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Abstract 

Benchmarking is a process of comparison between performance characteristics of 

separate, often competing organizations intended to enable each participant to improve 

its own performance in the marketplace (Kay, 2007).  Benchmarking sets organizations’ 

performance standards based on what “others” are achieving.  Most widely adopted 

approaches are quantitative and reveal numerical performance gaps where 

organizations lag behind benchmarks; however, quantitative benchmarking on its own 

rarely yields actionable insights.  It is important for organizations to understand key 

drivers for performance gaps such that they can develop programs for improvement 

around them.  In this thesis, we develop a multidimensional analysis approach to 

benchmarking to characterise the properties of key drivers as a step towards 

“qualitative” benchmarking.  Specifically, our approach systematically identifies 

significant benchmarks, compares organizations in statistical manners, and reveals the 

most manifesting aspects of uniqueness of an organization of interest.  We also evaluate 

our algorithmic development using systematic empirical studies and show that our 

methods are effective and efficient. 

Keywords:  benchmarking, key drivers, multidimensional analysis, business 
intelligence, industry applications 



 

iv 

Dedication 

To my extended family for their continued encouragement. 



 

v 

Acknowledgements 

I would like to thank my supervisory committee that supported my desire to work on 

industry oriented topics and provided direction for my thesis.  Most importantly, I would 

like to express my utmost gratitude to Professor Pei for his tireless effort in guiding me to 

the path which led to the completion of this thesis.  Finally, I would like to thank Guanting 

Tang and Xiango Mao for their assistance and collaboration in authoring important 

components in chapters 3 and 5 of the thesis. 



 

vi 

Table of Contents 

Approval .......................................................................................................................... ii 
Abstract .......................................................................................................................... iii 
Dedication ...................................................................................................................... iv 
Acknowledgements ......................................................................................................... v 
Table of Contents ........................................................................................................... vi 
List of Tables .................................................................................................................. ix 
List of Figures................................................................................................................. xi 

Introduction .................................................................................................. 1 
1.1. Motivation ............................................................................................................... 1 
1.2. Problem Statement ................................................................................................. 2 
1.3. Structure of Thesis ................................................................................................. 4 

Related Work ................................................................................................ 5 
2.1. Benchmarking ........................................................................................................ 5 

2.1.1. Definitions .................................................................................................. 6 
2.1.2. Types of benchmarking ............................................................................. 7 

Strategic Benchmarking ........................................................................................... 7 
Performance Benchmarking .................................................................................... 8 
Process Benchmarking ............................................................................................ 8 

2.1.3. Techniques for benchmarking .................................................................... 8 
Internal Benchmarking ............................................................................................. 8 
External Benchmarking ............................................................................................ 8 

2.1.4. Benchmarking methods ............................................................................. 9 
Frontier Models ........................................................................................................ 9 

Stochastic Frontier Production Function ......................................................... 10 
Data Envelopment Analysis (DEA) .................................................................. 11 
Frontier Analysis Case Study .......................................................................... 12 

Other Models .......................................................................................................... 14 
2.2. Data Warehouse and Online Analytical Processing (OLAP) ................................. 17 
2.3. Outlier Detection ................................................................................................... 20 
2.4. Subspace Analysis ............................................................................................... 21 

Benchmarks in Data Warehouses ............................................................. 24 
3.1. Preliminaries ......................................................................................................... 24 
3.2. Benchmark Queries .............................................................................................. 26 
3.3. Sorted Inverted Index Cube (SIIC) Method ........................................................... 29 

3.3.1. Inverted Index for Fast Search ................................................................. 30 
3.3.2. Pruning .................................................................................................... 32 

3.4. Dominant Answer Materialization (DAM) Method .................................................. 34 
3.4.1. Search Scope of Ancestors ..................................................................... 34 
3.4.2. Search Scope of Descendants ................................................................ 36 

3.5. Empirical Evaluation ............................................................................................. 37 
3.5.1. Data Sets and Experiment Settings ......................................................... 37 



 

vii 

3.5.2. Reduction of Aggregate Cells Computed and Indexed ............................ 38 
3.5.3. Runtime and Memory Usage ................................................................... 41 
3.5.4. Scalability ................................................................................................ 43 

Reflective Benchmarking .......................................................................... 44 
4.1. Preliminaries ......................................................................................................... 44 
4.2. Outlier Types ........................................................................................................ 47 
4.3. Detection Methods ................................................................................................ 50 

4.3.1. Outlier Detection by Iceberg Cubing ........................................................ 50 
4.3.2. Outlier Type Determination ...................................................................... 50 

4.4. Empirical Evaluation ............................................................................................. 52 
4.4.1. Case Study .............................................................................................. 52 
4.4.2. Efficiency and Scalability ......................................................................... 54 

Subspace Analysis .................................................................................... 59 
5.1. Contrast Subspace ............................................................................................... 59 

5.1.1. Measure of Similarity ............................................................................... 60 
Problem Definition .................................................................................................. 60 

5.1.2. Complexity Analysis ................................................................................ 63 
5.1.3. Mining Methods ....................................................................................... 67 

Baseline Method .................................................................................................... 67 
CSMiner Framework ............................................................................................... 68 
A Bounding-Pruning-Refining Method ................................................................... 71 

5.1.4. Empirical Evaluation ................................................................................ 77 
Effectiveness .......................................................................................................... 77 
Efficiency ................................................................................................................ 81 
Sensitivity to the Bandwidth ................................................................................... 84 
Comparison with Epanechnikov Kernel ................................................................. 87 

5.2. Outlying Aspects ................................................................................................... 90 
5.2.1. Rank Statistics ......................................................................................... 91 

Problem Definition .................................................................................................. 91 
5.2.2. Mining Methods ....................................................................................... 95 

Baseline Method .................................................................................................... 95 
OAMiner Framework .............................................................................................. 96 
A Bounding-Pruning-Refining Method ................................................................... 98 

Bounding Probability Density ........................................................................... 98 
Efficiently Estimating Density Bounds ........................................................... 106 
Subspace Pruning ......................................................................................... 107 

5.2.3. Empirical Evaluation .............................................................................. 111 
Effectiveness ........................................................................................................ 111 

Mining Outlying Aspects with Synthetic Data Sets ........................................ 111 
Mining Outlying Aspects with Real Data Sets ............................................... 114 
Mining Outlying Aspects with NBA Data Sets ............................................... 117 

Efficiency .............................................................................................................. 121 

Conclusion ............................................................................................... 126 
6.1. Future Directions ................................................................................................ 129 



 

viii 

References   .............................................................................................................. 131 
 



 

ix 

List of Tables 

Table 1 Benchmarking Definitions ................................................................................... 7 

Table 2 Sales Representatives of an Organization ........................................................ 28 

Table 3 TPC-H: number of computed and indexed cells (5 𝑫𝑰𝑴 dimensions) ............... 38 

Table 4 Weather: number of computed and indexed cells (5 𝑫𝑰𝑴 dimensions) ............. 39 

Table 5 TPC-H: number of computed and indexed cells (10 𝑼𝑰𝑫 dimensions) .............. 40 

Table 6 Weather: number of computed and indexed cells (5 𝑼𝑰𝑫 dimensions) ............. 40 

Table 7 Example Performance Gap Outliers ................................................................. 53 

Table 8 Base level Performance Gaps of 𝑹𝟏 ................................................................. 53 

Table 9 Base level Performance Gaps of 𝑹𝟐 ................................................................. 53 

Table 10 EP  Complete-CS reduction example ............................................................. 64 

Table 11 Data Set Characteristics ................................................................................. 77 

Table 12 Distribution of 𝑳𝑪𝑺(𝒒) in BCW (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) ........................................... 78 

Table 13 Distribution of 𝑳𝑪𝑺(𝒒) in CMSC (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) .......................................... 78 

Table 14 Distribution of 𝑳𝑪𝑺(𝒒) in Glass (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) ........................................... 79 

Table 15 Distribution of 𝑳𝑪𝑺(𝒒) in PID (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) ............................................. 79 

Table 16 Distribution of 𝑳𝑪𝑺(𝒒) in Waveform (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) ................................... 79 

Table 17 Distribution of 𝑳𝑪𝑺(𝒒) in Wine (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) ........................................... 79 

Table 18 Average runtime of CSMiner-BPR with 𝜶 (𝒌 = 𝟏𝟎, 𝜹 = 𝟎. 𝟎𝟏) .......................... 83 

Table 19 Similarity between top-10 inlying contrast subspaces using different 

kernel functions in data set 𝑶 (𝜹 = 𝟎. 𝟎𝟎𝟏) ............................................. 89 

Table 20 Similarity between top-10 outlying contrast subspaces using different 

kernel functions in data set 𝑶 (𝜹 = 𝟎. 𝟎𝟎𝟏) ............................................. 89 

Table 21 Similarity between top-10 inlying contrast subspaces using different 
kernel functions in data set 𝑶\𝑶𝑬 +∞ (𝜹 = 𝟎. 𝟎𝟎𝟏) ............................... 90 

Table 22 Similarity between top-10 outlying contrast subspaces using different 
kernel functions in data set 𝑶\𝑶𝑬 +∞ (𝜹 = 𝟎. 𝟎𝟎𝟏) ............................... 90 

Table 23 A numeric data set example ........................................................................... 97 

Table 24 quasi-density values of objects in Table 23..................................................... 98 

Table 25 Outlying Aspects with 𝑺𝒚𝒏𝒕𝒉_𝟏𝟎𝑫 ................................................................ 112 

Table 26 Statistics on the mining results of OAMiner ................................................... 113 

Table 27 UCI data set characteristics .......................................................................... 114 

Table 28 Sensitivity of OAMiner effectiveness with respect to 𝓁 (UCI) ......................... 117 



 

x 

Table 29 NBA 20 data dimensions .............................................................................. 117 

Table 30 NBA data set characteristics ......................................................................... 117 

Table 31 Sensitivity of OAMiner effectiveness with respect to 𝓁 (NBA) ........................ 119 

Table 32 Guards with most rank 1 outlying aspects..................................................... 119 

Table 33 Guards with poor ranks in outlying aspects................................................... 120 

Table 34 Comparison of 𝒓𝒂𝒏𝒌𝑯𝑳, 𝒓𝒂𝒏𝒌𝑺𝑶𝑫, 𝒓𝒂𝒏𝒌𝑺 ................................................... 121 

Table 35 Average Runtime of OAMiner with respect to 𝜶 ............................................ 125 



 

xi 

List of Figures 

Figure 1 Example Benchmarking..................................................................................... 3 

Figure 2 Relationship between Cost and Output ........................................................... 13 

Figure 3 Deterministic Kernel of a Stochastic Cost Frontier ........................................... 14 

Figure 4 DEA Cost Frontier ........................................................................................... 14 

Figure 5 Sample Gartner Magic Quadrant (Business Intelligence and Analytics 
Platforms, Q1 2014) ............................................................................... 16 

Figure 6 Sample Forrester Wave (Agile Business Intelligence Platforms, Q3 
2014) ...................................................................................................... 17 

Figure 7 Example SIIC for values "young" and "M" ........................................................ 32 

Figure 8 Example SIIC with Pruning .............................................................................. 33 

Figure 9 Reduction Ratio of DAM over SIIC/SIICP for TPC-H (𝑫𝑰𝑴 fixed) .................... 39 

Figure 10 Reduction Ratio of DAM over SIIC/SIICP for Weather (𝑫𝑰𝑴 fixed) ................ 40 

Figure 11 Reduction Ratio of DAM over SIIC/SIICP for TPC-H (𝑼𝑰𝑫 fixed) ................... 41 

Figure 12 Reduction Ratio of DAM over SIIC/SIICP for Weather data (𝑼𝑰𝑫 fixed) ........ 41 

Figure 13 Runtime and Memory Usage with TPC-H (𝑫𝑰𝑴 fixed) ................................... 42 

Figure 14 Runtime and Memory Usage with Weather (DIM fixed) ................................. 42 

Figure 15 Runtime and Memory Usage with TPC-H (𝑼𝑰𝑫 fixed) ................................... 43 

Figure 16 Runtime and Memory Usage with Weather (𝑼𝑰𝑫 fixed) ................................. 43 

Figure 17 Scalability with TPC-H ................................................................................... 43 

Figure 18 Runtime of TDC, BUC, and eBUC with respect to # of tuples ........................ 54 

Figure 19 Runtime of TDC, BUC, and eBUC ................................................................. 55 

Figure 20 Number of Detected Outliers ......................................................................... 56 

Figure 21 Runtime of TDC, BUC, and eBUC with different distributions ........................ 57 

Figure 22 Scalability with Synthetic Data ....................................................................... 57 

Figure 23 Number of Detected Outliers ......................................................................... 58 

Figure 24 Example Contrast Subspace ......................................................................... 60 

Figure 25 Set enumeration tree ..................................................................................... 68 

Figure 26 𝝐-𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒉𝒐𝒐𝒅 (within the dashed circle) ................................................ 72 

Figure 27 Dimensionality distribution of top inlying contrast subspace (𝒌 = 𝟏) .............. 80 

Figure 28 Dimensionality distribution of top outlying contrast subspace (𝒌 = 𝟏) ............ 81 

Figure 29 Scalability test with 𝜹 (𝒌 = 𝟏𝟎, 𝜶 = 𝟎. 𝟖) ......................................................... 82 

Figure 30 Scalability test with data set size (𝒌 = 𝟏𝟎, 𝜹 = 𝟎. 𝟎𝟏, 𝜶 = 𝟎. 𝟖) ........................ 82 



 

xii 

Figure 31 Scalability test with dimensionality (𝒌 = 𝟏𝟎, 𝜹 = 𝟎. 𝟎𝟏, 𝜶 = 𝟎. 𝟖) ..................... 83 

Figure 32 Relative performance of CSMiner-BPR (𝜹 = 𝟎. 𝟎𝟏, 𝜶 = 𝟎. 𝟖) ............................ 84 

Figure 33 Similarity scores of inlying contrast subspaces using different 

bandwidth values with respect to 𝒌 (𝜹 = 𝟎. 𝟎𝟎𝟏) ..................................... 86 

Figure 34 Similarity scores of outlying contrast subspaces using different 

bandwidth values with respect to 𝒌 (𝜹 = 𝟎. 𝟎𝟎𝟏) ..................................... 87 

Figure 35 Example Subspaces ...................................................................................... 91 

Figure 36 Outlying aspect of object 245 (𝑺𝒚𝒏𝒕𝒉_𝟏𝟎𝑫) ................................................. 113 

Figure 37 Outlying aspect of object 315 (𝑺𝒚𝒏𝒕𝒉_𝟏𝟎𝑫) ................................................. 114 

Figure 38 Distribution of outlyingness ranks: UCI (𝓵 = 𝟓) ............................................ 115 

Figure 39 Distribution of # of outlying aspects: UCI (𝓵 = 𝟓) ......................................... 116 

Figure 40 Distributions of outlyingness ranks: NBA (𝓵 = 𝟓) ......................................... 118 

Figure 41 Distribution of # of outlying aspects: NBA (𝓵 = 𝟓) ........................................ 118 

Figure 42 Runtime with respect to Data Set Size ........................................................ 122 

Figure 43 Runtime with respect to Dimensionality ....................................................... 123 

Figure 44 Runtime with respect to 𝓁 ............................................................................ 123 

Figure 45 Runtime with respect to Outlyingness Rank ................................................ 124 

 



 

1 

  
 
Introduction 

1.1. Motivation 

Benchmarking has been given many different definitions by different organizations 

and authors.  One of the widely accepted definitions of benchmarking is by Camp (1989) 

which states, “The continuous process of measuring products, services and practices 

against the toughest competitors or those companies recognized as industry leaders.” 

In practice, most widely adopted approaches for benchmarking are quantitative.  

Quantitative benchmarking aims to provide a single numerical estimate of organization’s 

efficiency relative to that of comparable organizations.  For example, utility regulators often 

use quantitative benchmarking to inform their assessments of the current efficiency of 

utility organizations (e.g. water suppliers, electricity distribution companies, etc.) (Holder 

et al., 2006).  Quantitative benchmarking can help uncover numerical performance gaps; 

however, it does not reveal why the gaps exist or indicate whether the gaps are significant.  

According to Baldry et al. (2009), “virtually every credit card issuer practices 

benchmarking.  Yet all too often, issuers limit themselves to quantitative performance 

measures, without taking into account either more qualitative measures or the strategic 

demands of the markets in which they operate. As a result, just 20% of issuers gain any 

tangible benefits from their benchmarking efforts.” 

Organizations conduct benchmarking to identify areas for continuous improvement 

to remain competitive in the market.  To that end, it is important for organizations to 

understand key drivers as “qualitative” measures for performance gaps.  For example, 

once a utility firm determines that its service efficiency is 20% below the benchmark 



 

2 

(quantitative), it would want to understand what is driving the inefficiency (qualitative) such 

that a service improvement program can be developed. 

How can one establish systematic measures to characterize key drivers; that is, 

primary factors driving the performance gaps?  One way is to develop contexts and 

determine how organizations are positioned in them.  Do they stand out positively or 

negatively in certain contexts, or are they part of the big mass?  If they stand out, what 

facets make up such contexts? 

A context is a set of circumstances or facts that surround a particular event or 

situation.  Put in the benchmarking setting, performance metrics can be the circumstances 

that surround organizations’ situations; as such, the contexts can be formed by multiple 

metrics or dimensions in which organizations want to appraise their performance; hence, 

the name “multidimensional benchmarking”. 

A key benefit of the multidimensional approach to benchmarking lies in its ability 

to corroborate the findings of each metric and derive further insights from the combination 

of the metrics.  It facilitates organizations’ understanding in the underlying reasons for 

performance gaps and permits them to move beyond target setting to design change 

initiatives that close those gaps and improve their competitive positioning.  However, a 

multidimensional benchmarking result cannot be represented by a single numeric value 

produced by a simple arithmetic; that is, sum all performance metric measures and 

average them over the number of metrics involved.  There may be some weighting 

functions that can be incorporated into the arithmetic to represent importance of certain 

metrics over others; however, weighting is somewhat biased subject to the opinions of 

those who determine the weights or the importance.  In the age of Big Data, there should 

be tools to allow “data” to provide us with a more “objective” perspective. 

1.2. Problem Statement 

Benchmarking is not specific to competitive analyses in commercial settings.  

Metrics can be defined according to a framework on how an organization wants to classify 

its performance; for example, the state of the health and the wellness of their employees 
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compared to the general population, within specific industry verticals, within specific 

employment types, etc. 

In a hypothetical scenario, an organization is interested in benchmarking its 

workforce health against the general workforce population.  The results may be graphically 

represented as quantitative performance gaps of individual metrics as shown in Figure 1.  

In Figure 1, an organizational health index consists of 10 metrics; each metric quantifying 

the prevalence rate of an illness condition (e.g. mental health) across its workforce.  The 

blue bar indicates the organization’s performance of a metric while the orange line denotes 

the benchmark (i.e. a standard or point of reference against which the organization is 

compared).  Taking the mental health and heart & stroke as examples, this organization 

is performing at the rate above the benchmark for mental health and below the benchmark 

for heart & stroke. 

 

 

   

 

 

 

 

 

Figure 1 Example Benchmarking 

This clearly shows a quantitative performance gap for each metric.  However, 

these individual performance gaps do not divulge what characteristics and circumstances 

of the workforce are driving these performance gaps.  Can the drivers be gender, age 

group, occupation type, location, work hours, or combinations of them?   

Company Health 
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In this thesis, we develop systematic methods to compare the performance of an 

object of interest (a query object) against others (benchmarks) in the context of multiple 

dimensions (i.e. characteristics and circumstances) surrounding the query object as well 

as the benchmark.  If there is a significant performance gap between the query object and 

the benchmark, then these dimensions can be translated as key drivers for the gap.  

Technically, we divide the problem into 3 sub-problems and develop solutions for them: 

1. Benchmarks in data warehouse. We develop two algorithmic approaches for 
efficient computation for identifying meaningful benchmarks in data warehouses; 
Sorted Inverted Index Cube (SIIC) and Dominant Answer Materialization (DAM) 
method. 

2. Reflective benchmarking.  We develop methods to understand how the exceptions 
and outliers within an aggregate group contribute to the overall deviation of the group 
from the norm.  We identify two types of groups.  The first type corresponds to the 
groups where the deviation is mainly caused by a small number of outlying units and 
the second type to those where a majority of underlying units are outliers. 

3. Subspace analysis. We conduct multidimensional analysis to identify key drivers 
which form subspaces that manifest the uniqueness of the group of interest.  We 
consider both situations where the units are not labeled and where the units belong to 
different classes. 

1.3. Structure of Thesis 

The rest of the thesis is structured as follows: 

 Chapter 2 Related Work will outline benchmarking, data warehouse and 
Online Analytical Processing (OLAP), outlier detection, and subspace 
analysis. 

 Chapter 3 Benchmarks in Data Warehouse will develop SIIC and DAM 
for efficient computation for online analytical queries. 

 Chapter 4 Reflective Benchmarking will demonstrate the use of KL-
divergence to compare two probability distributions to determine the type 
of outliers. 

 Chapter 5 Subspace Analysis will demonstrate 2 techniques for 
subspace analysis: Contrast Subspaces and Outlying Aspects. 

 Chapter 6 Conclusion concludes this thesis and suggests some future 
directions.  
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Related Work 

The primary objective of the thesis is to explore and evaluate techniques in 

computing science that can be applied to multidimensional benchmarking.  This chapter 

first presents the general overview of benchmarking, covering the concept, the history, 

and the methods commonly adopted in the industry.  The overview is intended to set the 

context for the proposed work in this thesis and highlight the claim that although 

benchmarking is common in business, techniques in computing science have been largely 

unexplored for effective benchmarking. 

The chapter then introduces related work in areas of computing science that we 

wish to consider for multidimensional benchmarking.  These areas include data 

warehouse and online analytical processing (OLAP), outlier detection, and subspace 

analysis. 

2.1. Benchmarking 

Key motive for benchmarking is continuous improvement.  Throughout history, 

people have developed methods and tools for setting, maintaining and improving 

standards of performance.  Desire to improve performance and the actual improvement 

can be traced far back to prehistoric forms of benchmarking in the industrial history.  For 

example, in the early 1800’s, an American industrialist, Francis Lowell, traveled to England 

where he studied leading textile manufacturing techniques and industrial design of the mill 

factories. He realized that although the factory equipment was sophisticated, there was 

room for improvement in the way the plants were laid out for labour. Using technology very 

similar to what he had seen in England, Lowell built a new plant in the U.S.; however, the 

factory functioned in a less labour intensive fashion (Bogan et al., 1994). 

Many researchers agree that the recognition of benchmarking as a useful 

management tool was formalized in early 1980’s when Xerox employed benchmarking as 
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part of its “Leadership through Quality”, a program to find ways to reduce manufacturing 

costs.  In the early 1980’s, Xerox found itself increasingly vulnerable to intense competition 

from both the US and the Japanese competitors.  Its operating cost was high and its 

products were of relatively inferior quality in comparison to its competitors’.  In 1982, Xerox 

determined that the average manufacturing cost of copies in Japanese companies was 

40-50% of that of Xerox’s and they were able to undercut Xerox’s prices effortlessly.  As 

part of the “Leadership through Quality”, Xerox established the benchmarking program 

which played a major role in pulling Xerox out of trouble in the years to come.  Xerox since 

then has become one of the best examples of the successful implementation of 

benchmarking (IBS, 2006). 

2.1.1. Definitions 

Benchmarking has been given many different definitions by different organizations 

and authors; however, all definitions concur that benchmarking is an integral step for 

continuous improvement.  Table 1 lists representative definitions of benchmarking: 
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Table 1 Benchmarking Definitions 

Author Definition 

Camp (1989) The continuous process of measuring products, services and 
practices against the toughest competitors or those 
companies recognized as industry leaders. 

Geber (1990) A process of finding the world class examples of a product, 
service or operational system and then adjusting own 
products, services or systems to meet or beat those 
standards. 

Vaziri (1992) A continuous process comparing an organisation’s 
performance against that of the best in the industry 
considering critical consumer needs and determining what 
should be improved. 

Watson (1993) The continuous input of new information to an organisation. 

Klein (1994) An excellent tool to use in order to identify a performance 
goal for improvement, identify partners who have 
accomplished these goals and identify applicable practices to 
incorporate into a redesign effort. 

Cook (1995) A kind of performance improvement process by identifying, 
understanding and adopting outstanding practices from within 
the same organization or from other businesses. 

American Productivity 
and Quality Center 
(1999) 

The process of continuously comparing and measuring an 
organization against business leaders anywhere in the world 
to gain information that will help the organisation take action 
to improve its performance. 

 

2.1.2. Types of benchmarking  

Different types of benchmarking can be identified on the basis of what is being 

compared.  Generally, there are 3 types of benchmarking: strategic, performance, and 

process benchmarking. 

Strategic Benchmarking 

Strategic benchmarking examines how organizations compete.  It is used to 

identify strategic imperatives that have enabled high performing organizations to be 

successful. 
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Performance Benchmarking 

Performance benchmarking pertains to the comparison of organization’s key 

processes, products and services to assess its competitive positioning.  It usually focuses 

on prices, quality, features, speed, reliability and other performance metrics. 

Process Benchmarking 

Process benchmarking is for organizations to learn how their selected processes 

are performing compared to most efficient operating practices from several organizations 

in similar operational functions.  Unlike strategic and performance benchmarking, process 

benchmarking focuses on selected production processes in an organization rather than 

on the organization as a whole. The presumption behind the analysis is that by identifying 

best practice processes and comparing actual processes that organizations utilize, the 

management can improve the performance of sub-systems, leading to better overall 

performance. 

2.1.3. Techniques for benchmarking 

By the target of the comparison, benchmarking techniques can be categorized into 

two types: internal and external benchmarking. 

Internal Benchmarking 

Internal benchmarking is performed between departments within the same 

organization or between organizations operating as part of a chain in different countries 

(Cross et al., 1994; Breiter et al., 1995).  When any part of an organization has a better 

performance indicator, others can learn how this was achieved; it can then be used as a 

baseline for extending benchmarking to include external organizations (McNair et al., 

1992; Karlof et al., 1993). 

External Benchmarking 

External benchmarking requires a comparison of work with external organizations 

in order to discover new ideas, methods, products, and services (Cox et al., 1998).  The 

objective is continuously to improve one’s own performance by measuring how it performs, 
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comparing it with that of others and determining how the others achieve their performance 

levels.  External benchmarking provides opportunities for learning from the best practices 

and experience of others who are at the leading edge.  Within external benchmarking, 

there are 3 types including competitive, functional, and generic benchmarking. 

 Competitive Benchmarking refers to a comparison with direct competitors only.  
Its benefits include creating a culture that values continuous improvement to 
achieve excellence by increasing sensitivity to changes in the environment 
external to the organization (Vaziri, 1992).  However, it is often difficult to obtain 
data from competitors and lessons to be learned from them. 

 Functional Benchmarking refers to comparative research whereby a 
comparison of business performance is made not only against competitors but 
also against the best businesses operating in similar fields and performing similar 
activities or having similar problems but in a different industry (Davies, 1990; 
Breiter et al., 1995).  For example, British Rail Network South East used 
benchmarking to improve the standard of cleanliness on trains.  British Airways 
was chosen for comparison since a team of 11 people cleans a 250 seat jumbo 
aircraft in only 9 minutes.  Following the benchmarking exercise, a team of 10 
was able to clean a 660 seat train in 8 minutes (Cook, 1995). 

 Generic Benchmarking refers to the comparisons of business functions that are 
the same regardless of the domain of business.  For example, a finance 
department of an insurance company would be compared to the finance 
department of a telecom company that has been identified as having the most 
efficient operations (e.g. fastest turnaround time). 

2.1.4. Benchmarking methods 

Frontier Models 

Common forms of quantitative methods lend from economic efficiency analysis 

which involve parametric and non-parametric techniques.  The primary objective of both 

is to measure the technical efficiency, which is defined as the ability of a producer to 

produce maximum output from a given set of inputs.  Technical efficiency thus is translated 

as the success indicator of performance measure by which producers are evaluated.  

Given the importance of technical efficiency analysis, several models of frontiers have 

been developed.  Frontier models are based on the premise that efficient producers are 

those that operate on the production frontier, while inefficient producers are those 

operating below the production frontier and the level of inefficiency is measured by the 

level of deviation from the frontier (Ajibefun, 2008). 
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Stochastic Frontier Production Function 

The core economic theory underlying the formulation of a cost frontier supposes 

that the minimum cost a producer can achieve, when using the most efficient technology 

available, are a function of its output and the prices of its inputs.  The cost function is 

based on the behaviour of a representative cost-minimising producer who is able to control 

the amount of each input used subject to producing a given output.  The method assumes 

a particular specification of the relationship between an organization’s costs and a set of 

cost drivers, which may include, for example, the outputs produced, input prices and a 

range of exogenous factors. Econometric analysis is then used to estimate the parameters 

of that relationship.  Having estimated a cost function, inefficiency is one of the factors 

(alongside others, such as, omitted variables, measurement errors, etc.) that can explain 

the differences between the observed level of costs for a particular organization and the 

level of cost predicted by the estimated cost function (Holder et al., 2006). 

The stochastic frontier production function illustrates a producer using 𝑛 inputs 

(𝑥1, 𝑥2, … , 𝑥𝑛) to produce output 𝑦.  It assumes the presence of technical inefficiency of 

production and is defined as: 

𝑦𝑖 = 𝑓(𝑥𝑖; 𝛽) exp(𝑣𝑖 − 𝑢𝑖) , 𝑖 = 1, 2, … , 𝑛 

where 𝑦𝑖 is the observed scalar output of the producer 𝑖, 𝑥𝑖 is a vector of 𝑛 inputs 

used by the producer 𝑖, 𝑓(𝑥𝑖; 𝛽) is the production frontier, 𝛽  is a vector of technology 

parameters to be estimated, 𝑣 is a random error associated with random factors (hence 

stochastic) and 𝑢 is the amount by which the producing unit fails to reach the optimum (i.e. 

the frontier). 

The technical efficiency 𝑇𝐸𝑖 of a producer 𝑖 is defined in terms of the ratio of the 

observed output to the corresponding optimal frontier output: 

𝑇𝐸𝑖 =
𝑦𝑖
𝑦𝑖
∗ =

𝑓(𝑥𝑖, 𝛽) exp(𝑣𝑖 − 𝑢𝑖)

𝑓(𝑥𝑖, 𝛽) exp(𝑣𝑖)
= exp (𝑢𝑖) 
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where 𝑦𝑖 is the observed output and 𝑦𝑖
∗ is the frontier output. 𝑇𝐸𝑖 = 1 indicates that 

the organization 𝑖 obtains the maximum feasible output, while 𝑇𝐸𝑖 < 1  provides a measure 

of the shortfall of the observed output from maximum feasible output. 

The major advantage of this method is that it allows the test of hypothesis 

concerning the goodness of fit of the model.  The “stochastic” aspect of the model allows 

it to handle appropriately measurement problems and other stochastic influences that 

would otherwise show up as causes of inefficiency (Greene, 2005).  However, the major 

drawback is that it requires specification of technology, which may be restrictive in most 

cases (Ajibefun, 2008). 

Data Envelopment Analysis (DEA) 

DEA is a non-parametric linear programming technique widely used in the 

operations research and management science literature (Holder et al., 2006). 

DEA estimates the cost level an efficient organization should be able to achieve in 

a particular market.  The model seeks to determine an envelopment surface, also referred 

to as the efficiency frontier. Rather than estimating the impact of different cost drivers, 

DEA establishes an efficiency frontier (taking account of all relevant variables) based on 

the “envelope” of observations. Each organization is then assigned an efficiency score 

based on its proximity to the estimated efficiency frontier. 

With DEA, the efficient frontier is the benchmark against which the relative 

performance of organizations is measured.  Given a certain sample of organizations, all 

organizations should be able to operate at an optimal efficiency level which is determined 

by the efficient organizations in the sample.  These efficient organizations determine the 

efficiency frontier.  The organizations that form the efficient frontier use the minimum 

quantity of inputs to produce the same quantity of outputs. The distance to the efficiency 

frontier provides a measure for the efficiency or its lack thereof. 

The objective of the linear programming is to maximize efficiency, where efficiency 

is the ratio of weighted outputs to weighted inputs and restricted to a range of 0 to 1.  To 

maximize the efficiency score 𝜃 for producer 0: 
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜃 =
∑ 𝑢𝑟𝑦𝑟0
𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝑚
𝑖=1

 

where: 

    𝜃 = efficiency of the producer 0 

    𝑢𝑟 = 𝑠 output coefficients of the producer 0 

    𝑦𝑟0 = 𝑠 output weighting coefficients for the producer 0 

    𝑣𝑖 = 𝑚 input coefficients for the producer 0 

    𝑥𝑖0 = 𝑚 input weighting coefficients for the producer 0 

This is subject to the constraint that when the same set of 𝑢 and 𝑣 coefficients is 

applied to all other producers being compared, no producer will be more than 100% 

efficient such that: 

∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1 for 𝑗 = 1,… , 𝑛, and  

            𝑢𝑟,𝑣𝑗 ≥ 0 for 𝑟 = 1,… , 𝑠 and 𝑖 = 1,… ,𝑚. 

The main advantage of this method is its ability to accommodate a multiplicity of 

inputs and outputs.  However, the results are potentially sensitive to the selection of inputs 

and outputs; thus, their relative importance needs to be analyzed prior to the calculation. 

Further, there is no way to test their appropriateness.  The number of efficient 

organizations on the frontier tends to increase with the number of inputs and output 

variables.  When there is no relationship between explanatory factors (within inputs and/or 

within outputs), DEA views each organization as unique and fully efficient and efficient 

scores are very close to 1, which results in a loss of discriminatory power  of the method 

(IBNET, 2015). 

Frontier Analysis Case Study  

The use of frontier analysis is widespread in incentive-based regulation of utilities 

in which reimbursement is guided by the cost efficiency of service provision.  Lovell (2003) 

claims that the setting in which hospitals are reimbursed is structurally similar to that of 

the setting of revenue caps in utilities regulation and demonstrates the value of frontier 
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analysis in the hospital reimbursement exercise.  Given a vector 𝑥 = (𝑥1, … , 𝑥𝑛) of 

resources to produce a vector 𝑦 = (𝑦1, … , 𝑦𝑚) of services, in the provision of its services, 

each hospital incurs expense 𝑤𝑇𝑥 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1  where 𝑤 = (𝑤1, … , 𝑤𝑛) is a vector of 

resource prices.  Figure 2 shows 12 hospitals with scalar output representing the 

multidimensional service vector.  The relationship is generally positive although some 

hospitals provide more service at lower costs than some others. 

 

Figure 2 Relationship between Cost and Output 

The objectives of frontier analysis in this case study are to uncover the nature of 

the relationship between service provision and expenditure and to evaluate the 

performance of each hospital.  “Performance” in this context means the ability to minimize 

expenditure required to provide a service vector 𝑦 in light of input price vector 𝑤 and other 

exogenous variables represented by vector 𝑧 = (𝑧1, … , 𝑧𝑘) whose elements characterize 

the operating environment.  The minimum cost frontier 𝑐(𝑦, 𝑤, 𝑧) expresses the desired 

nature of the relationship between service provision and minimum required expenditure.  

This supplies the benchmark against which to evaluate the performance of individual 

hospitals.  The performance is evaluated in terms of the cost efficiency 𝐶𝐸(𝑦,𝑤, 𝑧, 𝑥) =

𝑐(𝑦,𝑤,𝑧)

𝑤𝑇𝑥
≤ 1 with cost efficient hospitals having 𝐶𝐸(𝑦,𝑤, 𝑧, 𝑥) = 1. 

Stochastic cost frontier is 𝑤𝑇𝑥 = 𝑐(𝑦,𝑤, 𝑧) ∙ exp {𝑣 + 𝑢} where the actual 

expenditure 𝑤𝑇𝑥 equals minimum expenditure 𝑐(𝑦, 𝑤, 𝑧) times the two error 

components exp {𝑣 + 𝑢}.  As noted earlier, exp {𝑣} captures the statistical noise reflecting 

random events beyond the control of the hospital and exp {𝑢} expresses the magnitude of 
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the hospital’s inefficiency.  The line in Figure 3 depicts the stochastic cost frontier for the 

same hospitals in Figure 2. 

 

Figure 3 Deterministic Kernel of a Stochastic Cost Frontier 

Figure 4 illustrates the DEA formulation of the minimum cost frontier.  This 

formulation constructs the tightest fitting piecewise linear surface that envelops the cost-

output combinations.  There are 4 cost efficient hospitals and the cost efficiency of any 

other hospital is calculated as the ratio of the minimum cost of providing its service vector 

to its actual expenditure. 

 

Figure 4 DEA Cost Frontier 

Other Models 

Among the most successful commercialization of “benchmarking” ideas in the 

Information Technology industry are Gartner Magic Quadrant (Figure 5) and Forrester 

Wave (Figure 6) which provide, in a 2-dimensional performance metric space, visual 
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representations of technology vendors’ positions in the markets in which they compete.  

Many buyers rely on Gartner Magic Quadrant or Forrester Wave to understand the 

competitive positioning of technology vendors in different markets and technology vendors 

in turn use them as strategic marketing tools. 

