even cycle of length at least six as an

induced subgraph. Hence, this is an immediate result of Corollary 5.1 and Lemmata 5.1

and 5.3.

We note that Theorem 5.4 gives only a partial dichotomy for the minimum constrained

cost graph homomorphism problem, as there is a gap between the class of chordal bipartite

graphs and the class of proper interval bigraphs. Specifically, the class of proper interval

bigraphs consists precisely of those chordal bipartite graphs that do not contain a bipartite

claw, a bipartite net, or a bipartite tent as an induced subgraph (see Lemma 2.1). In the

next Section, we make this gap smaller, and in particular, we close the gaps for trees.

5.5 The Dichotomy For Trees

In this section, we extend Theorem 5.4 to graphs H that contain a bipartite claw. As in

the case of large cycles, we focus on the weighted version of the problem and show that it is

NP-complete when the target graph H contains a bipartite claw. This helps us determine

a dichotomy classification for trees.

Lemma 5.4. Let H be a fixed simple graph which contains the bipartite claw as an induced

subgraph. The weighted minimum constrained cost graph homomorphism problem to H is

NP-complete.
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It is well known that, given as input a graph G and an integer k, the problem of deciding

whether G has an independent of size k is NP-complete. Gutin, Hell, Rafiey and Yeo [62]

proved that the problem is still NP-complete even when the input is restricted to be a

3-partite graph.

Theorem 5.5. [62] The problem of finding a maximum independent set in a 3-partite graph

G, even given the three partite sets, in NP-complete.

The main idea of the proof of Lemma 5.4 is similar to the proofs of Lemmata 5.1 and 5.3.

We show that finding an independent set of size at least k in an arbitrary 3-partite graph G

is equivalent to finding a homomorphism of cost at most k′ in an auxiliary graph G′ together

with constrained costs c and vertex weights w. To construct G′, we start by adding a fixed

number of placeholder vertices; vertices that, with the appropriate weights and costs, always

map to the same specific vertices of the target graph H in any homomorphism of G′ to H

of minimum cost. We then use these placeholder vertices in our construction to ensure that

the vertices corresponding to each part of the the input graph G are only mapped to certain

vertices of the target graph H.

We can now present the proof of Lemma 5.4.

Proof. The membership in NP is clear. To show that the problem is NP-hard, we reduce

from the problem of finding a maximum independent set in a 3-partite graph, stated in

Theorem 5.5. Let G be a 3-partite graph in which we seek an independent set of size k,

with parts V1, V2, and V3, and denote by and n and m the number of vertices and edges in

G, respectively. We assume that G is non-empty. Without loss of generality, we can assume

that |V1| ≥ 1. We construct an instance (G′, c, w, TG,k) of the weighted minimum cost graph

homomorphism and show that G has an independent set of size k if and only if there is a

homomorphism of G′ to H with cost less than or equal to TG,k.

We construct the bipartite graph G′ as follows. Subdivide every edge e in G using a

new vertex de (which is adjacent to both ends of e). Add three vertices b1, b2 and b3 and

make each bi adjacent to all vertices in Vi for i = 1, 2, 3. Finally, add three more vertices

c0, c1 and c2. Make c0 adjacent to b1, b2 and b3, c1 adjacent to b1 and c2 adjacent to b2. A

3-partite graph G together with its corresponding G′ is depicted in Figure 5.6. For future

reference, we denote the set {b1, b2, b3, c0, c1, c2} by V4.

Let H ′ = (X,Y ) be an induced subgraph of H which is isomorphic to a bipartite claw
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Figure 5.6: A 3-partite graph G with parts V1 = {x1, x2}, V2 = {y1, y2}, V3 = {z1} (left)
and its corresponding bipartite graph G′ (right)

with parts X = {v0, v1, v2, v3} and Y = {u1, u2, u3}, and edge set

E′ = {u1v1, u2v2, u3v3, u1v0, u2v0, u3v0}.

Define the homomorphism cost function c as follows.

