Multidimensional Benchmarking

by
Akiko Campbell

P.B.D, Simon Fraser University, 1999
B.A., Keio University, 1987

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science
Faculty of Applied Science

© Akiko Campbell 2016
SIMON FRASER UNIVERSITY
Spring 2016

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be
reproduced, without authorization, under the conditions for Fair Dealing. Therefore,
limited reproduction of this work for the purposes of private study, research,
education, satire, parody, criticism, review and news reporting is likely to be in
accordance with the law, particularly if cited appropriately.

Approval

Name: Akiko Campbell

Degree: Doctor of Philosophy

Title: Multidimensional Benchmarking
Examining Committee: Chair: Dr. Jiannan Wang

Assistant Professor

Dr. Jian Pei
Senior Supervisor
Professor

Dr. Uwe Glasser
Supervisor
Professor

Dr. Fred Popowich

Internal Examiner

Professor

School of Computing Science

Dr. Hui Xiong

External Examiner

Professor

Management Science and Information
Systems

Rutgers, the State University of New
Jersey

Date Defended/Approved: March 14, 2016

Abstract

Benchmarking is a process of comparison between performance characteristics of
separate, often competing organizations intended to enable each participant to improve
its own performance in the marketplace (Kay, 2007). Benchmarking sets organizations’
performance standards based on what “others” are achieving. Most widely adopted
approaches are quantitative and reveal numerical performance gaps where
organizations lag behind benchmarks; however, quantitative benchmarking on its own
rarely yields actionable insights. It is important for organizations to understand key
drivers for performance gaps such that they can develop programs for improvement
around them. In this thesis, we develop a multidimensional analysis approach to
benchmarking to characterise the properties of key drivers as a step towards
“qualitative” benchmarking. Specifically, our approach systematically identifies
significant benchmarks, compares organizations in statistical manners, and reveals the
most manifesting aspects of uniqueness of an organization of interest. We also evaluate
our algorithmic development using systematic empirical studies and show that our
methods are effective and efficient.

Keywords: benchmarking, key drivers, multidimensional analysis, business
intelligence, industry applications

Dedication

To my extended family for their continued encouragement.

Acknowledgements

I would like to thank my supervisory committee that supported my desire to work on
industry oriented topics and provided direction for my thesis. Most importantly, | would
like to express my utmost gratitude to Professor Pei for his tireless effort in guiding me to
the path which led to the completion of this thesis. Finally, | would like to thank Guanting
Tang and Xiango Mao for their assistance and collaboration in authoring important

components in chapters 3 and 5 of the thesis.

Table of Contents

APPIOVAL ... ii
Y 01 1 = V! R iii
DEAICALION ... iv
ACKNOWIEAGEIMENTS ... %
QLIE= o] (00 B 0] 1 (=] PSPPSR Vi
LISt Of TADIES ... iX
IS o) B o [0 =TSP Xi
Chapter 1.UNtrodUCTION ..o e e et e e et eeeaba e eaens 1
L1, MOUIVALION .o 1
1.2. Problem Statement..........ooooiiiii i 2
I Y 0 od 1N = o] N N 1= PR 4
Chapter 2.Related WOTKcooeiiieiie et e e e eaens 5
2.1, BeNChMAIKING ..uuuuii e e e e e e e e eeaaeeaanne 5
20 Nt S B 1= 111 1T PSSR 6
2.1.2. Types of DENCNMAIKINGvviriiiiiiiiiiiiiiiiiiiiiiiii i eeeeeees 7
YN C=To [l =TT Tod o g T] o N 7

Performance Benchmarking ... 8

Process Benchmarkingcooovvviviiiiiiiii e 8

2.1.3. Technigues for benchmarking...........cccoooooiiiiiiiiiiii e, 8
Internal BeNChMArKingooviiiiiii e 8

External BENChMArkingoooiieiiiiiiieie e 8

2.1.4. Benchmarking MethOdSuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiieeiieiieeeeeeeeeeeeeneeeeeeeeeeee 9
Frontier MOEIScooiiii e e e 9

Stochastic Frontier Production FUNCHIONoeiiiiiiiiiiiieee e 10

Data Envelopment Analysis (DEA) ..., 11

Frontier Analysis Case StUdYcoooieiiii i 12

Other MOTEIS. ...t e e e e 14

2.2. Data Warehouse and Online Analytical Processing (OLAP)uuvuvviiiiiiiininnnnns 17
A T O VL[] gl D= =T od 1T o 20
2.4, SUDSPACE ANAIYSIScoiiiiiiiiei e 21
Chapter 3.Benchmarks in Data WarehoUSES...........covvviiiiiiiiiiieceen e 24
TNt I o =110 T = U 1= 24
T = =T o Tl] 0 g T U G @ 10 1= = P 26
3.3. Sorted Inverted Index Cube (SHC) Method ... 29
3.3.1. Inverted Index for Fast Search.............cccvvvviiiiin e 30
.32, PIUNINQ ettt 32

3.4. Dominant Answer Materialization (DAM) Method.............coooviiiiiiiiiii e 34
3.4.1. Search SCoOpPe Of ANCESIOISuuuuuuuuiiiiiiiiiiiiiiiiiibiiiieebeiibbebebeeeeeeeeeaeeeeee 34
3.4.2. Search Scope Of DESCENUANISuuuuuuuuumiiiiiiiiiiiiiiiiiiiiiieieeaeieeeeeeeeaeeaee 36

3.5. EMpirical EVAIUALIONcoeiiiii e e e 37
3.5.1. Data Sets and Experiment Settingsceuurruiiiiiiieiiieiiiae e 37

vi

3.5.2. Reduction of Aggregate Cells Computed and Indexedcccevvvvnnnn. 38

3.5.3. Runtime and Memory USAQEuuuuuummmmmmmiiiiiiiiiiiiiiiiiiiieinnnnneennenennnenees 41
354, SCAlADIlitY ..vvee e ———— 43
Chapter 4.Reflective BenChmarkingccoovvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 44
o I o £ 11 0] 1P 1 PSPPSR 44
o © 11 1 1= g 8/ o 1= T USRS 47
4.3. DeteCtion MENOUS.uuuiiiiiiiiiiiiii bbb nnnnnnes 50
4.3.1. Ouitlier Detection by Iceberg Cubingcccccoiiiiiiiiiiiiiiiiis 50
4.3.2. Outlier Type Determinationuuuueueummiiiiiiiiiiiiiininniniieieeeneeeeeeneeeees 50

4.4, Empirical EVAlUALIONuuiii et e et e e e e aaane 52
4.4 1. CASE STUAYuuuuiiiiiiiiiiiiiitetee bbb 52
4.4.2. Efficiency and ScCalabilityuuuumiimmmmiiiiiiiiiiiiiiiiiii 54
Chapter 5.Subspace ANAlYSIScooviiiiiiiiiiii 59
B5.1. COoNtrast SUDSPACEoouiiiiiii i 59
5.1.1. Measure Of SIMIIAIITYuuuuuuuriiiiiiiiiiiiiiiieiiiieeeieeeee e 60
Problem DefinitioNuuiiii e 60

5.1.2. CompleXity ANAIYSISuuciiiiieeiieeiiiie e e 63
N G T Y/ 1T 1T To T 1Y/ 1= 1 0 To Lo LU 67
Baseling MEthOdcoceeeiiiiiiie e 67

CSMINEr FramMEWOTKcooieiiiiieeee et e e e e s et e e e e e e s e nneneeees 68

A Bounding-Pruning-Refining Method ... 71

5.1.4. EMPIrical EVAIUATIONuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisieieeeeieeseeeneeeseeenenenneeeee 77
EffECHIVENESS ... 77

EffiCIBNCY oo 81

Sensitivity to the Bandwidth ... 84

Comparison with Epanechnikov Kernel 87

5.2, OULIYING ASPECES. ...ettteiiiiiitiiiiittetteeeeeeteeeeee et e sttt 90
5.2.1. RANK StAtiSHCS.....cceiieiiiiiiiei e e e e e e e e e e e e e e e e eeraenas 91
Problem Definition...........coiriieiiiiie e 91

5.2.2. MiniNg MEthOUSoooiiiiiei e 95
Baseling MEthOdcocueeiiiiiiie e e e e e 95

OAMINET FrAMEWOTK ...eeiiiiiiiieeee e ee et e e e e e e et e e e e e e s s e ee e e e e e e e nnnnneees 96

A Bounding-Pruning-Refining Method ... 98

Bounding Probability DENSILY.........cocueiiiiiiiiieiiiiieiie e 98

Efficiently Estimating Density Bounds ..., 106

SUbSPACE PrUNING ...cocveieiiiiieeeeeeeeeeee e 107

5.2.3. Empirical EValuationcccoooiiiiiiiiiiiiiis e 111
ST ot Y= T 1= 111

Mining Outlying Aspects with Synthetic Data Sets..........cccccevviiieiniiieeene 111

Mining Outlying Aspects with Real Data Setscccccevviiiiiiiie e 114

Mining Outlying Aspects with NBA Data Setsccccceviiiieeiiiiiie e 117

EFfICIENCY ..o 121

Chapter 6.CONCIUSION ... e e 126
6.1, FULUIE DIFECHIONS ... e e ettt e e e e e e e e eeanena e e e e eeeas 129

Vii

References

viii

List of Tables

Table 1 Benchmarking DefiNitioNSuuuumuuuiiiiiiiiiiiii e 7
Table 2 Sales Representatives of an Organization...............ccccceeeemeeiiiniminieiii. 28
Table 3 TPC-H: number of computed and indexed cells (5 DIM dimensions) 38
Table 4 Weather: number of computed and indexed cells (5 DIM dimensions)............. 39
Table 5 TPC-H: number of computed and indexed cells (10 UID dimensions).............. 40
Table 6 Weather: number of computed and indexed cells (5 UID dimensions) 40
Table 7 Example Performance Gap OULHErSouuiiiiiieiiiieccen e 53
Table 8 Base level Performance Gaps Of R1.............uuuuuuuiimmmiimiiiiiiiiiiiiiiiiiiiiiinineinennnnnnns 53
Table 9 Base level Performance Gaps Of R2..............uuuuuuiimimmimiiiiiiiiiiiiiiiiiiiiiinninnaeninnnens 53
Table 10 EP - Complete-CS reduction €Xample.........cccoeiieeiiiiiiiiiiiiiie e e e 64
Table 11 Data Set CharaCteriStCSuuuuuuuuuuuiiriiiiiiiiiiiiiiiiiiriine e nnrnaerernnnes 77
Table 12 Distribution of LCS(q) in BCW (8 = 0.001, Kk = 1)ovvviiiiiiiiiiiiiiiiiiiiiiininnnnns 78
Table 13 Distribution of LCS(q) in CMSC (6 = 0.001,k = 1)ovuvuvummmininiiiiiiiniiiiennnnnnns 78
Table 14 Distribution of LCS(q) in Glass (6 = 0.001,k = 1).....ccccoevvieieriiiiiiiiiiei e 79
Table 15 Distribution of LCS(q) in PID (6 = 0.001, Kk = 1)ouvvviiiiiniiiiniiiiiiiiiiiniiinnnnnnns 79
Table 16 Distribution of LCS(q) in Waveform (6 = 0.001,k = 1).......cccccuvvvvrrnnnnninnnnnnnnns 79
Table 17 Distribution of LCS(q) in Wine (6§ = 0.001,k = 1).....ccccccoeveiviviiiiiiiiiiee e 79
Table 18 Average runtime of CSMiner-BPR with a (k = 10,6 = 0.01).......................... 83
Table 19 Similarity between top-10 inlying contrast subspaces using different

kernel functions indataset 0 (6 = 0.001) ..o, 89
Table 20 Similarity between top-10 outlying contrast subspaces using different

kernel functionsindataset 0 (6 = 0.001)cccceeeeeiiiiiiiiiiieeeeeeeeeeeins 89
Table 21 Similarity between top-10 inlying contrast subspaces using different

kernel functions in data set O\OE + c© (6§ = 0.001)cceeeeeeeere.nn. 90
Table 22 Similarity between top-10 outlying contrast subspaces using different

kernel functions in data set O\OE + © (§ = 0.001)ccccvrrrrernnenn. 90
Table 23 A numeric data Set eXaMPIEuuiiiiiiiii e 97
Table 24 quasi-density values of objects in Table 23...........ooiiiii e, 98
Table 25 Outlying Aspects wWith Synth_10Dccoooooiiiiiiiiii e 112
Table 26 Statistics on the mining results of OAMINETuuuuuiiiiiiiiiiiiiiiiiins 113
Table 27 UCI data set CharaCteriStiCS.......uuiiiiiiiiiieiiie e e e 114
Table 28 Sensitivity of 0AMiner effectiveness with respect to £ (UCI)ccceeieeeenneenes 117

Table 29 NBA 20 data AiMENSIONSc.uieeeeee ettt ettt et e e e e e e e e eeneenees 117

Table 30 NBA data set CharaCteriStiCS. i ie i e et e e e e eeeeees 117
Table 31 Sensitivity of OAMiner effectiveness with respect to £ (NBA).........cccceeevveees 119
Table 32 Guards with most rank 1 outlying aSPecCtS..........cccovviiiiiiiieeeeiiiiieee e ee e 119
Table 33 Guards with poor ranks in outlying aSpPects..............uuuuuimiiimmiiiiiiiiiiiiiiiiiaennns 120
Table 34 Comparison of rankHL, rankSOD,1rankscccc..cccvveviiiinieeennnennn, 121
Table 35 Average Runtime of OAMiner with respect to @cccceeveeeeviiiiiiiiinieeeeceeinns 125

List of Figures

Figure 1 Example Benchmarking.........coooooi oo 3
Figure 2 Relationship between Cost and OUIPULcoooeiiiiiiiiieeeee e 13
Figure 3 Deterministic Kernel of a Stochastic Cost Frontier.............cccccvveeeeeeeeeevieivinnnnnn. 14
Figure 4 DEA COSt FIONTIETcoo i 14
Figure 5 Sample Gartner Magic Quadrant (Business Intelligence and Analytics

Platforms, QL 2014) ... oo 16
Figure 6 Sample Forrester Wave (Agile Business Intelligence Platforms, Q3

20L) .t e e s 17
Figure 7 Example SIIC for values "young" and "M"............cccoooiiiii e, 32
Figure 8 Example SIHC With Pruningcc.ccooiiiiiiiiii i 33
Figure 9 Reduction Ratio of DAM over SIIC/SIICP for TPC-H (DIM fixed) 39
Figure 10 Reduction Ratio of DAM over SIIC/SIICP for Weather (DIM fixed)................ 40
Figure 11 Reduction Ratio of DAM over SIIC/SIICP for TPC-H (UID fixed)................... 41
Figure 12 Reduction Ratio of DAM over SIIC/SIICP for Weather data (UID fixed) 41
Figure 13 Runtime and Memory Usage with TPC-H (DIM fixed)..............cccoeeeeeeeeinnennn. 42
Figure 14 Runtime and Memory Usage with Weather (DIM fixed)cooevveeeiiiinnnnnn. 42
Figure 15 Runtime and Memory Usage with TPC-H (UID fixed)cccccoeeeeiiiiininnnnnnnn. 43
Figure 16 Runtime and Memory Usage with Weather (UID fixed)ccceeeeeeeeenennn. 43
Figure 17 Scalability With TPC-Hcoooiiii 43
Figure 18 Runtime of TDC, BUC, and eBUC with respect to # of tuples............ccc......... 54
Figure 19 Runtime of TDC, BUC, and eBUC..........c.ooooiiiiiiiiiiii e 55
Figure 20 Number of Detected OULHEIScoooiiiiiiii 56
Figure 21 Runtime of TDC, BUC, and eBUC with different distributions 57
Figure 22 Scalability with Synthetic Data............c.cccooeiiiiiiiiiice e 57
Figure 23 Number of Detected OULHEIScooeiiiiiiii e, 58
Figure 24 Example Contrast SUDSPACEcoovviiiiiiieeeeeeeeee e 60
Figure 25 Set enNUMEratioN treeouuue e e e e 68
Figure 26 e-neighbourhood (within the dashed circle)............cccceeii, 72
Figure 27 Dimensionality distribution of top inlying contrast subspace (k =1) 80
Figure 28 Dimensionality distribution of top outlying contrast subspace (k = 1) 81
Figure 29 Scalability test with § (K = 10, = 0.8)coeeviiiiiiiiii e 82
Figure 30 Scalability test with data set size (k = 10,6 = 0.0, =0.8).............ccc........ 82

Xi

Figure 31 Scalability test with dimensionality (k = 10,6 =0.01,a =0.8)..................... 83

Figure 32 Relative performance of CSMiner-BPR (6 = 0.0, =0.8)..........cccoeeeeeenennn. 84
Figure 33 Similarity scores of inlying contrast subspaces using different

bandwidth values with respectto k (6 = 0.001)..............ccviieeeiieenrnnnnnn, 86
Figure 34 Similarity scores of outlying contrast subspaces using different

bandwidth values with respectto k (6 = 0.001)............coooevieeeieeeeeinnnnnn. 87
Figure 35 EXample SUDSPACES..........uuuiiiiii et e e e e e e ea e 91
Figure 36 Outlying aspect of object 245 (Synth_10D)..............ccccoeeeeieiiiiiieeieeeeeen 113
Figure 37 Outlying aspect of object 315 (Synth_10D)..............ccoeeeeieiiiiiiieeeeeeeeeen 114
Figure 38 Distribution of outlyingness ranks: UCI (£ = 5)cccoeieiiiiiiiiiiiiiii e, 115
Figure 39 Distribution of # of outlying aspects: UCI (£ = 5) ccccccoooeiiiiiiiiiiiiieeeeceeeiiin, 116
Figure 40 Distributions of outlyingness ranks: NBA (£ = 5) ..., 118
Figure 41 Distribution of # of outlying aspects: NBA (€ =5) ..., 118
Figure 42 Runtime with respect to Data Set Size€coiiiieiiiiiiiiciie e, 122
Figure 43 Runtime with respect to Dimensionalitycccccoeeieiiiiiiiiiiii e, 123
Figure 44 Runtime With reSPECL IO £coeeieee e 123
Figure 45 Runtime with respect to Outlyingness Rankccccoeeieiiieen 124

Xii

Chapter 1.

Introduction

1.1. Motivation

Benchmarking has been given many different definitions by different organizations
and authors. One of the widely accepted definitions of benchmarking is by Camp (1989)
which states, “The continuous process of measuring products, services and practices

against the toughest competitors or those companies recognized as industry leaders.”

In practice, most widely adopted approaches for benchmarking are quantitative.
Quantitative benchmarking aims to provide a single numerical estimate of organization’s
efficiency relative to that of comparable organizations. For example, utility regulators often
use quantitative benchmarking to inform their assessments of the current efficiency of
utility organizations (e.g. water suppliers, electricity distribution companies, etc.) (Holder
et al., 2006). Quantitative benchmarking can help uncover numerical performance gaps;
however, it does not reveal why the gaps exist or indicate whether the gaps are significant.
According to Baldry et al. (2009), “virtually every credit card issuer practices
benchmarking. Yet all too often, issuers limit themselves to quantitative performance
measures, without taking into account either more qualitative measures or the strategic
demands of the markets in which they operate. As a result, just 20% of issuers gain any

tangible benefits from their benchmarking efforts.”

Organizations conduct benchmarking to identify areas for continuous improvement
to remain competitive in the market. To that end, it is important for organizations to
understand key drivers as “qualitative” measures for performance gaps. For example,

once a utility firm determines that its service efficiency is 20% below the benchmark

(quantitative), it would want to understand what is driving the inefficiency (qualitative) such

that a service improvement program can be developed.

How can one establish systematic measures to characterize key drivers; that is,
primary factors driving the performance gaps? One way is to develop contexts and
determine how organizations are positioned in them. Do they stand out positively or
negatively in certain contexts, or are they part of the big mass? If they stand out, what
facets make up such contexts?

A context is a set of circumstances or facts that surround a particular event or
situation. Put in the benchmarking setting, performance metrics can be the circumstances
that surround organizations’ situations; as such, the contexts can be formed by multiple
metrics or dimensions in which organizations want to appraise their performance; hence,

the name “multidimensional benchmarking”.

A key benefit of the multidimensional approach to benchmarking lies in its ability
to corroborate the findings of each metric and derive further insights from the combination
of the metrics. It facilitates organizations’ understanding in the underlying reasons for
performance gaps and permits them to move beyond target setting to design change
initiatives that close those gaps and improve their competitive positioning. However, a
multidimensional benchmarking result cannot be represented by a single humeric value
produced by a simple arithmetic; that is, sum all performance metric measures and
average them over the number of metrics involved. There may be some weighting
functions that can be incorporated into the arithmetic to represent importance of certain
metrics over others; however, weighting is somewhat biased subject to the opinions of
those who determine the weights or the importance. In the age of Big Data, there should

be tools to allow “data” to provide us with a more “objective” perspective.

1.2. Problem Statement

Benchmarking is not specific to competitive analyses in commercial settings.
Metrics can be defined according to a framework on how an organization wants to classify

its performance; for example, the state of the health and the wellness of their employees

compared to the general population, within specific industry verticals, within specific

employment types, etc.

In a hypothetical scenario, an organization is interested in benchmarking its
workforce health against the general workforce population. The results may be graphically
represented as quantitative performance gaps of individual metrics as shown in Figure 1.
In Figure 1, an organizational health index consists of 10 metrics; each metric quantifying
the prevalence rate of an iliness condition (e.g. mental health) across its workforce. The
blue bar indicates the organization’s performance of a metric while the orange line denotes
the benchmark (i.e. a standard or point of reference against which the organization is
compared). Taking the mental health and heart & stroke as examples, this organization
is performing at the rate above the benchmark for mental health and below the benchmark

for heart & stroke.

Company Health
Mental Health 19.8% 15.1%
Heart & Stroke 12.2% 16%
Diabetes 11.4%
Lung Conditions 8.2%
Obesity 8.0%
Cholesterol 6.7%
Gastrointestinal 6.3%
Kidney Conditions 6.2%
Allergies 4.5%
Epilepsy 3.3%

Figure 1 Example Benchmarking

This clearly shows a quantitative performance gap for each metric. However,
these individual performance gaps do not divulge what characteristics and circumstances
of the workforce are driving these performance gaps. Can the drivers be gender, age

group, occupation type, location, work hours, or combinations of them?

In this thesis, we develop systematic methods to compare the performance of an

object of interest (a query object) against others (benchmarks) in the context of multiple

dimensions (i.e. characteristics and circumstances) surrounding the query object as well

as the benchmark. If there is a significant performance gap between the query object and

the benchmark, then these dimensions can be translated as key drivers for the gap.

Technically, we divide the problem into 3 sub-problems and develop solutions for them:

1.

Benchmarks in data warehouse. We develop two algorithmic approaches for
efficient computation for identifying meaningful benchmarks in data warehouses;
Sorted Inverted Index Cube (SIIC) and Dominant Answer Materialization (DAM)
method.

Reflective benchmarking. We develop methods to understand how the exceptions
and outliers within an aggregate group contribute to the overall deviation of the group
from the norm. We identify two types of groups. The first type corresponds to the
groups where the deviation is mainly caused by a small number of outlying units and
the second type to those where a majority of underlying units are outliers.

Subspace analysis. We conduct multidimensional analysis to identify key drivers
which form subspaces that manifest the uniqueness of the group of interest. We
consider both situations where the units are not labeled and where the units belong to
different classes.

1.3. Structure of Thesis

The rest of the thesis is structured as follows:

e Chapter 2 Related Work will outline benchmarking, data warehouse and
Online Analytical Processing (OLAP), outlier detection, and subspace
analysis.

e Chapter 3 Benchmarks in Data Warehouse will develop SIIC and DAM
for efficient computation for online analytical queries.

e Chapter 4 Reflective Benchmarking will demonstrate the use of KL-
divergence to compare two probability distributions to determine the type
of outliers.

e Chapter 5 Subspace Analysis will demonstrate 2 techniques for
subspace analysis: Contrast Subspaces and Outlying Aspects.

o Chapter 6 Conclusion concludes this thesis and suggests some future
directions.

Chapter 2.
Related Work

The primary objective of the thesis is to explore and evaluate technigues in
computing science that can be applied to multidimensional benchmarking. This chapter
first presents the general overview of benchmarking, covering the concept, the history,
and the methods commonly adopted in the industry. The overview is intended to set the
context for the proposed work in this thesis and highlight the claim that although
benchmarking is common in business, techniques in computing science have been largely

unexplored for effective benchmarking.

The chapter then introduces related work in areas of computing science that we
wish to consider for multidimensional benchmarking. These areas include data
warehouse and online analytical processing (OLAP), outlier detection, and subspace

analysis.

2.1. Benchmarking

Key motive for benchmarking is continuous improvement. Throughout history,
people have developed methods and tools for setting, maintaining and improving
standards of performance. Desire to improve performance and the actual improvement
can be traced far back to prehistoric forms of benchmarking in the industrial history. For
example, in the early 1800’s, an American industrialist, Francis Lowell, traveled to England
where he studied leading textile manufacturing techniques and industrial design of the mill
factories. He realized that although the factory equipment was sophisticated, there was
room for improvement in the way the plants were laid out for labour. Using technology very
similar to what he had seen in England, Lowell built a new plant in the U.S.; however, the

factory functioned in a less labour intensive fashion (Bogan et al., 1994).

Many researchers agree that the recognition of benchmarking as a useful

management tool was formalized in early 1980’s when Xerox employed benchmarking as

part of its “Leadership through Quality”, a program to find ways to reduce manufacturing
costs. Inthe early 1980'’s, Xerox found itself increasingly vulnerable to intense competition
from both the US and the Japanese competitors. Its operating cost was high and its
products were of relatively inferior quality in comparison to its competitors’. In 1982, Xerox
determined that the average manufacturing cost of copies in Japanese companies was
40-50% of that of Xerox’s and they were able to undercut Xerox’s prices effortlessly. As
part of the “Leadership through Quality”, Xerox established the benchmarking program
which played a major role in pulling Xerox out of trouble in the years to come. Xerox since
then has become one of the best examples of the successful implementation of
benchmarking (IBS, 2006).

2.1.1. Definitions

Benchmarking has been given many different definitions by different organizations
and authors; however, all definitions concur that benchmarking is an integral step for

continuous improvement. Table 1 lists representative definitions of benchmarking:

Table 1 Benchmarking Definitions

Author

Definition

Camp (1989)

The continuous process of measuring products, services and
practices against the toughest competitors or those
companies recognized as industry leaders.

Geber (1990)

A process of finding the world class examples of a product,
service or operational system and then adjusting own
products, services or systems to meet or beat those
standards.

Vaziri (1992)

A continuous process comparing an organisation’s
performance against that of the best in the industry
considering critical consumer needs and determining what
should be improved.

Watson (1993)

The continuous input of new information to an organisation.

Klein (1994) An excellent tool to use in order to identify a performance
goal for improvement, identify partners who have
accomplished these goals and identify applicable practices to
incorporate into a redesign effort.

Cook (1995) A kind of performance improvement process by identifying,

understanding and adopting outstanding practices from within
the same organization or from other businesses.

American Productivity
and Quiality Center
(1999)

The process of continuously comparing and measuring an
organization against business leaders anywhere in the world
to gain information that will help the organisation take action
to improve its performance.

2.1.2. Types of benchmarking

Different types of benchmarking can be identified on the basis of what is being

compared. Generally, there are 3 types of benchmarking: strategic, performance, and

process benchmarking.

Strategic Benchmarking

Strategic benchmarking examines how organizations compete.

It is used to

identify strategic imperatives that have enabled high performing organizations to be

successful.

Performance Benchmarking

Performance benchmarking pertains to the comparison of organization’s key
processes, products and services to assess its competitive positioning. It usually focuses

on prices, quality, features, speed, reliability and other performance metrics.

Process Benchmarking

Process benchmarking is for organizations to learn how their selected processes
are performing compared to most efficient operating practices from several organizations
in similar operational functions. Unlike strategic and performance benchmarking, process
benchmarking focuses on selected production processes in an organization rather than
on the organization as a whole. The presumption behind the analysis is that by identifying
best practice processes and comparing actual processes that organizations utilize, the
management can improve the performance of sub-systems, leading to better overall

performance.

2.1.3. Techniques for benchmarking

By the target of the comparison, benchmarking techniques can be categorized into

two types: internal and external benchmarking.

Internal Benchmarking

Internal benchmarking is performed between departments within the same
organization or between organizations operating as part of a chain in different countries
(Cross et al., 1994; Breiter et al., 1995). When any part of an organization has a better
performance indicator, others can learn how this was achieved; it can then be used as a
baseline for extending benchmarking to include external organizations (McNair et al.,
1992; Karlof et al., 1993).

External Benchmarking

External benchmarking requires a comparison of work with external organizations
in order to discover new ideas, methods, products, and services (Cox et al., 1998). The

objective is continuously to improve one’s own performance by measuring how it performs,

comparing it with that of others and determining how the others achieve their performance
levels. External benchmarking provides opportunities for learning from the best practices
and experience of others who are at the leading edge. Within external benchmarking,

there are 3 types including competitive, functional, and generic benchmarking.

e Competitive Benchmarking refers to a comparison with direct competitors only.
Its benefits include creating a culture that values continuous improvement to
achieve excellence by increasing sensitivity to changes in the environment
external to the organization (Vaziri, 1992). However, it is often difficult to obtain
data from competitors and lessons to be learned from them.

e Functional Benchmarking refers to comparative research whereby a
comparison of business performance is made not only against competitors but
also against the best businesses operating in similar fields and performing similar
activities or having similar problems but in a different industry (Davies, 1990;
Breiter et al., 1995). For example, British Rail Network South East used
benchmarking to improve the standard of cleanliness on trains. British Airways
was chosen for comparison since a team of 11 people cleans a 250 seat jumbo
aircraft in only 9 minutes. Following the benchmarking exercise, a team of 10
was able to clean a 660 seat train in 8 minutes (Cook, 1995).

e Generic Benchmarking refers to the comparisons of business functions that are
the same regardless of the domain of business. For example, a finance
department of an insurance company would be compared to the finance
department of a telecom company that has been identified as having the most
efficient operations (e.g. fastest turnaround time).

2.1.4. Benchmarking methods

Frontier Models

Common forms of quantitative methods lend from economic efficiency analysis
which involve parametric and non-parametric techniques. The primary objective of both
is to measure the technical efficiency, which is defined as the ability of a producer to
produce maximum output from a given set of inputs. Technical efficiency thus is translated
as the success indicator of performance measure by which producers are evaluated.
Given the importance of technical efficiency analysis, several models of frontiers have
been developed. Frontier models are based on the premise that efficient producers are
those that operate on the production frontier, while inefficient producers are those
operating below the production frontier and the level of inefficiency is measured by the

level of deviation from the frontier (Ajibefun, 2008).

Stochastic Frontier Production Function

The core economic theory underlying the formulation of a cost frontier supposes
that the minimum cost a producer can achieve, when using the most efficient technology
available, are a function of its output and the prices of its inputs. The cost function is
based on the behaviour of a representative cost-minimising producer who is able to control
the amount of each input used subject to producing a given output. The method assumes
a particular specification of the relationship between an organization’s costs and a set of
cost drivers, which may include, for example, the outputs produced, input prices and a
range of exogenous factors. Econometric analysis is then used to estimate the parameters
of that relationship. Having estimated a cost function, inefficiency is one of the factors
(alongside others, such as, omitted variables, measurement errors, etc.) that can explain
the differences between the observed level of costs for a particular organization and the
level of cost predicted by the estimated cost function (Holder et al., 2006).

The stochastic frontier production function illustrates a producer using n inputs
(x1, x5, ..., X5,) t0o produce output y. It assumes the presence of technical inefficiency of
production and is defined as:

yvi=f(xi;Bexp(v; —w;),i=1,2,..,n

where y; is the observed scalar output of the producer i, x; is a vector of n inputs
used by the producer i, f(x;; B) is the production frontier, § is a vector of technology
parameters to be estimated, v is a random error associated with random factors (hence
stochastic) and u is the amount by which the producing unit fails to reach the optimum (i.e.

the frontier).

The technical efficiency TE; of a producer i is defined in terms of the ratio of the

observed output to the corresponding optimal frontier output:

_ Vi _ SO B)exp(vi —wy)
Vi f(xi, B) exp(v;)

TE; = exp(u;)

10

where y; is the observed output and y;" is the frontier output. TE; = 1 indicates that
the organization i obtains the maximum feasible output, while TE; < 1 provides a measure

of the shortfall of the observed output from maximum feasible output.

The major advantage of this method is that it allows the test of hypothesis
concerning the goodness of fit of the model. The “stochastic” aspect of the model allows
it to handle appropriately measurement problems and other stochastic influences that
would otherwise show up as causes of inefficiency (Greene, 2005). However, the major
drawback is that it requires specification of technology, which may be restrictive in most
cases (Ajibefun, 2008).