 A Gartner Magic Quadrant is a culmination of research in a specific market, giving 

audience a wide-angle view of the relative positions of the market's competitors.  It 

provides a competitive positioning of four types of technology providers including the 

following (Gartner, 2015): 

 Leaders execute well against their current vision and are well positioned for 
tomorrow; 

 Visionaries understand where the market is going or have a vision for changing 
market rules, but do not yet execute well; 

 Niche Players focus successfully on a small segment, or are unfocused and do 
not out-innovate or outperform others; 

 Challengers execute well today or may dominate a large segment, but do not 
demonstrate an understanding of market direction. 

Technology vendors are positioned in the 4 quadrants representing these 4 types 

in the 2-dimensional performance space.  Vendors positioned in the upper right quadrant 

(i.e. Leader’s quadrant) are the strongest in the market in terms of the completeness of 

the vision and their ability to execute. 
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Figure 5 Sample Gartner Magic Quadrant (Business Intelligence and Analytics 
Platforms, Q1 2014) 

However, the method Gartner uses to benchmark vendors are not publically known 

and it has been criticised for catering more towards investors and large vendors than 

towards buyers; much of the criticism centred on the lack of disclosure of the money 

received from the vendors it rates, raising conflict of interest (Wikipedia, 2015). 

The Forrester Wave is Forrester's evaluation of vendors in a software, hardware, 

or services market. In the Forrester Wave reports and spreadsheets, it exposes both the 

criteria that it uses to grade the vendor offerings and how it scores and weight those 

criteria. Forrester Wave evaluations are driven by Forrester’s analysis of data collected 

from the marketplace and the experience of its analysts.  Technology vendors are 

positioned in a 2-dimensional space according to the weighted average of the scores they 

are evaluated for (Forrester, 2015).  Vendors positioned in the upper right corner are the 

strongest in the market in terms of the strength of the strategy and their current offering.  

Forrester Wave overlays another dimension, “Market presence” on the 2-dimensional 

space. 
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Figure 6 Sample Forrester Wave (Agile Business Intelligence Platforms, Q3 2014) 

2.2. Data Warehouse and Online Analytical Processing 
(OLAP) 

Data warehouses and Online Analytical Processing or OLAP are two fundamental 

components of business intelligence systems. 

A data warehouse is a database containing multidimensional data that usually 

represents the business history of an organization. The historical data is used for analysis 

that supports business decisions at various levels, from strategic planning to performance 

evaluation of a discrete organizational unit.  OLAP enables data warehouses to be used 

effectively for online analysis, providing rapid responses to iterative complex analytical 

queries. OLAP's multidimensional data model and data aggregation techniques organize 

and summarize large amounts of data such that it can be evaluated quickly using online 

analysis and graphical tools. The answer to a query into multidimensional data often leads 

to subsequent queries as analysts search for answers or explore further possibilities. 

OLAP provides the speed and the flexibility to support analysts in real time (Microsoft, 

2015). 
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The introduction of data cube (Gray et al., 1997) is considered a landmark in data 

warehousing.  A data cube consists of dimensions and facts and allows materialization of 

multidimensional data in large data repositories to facilitate fast online data analysis.  

However, a data cube typically has many dimensions and the curse of dimensionality 

becomes a technical problem; for example, a data cube with 20 dimensions, each 

containing 99 distinct values, has (99 + 1)20 = 1040 base and high-level cells.  This is too 

large a volume to be pre-computed and stored with reasonable resources.  This warrants 

computing iceberg cubes (Beyer et al., 1999) instead of complete cubes.  An iceberg cube 

contains only those cells that meet an aggregate condition. It is called an iceberg cube 

because it contains only some of the cells of the full cube, like the tip of an iceberg. The 

aggregate condition could be, for example, minimum support or a lower bound on count, 

average, minimum or maximum. The purpose of the iceberg cube is to identify and 

compute only those values that will most likely be required for decision support queries. 

The aggregate condition specifies which cube values are more meaningful and should 

therefore be stored. 

The value of iceberg cube is obvious.  A data cube can be viewed as a lattice of 

cuboids whereby cuboids whose group-by’s include more dimensions are at a lower level 

than those that include fewer dimensions and the cuboid that include all dimensions is at 

the bottom.  The lower level cuboids likely contain trivial aggregate values and are unlikely 

to satisfy threshold conditions; thus, no need to be computed.  This not only saves 

processing time and disk space but also focuses analysis only on interesting data. 

With iceberg cubes, the emphasis is to develop algorithms to answer iceberg 

queries efficiently.  Beyer et al. (Beyer et al., 1999) proposed the algorithm BUC which 

computes iceberg cubes with monotonic aggregate functions.  Han et al. (Han et al., 2001) 

developed a method for computing iceberg queries with non-monotonic aggregate 

functions.  Ng et al. (Ng et al., 2001) studied iceberg queries with distributed systems.  

Chen et al. (Chen et al., 2008) explored iceberg cube computation in shared-nothing 

clusters.  Lo et al. (Lo et al., 2008) extended iceberg queries to sequence data.  Chen et 

al. (Chen et al., 2009) extended iceberg queries to graphs.  Recently, He et al. (He et al., 

2013) used patterns as “dimensions” in iceberg queries on sequences. 
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While we can adopt some of these algorithms for efficient computation of data 

cubes, when we consider benchmarking, we need a notion of a “query object” and the 

ability to compare the properties of the query object to those of the others’ at different 

levels of aggregate hierarchy. 

Sarawagi et al. (1998) proposes a discovery-driven exploration paradigm which 

guides analysts to explore anomalies (referred to as “exceptions”) by means of pre-

computed indicators of exceptions at various levels of details in the cube.  It considers all 

descendant cells for each aggregate cell and aims to provide a navigation guidance for 

analysts to browse interesting regions of a cube. 

In gradient analysis (Dong et al., 2001), given a probe aggregate cell 𝑞, one can 

find all pairs of aggregate cells (𝑞, 𝑣) such that 𝑞 is an ancestor of 𝑣 and the change of the 

aggregate value from 𝑞 to 𝑣 is significant.  For example, given that the average house 

price in Vancouver is $1.1 million, one can find all regions of Vancouver where the average 

house price is 20% higher or lower than $1.1 million. 

Cubegrade is a notion introduced by Imielinski et al. (2002) which reports how 

characteristics of a data cube cell is associated with the characteristics of its gradient cells; 

namely, ancestors (by roll-up), descendants (by drill-down) and siblings (by mutation).  

Cubegrade is a generalization of association rules and data cubes; though, Cubegrade 

queries are significantly more expressive than association rules since they can handle 

arbitrary measures and not just count as with the association rules.  However, Cubegrade 

needs to compare each cell in the cube with its associated cells (i.e. gradients) generated 

by generalization (roll-up), specialization (drill-down) and mutation and even with iceberg 

cubes, it may generate a large number of pairs.  To address this issue, Dong et al. (2005) 

introduces “probe constraints” to select a subset of cells, referred to as probe cells, from 

all possible cells.  This is based on the pragmatic observation that analysts are often 

interested in examining only a small set of cells in the cube and a majority of the cells in 

the cube are outside their focal areas of exploration.  Using this constraint, the analysis 

can centre only on probe cells and the relationships with their gradients (gradient 

constraint).  Wang et al. (2006) applies these constraints to closed itemset mining. 
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When a computaion of an iceberg cube is confined with simple measures, such 

as, count and sum, antimonotonicity property of the cube can be exploited to prune a 

significant number of cells.  For example, if the count of a cell 𝑐 in a cuboid 𝐶 is less than 

a threshold value 𝑣, then the count of any 𝑐’s descendant cells cannot be more than 𝑣 and 

thus all descendants of 𝑐 ca be pruned.  When the measure is not an antimonotonic 

function, for example, average or sume of positive and negative elements, a weaker but 

still antimonotonic property of top-𝑘 average (where 𝑘 is the minimum support) can be 

considered to prune search space effectively (Dong et al., 2005; Yu et al., 2005; Wang et 

al., 2006). 

2.3. Outlier Detection 

The primary objective of benchmarking is to find areas for continuous 

improvement; thus, organizations are interested in identifying performance areas in which 

they are anomalies (or outliers) as opposed to “normal”.  As such, outlier analysis in 

multidimensional subspaces lends itself to viable multidimensional benchmarking. To this 

end, we explore the application of outlier detection techniques to multidimensional 

benchmarking. 

An outlier is “an observation which deviates so much from the other observations 

as to arouse suspicions that it was generated by a different mechanism.” (Hawkins, 1980). 

Data may be generated by a process that reflects normal activities of an underlying 

system; however, when the process behaves in an unusual manner, it results in the 

generation of anomalous data, or outliers.  Outliers hence convey useful information 

regarding different characteristics of the process of the underlying system. 

Outlier detection methods can be categorized according to whether or not prior 

knowledge is available to model normality and abnormality.  Prior knowledge typically 

consists of samples that are tagged as normal or abnormal by subject matter experts.  If 

prior knowledge is available, the detection approach is analogous to supervised 

classification.  If not, the detection approach is essentially unsupervised clustering (Hodge 

et al., 2004).  Semi-supervised outlier detection methods can be regarded as applications 
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of semi-supervised learning approach where the normal class is taught but the algorithm 

learns to recognize abnormality. 

The challenge to the supervised approach is that the outlier population is often 

much smaller than the normal population; thus, an additional consideration for handling 

imbalanced data must be taken into account and techniques, such as, oversampling and 

artificial outliers have been devised (Weiss et al., 1998; Joshi et al., 2001, 2002; Vilalta et 

al., 2002; Phua et al., 2004). 

The unsupervised outlier detection approach makes certain assumptions and 

based on the assumptions made, the approach can be categorized into 3 types including 

statistical, proximity, and clustering. 

The statistical methods assume a probability model of normal data and the data 

points that have a low probability of having been generated by the same model are 

considered outliers. 

The proximity-based methods (Ester et al., 1996; Knorr et al., 1998) assume that 

the data points that have many proximate neighbours are normal while points that are far 

away from their neighbours are outliers. 

The clustering-based methods assume that normal data points belong to large and 

dense clusters while outliers belong to small or sparse clusters, or do not belong to any 

cluster at all.   More recent methods (Eskin et al., 2002; He et al., 2003; Zhang et al., 2007) 

incorporate ideas to handle outliers without explicitly and completely finding clusters of 

normal objects. 

2.4. Subspace Analysis 

While most outlier detection methods focus on finding outliers, recently there have 

been studies on “properties” of outliers by identifying subspaces in a multidimensional 

database where outliers may exist. 
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For example, Keller et al. (2012) and Böhm et al. (2013) proposed statistical 

approaches, CMI and H𝑖CS, to select subspaces in which there may exist outliers.  They 

select highly contrasting subspaces for all possible outliers. 

Kriegel et al. (2009) introduced SOD, a method to detect outliers in axis-parallel 

subspaces.  It uses the nearest neighbours as references in the full space to calculate 

outlying scores. 

Müller et al. (2012b) presented a framework, OutRules, to find outliers in different 

contexts.  For each outlier, OutRules finds a set of rules 𝐴 𝐵 where 𝐴 and 𝐵 are 

subspaces and an object is normal in 𝐴 but is an outlier in 𝐵.  It computes the degree of 

deviation using outlier scores, such as, LOF (Breunig et al., 2000) and produces a ranked 

list of rules as the explanation for objects being outliers. 

Tang et al. (2013) proposed a framework to identify contextual outliers in a 

multidimensional categorical database. 

Müller et al. (2012a) computes an outlier score for each object in a database 

providing a single global measure of how outlying an object is in different subspaces. 

Given a multidimensional categorical database and an object (which preferably is 

an outlier), Angiulli et al. (2009) finds top-𝑘 subspaces from which the outlier receives the 

highest outlier scores.  The score for a given object in a subspace is calculated based on 

how frequent the object’s value appears in the subspace.  It tries to find subspaces 𝐸 and 

𝑆 such that the value is frequent in one subspace and much less frequent in the other.  

Since searching all such rules incurs a significant computational cost, it takes two 

parameters, 𝛿 and 𝜃, to constrain the frequency of the given object’s values in subspaces 

𝐸 and 𝑆.  If an object is not an outlier, no outlier properties may be detected. 

There are a few density based outlier detection methods in subspaces, such as, 

Breunig et al. (2000), Aggarwal et al. (2001), He et al. (2005), and Kriegel et al. (2008).  

Müller et al. (2011) proposed OUTRES which aims to assess the contribution of selected 

subspaces in which an object deviates from its neighbours (i.e. the object has a 

significantly low density).  OUTRES employs Kernel Density Estimation (KDE) and uses 
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Epanechnikov kernel.  The focus of OUTRES is to find outliers; thus, it only considers 

subspaces that satisfy a statistical test for non-uniformity. 

To some extent, outlying property or outlyingness is related to uniqueness and 

uniqueness mining.  Paravastu et al. (2008) finds feature-value pairs that make a particular 

object unique.  Their task formulation is reminiscent of infrequent itemset mining and uses 

a level-wise Apriori enumeration strategy (Agrawal et al., 1994). 
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Benchmarks in Data Warehouses 

Many organizations store multidimensional data in their enterprise data 

warehouses.  A data warehouse thus provides an essential information infrastructure for 

online analytical queries that simultaneously consider multiple dimensions of data.    

However, to the best of the author’s knowledge, conducting multidimensional 

benchmarking in data warehouses has not been explored from a technical efficiency 

perspective.  A simple application of existing data warehouse techniques, such as, data 

cubes, cannot answer multidimensional benchmarking queries online due to the 

exponential growth in computational power required as the number of dimensions 

increases. 

In this chapter, as the first step towards multidimensional benchmarking, we 

formulate benchmark queries technically and develop two algorithmic approaches for 

efficient computation in data warehouses; Sorted Inverted Index Cube (SIIC) and 

Dominant Answer Materialization (DAM). 

3.1. Preliminaries 

We largely follow the notations in the conventional data cube and data warehouse 

literature (Gray et al., 1997). 

Consider a relational table 𝑇 = (𝑇𝐼𝐷, 𝐴1, … , 𝐴𝑛, 𝑀) and an aggregate function 𝑓 

where 𝑇𝐼𝐷 is a tuple-id attribute to ensure every tuple in the table is unique, 𝐴1, … , 𝐴𝑛 are 

dimensions and 𝑀 is a measure attribute.  We assume all dimension attributes are 

categorical and the measure attribute can be categorical or numeric.  For a tuple 𝑡 ∈ 𝑇, 

the value of 𝑡 for 𝑇𝐼𝐷 is denoted as 𝑡. 𝑇𝐼𝐷, the value for dimension 𝐴𝑖 as 𝑡. 𝐴𝑖, and the value 

for measure 𝑀 as 𝑡.𝑀. 
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Let 𝐷 = {𝐴𝑖1 , … , 𝐴𝑖𝑙} be a subset of dimensions where 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙 ≤ 𝑛.  𝐷 

is often referred to as a subspace.  A cuboid of 𝐷 is the group-by’s using attributes in 𝐷 

and denoted by 𝐶𝐷.  Note that 𝐷 may be empty.  An aggregate cell in 𝐶𝐷 is a tuple 𝑐 = (∗

, 𝑎𝑖1 ,∗, 𝑎𝑖2 , … ,∗, 𝑎𝑖𝑙 ,∗, 𝑎𝑔𝑔𝑟) ∈ 𝐶𝐷 where value 𝑎𝑖𝑙  belongs to the domain of attribute 𝐴𝑖𝑗(1 ≤

𝑗 ≤ 𝑙), meta-symbol ∗ indicates that the dimension is generalized, and 𝑎𝑔𝑔𝑟 =

𝑓({𝑡.𝑀|𝑡. 𝐴𝑖𝑗 = 𝑎𝑖𝑗 , 1 ≤ 𝑗 ≤ 𝑙}) is the aggregate of all tuples in the group (∗, 𝑎𝑖1 ,∗, 𝑎𝑖2 , … ,∗

, 𝑎𝑖𝑙 ,∗).  To simplify presentation, we overload the symbol 𝑐.𝑀 = 𝑎𝑔𝑔𝑟 and ignore empty 

aggregate cells that do not contain any tuple in the base table. 

We can define a partial order ≺ on cuboids: 𝐶𝐷1 ≺ 𝐶𝐷2 if 𝐷1 ⊂ 𝐷2.  The set of 

cuboids form a lattice with respect to partial order ≺.  Further, we can define a partial 

order ≺ on aggregate cells.  The cells 𝑡1 ≺ 𝑡2 if for each dimension 𝐴𝑖(1 ≤ 𝑖 ≤ 𝑛) 

when 𝑡1. 𝐴𝑖 ≠ ∗, then 𝑡1. 𝐴𝑖 = 𝑡2. 𝐴𝑖.  This also means that 𝑡1 is an ancestor of 𝑡2 and 𝑡2 a 

descendant of 𝑡1.  For two aggregate cells 𝑡1 and 𝑡2, 𝑡1 is a sibling of 𝑡2 if  𝑡1 and 𝑡2 have 

identical values for all dimensions except for one in which neither has value ∗. 

A data cube is a set of cuboids for all subsets of dimensions including the empty 

set.  Equivalently, a data cube is a set of all aggregate cells.  For two aggregate cells 𝑢 

and 𝑣, if there does not exist a dimension 𝐴𝑖 such that neither 𝑢. 𝐴𝑖  nor 𝑣. 𝐴𝑖 has value ∗ 

and 𝑢. 𝐴𝑖 ≠ 𝑣. 𝐴𝑖, then the concatenation of 𝑢 and 𝑣, denoted by 𝓌 = 𝑢⊗ 𝑣, is an 

aggregate cell such that for attribute 𝐴𝑖,𝓌. 𝐴𝑖 = 𝑢. 𝐴𝑖  if 𝑢. 𝐴𝑖 ≠ ∗; otherwise, 𝓌. 𝐴𝑖 = 𝑣. 𝐴𝑖. 

Example 1 (Preliminaries).  Consider a relational table 𝑇 = {𝑇𝐼𝐷, age-group, gender, 

location, salary} for sales representatives of an organization.  Suppose we use 𝑎𝑣𝑔() as 

the aggregate function.  𝑐 = (∗, male, ∗, 𝑎𝑣𝑔()) is an aggregate cell which represents 

the average salary of all male sales representatives in the organization.  Consider 

aggregate cells 𝑢 = (senior, ∗, ∗), 𝑡 = (senior, male, ∗) and 𝑡’ = (senior, female, ∗).  We 

have 𝑢 ≺ 𝑡 which means 𝑢 is an ancestor of 𝑡 and 𝑡 is a descendant of 𝑢.  𝑡 and 𝑡’ are 

siblings.  Aggregate cell 𝑣 = (∗, male, North America) means male sales 

representatives in North America.  We can use the concatenation operator to get all 

senior male sales representatives in North America: 𝓌 = 𝑢⊗ 𝑣 = (senior, male, North 

America). 
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3.2. Benchmark Queries 

We consider a relational table 𝑇 = (𝑇𝐼𝐷, 𝐴1, … , 𝐴𝑛,𝑀).  The attributes in 𝑇 that will 

be used in a benchmark query can be divided into three groups: unit-id attributes 𝑈𝐼𝐷, 

dimension attributes 𝐷𝐼𝑀, and measure attributes 𝑀 where 𝑈𝐼𝐷 ∪ 𝐷𝐼𝑀 ⊆ {𝐴1, … , 𝐴𝑛}.  

𝑈𝐼𝐷 ∩ 𝐷𝐼𝑀 = ∅ is not assumed; thus, 𝑈𝐼𝐷 and 𝐷𝐼𝑀 are not exclusive.  This means that 

an attribute may be both a unit-id and a dimension attribute.  However, we can always 

create a copy of an attribute that can be used as either unit-id or dimension attribute; as 

such, without loss of generality, we assume that the unit-id and dimension attributes are 

exclusive for the rest of this chapter. 

The unit-id attributes are used to group tuples in 𝑇 into aggregate units.  Since the 

term “group” can mean different things, we refer to a group as a unit for clarification.  We 

are essentially considering a data cube formed using the unit-id attributes 𝑈𝐼𝐷 in which 

each aggregate cell corresponds to a unit.  In the context of benchmarking, we are 

interested in comparing units (e.g. organizations, departments, etc.). 

The dimension attributes are used to conduct multidimensional comparative 

analysis between two units. 

The measure attribute is used to calculate aggregates and derive quantitative 

difference between two units, referred to as “performance gap”.  We are interested in 

finding benchmarks that yield largest performance gaps to the query unit.  For simplicity, 

we only have one measure attribute in this thesis; however, our method can be extended 

to scenarios where multiple measure attributes are considered to derive sophisticated 

aggregates.  In practice, a measure attribute has non-negative values; for example, 

measures, such as, sum, volume, and amount are used in business intelligence 

applications.  Even when a measure has negative values, we can normalize the attribute 

such that the normalized measure attribute has non-negative values. 

For each non-empty unit that consists of at least one tuple in the base table with 

dimension and measure attributes, we can form a data cube which reflects performance 

of the unit in multidimensional aspects. 
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Example 2 (Attributes).  Consider a base table 𝑇 = {age-group, gender, location, 

position, education, salary} for employees of an organization.  For simplicity, we omit 

the tuple-id attribute. 

We can use 𝑈𝐼𝐷 = {age-group, gender} as unit-id attributes; that is, we are 

interested in comparing units formed by the group-by operation by these two attributes.  

For example, (young, male) and (mid-age, ∗) are two aggregate units. 

We use attributes 𝐷𝐼𝑀 = {location, position, education} as the dimension 

attributes; that is, we compare two units by these three dimensions. 

Finally, we use attribute 𝑀 = {salary} as the measure attribute.  Using the 

aggregate function 𝑎𝑣𝑔(), we can compare the average salaries between different units 

with respect to different locations, positions, education levels, and their combinations.  For 

example, we may find that for the position of “technical support” at location “Vancouver”, 

the age-group [25, 35] has much lower average salary than the age group [35, 50].  The 

reasoning behind this difference may be seniority and the years of experience. 

To quantitatively compare two aggregate cells 𝑐 and 𝑐’, we need the ratio of their 

measures: 
𝑐.𝑀

𝑐′.𝑀
.  For a unit 𝑢, an aggregate cell 𝑐 is defined using the dimension attributes 

and is called an aspect of 𝑢 if 𝑢 ⊗ 𝑐 is in the data cube 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪ 𝐷𝐼𝑀,𝑀, 𝑓) for the 

base table 𝐵.  Given two units 𝑢 and 𝑣 defined using the unit-id attributes and an aggregate 

cell 𝑐 defined by the dimension attributes such that 𝑐 is an aspect of both 𝑢 and 𝑣, 

( 𝑢⊗𝑐).𝑀

( 𝑣⊗𝑐).𝑀
 indicates the performance gap between 𝑢 and 𝑣 in aspect 𝑐.  The larger the ratio, 

the larger the performance gap between 𝑢 and 𝑣 in 𝑐.  We denote by 𝑅 (
𝑢

𝑣
|𝑐) =

( 𝑢⊗𝑐).𝑀

( 𝑣⊗𝑐).𝑀
 

the performance gap of 𝑢 against 𝑣. 

From this example, we define a benchmark query as follows: 

 a base table 𝑇 and the specification of the unit-id attributes 𝑈𝐼𝐷, dimensions 𝐷𝐼𝑀, 
and the measure 𝑀; 

 a query unit 𝑞 that is an aggregate cell in the data cube formed by the unit-id 
attributes 𝑈𝐼𝐷; 

 the search scope; that is, ancestors, descendants, and siblings; and  
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 a parameter 𝑘. 

Let 𝑢 be a unit formed by the unit-id attributes and 𝑐 be an aspect of the query 

unit 𝑞.  (𝑢, 𝑐) is a top-𝑘 answer to the benchmark query 𝑄 if: 

 𝑢 is in the search scope; that is, an ancestor, descendant, or a sibling of 𝑞. 𝑈𝐼𝐷 as 
specified in the input; 

 
( 𝑢⊗𝑐).𝑀

( 𝑞⊗𝑐).𝑀
> 1; and 

 there are at most 𝑘 − 1 pairs (𝑢’, 𝑐’) such that 𝑢’ is also in the search scope, 𝑐′ ≠

𝑐 is another aspect of 𝑢 and 
( 𝑢′⊗𝑐′).𝑀

( 𝑞′⊗𝑐′).𝑀
>

( 𝑢⊗𝑐).𝑀

( 𝑞⊗𝑐).𝑀
. 

The requirement 
( 𝑢⊗𝑐).𝑀

( 𝑞⊗𝑐).𝑀
> 1 ensures that the performance gap is not trivial and 𝑢 

is a significant benchmark for 𝑞.  To this end, we ignore aggregate cells 𝑐 where 𝑞 ⊗ 𝑐 is 

empty because it is uninteresting from a benchmark perspective.  For each (𝑢, 𝑐) in the 

top-𝑘 answers, 𝑢 is called a benchmark unit and the subspace 𝑐 is the benchmark aspect 

of 𝑢.  Given a benchmark query 𝑄, we want to compute all top-𝑘 answers to the query.  

Note that in the event where there are multiple answers (i.e. the same performance gap), 

we return more than 𝑘 answers. 

Example 3 (Benchmark query).  Consider a base table 𝑇 = {age-group, gender, location, 

position, education, salary} for employees of an organization.  Table 2 shows samples 

of 𝑇. 

Table 2 Sales Representatives of an Organization 

age-group gender location position education sales 
volume 

young M Vancouver staff University 200 

young F Seattle manager Diploma 230 

young F Seattle manager University 220 

mid-age M Vancouver staff Diploma 220 

mid-age M Seattle staff University 200 

mid-age M Vancouver manager University 224 

Let 𝑈𝐼𝐷 = {age-group, gender}, 𝐷𝐼𝑀 = {location, position, education}, and 𝑀 = 

{sales volume}.  We use 𝑎𝑣𝑔() as the aggregate function. 
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Suppose the query unit is 𝑞 = (young, M) and 𝑘 = 2.  The top-2 answers are 

((young, F), (∗, ∗, ∗)) and ((mid-age, M), (Vancouver, ∗, University)).  The ratio is 
225

200
=

1.125 for the first and 
224

200
= 1.12 for the second answer.  This simple example illustrates 

that when we consider the sales performance of a group of young males, the two most 

significant benchmarks (i.e. have the largest performance gaps) for this unit are young 

females in all aspects, and the mid-age males who work in Vancouver and are university 

graduates.  

Aggregate functions can be categorized into two types: monotonic and non-

monotonic aggregates.  An aggregate function 𝑓 is monotonic if for any aggregate cells 

𝑐1 and 𝑐2 such that 𝑐1 ≺ 𝑐2, 𝑓(𝑐1) ≤ 𝑓(𝑐2).  An aggregate function is non-monotonic if it 

does not have this property.  For example, if the measure attribute only has non-negative 

values, then aggregate functions 𝑠𝑢𝑚() and 𝑐𝑜𝑢𝑛𝑡() are monotonic while 𝑎𝑣𝑔() is non-

monotonic. 

Answering a benchmark query for a monotonic aggregate function is 

straightforward since the apex cell (∗,∗, … ,∗) always has the maximum aggregate value 

but uninteresting for benchmarking.  As such, we assume that the aggregate functions 

used for benchmarking are non-monotonic. 

3.3. Sorted Inverted Index Cube (SIIC) Method 

We assume a data cube materialization method 𝐶𝑢𝑏𝑒(𝐵, 𝐴1, … , 𝐴𝑛,𝑀, 𝑓) that 

computes a data cube on a multidimensional base table 𝐵 using attributes as 

dimensions 𝐴1, … , 𝐴𝑛, 𝑀 as the measure and the aggregate function 𝑓. 

We use BUC (Beyer et al., 1999) to materialize a data cube.  For each unit 𝑢, let 𝐵𝑢 

be the set of tuples in the base table that belong to 𝑢; that is, 𝐵𝑢 = {𝑡|𝑡 ∈ 𝐵 ∧ 𝑢 ≺ 𝑡}.  Given 

a query unit 𝑞, a benchmark query compares the data cubes 𝐶𝑢𝑏𝑒(𝐵𝑞 , 𝐷𝐼𝑀,𝑀, 𝑓) 

and 𝐶𝑢𝑏𝑒(𝐵𝑢, 𝐷𝐼𝑀,𝑀, 𝑓) for every unit 𝑢 in the search scope.  This is equivalent to 

materializing the whole data cube 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪ 𝐷𝐼𝑀,𝑀, 𝑓) since all units using attributes 

𝑈𝐼𝐷 need to be considered.  
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A naïve method is to search every unit 𝑢 in the scope, given a query unit 𝑞, and 

compute the performance gap between 𝑞 and 𝑢 for every possible aggregate cell 𝑐 formed 

by the set of attributes 𝐷𝐼𝑀.  It is time consuming to perform computation in every aspect 

𝑐 for every unit 𝑢.  We can organize the units and the aspects such that the search can 

ignore many aggregate cells that are trivial. 

3.3.1. Inverted Index for Fast Search 

In this section, we use two simple ideas to facilitate fast search.  

As the first idea, we sort all aggregate cells in the cube 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪ 𝐷𝐼𝑀,𝑀, 𝑓) 

in the aggregate value descending order.  We search aggregate cells in this order for 

answering a query.  In this order, we visit the aggregate cells of larger values earlier on 

and thus heuristically we have a better chance of finding cells with larger performance 

gaps for the query cell.  Let ≺𝑎𝑔𝑔𝑟 be the aggregate value descending order of all 

aggregate cells in 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪ 𝐷𝐼𝑀,𝑀, 𝑓).  For any aggregate cells 𝑢 and 𝑣, 

if 𝑢 ≺𝑎𝑔𝑔𝑟 𝑣, then 𝑢.𝑀 ≥ 𝑣.𝑀.  Note that if there are two or more aggregate cells having 

the same value, the tie can be broken in any arbitrary way.   

The second idea is to use inverted index (Wikipedia, 2016).  For each value in the 

domain of every unit-id attribute, we maintain an inverted index to record the list of 

aggregate cells containing this value.  Suppose 𝑎𝑖𝑗 is a value in the domain of unit-id 

attribute 𝐴𝑖.  The inverted index 𝐼𝑛𝑑𝑒𝑥𝑎𝑖𝑗 is a list of aggregate cells 𝑢 ∈ 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪

𝐷𝐼𝑀,𝑀, 𝑓) such that 𝑢. 𝐴𝑖 = 𝑎𝑖𝑗.  All aggregate cells in every inverted index are sorted 

according to the order ≺𝑎𝑔𝑔𝑟. 

We can retrieve all aggregate cells of cube 𝐶𝑢𝑏𝑒(𝐵𝑞 , 𝐷𝐼𝑀,𝑀, 𝑓) using inverted 

indices efficiently in a way similar to merge-sort.  Let 𝑞 be the query unit and 𝑞. 𝐴𝑖1 , … , 𝑞. 𝐴𝑖𝑙 

are the unit-id attribute values that are not ∗.  To find all aggregate cells of 𝑞, we only need 

to search inverted indices 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖1 , … , 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑙
 and find all aggregate cells 𝑐 such that 

𝑐 appears in every 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑗
 and takes value ∗ in all other unit-id attributes.  Since we 
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scan the inverted indices in the order of ≺𝑎𝑔𝑔𝑟, we can find all aggregate cells of 𝑞 in one 

scan. 

The inverted index also facilitates efficient retrieval of all unit aggregate cells in the 

search scope; that is, ancestors, descendants, and siblings of 𝑞.  To search for the 

ancestor units and their aggregate cells, we scan the inverted indices 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖1
, … ,

𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑙
 in a synchronized manner.  Except for the unit (∗, … ,∗) which can be checked 

separately as a special case, an aggregate cell 𝑐 is an ancestor of 𝑞 if (1) 𝑐 appears in at 

least one of the inverted indices 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖1 , … , 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑙
; and (2) 𝑐. 𝐴𝑖𝑗 = ∗ if 𝑐 does not 

appear in 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑗
.  Again, since we scan the inverted indices in the order of ≺𝑎𝑔𝑔𝑟, we 

can find all ancestor units of 𝑞 and their aggregate cells in one scan.  To find all descendant 

units of 𝑞, we search the inverted indices 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖1
, … , 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑙 

and find all cells 𝑐 such 

that 𝑐 appears in every inverted index 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑗
 and takes a non-∗ value in at least one 

unit-id attribute other than 𝐴𝑖1 , … , 𝐴𝑖𝑙.  To find all siblings of 𝑞, we search the inverted 

indices 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖1
, … , 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑙 

and find all cells 𝑐 such that (1) 𝑐 appears in every inverted 

index 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑗
 except for one, say 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑗0

; (2)  𝑐. 𝐴𝑖𝑗0 ≠ 𝑞. 𝐴𝑖𝑗0and 𝑐. 𝐴𝑖𝑗0 ≠ ∗; 

(3) 𝑐. 𝐴𝑖𝑗 = ∗ if 𝑞. 𝐴𝑖𝑗 = ∗.  Both searches can be achieved in one scan of the inverted 

indices. 

Example 4 (SIIC).  We use sample data shown in Table 2 as an example.  The 𝑎𝑣𝑔() is 

the aggregate function.  Let 𝑈𝐼𝐷 = {age-group, gender}, 𝐷𝐼𝑀 = {location, position, 

education}, and 𝑀 = {sales volume}.  We first build an inverted index for each value in 

the domain of every unit-it attributes, in this example, age-group and gender as shown 

in Figure 7. 
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Figure 7 Example SIIC for values "young" and "M" 

Suppose the query unit is 𝑞 = (young, M). We find that (young, M, Vancouver, staff, 

University) appears in both inverted indices for “young” and “M”; thus, (young, M, 

Vancouver, staff, University) must be an aggregate cell of 𝑞.  Similarly, we can easily find 

all aggregate cells of 𝑞, {(young, M, Vancouver, staff, University):200, (young, M, 

Vancouver, ∗, University):200, …} with the aide of inverted indices. 

To find all aggregate cells of ancestors, descendants, and siblings of 𝑞, we apply 

the same technique to the search scope of 𝑞.  For example, to find all aggregate cells of 

a sibling (young, F), we only need to check aggregate cells that appear in both inverted 

indices for “young” and “F”.  Again, we have all aggregate cells sorted in the search scope 

{(young, F, ∗, ∗, ∗):225, (mid-age, M, Vancouver, ∗, University):224, …}. 

3.3.2. Pruning 

Since we scan aggregate cells in the aggregate value descending order, we 

maintain the top-𝑘 answers and we can define the following property. 

Lemma 1.  Given a query unit 𝑞, consider an aggregate cell 𝑐 for 𝑞‘s dimension attributes 

such that 𝑞 ⊗ 𝑐 is not empty.  For two units 𝑢 and 𝑢’ such that 𝑢 ⊗ 𝑐 ≺𝑎𝑔𝑔𝑟 𝑢
′⊗ 𝑐, 

then 
(𝑢⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
≥

𝑢′⊗𝑐.𝑀

𝑞⊗𝑐.𝑀
. 

Proof.  We only need to recall that if 𝑢 ⊗ 𝑐 ≺𝑎𝑔𝑔𝑟 𝑢
′⊗ 𝑐, (𝑢 ⊗ 𝑐).𝑀 ≥ (𝑢′ ⊗ 𝑐).𝑀, and the 

assumption that the aggregate values are positive. 

(young, F, ∗, ∗, ∗) 

(young, ∗, Seattle, ∗, ∗) 

… 

(young, M, Vancouver, staff, University) 

… 

225 

225 

… 

200 

… 

(mid-age, M, Vancouver, ∗,University) 

… 

(young, M, Vancouver, staff, University) 
 

(young, M, Vancouver, ∗, University) 

… 

224 

… 

200 

200 

… 

Inverted Index for “young” Inverted Index for “M” 
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Using Lemma 1, for any aggregate cell 𝑐 for dimension attributes such that 𝑐 is an 

aspect of 𝑞 (i.e. 𝑞 ⊗ 𝑐 is not empty), if we scan an aggregate cell 𝑣 = 𝑢 ⊗ 𝑐 such 

that (𝑢, 𝑐) is not qualified to be a top-𝑘 answer among the aggregate cells processed so 

far, then any pair (𝑢′, 𝑐)  to be scanned later is not qualified either; thus, 𝑐 can be pruned. 

Further, let 𝑣 be the current aggregate cell we scan in the inverted indices.  For 

any aspect 𝑐 of 𝑞, if 
𝑣.𝑀

 (𝑞⊗𝑐).𝑀
 is less than the top-𝑘 answers we have seen so far, then no 

aggregate cells after 𝑣 in the sorted list can form a pair (𝑢, 𝑐) such that 𝑣 = 𝑢 ⊗ 𝑐 and (𝑢, 𝑐) 

is qualified as a top-𝑘 answer.  In this case, the aspect 𝑐 can be pruned as well.  This rule 

applies to all aspects of 𝑞; that is, aggregate cells in cube 𝐶𝑢𝑏𝑒(𝐵𝑞 , 𝐷𝐼𝑀,𝑀, 𝑓).   Once it 

is determined that all aspects of 𝑞 are processed (i.e. either included in the current top-𝑘 

answer or can be pruned), the search can terminate and the current top-𝑘 answers can 

be returned as the final answers to the benchmark query. 

Example 5 (SIIC with Pruning).  Figure 8 illustrates pruning with Example 4.  Suppose 

the query unit is 𝑞 = (young, M) and we want to find top-2 units that give largest 

performance gaps.  Assume we have {(young, F, ∗, ∗, ∗): 225, (mid-age, M, Vancouver, 

∗, University): 224} as current top-2 benchmarks as shown in the figure.  We are 

currently scanning the aggregate cell {(young, F, ∗, ∗, University): 220}.  It is easy to 

see that {(young, F, ∗, ∗, University): 220} does not qualify to be top-2; as such, all 

following cells that are compatible with (∗, ∗, University) can be pruned. 