• c(v0) = 4

• c(v1) = c(u1) = 1

• c(u2) = c(v3) = 3

• c(v2) = c(u3) = 0

• c(u) = 160n(m+ n) for every other vertex u /∈ X ∪ Y

This is illustrated in Figure 5.7.

Define the vertex weights of G′ as follows.

• w(b1) = w(c1) = 50n(m+ n)
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Figure 5.7: A bipartite claw, with homomorphism costs

• w(b3) = w(c2) = 160n(m+ n)

• w(b2) = w(c0) = 1

• w(u) = 4(m+ n) for every vertex u ∈ V1

• w(u) = 3(m+ n) for every vertex u ∈ V2

• w(u) = 12(m+ n) for every vertex u ∈ V3

Finally, let TG,k be the sum of the following values.

• T 1
G,k = 16(m+ n)|V1|,

• T 2
G,k = 12(m+ n)|V2|,

• T 3
G,k = 48(m+ n)|V3|,

• T 4
G,k = 2× 50n(m+ n) + 4 + 3,

• T eG,k = 3m, and,

• T IG,k = −12(m+ n)k.

Or equivalently:

TG,k = 100n(m+ n) + 7 + 3m+ (4|V1|+ 36|V3|)(m+ n) + 12(m+ n)(n− k)
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We prove that G has an independent set of size k if and only if there is a homomorphism

of G′ to H of cost less than or equal to TG,k.

First, assume that I is an independent set of size k in G with parts I1 ⊂ V1, I2 ⊂ V2,

and I3 ⊂ V3. Let ki denote |Ii| (i = 1, 2, 3). Define the homomorphism fI as follows.

• fI(u) = vi for all vertices u ∈ Ii (i = 1, 2, 3),

• fI(u) = v0 for all vertices u ∈ V (G)− I,

• fI(de) = uj for every edge e with one end in Ij (j = 1, 2, 3),

• fI(de) = u3 for every edge e with both ends in V − I,

• fI(bj) = uj for j = 1, 2, 3, and finally,

• fI(ck) = vk for k = 0, 1, 2.

Notice that at most one end of each edge e is in the independent set, hence, the above

assignment is indeed a function. In fact, it is easy to verify that fI is a homomorphism.

• edges subdivided from edges e with both ends in V − I map to the edge v0u3,

• edges subdivided from edges e with one end in Ii and the other end in V − I map to

uivi and uiv0 (i = 1, 2, 3),

• edges connecting bi to Vi map to uivi (i = 1, 2, 3),

• c0bi map to v0ui (i = 1, 2, 3), and,

• bici map to viui (i = 1, 2).

We now compute the cost of the homomorphism fI and show that it is at most TG,k.

• The vertices in V1 contribute exactly (|V1| − k1)× 16(m+ n) + k1 × 4(m+ n), or,

T 1
G,k − 12k1(m+ n),

• the vertices in V2 contribute exactly (|V2| − k2)× 12(m+ n) + k1 × 0, or,

T 2
G,k − 12k2(m+ n),

• the vertices in V3 contribute exactly (|V3| − k3) × 48(m + n) + k3 × 36(m + n), or,

T 3
G,k − 12k3(m+ n),
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• the vertices in V4 contribute a total of 100n(m+ n) + 7 = T 4
G,k (see Table 5.1), and,

• the vertices de contribute at most 3m = T eG,k.

Notice that k = k1 + k2 + k3, hence, the cost of the homomorphism fI is at most TG,k.

vertex v w(v) fI(v) c(fI(v)) contributed cost of v

b1 50n(m+ n) u1 1 50n(m+ n)
b2 1 u2 3 3
b3 160n(m+ n) u3 0 0
c0 1 v0 4 4
c1 50n(m+ n) v1 1 50n(m+ n)
c2 160n(m+ n) v2 0 0

