
Multidimensional Benchmarking

by

Akiko Campbell

P.B.D, Simon Fraser University, 1999
B.A., Keio University, 1987

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Science

 Akiko Campbell 2016

SIMON FRASER UNIVERSITY

Spring 2016

ii

Approval

Name: Akiko Campbell

Degree: Doctor of Philosophy

Title: Multidimensional Benchmarking

Examining Committee: Chair: Dr. Jiannan Wang
Assistant Professor

Dr. Jian Pei
Senior Supervisor
Professor

Dr. Uwe Gl�̈�sser
Supervisor
Professor

Dr. Fred Popowich
Internal Examiner
Professor
School of Computing Science

Dr. Hui Xiong
External Examiner
Professor
Management Science and Information
Systems
Rutgers, the State University of New
Jersey

Date Defended/Approved: March 14, 2016

iii

Abstract

Benchmarking is a process of comparison between performance characteristics of

separate, often competing organizations intended to enable each participant to improve

its own performance in the marketplace (Kay, 2007). Benchmarking sets organizations’

performance standards based on what “others” are achieving. Most widely adopted

approaches are quantitative and reveal numerical performance gaps where

organizations lag behind benchmarks; however, quantitative benchmarking on its own

rarely yields actionable insights. It is important for organizations to understand key

drivers for performance gaps such that they can develop programs for improvement

around them. In this thesis, we develop a multidimensional analysis approach to

benchmarking to characterise the properties of key drivers as a step towards

“qualitative” benchmarking. Specifically, our approach systematically identifies

significant benchmarks, compares organizations in statistical manners, and reveals the

most manifesting aspects of uniqueness of an organization of interest. We also evaluate

our algorithmic development using systematic empirical studies and show that our

methods are effective and efficient.

Keywords: benchmarking, key drivers, multidimensional analysis, business
intelligence, industry applications

iv

Dedication

To my extended family for their continued encouragement.

v

Acknowledgements

I would like to thank my supervisory committee that supported my desire to work on

industry oriented topics and provided direction for my thesis. Most importantly, I would

like to express my utmost gratitude to Professor Pei for his tireless effort in guiding me to

the path which led to the completion of this thesis. Finally, I would like to thank Guanting

Tang and Xiango Mao for their assistance and collaboration in authoring important

components in chapters 3 and 5 of the thesis.

vi

Table of Contents

Approval .. ii
Abstract .. iii
Dedication .. iv
Acknowledgements ... v
Table of Contents ... vi
List of Tables .. ix
List of Figures... xi

Introduction .. 1
1.1. Motivation ... 1
1.2. Problem Statement ... 2
1.3. Structure of Thesis ... 4

Related Work .. 5
2.1. Benchmarking .. 5

2.1.1. Definitions .. 6
2.1.2. Types of benchmarking ... 7

Strategic Benchmarking ... 7
Performance Benchmarking .. 8
Process Benchmarking .. 8

2.1.3. Techniques for benchmarking .. 8
Internal Benchmarking ... 8
External Benchmarking .. 8

2.1.4. Benchmarking methods ... 9
Frontier Models .. 9

Stochastic Frontier Production Function ... 10
Data Envelopment Analysis (DEA) .. 11
Frontier Analysis Case Study .. 12

Other Models .. 14
2.2. Data Warehouse and Online Analytical Processing (OLAP) 17
2.3. Outlier Detection ... 20
2.4. Subspace Analysis ... 21

Benchmarks in Data Warehouses ... 24
3.1. Preliminaries ... 24
3.2. Benchmark Queries .. 26
3.3. Sorted Inverted Index Cube (SIIC) Method ... 29

3.3.1. Inverted Index for Fast Search ... 30
3.3.2. Pruning .. 32

3.4. Dominant Answer Materialization (DAM) Method .. 34
3.4.1. Search Scope of Ancestors ... 34
3.4.2. Search Scope of Descendants .. 36

3.5. Empirical Evaluation ... 37
3.5.1. Data Sets and Experiment Settings ... 37

vii

3.5.2. Reduction of Aggregate Cells Computed and Indexed 38
3.5.3. Runtime and Memory Usage ... 41
3.5.4. Scalability .. 43

Reflective Benchmarking .. 44
4.1. Preliminaries ... 44
4.2. Outlier Types .. 47
4.3. Detection Methods .. 50

4.3.1. Outlier Detection by Iceberg Cubing .. 50
4.3.2. Outlier Type Determination .. 50

4.4. Empirical Evaluation ... 52
4.4.1. Case Study .. 52
4.4.2. Efficiency and Scalability ... 54

Subspace Analysis .. 59
5.1. Contrast Subspace ... 59

5.1.1. Measure of Similarity ... 60
Problem Definition .. 60

5.1.2. Complexity Analysis .. 63
5.1.3. Mining Methods ... 67

Baseline Method .. 67
CSMiner Framework ... 68
A Bounding-Pruning-Refining Method ... 71

5.1.4. Empirical Evaluation .. 77
Effectiveness .. 77
Efficiency .. 81
Sensitivity to the Bandwidth ... 84
Comparison with Epanechnikov Kernel ... 87

5.2. Outlying Aspects ... 90
5.2.1. Rank Statistics ... 91

Problem Definition .. 91
5.2.2. Mining Methods ... 95

Baseline Method .. 95
OAMiner Framework .. 96
A Bounding-Pruning-Refining Method ... 98

Bounding Probability Density ... 98
Efficiently Estimating Density Bounds ... 106
Subspace Pruning ... 107

5.2.3. Empirical Evaluation .. 111
Effectiveness .. 111

Mining Outlying Aspects with Synthetic Data Sets .. 111
Mining Outlying Aspects with Real Data Sets ... 114
Mining Outlying Aspects with NBA Data Sets ... 117

Efficiency .. 121

Conclusion ... 126
6.1. Future Directions .. 129

viii

References .. 131

ix

List of Tables

Table 1 Benchmarking Definitions ... 7

Table 2 Sales Representatives of an Organization .. 28

Table 3 TPC-H: number of computed and indexed cells (5 𝑫𝑰𝑴 dimensions) 38

Table 4 Weather: number of computed and indexed cells (5 𝑫𝑰𝑴 dimensions) 39

Table 5 TPC-H: number of computed and indexed cells (10 𝑼𝑰𝑫 dimensions) 40

Table 6 Weather: number of computed and indexed cells (5 𝑼𝑰𝑫 dimensions) 40

Table 7 Example Performance Gap Outliers ... 53

Table 8 Base level Performance Gaps of 𝑹𝟏 ... 53

Table 9 Base level Performance Gaps of 𝑹𝟐 ... 53

Table 10 EP Complete-CS reduction example ... 64

Table 11 Data Set Characteristics ... 77

Table 12 Distribution of 𝑳𝑪𝑺(𝒒) in BCW (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) ... 78

Table 13 Distribution of 𝑳𝑪𝑺(𝒒) in CMSC (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) .. 78

Table 14 Distribution of 𝑳𝑪𝑺(𝒒) in Glass (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) ... 79

Table 15 Distribution of 𝑳𝑪𝑺(𝒒) in PID (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) ... 79

Table 16 Distribution of 𝑳𝑪𝑺(𝒒) in Waveform (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) 79

Table 17 Distribution of 𝑳𝑪𝑺(𝒒) in Wine (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏) ... 79

Table 18 Average runtime of CSMiner-BPR with 𝜶 (𝒌 = 𝟏𝟎, 𝜹 = 𝟎. 𝟎𝟏) 83

Table 19 Similarity between top-10 inlying contrast subspaces using different

kernel functions in data set 𝑶 (𝜹 = 𝟎. 𝟎𝟎𝟏) ... 89

Table 20 Similarity between top-10 outlying contrast subspaces using different

kernel functions in data set 𝑶 (𝜹 = 𝟎. 𝟎𝟎𝟏) ... 89

Table 21 Similarity between top-10 inlying contrast subspaces using different
kernel functions in data set 𝑶\𝑶𝑬 +∞ (𝜹 = 𝟎. 𝟎𝟎𝟏) 90

Table 22 Similarity between top-10 outlying contrast subspaces using different
kernel functions in data set 𝑶\𝑶𝑬 +∞ (𝜹 = 𝟎. 𝟎𝟎𝟏) 90

Table 23 A numeric data set example ... 97

Table 24 quasi-density values of objects in Table 23... 98

Table 25 Outlying Aspects with 𝑺𝒚𝒏𝒕𝒉_𝟏𝟎𝑫 .. 112

Table 26 Statistics on the mining results of OAMiner ... 113

Table 27 UCI data set characteristics .. 114

Table 28 Sensitivity of OAMiner effectiveness with respect to 𝓁 (UCI) 117

x

Table 29 NBA 20 data dimensions .. 117

Table 30 NBA data set characteristics ... 117

Table 31 Sensitivity of OAMiner effectiveness with respect to 𝓁 (NBA) 119

Table 32 Guards with most rank 1 outlying aspects... 119

Table 33 Guards with poor ranks in outlying aspects... 120

Table 34 Comparison of 𝒓𝒂𝒏𝒌𝑯𝑳, 𝒓𝒂𝒏𝒌𝑺𝑶𝑫, 𝒓𝒂𝒏𝒌𝑺 ... 121

Table 35 Average Runtime of OAMiner with respect to 𝜶 .. 125

xi

List of Figures

Figure 1 Example Benchmarking... 3

Figure 2 Relationship between Cost and Output ... 13

Figure 3 Deterministic Kernel of a Stochastic Cost Frontier ... 14

Figure 4 DEA Cost Frontier ... 14

Figure 5 Sample Gartner Magic Quadrant (Business Intelligence and Analytics
Platforms, Q1 2014) ... 16

Figure 6 Sample Forrester Wave (Agile Business Intelligence Platforms, Q3
2014) .. 17

Figure 7 Example SIIC for values "young" and "M" .. 32

Figure 8 Example SIIC with Pruning .. 33

Figure 9 Reduction Ratio of DAM over SIIC/SIICP for TPC-H (𝑫𝑰𝑴 fixed) 39

Figure 10 Reduction Ratio of DAM over SIIC/SIICP for Weather (𝑫𝑰𝑴 fixed) 40

Figure 11 Reduction Ratio of DAM over SIIC/SIICP for TPC-H (𝑼𝑰𝑫 fixed) 41

Figure 12 Reduction Ratio of DAM over SIIC/SIICP for Weather data (𝑼𝑰𝑫 fixed) 41

Figure 13 Runtime and Memory Usage with TPC-H (𝑫𝑰𝑴 fixed) 42

Figure 14 Runtime and Memory Usage with Weather (DIM fixed) 42

Figure 15 Runtime and Memory Usage with TPC-H (𝑼𝑰𝑫 fixed) 43

Figure 16 Runtime and Memory Usage with Weather (𝑼𝑰𝑫 fixed) 43

Figure 17 Scalability with TPC-H ... 43

Figure 18 Runtime of TDC, BUC, and eBUC with respect to # of tuples 54

Figure 19 Runtime of TDC, BUC, and eBUC ... 55

Figure 20 Number of Detected Outliers ... 56

Figure 21 Runtime of TDC, BUC, and eBUC with different distributions 57

Figure 22 Scalability with Synthetic Data ... 57

Figure 23 Number of Detected Outliers ... 58

Figure 24 Example Contrast Subspace ... 60

Figure 25 Set enumeration tree ... 68

Figure 26 𝝐-𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒉𝒐𝒐𝒅 (within the dashed circle) .. 72

Figure 27 Dimensionality distribution of top inlying contrast subspace (𝒌 = 𝟏) 80

Figure 28 Dimensionality distribution of top outlying contrast subspace (𝒌 = 𝟏) 81

Figure 29 Scalability test with 𝜹 (𝒌 = 𝟏𝟎, 𝜶 = 𝟎. 𝟖) ... 82

Figure 30 Scalability test with data set size (𝒌 = 𝟏𝟎, 𝜹 = 𝟎. 𝟎𝟏, 𝜶 = 𝟎. 𝟖) 82

xii

Figure 31 Scalability test with dimensionality (𝒌 = 𝟏𝟎, 𝜹 = 𝟎. 𝟎𝟏, 𝜶 = 𝟎. 𝟖) 83

Figure 32 Relative performance of CSMiner-BPR (𝜹 = 𝟎. 𝟎𝟏, 𝜶 = 𝟎. 𝟖) 84

Figure 33 Similarity scores of inlying contrast subspaces using different

bandwidth values with respect to 𝒌 (𝜹 = 𝟎. 𝟎𝟎𝟏) 86

Figure 34 Similarity scores of outlying contrast subspaces using different

bandwidth values with respect to 𝒌 (𝜹 = 𝟎. 𝟎𝟎𝟏) 87

Figure 35 Example Subspaces .. 91

Figure 36 Outlying aspect of object 245 (𝑺𝒚𝒏𝒕𝒉_𝟏𝟎𝑫) ... 113

Figure 37 Outlying aspect of object 315 (𝑺𝒚𝒏𝒕𝒉_𝟏𝟎𝑫) ... 114

Figure 38 Distribution of outlyingness ranks: UCI (𝓵 = 𝟓) .. 115

Figure 39 Distribution of # of outlying aspects: UCI (𝓵 = 𝟓) ... 116

Figure 40 Distributions of outlyingness ranks: NBA (𝓵 = 𝟓) ... 118

Figure 41 Distribution of # of outlying aspects: NBA (𝓵 = 𝟓) .. 118

Figure 42 Runtime with respect to Data Set Size .. 122

Figure 43 Runtime with respect to Dimensionality ... 123

Figure 44 Runtime with respect to 𝓁 .. 123

Figure 45 Runtime with respect to Outlyingness Rank .. 124

1

Introduction

1.1. Motivation

Benchmarking has been given many different definitions by different organizations

and authors. One of the widely accepted definitions of benchmarking is by Camp (1989)

which states, “The continuous process of measuring products, services and practices

against the toughest competitors or those companies recognized as industry leaders.”

In practice, most widely adopted approaches for benchmarking are quantitative.

Quantitative benchmarking aims to provide a single numerical estimate of organization’s

efficiency relative to that of comparable organizations. For example, utility regulators often

use quantitative benchmarking to inform their assessments of the current efficiency of

utility organizations (e.g. water suppliers, electricity distribution companies, etc.) (Holder

et al., 2006). Quantitative benchmarking can help uncover numerical performance gaps;

however, it does not reveal why the gaps exist or indicate whether the gaps are significant.

According to Baldry et al. (2009), “virtually every credit card issuer practices

benchmarking. Yet all too often, issuers limit themselves to quantitative performance

measures, without taking into account either more qualitative measures or the strategic

demands of the markets in which they operate. As a result, just 20% of issuers gain any

tangible benefits from their benchmarking efforts.”

Organizations conduct benchmarking to identify areas for continuous improvement

to remain competitive in the market. To that end, it is important for organizations to

understand key drivers as “qualitative” measures for performance gaps. For example,

once a utility firm determines that its service efficiency is 20% below the benchmark

2

(quantitative), it would want to understand what is driving the inefficiency (qualitative) such

that a service improvement program can be developed.

How can one establish systematic measures to characterize key drivers; that is,

primary factors driving the performance gaps? One way is to develop contexts and

determine how organizations are positioned in them. Do they stand out positively or

negatively in certain contexts, or are they part of the big mass? If they stand out, what

facets make up such contexts?

A context is a set of circumstances or facts that surround a particular event or

situation. Put in the benchmarking setting, performance metrics can be the circumstances

that surround organizations’ situations; as such, the contexts can be formed by multiple

metrics or dimensions in which organizations want to appraise their performance; hence,

the name “multidimensional benchmarking”.

A key benefit of the multidimensional approach to benchmarking lies in its ability

to corroborate the findings of each metric and derive further insights from the combination

of the metrics. It facilitates organizations’ understanding in the underlying reasons for

performance gaps and permits them to move beyond target setting to design change

initiatives that close those gaps and improve their competitive positioning. However, a

multidimensional benchmarking result cannot be represented by a single numeric value

produced by a simple arithmetic; that is, sum all performance metric measures and

average them over the number of metrics involved. There may be some weighting

functions that can be incorporated into the arithmetic to represent importance of certain

metrics over others; however, weighting is somewhat biased subject to the opinions of

those who determine the weights or the importance. In the age of Big Data, there should

be tools to allow “data” to provide us with a more “objective” perspective.

1.2. Problem Statement

Benchmarking is not specific to competitive analyses in commercial settings.

Metrics can be defined according to a framework on how an organization wants to classify

its performance; for example, the state of the health and the wellness of their employees

3

compared to the general population, within specific industry verticals, within specific

employment types, etc.

In a hypothetical scenario, an organization is interested in benchmarking its

workforce health against the general workforce population. The results may be graphically

represented as quantitative performance gaps of individual metrics as shown in Figure 1.

In Figure 1, an organizational health index consists of 10 metrics; each metric quantifying

the prevalence rate of an illness condition (e.g. mental health) across its workforce. The

blue bar indicates the organization’s performance of a metric while the orange line denotes

the benchmark (i.e. a standard or point of reference against which the organization is

compared). Taking the mental health and heart & stroke as examples, this organization

is performing at the rate above the benchmark for mental health and below the benchmark

for heart & stroke.

Figure 1 Example Benchmarking

This clearly shows a quantitative performance gap for each metric. However,

these individual performance gaps do not divulge what characteristics and circumstances

of the workforce are driving these performance gaps. Can the drivers be gender, age

group, occupation type, location, work hours, or combinations of them?

Company Health

Mental Health 19.8%

12.2%

11.4%

8.2%

8.0%

6.7%

6.3%

6.2%

4.5%

3.3%

15.1%

16% Heart & Stroke

Diabetes

Lung Conditions

Obesity

Cholesterol

Gastrointestinal

Kidney Conditions

Allergies

Epilepsy

4

In this thesis, we develop systematic methods to compare the performance of an

object of interest (a query object) against others (benchmarks) in the context of multiple

dimensions (i.e. characteristics and circumstances) surrounding the query object as well

as the benchmark. If there is a significant performance gap between the query object and

the benchmark, then these dimensions can be translated as key drivers for the gap.

Technically, we divide the problem into 3 sub-problems and develop solutions for them:

1. Benchmarks in data warehouse. We develop two algorithmic approaches for
efficient computation for identifying meaningful benchmarks in data warehouses;
Sorted Inverted Index Cube (SIIC) and Dominant Answer Materialization (DAM)
method.

2. Reflective benchmarking. We develop methods to understand how the exceptions
and outliers within an aggregate group contribute to the overall deviation of the group
from the norm. We identify two types of groups. The first type corresponds to the
groups where the deviation is mainly caused by a small number of outlying units and
the second type to those where a majority of underlying units are outliers.

3. Subspace analysis. We conduct multidimensional analysis to identify key drivers
which form subspaces that manifest the uniqueness of the group of interest. We
consider both situations where the units are not labeled and where the units belong to
different classes.

1.3. Structure of Thesis

The rest of the thesis is structured as follows:

 Chapter 2 Related Work will outline benchmarking, data warehouse and
Online Analytical Processing (OLAP), outlier detection, and subspace
analysis.

 Chapter 3 Benchmarks in Data Warehouse will develop SIIC and DAM
for efficient computation for online analytical queries.