 

 

 

 

Figure 8 Example SIIC with Pruning 
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3.4. Dominant Answer Materialization (DAM) Method 

The SIIC method has a severe drawback; in the worst case, it still has to go through 

the list of all aggregate cells of the whole data cube 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪ 𝐷𝐼𝑀,𝑀, 𝑓).  When the 

data cube is large, the cost is significant in both space and time.  The Dominant Answer 

Materialization (DAM) method addresses this issue. 

3.4.1. Search Scope of Ancestors 

We first consider the search scope of ancestors.  Consider a query unit 𝑞 and a 

unit 𝑢 that is an ancestor of 𝑞; that is, 𝑢 ≺ 𝑞.  𝑢 is called a maximal unit of 𝑞 with respect 

to aspect 𝑐 if 𝑐 is an aspect of both 𝑞 and 𝑢 and there does not exist another ancestor 𝑢’ of 

𝑞 such that 
(𝑢′⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
>

(𝑢⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
.  The following is observed. 

Theorem 1 (Monotonicity).  Given a unit 𝑞, if a unit 𝑢 is a maximal unit of 𝑞 with respect 

to aspect 𝑐, then for any unit 𝑞’ such that 𝑢 ≺ 𝑞′ ≺ 𝑞, 𝑢 is also a maximal unit of 𝑞’ with 

respect to 𝑐. 

Proof by contradiction.  Assume that 𝑢 is not a maximal unit of 𝑞’ with respect to 𝑐.  Then 

there exists another unit 𝑢’ such that 𝑢′ ≺ 𝑞′ and 
(𝑢′⊗𝑐).𝑀

(𝑞′⊗𝑐).𝑀
>

(𝑢⊗𝑐).𝑀

(𝑞′⊗𝑐).𝑀
.  Since 𝑢′ ≺ 𝑞′ 

and 𝑞′ ≺ 𝑞, we have 𝑢′ ≺ 𝑞.  Since 𝑢′ ≺ 𝑞′ and 
(𝑢′⊗𝑐).𝑀

(𝑞′⊗𝑐).𝑀
>

(𝑢⊗𝑐).𝑀

(𝑞′⊗𝑐).𝑀
 and the measure 

values are non-negative, we have (𝑢′⊗ 𝑐).𝑀 > (𝑢 ⊗ 𝑐).𝑀.  Therefore, we 

have 
(𝑢′⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
>

(𝑢⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
.  That is, 𝑢 is not a maximal unit of 𝑞 with respect to 𝑐.  A 

contradiction. 

Theorem 1 presents a useful observation; that is, multiple query units may share 

a common aggregate unit as an answer to benchmark queries.  To answer benchmark 

queries efficiently, we can pre-compute aggregate units and the associated aspects that 

may be answers to benchmark queries.  The problem then is to determine, for an 

aggregate unit 𝑢, which query units may take 𝑢 as a possible answer and with respect to 

which aspects.  The following lemma answers this question. 
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Lemma 2.  For aggregate units 𝑢 and 𝑣 such that 𝑢 ≺ 𝑣, let 𝑐 be an aspect of both 𝑢 and 

𝑣.  Then, 𝑢 is not a maximal unit of 𝑣 with respect to 𝑐 if: 

1. there exists an ancestor 𝑢′ ≺ 𝑢 such that (𝑢′⊗ 𝑐).𝑀 > (𝑢 ⊗ 𝑐).𝑀; or 

2. there exists a descendant 𝑢’’ such that 𝑢 ≺ 𝑢′′ ≺ 𝑣 and (𝑢 ⊗ 𝑐).𝑀 < (𝑢′′ ⊗ 𝑐).𝑀. 

Proof.  If there exists an ancestor 𝑢′ ≺ 𝑢 such that (𝑢′⊗ 𝑐).𝑀 > (𝑢 ⊗ 𝑐).𝑀, 

then 𝑅 (
𝑢′

𝑣
|𝑐) > 𝑅 (

𝑢

𝑣
|𝑐).  If there exists a descendant 𝑢’’ such that 𝑢 ≺ 𝑢′′ ≺ 𝑣 and 

(𝑢 ⊗ 𝑐).𝑀 < (𝑢′′ ⊗ 𝑐).𝑀, then 𝑅 (
𝑢′′

𝑣
|𝑐) > 𝑅 (

𝑢

𝑣
|𝑐).  In both cases, 𝑢 is not a maximal 

unit of 𝑣 with respect to 𝑐. 

According to the first item in Lemma 2, to answer benchmark queries whose 

search scope is the ancestors, we do not need to store the whole data cube 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪

𝐷𝐼𝑀,𝑀, 𝑓).  Instead, we only need to store those aggregate units 𝑢 and aspects 𝑐 such 

that there does not exist another unit 𝑢’ and aspects 𝑐’ and (𝑢 ⊗ 𝑐).𝑀 < (𝑢′⊗ 𝑐).𝑀.  In 

other words, we only need to store units and aspects whose measure values are not 

dominated by any of their ancestors. 

For aggregate unit 𝑢 and aspect 𝑐, we call (𝑢, 𝑐) a dominant answer if there does 

not exist another unit 𝑢’ and 𝑐’ and (𝑢 ⊗ 𝑐).𝑀 < (𝑢′ ⊗ 𝑐).𝑀.  To answer any benchmark 

query, we only need to materialize all dominant answers.  

Once all dominant answers are materialized, we can organize dominant answers 

using inverted indices as per the SIIC method. 

The last problem is to find how to compute dominant answers.  A brute-force is to 

compute a full data cube and then select dominant answers from all aggregate cells.  Since 

we are concerned with groups of aggregate cells with different measure values, we can 

adopt the quotient cube method (Lakshmanan et al., 2002). 

Instead of computing all aggregate cells of a data cube, the quotient cube method 

groups aggregate cells according to the tuples in the base table that contribute most to 

the aggregate of cells.  For an aggregate cell 𝑢, it considers the set of descendant tuples 
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in the base table 𝑐𝑜𝑣(𝑢) = {𝑡|𝑢 ≺ 𝑡, 𝑡 ∈ 𝐵}.  If two aggregate cells 𝑢1 and 𝑢2 share the 

identical set of descendant tuples in the base table; that is, 𝑐𝑜𝑣(𝑢1) = 𝑐𝑜𝑣(𝑢2), then the 

two cells are assigned to the same quotient group.  It shows that each quotient group has 

a unique upper bound which is also in the same group.  In other words, if there are 𝑢1 

and 𝑢2 such that 𝑐𝑜𝑣(𝑢1) = 𝑐𝑜𝑣(𝑢2) but 𝑢1 ⊀ 𝑢2 and 𝑢2 ⊀ 𝑢1 then there exists another 

aggregate cell 𝑢 such that 𝑢 ⊀ 𝑢1, 𝑢 ⊀ 𝑢2 and 𝑐𝑜𝑣(𝑢) = 𝑐𝑜𝑣(𝑢1) = 𝑐𝑜𝑣(𝑢2).  Now we only 

need to materialize the upper bounds of the quotient groups that are dominant answers. 

Example 6 (DAM).  Using Table 2, we assume that the query unit is 𝑞 = (young, M) and 

use 𝑎𝑣𝑔() as the aggregate function.  The set of ancestors of the query unit is {(∗, M), 

(young, ∗), (∗, ∗)}.  It is easy to verify that 𝑢 = (*, M) is a maximal unit of 𝑞 with respect 

to aspect 𝑐 = (Vancouver, ∗, University) and 𝑢 = (∗, ∗) is a maximal unit of 𝑞 with 

respect to aspect 𝑐 = (Vancouver, staff, ∗).  According to the base table, ((mid-age, 

M), (Vancouver, ∗, University)) is a dominant answer since there does not exist a unit 

𝑢’ that has a greater aggregate value than 𝑎𝑣𝑔(mid-age, M)  ⊗ (Vancouver, ∗, 

University)).  As an example of quotient cube, we can verify that 𝑐𝑜𝑣(mid-age, M, 

Vancouver, manager, ∗) = 𝑐𝑜𝑣(mid-age, M, ∗, manager, University); that is, they have 

the same set of descendants in the base table.  Thus, these two aggregate cells are in 

the same quotient group.  Further, (mid-age, M, ∗, manager, ∗) is the upper bound of 

the group.  By using the quotient cube, we can materialize all dominant answers from 

the quotient group in Table 2; that is, {(young, F, ∗, ∗, ∗), (mid-age, M, Vancouver, ∗, 

University), …}.  Unlike the SIIC method, we only store the dominant answers, reducing 

both the search space and the time.  Once a query is given, we can use the inverted 

indices to answer the query efficiently. 

3.4.2. Search Scope of Descendants 

Consider a query unit 𝑞 and a unit 𝑢 that is a descendant of 𝑞; that is, 𝑢 ≻ 𝑞.  Then 

𝑢 is called a maximal unit of 𝑞 with respect to aspect 𝑐 if 𝑐 is an aspect of both 𝑞 and 𝑢 

and there does not exist another descendant 𝑢’ of 𝑞 such that 
(𝑢′⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
>

(𝑢⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
.  Similar 

to Theorem 1, we have the following: 
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Corollary 1 (Monotonicity).  Given a unit 𝑞, if a unit 𝑢 is a maximal unit of 𝑞 with respect 

to aspect 𝑐, then for any unit 𝑞’ such that 𝑢 ≻ 𝑞′ ≻ 𝑞, 𝑢 is also a maximal unit of 𝑞’ with 

respect to 𝑐. 

Also, similar to Lemma 2, we have the following: 

Corollary 2.  For aggregate units 𝑢 and 𝑣 such that 𝑢 ≻ 𝑣, let 𝑐 be an aspect of both 𝑢 

and 𝑣.  Then 𝑢 is not a maximal unit of 𝑣 with respect to 𝑐 if: 

1. there exists a descendant 𝑢′ ≻ 𝑢 such that (𝑢′⊗𝑐).𝑀 > (𝑢 ⊗ 𝑐).𝑀; or 

2. there exists an ancestor 𝑢’’ such that 𝑢 ≻ 𝑢′′ ≻ 𝑣 and (𝑢 ⊗ 𝑐).𝑀 < (𝑢′′ ⊗ 𝑐).𝑀. 

3.5. Empirical Evaluation 

The algorithms were implemented with Python 2.7 running with PyPy2 JIT 

optimization.  PyPy2 is an advanced just-in-time complier which provides approximately 

10 times faster running time and additional scalability than the standard Python.  All 

experiments were conducted on a PC with an Intel Core i7-3770 3.40GHz CUP, 16GB 

memory and a 1 TB HDD, running the Ubuntu 14.04 operating system. 

3.5.1. Data Sets and Experiment Settings 

We evaluated our algorithms with both synthetic and real data: 

 Synthetic data (TPC-H v2.17.1) 

TPC-H is a widely used data set that consists of a suite of business oriented 
ad-hoc queries and concurrent modifications.  TPC-H has 8 separate individual 
base tables.  We used the joined results of table PART and table LINEITEM 
as our evaluation base table. 

 Real data (CDIAC Weather) 

The weather data set available from Carbon Dioxide Information Analysis 
Center (CDIAC) contains 1,015,367 tuples with attributes including station-id, 
longitude, latitude, solar-altitude, present-weather, day, hour, weather-change-
code, and brightness. 

The TPC Benchmark™H (TPC-H) is a decision support benchmark. It consists of 

a suite of business oriented ad-hoc queries and concurrent data modifications. The 
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queries and the data populating the database have been chosen to have broad industry-

wide relevance. This benchmark illustrates decision support systems that examine large 

volumes of data, execute queries with a high degree of complexity, and give answers to 

critical business questions (TPC-H, 2016).  Since benchmark queries and the underlying 

techniques are highly related to data warehousing and decision support, we chose TPC-

H data sets. 

We randomly generated 100 queries for each data set and conducted each 

experiment 10 times, reporting the average value.  Using the 𝑎𝑣𝑔() as the aggregate 

function, we compared Sorted Inverted Index Cube without pruning (SIIC) as well as with 

pruning (SIICP), and Dominant Answer Materialization (DAM).  We used BUC (Beyer et 

al., 1999) to materialize the cubes for SIIC/SIICP and Quotient Cube (Lakshmanan et al., 

2002) to compute quotient groups for DAM. 

3.5.2. Reduction of Aggregate Cells Computed and Indexed 

We conducted two sets of experiments to evaluate the effectiveness of reducing 

the number of aggregate cells computed and indexed. 

In the first set of experiments, we fixed the dimensionality of 𝐷𝐼𝑀 and reported the 

number of computed and indexed cells with respect to the increase of dimensionality of 

𝑈𝐼𝐷.  We sorted the dimensions according to the cardinalities in the descending order.  

For the TPC-H data set, we generated 9 testing data sets with 2 to 10 dimensions of 𝑈𝐼𝐷.  

The dimensionality of 𝐷𝐼𝑀 was fixed to 5.  For the Weather data, we generated 4 testing 

data sets with 2 to 5 dimensions of 𝑈𝐼𝐷.  The dimensionality of 𝐷𝐼𝑀 was fixed to 5.  The 

results are shown in tables 3 and 4. 

Table 3 TPC-H: number of computed and indexed cells (5 𝑫𝑰𝑴 dimensions) 

Method Dimensionality of 

𝑼𝑰𝑫 

2 3 4 5 6 7 8 9 10 

SIIC/SIICP Computed (x106) 0.4 0.9 2.3 3.5 5.2 6.2 7.5 9.8 12 

Indexed (x105) 0.2 0.4 1.1 2.1 3.6 4.3 6.4 8.0 9.6 

DAM Computed (x105) 0.9 1.7 2.2 4.1 5.5 6.3 7.4 9.7 11 

Indexed (x104) 0.9 1.2 1.6 2.2 2.5 2.9 3.3 3.6 4.0 
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Table 4 Weather: number of computed and indexed cells (5 𝑫𝑰𝑴 dimensions) 

Method Dimensionality of 

𝑼𝑰𝑫 

2 3 4 5 

SIIC/SIICP Computed (x105) 5.2 11 25 35 

Indexed (x104) 2.1 3.6 5.1 11 

DAM Computed (x105) 0.9 1.5 2.1 2.2 

Indexed (x103) 3.5 4.5 5.1 5.4 

Since SIIC and SIICP have the same mechanism for materialization, the number 

of cells computed and indexed for these two methods is the same.  DAM performs better 

than SIIC/SIICP for both TPC-H and Weather data.  Figure 9 shows the reduction ratio of 

the computed and indexed cells for TPC-H where the reduction ratio is the number of cells 

in DAM over the number of cells in SIIC/SIICP.  The reduction ratio in most cases is about 

10%, meaning that DAM only computes and indexes about 10% of the cells that SIIC and 

SIICP do.  Further, the ratio becomes smaller when the dimensionality of 𝑈𝐼𝐷 increases.  

This means that the more dimensions 𝑈𝐼𝐷 has, the more savings of materialization and 

indexing DAM achieves. 

 

Figure 9 Reduction Ratio of DAM over SIIC/SIICP for TPC-H (𝑫𝑰𝑴 fixed) 

Figure 10 shows the results for the Weather data set.  The observation is similar 

to that for the TPC-H.  The savings accomplished by DAM is due to the fact that DAM only 

stores and searches the dominant answers in the quotient groups. 
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Figure 10 Reduction Ratio of DAM over SIIC/SIICP for Weather (𝑫𝑰𝑴 fixed) 

In the second set of experiments, we fixed the dimensionality of 𝑈𝐼𝐷 and reported 

the number of computed and indexed cells with respect to 𝐷𝐼𝑀.  For TPC-H, we generated 

4 testing data sets with 2 to 5 dimensions of 𝐷𝐼𝑀 and the dimensionality of 𝑈𝐼𝐷 was fixed 

to 10.  For the Weather data, we generated 4 testing data sets with 2 to 5 dimensions of 

𝐷𝐼𝑀 and the dimensionality of 𝑈𝐼𝐷 was fixed to 5.  The results are shown in tables 5 and 

6. 

Table 5 TPC-H: number of computed and indexed cells (10 𝑼𝑰𝑫 dimensions) 

Method Dimensionality of 

𝑼𝑰𝑫 

2 3 4 5 

SIIC/SIICP Computed (x106) 5.9 7.1 9.6 12 

Indexed (x105) 4.4 6.5 7.9 9.6 

DAM Computed (x105) 6.5 7.9 9.5 11 

Indexed (x104) 2.6 3.1 3.5 4.0 

Table 6 Weather: number of computed and indexed cells (5 𝑼𝑰𝑫 dimensions) 

Method Dimensionality of 

𝑼𝑰𝑫 

2 3 4 5 

SIIC/SIICP Computed (x105) 4.2 9.8 22 35 

Indexed (x104) 1.5 2.6 5.9 11 

DAM Computed (x105) 0.8 1.4 1.9 2.2 

Indexed (x103) 3.2 4.2 4.8 5.4 

Similar to the results of the first set of experiments, DAM significantly outperforms 

SIIC/SIICP for both synthetic and real data.  Figure 11 shows the reduction ratio for TPC-

H and Figure 12 the Weather data.  The reduction ratio in most cases is about 10%. Similar 

to the observation described earlier, the ratio becomes smaller when the dimensionality 

of 𝐷𝐼𝑀 increases. 
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Figure 11 Reduction Ratio of DAM over SIIC/SIICP for TPC-H (𝑼𝑰𝑫 fixed) 

 

    

Figure 12 Reduction Ratio of DAM over SIIC/SIICP for Weather data (𝑼𝑰𝑫 fixed) 

3.5.3. Runtime and Memory Usage 

We fixed the dimensionality of 𝐷𝐼𝑀 and reported both runtime and memory usage 

in query answering with respect to the dimensionality of 𝑈𝐼𝐷.  The testing data sets were 

the same as those in the first set of experiments.  The memory usage reported is the peak 

memory usage during query answering.  Query answering was tested by 100 random 

queries, as such, the average query answering runtime and the standard deviation are 

reported.  Figure 13 shows the results for TPC-H and Figure 14 the Weather data.  SIICP 

is slightly faster and uses less memory than SIIC.  DAM significantly outperforms SIIC and 

SIICP in runtime and memory usage.  For runtime for index construction, DAM is less than 

half the runtime of SIIC/SIICP.  Further, the DAM runtime increase is much slower than 

SIIC and SIICP with the 𝑈𝐼𝐷 dimensionality increase.  DAM consumes a small amount of 

memory while SIIC/SIICP consume much larger amount of memory.  Similar to runtime, 
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the DAM memory usage increase is slower than SIIC/SIICP as the 𝑈𝐼𝐷 dimensionality 

increases. 

 

Figure 13 Runtime and Memory Usage with TPC-H (𝑫𝑰𝑴 fixed) 

 

Figure 14 Runtime and Memory Usage with Weather (DIM fixed) 

These results indicate that when 𝑈𝐼𝐷 has more dimensions, DAM can save more 

time and memory in query answering.  As noted earlier, the savings come from the fact 

that DAM only computes and stores dominant answers in the quotient groups.  Once a 

query is given, DAM only searches the dominant answers which leads to efficiency in both 

time and memory usage.  Both SIIC and SIICP need to materialize the data cube using 

BUC and build the inverted indices.  SIICP is faster than SIIC because it applies pruning 

in query answering. 

Next, we fixed dimensionality of 𝑈𝐼𝐷 and reported the runtime and the memory 

usage with respect to the dimensionality of 𝐷𝐼𝑀, using the same testing data.  The results 

are shown in figures 15 and 16.  DAM clearly outperforms SIIC/SIICP. 
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Figure 15 Runtime and Memory Usage with TPC-H (𝑼𝑰𝑫 fixed) 

 

Figure 16 Runtime and Memory Usage with Weather (𝑼𝑰𝑫 fixed) 

3.5.4. Scalability 

To assess scalability, we generated and used 4 TPC-H data sets with different 

size: 25%, 50%, 75%, 100% of 1GB.  The dimensionality of 𝑈𝐼𝐷 was fixed to 10 and the 

dimensionality of 𝐷𝐼𝑀 to 5.  The results are shown in Figure 17.  DAM is much more 

scalable than SIIC/SIICP for runtime.  For memory usage, all 3 are scalable.  DAM 

consistently uses much less memory than SIIC/SIICP. 

 

Figure 17 Scalability with TPC-H 
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Reflective Benchmarking 

In Chapter 3, we developed methods to find significant benchmarks efficiently in 

data warehouses. 

In this chapter, we consider outlier detection techniques in data warehouses for 

multidimensional benchmarking.  As stated earlier in section 2.3, when organizations 

conduct benchmarking, they are mainly concerned with identifying areas for performance 

improvement; that is, areas where they perform exceptionally (positively or negatively).  

To this end, outlier analysis in multidimensional databases (i.e. data warehouses) lends 

itself to viable multidimensional benchmarking.  By employing outlier detection techniques, 

we identify what causes organizations to deviate from the norm (i.e. benchmarks).  Is an 

organization an outlier because a small number of underlying units or a majority of them 

are outliers? 

Since what makes an organization an outlier is a reflection of self, we refer to the 

method presented in this chapter as “reflective benchmarking”. 

4.1. Preliminaries 

As in Chapter 3, we follow the notations in the conventional data cube and data 

warehouse literature (Gray et al., 1997). 

Example 1 (Preliminaries).  To develop a health index, an organization is interested in 

finding how prevalent certain illnesses are across its employees.  While benchmarking, 

an organization may find that it has an exceptionally high rate of pain treatment 

provisions across its employees compared to other organizations in the same industry.  

The organization will be interested in finding what makes it an outlier and learning more 

about the characteristics of its internal structures. 
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Consider a table 𝑇 = {employee-id, gender, age-group, service, count} which 

records the organization’s employee attributes including unique identifiers of employees, 

genders, age-groups, services provided to treat certain illnesses, and the count of services 

provided.  Suppose employees who suffer from chronic pain receive regular treatments, 

such as, physiotherapy, chiropractic, and massage services to ease pain.  The prevalence 

rate of chronic pain across employees of the organization can be represented by how 

many employees of the organization provision such services.  If the rate is an outlier, the 

organization would want to understand if it is an outlier because most of its employees are 

outliers.  If so, it would then want to reflect on its internal structures, such as, the 

characteristics of its employees to understand what drives its employees to be outliers.  

The drivers could be genders, age-groups, types of occupations, employment types, 

departments, locations, number of dependents, etc. or combinations of them. 

Definition 1 (Fact Table).  We consider a fact table 𝐹 for 𝑘 parties (e.g. employees) whose 

attributes can be partitioned into 𝑘 + 1 subsets 𝐹𝑖(1 ≤ 𝑖 ≤ 𝑘 + 1).  That is, 𝐹 = ⋃ 𝐹𝑖
𝑘+1
𝑖=1 . 

 The subset 𝐹𝑖(1 ≤ 𝑖 ≤ 𝑘 + 1) contains the attributes of the 𝑖-𝑡ℎ party.  We refer 

to 𝐹𝑖 as 𝑝𝑎𝑟𝑡𝑦 𝑖. 

 We assume that ⋃ 𝐹𝑖
𝑘
𝑖=1  is a key of the table 𝐹.  That is, no two tuples have the 

same values of all attributes in ⋃ 𝐹𝑖
𝑘
𝑖=1 . 

 The subset 𝐹𝑘+1 contains the measure (e.g. count).   As in Chapter 3, the measure 
attribute is used to derive quantitative difference to indicate the performance gap 
between two parties. 

Definition 2 (Groups).  For the domain of each attribute 𝐹 = ⋃ 𝐹𝑖
𝑘
𝑖=1 , we introduce a meta-

symbol ∗ which indicates that the attribute is generalized.  A tuple 𝑡 represents a base 

level group of 𝑝𝑎𝑟𝑡𝑦 𝑖, if 𝑡 has a non-∗ value for every attribute of 𝐹𝑖.  Otherwise, 𝑡 is 

an aggregate group of 𝑝𝑎𝑟𝑡𝑦 𝑖.  For groups 𝑡1 and 𝑡2 such that 𝑡1 ≠ 𝑡2, 𝑡1 is an 

ancestor of 𝑡2 and  𝑡2 a descendent of 𝑡1, denoted by 𝑡1 ≺ 𝑡2, if for every attribute in 𝐹 =

⋃ 𝐹𝑖
𝑘
𝑖=1  where 𝑡1 has a non-∗ value, 𝑡2 takes the same value as 𝑡1.  For example, (e12, 

male, 30-40, physiotherapy) is a base level group while (∗,∗, 30-40,∗) is an aggregate 

group and (∗,∗,30-40,∗) ≺ (e12, male, 30-40, physiotherapy). 

It immediately follows that: 
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Lemma 1.  For a party 𝐹𝑖  where the domain of every attribute is finite, all groups including 

the base level and aggregate form a lattice under the relation ≺. 

In theory, we can relax the requirement in Lemma 1; that is, as long as the domain 

of every attribute is either finite or countable, the lemma still holds.  In practice, a fact table 

is always finite, as such, the domains of the attributes can be considered finite. 

Definition 3 (Performance Gap).  Given a fact table 𝐹 of 𝑘 parties, we extend the domain 

of each attribute in ⋃ 𝐹𝑖
𝑘
𝑖=1  such that meta-symbol ∗ is included as a special value.  A 

performance gap is a group-by tuple 𝑡 ∈ 𝐹.  That is, for every attribute in ⋃ 𝐹𝑖
𝑘
𝑖=1 , 𝑡 takes 

either a value in the domain of the attribute or meta-symbol ∗.  A performance gap is a 

base level gap if every party in 𝑡 is a base level group.  Otherwise, 𝑡 is an aggregate 

performance gap. 

If all groups are base level groups, a performance gap is simply a tuple in the fact 

table.  When performance gaps contain some aggregate groups, we use an aggregate 

function to describe the aggregate performance gaps. 

Definition 4 (Measure of Performance Gap).  Given a fact table 𝐹 of 𝑘 parties, 

let 𝑎𝑔𝑔𝑟: 2𝐹𝑘+1 → 𝐹𝑘+1 be an aggregate function.  For any aggregate performance gap 𝑡, 

the measure of 𝑡 is the aggregate of the measures of all base level performance gaps 

that are descendants of 𝑡, that is, 

𝑡. 𝐹𝑘+1 = 𝑎𝑔𝑔𝑟({𝑠. 𝐹𝑘+1|𝑠 ∈ 𝐹, 𝑠 𝑖𝑠 𝑎 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑡}). 

For example, the prevalence rate of chronic pain across employees of an 

organization can be computed by taking the average of all counts of services provided to 

treat chronic pain in the fact table.  Here the aggregate function is: 

𝑎𝑔𝑔𝑟({𝑎𝑣𝑔𝑖, 𝑐𝑜𝑢𝑛𝑡𝑖}) = (
∑ 𝑎𝑣𝑔𝑖𝑖 ×𝑐𝑜𝑢𝑛𝑡𝑖

∑ 𝑐𝑜𝑢𝑛𝑡𝑖𝑖
, ∑ 𝑐𝑜𝑢𝑛𝑡𝑖𝑖 ).  

Theorem 1 (Performance Gap Lattice).  Given a fact table 𝐹 of 𝑘 parties, if the domain 

of every attribute in ⋃ 𝐹𝑖
𝑘
𝑖=1  is finite, then all performance gaps form a lattice 𝐿 =
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∏ 𝐿𝐹𝑖 
𝑘
𝑖=1 where 𝐿𝐹𝑖 is the lattice of party 𝐹𝑖.  Further, |𝐿| = |∏ 𝐿𝐹𝑖 

𝑘
𝑖=1 | = ∏ (|𝐴| +𝐴∈∪𝑖=1

𝑘 𝐹𝑖

1). 

From Theorem 1, the size of the space required for performance gaps is 

exponential to the number of parties. 

4.2. Outlier Types 

Outliers can be modeled in many different ways (Campbell, 2014).  In this section, 

we employ the model of statistical outliers which captures observation points that are 

distant from the majority of observations (Hodge et al., 2004). The rational for the model 

is that it is unlikely that distant points have been generated by the same mechanism that 

generated the majority of points.  Given a set of samples where each sample is associated 

with a numerical measure, we can calculate the mean 𝑚 and the standard deviation 𝛿. 

Theorem 2 (Chebyshev Inequality (Chebyshev, 1984)).  Let 𝑋 be a random variable with 

finite expected value 𝑚 and non-zero variance 𝛿.  For any real number, 𝑙 > 0, 𝑃𝑟(|𝑋 −

𝑚| ≥ 𝑙𝛿) ≤
1

𝑙2
. 

We use 𝑙 as an outlier threshold; the samples that are more than 𝑙𝛿 away from 𝑚 

are deemed outliers. 

Definition 5 (Outliers).  Given a fact table 𝐹 and outlier threshold 𝑙 where 𝐹𝑘+1 contains 

only one attribute, let 𝑚 be the mean and 𝛿 be the standard deviation of 𝐹𝑘+1 of all base 

level performance gaps.  Performance gap 𝑡 is an outlier if |𝑡. 𝐹𝑘+1 −𝑚| > 𝑙𝛿. 

Definition 5 can be easily extended to fact tables containing multiple measure 

attributes.  Is there redundancy among performance gap outliers?  We have the following 

observation. 

Theorem 3 (Weak Monotonicity).  Consider a fact table 𝐹 of 𝑘 parties and 𝑎𝑣𝑒𝑟𝑎𝑔𝑒() as 

the aggregate function.  Let 𝑡 be an aggregate performance gap and 𝐴 ∈ ⋃ 𝐹𝑖
𝑘
𝑖=1  be an 

attribute where 𝑡 has value ∗.  If 𝑡 is an outlier, then there exists at least one 
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performance gap outlier 𝑡′ such that (1) 𝑡′ =  𝑡 for all attributes in ⋃ 𝐹𝑖
𝑘
𝑖=1 − {𝐴} and 

(2) 𝑡′. 𝐴 ≠∗. 

Proof by contradiction.  Without loss of generality, let 𝐴 ∈ 𝐹1.  We can write 𝑡 =

(𝑡1, 𝑡2, … , 𝑡𝑘) and 𝑡′ = (𝑡′1, 𝑡2, … , 𝑡𝑘) where 𝑡𝑖(1 < 𝑖 < 𝑘) are the groups from 𝑝𝑎𝑟𝑡𝑦 𝑖 

and 𝑡′1 is a group from 𝑝𝑎𝑟𝑡𝑦 1 such that 𝑡′1 is a child of 𝑡1.  Suppose 𝑡 has 𝑛 such 

children denoted by 𝑡′(1), … , 𝑡′(𝑛).  According to Definition 5, 𝑡 is a performance gap 

outlier and |𝑡. 𝐹𝑘+1 −𝑚| > 𝑙𝛿.  Suppose the children of 𝑡 are 𝑡𝑖(1 < 𝑖 < 𝑛), then 𝑡′ ∈ 𝑡𝑖.  

As per Definition 4 and using 𝑎𝑣𝑒𝑟𝑎𝑔𝑒() as the aggregate function, we have 𝑡. 𝐹𝑘+1 =

∑ 𝑡′(𝑖).𝐹𝑘+1
𝑛
𝑖=1

𝑛
.  Assume all possible performance 𝑡′(𝑖) are not outliers.  Then, 

𝑚 − 𝑙𝛿 ≤ 𝑡′(𝑖). 𝐹𝑘+1 ≤ 𝑚 + 𝑙𝛿 

𝑛(𝑚 − 𝑙𝛿) ≤∑𝑡′(𝑖). 𝐹𝑘+1

𝑛

𝑖=1

≤ 𝑛(𝑚 + 𝑙𝛿) 

𝑚 − 𝑙𝛿 ≤
∑ 𝑡′(𝑖). 𝐹𝑘+1
𝑛
𝑖=1

𝑛
≤ 𝑚 + 𝑙𝛿 

|
∑ 𝑡′(𝑖). 𝐹𝑘+1
𝑛
𝑖=1

𝑛
−𝑚| ≤ 𝑙𝛿 

|𝑡 − 𝑚| ≤ 𝑙𝛿 

A contradiction. 

According to Theorem 3, if an aggregate performance gap 𝑡 is an outlier, then 

some descendants of 𝑡 must also be outliers.  Consequently, we can classify performance 

gap outliers into two types: 

 Aggregate performance gap 𝑡 is a type-I outlier if most base level performance 

gaps of 𝑡 are not outliers.  In other words, a small number of descendants that are 

outliers are driving 𝑡 to be an outlier.  Thus, 𝑡 being considered an outlier is a mere 
chance and may not be interesting; instead, outlying descendants of 𝑡 could be 
more interesting and warrant further analyses. 



 

49 

 Aggregate performance gap 𝑡 is a type-II outlier if many base level performance 

gaps of 𝑡 are outliers.  In other words, 𝑡 is a good summary of a set of outlying 
descendants.  Thus, 𝑡 on its own may be interesting. 

To quantify these two types of outliers, we use Kullback-Leibler divergence or KL-

divergence (Kullback et al., 1951) which defines a measure of the difference between two 

distributions 𝑃 and 𝑄 in information theory.  In applications, 𝑃 typically represents the true 

distribution of data, observations or precisely calculated theoretical distribution while 𝑄 

represents a theory, model, description, or approximation of 𝑃. 

Definition 6 (Kullback-Leibler divergence (Kullback et al., 1951)).  For probability 

distributions 𝑃 and 𝑄 of a discrete random variable, the KL-divergence is defined as: 

𝐾𝐿(𝑃|𝑄) =∑ 𝑃(𝑥)l𝑛
𝑃(𝑥)

𝑄(𝑥)𝑥∈𝐷
 

It is the expectation of the logarithmic difference between probabilities 𝑃 and 𝑄 

where the expectation is taken using the probabilities 𝑃.  The KL-divergence is defined 

only if 𝑄(𝑖) = 0 implies 𝑃(𝑖) = 0 for all 𝑖 (absolute continuity).  Whenever 𝑃(𝑖) = 0, the 

contribution of the 𝑖-term is interpreted as zero because lim
𝑥→0

𝑥log(𝑥) = 0. 

For probability distributions 𝑃 and 𝑄 of a continuous random variable, the KL-

divergence is defined to be the integral: 

𝐾𝐿(𝑃|𝑄) = ∫ 𝑝(𝑥)l𝑛
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

∞

−∞

 

where 𝑝 and 𝑞 denote densities of 𝑃 and 𝑄 respectively. 

KL-divergence is non-negative but not symmetric; that is, generally 𝐾𝐿(𝑃|𝑄) ≠

𝐾𝐿(𝑄|𝑃).  For both discrete and continuous cases, the KL-divergence is only defined if 𝑃 

and 𝑄 sum to 1 and if 𝑄(𝑥) > 0 for any 𝑥 such that 𝑃(𝑥) > 0.  The smaller the KL-

divergence, the more similar the two distributions 𝑃 and 𝑄. 

Definition 7 (Types of Outlier).  Let 𝑡 be a performance outlier and 𝑆 be the set of base 

level performance gaps (i.e. the descendants of 𝑡).  𝑆 can be divided into two exclusive 
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groups; 𝑆0 (the subset of normal) and 𝑆1 (the subset of outliers).  𝑆 = 𝑆0 ∪ 𝑆1 and 𝑆0 ∩

𝑆1 ≠ ∅.  Performance gap 𝑡 is a type-I outlier if 𝐾𝐿(𝑆|𝑆1) ≥ 𝐾𝐿(𝑆|𝑆0); otherwise, 𝑡 is a 

type-II outlier. 

4.3. Detection Methods 

In this section, we first show that all performance gap outliers can be detected by 

computing an iceberg cube, we then discuss how to determine the types of outliers. 

4.3.1. Outlier Detection by Iceberg Cubing 

For a fact table 𝐹 and a measure threshold 𝜏, an iceberg cube contains all 

aggregate cells of 𝐹 whose measures are at least 𝜏.  Given a fact table 𝐹 of 𝑘 parties, 𝐹 =

⋃ 𝐹𝑖
𝑘+1
𝑖=1  where ⋃ 𝐹𝑖

𝑘
𝑖=1  are the dimensions and 𝐹𝑘+1 are the measures, we use existing 

cube computation methods such as BUC (Beyer et al., 1999) and TDC (Zhao et al., 1997) 

and  |𝑡. 𝐹𝑘+1 −𝑚| > 𝑙𝛿 as 𝜏 to compute an iceberg cube of 𝐹 which only contains 

aggregate cells that are outliers. 

Many existing iceberg cubing methods rely on the monotonicity property of iceberg 

conditions; however, the iceberg condition in this problem is not monotonic; that is, the 

child of a performance gap outlier 𝑡 may not be an outlier.  Since Theorem 3 identifies 

weak monotonicity of the problem, we use a special method, eBUC (Yu et al., 2005), which 

looks ahead to check whether an aggregate cell 𝑡 is an ancestor of outliers.  This only 

requires the storage of base level performance gaps that are outliers. 

