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Abstract

This thesis presents a deep neural-network-based hierarchical graphical model for individual
and group activity recognition in surveillance scenes. As the first step, deep networks are
used to recognize activities of individual people in a scene. Then, a neural network-based
hierarchical graphical model refines the predicted labels for each activity by considering de-
pendencies between different classes. Similar to the inference mechanism in a probabilistic
graphical model, the refinement step mimics a message-passing encoded into a deep neural
network architecture. We show that this approach can be effective in group activity recog-

nition. The deep graphical model improves recognition rates over baseline methods.

Keywords: Deep Structured Model; Group Activity; Message Passing
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Chapter 1

Introduction

Event understanding in videos is a key element of computer vision systems in the context
of visual surveillance, human-computer interaction, sports interpretation, and video search
and retrieval. Varied components with different characteristics are involved in corresponding
events or scenes. Therefore events, activities, and interactions must be represented in such
a way that retains all of the important visual information in a compact and rich structure.
Accurate detection and recognition of atomic actions of each individual person in a video
is the primary component of such a system, and also the most important, as it affects
the performance of the whole system significantly. Although there are many methods to
determine human actions in uncontrolled environments, this task remains a challenging

computer vision problem, and robust solutions would open up many useful applications.

1.1 Features for Activity Recognition

The standard and yet state-of-the-art pipeline for activity recognition and interaction de-
scription in surveillance videos consists of extracting hand-crafted local feature descriptors
either densely or at a sparse set of interest points (e.g., HOG, MBH, ...) in the context of
a Bag of Words model [28]. These are then used as the input either to a discriminative or
a generative model and achieved good results in many applications. In recent years, along
with the emerging of deep learning field combined with new computational resources, many
traditional computer vision tasks have witnessed a surprising jump in performance by using
machine learning based methods. It also has been shown that deep learning techniques can
achieve state-of-the-art results for action recognition in surveillance videos [24, 14]. How-
ever, deep learning has not yet proven successful for surveillance video analysis. Activities
in videos are often complex, with high-level semantic meaning derived from often subtle

distinctions and varied spatio-temporal interactions between people or people and objects.
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Figure 1.1: Recognizing individual and group activities in a deep network. Individual action
labels are predicted via CNNs. Next, these are refined through a message passing neural
network which considers the dependencies between the predicted labels.

1.2 Graphical Model In Group Activity Recognition

Understanding of complex visual events in a scene requires exploitation of richer infor-
mation rather than individual atomic activities, such as recognizing local pairwise and
global relationships in a social context and interaction between individuals and/or ob-
jects [18, 22, 30, 23, 5]. This complex scene description remains an open and challenging
task. It shares all of difficulties of action recognition, interaction modeling', and social event
description. Formulating this problem within the probabilistic graphical models framework
provides a natural and powerful means to incorporate the hierarchical structure of group
activities and interactions [20, 18]. Given the fact that deep neural networks can achieve
very competitive results on the single person activity recognition tasks, they can, produce
better results when they are combined with other methods, e.g. graphical models, in or-
der to capture the dependencies between the variables of interest [26]. Following a similar
idea of incorporating spatial dependency between variables into the deep neural network
in a joint-training process presented [26], here we focus on learning interactions and group
activities in a surveillance scene by employing a graphical model in a deep neural network

paradigm.

!The term “interaction” refers to any kind of interaction between humans, and humans and objects that
are present in the scene, rather than activities which are performed by a single subject.



1.3 Contribution

In this thesis, the main goal is to address the problem of group activity understanding
and scene classification in complex surveillance videos using a deep learning framework.
More specifically, we are focused on learning individual activities and describing the scene
simultaneously while considering the pair-wise interactions between individuals and their
global relationship in the scene. This is achieved by combining a Convolutional Network
(ConvNet) with a probabilistic graphical model as additional layers in a deep neural network
architecture into a unified learning framework. The probabilistic graphical models can be
seen as a refining process for predicting class labels by considering dependencies between
individual actions, body poses, and group activities. The probabilistic graphical model is
modeled by a multi-step message passing neural network and the predicted label refinement
is carried out through belief propagation layers in the neural network. Figure 1.1 depicts an
overview of our approach for label refinement. Experimental results show the effectiveness of
our algorithm in both activity recognition and scene classification. This work was published
as [9]:

e Zhiwei Deng, Mengyao Zhai, Lei Chen, Yuhao Liu, Srikanth Muralidharan, Mehrsan
Javan Roshtkhari, Greg Mori, Deep structured models for group activity recognition, BMVC,
2015