 Chapter 4 Reflective Benchmarking will demonstrate the use of KL-
divergence to compare two probability distributions to determine the type
of outliers.

 Chapter 5 Subspace Analysis will demonstrate 2 techniques for
subspace analysis: Contrast Subspaces and Outlying Aspects.

 Chapter 6 Conclusion concludes this thesis and suggests some future
directions.

5

Related Work

The primary objective of the thesis is to explore and evaluate techniques in

computing science that can be applied to multidimensional benchmarking. This chapter

first presents the general overview of benchmarking, covering the concept, the history,

and the methods commonly adopted in the industry. The overview is intended to set the

context for the proposed work in this thesis and highlight the claim that although

benchmarking is common in business, techniques in computing science have been largely

unexplored for effective benchmarking.

The chapter then introduces related work in areas of computing science that we

wish to consider for multidimensional benchmarking. These areas include data

warehouse and online analytical processing (OLAP), outlier detection, and subspace

analysis.

2.1. Benchmarking

Key motive for benchmarking is continuous improvement. Throughout history,

people have developed methods and tools for setting, maintaining and improving

standards of performance. Desire to improve performance and the actual improvement

can be traced far back to prehistoric forms of benchmarking in the industrial history. For

example, in the early 1800’s, an American industrialist, Francis Lowell, traveled to England

where he studied leading textile manufacturing techniques and industrial design of the mill

factories. He realized that although the factory equipment was sophisticated, there was

room for improvement in the way the plants were laid out for labour. Using technology very

similar to what he had seen in England, Lowell built a new plant in the U.S.; however, the

factory functioned in a less labour intensive fashion (Bogan et al., 1994).

Many researchers agree that the recognition of benchmarking as a useful

management tool was formalized in early 1980’s when Xerox employed benchmarking as

6

part of its “Leadership through Quality”, a program to find ways to reduce manufacturing

costs. In the early 1980’s, Xerox found itself increasingly vulnerable to intense competition

from both the US and the Japanese competitors. Its operating cost was high and its

products were of relatively inferior quality in comparison to its competitors’. In 1982, Xerox

determined that the average manufacturing cost of copies in Japanese companies was

40-50% of that of Xerox’s and they were able to undercut Xerox’s prices effortlessly. As

part of the “Leadership through Quality”, Xerox established the benchmarking program

which played a major role in pulling Xerox out of trouble in the years to come. Xerox since

then has become one of the best examples of the successful implementation of

benchmarking (IBS, 2006).

2.1.1. Definitions

Benchmarking has been given many different definitions by different organizations

and authors; however, all definitions concur that benchmarking is an integral step for

continuous improvement. Table 1 lists representative definitions of benchmarking:

7

Table 1 Benchmarking Definitions

Author Definition

Camp (1989) The continuous process of measuring products, services and
practices against the toughest competitors or those
companies recognized as industry leaders.

Geber (1990) A process of finding the world class examples of a product,
service or operational system and then adjusting own
products, services or systems to meet or beat those
standards.

Vaziri (1992) A continuous process comparing an organisation’s
performance against that of the best in the industry
considering critical consumer needs and determining what
should be improved.

Watson (1993) The continuous input of new information to an organisation.

Klein (1994) An excellent tool to use in order to identify a performance
goal for improvement, identify partners who have
accomplished these goals and identify applicable practices to
incorporate into a redesign effort.

Cook (1995) A kind of performance improvement process by identifying,
understanding and adopting outstanding practices from within
the same organization or from other businesses.

American Productivity
and Quality Center
(1999)

The process of continuously comparing and measuring an
organization against business leaders anywhere in the world
to gain information that will help the organisation take action
to improve its performance.

2.1.2. Types of benchmarking

Different types of benchmarking can be identified on the basis of what is being

compared. Generally, there are 3 types of benchmarking: strategic, performance, and

process benchmarking.

Strategic Benchmarking

Strategic benchmarking examines how organizations compete. It is used to

identify strategic imperatives that have enabled high performing organizations to be

successful.

8

Performance Benchmarking

Performance benchmarking pertains to the comparison of organization’s key

processes, products and services to assess its competitive positioning. It usually focuses

on prices, quality, features, speed, reliability and other performance metrics.

Process Benchmarking

Process benchmarking is for organizations to learn how their selected processes

are performing compared to most efficient operating practices from several organizations

in similar operational functions. Unlike strategic and performance benchmarking, process

benchmarking focuses on selected production processes in an organization rather than

on the organization as a whole. The presumption behind the analysis is that by identifying

best practice processes and comparing actual processes that organizations utilize, the

management can improve the performance of sub-systems, leading to better overall

performance.

2.1.3. Techniques for benchmarking

By the target of the comparison, benchmarking techniques can be categorized into

two types: internal and external benchmarking.

Internal Benchmarking

Internal benchmarking is performed between departments within the same

organization or between organizations operating as part of a chain in different countries

(Cross et al., 1994; Breiter et al., 1995). When any part of an organization has a better

performance indicator, others can learn how this was achieved; it can then be used as a

baseline for extending benchmarking to include external organizations (McNair et al.,

1992; Karlof et al., 1993).

External Benchmarking

External benchmarking requires a comparison of work with external organizations

in order to discover new ideas, methods, products, and services (Cox et al., 1998). The

objective is continuously to improve one’s own performance by measuring how it performs,

9

comparing it with that of others and determining how the others achieve their performance

levels. External benchmarking provides opportunities for learning from the best practices

and experience of others who are at the leading edge. Within external benchmarking,

there are 3 types including competitive, functional, and generic benchmarking.

 Competitive Benchmarking refers to a comparison with direct competitors only.
Its benefits include creating a culture that values continuous improvement to
achieve excellence by increasing sensitivity to changes in the environment
external to the organization (Vaziri, 1992). However, it is often difficult to obtain
data from competitors and lessons to be learned from them.

 Functional Benchmarking refers to comparative research whereby a
comparison of business performance is made not only against competitors but
also against the best businesses operating in similar fields and performing similar
activities or having similar problems but in a different industry (Davies, 1990;
Breiter et al., 1995). For example, British Rail Network South East used
benchmarking to improve the standard of cleanliness on trains. British Airways
was chosen for comparison since a team of 11 people cleans a 250 seat jumbo
aircraft in only 9 minutes. Following the benchmarking exercise, a team of 10
was able to clean a 660 seat train in 8 minutes (Cook, 1995).

 Generic Benchmarking refers to the comparisons of business functions that are
the same regardless of the domain of business. For example, a finance
department of an insurance company would be compared to the finance
department of a telecom company that has been identified as having the most
efficient operations (e.g. fastest turnaround time).

2.1.4. Benchmarking methods

Frontier Models

Common forms of quantitative methods lend from economic efficiency analysis

which involve parametric and non-parametric techniques. The primary objective of both

is to measure the technical efficiency, which is defined as the ability of a producer to

produce maximum output from a given set of inputs. Technical efficiency thus is translated

as the success indicator of performance measure by which producers are evaluated.

Given the importance of technical efficiency analysis, several models of frontiers have

been developed. Frontier models are based on the premise that efficient producers are

those that operate on the production frontier, while inefficient producers are those

operating below the production frontier and the level of inefficiency is measured by the

level of deviation from the frontier (Ajibefun, 2008).

10

Stochastic Frontier Production Function

The core economic theory underlying the formulation of a cost frontier supposes

that the minimum cost a producer can achieve, when using the most efficient technology

available, are a function of its output and the prices of its inputs. The cost function is

based on the behaviour of a representative cost-minimising producer who is able to control

the amount of each input used subject to producing a given output. The method assumes

a particular specification of the relationship between an organization’s costs and a set of

cost drivers, which may include, for example, the outputs produced, input prices and a

range of exogenous factors. Econometric analysis is then used to estimate the parameters

of that relationship. Having estimated a cost function, inefficiency is one of the factors

(alongside others, such as, omitted variables, measurement errors, etc.) that can explain

the differences between the observed level of costs for a particular organization and the

level of cost predicted by the estimated cost function (Holder et al., 2006).

The stochastic frontier production function illustrates a producer using 𝑛 inputs

(𝑥1, 𝑥2, … , 𝑥𝑛) to produce output 𝑦. It assumes the presence of technical inefficiency of

production and is defined as:

𝑦𝑖 = 𝑓(𝑥𝑖; 𝛽) exp(𝑣𝑖 − 𝑢𝑖) , 𝑖 = 1, 2, … , 𝑛

where 𝑦𝑖 is the observed scalar output of the producer 𝑖, 𝑥𝑖 is a vector of 𝑛 inputs

used by the producer 𝑖, 𝑓(𝑥𝑖; 𝛽) is the production frontier, 𝛽 is a vector of technology

parameters to be estimated, 𝑣 is a random error associated with random factors (hence

stochastic) and 𝑢 is the amount by which the producing unit fails to reach the optimum (i.e.

the frontier).

The technical efficiency 𝑇𝐸𝑖 of a producer 𝑖 is defined in terms of the ratio of the

observed output to the corresponding optimal frontier output:

𝑇𝐸𝑖 =
𝑦𝑖
𝑦𝑖
∗ =

𝑓(𝑥𝑖, 𝛽) exp(𝑣𝑖 − 𝑢𝑖)

𝑓(𝑥𝑖, 𝛽) exp(𝑣𝑖)
= exp (𝑢𝑖)

11

where 𝑦𝑖 is the observed output and 𝑦𝑖
∗ is the frontier output. 𝑇𝐸𝑖 = 1 indicates that

the organization 𝑖 obtains the maximum feasible output, while 𝑇𝐸𝑖 < 1 provides a measure

of the shortfall of the observed output from maximum feasible output.

The major advantage of this method is that it allows the test of hypothesis

concerning the goodness of fit of the model. The “stochastic” aspect of the model allows

it to handle appropriately measurement problems and other stochastic influences that

would otherwise show up as causes of inefficiency (Greene, 2005). However, the major

drawback is that it requires specification of technology, which may be restrictive in most

cases (Ajibefun, 2008).

Data Envelopment Analysis (DEA)

DEA is a non-parametric linear programming technique widely used in the

operations research and management science literature (Holder et al., 2006).

DEA estimates the cost level an efficient organization should be able to achieve in

a particular market. The model seeks to determine an envelopment surface, also referred

to as the efficiency frontier. Rather than estimating the impact of different cost drivers,

DEA establishes an efficiency frontier (taking account of all relevant variables) based on

the “envelope” of observations. Each organization is then assigned an efficiency score

based on its proximity to the estimated efficiency frontier.

With DEA, the efficient frontier is the benchmark against which the relative

performance of organizations is measured. Given a certain sample of organizations, all

organizations should be able to operate at an optimal efficiency level which is determined

by the efficient organizations in the sample. These efficient organizations determine the

efficiency frontier. The organizations that form the efficient frontier use the minimum

quantity of inputs to produce the same quantity of outputs. The distance to the efficiency

frontier provides a measure for the efficiency or its lack thereof.

The objective of the linear programming is to maximize efficiency, where efficiency

is the ratio of weighted outputs to weighted inputs and restricted to a range of 0 to 1. To

maximize the efficiency score 𝜃 for producer 0:

12

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜃 =
∑ 𝑢𝑟𝑦𝑟0
𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝑚
𝑖=1

where:

 𝜃 = efficiency of the producer 0

 𝑢𝑟 = 𝑠 output coefficients of the producer 0

 𝑦𝑟0 = 𝑠 output weighting coefficients for the producer 0

 𝑣𝑖 = 𝑚 input coefficients for the producer 0

 𝑥𝑖0 = 𝑚 input weighting coefficients for the producer 0

This is subject to the constraint that when the same set of 𝑢 and 𝑣 coefficients is

applied to all other producers being compared, no producer will be more than 100%

efficient such that:

∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1 for 𝑗 = 1,… , 𝑛, and

 𝑢𝑟,𝑣𝑗 ≥ 0 for 𝑟 = 1,… , 𝑠 and 𝑖 = 1,… ,𝑚.

The main advantage of this method is its ability to accommodate a multiplicity of

inputs and outputs. However, the results are potentially sensitive to the selection of inputs

and outputs; thus, their relative importance needs to be analyzed prior to the calculation.

Further, there is no way to test their appropriateness. The number of efficient

organizations on the frontier tends to increase with the number of inputs and output

variables. When there is no relationship between explanatory factors (within inputs and/or

within outputs), DEA views each organization as unique and fully efficient and efficient

scores are very close to 1, which results in a loss of discriminatory power of the method

(IBNET, 2015).

Frontier Analysis Case Study

The use of frontier analysis is widespread in incentive-based regulation of utilities

in which reimbursement is guided by the cost efficiency of service provision. Lovell (2003)

claims that the setting in which hospitals are reimbursed is structurally similar to that of

the setting of revenue caps in utilities regulation and demonstrates the value of frontier

13

analysis in the hospital reimbursement exercise. Given a vector 𝑥 = (𝑥1, … , 𝑥𝑛) of

resources to produce a vector 𝑦 = (𝑦1, … , 𝑦𝑚) of services, in the provision of its services,

each hospital incurs expense 𝑤𝑇𝑥 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 where 𝑤 = (𝑤1, … , 𝑤𝑛) is a vector of

resource prices. Figure 2 shows 12 hospitals with scalar output representing the

multidimensional service vector. The relationship is generally positive although some

hospitals provide more service at lower costs than some others.

Figure 2 Relationship between Cost and Output

The objectives of frontier analysis in this case study are to uncover the nature of

the relationship between service provision and expenditure and to evaluate the

performance of each hospital. “Performance” in this context means the ability to minimize

expenditure required to provide a service vector 𝑦 in light of input price vector 𝑤 and other

exogenous variables represented by vector 𝑧 = (𝑧1, … , 𝑧𝑘) whose elements characterize

the operating environment. The minimum cost frontier 𝑐(𝑦, 𝑤, 𝑧) expresses the desired

nature of the relationship between service provision and minimum required expenditure.

This supplies the benchmark against which to evaluate the performance of individual

hospitals. The performance is evaluated in terms of the cost efficiency 𝐶𝐸(𝑦,𝑤, 𝑧, 𝑥) =

𝑐(𝑦,𝑤,𝑧)

𝑤𝑇𝑥
≤ 1 with cost efficient hospitals having 𝐶𝐸(𝑦,𝑤, 𝑧, 𝑥) = 1.

Stochastic cost frontier is 𝑤𝑇𝑥 = 𝑐(𝑦,𝑤, 𝑧) ∙ exp {𝑣 + 𝑢} where the actual

expenditure 𝑤𝑇𝑥 equals minimum expenditure 𝑐(𝑦, 𝑤, 𝑧) times the two error

components exp {𝑣 + 𝑢}. As noted earlier, exp {𝑣} captures the statistical noise reflecting

random events beyond the control of the hospital and exp {𝑢} expresses the magnitude of

14

the hospital’s inefficiency. The line in Figure 3 depicts the stochastic cost frontier for the

same hospitals in Figure 2.

Figure 3 Deterministic Kernel of a Stochastic Cost Frontier

Figure 4 illustrates the DEA formulation of the minimum cost frontier. This

formulation constructs the tightest fitting piecewise linear surface that envelops the cost-

output combinations. There are 4 cost efficient hospitals and the cost efficiency of any

other hospital is calculated as the ratio of the minimum cost of providing its service vector

to its actual expenditure.

Figure 4 DEA Cost Frontier

Other Models

Among the most successful commercialization of “benchmarking” ideas in the

Information Technology industry are Gartner Magic Quadrant (Figure 5) and Forrester

Wave (Figure 6) which provide, in a 2-dimensional performance metric space, visual

15

representations of technology vendors’ positions in the markets in which they compete.

Many buyers rely on Gartner Magic Quadrant or Forrester Wave to understand the

competitive positioning of technology vendors in different markets and technology vendors

in turn use them as strategic marketing tools.

 A Gartner Magic Quadrant is a culmination of research in a specific market, giving

audience a wide-angle view of the relative positions of the market's competitors. It

provides a competitive positioning of four types of technology providers including the

following (Gartner, 2015):

 Leaders execute well against their current vision and are well positioned for
tomorrow;

 Visionaries understand where the market is going or have a vision for changing
market rules, but do not yet execute well;

 Niche Players focus successfully on a small segment, or are unfocused and do
not out-innovate or outperform others;

 Challengers execute well today or may dominate a large segment, but do not
demonstrate an understanding of market direction.

Technology vendors are positioned in the 4 quadrants representing these 4 types

in the 2-dimensional performance space. Vendors positioned in the upper right quadrant

(i.e. Leader’s quadrant) are the strongest in the market in terms of the completeness of

the vision and their ability to execute.

16

Figure 5 Sample Gartner Magic Quadrant (Business Intelligence and Analytics
Platforms, Q1 2014)

However, the method Gartner uses to benchmark vendors are not publically known

and it has been criticised for catering more towards investors and large vendors than

towards buyers; much of the criticism centred on the lack of disclosure of the money

received from the vendors it rates, raising conflict of interest (Wikipedia, 2015).

The Forrester Wave is Forrester's evaluation of vendors in a software, hardware,

or services market. In the Forrester Wave reports and spreadsheets, it exposes both the

criteria that it uses to grade the vendor offerings and how it scores and weight those

criteria. Forrester Wave evaluations are driven by Forrester’s analysis of data collected

from the marketplace and the experience of its analysts. Technology vendors are

positioned in a 2-dimensional space according to the weighted average of the scores they

are evaluated for (Forrester, 2015). Vendors positioned in the upper right corner are the

strongest in the market in terms of the strength of the strategy and their current offering.

Forrester Wave overlays another dimension, “Market presence” on the 2-dimensional

space.

17

Figure 6 Sample Forrester Wave (Agile Business Intelligence Platforms, Q3 2014)

2.2. Data Warehouse and Online Analytical Processing
(OLAP)

Data warehouses and Online Analytical Processing or OLAP are two fundamental

components of business intelligence systems.

A data warehouse is a database containing multidimensional data that usually

represents the business history of an organization. The historical data is used for analysis

that supports business decisions at various levels, from strategic planning to performance

evaluation of a discrete organizational unit. OLAP enables data warehouses to be used

effectively for online analysis, providing rapid responses to iterative complex analytical

queries. OLAP's multidimensional data model and data aggregation techniques organize

and summarize large amounts of data such that it can be evaluated quickly using online

analysis and graphical tools. The answer to a query into multidimensional data often leads

to subsequent queries as analysts search for answers or explore further possibilities.

OLAP provides the speed and the flexibility to support analysts in real time (Microsoft,

2015).

18

The introduction of data cube (Gray et al., 1997) is considered a landmark in data

warehousing. A data cube consists of dimensions and facts and allows materialization of

multidimensional data in large data repositories to facilitate fast online data analysis.

However, a data cube typically has many dimensions and the curse of dimensionality

becomes a technical problem; for example, a data cube with 20 dimensions, each

containing 99 distinct values, has (99 + 1)20 = 1040 base and high-level cells. This is too

large a volume to be pre-computed and stored with reasonable resources. This warrants

computing iceberg cubes (Beyer et al., 1999) instead of complete cubes. An iceberg cube

contains only those cells that meet an aggregate condition. It is called an iceberg cube

because it contains only some of the cells of the full cube, like the tip of an iceberg. The

aggregate condition could be, for example, minimum support or a lower bound on count,

average, minimum or maximum. The purpose of the iceberg cube is to identify and

compute only those values that will most likely be required for decision support queries.