Data Envelopment Analysis (DEA)

DEA is a non-parametric linear programming technique widely used in the
operations research and management science literature (Holder et al., 2006).

DEA estimates the cost level an efficient organization should be able to achieve in
a particular market. The model seeks to determine an envelopment surface, also referred
to as the efficiency frontier. Rather than estimating the impact of different cost drivers,
DEA establishes an efficiency frontier (taking account of all relevant variables) based on
the “envelope” of observations. Each organization is then assigned an efficiency score

based on its proximity to the estimated efficiency frontier.

With DEA, the efficient frontier is the benchmark against which the relative
performance of organizations is measured. Given a certain sample of organizations, all
organizations should be able to operate at an optimal efficiency level which is determined
by the efficient organizations in the sample. These efficient organizations determine the
efficiency frontier. The organizations that form the efficient frontier use the minimum
guantity of inputs to produce the same quantity of outputs. The distance to the efficiency

frontier provides a measure for the efficiency or its lack thereof.

The objective of the linear programming is to maximize efficiency, where efficiency
is the ratio of weighted outputs to weighted inputs and restricted to arange of 0to 1. To

maximize the efficiency score 6 for producer 0O:

11

Z,S,=1 UrYro

Maximize 0 =
Y vix;
i=1 Yitio

where:
6 = efficiency of the producer 0
u, = s output coefficients of the producer 0
Vro = S output weighting coefficients for the producer 0
v; = minput coefficients for the producer 0

Xjo = m input weighting coefficients for the producer 0

This is subject to the constraint that when the same set of u and v coefficients is
applied to all other producers being compared, no producer will be more than 100%

efficient such that:

Zf‘:l u‘TyTj

— <1forj=1,..,nand
i=1ViXij

u,v; =0forr=1,..,sandi =1,...,m.

The main advantage of this method is its ability to accommodate a multiplicity of
inputs and outputs. However, the results are potentially sensitive to the selection of inputs
and outputs; thus, their relative importance needs to be analyzed prior to the calculation.
Further, there is no way to test their appropriateness. The number of efficient
organizations on the frontier tends to increase with the number of inputs and output
variables. When there is no relationship between explanatory factors (within inputs and/or
within outputs), DEA views each organization as unique and fully efficient and efficient
scores are very close to 1, which results in a loss of discriminatory power of the method
(IBNET, 2015).

Frontier Analysis Case Study

The use of frontier analysis is widespread in incentive-based regulation of utilities
in which reimbursement is guided by the cost efficiency of service provision. Lovell (2003)
claims that the setting in which hospitals are reimbursed is structurally similar to that of

the setting of revenue caps in utilities regulation and demonstrates the value of frontier

12

analysis in the hospital reimbursement exercise. Given a vector x = (x4, ..., x,) Of
resources to produce a vector y = (y4, ..., ¥im) Of services, in the provision of its services,
each hospital incurs expense w'x =Y w;x; wherew = (wy,...,w;) is a vector of
resource prices. Figure 2 shows 12 hospitals with scalar output representing the
multidimensional service vector. The relationship is generally positive although some

hospitals provide more service at lower costs than some others.

cost
A

» output

Figure 2 Relationship between Cost and Output

The objectives of frontier analysis in this case study are to uncover the nature of
the relationship between service provision and expenditure and to evaluate the
performance of each hospital. “Performance” in this context means the ability to minimize
expenditure required to provide a service vector y in light of input price vector w and other
exogenous variables represented by vector z = (z3, ..., z;) whose elements characterize
the operating environment. The minimum cost frontier c(y,w, z) expresses the desired
nature of the relationship between service provision and minimum required expenditure.
This supplies the benchmark against which to evaluate the performance of individual
hospitals. The performance is evaluated in terms of the cost efficiency CE(y,w, z, x) =
C(y’—;”:) < 1 with cost efficient hospitals having CE(y,w, z,x) = 1.

Stochastic cost frontier iswTx =c(y,w,z)-exp{v+u} where the actual
expenditure wx equals minimum expenditure c(y,w,z) times the two error
components exp{v + u}. As noted earlier, exp{v} captures the statistical noise reflecting

random events beyond the control of the hospital and exp{u} expresses the magnitude of

13

the hospital’s inefficiency. The line in Figure 3 depicts the stochastic cost frontier for the

same hospitals in Figure 2.

cost

p» output

Figure 3 Deterministic Kernel of a Stochastic Cost Frontier

Figure 4 illustrates the DEA formulation of the minimum cost frontier. This
formulation constructs the tightest fitting piecewise linear surface that envelops the cost-
output combinations. There are 4 cost efficient hospitals and the cost efficiency of any
other hospital is calculated as the ratio of the minimum cost of providing its service vector

to its actual expenditure.

cost

» output

Figure 4 DEA Cost Frontier

Other Models

Among the most successful commercialization of “benchmarking” ideas in the
Information Technology industry are Gartner Magic Quadrant (Figure 5) and Forrester

Wave (Figure 6) which provide, in a 2-dimensional performance metric space, visual

14

representations of technology vendors’ positions in the markets in which they compete.
Many buyers rely on Gartner Magic Quadrant or Forrester Wave to understand the
competitive positioning of technology vendors in different markets and technology vendors

in turn use them as strategic marketing tools.

A Gartner Magic Quadrant is a culmination of research in a specific market, giving
audience a wide-angle view of the relative positions of the market's competitors. It
provides a competitive positioning of four types of technology providers including the
following (Gartner, 2015):

o Leaders execute well against their current vision and are well positioned for
tomorrow;

e Visionaries understand where the market is going or have a vision for changing
market rules, but do not yet execute well;

¢ Niche Players focus successfully on a small segment, or are unfocused and do
not out-innovate or outperform others;

e Challengers execute well today or may dominate a large segment, but do not
demonstrate an understanding of market direction.
Technology vendors are positioned in the 4 quadrants representing these 4 types
in the 2-dimensional performance space. Vendors positioned in the upper right quadrant
(i.e. Leader’s quadrant) are the strongest in the market in terms of the completeness of

the vision and their ability to execute.

15

Magic Quadrant for Business Intelligence and Analytics Platforms

weplan e
@ Pramd tasytes

o @

Figure 5 Sample Gartner Magic Quadrant (Business Intelligence and Analytics
Platforms, Q1 2014)

However, the method Gartner uses to benchmark vendors are not publically known
and it has been criticised for catering more towards investors and large vendors than
towards buyers; much of the criticism centred on the lack of disclosure of the money
received from the vendors it rates, raising conflict of interest (Wikipedia, 2015).

The Forrester Wave is Forrester's evaluation of vendors in a software, hardware,
or services market. In the Forrester Wave reports and spreadsheets, it exposes both the
criteria that it uses to grade the vendor offerings and how it scores and weight those
criteria. Forrester Wave evaluations are driven by Forrester’s analysis of data collected
from the marketplace and the experience of its analysts. Technology vendors are
positioned in a 2-dimensional space according to the weighted average of the scores they
are evaluated for (Forrester, 2015). Vendors positioned in the upper right corner are the
strongest in the market in terms of the strength of the strategy and their current offering.
Forrester Wave overlays another dimension, “Market presence” on the 2-dimensional

space.

16

Risky Strong
Bets Contenders Performers Leaders

Strang
A Tibco Software

M|crosoﬂ—- -' Qlik

SAR —)‘ Vﬁ(— S

Information Bullders—(_q SAS\ /

MicroStrategy - —
L0 =i Tableau

Birsts Actuate (=" Software
Panorama Software »
Pentaho «

Current Tibco Jaspersoft . Good - IBM
offering Data
Oracle | o

Market presence
-

Weak

Weak Strategy - Strong

Figure 6 Sample Forrester Wave (Agile Business Intelligence Platforms, Q3 2014)

2.2. Data Warehouse and Online Analytical Processing
(OLAP)

Data warehouses and Online Analytical Processing or OLAP are two fundamental

components of business intelligence systems.

A data warehouse is a database containing multidimensional data that usually
represents the business history of an organization. The historical data is used for analysis
that supports business decisions at various levels, from strategic planning to performance
evaluation of a discrete organizational unit. OLAP enables data warehouses to be used
effectively for online analysis, providing rapid responses to iterative complex analytical
gueries. OLAP's multidimensional data model and data aggregation techniques organize
and summarize large amounts of data such that it can be evaluated quickly using online
analysis and graphical tools. The answer to a query into multidimensional data often leads
to subsequent queries as analysts search for answers or explore further possibilities.
OLAP provides the speed and the flexibility to support analysts in real time (Microsoft,
2015).

17

The introduction of data cube (Gray et al., 1997) is considered a landmark in data
warehousing. A data cube consists of dimensions and facts and allows materialization of
multidimensional data in large data repositories to facilitate fast online data analysis.
However, a data cube typically has many dimensions and the curse of dimensionality
becomes a technical problem; for example, a data cube with 20 dimensions, each
containing 99 distinct values, has (99 + 1)2° = 10*° base and high-level cells. This is too
large a volume to be pre-computed and stored with reasonable resources. This warrants
computing iceberg cubes (Beyer et al., 1999) instead of complete cubes. An iceberg cube
contains only those cells that meet an aggregate condition. It is called an iceberg cube
because it contains only some of the cells of the full cube, like the tip of an iceberg. The
aggregate condition could be, for example, minimum support or a lower bound on count,
average, minimum or maximum. The purpose of the iceberg cube is to identify and
compute only those values that will most likely be required for decision support queries.
The aggregate condition specifies which cube values are more meaningful and should

therefore be stored.

The value of iceberg cube is obvious. A data cube can be viewed as a lattice of
cuboids whereby cuboids whose group-by’s include more dimensions are at a lower level
than those that include fewer dimensions and the cuboid that include all dimensions is at
the bottom. The lower level cuboids likely contain trivial aggregate values and are unlikely
to satisfy threshold conditions; thus, no need to be computed. This not only saves

processing time and disk space but also focuses analysis only on interesting data.

With iceberg cubes, the emphasis is to develop algorithms to answer iceberg
gueries efficiently. Beyer et al. (Beyer et al., 1999) proposed the algorithm BUC which
computes iceberg cubes with monotonic aggregate functions. Han et al. (Han et al., 2001)
developed a method for computing iceberg queries with non-monotonic aggregate
functions. Ng et al. (Ng et al., 2001) studied iceberg queries with distributed systems.
Chen et al. (Chen et al.,, 2008) explored iceberg cube computation in shared-nothing
clusters. Lo et al. (Lo et al., 2008) extended iceberg queries to sequence data. Chen et
al. (Chen et al., 2009) extended iceberg queries to graphs. Recently, He et al. (He et al.,

2013) used patterns as “dimensions” in iceberg queries on sequences.

18

While we can adopt some of these algorithms for efficient computation of data
cubes, when we consider benchmarking, we need a notion of a “query object” and the
ability to compare the properties of the query object to those of the others’ at different

levels of aggregate hierarchy.

Sarawagi et al. (1998) proposes a discovery-driven exploration paradigm which
guides analysts to explore anomalies (referred to as “exceptions”) by means of pre-
computed indicators of exceptions at various levels of details in the cube. It considers all
descendant cells for each aggregate cell and aims to provide a navigation guidance for
analysts to browse interesting regions of a cube.

In gradient analysis (Dong et al., 2001), given a probe aggregate cell g, one can
find all pairs of aggregate cells (g, v) such that q is an ancestor of v and the change of the
aggregate value from g to v is significant. For example, given that the average house
price in Vancouver is $1.1 million, one can find all regions of Vancouver where the average

house price is 20% higher or lower than $1.1 million.

Cubegrade is a notion introduced by Imielinski et al. (2002) which reports how
characteristics of a data cube cell is associated with the characteristics of its gradient cells;
namely, ancestors (by roll-up), descendants (by drill-down) and siblings (by mutation).
Cubegrade is a generalization of association rules and data cubes; though, Cubegrade
gueries are significantly more expressive than association rules since they can handle
arbitrary measures and not just count as with the association rules. However, Cubegrade
needs to compare each cell in the cube with its associated cells (i.e. gradients) generated
by generalization (roll-up), specialization (drill-down) and mutation and even with iceberg
cubes, it may generate a large number of pairs. To address this issue, Dong et al. (2005)
introduces “probe constraints” to select a subset of cells, referred to as probe cells, from
all possible cells. This is based on the pragmatic observation that analysts are often
interested in examining only a small set of cells in the cube and a majority of the cells in
the cube are outside their focal areas of exploration. Using this constraint, the analysis
can centre only on probe cells and the relationships with their gradients (gradient

constraint). Wang et al. (2006) applies these constraints to closed itemset mining.

19

When a computaion of an iceberg cube is confined with simple measures, such
as, count and sum, antimonotonicity property of the cube can be exploited to prune a
significant number of cells. For example, if the count of a cell ¢ in a cuboid C is less than
a threshold value v, then the count of any ¢’s descendant cells cannot be more than v and
thus all descendants of ¢ ca be pruned. When the measure is not an antimonotonic
function, for example, average or sume of positive and negative elements, a weaker but
still antimonotonic property of top-k average (where k is the minimum support) can be
considered to prune search space effectively (Dong et al., 2005; Yu et al., 2005; Wang et
al., 2006).

2.3. Outlier Detection

The primary objective of benchmarking is to find areas for continuous
improvement; thus, organizations are interested in identifying performance areas in which
they are anomalies (or outliers) as opposed to “normal”. As such, outlier analysis in
multidimensional subspaces lends itself to viable multidimensional benchmarking. To this
end, we explore the application of outlier detection techniques to multidimensional
benchmarking.

An outlier is “an observation which deviates so much from the other observations
as to arouse suspicions that it was generated by a different mechanism.” (Hawkins, 1980).
Data may be generated by a process that reflects normal activities of an underlying
system; however, when the process behaves in an unusual manner, it results in the
generation of anomalous data, or outliers. Outliers hence convey useful information

regarding different characteristics of the process of the underlying system.

Outlier detection methods can be categorized according to whether or not prior
knowledge is available to model normality and abnormality. Prior knowledge typically
consists of samples that are tagged as normal or abnormal by subject matter experts. If
prior knowledge is available, the detection approach is analogous to supervised
classification. If not, the detection approach is essentially unsupervised clustering (Hodge

et al., 2004). Semi-supervised outlier detection methods can be regarded as applications

20

of semi-supervised learning approach where the normal class is taught but the algorithm

learns to recognize abnormality.

The challenge to the supervised approach is that the outlier population is often
much smaller than the normal population; thus, an additional consideration for handling
imbalanced data must be taken into account and techniques, such as, oversampling and
artificial outliers have been devised (Weiss et al., 1998; Joshi et al., 2001, 2002; Vilalta et
al., 2002; Phua et al., 2004).

The unsupervised outlier detection approach makes certain assumptions and
based on the assumptions made, the approach can be categorized into 3 types including

statistical, proximity, and clustering.

The statistical methods assume a probability model of normal data and the data
points that have a low probability of having been generated by the same model are

considered outliers.

The proximity-based methods (Ester et al., 1996; Knorr et al., 1998) assume that
the data points that have many proximate neighbours are normal while points that are far

away from their neighbours are outliers.

The clustering-based methods assume that normal data points belong to large and
dense clusters while outliers belong to small or sparse clusters, or do not belong to any
cluster at all. More recent methods (Eskin et al., 2002; He et al., 2003; Zhang et al., 2007)
incorporate ideas to handle outliers without explicitly and completely finding clusters of

normal objects.

2.4. Subspace Analysis

While most outlier detection methods focus on finding outliers, recently there have
been studies on “properties” of outliers by identifying subspaces in a multidimensional

database where outliers may exist.

21

For example, Keller et al. (2012) and Bohm et al. (2013) proposed statistical
approaches, CMI and HiCS, to select subspaces in which there may exist outliers. They

select highly contrasting subspaces for all possible outliers.

Kriegel et al. (2009) introduced SOD, a method to detect outliers in axis-parallel
subspaces. It uses the nearest neighbours as references in the full space to calculate
outlying scores.

Miiller et al. (2012b) presented a framework, OutRules, to find outliers in different
contexts. For each outlier, OutRules finds a set of rules A= B where A and B are
subspaces and an object is normal in A but is an outlier in B. It computes the degree of
deviation using outlier scores, such as, LOF (Breunig et al., 2000) and produces a ranked

list of rules as the explanation for objects being outliers.

Tang et al. (2013) proposed a framework to identify contextual outliers in a
multidimensional categorical database.

Miiller et al. (2012a) computes an outlier score for each object in a database

providing a single global measure of how outlying an object is in different subspaces.

Given a multidimensional categorical database and an object (which preferably is
an outlier), Angiulli et al. (2009) finds top-k subspaces from which the outlier receives the
highest outlier scores. The score for a given object in a subspace is calculated based on
how frequent the object’s value appears in the subspace. It tries to find subspaces E and
S such that the value is frequent in one subspace and much less frequent in the other.
Since searching all such rules incurs a significant computational cost, it takes two
parameters, § and 6, to constrain the frequency of the given object’s values in subspaces

E and S. If an object is not an outlier, no outlier properties may be detected.

There are a few density based outlier detection methods in subspaces, such as,
Breunig et al. (2000), Aggarwal et al. (2001), He et al. (2005), and Kriegel et al. (2008).
Miiller et al. (2011) proposed OUTRES which aims to assess the contribution of selected
subspaces in which an object deviates from its neighbours (i.e. the object has a

significantly low density). OUTRES employs Kernel Density Estimation (KDE) and uses

22

Epanechnikov kernel. The focus of OUTRES is to find outliers; thus, it only considers

subspaces that satisfy a statistical test for non-uniformity.

To some extent, outlying property or outlyingness is related to uniqueness and
uniqueness mining. Paravastu et al. (2008) finds feature-value pairs that make a particular
object unique. Their task formulation is reminiscent of infrequent itemset mining and uses

a level-wise Apriori enumeration strategy (Agrawal et al., 1994).

23

Chapter 3.
Benchmarks in Data Warehouses

Many organizations store multidimensional data in their enterprise data
warehouses. A data warehouse thus provides an essential information infrastructure for
online analytical queries that simultaneously consider multiple dimensions of data.
However, to the best of the author's knowledge, conducting multidimensional
benchmarking in data warehouses has not been explored from a technical efficiency
perspective. A simple application of existing data warehouse techniques, such as, data
cubes, cannot answer multidimensional benchmarking queries online due to the
exponential growth in computational power required as the number of dimensions

increases.

In this chapter, as the first step towards multidimensional benchmarking, we
formulate benchmark queries technically and develop two algorithmic approaches for
efficient computation in data warehouses; Sorted Inverted Index Cube (SIIC) and

Dominant Answer Materialization (DAM).

3.1. Preliminaries

We largely follow the notations in the conventional data cube and data warehouse
literature (Gray et al., 1997).

Consider a relational table T = (TID,A,, ..., A,, M) and an aggregate function f
where TID is a tuple-id attribute to ensure every tuple in the table is unique, 4, ..., 4, are
dimensions and M is a measure attribute. We assume all dimension attributes are
categorical and the measure attribute can be categorical or numeric. For a tuplet €T,
the value of t for TID is denoted as t. TID, the value for dimension 4; as t. 4;, and the value

for measure M as t. M.

24

LetD = {4;, ..., A;} be a subset of dimensions where 1 < i; <i, < <i{<n. D
is often referred to as a subspace. A cuboid of D is the group-by’s using attributes in D
and denoted by Cp. Note that D may be empty. An aggregate cell in Cp, is a tuple ¢ = (*
Qi % Ay, %, A%, AGgT) € Cp Where value a;) belongs to the domain of attribute 4;,(1 <
j <1), meta-symbol = indicates that the dimension is generalized, andaggr =
f{t.-M|t.A;; = a;;,1 < j <1}) is the aggregate of all tuples in the group (x, a; ,* a;,, ..., *
,a;,*). To simplify presentation, we overload the symbol c. M = aggr and ignore empty

aggregate cells that do not contain any tuple in the base table.

We can define a partial order < on cuboids: C, < Cp, ifD; € D,. The set of

cuboids form a lattice with respect to partial order <. Further, we can define a partial
order < on aggregate cells. The cellst; <t, if for each dimensionA4;(1<i<n)
when t;.A; # *, thent;.A; = t,.A;. This also means that ¢, is an ancestor oft, andt, a
descendant of t;. For two aggregate cells t; and t,, t; is a sibling oft, if t; and t, have

identical values for all dimensions except for one in which neither has value .

A data cube is a set of cuboids for all subsets of dimensions including the empty
set. Equivalently, a data cube is a set of all aggregate cells. For two aggregate cells u
and v, if there does not exist a dimension 4; such that neither u. A; nor v. A; has value *
andu.A; # v.4;, then the concatenation ofu andv, denoted byw =u @ v, is an

aggregate cell such that for attribute A;, w. A; = u. 4; if u. A; # *; otherwise, w. A; = v. A;.

Example 1 (Preliminaries). Consider a relational table T = {TID, age-group, gender,
location, salary} for sales representatives of an organization. Suppose we use avg() as
the aggregate function. ¢ = (x, male, *, avg()) is an aggregate cell which represents
the average salary of all male sales representatives in the organization. Consider
aggregate cells u = (senior, *, *), t = (senior, male, *) and t’ = (senior, female,). We
have u < t which means u is an ancestor of t and t is a descendant of u. t and t’ are
siblings. Aggregate cell v= (x, male, North America) means male sales
representatives in North America. We can use the concatenation operator to get all
senior male sales representatives in North America: «w = u @ v = (senior, male, North

America).

25

3.2. Benchmark Queries

We consider a relational table T = (TID, A4, ..., A,, M). The attributes in T that will
be used in a benchmark query can be divided into three groups: unit-id attributes UID,
dimension attributes DIM, and measure attributes M where UID UDIM < {4, ..., A,,}.
UID n DIM = @ is not assumed; thus, UID and DIM are not exclusive. This means that
an attribute may be both a unit-id and a dimension attribute. However, we can always
create a copy of an attribute that can be used as either unit-id or dimension attribute; as
such, without loss of generality, we assume that the unit-id and dimension attributes are

exclusive for the rest of this chapter.

The unit-id attributes are used to group tuples in T into aggregate units. Since the
term “group” can mean different things, we refer to a group as a unit for clarification. We
are essentially considering a data cube formed using the unit-id attributes UID in which
each aggregate cell corresponds to a unit. In the context of benchmarking, we are

interested in comparing units (e.g. organizations, departments, etc.).

The dimension attributes are used to conduct multidimensional comparative

analysis between two units.

The measure attribute is used to calculate aggregates and derive quantitative
difference between two units, referred to as “performance gap”. We are interested in
finding benchmarks that yield largest performance gaps to the query unit. For simplicity,
we only have one measure attribute in this thesis; however, our method can be extended
to scenarios where multiple measure attributes are considered to derive sophisticated
aggregates. In practice, a measure attribute has non-negative values; for example,
measures, such as, sum, volume, and amount are used in business intelligence
applications. Even when a measure has negative values, we can normalize the attribute

such that the normalized measure attribute has non-negative values.

For each non-empty unit that consists of at least one tuple in the base table with
dimension and measure attributes, we can form a data cube which reflects performance

of the unit in multidimensional aspects.

26

Example 2 (Attributes). Consider a base table T = {age-group, gender, location,
position, education, salary} for employees of an organization. For simplicity, we omit
the tuple-id attribute.

We can use UID ={age-group, gender} as unit-id attributes; that is, we are
interested in comparing units formed by the group-by operation by these two attributes.

For example, (young, male) and (mid-age, *) are two aggregate units.

We use attributes DIM = {location, position, education} as the dimension

attributes; that is, we compare two units by these three dimensions.

Finally, we use attribute M = {salary} as the measure attribute. Using the
aggregate function avg(), we can compare the average salaries between different units
with respect to different locations, positions, education levels, and their combinations. For
example, we may find that for the position of “technical support” at location “Vancouver”,
the age-group [25, 35] has much lower average salary than the age group [35, 50]. The

reasoning behind this difference may be seniority and the years of experience.

To quantitatively compare two aggregate cells ¢ and ¢’, we need the ratio of their

measures:

CC,'A:/I. For a unitu, an aggregate cell c is defined using the dimension attributes

and is called an aspect of u ifu ® c is in the data cube Cube(B,UID U DIM, M, f) for the
base table B. Given two units u and v defined using the unit-id attributes and an aggregate

cell ¢ defined by the dimension attributes such that ¢ is an aspect of both u and v,

Ezggﬁ indicates the performance gap between u and v in aspect c. The larger the ratio,
the larger the performance gap between u and v inc. We denote by R (E |c) — (u®a).M
’ v (vQ®c).M

the performance gap of u against v.

From this example, we define a benchmark query as follows:
e abase table T and the specification of the unit-id attributes UID, dimensions DIM,
and the measure M;

e a query unit g that is an aggregate cell in the data cube formed by the unit-id
attributes UID;

o the search scope; that is, ancestors, descendants, and siblings; and

27

e a parameter k.

Let u be a unit formed by the unit-id attributes and ¢ be an aspect of the query

unitqg. (u,c)is atop-k answer to the benchmark query Q if:

e u isinthe search scope; that is, an ancestor, descendant, or a sibling of q. UID as
specified in the input;
(u®c).M
(q®c).M
e there are at most k — 1 pairs (v, ¢’) such that v’ is also in the search scope, ¢’ #
(W'®c)M _ (u®c).M
(¢'®cH\M ™ (q®c)M’

> 1; and

c is another aspect of u and

(u®c).M

The requirement (@M

> 1 ensures that the performance gap is not trivial and u

is a significant benchmark for g. To this end, we ignore aggregate cells c wheregq ® c is
empty because it is uninteresting from a benchmark perspective. For each (u,c) in the
top-k answers, u is called a benchmark unit and the subspace c is the benchmark aspect
ofu. Given a benchmark query Q, we want to compute all top-k answers to the query.
Note that in the event where there are multiple answers (i.e. the same performance gap),

we return more than k answers.

Example 3 (Benchmark query). Consider a base table T = {age-group, gender, location,
position, education, salary} for employees of an organization. Table 2 shows samples
of T.

Table 2 Sales Representatives of an Organization

age-group | gender location position education sales
volume
young M Vancouver staff University 200
young F Seattle manager Diploma 230
young F Seattle manager University 220
mid-age M Vancouver staff Diploma 220
mid-age M Seattle staff University 200
mid-age M Vancouver manager University 224

Let UID = {age-group, gender}, DIM = {location, position, education}, and M =

{sales volume}. We use avg() as the aggregate function.

28

Suppose the query unit is g = (young, M) and k = 2. The top-2 answers are

((young, F), (*, *, *)) and ((mid-age, M), (Vancouver, %, University)). The ratio is % =

1.125 for the first and % = 1.12 for the second answer. This simple example illustrates

that when we consider the sales performance of a group of young males, the two most
significant benchmarks (i.e. have the largest performance gaps) for this unit are young
females in all aspects, and the mid-age males who work in Vancouver and are university

graduates.

Aggregate functions can be categorized into two types: monotonic and non-
monotonic aggregates. An aggregate function f is monotonic if for any aggregate cells
¢; and ¢, such thatc; < ¢y, f(c1) < f(cz). An aggregate function is non-monotonic if it
does not have this property. For example, if the measure attribute only has non-negative
values, then aggregate functions sum() and count() are monotonic while avg() is non-

monotonic.

Answering a benchmark query for a monotonic aggregate function is
straightforward since the apex cell (x,%,...,*) always has the maximum aggregate value
but uninteresting for benchmarking. As such, we assume that the aggregate functions

used for benchmarking are non-monotonic.

3.3. Sorted Inverted Index Cube (SIIC) Method

We assume a data cube materialization method Cube(B, A4, ..., A, M, f) that
computes a data cube on a multidimensional base table B using attributes as

dimensions 44, ..., A,, M as the measure and the aggregate function f.

We use BUC (Beyer et al., 1999) to materialize a data cube. For each unitu, let B,
be the set of tuples in the base table that belong to u; thatis, B, = {t|t € B Au < t}. Given
a query unitq, a benchmark query compares the data cubes Cube(B,;,DIM,M, f)
and Cube(B,, DIM, M, f) for every unit u in the search scope. This is equivalent to
materializing the whole data cube Cube(B,UID U DIM, M, f) since all units using attributes

UID need to be considered.

29

A naive method is to search every unit u in the scope, given a query unit g, and
compute the performance gap between g and u for every possible aggregate cell ¢ formed
by the set of attributes DIM. It is time consuming to perform computation in every aspect
c for every unitu. We can organize the units and the aspects such that the search can

ignore many aggregate cells that are trivial.

3.3.1. Inverted Index for Fast Search

In this section, we use two simple ideas to facilitate fast search.

As the first idea, we sort all aggregate cells in the cube Cube(B,UID U DIM, M, f)
in the aggregate value descending order. We search aggregate cells in this order for
answering a query. In this order, we visit the aggregate cells of larger values earlier on
and thus heuristically we have a better chance of finding cells with larger performance

gaps for the query cell. Let<,,,- be the aggregate value descending order of all

aggregate cells inCube(B,UID UDIM,M,f). For any aggregate cells u anduv,
ifu <qggr v, thenu.M = v.M. Note that if there are two or more aggregate cells having

the same value, the tie can be broken in any arbitrary way.

The second idea is to use inverted index (Wikipedia, 2016). For each value in the
domain of every unit-id attribute, we maintain an inverted index to record the list of

aggregate cells containing this value. Suppose q;; is a value in the domain of unit-id
attribute 4;. The inverted index Index,,; is a list of aggregate cellsu € Cube(B,UID U
DIM, M, f) such thatu.A; = a;;. All aggregate cells in every inverted index are sorted

according to the order <44

We can retrieve all aggregate cells of cube Cube(B,, DIM, M, f) using inverted
indices efficiently in a way similar to merge-sort. Let g be the query unitand q.4; , ..., q.4;,

are the unit-id attribute values that are not x. To find all aggregate cells of q, we only need

to search inverted indices Indequqil’ '"’Inder-Ail and find all aggregate cells ¢ such that

c appears in every Index, ,, and takes value = in all other unit-id attributes. Since we
J

30

scan the inverted indices in the order of <4, We can find all aggregate cells of g in one

scan.

The inverted index also facilitates efficient retrieval of all unit aggregate cells in the
search scope; that is, ancestors, descendants, and siblings of q. To search for the
ancestor units and their aggregate cells, we scan the inverted indices Indexq_Ail,...,

Inder-Ail in a synchronized manner. Except for the unit (x, ...,*) which can be checked

separately as a special case, an aggregate cell ¢ is an ancestor of g if (1) ¢ appears in at

least one of the inverted indices Index, 4. , ..., Index, 4. ; and (2) c.A;, = *if ¢ does not
q.-4iy q.-A4y; j
appear in Index, 4, . Again, since we scan the inverted indices in the order of <, -, we
J

can find all ancestor units of g and their aggregate cells in one scan. To find all descendant

units of g, we search the inverted indices IndexCI-Ail’ -"'Indexq-Ail and find all cells ¢ such
that ¢ appears in every inverted index Indexq.Aij and takes a non-x value in at least one
unit-id attribute other than 4; ,...,A4;. To find all siblings of g, we search the inverted
indices Indexq_Al.l, ...,Indexq_Al.l and find all cells ¢ such that (1) c appears in every inverted
index Inder-Aij except for one, say Indexq-Aijo; (2) c. Ay, # q.Al-].Oand C. Ay, # ¥,
3) C-Aij =% ifq.Al-]. ==*. Both searches can be achieved in one scan of the inverted

indices.

Example 4 (SIIC). We use sample data shown in Table 2 as an example. The avg() is
the aggregate function. Let UID = {age-group, gender}, DIM = {location, position,
education}, and M = {sales volume}. We first build an inverted index for each value in
the domain of every unit-it attributes, in this example, age-group and gender as shown

in Figure 7.

31

Inverted Index for “young” Inverted Index for “M”

(young, F, *, *,) 225 (mid-age, M, Vancouver, *,University) 224

(young, *, Seattle, *,) 225

/I (young, M, Vancouver, staff, University) 200 |

| (young, M, Vancouver, staff, University) 200 | (young, M, Vancouver, *, University) 200

Figure 7 Example SIIC for values "young" and "M"

Suppose the query unitis g = (young, M). We find that (young, M, Vancouver, staff,
University) appears in both inverted indices for “young” and “M”; thus, (young, M,
Vancouver, staff, University) must be an aggregate cell of q. Similarly, we can easily find
all aggregate cells ofgq, {(young, M, Vancouver, staff, University):200, (young, M,

Vancouver, *, University):200, ...} with the aide of inverted indices.