1.4 Overview of the Thesis

In this thesis, we proposed a model to combine deep neural networks with graphical models
by mimicking the message passing process in the neural network. The rest of the thesis is
organized as follows:

Chapter 2 illustrates the previous works related to the topic of group activity recogni-
tion and deep neural network model with structured outputs. Chapter 3 introduces and
explains the proposed model for integrating graphical model and empowering deep learning
with structured output. Chapter 4 presents the group activity analysis results based on
our proposed pipeline on two challenging datasets. Chapter 5 concludes our method and

proposes potential future work.



Chapter 2

Previous Work

Human activity analysis, as a line of research considering compositionality of basic elements
towards more complex semantic higher-level understanding, has been actively studied for
many years. A substantial amount of research on this topic has produced a diverse set of
approaches and a rich collection of activity recognition algorithms. Readers can refer to
recent surveys such as Poppe [21] and Weinland et al. [29] for a review. Many approaches
concentrate on an activity performed by a single person, including state of the art deep

learning approaches [24, 14].

2.1 Group Activity Analysis

In the context of scene classification and group activity understanding, the problem is typi-
cally formulated as a structured prediction problem that considers both individual actions,
group activities and interactions among them. Graphical model as a standard method for
modeling structure has been adopted by many previous works in varied ways. Hierarchical
graphical models that represent activities and interactions for collective activity recognition
have proven to be successful and effective [18, 3, 6, 19]. Choi et al. [6] has been focused
on capturing spatio-temporal relationships between visual cues either by imposing a richer
feature descriptor which accounts for context [27, 7] or a context-aware inference mecha-
nism [6, 3]. Amer et al. [3] proposed a hierarchical graphical model with adaptive structure
to cature the most discriminative interactions in a scene. Ryoo et al. [23] reasons over
varied granularities of group activity by adopting powerful context-free grammar as repre-
sentation. Lan et al. [18] adopted a graphical model reasons over actions, social roles and
activities on sports videos. AND-OR graphs as a powerful method that is able to adaptively
reason about structures of activities has been adopted to analyze group activity by a line of
papers [2, 11]. And dynamic Bayesian networks are used to model spatial temporal human

activities by considering context [30].
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Figure 2.1: Convolutional neural network architecture proposed by Krizhevsky et al. [15].

2.2 Convolutional Neural Network

In recent years, deep learning models have been widely explored and adopted in a variety
of computer vision applications and achieved impressing results. In image classification,
Krizhenvsky et al. [15] proposed a deep convolutional network structure that extract ef-
fective features from raw pixels and achieved record-breaking results, the architecture is
shown in fig Figure 2.1. Simonyan et al. [13] and Szegedy et al.[25] proposed deeper net-
work structures with higher complexity to extract more discriminative features. Along with
the success of deep learning method in image classification, varied applications have adopted
convolutional neural network to explore the ability of deep neural network in more direc-
tions. In another classic task, Girshick et al. [10] expand the convolutional neural network
image classification model to object detection and achieved state-of-the-art results. For
deep learning model in action recognition, recent works [14, 24] have also shown effective-
ness of deep learning model by exploiting information in temporal domain. Karpathy et
al.  [14] proposed to recognize atomic actions by varied fusion techniques. Simonyan et
al. [24] proposed a two-stream framework which combine deep models for both optical flow
and image inputs. However, no prior art in the CNN-based video description used activities
and scene information jointly in a unified graphical representation for scene classification.
Therefore, the main objective of this research is to develop a system for activity recognition
and scene classification which simultaneously uses the action and scene labels in a neural
network-based graphical model to refine the predicted labels via a multiple-step message

passing procedure.