The aggregate condition specifies which cube values are more meaningful and should

therefore be stored.

The value of iceberg cube is obvious. A data cube can be viewed as a lattice of

cuboids whereby cuboids whose group-by’s include more dimensions are at a lower level

than those that include fewer dimensions and the cuboid that include all dimensions is at

the bottom. The lower level cuboids likely contain trivial aggregate values and are unlikely

to satisfy threshold conditions; thus, no need to be computed. This not only saves

processing time and disk space but also focuses analysis only on interesting data.

With iceberg cubes, the emphasis is to develop algorithms to answer iceberg

queries efficiently. Beyer et al. (Beyer et al., 1999) proposed the algorithm BUC which

computes iceberg cubes with monotonic aggregate functions. Han et al. (Han et al., 2001)

developed a method for computing iceberg queries with non-monotonic aggregate

functions. Ng et al. (Ng et al., 2001) studied iceberg queries with distributed systems.

Chen et al. (Chen et al., 2008) explored iceberg cube computation in shared-nothing

clusters. Lo et al. (Lo et al., 2008) extended iceberg queries to sequence data. Chen et

al. (Chen et al., 2009) extended iceberg queries to graphs. Recently, He et al. (He et al.,

2013) used patterns as “dimensions” in iceberg queries on sequences.

19

While we can adopt some of these algorithms for efficient computation of data

cubes, when we consider benchmarking, we need a notion of a “query object” and the

ability to compare the properties of the query object to those of the others’ at different

levels of aggregate hierarchy.

Sarawagi et al. (1998) proposes a discovery-driven exploration paradigm which

guides analysts to explore anomalies (referred to as “exceptions”) by means of pre-

computed indicators of exceptions at various levels of details in the cube. It considers all

descendant cells for each aggregate cell and aims to provide a navigation guidance for

analysts to browse interesting regions of a cube.

In gradient analysis (Dong et al., 2001), given a probe aggregate cell 𝑞, one can

find all pairs of aggregate cells (𝑞, 𝑣) such that 𝑞 is an ancestor of 𝑣 and the change of the

aggregate value from 𝑞 to 𝑣 is significant. For example, given that the average house

price in Vancouver is $1.1 million, one can find all regions of Vancouver where the average

house price is 20% higher or lower than $1.1 million.

Cubegrade is a notion introduced by Imielinski et al. (2002) which reports how

characteristics of a data cube cell is associated with the characteristics of its gradient cells;

namely, ancestors (by roll-up), descendants (by drill-down) and siblings (by mutation).

Cubegrade is a generalization of association rules and data cubes; though, Cubegrade

queries are significantly more expressive than association rules since they can handle

arbitrary measures and not just count as with the association rules. However, Cubegrade

needs to compare each cell in the cube with its associated cells (i.e. gradients) generated

by generalization (roll-up), specialization (drill-down) and mutation and even with iceberg

cubes, it may generate a large number of pairs. To address this issue, Dong et al. (2005)

introduces “probe constraints” to select a subset of cells, referred to as probe cells, from

all possible cells. This is based on the pragmatic observation that analysts are often

interested in examining only a small set of cells in the cube and a majority of the cells in

the cube are outside their focal areas of exploration. Using this constraint, the analysis

can centre only on probe cells and the relationships with their gradients (gradient

constraint). Wang et al. (2006) applies these constraints to closed itemset mining.

20

When a computaion of an iceberg cube is confined with simple measures, such

as, count and sum, antimonotonicity property of the cube can be exploited to prune a

significant number of cells. For example, if the count of a cell 𝑐 in a cuboid 𝐶 is less than

a threshold value 𝑣, then the count of any 𝑐’s descendant cells cannot be more than 𝑣 and

thus all descendants of 𝑐 ca be pruned. When the measure is not an antimonotonic

function, for example, average or sume of positive and negative elements, a weaker but

still antimonotonic property of top-𝑘 average (where 𝑘 is the minimum support) can be

considered to prune search space effectively (Dong et al., 2005; Yu et al., 2005; Wang et

al., 2006).

2.3. Outlier Detection

The primary objective of benchmarking is to find areas for continuous

improvement; thus, organizations are interested in identifying performance areas in which

they are anomalies (or outliers) as opposed to “normal”. As such, outlier analysis in

multidimensional subspaces lends itself to viable multidimensional benchmarking. To this

end, we explore the application of outlier detection techniques to multidimensional

benchmarking.

An outlier is “an observation which deviates so much from the other observations

as to arouse suspicions that it was generated by a different mechanism.” (Hawkins, 1980).

Data may be generated by a process that reflects normal activities of an underlying

system; however, when the process behaves in an unusual manner, it results in the

generation of anomalous data, or outliers. Outliers hence convey useful information

regarding different characteristics of the process of the underlying system.

Outlier detection methods can be categorized according to whether or not prior

knowledge is available to model normality and abnormality. Prior knowledge typically

consists of samples that are tagged as normal or abnormal by subject matter experts. If

prior knowledge is available, the detection approach is analogous to supervised

classification. If not, the detection approach is essentially unsupervised clustering (Hodge

et al., 2004). Semi-supervised outlier detection methods can be regarded as applications

21

of semi-supervised learning approach where the normal class is taught but the algorithm

learns to recognize abnormality.

The challenge to the supervised approach is that the outlier population is often

much smaller than the normal population; thus, an additional consideration for handling

imbalanced data must be taken into account and techniques, such as, oversampling and

artificial outliers have been devised (Weiss et al., 1998; Joshi et al., 2001, 2002; Vilalta et

al., 2002; Phua et al., 2004).

The unsupervised outlier detection approach makes certain assumptions and

based on the assumptions made, the approach can be categorized into 3 types including

statistical, proximity, and clustering.

The statistical methods assume a probability model of normal data and the data

points that have a low probability of having been generated by the same model are

considered outliers.

The proximity-based methods (Ester et al., 1996; Knorr et al., 1998) assume that

the data points that have many proximate neighbours are normal while points that are far

away from their neighbours are outliers.

The clustering-based methods assume that normal data points belong to large and

dense clusters while outliers belong to small or sparse clusters, or do not belong to any

cluster at all. More recent methods (Eskin et al., 2002; He et al., 2003; Zhang et al., 2007)

incorporate ideas to handle outliers without explicitly and completely finding clusters of

normal objects.

2.4. Subspace Analysis

While most outlier detection methods focus on finding outliers, recently there have

been studies on “properties” of outliers by identifying subspaces in a multidimensional

database where outliers may exist.

22

For example, Keller et al. (2012) and Böhm et al. (2013) proposed statistical

approaches, CMI and H𝑖CS, to select subspaces in which there may exist outliers. They

select highly contrasting subspaces for all possible outliers.

Kriegel et al. (2009) introduced SOD, a method to detect outliers in axis-parallel

subspaces. It uses the nearest neighbours as references in the full space to calculate

outlying scores.

Müller et al. (2012b) presented a framework, OutRules, to find outliers in different

contexts. For each outlier, OutRules finds a set of rules 𝐴 𝐵 where 𝐴 and 𝐵 are

subspaces and an object is normal in 𝐴 but is an outlier in 𝐵. It computes the degree of

deviation using outlier scores, such as, LOF (Breunig et al., 2000) and produces a ranked

list of rules as the explanation for objects being outliers.

Tang et al. (2013) proposed a framework to identify contextual outliers in a

multidimensional categorical database.

Müller et al. (2012a) computes an outlier score for each object in a database

providing a single global measure of how outlying an object is in different subspaces.

Given a multidimensional categorical database and an object (which preferably is

an outlier), Angiulli et al. (2009) finds top-𝑘 subspaces from which the outlier receives the

highest outlier scores. The score for a given object in a subspace is calculated based on

how frequent the object’s value appears in the subspace. It tries to find subspaces 𝐸 and

𝑆 such that the value is frequent in one subspace and much less frequent in the other.

Since searching all such rules incurs a significant computational cost, it takes two

parameters, 𝛿 and 𝜃, to constrain the frequency of the given object’s values in subspaces

𝐸 and 𝑆. If an object is not an outlier, no outlier properties may be detected.

There are a few density based outlier detection methods in subspaces, such as,

Breunig et al. (2000), Aggarwal et al. (2001), He et al. (2005), and Kriegel et al. (2008).

Müller et al. (2011) proposed OUTRES which aims to assess the contribution of selected

subspaces in which an object deviates from its neighbours (i.e. the object has a

significantly low density). OUTRES employs Kernel Density Estimation (KDE) and uses

23

Epanechnikov kernel. The focus of OUTRES is to find outliers; thus, it only considers

subspaces that satisfy a statistical test for non-uniformity.

To some extent, outlying property or outlyingness is related to uniqueness and

uniqueness mining. Paravastu et al. (2008) finds feature-value pairs that make a particular

object unique. Their task formulation is reminiscent of infrequent itemset mining and uses

a level-wise Apriori enumeration strategy (Agrawal et al., 1994).

24

Benchmarks in Data Warehouses

Many organizations store multidimensional data in their enterprise data

warehouses. A data warehouse thus provides an essential information infrastructure for

online analytical queries that simultaneously consider multiple dimensions of data.

However, to the best of the author’s knowledge, conducting multidimensional

benchmarking in data warehouses has not been explored from a technical efficiency

perspective. A simple application of existing data warehouse techniques, such as, data

cubes, cannot answer multidimensional benchmarking queries online due to the

exponential growth in computational power required as the number of dimensions

increases.

In this chapter, as the first step towards multidimensional benchmarking, we

formulate benchmark queries technically and develop two algorithmic approaches for

efficient computation in data warehouses; Sorted Inverted Index Cube (SIIC) and

Dominant Answer Materialization (DAM).

3.1. Preliminaries

We largely follow the notations in the conventional data cube and data warehouse

literature (Gray et al., 1997).

Consider a relational table 𝑇 = (𝑇𝐼𝐷, 𝐴1, … , 𝐴𝑛, 𝑀) and an aggregate function 𝑓

where 𝑇𝐼𝐷 is a tuple-id attribute to ensure every tuple in the table is unique, 𝐴1, … , 𝐴𝑛 are

dimensions and 𝑀 is a measure attribute. We assume all dimension attributes are

categorical and the measure attribute can be categorical or numeric. For a tuple 𝑡 ∈ 𝑇,

the value of 𝑡 for 𝑇𝐼𝐷 is denoted as 𝑡. 𝑇𝐼𝐷, the value for dimension 𝐴𝑖 as 𝑡. 𝐴𝑖, and the value

for measure 𝑀 as 𝑡.𝑀.

25

Let 𝐷 = {𝐴𝑖1 , … , 𝐴𝑖𝑙} be a subset of dimensions where 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙 ≤ 𝑛. 𝐷

is often referred to as a subspace. A cuboid of 𝐷 is the group-by’s using attributes in 𝐷

and denoted by 𝐶𝐷. Note that 𝐷 may be empty. An aggregate cell in 𝐶𝐷 is a tuple 𝑐 = (∗

, 𝑎𝑖1 ,∗, 𝑎𝑖2 , … ,∗, 𝑎𝑖𝑙 ,∗, 𝑎𝑔𝑔𝑟) ∈ 𝐶𝐷 where value 𝑎𝑖𝑙 belongs to the domain of attribute 𝐴𝑖𝑗(1 ≤

𝑗 ≤ 𝑙), meta-symbol ∗ indicates that the dimension is generalized, and 𝑎𝑔𝑔𝑟 =

𝑓({𝑡.𝑀|𝑡. 𝐴𝑖𝑗 = 𝑎𝑖𝑗 , 1 ≤ 𝑗 ≤ 𝑙}) is the aggregate of all tuples in the group (∗, 𝑎𝑖1 ,∗, 𝑎𝑖2 , … ,∗

, 𝑎𝑖𝑙 ,∗). To simplify presentation, we overload the symbol 𝑐.𝑀 = 𝑎𝑔𝑔𝑟 and ignore empty

aggregate cells that do not contain any tuple in the base table.

We can define a partial order ≺ on cuboids: 𝐶𝐷1 ≺ 𝐶𝐷2 if 𝐷1 ⊂ 𝐷2. The set of

cuboids form a lattice with respect to partial order ≺. Further, we can define a partial

order ≺ on aggregate cells. The cells 𝑡1 ≺ 𝑡2 if for each dimension 𝐴𝑖(1 ≤ 𝑖 ≤ 𝑛)

when 𝑡1. 𝐴𝑖 ≠ ∗, then 𝑡1. 𝐴𝑖 = 𝑡2. 𝐴𝑖. This also means that 𝑡1 is an ancestor of 𝑡2 and 𝑡2 a

descendant of 𝑡1. For two aggregate cells 𝑡1 and 𝑡2, 𝑡1 is a sibling of 𝑡2 if 𝑡1 and 𝑡2 have

identical values for all dimensions except for one in which neither has value ∗.

A data cube is a set of cuboids for all subsets of dimensions including the empty

set. Equivalently, a data cube is a set of all aggregate cells. For two aggregate cells 𝑢

and 𝑣, if there does not exist a dimension 𝐴𝑖 such that neither 𝑢. 𝐴𝑖 nor 𝑣. 𝐴𝑖 has value ∗

and 𝑢. 𝐴𝑖 ≠ 𝑣. 𝐴𝑖, then the concatenation of 𝑢 and 𝑣, denoted by 𝓌 = 𝑢⊗ 𝑣, is an

aggregate cell such that for attribute 𝐴𝑖,𝓌. 𝐴𝑖 = 𝑢. 𝐴𝑖 if 𝑢. 𝐴𝑖 ≠ ∗; otherwise, 𝓌. 𝐴𝑖 = 𝑣. 𝐴𝑖.

Example 1 (Preliminaries). Consider a relational table 𝑇 = {𝑇𝐼𝐷, age-group, gender,

location, salary} for sales representatives of an organization. Suppose we use 𝑎𝑣𝑔() as

the aggregate function. 𝑐 = (∗, male, ∗, 𝑎𝑣𝑔()) is an aggregate cell which represents

the average salary of all male sales representatives in the organization. Consider

aggregate cells 𝑢 = (senior, ∗, ∗), 𝑡 = (senior, male, ∗) and 𝑡’ = (senior, female, ∗). We

have 𝑢 ≺ 𝑡 which means 𝑢 is an ancestor of 𝑡 and 𝑡 is a descendant of 𝑢. 𝑡 and 𝑡’ are

siblings. Aggregate cell 𝑣 = (∗, male, North America) means male sales

representatives in North America. We can use the concatenation operator to get all

senior male sales representatives in North America: 𝓌 = 𝑢⊗ 𝑣 = (senior, male, North

America).

26

3.2. Benchmark Queries

We consider a relational table 𝑇 = (𝑇𝐼𝐷, 𝐴1, … , 𝐴𝑛,𝑀). The attributes in 𝑇 that will

be used in a benchmark query can be divided into three groups: unit-id attributes 𝑈𝐼𝐷,

dimension attributes 𝐷𝐼𝑀, and measure attributes 𝑀 where 𝑈𝐼𝐷 ∪ 𝐷𝐼𝑀 ⊆ {𝐴1, … , 𝐴𝑛}.

𝑈𝐼𝐷 ∩ 𝐷𝐼𝑀 = ∅ is not assumed; thus, 𝑈𝐼𝐷 and 𝐷𝐼𝑀 are not exclusive. This means that

an attribute may be both a unit-id and a dimension attribute. However, we can always

create a copy of an attribute that can be used as either unit-id or dimension attribute; as

such, without loss of generality, we assume that the unit-id and dimension attributes are

exclusive for the rest of this chapter.

The unit-id attributes are used to group tuples in 𝑇 into aggregate units. Since the

term “group” can mean different things, we refer to a group as a unit for clarification. We

are essentially considering a data cube formed using the unit-id attributes 𝑈𝐼𝐷 in which

each aggregate cell corresponds to a unit. In the context of benchmarking, we are

interested in comparing units (e.g. organizations, departments, etc.).

The dimension attributes are used to conduct multidimensional comparative

analysis between two units.

The measure attribute is used to calculate aggregates and derive quantitative

difference between two units, referred to as “performance gap”. We are interested in

finding benchmarks that yield largest performance gaps to the query unit. For simplicity,

we only have one measure attribute in this thesis; however, our method can be extended

to scenarios where multiple measure attributes are considered to derive sophisticated

aggregates. In practice, a measure attribute has non-negative values; for example,

measures, such as, sum, volume, and amount are used in business intelligence

applications. Even when a measure has negative values, we can normalize the attribute

such that the normalized measure attribute has non-negative values.

For each non-empty unit that consists of at least one tuple in the base table with

dimension and measure attributes, we can form a data cube which reflects performance

of the unit in multidimensional aspects.

27

Example 2 (Attributes). Consider a base table 𝑇 = {age-group, gender, location,

position, education, salary} for employees of an organization. For simplicity, we omit

the tuple-id attribute.

We can use 𝑈𝐼𝐷 = {age-group, gender} as unit-id attributes; that is, we are

interested in comparing units formed by the group-by operation by these two attributes.

For example, (young, male) and (mid-age, ∗) are two aggregate units.

We use attributes 𝐷𝐼𝑀 = {location, position, education} as the dimension

attributes; that is, we compare two units by these three dimensions.

Finally, we use attribute 𝑀 = {salary} as the measure attribute. Using the

aggregate function 𝑎𝑣𝑔(), we can compare the average salaries between different units

with respect to different locations, positions, education levels, and their combinations. For

example, we may find that for the position of “technical support” at location “Vancouver”,

the age-group [25, 35] has much lower average salary than the age group [35, 50]. The

reasoning behind this difference may be seniority and the years of experience.

To quantitatively compare two aggregate cells 𝑐 and 𝑐’, we need the ratio of their

measures:
𝑐.𝑀

𝑐′.𝑀
. For a unit 𝑢, an aggregate cell 𝑐 is defined using the dimension attributes

and is called an aspect of 𝑢 if 𝑢 ⊗ 𝑐 is in the data cube 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪ 𝐷𝐼𝑀,𝑀, 𝑓) for the

base table 𝐵. Given two units 𝑢 and 𝑣 defined using the unit-id attributes and an aggregate

cell 𝑐 defined by the dimension attributes such that 𝑐 is an aspect of both 𝑢 and 𝑣,

(𝑢⊗𝑐).𝑀

(𝑣⊗𝑐).𝑀
 indicates the performance gap between 𝑢 and 𝑣 in aspect 𝑐. The larger the ratio,

the larger the performance gap between 𝑢 and 𝑣 in 𝑐. We denote by 𝑅 (
𝑢

𝑣
|𝑐) =

(𝑢⊗𝑐).𝑀

(𝑣⊗𝑐).𝑀

the performance gap of 𝑢 against 𝑣.

From this example, we define a benchmark query as follows:

 a base table 𝑇 and the specification of the unit-id attributes 𝑈𝐼𝐷, dimensions 𝐷𝐼𝑀,
and the measure 𝑀;

 a query unit 𝑞 that is an aggregate cell in the data cube formed by the unit-id
attributes 𝑈𝐼𝐷;

 the search scope; that is, ancestors, descendants, and siblings; and

28

 a parameter 𝑘.