To find all aggregate cells of ancestors, descendants, and siblings of g, we apply
the same technique to the search scope of gq. For example, to find all aggregate cells of
a sibling (young, F), we only need to check aggregate cells that appear in both inverted
indices for “young” and “F”. Again, we have all aggregate cells sorted in the search scope

{(young, F, %, %, ¥):225, (mid-age, M, Vancouver, *, University):224, ...}.

3.3.2. Pruning

Since we scan aggregate cells in the aggregate value descending order, we
maintain the top-k answers and we can define the following property.

Lemma 1. Given a query unit g, consider an aggregate cell ¢ for g‘s dimension attributes
such thatq & c is not empty. For two units u and w’ such thatu @ ¢ <444 U’ ® c,

wu®a.M _ u'®cM
@®c.M ~ q®cM’

then

Proof. We only need to recall thatif u ® ¢ <454- ' @ ¢, (u ®). M = (u' ® c).M, and the

assumption that the aggregate values are positive.

32

Using Lemma 1, for any aggregate cell ¢ for dimension attributes such that c is an
aspect of g (i.e. q @ c is not empty), if we scan an aggregate cellv =u ® ¢ such
that (u, ¢) is not qualified to be a top-k answer among the aggregate cells processed so

far, then any pair (u',c) to be scanned later is not qualified either; thus, ¢ can be pruned.

Further, let v be the current aggregate cell we scan in the inverted indices. For

v.M
(q®c).M

aggregate cells after v in the sorted list can form a pair (u, c) suchthatv = u ® c and (u, c¢)

any aspect c of g, if is less than the top-k answers we have seen so far, then no

is qualified as a top-k answer. In this case, the aspect ¢ can be pruned as well. This rule
applies to all aspects of g; that is, aggregate cells in cube Cube(B;, DIM,M, f). Once it
is determined that all aspects of g are processed (i.e. either included in the current top-k
answer or can be pruned), the search can terminate and the current top-k answers can

be returned as the final answers to the benchmark query.

Example 5 (SIIC with Pruning). Figure 8 illustrates pruning with Example 4. Suppose
the query unit is g = (young, M) and we want to find top-2 units that give largest
performance gaps. Assume we have {(young, F, *, , *): 225, (mid-age, M, Vancouver,
*, University): 224} as current top-2 benchmarks as shown in the figure. We are
currently scanning the aggregate cell {(young, F, *, *, University): 220}. It is easy to
see that {(young, F, *, =, University): 220} does not qualify to be top-2; as such, all
following cells that are compatible with (, *, University) can be pruned.

Sorted list Current top-2
(young, F, *, %, ¥) 225 (young, F, *, ok, %) 225
(mid-rage, M, | Vancouver, %, University) 224
1| Goung.F, |« Unversy) | 220 |pemeree
(:id-r_age:/l, T *,_Uni\:wsh; o _212_ \):uned (young, M, *, K, ¥) 200
(young, *, *, %, University) 210

Figure 8 Example SIIC with Pruning

33

3.4. Dominant Answer Materialization (DAM) Method

The SIIC method has a severe drawback; in the worst case, it still has to go through
the list of all aggregate cells of the whole data cube Cube(B,UID U DIM, M,). When the
data cube is large, the cost is significant in both space and time. The Dominant Answer

Materialization (DAM) method addresses this issue.

3.4.1. Search Scope of Ancestors

We first consider the search scope of ancestors. Consider a query unit g and a
unit u that is an ancestor of g; that is, u < q. u is called a maximal unit of g with respect
to aspect c if ¢ is an aspect of both g and u and there does not exist another ancestor v’ of

(u’®c).M (u®c).M . .
oo~ oo The following is observed.

q such that

Theorem 1 (Monotonicity). Given a unit g, if a unit u is a maximal unit of g with respect
to aspect ¢, then for any unit ¢’ such thatu < g’ < ¢, u is also a maximal unit of ¢’ with

respect to c.

Proof by contradiction. Assume that u is not a maximal unit of g’ with respectto c. Then

u'®c)M _ (u®c).M
Q)M ” (¢'Q@c).M’
uW'®c)M _ (u®c).M
q'Q@c)M = (q'Qc).M

there exists another unit v’ such thatu' < q’ andE Sinceu’ < ¢’

and the measure

andq' < q, we haveu' < q. Since u'<q’ andE

values are non-negative, we have (W' @ c).M > (u®c).M. Therefore, we

W'®c)M _ wu®c).M
@M = (q®c)M’

contradiction.

have That is, u is not a maximal unit of g with respect toc. A

Theorem 1 presents a useful observation; that is, multiple query units may share
a common aggregate unit as an answer to benchmark queries. To answer benchmark
gueries efficiently, we can pre-compute aggregate units and the associated aspects that
may be answers to benchmark queries. The problem then is to determine, for an
aggregate unit u, which query units may take u as a possible answer and with respect to

which aspects. The following lemma answers this question.

34

Lemma 2. For aggregate units u and v such thatu < v, let ¢ be an aspect of both u and

v. Then, u is not a maximal unit of v with respect to c if:

1. there exists an ancestor u’ < u such that (u' @ ¢).M > (u ® ¢).M; or

2. there exists a descendant u” suchthatu < u”" <vand (u®c).M < (u" ® c). M.
Proof. If there exists an ancestoru’ <u such that(u’' @ c).M>w®c).M,

then R (u;|c) >R (%|c) If there exists a descendant u” such thatu < u” <v and

wU®c).M< W Qc).M,thenR (u7”|c) >R (%|c) In both cases, u is not a maximal

unit of v with respect to c.

According to the first item in Lemma 2, to answer benchmark queries whose
search scope is the ancestors, we do not need to store the whole data cube Cube(B,UID U
DIM, M, f). Instead, we only need to store those aggregate units u and aspects ¢ such
that there does not exist another unit v’ and aspects ¢’ and (u @ ¢).M < (u' @ ¢).M. In
other words, we only need to store units and aspects whose measure values are not

dominated by any of their ancestors.

For aggregate unit u and aspect c, we call (u, c) a dominant answer if there does
not exist another unit v’ and ¢’ and (u @ ¢).M < (u’' ® ¢).M. To answer any benchmark

guery, we only need to materialize all dominant answers.

Once all dominant answers are materialized, we can organize dominant answers

using inverted indices as per the SIIC method.

The last problem is to find how to compute dominant answers. A brute-force is to
compute a full data cube and then select dominant answers from all aggregate cells. Since
we are concerned with groups of aggregate cells with different measure values, we can

adopt the quotient cube method (Lakshmanan et al., 2002).

Instead of computing all aggregate cells of a data cube, the quotient cube method
groups aggregate cells according to the tuples in the base table that contribute most to

the aggregate of cells. For an aggregate cell u, it considers the set of descendant tuples

35

in the base table cov(u) = {tlu < t,t € B}. If two aggregate cells u; andu, share the
identical set of descendant tuples in the base table; that is, cov(u;) = cov(u,), then the
two cells are assigned to the same quotient group. It shows that each quotient group has
a unique upper bound which is also in the same group. In other words, if there are u,
and u, such that cov(u;) = cov(u,) butu; <« u, andu, <« u; then there exists another
aggregate cell u such thatu < uy,u < u, and cov(u) = cov(u,) = cov(u,). Now we only

need to materialize the upper bounds of the quotient groups that are dominant answers.

Example 6 (DAM). Using Table 2, we assume that the query unit is g = (young, M) and
use avg() as the aggregate function. The set of ancestors of the query unit is {(*, M),
(young, *), (*, *)}. Itis easy to verify that u = (*, M) is a maximal unit of g with respect
to aspect ¢ = (Vancouver, *, University) and u = (*, *) is a maximal unit of g with
respect to aspect ¢ = (Vancouver, staff,). According to the base table, ((mid-age,
M), (Vancouver, , University)) is a dominant answer since there does not exist a unit
u’ that has a greater aggregate value than avg(mid-age, M) ® (Vancouver, x,
University)). As an example of quotient cube, we can verify that cov(mid-age, M,
Vancouver, manager, *) = cov(mid-age, M, *, manager, University); that is, they have
the same set of descendants in the base table. Thus, these two aggregate cells are in
the same quotient group. Further, (mid-age, M, *, manager, =) is the upper bound of
the group. By using the quotient cube, we can materialize all dominant answers from
the quotient group in Table 2; that is, {(young, F, *, *,), (mid-age, M, Vancouver, *,
University), ...}. Unlike the SIIC method, we only store the dominant answers, reducing
both the search space and the time. Once a query is given, we can use the inverted
indices to answer the query efficiently.

3.4.2. Search Scope of Descendants

Consider a query unit g and a unit u that is a descendant of g; that is,u > q. Then
u is called a maximal unit of g with respect to aspect c if ¢ is an aspect of both g and u

(W'®c)M _ u®c).M

@®oM > aeom Smilar

and there does not exist another descendant v’ of g such that

to Theorem 1, we have the following:

36

Corollary 1 (Monotonicity). Given a unit q, if a unit u is a maximal unit of g with respect
to aspect c, then for any unit ¢’ such that u > q' > g, u is also a maximal unit of ¢’ with

respect to c.

Also, similar to Lemma 2, we have the following:

Corollary 2. For aggregate units u and v such thatu > v, let ¢ be an aspect of both u

and v. Then u is not a maximal unit of v with respect to c if:

1. there exists a descendant u’ > u such that (u' @ ¢).M > (u ® ¢).M; or
2. there exists an ancestor u” suchthatu > u"”" >vand (u®c).M < (u” Q ¢). M.

3.5. Empirical Evaluation

The algorithms were implemented with Python 2.7 running with PyPy? JIT
optimization. PyPy? is an advanced just-in-time complier which provides approximately
10 times faster running time and additional scalability than the standard Python. All
experiments were conducted on a PC with an Intel Core i7-3770 3.40GHz CUP, 16GB
memory and a 1 TB HDD, running the Ubuntu 14.04 operating system.

3.5.1. Data Sets and Experiment Settings

We evaluated our algorithms with both synthetic and real data:

e Synthetic data (TPC-H v2.17.1)

TPC-H is a widely used data set that consists of a suite of business oriented
ad-hoc queries and concurrent modifications. TPC-H has 8 separate individual
base tables. We used the joined results of table PART and table LINEITEM
as our evaluation base table.

o Real data (CDIAC Weather)

The weather data set available from Carbon Dioxide Information Analysis
Center (CDIAC) contains 1,015,367 tuples with attributes including station-id,
longitude, latitude, solar-altitude, present-weather, day, hour, weather-change-
code, and brightness.

The TPC Benchmark™H (TPC-H) is a decision support benchmark. It consists of

a suite of business oriented ad-hoc queries and concurrent data modifications. The

37

gueries and the data populating the database have been chosen to have broad industry-
wide relevance. This benchmark illustrates decision support systems that examine large
volumes of data, execute queries with a high degree of complexity, and give answers to
critical business questions (TPC-H, 2016). Since benchmark queries and the underlying
techniques are highly related to data warehousing and decision support, we chose TPC-

H data sets.

We randomly generated 100 queries for each data set and conducted each
experiment 10 times, reporting the average value. Using the avg() as the aggregate
function, we compared Sorted Inverted Index Cube without pruning (SIIC) as well as with
pruning (SIICP), and Dominant Answer Materialization (DAM). We used BUC (Beyer et
al., 1999) to materialize the cubes for SIIC/SIICP and Quotient Cube (Lakshmanan et al.,
2002) to compute quotient groups for DAM.

3.5.2. Reduction of Aggregate Cells Computed and Indexed

We conducted two sets of experiments to evaluate the effectiveness of reducing

the number of aggregate cells computed and indexed.

In the first set of experiments, we fixed the dimensionality of DIM and reported the
number of computed and indexed cells with respect to the increase of dimensionality of
UID. We sorted the dimensions according to the cardinalities in the descending order.
For the TPC-H data set, we generated 9 testing data sets with 2 to 10 dimensions of UID.
The dimensionality of DIM was fixed to 5. For the Weather data, we generated 4 testing
data sets with 2 to 5 dimensions of UID. The dimensionality of DIM was fixed to 5. The

results are shown in tables 3 and 4.

Table 3 TPC-H: number of computed and indexed cells (5 DIM dimensions)

Method Dimensionality of 2 314|565 6 7| 8 9 |10
UlD

SIIC/SIICP | Computed (x10°) 04/09|23|35|52]6.2|75]98]| 12

Indexed (x10°) 02/04]|11]21|36[43|64|80|96

DAM Computed (x10°) 0917122415563 |74]|97]| 11

Indexed (x10%) 09]12]16]22]|25]29|33]36|40

38

Table 4 Weather: number of computed and indexed cells (5 DIM dimensions)

Method Dimensionality of 2 3 4 5
UID
SIIC/SIICP | Computed (x105) 5.2 11 25 35
Indexed (x10%) 2.1 3.6 5.1 11
DAM Computed (x10°) 0.9 15 2.1 2.2
Indexed (x103) 3.5 4.5 5.1 5.4

Since SIIC and SIICP have the same mechanism for materialization, the number

of cells computed and indexed for these two methods is the same. DAM performs better

than SIIC/SIICP for both TPC-H and Weather data. Figure 9 shows the reduction ratio of

the computed and indexed cells for TPC-H where the reduction ratio is the number of cells
in DAM over the number of cells in SIIC/SIICP. The reduction ratio in most cases is about

10%, meaning that DAM only computes and indexes about 10% of the cells that SIIC and

SIICP do. Further, the ratio becomes smaller when the dimensionality of UID increases.

This means that the more dimensions UID has, the more savings of materialization and

indexing DAM achieves.

Reduction ratio of DAM w.r.t baselines on computed cells

100%= =

T5%

Redution ratio
2
#
1

4 [El
Number of dimensions on UID

DAKM

*— SIGSICP

100% 4

T5% 1

Redution ratio
2
#
1

0%~

4 [El
Number of dimensions on UID

Reduction ratio of DAM w.r.t baselines on indexed cells.

*— SIXSICP

DAm

Figure 9 Reduction Ratio of DAM over SIIC/SIICP for TPC-H (DIM fixed)

Figure 10 shows the results for the Weather data set. The observation is similar

to that for the TPC-H. The savings accomplished by DAM is due to the fact that DAM only

stores and searches the dominant answers in the quotient groups.

39

Reduction ratio of DAM w.r.t baselines on computed cells. Reduction ratio of DAM w.r.t baselines on indexed cells.
100% - = * * 100% » + * .
DAt DAk

T5%

o
@

—*— SITSICP —*— SIC/SICP

Redution ratio
]
#
Redution ratio
g
#

b}

Ed
il
£

3 4 3 4
Number of dimensions on UID Number of dimensions on UID

Figure 10 Reduction Ratio of DAM over SIIC/SIICP for Weather (DIM fixed)

In the second set of experiments, we fixed the dimensionality of UID and reported
the number of computed and indexed cells with respectto DIM. For TPC-H, we generated
4 testing data sets with 2 to 5 dimensions of DIM and the dimensionality of UID was fixed
to 10. For the Weather data, we generated 4 testing data sets with 2 to 5 dimensions of
DIM and the dimensionality of UID was fixed to 5. The results are shown in tables 5 and
6.

Table 5 TPC-H: number of computed and indexed cells (10 UID dimensions)

Method Dimensionality of 2 3 4 5
UlD
SIIC/SIICP | Computed (x108) 5.9 7.1 9.6 12
Indexed (x10°) 4.4 6.5 7.9 9.6
DAM Computed (x10°) 6.5 7.9 9.5 11
Indexed (x10%) 2.6 3.1 3.5 4.0

Table 6 Weather: number of computed and indexed cells (5 UID dimensions)

Method Dimensionality of 2 3 4 5
UlD
SIIC/SIICP | Computed (x10°) 4.2 9.8 22 35
Indexed (x10%) 1.5 2.6 5.9 11
DAM Computed (x10°) 0.8 14 1.9 2.2
Indexed (x10%) 3.2 4.2 4.8 5.4

Similar to the results of the first set of experiments, DAM significantly outperforms
SIIC/SIICP for both synthetic and real data. Figure 11 shows the reduction ratio for TPC-
H and Figure 12 the Weather data. The reduction ratio in most cases is about 10%. Similar
to the observation described earlier, the ratio becomes smaller when the dimensionality

of DIM increases.

40

Reduction ratio of DAM w.r.t baselines on computed cells. Reduction ratio of DAM w.r.t baselines on indexed cells.
.

100% 4 = 100% 4 »

DA DAM
E%Y —— SIGSICR % —— SIG/SICR

50%

Redution ratio
Redution ratio
g
#

]
2

25%

0%

3 4 3 4
Number ol dimensions on DIM Number of dimensions on DIM

Figure 11 Reduction Ratio of DAM over SIIC/SIICP for TPC-H (UID fixed)

Reduction ratio of DAM w.r.t baselines on indexed cells.

Reduction ratio of DAM w.r.t baselines on computed cells.
* - 100% 1

100% 4 = -

DA DAM

% —— SISICR

al
2

—— SITEICP

Redution ratio
g
e

Redution ratio
a
£

]
#
\
8
e

3 4 3 4
MNumber of dimensions on DIM Number of dimensions on DIM

Figure 12 Reduction Ratio of DAM over SIIC/SIICP for Weather data (UID fixed)

3.5.3. Runtime and Memory Usage

We fixed the dimensionality of DIM and reported both runtime and memory usage
in query answering with respect to the dimensionality of UID. The testing data sets were
the same as those in the first set of experiments. The memory usage reported is the peak
memory usage during query answering. Query answering was tested by 100 random
gueries, as such, the average query answering runtime and the standard deviation are
reported. Figure 13 shows the results for TPC-H and Figure 14 the Weather data. SIICP
is slightly faster and uses less memory than SIIC. DAM significantly outperforms SIIC and
SIICP in runtime and memory usage. For runtime for index construction, DAM is less than
half the runtime of SIIC/SIICP. Further, the DAM runtime increase is much slower than
SIIC and SIICP with the UID dimensionality increase. DAM consumes a small amount of

memory while SIIC/SIICP consume much larger amount of memory. Similar to runtime,

41

the DAM memory usage increase is slower than SIIC/SIICP as the UID dimensionality
increases.

__Runtime (Materlalization/ndexing) on TPC-H Dataset w __ Runtime (Query answering) on TPC-H Dataset ~ Memory usage on TPC—H Dataset with fixed DIM

;I.I.“ .Mm .'.mllll

2

@
&

o
o
o
B
w
2

n
5

1o
2

©
5

b

=]

@

Runtime (seconds)
8
2

Runtime (seconds)
@

3
Memory (MB)

=

@
3

e

o
a

Numberafdumersmm on LI\D Numbernl dmemmmnn LI\D

Numheruf dmenswors on U\D

Figure 13 Runtime and Memory Usage with TPC-H (DIM fixed)

~Runtime (Materialization/Indexing) on Weather Dataset ___ Runtime (Query answering) on Weather Dataset ~Memory usage on Weather Dataset with fixed DIM

25 .';uc
SHCP
20
15
m .
5
0

Numher nfd\mensnnsnn uip Numherddumensmscn uip

mm—

15007 5nc
.suc:/suu?
SIoP
750+
1000
= 40
L]
o h]

Numtler nfd\mensnnsnn uiD

8
g
g
WMemory (MB)

Runtime (miliseconds)
8
g

Runtime (miliseconds)

2

Figure 14 Runtime and Memory Usage with Weather (DIM fixed)

These results indicate that when UID has more dimensions, DAM can save more
time and memory in query answering. As noted earlier, the savings come from the fact
that DAM only computes and stores dominant answers in the quotient groups. Once a
guery is given, DAM only searches the dominant answers which leads to efficiency in both
time and memory usage. Both SIIC and SIICP need to materialize the data cube using

BUC and build the inverted indices. SIICP is faster than SIIC because it applies pruning
in query answering.

Next, we fixed dimensionality of UID and reported the runtime and the memory

usage with respect to the dimensionality of DIM, using the same testing data. The results
are shown in figures 15 and 16. DAM clearly outperforms SIIC/SIICP.

42

Runtime (seconds)
0
B

54
0
i L L
0

Runtime (MaterlalizationAndexing) on TPC-H Dataset

suc.smv

nm

Runtime (seconds)
H

8

___Runtime (Query answering) on TPC-H Dataset
SICP

Ll

©
B

I
B

0

Memary usage on TPG-H Dataset with fixed UID

5

5\\0

@
E

siicP

|.|.|.

Memory (MB)
Pl U
] a 8 8

g

Mlmbd of dmanwns on DIM

Mlmbd of dmanwns on DIM

Numbe of dmensaons on DIM

Figure 15 Runtime and Memory Usage with TPC-H (UID fixed)

1500+

Runtime (miliseconds)

8
T

a8
s

Runtime (Materialization/Indexi

SICSICE
oA

I.LL

on Weather Dataset

Runtime (miliseconds)

750+

sie

sicp

DA
=00

0 l.‘

Runtime (Query answering) on Weather Dataset

__Memory usage on Weather Dataset with fixed UID

©
B

suc

SIGP.

5 .ll
)

®
8

Memary (MB)
@

H

Nunber afmmmsmns on DIM

Nunber afmmmsmns on DIM

Nunber of d.mmswns on DIM

Figure 16 Runtime and Memory Usage with Weather (UID fixed)

3.5.4.

Scalability

To assess scalability, we generated and used 4 TPC-H data sets with different

size: 25%, 50%, 75%, 100% of 1GB. The dimensionality of UID was fixed to 10 and the

dimensionality of DIM to 5. The results are shown in Figure 17. DAM is much more

scalable than SIIC/SIICP for runtime.

consistently uses much less memory than SIIC/SIICP.

z
T

Runtime (seconds)
B
S

Runtime (Materialization/Indexing) on TPC-H Dataset

BT
7 oAU

Runtime (seconds)

Runtime (Query answering) on TPC-H Dataset

sic
SicP
oA

:......_h..h

For memory usage, all 3 are scalable.

20005

Mermory (M8)
H]
g s

g
3

DAM

Memory Usage on TPC-H Dataset

sig
SIGP.
DAM

50%
Dataset sma

50%
Dataset sma

Figure 17 Scalability with TPC-H

43

50%
Datasel SIZE

Chapter 4.
Reflective Benchmarking

In Chapter 3, we developed methods to find significant benchmarks efficiently in

data warehouses.

In this chapter, we consider outlier detection techniques in data warehouses for
multidimensional benchmarking. As stated earlier in section 2.3, when organizations
conduct benchmarking, they are mainly concerned with identifying areas for performance
improvement; that is, areas where they perform exceptionally (positively or negatively).
To this end, outlier analysis in multidimensional databases (i.e. data warehouses) lends
itself to viable multidimensional benchmarking. By employing outlier detection technigues,
we identify what causes organizations to deviate from the norm (i.e. benchmarks). Is an
organization an outlier because a small number of underlying units or a majority of them

are outliers?

Since what makes an organization an outlier is a reflection of self, we refer to the

method presented in this chapter as “reflective benchmarking”.

4.1. Preliminaries

As in Chapter 3, we follow the notations in the conventional data cube and data
warehouse literature (Gray et al., 1997).

Example 1 (Preliminaries). To develop a health index, an organization is interested in
finding how prevalent certain ilinesses are across its employees. While benchmarking,
an organization may find that it has an exceptionally high rate of pain treatment
provisions across its employees compared to other organizations in the same industry.
The organization will be interested in finding what makes it an outlier and learning more

about the characteristics of its internal structures.

44

Consider a table T = {employee-id, gender, age-group, service, count} which
records the organization’s employee attributes including unique identifiers of employees,
genders, age-groups, services provided to treat certain illnesses, and the count of services
provided. Suppose employees who suffer from chronic pain receive regular treatments,
such as, physiotherapy, chiropractic, and massage services to ease pain. The prevalence
rate of chronic pain across employees of the organization can be represented by how
many employees of the organization provision such services. If the rate is an outlier, the
organization would want to understand if it is an outlier because most of its employees are
outliers. If so, it would then want to reflect on its internal structures, such as, the
characteristics of its employees to understand what drives its employees to be outliers.
The drivers could be genders, age-groups, types of occupations, employment types,

departments, locations, number of dependents, etc. or combinations of them.

Definition 1 (Fact Table). We consider a fact table F for k parties (e.g. employees) whose
attributes can be partitioned into k + 1 subsets F;(1 < i < k + 1). Thatis, F = U} F;.
e The subsetF;(1 <i <k + 1) contains the attributes of the i-th party. We refer

to F; asparty i.

e We assume that U, F; is a key of the table F. That is, no two tuples have the
same values of all attributes in UX_, F;.

o The subset F;,; contains the measure (e.g. count). As in Chapter 3, the measure
attribute is used to derive quantitative difference to indicate the performance gap
between two parties.

Definition 2 (Groups). For the domain of each attribute F = UX_, F;, we introduce a meta-
symbol * which indicates that the attribute is generalized. A tuple t represents a base
level group of party i, if t has a non-* value for every attribute of F;. Otherwise, t is
an aggregate group ofpartyi. For groupst; andt, such thatt; #t,, t;is an
ancestor of t, and t, a descendent of t;, denoted by t; < t,, if for every attribute in F =
U{-‘=1Fi where t; has a non-* value, t, takes the same value as t,;. For example, (el2,
male, 30-40, physiotherapy) is a base level group while (x,*, 30-40,%) is an aggregate
group and (*,*,30-40,*) < (el12, male, 30-40, physiotherapy).

It immediately follows that:

45

Lemma 1. For a party F; where the domain of every attribute is finite, all groups including

the base level and aggregate form a lattice under the relation <.

In theory, we can relax the requirement in Lemma 1; that is, as long as the domain
of every attribute is either finite or countable, the lemma still holds. In practice, a fact table
is always finite, as such, the domains of the attributes can be considered finite.

Definition 3 (Performance Gap). Given a fact table F of k parties, we extend the domain
of each attribute in UX_, F; such that meta-symbol * is included as a special value. A
performance gap is a group-by tuple t € F. That s, for every attribute in UX_; F;, t takes
either a value in the domain of the attribute or meta-symbol . A performance gap is a
base level gap if every party in t is a base level group. Otherwise, t is an aggregate

performance gap.

If all groups are base level groups, a performance gap is simply a tuple in the fact
table. When performance gaps contain some aggregate groups, we use an aggregate

function to describe the aggregate performance gaps.

Definition 4 (Measure of Performance Gap). Given a fact table F of k parties,
letaggr: 2Fk+1 - F, . ; be an aggregate function. For any aggregate performance gap t,
the measure of t is the aggregate of the measures of all base level performance gaps

that are descendants of ¢, that is,
t.Foy1 = aggr({s.Fyi1|s € F,s is a descendent of t}).

For example, the prevalence rate of chronic pain across employees of an
organization can be computed by taking the average of all counts of services provided to
treat chronic pain in the fact table. Here the aggregate function is:

Yiavg;xcount;

aggr({avg;, count;}) = (X counti).

»icount;

Theorem 1 (Performance Gap Lattice). Given a fact table F of k parties, if the domain

of every attribute in UX_, F; is finite, then all performance gaps form a lattice L =

46

[1[2, Lr,where Lg, is the lattice of party F;. Further, |L| = |1~ Lr, | = Maeue r (141 +

1).

From Theorem 1, the size of the space required for performance gaps is

exponential to the number of parties.

4.2. Outlier Types

Outliers can be modeled in many different ways (Campbell, 2014). In this section,
we employ the model of statistical outliers which captures observation points that are
distant from the majority of observations (Hodge et al., 2004). The rational for the model
is that it is unlikely that distant points have been generated by the same mechanism that
generated the majority of points. Given a set of samples where each sample is associated

with a numerical measure, we can calculate the mean m and the standard deviation 6.

Theorem 2 (Chebyshev Inequality (Chebyshev, 1984)). Let X be a random variable with

finite expected value m and non-zero variance §. For any real number, [> 0, P.(|X —

1

We use [as an outlier threshold; the samples that are more than [§ away from m

are deemed outliers.

Definition 5 (Outliers). Given a fact table F and outlier threshold [where F, ., contains
only one attribute, let m be the mean and § be the standard deviation of Fj,; of all base

level performance gaps. Performance gap t is an outlier if |t. F,.q — m| > 16.

Definition 5 can be easily extended to fact tables containing multiple measure
attributes. Is there redundancy among performance gap outliers? We have the following

observation.

Theorem 3 (Weak Monotonicity). Consider a fact table F of k parties and average() as
the aggregate function. Lett be an aggregate performance gap and 4 € UX_, F; be an

attribute wheret has value . Ift is an outlier, then there exists at least one

a7

performance gap outlier t' such that (1)t' = t for all attributes in U¥_, F; — {4} and

(2)t' A #x.

Proof by contradiction. Without loss of generality, letA € F;,. We can writet =
(t1,ty, ., tg) andt’' = (t'y,ty, ..., t,) wheret;(1 <i <k) are the groups fromparty i
and t’; is a group from party 1 such thatt'; is a child of t;. Suppose t has n such
children denoted by '@, ..., '™, According to Definition 5, t is a performance gap
outlier and |t. F,.; — m| > l§. Suppose the children of t are t;(1 < i < n), thent' € t;.
As per Definition 4 and using average() as the aggregate function, we have t. F , =

ity t'OFpyq ; (1) i
=== Assume all possible performance t'* are not outliers. Then,

m—1<t'O F,,<m+15

n
n(m —16) < Z D F,y < n(m+16)

i=1

it Fyy

n

m-—16< <m+16

T t'@D Fyyy
n

-m| <16

[t—m| <16
A contradiction.

According to Theorem 3, if an aggregate performance gapt is an outlier, then
some descendants of t must also be outliers. Consequently, we can classify performance
gap outliers into two types:

e Aggregate performance gap t is a type-l outlier if most base level performance
gaps of t are not outliers. In other words, a small number of descendants that are
outliers are driving t to be an outlier. Thus, t being considered an outlier is a mere

chance and may not be interesting; instead, outlying descendants of t could be
more interesting and warrant further analyses.

48

e Aggregate performance gap t is a type-Il outlier if many base level performance
gaps of t are outliers. In other words, t is a good summary of a set of outlying
descendants. Thus, t on its own may be interesting.

To quantify these two types of outliers, we use Kullback-Leibler divergence or KL-
divergence (Kullback et al., 1951) which defines a measure of the difference between two
distributions P and @ in information theory. In applications, P typically represents the true
distribution of data, observations or precisely calculated theoretical distribution while Q

represents a theory, model, description, or approximation of P.

Definition 6 (Kullback-Leibler divergence (Kullback et al., 1951)). For probability

distributions P and Q of a discrete random variable, the KL-divergence is defined as:

KLPI) =Y PGt
= x)In——
X€ED QM)

It is the expectation of the logarithmic difference between probabilities P and Q

where the expectation is taken using the probabilities P. The KL-divergence is defined

only if Q(i) = 0 implies P(i) = 0 for all i (absolute continuity). Whenever P(i) = 0, the

contribution of the i-term is interpreted as zero because lin(‘)l xlog(x) = 0.
X—

For probability distributions P and Q of a continuous random variable, the KL-
divergence is defined to be the integral:

© x
KL(P|Q) =f p(x)lnq—dx

where p and g denote densities of P and Q respectively.

KL-divergence is non-negative but not symmetric; that is, generally KL(P|Q) #
KL(Q|P). For both discrete and continuous cases, the KL-divergence is only defined if P
and Q sum to 1 and ifQ(x) > 0 for any x such that P(x) > 0. The smaller the KL-

divergence, the more similar the two distributions P and Q.

Definition 7 (Types of Outlier). Lett be a performance outlier and S be the set of base

level performance gaps (i.e. the descendants of t). S can be divided into two exclusive

49

groups; S, (the subset of normal) and S; (the subset of outliers). S =5, US; and Sy N
S, # @. Performance gap t is a type-l outlier if KL(S|S;) = KL(S|S,); otherwise, t is a
type-Il outlier.

4.3. Detection Methods

In this section, we first show that all performance gap outliers can be detected by

computing an iceberg cube, we then discuss how to determine the types of outliers.

4.3.1. Outlier Detection by Iceberg Cubing

For a fact table F and a measure threshold z, an iceberg cube contains all
aggregate cells of F whose measures are at least t. Given a fact table F of k parties, F =
k+1F, where UX, F; are the dimensions and F,,, are the measures, we use existing
cube computation methods such as BUC (Beyer et al., 1999) and TDC (Zhao et al., 1997)
and |t.Fyy; —m|> 15 as 7 to compute an iceberg cube of F which only contains

aggregate cells that are outliers.

Many existing iceberg cubing methods rely on the monotonicity property of iceberg
conditions; however, the iceberg condition in this problem is not monotonic; that is, the
child of a performance gap outlier t may not be an outlier. Since Theorem 3 identifies
weak monotonicity of the problem, we use a special method, eBUC (Yu et al., 2005), which
looks ahead to check whether an aggregate cell t is an ancestor of outliers. This only

requires the storage of base level performance gaps that are outliers.