2.3 Deep Learning with Structured Output

For the structured output model on deep neural network, a few methods have been devel-
oped to adapt to applications respectively [26, 8, 16]. Deng et al. [8] propose an interesting
solution to improve label prediction in large scale classification by considering relations be-
tween the predicted class labels. They employ a probabilistic graphical model with hard

constraints on the labels on top of a neural network in a joint training process. Bottou et



al. [16] proposed Graph Transformer Networks to jointy optimize subtasks. In this work, it
was assumed that exact inference can be performed during a forward-backward pass. The
more closely related work to our approach is combining graphical models with convolutional
neural networks [26]. In the work of Tompson et al. [26], a one step message passing is im-
plemented as a convolution operation in order to incorporate spatial relationship between
local detection responses for human body pose estimation. In essence, our proposed algo-
rithm follows a similar idea of considering dependencies between predicted labels for the
actions, group activities, and the scene label to solve the group activity recognition problem.
Here we focus on incorporating those dependencies by implementing the label refinement
process via an inter-activity neural network, as shown in Figure 3.1. The network learns
the weights during the message passing procedure and performs inference and learning in

unified framework using back-propagation.



Chapter 3

Deep Structured Model

Considering the architecture of our proposed structured label refinement algorithm for group
activity understanding (see Figure 3.1), the key part of the algorithm is a multi-step message
passing neural network. In this chapter, we describe how to combine neural networks and
graphical models by mimicking a message passing algorithm and how to carry out the

training procedure.

3.1 Graphical Models in a Neural Network

Graphical models provide a natural way to hierarchically model group activities and capture
the semantic dependencies between group and individual activities [20]. A graphical model
defines a joint distribution over states of a set of nodes. For instance, one can use a factor
graph, in which each ¢; corresponds to a factor over a set of related variable nodes z; and

yi, and models interactions between these nodes in a log-linear fashion:
P(X,Y) o< [ ¢ilwi, vi) o exp(d wifi(z,y)) (3.1)
i k

where X are the inputs and Y the predicted labels, with weighted (wy) feature functions
Tk

In order to do the inference in a graphical model, belief propagation is often adopted as
a way to infer states or probabilities of the variables. In the belief propagation algorithm,
each step of message passing involves two parts. At first the relevant information from the
connected nodes to a factor node are collected. Those messages are then passed to the
variable nodes by marginalizing over states of irrelevant variables.

Following this idea, we mimic the message passing process by representing every possible
combination of states as a neuron in neural network, denoted as a “factor neuron”. While
normal message passing calculates dependencies rigidly, a factor neuron can be used to learn

and predict dependencies between states and pass messages to variable nodes. In the setting
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Figure 3.1: A schematic overview of our message passing neural network framework. Given
an image frame and the detected bounding boxes around each person, our model predicts
scores for individual actions and the group activities. The predicted labels are refined by
applying a belief propagation-like neural network. This network considers the dependencies
between individual actions and body poses, and the group activity. The model learns the
message passing parameters and performs inference and learning in unified framework using
back-propagation.
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Figure 3.2: Weight sharing scheme in neural network. We use a sparsely connected layer
to represent message passing between variable nodes and factor nodes. Each factor node
only connects to its relevant nodes. And factor nodes of same type share a template of
parameters. For example, factor node for person A and person B in this picture captures
the same states combination, scenel, actionl and posel, and share the same set of weights.
And the third factor node shown in the picture captures the dependency of a different set
of states of person A and the group activity of current frame, and adopts another set of
weights.

of neural networks, this dependency representation becomes more flexible and can adopt
varied types of neurons (linear, ReLU, Sigmoid, etc.). Moreover, by integrating graphical
models into a neural network, the formulation of a graphical model allows for parameter
sharing in the neural network, which not only reduces the number of free parameters to
learn but also accounts for semantic similarities between factor neurons. Fig. 3.2 shows the

parameter sharing scheme for different factor neurons.

3.2 Message Passing NN Architecture for Group Activity

Representing group activities and individual activities as a hierarchical graphical model has
proven to be a successful strategy [20, 6, 2]. We adopt a similar structured model that
considers group activity, individual activity, and group-individual interactions together.
We introduce a new message passing Convolutional Neural Network framework as shown in
Fig. 3.1. Our model has two main parts: (1) a set of fine-tuned CNNs that produce a scene
score for an image, and action scores and pose scores for each individual person in that
image; and (2) a message passing neural network which captures the dependencies between
activities, poses, and scene labels.

Given an image I and a set of bounding boxes for detected persons {I1, Io, ..., Ips}!, the
first part of our model generates raw scores of scene. In addition, it produces the raw scores
for the actions and poses of each of the M individuals in the image {I;}},. This is done
by applying fine-tuned CNNs on the image and the detected bounding boxes. A soft-max
normalization is then applied for each scene, activity, and pose score in order to produce

the raw scores.