4.3.2. Outlier Type Determination 

As discussed in 4.2, the KL-divergence determines whether an aggregate 

performance gap outlier is more similar to base level performance gaps that are normal 

or outlying.  For an aggregate performance gap 𝑡, let 𝑐𝑜𝑣(𝑡) be the set of descendants 

of 𝑡.  We want to measure the distribution of |𝑡. 𝐹𝑘+1 −𝑚| for tuples 𝑢 ∈ 𝑐𝑜𝑣(𝑡). 
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Since |𝑡. 𝐹𝑘+1 −𝑚| is a continuous random variable, we can apply Kernel Density 

Estimation (Breiman et al., 1977) or KDE to approximate the distribution.  KDE is a non-

parametric approach to estimate the probability density function of a random variable.  Let 

(𝑥1, 𝑥2, … , 𝑥𝑛) be an independent and identically distributed sample drawn from some 

distribution with an unknown density 𝑓.  We are interested in estimating the shape of this 

function 𝑓.  Its kernel density estimator is 𝑓ℎ(𝑥) =
1

𝑛
∑ 𝐾ℎ
𝑛
𝑖=1 (𝑥 − 𝑥𝑖) =

1

𝑛ℎ
∑ 𝐾𝑛
𝑖=1 (

𝑥−𝑥𝑖

ℎ
) 

where 𝐾(∙) is the kernel and is a non-negative function that integrates to one and has the 

mean zero.  ℎ > 0 is a smoothing parameter, referred to as bandwidth, and determines 

the width of the kernel. 

A range of kernel functions are commonly used.  We use Gaussian kernels and 

the Gaussian approximation (Silverman, 1986).  We set ℎ = 1.06 × 𝛿|𝑃|−
1

5 as suggested 

by Silverman (1986) where 𝛿 is the standard deviation of the samples in 𝑃.  For a single 

dimension, the density estimator is: 

𝑃(𝑥) =
1

|𝑃|√2𝜋ℎ
∑𝑒

−
(𝑥−𝑝)2

2ℎ2

𝑝∈𝑃

 

Given two distributions 𝑃 and 𝑄, the KL-divergence returns the difference of 

distribution of 𝑄 given 𝑃; thus, the larger the KL-divergence, the more different the two 

distributions.  For 𝑃 and 𝑄, we have: 

lim
𝑥→∞

1

𝑚
∑ln

𝑃(𝑝𝑖)

𝑄(𝑝𝑖)

𝑚

𝑖=1

= 𝐾𝐿(𝑃|𝑄) 

where 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚} is the set of samples.  Further, the KL-divergence can be 

estimated as: 

𝐾�̂�(𝑃|𝑄) =
1

𝑚
∑ln

𝑃(𝑝𝑖)

𝑄(𝑝𝑖)

𝑚

𝑖=1
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As per Definition 7, we compare the KL-divergence of an aggregate performance 

gap outlier with its base level performance gaps that are both normal and outliers.  That 

is, given an aggregate performance gap outlier 𝑡, we compare: 

𝐾�̂�(𝑆|𝑆0) =
1

|𝑐𝑜𝑣(𝑡)|
∑ ln

𝑆(|𝑢. 𝐹𝑘+1 −𝑚|)

𝑆0(|𝑢. 𝐹𝑘+1 −𝑚|)
𝑢∈𝑐𝑜𝑣(𝑡)

 

and  

𝐾�̂�(𝑆|𝑆1) =
1

|𝑐𝑜𝑣(𝑡)|
∑ ln

𝑆(|𝑢. 𝐹𝑘+1 −𝑚|)

𝑆1(|𝑢. 𝐹𝑘+1 −𝑚|)
𝑢∈𝑐𝑜𝑣(𝑡)

 

where 𝑆(∙), 𝑆0(∙), 𝑆1(∙) are the density functions of 𝑆, 𝑆0, 𝑆1 estimated using KDE and 𝑚 =

∑ 𝑢.𝐹𝑘+1𝑢∈𝑐𝑜𝑣(𝑡)

|𝑐𝑜𝑣(𝑡)|
. 

4.4. Empirical Evaluation 

We conducted extensive experiments with both synthetic and real data to evaluate 

the proposed detection methods.  The programs were implemented in C++ using Microsoft 

Visual Studio 2010.  All experiments were conducted on a PC with Intel Core Duo E8400 

3.0 GHz CPU and 4GB of memory running the Microsoft Windows 7 operating system. 

4.4.1. Case Study 

To test the effectiveness of the proposed methods, we used a real data set 

comprising of extended health insurance claims.  For privacy protection, the data is 

anonymized and the service and the location information is coded in such a way that the 

original and meaningful information cannot be inferred.  Note that this case study uses 

“amount” as the measure; however, the “count” quoted in the examples can just as easily 

be used as the measure.  The average amount is used for each aggregate performance 

gap.  The fact table contains 5,895 base level gaps; the average amount at the base level 

is $63.50 and the standard deviation is 83.51. 
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Table 7 shows two example performance gap outliers detected by the methods 

using the threshold 𝑙 = 2.  To fully illustrate these two outliers, all base levels are listed in 

tables 8 and 9. 

Table 7 Example Performance Gap Outliers 

ID Performance Gap Outlier (gender, age-group, location, service code) Type 

𝑅1 (female, ∗, A101, S91) I 

𝑅2 (female, ∗, A101, S31) II 

Table 8 Base level Performance Gaps of 𝑹𝟏 

ID Base level Performance Gaps 
 (gender, age-group, location, service code) 

Amount Normal 
or 

Outlier 

1 (female,21-40, A101, S91) 125.00 Normal 

2 (female,41-60 , A101, S91) 0.00 Normal 

3 (female,41-60 , A101, S91) 230.00 Normal 

4 (female,41-60 , A101, S91) 222.50 Normal 

5 (female,41-60 , A101, S91) 200.00 Normal 

6 (female,41-60 , A101, S91) 160.00 Normal 

7 (female,41-60 , A101, S91) 1,106.25 Outlier 

8 (female,41-60 , A101, S91) 1,900.00 Outlier 

Table 9 Base level Performance Gaps of 𝑹𝟐 

ID Base level Performance Gaps 
 (gender, age-group, location, service code) 

Amount Normal 
or 

Outlier 

1 (female,41-60, A101, S31) 135.00 Normal 

2 (female,41-60 , A101, S31) 130.03 Normal 

3 (female,41-60 , A101, S31) 694.00 Outlier 

4 (female,41-60 , A101, S31) 694.00 Outlier 

5 (female,41-60 , A101, S31) 694.00 Outlier 

6 (female,41-60 , A101, S31) 555.20 Outlier 

7 (female,41-60 , A101, S31) 402.67 Outlier 

8 (female,41-60 , A101, S31) 624.60 Outlier 

9 (female,41-60 , A101, S31) 555.20 Outlier 

10 (female,41-60 , A101, S31) 555.20 Outlier 

As shown in Table 8, 𝑅1 has 8 base levels and among them, 6 are normal and 2 

are outliers.  For 𝑅1,  𝐾𝐿(𝑆|𝑆0) = 2.39 and 𝐾𝐿(𝑆|𝑆1) = 63.74.  Thus, 𝐾𝐿(𝑆|𝑆0) < 𝐾𝐿(𝑆|𝑆1).  

This means that the distribution of 𝑅1 is more similar to the distribution of its normal 

descendants; as such, 𝑅1 is an outlier of type-I. 
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On the other hand, 𝑅2 is an outlier of type-II since 𝐾𝐿(𝑆|𝑆0) =

5.01182 and 𝐾𝐿(𝑆|𝑆1) = 0.454034.  Thus, 𝐾𝐿(𝑆|𝑆0) > 𝐾𝐿(𝑆|𝑆1). 

4.4.2. Efficiency and Scalability 

We tested the efficiency of detection methods with both real and synthetic data 

sets and compared three cubing methods: TDC, BUC, and eBUC.  TDC and BUC compute 

the whole cube while eBUC computes an iceberg cube.  We used a larger real data set to 

test the efficiency and random samples of various sized units of the data set to test the 

scalability. 

Figure 18 shows the scalability of the three methods with respect to the number of 

tuples for threshold 𝑙 = 1.  Note that the smaller the value of 𝑙, the more outliers; thus, less 

pruning power eBUC has.  The three methods have linear scalability.  While the runtimes 

of TDC and BUC are very close, eBUC can take advantage of pruning using the outlier 

detection condition and its runtime is faster. 

 

Figure 18 Runtime of TDC, BUC, and eBUC with respect to # of tuples 

Figure 19 shows the scalability of the three methods with respect to parameter 𝑙 

and the number of base level performance gaps.  The larger the value of 𝑙, the less outliers 

and the less computation required for all three methods to determine the types of outliers.  

Compared to TDC and BUC, eBUC is able to use the outlier condition to prune normal 

performance gaps during the cubing process, reducing the runtime further.  The larger the 

value of 𝑙, the more advantage eBUC has over other methods.  The figure also indicates 

that the determination of types of outliers incurs a substantial cost. 
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Figure 19 Runtime of TDC, BUC, and eBUC 

Figure 20 shows the number of performance gap outliers with respect to parameter 

𝑙 and the number of base level performance gaps.  As indicated earlier as the value of 𝑙 

increases, for all 3 methods, the less computation is needed to determine the types of 

outliers – the trend is consistent with that shown in Figure 19.  Further, most outliers 

detected are at the aggregate level and there are much more type-II than type-I outliers.  

The result clearly demonstrates the effectiveness of the proposed method in summarizing 

outlier information. 

    (a) number of tuples = 5,000                           (b) number of tuples =10,000                           (c) number of tuples =15,000 

    (d) number of tuples = 20,000                           (e) number of tuples =25,000                           (f) number of tuples =30,000 
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Figure 20 Number of Detected Outliers 

We also tested the efficiency and the scalability using synthetic data sets.  

Synthetic data sets were generated with dimension attributes in discrete domains and 

measure in continuous domain.  We consider 3 factors in the experiments: the 

dimensionality 𝑑, the number of tuples 𝑛 in the data set, and the distribution of the 

dimensions (uniform distribution vs. normal distribution).  We generated two data sets, 

each of 100,000 tuples and 4 dimensions.  The cardinality in each dimension is 20.  The 

tuples in the first data set follow uniform distribution in each dimension while the tuples in 

the second data set follow the (discretized) normal distribution; that is, we used normal 

distribution 𝜇 = 10 and 𝜃 = 2 to generate data and round the values to 20 bins in the range 

of [1, 20].  Figure 21 shows the results where the threshold parameter 𝑙 = 1.  The outlier 

detection methods work much faster with normally distributed data where outliers are 

meaningful. 

    (a) number of tuples = 5,000                             (b) number of tuples =10,000                            (c) number of tuples =15,000 

 

    (d) number of tuples = 20,000                             (e) number of tuples =25,000                            (f) number of tuples =30,000 
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Figure 21 Runtime of TDC, BUC, and eBUC with different distributions 

Figure 22 shows the scalability of the detection methods with normally distributed 

data. 

 

 

Figure 22 Scalability with Synthetic Data 

In Figure 22(a), the number of tuples is set to 10,000.  The runtime increases 

dramatically as the dimensionality increases.  This is expected since computing a data 

cube of high dimensionality is known challenging.  In Figure 22(b), the dimensionality is 

set to 4 and the number of tuples varies from 100,000 to 1 million.  The rate of runtime 

increase grows slower as the number of tuples increases.  Given the cardinality of each 

dimension, the number of possible group-by is fixed.  When a fact table becomes very 

large, many aggregate cells will be populated with a significant number of tuples where 

the number of group-by grows slower (Figure 23).  This result shows that the methods are 

scalable with large data sets. 

(a) BUC algorithm (b) TDC algorithm (c) eBUC algorithm 

(a) Dimensionality (b) Database size 
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Figure 23 Number of Detected Outliers 
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Subspace Analysis 

In Chapter 4, we developed a method to understand how outliers within an 

aggregate group contribute to the overall deviation of the group from the norm.  By 

recognizing what type of outlier (type-I or type-II) an organization is, it can determine where 

further analysis should be led to. 

In this chapter, we explore subspaces in which an organization’s performance is 

deemed an outlier. 

5.1. Contrast Subspace 

In a multi-dimensional dataset of 2 classes, given a query object 𝑞 and a target 

class, we want to find a subspace in which 𝑞 most likely belongs to the target class and 

not to the other class.  This subspace is called contrast subspace since it contrasts the 

likelihood of 𝑞 in the target class to that in the other class.  By mining contrast subspaces, 

we seek an answer for “In what context is the organization most similar to a group of 

organizations and different from another group?”, for example.  Using the example given 

in Figure 1, Figure 24 illustrates the subspace consisting of 2 dimensions: mental health 

prevalence rate and obesity prevalence rate.  Organization 𝑞 (represented with a red dot) 

is the query object.  Organization 𝑞 seems to belong to Cluster 𝐴 of organizations and not 

to Cluster 𝐵; thus, this subspace characterizes a contrast subspace for 𝑞, signifying that 

when it comes to mental health and obesity, 𝑞 is most contrasting to the majority of 

organizations (i.e. Cluster 𝐵).  The insight given by this example may be that 𝑞 needs to 

develop a program to reduce the rate of mental health and obesity across its workforce. 
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Figure 24 Example Contrast Subspace 

5.1.1. Measure of Similarity 

A measure to quantify the similarity between the query object and the target class, 

as well as the difference between the query object and the other class is expressed as the 

ratio of the likelihood of the query object in the target class against that of the query object 

in the other class.  This is essentially a model selection problem in which one of the two 

models, 𝑀1 and 𝑀2, must be selected on the basis of observed data 𝐷.  The probability is 

assessed by Bayes factor 𝐾 given by 𝐾 =
𝑃𝑟(𝐷|𝑀1)

𝑃𝑟(𝐷|𝑀2)
 where a value of 𝐾 > 1 means that 𝑀1 

is more strongly supported by 𝐷 than 𝑀2. 

Problem Definition 

Let 𝐷 = {𝐷1, … , 𝐷𝑑} be a 𝑑-dimensional space where the domain of 𝐷𝑖 is ℝ, the set 

of real numbers.  A subspace 𝑆 ⊆ 𝐷 (𝑆 ≠ 0) is a subset of 𝐷 and 𝐷 is also referred to as 

the full space.  The value of an object 𝑜 in dimension 𝐷𝑖 (1 ≤ 𝑖 ≤ 𝑑) is denoted as 𝑜. 𝐷𝑖.  

For a subspace 𝑆 = {𝐷𝑖1 , … , 𝐷𝑖𝑙} ⊆ 𝐷, the projection of 𝑜 in 𝑆 is 𝑜𝑆 = {𝑜. 𝐷𝑖1 , … , 𝑜. 𝐷𝑖𝑙}.  For 

a set of objects 𝑂 = {𝑜𝑗|1 ≤ 𝑗 ≤ 𝑛}, the projection of 𝑂 in 𝑆 is 𝑂𝑆 = {𝑜𝑗
𝑆|𝑜𝑗 ∈ 𝑂, 1 ≤ 𝑗 ≤ 𝑛}. 

Given a set of objects 𝑂, a latent distribution 𝒵 is assumed to have generated the 

objects in 𝑂.  For a query object 𝑞, 𝐿𝐷(𝑞|𝒵) is the likelihood of 𝑞 being generated by 𝒵 in 
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full space 𝐷. The posterior probability of 𝑞 given 𝑂, denoted by 𝐿𝐷(𝑞|𝑂), can be estimated 

by 𝐿𝐷(𝑞|𝒵).  For a non-empty subspace 𝑆(𝑆 ⊆ 𝐷, 𝑆 ≠ 0), the projection of 𝒵 in 𝑆 is 𝒵𝑆.  The 

subspace likelihood of object 𝑞 with respect to 𝒵 in 𝑆, denoted by 𝐿𝑆(𝑞|𝒵), can be used to 

estimate the posterior probability of object 𝑞 given 𝑂 in 𝑆, denoted by 𝐿𝑆(𝑞|𝑂). 

We assume that the objects in 𝑂 mutually exclusively belong to one of the 2 

classes, 𝐶+ and 𝐶−.  Hence 𝑂 = 𝑂+ ∪ 𝑂− and 𝑂+ ∩ 𝑂− = Ø where 𝑂+ and 𝑂− are the objects 

belonging to 𝐶+ and 𝐶− respectively.  Given a query object 𝑞, we are interested in finding 

how likely 𝑞 belongs to 𝐶+ and does not belong to 𝐶−.  We define the measure likelihood 

contrast of 𝑞 as 𝐿𝐶(𝑞) =
𝐿(𝑞|𝑂+)

𝐿(𝑞|𝑂−)
. 

Likelihood contrast is effectively the Bayes factor of object 𝑞 being the observation.  

As such, 𝑂+ and 𝑂− represent the 2 models to choose from based on the query object 𝑞.  

The ratio of probabilities indicates the likelihood of model 𝑂+ selected against 𝑂−.  𝐿𝐶(𝑞) 

values in the range of {<1, 1 to 3, 3 to 10, 10 to 30, 30 to 100, > 100} correspond to 

{negative, barely worth mentioning, substantial, strong, very strong, decisive} based on 

the scale for interpretation of Bayes factor according to Jeffreys (1961). 

The measure of likelihood contrast can be extended to subspaces.  For a non-

empty subspace 𝑆(𝑆 ⊆ 𝐷), the likelihood contrast in a subspace 𝑆 is defined as 𝐿𝐶𝑆(𝑞) =

𝐿𝑆(𝑞|𝑂+)

𝐿𝑆(𝑞|𝑂−)
.  To avoid triviality where 𝐿𝑆(𝑞|𝑂+) is very small, only the subspaces 𝐿𝑆(𝑞|𝑂+) > 𝛿, 

where 𝛿 ≥ 0 is the minimum likelihood threshold, are considered. 

Given a multi-dimensional dataset 𝑂 in full space 𝐷, a query object 𝑞, a minimum 

likelihood threshold 𝛿 ≥ 0 and a parameter 𝑘 ≥ 0, the problem of mining contrast 

subspace is to find top-𝑘 subspaces 𝑆 ordered by the subspace likelihood contrast 𝐿𝐶𝑆(𝑞) 

subject to 𝐿𝑆(𝑞|𝑂+) > 𝛿. 

KDE (Breiman et al., 1977) can be used to estimate the likelihood of 𝑞, 𝐿𝑆(𝑞|𝑂).  

Following Silverman (1986), the general formula for multivariate kernel density estimation 

with kernel 𝐾 and bandwidth parameter ℎ𝑆 in subspace 𝑆 is defined as: 
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𝑓𝑆(𝑞, 𝑂) = 𝑓𝑆(𝑞
𝑆, 𝑂) =

1

|𝑂|ℎ𝑆
|𝑆|∑ 𝐾{

1

ℎ𝑆
(𝑞 − 𝑜)}𝑜∈𝑂                                                (5.1.1) 

Choosing 𝐾 to be a radially symmetric unimodal probability density function, we 

use Gaussian kernel: 

𝐾(𝑥) =
1

(2𝜋)
|𝑆|
2

𝑒−
1

2
𝑥𝑇𝑥

                                                                                       (5.1.2) 

Given a set of objects 𝑂, the density of a query object 𝑞 in subspace 𝑆, denoted 

by 𝑓𝑆(𝑞, 𝑂), can be estimated as: 

 𝑓𝑆(𝑞, 𝑂) = 𝑓𝑆(𝑞
𝑆, 𝑂) =

1

|𝑂|(√2𝜋ℎ𝑆)
|𝑆|
∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2𝑜∈𝑂  

where −𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜)
2 = ∑ (𝑞. 𝐷𝑖 − 𝑜.𝐷𝑖)

2
𝐷𝑖∈𝑆  and ℎ𝑆 is the bandwidth. 

According to Silverman (1986), the optimal bandwidth value for smoothing 

normally distributed data with unit variance is ℎ𝑆_𝑜𝑝𝑡 = 𝐴(𝐾)|𝑂|
−1

|𝑆|+4 where 𝐴(𝐾) =

(
4

|𝑆|+2
)

1

|𝑆|+4.  Since the kernel is radially symmetric and the data in subspaces is not 

normalized, an inner scale 𝜎𝑆  in subspace 𝑆 can be used to set ℎ𝑆 = 𝜎𝑆 ∙ ℎ𝑆_𝑜𝑝𝑡.  The term 

√2𝜋ℎ𝑆 is the normalization constant and comes from the fact that the integral over the 

exponential function (Gaussian kernel) is not unity.  With this constant, the Gaussian 

kernel is a normalized kernel; that is, the integral over its full domain is unity for every ℎ𝑆.  

As per Silverman (1986), a possible choice of 𝜎𝑆 is the root of the average marginal 

variance in 𝑆. 

The posterior probability of 𝑞 in subspace 𝑆 given 𝑂 can be estimated as: 

 𝐿𝑆(𝑞|𝑂) = 𝑓𝑆(𝑞, 𝑂) =
1

|𝑂|(√2𝜋ℎ𝑆)
|𝑆|
∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2𝑜∈𝑂                                            (5.1.3) 

Thus, the likelihood contrast of query object 𝑞 in subspace 𝑆 is given by: 



 

63 

 𝐿𝐶𝑆(𝑞, 𝑂+, 𝑂−) =
�̂�𝑆(𝑞,𝑂+)

�̂�𝑆(𝑞,𝑂−)
=

|𝑂−|

|𝑂+|
∙ (
ℎ𝑆−
ℎ𝑆+
)
|𝑆|

∙
∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆+
2

𝑜∈𝑂+

∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆_
2

𝑜∈𝑂−

                               (5.1.4) 

5.1.2. Complexity Analysis 

Mining contrast subspaces is computationally challenging and the complexity can 

be proved by linear reduction or L-reduction from the emerging pattern mining problem 

(Dong et al., 1999), which has been shown as MAX SNP-hard (Wang et al., 2005).  L-

reduction is a transformation of optimization problems which linearly preserves 

approximability features. 

Let 𝐷′ = {𝐷1
′ , 𝐷2

′ , … , 𝐷3
′} be a set of 𝑑 items.  A transaction 𝑜𝑖

′ is represented by a 

binary vector of length 𝑑 whose element 𝑜𝑖𝑗
′ = 1 if item 𝐷𝑗

′ is present and 0 otherwise.  A 

pattern 𝑆′ is a subset of items in 𝐷′.  A transaction 𝑜𝑖
′ satisfies 𝑆′ if 𝑜𝑖𝑗

′ = 1, ∀𝐷𝑗
′ ∈ 𝑆′.  A 

transaction database 𝑂′ is a set of transactions.  Let 𝑆𝑎𝑡𝑂′(𝑆
′) be the set of transactions 

in 𝑂′ satisfying 𝑆′. 

Definition 1 (Emerging Pattern Mining (EP)).  Given two transactions databases 𝑂+
′  

and 𝑂−
′ , find pattern 𝑆′ such that the cost function 𝑐𝐸𝑃(𝑆

′) = |𝑆𝑎𝑡𝑜+′ (𝑆
′)| is maximized 

subject to the feasibility condition |𝑆𝑎𝑡𝑜−′ (𝑆
′)| = 0. 

 

Definition 2 (Contrast Subspace Mining (CS)).  Given {𝑞, 𝑂+, 𝑂−} where 𝑞 is the query 

object and 𝑂+ and 𝑂− are the two classes, find the subspace 𝑆 maximizing the cost 

function 𝑐𝐶𝑆(𝑆, 𝑞) =
∑ exp (

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ2
)𝑜∈𝑂+

∑ exp (
−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

2ℎ2
)𝑜∈𝑂−

. 

 

Definition 3 (Complete Contrast Subspace Mining (Complete-CS)).  Given {𝑂+, 𝑂−}, find 

the subspace 𝑆 such that the cost function 𝑐(𝑆) = max
𝑜𝑖∈𝑂+

𝑐𝐶𝑆(𝑆,𝑞=𝑜𝑖) is maximized. 
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Complete-CS can be solved by solving at most |𝑂+| CS sub-problems corresponding 

to unique data points in 𝑂+. We reduce emerging patterns to Complete-CS and prove that 

Complete-CS is MAX SNP-hard. 

EP  Complete-CS reduction: 

 For each item 𝐷𝑖
′ for EP, set up a corresponding dimension 𝐷𝑖 in Complete-CS. 

 For each transaction 𝑜𝑖
′ ∈ 𝑂+

′ , insert 2 copies of 𝑜𝑖
′ into 𝑂+. 

 For each transaction 𝑜𝑖
′ ∈ 𝑂−

′ , insert 2|𝑂+
′ | copies of 𝑜𝑖

′ into 𝑂−. 

 Insert 1 item (a numeric vector) with all 1’s into 𝑂−. 

 Let ℎ be an arbitrary user-specified bandwidth parameter.  Replace each 

occurrence of 0 in 𝑂 = 𝑂+ ∪ 𝑂− with a unique value in the set {2𝛾ℎ, 3𝛾ℎ, 4𝛾ℎ…} 

where 𝛾 is some fixed large constant. 

 Replace each occurrence of 1 in 𝑂 = 𝑂+ ∪ 𝑂− with 1𝛾ℎ where ℎ is the same as the 

one used above. 

The transformation can be done in 𝓞(|𝑂+||𝑂−|) time.  An example transformation 

from a transaction database to a numeric dataset according to the EP  Complete-CS 

reduction is shown in Table 1. 

Table 10 EP  Complete-CS reduction example 

Database Transactions (EP) 𝑂+ (Complete-CS) 𝑂− (Complete-CS) 

𝑂+
′  [0,1,1,0] [2𝛾ℎ, 1𝛾ℎ, 1𝛾ℎ, 3𝛾ℎ] 

[4𝛾ℎ, 1𝛾ℎ, 1𝛾ℎ, 5𝛾ℎ] 
 

[0,1,0,0] [6𝛾ℎ, 1𝛾ℎ, 7𝛾ℎ, 8𝛾ℎ] 
[9𝛾ℎ, 1𝛾ℎ, 10𝛾ℎ, 11𝛾ℎ] 

 

𝑂−
′  [1,1,0,0]  [1𝛾ℎ, 1𝛾ℎ, 12𝛾ℎ, 13𝛾ℎ] 

[1𝛾ℎ, 1𝛾ℎ, 14𝛾ℎ, 15𝛾ℎ] 
[1𝛾ℎ, 1𝛾ℎ, 16𝛾ℎ, 17𝛾ℎ] 
[1𝛾ℎ, 1𝛾ℎ, 18𝛾ℎ, 19𝛾ℎ] 

[0,0,0,1]  [20𝛾ℎ, 21𝛾ℎ, 22𝛾ℎ, 1𝛾ℎ] 
[23𝛾ℎ, 24𝛾ℎ, 25𝛾ℎ, 1𝛾ℎ] 
[26𝛾ℎ, 27𝛾ℎ, 28𝛾ℎ, 1𝛾ℎ] 
[29𝛾ℎ, 30𝛾ℎ, 31𝛾ℎ, 1𝛾ℎ] 

   [1𝛾ℎ, 1𝛾ℎ, 1𝛾ℎ, 1𝛾ℎ] 

Theorem 1.  EP  Complete-CS reduction is an L-reduction, denoted by EP LComplete-

CS. 



 

65 

 

Definition 4 (L-reduction (Papadimitrious et al., 1991)).  Let ∏1 and ∏2 be two optimization 

problems.  We say that ∏1 L-reduces to ∏2 if there are two polynomial time algorithms 

𝑓, 𝑔 and constants 𝛼, 𝛽 > 0 such that, for any instance 𝐼 of ∏1, 𝑓(𝐼) forms an instance 

of ∏2 and: 

 (𝑐1) 𝑂𝑃𝑇(𝑓(𝐼)) ≤ 𝛼𝑂𝑃𝑇(𝐼) where 𝑂𝑃𝑇(∙) denotes the optimal value of the  

respective optimization problem. 

 (𝑐2) Given any solution 𝑠 of 𝑓(𝐼), algorithm 𝑔 produces a solution 𝑔(𝑠) of 𝐼 

satisfying |𝑐∏1(𝑔(𝑠)) − 𝑂𝑃𝑇(𝐼)| ≤ 𝛽|𝑐∏2(𝑠) − 𝑂𝑃𝑇(𝑓(𝐼))|, where 𝑐∏𝑖(∙) denotes the 

cost function of the corresponding optimization problem. 

 

 Proof.  For any bandwidth value ℎ, we can set 𝛾 to a large value such that exp (
−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

2ℎ2
) 

can be arbitrarily close to 0 for all 𝑞 ∈ 𝑂 such that 𝑞𝑆 ≠ 𝑜𝑆.  The cost function for CS can 

be computed as: 

cCS(𝑆, 𝑞) =
∑ exp (

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ2
)𝑜∈𝑂+

∑ exp (
−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

2ℎ2
)𝑜∈𝑂−

=
|𝑂+
𝑆,𝑞
|+𝜖+(𝑆,𝑞)

|𝑂−
𝑆,𝑞
|+𝜖−(𝑆,𝑞)

  

where 𝑂𝑆,𝑞 denotes the set of data points in 𝑂 having values identical to 𝑞 in subspace 

𝑆 and: 

      𝜖+(𝑆, 𝑞) = ∑ exp (
−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

2ℎ2
)

𝑜∈𝑂+\𝑂+
𝑆,𝑞 , 

𝜖−(𝑆, 𝑞) = ∑ exp (
−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

2ℎ2
)

𝑜∈𝑂−\𝑂−
𝑆,𝑞 .   

     Let 𝑀 > 1 be the maximum integer value such that 𝑀𝛾ℎ is a value occurring in 𝑂 (e.g. 

𝑀 = 31 in the example in Table 1).  Then: 

 |𝑆|𝛾2ℎ2 < 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜)
2 < 𝑀2|𝑆|𝛾2ℎ2 for all 𝑜 ∈ 𝑂+ ∪ 𝑂−.   

Thus: 

 (|𝑂+| − |𝑂+
𝑆,𝑞
|) exp(−|𝑆|𝛾2𝑀2) < 𝜖+(𝑆, 𝑞) < (|𝑂+| − |𝑂+

𝑆,𝑞
|) exp(−|𝑆|𝛾2) ≪ 1.  

Similarly: 

(|𝑂−| − |𝑂−
𝑆,𝑞|) exp(−|𝑆|𝛾2𝑀2) < 𝜖−(𝑆, 𝑞) < (|𝑂−| − |𝑂−

𝑆,𝑞|) exp(−|𝑆|𝛾2) ≪ 1.   

Note that lim
𝛾→∞

𝜖+(𝑆, 𝑞) = 0 and  lim
 𝛾→∞

𝜖−(𝑆, 𝑞) = 0.   

We can observe that: 
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 If a pattern 𝑆′ is an emerging pattern, then by construction, at least one object  𝑞 ∈

𝑂+ must have |𝑂+
𝑆,𝑞
| ≥ 2 and |𝑂−

𝑆,𝑞| = 1.  This is because 𝑆′ only appears in 𝑂+
′  and 

for each transaction 𝑜𝑖
′ ∈ 𝑂+

′ , we have inserted 2 copies of 𝑜𝑖
′ into 𝑂+.  On the other 

hand, 𝑆′ does not appear in 𝑂−
′  and the only object having values identical to 𝑞 in 

subspace 𝑆 is the object containing all 𝛾ℎ’s.  Therefore, cCS(𝑆, 𝑞) =
|𝑂+
𝑆,𝑞
|+𝜖+(𝑆,𝑞)

|𝑂−
𝑆,𝑞
|+𝜖−(𝑆,𝑞)

≥

2+𝜖+(𝑆,𝑞)

1+𝜖−(𝑆,𝑞)
> 1. 

 If a pattern 𝑆′ is not an emerging pattern, then by construction, all objects  𝑞 ∈ 𝑂+ 

must have |𝑂−
𝑆,𝑞| ≥ |𝑂+

𝑆,𝑞
| + 1 > |𝑂+

𝑆,𝑞
|.  Therefore, cCS(𝑆, 𝑞) =

|𝑂+
𝑆,𝑞
|+𝜖+(𝑆,𝑞)

|𝑂−
𝑆,𝑞
|+𝜖−(𝑆,𝑞)

< 1. 

Further, we need to verify that the reduction EP  Complete-CS satisfies the two 

conditions (𝑐1) and (𝑐2) of the L-reduction: 

 (𝑐1) For any instance 𝐼 of EP, if 𝑆′ is the most frequent emerging pattern with 

cEP(𝑆′)  = |𝑆𝑎𝑡𝑜′+(𝑆′)| and |𝑆𝑎𝑡𝑜′−(𝑆
′)| = 0, then the corresponding optimal 𝑆 

solution for Complete-CS must have a cost value of 𝑐(𝑆) =
2|𝑆𝑎𝑡

𝑜′+
(𝑆′)|+𝜖+(𝑆,𝑞)

1+𝜖−(𝑆,𝑞)
≃

2|𝑆𝑎𝑡𝑜′+(𝑆′)| =  2𝑐𝐄𝐏(S′) where 𝑞 is any data point in 𝑂+ corresponding to the 

transaction containing pattern 𝑆′.  This is because for each transaction 𝑜𝑖
′ 

containing 𝑆′ in 𝑂+
′ , we have inserted 2 copies of 𝑜𝑖

′ into 𝑂+.  The ‘1’ in the 

denominator is due to the object containing all 𝛾ℎ in 𝑂−.  Thus, condition 1 is 

satisfied with 𝛼 = 2 when 𝛾 is sufficiently large. 

 (𝑐2) For any solution 𝑆 of Complete-CS, if 𝑐(𝑆) = 𝜆 ≥ 2 then the corresponding 

pattern 𝑆′ constructed from 𝑆 will be an emerging pattern.  Further, let [𝜆] be the 

nearest integer to 𝜆.  Then,  [𝜆] must be even and 
[𝜆]

2
 will be the cost of the 

corresponding EP problem.  Let 𝜆∗ denote the optimal cost of Complete-CS, 

then |
[𝜆]

2
−
[𝜆∗]

2
| =

1

2
|[𝜆] − [𝜆∗]| ≃

1

2
|𝜆 − 𝜆∗| ≤ |𝜆 − 𝜆∗|.  Thus, condition 2 is satisfied 

with 𝛽 = 1. 

Since EP LComplete-CS, if there exists a polynomial time approximation algorithm 

for Complete-CS with performance guarantee 1 − 𝜖, then there exists a polynomial time 
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approximation algorithm for EP with performance guarantee 1 − 𝛼𝛽𝜖.  Since EP is MAX 

SNP-hard, it follows that Complete-CS must also be MAX SNP-hard. 

Finally, the relationship between Complete-CS and CS is established as follows. 

Theorem 2.  If there exists a polynomial time approximation scheme (PTAS) for CS, then 

there must also be a PTAS for Complete-CS. 

 

Proof.  The proof is straightforward since Complete-CS can be solved by a series of |𝑂+|CS 

problems. 

Unless P = NP, there exists no PTAS for Complete-CS, implying no PTAS for CS. 

The above theoretical result indicates that the problem of mining contrast 

subspaces is even hard to approximate; that is, it is impossible to design a good 

approximation algorithm unless P = NP.  Practical heuristic methods are needed as a 

viable alternative. 

5.1.3. Mining Methods 

In this section, we first describe a baseline method which examines every possible 

non-empty subspace.  We then present the design of CSMiner (for Contrast Subspace 

Miner) which employs a smarter search strategy. 

Baseline Method 

The baseline naïve method enumerates all possible non-empty spaces 𝑆 and 

calculates the exact values of both 𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−), since neither 𝐿𝑆(𝑞|𝑂+) nor 

 𝐿𝑆(𝑞|𝑂−) is monotonic with respect to the subspace-superspace relationship.  It then 

returns top-𝑘 subspaces 𝑆 with the largest 𝐿𝐶𝑆(𝑞) values.  To ensure the completeness 

and efficiency of subspace enumeration, the baseline method traverses the set 

enumeration tree (Rymon, 1992) of subspaces in a depth-first manner.  Figure 25 shows 

a set enumeration tree that enumerates all subspaces of 𝐷 = {𝐷1, 𝐷2, 𝐷3, 𝐷4}. 
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Figure 25 Set enumeration tree 

Using Equations (5.1.3) and (5.1.4), the baseline algorithm shown in Algorithm 1 

computes the likelihood contrast for every subspace where 𝐿𝑆(𝑞|𝑂+) ≥ 𝛿 and returns the 

top-𝑘 subspaces.  The time complexity is 𝒪(2|𝐷| ∙ (|𝑂+| + |𝑂−|)).  

  Algorithm 1 The baseline algorithm 

  Input: 𝑞: query object, 𝑂+: objects belonging to 𝐶+, 𝑂−: objects belonging to 𝐶−, 𝛿: likelihood threshold, 𝑘: 

positive integer 

  Output: 𝑘 subspaces with the highest likelihood contrast 

   1: let 𝐴𝑛𝑠 be the current top-𝑘 list of subspaces; initialize 𝐴𝑛𝑠 as 𝑘 𝑛𝑢𝑙𝑙 subspaces associated with likelihood 

contrast 0 

   2:  traverse the subspace set enumeration tree in a depth-first search manner 

   3:  for each subspace 𝑆 do 

   4:       compute 𝜎𝑆+, 𝜎𝑆−, ℎ𝑜𝑝𝑡; 

   5:       compute 𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−) using Equation (5.1.3); 

   6:       if 𝐿𝑆(𝑞|𝑂+) ≥ 𝛿 and ∃𝑆′ ∈ 𝐴𝑛𝑠 𝑠. 𝑡.
𝐿𝑆(𝑞|𝑂+)

𝐿𝑆(𝑞|𝑂−)
> 𝐿𝐶𝑆′(𝑞) then 

   7:          insert 𝑆 into 𝐴𝑛𝑠 and remove 𝑆′ from 𝐴𝑛𝑠; 

   8:       end if 

   9:  end for 

  10: return 𝐴𝑛𝑠;  

CSMiner Framework 

𝐿𝑆(𝑞|𝑂+) is not monotonic in subspaces.  We develop an upper bound of 𝐿𝑆(𝑞|𝑂+) 

to prune subspaces using the minimum likelihood threshold 𝛿.  We sort all dimensions in 

their standard deviation descending order.  Let 𝑆 be the set of descendants of 𝑆 in the 
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subspace set enumeration tree using the standard deviation descending order.  We 

define: 

𝐿𝑆
∗ (𝑞|𝑂+) =

1

|𝑂+|(√2𝜋𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ )𝜏
∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2(𝜎𝑆𝑜𝑝𝑡_𝑚𝑎𝑥
ℎ′ )

2  

𝑜∈𝑂+                                        (5.1.5) 

where 𝜎𝑚𝑖𝑛
′ = min{𝜎𝑆′|𝑆′ ∈ 𝑆} , ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ = min{ℎ𝑆′_𝑜𝑝𝑡|𝑆′ ∈ 𝑆} , ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ = max {ℎ𝑆′_𝑜𝑝𝑡|𝑆′ ∈

𝑆} and 

𝜏 = {
|𝑆|                               if √2𝜋𝜎𝑚𝑖𝑛

′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛
′ ≥ 1

max{|𝑆′| |𝑆′ ∈ 𝑆}    if √2𝜋𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ < 1
 

Theorem 3 (Monotonic Density Bound).  For a query object 𝑞, a set of objects 𝑂 and 

subspaces 𝑆1, 𝑆2 such that  𝑆1 is an ancestor of  𝑆2 in the subspace set enumeration 

tree in which dimensions in full space 𝐷 are sorted by their standard deviation 

descending order, it is true that 𝐿𝑆1
∗ (𝑞|𝑂) ≥ 𝐿𝑆2(𝑞|𝑂). 