4.3.2. Outlier Type Determination

As discussed in 4.2, the KL-divergence determines whether an aggregate
performance gap outlier is more similar to base level performance gaps that are normal
or outlying. For an aggregate performance gapt, let cov(t) be the set of descendants

of t. We want to measure the distribution of |t. F,,; — m| for tuples u € cov(t).

50

Since |t. F,41 — m| is a continuous random variable, we can apply Kernel Density
Estimation (Breiman et al., 1977) or KDE to approximate the distribution. KDE is a non-
parametric approach to estimate the probability density function of a random variable. Let
(x1, x5, ...,x,) be an independent and identically distributed sample drawn from some

distribution with an unknown density f. We are interested in estimating the shape of this

X—X;
)

function f. Its kernel density estimator is f,(x) = %2?211@1 (x—x;) = ﬁ K(
where K(+) is the kernel and is a non-negative function that integrates to one and has the

mean zero. h > 0 is a smoothing parameter, referred to as bandwidth, and determines
the width of the kernel.

A range of kernel functions are commonly used. We use Gaussian kernels and
1
the Gaussian approximation (Silverman, 1986). We seth = 1.06 X §|P| s as suggested
by Silverman (1986) where § is the standard deviation of the samples in P. For a single
dimension, the density estimator is:

_(x-p)?
2h2

1
P() = |P|mh;e

Given two distributions P and Q, the KL-divergence returns the difference of
distribution of Q given P; thus, the larger the KL-divergence, the more different the two

distributions. For P and @, we have:

hml 2P _ kppioy

xoomia Q(pi)

where P = {py,p,,...,pbm} iS the set of samples. Further, the KL-divergence can be

estimated as:

RL(PIQ) = —z Qgp‘)

51

As per Definition 7, we compare the KL-divergence of an aggregate performance
gap outlier with its base level performance gaps that are both normal and outliers. That

is, given an aggregate performance gap outlier t, we compare:

RL(SISs) = — S S Fieys —m))
“ Jeov(®I So (|- Fiess —m])

€cov(t)

and

n S(Ju. Fiey1 —ml)
Si(|u. Fryr —m|)

. 1
RLGSIS) =+ >

|COU(t)| u€ecov(t)

where S(+), Sy (+),S;(+) are the density functions of S, S,, S; estimated using KDE and m =

Zuecov(t) UFpyq
|cov(t)]

4.4. Empirical Evaluation

We conducted extensive experiments with both synthetic and real data to evaluate
the proposed detection methods. The programs were implemented in C++ using Microsoft
Visual Studio 2010. All experiments were conducted on a PC with Intel Core Duo E8400
3.0 GHz CPU and 4GB of memory running the Microsoft Windows 7 operating system.

4.4.1. Case Study

To test the effectiveness of the proposed methods, we used a real data set
comprising of extended health insurance claims. For privacy protection, the data is
anonymized and the service and the location information is coded in such a way that the
original and meaningful information cannot be inferred. Note that this case study uses
“amount” as the measure; however, the “count” quoted in the examples can just as easily
be used as the measure. The average amount is used for each aggregate performance
gap. The fact table contains 5,895 base level gaps; the average amount at the base level
is $63.50 and the standard deviation is 83.51.

52

Table 7 shows two example performance gap outliers detected by the methods
using the threshold | = 2. To fully illustrate these two outliers, all base levels are listed in
tables 8 and 9.

Table 7 Example Performance Gap Outliers

ID | Performance Gap Outlier (gender, age-group, location, service code) Type
R4 (female, *, A101, S91) I
R, (female, *, A101, S31) I

Table 8 Base level Performance Gaps of R,

ID Base level Performance Gaps Amount | Normal
(gender, age-group, location, service code) or

Outlier
1 (female,21-40, A101, S91) 125.00 | Normal
2 (female,41-60, A101, S91) 0.00 | Normal
3 (female,41-60, A101, S91) 230.00 | Normal
4 (female,41-60, A101, S91) 222.50 | Normal
5 (female,41-60, A101, S91) 200.00 | Normal
6 (female,41-60 , A101, S91) 160.00 | Normal
7 (female,41-60, A101, S91) 1,106.25 | Outlier
8 (female,41-60, A101, S91) 1,900.00 | Outlier

Table 9 Base level Performance Gaps of R,

ID Base level Performance Gaps Amount | Normal
(gender, age-group, location, service code) or

Outlier
1 (female,41-60, A101, S31) 135.00 | Normal
2 (female,41-60 , A101, S31) 130.03 | Normal
3 (female,41-60, A101, S31) 694.00 | Outlier
4 (female,41-60, A101, S31) 694.00 | Outlier
5 (female,41-60, A101, S31) 694.00 | Outlier
6 (female,41-60, A101, S31) 555.20 | Outlier
7 (female,41-60 , A101, S31) 402.67 | Outlier
8 (female,41-60 , A101, S31) 624.60 | Outlier
9 (female,41-60, A101, S31) 555.20 | Outlier
10 (female,41-60, A101, S31) 555.20 | Outlier

As shown in Table 8, R, has 8 base levels and among them, 6 are normal and 2
are outliers. For Ry, KL(S|S,) = 2.39 and KL(S|S;) = 63.74. Thus, KL(S|S,) < KL(S|S;).
This means that the distribution of R; is more similar to the distribution of its normal

descendants; as such, R, is an outlier of type-I.

53

On the other hand, R, is an outlier of type-ll since KL(S|S,) =
5.01182 and KL(S|S;) = 0.454034. Thus, KL(S|Sy) > KL(S|S,).

4.4.2. Efficiency and Scalability

We tested the efficiency of detection methods with both real and synthetic data
sets and compared three cubing methods: TDC, BUC, and eBUC. TDC and BUC compute
the whole cube while eBUC computes an iceberg cube. We used a larger real data set to
test the efficiency and random samples of various sized units of the data set to test the

scalability.

Figure 18 shows the scalability of the three methods with respect to the number of
tuples for threshold [= 1. Note that the smaller the value of [, the more outliers; thus, less
pruning power eBUC has. The three methods have linear scalability. While the runtimes
of TDC and BUC are very close, eBUC can take advantage of pruning using the outlier

detection condition and its runtime is faster.

@
o

-o-TDC
-»-BUC
-+-eBUC

[e2]
o

runtime (s)
S
[=]

N
o

10 20 30
of tuples (x1000)

Figure 18 Runtime of TDC, BUC, and eBUC with respect to # of tuples

Figure 19 shows the scalability of the three methods with respect to parameter [
and the number of base level performance gaps. The larger the value of [, the less outliers
and the less computation required for all three methods to determine the types of outliers.
Compared to TDC and BUC, eBUC is able to use the outlier condition to prune normal
performance gaps during the cubing process, reducing the runtime further. The larger the
value of [, the more advantage eBUC has over other methods. The figure also indicates

that the determination of types of outliers incurs a substantial cost.

54

30 50
-©-TDC
-%x-BUC A8
. 28 T -+-eBUC . —_
CX CX)
o o o 46¢.
E26p.. - TE E
e . -
24t TTmeeal oo 20| Sl i 42
- e
22 2 3 4 181 2 3 4 40 2 3 4
| | |
(a) number of tuples = 5,000 (b) number of tuples =10,000 (c) number of tuples =15,000
50 — 58 — 70 ——
---TDC ---TDC --TDC
48 -%-BUC 56 N -%-BUC ~. -%-BUC
. -+-eBUC|| _ | -+-eBUC|| _ 85¢, - -+-eBUC
0 S o hS . -
o 461, o 94 N T e
E N E | e TTTT- £60
544 e T -] 552 ------ S 35 . T
el R e
42 e 50 -] % IRETEI .
40 48 50
1 2 3 4 1 2 3 4 1 2 3 4
| | |
(d) number of tuples = 20,000 (e) number of tuples =25,000 (f) number of tuples =30,000

Figure 19 Runtime of TDC, BUC, and eBUC

Figure 20 shows the number of performance gap outliers with respect to parameter

[and the number of base level performance gaps. As indicated earlier as the value of [

increases, for all 3 methods, the less computation is needed to determine the types of

outliers — the trend is consistent with that shown in Figure 19. Further, most outliers

detected are at the aggregate level and there are much more type-Il than type-I outliers.

The result clearly demonstrates the effectiveness of the proposed method in summarizing

outlier information.

55

600 1000 1200
q —-©-All cases -©-All cases d —-©-All cases
500 -%-Aggregate cases -» - Aggregate cases 1000 -%-Aggregate cases
o " 800 o
2 £ £ 800F.
3 3 600 3)
%5 5 ‘s 600
1 * 00 1
4 400
200 2001 P 3 4
| | |
(a) number of tuples = 5,000 (b) number of tuples =10,000 (c) number of tuples =15,000
1500 - 1500, - 2000
—-©-All cases g -©-All cases —-©-All cases
g - x-Aggregate cases -%-Aggregate cases -x-Aggregate cases
» @ k - 1500} -#-Type |
21000 g 1000 2 ~+-Type |
E 3 3 1000} "
& 500 % 500 - -
-------- 500 -
* - S+ IIIIIo-d
Tl * == *
0 0 0 —
1 2 3 4 1 2 3 4 1 2 3 4
| | |
(d) number of tuples = 20,000 (e) number of tuples =25,000 (f) number of tuples =30,000

Figure 20 Number of Detected Outliers

We also tested the efficiency and the scalability using synthetic data sets.
Synthetic data sets were generated with dimension attributes in discrete domains and
measure in continuous domain. We consider 3 factors in the experiments: the
dimensionality d, the number of tuples n in the data set, and the distribution of the
dimensions (uniform distribution vs. normal distribution). We generated two data sets,
each of 100,000 tuples and 4 dimensions. The cardinality in each dimension is 20. The
tuples in the first data set follow uniform distribution in each dimension while the tuples in
the second data set follow the (discretized) normal distribution; that is, we used normal
distribution 4 = 10 and 8 = 2 to generate data and round the values to 20 bins in the range
of [1,20]. Figure 21 shows the results where the threshold parameter [= 1. The outlier
detection methods work much faster with normally distributed data where outliers are

meaningful.

56

800 - 800 800
-6~ Uniform

d [-6~ Uniform -e-Uniform
-x-Normal \ -x-Normal -%-Normal
600 ° _ 600 ° ° ' Am\e\e\
«) <)
° o o p
E 400 £ 400 £ 400
B £ g
2 3 3
200 200, 200
b - - [— K mmmmm pomm--- Hemmmmmm- Kemmmmmm - M= mmmman K mmmmmmn
01 2 | 3 4 01 2 | 3 4 01 2 | 3 4
(a) BUC algorithm (b) TDC algorithm (c) eBUC algorithm

Figure 21 Runtime of TDC, BUC, and eBUC with different distributions

Figure 22 shows the scalability of the detection methods with normally distributed
data.

4
4X10 400
-e-TDC -k

————
- -
-

(<]
©w
(=]
(=]

.-
.-

runtime (s)
N
runtime (s)
N
o
[=]

1 100 -e-TDC
x-BUC
+-eBUC

% 2.5 5 10

Dimensionality # of tuples x 10°
(a) Dimensionality (b) Database size

Figure 22 Scalability with Synthetic Data

In Figure 22(a), the number of tuples is set to 10,000. The runtime increases
dramatically as the dimensionality increases. This is expected since computing a data
cube of high dimensionality is known challenging. In Figure 22(b), the dimensionality is
set to 4 and the number of tuples varies from 100,000 to 1 million. The rate of runtime
increase grows slower as the number of tuples increases. Given the cardinality of each
dimension, the number of possible group-by is fixed. When a fact table becomes very
large, many aggregate cells will be populated with a significant number of tuples where

the number of group-by grows slower (Figure 23). This result shows that the methods are
scalable with large data sets.

57

~x10
b
§ 4
5
2
o
* 2 K= 2 - E
')" -6-All cases
0 i -»-Aggregate cases
01 25 5 75 10
of tuples < 10°

Figure 23 Number of Detected Outliers

58

Chapter 5.
Subspace Analysis

In Chapter 4, we developed a method to understand how outliers within an
aggregate group contribute to the overall deviation of the group from the norm. By
recognizing what type of outlier (type-I or type-Il) an organization is, it can determine where

further analysis should be led to.

In this chapter, we explore subspaces in which an organization’s performance is

deemed an outlier.

5.1. Contrast Subspace

In a multi-dimensional dataset of 2 classes, given a query object g and a target
class, we want to find a subspace in which g most likely belongs to the target class and
not to the other class. This subspace is called contrast subspace since it contrasts the
likelihood of q in the target class to that in the other class. By mining contrast subspaces,
we seek an answer for “In what context is the organization most similar to a group of
organizations and different from another group?”, for example. Using the example given
in Figure 1, Figure 24 illustrates the subspace consisting of 2 dimensions: mental health
prevalence rate and obesity prevalence rate. Organization g (represented with a red dot)
is the query object. Organization g seems to belong to Cluster A of organizations and not
to Cluster B; thus, this subspace characterizes a contrast subspace for g, signifying that
when it comes to mental health and obesity, g is most contrasting to the majority of
organizations (i.e. Cluster B). The insight given by this example may be that g needs to

develop a program to reduce the rate of mental health and obesity across its workforce.

59

Cluster A

Q
g
T o _o
>
2 0
2
2)
e}
Company q

() Cluster B
;é“r

Figure 24 Example Contrast Subspace

Mental Health Prevalence

5.1.1. Measure of Similarity

A measure to quantify the similarity between the query object and the target class,
as well as the difference between the query object and the other class is expressed as the
ratio of the likelihood of the query object in the target class against that of the query object
in the other class. This is essentially a model selection problem in which one of the two

models, M; and M,, must be selected on the basis of observed data D. The probability is

Pr(D|My)

assessed by Bayes factor K given by K = P,(D|My)

where a value of K > 1 means that M,

is more strongly supported by D than M,.

Problem Definition

Let D = {D,, ..., D4} be a d-dimensional space where the domain of D; is R, the set
of real numbers. A subspace S € D (S # 0) is a subset of D and D is also referred to as
the full space. The value of an object o in dimension D; (1 <i < d) is denoted as 0. D;.
For a subspace S = {D;, ..., D;;} € D, the projection of o in S is 05 ={o0.D; .,0.D;}. For

19’ 19’

a set of objects 0 = {0;|1 < j < n}, the projection of 0 in S is 0% = {ojs|oj €0,1<j<n}

Given a set of objects 0, a latent distribution Z is assumed to have generated the

objects in 0. For a query object q, L, (q|2) is the likelihood of q being generated by Z in

60

full space D. The posterior probability of q given 0, denoted by L, (g|0), can be estimated
by Lp(q|2Z). For a non-empty subspace S(S € D, S # 0), the projection of Z in S is Z5. The
subspace likelihood of object q with respect to Z in S, denoted by Ls(q|Z), can be used to
estimate the posterior probability of object g given 0 in S, denoted by Lg(q|0).

We assume that the objects in 0 mutually exclusively belong to one of the 2
classes, C, and C_. Hence O = 0, U O_and 0, n O_ = @ where 0, and O_ are the objects
belonging to C, and C_ respectively. Given a query object g, we are interested in finding

how likely g belongs to C, and does not belong to C_. We define the measure likelihood

L(ql04)

contrast of g as LC(q) = 00’

Likelihood contrast is effectively the Bayes factor of object g being the observation.
As such, 0, and O_ represent the 2 models to choose from based on the query object q.
The ratio of probabilities indicates the likelihood of model 0, selected against O_. LC(q)
values in the range of {<1, 1 to 3, 3 to 10, 10 to 30, 30 to 100, > 100} correspond to
{negative, barely worth mentioning, substantial, strong, very strong, decisive} based on

the scale for interpretation of Bayes factor according to Jeffreys (1961).

The measure of likelihood contrast can be extended to subspaces. For a non-
empty subspace S(S € D), the likelihood contrast in a subspace S is defined as LCs(q) =

Ls(q104)
Ls(qlo-)’

where 6 > 0 is the minimum likelihood threshold, are considered.

To avoid triviality where Lg(q|0.) is very small, only the subspaces Lg(q|0,) > 6,

Given a multi-dimensional dataset O in full space D, a query object g, a minimum
likelihood thresholdé =0 and a parameterk > 0, the problem of mining contrast
subspace is to find top-k subspaces S ordered by the subspace likelihood contrast LCs(q)

subject to Lg(gq|0,) > 6.

KDE (Breiman et al., 1977) can be used to estimate the likelihood of q, Ls(gq|0).
Following Silverman (1986), the general formula for multivariate kernel density estimation

with kernel K and bandwidth parameter hg in subspace S is defined as:

61

f5(4.0) = f5(4%,0) = =5 Toeo K= (q — 0} (5.1.1)

~Joln}
Choosing K to be a radially symmetric unimodal probability density function, we
use Gaussian kernel:
T

1 —lx
K(x) = —ge 2
emyz

x (5.1.2)

Given a set of objects 0, the density of a query object g in subspace S, denoted
by fs(g, 0), can be estimated as:

—dl’st’s(q,o)2
ZhSZ

A A 1
fs(q,0) = f5(¢°,0) = WZOEO e
where —dists(q,0)* = ¥p,es(q.D; — 0.D;)* and h is the bandwidth.

According to Silverman (1986), the optimal bandwidth value for smoothing
-1

normally distributed data with unit variance is hg ,,c = A(K)|O|IS++ where A(K) =

4

1
(|S|+2)ISW. Since the kernel is radially symmetric and the data in subspaces is not

normalized, an inner scale o in subspace S can be used to set hg = a5 - hg op¢. The term

V2mhg is the normalization constant and comes from the fact that the integral over the
exponential function (Gaussian kernel) is not unity. With this constant, the Gaussian
kernel is a normalized kernel; that is, the integral over its full domain is unity for every h.
As per Silverman (1986), a possible choice of a5 is the root of the average marginal

variance in S.

The posterior probability of g in subspace S given O can be estimated as:

—distg(q,0)?

2 1
Ls(q|0) = fs(q,0) = WZOEO e hs (5.1.3)

Thus, the likelihood contrast of query object g in subspace S is given by:

62

—distg(q,0)%
2h

7 S 52

_ fs(q04) _l0_| (hs_ Yoeoy € +
LCs(q,04,0-) =505 =10 (E) . Zoco, e (5.1.4)

2 2

Yoeo_€ -

5.1.2. Complexity Analysis

Mining contrast subspaces is computationally challenging and the complexity can
be proved by linear reduction or L-reduction from the emerging pattern mining problem
(Dong et al., 1999), which has been shown as MAX SNP-hard (Wang et al., 2005). L-
reduction is a transformation of optimization problems which linearly preserves

approximability features.

Let D’ = {D1,Ds, ..., D3} be a set of d items. A transaction o; is represented by a
binary vector of length d whose element o{j =1 if item Dj’ is present and O otherwise. A
pattern S’ is a subset of items in D’. A transaction o; satisfies S" ifo;; = 1,vDj € S’. A
transaction database 0’ is a set of transactions. Let Sat,/(S") be the set of transactions

in 0’ satisfying S'.

Definition 1 (Emerging Pattern Mining (EP)). Given two transactions databases 0.

and 0., find pattern S" such that the cost function cp(S') = [Sat,; (S")| is maximized

subject to the feasibility condition |Sat,’ (S")| = 0.

Definition 2 (Contrast Subspace Mining (CS)). Given {q,0,,0_} where q is the query

object and 0, and O_ are the two classes, find the subspace S maximizing the cost

—dist(q,0)?
. Yoco, eXp(—2g—)
function c.5(S, q) = === 2k

—distg(q,0)2
Yoeo_ exp(——z)

Definition 3 (Complete Contrast Subspace Mining (Complete-CS)). Given {0, 0_}, find

the subspace S such that the cost function c(S) = MaX Ccs(s,g=0;) is maximized.
0;€04

63

Complete-CS can be solved by solving at most |0, | CS sub-problems corresponding
to unigue data points in 0. We reduce emerging patterns to Complete-CS and prove that
Complete-CS is MAX SNP-hard.

EP - Complete-CS reduction:

e For each item D; for EP, set up a corresponding dimension D; in Complete-CS.

e For each transaction o; € 0%, insert 2 copies of o; into 0.

e For each transaction o; € 0., insert 2|0’ | copies of o; into O_.

¢ Insert 1 item (a numeric vector) with all 1’s into O_.

e Let h be an arbitrary user-specified bandwidth parameter. Replace each
occurrence of 0 in 0 = 0, U O_ with a unique value in the set {2yh, 3yh, 4yh ...}
where y is some fixed large constant.

e Replace each occurrence of 1in 0 = 0, U O_ with 1yh where h is the same as the

one used above.

The transformation can be done in 0(]0,||0-]) time. An example transformation
from a transaction database to a numeric dataset according to the EP - Complete-CS

reduction is shown in Table 1.

Table 10 EP - Complete-CS reduction example

Database Transactions (EP) 0. (Complete-CS) O0_ (Complete-CS)
(0 [0,1,1,0] [2yh, 1yh, 1yh, 3yh]
[4yh, 1yh, 1yh, 5yh]
[0,1,0,0] [6yh, 1yh, 7yh, 8yh]

[9vh, 1yh, 10yh, 11yh]

oL [1,1,0,0] [1yh, 1yh, 12yh, 13yh]
[1yh, 1yh, 14yh, 15yh]

[1yh, 1yh, 16yh, 17yh]

[1yh, 1yh, 18yh, 19yh]

[0,0,0,1] 20yh, 21yh, 22yh, 1yh

26yh,27yh, 28yh, 1yh
29yh,30yh, 31yh, 1yh
[1yh, 1yh, 1yh, 1yh]

[]
[23yh, 24yh, 25yh, 1yh]
[]
[]

Theorem 1. EP - Complete-CS reduction is an L-reduction, denoted by EP—> ;Complete-
CS.

64

Definition 4 (L-reduction (Papadimitrious et al., 1991)). Let[]; and [], be two optimization
problems. We say that []; L-reduces to [], if there are two polynomial time algorithms
f, g and constants «, f > 0 such that, for any instance I of [[;, f(I) forms an instance
of [], and:
e (c1) OPT(f(I)) < aOPT(I) where OPT(-) denotes the optimal value of the
respective optimization problem.
e (c2) Given any solution s of f(I), algorithm g produces a solution g(s) of I
satisfying |cpy, (g(s)) — OPT(D)| < Blepy, (s) — OPT(f(1D)|, where cp, () denotes the

cost function of the corresponding optimization problem.

—dists(q,o)z)

Proof. For any bandwidth value h, we can set y to a large value such that exp (T

can be arbitrarily close to 0 for all g € 0 such that g° # 05. The cost function for CS can

be computed as:

—dist (q,o)2
Toc0, eXP(—37) |039|+€4(S.q)

@) 0T e (sa)
2h

¢CS(S,q) =

Yoeo_ eXp
where 059 denotes the set of data points in 0 having values identical to g in subspace

S and:

—dists(q,0)?
6+ (Sl q) = 20€0+\Of'q eXp (2;,2),

—dists(q,0)2
€-(5,q) = B \ o5 eXP(CIESR

Let M > 1 be the maximum integer value such that Myh is a value occurring in O (e.g.
M = 31 in the example in Table 1). Then:

|S|y?h? < distg(q,0)? < M?|S|y?h? forallo € 0, U O_.
Thus:

(1041 = 059]) exp(—IS[y2M?) < €,(S,q) < (1041 — |077]) exp(~|Sly?) « 1.
Similarly:

(10| = 1039]) exp(—ISly*M?) < e_(S,q) < (|0_| = [029]) exp(—|S|y?) < 1.
Note that }1_{{)10 €,(5,9) =0and 1}1_)1’1; e_(S,q) =0.

We can observe that:

65

If a pattern S’ is an emerging pattern, then by construction, at least one object g €
0, must have |0f'q| > 2 and |039] = 1. This is because S’ only appears in 0, and
for each transaction o; € 0%, we have inserted 2 copies of o; into 0,. On the other
hand, S’ does not appear in 0. and the only object having values identical to g in

Sq
(0] +e.(S,
0y) +er(Sa)

subspace S is the object containing all yh's. Therefore, CS(S,q) = 0 e G >

2"'E+ (S'q) 1
1+€e_(5,9) '

If a pattern S’ is not an emerging pattern, then by construction, all objects g € 0.

S,
10| +€4(S,q)

S,q > Srq Srq C —
must have [034| > |0;| + 1 > |0;|. Therefore, ¢CS(S, q) e o)

Further, we need to verify that the reduction EP > Complete-CS satisfies the two

conditions (c1) and (c2) of the L-reduction:

(c1) For any instance I of EP, if S’ is the most frequent emerging pattern with
EP(S') = |Sat,, (S| and |Sat,_(S")| =0, then the corresponding optimal S

. 2|Sat s (SN)|+€4(S,q)
solution for Complete-CS must have a cost value of c(S) = " =

1+€_(S,q)
2|Sat0r+(5’)| = 2cgp(S") where ¢ is any data point in 0, corresponding to the
transaction containing pattern S’. This is because for each transaction o]
containing S’ in 0}, we have inserted 2 copies of o; into0,. The ‘1’ in the
denominator is due to the object containing all yh inO_. Thus, condition 1 is
satisfied with a« = 2 when y is sufficiently large.

(c2) For any solution S of Complete-CS, if c(S) = A = 2 then the corresponding
pattern S’ constructed from S will be an emerging pattern. Further, let [1] be the

nearest integer toA. Then, [A] must be even and % will be the cost of the

corresponding EP problem. Let A* denote the optimal cost of Complete-CS,

I
2 2

1

then | > |

[A] —]| = %M — A*| <A —=A*|. Thus, condition 2 is satisfied
with g = 1.

Since EP—> ,Complete-CS, if there exists a polynomial time approximation algorithm

for Complete-CS with performance guarantee 1 — ¢, then there exists a polynomial time

66

approximation algorithm for EP with performance guarantee 1 — afe. Since EP is MAX
SNP-hard, it follows that Complete-CS must also be MAX SNP-hard.

Finally, the relationship between Complete-CS and CS is established as follows.

Theorem 2. If there exists a polynomial time approximation scheme (PTAS) for CS, then

there must also be a PTAS for Complete-CS.

Proof. The proof is straightforward since Complete-CS can be solved by a series of |0,|CS

problems.
Unless P = NP, there exists no PTAS for Complete-CS, implying no PTAS for CS.

The above theoretical result indicates that the problem of mining contrast
subspaces is even hard to approximate; that is, it is impossible to design a good
approximation algorithm unless P = NP. Practical heuristic methods are needed as a

viable alternative.

5.1.3. Mining Methods

In this section, we first describe a baseline method which examines every possible
non-empty subspace. We then present the design of CSMiner (for Contrast Subspace

Miner) which employs a smarter search strategy.

Baseline Method

The baseline naive method enumerates all possible non-empty spaces S and
calculates the exact values of both Lg(q|0,) and Lg(q|0-), since neither Lg(q|0,) nor
Ls(gq]0-) is monotonic with respect to the subspace-superspace relationship. It then
returns top-k subspaces S with the largest LCs(q) values. To ensure the completeness
and efficiency of subspace enumeration, the baseline method traverses the set
enumeration tree (Rymon, 1992) of subspaces in a depth-first manner. Figure 25 shows

a set enumeration tree that enumerates all subspaces of D = {D;, D,, D3,D,}.

67

{}

/K v i N
{Dlw{mp@ (D /3:5,1)4”&133,1)4}

{Dl,D<,D3} {(D1,D2,D4} {D1,D3,D4} {D2,D3,D4}

{D1,D2,D3,D4}

Figure 25 Set enumeration tree

Using Equations (5.1.3) and (5.1.4), the baseline algorithm shown in Algorithm 1
computes the likelihood contrast for every subspace where Lg(q|0,) = 6§ and returns the

top-k subspaces. The time complexity is O(2!P! - (|04] + |0_])).

Algorithm 1 The baseline algorithm

Input: g: query object, 0,: objects belonging to C,, O_: objects belonging to C_, §: likelihood threshold, k:
positive integer

Output: k subspaces with the highest likelihood contrast

1: let Ans be the current top-k list of subspaces; initialize Ans as k null subspaces associated with likelihood
contrast 0

2: traverse the subspace set enumeration tree in a depth-first search manner

3: for each subspace S do

4: compute ggy, gs_, hope;

5: compute Lg(q|0,) and Lg(gq|0_) using Equation (5.1.3);
6: if Ls(q|04) = & and 35’ € Ans 5.£.29%) 5 1co(g) then

Ls(ql0-)
7 insert S into Ans and remove S’ from Ans;
8: end if
9: end for

10: return Ans;

CSMiner Framework

Ls(q|0,) is not monotonic in subspaces. We develop an upper bound of Lg(g|0,)
to prune subspaces using the minimum likelihood threshold §. We sort all dimensions in

their standard deviation descending order. Let S be the set of descendants of S in the

68

subspace set enumeration tree using the standard deviation descending order. We

define:

—dists(q,o)2
2

1 ZoEO+ ez("'sgptimax) (515)

! !
1041C Znaminhopt_min)T

Ls(ql0,) =
where o, = min{og/|S" € S}, hopt min = min{hs,_optlS’ € S},h;pt_max = max{hs, ope|S' €

S} and

|S| ifVZna,'ninhépt_min >1
T =
max{|S'| |S" € S} ifV2momhope min <1

Theorem 3 (Monotonic Density Bound). For a query object g, a set of objects 0 and
subspaces S;, S, such that S, is an ancestor of S, in the subspace set enumeration
tree in which dimensions in full space D are sorted by their standard deviation

descending order, it is true that Lg (q|0) = Lg,(q|0).

Proof. Let S be the set of descendants of S; in the subspace set enumeration tree using
the standard deviation descending order in 0. We define:
Omin = min{og S’ € S},
:)pt_min = min{hSI_opt|5’ € 5}'
opt.max = max{hg, op¢|S’ € S},
and:
(18l if V2 ominhopt min = 1
max{|S'| |S' € S} ifvV2ma,,;, ;pt_min <1
Computing ,in, Rope min @NA hope max has linear complexity. o is the root of the
average marginal variance in " and hg, ,,,, depends on the values of |0] and |S']|. Let
S € S such that for any subspace S’ €S, S'c S”. Since dimensions in the set
enumeration tree is sorted in the standard deviation descending order, a;,;, can be
obtained by checking dimensions in S§”"\S; one by one in the standard deviation

ascending order. Further, ho,e min(Rope max) CaN be obtained by comparing hg, op,: With

different values of |S'| € [|S;] + 1,|S”|]. Since S, € S, we have:

69

1 <81 < |Sz| < max{|S’| |S" € S}, and 05, = 05, = 0y

Then:

in:

! !
Os, hSz,Opt 2 Opmin opt_min-
Thus:
~/ S [! ’
(znaszhsz_opt)l 2l > (27-"-O-minhopt_min)T-

—distg, (q,0)* —distg, (q,0)*

Z(USZhSZ_Opt)Z - Z(Uslh{)pt,max)zl

For o € 0,distg (q,0) < distg,(q,0). Accordingly,

By Equation (5.1.3):

—distg, (q,0)*

1 2(os,h ’
Ls,(ql0) = 5 2 e (o52hs; ope)
|0| (v2n052h52_0pt) 0€0

—distg, (q,0)*

2
e 2 (O-Sl tht,max)

1
<
|0|(2moy,

= Ls,(q10)

h! ‘
in opt_min) 0€0

Using Theorem 3, in addition to Ls(q|0,) and Lg(q|0_), we also compute Lg(q|0,)

for each subspace S. We define the pruning rules based on the theorem.

Pruning Rule 1. Given a minimum likelihood threshold 6, if L5(g|0,) < & in a subspace S,

all descendants of S can be pruned.

By using the depth-first search, the distance between two objects in a superspace
can be computed incrementally from the distance among the objects in a subspace. Given
two objects g ando, let subspace S’ = SuU {D;}. We have distg,(q,0)* = dists(q,0)* +
(q.D; — 0.D;)?.

Algorithm 2 shows the pseudo code of the CSMiner. Similar to the baseline method
(Algorithm 1), CSMiner conducts a depth-first search on the subspace set enumeration
tree. For a candidate subspace S, CSMiner calculates Ls(g|0,) using Equation (5.1.5). If
Ls(q|0,) is less than the minimum likelihood threshold, all descendants of S can be pruned
by Theorem 3. Due to the difficulty of the problem shown in section 5.1.2 and the heuristic

nature of this method, the time complexity of CSMiner is 0(2!°! - (|0, | + |0_])), the same

70

time complexity as the naive baseline method. However, as will be shown by the empirical

evaluation (section 5.1.4), CSMiner is substantially faster than the baseline method.