Let 𝑢 be a unit formed by the unit-id attributes and 𝑐 be an aspect of the query

unit 𝑞. (𝑢, 𝑐) is a top-𝑘 answer to the benchmark query 𝑄 if:

 𝑢 is in the search scope; that is, an ancestor, descendant, or a sibling of 𝑞. 𝑈𝐼𝐷 as
specified in the input;

(𝑢⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
> 1; and

 there are at most 𝑘 − 1 pairs (𝑢’, 𝑐’) such that 𝑢’ is also in the search scope, 𝑐′ ≠

𝑐 is another aspect of 𝑢 and
(𝑢′⊗𝑐′).𝑀

(𝑞′⊗𝑐′).𝑀
>

(𝑢⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
.

The requirement
(𝑢⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
> 1 ensures that the performance gap is not trivial and 𝑢

is a significant benchmark for 𝑞. To this end, we ignore aggregate cells 𝑐 where 𝑞 ⊗ 𝑐 is

empty because it is uninteresting from a benchmark perspective. For each (𝑢, 𝑐) in the

top-𝑘 answers, 𝑢 is called a benchmark unit and the subspace 𝑐 is the benchmark aspect

of 𝑢. Given a benchmark query 𝑄, we want to compute all top-𝑘 answers to the query.

Note that in the event where there are multiple answers (i.e. the same performance gap),

we return more than 𝑘 answers.

Example 3 (Benchmark query). Consider a base table 𝑇 = {age-group, gender, location,

position, education, salary} for employees of an organization. Table 2 shows samples

of 𝑇.

Table 2 Sales Representatives of an Organization

age-group gender location position education sales
volume

young M Vancouver staff University 200

young F Seattle manager Diploma 230

young F Seattle manager University 220

mid-age M Vancouver staff Diploma 220

mid-age M Seattle staff University 200

mid-age M Vancouver manager University 224

Let 𝑈𝐼𝐷 = {age-group, gender}, 𝐷𝐼𝑀 = {location, position, education}, and 𝑀 =

{sales volume}. We use 𝑎𝑣𝑔() as the aggregate function.

29

Suppose the query unit is 𝑞 = (young, M) and 𝑘 = 2. The top-2 answers are

((young, F), (∗, ∗, ∗)) and ((mid-age, M), (Vancouver, ∗, University)). The ratio is
225

200
=

1.125 for the first and
224

200
= 1.12 for the second answer. This simple example illustrates

that when we consider the sales performance of a group of young males, the two most

significant benchmarks (i.e. have the largest performance gaps) for this unit are young

females in all aspects, and the mid-age males who work in Vancouver and are university

graduates.

Aggregate functions can be categorized into two types: monotonic and non-

monotonic aggregates. An aggregate function 𝑓 is monotonic if for any aggregate cells

𝑐1 and 𝑐2 such that 𝑐1 ≺ 𝑐2, 𝑓(𝑐1) ≤ 𝑓(𝑐2). An aggregate function is non-monotonic if it

does not have this property. For example, if the measure attribute only has non-negative

values, then aggregate functions 𝑠𝑢𝑚() and 𝑐𝑜𝑢𝑛𝑡() are monotonic while 𝑎𝑣𝑔() is non-

monotonic.

Answering a benchmark query for a monotonic aggregate function is

straightforward since the apex cell (∗,∗, … ,∗) always has the maximum aggregate value

but uninteresting for benchmarking. As such, we assume that the aggregate functions

used for benchmarking are non-monotonic.

3.3. Sorted Inverted Index Cube (SIIC) Method

We assume a data cube materialization method 𝐶𝑢𝑏𝑒(𝐵, 𝐴1, … , 𝐴𝑛,𝑀, 𝑓) that

computes a data cube on a multidimensional base table 𝐵 using attributes as

dimensions 𝐴1, … , 𝐴𝑛, 𝑀 as the measure and the aggregate function 𝑓.

We use BUC (Beyer et al., 1999) to materialize a data cube. For each unit 𝑢, let 𝐵𝑢

be the set of tuples in the base table that belong to 𝑢; that is, 𝐵𝑢 = {𝑡|𝑡 ∈ 𝐵 ∧ 𝑢 ≺ 𝑡}. Given

a query unit 𝑞, a benchmark query compares the data cubes 𝐶𝑢𝑏𝑒(𝐵𝑞 , 𝐷𝐼𝑀,𝑀, 𝑓)

and 𝐶𝑢𝑏𝑒(𝐵𝑢, 𝐷𝐼𝑀,𝑀, 𝑓) for every unit 𝑢 in the search scope. This is equivalent to

materializing the whole data cube 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪ 𝐷𝐼𝑀,𝑀, 𝑓) since all units using attributes

𝑈𝐼𝐷 need to be considered.

30

A naïve method is to search every unit 𝑢 in the scope, given a query unit 𝑞, and

compute the performance gap between 𝑞 and 𝑢 for every possible aggregate cell 𝑐 formed

by the set of attributes 𝐷𝐼𝑀. It is time consuming to perform computation in every aspect

𝑐 for every unit 𝑢. We can organize the units and the aspects such that the search can

ignore many aggregate cells that are trivial.

3.3.1. Inverted Index for Fast Search

In this section, we use two simple ideas to facilitate fast search.

As the first idea, we sort all aggregate cells in the cube 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪ 𝐷𝐼𝑀,𝑀, 𝑓)

in the aggregate value descending order. We search aggregate cells in this order for

answering a query. In this order, we visit the aggregate cells of larger values earlier on

and thus heuristically we have a better chance of finding cells with larger performance

gaps for the query cell. Let ≺𝑎𝑔𝑔𝑟 be the aggregate value descending order of all

aggregate cells in 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪ 𝐷𝐼𝑀,𝑀, 𝑓). For any aggregate cells 𝑢 and 𝑣,

if 𝑢 ≺𝑎𝑔𝑔𝑟 𝑣, then 𝑢.𝑀 ≥ 𝑣.𝑀. Note that if there are two or more aggregate cells having

the same value, the tie can be broken in any arbitrary way.

The second idea is to use inverted index (Wikipedia, 2016). For each value in the

domain of every unit-id attribute, we maintain an inverted index to record the list of

aggregate cells containing this value. Suppose 𝑎𝑖𝑗 is a value in the domain of unit-id

attribute 𝐴𝑖. The inverted index 𝐼𝑛𝑑𝑒𝑥𝑎𝑖𝑗 is a list of aggregate cells 𝑢 ∈ 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪

𝐷𝐼𝑀,𝑀, 𝑓) such that 𝑢. 𝐴𝑖 = 𝑎𝑖𝑗. All aggregate cells in every inverted index are sorted

according to the order ≺𝑎𝑔𝑔𝑟.

We can retrieve all aggregate cells of cube 𝐶𝑢𝑏𝑒(𝐵𝑞 , 𝐷𝐼𝑀,𝑀, 𝑓) using inverted

indices efficiently in a way similar to merge-sort. Let 𝑞 be the query unit and 𝑞. 𝐴𝑖1 , … , 𝑞. 𝐴𝑖𝑙

are the unit-id attribute values that are not ∗. To find all aggregate cells of 𝑞, we only need

to search inverted indices 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖1 , … , 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑙
 and find all aggregate cells 𝑐 such that

𝑐 appears in every 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑗
 and takes value ∗ in all other unit-id attributes. Since we

31

scan the inverted indices in the order of ≺𝑎𝑔𝑔𝑟, we can find all aggregate cells of 𝑞 in one

scan.

The inverted index also facilitates efficient retrieval of all unit aggregate cells in the

search scope; that is, ancestors, descendants, and siblings of 𝑞. To search for the

ancestor units and their aggregate cells, we scan the inverted indices 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖1
, … ,

𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑙
 in a synchronized manner. Except for the unit (∗, … ,∗) which can be checked

separately as a special case, an aggregate cell 𝑐 is an ancestor of 𝑞 if (1) 𝑐 appears in at

least one of the inverted indices 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖1 , … , 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑙
; and (2) 𝑐. 𝐴𝑖𝑗 = ∗ if 𝑐 does not

appear in 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑗
. Again, since we scan the inverted indices in the order of ≺𝑎𝑔𝑔𝑟, we

can find all ancestor units of 𝑞 and their aggregate cells in one scan. To find all descendant

units of 𝑞, we search the inverted indices 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖1
, … , 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑙

and find all cells 𝑐 such

that 𝑐 appears in every inverted index 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑗
 and takes a non-∗ value in at least one

unit-id attribute other than 𝐴𝑖1 , … , 𝐴𝑖𝑙. To find all siblings of 𝑞, we search the inverted

indices 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖1
, … , 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑙

and find all cells 𝑐 such that (1) 𝑐 appears in every inverted

index 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑗
 except for one, say 𝐼𝑛𝑑𝑒𝑥𝑞.𝐴𝑖𝑗0

; (2) 𝑐. 𝐴𝑖𝑗0 ≠ 𝑞. 𝐴𝑖𝑗0and 𝑐. 𝐴𝑖𝑗0 ≠ ∗;

(3) 𝑐. 𝐴𝑖𝑗 = ∗ if 𝑞. 𝐴𝑖𝑗 = ∗. Both searches can be achieved in one scan of the inverted

indices.

Example 4 (SIIC). We use sample data shown in Table 2 as an example. The 𝑎𝑣𝑔() is

the aggregate function. Let 𝑈𝐼𝐷 = {age-group, gender}, 𝐷𝐼𝑀 = {location, position,

education}, and 𝑀 = {sales volume}. We first build an inverted index for each value in

the domain of every unit-it attributes, in this example, age-group and gender as shown

in Figure 7.

32

Figure 7 Example SIIC for values "young" and "M"

Suppose the query unit is 𝑞 = (young, M). We find that (young, M, Vancouver, staff,

University) appears in both inverted indices for “young” and “M”; thus, (young, M,

Vancouver, staff, University) must be an aggregate cell of 𝑞. Similarly, we can easily find

all aggregate cells of 𝑞, {(young, M, Vancouver, staff, University):200, (young, M,

Vancouver, ∗, University):200, …} with the aide of inverted indices.

To find all aggregate cells of ancestors, descendants, and siblings of 𝑞, we apply

the same technique to the search scope of 𝑞. For example, to find all aggregate cells of

a sibling (young, F), we only need to check aggregate cells that appear in both inverted

indices for “young” and “F”. Again, we have all aggregate cells sorted in the search scope

{(young, F, ∗, ∗, ∗):225, (mid-age, M, Vancouver, ∗, University):224, …}.

3.3.2. Pruning

Since we scan aggregate cells in the aggregate value descending order, we

maintain the top-𝑘 answers and we can define the following property.

Lemma 1. Given a query unit 𝑞, consider an aggregate cell 𝑐 for 𝑞‘s dimension attributes

such that 𝑞 ⊗ 𝑐 is not empty. For two units 𝑢 and 𝑢’ such that 𝑢 ⊗ 𝑐 ≺𝑎𝑔𝑔𝑟 𝑢
′⊗ 𝑐,

then
(𝑢⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
≥

𝑢′⊗𝑐.𝑀

𝑞⊗𝑐.𝑀
.

Proof. We only need to recall that if 𝑢 ⊗ 𝑐 ≺𝑎𝑔𝑔𝑟 𝑢
′⊗ 𝑐, (𝑢 ⊗ 𝑐).𝑀 ≥ (𝑢′ ⊗ 𝑐).𝑀, and the

assumption that the aggregate values are positive.

(young, F, ∗, ∗, ∗)

(young, ∗, Seattle, ∗, ∗)

…

(young, M, Vancouver, staff, University)

…

225

225

…

200

…

(mid-age, M, Vancouver, ∗,University)

…

(young, M, Vancouver, staff, University)

(young, M, Vancouver, ∗, University)

…

224

…

200

200

…

Inverted Index for “young” Inverted Index for “M”

33

Using Lemma 1, for any aggregate cell 𝑐 for dimension attributes such that 𝑐 is an

aspect of 𝑞 (i.e. 𝑞 ⊗ 𝑐 is not empty), if we scan an aggregate cell 𝑣 = 𝑢 ⊗ 𝑐 such

that (𝑢, 𝑐) is not qualified to be a top-𝑘 answer among the aggregate cells processed so

far, then any pair (𝑢′, 𝑐) to be scanned later is not qualified either; thus, 𝑐 can be pruned.

Further, let 𝑣 be the current aggregate cell we scan in the inverted indices. For

any aspect 𝑐 of 𝑞, if
𝑣.𝑀

 (𝑞⊗𝑐).𝑀
 is less than the top-𝑘 answers we have seen so far, then no

aggregate cells after 𝑣 in the sorted list can form a pair (𝑢, 𝑐) such that 𝑣 = 𝑢 ⊗ 𝑐 and (𝑢, 𝑐)

is qualified as a top-𝑘 answer. In this case, the aspect 𝑐 can be pruned as well. This rule

applies to all aspects of 𝑞; that is, aggregate cells in cube 𝐶𝑢𝑏𝑒(𝐵𝑞 , 𝐷𝐼𝑀,𝑀, 𝑓). Once it

is determined that all aspects of 𝑞 are processed (i.e. either included in the current top-𝑘

answer or can be pruned), the search can terminate and the current top-𝑘 answers can

be returned as the final answers to the benchmark query.

Example 5 (SIIC with Pruning). Figure 8 illustrates pruning with Example 4. Suppose

the query unit is 𝑞 = (young, M) and we want to find top-2 units that give largest

performance gaps. Assume we have {(young, F, ∗, ∗, ∗): 225, (mid-age, M, Vancouver,

∗, University): 224} as current top-2 benchmarks as shown in the figure. We are

currently scanning the aggregate cell {(young, F, ∗, ∗, University): 220}. It is easy to

see that {(young, F, ∗, ∗, University): 220} does not qualify to be top-2; as such, all

following cells that are compatible with (∗, ∗, University) can be pruned.

Figure 8 Example SIIC with Pruning

(young, F, ∗, ∗, ∗)

…

(young, F, ∗, ∗, University)

(mid-rage, M, ∗, ∗, University)

(young, ∗, ∗, ∗, University)

225

…

220

212

210

(young, F, ∗, ∗, ∗)

(mid-rage, M, Vancouver, ∗, University)

(young, M, ∗, ∗, ∗)

…

225

224

200

…

Sorted list Current top-2

current scan

pruned

34

3.4. Dominant Answer Materialization (DAM) Method

The SIIC method has a severe drawback; in the worst case, it still has to go through

the list of all aggregate cells of the whole data cube 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪ 𝐷𝐼𝑀,𝑀, 𝑓). When the

data cube is large, the cost is significant in both space and time. The Dominant Answer

Materialization (DAM) method addresses this issue.

3.4.1. Search Scope of Ancestors

We first consider the search scope of ancestors. Consider a query unit 𝑞 and a

unit 𝑢 that is an ancestor of 𝑞; that is, 𝑢 ≺ 𝑞. 𝑢 is called a maximal unit of 𝑞 with respect

to aspect 𝑐 if 𝑐 is an aspect of both 𝑞 and 𝑢 and there does not exist another ancestor 𝑢’ of

𝑞 such that
(𝑢′⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
>

(𝑢⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
. The following is observed.

Theorem 1 (Monotonicity). Given a unit 𝑞, if a unit 𝑢 is a maximal unit of 𝑞 with respect

to aspect 𝑐, then for any unit 𝑞’ such that 𝑢 ≺ 𝑞′ ≺ 𝑞, 𝑢 is also a maximal unit of 𝑞’ with

respect to 𝑐.

Proof by contradiction. Assume that 𝑢 is not a maximal unit of 𝑞’ with respect to 𝑐. Then

there exists another unit 𝑢’ such that 𝑢′ ≺ 𝑞′ and
(𝑢′⊗𝑐).𝑀

(𝑞′⊗𝑐).𝑀
>

(𝑢⊗𝑐).𝑀

(𝑞′⊗𝑐).𝑀
. Since 𝑢′ ≺ 𝑞′

and 𝑞′ ≺ 𝑞, we have 𝑢′ ≺ 𝑞. Since 𝑢′ ≺ 𝑞′ and
(𝑢′⊗𝑐).𝑀

(𝑞′⊗𝑐).𝑀
>

(𝑢⊗𝑐).𝑀

(𝑞′⊗𝑐).𝑀
 and the measure

values are non-negative, we have (𝑢′⊗ 𝑐).𝑀 > (𝑢 ⊗ 𝑐).𝑀. Therefore, we

have
(𝑢′⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
>

(𝑢⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
. That is, 𝑢 is not a maximal unit of 𝑞 with respect to 𝑐. A

contradiction.

Theorem 1 presents a useful observation; that is, multiple query units may share

a common aggregate unit as an answer to benchmark queries. To answer benchmark

queries efficiently, we can pre-compute aggregate units and the associated aspects that

may be answers to benchmark queries. The problem then is to determine, for an

aggregate unit 𝑢, which query units may take 𝑢 as a possible answer and with respect to

which aspects. The following lemma answers this question.

35

Lemma 2. For aggregate units 𝑢 and 𝑣 such that 𝑢 ≺ 𝑣, let 𝑐 be an aspect of both 𝑢 and

𝑣. Then, 𝑢 is not a maximal unit of 𝑣 with respect to 𝑐 if:

1. there exists an ancestor 𝑢′ ≺ 𝑢 such that (𝑢′⊗ 𝑐).𝑀 > (𝑢 ⊗ 𝑐).𝑀; or

2. there exists a descendant 𝑢’’ such that 𝑢 ≺ 𝑢′′ ≺ 𝑣 and (𝑢 ⊗ 𝑐).𝑀 < (𝑢′′ ⊗ 𝑐).𝑀.

Proof. If there exists an ancestor 𝑢′ ≺ 𝑢 such that (𝑢′⊗ 𝑐).𝑀 > (𝑢 ⊗ 𝑐).𝑀,

then 𝑅 (
𝑢′

𝑣
|𝑐) > 𝑅 (

𝑢

𝑣
|𝑐). If there exists a descendant 𝑢’’ such that 𝑢 ≺ 𝑢′′ ≺ 𝑣 and

(𝑢 ⊗ 𝑐).𝑀 < (𝑢′′ ⊗ 𝑐).𝑀, then 𝑅 (
𝑢′′

𝑣
|𝑐) > 𝑅 (

𝑢

𝑣
|𝑐). In both cases, 𝑢 is not a maximal

unit of 𝑣 with respect to 𝑐.

According to the first item in Lemma 2, to answer benchmark queries whose

search scope is the ancestors, we do not need to store the whole data cube 𝐶𝑢𝑏𝑒(𝐵, 𝑈𝐼𝐷 ∪

𝐷𝐼𝑀,𝑀, 𝑓). Instead, we only need to store those aggregate units 𝑢 and aspects 𝑐 such

that there does not exist another unit 𝑢’ and aspects 𝑐’ and (𝑢 ⊗ 𝑐).𝑀 < (𝑢′⊗ 𝑐).𝑀. In

other words, we only need to store units and aspects whose measure values are not

dominated by any of their ancestors.