 

Proof.  Let 𝑆 be the set of descendants of  𝑆1 in the subspace set enumeration tree using 

the standard deviation descending order in 𝑂.  We define: 

 𝜎𝑚𝑖𝑛
′ = min{𝜎𝑆′|𝑆′ ∈ 𝑆},  

             ℎ𝑜𝑝𝑡_𝑚𝑖𝑛
′ = min{ℎ𝑆′_𝑜𝑝𝑡|𝑆′ ∈ 𝑆},  

 ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ = max {ℎ𝑆′_𝑜𝑝𝑡|𝑆′ ∈ 𝑆},  

   and:  

              𝜏 = {
| 𝑆1|                             if √2𝜋𝜎𝑚𝑖𝑛

′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛
′ ≥ 1

max{|𝑆′| |𝑆′ ∈ 𝑆}    if √2𝜋𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ < 1
 

Computing 𝜎𝑚𝑖𝑛
′ , ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′  and ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′  has linear complexity.  𝜎𝑆′ is the root of the 

average marginal variance in 𝑆′ and ℎ𝑆′_𝑜𝑝𝑡 depends on the values of |𝑂| and |𝑆′|.  Let 

𝑆′′ ∈ 𝑆 such that for any subspace 𝑆′ ∈ 𝑆, 𝑆′ ⊆ 𝑆′′.  Since dimensions in the set 

enumeration tree is sorted in the standard deviation descending order,  𝜎𝑚𝑖𝑛
′  can be 

obtained by checking dimensions in 𝑆′′\𝑆1 one by one in the standard deviation 

ascending order.  Further, ℎ𝑜𝑝𝑡_𝑚𝑖𝑛
′ (ℎ𝑜𝑝𝑡_𝑚𝑎𝑥

′ ) can be obtained by comparing ℎ𝑆′_𝑜𝑝𝑡 with 

different values of |𝑆′| ∈ [|𝑆1| + 1, |𝑆′′|].  Since 𝑆2 ∈ 𝑆, we have: 
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1 ≤ |𝑆1| < |𝑆2| ≤ max {|𝑆
′| |𝑆′ ∈ 𝑆}, and 𝜎𝑆1 ≥ 𝜎𝑆2 ≥ 𝜎𝑚𝑖𝑛

′ .   

Then: 

𝜎𝑆2ℎ𝑆2_𝑜𝑝𝑡 ≥ 𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ .   

Thus: 

(√2𝜋𝜎𝑠2ℎ𝑆2_𝑜𝑝𝑡)
|𝑆2| > (√2𝜋𝜎𝑚𝑖𝑛

′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛
′ )𝜏.   

For 𝑜 ∈ 𝑂, 𝑑𝑖𝑠𝑡𝑆1(𝑞, 𝑜) ≤ 𝑑𝑖𝑠𝑡𝑆2(𝑞, 𝑜).  Accordingly, 
−𝑑𝑖𝑠𝑡𝑆2(𝑞,𝑜)

2

 2(𝜎𝑠2ℎ𝑆2_𝑜𝑝𝑡)
2 ≤

−𝑑𝑖𝑠𝑡𝑆1(𝑞,𝑜)
2

2(𝜎𝑠1ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ )2

.   

By Equation (5.1.3):  

𝐿𝑆2(𝑞|𝑂) =
1

|𝑂| (√2𝜋𝜎𝑠2ℎ𝑆2_𝑜𝑝𝑡)
|𝑆2|

∑𝑒

−𝑑𝑖𝑠𝑡𝑆2(𝑞,𝑜)
2

2(𝜎𝑠2ℎ𝑆2_𝑜𝑝𝑡)
2  

𝑜∈𝑂

   

≤
1

|𝑂|(√2𝜋𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ )
𝜏∑𝑒

−𝑑𝑖𝑠𝑡𝑆1(𝑞,𝑜)
2

2(𝜎𝑠1ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ )

2  

𝑜∈𝑂

 

                        = 𝐿𝑆1
∗ (𝑞|𝑂) 

Using Theorem 3, in addition to 𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−), we also compute 𝐿𝑆
∗ (𝑞|𝑂+) 

for each subspace 𝑆. We define the pruning rules based on the theorem. 

Pruning Rule 1.  Given a minimum likelihood threshold 𝛿, if 𝐿𝑆
∗ (𝑞|𝑂+) < 𝛿 in a subspace 𝑆, 

all descendants of 𝑆 can be pruned. 

By using the depth-first search, the distance between two objects in a superspace 

can be computed incrementally from the distance among the objects in a subspace.  Given 

two objects 𝑞 and 𝑜, let subspace 𝑆′ = 𝑆 ∪ {𝐷𝑖}. We have 𝑑𝑖𝑠𝑡𝑆′(𝑞, 𝑜)
2 = 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜)

2 +

(𝑞. 𝐷𝑖 − 𝑜.𝐷𝑖)
2. 

Algorithm 2 shows the pseudo code of the CSMiner.  Similar to the baseline method 

(Algorithm 1), CSMiner conducts a depth-first search on the subspace set enumeration 

tree.  For a candidate subspace 𝑆, CSMiner calculates 𝐿𝑆
∗ (𝑞|𝑂+) using Equation (5.1.5).  If 

𝐿𝑆
∗ (𝑞|𝑂+) is less than the minimum likelihood threshold, all descendants of 𝑆 can be pruned 

by Theorem 3.  Due to the difficulty of the problem shown in section 5.1.2 and the heuristic 

nature of this method, the time complexity of CSMiner is 𝒪(2|𝐷| ∙ (|𝑂+| + |𝑂−|)), the same 
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time complexity as the naïve baseline method.  However, as will be shown by the empirical 

evaluation (section 5.1.4), CSMiner is substantially faster than the baseline method. 

  Algorithm 2 CSMiner (𝑞, 𝑂+, 𝑂−, 𝛿, 𝑘) 

  Input: 𝑞: query object, 𝑂+: objects belonging to 𝐶+, 𝑂−: objects belonging to 𝐶−, 𝛿: likelihood threshold, 𝑘: 

positive integer 

  Output: 𝑘 subspaces with the highest likelihood contrast 

   1: let 𝐴𝑛𝑠 be the current top-𝑘 list of subspaces; initialize 𝐴𝑛𝑠 as 𝑘 𝑛𝑢𝑙𝑙 subspaces associated with likelihood 

contrast 0 

   2:  traverse the subspace set enumeration tree in a depth-first search manner 

   3:  for each subspace 𝑆 do 

   4:       compute 𝜎𝑆+, 𝜎𝑆−, 𝜎𝑚𝑖𝑛
′ , ℎ𝑜𝑝𝑡, ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ , ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ ; 

   5:       compute 𝐿𝑆
∗ (𝑞|𝑂+) using Equation (5.1.5); 

   6:       if 𝐿𝑆
∗ (𝑞|𝑂+) < 𝛿 then 

   7:          prune all descendants of 𝑆 and go to Step 2; //Pruning Rule 1 

   8:       else 

   9:          compute 𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−) using Equation (5.1.3); 

  10:        if 𝐿𝑆(𝑞|𝑂+) ≥ 𝛿 and ∃𝑆′ ∈ 𝐴𝑛𝑠 𝑠. 𝑡.
𝐿𝑆(𝑞|𝑂+)

𝐿𝑆(𝑞|𝑂−)
> 𝐿𝐶𝑆′(𝑞) then 

  11:           insert 𝑆 into 𝐴𝑛𝑠 and remove 𝑆′ from 𝐴𝑛𝑠;       

  12:        end if 

  13:      end if     

  14:  end for 

  15: return 𝐴𝑛𝑠;  

A Bounding-Pruning-Refining Method 

For a query object 𝑞 and a set of objects 𝑂, the likelihood 𝐿𝑆(𝑞|𝑂), computed by 

Equation (5.1.3), is the sum of density contributions of objects in 𝑂 to 𝑞 in subspace 𝑆.  In 

Gaussian kernel estimation, given object 𝑜 ∈ 𝑂, the contribution from 𝑜 to 𝐿𝑆(𝑞|𝑂) 

is 
1

|𝑂|√2𝜋ℎ𝑆
|𝑆| 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2 .  We observe that the contribution of 𝑜 decays exponentially as the 

distance between 𝑞 and 𝑜 increases; thus, 𝐿𝑆(𝑞|𝑂) can be bounded. 

For a query object 𝑞 and a set of objects 𝑂, the 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 (𝜖 > 0) of 𝑞 in 

subspace 𝑆 is 𝑁𝑆
𝜖(𝑞) = {𝑜 ∈ 𝑂|𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜) ≤ 𝜖}.  We can divide  𝐿𝑆(𝑞|𝑂) into two 

parts; 𝐿𝑆(𝑞|𝑂) = 𝐿 𝑁𝑆
𝜖(𝑞|𝑂) + 𝐿𝑆

𝑟𝑒𝑠𝑡(𝑞|𝑂).  The first part is contributed by the objects in the 
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𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑; that is, 𝐿 𝑁𝑆
𝜖(𝑞|𝑂) =

1

|𝑂|(√2𝜋ℎ𝑆)
|𝑆|
∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2𝑜∈𝑁𝑆

𝜖(𝑞)  and the second part 

is by the objects outside the 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑; that is, 𝐿𝑆
𝑟𝑒𝑠𝑡(𝑞|𝑂) =

1

|𝑂|(√2𝜋ℎ𝑆)
|𝑆|
∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2𝑜∈𝑂\𝑁𝑆

𝜖(𝑞) . 

Let 𝑑𝑖𝑠𝑡𝑆(𝑞|𝑂) be the maximum distance between 𝑞 and all objects in 𝑂 in 

subspace 𝑆.  We have 
|𝑂|−| 𝑁𝑆

𝜖(𝑞)|

 |𝑂|(√2𝜋ℎ𝑆)
|𝑆| ∙ 𝑒

− 
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

2ℎ
𝑆2 ≤  𝐿𝑆

𝑟𝑒𝑠𝑡(𝑞|𝑂) ≤
|𝑂|−| 𝑁𝑆

𝜖(𝑞)|

|𝑂|(√2𝜋ℎ𝑆)
|𝑆| ∙ 𝑒

− 
𝜖2

2ℎ
𝑆2 . 

The example in Figure 26 illustrates a 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 of object 𝑞 with respect to 

object set 𝑂 in a 2-dimensional subspace 𝑆.  We can see that  𝑁𝑆
𝜖(𝑞) = {𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5} 

and 𝑑𝑖𝑠𝑡𝑆(𝑞|𝑂) = 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜10). 

 

Figure 26 𝝐-𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒉𝒐𝒐𝒅 (within the dashed circle) 

An upper bound of  𝐿𝑆
∗ (𝑞|𝑂+) using 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 denoted by 𝐿𝑆

∗𝜖(𝑞|𝑂+) is: 

𝐿𝑆
∗𝜖(𝑞|𝑂+) =

∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2(𝜎𝑆𝑜𝑝𝑡_𝑚𝑎𝑥
ℎ′ )

2 

𝑜∈𝑁𝑆
𝜖(𝑞) +(|𝑂+|−|𝑁𝑆

𝜖(𝑞)|)𝑒

− 
𝜖2

2(𝜎𝑆𝑜𝑝𝑡_𝑚𝑎𝑥
ℎ′ )

2

|𝑂+|(√2𝜋𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ )
𝜏   

where the meanings of 𝜎𝑚𝑖𝑛
′ , ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ , ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′  and 𝜏 are the same as those in Equation 

(5.1.5). 
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Pruning Rule 2.  Given a minimum likelihood threshold 𝛿, if 𝐿𝑆
∗𝜖(𝑞|𝑂+) < 𝛿 in a 

subspace 𝑆, all descendants of 𝑆 can be pruned. 

Using the 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑, we have the following upper and lower bounds 

of 𝐿𝑆(𝑞|𝑂). 

Theorem 4 (Bounds).  For a query object 𝑞, a set of objects 𝑂 and 𝜖 ≥ 0, 𝐿𝐿𝑆
𝜖(𝑞|𝑂) ≤

𝐿𝑆(𝑞|𝑂) ≤ 𝑈𝐿𝑆
𝜖(𝑞|𝑂)  

where:  

𝐿𝐿𝑆
𝜖(𝑞|𝑂) =

1

|𝑂|(√2𝜋ℎ𝑆)
|𝑆| (∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2

 

𝑜∈𝑁𝑆
𝜖(𝑞) + (|𝑂| − |𝑁𝑆

𝜖(𝑞)|)𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2 )  

and: 

𝑈𝐿𝑆
𝜖(𝑞|𝑂) =

1

|𝑂|(√2𝜋ℎ𝑆)
|𝑆| (∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2

 

𝑜∈𝑁𝑆
𝜖(𝑞) + (|𝑂| − |𝑁𝑆

𝜖(𝑞)|)𝑒
− 

𝜖2

2ℎ
𝑆2). 

 

Proof.  For any object 𝑜 ∈ 𝑂\𝑁𝑆
𝜖(𝑞), 𝜖2 ≤ 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑂)

2 ≤ 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑂)
2.   

Then: 

 𝑒
− 

𝜖2

2ℎ
𝑆2 ≥ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑂)
2

2ℎ
𝑆2 ≥ 𝑒

− 
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑂)

2

2ℎ
𝑆2

 
.   

 Thus: 

(|𝑂| − |𝑁𝑆
𝜖(𝑞)|) 𝑒

− 
𝜖2

2ℎ
𝑆2 ≥ (|𝑂| − |𝑁𝑆

𝜖(𝑞)|)𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑂)
2

2ℎ
𝑆2 ≥ (|𝑂| − |𝑁𝑆

𝜖(𝑞)|)𝑒
− 
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑂)

2

2ℎ
𝑆2

 
.  

Accordingly, 𝐿𝐿𝑆
𝜖(𝑞|𝑂) ≤ 𝐿𝑆(𝑞|𝑂) ≤ 𝑈𝐿𝑆

𝜖(𝑞|𝑂).  We obtain an upper bound of 𝐿𝐶𝑆(𝑞) 

based on Theorem 4 and Equation (5.1.4). 

 

Corollary 1 (Likelihood Contrast Upper Bound).  For a query object 𝑞, a set of 

objects 𝑂+, a set of objects 𝑂− and 𝜖 ≥ 0, 𝐿𝐶𝑆(𝑞) ≤
𝑈𝐿𝑆

𝜖(𝑞|𝑂+)
𝐿𝐿𝑆
𝜖(𝑞|𝑂−)

. 

 

Proof.  By Theorem 4, we have  𝐿𝑆(𝑞|𝑂+) ≤ 𝑈𝐿𝑆
𝜖(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−) ≥ 𝐿𝐿𝑆

𝜖(𝑞|𝑂−).  

Then, 𝐿𝐶𝑆(𝑞) =
𝐿𝑆(𝑞|𝑂+)

𝐿𝑆(𝑞|𝑂−)
≤

𝑈𝐿𝑆
𝜖(𝑞|𝑂+)
𝐿𝑆(𝑞|𝑂−)

≤
𝑈𝐿𝑆

𝜖(𝑞|𝑂+)
𝐿𝐿𝑆
𝜖(𝑞|𝑂−)

. 

Using Corollary 1, we have the following rule. 
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Pruning Rule 3.  For a subspace 𝑆, if there are at least 𝑘 subspaces whose likelihood 

contrast are greater than 
 𝑈𝐿𝑆

𝜖(𝑞|𝑂+)
𝐿𝐿𝑆
𝜖(𝑞|𝑂−)

, then 𝑆 cannot be a top-𝑘 subspace of the largest 

likelihood contrast. 

We implement the bounding-pruning-refining method in CSMiner to compute 

bounds of likelihood and contrast ratio.  We call this version CSMiner-BPR.  For a candidate 

subspace 𝑆, CSMiner-BPR calculates 𝑈𝐿𝑆
𝜖(𝑞|𝑂+), 𝐿𝐿𝑆

𝜖(𝑞|𝑂−) and 𝐿𝑆
∗𝜖(𝑞|𝑂+) using the 𝜖-

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑.  If 𝑈𝐿𝑆
𝜖(𝑞|𝑂+) is less than the minimum likelihood threshold (𝛿), CSMiner-

BPR checks whether it is true that 𝐿𝑆
∗𝜖(𝑞|𝑂+) < 𝛿 (Pruning Rule 2) or 𝐿𝑆

∗ (𝑞|𝑂+) < 𝛿 (Pruning 

Rule 1).  Otherwise, CSMiner-BPR checks whether the likelihood contrasts of the current 

top-𝑘 subspaces are larger than the upper bound of 𝐿𝐶𝑆(𝑞) (=
𝑈𝐿𝑆

𝜖(𝑞|𝑂+)
𝐿𝐿𝑆
𝜖(𝑞|𝑂−)

).  If not, CSMiner-

BPR refines 𝐿𝑆
∗ (𝑞|𝑂+), 𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−) by involving objects that are out of the 𝜖-

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑.  𝑆 will be added to the current top-𝑘 list if  𝐿𝑆
∗ (𝑞|𝑂+) ≥ 𝛿 and the ratio of 

𝐿𝑆(𝑞|𝑂+) to 𝐿𝑆(𝑞|𝑂−) is larger than one of the current top-𝑘 ones.  The computational cost 

for 𝐿𝑆
∗ (𝑞|𝑂+) is high when the size of 𝑂+ is large.  Thus, for efficiency, we consider a 

tradeoff between Pruning Rule 1 and Pruning Rule 3.  Specifically, when we are searching 

a subspace 𝑆, once we can determine that 𝑆 cannot be a top-𝑘 contrast subspace, then 

we terminate the search of 𝑆 immediately.  In this manner, CSMiner-BPR accelerates 

CSMiner by avoiding the cost for computing the likelihood contributions of objects outside 

the 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 to 𝑞 when 𝐿𝑆
∗𝜖(𝑞|𝑂+) < 𝛿 (Pruning Rule 2) or 

𝑈𝐿𝑆
𝜖(𝑞|𝑂+)

𝐿𝐿𝑆
𝜖(𝑞|𝑂−)

< 𝛿 (Pruning 

Rule 3). 

The 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 is a critical instrument for decreasing the computational cost 

for CSMiner-BPR. However, when dimensionality increases, the distance between objects 

increases, as such, the value of 𝜖 should not be fixed.  Standard deviation is a measure 

that expresses the variability of a set of data.  For subspace 𝑆, we set 𝜖 =

√𝛼 ∙ ∑ (𝜎𝐷𝑖+
2 + 𝜎𝐷𝑖−

2 )𝐷𝑖∈𝑆  (𝛼 ≥ 0) where 𝜎𝐷𝑖+
2  and 𝜎𝐷𝑖−

2  are the marginal variances of 𝑂+ and 

𝑂− respectively on dimension 𝐷𝑖 (𝐷𝑖 ∈ 𝑆), and 𝛼 is a system defined parameter.  Our 

experiments show that 𝛼 can be set in the range of 0.8 to 1.2 and is not sensitive.  

Algorithm 3 provides the pseudo code of CSMiner-BPR.  Theorem 5 guarantees that no 
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matter how varied the neighbourhood distance (𝜖) may be, the mining result of CSMiner-

BPR remains unchanged. 

Theorem 5.  Given data set 𝑂, query object 𝑞, minimum likelihood threshold 𝛿 and 

parameter 𝑘, for any neighbourhood distance 𝜖1 and 𝜖2, 𝐶𝑆
𝜖1(𝑞|𝑂) = 𝐶𝑆𝜖2(𝑞|𝑂) where 

𝐶𝑆𝜖1(𝑞|𝑂) (𝐶𝑆𝜖2(𝑞|𝑂)) is the set of contrast subspaces discovered by CSMiner-BPR 

using 𝜖1 (𝜖2). 

 

Proof by contradiction.  Assume that subspace 𝑆 ∈ 𝐶𝑆𝜖1(𝑞|𝑂) but 𝑆 ∉ 𝐶𝑆𝜖2(𝑞|𝑂).  As 𝑆 ∈

𝐶𝑆𝜖1(𝑞|𝑂), we have (∗) 𝐿𝑆(𝑞|𝑂+) ≥ 𝛿.  On the other hand, 𝑆′ ∉ 𝐶𝑆𝜖2(𝑞|𝑂) means 

that (𝑖) 𝐿𝑆
∗𝜖2(𝑞|𝑂+) < 𝛿 , or (𝑖𝑖) ∃𝑆′ ∈ 𝐶𝑆𝜖2(𝑞|𝑂) such that 𝑆′ ∉

𝐶𝑆𝜖1(𝑞|𝑂) and 
𝑈𝐿𝑆

𝜖1(𝑞|𝑂+)
𝐿𝐿𝑆
𝜖1(𝑞|𝑂−)

< 𝐿𝐶𝑆′(𝑞).  For case (𝑖), as 𝐿𝑆(𝑞|𝑂+) ≤  𝐿𝑆
∗ (𝑞|𝑂+) ≤

𝐿𝑆
∗𝜖2(𝑞|𝑂+), we have 𝐿𝑆(𝑞|𝑂+) < 𝛿, contradicting (∗).  For case (𝑖𝑖), as 𝐿𝐶𝑆(𝑞) ≤

𝑈𝐿𝑆
𝜖1(𝑞|𝑂+)

𝐿𝐿𝑆
𝜖1(𝑞|𝑂−)

 , we have 𝐿𝐶𝑆(𝑞) < 𝐿𝐶𝑆′(𝑞), contradicting  𝑆′ ∉ 𝐶𝑆𝜖1(𝑞|𝑂). 

 

Corollary 2.  Given data set 𝑂, query object 𝑞, minimum likelihood threshold 𝛿 and 

parameter 𝑘, the mining result of CSMiner-BPR, no matter what the value of parameter 

𝛼 is, the output is the same as that of CSMiner.  

 

Proof.  For subspace 𝑆, suppose 𝜖, computed by parameter 𝛼, is not less than 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑂).  

We have 𝑁𝑆
𝜖(𝑞) = ∅.  As such, 𝑈𝐿𝑆

𝜖(𝑞|𝑂+) = 𝐿𝑆(𝑞|𝑂+), 𝐿𝐿𝑆
𝜖(𝑞|𝑂−) = 𝐿𝑆(𝑞|𝑂−) 

and 𝐿𝑆
∗𝜖(𝑞|𝑂+) = 𝐿𝑆

∗ (𝑞|𝑂+).  This means that the execution flow of CSMiner-BPR 

(Algorithm 3) is the same as that of CSMiner (Algorithm 2).  Further, by Theorem 5, the 

value of neighbourhood distance does not change the mining result of CSMiner-BPR. 

 

 Algorithm 3 CSMiner-BPR (𝑞, 𝑂+, 𝑂−, 𝛿, 𝑘, 𝛼) 

  Input: 𝑞: query object, 𝑂+: objects belonging to 𝐶+, 𝑂−: objects belonging to 𝐶−, 𝛿: likelihood threshold, 𝑘: 

positive integer, 𝛼: neighbourhood parameter 

  Output: 𝑘 subspaces with the highest likelihood contrast 

   1: let 𝐴𝑛𝑠 be the current top-𝑘 list of subspaces; initialize 𝐴𝑛𝑠 as 𝑘 𝑛𝑢𝑙𝑙 subspaces associated with likelihood 

contrast 0 

   2:  for each subspace 𝑆 in the subspace set enumeration tree searched in the depth-first manner  
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        do 

   3:       compute 𝜖, 𝜎𝑆+, 𝜎𝑆−, 𝜎𝑚𝑖𝑛
′ , ℎ𝑜𝑝𝑡, ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ , ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ ; 

   4:       𝑁𝑆
𝜖(𝑞)+ ← ∅;𝑁𝑆

𝜖(𝑞)− ← ∅; 𝑑𝑖𝑠𝑡𝑆(𝑞|𝑂−) ← 0; 

   5:       for each object 𝑜 ∈ 𝑂+ ∪ 𝑂− do 

   6:          𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜)
2 ← 𝑑𝑖𝑠𝑡𝑆𝑃(𝑞, 𝑜)

2 + (𝑞.𝐷′ − 𝑜. 𝐷′)2 //𝑆𝑃(= 𝑆 ∪ {𝐷′}) is the parent of 𝑆. 

   7:          if 𝑜 ∈ 𝑂+ and 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜) < 𝜖 then 

   8:             𝑁𝑆
𝜖(𝑞)+ ← 𝑁𝑆

𝜖(𝑞)+ ∪ {𝑜}; 

   9:          end if 

   10:        if 𝑜 ∈ 𝑂− then 

   11:            if 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜) < 𝜖 then      

   12:               𝑁𝑆
𝜖(𝑞)+ ← 𝑁𝑆

𝜖(𝑞)+ ∪ {𝑜}; 

   13:            end if 

   14:            if 𝑑𝑖𝑠𝑡𝑆(𝑞|𝑂−) < 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜) then 

   15:               𝑑𝑖𝑠𝑡𝑆(𝑞|𝑂−) ← 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜); 

   16:            end if 

   17:        end if 

   18:      end for   

   19:      compute 𝑈𝐿𝑆
𝜖(𝑞|𝑂+), 𝐿𝐿𝑆

𝜖(𝑞|𝑂−), 𝐿𝑆
∗𝜖(𝑞|𝑂+) ; //bounding 

   20:      if 𝑈𝐿𝑆
𝜖(𝑞|𝑂+) < 𝛿 then 

   21:         if 𝐿𝑆
∗𝜖(𝑞|𝑂+) < 𝛿 then 

   22:            prune all descendants of 𝑆 and go to step 2; //Pruning Rule 2 

   23:         end if 

   24:         compute 𝐿𝑆
∗ (𝑞|𝑂+); 

   25:         if 𝐿𝑆
∗ (𝑞|𝑂+) < 𝛿 then 

   26:            prune all descendants of 𝑆 and go to step 2; //Pruning Rule 1 

   27:         end if 

   28:      else    

   29:         if ∃𝑆′ ∈ 𝐴𝑛𝑠 𝑠. 𝑡.
𝑈𝐿𝑆

𝜖 (𝑞|𝑂+)
𝐿𝐿𝑆

𝜖 (𝑞|𝑂−)
≥ 𝐿𝐶𝑆′(𝑞) then 

   30:            compute 𝐿𝑆
∗ (𝑞|𝑂+) using Equation (5.1.5); //refining 

   31:            if 𝐿𝑆
∗ (𝑞|𝑂+) < 𝛿 then 

   32:               prune all descendants of 𝑆 and go to step 2; //Pruning Rule 1 

   33:            else 

   34:               compute 𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−) using Equation (5.1.3); //refining 

   35:               if  𝐿𝑆(𝑞|𝑂+) ≥ 𝛿 and ∃𝑆′ ∈ 𝐴𝑛𝑠 𝑠. 𝑡.
𝐿𝑆(𝑞|𝑂+)
𝐿𝑆(𝑞|𝑂−)

≥ 𝐿𝐶𝑆′(𝑞) then 

   36:                  insert 𝑆 into 𝐴𝑛𝑠 and remove 𝑆′ from 𝐴𝑛𝑠; 

   37:               end if    

   38:            end if    

   39:         end if    
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   40:      end if    

   41:   end for    

   42: return 𝐴𝑛𝑠; 

5.1.4. Empirical Evaluation 

In this section, we present a systematic empirical study using real data sets to 

demonstrate the effectiveness and efficiency of CSMiner (or CSMiner-BPR).  The focus of 

the evaluation includes: 

 How sensitive our methods are to the running parameters (𝛿, 𝑘, 𝛼) in terms of 
discovered contrast subspaces and running time; 

 How sensitive our methods are to different bandwidth values and kernel function 
in terms of similarity among mined results. 

All experiments were conducted on a PC with Intel Core i7-3770 3.40 GHz CPU 

and 8GB RAM, running Windows 7 operating system.  All algorithms were implemented 

in Java and compiled with JDK 7.  Defaults were set to 𝛿 = 0.001, 𝑘 = 10, 𝛼 = 0.8. 

Effectiveness 

Table 11 summarizes the 6 data sets obtained from UCI machine learning 

repository (Bache et al., 2013) and characteristics of each data set.  Non-numerical 

attributes and all records that are missing values were removed from the data sets. 

Table 11 Data Set Characteristics 

Data Set # of Objects # of Attributes 

Breast Cancer Wisconsin (BCW) 683 9 

Climate Model Simulation Crashes (CMSC) 540 18 

Glass Identification (Glass) 214 9 

Pima Indians Diabetes (PID) 768 8 

Waveform 5000 21 

Wine 178 13 

For each data set, we select one object as a query object 𝑞 at a time and put all 

objects belonging to the same class as 𝑞 in the set, 𝑂1 (except 𝑞).  All remaining objects 

are put in 𝑂2.  Using CSMiner, for each object, we compute: 

(1) inlying contrast subspace taking 𝑂1 as 𝑂+ and 𝑂2 as 𝑂− and: 
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(2) outlying contrast subspace taking 𝑂1 as 𝑂+ and 𝑂2 as 𝑂−. 

For this experiment, we only compute the top-1 subspace.  For clarity, we denote 

the likelihood contrasts of inlying contrast subspace by 𝐿𝐶𝑆
𝑖𝑛(𝑞) and those of outlying 

contrast subspace by 𝐿𝐶𝑆
𝑜𝑢𝑡(𝑞).  Tables 12 to 17 show the joint distributions of 𝐿𝐶𝑆

𝑖𝑛(𝑞) and 

𝐿𝐶𝑆
𝑜𝑢𝑡(𝑞)  in each data set.  For most objects, 𝐿𝐶𝑆

𝑖𝑛(𝑞) are larger than 𝐿𝐶𝑆
𝑜𝑢𝑡(𝑞).  This is 

expected since 𝑞 and all objects in 𝑂1  belong to the same class.   However, a good number 

of objects have strong outlying contrast subspaces.  For example, in CMSC, more than 

40% of objects have outlying contrast subspaces, satisfying 𝐿𝐶𝑆
𝑜𝑢𝑡(𝑞) ≥ 103.  Further, 

except for PID, a considerable number of objects in each data set have both strong inlying 

contrast subspaces and outlying contrast subspaces (e.g. 𝐿𝐶𝑆
𝑖𝑛(𝑞) ≥ 104 and 𝐿𝐶𝑆

𝑜𝑢𝑡(𝑞) ≥

102). 

Table 12 Distribution of 𝑳𝑪𝑺(𝒒) in BCW (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) 

𝑳
𝑪
𝑺𝒊𝒏
(𝒒
) 

𝑳𝑪𝑺
𝒐𝒖𝒕(𝒒) 

 < 1 [1, 3) [3, 10) [10, 102) ≥ 102 𝑻𝒐𝒕𝒂𝒍 
< 104 0 3 0 7 23 33 

[104, 105) 7 4 2 4 7 24 

[105, 106) 21 21 5 8 9 64 

[106, 107) 184 33 5 4 9 235 

≥ 107 121 31 74 66 35 327 

𝑻𝒐𝒕𝒂𝒍 333 92 86 89 83 683 

Table 13 Distribution of 𝑳𝑪𝑺(𝒒) in CMSC (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) 

𝑳
𝑪
𝑺𝒊𝒏
(𝒒
) 

𝑳𝑪𝑺
𝒐𝒖𝒕(𝒒) 

 [10, 102) [102, 103) [103, 104) [104, 105) ≥ 105 𝑻𝒐𝒕𝒂𝒍 
< 103 1 11 12 2 0 26 

[103, 104) 6 35 47 6 6 100 

[104, 105) 10 46 44 8 2 110 

[105, 106) 11 40 32 8 2 93 

≥ 106 39 110 50 11 1 211 

𝑻𝒐𝒕𝒂𝒍 67 242 185 35 11 540 
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Table 14 Distribution of 𝑳𝑪𝑺(𝒒) in Glass (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) 
𝑳
𝑪
𝑺𝒊𝒏
(𝒒
) 

𝑳𝑪𝑺
𝒐𝒖𝒕(𝒒) 

 < 1 [1, 3) [3, 10) [10, 102) ≥ 102 𝑻𝒐𝒕𝒂𝒍 
< 102 0 0 0 1 7 8 

[102, 103) 2 8 4 4 7 25 

[103, 104) 28 91 6 4 5 134 

[104, 105) 1 4 0 0 3 8 

≥ 105 0 1 0 30 8 39 

𝑻𝒐𝒕𝒂𝒍 31 104 10 39 30 214 

Table 15 Distribution of 𝑳𝑪𝑺(𝒒) in PID (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) 

𝑳
𝑪
𝑺𝒊𝒏
(𝒒
) 

𝑳𝑪𝑺
𝒐𝒖𝒕(𝒒) 

 < 1 [1, 3) [3, 10) [10, 30) ≥ 30 𝑻𝒐𝒕𝒂𝒍 
< 1 0 0 1 0 0 1 

[1, 3) 2 241 62 8 2 315 

[3, 10) 36 328 31 3 0 398 
[10, 30) 23 23 2 0 0 48 

≥ 30 3 3 0 0 0 6 

𝑻𝒐𝒕𝒂𝒍 64 595 96 11 2 768 

Table 16 Distribution of 𝑳𝑪𝑺(𝒒) in Waveform (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) 

𝑳
𝑪
𝑺𝒊𝒏
(𝒒
) 

𝑳𝑪𝑺
𝒐𝒖𝒕(𝒒) 

 [1, 3) [3, 10) [10, 102) [102, 103) ≥ 103 𝑻𝒐𝒕𝒂𝒍 
< 10 0 24 34 8 2 68 

[10, 102) 204 676 772 190 71 1913 

[102, 103) 471 1049 981 228 56 2785 

[103, 104) 53 103 67 4 4 231 

≥ 104 0 2 1 0 0 3 

𝑻𝒐𝒕𝒂𝒍 728 1854 1855 430 133 5000 

Table 17 Distribution of 𝑳𝑪𝑺(𝒒) in Wine (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) 

𝑳
𝑪
𝑺𝒊𝒏
(𝒒
) 

𝑳𝑪𝑺
𝒐𝒖𝒕(𝒒) 

 < 1 [1, 3) [3, 10) [10, 102) ≥ 102 𝑻𝒐𝒕𝒂𝒍 
< 103 0 13 8 7 5 33 

[103, 104) 1 18 11 4 0 34 

[104, 105) 2 23 12 5 2 44 

[105, 106) 3 7 5 1 0 16 

≥ 106 7 20 16 4 4 51 

𝑻𝒐𝒕𝒂𝒍 13 81 52 21 11 178 

Figures 27 and 28 show the distributions of dimensionality of top-1 inlying contrast 

subspaces and outlying contrast subspaces with different minimum likelihood thresholds 
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(𝛿) respectively.  In most cases, the contrast subspaces tend to have low dimensionality; 

however, in CMSC and Wine, the inlying contrast subspaces tend to have high 

dimensionality.  Finally, as the value of 𝛿 decreases, the number of subspaces with higher 

dimensionality typically increases. 

 

Figure 27 Dimensionality distribution of top inlying contrast subspace (𝒌 = 𝟏) 

 

                 BCW                                                     CMSC                                                    Glass 

                 PID                                                     Waveform                                                    Wine 
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Figure 28 Dimensionality distribution of top outlying contrast subspace (𝒌 = 𝟏) 

Efficiency 

To the best of our knowledge, there is no previous method addressing the same 

mining problem.  As such, we will evaluate the efficiency of CSMiner and its variations; that 

is, comparisons amongst Algorithms 1 (baseline), 2 (CSMiner), and 3 (CSMiner-BPR).  

Since Waveform data set is the largest, we use this data set only and randomly select 100 

objects as query objects and report the average runtime. 

Figure 29 shows the runtime with respect to the minimum likelihood threshold 𝛿.  

A logarithm scale has been used for the runtime to better demonstrate the difference in 

the behaviours.  Since the baseline method performs exhaustive subspace search, its 

runtime is the same across all values of 𝛿.  For CSMiner and CSMiner-BPR, as 𝛿 decreases, 

their runtime increases exponentially.  However, the heuristic pruning techniques 

implemented in CSMiner and CSMiner-BPR accelerate the search substantially.  CSMiner-

BPR is slightly more efficient than CSMiner. 