Algorithm 2 CSMiner (q,0.,,0_,8,k)

Input: q: query object, 0,: objects belonging to C,, O_: objects belonging to C_, §: likelihood threshold, k:
positive integer

Output: k subspaces with the highest likelihood contrast

1: let Ans be the current top-k list of subspaces; initialize Ans as k null subspaces associated with likelihood

contrast 0
2: traverse the subspace set enumeration tree in a depth-first search manner

3: for each subspace S do

4: COMpUte o, Os—, Opmin, hopts Ropt mins Ropt max;

5: compute L3(q|0,) using Equation (5.1.5);

6: if Ls(g|0,) < & then

7 prune all descendants of S and go to Step 2; //Pruning Rule 1
8: else

9: compute Lg(q|0,) and Ls(q|0_) using Equation (5.1.3);
10: if Ls(q|0,) = & and 35’ € Ans s.t. izzg:gi > LCs(q) then
11: insert S into Ans and remove S’ from Ans;

12: end if

13: endif

14: end for

15: return Ans;

A Bounding-Pruning-Refining Method

For a query object g and a set of objects 0, the likelihood Lg(q|0), computed by
Equation (5.1.3), is the sum of density contributions of objects in O to g in subspace S. In

Gaussian kernel estimation, given objecto € 0, the contribution from o to Lg(q|0)

~dist (q,0)?

S ﬁe *hs2 \We observe that the contribution of o decays exponentially as the
|O| 2mhg

distance between g and o increases; thus, Lg(q|0) can be bounded.

For a query object g and a set of objects 0, the e-neighbourhood (e > 0) of g in
subspace S isNs(q) ={o € O|dists(q,0) <€}. We can divide Ls(q|0) into two
parts; Ls(q|0) = L y¢(q|0) + L% (q|0). The first part is contributed by the objects in the

71

—dists(q,o)2

e-neighbourhood; that is, LN§(q|0) = hs2and the second part

1
OISl ZoeNS(@) €
is by the objects outside the e-neighbourhood; that is, Lt***(q|0) =

—distg(q,0)?
Zh.sz

1
|0|(mh5)|5| ZOEO\Ng(q) e

Let dists(q|0) be the maximum distance between g and all objects in 0 in

oINS~ e OI-INE@I |~
—INsg)l 2hg < Jrest < —INsl@)] 2hg2
subspace S. We have 01/Zhe)ST < L°(qlo) < O1Zrh) S .

The example in Figure 26 illustrates a e-neighbourhood of object q with respect to

object set 0 in a 2-dimensional subspace S. We can see that N$(q) = {04,0,,03,04,05}

a.nd ﬂs((ﬂO) = dists(q, 010).

Figure 26 e-neighbourhood (within the dashed circle)

An upper bound of L5(q|0,) using e-neighbourhood denoted by L (q|0,) is:

_—dists(@0)? €2

Z - 2
ht ht

S| S,
(‘7 opt,max) +(|0+|—|N§(q)|)e 2(‘7 opt,max)

) e’
* 0eNS(q)
LE(ql0,) = —==

0 o) 1 T
[04] no, opt_min

min

h

!

where the meanings of o,,in, Ropt mins Ropt max @Nd 7 are the same as those in Equation

(5.1.5).

72

Pruning Rule 2. Given a minimum likelihood threshold &, if Ls(q|0,) <din a

subspace S, all descendants of S can be pruned.

Using the e-neighbourhood, we have the following upper and lower bounds
of Ls(q|0).

Theorem 4 (Bounds). For a query object q, a set of objects 0 and € >0, LL;(q|0) <
Ls(ql0) < UL5(q10)

where:
. —distg(q,0)? —distg(q,0)?
LIE(q|0) = ———= Coenecne 22 +(|0] = INE(@De s?
s(q |0I(\/ﬁhs)lsl(0€ENE(q) (INs (@)]))
and:
~distg(q,0)? __&
UL§(q10) = ———5 Coenee 2t + (101 = INf(@)De *"s?).
S IOI(\/ﬁhS)ISI(0€EN$(q) (S))

Proof. For any objecto € 0\N&(q), €% < dists(q, 0)? < distg(q, 0)2.
Then:

€& —distg(q,0)? _ distg(q,0)?
e 2h52 >e ZhSZ >e 2h52

Thus:

2 —distg(q,0)? dist5(q,0)?

(101 = INE(@D e *'s* = (0] = IN§(@De *'s* = (10] = INE(@De *"s*
Accordingly, LL;(q|0) < Lg(q]|0) < UL5(q|0). We obtain an upper bound of LCs(q)
based on Theorem 4 and Equation (5.1.4).

Corollary 1 (Likelihood Contrast Upper Bound). For a query objectq, a set of
objects 0,., a set of objects 0_ and € = 0, LCs(q) < ULGLW
LLg(q10-)

Proof. By Theorem 4, we have Lgs(q|0,) <UL%(q|0,) and Lg(q|0-) = LLS(q|02).

_ Ls(qloy) _ ULs(q|04) _ uLs(q|04)
Then, LCs(@) = L 100 = Te@ion) = 115(q|00)"

Using Corollary 1, we have the following rule.

73

Pruning Rule 3. For a subspace S, if there are at least k subspaces whose likelihood

vL5(q104)

contrast are greater than s
g 115(q|0_)

then S cannot be a top-k subspace of the largest

likelihood contrast.

We implement the bounding-pruning-refining method in CSMiner to compute
bounds of likelihood and contrast ratio. We call this version CSMiner-BPR. For a candidate
subspace S, CSMiner-BPR calculates UL5(q|0,), LL5(q|0-) and L (q|0,) using the e-
neighbourhood. If UL5(q|0,) is less than the minimum likelihood threshold (&), CSMiner-
BPR checks whether it is true that L (q|0,) < & (Pruning Rule 2) or Ls(g|0,) < & (Pruning

Rule 1). Otherwise, CSMiner-BPR checks whether the likelihood contrasts of the current

top-k subspaces are larger than the upper bound of LCs(q) (= %). If not, CSMiner-
<(q|0-

BPR refines Ls(q|0,), Ls(q]|0,) and Lg(q|0-) by involving objects that are out of the e-
neighbourhood. S will be added to the current top-k list if Ls(g|0,) = & and the ratio of
Ls(q|0,) to Lg(q|0-) is larger than one of the current top-k ones. The computational cost
for Ls(q|0,) is high when the size of 0, is large. Thus, for efficiency, we consider a
tradeoff between Pruning Rule 1 and Pruning Rule 3. Specifically, when we are searching
a subspace S, once we can determine that S cannot be a top-k contrast subspace, then
we terminate the search of S immediately. In this manner, CSMiner-BPR accelerates
CSMiner by avoiding the cost for computing the likelihood contributions of objects outside

u15(q|04)

the e-neighbourhood to q when L (q|0,) < § (Pruning Rule 2) or L15(q10)
S —

< § (Pruning

Rule 3).

The e-neighbourhood is a critical instrument for decreasing the computational cost
for CSMiner-BPR. However, when dimensionality increases, the distance between objects
increases, as such, the value of € should not be fixed. Standard deviation is a measure

that expresses the variability of a set of data. For subspacesS, we set €=

\[a ‘Ypes(o, +0p,) (a = 0) where aﬁi+ and o3, are the marginal variances of 0, and

O_ respectively on dimension D; (D; € S), and « is a system defined parameter. Our
experiments show that a can be set in the range of 0.8 to 1.2 and is not sensitive.

Algorithm 3 provides the pseudo code of CSMiner-BPR. Theorem 5 guarantees that no

74

matter how varied the neighbourhood distance (¢) may be, the mining result of CSMiner-
BPR remains unchanged.

Theorem 5. Given data set 0, query objectg, minimum likelihood threshold § and
parameter k, for any neighbourhood distance €; and €,, CS€:(q|0) = CS5¢2(q|0) where
CS¢1(q|0) (€CS¢2(q|0)) is the set of contrast subspaces discovered by CSMiner-BPR

using €; (€,).

Proof by contradiction. Assume that subspace S € CS€1(q|0) butS ¢ CS€2(q|0). AsS €
CS€1(q|0), we have (%) Lg(q|0,) = 8. On the other hand, S’ ¢ CS€2(q|0) means

that (i) L 2(q|04) < & , or (ii) 3S’ € €S€2(q|0) such that §'¢
e uLs'(q10+) ; :
CS¢(ql0) and (g0 < LCs,(q). For case (i), aslLg(q|04) < Ls(ql0;) <
$(ql0-

LZEZ(q|0+), we have Lg(q|0,) < 6, contradicting (). For case (ii), asLCs(q) <

uLg'(q10+)
LLg'(q10-)

, we have LCs(q) < LCs,(q), contradicting S’ ¢ CS€1(q|0).
Corollary 2. Given data set 0, query objectq, minimum likelihood threshold é and
parameter k, the mining result of CSMiner-BPR, no matter what the value of parameter

a is, the output is the same as that of CSMiner.

Proof. For subspace S, suppose e, computed by parameter a, is not less than dists(g, 0).
We have Ns(q) = 0. As such, UL(q|0;) = Ls(ql0,),LLs(ql0-) = Ls(q|0-)
and L (q|0,) = Ls(q|0,). This means that the execution flow of CSMiner-BPR
(Algorithm 3) is the same as that of CSMiner (Algorithm 2). Further, by Theorem 5, the
value of neighbourhood distance does not change the mining result of CSMiner-BPR.

Algorithm 3 CSMiner-BPR (q,0,,0_,6,k, a)
Input: g: query object, 0,: objects belonging to C,, 0_: objects belonging to C_, &: likelihood threshold, k:
positive integer, a: neighbourhood parameter
Output: k subspaces with the highest likelihood contrast
1: let Ans be the current top-k list of subspaces; initialize Ans as k null subspaces associated with likelihood
contrast O

2: for each subspace S in the subspace set enumeration tree searched in the depth-first manner

75

do

3: computee, gsy, 05—, Tyin, Ropes hopt mins Rope_max:
41 N§(@)+ < 0 NS(q)- « @3 dists(ql0) « 0;

5 for each objecto € 0, U 0_ do

6: dists(q,0)? « distsr(q,0)% + (q.D' — 0.D")? /ISP (= S U {D'}) is the parent of S.
7 if o € 0, and distg(q,0) < € then

8 Ns(q@)+ < N5 (q)+ U {o};

9 end if

10: if o € O_ then

11: if dists(q,0) < € then

12: N§(q)+ < Ng(q)+ U {o};

13: end if

14: if dists(q|0_) < dists(gq,0) then

15: dists(q|0-) « dists(q, 0);

16: end if

17: end if

18: end for

19: compute UL§(ql0,), LL5(ql02), L (g|0,) ; //bounding
20: if UL5(ql0,) < 6 then

21: if L (ql0,) < 6 then

22: prune all descendants of S and go to step 2; //Pruning Rule 2
23: end if

24: compute Ls(ql0,);

25: if Ls(q|0,) < & then

26: prune all descendants of S and go to step 2; //Pruning Rule 1
27: end if

28: else

29: if3S' € Anss. t.% > LGy (q) then

30: compute Ls(q|0,) using Equation (5.1.5); //refining

31: if Ls(ql0,) < & then

32: prune all descendants of S and go to step 2; //Pruning Rule 1
33: else

34: compute Lg(q]0,) and Lg(q|0-) using Equation (5.1.3); //refining
35: if Lg(q|0,) =6 and3S' € Ans s. t.%lgj > LCs,(q) then
36: insert S into Ans and remove S’ from Ans;

37: end if

38: end if

39: end if

76

40: end if
41: end for
42: return Ans;

5.1.4. Empirical Evaluation

In this section, we present a systematic empirical study using real data sets to
demonstrate the effectiveness and efficiency of CSMiner (or CSMiner-BPR). The focus of
the evaluation includes:

e How sensitive our methods are to the running parameters (6, k,) in terms of
discovered contrast subspaces and running time;

e How sensitive our methods are to different bandwidth values and kernel function
in terms of similarity among mined results.

All experiments were conducted on a PC with Intel Core i7-3770 3.40 GHz CPU
and 8GB RAM, running Windows 7 operating system. All algorithms were implemented
in Java and compiled with JDK 7. Defaults were setto § = 0.001,k = 10,a = 0.8.

Effectiveness

Table 11 summarizes the 6 data sets obtained from UCI machine learning
repository (Bache et al., 2013) and characteristics of each data set. Non-numerical

attributes and all records that are missing values were removed from the data sets.

Table 11 Data Set Characteristics

Data Set # of Objects # of Attributes
Breast Cancer Wisconsin (BCW) 683 9
Climate Model Simulation Crashes (CMSC) 540 18
Glass Identification (Glass) 214 9
Pima Indians Diabetes (PID) 768 8
Waveform 5000 21
Wine 178 13

For each data set, we select one object as a query object g at a time and put all
objects belonging to the same class as q in the set, 0, (except q). All remaining objects

are put in 0,. Using CSMiner, for each object, we compute:

(1) inlying contrast subspace taking 0, as 0, and 0, as O_ and:

77

(2) outlying contrast subspace taking 0, as 0, and 0, as O_.

For this experiment, we only compute the top-1 subspace. For clarity, we denote

the likelihood contrasts of inlying contrast subspace by LC&*(q) and those of outlying

contrast subspace by LC2%¢(q). Tables 12 to 17 show the joint distributions of LC*(g) and

LCE¥(q) in each data set. For most objects, LC(q) are larger than LCZ%(q). This is

expected since g and all objects in 0, belong to the same class. However, a good number

of objects have strong outlying contrast subspaces. For example, in CMSC, more than

40% of objects have outlying contrast subspaces, satisfying LC&%¢(q) > 103.

Further,

except for PID, a considerable number of objects in each data set have both strong inlying

contrast subspaces and outlying contrast subspaces (e.g. LCI*(q) = 10* and LCS%“ (q) =

102).

Table 12 Distribution of LCg(q) in BCW (6 = 0.001,k = 1)

LC3™(q)
_ <1 [1,3) [3,10) | [10,10%) > 102 Total
S| <10t 0 3 0 7 23 33
22 | [10%,10%) 7 4 2 4 7 24
=~ | [10°,10°) 21 21 5 8 9 64
[10°,107) 184 33 5 4 9 235
> 107 121 31 74 66 35 327
Total 333 92 86 89 83 683
Table 13 Distribution of LCg(q) in CMSC (6 = 0.001,k = 1)
LC3" (q)
_ [10,10%) | [102,10%) | [103,10%) | [10%,10%) | >10° Total
S| <103 1 11 12 2 0 26
T [[103,10 6 35 47 6 6 100
=~ | [10%,10%) 10 46 44 8 2 110
[105,10°) 11 40 32 8 2 93
> 106 39 110 50 11 1 211
Total 67 242 185 35 11 540

78

Table 14 Distribution of LCg(q) in Glass (6 = 0.001,k = 1)

LCS™(q)
_ <1 [1,3) [3,10) [10,10%) > 102 Total
= < 10? 0 0 0 1 7 8
=~ 103,104 28 91 6 4 5 134
[10%,105) 1 4 0 0 3 8
> 10° 0 1 0 30 8 39
Total 31 104 10 39 30 214
Table 15 Distribution of LCg(q) in PID (6§ = 0.001,k = 1)
LC3™(q)
e <1 [1,3) [3,10) [10,30) > 30 Total
N <1 0 0 1 0 0 1
2l [L3) 2 241 62 8 2 315
= [[3,10) 36 328 31 3 0 398
[10,30) 23 23 2 0 0 48
= 30 3 3 0 0 0 6
Total 64 595 96 11 2 768
Table 16 Distribution of LCg(q) in Waveform (6 = 0.001,k = 1)
LCS" (q)
— [1,3) [3,10) [10,10%) | [10% 10%) > 103 Total
S <10 0 24 34 8 2 68
%o | [10,10%) 204 676 772 190 71 1913
~ | [10%,10%) 471 1049 981 228 56 2785
[103,10%) 53 103 67 4 4 231
> 10* 0 2 1 0 0 3
Total 728 1854 1855 430 133 5000
Table 17 Distribution of LCg(q) in Wine (§ = 0.001,k = 1)
LCS(q)
_ <1 [1,3) [3,10) [10,10%) > 102 Total
S <103 0 13 8 7 5 33
2o [[103,10% 1 18 11 4 0 34
= | [10%,10%) 2 23 12 5 2 44
[105,10°) 3 7 5 1 0 16
> 10° 7 20 16 4 4 51
Total 13 81 52 21 11 178

Figures 27 and 28 show the distributions of dimensionality of top-1 inlying contrast

subspaces and outlying contrast subspaces with different minimum likelihood thresholds

79

(8) respectively. In most cases, the contrast subspaces tend to have low dimensionality;
however, in CMSC and Wine, the inlying contrast subspaces tend to have high
dimensionality. Finally, as the value of § decreases, the number of subspaces with higher

dimensionality typically increases.

BCW CMSC Glass
250 80 100=—=
Ls-0.01
] 5 5 6-0.001
Q 2 L
2 200 2 o 80
60 6-0.0001
2 150 E 2 60
Z Z 40 7
E = o
= 100 2 2 40
=] (=] =
< =120 b :
e 50 o S 20 i
’ " " Jesallnl
0 115 §_§ L 0 - olore FEE E@ i
1 2 3 4 5 6 7 8 9 2345678 910111213141516 I 2 3 4 35 7 8 9
Subspace dimensionality Subspace dimensionality Subspace dimensionality
PID Waveform Wine
700 5000 35—
fis-0.01
@ 600 @ 2 30
8 § 3 4000 g 0)le-000
%500 % _%
2 400 = 3000 z
300
g £ 2000 =
S 200 3 3
o et e
S < 1000 <
= 100 = e
0 : ole AL Hin N M i
1 23 1 2 3 4 5 6 7 8 6 7 8 9 10
Subspace dimensionality Subspace dimensionality imensionality

Figure 27 Dimensionality distribution of top inlying contrast subspace (k = 1)

80

BCW CMSC Glass

600 - . x 40— 100 - - :
_ Ls-0m Ls=0.01 Ls0.01
§ [FEs~0.001 @ 1207 5-0.001 § %0 g i s-0.001
£ Fils-0.00m 2100 [ia=0.0001] Z A i s-0.0001
= = i =
E 7 0 7
7 7 =]
5 E 60 g
= = E
< < <
2 2 40 2
° ° 3z
3 3= 20 b
olilE hE i em 0 PRIER R olhER RUE BV GER MR o
1 2 3 4 5 6 7 26 78 910111213141516 1 2 3 4 5 6 7
Subspace dimensicnality Subspace dimensionality Subspace dimensionality
PID Waveform Wine
700 5000 60— . . . - . x
& fie-0.01 L]6-0.01 . 6001
% 600 [Je-0001 | % fEs-0.001 sl b fEs-0.001
g Edsoo001 g8 40% § 2l 5-0.0001 27 ;
%500 55 . % jieea) . % :
= = =} 4011
Z 400 2 3000 2
P 7 Z 30
= o o
£ 300 £ 2000 £
g 5 5207,
3200 2 2
° S 1000 S o
= 100 B s B ;
?oé‘ B
i - B g i ; 120 KN
0 o JEEEED Ol= 2] PSR : {E ‘| E oL I ISV i S
1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Subspace dimensicnality Subspace dimensionality Subspace dimensionality

Figure 28 Dimensionality distribution of top outlying contrast subspace (k = 1)

Efficiency

To the best of our knowledge, there is no previous method addressing the same
mining problem. As such, we will evaluate the efficiency of CSMiner and its variations; that
is, comparisons amongst Algorithms 1 (baseline), 2 (CSMiner), and 3 (CSMiner-BPR).
Since Waveform data set is the largest, we use this data set only and randomly select 100

objects as query objects and report the average runtime.

Figure 29 shows the runtime with respect to the minimum likelihood threshold &.
A logarithm scale has been used for the runtime to better demonstrate the difference in
the behaviours. Since the baseline method performs exhaustive subspace search, its
runtime is the same across all values of §. For CSMiner and CSMiner-BPR, as § decreases,
their runtime increases exponentially. However, the heuristic pruning techniques
implemented in CSMiner and CSMiner-BPR accelerate the search substantially. CSMiner-

BPR is slightly more efficient than CSMiner.

81

-©-Baseline
10° ¢ -+-CSMiner

- CSMiner-BPR

Runtime (sec)

Figure 29 Scalability test with § (k = 10,a = 0.8)

Figure 30 shows the runtime with respect to the data set size. As can be observed,
the pruning techniques can achieve a roughly linear runtime. Both CSMiner and CSMiner-

BPR are considerably faster than the baseline method and CSMiner-BPR is slightly more
efficient than CSMiner.

10} --Baseline

8 -+-CSMiner

o 2 -#-CSMiner-BPR
£

z

0.5 1 1.5 2
objects

Figure 30 Scalability test with data set size (k =10,6 =0.01,a = 0.8)

Figure 31 shows the runtime with respect to the dimensionality of the data set. As
the dimensionality increases, more candidate subspaces are generated and runtime
increases exponentially. Both CSMiner and CSMiner-BPR are considerably faster than the
baseline method and CSMiner-BPR is slightly more efficient than CSMiner.

82

Runtime (sec)

-©-Baseline
-+-CSMiner
-+ CSMiner-BPR

5 10 15 21
Dimensionality

Figure 31 Scalability test with dimensionality (k = 10,6 = 0.01,a = 0.8)

CSMiner-BPR employs a user defined parameter a to define the e-neighbourhood.
Table 18 lists the average runtime of CSMiner-BPR for a query object with respect a to for
each data set. The runtime of CSMiner-BPR is not sensitive to a in general. The
experiments show the shortest runtime of CSMiner-BPR can be obtained when « is
in [0.6,1.0].

Table 18 Average runtime of CSMiner-BPR with a (k = 10,6 = 0.01)

Average Runtime (milliseconds)

Data Set a=06 2=08 a=10 a=12 a=14
BCW 20.97 20.14 17.76 16.32 15.69
CMSC 1144620 | 1164350 | 1291510 | 14125.00| 15210.20
Glass 16.13 15.83 15.62 15.69 15.76
PID 4.21 4.17 4.23 4.25 4.29
Waveform 6807.10 7102.30 7506.70 7874.70 8183.70
Wine 18.51 18.16 18.42 18.69 19.12

Figure 32 shows the relative runtime of CSMiner-BPR with respect to k for each

data set. Itillustrates that CSMiner-BPR is linearly scalable as the value of k increases.

83

1.15

--BCW
= CMSC 4
—+Glass .c
1.1} |-e-PID s +
-4 Waveform -
-9-Wine

Relative runtime

100

Figure 32 Relative performance of CSMiner-BPR (6 = 0.01,ax = 0.8)

Sensitivity to the Bandwidth

To test the sensitivity of the top-k contrast subspaces with respect to the bandwidth

value, we define the similarity measure for two lists of top-k contrast subspaces.

For any two subspaces S; and S,, we measure the similarity between S; and S, by

[S1NS;|

the Jaccard similarity coefficient denoted by Jaccard(Sy,S,) = 5,05,
1 2

Given a positive

integer r, let P"be the set of all permutations of the set {i|1 <i <r}. Thus, |P"| =r!. For
permutation P € P", we denote the j-th (1 < j < r) elementin P by P[i]. For example, by
writing each permutation as a tuple, we have P3 =
{(1,2,3),(1,3,2), (2,1,3),(2,3,1),(3,1,2),(3,2,1)}. Suppose P = (2,3,1), then P[2] = 3.

Given two ranked lists of top-k contrast subspaces £, and£,, without loss of
generality, we follow the definition of average overlap (Webber et al., 2010), also referred
to as average accuracy (Wu et al., 2003), or intersection metric (Fagin et al., 2003),
which derives the similarity measure by averaging the overlaps of two ranked lists at each
rank in order to measure the similarity between ¢; and £,. Additionally, in consideration
for the fact that each subspace in a list is a set of dimensions, we incorporate the Jaccard
similarity coefficients into the overlap calculation. Specifically, let #,[i] be the element
(subspace) at ranki(1<i<k) in listf;. The agreement of lists ¢, and®, at
rank r(1 < r < k), denoted by Agr(#,,¢,,7)is:

84

Agr(£,,€,,1) = %max{Zlejaccard({’l[Pl[i]],1€2 [Pz [i]])|P1,P2 € P"}.
Then the similarity between ¢, and ¢,, denoted by Sim(#4,¢,) is:
. 1
Sim(£4,%,) = ;Z’r‘ﬂ Agr(€1,€5,1).

Clearly, 0 < Sim(#1,%;) < 1. The larger the value of Sim(¢4,%4,), the more similar

and ¢, are.

Given a set of objects 0 and a query object g, to find top-k contrast subspaces for
q with respect to 0 by CSMiner, we fix the bandwidth value hs = a5 * hs o,; and use the
Gaussian kernel function to estimate the subspace likelihood of g with respect to O in
subspace S. We then vary the bandwidth value from 0.6hg to 1.4hg for density estimation
inS. Let#,, be the top-k contrast subspaces computed using the default bandwidth

value hs and £ be the top-k contrast subspaces computed using other bandwidth values.

For each objectq € O , we discover top inlying contrast subspaces and top outlying
contrast subspaces of g by CSMiner using different bandwidth values. Figure 33 illustrates

the average value of Sim(¢y, ¢;) of inlying contrast subspaces with respect to k and
Figure 34 illustrates the average value of Sim(¢y, ¢5;) of outlying contrast subspaces

with respect to k. From the results, we can see that the contrast subspaces computed
using different bandwidth values are similar in most data sets. As expected, using a
bandwidth whose value is closer to h makes less difference. Finally, we also observe that

with increasing k, the value of Sim(¢, £5;) slightly increases.

85

BCW CMSC Glass

1
§ § F s i ek sEE T TCEE SEPE ErE]
0.9 — e}
= 0.8% - = X
0.8
ors ‘ﬁO.GhS,+,0.8hsﬁ1.2hs+1.4hs‘ ‘ﬁO.GhS,+,0.8hsﬁ1.2hs+1.4hs
] 4 6 8 10 4 6 8 10
k k
PID Waveform Wine

\&0.6?:5 '+'°'8hs*1-2”s+1'4hs\ ‘.9.0.6hs -+.0.8hS.A.1.2h5+1.4hS‘

'
L

Similarity score

Similarity score

‘GO.GhS ~+-0.8h o 12k 1.4k

0 2 4 6 8 10
k

Figure 33 Similarity scores of inlying contrast subspaces using different
bandwidth values with respect to k (6 = 0.001)

86

BCW CMSC Glass

‘.9.0.6hs.+.0.8hs..g.1.2hs+1.4hs‘ ‘&0.6h5-+.0.8h5*1.2hs+1.4hS
A A A
E095 A p 0.95 B
8 _F_~_+__+___+—--+ 8 B e sk ST S LT LR SE Rl 8
L e e S ————— L | X A A @
= o.ssw = =So.
3 3 3
0.8
ors ‘&0.6hs.+.0.8h5.&1.2hs+l.4hs‘
" 4 6 8 10
k
PID Waveform Wine
1 1 1
‘-9-0.6h57+70.8h5£r1.2hs+1.4hS‘ *}O-W’s"f'o-s”s*l-ﬂ’s*1-4’%\ ‘-9-0.6}15470.8]15&1.2hs+1.4hs

e

A

S

Similarity score
o

Figure 34 Similarity scores of outlying contrast subspaces using different
bandwidth values with respect to k (6 = 0.001)

Comparison with Epanechnikov Kernel

Alternative to Gaussian kernel (Equation (5.1.2)) for multivariate kernel density

estimation is the Epanechnikov kernel:

1
Ecd‘l(d +2)(1—xTx) ifxTx <1

0 otherwise

Ke(x) = {

where ¢, is the volume of the unit d-dimensional sphere and can be expressed by making

use of the Gamma function:

d
[
d ifd = 0is even
T2 (g) !
Cq = d = 2 .
Fa+2) |LkLE

87

where is d!! the double factorial.

Plugging K, (x) into Equation (5.1.1), the density of a query object g for a set of
objects O in subspace S can be estimated as:

distg(q,0)?

1
dist_;%q,o)2<1(5 cs-r(S1+2)(1 - h—é)) (5.1.6)

N

A 1
fs(q,0) = Wzoeo

where hg is the bandwidth for subspace S. We calculate hg as hg = g * hg gp¢-

As Silverman suggested (1986), as is a single scale parameter that equals to the
root of the average marginal variance in § and hs ,,; is the optimal bandwidth value which

-1 1
equals to A(K)|0|0s+ where A(K) = {8,,_-1(|S| + 4)(2v/m)*l}isi++ for the Epanechnikov

€ls
kernel. For CSMiner, given a subspace S, let S be the set of descendants of S in the
subspace set enumeration tree in the descending order of standard deviation. Then,
Ls(q|04) and Lg(q|0-) can be computed by Equation (5.1.6) and Lg(q|0,) =

1
! 4
lol(aminhopt_min)r 0EON

7
0Shopt max

- P 2
dists(q,o)z <1 (% anln l(dglax _|_ 2)(1 _ M)) Where dgnax -
(O'Sh:zpt_max)z
max{|S’| | S’ € §}, cI™ = min{c,| |S| < d < d™*}. Using the Epanechnikov kernel,

dists(q,0)?
h§

fS(q10+) —

fs(q,0_) = 0 if for any objecto € 0_, Fe(@0)

< 1. Accordingly, LCs(q) = +00

Given a data set 0 (consisting of 0, and 0_), the set of objects whose maximum likelihood
contrast computed using the Epanechnikov kernel is infinity is0f® ={o €
0|3S s.t. LCs(0) = +oo}.

Let #; be the top-k contrast subspaces computed using the Gaussian kernel
and £ be the top-k contrast subspaces computed using Epanechnikov kernel. For each
guery object g € 0, we discover top-10 inlying contrast subspaces and top-10 outlying
contrast subspaces of g using the Gaussian and Epanechnikov kernels and
compute Sim(4;,¥g) in each data set. For subspaces whose likelihood contrast values
are infinity (LCs(q) = +), we sort them by fs(g, 0,) in the descending order. Table 19
and 20 list the minimum, the maximum, and the average values of Sim(45, f;) as well as

the ratio of |0 | to |0].

88

Table 19 Similarity between top-10 inlying contrast subspaces using different
kernel functions in data set 0 (6 = 0.001)

Sim(€, €g) |05

Data Set 0 Min Max Avg 0|
BCW 0.168 0.980 0.539 590/683=0.864
CMSC 0.066 0.826 0.391 540/540=1.000
Glass 0.242 0.984 0.814 76/214=0.355
PID 0.620 1.000 0.924 1/768=0.001
Waveform 0.189 0.981 0.690 | 2532/5000=0.506
Wine 0.159 0.993 0.670 145/178=0.815

Table 20 Similarity between top-10 outlying contrast subspaces using different
kernel functions in data set 0 (6 = 0.001)

Sim(€, €r) 05|

Data Set 0 Min Max Avg |0|
BCW 0.239 1.000 0.916 67/683=0.098
CMSC 0.174 0.926 0.614 | 540/540=1.000
Glass 0.358 1.000 0.906 16/214=0.075
PID 0.655 1.000 0.938 1/768=0.001
Waveform 0.364 0.998 0.820 | 894/5000=0.179
Wine 0.209 1.000 0.804 40/178=0.225

+co
From the results in tables 19 and 20, we can see that Sim(4, £y) is related to %.

+00
Specifically, the smaller the value of %, the more similar ¢ are £5. For example, when
+00
mining inlying contrast subspaces, the values of% for BCW, CMSC, Waveform and

+00
Wine are larger than 0.5 which is larger than the values of% for PID and Glass while
the values of Sim(¢4, ¢¢) are smaller for BCW, CMSC, Waveform and Wine than those
+00
for PID and Glass. When mining outlying contrast subspaces, the values of% are less

than 0.1 for BCW, Glass and PID while the values of Sim(¢, £5) for these data sets are

over 0.9.

Finally, we compute Sim(£, £g) in 0\Of for each data set except CMSC since
for CMSC, 0\0£* = @. From the results shown in Table 21 and 22, we can see that ¢ is
more similar to £y when we do not consider the objects whose maximum likelihood

contrast is infinity.