For aggregate unit 𝑢 and aspect 𝑐, we call (𝑢, 𝑐) a dominant answer if there does

not exist another unit 𝑢’ and 𝑐’ and (𝑢 ⊗ 𝑐).𝑀 < (𝑢′ ⊗ 𝑐).𝑀. To answer any benchmark

query, we only need to materialize all dominant answers.

Once all dominant answers are materialized, we can organize dominant answers

using inverted indices as per the SIIC method.

The last problem is to find how to compute dominant answers. A brute-force is to

compute a full data cube and then select dominant answers from all aggregate cells. Since

we are concerned with groups of aggregate cells with different measure values, we can

adopt the quotient cube method (Lakshmanan et al., 2002).

Instead of computing all aggregate cells of a data cube, the quotient cube method

groups aggregate cells according to the tuples in the base table that contribute most to

the aggregate of cells. For an aggregate cell 𝑢, it considers the set of descendant tuples

36

in the base table 𝑐𝑜𝑣(𝑢) = {𝑡|𝑢 ≺ 𝑡, 𝑡 ∈ 𝐵}. If two aggregate cells 𝑢1 and 𝑢2 share the

identical set of descendant tuples in the base table; that is, 𝑐𝑜𝑣(𝑢1) = 𝑐𝑜𝑣(𝑢2), then the

two cells are assigned to the same quotient group. It shows that each quotient group has

a unique upper bound which is also in the same group. In other words, if there are 𝑢1

and 𝑢2 such that 𝑐𝑜𝑣(𝑢1) = 𝑐𝑜𝑣(𝑢2) but 𝑢1 ⊀ 𝑢2 and 𝑢2 ⊀ 𝑢1 then there exists another

aggregate cell 𝑢 such that 𝑢 ⊀ 𝑢1, 𝑢 ⊀ 𝑢2 and 𝑐𝑜𝑣(𝑢) = 𝑐𝑜𝑣(𝑢1) = 𝑐𝑜𝑣(𝑢2). Now we only

need to materialize the upper bounds of the quotient groups that are dominant answers.

Example 6 (DAM). Using Table 2, we assume that the query unit is 𝑞 = (young, M) and

use 𝑎𝑣𝑔() as the aggregate function. The set of ancestors of the query unit is {(∗, M),

(young, ∗), (∗, ∗)}. It is easy to verify that 𝑢 = (*, M) is a maximal unit of 𝑞 with respect

to aspect 𝑐 = (Vancouver, ∗, University) and 𝑢 = (∗, ∗) is a maximal unit of 𝑞 with

respect to aspect 𝑐 = (Vancouver, staff, ∗). According to the base table, ((mid-age,

M), (Vancouver, ∗, University)) is a dominant answer since there does not exist a unit

𝑢’ that has a greater aggregate value than 𝑎𝑣𝑔(mid-age, M) ⊗ (Vancouver, ∗,

University)). As an example of quotient cube, we can verify that 𝑐𝑜𝑣(mid-age, M,

Vancouver, manager, ∗) = 𝑐𝑜𝑣(mid-age, M, ∗, manager, University); that is, they have

the same set of descendants in the base table. Thus, these two aggregate cells are in

the same quotient group. Further, (mid-age, M, ∗, manager, ∗) is the upper bound of

the group. By using the quotient cube, we can materialize all dominant answers from

the quotient group in Table 2; that is, {(young, F, ∗, ∗, ∗), (mid-age, M, Vancouver, ∗,

University), …}. Unlike the SIIC method, we only store the dominant answers, reducing

both the search space and the time. Once a query is given, we can use the inverted

indices to answer the query efficiently.

3.4.2. Search Scope of Descendants

Consider a query unit 𝑞 and a unit 𝑢 that is a descendant of 𝑞; that is, 𝑢 ≻ 𝑞. Then

𝑢 is called a maximal unit of 𝑞 with respect to aspect 𝑐 if 𝑐 is an aspect of both 𝑞 and 𝑢

and there does not exist another descendant 𝑢’ of 𝑞 such that
(𝑢′⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
>

(𝑢⊗𝑐).𝑀

(𝑞⊗𝑐).𝑀
. Similar

to Theorem 1, we have the following:

37

Corollary 1 (Monotonicity). Given a unit 𝑞, if a unit 𝑢 is a maximal unit of 𝑞 with respect

to aspect 𝑐, then for any unit 𝑞’ such that 𝑢 ≻ 𝑞′ ≻ 𝑞, 𝑢 is also a maximal unit of 𝑞’ with

respect to 𝑐.

Also, similar to Lemma 2, we have the following:

Corollary 2. For aggregate units 𝑢 and 𝑣 such that 𝑢 ≻ 𝑣, let 𝑐 be an aspect of both 𝑢

and 𝑣. Then 𝑢 is not a maximal unit of 𝑣 with respect to 𝑐 if:

1. there exists a descendant 𝑢′ ≻ 𝑢 such that (𝑢′⊗𝑐).𝑀 > (𝑢 ⊗ 𝑐).𝑀; or

2. there exists an ancestor 𝑢’’ such that 𝑢 ≻ 𝑢′′ ≻ 𝑣 and (𝑢 ⊗ 𝑐).𝑀 < (𝑢′′ ⊗ 𝑐).𝑀.

3.5. Empirical Evaluation

The algorithms were implemented with Python 2.7 running with PyPy2 JIT

optimization. PyPy2 is an advanced just-in-time complier which provides approximately

10 times faster running time and additional scalability than the standard Python. All

experiments were conducted on a PC with an Intel Core i7-3770 3.40GHz CUP, 16GB

memory and a 1 TB HDD, running the Ubuntu 14.04 operating system.

3.5.1. Data Sets and Experiment Settings

We evaluated our algorithms with both synthetic and real data:

 Synthetic data (TPC-H v2.17.1)

TPC-H is a widely used data set that consists of a suite of business oriented
ad-hoc queries and concurrent modifications. TPC-H has 8 separate individual
base tables. We used the joined results of table PART and table LINEITEM
as our evaluation base table.

 Real data (CDIAC Weather)

The weather data set available from Carbon Dioxide Information Analysis
Center (CDIAC) contains 1,015,367 tuples with attributes including station-id,
longitude, latitude, solar-altitude, present-weather, day, hour, weather-change-
code, and brightness.

The TPC Benchmark™H (TPC-H) is a decision support benchmark. It consists of

a suite of business oriented ad-hoc queries and concurrent data modifications. The

38

queries and the data populating the database have been chosen to have broad industry-

wide relevance. This benchmark illustrates decision support systems that examine large

volumes of data, execute queries with a high degree of complexity, and give answers to

critical business questions (TPC-H, 2016). Since benchmark queries and the underlying

techniques are highly related to data warehousing and decision support, we chose TPC-

H data sets.

We randomly generated 100 queries for each data set and conducted each

experiment 10 times, reporting the average value. Using the 𝑎𝑣𝑔() as the aggregate

function, we compared Sorted Inverted Index Cube without pruning (SIIC) as well as with

pruning (SIICP), and Dominant Answer Materialization (DAM). We used BUC (Beyer et

al., 1999) to materialize the cubes for SIIC/SIICP and Quotient Cube (Lakshmanan et al.,

2002) to compute quotient groups for DAM.

3.5.2. Reduction of Aggregate Cells Computed and Indexed

We conducted two sets of experiments to evaluate the effectiveness of reducing

the number of aggregate cells computed and indexed.

In the first set of experiments, we fixed the dimensionality of 𝐷𝐼𝑀 and reported the

number of computed and indexed cells with respect to the increase of dimensionality of

𝑈𝐼𝐷. We sorted the dimensions according to the cardinalities in the descending order.

For the TPC-H data set, we generated 9 testing data sets with 2 to 10 dimensions of 𝑈𝐼𝐷.

The dimensionality of 𝐷𝐼𝑀 was fixed to 5. For the Weather data, we generated 4 testing

data sets with 2 to 5 dimensions of 𝑈𝐼𝐷. The dimensionality of 𝐷𝐼𝑀 was fixed to 5. The

results are shown in tables 3 and 4.

Table 3 TPC-H: number of computed and indexed cells (5 𝑫𝑰𝑴 dimensions)

Method Dimensionality of

𝑼𝑰𝑫

2 3 4 5 6 7 8 9 10

SIIC/SIICP Computed (x106) 0.4 0.9 2.3 3.5 5.2 6.2 7.5 9.8 12

Indexed (x105) 0.2 0.4 1.1 2.1 3.6 4.3 6.4 8.0 9.6

DAM Computed (x105) 0.9 1.7 2.2 4.1 5.5 6.3 7.4 9.7 11

Indexed (x104) 0.9 1.2 1.6 2.2 2.5 2.9 3.3 3.6 4.0

39

Table 4 Weather: number of computed and indexed cells (5 𝑫𝑰𝑴 dimensions)

Method Dimensionality of

𝑼𝑰𝑫

2 3 4 5

SIIC/SIICP Computed (x105) 5.2 11 25 35

Indexed (x104) 2.1 3.6 5.1 11

DAM Computed (x105) 0.9 1.5 2.1 2.2

Indexed (x103) 3.5 4.5 5.1 5.4

Since SIIC and SIICP have the same mechanism for materialization, the number

of cells computed and indexed for these two methods is the same. DAM performs better

than SIIC/SIICP for both TPC-H and Weather data. Figure 9 shows the reduction ratio of

the computed and indexed cells for TPC-H where the reduction ratio is the number of cells

in DAM over the number of cells in SIIC/SIICP. The reduction ratio in most cases is about

10%, meaning that DAM only computes and indexes about 10% of the cells that SIIC and

SIICP do. Further, the ratio becomes smaller when the dimensionality of 𝑈𝐼𝐷 increases.

This means that the more dimensions 𝑈𝐼𝐷 has, the more savings of materialization and

indexing DAM achieves.

Figure 9 Reduction Ratio of DAM over SIIC/SIICP for TPC-H (𝑫𝑰𝑴 fixed)

Figure 10 shows the results for the Weather data set. The observation is similar

to that for the TPC-H. The savings accomplished by DAM is due to the fact that DAM only

stores and searches the dominant answers in the quotient groups.

40

Figure 10 Reduction Ratio of DAM over SIIC/SIICP for Weather (𝑫𝑰𝑴 fixed)

In the second set of experiments, we fixed the dimensionality of 𝑈𝐼𝐷 and reported

the number of computed and indexed cells with respect to 𝐷𝐼𝑀. For TPC-H, we generated

4 testing data sets with 2 to 5 dimensions of 𝐷𝐼𝑀 and the dimensionality of 𝑈𝐼𝐷 was fixed

to 10. For the Weather data, we generated 4 testing data sets with 2 to 5 dimensions of

𝐷𝐼𝑀 and the dimensionality of 𝑈𝐼𝐷 was fixed to 5. The results are shown in tables 5 and

6.

Table 5 TPC-H: number of computed and indexed cells (10 𝑼𝑰𝑫 dimensions)

Method Dimensionality of

𝑼𝑰𝑫

2 3 4 5

SIIC/SIICP Computed (x106) 5.9 7.1 9.6 12

Indexed (x105) 4.4 6.5 7.9 9.6

DAM Computed (x105) 6.5 7.9 9.5 11

Indexed (x104) 2.6 3.1 3.5 4.0

Table 6 Weather: number of computed and indexed cells (5 𝑼𝑰𝑫 dimensions)

Method Dimensionality of

𝑼𝑰𝑫

2 3 4 5

SIIC/SIICP Computed (x105) 4.2 9.8 22 35

Indexed (x104) 1.5 2.6 5.9 11

DAM Computed (x105) 0.8 1.4 1.9 2.2

Indexed (x103) 3.2 4.2 4.8 5.4

Similar to the results of the first set of experiments, DAM significantly outperforms

SIIC/SIICP for both synthetic and real data. Figure 11 shows the reduction ratio for TPC-

H and Figure 12 the Weather data. The reduction ratio in most cases is about 10%. Similar

to the observation described earlier, the ratio becomes smaller when the dimensionality

of 𝐷𝐼𝑀 increases.

41

Figure 11 Reduction Ratio of DAM over SIIC/SIICP for TPC-H (𝑼𝑰𝑫 fixed)

Figure 12 Reduction Ratio of DAM over SIIC/SIICP for Weather data (𝑼𝑰𝑫 fixed)

3.5.3. Runtime and Memory Usage

We fixed the dimensionality of 𝐷𝐼𝑀 and reported both runtime and memory usage

in query answering with respect to the dimensionality of 𝑈𝐼𝐷. The testing data sets were

the same as those in the first set of experiments. The memory usage reported is the peak

memory usage during query answering. Query answering was tested by 100 random

queries, as such, the average query answering runtime and the standard deviation are

reported. Figure 13 shows the results for TPC-H and Figure 14 the Weather data. SIICP

is slightly faster and uses less memory than SIIC. DAM significantly outperforms SIIC and

SIICP in runtime and memory usage. For runtime for index construction, DAM is less than

half the runtime of SIIC/SIICP. Further, the DAM runtime increase is much slower than

SIIC and SIICP with the 𝑈𝐼𝐷 dimensionality increase. DAM consumes a small amount of

memory while SIIC/SIICP consume much larger amount of memory. Similar to runtime,

42

the DAM memory usage increase is slower than SIIC/SIICP as the 𝑈𝐼𝐷 dimensionality

increases.

Figure 13 Runtime and Memory Usage with TPC-H (𝑫𝑰𝑴 fixed)

Figure 14 Runtime and Memory Usage with Weather (DIM fixed)

These results indicate that when 𝑈𝐼𝐷 has more dimensions, DAM can save more

time and memory in query answering. As noted earlier, the savings come from the fact

that DAM only computes and stores dominant answers in the quotient groups. Once a

query is given, DAM only searches the dominant answers which leads to efficiency in both

time and memory usage. Both SIIC and SIICP need to materialize the data cube using

BUC and build the inverted indices. SIICP is faster than SIIC because it applies pruning

in query answering.

Next, we fixed dimensionality of 𝑈𝐼𝐷 and reported the runtime and the memory

usage with respect to the dimensionality of 𝐷𝐼𝑀, using the same testing data. The results

are shown in figures 15 and 16. DAM clearly outperforms SIIC/SIICP.

43

Figure 15 Runtime and Memory Usage with TPC-H (𝑼𝑰𝑫 fixed)

Figure 16 Runtime and Memory Usage with Weather (𝑼𝑰𝑫 fixed)

3.5.4. Scalability

To assess scalability, we generated and used 4 TPC-H data sets with different

size: 25%, 50%, 75%, 100% of 1GB. The dimensionality of 𝑈𝐼𝐷 was fixed to 10 and the

dimensionality of 𝐷𝐼𝑀 to 5. The results are shown in Figure 17. DAM is much more

scalable than SIIC/SIICP for runtime. For memory usage, all 3 are scalable. DAM

consistently uses much less memory than SIIC/SIICP.

Figure 17 Scalability with TPC-H

44

Reflective Benchmarking

In Chapter 3, we developed methods to find significant benchmarks efficiently in

data warehouses.

In this chapter, we consider outlier detection techniques in data warehouses for

multidimensional benchmarking. As stated earlier in section 2.3, when organizations

conduct benchmarking, they are mainly concerned with identifying areas for performance

improvement; that is, areas where they perform exceptionally (positively or negatively).

To this end, outlier analysis in multidimensional databases (i.e. data warehouses) lends

itself to viable multidimensional benchmarking. By employing outlier detection techniques,

we identify what causes organizations to deviate from the norm (i.e. benchmarks). Is an

organization an outlier because a small number of underlying units or a majority of them

are outliers?

Since what makes an organization an outlier is a reflection of self, we refer to the

method presented in this chapter as “reflective benchmarking”.

4.1. Preliminaries

As in Chapter 3, we follow the notations in the conventional data cube and data

warehouse literature (Gray et al., 1997).

Example 1 (Preliminaries). To develop a health index, an organization is interested in

finding how prevalent certain illnesses are across its employees. While benchmarking,

an organization may find that it has an exceptionally high rate of pain treatment

provisions across its employees compared to other organizations in the same industry.

The organization will be interested in finding what makes it an outlier and learning more

about the characteristics of its internal structures.

45

Consider a table 𝑇 = {employee-id, gender, age-group, service, count} which

records the organization’s employee attributes including unique identifiers of employees,

genders, age-groups, services provided to treat certain illnesses, and the count of services

provided. Suppose employees who suffer from chronic pain receive regular treatments,

such as, physiotherapy, chiropractic, and massage services to ease pain. The prevalence

rate of chronic pain across employees of the organization can be represented by how

many employees of the organization provision such services. If the rate is an outlier, the

organization would want to understand if it is an outlier because most of its employees are

outliers. If so, it would then want to reflect on its internal structures, such as, the

characteristics of its employees to understand what drives its employees to be outliers.

The drivers could be genders, age-groups, types of occupations, employment types,

departments, locations, number of dependents, etc. or combinations of them.

Definition 1 (Fact Table). We consider a fact table 𝐹 for 𝑘 parties (e.g. employees) whose

attributes can be partitioned into 𝑘 + 1 subsets 𝐹𝑖(1 ≤ 𝑖 ≤ 𝑘 + 1). That is, 𝐹 = ⋃ 𝐹𝑖
𝑘+1
𝑖=1 .

 The subset 𝐹𝑖(1 ≤ 𝑖 ≤ 𝑘 + 1) contains the attributes of the 𝑖-𝑡ℎ party. We refer

to 𝐹𝑖 as 𝑝𝑎𝑟𝑡𝑦 𝑖.

 We assume that ⋃ 𝐹𝑖
𝑘
𝑖=1 is a key of the table 𝐹. That is, no two tuples have the

same values of all attributes in ⋃ 𝐹𝑖
𝑘
𝑖=1 .

 The subset 𝐹𝑘+1 contains the measure (e.g. count). As in Chapter 3, the measure
attribute is used to derive quantitative difference to indicate the performance gap
between two parties.

Definition 2 (Groups). For the domain of each attribute 𝐹 = ⋃ 𝐹𝑖
𝑘
𝑖=1 , we introduce a meta-

symbol ∗ which indicates that the attribute is generalized. A tuple 𝑡 represents a base

level group of 𝑝𝑎𝑟𝑡𝑦 𝑖, if 𝑡 has a non-∗ value for every attribute of 𝐹𝑖. Otherwise, 𝑡 is

an aggregate group of 𝑝𝑎𝑟𝑡𝑦 𝑖. For groups 𝑡1 and 𝑡2 such that 𝑡1 ≠ 𝑡2, 𝑡1 is an

ancestor of 𝑡2 and 𝑡2 a descendent of 𝑡1, denoted by 𝑡1 ≺ 𝑡2, if for every attribute in 𝐹 =

⋃ 𝐹𝑖
𝑘
𝑖=1 where 𝑡1 has a non-∗ value, 𝑡2 takes the same value as 𝑡1. For example, (e12,

male, 30-40, physiotherapy) is a base level group while (∗,∗, 30-40,∗) is an aggregate

group and (∗,∗,30-40,∗) ≺ (e12, male, 30-40, physiotherapy).

It immediately follows that:

46

Lemma 1. For a party 𝐹𝑖 where the domain of every attribute is finite, all groups including

the base level and aggregate form a lattice under the relation ≺.

In theory, we can relax the requirement in Lemma 1; that is, as long as the domain

of every attribute is either finite or countable, the lemma still holds. In practice, a fact table

is always finite, as such, the domains of the attributes can be considered finite.