                 BCW                                                     CMSC                                                    Glass 

                 PID                                                     Waveform                                                    Wine 
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Figure 29 Scalability test with 𝜹 (𝒌 = 𝟏𝟎, 𝜶 = 𝟎. 𝟖) 

Figure 30 shows the runtime with respect to the data set size.  As can be observed, 

the pruning techniques can achieve a roughly linear runtime.  Both CSMiner and CSMiner-

BPR are considerably faster than the baseline method and CSMiner-BPR is slightly more 

efficient than CSMiner. 

 

Figure 30 Scalability test with data set size (𝒌 = 𝟏𝟎, 𝜹 = 𝟎. 𝟎𝟏, 𝜶 = 𝟎. 𝟖) 

Figure 31 shows the runtime with respect to the dimensionality of the data set.  As 

the dimensionality increases, more candidate subspaces are generated and runtime 

increases exponentially.  Both CSMiner and CSMiner-BPR are considerably faster than the 

baseline method and CSMiner-BPR is slightly more efficient than CSMiner. 
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Figure 31 Scalability test with dimensionality (𝒌 = 𝟏𝟎, 𝜹 = 𝟎. 𝟎𝟏,𝜶 = 𝟎. 𝟖) 

CSMiner-BPR employs a user defined parameter 𝛼 to define the 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑.  

Table 18 lists the average runtime of CSMiner-BPR for a query object with respect 𝛼 to for 

each data set.  The runtime of CSMiner-BPR is not sensitive to 𝛼 in general.  The 

experiments show the shortest runtime of CSMiner-BPR can be obtained when 𝛼 is 

in [0.6, 1.0]. 

Table 18 Average runtime of CSMiner-BPR with 𝜶 (𝒌 = 𝟏𝟎, 𝜹 = 𝟎. 𝟎𝟏) 

Data Set 
Average Runtime (milliseconds) 

𝛼 = 0.6 𝛼 = 0.8 𝛼 = 1.0 𝛼 = 1.2 𝛼 = 1.4 

BCW 20.97 20.14 17.76 16.32 15.69 

CMSC 11446.20 11643.50 12915.10 14125.00 15210.20 

Glass 16.13 15.83 15.62 15.69 15.76 

PID 4.21 4.17 4.23 4.25 4.29 

Waveform 6807.10 7102.30 7506.70 7874.70 8183.70 

Wine 18.51 18.16 18.42 18.69 19.12 

Figure 32 shows the relative runtime of CSMiner-BPR with respect to 𝑘 for each 

data set.  It illustrates that CSMiner-BPR is linearly scalable as the value of 𝑘 increases. 
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Figure 32 Relative performance of CSMiner-BPR (𝜹 = 𝟎. 𝟎𝟏, 𝜶 = 𝟎. 𝟖) 

Sensitivity to the Bandwidth 

To test the sensitivity of the top-𝑘 contrast subspaces with respect to the bandwidth 

value, we define the similarity measure for two lists of top-𝑘 contrast subspaces. 

For any two subspaces 𝑆1 and 𝑆2, we measure the similarity between 𝑆1 and 𝑆2 by 

the Jaccard similarity coefficient denoted by 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑆1, 𝑆2) =
|𝑆1∩𝑆2|

|𝑆1∪𝑆2|
.  Given a positive 

integer 𝑟, let ℙ𝑟be the set of all permutations of the set {𝑖|1 ≤ 𝑖 ≤ 𝑟}.  Thus, |ℙ𝑟| = 𝑟!.  For 

permutation 𝑃 ∈ ℙ𝑟, we denote the 𝑗-th (1 ≤ 𝑗 ≤ 𝑟) element in 𝑃 by 𝑃[𝑖].  For example, by 

writing each permutation as a tuple, we have ℙ3 =

{(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)}.  Suppose 𝑃 = (2,3,1), then 𝑃[2] = 3. 

Given two ranked lists of top-𝑘 contrast subspaces 𝓁1 and 𝓁2, without loss of 

generality, we follow the definition of average overlap (Webber et al., 2010), also referred 

to as average accuracy (Wu et al., 2003), or intersection metric (Fagin et al., 2003), 

which derives the similarity measure by averaging the overlaps of two ranked lists at each 

rank in order to measure the similarity between 𝓁1 and 𝓁2.  Additionally, in consideration 

for the fact that each subspace in a list is a set of dimensions, we incorporate the Jaccard 

similarity coefficients into the overlap calculation.  Specifically, let 𝓁1[𝑖] be the element 

(subspace) at rank 𝑖(1 ≤ 𝑖 ≤ 𝑘) in list 𝓁1.  The agreement of lists  𝓁1 and 𝓁2 at 

rank 𝑟(1 ≤ 𝑟 ≤ 𝑘), denoted by 𝐴𝑔𝑟(𝓁1, 𝓁2, 𝑟) is: 
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𝐴𝑔𝑟(𝓁1, 𝓁2, 𝑟) =
1

𝑟
max {∑ 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝓁1[𝑃1[𝑖]], 𝓁2[𝑃2[𝑖]])|𝑃1, 𝑃2 ∈ ℙ

𝑟𝑟
𝑖=1 }.   

Then the similarity between 𝓁1 and 𝓁2, denoted by 𝑆𝑖𝑚(𝓁1, 𝓁2) is: 

𝑆𝑖𝑚(𝓁1, 𝓁2) =
1

𝑘
∑ 𝐴𝑔𝑟(𝓁1, 𝓁2, 𝑟)
𝑘
𝑟=1 .   

Clearly, 0 ≤ 𝑆𝑖𝑚(𝓁1, 𝓁2) ≤ 1.  The larger the value of 𝑆𝑖𝑚(𝓁1, 𝓁2), the more similar 𝓁1 

and 𝓁2 are. 

Given a set of objects 𝑂 and a query object 𝑞, to find top-𝑘 contrast subspaces for 

𝑞 with respect to 𝑂 by CSMiner, we fix the bandwidth value ℎ𝑆 = 𝜎𝑆 ∙ ℎ𝑆_𝑜𝑝𝑡 and use the 

Gaussian kernel function to estimate the subspace likelihood of 𝑞 with respect to 𝑂 in 

subspace 𝑆.  We then vary the bandwidth value from 0.6ℎ𝑆 to 1.4ℎ𝑆 for density estimation 

in 𝑆.  Let 𝓁ℎ𝑆 be the top-𝑘 contrast subspaces computed using the default bandwidth 

value ℎ𝑆 and 𝓁ℎ�̃� be the top-𝑘 contrast subspaces computed using other bandwidth values.  

For each object 𝑞 ∈ 𝑂 , we discover top inlying contrast subspaces and top outlying 

contrast subspaces of 𝑞 by CSMiner using different bandwidth values.  Figure 33 illustrates 

the average value of 𝑆𝑖𝑚( 𝓁ℎ𝑆 , 𝓁ℎ�̃�) of inlying contrast subspaces with respect to 𝑘 and 

Figure 34 illustrates the average value of 𝑆𝑖𝑚( 𝓁ℎ𝑆 , 𝓁ℎ�̃�) of outlying contrast subspaces 

with respect to 𝑘.  From the results, we can see that the contrast subspaces computed 

using different bandwidth values are similar in most data sets.  As expected, using a 

bandwidth whose value is closer to ℎ makes less difference.  Finally, we also observe that 

with increasing 𝑘, the value of 𝑆𝑖𝑚( 𝓁ℎ𝑆 , 𝓁ℎ�̃�) slightly increases. 
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Figure 33 Similarity scores of inlying contrast subspaces using different 

bandwidth values with respect to 𝒌 (𝜹 = 𝟎. 𝟎𝟎𝟏) 
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Figure 34 Similarity scores of outlying contrast subspaces using different 
bandwidth values with respect to 𝒌 (𝜹 = 𝟎. 𝟎𝟎𝟏) 

Comparison with Epanechnikov Kernel 

Alternative to Gaussian kernel (Equation (5.1.2)) for multivariate kernel density 

estimation is the Epanechnikov kernel: 

𝐾𝑒(𝑥) = {
1

2
𝑐𝑑
−1(𝑑 + 2)(1 − 𝑥𝑇𝑥)               if 𝑥𝑇𝑥 < 1

0                                                          otherwise

 

where 𝑐𝑑 is the volume of the unit 𝑑-dimensional sphere and can be expressed by making 

use of the Gamma function: 

𝑐𝑑 =
𝜋
𝑑
2

𝛤(1 +
𝑑
2)
=

{
 
 

 
 𝜋

𝑑
2

(
𝑑
2) !

                          if 𝑑 ≥ 0 is even

𝜋⌊
𝑑
2
⌋2⌈

𝑑
2
⌉

𝑑‼
                          if 𝑑 ≥ 0 is odd
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where is 𝑑‼ the double factorial. 

Plugging 𝐾𝑒(𝑥) into Equation (5.1.1), the density of a query object 𝑞 for a set of 

objects 𝑂 in subspace 𝑆 can be estimated as: 

𝑓𝑆(𝑞, 𝑂) =
1

|𝑂|ℎ𝑆
|𝑆|∑ (

1

2
𝑐|𝑆|−1(|𝑆| + 2)(1 −

𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

ℎ𝑆
2 ))

𝑜∈𝑂∧
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

ℎ𝑆
2 <1

                   (5.1.6) 

where ℎ𝑆 is the bandwidth for subspace 𝑆.  We calculate  ℎ𝑆 as ℎ𝑆 = 𝜎𝑆 ∙ ℎ𝑆_𝑜𝑝𝑡. 

As Silverman suggested (1986), 𝜎𝑆 is a single scale parameter that equals to the 

root of the average marginal variance in 𝑆 and ℎ𝑆_𝑜𝑝𝑡  is the optimal bandwidth value which 

equals to 𝐴(𝐾)|𝑂|
−1

(|𝑆|+4) where 𝐴(𝐾) = {8𝑐|𝑆|−1(|𝑆| + 4)(2√𝜋)
|𝑆|}

1

|𝑆|+4 for the Epanechnikov 

kernel.  For CSMiner, given a subspace 𝑆, let 𝒮 be the set of descendants of 𝑆 in the 

subspace set enumeration tree in the descending order of standard deviation.  Then, 

𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−) can be computed by Equation (5.1.6) and 𝐿𝑆
∗ (𝑞|𝑂+) =

1

|𝑂|(𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ )𝜏
∑ (

1

2
𝑐𝒮
𝑚𝑖𝑛−1(𝑑𝒮

𝑚𝑎𝑥 + 2)(1 −
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

𝜎𝑆ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ ))

𝑜∈𝑂∧
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

(𝜎𝑆ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ )2

<1
 where 𝑑𝑆

𝑚𝑎𝑥 =

max{|𝑆′| | 𝑆′ ∈ 𝑆},  𝑐𝑆
𝑚𝑖𝑛 = min {𝑐𝑑| |𝑆| < 𝑑 ≤ 𝑑𝑆

𝑚𝑎𝑥}.  Using the Epanechnikov kernel, 

𝑓𝑆(𝑞, 𝑂−) = 0 if for any object 𝑜 ∈ 𝑂−,
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

ℎ𝑆
2 < 1.  Accordingly, 𝐿𝐶𝑆(𝑞) =

�̂�𝑆(𝑞,𝑂+)

�̂�𝑆(𝑞,𝑂−)
= +∞.  

Given a data set 𝑂 (consisting of 𝑂+ and 𝑂−), the set of objects whose maximum likelihood 

contrast computed using the Epanechnikov kernel is infinity is 𝑂𝐸
+∞ = {𝑜 ∈

𝑂|∃𝑆  𝑠. 𝑡.  𝐿𝐶𝑆(𝑜) = +∞}. 

Let 𝓁𝐺 be the top-𝑘 contrast subspaces computed using the Gaussian kernel 

and 𝓁𝐸 be the top-𝑘 contrast subspaces computed using Epanechnikov kernel.  For each 

query object 𝑞 ∈ 𝑂, we discover top-10 inlying contrast subspaces and top-10 outlying 

contrast subspaces of 𝑞 using the Gaussian and Epanechnikov kernels and 

compute 𝑆𝑖𝑚( 𝓁𝐺 , 𝓁𝐸) in each data set.  For subspaces whose likelihood contrast values 

are infinity (𝐿𝐶𝑆(𝑞) = +∞), we sort them by 𝑓𝑆(𝑞, 𝑂+) in the descending order.  Table 19 

and 20 list the minimum, the maximum, and the average values of 𝑆𝑖𝑚( 𝓁𝐺 , 𝓁𝐸) as well as 

the ratio of |𝑂𝐸
+∞| to |𝑂|. 
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Table 19 Similarity between top-10 inlying contrast subspaces using different 

kernel functions in data set 𝑶 (𝜹 = 𝟎. 𝟎𝟎𝟏) 

Data Set 𝑶 
𝑺𝒊𝒎( 𝓵𝑮, 𝓵𝑬) |𝑶𝑬

+∞|

|𝑶|
 

𝑀𝑖𝑛 𝑀𝑎𝑥 𝐴𝑣𝑔 

BCW 0.168 0.980 0.539 590/683=0.864 

CMSC 0.066 0.826 0.391 540/540=1.000 

Glass 0.242 0.984 0.814 76/214=0.355 

PID 0.620 1.000 0.924 1/768=0.001 

Waveform 0.189 0.981 0.690 2532/5000=0.506 

Wine 0.159 0.993 0.670 145/178=0.815 

Table 20 Similarity between top-10 outlying contrast subspaces using different 
kernel functions in data set 𝑶 (𝜹 = 𝟎. 𝟎𝟎𝟏) 

Data Set 𝑶 
𝑺𝒊𝒎( 𝓵𝑮, 𝓵𝑬) |𝑶𝑬

+∞|

|𝑶|
 

𝑀𝑖𝑛 𝑀𝑎𝑥 𝐴𝑣𝑔 

BCW 0.239 1.000 0.916 67/683=0.098 

CMSC 0.174 0.926 0.614 540/540=1.000 

Glass 0.358 1.000 0.906 16/214=0.075 

PID 0.655 1.000 0.938 1/768=0.001 

Waveform 0.364 0.998 0.820 894/5000=0.179 

Wine 0.209 1.000 0.804 40/178=0.225 

From the results in tables 19 and 20, we can see that 𝑆𝑖𝑚( 𝓁𝐺 , 𝓁𝐸) is related to 
|𝑂𝐸
+∞|

|𝑂|
.  

Specifically, the smaller the value of 
|𝑂𝐸
+∞|

|𝑂|
, the more similar 𝓁𝐺 are 𝓁𝐸.  For example, when 

mining inlying contrast subspaces, the values of 
|𝑂𝐸
+∞|

|𝑂|
 for BCW, CMSC, Waveform and 

Wine are larger than 0.5 which is larger than the values of 
|𝑂𝐸
+∞|

|𝑂|
 for PID and Glass while 

the values of 𝑆𝑖𝑚( 𝓁𝐺 , 𝓁𝐸) are smaller for BCW, CMSC, Waveform and Wine than those 

for PID and Glass.  When mining outlying contrast subspaces, the values of 
|𝑂𝐸
+∞|

|𝑂|
 are less 

than 0.1 for BCW, Glass and PID while the values of 𝑆𝑖𝑚( 𝓁𝐺 , 𝓁𝐸) for these data sets are 

over 0.9. 

Finally, we compute 𝑆𝑖𝑚( 𝓁𝐺 , 𝓁𝐸) in 𝑂\𝑂𝐸
+∞ for each data set except CMSC since 

for CMSC, 𝑂\𝑂𝐸
+∞ = Ø.  From the results shown in Table 21 and 22, we can see that 𝓁𝐺 is 

more similar to 𝓁𝐸 when we do not consider the objects whose maximum likelihood 

contrast is infinity. 
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Table 21 Similarity between top-10 inlying contrast subspaces using different 

kernel functions in data set 𝑶\𝑶𝑬
+∞ (𝜹 = 𝟎. 𝟎𝟎𝟏) 

Data Set 𝑶\
𝑶𝑬
+∞  

𝑺𝒊𝒎( 𝓵𝑮, 𝓵𝑬) |𝑂\𝑂𝐸
+∞ | 

𝑀𝑖𝑛 𝑀𝑎𝑥 𝐴𝑣𝑔 

BCW 0.643 0.980 0.922 93 

Glass 0.720 0.984 0.929 138 

PID 0.620 1.000 0.924 767 

Waveform 0.324 0.981 0.754 2468 

Wine 0.527 0.988 0.904 33 

Table 22 Similarity between top-10 outlying contrast subspaces using different 

kernel functions in data set 𝑶\𝑶𝑬
+∞ (𝜹 = 𝟎. 𝟎𝟎𝟏) 

Data Set 𝑂\
𝑂𝐸
+∞  

𝑺𝒊𝒎( 𝓵𝑮, 𝓵𝑬) |𝑂\𝑂𝐸
+∞ | 

𝑀𝑖𝑛 𝑀𝑎𝑥 𝐴𝑣𝑔 

BCW 0.561 1.000 0.934 616 

Glass 0.629 1.000 0.925 198 

PID 0.655 1.000 0.938 767 

Waveform 0.437 0.998 0.836 4106 

Wine 0.482 1.000 0.863 138 

5.2. Outlying Aspects 

In a multidimensional dataset, given a query object 𝑞, we want to find a subspace 

in which 𝑞 is most unusual or outlying.  By mining outlying aspects, we seek an answer 

for “In what context does the organization stand out most?”, for example.  Using the Figure 

1 example, Figure 35 illustrates two example subspaces. 
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Figure 35 Example Subspaces 

In the cholesterol-cardiovascular subspace (on the left), the company 𝑞 (red dot) 

is part of the “normal” population, meaning this company’s performance is similar to many 

others’ for cholesterol and cardiovascular and the gap is marginal.  On the other hand, in 

the obesity-mental health subspace (on the right), 𝑞 is significantly outlying, meaning that 

its rate of obesity and mental health is unusual and the performance gap is material.  The 

insight this example brings may be that the company 𝑞 needs to develop a program to 

reduce the rate of obesity and/or mental health across its workforce.  While this example 

only shows 2 dimensions for visual simplicity, mining outlying aspects detects top-𝑘 (where 

𝑘 can be any number of dimensions) most prominent dimensions in which 𝑞 is an outlier. 

5.2.1. Rank Statistics 

In order to identify top-𝑘 subspaces in which a query object 𝑞 is outlying most, the 

ability to compare the outlyingness degree of 𝑞 in different subspaces is required.  We use 

rank statistics as a vehicle for comparison. 

Problem Definition 

Let 𝐷 = {𝐷1, … , 𝐷𝑑} be a 𝑑-dimensional space where the domain of 𝐷𝑖 is ℝ, a set 

of real numbers.  A subspace 𝑆 ⊆ 𝐷 (𝑆 ≠ 0) is a subset of 𝐷 and 𝐷 is also referred to as 

the full space.  The value of an object 𝑜 in dimension 𝐷𝑖 (1 ≤ 𝑖 ≤ 𝑑) is denoted as 𝑜. 𝐷𝑖.  
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For a subspace 𝑆 = {𝐷𝑖1 , … , 𝐷𝑖𝑙} ⊆ 𝐷, the projection of 𝑜 in 𝑆 is 𝑜𝑆 = {𝑜. 𝐷𝑖1 , … , 𝑜. 𝐷𝑖𝑙}.  The 

dimensionality of 𝑆, denoted by |𝑆|, is the number of dimensions in 𝑆. 

In a subspace 𝑆 ⊆ 𝐷, we assume that we can define a measure of outlyingness 

degree, 𝑂𝑢𝑡𝐷𝑒𝑔(∙), such that for each objet 𝑜 ∈ 𝑂, 𝑂𝑢𝑡𝐷𝑒𝑔(𝑜) measures the outlyingness 

of 𝑜.  Without loss of generality we assume that the lower the 𝑂𝑢𝑡𝐷𝑒𝑔(𝑜), the more outlying 

the object 𝑜.  In this thesis, we consider a generative model; that is, the set of objects 𝑂 is 

generated (i.e. sampled) from an often unknown probability distribution.  Accordingly, we 

can use the probability density of an object 𝑜, denoted by 𝑓(𝑜), as the equivalent 

to 𝑂𝑢𝑡𝐷𝑒𝑔(𝑜).  The smaller the value of 𝑓(𝑜), the more outlying the object 𝑜. 

How can we compare the outlying degree of an object in different subspaces?  We 

unfortunately cannot compare them directly since the probability density values depend 

on the properties of specific subspaces, such as, their scales.  For example, it is well 

known that probability density tends to be low in subspaces of higher dimensionality since 

such subspaces often have a larger volume and thus sparser. 

To address this issue, we consider the use of rank statistics.  In a subspace 𝑆, we 

rank all objects in 𝑂 in their outlyingness degree ascending order.  For an object 𝑜 ∈ 𝑂, 

we denote by: 

𝑟𝑎𝑛𝑘𝑆(𝑜) = |{𝑜
′|𝑜′ ∈ 𝑂,𝑂𝑢𝑡𝐷𝑒𝑔(𝑜′) < 𝑂𝑢𝑡𝐷𝑒𝑔(𝑜)}| + 1                                (5.2.1) 

the outlyingness rank of 𝑜 in subspace 𝑆.  The smaller the rank value, the more 

outlying the object is compared to the other objects in 𝑂 in subspace 𝑆.  We can compare 

the outlyingness of an object 𝑜 in two subspaces 𝑆1 and 𝑆2 using 𝑟𝑎𝑛𝑘𝑆1(𝑜) and 𝑟𝑎𝑛𝑘𝑆2(𝑜).  

Object 𝑜 is more outlying in the subspace where it has the smaller rank.  In Equation 

(5.2.1), for objects with the same outlyingness degree (probability density value), their 

outlyingness ranks are the same. 

Suppose for object 𝑜, there are two subspaces 𝑆 and 𝑆′such that 𝑆 ⊂ 𝑆′ 

and 𝑟𝑎𝑛𝑘𝑆(𝑜) =  𝑟𝑎𝑛𝑘𝑆′(𝑜).  Since 𝑆 is more general than 𝑆′, 𝑆 is more significant in 

manifesting the outlyingness of 𝑜 at the rank of 𝑟𝑎𝑛𝑘𝑆(𝑜) relative to the other objects in the 

data set.  Consequently,  𝑆′ is redundant given 𝑆, in terms of outlying aspects. 
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In high dimensional subspaces where the values of probability densities of objects 

are very small, comparing the ranks may not be reliable since the subtle differences in 

values may be due to noise or sensitivity to parameter settings in the density estimation.  

Further to note that high dimensional subspaces may not be interesting since the results 

are hard to understand.  Thus, we assume a maximum dimensionality threshold, 𝓁 > 0 

and consider only the subspaces whose dimensionalities are not greater than 𝓁. 

Definition 1 (Problem definition).  Given a set of objects 𝑂 in a multi-dimensional space 

𝐷, a query object 𝑞 ∈ 𝑂 and a maximum dimensionality threshold 0 < 𝓁 ≤ |𝐷|, a 

subspace  𝑆 ⊆ 𝐷(0 < |𝑆| ≤ 𝓁) is called a minimal outlying subspace of 𝑞 if  

1. (Rank minimality) there does not exist another subspace 𝑆′ ⊆ 𝐷(𝑆′ ≠ ∅) such 

that 𝑟𝑎𝑛𝑘𝑆′(𝑞) =  𝑟𝑎𝑛𝑘𝑆(𝑞); and 

2. (Subspace minimality) there does not exist another subspace 𝑆′′ ⊆ 𝑆 such 

that 𝑟𝑎𝑛𝑘𝑆′′(𝑞) =  𝑟𝑎𝑛𝑘𝑆(𝑞). 

The problem of minimal outlying subspace is to find the minimal outlying subspaces 

of 𝑞.  Given a query object 𝑞, there exists at least one and may be more than one 

minimal outlying subspace. 

We use KDE (Breiman et al., 1977) to estimate the density given a set of objects 𝑂.  

To reduce sensitivity to outliers, we employ Härdle’s rule of thumb (1990) instead of 

Silverman’s and set the bandwidth: 

 ℎ = 1.06min {𝜎,
𝑅

1.34
}𝑛−

1

5                                                                                 (5.5.2) 

where 𝑅 = 𝑋[0.75𝑛] − 𝑋[0.25𝑛], and 𝑋[0.25𝑛] and 𝑋[0.75𝑛] respectively are the first and the third 

quartiles. 

For 𝑑-dimensional (𝑑 ≥ 2), 𝑜 = (𝑜. 𝐷1, … , 𝑜. 𝐷𝑑)
𝑇 and 𝑜𝑖 = (𝑜𝑖. 𝐷1, … , 𝑜𝑖 . 𝐷𝑑)

𝑇  (1 ≤

𝑖 ≤ 𝑛).  Then the probability density of 𝑓 at point 𝑜 ∈ ℝ𝑑 can be estimated by: 

𝑓𝐻(𝑜) =
1

𝑛
∑ 𝐾𝐻(𝑜 − 𝑜𝑖)
𝑛
𝑖=1   
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where 𝐻 is a bandwidth matrix.  The product kernel, consisting of the product of one-

dimensional kernels, is a good choice for a multivariate kernel density estimator (Scott, 

1992; Härdle et al., 2004).  Hence, we have: 

 𝑓𝐻(𝑜) =
1

𝑛∏ ℎ𝐷𝑗
𝑑
𝑗=1

∑ {∏ 𝐾(
𝑜.𝐷𝑗−𝑜𝑖.𝐷𝑗

ℎ𝐷𝑗
)𝑑

𝑗=1 }𝑛
𝑖=1                                                      (5.2.3) 

where ℎ𝐷𝑖 is the bandwidth of dimension 𝐷𝑖(1 ≤ 𝑖 ≤ 𝑑).  We use Gaussian kernel and the 

distance between two objects is measured by Euclidean distance.  Thus, the kernel 

function is: 

𝐾 (
𝑜−𝑜𝑖

ℎ
) =

1

√2𝜋
𝑒
−
(𝑜−𝑜𝑗)

2

2ℎ2                                                                                    (5.2.4) 

Plugging Equation (5.2.4) into (5.2.3), the density of a query object 𝑞 ∈ 𝑂 in 

subspace 𝑆 can be estimated as: 

 𝑓𝑆(𝑞) = 𝑓𝑆(𝑞
𝑆) =

1

𝑛(2𝜋)
|𝑆|
2 ∏ ℎ𝐷𝑖𝐷𝑖∈𝑆

∑ 𝑒
−∑

(𝑞.𝐷𝑖−𝑜.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

𝑜∈𝑂                                   (5.2.5) 

Since we are only interested in the rank of 𝑞 (i.e. 𝑟𝑎𝑛𝑘𝑆(𝑞)) and: 

 𝑐 =
1

𝑛(2𝜋)
|𝑆|
2 ∏ ℎ𝐷𝑖𝐷𝑖∈𝑆

          (5.2.6) 

is a factor common to every object in subspace 𝑆 and does not affect the ranking at all, 

we can rewrite Equation (5.2.5) as: 

 𝑓𝑆(𝑞)~𝑓𝑆(𝑞) = ∑ 𝑒
−∑

(𝑞.𝐷𝑖−𝑜.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

 𝑜∈𝑂                                                             (5.2.7) 

where “~” means equivalence for ranking.  For clarity, we refer to 𝑓𝑆(𝑞) as quasi-density 

of 𝑞 in 𝑆.  Using 𝑓𝑆(𝑞) instead of 𝑓𝑆(𝑞) not only simplifies the description but also saves the 

computational cost for calculating 𝑟𝑎𝑛𝑘𝑆(𝑞). 
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Proposition 1 (Invariance).  Given a set of objects 𝑂 in space 𝑆 = {𝐷1, … , 𝐷𝑑}, define a 

linear transformation 𝑔(𝑜) = (𝑎1𝑜. 𝐷1 + 𝑏1, … , 𝑎𝑑𝑜. 𝐷𝑑 + 𝑏𝑑) for any 𝑜 ∈ 𝑂 

where 𝑎1, … , 𝑎𝑑 and 𝑏1, … , 𝑏𝑑 are real numbers.  Let 𝑂′ = {𝑔(𝑜)|𝑜 ∈ 𝑂} be the 

transformed data set.  For any objects 𝑜1, 𝑜2 ∈ 𝑂 such that 𝑓𝑆(𝑜1) > 𝑓𝑆(𝑜2) in 𝑂, 

𝑓𝑆(𝑔(𝑜1 )) > 𝑓𝑆(𝑔(𝑜2)) if the product kernel is used and the bandwidths are set using 

Equation (5.2.2). 

 

Proof.  For any dimension 𝐷𝑖 ∈ 𝑆(1 ≤ 𝑖 ≤ 𝑑) , the mean value of {𝑜. 𝐷𝑖|𝑜 ∈ 𝑂}, denoted 

by 𝜇𝑖, is 
1

|𝑂|
∑ 𝑜.𝐷𝑖𝑜∈𝑂 , the standard deviation of {𝑜. 𝐷𝑖|𝑜 ∈ 𝑂}, denoted by 𝜎𝑖, 

is√
1

|𝑂|
∑ (𝑜. 𝐷𝑖 − 𝜇𝑖)

2
𝑜∈𝑂 , and the bandwidth of 𝐷𝑖(ℎ𝑖) is 1.06min {𝜎𝑖,

𝑅

1.34
}|𝑂|−

1

5 where 𝑅 is 

the difference between the first and the third quartiles of 𝑂 in 𝐷𝑖.  We perform the linear 

transformation 𝑔(𝑜). 𝐷𝑖 = 𝑎𝑖𝑜. 𝐷𝑖 + 𝑏𝑖 for any 𝑜 ∈ 𝑂.  Then, the mean value 

of {𝑔(𝑜). 𝐷𝑖|𝑜 ∈ 𝑂} is 
1

|𝑂|
∑ (𝑎𝑖𝑜. 𝐷𝑖 + 𝑏𝑖) = 𝑎𝑖𝜇𝑖 + 𝑏𝑖𝑜∈𝑂  and the standard deviation 

of {𝑔(𝑜). 𝐷𝑖|𝑜 ∈ 𝑂} is√
1

|𝑂|
∑ (𝑎𝑖𝑜. 𝐷𝑖 + 𝑏𝑖 − 𝑎𝑖𝜇𝑖 − 𝑏𝑖)

2
𝑜∈𝑂 = 𝑎𝑖√

1

|𝑂|
∑ (𝑜. 𝐷𝑖 − 𝜇𝑖)

2
𝑜∈𝑂 =

𝑎𝑖𝜎𝑖.  Thus, the bandwidth of 𝐷𝑖 is 1.06min {𝑎𝑖𝜎𝑖,
𝑎𝑖𝑅

1.34
}|𝑂|−

1

5 after the linear 

transformation.  As the distance between two objects in 𝐷𝑖 is also enlarged by 𝑎𝑖, the 

quasi-density calculated by Equation (5.2.7) remains unchanged.  Thus, the ranking is 

invariant under linear transformation. 

5.2.2. Mining Methods 

Baseline Method 

Using quasi-density estimation (Equation (5.2.7)), we can develop a baseline 

algorithm for computing the outlyingness rank in a subspace 𝑆 (Algorithm 1).  The baseline 

method estimates the quasi-density of each object in a data set and ranks them.  For the 

total number of objects 𝑛, the baseline method has to compute the distance between every 

pair of objects in every dimension of 𝑆.  Thus, the time complexity is 𝒪(𝑛2|𝑆|) in each 

subspace 𝑆. 

Algorithm 1 The baseline algorithm 
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  Input: 𝑂: a set of objects, 𝑞: query object ∈ 𝑂, 𝑆: subspace 

  Output:  𝑟𝑎𝑛𝑘𝑆(𝑞) 

   1:  for each object 𝑜 ∈ 𝑂 do 

   2:       compute 𝑓𝑆(𝑜) using Equation (5.2.7); 

   3:  end for 

   4: return  𝑟𝑎𝑛𝑘𝑆(𝑞) = |{𝑜|𝑜 ∈ 𝑂, 𝑓𝑆(𝑜) < 𝑓𝑆(𝑞)}|+1;  

OAMiner Framework 

To reduce computational cost, we propose OAMiner (for Outlying Aspect Miner) in 

Algorithm 2. 

Algorithm 2 OAMiner 

  Input: 𝑂: a set of objects, 𝑞: query object ∈ 𝑂 

  Output: a set of minimal outlying subspaces for 𝑞 

   1: initialize 𝑟𝑏𝑒𝑠𝑡 ← |𝑂| and 𝐴𝑛𝑠 ← ∅; 

   2: remove 𝐷𝑖 from 𝐷 if the values of all objects in 𝐷𝑖 are identical; 

   3: compute 𝑟𝑎𝑛𝑘𝐷𝑖(𝑞) in each dimension 𝐷𝑖 ∈ 𝐷; 

   4: sort all dimensions in 𝑟𝑎𝑛𝑘𝐷𝑖(𝑞) ascending order; 

   5: for each subspace 𝑆 searched by traversing the set enumeration tree in a depth-first manner do 

   6:    compute 𝑟𝑎𝑛𝑘𝑆(𝑞); 

   7:    if 𝑟𝑎𝑛𝑘𝑆(𝑞) < 𝑟𝑏𝑒𝑠𝑡 then       

   8:       𝑟𝑏𝑒𝑠𝑡 ← 𝑟𝑎𝑛𝑘𝑆(𝑞), 𝐴𝑛𝑠 ← {𝑆}; 

   9:    end if 

  10:   if 𝑟𝑎𝑛𝑘𝑆(𝑞) = 𝑟𝑏𝑒𝑠𝑡 and 𝑆 is minimal then 

  11:      𝐴𝑛𝑠 ← 𝐴𝑛𝑠 ∪ {𝑆};       

  12:   end if 

  13:   if a subspace pruning conditions is true then    

  14:      prune all descendants of 𝑆  

  15:   end if  

  16: end for 

  17: return 𝐴𝑛𝑠;  

As a first step, OAMiner removes the dimensions where all values of objects are 

identical since no object is outlying in such dimensions.  As a result, the standard deviation 

of all dimensions involved in outlying aspect mining are greater than 0. 
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To ensure that OAMiner finds the most outlying subspaces, we need to enumerate 

all possible subspaces in a systematic way.  We again use the set enumeration tree 

introduced in section 5.1.3 (Figure 25). 

OAMiner searches subspaces by traversing the subspace enumeration tree in a 

depth-first manner.  Given a set of objects 𝑂, a query object 𝑞 ∈ 𝑂 and a subspace 𝑆, 

if 𝑟𝑎𝑛𝑘𝑆(𝑞) = 1, then every descendant of 𝑆 cannot be a minimal outlying subspace and 

thus can be pruned. 

Pruning Rule 1.  If 𝑟𝑎𝑛𝑘𝑆(𝑞) = 1, according to the dimensionality minimality condition 

(Definition 1), all descendants of 𝑆 can be pruned. 

In the case of 𝑟𝑎𝑛𝑘𝑆(𝑞) > 1, OAMiner prunes subspaces according to the current 

best rank of 𝑞 in the search process.  Heuristically, we want to find subspaces where the 

query object 𝑞 has a low rank early on so that the pruning technique is more effective. 

Consequently, we compute the outlyingness rank of 𝑞 in each dimension 𝐷𝑖 and order 

dimensions in the ascending order of 𝑟𝑎𝑛𝑘𝐷𝑖(𝑞). 

In general, the outlyingness rank does not have any monotonicity with respect to 

subspaces; that is, for subspaces 𝑆1 ⊆ 𝑆2, neither 𝑟𝑎𝑛𝑘𝑆1(𝑞) ≤ 𝑟𝑎𝑛𝑘𝑆2(𝑞) nor 𝑟𝑎𝑛𝑘𝑆1(𝑞) ≥

𝑟𝑎𝑛𝑘𝑆2(𝑞) holds. 

Example 1.  Given a set of objects 𝑂 = {𝑜1, 𝑜2, 𝑜3, 𝑜4} with 2 numeric attributes 𝐷1 and 𝐷2, 

the values of each object in 𝑂 are listed in Table 23.  Using Equation (5.2.7), we 

estimate the quasi-density values of each object for different subspaces (Table 24).  

We can see that 𝑓{𝐷1}(𝑜2) > 𝑓{𝐷1}(𝑜4) and 𝑓{𝐷2}(𝑜2) > 𝑓{𝐷2}(𝑜4) which 

indicate 𝑟𝑎𝑛𝑘{𝐷1}(𝑜2) > 𝑟𝑎𝑛𝑘{𝐷1}(𝑜4) and 𝑟𝑎𝑛𝑘{𝐷2}(𝑜2) > 𝑟𝑎𝑛𝑘{𝐷2}(𝑜4).  However, for 

subspaces {𝐷1, 𝐷2}, since 𝑓{𝐷1,𝐷2}(𝑜2) < 𝑓{𝐷1,𝐷2}(𝑜4), 𝑟𝑎𝑛𝑘{𝐷1,𝐷2}(𝑜2) < 𝑟𝑎𝑛𝑘{𝐷1,𝐷2}(𝑜4). 