Table 5.1: contribution of vertices in V4 to the cost of homomorphism fI

Conversely, assume that f is a homomorphism of G′ to H which costs less than or equal

to TG,k. Note that TG,k < 150n(m + n). This prevents any vertex v to map to a vertex

a when c(v, a) × w(v) ≥ TG,k. In particular, b1 and c1 can only map to vertices a with

c(a) < 3, i.e, v1, u1, v2, u3. But b1 and c1 are adjacent and the only edge in H among

these four vertices is u1v1. Similarly, b3 and c2 can only map to u3 or v2. Observe that

f(b3) = v2 is not feasible, as it implies f(c0) = u2 and hence f(b1) ∈ {v0, v2}. Thus, we

have f(b3) = u3, f(b1) = u1, f(c1) = v1, f(c0) = v0, f(c2) = v2, and finally f(b2) = u2.

This restricts possible images of vertices in V . Specifically, all vertices in V1 are adjacent

to b1, thus, f can only map them to v1 or v0, the neighbourhood of u1 = f(b1). Similarly,

each vertex in V2 will only map to v2 or v0, and each vertex in V3 will only map to v3 or v0.

Let I denote the set of vertices of G that f maps to v1, v2 or v3. Notice that I is an

independent set in G. This is because any two adjacent vertices in G are of distance two in

G′ but the shortest path between v1 and v2, or between v2 and v3, or between v3 and v1 in

H ′ has length 4.

We complete the proof by showing that |I| ≥ k. Let |I| = k′ and assume for a contra-

diction that k′ < k. Let fI denote the homomorphism of G′ to H constructed from I as

described in the first part of the proof with cost(fI) ≤ TG,k′ . Observe that f and fI are

identical for every vertex v ∈ Vi (i = 1, 2, 3, 4). Hence, |cost(f) − cost(fI)| ≤ 3m. This

implies that cost(fI) ≤ cost(f) + 3m. Also, note that cost(fI) ≥ TG,k′ −3m, hence, we have

TG,k′ − 3m ≤ TG,k + 3m, or equivalently, TG,k′ − TG,k ≤ 6m. But this is a contradiction
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because:

TG,k′ − TG,k = T IG,k′ − T IG,k = 12(m+ n)(k − k′) ≥ 12(m+ n).

We can now apply Corollary 5.1 and conclude the following Theorem for the problem

without vertex weights.

Theorem 5.6. Let H be a fixed simple graph which contains the bipartite claw as an induced

subgraph. Then, the minimum constrained cost graph homomorphism problem to H is NP-

complete.

Interestingly, the only forbidden structure of proper interval bigraphs (discussed in

Lemma 2.1) that does not contain a cycle, is the bipartite claw. Thus, we are now able to

completely distinguish between easy and hard minimum cost graph homomorphism prob-

lems to trees.

Theorem 5.7. Let T be a fixed tree. The minimum constrained cost graph homomorphism

problem to T is in P when T is a proper interval bigraph, and is NP-complete otherwise.

Proof. If T is a proper interval bigraph, then the problem without constrained costs is also

polynomial (Theorem 2.7). If T is not a proper interval bigraph, then it must contain a

bipartite claw. Thus, the problem is NP-complete by Theorem 5.6.



Chapter 6

Conclusion and Future Work

6.1 Counting Matrix Partitions

We leave open the counting complexity of matrix partition problems in general. In par-

ticular, we do not know whether a dichotomy classification exists for matrices M of size

greater than four. Recall from Chapter 2 that Dyer, Goldberg and Richerby have recently

extended our results for small matrices to matrices of size 4 by means of a computer-assisted

proof [37].

Our dichotomy classification for counting M -partitions for small matrices coincides with

the dichotomy recently discovered by Gobel, Goldberg, McQuillan, Richerby and Yamakami

for the list version of the problems (discussed in Section 3.5). This suggests another open

question, as conjectured by Dyer, Goldberg and Richerby in [37]. Are these two problems,

counting M -partitions, and counting list M -partitions, polynomially equivalent for every

matrix M? It is known that the answer to the above question is true for matrices M that

represent graph homomorphism problems [76], and also for matrices M of size at most 4

(Theorems 3.9 and 3.13).