Tt is assumed that the bounding box around each person is known. Those bounding boxes are obtained
by applying a person detector on each image as a pre-processing step



The second part of our algorithm which does the label refinement takes those raw scores
as the input. In our graphical model, outputs from CNNs correspond to unary potentials.
The scene-level, and per-person action and pose-level unary potentials for the image I are
represented by s (I), a®*)(I,,) and r*)(I,,) respectively. The super script (k) is the index
of message passing step. We use GG to denote all group activity labels, H to represent all
the action labels and Z to denote all the pose labels. Then the group activity in one scene
can be represented as gr, hr,, b1y, ..., b1y s 91,5 9155 -, 91, Where g7 € G is the group activity
label for image I, hy,, and zj,, are action labels and pose labels for a person I,,.

Note that for training, the scene, action, and pose CNN models in the first part of our
algorithm are fine-tuned from an AlexNet architecture pre-trained using ImageNet data.
The architecture is similar to the one proposed by [1] for object classification with some
minor differences, e.g. pooling is done before normalization. The network consists of five
convolutional layers followed by two fully connected layers, and a softmax layer that outputs
individual class scores. This network can be obtained from Caffe library [12]. We use the
softmax loss, stochastic gradient descent and dropout regularization to train these three
ConvNets.

In the second part of our algorithm, we use the method described in Sec. 3.1 to mimic
the message passing in a hierarchical graphical model for group activity recognition in a
scene. This stage can contain several steps of message passing. In each step, there are two
types of passes: from outputs of step k — 1 to factor layer and from factor layer to k step
outputs. In the kth message passing step, the first pass computes dependencies between

states. The inputs to the kth step message passing are

k— k— k— k— k— k—
S, sl VD, a0 W), el D (), (), Y () (3.2)

where s(k_l)(I) is the scene score of image I for label g, agk_l)(lm) is the action score of
person I, for label h and rgkfl)(fm) is the pose score of person I,,, for label z. In the factor

layer, the action, pose and scene interaction are calculated as:
0; (s (1), a1 (L), D (L) = Flagmals (1), af ™ (1), D (1)]T) - (3.3)

where ag 1, 5 is the scene score of image I for label g, action h and pose z, f is the activation
function and j is the corresponding index of factor neuron. Similarly, pose interactions for

all people in the scene are calculated as:

Di(sy V() x) = f(Baglsy (1), x]") (3.4)

where r is all output nodes for all people, d is the factor neuron index for scene g, f is
the activation function and j is the corresponding index of factor neuron. D latent factor

neurons are used for a scene g. Note that parameters o and § are shared within factors that

10



have the same semantic meaning. For the output of kth step message passing, the score for

the scene label to be g can be defined as:

sgk)(l)—sk 1)—I—Z:w (s k D ara« +Zwl k 1)( I),r;5) (3.5)

jesl ]662

where €] and €5 are the set of factor nodes that are connected with scene ¢ in first factor
component (scene-action-pose factor) and second factor component (pose-global factor)
respectively. Similarly, we also define action and pose scores after the kth message passing

step as:
aglk) = aglk b )+ Z wijdj(a ( m), S, 5 Q) (3.6)

jEsl

r (L) = v (L) + 3 wis(rF D (In),a,850) + Y wijp(x (1), 138)  (3.7)

jee] JEe;

where € = {&},¢5,¢¢,¢], €5} are connection configurations in the pass from factor neu-
rons to output neurons, i is the index of output neurons. These connections are simply the
reverse of the configurations in the first pass, from input to factors. The model parameters
{W, «, B} are weights on the edges of the neural network. Parameter W represents the con-
catenation of weights connected from factor layers to output layer (second pass), while «a, 8

represent weights from the input layer of the k" message passing to factor layers (first pass).

3.2.1 Components in Factor Layers

This section summarizes and explains all different components of our model, which are as
follows:

Unary component: In our message passing model, the unary component corresponds
to group activity scores for an image I, action and pose scores for each person I,,, in frame I,
represented as sgk_l)(l ), agk_l)(l ) and k- )(Im) respectively. These scores are acquired
from the previous step of message passing and are directly added to the output of the next
message passing step.