Table 23 A numeric data set example 

𝑜𝑏𝑗𝑒𝑐𝑡 𝑜𝑖. 𝐷1 𝑜𝑖. 𝐷2 
𝑜1 14.23 1.50 

𝑜2 13.20 1.78 

𝑜3 13.16 2.31 

𝑜4 14.37 1.97 
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Table 24 quasi-density values of objects in Table 23 

𝑜𝑏𝑗𝑒𝑐𝑡 𝑓{𝐷1}(𝑜𝑖) 𝑓{𝐷2}(𝑜𝑖) 𝑓{𝐷1,𝐷2}(𝑜𝑖) 

𝑜1 2.229 1.832 1.305 

𝑜2 2.220 2.529 1.300 

𝑜3 2.187 1.626 1.185 

𝑜4 2.113 2.474 1.314 

A further challenge is that the probability density itself does not have any 

monotonicity with respect to subspaces either.  For subspaces 𝑆1 ⊆ 𝑆2, according to 

Equation (5.2.5), we have: 

 
�̂�𝑆1(𝑞)

�̂�𝑆2(𝑞)
=

∑ 𝑒

−∑
(𝑞.𝐷𝑖−𝑜.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆1

𝑜∈𝑂

𝑛(2𝜋)
|𝑆1|
2 ∏ ℎ𝐷𝑖𝐷𝑖∈𝑆1

/
∑ 𝑒

−∑
(𝑞.𝐷𝑖−𝑜.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆2

𝑜∈𝑂

𝑛(2𝜋)
|𝑆2|
2 ∏ ℎ𝐷𝑖𝐷𝑖∈𝑆2

   

        = (2𝜋)
|𝑆1|−|𝑆2|

2 ∏ ℎ𝐷𝑖
𝐷𝑖∈𝑆2\𝑆1

∑ 𝑒
−∑

(𝑞.𝐷𝑖−𝑜.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆1

𝑜∈𝑂

∑ 𝑒
−∑

(𝑞.𝐷𝑖−𝑜.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆2

𝑜∈𝑂

 

 

 Since 𝑆1 ⊆ 𝑆2,  
∑ 𝑒

−∑
(𝑞.𝐷𝑖−𝑜.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆1

𝑜∈𝑂

∑ 𝑒

−∑
(𝑞.𝐷𝑖−𝑜.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆2

𝑜∈𝑂

≥ 1 and (2𝜋)
|𝑆1|−|𝑆2|

2
 ≥ 1.  However, in the 

case ∏ ℎ𝐷𝑖𝐷𝑖∈𝑆2\𝑆1 < 1, there is no guarantee that 
�̂�𝑆1(𝑞)

�̂�𝑆2(𝑞)
> 1 always holds.  

Consequently, neither 𝑓𝑆1(𝑞) ≤ 𝑓𝑆2(𝑞) nor 𝑓𝑆1(𝑞) ≥ 𝑓𝑆2(𝑞) holds in general. 

A Bounding-Pruning-Refining Method 

Bounding Probability Density 

To obtain rank statistics, OAMiner needs to compare the density of the query object 

with the densities of other objects.  In order to speed up density estimation, we exploit the 

observation that the contributions to the density of an object from remote objects are small; 

thus, the density of an object can be bounded.  Similar to the concept of 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 

with CSMiner, we can derive upper and lower bounds of the density of an object using a 

neighbourhood. 
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Given objects 𝑜, 𝑜′ ∈ 𝑂, subspace 𝑆 and a subset 𝑂′ ⊆ 𝑂, we denote by 𝑑𝑐𝑆(𝑜, 𝑜
′) 

the quasi-density contribution of 𝑜′ to 𝑜 in 𝑆 and 𝑓𝑆
𝑂′(𝑜) the sum of quasi-density 

contributions of objects in 𝑂′ to 𝑜. That is: 

𝑑𝑐𝑆(𝑜, 𝑜
′) = 𝑒

−∑
(𝑜.𝐷𝑖−𝑜′.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

 

𝑓𝑆
𝑂′(𝑜)  = ∑ 𝑒

−∑
(𝑜.𝐷𝑖−𝑜′.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

𝑜′∈𝑂′

 

To estimate the bounds of 𝑓𝑆(𝑜) efficiently, we define two kinds of neighbourhood.  

For an object 𝑜 ∈ 𝑂,  a subspace 𝑆 and {𝜖𝐷𝑖|𝜖𝐷𝑖 > 0,𝐷𝑖 ∈ 𝑆},                                                          

the 𝜖-𝑡𝑖𝑔ℎ𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 of 𝑜 in 𝑆, denoted by 𝑇𝑁𝑆
𝜖,𝑜, is {𝑜′ ∈ 𝑂|∀𝐷𝑖 ∈ 𝑆, |𝑜. 𝐷𝑖 − 𝑜

′. 𝐷𝑖| ≤

𝜖𝐷𝑖}, the 𝜖-𝑙𝑜𝑜𝑠𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 of 𝑜 in 𝑆, denoted by 𝐿𝑁𝑆
𝜖,𝑜, is {𝑜′ ∈ 𝑂|∃𝐷𝑖 ∈ 𝑆, |𝑜. 𝐷𝑖 −

𝑜′. 𝐷𝑖| ≤ 𝜖𝐷𝑖}.  Based on the definitions of 𝑇𝑁𝑆
𝜖,𝑜 and 𝐿𝑁𝑆

𝜖,𝑜, we depict the following 

properties. 

Property 1.  𝑇𝑁𝑆
𝜖,𝑜 ⊆  𝐿𝑁𝑆

𝜖,𝑜. 

 

Property 2.  𝑇𝑁𝑆
𝜖,𝑜 = 𝐿𝑁𝑆

𝜖,𝑜if |𝑆| = 1. 

Using 𝑇𝑁𝑆
𝜖,𝑜 and 𝐿𝑁𝑆

𝜖,𝑜, 𝑂 can be divided into three disjoint subsets: 𝑇𝑁𝑆
𝜖,𝑜,

𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜, 𝑂\ 𝐿𝑁𝑆
𝜖,𝑜.  For any object 𝑜′ ∈ 𝑂, we obtain a lower bound and an upper 

bound of 𝑑𝑐𝑆(𝑜, 𝑜
′) as follows: 

Theorem 1 (Single quasi-density contribution bounds).  Given an object 𝑜 ∈ 𝑂,  a 

subspace 𝑆 and {𝜖𝐷𝑖|𝜖𝐷𝑖 > 0,𝐷𝑖 ∈ 𝑆}, then: 

for any object 𝑜′ ∈ 𝑇𝑁𝑆
𝜖,𝑜, 𝑑𝑐𝑆

𝜖 ≤ 𝑑𝑐𝑆(𝑜, 𝑜
′) ≤ 𝑑𝑐𝑆

𝑚𝑎𝑥(𝑜);  

for any object 𝑜′ ∈ 𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜, 𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) ≤ 𝑑𝑐𝑆(𝑜, 𝑜

′) ≤ 𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜);  

for any object 𝑜′ ∈ 𝑂\𝐿𝑁𝑆
𝜖,𝑜, 𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ 𝑑𝑐𝑆(𝑜, 𝑜
′) ≤ 𝑑𝑐𝑆

𝜖  

where: 

        𝑑𝑐𝑆
𝜖 = 𝑒

−∑
𝜖𝐷𝑖
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆
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             𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) = 𝑒

−∑
min
𝑜′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

 

         𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) = 𝑒

−∑
max
𝑜′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

. 

 

Proof. 

1) Given an object 𝑜′ ∈ 𝑇𝑁𝑆
𝜖,𝑜, for any dimension 𝐷𝑖 ∈ 𝑆, min

𝑜′′∈𝑂
{|𝑜. 𝐷𝑖 − 𝑜

′′. 𝐷𝑖|} ≤

|𝑜. 𝐷𝑖 − 𝑜
′. 𝐷𝑖| ≤ 𝜖𝐷𝑖.  Thus, 𝑒

−∑
𝜖𝐷𝑖
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

≤ 𝑒
−∑

|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

≤

𝑒
−∑

min
𝑜′′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

.     That is, 𝑑𝑐𝑆
𝜖 ≤ 𝑑𝑐𝑆(𝑜, 𝑜

′) ≤ 𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜).  

2) Given an object 𝑜′ ∈ 𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜, for any dimension 𝐷𝑖 ∈ 𝑆, min
𝑜′′∈𝑂

{|𝑜. 𝐷𝑖 − 𝑜
′′. 𝐷𝑖|} ≤

|𝑜. 𝐷𝑖 − 𝑜
′. 𝐷𝑖| ≤ max

𝑜′′∈𝑂
{|𝑜. 𝐷𝑖 − 𝑜

′′. 𝐷𝑖|}.  Thus, 𝑒
−∑

max
𝑜′′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

 ≤

𝑒
−∑

|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

≤ 𝑒
−∑

min
𝑜′′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

.  That is, 𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) ≤ 𝑑𝑐𝑆(𝑜, 𝑜

′) ≤

𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜).  

3) Given an object 𝑜′ ∈ 𝑂\𝐿𝑁𝑆
𝜖,𝑜, for any dimension 𝐷𝑖 ∈ 𝑆, 𝜖𝐷𝑖 ≤ |𝑜. 𝐷𝑖 − 𝑜

′. 𝐷𝑖| ≤

max
𝑜′′∈𝑂

{|𝑜. 𝐷𝑖 − 𝑜
′′. 𝐷𝑖|}.  Thus,  𝑒

−∑
max
𝑜′′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

≤ 𝑒
−∑

|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

≤

𝑒
−∑

𝜖𝐷𝑖
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

.  That is, 𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) ≤ 𝑑𝑐𝑆(𝑜, 𝑜

′) ≤ 𝑑𝑐𝑆
𝜖.  

Using the size of  𝑇𝑁𝑆
𝜖,𝑜and 𝐿𝑁𝑆

𝜖,𝑜, we obtain a lower and an upper bound of  𝑓𝑆(𝑜) 

as follows. 

Corollary 1 (Bounds by neighbourhood size).  For any object 𝑜 ∈ 𝑂,  

|𝑇𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝜖 + (|𝑂| − |𝑇𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ 𝑓𝑆(𝑜) 

𝑓𝑆(𝑜) ≤ |𝐿𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝜖 

Corollary 1 allows us to compute the quasi-density bounds of an object without computing 

the quasi-density contributions of the other objects to it. 
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Proof.  We divide 𝑂 into disjoint subsets 𝑇𝑁𝑆
𝜖,𝑜, 𝐿𝑁𝑆

𝜖,𝑜\ 𝑇𝑁𝑆
𝜖,𝑜, 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜.  By Theorem 1, for 

objects belonging to 𝑇𝑁𝑆
𝜖,𝑜, we have: 

 |𝑇𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝜖 ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈𝑇𝑁𝑆

𝜖,𝑜 ≤ |𝑇𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝑚𝑎𝑥(𝑜), 

     for objects belonging to  𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜, we have: 

             (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈  𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜  

                                                          ≤ (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜), 

     for objects belonging to 𝑂\ 𝐿𝑁𝑆
𝜖,𝑜, we have: 

             (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈  𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 < (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝜖 as: 

             𝑓𝑆(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈𝑂 = ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈𝑇𝑁𝑆
𝜖,𝑜 + 

   ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈  𝐿𝑁𝑆

𝜖,𝑜\ 𝑇𝑁𝑆
𝜖,𝑜 + 

   ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈  𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 .   

Thus: 

 𝑓𝑆(𝑜) ≥ |𝑇𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝜖 + (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) 

                  = |𝑇𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝜖 + (|𝑂| − |𝑇𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) 

 

𝑓𝑆(𝑜) ≤ |𝑇𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝑚𝑎𝑥(𝑜) + (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖 

                  = |𝐿𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝜖. 

 Finally, if 𝐿𝑁𝑆
𝜖,𝑜 ⊂ 𝑂; that is, 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 ≠ ∅, then: 

     𝑓𝑆
𝑂′(𝑜) < |𝐿𝑁𝑆

𝜖,𝑜|𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖.   

 

Corollary 2 (Bounds by 𝝐-𝒕𝒊𝒈𝒉𝒕 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒔).  For any object 𝑜 ∈ 𝑂 and 𝑂′ ⊆ 𝑇𝑁𝑆
𝜖,𝑜, 

𝑓𝑆
𝑂′(𝑜) + (|𝑇𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝜖 + (|𝑂| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) ≤ 𝑓𝑆(𝑜) 

𝑓𝑆(𝑜) ≤ 𝑓𝑆
𝑂′(𝑜) + (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖 

 

Proof.  Since 𝑂′ ⊆ 𝑇𝑁𝑆
𝜖,𝑜, for objects belonging to 𝑂\ 𝑂′, we divide them into 𝑇𝑁𝑆

𝜖,𝑜\Ο′,

𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜, 𝑂\ 𝐿𝑁𝑆
𝜖,𝑜.  Then: 

              𝑓𝑆(𝑜) = 𝑓𝑆
𝑂′(𝑜) + ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈𝑇𝑁𝑆
𝜖,𝑜\Ο′ + 

      ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈  𝐿𝑁𝑆

𝜖,𝑜\ 𝑇𝑁𝑆
𝜖,𝑜 + 
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                                         ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈  𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 .   

     By Theorem 1, for objects belonging to  𝑇𝑁𝑆
𝜖,𝑜\ 𝑂′, we have: 

             (|𝑇𝑁𝑆
𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆

𝜖 ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′) ≤ (|𝑇𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜),𝑜′∈  𝑇𝑁𝑆

𝜖,𝑜\ 𝑂′  

     for objects belonging to 𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜, we have: 

             (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈  𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜  

      ≤ (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜),  

for objects belonging to 𝑂\ 𝐿𝑁𝑆
𝜖,𝑜, we have: 

             (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈  𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 ≤ (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝜖.       

Thus: 

 𝑓𝑆(𝑜) ≥ 𝑓𝑆
𝑂′(𝑜) + 

             (|𝑇𝑁𝑆
𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆

𝜖 + (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) 

                  = 𝑓𝑆
𝑂′(𝑜) + (|𝑇𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝜖 + (|𝑂| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) 

 

𝑓𝑆(𝑜) ≤ 𝑓𝑆
𝑂′(𝑜) + 

            (|𝑇𝑁𝑆
𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑎𝑥(𝑜) + (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖 

                  = 𝑓𝑆
𝑂′(𝑜) + (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖. 

 

 Finally, if 𝐿𝑁𝑆
𝜖,𝑜 ⊂ 𝑂; that is, 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 ≠ ∅, then: 

          𝑓𝑆(𝑜) <  �̃�𝑆
𝑂′(𝑜) < (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖. 

 

Corollary 3 (Bounds by 𝝐-𝒍𝒐𝒐𝒔𝒆 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒔).  For any object 𝑜 ∈ 𝑂 and 𝑇𝑁𝑆
𝜖,𝑜 ⊂ 𝑂′ ⊆

𝐿𝑁𝑆
𝜖,𝑜, 

 𝑓𝑆
𝑂′(𝑜) + (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ 𝑓𝑆(𝑜) 

𝑓𝑆(𝑜) ≤ 𝑓𝑆
𝑂′(𝑜) + (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖 

 

Proof.  Since 𝑇𝑁𝑆
𝜖,𝑜 ⊂ 𝑂′ ⊆ 𝐿𝑁𝑆

𝜖,𝑜, for objects belonging to 𝑂\ 𝑂′, we divide them 

into 𝐿𝑁𝑆
𝜖,𝑜\Ο′ and 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜.  Then: 

              𝑓𝑆(𝑜) = 𝑓𝑆
𝑂′(𝑜) + ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈𝐿𝑁𝑆
𝜖,𝑜\𝑂′ + ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈  𝑂\ 𝐿𝑁𝑆
𝜖,𝑜 . 

     By Theorem 1, for objects belonging to  𝐿𝑁𝑆
𝜖,𝑜\ 𝑂′, we have: 
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             (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′) ≤ (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜),𝑜′∈  𝐿𝑁𝑆

𝜖,𝑜\ 𝑂′  

for objects belonging to 𝑂\ 𝐿𝑁𝑆
𝜖,𝑜, we have: 

             (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈  𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 ≤ (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝜖.       

Thus: 

 𝑓𝑆(𝑜) ≥ 𝑓𝑆
𝑂′(𝑜) + 

             (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) + (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) 

                  = 𝑓𝑆
𝑂′(𝑜) + (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) 

 

          𝑓𝑆(𝑜) ≤ 𝑓𝑆
𝑂′(𝑜) + (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖. 

 

 Finally, if 𝐿𝑁𝑆
𝜖,𝑜 ⊂ 𝑂; that is, 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 ≠ ∅, then: 

         𝑓𝑆(𝑜) <  �̃�𝑆
𝑂′(𝑜) < (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖.   

 

Corollary 4 (Bounds by a superset of 𝝐-𝒍𝒐𝒐𝒔𝒆 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒔).  For any object 𝑜 ∈

𝑂 and 𝐿𝑁𝑆
𝜖,𝑜 ⊂ 𝑂′ ⊆ 𝑂, 

𝑓𝑆
𝑂′(𝑜) + (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ 𝑓𝑆(𝑜) 

𝑓𝑆(𝑜) ≤ 𝑓𝑆
𝑂′(𝑜) + (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝜖 

 

Proof.  𝐿𝑁𝑆
𝜖,𝑜 ⊂ 𝑂′ ⊆ 𝑂. Then: 

              𝑓𝑆(𝑜) = 𝑓𝑆
𝑂′(𝑜) + ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈𝑂\Ο′ . 

     By Theorem 1, for objects belonging to  𝑂\ 𝑂′, we have: 

             (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′) ≤ (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝜖
𝑜′∈  𝑂\ 𝑂′ . 

Thus: 

 𝑓𝑆(𝑜) ≥ 𝑓𝑆
𝑂′(𝑜) + (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) 

         𝑓𝑆(𝑜) ≤ 𝑓𝑆
𝑂′(𝑜) + (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝜖 

Since the density of 𝑜 is the sum of the density contributions of all objects in 𝑂 and 

the density contribution decreases with the distance, OAMiner first computes the quasi-

density contributions from the objects in 𝑇𝑁𝑆
𝜖,𝑜, then from the objects in 𝐿𝑁𝑆

𝜖,𝑜\𝑇𝑁𝑆
𝜖,𝑜, and 

finally from the objects in 𝑂\𝐿𝑁𝑆
𝜖,𝑜. 
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By computing the bounds of 𝑓𝑆(𝑜), OAMiner takes a bounding-pruning-refining 

method, shown in Algorithm 3, to perform density comparison efficiently in Subspace 𝑆.  

Initially OAMiner estimates the quasi-density of query object 𝑞 denoted by 𝑓𝑆(𝑞).  Then, for 

an object 𝑜, it first computes the bounds of 𝑓𝑆(𝑜) by the sizes of 𝑇𝑁𝑆
𝜖,𝑜 and  𝐿𝑁𝑆

𝜖,𝑜(Corollary 

1) and compares the bounds with 𝑓𝑆(𝑞) (Steps 1 to 8).  If 𝑓𝑆(𝑞)  is smaller than the lower 

bound or greater than the upper bound, then we have 𝑓𝑆(𝑞) < 𝑓𝑆(𝑜) or 𝑓𝑆(𝑞) > 𝑓𝑆(𝑜).  That 

is, the relationship between 𝑓𝑆(𝑞) and 𝑓𝑆(𝑜) is determined; thus, the Algorithm 3 stops.  

Otherwise, OAMiner updates the lower and upper bounds of 𝑓𝑆(𝑜) by involving the quasi-

density contributions of objects in 𝑇𝑁𝑆
𝜖,𝑜 (Steps 10 to 20), in 𝐿𝑁𝑆

𝜖,𝑜\𝑇𝑁𝑆
𝜖,𝑜 (Steps 21 to 31) 

and in 𝑂\𝐿𝑁𝑆
𝜖,𝑜 (Steps 32 to 42) and repeatedly compares the updated bounds with 𝑓𝑆(𝑞)  

until the relationship between 𝑓𝑆(𝑞)  and 𝑓𝑆(𝑜)  is fully determined. 

Algorithm 3 Density Comparison 

  Input: quasi-density of the query object:  𝑓𝑆(𝑜), object: 𝑜 ∈ 𝑂, subspace: 𝑆, the 𝜖-𝑡𝑖𝑔ℎ𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 of 𝑜: 

𝑇𝑁𝑆
𝜖,𝑜, and the 𝜖-𝑙𝑜𝑜𝑠𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 of 𝑜: 𝐿𝑁𝑆

𝜖,𝑜  

  Output: a Boolean value indicating 𝑓𝑆(𝑜) <  𝑓𝑆(𝑞) is true or not 

   1: 𝐿 ← the lower bound of 𝑓𝑆(𝑜) computed by Corollary 1; //bounding 

   2: if 𝐿 >  𝑓𝑆(𝑞) then 

   3:    return false; //pruning 

   4: end if 

   5: 𝑈 ← the upper bound of 𝑓𝑆(𝑜) computed by Corollary 1; //bounding 

   6: if 𝑈 < 𝑓𝑆(𝑞) then 

   7:    return true; //pruning 

   8: end if 

   9: 𝑂′ ← ∅; 𝑓𝑆
𝑂′(𝑜) ← 0; 

  10: for each 𝑜′ ∈ 𝑇𝑁𝑆
𝜖,𝑜 do 

  11:    𝑓𝑆
𝑂′(𝑜) ← 𝑓𝑆

𝑂′(𝑜) + 𝑑𝑐𝑆(𝑜, 𝑜
′); 𝑂′ ← 𝑂′ ∪ {𝑜′}; //refining          

  12:    𝐿 ← the lower bound of 𝑓𝑆(𝑜) computed by Corollary 2; //bounding 

  13:    if 𝐿 >  𝑓𝑆(𝑞) then 

  14:       return false; //pruning 

  15:    end if 

  16:    𝑈 ← the upper bound of 𝑓𝑆(𝑜) computed by Corollary 2; //bounding 

  17:    if 𝑈 < 𝑓𝑆(𝑞) then 

  18:       return true; //pruning 

  19:    end if 

  20: end for  
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  21: for each 𝑜′ ∈ 𝐿𝑁𝑆
𝜖,𝑜\𝑇𝑁𝑆

𝜖,𝑜 do 

  22:    𝑓𝑆
𝑂′(𝑜) ← 𝑓𝑆

𝑂′(𝑜) + 𝑑𝑐𝑆(𝑜, 𝑜
′); 𝑂′ ← 𝑂′ ∪ {𝑜′}; //refining          

  23:    𝐿 ← the lower bound of 𝑓𝑆(𝑜) computed by Corollary 3; //bounding 

  24:    if 𝐿 >  𝑓𝑆(𝑞) then 

  25:       return false; //pruning 

  26:    end if 

  27:    𝑈 ← the upper bound of 𝑓𝑆(𝑜) computed by Corollary 3; //bounding 

  28:    if 𝑈 < 𝑓𝑆(𝑞) then 

  29:       return true; //pruning 

  30:    end if 

  31: end for  

  32: for each 𝑜′ ∈ 𝑂\𝐿𝑁𝑆
𝜖,𝑜 do 

  33:    𝑓𝑆
𝑂′(𝑜) ← 𝑓𝑆

𝑂′(𝑜) + 𝑑𝑐𝑆(𝑜, 𝑜
′); 𝑂′ ← 𝑂′ ∪ {𝑜′}; //refining          

  34:    𝐿 ← the lower bound of 𝑓𝑆(𝑜) computed by Corollary 4; //bounding 

  35:    if 𝐿 >  𝑓𝑆(𝑞) then 

  36:       return false; //pruning 

  37:    end if 

  38:    𝑈 ← the upper bound of 𝑓𝑆(𝑜) computed by Corollary 4; //bounding 

  39:    if 𝑈 < 𝑓𝑆(𝑞) then 

  40:       return true; //pruning 

  41:    end if 

  42: end for 

 43: return false; 

In OAMiner, the neighbourhood distance in dimension 𝐷𝑖, denoted by 𝜖𝐷𝑖, is 

defined as 𝛼𝜎𝐷𝑖 where 𝜎𝐷𝑖 is the standard deviation in dimension 𝐷𝑖 and 𝛼 is a parameter.  

Our experiments show that 𝛼 is not sensitive and can be set in the range of 0.8 to1.2.  

OAMiner runs efficiently with this range.  Theorem 2 guarantees that regardless of the 

neighbourhood distance, the ranking results remain unchanged. 

Theorem 2.  Given an object 𝑜 ∈ 𝑂 and a subspace 𝑆, for any neighbourhood 

distances 𝜖1 and 𝜖2, 𝑟𝑎𝑛𝑘𝑆
𝜖1(𝑜) = 𝑟𝑎𝑛𝑘𝑆

𝜖2(𝑜) where 𝑟𝑎𝑛𝑘𝑆
𝜖1(𝑜) (𝑟𝑎𝑛𝑘𝑆

𝜖2(𝑜)) is the 

outlyingness rank of 𝑜 in 𝑆 computed using 𝜖1 ( 𝜖2 ).       

 

Proof by contradiction.  Let 𝑂 be a set of objects, 𝑆 be a subspace, 𝜖1 and 𝜖2 be 

neighbourhood distances and 𝑞 be the query object.  For any object 𝑜 ∈ 𝑂, denote 
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by 𝐿𝜖1 the lower bound of 𝑓𝑆(𝑜) estimated by 𝜖1, 𝑈𝜖2the upper bound of 𝑓𝑆(𝑜) estimated 

by 𝜖2.  Assume that 𝑓𝑆(𝑞) < 𝐿𝜖1 and 𝑓𝑆(𝑞) > 𝑈𝜖2.  Since 𝐿𝜖1is a lower bound of  𝑓𝑆(𝑜) 

and 𝑈𝜖2 is an upper bound of 𝑓𝑆(𝑜), 𝐿𝜖1 < 𝑓𝑆(𝑜) <  𝑈𝜖2.  Then, we have 𝑓𝑆(𝑞) <  𝐿𝜖1 <

𝑓𝑆(𝑜) and 𝑓𝑆(𝑜) <  𝑈𝜖2 < 𝑓𝑆(𝑞).  Consequently, 𝑓𝑆(𝑜) < 𝑓𝑆(𝑞) < 𝑓𝑆(𝑜).  A contradiction.  

Thus, 𝑟𝑎𝑛𝑘𝑆
𝜖1(𝑞) = |{𝑜 ∈ 𝑂|𝑓𝑆(𝑜) < 𝑓𝑆(𝑞)}| + 1 = 𝑟𝑎𝑛𝑘𝑆

𝜖2(𝑞). 

Efficiently Estimating Density Bounds  

 Given a candidate subspace 𝑆 ⊆ 𝐷 and an object 𝑜 ∈ 𝑂, to estimate lower and 

upper bounds of 𝑓𝑆(𝑜), OAMiner has to compute 𝑇𝑁𝑆
𝜖,𝑜, 𝐿𝑁𝑆

𝜖,𝑜, 𝑑𝑐𝑆
𝜖 , 𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜), 𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) 

and 𝑑𝑐𝑆(𝑜, 𝑜
′) where 𝑜′ ∈ 𝑂.  For |𝑆| = 1, we compute 𝑇𝑁𝑆

𝜖,𝑜, 𝑑𝑐𝑆
𝜖 , 𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜), 𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) 

and 𝑑𝑐𝑆(𝑜, 𝑜
′) according to their definitions.  𝑇𝑁𝑆

𝜖,𝑜 = 𝐿𝑁𝑆
𝜖,𝑜 in this case.  Further, the 

density contribution is symmetrical such that the computational cost for 𝑑𝑐𝑆(𝑜′, 𝑜) can be 

saved if 𝑑𝑐𝑆(𝑜, 𝑜
′) is available.  Since OAMiner searches subspaces by traversing the 

subspace enumeration tree in a depth-first manner, for a subspace satisfying |𝑆| ≥ 2, we 

denote by 𝑝𝑎𝑟(𝑆) the parent subspace of 𝑆.  Suppose 𝑆\𝑝𝑎𝑟(𝑆) = 𝐷′(|𝐷′| = 1).  Then we 

have: 

 𝑇𝑁𝑆
𝜖,𝑜 =  𝑇𝑁𝑝𝑎𝑟(𝑆)

𝜖,𝑜 ∩  𝑇𝑁𝐷′
𝜖,𝑜 

 𝐿𝑁𝑆
𝜖,𝑜 =  𝐿𝑁𝑝𝑎𝑟(𝑆)

𝜖,𝑜 ∪  𝐿𝑁𝐷′
𝜖,𝑜 

𝑑𝑐𝑆
𝜖 = 𝑒

−∑
𝜖𝐷𝑖
2

2ℎ𝐷𝑖
2  𝐷𝑖∈𝑆

= 𝑒
−(∑

𝜖𝐷𝑖
2

2ℎ𝐷𝑖
2 +

𝜖𝐷′𝑖
2

2ℎ𝐷′𝑖
2  𝐷𝑖∈𝑝𝑎𝑟(𝑆)

)

= 𝑑𝑐𝑝𝑎𝑟(𝑆)
𝜖 ∙ 𝑑𝑐𝑆𝐷′

𝜖  

𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) =  𝑒

−(∑
max
𝑜′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2 +

max
𝑜′∈𝑂

{|𝑜.𝐷′−𝑜′.𝐷′|}
2

2ℎ
𝐷′
2 )𝐷𝑖∈𝑝𝑎𝑟(𝑆)

 

    = 𝑑𝑐𝑆\𝑝𝑎𝑟(𝑆)
𝑚𝑖𝑛 (𝑜) ∙ 𝑑𝑐𝐷′

𝑚𝑖𝑛(𝑜) 

𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) =  𝑒

−(∑
min
𝑜′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2 +

min
𝑜′∈𝑂

{|𝑜.𝐷′−𝑜′.𝐷′|}
2

2ℎ
𝐷′
2 )𝐷𝑖∈𝑝𝑎𝑟(𝑆)
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    = 𝑑𝑐𝑆\𝑝𝑎𝑟(𝑆)
𝑚𝑎𝑥 (𝑜) ∙ 𝑑𝑐𝐷′

𝑚𝑎𝑥(𝑜) 

𝑑𝑐𝑆(𝑜, 𝑜
′) = 𝑒

−∑
(𝑜.𝐷𝑖−𝑜

′.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

=  𝑒
−(∑

(𝑜.𝐷𝑖−𝑜
′.𝐷𝑖)

2

2ℎ𝐷𝑖
2 +

(𝑜.𝐷𝑖−𝑜
′.𝐷𝑖)

2

2ℎ𝐷𝑖
2 )𝐷𝑖∈𝑝𝑎𝑟(𝑆)

 

    = 𝑑𝑐𝑝𝑎𝑟(𝑆)(𝑜, 𝑜
′) ∙ 𝑑𝑐𝐷′(𝑜, 𝑜

′) 

Accordingly, OAMiner can efficiently estimate the bounds of 𝑓𝑆(𝑜) using 𝑝𝑎𝑟(𝑆) 

and 𝑆\𝑝𝑎𝑟(𝑆). 

Subspace Pruning 

While OAMiner is traversing the subspace enumeration tree, let 𝑆1 be the set of 

subspaces it has searched so far and 𝑆2 be the set of subspaces it has not searched yet.  

|𝑆1 ∪ 𝑆2| = 2
|𝐷| − 1.  Given a query object 𝑞, let 𝑟𝑏𝑒𝑠𝑡 = min

𝑆∈𝑆1
{𝑟𝑎𝑛𝑘𝑆(𝑞)} be the best rank 𝑞 

has achieved so far.  We can then use 𝑟𝑏𝑒𝑠𝑡 to prune some subspaces not searched yet; 

that is, for a subspace 𝑆 ∈ 𝑆2, once we determine that 𝑟𝑎𝑛𝑘𝑆(𝑞) > 𝑟𝑏𝑒𝑠𝑡, then 𝑆 cannot be 

an outlying aspect and thus can be pruned. 

Observation 1.  When subspace 𝑆 is met in a depth-first search of the subspace 

enumeration tree, let 𝑟𝑏𝑒𝑠𝑡 be the best rank of 𝑞 in all subspaces searched so far.  Given 

object 𝑞 with 𝑟𝑎𝑛𝑘𝑆(𝑞) > 1, if for every proper superspace 𝑆′ ⊃ 𝑆, 𝑟𝑎𝑛𝑘𝑆′(𝑞) > 𝑟𝑏𝑒𝑠𝑡 then 

all proper superspace of 𝑆 can be pruned. 

For 𝑟𝑎𝑛𝑘𝑆(𝑞) = 1, all superspaces of 𝑆 can be pruned due to dimensionality 

minimality condition as per Pruning Rule 1.  As a result, we only consider the case 

where 𝑟𝑎𝑛𝑘𝑆(𝑞) > 1.  To implement Observation 1 in a subspace 𝑆 where 𝑟𝑎𝑛𝑘𝑆(𝑞) > 1, 

we check if there are at least 𝑟𝑏𝑒𝑠𝑡 objects that are ranked better than 𝑞 in every 

superspace of 𝑆.  If true, all superspaces of 𝑆 can be pruned. The common factor 𝑐 as per 

Equation (5.2.6) does not affect the outlyingness rank.  For simplicity, OAMiner computes 

quasi-density 𝑓𝑆(𝑜) (Equation (5.2.7)) instead of probability density 𝑓𝑆(𝑜) (Equation (5.2.5)) 

for ranking.  Thus, we have the following monotonicity of 𝑓𝑆(𝑜)  with respect to subspaces. 
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Lemma 1.  For a set of objects 𝑂 and two subspaces 𝑆 and 𝑆′ satisfying 𝑆′ ⊃ 𝑆, let 𝐷𝑖 ∈

𝑆′\𝑆.  If the standard deviation of 𝑂 in 𝐷𝑖 is greater than 0, then for any object 𝑜 ∈

𝑂, 𝑓𝑆(𝑜) > 𝑓𝑆′(𝑜) . 

 

Proof.  Given 𝐷𝑖 ∈ 𝑆′\𝑆, for any object 𝑜′ ∈ 𝑂, we have 
(𝑜.𝐷𝑖−𝑜

′.𝐷𝑖)
2

2ℎ𝐷𝑖
2 ≥ 0.  Since the standard 

deviation of 𝑂 in 𝐷𝑖 is greater than 0, there exists at least one object 𝑜′′ ∈ 𝑂 such 

that 
(𝑜.𝐷𝑖−𝑜

′′.𝐷𝑖)
2

2ℎ𝐷𝑖
2 > 0; that is, 𝑒

− 
(𝑜.𝐷𝑖−𝑜

′′.𝐷𝑖)
2

2ℎ𝐷𝑖
2

< 1.   

Thus: 

𝑓𝑆(𝑜) =  ∑ 𝑒

𝑜′∈𝑂

−∑
(𝑜.𝐷𝑖−𝑜

′.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

 

                          >  ∑ 𝑒𝑜′∈𝑂

−(∑
(𝑜.𝐷𝑖−𝑜

′.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

+∑
(𝑜.𝐷𝑖−𝑜

′.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆′\𝑆

)

 

                          = 𝑓𝑆′(𝑜) 

As preprocessing, per Step 2 of Algorithm 2, OAMiner removes dimensions with 

standard deviation 0.  Consequently, the standard deviation of any dimension 𝐷𝑖 ∈ 𝑆′\𝑆 is 

greater than 0.  OAMiner sorts all dimensions in in the ascending order of 𝑟𝑎𝑛𝑘𝐷𝑖(𝑞)(𝐷𝑖 ∈

𝐷) and traverse the subspace set enumeration tree in the depth-first manner.  Given 𝑅 the 

ascending order of 𝑟𝑎𝑛𝑘𝐷𝑖(𝑞), for a subspace 𝑆 = {𝐷𝑖1 , … , 𝐷𝑖𝑚}, let 𝑅(𝑆) =

{𝐷𝑗|𝐷𝑗 is behind 𝐷𝑖𝑚  in 𝑅}.  By Lemma 1, for any subspace 𝑆′ such that 𝑆 ⊂ 𝑆′ ⊆ 𝑆 ∪ 𝑅(𝑆), 

the minimum quasi-density of 𝑞, denoted by 𝑓𝑠𝑢𝑝 (𝑆)
𝑚𝑖𝑛 (𝑞), is 𝑓𝑆∪𝑅(𝑆)(𝑞).  An object 𝑜 ∈ 𝑂 is 

called a competitor of 𝑞 in 𝑆 if 𝑓𝑆(𝑜) < 𝑓𝑠𝑢𝑝 (𝑆)
𝑚𝑖𝑛 (𝑞) and the set of 𝑞’s competitors is denoted 

by 𝐶𝑜𝑚𝑝𝑆(𝑞).  For any 𝑜 ∈ 𝐶𝑜𝑚𝑝𝑆(𝑞) by Lemma 1, we have 𝑓𝑆′(𝑜) < 𝑓𝑆(𝑜) < 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) ≤

𝑓𝑆′(𝑞).  Thus, 𝑟𝑎𝑛𝑘𝑆′(𝑜) < 𝑟𝑎𝑛𝑘𝑆′(𝑞).  Further we have the following property of 𝐶𝑜𝑚𝑝𝑆(𝑞). 

Property 3.  Given a query object 𝑞 and a subspace 𝑆, for any subspace 𝑆′ such that 𝑆 ⊂

𝑆′, 𝐶𝑜𝑚𝑝𝑆(𝑞) ⊆  𝐶𝑜𝑚𝑝𝑆′(𝑞). 
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Proof.  Since 𝑆 ⊂ 𝑆′, by Lemma 1, for any 𝑜 ∈ 𝐶𝑜𝑚𝑝𝑆(𝑞), 𝑓𝑆′(𝑜) < 𝑓𝑆(𝑜) < 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞).  

Since 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) ≤ 𝑓sup(𝑆′)

𝑚𝑖𝑛 (𝑞), we have 𝑓𝑆′(𝑜) < 𝑓𝑆(𝑜) < 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) ≤ 𝑓sup(𝑆′)

𝑚𝑖𝑛 (𝑞).  