89

Table 21 Similarity between top-10 inlying contrast subspaces using different

Table 22 Similarity between top-10 outlying contrast subspaces using different
kernel functions in data set 0\0;® (6 = 0.001)

5.2.

kernel functions in data set 0\0O£* (6 = 0.001)

Data Set 0\ Sim(€, ¥E) 10\ |
0% Min Max Avg E
BCW 0.643 0.980 0.922 93
Glass 0.720 0.984 0.929 138
PID 0.620 1.000 0.924 767
Waveform 0.324 0.981 0.754 2468
Wine 0.527 0.988 0.904 33

Data Set 0\ Sim(€g, ¥g) I0\OE™ |
0F® Min Max Avg E
BCW 0.561 1.000 0.934 616
Glass 0.629 1.000 0.925 198
PID 0.655 1.000 0.938 767
Waveform 0.437 0.998 0.836 4106
Wine 0.482 1.000 0.863 138

Outlying Aspects

In a multidimensional dataset, given a query object g, we want to find a subspace
in which q is most unusual or outlying. By mining outlying aspects, we seek an answer
for “In what context does the organization stand out most?”, for example. Using the Figure

1 example, Figure 35 illustrates two example subspaces.

90

o
0 Company q

Company q

0 ¢

Cardiovascular Prevalence Mental Health Prevalence

Cholesterol Prevalence
(
Obesity Prevalence

Figure 35 Example Subspaces

In the cholesterol-cardiovascular subspace (on the left), the company g (red dot)
is part of the “normal” population, meaning this company’s performance is similar to many
others’ for cholesterol and cardiovascular and the gap is marginal. On the other hand, in
the obesity-mental health subspace (on the right), g is significantly outlying, meaning that
its rate of obesity and mental health is unusual and the performance gap is material. The
insight this example brings may be that the company g needs to develop a program to
reduce the rate of obesity and/or mental health across its workforce. While this example
only shows 2 dimensions for visual simplicity, mining outlying aspects detects top-k (where

k can be any number of dimensions) most prominent dimensions in which q is an outlier.

5.2.1. Rank Statistics

In order to identify top-k subspaces in which a query object q is outlying most, the
ability to compare the outlyingness degree of q in different subspaces is required. We use

rank statistics as a vehicle for comparison.

Problem Definition

Let D ={D,,...,D,} be a d-dimensional space where the domain of D; is R, a set
of real numbers. A subspace S € D (§ # 0) is a subset of D and D is also referred to as

the full space. The value of an object o in dimension D; (1 <i < d) is denoted as 0. D;.

91

For a subspace S = {D; , ..., D;;} < D, the projection of o in S is 05 = {o.D;,...,0.D;}. The

19’

dimensionality of S, denoted by |S]|, is the number of dimensions in S.

In a subspace S € D, we assume that we can define a measure of outlyingness
degree, OutDeg(+), such that for each objet o € 0, OutDeg(0o) measures the outlyingness
of 0. Without loss of generality we assume that the lower the OutDeg(0), the more outlying
the object 0. In this thesis, we consider a generative model; that is, the set of objects 0O is
generated (i.e. sampled) from an often unknown probability distribution. Accordingly, we
can use the probability density of an objecto, denoted by f(o0), as the equivalent

to OutDeg (o). The smaller the value of f(o0), the more outlying the object o.

How can we compare the outlying degree of an object in different subspaces? We
unfortunately cannot compare them directly since the probability density values depend
on the properties of specific subspaces, such as, their scales. For example, it is well
known that probability density tends to be low in subspaces of higher dimensionality since
such subspaces often have a larger volume and thus sparser.

To address this issue, we consider the use of rank statistics. In a subspace S, we
rank all objects in O in their outlyingness degree ascending order. For an objecto € 0,

we denote by:
ranks(o) = |{o'|o’ € 0,0utDeg(0") < OutDeg(0)}| + 1 (5.2.1)

the outlyingness rank of o in subspace S. The smaller the rank value, the more
outlying the object is compared to the other objects in 0 in subspace S. We can compare
the outlyingness of an object o in two subspaces S; and S, using ranks, (o) and ranks, (0).
Object o is more outlying in the subspace where it has the smaller rank. In Equation
(5.2.1), for objects with the same outlyingness degree (probability density value), their

outlyingness ranks are the same.

Suppose for objecto, there are two subspacesSandS’'such thatS c S’
and rankg(o) = rankg, (o). Since S is more general thanS’, S is more significant in
manifesting the outlyingness of o at the rank of rankg (o) relative to the other objects in the

data set. Consequently, S’ is redundant given S, in terms of outlying aspects.

92

In high dimensional subspaces where the values of probability densities of objects
are very small, comparing the ranks may not be reliable since the subtle differences in
values may be due to noise or sensitivity to parameter settings in the density estimation.
Further to note that high dimensional subspaces may not be interesting since the results
are hard to understand. Thus, we assume a maximum dimensionality threshold, £ > 0

and consider only the subspaces whose dimensionalities are not greater than #.

Definition 1 (Problem definition). Given a set of objects 0 in a multi-dimensional space
D, a query objectq € 0 and a maximum dimensionality threshold 0 < ¢ < |D|, a
subspace S < D(0 < |S| < ¥) is called a minimal outlying subspace of q if

1. (Rank minimality) there does not exist another subspace S’ < D(S' # @) such
that rankg, (q) = rankg(q); and

2. (Subspace minimality) there does not exist another subspace S < S such
that rankg,, (q) = ranks(q).

The problem of minimal outlying subspace is to find the minimal outlying subspaces

of g. Given a query object g, there exists at least one and may be more than one

minimal outlying subspace.

We use KDE (Breiman et al., 1977) to estimate the density given a set of objects 0.
To reduce sensitivity to outliers, we employ Hardle’s rule of thumb (1990) instead of

Silverman’s and set the bandwidth:

1

. R, -1
h = 1.06min{o, m}n 5 (5.5.2)

where R = X[g.75n] — X[0.25n], @Nd X[25,) @Nd X[o 755, respectively are the first and the third

guartiles.

For d-dimensional (d = 2), o = (0.Dy,...,0.D4)T and o; = (0;. Dy, ..., 0;. Dg)T (1 <

i < n). Then the probability density of f at point o € R% can be estimated by:

fu(0) = S Xy Ko = o)

93

where H is a bandwidth matrix. The product kernel, consisting of the product of one-
dimensional kernels, is a good choice for a multivariate kernel density estimator (Scott,
1992; Hardle et al., 2004). Hence, we have:

.D; .D
fu(0) = —h {H, K ')} (52.3)
1
where hy,, is the bandwidth of dimension D;(1 < i < d). We use Gaussian kernel and the

distance between two objects is measured by Euclidean distance. Thus, the kernel

function is:

2
(0-0j)

K (%) = e (5.2.4)

Plugging Equation (5.2.4) into (5.2.3), the density of a query objectqg € 0 in
subspace S can be estimated as:

(q.D-—o.D-)2
1 —Xpjes 7

(@) = f5(@5) = —s———ocoe (5.2.5)

n(2m) 2 [Ip,eshp;

Since we are only interested in the rank of g (i.e. ranks(q)) and:

c= + (5.2.6)

n(2m) 2 [Ip;eshp;

is a factor common to every object in subspace S and does not affect the ranking at all,

we can rewrite Equation (5.2.5) as:

2
(¢.0i=0.D))
2
2n3,

fs(@~Fs(q) = Toeo €

Ype

(5.2.7)

“_n

where “~” means equivalence for ranking. For clarity, we refer to fs(q) as quasi-density
of g in S. Using fs(q) instead of fs(q) not only simplifies the description but also saves the

computational cost for calculating ranks(q).

94

Proposition 1 (Invariance). Given a set of objects O in space S = {Dy, ..., D}, define a
linear transformation g(o) = (a,0.D; + by, ...,a40.D4 + by) for anyo €0
where a4, ...,a; andb,,..,b; are real numbers. LetO' ={g(o)lo € 0} be the
transformed data set. For any objects 0;,0, € 0 such that fs(0o;) > fs(0,) inO,
fs(g(01)) > fs(g(0y)) if the product kernel is used and the bandwidths are set using
Equation (5.2.2).

Proof. For any dimension D; € S(1 <i <d) , the mean value of {o0.D;|o € 0}, denoted

by u;, iSﬁZOEOO-Di, the standard deviation of{o.D;|o € 0}, denoted by g;,

1
is |Cl,—|zoeo(0-Di — u;)?, and the bandwidth of D;(h;) is 1.06min{ai,%}|0|‘5 where R is

the difference between the first and the third quartiles of 0 in D;. We perform the linear

transformation g(o).D; = a;0.D; + b; for anyo € 0. Then, the mean value

of {g(0).D;|o € 0} is I%lzoeo(aqo.Di + b;) = a;u; + b; and the standard deviation

. 1 1

of {g(0).D;lo € 0} is mZoeo(aiO-Di +b; —ayu; — b)) =q; mZoeo(O-Di —)2 =
) 1

a;0;. Thus, the bandwidth of D; is 1.06min{aiai,f;;}|0|_5 after the linear

transformation. As the distance between two objects in D; is also enlarged by a;, the
guasi-density calculated by Equation (5.2.7) remains unchanged. Thus, the ranking is

invariant under linear transformation.

5.2.2. Mining Methods

Baseline Method

Using quasi-density estimation (Equation (5.2.7)), we can develop a baseline
algorithm for computing the outlyingness rank in a subspace S (Algorithm 1). The baseline
method estimates the quasi-density of each object in a data set and ranks them. For the
total number of objects n, the baseline method has to compute the distance between every
pair of objects in every dimension of S. Thus, the time complexity is 0(n?|S|) in each

subspace S.

Algorithm 1 The baseline algorithm

95

Input: O: a set of objects, g: query object € 0, S: subspace
Output: ranks(q)

1: for each objecto € 0 do

2: compute fi(o) using Equation (5.2.7);

3: end for

4: return ranks(q) = |{o]o € 0, f5(0) < fs(}+1;

OAMiner Framework

To reduce computational cost, we propose OAMiner (for Outlying Aspect Miner) in

Algorithm 2.

Algorithm 2 OAMiner
Input: O: a set of objects, g: query object € 0
Output: a set of minimal outlying subspaces for g
1: initialize 1y < |0] and Ans « @;
2: remove D; from D if the values of all objects in D; are identical;
3. compute rankp, (q) in each dimension D; € D;
4: sort all dimensions in rankp, (q) ascending order;
5: for each subspace S searched by traversing the set enumeration tree in a depth-first manner do
6: compute ranks(q);
7: if ranks(q) < rpes then
8: Tpest < ranks(q), Ans « {S};
9: endif
10: if ranks(q) = Tpese and S is minimal then
11: Ans « Ans U {S};
12: end if
13: if a subspace pruning conditions is true then
14: prune all descendants of S
15: end if
16: end for
17: return Ans,;

As a first step, OAMiner removes the dimensions where all values of objects are
identical since no object is outlying in such dimensions. As a result, the standard deviation

of all dimensions involved in outlying aspect mining are greater than 0.

96

To ensure that 0AMiner finds the most outlying subspaces, we need to enumerate
all possible subspaces in a systematic way. We again use the set enumeration tree
introduced in section 5.1.3 (Figure 25).

OAMiner searches subspaces by traversing the subspace enumeration tree in a
depth-first manner. Given a set of objects 0, a query objectq € 0 and a subspace S,
if rankg(q) = 1, then every descendant of S cannot be a minimal outlying subspace and

thus can be pruned.

Pruning Rule 1. Ifrankg(q) = 1, according to the dimensionality minimality condition

(Definition 1), all descendants of S can be pruned.

In the case of ranks(q) > 1, OAMiner prunes subspaces according to the current
best rank of g in the search process. Heuristically, we want to find subspaces where the
guery object g has a low rank early on so that the pruning technique is more effective.
Consequently, we compute the outlyingness rank of g in each dimension D; and order

dimensions in the ascending order of rankp, (q).

In general, the outlyingness rank does not have any monotonicity with respect to

subspaces; that is, for subspaces S; € S, neither ranks (q) < ranks,(q) nor ranks (q) =

ranks, (q) holds.

Example 1. Given a set of objects 0 = {04, 0,, 03, 0,} With 2 numeric attributes D, and D,,
the values of each object in 0 are listed in Table 23. Using Equation (5.2.7), we

estimate the quasi-density values of each object for different subspaces (Table 24).
We can see thatfp(0) > fip,(00) and fip,y(02) > fip,y(0s) which

indicate rankp 3(0;) > rankp 1(04) and rankp,;(0,) > rankp,3(04). However, for

SUbSpaCGS {Dli Dz}, SII’]CG ff{Dl,Dz}(OZ) < f:‘{Dl,DZ}(04), rank{Dl’Dz}(Oz) < Tank{Dl,Dz}(O4).

Table 23 A numeric data set example

object 0;.D; 0;.D,
01 14.23 1.50
0, 13.20 1.78
03 13.16 2.31
04 14.37 1.97

97

Table 24 quasi-density values of objects in Table 23

object | fipp(0) | fi,y(01) | fip,,p,3(00)
01 2.229 1.832 1.305
0, 2.220 2.529 1.300
03 2.187 1.626 1.185
04 2.113 2.474 1.314

A further challenge is that the probability density itself does not have any
monotonicity with respect to subspaces either. For subspaces S; € S,, according to
Equation (5.2.5), we have:

(q.Di—D.Di)Z (q.Di—O.Di)Z
_Z 3 _— 7 _E . _— 7
fSl (q) ZDEO e D1651 Zh%i ZOEO e DlESZ Zh%l'
Fs,@ Bl / I52]
z n(2m) 2 [lp;es; hp; n2m) 2 [lp;es, hp;
(g-Di—0.D)*
~Xpjesi pz
1S11=1S, Y00 € D;
= (27'[) 2 D;
i _y (g.Dj—0.D;)?
Di€Sz\S1 DieS2™"3n2
Yoeo € t
.)2
- 3pes, ERIESD"
) Yoo € 2hp, 1S11-1S2])
Since §; € S,, @b epZ =1 and(2mr) 2z >=1. However, in the
—ZD-esz%
Yoeoe€ l ZhDi
. fsi(a
case [Ip,es,\s, hp; <1, there is no guarantee thatfsi—iq; >1 always holds.
S2

Consequently, neither fs (q) < fs,(q) nor fs, (q) = fs,(g) holds in general.

A Bounding-Pruning-Refining Method

Bounding Probability Density

To obtain rank statistics, 0AMiner needs to compare the density of the query object
with the densities of other objects. In order to speed up density estimation, we exploit the
observation that the contributions to the density of an object from remote objects are small;
thus, the density of an object can be bounded. Similar to the concept of e-neighbourhood
with CSMiner, we can derive upper and lower bounds of the density of an object using a
neighbourhood.

98

Given objects 0,0’ € 0, subspace S and a subset 0’ < 0, we denote by dcs(0,0")

the quasi-density contribution ofo’ too inS and £%' (o) the sum of quasi-density
contributions of objects in 0’ to 0. That is:

(0.Dj—01.D;)?
P e e
t ZhDi

-%p
dcg(o,0") =e

(0.D;—01.D;)?

-YpeSs— 7
F0r t 2hp.
e =) e b

o’€0/

To estimate the bounds of fs(0) efficiently, we define two kinds of neighbourhood.
For an objecto € 0, a subspace S and {ep, |ep, > 0,D; € S},
the e-tight neighbourhood of o in S, denoted by TN, is {0’ € O|VD; € S,|0.D; — 0'.D;| <
€p,}, the e-loose neighbourhood of o inS, denoted by LNg°, is{o’ € 0|3D; € S,|0.D; —
o'.D;| <e€p,}. Based on the definitions of TN and LNs°, we depict the following

properties.

Property 1. TNg° € LNg*°.
Property 2. TNg° = LNg°if |S| = 1.

Using TNg® and LNs°, Ocan be divided into three disjoint subsets: TNg"°,
LNS°\TNg°,0\ LNg°. For any objecto’ € 0, we obtain a lower bound and an upper

bound of dcg(o,0") as follows:

Theorem 1 (Single quasi-density contribution bounds). Given an objecto € 0, a
subspace S and {ep, |ep, > 0, D; € S}, then:
for any object o’ € TN, dc§ < dcs(0,0") < dci*™(0);
for any object o’ € LN$°\ TN, dc™(0) < dcs(0,0") < dcl***(0);
for any object o’ € O\LNS?, dcf'™(0) < dcg(0,0") < dc
where:

2

15

_ZD-E 2
1=22h

Dy

99

. 2
min {|o.D;~o".Dy}
_Z 0'€e0
DiES

2
dcd** (o) =e 2,

max{|o.Di—o'.Dl~|}2
_ZD c o'eo 5
i i€S 2h
dc" (o) =e D;

Proof.

1) Given an objecto’ € TNs°, for any dimensionD; € S, r;,xég{lo.Di —0".D;|} <
o

2 ;2
_Z Dy _Z |0'Di_0 'Di|
, Di€52h2 D;€eS 2h2
lo.D; — 0".Dy| < €p,. Thus, e bi<e b <
min {|0D'—o"D'|}2
o'feo” Tt ot
—Xpjes

e 2hD,; That is, dc§ < dcg(0,0") < dci***(0).
2) Given an objecto’ € LNg°\ TN, for any dimension D; € S, Wég“"- D;—0".D;|} <
o

2
max {lo.D;~o"".D;|}

, ' _ZDiEb 2h2
lo.D; —o'.D;| < rgauo({lo.Di—o .D;}. Thus, e by <
o0''€E
. 2
-y lo.0;—0".0y|” 5 min {lo.D;-0"".Dy}
D€ Zh%), D;eS Zh%_ A min ,
e i <e i That s, dcd*(0) < dcg(0,0") <
dcd** (o).
3) Given an objecto’ € O\LNs°, for any dimensionD; € S, ep, <|o.D; —0'.D;| <
2
I;II?EX {|O'Di_0”'Di|} |O.D-—OI.D-|2
_ZDiEbO 2h2 _ZDiE lzhz L
max{|o.D; — o"". D;|}. Thus, e b; <e by <
o'’eo : :
2
~XZpesy 2] , ,
e bi, Thatis, dc*"(0) < dcs(o0,0") < dcs.

Using the size of TNg’and LNS*°, we obtain a lower and an upper bound of £(0)

as follows.

Corollary 1 (Bounds by neighbourhood size). For any objecto € 0,
[TNs|dc§ + (0] = [TNs°|de"™ (o) < fs(0)
fs(0) < |LNg°|dc*™ (o) + (10| — |LNg°|)dc§
Corollary 1 allows us to compute the quasi-density bounds of an object without computing

the quasi-density contributions of the other objects to it.

100

Proof. We divide 0 into disjoint subsets TNs'’, LNs*°\ TNg'°, 0\ LNs*°. By Theorem 1, for
objects belonging to TNs*°, we have:
|TNs°|dc§ < Yorernge des(0,0") < |TNg°|dcf** (o),
for objects belonging to LNs°\ TNg'°, we have:
(|LNg°| = |TNg°])dci™(0) < Xpre veo\ e des(0,0")
< (ILNs| = |TNs e (o),
for objects belonging to 0\ LNg"°, we have:
(101 = |LNg°|)dci™™(0) < e O\ LNE® dcs(0,0") < (|0] — |LNg°|)dc€ as:
fs(0) < ¥oreodes(o,0') = Yorernge dcs(0,0") +
Yo'e LNE°\TNE® dcs(o,0") +
2o'e O\ LN§* dcg(0,0').
Thus:
fs(0) = |TN$°|dcE + (|LNg°| — |TNS°|)dc*™ (o) + (10] — |LNg°|)dci™ (o)
= |TNg°|dcé + (10| — |TNg°|)dci ™ (o)

fs(0) < |TNg°|dcd*** (o) + (|LNg°| — |TNg°|)dcd*** (0) + (10| — |LNg°|)dc§
= |LNg°|dcd*** (o) + (10| — |LNg°|)dc§.
Finally, if LNg° c 0; that is, O\ LNs*° # @, then:

f¥' (0) < |LNg|deg (o) + (101 — [LN§])des.

Corollary 2 (Bounds by e-tight neighbours). For any objecto € 0 and 0’ < TN"°,
f'(0) + (|TNs°| = 10"|)dcé + (0] — |TNg°[)dcd*™ (o) < fs(0)

fs(0) < £ (0) + (|LN$| = 10")dcf* (0) + (101 — |LNg)dc§

Proof. Since 0' € TN, for objects belonging to 0\ 0’, we divide them into TNs°\0’,
LNEP\ TNE®, 0\ LNE°. Then:

f;'(o) = f:S‘O, (0) + ZO’ETN;’O\O’ dCs(O, 0’) +

Yore LNG°\TNg* des(o,0") +

101

Zo'e o\ wwge des(0,07).

By Theorem 1, for objects belonging to TNg°\ 0', we have:

(ITNs°| = 101)dc§ < Zgre rugey or des(o,0") < (ITNg | = 10" dcg"* (o),
for objects belonging to LN$°\ TNg'°, we have:

(ILNs°| = [TNg°])dcg*™ (0) < e vgo\ rwvge des(o,07)

< (|LNs°| = |TNs** e (o),

for objects belonging to 0\ LNs*°, we have:

(101 = [LNg°|)dcd™(0) < Tore o\ ge des(0,0') < (10] — |LNs s
Thus:

fs(0) = ' (0) +
(|TNg°| = 10"Ddc§ + (|LNg°| = |TNg°|)dcd*™ (o) + (10] — [LNg°|)dc§™ (o)

= 7' (0) + (ITNE*| = 10'Ddc§ + (10] = [TNE“])deg(o)

fs(0) < ¥ (0) +
(|TNs°| = 10D dcf* (0) + (|LNg°| — |TNg°|)dc** (o) + (10| — |LNg°|)dc§

= f9"(0) + (JLNE®| — |0'Dd ™™ (0) + (10| — |LNE®|)dcE.

Finally, if LNg° c 0; that is, O\ LNs*° # @, then:
Fe(0) < 79 (0) < (|LNS°| = 10"Ddci™ (0) + (10| — |LNg°|)dc§.

Corollary 3 (Bounds by e-loose neighbours). For any objecto € 0 and TNg° c 0’ <
LNS,
i (0) + (10] = 10" dc§*™ (o) < fs(0)
fs(0) < 2" (0) + (|LNs°| = 10"])dcg*** (0) + (10| — |LNs™°)dc§

Proof. Since TNg® c 0’ € LNg°, for objects belonging to 0\ 0', we divide them
into LNg°\O" and O\ LNs°. Then:
fs(0) = f& (o) + Lorerngoror dcs(0,0") + Xyre o\ Lygo des(0,0).

By Theorem 1, for objects belonging to LNs*°\ 0, we have:

102

(ILNG°] = 10")dcd*™ (0) < Zore 1ugoy o7 des(0,0") < (|LNs| = 10")dcd*** (o),
for objects belonging to 0\ LNs*°, we have:
(101 = |LNg°[)dcd ™ (0) < Eyre o wge des(0,0') < (10] — |LNg°|)dc§.
Thus:
fs(0) = f'(0) +
(|LN$°| = 10"Ddc™(0) + (|0] — |LNS°|)dcZ*™ (o)

= f2"(0) + (10] — |0"dcI"(0)
fs(0) < F2'(0) + (JLNE®| = 10'Ddcd ¥ (0) + (0] — |LNE®|)dc.

Finally, if LN € 0; thatis, O\ LNs*° # @, then:
fs(0) < 72" (0) < (|LNE°| — 10'Dd ™ (0) + (10] — |LNE®|)dc§.

Corollary 4 (Bounds by a superset of e-loose neighbours). For any objecto €
OandLNg° c 0’ c 0,

0" (0) + (J0] — 10)dcf*™ (o) < f5(0)
fs(0) < f2'(0) + (101 — 0" Ddc§

Proof. LNg° c 0' € 0. Then:
fs(0) = f2'(0) + Zoreoror des(0, 0.
By Theorem 1, for objects belonging to 0\ 0', we have:
(|LN$°] = 10"))dcd™(0) < Tore v 0rdes(0,0") < (10| —10"])dcs.
Thus:
fs(0) = 2" (0) + (0] — |0"Ddc™ (0)
fs(0) < £ (0) + (10] — 10" dc§

Since the density of o is the sum of the density contributions of all objects in 0 and
the density contribution decreases with the distance, OAMiner first computes the quasi-
density contributions from the objects in TNg"’, then from the objects in LNg'°\TNg"°, and

finally from the objects in O\LN¢"°.

103

By computing the bounds of fs(0), OAMiner takes a bounding-pruning-refining
method, shown in Algorithm 3, to perform density comparison efficiently in Subspace S.
Initially OAMiner estimates the quasi-density of query object g denoted by £;(q). Then, for
an object o, it first computes the bounds of f5(0) by the sizes of TNg° and LNg*°(Corollary
1) and compares the bounds with f;(q) (Steps 1 to 8). If fs(q) is smaller than the lower
bound or greater than the upper bound, then we have f(q) < fs(0) or fs(q) > fs(0). That
is, the relationship between fs(q) and fs(0) is determined; thus, the Algorithm 3 stops.
Otherwise, OAMiner updates the lower and upper bounds of fs(0) by involving the quasi-
density contributions of objects in TNs*° (Steps 10 to 20), in LNg°\TNg"° (Steps 21 to 31)
and in O\LNS° (Steps 32 to 42) and repeatedly compares the updated bounds with f5(q)
until the relationship between fs(q) and fs(o) is fully determined.

Algorithm 3 Density Comparison
Input: quasi-density of the query object: f;(0), object: o € 0, subspace: S, the e-tight neighbourhood of o:
TNg'°, and the e-loose neighbourhood of o: LNg*°
Output: a Boolean value indicating fs(0) < fs(q) is true or not
1: L « the lower bound of f;(0) computed by Corollary 1; //bounding
2:if L > fs(q) then
return false; //pruning
cend if
: U « the upper bound of f;(o) computed by Corollary 1; //bounding
(if U < fs(q) then

return true; //pruning

© N o 0 A W

rend if

9:0' « @; f2'(0) « 0;

10: for each o' € TN do

11 f9(0) « f2'(0) + dcs(0,0'); 0" « 0" U {0'}; lrefining

12: L « the lower bound of fs(0) computed by Corollary 2; //bounding
13: if L > fs(q) then

14: return false; //pruning

15: endif

16: U « the upper bound of f;(0) computed by Corollary 2; //bounding
17: if U < fs(q) then

18: return true; //pruning

19: endif

20: end for

104

21: for each o’ € LNS°\TNS do

221 f9'(0) « f2'(0) + dcs(0,0"); 0" « 0' U {0}; lirefining

23: L « the lower bound of f;(0) computed by Corollary 3; //bounding
24: if L > fi(q) then

25: return false; //pruning

26: endif

27: U « the upper bound of f;(0) computed by Corollary 3; /bounding
28: if U < fs(q) then

29: return true; //pruning

30: endif

31: end for

32: for each o’ € O\LNg"° do

33 F9'(0) « 2 (0) + dcs(0,0"); 0" « 0’ U {0'}; lIrefining

34: L « the lower bound of fs(0) computed by Corollary 4; //bounding
35: if L > fi(q) then

36: return false; //pruning

37: endif

38: U « the upper bound of fs(0) computed by Corollary 4; //bounding
39: ifU < fs(q) then

40: return true; //pruning

41: endif

42: end for

43: return false;

In OAMiner, the neighbourhood distance in dimension D;, denoted by €p;» is
defined as aop, Where gy, is the standard deviation in dimension D; and a is a parameter.

Our experiments show that « is not sensitive and can be set in the range of 0.8 tol.2.
OAMiner runs efficiently with this range. Theorem 2 guarantees that regardless of the

neighbourhood distance, the ranking results remain unchanged.

Theorem 2. Given an objecto € 0and a subspaceS, for any neighbourhood
distances ¢; and ¢, rankgl(o) = rank§2 (o) where ranksel(o) (rankse2 (0)) is the

outlyingness rank of o in S computed using €; (€5).

Proof by contradiction. Let O be a set of objects, S be a subspace, ¢, ande, be

neighbourhood distances and g be the query object. For any objecto € 0, denote

105

by L., the lower bound of fs(0) estimated by ¢;, U, the upper bound of fs(o) estimated
by e,. Assume that fs(q) < L., and fs(q) > U,,. Since L, is a lower bound of fs(o)
and U, is an upper bound of f5(0), L¢, < fs(0) < Ue,. Then, we have fs(q) < L, <
fs(0) and fs(0) < Ue, < fs(q). Consequently, fs(0) < fs(q) < fs(0). A contradiction.
Thus, ranksel(q) = |{o € 0|fs(o) < fs(q)}| +1= rank§2 ().

Efficiently Estimating Density Bounds

Given a candidate subspace S € D and an objecto € 0, to estimate lower and
upper bounds of fs(0), OAMiner has to compute TNS°, LN, dc§, dci™ (0), dc¥*** (o)
and dcs(0,0’) whereo’ € 0. For|S| =1, we compute TNg, dc§, dcf*™(0),dci™ (o)
and dcs(o0,0") according to their definitions. TNg° = LNs° in this case. Further, the
density contribution is symmetrical such that the computational cost for dcg(o’, 0) can be
saved if dcg(o0,0") is available. Since OAMiner searches subspaces by traversing the
subspace enumeration tree in a depth-first manner, for a subspace satisfying |S| = 2, we
denote by par(S) the parent subspace of S. Suppose S\par(S) = D'(|D'| = 1). Then we
have:

TNs® = TNysy N TNy,

LN$® = LNS2 o U LNSY

b b, €b
Shesll ~(SpeparsmDito i)
dc§ = 2Dy = ¢ 2oy 2hor” = g€ ~dcs,
S = - par(S) SD/
rr}ax{|o.Di—o’.Di|}2 rr}ax{|o.D'—o'.D'|}2

Lo'e0
. _(ZDiepar(S)o 2h2 +2-E th
dcd*(0) = e Dy D'

= dcg’\‘,i,’gr(s) (0) - dcP¥" (o)

!

min{|o.D;—0".Dy[}* rr,'lin{|o.D’—o'.D’|}2
-Cp,epar(s)® poco
icp 2hf)i 2h%,

dci**™(0) = e

106

= dcd\par(s) (0) - dcp,**(0)

(0.D;—0".D;)?
JoDi—0".D;)”

(0.0j=0".Dy)* (0.D;=0".D;)?
i€ 2h} '
D;

_(ZDiEpar(S) Zh%i Zh%i)

D))

dcg(o,0") =e =e

= dcCpar(s)(0,0") - dcp,(0,0")

Accordingly, OAMiner can efficiently estimate the bounds of fs(0) using par(S)
and S\par(S).

Subspace Pruning

While OAMiner is traversing the subspace enumeration tree, letS; be the set of
subspaces it has searched so far and S, be the set of subspaces it has not searched yet.

IS; U S,| = 2IPl — 1. Given a query object q, let 1y = min{ranks(q)} be the best rank q
1

has achieved so far. We can then use 7,5 t0 prune some subspaces not searched yet;
that is, for a subspace S € S,, once we determine that ranks(q) > 1.5, then S cannot be

an outlying aspect and thus can be pruned.

Observation 1. When subspace S is met in a depth-first search of the subspace
enumeration tree, let r,.¢; be the best rank of g in all subspaces searched so far. Given
object q with rankg(q) > 1, if for every proper superspace S’ o S, ranks,(q) > 1es: then

all proper superspace of S can be pruned.

For ranks(q) = 1, all superspaces of S can be pruned due to dimensionality
minimality condition as per Pruning Rule 1. As a result, we only consider the case
where ranks(q) > 1. To implement Observation 1 in a subspace S where rankg(q) > 1,
we check if there are at leastr,,.s Objects that are ranked better thangq in every
superspace of S. If true, all superspaces of S can be pruned. The common factor ¢ as per
Equation (5.2.6) does not affect the outlyingness rank. For simplicity, OAMiner computes
quasi-density fs(o) (Equation (5.2.7)) instead of probability density f5(o) (Equation (5.2.5))

for ranking. Thus, we have the following monotonicity of fg(0) with respect to subspaces.

107

Lemma 1. For a set of objects 0 and two subspaces S and S’ satisfying S’ o S, letD; €

S'\S. If the standard deviation of O in D; is greater than 0, then for any objecto €

O,fs(o) > fs,(o).

(0.0;—0'.D})?

Proof. Given D; € S'\S, for any object o’ € 0, we have -~ > 0. Since the standard
Dy

deviation of O in D; is greater than 0, there exists at least one objecto’ € O such

(o.Dl-—o”.Dl-)2
.D;—0".D;)? T
that @222 > 0 thatis,e "™ < 1.
Dy
Thus:
—Yp.c (o Dl_g"Dl)z
filoy= D e T
o/€0
D;—0'.D; D;—0'.D))°
—(ZDia(o lzh(; i) IZDies/\b(o Lzh[; L))
>) e D D;
0/€0
- fS/ (0)

As preprocessing, per Step 2 of Algorithm 2, OAMiner removes dimensions with
standard deviation 0. Consequently, the standard deviation of any dimension D; € S'\S is

greater than 0. OAMiner sorts all dimensions in in the ascending order of rankp, (q)(D; €

D) and traverse the subspace set enumeration tree in the depth-first manner. Given R the

ascending order ofrankp (q), for a subspaceS={D;,..,D; }, letR(S)=
{D;|D; is behind D; in R}. By Lemma 1, for any subspace S’ such thatS c §' € S U R(S),
the minimum quasi-density of q, denoted byﬂ’ﬁé’és)(q), is fsuR(S)(Q)- An objecto € 0 is
called a competitor of g in S if fs(0) < fiiints)(q) and the set of ¢'s competitors is denoted
by Comps(q). For any o € Comps(q) by Lemma 1, we have fg(0) < fs(0) < fasts) (@) <

fs1(q). Thus, rankg, (o) < rankg,(q). Further we have the following property of Comps(q).