Group activity-action-pose factor layer ¢: A group’s activity is strongly correlated
to the participating individuals’ actions. This component for the model is used to measure
the compatibility between individuals and groups. An individual’s activity can be described
by both pose and action, and we use this ternary scene-pose-action factor layer to capture
dependencies between a person’s fine-grained action (e.g. talking facing front-left) and the
scene label for a group of people. Note that in this factor layer we used the weight sharing
scheme mentioned in Sec. 3.1 to mimic the belief propagation.

Poses-all factor layer v: Pose information is very important in understanding a group

activity. For example, when all people are looking in the same direction, there is a high

11



probability that it’s a queueing scene. This component captures this global pose information
for a scene. Instead of naively enumerate all combination of poses for all people, we exploit
the sparsity of truly useful and frequent patterns, and simply use D factor nodes for one

scene label. In our experiments, we simply set D to be 10.

3.3 Multi Step Message Passing NN Training

The steps of message passing depends on the structure of graphical model. In general,
graphical models with loops or large number of levels will lead to more steps belief propa-
gation for sharing local information globally. In our model, we adopt two message passing
steps, as shown in Fig. 3.1.

Multi-loss training: Since the goal of our model is to recognize group activities
through global features and individual actions in that group, we adopt an alternative strat-
egy for training the model. For the k" message passing step, we first remove the loss layers
for actions and poses to learn parameters for group activity classification alone. In this
phase, there is no back-propagation on action and pose classification. Since group activity
heavily depends on an individual’s activity, we then fix the softmax loss layer for scene
classification and learn the model for actions and poses. The trained model is used for the
next message passing step. Note that in each message passing step, we exploit the benefit of
the neural network structure and jointly trained the whole network (including convolutional
neural network and message passing neural network).

Learning semantic features for group activity: Traditional convolutional neural
networks mainly focus on learning features for basic classification or localization tasks. How-
ever, in our proposed message passing NN deep model, we not only learn features, but also
learn semantic high-level features for better representing group activities and interactions
within the group. We explore different layers’ features for this deep model, and results show
that these semantic features can be used for better scene understanding and classification.

Implementation details: Firstly, in practice, it is not guaranteed that every frame
has the same number of detections. However, the structure of neural network should be
fixed. To solve this problem, denoting M., as the maximum number of people contained
in one frame, we do a dummy-image padding when the number of people is less than M.
Then we filter out these dummy data by ignoring the activations or gradients generated
by these dummy data. Secondly, after the first message passing step, instead of directly
feeding the raw scores into the next message passing step, we first normalize the pose and
action scores for each person and scene scores for one frame by a softmax layer, converting

to probabilities similar to belief propagation.

12



Chapter 4
Experiments

Our models are implemented using the Caffe library [12] by defining two types of sparsely
connected and weight shared inner product layers. One is from variable nodes to factor
nodes, another is the reverse direction. We used TanH neurons as the non-linearity of these
two layers. To examine the performance of our model, we test our model for scene classifi-
cation on two datasets: (1) Collective Activity [7], (2) a nursing home dataset consisting of
surveillance videos collected from a nursing home.

We trained an RBF kernel SVM on features extracted from the graphical model layer
after each step of message passing model. These SVMs are used to predict scene labels for

each frame, the standard task in these datasets.

4.1 Collective Activity Dataset

The Collective Activity Dataset contains 44 video clips acquired using low resolution hand-
held cameras. Every person is assigned one of the following five action labels: crossing,
waiting, queuing, walking and talking and one of the eight pose labels: right, front-right,
front, front-left, left, back-left, back, back-right. Each frame is assigned one of the following
five activities: crossing, waiting, queueing, walking, and talking. The activity category is
attained by taking the majority of actions happening in one frame while ignoring the poses.
We adopt the standard training test split used in [20].

In the Collective Activity dataset experiment, we further concatenate the global features
for a scene with AC descriptors by HOG features [20]. We simply averaged AC descriptors
features for all people and use this feature to serve as additional global information, namely
this feature does not truly participated in the message passing process. The scene classi-
fication accuracy on the Collective Activity dataset by using a baseline AlexNet model is
63%. This additional global information assists in classification with the limited amount of

training data available for this dataset.