Thus, 𝑜 ∈ 𝐶𝑜𝑚𝑝𝑆′(𝑞); that is, 𝐶𝑜𝑚𝑝𝑆(𝑞) ⊆ 𝐶𝑜𝑚𝑝𝑆′(𝑞). 

Accordingly, OAMiner performs subspace pruning based on the number of 

competitors. 

Pruning Rule 2.  When subspace 𝑆 is met in a depth-first search of the subspace 

enumeration tree, let 𝑟𝑏𝑒𝑠𝑡 be the best rank of 𝑞 in all subspaces searched so far.  If 

there are at least 𝑟𝑏𝑒𝑠𝑡 competitors of 𝑞 in 𝑆; that is, |𝐶𝑜𝑚𝑝𝑆(𝑞)| ≥ 𝑟𝑏𝑒𝑠𝑡, then all proper 

superspaces of 𝑆 can be pruned. 

When maximum dimensionality threshold of an outlying aspect 𝓁 is less than |𝑆| +

|𝑅(𝑆)|, |𝑆| < |𝑆′| ≤ 𝓁 < |𝑆| + |𝑅(𝑆)|.  It is unsuitable to use 𝑓𝑆∪𝑅(𝑆)(𝑞) as 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞).  

Intuitively, we can set 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) to min{𝑓𝑆′(𝑞)| |𝑆

′| = 𝓁, 𝑆 ⊂ 𝑆′ ⊂ 𝑆 ∪ 𝑅(𝑆)}.  However, the 

computational cost may be high since the number of candidates is (|𝑅
(𝑆)|

𝓁−|𝑆|
).  Alternatively, 

we consider a method that uses a lower bound of 𝑓𝑆′(𝑞) to compute 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) efficiently. 

For object 𝑜′, the quasi-density contribution of 𝑜′ to 𝑞 in 𝑆, denoted by 𝑓𝑆(𝑞, 𝑜′) , 

is 𝑒
−∑

(𝑜.𝐷𝑖−𝑜
′.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

.  Let 𝑅(𝑆, 𝑜′) be the set of (𝓁 − |𝑆|) dimensions in 𝑅(𝑆) with the largest 

values of 
|𝑞.𝐷𝑗−𝑜

′.𝐷𝑗|

ℎ𝐷𝑗
(𝐷𝑗 ∈ 𝑅(𝑆)).  Then, the minimum quasi-density contribution of 𝑜′ to 𝑞 

in 𝑆′ (𝑆 ⊂ 𝑆′) is 𝑓𝑆∪𝑅(𝑆,𝑜′)(𝑞, 𝑜′).  Since 𝑓𝑆′(𝑞) = ∑ 𝑓𝑆′(𝑞, 𝑜′)𝑜′∈𝑂 , we have 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞).  If we 

compared 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) with the quasi-density values of all objects in 𝑂, the computational 

cost for density estimation would be considerably high especially when the size of 𝑂 is 

large.  For efficiency, a trade-off needs to be made between subspace pruning and object 

pruning. That is, when a subspace 𝑆 is searched, once 𝑟𝑎𝑛𝑘𝑆(𝑞) > 𝑟𝑏𝑒𝑠𝑡 is determined, the 

search of 𝑆 can be terminated immediately. 

Algorithm 4 gives the pseudo code of computing outlyingness rank and pruning 

subspaces in OAMiner. 
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Algorithm 4 𝑟𝑎𝑛𝑘𝑆(𝑞) 

  Input: query object: 𝑞 ∈ 𝑂, subspace: 𝑆, the set of competitors of 𝑞 discovered in the parent subspaces of 𝑆: 

𝐶𝑜𝑚𝑝 (𝐶𝑜𝑚𝑝 is empty if |𝑆| = 1), the best rank of 𝑞 in the subspaces searched so far: 𝑟𝑏𝑒𝑠𝑡 

  Output: 𝑟𝑎𝑛𝑘𝑆(𝑞) 

   1: compute 𝑓𝑆(𝑞) using Equation (5.2.7); 

   2: 𝑟𝑎𝑛𝑘𝑆(𝑞) ← |𝐶𝑜𝑚𝑝| + 1; 

   3: for each object 𝑜 ∈ 𝑂\𝐶𝑜𝑚𝑝 do 

   4:    if 𝑓𝑆(𝑜) < 𝑓𝑆(𝑞) then 

   5:       𝑟𝑎𝑛𝑘𝑆(𝑞) ← 𝑟𝑎𝑛𝑘𝑆(𝑞) + 1;    

   6:       if 𝑓𝑆(𝑜) < 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) then 

   7:          𝐶𝑜𝑚𝑝 ← 𝐶𝑜𝑚𝑝 ∪ {𝑜};    

   8:       if |𝐶𝑜𝑚𝑝| = 𝑟𝑏𝑒𝑠𝑡  then 

   9:          prune descendants of 𝑆 and return; //Pruning Rule 2     

  10:       end if 

  11:    end if 

  12:   if 𝑟𝑎𝑛𝑘𝑆(𝑞) > 𝑟𝑏𝑒𝑠𝑡 then 

  13:      return; 

  14:   end if 

  15:  end if 

  16: end for 

  17: return 𝑟𝑎𝑛𝑘𝑆(𝑞);      

Theorem 3 guarantees that Algorithm 4 can find all minimal outlying subspaces.  

Theorem 3 (Completeness of OAMiner).  Given a set of objects 𝑂 in a multi-dimensional 

space 𝐷, a query object 𝑞 ∈ 𝑂 and a maximum dimensional threshold 0 < 𝓁 ≤ |𝐷|, 

OAMiner finds all minimal outlying subspaces of 𝑞. 

 

Proof by contradiction.  Let 𝐴𝑛𝑠 be the set of minimal outlying subspaces of 𝑞 found by 

OAMiner and 𝑟𝑏𝑒𝑠𝑡  be the best rank.  Assume that subspaces 𝑆 ∉ 𝐴𝑛𝑠 satisfying 𝑆 ⊆ 𝐷 

and 0 < |𝑆| ≤ 𝓁 is a minimal outlying subspace of 𝑞.  Since OAMiner searches 

subspaces by traversing the subspace enumeration tree in a depth-first manner 

and 𝑆 ∉ 𝐴𝑛𝑠, 𝑆 is pruned by Pruning Rule 1 or Pruning Rule 2.  If 𝑆 is pruned by Pruning 

Rule 1, 𝑆 is not minimal.  A contradiction.  If 𝑆 is pruned by Pruning Rule 2, then there 

exists a subspace 𝑆′ such that is 𝑆′ a parent of 𝑆 in the subspaces enumeration tree 

and 𝐶𝑜𝑚𝑝𝑆′(𝑞) ≥ 𝑟𝑏𝑒𝑠𝑡.  Per the property of competitors, we have 𝐶𝑜𝑚𝑝𝑆′(𝑞) ⊆
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𝐶𝑜𝑚𝑝𝑆(𝑞).  Accordingly, 𝑟𝑎𝑛𝑘𝑆(𝑞) ≥ |𝐶𝑜𝑚𝑝𝑆(𝑞)| ≥ |𝐶𝑜𝑚𝑝𝑆′(𝑞)| ≥ 𝑟𝑏𝑒𝑠𝑡.  A 

contradiction. 

5.2.3. Empirical Evaluation 

In this section, we present a systematic empirical study using several real data 

sets as well as synthetic data sets to verify the effectiveness and efficiency of OAMiner.  

All experiments were conducted on a PC with Intel Core i7-3770 3.40 GHz CPU and 8GB 

RAM, running Windows 7 operating system.  All algorithms were implemented in Java and 

compiled with JDK 7.  Since it is hard to comprehend the meaning of subspaces with 

dimensionality over 5, defaults were set to 𝓁 = 5, 𝛼 = 1.0. 

Effectiveness 

Mining Outlying Aspects with Synthetic Data Sets 

Keller et al. (2012) provided a collection of synthetic data sets, each set consisting 

of 1,000 data objects.  Each data set contains some subspace outliers which deviate from 

all clusters in at least one 2-5 dimensional subspaces.  As observed by Keller et al. (2012), 

an object can be an outlier in multiple subspaces independently.  We performed our tests 

on the data sets of 10, 20, 30, 40, and 50 dimensions denoted by 𝑆𝑦𝑛𝑡ℎ_10𝐷, 𝑆𝑦𝑛𝑡ℎ_20𝐷, 

𝑆𝑦𝑛𝑡ℎ_30𝐷, 𝑆𝑦𝑛𝑡ℎ_40𝐷, and 𝑆𝑦𝑛𝑡ℎ_50𝐷 respectively. 

For an outlier 𝑞 in a data set, let 𝑆 be the ground truth outlying subspace of 𝑞.  Note 

that 𝑆 may not be an outlying aspect of 𝑞 if there exists another outlier more outlying than 𝑞 

in 𝑆 since OAMiner finds the subspaces in which the query object is most outlying.  To 

verify the effectiveness of OAMiner, using the known ground truth outlying subspaces with 

multiple implanted outliers in 𝑆, we select one outlier as a query object 𝑞 at a time and 

remove the other outliers, and repeat this process for each implanted outlier.  Since 𝑞 is 

the only implanted outlier in subspace 𝑆, OAMiner is expected find the ground truth outlying 

subspace 𝑆 where 𝑞 takes rank 1 in outlyingness; that is, 𝑟𝑎𝑛𝑘𝑆(𝑞) = 1.  We divide the 

mining results of OAMiner into the following 3 cases: 

Case 1: only the ground truth outlying subspace is discovered by OAMiner with 

outlyingness rank 1. 
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Case 2: in addition to the ground truth outlying subspace, OAMiner finds other outlying 

aspects with outlyingness rank 1. 

Case 3: instead of the ground truth outlying subspace, OAMiner finds a subset of the 

ground truth as an outlying aspect with outlyingness rank 1. 

Mining results for 𝑆𝑦𝑛𝑡ℎ_10𝐷 are shown in Table 25.  Results use the same object 

ID’s and dimension ID’s as in the original data set in the work of Keller et al. (2012). 

Table 25 Outlying Aspects with 𝑺𝒚𝒏𝒕𝒉_𝟏𝟎𝑫 

Query 
Object 

Ground Truth Outlying 
Subspace 

Outlying Aspect with 
Outlyingness Rank 1 

Case 

172 {8,9} {8,9} 1 

183 {0,1} {0,1}, {0,6,8} 2 

184 {6,7} {6,7} 1 

207 {0,1} {0,1} 1 

220 {2,3,4,5} {2,3,4,5} 1 

245 {2,3,4,5} {2,5} 3 

315 {0,1},{6,7} {0,1}, {6,7}, {3,4}, {3,5,9}, {4,6,9} 2 

323 {8,9} {8,9} 1 

477 {0,1} {0,1} 1 

510 {0,1} {0,1} 1 

577 {2,3,4,5} {2,3,4,5}, {0,3,7} 2 

654 {2,3,4,5} {2,3,4,5} 1 

704 {8,9} {8,9}, {0,2,3,4} 2 

723 {2,3,4,5} {2,3,4,5} 1 

754 {6,7} {6,7}, {2,4,8}, {2,6,8}, {4,6,8} 2 

765 {6,7} {6,7}, {1,4,6}, {3,4,5,6} 2 

781 {6,7} {6,7} 1 

824 {8,9} {8,9} 1 

975 {8,9} {8,9}, {2,5,9}, {5,6,8}, {2,3,5,8} 2 

For all outliers used as query objects, outlying aspects with outlyingness rank 1 

were identified.  Also, for objects 183, 315, 577, 704, 754, 765 and 975, OAMiner found 

not only the ground truth outlying subspaces but also other outlying subspaces (Case 2).  

For object 245, the outlying aspect discovered by OAMiner is a subset of the ground truth 

outlying subspace (Case 3).  For the other 11 objects, the outlying aspects identified by 

OAMiner are identical to the ground truth subspaces (Case 1). 

Table 26 summarizes the mining results for all of 𝑆𝑦𝑛𝑡ℎ_10𝐷, 𝑆𝑦𝑛𝑡ℎ_20𝐷, 

𝑆𝑦𝑛𝑡ℎ_30𝐷, 𝑆𝑦𝑛𝑡ℎ_40𝐷, and 𝑆𝑦𝑛𝑡ℎ_50𝐷. 
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Table 26 Statistics on the mining results of OAMiner 

Data Set # of Outliers # of Case 1 # of Case 2 # of Case 3 

𝑆𝑦𝑛𝑡ℎ_10𝐷 19 11 7 1 

𝑆𝑦𝑛𝑡ℎ_20𝐷 25 1 23 1 

𝑆𝑦𝑛𝑡ℎ_30𝐷 44 0 40 4 

𝑆𝑦𝑛𝑡ℎ_40𝐷 53 0 52 1 

𝑆𝑦𝑛𝑡ℎ_50𝐷 68 0 65 3 

The number of Case 2 instances increases with higher dimensionality which 

indicates that more outlying aspects can be found when more attributes of data are in 

scope for search, which is consistent with the experimental observations with the real data 

sets shown later. 

To further illustrate the effectiveness of OAMiner, Figure 36 shows how visually 

object 245 (Case 2) stands out, likewise, Figure 37 object 315 (Case 3). 

 

Figure 36 Outlying aspect of object 245 (𝑺𝒚𝒏𝒕𝒉_𝟏𝟎𝑫) 
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Figure 37 Outlying aspect of object 315 (𝑺𝒚𝒏𝒕𝒉_𝟏𝟎𝑫) 

Mining Outlying Aspects with Real Data Sets 

We use the same UCI data set (Bache et al., 2013) in section 5.1.4 for measuring 

the effectiveness of OAMiner.  Again non-numerical attributes and all records that are 

missing values were removed from the data sets.  Data set statistics is shown in Table 27. 

Table 27 UCI data set characteristics 

Data Set 
# of 

Objects 
# of 

Attributes 

Breast Cancer 194 33 

Climate Model 540 18 

Concrete Slump 103 10 

Parkinson’s 195 22 

Wine 178 13 

Figure 38 shows the distributions of the best outlyingness ranks for the UCI data 

set.  The best rank values are small for most objects, meaning most objects are ranked 

well in some subspaces. 
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Figure 38 Distribution of outlyingness ranks: UCI (𝓵 = 𝟓) 

Figure 39 shows the distributions of the number of minimal outlying subspaces 

where the objects achieve the best outlyingness ranks (i.e. outlying aspects).  For most 

objects, the number of outlying aspects is small, indicating that most objects can be 

distinguished from others by a small number of factors. 

                  Parkinson’s                                                     Wine                       

                   Breast Cancer                                     Climate Model                                      Concrete Slump 
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Figure 39 Distribution of # of outlying aspects: UCI (𝓵 = 𝟓) 

Table 28 exhibits the mining results of OAMiner when 𝓁 = 4, 5, 6.  As the value of 𝓁 

increases, the average outlyingness rank decreases while the average number of outlying 

aspects as well as the average dimensionality increases.  It can be observed that more 

outlying aspects can be found as the number of attributes and the objects increases; for 

example, the average number of outlying aspects found for the breast cancer data is the 

largest. 

 

 

 

 

 

                   Breast Cancer                                     Climate Model                                      Concrete Slump 

                  Parkinson’s                                                     Wine                       
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Table 28 Sensitivity of OAMiner effectiveness with respect to 𝓁 (UCI) 

Data set 𝓵 
Outlyingness Rank # of Outlying Aspects Dimensionality 

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. 

Breast 
Cancer 

4 
5 
6 

1 
1 
1 

70 
62 
56 

8.04 
7.74 
7.57 

1 
1 
1 

232 
2,478 

11,681 

9.57 
43.37 

243.10 

1 
1 
1 

4 
5 
6 

3.47 
4.67 
5.77 

Climate 
Model 

4 
5 
6 

1 
1 
1 

33 
15 
15 

1.97 
1.45 
1.28 

1 
1 
1 

30 
78 

149 

4.57 
10.18 
16.97 

1 
1 
1 

4 
5 
6 

3.65 
4.43 
5.07 

Concrete 
Slump 

4 
5 
6 

1 
1 
1 

27 
24 
24 

4.67 
4.44 
4.41 

1 
1 
1 

8 
8 
8 

1.56 
1.64 
1.65 

1 
1 
1 

4 
5 
6 

2.38 
2.59 
2.66 

Parkinson’s 
4 
5 
6 

1 
1 
1 

74 
74 
74 

12.13 
11.51 
11.33 

1 
1 
1 

156 
400 
889 

4.20 
7.63 

14.30 

1 
1 
1 

4 
5 
6 

3.25 
4.09 
5.01 

Wine 
4 
5 
6 

1 
1 
1 

37 
37 
37 

7.65 
7.47 
7.46 

1 
1 
1 

26 
26 
26 

1.49 
1.59 
1.66 

1 
1 
1 

4 
5 
6 

2.66 
2.96 
3.09 

Mining Outlying Aspects with NBA Data Sets 

To evaluate the usefulness of outlying aspect mining, we analyze outlying aspects 

of some NBA players in detail.  We first investigate the outlying aspects of all NBA guards, 

forwards and centres in the 2012-2013 Season.  The technical statistics for 20 numerical 

attributes were collected from http://sports.yahoo.com/nba/stats/.  Table 29 lists the 

names of dimensions and Table 30 the data set characteristics.  The data for centres for 

3-Points are removed since the statistics for most centres are 0. 

Table 29 NBA 20 data dimensions 

1: Game played 6: 3-Points (M) 11: Free throw (Pct) 16: Turnover 

2: Minutes 7: 3-Points (A) 12: Rebounds (Off) 17: Steal 

3: Field goal (M) 8: 3-Points (Pct) 13: Rebounds (Def) 18: Block 

4: Field goal (A) 9: Free throw (M) 14: Rebounds (Tot) 19: Personal foul 

5: Field goal (Pct) 10: Free throw (A) 15: Assist 20: Points/game 

Table 30 NBA data set characteristics 

Data set 
# of 

Objects 
# of 

Attributes 

Guards 220 20 

Forwards 160 20 

Centres 46 17 

http://sports.yahoo.com/nba/stats/
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Figure 40 shows the distributions of the best outlyingness ranks for the NBA data 

set.  Consistent with the UCI data set findings, the best rank values are small for most 

objects; for example, 90 guards (40.9%), 81 forwards (50.6%) and 32 centres (69.6%) 

have an outlying rank of 5 or better (i.e. smaller rank values).  This means most players 

have some subspaces where they are substantially different from the others; justifying the 

need for outlying aspect mining. 

 

Figure 40 Distributions of outlyingness ranks: NBA (𝓵 = 𝟓) 

Figure 41 shows the distributions of the number of outlying aspects.  Again, 

consistent with the UCI data set results, for most objects, the number of outlying aspects 

is small.  For example, 150 (68.2%) guards have only 1 outlying aspect.  

 

Figure 41 Distribution of # of outlying aspects: NBA (𝓵 = 𝟓) 

Table 31 exhibits the mining results of OAMiner when 𝓁 = 4, 5, 6.  Similar to the 

observations made with the UCI data set, the average number of outlying aspects and the 

average dimensionality increases along with the value of 𝓁, whereas the average 

                         Guards                                                 Forwards                                                Centres                       

                         Guards                                                 Forwards                                                Centres                       



 

119 

outlyingness rank decreases.  This observation is coherent with the well-known fact that 

probability density tends to be low in subspaces of higher dimensionality since such 

subspaces often have a larger volume and thus sparser. 

Table 31 Sensitivity of OAMiner effectiveness with respect to 𝓁 (NBA) 

Data set 𝓵 
Outlyingness Rank 

# of Outlying 
Aspects 

Dimensionality 

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. 

Guards 
4 
5 
6 

1 
1 
1 

72 
72 
72 

13.94 
13.70 
13.50 

1 
1 
1 

49 
111 
359 

2.02 
3.05 
5.67 

1 
1 
1 

4 
5 
6 

2.79 
3.68 
4.83 

Forwards 
4 
5 
6 

1 
1 
1 

48 
47 
46 

8.79 
8.54 
8.43 

1 
1 
1 

40 
41 
71 

2.24 
2.37 
2.98 

1 
1 
1 

4 
5 
6 

2.77 
3.13 
3.77 

Centres 
4 
5 
6 

1 
1 
1 

13 
13 
13 

3.70 
3.57 
3.54 

1 
1 
1 

15 
15 
18 

3.28 
3.65 
3.61 

1 
1 
1 

4 
5 
6 

2.74 
3.08 
3.23 

A player receives a good outlyingness rank (i.e. a small rank value) in a subspace 

if very few other players are close to him.  Table 32 lists 10 guards who have the largest 

number of rank 1 outlying aspects where 𝓁 = 3.  Dimensions in Table 32 corresponds to 

the serial numbers in Table 29.  Two types of reasoning can be made as to why certain 

objects stand out in some subspaces.  One is there are not enough comparable statistics 

for the objects in any subspace; another is there are enough statistics and these objects 

are truly unique by the characteristics these subspaces represent. 

Table 32 Guards with most rank 1 outlying aspects 

Name Outlying Aspect (𝓵 = 𝟑) 

Quentin Richardson 
{1},  {12}, {14}, {2,17}, {3,4}, {3,13}, {4,17}, {5,8}, {5,11}, 
{5,13}, {13,17}, {13,20}, {2,3,16}, {2,4,5}, {2,5,6}, {2,5,7}, 
{2,5,9}, {4,5,7} 

Will Conroy 
{2,5}, {5,8}, {5,11}, {5,12}, {5,13}, {5,14}, {5,16}, {4,5,6}, 
{4,5,9}, {4,5,10}, {4,5,7}, {4,5,19}, {5,6,7}, {5,7,9} 

Brandon Rush {5},  {1,19}, {2,19}, {17,19} 

Ricky Rubio {3,17}, {7,17}, {16,17}, {17,20} 

Rajon Rondo {15}, {16}, {1,17}, {1,2,20} 

Scott Machado {19}, {2,16}, {5,8,18} 

Kobe Bryant {3}, {4}, {20} 

Jamal Crawford {19,20}, {4,19}, {2,3,19} 

James Harden {9}, {10} 

Stephen Curry {6}, {7} 
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The first several players in Table 32 are not well known and their outlyingness 

ranks are due to the fact that no other players have similar statistics.  For example: 

 Quentin Richardson played only one game during which he did well at rebounds 

but poorly at field goal; 

 Will Conroy played four games and his performance for shooting was poor; 

 Brandon Rush played two games and his number of personal fouls is large; 

 Ricky Rubio performed well at stealing; 

 Rajon Rondo assisted well but his statistics for turnover is large; 

 Scott Machado played 6 games and did not make any personal fouls. 

The remaining 4 players are famous and their overall performance in every aspect 

is much better than most other guards.  For example: 

 Kobe Bryant excels at scoring; 

 Jamal Crawford has very low personal fouls; 

 James Harden excels at free throw; 

 Stephen Curry leads in 3-points scoring. 

Table 33 lists guards who were not ranked well in any subspace; in other words, 

they do not stand out in any particular subspace. 

Table 33 Guards with poor ranks in outlying aspects 

Outlyingness 
Rank 

Nam 
Outlying Aspect 

72 Terence Rose {11} 

70 E’Twaun Moore {18} 

69 C.J. Watson {8,12,13,14,18} 

61 Jerryd Bayless {2,3,4,19,20} 

58 Nando De Colo {1,2}, {3,4,5,11,20} 

56 Alec Burks {2,9,10,11} 

55 
Rodrigue 
Beaubois 

{1,2,8,11,15} 

52 Marco Belinelli {9,10,12} 

49 Aaron Brooks {2,3,5,7,16} 

48 Nick Young {1,3,16,18,20} 

Although subspace outlier detection is fundamentally different from outlying aspect 

mining, the results of subspace outlier ranking can be utilized to verify the discovered 
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outlying aspects.  Specifically, we take the objects that are ranked the best by either HiCS 

(Keller et al., 2012) or SOD (Kriegel et al., 200) and determine their outlyingness ranks for 

comparison. 

Since HiCS randomly selects subspace slices, we ran it 3 times independently on 

each data set with the default parameters.  The parameter for the number of nearest 

neighbours in both HiCS and SOD was varied across 5, 10 and 20, and the best ranks were 

reported.   In SOD, the parameter 𝑙 which specifies the size of the reference sets cannot 

be larger than the number of nearest neighbours, as such, we set it to the number of 

nearest neighbours for our experimentation. 

Table 34 shows the results.  𝑟𝑎𝑛𝑘𝐻𝐿 means the ranks computed by HiCS, 𝑟𝑎𝑛𝑘𝑆𝑂𝐷 

the ranks computed by SOD and 𝑟𝑎𝑛𝑘𝑆 the outlyingness rank computed by OAMiner. 

Table 34 Comparison of 𝒓𝒂𝒏𝒌𝑯𝑳, 𝒓𝒂𝒏𝒌𝑺𝑶𝑫, 𝒓𝒂𝒏𝒌𝑺 

Position Name 
𝒓𝒂𝒏𝒌𝑯𝑳 𝒓𝒂𝒏𝒌𝑺𝑶𝑫 𝒓𝒂𝒏𝒌𝑺 (# of Outlying 

Aspects) 

Guard 

Quentin 
Richardson 
Kobe Bryant 
Brandon Ray 

1 
1 

32 

1 
9 
1 

1(54) 
1(3) 
1(4) 

Forward 
Carmelo Anthony 

Kevin Love 
1 
3 

5 
1 

1(26) 
1(41) 

Centre 
Dwight Howard 
Andrew Bogut 

1 
10 

2 
1 

1(15) 
1(9) 

The results show that every player ranked top with either HiCS or SOD has some 

outlying aspects where he is ranked number 1.  The rankings produced by OAMiner match 

those either by HiCS or SOD, although the results by HiCS and SOD are not consistent with 

each other except for Quentin Richardson. 

Efficiency 

Once again, to the best of our knowledge, there is no previous method addressing 

the efficiency of the same mining problem.  As such, we will evaluate the efficiency of 

OAMiner and its variations; that is, comparisons amongst baseline (Algorithm 1 with 

Pruning Rule 1), OAMiner-𝑝𝑎𝑟𝑡 (the version that does not use bounds), and OAMiner-𝑓𝑢𝑙𝑙 

(the version that uses all techniques). 
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The same synthetic data set provided by Keller et al. (2012) was used.  The set 

consists of 1,000 data objects and the dimensionality is 50.  10 data points (non-outliers) 

were randomly chosen as query objects and the average runtime was reported.  For all 3 

variations, 𝓁 = 5 and for OAMiner-𝑓𝑢𝑙𝑙, 𝛼 = 1.0. 

Figure 42 shows the runtime (on logarithm scale) with respect to data set size.  As 

expected, the baseline method is time consuming.  The pruning techniques can achieve 

a roughly linear runtime; both 𝑝𝑎𝑟𝑡 and 𝑓𝑢𝑙𝑙 versions of OAMiner are substantially faster 

than the baseline and 𝑓𝑢𝑙𝑙 is more efficient than 𝑝𝑎𝑟𝑡. 

 

Figure 42 Runtime with respect to Data Set Size 

Figure 43 shows the runtime (on logarithm scale) with respect to dimensionality.  

As expected, as the dimensionality increases, the runtime increases exponentially.  The 

pruning techniques can achieve a roughly linear runtime; both 𝑝𝑎𝑟𝑡 and 𝑓𝑢𝑙𝑙 versions of 

OAMiner are substantially faster than the baseline and 𝑓𝑢𝑙𝑙 is more efficient than 𝑝𝑎𝑟𝑡. 
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Figure 43 Runtime with respect to Dimensionality 

Figure 44 shows the runtime (on logarithm scale) with respect to maximum 

dimensionality threshold (𝓁).  As the value of 𝓁 increases, the more subspaces are 

enumerated and thus the runtime increases.  The pruning techniques can achieve a 

roughly linear runtime in practice; both 𝑝𝑎𝑟𝑡 and 𝑓𝑢𝑙𝑙 versions of OAMiner are substantially 

faster than the baseline and 𝑓𝑢𝑙𝑙 is more efficient than 𝑝𝑎𝑟𝑡. 

 

Figure 44 Runtime with respect to 𝓁 

Using the real data sets (both UCI and NBA), the efficiency of OAMiner has been 

tested against the outlyingness of the query object.  Figure 45 shows the runtime with 
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respect to outlyingness rank of the query object. The runtime is proportional to the 

outlyingness rank of the query object. 

 

Figure 45 Runtime with respect to Outlyingness Rank 

Not surprisingly, the objects with large outlyingness rank cost more runtime since 

OAMiner prunes subspaces based on the rank of the query object by means of either 

Pruning Rule 1 or Pruning Rule 2. 

                      Breast Cancer (UCI)                        Climate Model (UCI)                             Concreate Slump (UCI)                      

               Parkinson’s (UCI)                                          Wine (UCI)  

                    Guards (NBA)                                     Forwards (NBA)                                         Centres (NBA)     
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Finally, the sensitivity of the parameter 𝛼 for bounding quasi-density has been 

tested with varying values of 𝛼.  The value of 𝛼 sets the 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 distance.  Table 

35 lists the average runtime of OAMiner for each data set. 

Table 35 Average Runtime of OAMiner with respect to 𝜶 

Data Set 
Average Runtime (second) 

𝛼 = 0.6 𝛼 = 0.8 𝛼 = 1.0 𝛼 = 1.2 𝛼 = 1.4 

Guards 4.459 4.234 4.213 4.303 4.315 

Forwards 2.810 2.519 2.424 2.418 2.413 

Centres 0.260 0.234 0.216 0.212 0.220 

Breast Cancer 58.476 58.228 57.927 57.613 57.982 

Climate Model 6.334 6.268 6.339 6.253 6.410 

Concrete Slump 0.047 0.044 0.044 0.045 0.045 

Parkinson’s 6.164 6.154 6.083 6.218 6.243 

Wine 0.351 0.341 0.339 0.344 0.350 

The runtime of OAMiner is not sensitive to 𝛼 in general.  Experimentally, the 

shortest runtime of OAMiner is achieved when 𝛼 is in [0.8,1.2]. 
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Conclusion 

In this thesis, we explored a multitude of techniques applicable to multidimensional 

benchmarking. 

Benchmarking is an important business practice which sets organizations’ 

performance improvement targets by comparing them to others and identifying areas 

where the performance gaps exist.  While in practice many organizations limit their 

benchmarking scope to the numerical quantification of performance gaps (e.g. company 

A’s service level is 15% below the benchmark), it is well recognized that quantitative 

benchmarking alone does not help organizations actually achieve performance 

improvement.  In order to improve performance, organizations need to understand the key 

drivers for the gaps.  Why then do organizations not take more qualitative approach?  It is 

because, in the author’s opinion, qualitative measures are difficult to model.  In this thesis, 

we claimed that multidimensional analysis approach can be used as a step towards more 

qualitative benchmarking. 

Existing multidimensional benchmarking methods build upon economic efficiency 

analysis, such as, frontier models which estimate the ability of a producer to produce 

maximum output from a given set of inputs.  Chapter 2 presented two representative 

methods of the model; stochastic frontier production function and data envelopment 

analysis.  The chapter also briefly touched on non-systematic proprietary approach 

including Gartner Magic Quadrant and Forrester Wave. 

Despite that the main concern of multidimensional benchmarking is to consider 

multiple dimensions simultaneously, to the best of the author’s knowledge, there are no 

notable techniques in the industry which take advantage of data warehouses (i.e. 

multidimensional databases) and associated computational algorithms.  The key ideas 

presented in this thesis aim to expand the scope of multidimensional benchmarking by 

leveraging data warehousing and business intelligence, outlier detection in data 

warehouses, and subspace analysis: 
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 Identifying significant benchmarks efficiently in data warehouses (Chapter 3). 

Rather than comparing organizations to “any” population, it is more 

meaningful to compare them to the population that renders the largest 

performance gap (i.e. a significant benchmark).  Finding significant benchmarks 

only without looking at everything in the data warehouse that constitutes a 

population requires an efficient computational approach.  We developed 2 efficient 

methods: SIIC/SIICP and DAM.  DAM outperforms SIIC/SIICP because it only 

stores and searches the dominant answers in the quotient groups. 

 Detecting outliers in data warehouses as a basis for multidimensional 

benchmarking (Chapter 4). 

When organizations conduct benchmarking, they are mainly concerned 

with identifying areas for performance improvement; that is, areas where their 

performance is out of the norm.  To this end, we claim that finding outliers in a data 

warehouse lends itself to viable multidimensional benchmarking.   By employing 

outlier detection techniques, we find what drives organizations to deviate from the 

norm (i.e. benchmarks).  We defined two types of outliers: type-I (organization is 

an outlier because a small number of underlying units are outliers) and type-II (a 

majority of them are outliers).  Since this it is to look into the makeup of self, we 

referred to the technique developed in this chapter as “reflective benchmarking”. 

 Identifying contexts in which organizations are significant outliers (Chapter 5). 

In this last chapter, we draw our attention to defining the contexts (or 

subspaces) in which organizations perform most exceptionally (positively or 

negatively), the primary benefit of multidimensional benchmarking for presenting 

key drivers for performance gaps.  We defined two types of subspaces: contrast 

subspace and outlying aspect.  A contrast subspace is a subspace in which an 

organization is most similar to a group of organizations while it is most different 

from another group.  This is essentially a model selection problem where one of 

the two models must be selected on the basis of observed data.  Outlying aspect 

is a subspace where an organization outlies most.  To identify outlying aspects, 

we used rank statistics to compare different subspaces. 
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While multidimensional benchmarking for computational performance efficiency 

(i.e. CPU, I/O bandwidth, etc.) is well defined and research materials abundantly available, 

the counterpart in business performance management somewhat lacks in rigor in 

definitions and systematic methods.  This thesis attempted to provide technical definitions 

along with more objective and methodical approach to multidimensional benchmarking in 

the business setting.  The thesis focused on establishing technical foundation for 

multidimensional benchmarking and demonstrating the effectiveness and the efficiency of 

the techniques devised.  These techniques can be applied to a variety of benchmarking 

scenarios to supplement quantitative benchmarking.  Once numerical performance gaps 

are shown through quantitative benchmarking, the techniques proposed in this thesis can 

be employed as a next step to identify factors that are driving the gaps or contexts in which 

the gaps are most significant.  These factors or contexts will then become the focal areas 

in which improvement programs can be created to boost performance.  Primary 

contributions made in the thesis are: 

1. Modeling 

We have claimed that organizations do not conduct qualitative benchmarking because 
qualitative measures are difficult to model because measures cannot be single 
numerical values.  To this end, we technically modelled qualitative measures including 
significant benchmarks, reflection, contrast subspace, and outlying aspect. 

2. Computational Efficiency 

When multiple dimensions are incorporated into analysis, computational efficiency 
needs to be a consideration due to the well known curse of dimensionality.  The time 
complexity tends to be np-hard.  We devised practical heuristics using bounding, 
pruning, and refining methods.  Through experimental results, we showed that our 
methods are effective and efficient. 

3. Application Impact 

If some of the ideas proposed in this thesis are commercialized in a form of a business 
application, organizations can conduct qualitative benchmarking in a systematic and 
objective manner.  To the best of the author’s knowledge, there is no such application 
in business today.  In view of the fact that benchmarking is so common, such an 
application can make a significant impact on business. 
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6.1. Future Directions 

Business intelligence applications, such as, multidimensional benchmarking 

analysis should be interactive by providing summary, drill-down and what-if scenario 

capabilities.  Such applications should take user feedback intelligently, allowing ad-hoc 

inputs, and enable users to navigate and analyze data, memorizing insights to allow 

informed decision making.  In chapter 3, we defined a benchmark query whereby the 

performance of a query object with selected properties (i.e. 𝑈𝐼𝐷 attributes) can be 

compared to the performance of others with the same properties in certain aspects (i.e. 

combinations of 𝐷𝐼𝑀 attributes).  If the application is to become interactive, the ability to 

change query properties and aspects on the fly needs to be considered.  This type of user 

interaction can be enabled by allowing benchmark queries at different levels of 

aggregation hierarchy and reusing the assets already built for techniques, such as, DAM 

and SIIC.  For example, a query object’s properties may be age-group and gender (e.g. 

young males) initially but the user later on wishes to see what the performance gap may 

look like if he/she removed age-group from the properties such that the query object is 

now all males.  Since the aggregate group, all males, is an ancestor of the aggregate 

group, young males, DAM can still answer this revised benchmark query efficiently without 

re-materializing or re-indexing.  This applies to other scenarios where attributes are 

removed from or added to properties (𝑈𝐼𝐷) and/or aspects (𝐷𝐼𝑀). 

To support what-if scenarios, data mining techniques should be incorporated such 

that queries, such as, “If we enhanced the education levels of my young male staff, how 

much sales volume increase can we expect?” can be answered.  

Finally, in the author’s opinion, among the most significant challenges for 

multidimensional benchmarking is the intuitive representation of query results.  If the 

techniques developed in this thesis were to be adopted as a common practice in business, 

the results must be easily understandable.  To this end, an effective data visualization 

approach should be considered with the goal to analyze vast amounts of multidimensional 

data to visually distill the most valuable and relevant information content. The visual 

representation should reveal relevant data properties for easy perception by the analyst.  

An appropriate user interface should be developed such that analysts can focus on tasks 
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at hand, as such, the interfaces should not be overly technical or complex. Visually 

representing multidimensional data on a 2-dimensional plane is a challenge.  Existing 

multidimensional data representations tend to be somewhat technical requiring users to 

have some statistics background.  To address this, interaction techniques which support 

seamless and intuitive visual communication between the users and the system should 

be developed. 
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