Property 3. Given a query object g and a subspace S, for any subspace S’ such that S c

S', Comps(q) € Comps,(q).

108

Proof. SinceSc$’, by Lemma 1, for anyo € Comps(q), fs,(0) < fs(0) < fanits)(@).

Since Tt () < flitsn (@), we have f5,(0) < fs(0) < filits) (q) < foits, (@)

Thus, o € Compg,(q); that is, Comps(q) € Comps,(q).

Accordingly, OAMiner performs subspace pruning based on the number of

competitors.

Pruning Rule 2. When subspace S is met in a depth-first search of the subspace
enumeration tree, letr,.s; be the best rank of g in all subspaces searched so far. If
there are at least 1., competitors of g in S; that is, |Comps(q)| = 1pest, then all proper

superspaces of S can be pruned.

When maximum dimensionality threshold of an outlying aspect ¢ is less than |S| +
IR ISI < IS’ <2< |S|+|R(S)|. It is unsuitable to use fsurs)(q) as ;’Sé’gs)(q).

Intuitively, we can set fs’{}é’(‘s)(q) to min{f¢(q)|1S'| = ¢,S € S' € SUR(S)}. However, the

[R(S)I

T) Alternatively,

computational cost may be high since the number of candidates is(

we consider a method that uses a lower bound of f¢(q) to compute ;’{1‘1‘;’(’9((}) efficiently.

For object o', the quasi-density contribution of o’ to g in S, denoted by f(q,0") ,

! 2
(0.Dj—0".Dj)

- ZD-ES 2
4 2h
Dj

ise . LetR(S,0") be the set of (¢ — |S|) dimensions in R(S) with the largest

values ofM(Dj € R(S)). Then, the minimum quasi-density contribution of o’ to g
D
J

ins’ (ScS")is fSUR(S,o’)(q' 0"). Since f51(q) = Yoreo fs7(q,0"), we have ~s?f;i)r(ls)(‘l)- If we
compared fsﬂé’(‘s)(q) with the quasi-density values of all objects in 0, the computational
cost for density estimation would be considerably high especially when the size of 0 is
large. For efficiency, a trade-off needs to be made between subspace pruning and object
pruning. That is, when a subspace S is searched, once ranks(q) > 1y, IS determined, the

search of S can be terminated immediately.

Algorithm 4 gives the pseudo code of computing outlyingness rank and pruning

subspaces in OAMiner.

109

Algorithm 4 ranks(q)
Input: query object: g € 0, subspace: S, the set of competitors of g discovered in the parent subspaces of S:
Comp (Comp is empty if |S| = 1), the best rank of q in the subspaces searched so far: 74
Output: ranks(q)
1: compute f5(g) using Equation (5.2.7);
2: ranks(q) « |Comp| + 1;
3: for each object 0 € 0\Comp do

4: if f5(0) < fs(q) then

5: rankg(q) « ranks(q) + 1;
6: if fs(0) < fiibts)(q@) then
7 Comp < Comp U {o0};

8: if [Comp| = 1pese then

9: prune descendants of S and return; //Pruning Rule 2
10: end if

11: endif

12: if ranks(q) > 1pes: then

13: return;

14: end if

15: end if

16: end for

17: return ranks(q);
Theorem 3 guarantees that Algorithm 4 can find all minimal outlying subspaces.

Theorem 3 (Completeness of OAMiner). Given a set of objects 0 in a multi-dimensional
space D, a query objectqg € 0 and a maximum dimensional threshold 0 < ¢ < |D],

OAMiner finds all minimal outlying subspaces of q.

Proof by contradiction. Let Ans be the set of minimal outlying subspaces of g found by
OAMiner and ;. be the best rank. Assume that subspaces S ¢ Ans satisfying S < D
and0 < |S]| <¢ is a minimal outlying subspace ofgq. Since OAMiner searches
subspaces by traversing the subspace enumeration tree in a depth-first manner
and S ¢ Ans, S is pruned by Pruning Rule 1 or Pruning Rule 2. If S is pruned by Pruning
Rule 1, S is not minimal. A contradiction. If S is pruned by Pruning Rule 2, then there
exists a subspace S’ such that is S’ a parent of S in the subspaces enumeration tree

and Comps,(q) = rpese- Per the property of competitors, we have Comps,(q) S

110

Comps(q). Accordingly, ranks(q) = |Comps(q)| = |Comps(q)| = Thest- A

contradiction.

5.2.3. Empirical Evaluation

In this section, we present a systematic empirical study using several real data
sets as well as synthetic data sets to verify the effectiveness and efficiency of OAMiner.
All experiments were conducted on a PC with Intel Core i7-3770 3.40 GHz CPU and 8GB
RAM, running Windows 7 operating system. All algorithms were implemented in Java and
compiled with JDK 7. Since it is hard to comprehend the meaning of subspaces with

dimensionality over 5, defaults were setto £ = 5,a = 1.0.

Effectiveness

Mining Outlying Aspects with Synthetic Data Sets

Keller et al. (2012) provided a collection of synthetic data sets, each set consisting
of 1,000 data objects. Each data set contains some subspace outliers which deviate from
all clusters in at least one 2-5 dimensional subspaces. As observed by Keller et al. (2012),
an object can be an outlier in multiple subspaces independently. We performed our tests
on the data sets of 10, 20, 30, 40, and 50 dimensions denoted by Synth_10D, Synth_20D,
Synth_30D, Synth_40D, and Synth_50D respectively.

For an outlier g in a data set, let S be the ground truth outlying subspace of q. Note
that S may not be an outlying aspect of q if there exists another outlier more outlying than g
in S since OAMiner finds the subspaces in which the query object is most outlying. To
verify the effectiveness of 0AMiner, using the known ground truth outlying subspaces with
multiple implanted outliers in S, we select one outlier as a query object g at a time and
remove the other outliers, and repeat this process for each implanted outlier. Since q is
the only implanted outlier in subspace S, OAMiner is expected find the ground truth outlying
subspace S where g takes rank 1 in outlyingness; that is, ranks(q) = 1. We divide the

mining results of OAMiner into the following 3 cases:

Case 1: only the ground truth outlying subspace is discovered by OAMiner with

outlyingness rank 1.

111

Case 2: in addition to the ground truth outlying subspace, OAMiner finds other outlying

aspects with outlyingness rank 1.

Case 3: instead of the ground truth outlying subspace, OAMiner finds a subset of the

ground truth as an outlying aspect with outlyingness rank 1.

Mining results for Synth_10D are shown in Table 25. Results use the same object

ID’s and dimension ID’s as in the original data set in the work of Keller et al. (2012).

Table 25 Outlying Aspects with Synth_10D

Query Ground Truth Outlying Outlying Aspect with Case
Object Subspace Outlyingness Rank 1
172 {8,9} {8,9} 1
183 {0,1} {0,1}, {0,6,8} 2
184 {6,7} {6,7} 1
207 {0,1} {0,1} 1
220 {2,3,4,5} {2,3,4,5} 1
245 {2,3,4,5} {2,5} 3
315 {0,1},{6,7} {0,1}, {6,7}, {3,4}, {3,5,9}, {4,6,9} 2
323 {8,9} {8,9} 1
477 {0,1} {0,1} 1
510 {0,1} {0,1} 1
577 {2,3,4,5} {2,3,4,5}, {0,3,7} 2
654 {2,3,4,5} {2,3,4,5} 1
704 {8,9} {8,9}, {0,2,3,4} 2
723 {2,3,4,5} {2,3,4,5} 1
754 {6,7} {6,7}, {2,4,8}, {2,6,8}, {4,6,8} 2
765 {6,7} {6,7}, {1,4,6}, {3,4,5,6} 2
781 {6,7} {6,7} 1
824 {8,9} {8,9} 1
975 {8,9} {8,9}, {2,5,9}, {5,6,8}, {2,3,5,8} 2

For all outliers used as query objects, outlying aspects with outlyingness rank 1
were identified. Also, for objects 183, 315, 577, 704, 754, 765 and 975, OAMiner found
not only the ground truth outlying subspaces but also other outlying subspaces (Case 2).

For object 245, the outlying aspect discovered by OAMiner is a subset of the ground truth

outlying subspace (Case 3). For the other 11 objects, the outlying aspects identified by

OAMiner are identical to the ground truth subspaces (Case 1).

Table 26 summarizes the mining results for all of Synth_10D, Synth_20D,
Synth_30D, Synth_40D, and Synth_50D.

112

Table 26 Statistics on the mining results of OAMiner

Data Set # of Outliers # of Case 1 # of Case 2 # of Case 3
Synth_10D 19 11 7 1
Synth_20D 25 1 23 1
Synth_30D 44 0 40 4
Synth_40D 53 0 52 1
Synth_50D 68 0 65 3

The number of Case 2 instances increases with higher dimensionality which
indicates that more outlying aspects can be found when more attributes of data are in
scope for search, which is consistent with the experimental observations with the real data

sets shown later.

To further illustrate the effectiveness of OAMiner, Figure 36 shows how visually
object 245 (Case 2) stands out, likewise, Figure 37 object 315 (Case 3).

1,
o
.2 0.6
wn
5
g 04 #.
. p— hot+ .
oo &,
ﬁjﬁu L ti e
OF Fewbiomsan ol g st vt iy

0 02 04 06 08 1
Dimension 2

Figure 36 Outlying aspect of object 245 (Synth_10D)

113

1 L+ . + + /
i +
t s B } +++** ®
F . T L o A
+ + T + + o+ o+
WL TEROET 4 + 75 v T
08, R T T
<3 . ot + o+ + + . F +
R e BT
E + T Ry +¢+++ T F
: vt o4 T T T+
Q 0.6/ WAL 44t bt
* | . ¥+ + 4 s 4 o+
W r U + ++ + o+ +
+ 4+ ++ ++ Tt F + o+
+ n + T + + 4+t
= 4 + o4y T - +
1) 4+ £ + ++H + bt
ot +
04 B EF e L0 0
. + o+, 4T £+
4 Tt o JEaR vt
. A S +
b
o+ +
+ +
Q Ly e tAs Tvh * ++++ M
21 T + + 1 + +
D T S T
T + #+ e+ +++¢
STy N + +¢ T
otT e AETREN s
#*{* 3 *«t&
0 ﬁ&%ﬁwwwqmw *}

0 02 04 06 08 1
Dimension 3

Figure 37 Outlying aspect of object 315 (Synth_10D)

Mining Outlying Aspects with Real Data Sets

We use the same UCI data set (Bache et al.

the effectiveness of OAMiner.

Table 27 UCI data set characteristics

, 2013) in section 5.1.4 for measuring
Again non-numerical attributes and all records that are
missing values were removed from the data sets. Data set statistics is shown in Table 27.

of # of
Data Set Objects Attributes
Breast Cancer 194 33
Climate Model 540 18
Concrete Slump 103 10
Parkinson’s 195 22
Wine 178 13

Figure 38 shows the distributions of the best outlyingness ranks for the UCI data

set. The best rank values are small for most objects, meaning most objects are ranked

well in some subspaces.

114

Breast Cancer Climate Model Concrete Slump

60 500 50
50 400 40
3 40 38 38
2 8300 B30/
< 30 S <
s “5 200 5 20t
2 20 ET I
10 100 10 I
. oMM Il|| el
: 50 62 12345678 111213 15 15 20 24
Qutlyingness rank Outlyingness rank Outlymgness rank
Parkinson’s Wine
30 35
25 30
§ 20 § 23
215 g2
(=] (=]
[a 15-
a a
*= 10 H= 10+
1 | ||III|
||||||| |II||I1IIIII.[I[I ML nn 0 .IIIIII.III. 1.0 n -
60 74 37
Outlymgness rank

Outlymgness rank
Figure 38 Distribution of outlyingness ranks: UCI (£ = 5)

Figure 39 shows the distributions of the number of minimal outlying subspaces

where the objects achieve the best outlyingness ranks (i.e. outlying aspects). For most
objects, the number of outlying aspects is small, indicating that most objects can be

distinguished from others by a small number of factors.

115

Breast Cancer Climate Model Concrete Slump

100 120 80
80 100 6
2 2 80 2
2, 60 2 g
5 < 60 40
S 40 5 5
S w 40] * .
20 ||. 20
0- i-m-m 0 0
1 5 10 15 20 25 >30 15 10 15 20 25 30 35 >35 1 2 3 4.5 6 8
of outlying aspects # of outlying aspects # of outlying aspects
Parkinson’s Wine
W 140+ ,
120 120
= 100 = 100;
153 9
= 80 -2 80
=] =]
“ 60 “ 60
B3 40 £ 40!
20 20 I
LI FP n 0 |
510 15 20 >30 1234567 9 26
of outlying aspects # of outlying aspects

Figure 39 Distribution of # of outlying aspects: UCI (£ = 5)

Table 28 exhibits the mining results of 0AMiner when £ = 4,5, 6. As the value of £
increases, the average outlyingness rank decreases while the average number of outlying
aspects as well as the average dimensionality increases. It can be observed that more
outlying aspects can be found as the number of attributes and the objects increases; for

example, the average number of outlying aspects found for the breast cancer data is the

largest.

116

Table 28 Sensitivity of OAMiner effectiveness with respect to £ (UCI)

Dataset | ¢ Outlyingness Rank | # of Outlying Aspects Dimensionality
Min. | Max. | Avg. | Min. | Max. Avg. Min. | Max. | Avg.
Breast 4 1 70| 8.04 1 232 9.57 1 4| 3.47
cancer 5 1 62| 7.74 1| 2,478 | 43.37 1 5| 4.67
6 1 56 | 7.57 1]11,681 |243.10 1 6| 5.77
. 4 1 33| 1.97 1 30 4.57 1 4| 3.65
C,\I,:E,n da;f 5 1| 15| 1.45 1 78| 10.18 1 5| 4.43
6 1 15| 1.28 1 149 | 16.97 1 6| 5.07
Concrete 4 1 27 | 4.67 1 8 1.56 1 4| 2.38
Slump 5 1 24 | 4.44 1 8 1.64 1 5| 2.59
6 1 24| 441 1 8 1.65 1 6| 2.66
4 1 74| 12.13 1 156 4.20 1 4| 3.25
Parkinson’s | 5 1 74| 11.51 1 400 7.63 1 5] 4.09
6 1 74| 11.33 1 889 | 14.30 1 6| 5.01
4 1 37| 7.65 1 26 1.49 1 4| 2.66
Wine 5 1 37| 7.47 1 26 1.59 1 5| 2.96
6 1 37| 7.46 1 26 1.66 1 6| 3.09

Mining Outlying Aspects with NBA Data Sets

To evaluate the usefulness of outlying aspect mining, we analyze outlying aspects

of some NBA players in detail. We first investigate the outlying aspects of all NBA guards,

forwards and centres in the 2012-2013 Season. The technical statistics for 20 numerical

attributes were collected from http://sports.yahoo.com/nba/stats/.

Table 29 lists the

names of dimensions and Table 30 the data set characteristics. The data for centres for

3-Points are removed since the statistics for most centres are 0.

Table 29 NBA 20 data dimensions

1: Game played

6: 3-Paints (M)

11: Free throw (Pct)

16: Turnover

2: Minutes

7: 3-Points (A)

12: Rebounds (Off)

17: Steal

3: Field goal (M)

8: 3-Paints (Pct)

13: Rebounds (Def)

18: Block

4: Field goal (A)

9: Free throw (M)

14: Rebounds (Tot)

19: Personal foul

5: Field goal (Pct) 10: Free throw (A) | 15: Assist 20: Points/game
Table 30 NBA data set characteristics
of # of
Data set Objects Attributes
Guards 220 20
Forwards 160 20
Centres 46 17

117

http://sports.yahoo.com/nba/stats/

Figure 40 shows the distributions of the best outlyingness ranks for the NBA data
set. Consistent with the UCI data set findings, the best rank values are small for most
objects; for example, 90 guards (40.9%), 81 forwards (50.6%) and 32 centres (69.6%)
have an outlying rank of 5 or better (i.e. smaller rank values). This means most players
have some subspaces where they are substantially different from the others; justifying the

need for outlying aspect mining.

Guards Forwards Centres
30 30y
25 25
220 220/ 210}
2 .2, .2,
215 g 15 i)
3 B B
2 10 2 10/ w 5
[Ul
L1 ol II“ I|Ill|ll L bes (1] mm]
1 20 40 60 2 47 123456789 13
Outlyingness rank Out]ymgness rank Qutlyingness rank

Figure 40 Distributions of outlyingness ranks: NBA (£ = 5)

Figure 41 shows the distributions of the number of outlying aspects. Again,

consistent with the UCI data set results, for most objects, the number of outlying aspects

is small. For example, 150 (68.2%) guards have only 1 outlying aspect.

Guards Forwards Centres
150 20— 8

100 20
2100 2 80 2

2 .2 215
2 2 60)

s s 510
+ 30 4w+ 40 B

20| 5

0 0 - 0

12345 7 910 >25 12345678 10 12 >15 12345 7.9 1112131415
of outlying aspects

of outlying aspects # of outlying aspects

Figure 41 Distribution of # of outlying aspects: NBA (£ = 5)

Table 31 exhibits the mining results of OAMiner when £ = 4,5,6. Similar to the
observations made with the UCI data set, the average number of outlying aspects and the

average dimensionality increases along with the value of ¢, whereas the average

118

outlyingness rank decreases. This observation is coherent with the well-known fact that
probability density tends to be low in subspaces of higher dimensionality since such

subspaces often have a larger volume and thus sparser.

Table 31 Sensitivity of OAMiner effectiveness with respect to £ (NBA)

. # of Outlying Dimensionality
Data set | ¢ Outlyingness Rank Aspects
Min. | Max. | Avg. | Min. | Max. | Avg. | Min. | Max. | Avg.

4 1 72 | 13.94 1 49 | 2.02 1 4| 2.79
Guards |5 1 72| 13.70 1 111 | 3.05 1 5| 3.68
6 1 72 | 13.50 1 359 | 5.67 1 6| 4.83
4 1 48 | 8.79 1 40 | 2.24 1 4| 2.77
Forwards | 5 1 47 | 8.54 1 41| 2.37 1 5| 3.13
6 1 46 | 8.43 1 71| 2.98 1 6| 3.77
4 1 13| 3.70 1 15| 3.28 1 4| 2.74
Centres | 5 1 13| 3.57 1 15| 3.65 1 5| 3.08
6 1 13| 3.54 1 18| 3.61 1 6| 3.23

A player receives a good outlyingness rank (i.e. a small rank value) in a subspace
if very few other players are close to him. Table 32 lists 10 guards who have the largest
number of rank 1 outlying aspects where £ = 3. Dimensions in Table 32 corresponds to
the serial numbers in Table 29. Two types of reasoning can be made as to why certain
objects stand out in some subspaces. One is there are not enough comparable statistics
for the objects in any subspace; another is there are enough statistics and these objects

are truly unique by the characteristics these subspaces represent.

Table 32 Guards with most rank 1 outlying aspects

Name Outlying Aspect (£ = 3)
{1}, {12}, {14}, {2,17}, {3,4}, {3,13}, {4,17}, {5,8}, {5,11},
Quentin Richardson | {5,13}, {13,17}, {13,20}, {2,3,16}, {2,4,5}, {2,5,6}, {2,5,7},
{2,5,9}, {4,5,7}
: {2,5}, {5,8}, {5,11}, {5,12}, {5,13}, {5,14}, {5,16}, {4,5,6},
Will Conroy {4.5,9}, {4.5,10}, {4,5.7}, {4.5.19}, {5.6,7}, {5.7.9}
Brandon Rush {5}, {1,19}, {2,19}, {17,19}
Ricky Rubio {3,173}, {7,17}, {16,17}, {17,20}
Rajon Rondo {15}, {16}, {1,17}, {1,2,20}
Scott Machado {19}, {2,16}, {5,8,18}
Kobe Bryant {3}, {4}, {20}
Jamal Crawford {19,20}, {4,19}, {2,3,19}
James Harden {9}, {10}
Stephen Curry {6}, {7}

119

The first several players in Table 32 are not well known and their outlyingness

ranks are due to the fact that no other players have similar statistics. For example:

Quentin Richardson played only one game during which he did well at rebounds
but poorly at field goal;

Will Conroy played four games and his performance for shooting was poor;
Brandon Rush played two games and his number of personal fouls is large;
Ricky Rubio performed well at stealing;

Rajon Rondo assisted well but his statistics for turnover is large;

Scott Machado played 6 games and did not make any personal fouls.

The remaining 4 players are famous and their overall performance in every aspect

is much better than most other guards. For example:

Kobe Bryant excels at scoring;
Jamal Crawford has very low personal fouls;
James Harden excels at free throw;

Stephen Curry leads in 3-points scoring.

Table 33 lists guards who were not ranked well in any subspace; in other words,

they do not stand out in any particular subspace.

Table 33 Guards with poor ranks in outlying aspects

Outlyingness Nam Outlying Aspect
Rank

72 Terence Rose | {11}

70 E’'Twaun Moore | {18}

69 C.J. Watson {8,12,13,14,18}

61 Jerryd Bayless | {2,3,4,19,20}

58 Nando De Colo | {1,2}, {3,4,5,11,20}

56 Alec Burks {2,9,10,11}
Rodrigue {1,2,8,11,15}

55 .
Beaubois

52 Marco Belinelli | {9,10,12}

49 Aaron Brooks | {2,3,5,7,16}

48 Nick Young {1,3,16,18,20}

Although subspace outlier detection is fundamentally different from outlying aspect

mining, the results of subspace outlier ranking can be utilized to verify the discovered

120

outlying aspects. Specifically, we take the objects that are ranked the best by either HiCS
(Keller et al., 2012) or SOD (Kriegel et al., 200) and determine their outlyingness ranks for

comparison.

Since HiCS randomly selects subspace slices, we ran it 3 times independently on
each data set with the default parameters. The parameter for the number of nearest
neighbours in both HiCS and SOD was varied across 5, 10 and 20, and the best ranks were
reported. In SOD, the parameter [which specifies the size of the reference sets cannot
be larger than the number of nearest neighbours, as such, we set it to the number of

nearest neighbours for our experimentation.

Table 34 shows the results. ranky; means the ranks computed by HiCS, ranks,p

the ranks computed by SOD and rankg the outlyingness rank computed by OAMiner.

Table 34 Comparison of ranky;, rankggp, rankg

Position Name ranky, | ranksop | rankg (# of Outlying
Aspects)
Quentin 1 1 1(54)
Guard Richardson 1 9 1(3)
Kobe Bryant 32 1 1(4)
Brandon Ray

Carmelo Anthony 1 5 1(26)
Forward Kevin Love 3 1 1(41)
Centre Dwight Howard 1 2 1(15)
Andrew Bogut 10 1 1(9)

The results show that every player ranked top with either HiCS or SOD has some
outlying aspects where he is ranked number 1. The rankings produced by OAMiner match
those either by HiCS or SOD, although the results by HiCS and SOD are not consistent with
each other except for Quentin Richardson.

Efficiency

Once again, to the best of our knowledge, there is no previous method addressing
the efficiency of the same mining problem. As such, we will evaluate the efficiency of
OAMiner and its variations; that is, comparisons amongst baseline (Algorithm 1 with
Pruning Rule 1), OAMiner-part (the version that does not use bounds), and OAMiner-full

(the version that uses all techniques).

121

The same synthetic data set provided by Keller et al. (2012) was used. The set
consists of 1,000 data objects and the dimensionality is 50. 10 data points (non-outliers)
were randomly chosen as query objects and the average runtime was reported. For all 3

variations, £ = 5 and for OAMiner-full, @ = 1.0.

Figure 42 shows the runtime (on logarithm scale) with respect to data set size. As
expected, the baseline method is time consuming. The pruning techniques can achieve
a roughly linear runtime; both part and full versions of OAMiner are substantially faster

than the baseline and full is more efficient than part.

) 105(/ -©-Baseline
;8/ -+-OAMiner-part
g —(OAMiner-full
§ 104— ————— U +
80 AT
2 4o
3 L L
I %00 500 800 1000

Data set size
Figure 42 Runtime with respect to Data Set Size
Figure 43 shows the runtime (on logarithm scale) with respect to dimensionality.
As expected, as the dimensionality increases, the runtime increases exponentially. The

pruning technigues can achieve a roughly linear runtime; both part and full versions of

OAMiner are substantially faster than the baseline and full is more efficient than part.

122

Avg. runtime (sec)
=

1 02 -©-Baseline |
-+-OAMiner-part
- 0OAMiner-full
10, ‘ ‘
20 30 40 50

Data set dimensionality

Figure 43 Runtime with respect to Dimensionality

Figure 44 shows the runtime (on logarithm scale) with respect to maximum
dimensionality threshold (£). As the value of ¢ increases, the more subspaces are
enumerated and thus the runtime increases. The pruning techniques can achieve a
roughly linear runtime in practice; both part and full versions of OAMiner are substantially

faster than the baseline and full is more efficient than part.

-6-Baseline
-+-OAMiner-part ||
-#-0OAMiner-full

Avg. runtime (sec)
=

3 4 5 6
Maximum dimensionality threshold

Figure 44 Runtime with respect to ¢

Using the real data sets (both UCI and NBA), the efficiency of 0AMiner has been

tested against the outlyingness of the query object. Figure 45 shows the runtime with

123

respect to outlyingness rank of the query object. The runtime is proportional to the

outlyingness rank of the query object.

Breast Cancer (UCI)

100

Runtime (sec)

207

1 10 20 30 40 50 62
Rank

Parkinson’s (UCI)

Runtime (sec)

60 80
Guards (NBA)
8
56 °
W
Nh
g4
£
e 2
0
1 20 40 60 80

—
(=1

=]

Runtime (sec)
f=23

Climate Model (UCI)

0.3
0.25

=
bo

Runtime (sec)
e
@

Concreate Slump (UCI)

¥ 0.1
4 ¢ a a o o
0.05 2 ’_2 @
2 0
1 5 10 15 1 5 10 15 20 25
Rank Rai
Wine (UCI)

0.6
~_ o
Q 3
@ o
Z
Q
£
R~ 200
iy

021

O 0 200 30 40

Rank
Forwards (NBA) Centres (NBA)

6 0.5
’5‘5 504 .
g4 2 |
N 05" ;’0.3
o
£’ E 0.2
g=] = 0. °
g2, 5 .
& 1 0.1} °

ok 0

30 40 50 1 5 10 15

Figure 45 Runtime with respect to Outlyingness Rank

Not surprisingly, the objects with large outlyingness rank cost more runtime since

OAMiner prunes subspaces based on the rank of the query object by means of either
Pruning Rule 1 or Pruning Rule 2.

124

Finally, the sensitivity of the parameter a« for bounding quasi-density has been

tested with varying values of «. The value of a sets the e-neighbourhood distance. Table

35 lists the average runtime of OAMiner for each data set.

Table 35 Average Runtime of OAMiner with respect to a

Data Set

Average Runtime (second)

a=0.6 a=0.8 a=1.0 a=1.2 a=14
Guards 4.459 4.234 4.213 4.303 4.315
Forwards 2.810 2.519 2.424 2.418 2.413
Centres 0.260 0.234 0.216 0.212 0.220
Breast Cancer 58.476 58.228 57.927 57.613 57.982
Climate Model 6.334 6.268 6.339 6.253 6.410
Concrete Slump 0.047 0.044 0.044 0.045 0.045
Parkinson’s 6.164 6.154 6.083 6.218 6.243
Wine 0.351 0.341 0.339 0.344 0.350

The runtime of OAMiner is not sensitive to ¢ in general.

shortest runtime of OAMiner is achieved when « is in [0.8,1.2].

125

Experimentally, the

Chapter 6.
Conclusion

In this thesis, we explored a multitude of techniques applicable to multidimensional

benchmarking.

Benchmarking is an important business practice which sets organizations’
performance improvement targets by comparing them to others and identifying areas
where the performance gaps exist. While in practice many organizations limit their
benchmarking scope to the numerical quantification of performance gaps (e.g. company
A’s service level is 15% below the benchmark), it is well recognized that quantitative
benchmarking alone does not help organizations actually achieve performance
improvement. In order to improve performance, organizations need to understand the key
drivers for the gaps. Why then do organizations not take more qualitative approach? ltis
because, in the author’s opinion, qualitative measures are difficult to model. In this thesis,
we claimed that multidimensional analysis approach can be used as a step towards more

gualitative benchmarking.

Existing multidimensional benchmarking methods build upon economic efficiency
analysis, such as, frontier models which estimate the ability of a producer to produce
maximum output from a given set of inputs. Chapter 2 presented two representative
methods of the model; stochastic frontier production function and data envelopment
analysis. The chapter also briefly touched on non-systematic proprietary approach

including Gartner Magic Quadrant and Forrester Wave.

Despite that the main concern of multidimensional benchmarking is to consider
multiple dimensions simultaneously, to the best of the author’'s knowledge, there are no
notable techniques in the industry which take advantage of data warehouses (i.e.
multidimensional databases) and associated computational algorithms. The key ideas
presented in this thesis aim to expand the scope of multidimensional benchmarking by
leveraging data warehousing and business intelligence, outlier detection in data

warehouses, and subspace analysis:

126

Identifying significant benchmarks efficiently in data warehouses (Chapter 3).
Rather than comparing organizations to “any” population, it is more
meaningful to compare them to the population that renders the largest
performance gap (i.e. a significant benchmark). Finding significant benchmarks
only without looking at everything in the data warehouse that constitutes a
population requires an efficient computational approach. We developed 2 efficient
methods: SIIC/SIICP and DAM. DAM outperforms SIIC/SIICP because it only

stores and searches the dominant answers in the quotient groups.

Detecting outliers in data warehouses as a basis for multidimensional

benchmarking (Chapter 4).

When organizations conduct benchmarking, they are mainly concerned
with identifying areas for performance improvement; that is, areas where their
performance is out of the norm. To this end, we claim that finding outliers in a data
warehouse lends itself to viable multidimensional benchmarking. By employing
outlier detection techniques, we find what drives organizations to deviate from the
norm (i.e. benchmarks). We defined two types of outliers: type-I (organization is
an outlier because a small number of underlying units are outliers) and type-Il (a
majority of them are outliers). Since this it is to look into the makeup of self, we

referred to the technique developed in this chapter as “reflective benchmarking”.

Identifying contexts in which organizations are significant outliers (Chapter 5).

In this last chapter, we draw our attention to defining the contexts (or
subspaces) in which organizations perform most exceptionally (positively or
negatively), the primary benefit of multidimensional benchmarking for presenting
key drivers for performance gaps. We defined two types of subspaces: contrast
subspace and outlying aspect. A contrast subspace is a subspace in which an
organization is most similar to a group of organizations while it is most different
from another group. This is essentially a model selection problem where one of
the two models must be selected on the basis of observed data. Outlying aspect
is a subspace where an organization outlies most. To identify outlying aspects,

we used rank statistics to compare different subspaces.

127

While multidimensional benchmarking for computational performance efficiency
(i.e. CPU, I/O bandwidth, etc.) is well defined and research materials abundantly available,
the counterpart in business performance management somewhat lacks in rigor in
definitions and systematic methods. This thesis attempted to provide technical definitions
along with more objective and methodical approach to multidimensional benchmarking in
the business setting. The thesis focused on establishing technical foundation for
multidimensional benchmarking and demonstrating the effectiveness and the efficiency of
the techniques devised. These technigques can be applied to a variety of benchmarking
scenarios to supplement quantitative benchmarking. Once numerical performance gaps
are shown through quantitative benchmarking, the techniques proposed in this thesis can
be employed as a next step to identify factors that are driving the gaps or contexts in which
the gaps are most significant. These factors or contexts will then become the focal areas
in which improvement programs can be created to boost performance. Primary
contributions made in the thesis are:

1. Modeling

We have claimed that organizations do not conduct qualitative benchmarking because
gualitative measures are difficult to model because measures cannot be single
numerical values. To this end, we technically modelled qualitative measures including
significant benchmarks, reflection, contrast subspace, and outlying aspect.

2. Computational Efficiency

When multiple dimensions are incorporated into analysis, computational efficiency
needs to be a consideration due to the well known curse of dimensionality. The time
complexity tends to be np-hard. We devised practical heuristics using bounding,
pruning, and refining methods. Through experimental results, we showed that our
methods are effective and efficient.