Another interesting open area to investigate is the question of monotonicity of M -

partition problems. Is M -partition # P-complete when it contains a principal submatrix

M ′ such that M ′-partition is # P-complete? In the case of list matrix partition problems,

monotonicity is straight forward because we can always avoid putting vertices in some parts

using appropriate lists. But this is not necessarily true when we do not have lists.

93
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6.2 Approximation Algorithms

In Chapter 4, we have classified the complexity of approximately solving minimum cost graph

homomorphism problems for general graphs (that contain vertices with loops and vertices

without loops), as well as for directed graphs, but the approximation ratio guaranteed by

our algorithm is n, the size of the input graph. It would be interesting to improve the

approximation ratio in both of these cases. In particular, we do not know if there exists

any constant ratio approximation algorithm for these problems when the target graph H is

a directed graph or a general undirected graph (that contains both a vertex with loop and

a vertex without loop), and hence, whether they belong to the complexity class APX.

In the case of co-circular arc bigraphs and interval graphs where we have presented spe-

cific constant ratio approximation algorithms, the most interesting open question is whether

the approximation ratio can be bounded by a constant independent of H. Our algorithm

is both a |V (H)|-approximation and a 1 + |E′|-approximation algorithm. These are con-

stants independent of the input (the graph G and the homomorphism cost function c), but

very much dependent on the fixed graph H. For many bipartite graphs H (including the

bipartite tent, net, or claw), one can choose a starting min ordering such that |E′| = 1,

thus obtaining a 2-approximation algorithm. With a bit more effort it can be shown that a

2-approximation algorithm exists for the so-called doubly convex bipartite graphs. We have

not excluded the possibility that there exist polynomial time 2-approximation algorithms

(or k-approximation algorithms, for some absolute constant k) for all co-circular arc bipar-

tite graphs or all interval graphs. Until such a possibility is excluded, there is not much

interest in making slight improvements to the approximation ratio.

Finally, we leave open the complexity of approximately solving the bottleneck mini-

mum cost graph homomorphism problem. Trivially, unless P = NP, there is no efficient

approximation with a multiplicative guarantee possible for this problem when the graph

homomorphism problem is NP-complete, as one can use an identity cost function c = 1 and

solve HOM(H) otherwise.

Theorem 6.1. Let H be a fixed graph. When H is not bipartite, then there is no polynomial

time approximation algorithm with multiplicative guarantee possible for BMinHOM(H), un-

less P = NP.
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6.3 Minimum Constrained Cost Graph Homomorphisms

We leave open the complexity of the minimum constrained cost graph homomorphism prob-

lems in general. In particular, we do not know the complexity of the problem when H

contains a bipartite net, or a bipartite tent (but does not contain a bipartite claw, or an

even cycle of length at least six). These problems are specifically interesting because these

are the only remaining forbidden structures of proper interval bigraphs (Lemma 2.1). In

fact, it will be surprising if both of these problems are NP-complete, as we have the following

result.

Theorem 6.2. Suppose that the minimum constrained cost graph homomorphism problems

to bipartite net and to bipartite tent are both NP-complete. Then, for every bipartite graph

H, the minimum constrained cost graph homomorphism problem H and MinHOM(H) are

polynomially equivalent.
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[66] Magnús M. Halldórsson, Guy Kortsarz, and Hadas Shachnai. Minimizing average
completion of dedicated tasks and interval graphs. In RANDOM-APPROX, pages
114–126, 2001.

[67] P Hell. Graph partitions with prescribed patterns, 2012.



BIBLIOGRAPHY 101

[68] Pavol Hell. Retractions de graphes. PhD thesis, Universite de Montreal, Montreal,
Canada, 1972.

[69] Pavol Hell, Miki Hermann, and Mayssam Mohammadi Nevisi. Counting partitions of
graphs. Lecture Notes in Computer Science, pages 227–236, 2012.

[70] Pavol Hell and Jing Huang. Certifying lexbfs recognition algorithms for proper interval
graphs and proper interval bigraphs. SIAM J. Discrete Math., 18(3):554–570, 2004.