Definition 3 (Performance Gap). Given a fact table 𝐹 of 𝑘 parties, we extend the domain

of each attribute in ⋃ 𝐹𝑖
𝑘
𝑖=1 such that meta-symbol ∗ is included as a special value. A

performance gap is a group-by tuple 𝑡 ∈ 𝐹. That is, for every attribute in ⋃ 𝐹𝑖
𝑘
𝑖=1 , 𝑡 takes

either a value in the domain of the attribute or meta-symbol ∗. A performance gap is a

base level gap if every party in 𝑡 is a base level group. Otherwise, 𝑡 is an aggregate

performance gap.

If all groups are base level groups, a performance gap is simply a tuple in the fact

table. When performance gaps contain some aggregate groups, we use an aggregate

function to describe the aggregate performance gaps.

Definition 4 (Measure of Performance Gap). Given a fact table 𝐹 of 𝑘 parties,

let 𝑎𝑔𝑔𝑟: 2𝐹𝑘+1 → 𝐹𝑘+1 be an aggregate function. For any aggregate performance gap 𝑡,

the measure of 𝑡 is the aggregate of the measures of all base level performance gaps

that are descendants of 𝑡, that is,

𝑡. 𝐹𝑘+1 = 𝑎𝑔𝑔𝑟({𝑠. 𝐹𝑘+1|𝑠 ∈ 𝐹, 𝑠 𝑖𝑠 𝑎 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑡}).

For example, the prevalence rate of chronic pain across employees of an

organization can be computed by taking the average of all counts of services provided to

treat chronic pain in the fact table. Here the aggregate function is:

𝑎𝑔𝑔𝑟({𝑎𝑣𝑔𝑖, 𝑐𝑜𝑢𝑛𝑡𝑖}) = (
∑ 𝑎𝑣𝑔𝑖𝑖 ×𝑐𝑜𝑢𝑛𝑡𝑖

∑ 𝑐𝑜𝑢𝑛𝑡𝑖𝑖
, ∑ 𝑐𝑜𝑢𝑛𝑡𝑖𝑖).

Theorem 1 (Performance Gap Lattice). Given a fact table 𝐹 of 𝑘 parties, if the domain

of every attribute in ⋃ 𝐹𝑖
𝑘
𝑖=1 is finite, then all performance gaps form a lattice 𝐿 =

47

∏ 𝐿𝐹𝑖
𝑘
𝑖=1 where 𝐿𝐹𝑖 is the lattice of party 𝐹𝑖. Further, |𝐿| = |∏ 𝐿𝐹𝑖

𝑘
𝑖=1 | = ∏ (|𝐴| +𝐴∈∪𝑖=1

𝑘 𝐹𝑖

1).

From Theorem 1, the size of the space required for performance gaps is

exponential to the number of parties.

4.2. Outlier Types

Outliers can be modeled in many different ways (Campbell, 2014). In this section,

we employ the model of statistical outliers which captures observation points that are

distant from the majority of observations (Hodge et al., 2004). The rational for the model

is that it is unlikely that distant points have been generated by the same mechanism that

generated the majority of points. Given a set of samples where each sample is associated

with a numerical measure, we can calculate the mean 𝑚 and the standard deviation 𝛿.

Theorem 2 (Chebyshev Inequality (Chebyshev, 1984)). Let 𝑋 be a random variable with

finite expected value 𝑚 and non-zero variance 𝛿. For any real number, 𝑙 > 0, 𝑃𝑟(|𝑋 −

𝑚| ≥ 𝑙𝛿) ≤
1

𝑙2
.

We use 𝑙 as an outlier threshold; the samples that are more than 𝑙𝛿 away from 𝑚

are deemed outliers.

Definition 5 (Outliers). Given a fact table 𝐹 and outlier threshold 𝑙 where 𝐹𝑘+1 contains

only one attribute, let 𝑚 be the mean and 𝛿 be the standard deviation of 𝐹𝑘+1 of all base

level performance gaps. Performance gap 𝑡 is an outlier if |𝑡. 𝐹𝑘+1 −𝑚| > 𝑙𝛿.

Definition 5 can be easily extended to fact tables containing multiple measure

attributes. Is there redundancy among performance gap outliers? We have the following

observation.

Theorem 3 (Weak Monotonicity). Consider a fact table 𝐹 of 𝑘 parties and 𝑎𝑣𝑒𝑟𝑎𝑔𝑒() as

the aggregate function. Let 𝑡 be an aggregate performance gap and 𝐴 ∈ ⋃ 𝐹𝑖
𝑘
𝑖=1 be an

attribute where 𝑡 has value ∗. If 𝑡 is an outlier, then there exists at least one

48

performance gap outlier 𝑡′ such that (1) 𝑡′ = 𝑡 for all attributes in ⋃ 𝐹𝑖
𝑘
𝑖=1 − {𝐴} and

(2) 𝑡′. 𝐴 ≠∗.

Proof by contradiction. Without loss of generality, let 𝐴 ∈ 𝐹1. We can write 𝑡 =

(𝑡1, 𝑡2, … , 𝑡𝑘) and 𝑡′ = (𝑡′1, 𝑡2, … , 𝑡𝑘) where 𝑡𝑖(1 < 𝑖 < 𝑘) are the groups from 𝑝𝑎𝑟𝑡𝑦 𝑖

and 𝑡′1 is a group from 𝑝𝑎𝑟𝑡𝑦 1 such that 𝑡′1 is a child of 𝑡1. Suppose 𝑡 has 𝑛 such

children denoted by 𝑡′(1), … , 𝑡′(𝑛). According to Definition 5, 𝑡 is a performance gap

outlier and |𝑡. 𝐹𝑘+1 −𝑚| > 𝑙𝛿. Suppose the children of 𝑡 are 𝑡𝑖(1 < 𝑖 < 𝑛), then 𝑡′ ∈ 𝑡𝑖.

As per Definition 4 and using 𝑎𝑣𝑒𝑟𝑎𝑔𝑒() as the aggregate function, we have 𝑡. 𝐹𝑘+1 =

∑ 𝑡′(𝑖).𝐹𝑘+1
𝑛
𝑖=1

𝑛
. Assume all possible performance 𝑡′(𝑖) are not outliers. Then,

𝑚 − 𝑙𝛿 ≤ 𝑡′(𝑖). 𝐹𝑘+1 ≤ 𝑚 + 𝑙𝛿

𝑛(𝑚 − 𝑙𝛿) ≤∑𝑡′(𝑖). 𝐹𝑘+1

𝑛

𝑖=1

≤ 𝑛(𝑚 + 𝑙𝛿)

𝑚 − 𝑙𝛿 ≤
∑ 𝑡′(𝑖). 𝐹𝑘+1
𝑛
𝑖=1

𝑛
≤ 𝑚 + 𝑙𝛿

|
∑ 𝑡′(𝑖). 𝐹𝑘+1
𝑛
𝑖=1

𝑛
−𝑚| ≤ 𝑙𝛿

|𝑡 − 𝑚| ≤ 𝑙𝛿

A contradiction.

According to Theorem 3, if an aggregate performance gap 𝑡 is an outlier, then

some descendants of 𝑡 must also be outliers. Consequently, we can classify performance

gap outliers into two types:

 Aggregate performance gap 𝑡 is a type-I outlier if most base level performance

gaps of 𝑡 are not outliers. In other words, a small number of descendants that are

outliers are driving 𝑡 to be an outlier. Thus, 𝑡 being considered an outlier is a mere
chance and may not be interesting; instead, outlying descendants of 𝑡 could be
more interesting and warrant further analyses.

49

 Aggregate performance gap 𝑡 is a type-II outlier if many base level performance

gaps of 𝑡 are outliers. In other words, 𝑡 is a good summary of a set of outlying
descendants. Thus, 𝑡 on its own may be interesting.

To quantify these two types of outliers, we use Kullback-Leibler divergence or KL-

divergence (Kullback et al., 1951) which defines a measure of the difference between two

distributions 𝑃 and 𝑄 in information theory. In applications, 𝑃 typically represents the true

distribution of data, observations or precisely calculated theoretical distribution while 𝑄

represents a theory, model, description, or approximation of 𝑃.

Definition 6 (Kullback-Leibler divergence (Kullback et al., 1951)). For probability

distributions 𝑃 and 𝑄 of a discrete random variable, the KL-divergence is defined as:

𝐾𝐿(𝑃|𝑄) =∑ 𝑃(𝑥)l𝑛
𝑃(𝑥)

𝑄(𝑥)𝑥∈𝐷

It is the expectation of the logarithmic difference between probabilities 𝑃 and 𝑄

where the expectation is taken using the probabilities 𝑃. The KL-divergence is defined

only if 𝑄(𝑖) = 0 implies 𝑃(𝑖) = 0 for all 𝑖 (absolute continuity). Whenever 𝑃(𝑖) = 0, the

contribution of the 𝑖-term is interpreted as zero because lim
𝑥→0

𝑥log(𝑥) = 0.

For probability distributions 𝑃 and 𝑄 of a continuous random variable, the KL-

divergence is defined to be the integral:

𝐾𝐿(𝑃|𝑄) = ∫ 𝑝(𝑥)l𝑛
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

∞

−∞

where 𝑝 and 𝑞 denote densities of 𝑃 and 𝑄 respectively.

KL-divergence is non-negative but not symmetric; that is, generally 𝐾𝐿(𝑃|𝑄) ≠

𝐾𝐿(𝑄|𝑃). For both discrete and continuous cases, the KL-divergence is only defined if 𝑃

and 𝑄 sum to 1 and if 𝑄(𝑥) > 0 for any 𝑥 such that 𝑃(𝑥) > 0. The smaller the KL-

divergence, the more similar the two distributions 𝑃 and 𝑄.

Definition 7 (Types of Outlier). Let 𝑡 be a performance outlier and 𝑆 be the set of base

level performance gaps (i.e. the descendants of 𝑡). 𝑆 can be divided into two exclusive

50

groups; 𝑆0 (the subset of normal) and 𝑆1 (the subset of outliers). 𝑆 = 𝑆0 ∪ 𝑆1 and 𝑆0 ∩

𝑆1 ≠ ∅. Performance gap 𝑡 is a type-I outlier if 𝐾𝐿(𝑆|𝑆1) ≥ 𝐾𝐿(𝑆|𝑆0); otherwise, 𝑡 is a

type-II outlier.

4.3. Detection Methods

In this section, we first show that all performance gap outliers can be detected by

computing an iceberg cube, we then discuss how to determine the types of outliers.

4.3.1. Outlier Detection by Iceberg Cubing

For a fact table 𝐹 and a measure threshold 𝜏, an iceberg cube contains all

aggregate cells of 𝐹 whose measures are at least 𝜏. Given a fact table 𝐹 of 𝑘 parties, 𝐹 =

⋃ 𝐹𝑖
𝑘+1
𝑖=1 where ⋃ 𝐹𝑖

𝑘
𝑖=1 are the dimensions and 𝐹𝑘+1 are the measures, we use existing

cube computation methods such as BUC (Beyer et al., 1999) and TDC (Zhao et al., 1997)

and |𝑡. 𝐹𝑘+1 −𝑚| > 𝑙𝛿 as 𝜏 to compute an iceberg cube of 𝐹 which only contains

aggregate cells that are outliers.

Many existing iceberg cubing methods rely on the monotonicity property of iceberg

conditions; however, the iceberg condition in this problem is not monotonic; that is, the

child of a performance gap outlier 𝑡 may not be an outlier. Since Theorem 3 identifies

weak monotonicity of the problem, we use a special method, eBUC (Yu et al., 2005), which

looks ahead to check whether an aggregate cell 𝑡 is an ancestor of outliers. This only

requires the storage of base level performance gaps that are outliers.

4.3.2. Outlier Type Determination

As discussed in 4.2, the KL-divergence determines whether an aggregate

performance gap outlier is more similar to base level performance gaps that are normal

or outlying. For an aggregate performance gap 𝑡, let 𝑐𝑜𝑣(𝑡) be the set of descendants

of 𝑡. We want to measure the distribution of |𝑡. 𝐹𝑘+1 −𝑚| for tuples 𝑢 ∈ 𝑐𝑜𝑣(𝑡).

51

Since |𝑡. 𝐹𝑘+1 −𝑚| is a continuous random variable, we can apply Kernel Density

Estimation (Breiman et al., 1977) or KDE to approximate the distribution. KDE is a non-

parametric approach to estimate the probability density function of a random variable. Let

(𝑥1, 𝑥2, … , 𝑥𝑛) be an independent and identically distributed sample drawn from some

distribution with an unknown density 𝑓. We are interested in estimating the shape of this

function 𝑓. Its kernel density estimator is 𝑓ℎ(𝑥) =
1

𝑛
∑ 𝐾ℎ
𝑛
𝑖=1 (𝑥 − 𝑥𝑖) =

1

𝑛ℎ
∑ 𝐾𝑛
𝑖=1 (

𝑥−𝑥𝑖

ℎ
)

where 𝐾(∙) is the kernel and is a non-negative function that integrates to one and has the

mean zero. ℎ > 0 is a smoothing parameter, referred to as bandwidth, and determines

the width of the kernel.

A range of kernel functions are commonly used. We use Gaussian kernels and

the Gaussian approximation (Silverman, 1986). We set ℎ = 1.06 × 𝛿|𝑃|−
1

5 as suggested

by Silverman (1986) where 𝛿 is the standard deviation of the samples in 𝑃. For a single

dimension, the density estimator is:

𝑃(𝑥) =
1

|𝑃|√2𝜋ℎ
∑𝑒

−
(𝑥−𝑝)2

2ℎ2

𝑝∈𝑃

Given two distributions 𝑃 and 𝑄, the KL-divergence returns the difference of

distribution of 𝑄 given 𝑃; thus, the larger the KL-divergence, the more different the two

distributions. For 𝑃 and 𝑄, we have:

lim
𝑥→∞

1

𝑚
∑ln

𝑃(𝑝𝑖)

𝑄(𝑝𝑖)

𝑚

𝑖=1

= 𝐾𝐿(𝑃|𝑄)

where 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑚} is the set of samples. Further, the KL-divergence can be

estimated as:

𝐾�̂�(𝑃|𝑄) =
1

𝑚
∑ln

𝑃(𝑝𝑖)

𝑄(𝑝𝑖)

𝑚

𝑖=1

52

As per Definition 7, we compare the KL-divergence of an aggregate performance

gap outlier with its base level performance gaps that are both normal and outliers. That

is, given an aggregate performance gap outlier 𝑡, we compare:

𝐾�̂�(𝑆|𝑆0) =
1

|𝑐𝑜𝑣(𝑡)|
∑ ln

𝑆(|𝑢. 𝐹𝑘+1 −𝑚|)

𝑆0(|𝑢. 𝐹𝑘+1 −𝑚|)
𝑢∈𝑐𝑜𝑣(𝑡)

and

𝐾�̂�(𝑆|𝑆1) =
1

|𝑐𝑜𝑣(𝑡)|
∑ ln

𝑆(|𝑢. 𝐹𝑘+1 −𝑚|)

𝑆1(|𝑢. 𝐹𝑘+1 −𝑚|)
𝑢∈𝑐𝑜𝑣(𝑡)

where 𝑆(∙), 𝑆0(∙), 𝑆1(∙) are the density functions of 𝑆, 𝑆0, 𝑆1 estimated using KDE and 𝑚 =

∑ 𝑢.𝐹𝑘+1𝑢∈𝑐𝑜𝑣(𝑡)

|𝑐𝑜𝑣(𝑡)|
.

4.4. Empirical Evaluation

We conducted extensive experiments with both synthetic and real data to evaluate

the proposed detection methods. The programs were implemented in C++ using Microsoft

Visual Studio 2010. All experiments were conducted on a PC with Intel Core Duo E8400

3.0 GHz CPU and 4GB of memory running the Microsoft Windows 7 operating system.

4.4.1. Case Study

To test the effectiveness of the proposed methods, we used a real data set

comprising of extended health insurance claims. For privacy protection, the data is

anonymized and the service and the location information is coded in such a way that the

original and meaningful information cannot be inferred. Note that this case study uses

“amount” as the measure; however, the “count” quoted in the examples can just as easily

be used as the measure. The average amount is used for each aggregate performance

gap. The fact table contains 5,895 base level gaps; the average amount at the base level

is $63.50 and the standard deviation is 83.51.

53

Table 7 shows two example performance gap outliers detected by the methods

using the threshold 𝑙 = 2. To fully illustrate these two outliers, all base levels are listed in

tables 8 and 9.

Table 7 Example Performance Gap Outliers

ID Performance Gap Outlier (gender, age-group, location, service code) Type

𝑅1 (female, ∗, A101, S91) I

𝑅2 (female, ∗, A101, S31) II

Table 8 Base level Performance Gaps of 𝑹𝟏

ID Base level Performance Gaps
 (gender, age-group, location, service code)

Amount Normal
or

Outlier

1 (female,21-40, A101, S91) 125.00 Normal

2 (female,41-60 , A101, S91) 0.00 Normal

3 (female,41-60 , A101, S91) 230.00 Normal

4 (female,41-60 , A101, S91) 222.50 Normal

5 (female,41-60 , A101, S91) 200.00 Normal

6 (female,41-60 , A101, S91) 160.00 Normal

7 (female,41-60 , A101, S91) 1,106.25 Outlier

8 (female,41-60 , A101, S91) 1,900.00 Outlier

Table 9 Base level Performance Gaps of 𝑹𝟐

ID Base level Performance Gaps
 (gender, age-group, location, service code)

Amount Normal
or

Outlier

1 (female,41-60, A101, S31) 135.00 Normal

2 (female,41-60 , A101, S31) 130.03 Normal

3 (female,41-60 , A101, S31) 694.00 Outlier

4 (female,41-60 , A101, S31) 694.00 Outlier

5 (female,41-60 , A101, S31) 694.00 Outlier

6 (female,41-60 , A101, S31) 555.20 Outlier

7 (female,41-60 , A101, S31) 402.67 Outlier

8 (female,41-60 , A101, S31) 624.60 Outlier

9 (female,41-60 , A101, S31) 555.20 Outlier

10 (female,41-60 , A101, S31) 555.20 Outlier

As shown in Table 8, 𝑅1 has 8 base levels and among them, 6 are normal and 2

are outliers. For 𝑅1, 𝐾𝐿(𝑆|𝑆0) = 2.39 and 𝐾𝐿(𝑆|𝑆1) = 63.74. Thus, 𝐾𝐿(𝑆|𝑆0) < 𝐾𝐿(𝑆|𝑆1).

This means that the distribution of 𝑅1 is more similar to the distribution of its normal

descendants; as such, 𝑅1 is an outlier of type-I.

54

On the other hand, 𝑅2 is an outlier of type-II since 𝐾𝐿(𝑆|𝑆0) =

5.01182 and 𝐾𝐿(𝑆|𝑆1) = 0.454034. Thus, 𝐾𝐿(𝑆|𝑆0) > 𝐾𝐿(𝑆|𝑆1).

4.4.2. Efficiency and Scalability

We tested the efficiency of detection methods with both real and synthetic data

sets and compared three cubing methods: TDC, BUC, and eBUC. TDC and BUC compute

the whole cube while eBUC computes an iceberg cube. We used a larger real data set to

test the efficiency and random samples of various sized units of the data set to test the

scalability.