13



We summarize the comparisons of activity classification accuracies of different methods
in Tab. 4.1. The current best result using spatial information in graphical model is 79.1%,
from Lan et al. [20], which adopted a latent max-margin method to learn graphical model
with optimized structure. Our classification accuracies (the best is 80.6%) are competitive
compared with the state-of-the-art methods. However, the benefits of the message passing
are clear. Through each step of the message passing, the factor layer effectively captured
dependencies between different variables and passing messages using factor neurons results
in a gain in classification accuracy. Some visualization results are shown in Fig 4.1. The

accuracy saturated after two steps of message passing.

1 Step MP | 2 Steps MP || Latent Constituent [4] | 75.1%
Pure DL 73.6% 78.4% Contextual model [20] | 79.1%
SVM+DL Feature 75.1% 80.6% Our Best Result 80.6%

Table 4.1: Scene classification accuracy on the Collective Activity Dataset.

4.2 Nursing Home Dataset

This dataset consists 80 videos and is captured in a nursing home, including a variety of
rooms such as dining rooms, corridors, etc. The 80 surveillance videos are recorded at 640
by 480 pixels at 24 frames per second, and contain a diverse set of actions and frequent
cluttered scenes. This dataset contains typical actions include walking, standing, sitting,
bending, squatting, and falling. For this dataset, the goal is to detect falling people, thus we
assign each frame one of two activity categories: fall and non-fall. A frame is assigned “fall”
if any person falls and “non-fall” otherwise. Note that many frames are challenging, and the
falling person may be occluded by others in the scene. We adopted a standard 2/3 and 1/3
training test split. In order to remove redundancy, we sampled 1 out of every 10 frames for
training and evaluation. Since this dataset has a large intra-class diversity within actions,
we used the action primitive based detectors proposed in [17] for more robust detection
results.

Note that since this dataset has no pose attribute, we used the interaction between scene
and actions instead to perform the two step message passing. For the SVM classifier, only
deep learning features are used. We summarize the comparisons of activity classification

accuracies of different methods in Table 4.2.

Ground Truth | Pure DL | SVM+DL Fea. Detection | Pure DL | SVM+DL Fea.
1 Step MP 82.5% 82.3% 1 Step MP 74.4% 76.5%
2 Steps MP 84.1% 84.7% 2 Steps MP 75.6% 77.3%

Table 4.2: Classification accuracy on the nursing home dataset
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Figure 4.1: Results visualization for our model. Green tags are ground truth, yellow tags are
predicted labels. From left to right is without message passing, first step message passing
and second step message passing

The scene classification accuracy on the Nursing Home dataset by using a baseline
AlexNet model is 69%. The results on scene classification for each step also shows gains.
Note that in this dataset, accuracy on the second message passing gains an increase of
around 1.5% for both pure deep learning or SVM prediction. We believe that this is due to
the fact that the dataset only contains two scene labels, fall or non-fall, so scene variables
are not as informative as scenes in the Collective Activity Dataset. The accuracy saturated

after two steps of message passing.
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Chapter 5

Conclusion and Future Works

In conclusion, we have presented a deep learning model for group activity recognition which
jointly captures the group activity, the individual person actions, and the interactions be-
tween them. We propose a way to combine graphical models with a deep network by
mimicking the message passing process to do inference mechanism. The model was success-
fully applied to real surveillance videos and the experiments showed the effectiveness of our
approach in recognizing activities of a group of people.

The experiments show that the model can effectively conduct message passing in a
neural network. And after each step of message passing which refines the label predictions
by information sharing, there is an increase in the classification accuracies.

One limitation of this method is that temporal information is not considered in the whole
pipeline. Temporal information is also an important element of video analysis. Both group
activities and person actions have strong correlations along time axis and by incorporating
temporal connections into graphical model, more interesting and powerful inference could be
conducted. Hence, a possible future direction of this method is to build the temporal version
of the message passing model by some typical temporally deep neural network model such
as recurrent neural network or LSTM. For example, a recurrent neural network could be
built on the last step of message passing output to serve as a temporal model that captures
the changes along the time axis. Moreover, another possibility is to build recurrent neural
networks on both output neurons and factor neurons to make it more powerful

Another possibility is to extend the current model into a more complex and bigger
dataset with larger label space. More combinations of labels could be explored. And relevant
techniques to reduce the enormous combinatorial states space should also be proposed in
this situation. For example in a dataset with very large label space, to reduce the number
of factor neurons need to be learned, L1 regularization or dropout techniques could be used

to learn more compact and discriminative combinations of labels.
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