[71] Pavol Hell and Jing Huang. Interval bigraphs and circular arc graphs. Journal of
Graph Theory, 46(4):313–327, 2004.
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M -purifying, 53

adjacency list, 4
adjacency matrix, 4
adjacent, 3
approximation algorithm, 2
arc, 9
asteroidal triple, 7, 18

backward arc, 23
bi-arc graph, 19
biclique, 6
bigraph, 5
bipartite complement, 7
bipartite graph, 5

child, 5
chordal graph, 8
chromatic number, 9
circular arc graph, 8
clique, 6
clique covering number, 6
clique cutset, 6
closed neighbourhood, 4
closed walk, 5
co-complement, 6
colour, 9
colour-preserving homomorphism, 17
colouring, 9
colouring problem, 9
compaction, 21
complement, 6
complete bigraph, 6
complete graph, 6
complete list homomorphism, 20
component, 4

conflict graph, 17, 24
congruent walk, 23
connected, 4
connected component, see component
connected list homomorphism, 20
constant-factor approximation, see constant-

ratio approximation
constant-ratio approximation, 2
counting list matrix partitions, 52
counting problem, 3
counting reduction, 3
counting Turing machine, 3
cut vertex, 6
cutset, 6
cycle, 5

DAT, 23
degree, 4
derectangularising sequences, 53
digraph, 9
digraph homomorphism, see homomorphism
directed asteroidal triple, 23
directed cycle, 10
directed graph, see digraph
directed path, 10
dominate, 10

edge, 3
edge-asteroid, 18
edge-surjective homomorphism, 21
empty graph, 6
end

edge, 3
walk, 5

even cycle, 5
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even path, 5

finite
graph, 4, 10

forest, 6
forward arc, 23
function problem, 1

graph, 4

homogeneous set, 6
homomorphism, 15

digrpah, 22
homomorphism problem, 16

in-degree, 10
in-neighbour, 10
incident, 3
independent set, 6
induced subgraph, 4
intersection graph, 7
interval bigraph, 8
interval graph, 7
invertible pair, 23
irreflexive

digraph, 10
graph, 4

k-colouring problem, 9
k-partite graph, 5

leaf, 5
list colouring, 17
list homomorphism, 18
loop

digraph, 10
graph, 4

loop-connected, 6

min ordering, 57
min-max ordering, 27, 57
minimum colour sum, 24
minimum cost graph homomorphism, 25

neighbour, 4

neighbourhood, 4
node, 5

odd cycle, 5
odd path, 5
one-or-all list homomorphism, 20
open neighbourhood, see neighbourhood
optimum cost chromatic partition, 24
orientation, 10
oriented, 10
oriented cycle, 10
oriented path, 10
oriented walk, 10
out-degree, 10
out-neighbour, 10

parallel edge
digraph, 10
graph, 4

parent, 5
partially reflexive tree, 6
partition matrix, 30
path, 5
perfect elimination ordering, 8
permutable triple, 23
permutation graph, 27
polynomial time approximation scheme, 2
precolouring extension, 17
predecessor, 5
principal submatrix, 30
proper circular arc graph, 8
proper colouring, 9
proper interval bigraph, 8
proper interval graph, 7
PTAS, 2
pure matrix, 52

rectangular relation, 53
reflexive

digraph, 10
graph, 4

reflexive complete graph, 6
reflexive tree, 6
retract, 21
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retraction, 21
root, 5
rooted tree, 5

scheduling, 17
semicomplete

digraph, 10
sibling, 6
simple graph, 4
simplicial vertex, 8
skew partition, 6
special edge-asteroid, 18
split graph, 9
stable cutset, 6
stable set, see independent set
subgraph, 4
subset-closed, 52
subtree graph, 8
successor, 6

trail, 5
tree, 5
Turing machine

running time, 2

underlying graph, 9
undirected graph, see graph

vertex, 3
vertex-colouring, see colouring
vertex-surjective homomorphism, 21

walk, 5
weighted minimum cost graph homomorphism,
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