3. Application Impact

If some of the ideas proposed in this thesis are commercialized in a form of a business
application, organizations can conduct qualitative benchmarking in a systematic and
objective manner. To the best of the author’s knowledge, there is no such application
in business today. In view of the fact that benchmarking is so common, such an
application can make a significant impact on business.

128

6.1. Future Directions

Business intelligence applications, such as, multidimensional benchmarking
analysis should be interactive by providing summary, drill-down and what-if scenario
capabilities. Such applications should take user feedback intelligently, allowing ad-hoc
inputs, and enable users to navigate and analyze data, memorizing insights to allow
informed decision making. In chapter 3, we defined a benchmark query whereby the
performance of a query object with selected properties (i.e. UID attributes) can be
compared to the performance of others with the same properties in certain aspects (i.e.
combinations of DIM attributes). If the application is to become interactive, the ability to
change query properties and aspects on the fly needs to be considered. This type of user
interaction can be enabled by allowing benchmark queries at different levels of
aggregation hierarchy and reusing the assets already built for techniques, such as, DAM
and SIIC. For example, a query object’s properties may be age-group and gender (e.g.
young males) initially but the user later on wishes to see what the performance gap may
look like if he/she removed age-group from the properties such that the query object is
now all males. Since the aggregate group, all males, is an ancestor of the aggregate
group, young males, DAM can still answer this revised benchmark query efficiently without
re-materializing or re-indexing. This applies to other scenarios where attributes are

removed from or added to properties (UID) and/or aspects (DIM).

To support what-if scenarios, data mining techniques should be incorporated such
that queries, such as, “If we enhanced the education levels of my young male staff, how

much sales volume increase can we expect?” can be answered.

Finally, in the author's opinion, among the most significant challenges for
multidimensional benchmarking is the intuitive representation of query results. If the
techniques developed in this thesis were to be adopted as a common practice in business,
the results must be easily understandable. To this end, an effective data visualization
approach should be considered with the goal to analyze vast amounts of multidimensional
data to visually distill the most valuable and relevant information content. The visual
representation should reveal relevant data properties for easy perception by the analyst.

An appropriate user interface should be developed such that analysts can focus on tasks

129

at hand, as such, the interfaces should not be overly technical or complex. Visually
representing multidimensional data on a 2-dimensional plane is a challenge. Existing
multidimensional data representations tend to be somewhat technical requiring users to
have some statistics background. To address this, interaction techniques which support
seamless and intuitive visual communication between the users and the system should

be developed.

130

References

I. A. Ajibefun

"An Evaluation of Parametric and Non-Parametric Methods of Technical
Efficiency Measurement: Application to Small Scale Food Crop Producton in
Nigeria," Journal of Agriculture & Social Sciences, ISSN Print: 1813-2235, 2008.

C. Aggarwal
Ouitlier Analysis, Springer, 2013.
C. Aggarwal, N. Ta, J. Wang, J. Feng and M. J. Zaki

"Xproj: A Framework for Projected Structural Clustering of XML Documents," in
ACM KDD, 2007.

C. Aggarwal and P. S. Yu

"Outlier detection for high dimensional data," in ACM Sigmod Record, ACM, vol
30, pp 37-46, 2001.

C. Aggarwal and P. S. Yu

"Online Analysis of Community Evolution in Data Streams," in SDM, 2005.
C. Aggarwal, Y. Zhao and P. S. Yu

"Outlier Detection in Graph Streams," in ICDE Conference, 2011.
R. Aggarwal and R. Srikant

"Fast algorithms for mining association rules," in Proceedings of the 20™
International Conference on Very Large Data Bases, VLDB, pp 487-499, 1994.

L. Akoglu, M. McGlohon and C. Faloutsos

"OddBall: Spotting Anomalies in Weighted Graphs," PAKDD’10 Proceedings of
the 14th Pacific-Asia conference on Advances in Knowledge Discovery and Data
Mining, vol. Part Il, pp. 410-421, 2010.

S. Albrecht, J. Busch, M. Kloppenburg, F. Metze and P. Tavan

"Generalized radial basis function networks for classification and novelty
detection: self-organization of optimal Bayesian decision," Neural Networks, vol.
13, pp. 1075-1093, 2003.

American Productivity and Quality Center
"What is best practice?," 1999. [Online]. Available: http://www.apqc.org.
F. Anguilli, F. Fassetti and L. Palopoli

"Detecting outlying properties of exceptional objects,” ACM Trans Database Syst
34(1):7:1-7:62, 2009.

F. Anguilli, F. Fassetti, L. Palopoli and G. Manco

"Outlying property detection with numerical attributes,” CoRR abs/1306.3558,
2013.

131

M. Augusteijn and B. Folkert

"Neural network classification and novelty detection," International Journal on
Remote Sensing, 2002.

K. Bache and M. Lichman
UCI machine learning repository, 2013.
D. Baldry, V. Koss and D. Wyatt

"Building Global Card-Issuing Capabilities: A Multi-Dimensional Benchmarking
Approach," Booz & Company, 2009.

S.D. Bay and M. J. Pazzani

"Detecting group differences: Mining contrast sets," Data Mining and Knowledge
Discovery 5(3):213-246, 2001.

|. Ben-Gal

Data Mining and Knowledge Discovery Handbook: A Complete Guide for
Practitioners and Researchers, Kluwer Academic Publishers, 2005.

K. Beyer and R. Ramakrishnan

"Bottom-up computation of sparse and iceberg cubes" in Proceedings of ACM-
SIGMOD International Conference on Management of Data, pp 359-370, 1999.

K. Beyer, J. Goldstein, R. Ramakrishnan and U. Shaft

"When is the “nearest neighbor” meaningful?" in Proceedings of the 7™
International Conference on Database Theory, pp 217-235, 1999.

K. Bhaduri, B. L. Matthews and C. R. Giannella

"Algorithms for speeding up distance-based outlier detection," in Proceedings of
the 17" ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD, pp 859-867, 2011.

C. M. Bishop

"Novelty detection and Neural Network validation," in IEE Conference on Vision,
Image and Signal Processing, 1994.

C. E. Bogan and M. J. English

"Benchmarking for best practices: winning through innovative adaptation,"”
McGraw-Hill, New York, 1994.

K. Bohm, F. Keller, E. Muller, H.V. Nguyen and J. Vreeken

"CMI: An information-theoretic contrast measure for enhancing subspace cluster
and outlier detection," in Proceedings of the 13™ SIAM International Conference
on Data Mining, SDM, pp 198-206, 2013.

D. Breiter and S. Kline

"Benchmarking quality management in hotels,” FIU Hospitality Review, 13(2), 45
52, 1995.

M. Breunig, H. P. Kriegel, R. Ng and J. Sander

132

"LOF: Identifying Density-based Local Outliers," in ACM SIGMOD, 2000.

L. Breiman, W. Meisel and E. Purcell

"Variable kernel estimates of multivariate densities," Technometrics 19(2), 135-
144, 1977.

C. E. Brodley and M. A. Fried|

"ldentifying and Eliminating Mislabeled Training Instances," Journal of Artificial
Intelligence Research, vol. 11, pp. 131-167, 1996.

Y. Cai, H. K. Zhao, H. Han, R. Y. K. Lau, H. F. Leung and H. Min

"Answering typicality query based on automatically prototype construction," in
Proceedings of the 2012 IEEE/WIC/ACM International Join Conference on Web
Intelligence and Intelligent Agent Technology, Volume 01, pp 362-366, 2012.

R. Camp

“Benchmarking: the Search for Industry Best Practices that Leads to Superior
Performance,” ASQC Quality Pres, Milwaukee, Wisconsin, 1989.

A. Campbell

“Outlier Detection: A Survey of Methods and Applications to Healthcare,” PhD
Depth Examination, School of Computing Science, Simon Fraser University,
2014.

Canadian Institute for Health Information

"National Health Expenditure Trends, 1975 to 2013," 2013.
Carbon Dioxide Information Analysis Centre (CDIAC)

2015 [Online]. Availble: http://cdiac.ornl.gov/ftp/ndp026b/.
G. A. Carpenter and S. Grossberg

"The ART of adaptive pattern recognition by a self-organising neural network,"
IEEE Computer, vol. 21, pp. 77-88, 1988.

D. Chakrabarti

"AutoPart: Parameter-Free Graph Partitioning," in PKDD, 2004.
V. Chandola, A. Banerjee and V. Kumar

"Anomaly detection: A survey," ACM Comput Surv, 41(3):15:1-15:58, 2009.
P. Chebyshev

"Sur les valeurs limites des integrales," Imprimerie de Gauthier-Villars, 1874.
Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin

"Pnp: Sequential, external memory, and parallel iceberg cube computation,” in
Distributed Parallel Databases, 23(2):99-126, 2008.

L. Chen and G. Dong

133

"Masquerader detection using OCLEP: One class classification using length
statistics of emerging patters," in Proceedings of International Workshop on
INformation Processing over Evoving Networks (WINPEN), p 5, 2006.

C. Chen, X. Yan, F. Zhu, J. Han, and P.S. Yu

"Graph OLAP: A multi-dimensional framework for graph data analysis,"
Knowledge Information Systems, 21(1):41-63, 2009.

W. Cohen
"Fast Effective Rule Induction," in Machine Learning, Lake Tahoe, 1995.
. Cook

"Practical Benchmarking: a Manager’s Guide to Creating a Competitive
Advantage," Kogan Page, London, 1995.

. Cox and I. Thompson

"On the appropriateness of benchmarking," Journal of General Management,
23(3), 1 20, 1998.

. Crook and G. Hayes

"A robot implementation of a biologically inspired method for novelty detection,"
in Towards Intelligent Mobile Robots, 2001.

. Cross and P. Leonard

"Benchmarking: a strategic and tactical prespective," in Date, B.G (ed.),
Managing Quality, 2" edn, Prentice Hall, New Jersey, 497 513, 1994.

. Das and J. Schneider

"Detecting Anomalous Records in Categorical Datasets," in KDD, San Jose,
2007.

. Davies
"Benchmarking," Total Quality Management, 309 10, 1990.
. Dong, J. Han, J.M.W. Lam, J. Pei, and K. Wang

"Mining multi-dimensional constrained gradients in data cubes," in Proceedings
of the 27" International Conference on Very Large Data Bases, VLDB ‘01, pp
321-330, 2001.

. Dong, J. Han, J.M.W. Lam, J. Pei, K. Wang and W. Zou

"Mining Constrained Gradients in Large Databases," IEEE Transactions on
Knowledge and Data Engineering, Volume 16, Number 8, pages 922-938, 2005.

. Dong and J. Bailey

"Contrast Data Mining: Concepts, Algorithms, and Applications,” CRC Press,
2013.

. Dong and J. Li

134

"Efficient mining of emerging patterns: discovering trends and differences," in
Proceedings of the 5™ ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD, pp 43-52, 1999.

L. Duan, G. Tang, J. Pei, J. Bailey, G. Dong, A. Campbell and C. Tang

"Mining Contrast Subspaces," in Pacific-Asia Conference on Knowledge
Discovery and Data Mining, Taiwan, 2014.

L. Duan, G. Tang, J. Pei, J. Bailey, A. Campbell and C. Tang
"Mining Outlying Aspects on Numeric Data," in ECML/PKDD, 2014.
N. Duforet-Frebourg and M. G. B. Blum

"Bayesian Matrix Factorization for Outlier Detection: An Application in Population
Genetics," Springer Proceedings in Mathematics & Statistics, vol. 63, pp. 143-
147, 2014.

W. Eberle and L. B. Holder
"Mining for Structural Anomalies in Graph-based Data," in DMIN, 2007.
E. Eskin, A. Arnold, M. Prerau, L. Portnoy and S. Stolfo

"A geometric framework for unsupervised anomaly detection: Detecting
intrusions in unlabeled data," in Aplications of Data Mining in Computer Security,
6:77-102, 2002.

M. Ester, H. Kriegel, J. Sander and X. Xu

"A density-based algorithm for discovering clusters in large spatial databases
with noise," in Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD-96), 1996.

R. Fagin, R. Kumar and D. Sivakumar

"Comparing top k lists," In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, PA, pp 28-36, 2003.

C. Faloutsos, F. Korn, A. Labrinidis, Y. Kotidis, A. Kaplunovich and D. Perkovic

"Quantifiable Data Mining Using Principal Component Analysis," Institute for
Systems Research, University of Maryland, College Park, MD, 1996.

Forrester

"THE FORRESTER WEVE METHODOLOGY GUIDE ," 2015. [Online]. Available:
https://www.forrester.com/marketing/policies/forrester-wave-methodology.html.

J. Gao, H. Cheng and P. N. Tan

"A Novel Framework for Incorporating Labeled Examples into Anomaly
Detection," in SIAM International Conference on Data Mining, 2006.

J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun and J. Han

"On Community Outliers and their Efficient Detection in Information Networks," in
KDD, Washington, 2010.

135

Gartner, Inc.

"Gartner Magic Quadrant,” 2015. [Online]. Availble:
http://lwww.gartner.com/technology/research/methodologies/research_mgq_.jsp.

B. Gerber

"Benchmarking: measuring yourself against the best," Training, November, 36
44, 1990.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow
and H. Pirahesh

"Data cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub-totals," in Data Mining Knowledge Discovery, 1(1):29-53, 1997.

H. P. Grinwald
"MDL Tutorial," 2010.
M. Gupta, J. Gao, Y. Sun and J. Han

"Integrating Community Matching and Outlier Detection for Mining Evolutionary
Community Outliers," in KDD, 2012.

J. Han, M. Kamber and J. Pei
Data Mining: Concepts and Technigues, Morgan Kaufmann, 2011.
J. Han, J. Pei, G. Dong, and K. Wang

"Efficient computation of iceberg cubes with complex measures,” in Proceedings
of the 2001 ACM SIGMOD International Conference on Management of Data,
SIGMOD’01, pages 1-12, 2001.

W. Hardle

Smoothing Technigues: With Implementation in S. Springer-Verlang, New York,
1990.

W. Hardle, A. Werwatz, M. Muller and S. Sperlich

Nonparametric and Semi-parametric Modelss, Springer Series in Statistics,
Springer, 2004.

V. Harinarayan, A. Rajaraman, and J. D. Ullman
"Implementing data cubes efficiently," in SIGMOD, 1996.
M. Hauskrecht, M. Valko, |. Batal, G. Clermont, S. Visweswaran and G. F. Cooper

"Conditional Outlier Detection for Clinical Alerting," in AMIA Annual Symposium,
2010.

D. Hawkins
Identification of Outliers, Chapman and Hall, 1980.
S. Hawkins, H. He, G. Williams and R. Baxter

"Outlier Detection Using Replicator Neural Networks," Data Warehousing and
Knowledge Discovery, vol. 2454, pp. 170-180, 2002.

136

http://www.gartner.com/technology/research/methodologies/research_mq.jsp

Z. He, P. Wong, B. Kao, E. Lo, and R. Cheng

"Fast evaluation of iceberg pattern-based aggregate queries," In Proceedings of
the 22"¥ ACM International Conference on Information and Knowledge
Management, pp. 2219-2224, 2013.

Z.He, X. Xu and S. Deng

"Discovering cluster-based outliers," Pattern Recognition Letters, vol. 24, no. 9-
10, 2003.

Z. He, X. Xu, J. Z. Huang and S. Deng

"A Frequent Pattern Discovery Method for Outlier Detection,” Springer-Verlag
Berlin Heidelberg, no. 3129, p. 26—732, 2004.

V. Hodge and J. Austin

"A Survey of Outlier Detection Methodologies," Artificial Intelligence Review, vol.
22, no. 2, pp. 85-126, 2004.

S. Holder, B. Veronese, P. Metcalfe, F. Mini, S. Carter and B. Basalisco

"Cost Benchmarking of Air Navigation Service Providers: A Stochastic Frontier
Analysis ," NERA Economic Consulting, London, UK, 2006.

J. Hu, F. Wang, J. Sun, R. Sorrentino and S. Ebadollahi

"A Healthcare Utilization Analysis Framework for Hot Spotting and Contextual
Anomaly Detection,” in American Medical Informatics Association Annual
Symposium, Chicago, 2012.

M. Hua, J. Pei and A. W. Fu

"Top-k typicality queries and efficient query answering methods on large
databases,” The VLDB Journal 18(3) 809-835, 2009.

IBNET

"BENCHMARKING METHODOLOGIES," [Online]. Availble: http://www.ib-
net.org/en/Benchmarking-Methodologies/PerformanceBenchmarking-
DataEnvelopAnalysis.php?L=6&S=2&ss=3, 2015.

IBS Centre for Management Research

"Xerox — The Benchmarking Story," [Online]. Availble:
http://www.icmrindia.org/free%20resources/casestudies/xerox-benchmarking-
1.htm, Case Code: OPERO012, 2006.

T. Imielinski, L. Khachiyan and A. Abdulghani

"Cubegrades: Generalizing association rules," Data Mining Knowledge
Discovery, 6(3): 219-257 2002.

R. Jacobs

"Alternative Methods to Examine Hospital Efficiency: Data Envelopment Analysis
and Stochastic Frontier Analysis," in Discussion Paper 177, The University of
York Centre for Health Economics, 2000.

A. Jagota

137

http://www.icmrindia.org/free%20resources/casestudies/xerox-benchmarking-1.htm
http://www.icmrindia.org/free%20resources/casestudies/xerox-benchmarking-1.htm

"Novelty detection on a very large number of memories stored in a Hopfield-style
network," in International Joint Conference on Neural Networks, 1991.

H. Jeffreys
"The Theory of Probability," 3™ Edition, Oxford, 1961.
T. Ji, D. Yang and J. Gao

"Incremental Local Evolutionary Outlier Detection for Dynamic Social Networks,"
Lecture Notes in Computer Science, Springer, vol. 8189, pp. 1-15, 2013.

Q. Jian, A. Campbell, G. Tang and J. Pei

"Multi-level Relationship Outlier Detection," International Journal of Business
Intelligence and Data Mining (IJBIDM), vol. 7, no. 4, pp. 253-273, 2012.

W. Jin, A. Tung and J. Han

"Mining Top-n Local Outliers in Large Databases," in ACM KDD, 2001.
W. Jin, A. Tung, J. Han and W. Wang

"Ranking outliers using symmetric neighborhood relationship," in PAKDD, 2006.
M. V. Joshi, R. Agarwal and V. Kumar

"Mining needle in a haystack: classifying rare classes via two-phase rule
induction," in ACM SIGMOD Record, volume 30, pages 91-102, 2001.

M. V. Joshi, R. Agarwal and V. Kumar

"Predicting rare classes: Can boosting make any weak learner strong?" in
Proceedings of the 8" ACM SIGMOD International Conference on Knowledge
Discovery and Data Mining, pages 297-306, 2002.

M. V. Joshi and V. Kumar

"CREDOS: Classification Using Ripple Down Structure," in SDM, 2004.
J. FL. Kay

"Health Care Benchmarking,” Medical Bulletin, VOL.12 NO.2, February 2007.
B. Karlof and S. Ostblom

"Benchmarking: a Signpost of Excellence in Quality and Productivity,” John Wiley
& Sons, Chichester, 1993.

F. Keller, E. Muller and K. Bohm

"HICS: High contrast subspaces for density-based outlier ranking,” ICDE 1037-
1048, 2012.

B. Kleine

"Benchmarking for continuous performance improvement: tactics for suces,"
Total Quality Environmental Management, Spring, 283 95, 1994.

E. Knorr and R. T. Ng

"Algorithms for Mining Distance-based Outliers in Large Datasets," in VLDB,
1998.

138

E. Knorr and R. T. Ng

"Finding intentional knowledge of distance-based outliers," in Proceedings of the
25" International Conference on Very Large Data Bases, VLDB, pp 211-222,
1999.

R. M. Konijn, W. Duivesteijn, W. Kowalczyk and A. J. Knobbe

"Discovering Local Subgroups, with an Application to Fraud Detection," Lecture
Notes in Computer Science, Springer, vol. 7818, pp. 1-12, 2013.

P. Kriegel, P. Kroger, E. Schubert and A. Zimek

"Ouitlier detection in axis-parallel subspace of high dimensional data,” PAKDD
‘09, pp 831-838, 2009.

P. Kriegel, M. Schubert and A. Zimek

"Angle-based outlier detection in high-dimensional data,” in Proceedings of the
14™ ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD, pp 444-452, 2008.

T. S. Kuhn

The Structure of Scientific Revolutions, Chicago: University of Chicago Press,
1962.

J. Kulmala

"APPROACHES TO BENCHMARKING,” Finnish Employers’ Management
Development Institute, FEMDI,
http:/imwww15.uta.filyksikot/entrenet/hankerekisteri’/hanke5_benchmarking.htm,
[accessed] 2015.

S. Kullback and R. Leibler
"On information and sifficiency," The Annals of Mathematical Statistics, 1951.
L.V.S. Lakshmanan, J. Pei and J. Han

"Quotient cube: How to summarize the semantics of a data cube," In
Proceedings of the 28" Internaltional Conference on Very Large Data Bases,
VLDB ‘02, pages 778-789, VLDB Endowment, 2002.

J. Li, K.-Y. Huang, J. Jin and J. Shi

"A survey on statistical methods for health care fraud detection,” Science +
Business Media, Springer, 2007.

E. Lo, B, Kao, W.S. Ho, S.D. Lee, C.K. Chui, and D.W. Cheung

"OLAP on sequence data," in Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD 08, pages 649-660,
2008.

Z. Long, A. Bakar and A. Raz

"Frequent Pattern using Multiple Attribute Value for Itemset Generation," in
Conference on Data Mining and Optimization, Selangor, 2011.

Z. Long, A. R. Hamdan and A. Bakar

139

http://www15.uta.fi/yksikot/entrenet/hankerekisteri/hanke5_benchmarking.htm

"Anomaly Based On Frequent-Outlier for Outbreak Detection in Public Health
Surveillance,” World Academy of Science, Engineering and Technology, vol. 7,
2013.

A. Lourenco, H. Silva, C. Carreiras and A. Fred

"Outlier Detection in Non-intrusive ECG Biometric System," Lecture Notes in
Computer Science, Springer, vol. 7950, pp. 43-52, 2013.

C. A. K. Lovell

"Frontier Analysis in Health Care," Department of Economics, University of
Georgia, Athens, GA 30602, USA, 2003

C. McNair and K. Leibfried

"Benchmarking; a Tool for Continuous Improvement,” Harper Business, New
York, 1992.

Microsoft

"Data Warehousing and OLAP," Technet Library, 2015 [Online]. Availble:
https://technet.microsoft.com/en-us/library/aa197903(v=sql.80).aspx.

J. Mour&o-Miranda, D. R. Hardoon, T. Hahn, A. F. Marquand, S. C. R. Williams, J.
Shawe-Taylor and M. Brammer

"Patient classification as an outlier detection problem: An application of the One-
Class Support Vector Machine," Neurolmage, no. 58, pp. 793-804, 2011.

E. Muller, I. Assent, P. Iglesias, Y. Mulle and K. Bohm

"Outlier ranking via subspace analysis in multiple view of the data,” ICDM ‘12,
pp529-538, 2012a.

E. Muller, F. Keller, S. Blanc and K. Bohm

"OutRules: A framework for outlier descriptions in multiple context spaces,”
ECML/PKDD (2), pp 828-832, 2012b.

E. Muller, M. Schiffer and T. Seidl

"Statistical selection of relevant subspace projections for outlier ranking,” in
Proceedings of the 27" IEEE International Conference on Data Engineering,
ICDE, pp 434-455, 2011.

A. Nairac, N. Townsend , R. Carr, S. King, P. Cowley and L. Tarassenko

"A system for the analysis of jet system vibration data," Integrated
ComputerAided Engineering, vol. 6, no. 1, p. 53 — 65, 1999.

R. T. Ng, A. Wagner, and Y. Yin

"Iceberg-cube computation with pc clusters," In Proceedings of the 2001 AM
SIGMOD International Conference on Management of Data, SIGMOD -01, pages
25 — 36, 2001.

M. Nguyen, E. Muller and J. Vreeken
"CMI: An information-theoretic contrast measure for enhancing subspace cluster
and outlier detection,” SDM 198-206, 2013.

140

C. Noble and D. Cook
"Graph-Based Anomaly Detection,” in SGKDD, Washington, 2003.
P. K. Novak, N. Lavrac and G. |. Webb

"Supervised descriptive rule discovery: A unifying survey of contrast set,
emerging pattern and subgroup mining," Journal of Machine Learning Research,
10:377-403, 2009.

Y. A. Ozcan

"Health Care Benchmarking and Performance Evaluation: An Assessment using
Data Envelopment Analysis (DEA)," International Series in Operational Research
& Management Science, Volume 210, Springer, 2008.

C.H. Papadimitriou and M. Yannakakis

"Optimization, approximation, and complexity classes," Journal of Computer and
System Sciences, 3(3):425-440, 1991.

R. Paravastu, H. Kumar and V. Pudi

"Uniqueness mining,” in Proceedings of the 13" International Conference on
Database Systems for Advanced Applications, DASFAA, pp 84-94, 2008.

C. Phua, D. Alahakoon and V. Lee

"Minority report in fraud detection: classification of skewed data,” in ACM
SIGKDD Explorations Newsletter, 6(1):50-59, 2004.

S. Ramaswamy, R. Rastogi and K. Shim

"Efficient algorithms for mining outliers from large data sets,” in Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data,
SIGMOD, pp 427-438, 2000.

R. Rymon

"Search through systematic set enumeration,” in Principle of Knowledge
Representation and Reasoning, 1992.

S. Sarawagi, R. Agrawal and N. Megiddo

"Discovery-driven exploration of OLAP data cubes," In Proceedings of the 6™
International Conference on Extending Database Technology: Advances in
Database Technology, EDBT ‘98, pages 168-182, 1998.

D. W. Scott

"Multivariate Density Estimation: Theory, Practice, and Visualization," Wiley
Series in Probability and Statistics, Wiley, New York, 1992.

Y. Shan, D. W. Murray and A. Sutinen

"Discovering inappropriate billings with local density based outlier detection
method," in The 8th Australasian Data Mining Conference, Melbourne, 2009.

H. D. Sherman and J. Zhu

141

"DATA ENVELOPMENT ANALYSIS EXPLAINED," Service Productivity
Management, Springer, XXII, 328p, 2006.

K. Singh and and S. Upadhyaya

"Outlier Detection: Applications And Techniques," International Journal of
Computer Science Issues, vol. 9, no. 1, 2012.

B. W. Silverman

"Density Estimation for Statistics and Data Analysis," Chapman and Hall/CRC,
1986.

M. C. Sokol, K. A. McGuigan, R. R. Verbrugge and R. S. Epstein

"Impact of Medication Adherence on Hospitalization Risk and Healthcare Cost,"
Medical Care, vol. 43, 2005.

|. Steinwart, D. Hush and C. Scovel

"A Classification Framework for Anomaly Detection," Journal of Machine
Learning Research, vol. 6, p. 211-232, 2005.

J. Sun, S. Papadimitriou, P. Yu and C. Faloutsos

"Graphscope:Parameter-free Mining of Large Time-Evolving Graphs," in KDD,
San Jose, 2007.

J. Sun, Y. Xie, H. Zhang and C. Faloutsos

"Less is More: Compact Matrix Representation of Large Sparse Graphs," in
SIAM Conference on Data Mining, 2007.

G. Tang, J. Bailey, J. Pei and G. Dong

"Mining multidimensional contextual outliers from categorical relational data,” in
Proceedings of the 25" International Conference on Scientific and Statistical
Database Management, SSDBM, pp 43:1-43:4, 2013.

D. M. Tax and R. P. Duin

"Support Vector Data Description,” Machine Learning, vol. 54, no. 1, p. 4566,
2004.

O. Taylor and D. Addison
"Novelty Detection Using Neural Network Technology,” in COMADEN, 2000.
J. Thongkam, G. Xu, Y. Zhang and F. Huang

"Support Vector Machine for Outlier Detection in Breast Cancer Survivability
Prediction," Lecture Notes in Computer Science, Springer, vol. 4977, pp. 99-109,
2008.

H. Tong and C. Y. Lin

"Non-Negative Residual Matrix Factorization with Application to Graph Anomaly
Detection," in SDM Conference, 2011.

TPC-H
Available: http://www.tpc.org/tpch/

142

R. Vilalta and S. Ma

"Predicting rare events in temporal domains,” In Proceedings of 2002 IEEE
International Conference on Data Mining, pages 474-481, 2002.

K. Vaziri

"Using competitive benchmarking to set goals," Quality Progress, October, 81 5,
1992.

N. Wale, X. Ning and G. Karypis
"Trends in Chemical Data Mining," in Managing and Mining Graph Data, 2010.
F. Wang, S. Chawla and D. Surian

"Latent Outlier Detection and the Low Precision Problem," in ODD'13, Chicago,
2013.

J. Wang, J. Han and J. Pei

"Closed Constrained-Gradient Mining in Retail Databases,” IEEE Transactions
on Knowledge and Data Engineering, Volume 18, Number 6, pages 764-769,
IEEE Computer Society, 2006

L. Wang, H. Zhao, H. Dong and G. Li

"On the complexity of finding emerging patterns,” Theoretical Computer Science,
335(1) 15-27, 2005.

G. Watson

"Strategic Benchmarking: How to Rate Your Company’s Performance Against the
World’s Best,” John Wiley & Sons, Canada, 1993.

W. Webber, A. Moffat and J. Zobel

"A similarity measure for indefinite rankings,” ACM Trans Inf Syst 28(4):20:1-
20:38, 2010.

G. Weiss and H. Hirsh

"Learning to predict rare events in event sequences,” In Proceedings of the 4"
International Conference on Knowledge Discovery and Data Mining, pages 359-
363, 1998.

Wikipedia
"Inverted Index," March 2016. [Online]. Available:
https://en.wikipedia.org/wiki/Inverted_index
Wikipedia
"Magic Quadrant,” March 2015. [Online]. Available:
http://en.wikipedia.org/wiki/Magic_Quadrant
W. K. Wong, A. Moore, G. Cooper and M. Wagner

"Rule-Based Anomaly Pattern Detection for Detecting Disease Outbreaks," in
AAAI, 2002.

S. Wrobel

143

"An algorithm for multi-relational discovery of subgroups,"” in Proceedings of the
1% European Symposium on Priciples of Data Mining and Knowledge Discovery,
, pp 78-87, 1997.

S. Wu and F. Crestani

"Methods for ranking information retrieval systems without relevance
judgements," in Proceedings of the 2003 ACM Symposium on Applied
Computing, ACM, New York, pp811-816, 2003.

World Health Organization

"Adherence to Long-term Therapies: Evidence for Action," January 2003.
[Online]. Available:
http://www.who.int/chp/knowledge/publications/adherence_report/en/.

A. Yeung

"Matrix Factorization: A Simple Tutorial and Implementation in Python," 16
September 2010. [Online]. Available:
http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-
implementation-in-python/.

M. Yousaf, M. Welzl and B. Yener

"Accurate Shared Bottleneck Detection Based On SVD and Outliers Detection,"
2008.

H. Yu, J. Pei, S. Tang and D. Yang

"Mining most general multidimensional summarization of probable groups in data
warehouses," in Proceedings of the 17" international conference on scientific
and statistical database management, Lawrence Berkely Laboratory, 2005.

D. Zhang, D. Gatica-Perez, S. Bengio and I. McCowan

"Semi-supervised Adapted HMMs for Unusual Event Detection," in Computer
Vision and Pattern Recognition, 2005.

Y. Zhang, N. Meratnia and P. Havinga

"Adaptive and Online One-Class Support Vector Machine-based Outlier
Detection Techniques for Wireless Sensor Networks," in Advanced Information
Networking and Applications Workshops, 2009.

K. Zhang, S. Shi, H. Gao and J. Li

"Unsupervised outlier detection in sensor networks using aggregation tree," in
Advanced Data Mining and Applications, pages 158-169, 2007.

Y. Zhao, P.M. Deshpande and J.F. Naughton

"An array-based algorithm for simultaneous multidimensional aggregates," in
Proc. 1997 ACM-SIGMOD International Conference on Management of Data,
pages 159-170, 1997.

S. Zhu, Y. Wang and Y. Wu

144

http://www.who.int/chp/knowledge/publications/adherence_report/en/

"Health Care Fraud Detection Using Nonnegative Matrix Factorization," in The
6th International Conference on Computer Science & Education, SuperStar
Virgo, Singapore, 2011.

A. Zimek, E. Schubert and H. P. Kriegel

"A survey on unsupervised outlier detection in high-dimentional numerical data,"
Stat Anal Data Min, 5(5):363-387, 2012.

145