Figure 18 shows the scalability of the three methods with respect to the number of

tuples for threshold 𝑙 = 1. Note that the smaller the value of 𝑙, the more outliers; thus, less

pruning power eBUC has. The three methods have linear scalability. While the runtimes

of TDC and BUC are very close, eBUC can take advantage of pruning using the outlier

detection condition and its runtime is faster.

Figure 18 Runtime of TDC, BUC, and eBUC with respect to # of tuples

Figure 19 shows the scalability of the three methods with respect to parameter 𝑙

and the number of base level performance gaps. The larger the value of 𝑙, the less outliers

and the less computation required for all three methods to determine the types of outliers.

Compared to TDC and BUC, eBUC is able to use the outlier condition to prune normal

performance gaps during the cubing process, reducing the runtime further. The larger the

value of 𝑙, the more advantage eBUC has over other methods. The figure also indicates

that the determination of types of outliers incurs a substantial cost.

55

Figure 19 Runtime of TDC, BUC, and eBUC

Figure 20 shows the number of performance gap outliers with respect to parameter

𝑙 and the number of base level performance gaps. As indicated earlier as the value of 𝑙

increases, for all 3 methods, the less computation is needed to determine the types of

outliers – the trend is consistent with that shown in Figure 19. Further, most outliers

detected are at the aggregate level and there are much more type-II than type-I outliers.

The result clearly demonstrates the effectiveness of the proposed method in summarizing

outlier information.

 (a) number of tuples = 5,000 (b) number of tuples =10,000 (c) number of tuples =15,000

 (d) number of tuples = 20,000 (e) number of tuples =25,000 (f) number of tuples =30,000

56

Figure 20 Number of Detected Outliers

We also tested the efficiency and the scalability using synthetic data sets.

Synthetic data sets were generated with dimension attributes in discrete domains and

measure in continuous domain. We consider 3 factors in the experiments: the

dimensionality 𝑑, the number of tuples 𝑛 in the data set, and the distribution of the

dimensions (uniform distribution vs. normal distribution). We generated two data sets,

each of 100,000 tuples and 4 dimensions. The cardinality in each dimension is 20. The

tuples in the first data set follow uniform distribution in each dimension while the tuples in

the second data set follow the (discretized) normal distribution; that is, we used normal

distribution 𝜇 = 10 and 𝜃 = 2 to generate data and round the values to 20 bins in the range

of [1, 20]. Figure 21 shows the results where the threshold parameter 𝑙 = 1. The outlier

detection methods work much faster with normally distributed data where outliers are

meaningful.

 (a) number of tuples = 5,000 (b) number of tuples =10,000 (c) number of tuples =15,000

 (d) number of tuples = 20,000 (e) number of tuples =25,000 (f) number of tuples =30,000

57

Figure 21 Runtime of TDC, BUC, and eBUC with different distributions

Figure 22 shows the scalability of the detection methods with normally distributed

data.

Figure 22 Scalability with Synthetic Data

In Figure 22(a), the number of tuples is set to 10,000. The runtime increases

dramatically as the dimensionality increases. This is expected since computing a data

cube of high dimensionality is known challenging. In Figure 22(b), the dimensionality is

set to 4 and the number of tuples varies from 100,000 to 1 million. The rate of runtime

increase grows slower as the number of tuples increases. Given the cardinality of each

dimension, the number of possible group-by is fixed. When a fact table becomes very

large, many aggregate cells will be populated with a significant number of tuples where

the number of group-by grows slower (Figure 23). This result shows that the methods are

scalable with large data sets.

(a) BUC algorithm (b) TDC algorithm (c) eBUC algorithm

(a) Dimensionality (b) Database size

58

Figure 23 Number of Detected Outliers

59

Subspace Analysis

In Chapter 4, we developed a method to understand how outliers within an

aggregate group contribute to the overall deviation of the group from the norm. By

recognizing what type of outlier (type-I or type-II) an organization is, it can determine where

further analysis should be led to.

In this chapter, we explore subspaces in which an organization’s performance is

deemed an outlier.

5.1. Contrast Subspace

In a multi-dimensional dataset of 2 classes, given a query object 𝑞 and a target

class, we want to find a subspace in which 𝑞 most likely belongs to the target class and

not to the other class. This subspace is called contrast subspace since it contrasts the

likelihood of 𝑞 in the target class to that in the other class. By mining contrast subspaces,

we seek an answer for “In what context is the organization most similar to a group of

organizations and different from another group?”, for example. Using the example given

in Figure 1, Figure 24 illustrates the subspace consisting of 2 dimensions: mental health

prevalence rate and obesity prevalence rate. Organization 𝑞 (represented with a red dot)

is the query object. Organization 𝑞 seems to belong to Cluster 𝐴 of organizations and not

to Cluster 𝐵; thus, this subspace characterizes a contrast subspace for 𝑞, signifying that

when it comes to mental health and obesity, 𝑞 is most contrasting to the majority of

organizations (i.e. Cluster 𝐵). The insight given by this example may be that 𝑞 needs to

develop a program to reduce the rate of mental health and obesity across its workforce.

60

Figure 24 Example Contrast Subspace

5.1.1. Measure of Similarity

A measure to quantify the similarity between the query object and the target class,

as well as the difference between the query object and the other class is expressed as the

ratio of the likelihood of the query object in the target class against that of the query object

in the other class. This is essentially a model selection problem in which one of the two

models, 𝑀1 and 𝑀2, must be selected on the basis of observed data 𝐷. The probability is

assessed by Bayes factor 𝐾 given by 𝐾 =
𝑃𝑟(𝐷|𝑀1)

𝑃𝑟(𝐷|𝑀2)
 where a value of 𝐾 > 1 means that 𝑀1

is more strongly supported by 𝐷 than 𝑀2.

Problem Definition

Let 𝐷 = {𝐷1, … , 𝐷𝑑} be a 𝑑-dimensional space where the domain of 𝐷𝑖 is ℝ, the set

of real numbers. A subspace 𝑆 ⊆ 𝐷 (𝑆 ≠ 0) is a subset of 𝐷 and 𝐷 is also referred to as

the full space. The value of an object 𝑜 in dimension 𝐷𝑖 (1 ≤ 𝑖 ≤ 𝑑) is denoted as 𝑜. 𝐷𝑖.

For a subspace 𝑆 = {𝐷𝑖1 , … , 𝐷𝑖𝑙} ⊆ 𝐷, the projection of 𝑜 in 𝑆 is 𝑜𝑆 = {𝑜. 𝐷𝑖1 , … , 𝑜. 𝐷𝑖𝑙}. For

a set of objects 𝑂 = {𝑜𝑗|1 ≤ 𝑗 ≤ 𝑛}, the projection of 𝑂 in 𝑆 is 𝑂𝑆 = {𝑜𝑗
𝑆|𝑜𝑗 ∈ 𝑂, 1 ≤ 𝑗 ≤ 𝑛}.

Given a set of objects 𝑂, a latent distribution 𝒵 is assumed to have generated the

objects in 𝑂. For a query object 𝑞, 𝐿𝐷(𝑞|𝒵) is the likelihood of 𝑞 being generated by 𝒵 in

Company 𝑞

O
b
e
s
it
y
 P

re
v
a
le

n
c
e

Mental Health Prevalence

Cluster 𝐴

Cluster 𝐵

61

full space 𝐷. The posterior probability of 𝑞 given 𝑂, denoted by 𝐿𝐷(𝑞|𝑂), can be estimated

by 𝐿𝐷(𝑞|𝒵). For a non-empty subspace 𝑆(𝑆 ⊆ 𝐷, 𝑆 ≠ 0), the projection of 𝒵 in 𝑆 is 𝒵𝑆. The

subspace likelihood of object 𝑞 with respect to 𝒵 in 𝑆, denoted by 𝐿𝑆(𝑞|𝒵), can be used to

estimate the posterior probability of object 𝑞 given 𝑂 in 𝑆, denoted by 𝐿𝑆(𝑞|𝑂).

We assume that the objects in 𝑂 mutually exclusively belong to one of the 2

classes, 𝐶+ and 𝐶−. Hence 𝑂 = 𝑂+ ∪ 𝑂− and 𝑂+ ∩ 𝑂− = Ø where 𝑂+ and 𝑂− are the objects

belonging to 𝐶+ and 𝐶− respectively. Given a query object 𝑞, we are interested in finding

how likely 𝑞 belongs to 𝐶+ and does not belong to 𝐶−. We define the measure likelihood

contrast of 𝑞 as 𝐿𝐶(𝑞) =
𝐿(𝑞|𝑂+)

𝐿(𝑞|𝑂−)
.

Likelihood contrast is effectively the Bayes factor of object 𝑞 being the observation.

As such, 𝑂+ and 𝑂− represent the 2 models to choose from based on the query object 𝑞.

The ratio of probabilities indicates the likelihood of model 𝑂+ selected against 𝑂−. 𝐿𝐶(𝑞)

values in the range of {<1, 1 to 3, 3 to 10, 10 to 30, 30 to 100, > 100} correspond to

{negative, barely worth mentioning, substantial, strong, very strong, decisive} based on

the scale for interpretation of Bayes factor according to Jeffreys (1961).

The measure of likelihood contrast can be extended to subspaces. For a non-

empty subspace 𝑆(𝑆 ⊆ 𝐷), the likelihood contrast in a subspace 𝑆 is defined as 𝐿𝐶𝑆(𝑞) =

𝐿𝑆(𝑞|𝑂+)

𝐿𝑆(𝑞|𝑂−)
. To avoid triviality where 𝐿𝑆(𝑞|𝑂+) is very small, only the subspaces 𝐿𝑆(𝑞|𝑂+) > 𝛿,

where 𝛿 ≥ 0 is the minimum likelihood threshold, are considered.

Given a multi-dimensional dataset 𝑂 in full space 𝐷, a query object 𝑞, a minimum

likelihood threshold 𝛿 ≥ 0 and a parameter 𝑘 ≥ 0, the problem of mining contrast

subspace is to find top-𝑘 subspaces 𝑆 ordered by the subspace likelihood contrast 𝐿𝐶𝑆(𝑞)

subject to 𝐿𝑆(𝑞|𝑂+) > 𝛿.

KDE (Breiman et al., 1977) can be used to estimate the likelihood of 𝑞, 𝐿𝑆(𝑞|𝑂).

Following Silverman (1986), the general formula for multivariate kernel density estimation

with kernel 𝐾 and bandwidth parameter ℎ𝑆 in subspace 𝑆 is defined as:

62

𝑓𝑆(𝑞, 𝑂) = 𝑓𝑆(𝑞
𝑆, 𝑂) =

1

|𝑂|ℎ𝑆
|𝑆|∑ 𝐾{

1

ℎ𝑆
(𝑞 − 𝑜)}𝑜∈𝑂 (5.1.1)

Choosing 𝐾 to be a radially symmetric unimodal probability density function, we

use Gaussian kernel:

𝐾(𝑥) =
1

(2𝜋)
|𝑆|
2

𝑒−
1

2
𝑥𝑇𝑥

 (5.1.2)

Given a set of objects 𝑂, the density of a query object 𝑞 in subspace 𝑆, denoted

by 𝑓𝑆(𝑞, 𝑂), can be estimated as:

 𝑓𝑆(𝑞, 𝑂) = 𝑓𝑆(𝑞
𝑆, 𝑂) =

1

|𝑂|(√2𝜋ℎ𝑆)
|𝑆|
∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2𝑜∈𝑂

where −𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜)
2 = ∑ (𝑞. 𝐷𝑖 − 𝑜.𝐷𝑖)

2
𝐷𝑖∈𝑆 and ℎ𝑆 is the bandwidth.

According to Silverman (1986), the optimal bandwidth value for smoothing

normally distributed data with unit variance is ℎ𝑆_𝑜𝑝𝑡 = 𝐴(𝐾)|𝑂|
−1

|𝑆|+4 where 𝐴(𝐾) =

(
4

|𝑆|+2
)

1

|𝑆|+4. Since the kernel is radially symmetric and the data in subspaces is not

normalized, an inner scale 𝜎𝑆 in subspace 𝑆 can be used to set ℎ𝑆 = 𝜎𝑆 ∙ ℎ𝑆_𝑜𝑝𝑡. The term

√2𝜋ℎ𝑆 is the normalization constant and comes from the fact that the integral over the

exponential function (Gaussian kernel) is not unity. With this constant, the Gaussian

kernel is a normalized kernel; that is, the integral over its full domain is unity for every ℎ𝑆.

As per Silverman (1986), a possible choice of 𝜎𝑆 is the root of the average marginal

variance in 𝑆.

The posterior probability of 𝑞 in subspace 𝑆 given 𝑂 can be estimated as:

 𝐿𝑆(𝑞|𝑂) = 𝑓𝑆(𝑞, 𝑂) =
1

|𝑂|(√2𝜋ℎ𝑆)
|𝑆|
∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2𝑜∈𝑂 (5.1.3)

Thus, the likelihood contrast of query object 𝑞 in subspace 𝑆 is given by:

63

 𝐿𝐶𝑆(𝑞, 𝑂+, 𝑂−) =
�̂�𝑆(𝑞,𝑂+)

�̂�𝑆(𝑞,𝑂−)
=

|𝑂−|

|𝑂+|
∙ (
ℎ𝑆−
ℎ𝑆+
)
|𝑆|

∙
∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆+
2

𝑜∈𝑂+

∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆_
2

𝑜∈𝑂−

 (5.1.4)

5.1.2. Complexity Analysis

Mining contrast subspaces is computationally challenging and the complexity can

be proved by linear reduction or L-reduction from the emerging pattern mining problem

(Dong et al., 1999), which has been shown as MAX SNP-hard (Wang et al., 2005). L-

reduction is a transformation of optimization problems which linearly preserves

approximability features.

Let 𝐷′ = {𝐷1
′ , 𝐷2

′ , … , 𝐷3
′} be a set of 𝑑 items. A transaction 𝑜𝑖

′ is represented by a

binary vector of length 𝑑 whose element 𝑜𝑖𝑗
′ = 1 if item 𝐷𝑗

′ is present and 0 otherwise. A

pattern 𝑆′ is a subset of items in 𝐷′. A transaction 𝑜𝑖
′ satisfies 𝑆′ if 𝑜𝑖𝑗

′ = 1, ∀𝐷𝑗
′ ∈ 𝑆′. A

transaction database 𝑂′ is a set of transactions. Let 𝑆𝑎𝑡𝑂′(𝑆
′) be the set of transactions

in 𝑂′ satisfying 𝑆′.

Definition 1 (Emerging Pattern Mining (EP)). Given two transactions databases 𝑂+
′

and 𝑂−
′ , find pattern 𝑆′ such that the cost function 𝑐𝐸𝑃(𝑆

′) = |𝑆𝑎𝑡𝑜+′ (𝑆
′)| is maximized

subject to the feasibility condition |𝑆𝑎𝑡𝑜−′ (𝑆
′)| = 0.

Definition 2 (Contrast Subspace Mining (CS)). Given {𝑞, 𝑂+, 𝑂−} where 𝑞 is the query

object and 𝑂+ and 𝑂− are the two classes, find the subspace 𝑆 maximizing the cost

function 𝑐𝐶𝑆(𝑆, 𝑞) =
∑ exp (

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ2
)𝑜∈𝑂+

∑ exp (
−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

2ℎ2
)𝑜∈𝑂−

.

Definition 3 (Complete Contrast Subspace Mining (Complete-CS)). Given {𝑂+, 𝑂−}, find

the subspace 𝑆 such that the cost function 𝑐(𝑆) = max
𝑜𝑖∈𝑂+

𝑐𝐶𝑆(𝑆,𝑞=𝑜𝑖) is maximized.

64

Complete-CS can be solved by solving at most |𝑂+| CS sub-problems corresponding

to unique data points in 𝑂+. We reduce emerging patterns to Complete-CS and prove that

Complete-CS is MAX SNP-hard.

EP Complete-CS reduction:

 For each item 𝐷𝑖
′ for EP, set up a corresponding dimension 𝐷𝑖 in Complete-CS.

 For each transaction 𝑜𝑖
′ ∈ 𝑂+

′ , insert 2 copies of 𝑜𝑖
′ into 𝑂+.

 For each transaction 𝑜𝑖
′ ∈ 𝑂−

′ , insert 2|𝑂+
′ | copies of 𝑜𝑖

′ into 𝑂−.

 Insert 1 item (a numeric vector) with all 1’s into 𝑂−.

 Let ℎ be an arbitrary user-specified bandwidth parameter. Replace each

occurrence of 0 in 𝑂 = 𝑂+ ∪ 𝑂− with a unique value in the set {2𝛾ℎ, 3𝛾ℎ, 4𝛾ℎ…}

where 𝛾 is some fixed large constant.

 Replace each occurrence of 1 in 𝑂 = 𝑂+ ∪ 𝑂− with 1𝛾ℎ where ℎ is the same as the

one used above.

The transformation can be done in 𝓞(|𝑂+||𝑂−|) time. An example transformation

from a transaction database to a numeric dataset according to the EP Complete-CS

reduction is shown in Table 1.

Table 10 EP Complete-CS reduction example

Database Transactions (EP) 𝑂+ (Complete-CS) 𝑂− (Complete-CS)

𝑂+
′ [0,1,1,0] [2𝛾ℎ, 1𝛾ℎ, 1𝛾ℎ, 3𝛾ℎ]

[4𝛾ℎ, 1𝛾ℎ, 1𝛾ℎ, 5𝛾ℎ]

[0,1,0,0] [6𝛾ℎ, 1𝛾ℎ, 7𝛾ℎ, 8𝛾ℎ]
[9𝛾ℎ, 1𝛾ℎ, 10𝛾ℎ, 11𝛾ℎ]

𝑂−
′ [1,1,0,0] [1𝛾ℎ, 1𝛾ℎ, 12𝛾ℎ, 13𝛾ℎ]

[1𝛾ℎ, 1𝛾ℎ, 14𝛾ℎ, 15𝛾ℎ]
[1𝛾ℎ, 1𝛾ℎ, 16𝛾ℎ, 17𝛾ℎ]
[1𝛾ℎ, 1𝛾ℎ, 18𝛾ℎ, 19𝛾ℎ]

[0,0,0,1] [20𝛾ℎ, 21𝛾ℎ, 22𝛾ℎ, 1𝛾ℎ]
[23𝛾ℎ, 24𝛾ℎ, 25𝛾ℎ, 1𝛾ℎ]
[26𝛾ℎ, 27𝛾ℎ, 28𝛾ℎ, 1𝛾ℎ]
[29𝛾ℎ, 30𝛾ℎ, 31𝛾ℎ, 1𝛾ℎ]

 [1𝛾ℎ, 1𝛾ℎ, 1𝛾ℎ, 1𝛾ℎ]

Theorem 1. EP Complete-CS reduction is an L-reduction, denoted by EP LComplete-

CS.

65

Definition 4 (L-reduction (Papadimitrious et al., 1991)). Let ∏1 and ∏2 be two optimization

problems. We say that ∏1 L-reduces to ∏2 if there are two polynomial time algorithms

𝑓, 𝑔 and constants 𝛼, 𝛽 > 0 such that, for any instance 𝐼 of ∏1, 𝑓(𝐼) forms an instance

of ∏2 and:

 (𝑐1) 𝑂𝑃𝑇(𝑓(𝐼)) ≤ 𝛼𝑂𝑃𝑇(𝐼) where 𝑂𝑃𝑇(∙) denotes the optimal value of the

respective optimization problem.

 (𝑐2) Given any solution 𝑠 of 𝑓(𝐼), algorithm 𝑔 produces a solution 𝑔(𝑠) of 𝐼

satisfying |𝑐∏1(𝑔(𝑠)) − 𝑂𝑃𝑇(𝐼)| ≤ 𝛽|𝑐∏2(𝑠) − 𝑂𝑃𝑇(𝑓(𝐼))|, where 𝑐∏𝑖(∙) denotes the

cost function of the corresponding optimization problem.

 Proof. For any bandwidth value ℎ, we can set 𝛾 to a large value such that exp (
−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

2ℎ2
)

can be arbitrarily close to 0 for all 𝑞 ∈ 𝑂 such that 𝑞𝑆 ≠ 𝑜𝑆. The cost function for CS can

be computed as:

cCS(𝑆, 𝑞) =
∑ exp (

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ2
)𝑜∈𝑂+

∑ exp (
−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

2ℎ2
)𝑜∈𝑂−

=
|𝑂+
𝑆,𝑞
|+𝜖+(𝑆,𝑞)

|𝑂−
𝑆,𝑞
|+𝜖−(𝑆,𝑞)

where 𝑂𝑆,𝑞 denotes the set of data points in 𝑂 having values identical to 𝑞 in subspace

𝑆 and:

 𝜖+(𝑆, 𝑞) = ∑ exp (
−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

2ℎ2
)

𝑜∈𝑂+\𝑂+
𝑆,𝑞 ,

𝜖−(𝑆, 𝑞) = ∑ exp (
−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

2ℎ2
)

𝑜∈𝑂−\𝑂−
𝑆,𝑞 .

 Let 𝑀 > 1 be the maximum integer value such that 𝑀𝛾ℎ is a value occurring in 𝑂 (e.g.

𝑀 = 31 in the example in Table 1). Then:

 |𝑆|𝛾2ℎ2 < 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜)
2 < 𝑀2|𝑆|𝛾2ℎ2 for all 𝑜 ∈ 𝑂+ ∪ 𝑂−.

Thus:

 (|𝑂+| − |𝑂+
𝑆,𝑞
|) exp(−|𝑆|𝛾2𝑀2) < 𝜖+(𝑆, 𝑞) < (|𝑂+| − |𝑂+

𝑆,𝑞
|) exp(−|𝑆|𝛾2) ≪ 1.

Similarly:

(|𝑂−| − |𝑂−
𝑆,𝑞|) exp(−|𝑆|𝛾2𝑀2) < 𝜖−(𝑆, 𝑞) < (|𝑂−| − |𝑂−

𝑆,𝑞|) exp(−|𝑆|𝛾2) ≪ 1.

Note that lim
𝛾→∞

𝜖+(𝑆, 𝑞) = 0 and lim
 𝛾→∞

𝜖−(𝑆, 𝑞) = 0.

We can observe that:

66

 If a pattern 𝑆′ is an emerging pattern, then by construction, at least one object 𝑞 ∈

𝑂+ must have |𝑂+
𝑆,𝑞
| ≥ 2 and |𝑂−

𝑆,𝑞| = 1. This is because 𝑆′ only appears in 𝑂+
′ and

for each transaction 𝑜𝑖
′ ∈ 𝑂+

′ , we have inserted 2 copies of 𝑜𝑖
′ into 𝑂+. On the other

hand, 𝑆′ does not appear in 𝑂−
′ and the only object having values identical to 𝑞 in

subspace 𝑆 is the object containing all 𝛾ℎ’s. Therefore, cCS(𝑆, 𝑞) =
|𝑂+
𝑆,𝑞
|+𝜖+(𝑆,𝑞)

|𝑂−
𝑆,𝑞
|+𝜖−(𝑆,𝑞)

≥

2+𝜖+(𝑆,𝑞)

1+𝜖−(𝑆,𝑞)
> 1.

 If a pattern 𝑆′ is not an emerging pattern, then by construction, all objects 𝑞 ∈ 𝑂+

must have |𝑂−
𝑆,𝑞| ≥ |𝑂+

𝑆,𝑞
| + 1 > |𝑂+

𝑆,𝑞
|. Therefore, cCS(𝑆, 𝑞) =

|𝑂+
𝑆,𝑞
|+𝜖+(𝑆,𝑞)

|𝑂−
𝑆,𝑞
|+𝜖−(𝑆,𝑞)

< 1.

Further, we need to verify that the reduction EP Complete-CS satisfies the two

conditions (𝑐1) and (𝑐2) of the L-reduction:

 (𝑐1) For any instance 𝐼 of EP, if 𝑆′ is the most frequent emerging pattern with

cEP(𝑆′) = |𝑆𝑎𝑡𝑜′+(𝑆′)| and |𝑆𝑎𝑡𝑜′−(𝑆
′)| = 0, then the corresponding optimal 𝑆

solution for Complete-CS must have a cost value of 𝑐(𝑆) =
2|𝑆𝑎𝑡

𝑜′+
(𝑆′)|+𝜖+(𝑆,𝑞)

1+𝜖−(𝑆,𝑞)
≃

2|𝑆𝑎𝑡𝑜′+(𝑆′)| = 2𝑐𝐄𝐏(S′) where 𝑞 is any data point in 𝑂+ corresponding to the

transaction containing pattern 𝑆′. This is because for each transaction 𝑜𝑖
′

containing 𝑆′ in 𝑂+
′ , we have inserted 2 copies of 𝑜𝑖

′ into 𝑂+. The ‘1’ in the

denominator is due to the object containing all 𝛾ℎ in 𝑂−. Thus, condition 1 is

satisfied with 𝛼 = 2 when 𝛾 is sufficiently large.

 (𝑐2) For any solution 𝑆 of Complete-CS, if 𝑐(𝑆) = 𝜆 ≥ 2 then the corresponding

pattern 𝑆′ constructed from 𝑆 will be an emerging pattern. Further, let [𝜆] be the

nearest integer to 𝜆. Then, [𝜆] must be even and
[𝜆]

2
 will be the cost of the

corresponding EP problem. Let 𝜆∗ denote the optimal cost of Complete-CS,

then |
[𝜆]

2
−
[𝜆∗]

2
| =

1

2
|[𝜆] − [𝜆∗]| ≃

1

2
|𝜆 − 𝜆∗| ≤ |𝜆 − 𝜆∗|. Thus, condition 2 is satisfied

with 𝛽 = 1.

Since EP LComplete-CS, if there exists a polynomial time approximation algorithm

for Complete-CS with performance guarantee 1 − 𝜖, then there exists a polynomial time

67

approximation algorithm for EP with performance guarantee 1 − 𝛼𝛽𝜖. Since EP is MAX

SNP-hard, it follows that Complete-CS must also be MAX SNP-hard.

Finally, the relationship between Complete-CS and CS is established as follows.

Theorem 2. If there exists a polynomial time approximation scheme (PTAS) for CS, then

there must also be a PTAS for Complete-CS.

Proof. The proof is straightforward since Complete-CS can be solved by a series of |𝑂+|CS

problems.

Unless P = NP, there exists no PTAS for Complete-CS, implying no PTAS for CS.

The above theoretical result indicates that the problem of mining contrast

subspaces is even hard to approximate; that is, it is impossible to design a good

approximation algorithm unless P = NP. Practical heuristic methods are needed as a

viable alternative.

5.1.3. Mining Methods

In this section, we first describe a baseline method which examines every possible

non-empty subspace. We then present the design of CSMiner (for Contrast Subspace

Miner) which employs a smarter search strategy.

Baseline Method

The baseline naïve method enumerates all possible non-empty spaces 𝑆 and

calculates the exact values of both 𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−), since neither 𝐿𝑆(𝑞|𝑂+) nor

 𝐿𝑆(𝑞|𝑂−) is monotonic with respect to the subspace-superspace relationship. It then

returns top-𝑘 subspaces 𝑆 with the largest 𝐿𝐶𝑆(𝑞) values. To ensure the completeness

and efficiency of subspace enumeration, the baseline method traverses the set

enumeration tree (Rymon, 1992) of subspaces in a depth-first manner. Figure 25 shows

a set enumeration tree that enumerates all subspaces of 𝐷 = {𝐷1, 𝐷2, 𝐷3, 𝐷4}.

68

Figure 25 Set enumeration tree

Using Equations (5.1.3) and (5.1.4), the baseline algorithm shown in Algorithm 1

computes the likelihood contrast for every subspace where 𝐿𝑆(𝑞|𝑂+) ≥ 𝛿 and returns the

top-𝑘 subspaces. The time complexity is 𝒪(2|𝐷| ∙ (|𝑂+| + |𝑂−|)).

 Algorithm 1 The baseline algorithm

 Input: 𝑞: query object, 𝑂+: objects belonging to 𝐶+, 𝑂−: objects belonging to 𝐶−, 𝛿: likelihood threshold, 𝑘:

positive integer

 Output: 𝑘 subspaces with the highest likelihood contrast

 1: let 𝐴𝑛𝑠 be the current top-𝑘 list of subspaces; initialize 𝐴𝑛𝑠 as 𝑘 𝑛𝑢𝑙𝑙 subspaces associated with likelihood

contrast 0

 2: traverse the subspace set enumeration tree in a depth-first search manner

 3: for each subspace 𝑆 do

 4: compute 𝜎𝑆+, 𝜎𝑆−, ℎ𝑜𝑝𝑡;

 5: compute 𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−) using Equation (5.1.3);

 6: if 𝐿𝑆(𝑞|𝑂+) ≥ 𝛿 and ∃𝑆′ ∈ 𝐴𝑛𝑠 𝑠. 𝑡.
𝐿𝑆(𝑞|𝑂+)

𝐿𝑆(𝑞|𝑂−)
> 𝐿𝐶𝑆′(𝑞) then

 7: insert 𝑆 into 𝐴𝑛𝑠 and remove 𝑆′ from 𝐴𝑛𝑠;

 8: end if

 9: end for

 10: return 𝐴𝑛𝑠;

CSMiner Framework

𝐿𝑆(𝑞|𝑂+) is not monotonic in subspaces. We develop an upper bound of 𝐿𝑆(𝑞|𝑂+)

to prune subspaces using the minimum likelihood threshold 𝛿. We sort all dimensions in

their standard deviation descending order. Let 𝑆 be the set of descendants of 𝑆 in the

69

subspace set enumeration tree using the standard deviation descending order. We

define:

𝐿𝑆
∗ (𝑞|𝑂+) =

1

|𝑂+|(√2𝜋𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′)𝜏
∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2(𝜎𝑆𝑜𝑝𝑡_𝑚𝑎𝑥
ℎ′)

2

𝑜∈𝑂+ (5.1.5)

where 𝜎𝑚𝑖𝑛
′ = min{𝜎𝑆′|𝑆′ ∈ 𝑆} , ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ = min{ℎ𝑆′_𝑜𝑝𝑡|𝑆′ ∈ 𝑆} , ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ = max {ℎ𝑆′_𝑜𝑝𝑡|𝑆′ ∈

𝑆} and

𝜏 = {
|𝑆| if √2𝜋𝜎𝑚𝑖𝑛

′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛
′ ≥ 1

max{|𝑆′| |𝑆′ ∈ 𝑆} if √2𝜋𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ < 1

Theorem 3 (Monotonic Density Bound). For a query object 𝑞, a set of objects 𝑂 and

subspaces 𝑆1, 𝑆2 such that 𝑆1 is an ancestor of 𝑆2 in the subspace set enumeration

tree in which dimensions in full space 𝐷 are sorted by their standard deviation

descending order, it is true that 𝐿𝑆1
∗ (𝑞|𝑂) ≥ 𝐿𝑆2(𝑞|𝑂).

Proof. Let 𝑆 be the set of descendants of 𝑆1 in the subspace set enumeration tree using

the standard deviation descending order in 𝑂. We define:

 𝜎𝑚𝑖𝑛
′ = min{𝜎𝑆′|𝑆′ ∈ 𝑆},

 ℎ𝑜𝑝𝑡_𝑚𝑖𝑛
′ = min{ℎ𝑆′_𝑜𝑝𝑡|𝑆′ ∈ 𝑆},

 ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ = max {ℎ𝑆′_𝑜𝑝𝑡|𝑆′ ∈ 𝑆},

 and:

 𝜏 = {
| 𝑆1| if √2𝜋𝜎𝑚𝑖𝑛

′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛
′ ≥ 1

max{|𝑆′| |𝑆′ ∈ 𝑆} if √2𝜋𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ < 1

Computing 𝜎𝑚𝑖𝑛
′ , ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ and ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ has linear complexity. 𝜎𝑆′ is the root of the

average marginal variance in 𝑆′ and ℎ𝑆′_𝑜𝑝𝑡 depends on the values of |𝑂| and |𝑆′|. Let

𝑆′′ ∈ 𝑆 such that for any subspace 𝑆′ ∈ 𝑆, 𝑆′ ⊆ 𝑆′′. Since dimensions in the set

enumeration tree is sorted in the standard deviation descending order, 𝜎𝑚𝑖𝑛
′ can be

obtained by checking dimensions in 𝑆′′\𝑆1 one by one in the standard deviation

ascending order. Further, ℎ𝑜𝑝𝑡_𝑚𝑖𝑛
′ (ℎ𝑜𝑝𝑡_𝑚𝑎𝑥

′) can be obtained by comparing ℎ𝑆′_𝑜𝑝𝑡 with

different values of |𝑆′| ∈ [|𝑆1| + 1, |𝑆′′|]. Since 𝑆2 ∈ 𝑆, we have:

70

1 ≤ |𝑆1| < |𝑆2| ≤ max {|𝑆
′| |𝑆′ ∈ 𝑆}, and 𝜎𝑆1 ≥ 𝜎𝑆2 ≥ 𝜎𝑚𝑖𝑛

′ .

Then:

𝜎𝑆2ℎ𝑆2_𝑜𝑝𝑡 ≥ 𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ .

Thus:

(√2𝜋𝜎𝑠2ℎ𝑆2_𝑜𝑝𝑡)
|𝑆2| > (√2𝜋𝜎𝑚𝑖𝑛

′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛
′)𝜏.

For 𝑜 ∈ 𝑂, 𝑑𝑖𝑠𝑡𝑆1(𝑞, 𝑜) ≤ 𝑑𝑖𝑠𝑡𝑆2(𝑞, 𝑜). Accordingly,
−𝑑𝑖𝑠𝑡𝑆2(𝑞,𝑜)

2

 2(𝜎𝑠2ℎ𝑆2_𝑜𝑝𝑡)
2 ≤

−𝑑𝑖𝑠𝑡𝑆1(𝑞,𝑜)
2

2(𝜎𝑠1ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′)2

.

By Equation (5.1.3):

𝐿𝑆2(𝑞|𝑂) =
1

|𝑂| (√2𝜋𝜎𝑠2ℎ𝑆2_𝑜𝑝𝑡)
|𝑆2|

∑𝑒

−𝑑𝑖𝑠𝑡𝑆2(𝑞,𝑜)
2

2(𝜎𝑠2ℎ𝑆2_𝑜𝑝𝑡)
2

𝑜∈𝑂

≤
1

|𝑂|(√2𝜋𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′)
𝜏∑𝑒

−𝑑𝑖𝑠𝑡𝑆1(𝑞,𝑜)
2

2(𝜎𝑠1ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′)

2

𝑜∈𝑂

 = 𝐿𝑆1
∗ (𝑞|𝑂)

Using Theorem 3, in addition to 𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−), we also compute 𝐿𝑆
∗ (𝑞|𝑂+)

for each subspace 𝑆. We define the pruning rules based on the theorem.

Pruning Rule 1. Given a minimum likelihood threshold 𝛿, if 𝐿𝑆
∗ (𝑞|𝑂+) < 𝛿 in a subspace 𝑆,

all descendants of 𝑆 can be pruned.

By using the depth-first search, the distance between two objects in a superspace

can be computed incrementally from the distance among the objects in a subspace. Given

two objects 𝑞 and 𝑜, let subspace 𝑆′ = 𝑆 ∪ {𝐷𝑖}. We have 𝑑𝑖𝑠𝑡𝑆′(𝑞, 𝑜)
2 = 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜)

2 +

(𝑞. 𝐷𝑖 − 𝑜.𝐷𝑖)
2.

Algorithm 2 shows the pseudo code of the CSMiner. Similar to the baseline method

(Algorithm 1), CSMiner conducts a depth-first search on the subspace set enumeration

tree. For a candidate subspace 𝑆, CSMiner calculates 𝐿𝑆
∗ (𝑞|𝑂+) using Equation (5.1.5). If

𝐿𝑆
∗ (𝑞|𝑂+) is less than the minimum likelihood threshold, all descendants of 𝑆 can be pruned

by Theorem 3. Due to the difficulty of the problem shown in section 5.1.2 and the heuristic

nature of this method, the time complexity of CSMiner is 𝒪(2|𝐷| ∙ (|𝑂+| + |𝑂−|)), the same

71

time complexity as the naïve baseline method. However, as will be shown by the empirical

evaluation (section 5.1.4), CSMiner is substantially faster than the baseline method.

 Algorithm 2 CSMiner (𝑞, 𝑂+, 𝑂−, 𝛿, 𝑘)

 Input: 𝑞: query object, 𝑂+: objects belonging to 𝐶+, 𝑂−: objects belonging to 𝐶−, 𝛿: likelihood threshold, 𝑘:

positive integer

 Output: 𝑘 subspaces with the highest likelihood contrast

 1: let 𝐴𝑛𝑠 be the current top-𝑘 list of subspaces; initialize 𝐴𝑛𝑠 as 𝑘 𝑛𝑢𝑙𝑙 subspaces associated with likelihood

contrast 0

 2: traverse the subspace set enumeration tree in a depth-first search manner

 3: for each subspace 𝑆 do

 4: compute 𝜎𝑆+, 𝜎𝑆−, 𝜎𝑚𝑖𝑛
′ , ℎ𝑜𝑝𝑡, ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ , ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ ;

 5: compute 𝐿𝑆
∗ (𝑞|𝑂+) using Equation (5.1.5);

 6: if 𝐿𝑆
∗ (𝑞|𝑂+) < 𝛿 then

 7: prune all descendants of 𝑆 and go to Step 2; //Pruning Rule 1

 8: else

 9: compute 𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−) using Equation (5.1.3);

 10: if 𝐿𝑆(𝑞|𝑂+) ≥ 𝛿 and ∃𝑆′ ∈ 𝐴𝑛𝑠 𝑠. 𝑡.
𝐿𝑆(𝑞|𝑂+)

𝐿𝑆(𝑞|𝑂−)
> 𝐿𝐶𝑆′(𝑞) then

 11: insert 𝑆 into 𝐴𝑛𝑠 and remove 𝑆′ from 𝐴𝑛𝑠;

 12: end if

 13: end if

 14: end for

 15: return 𝐴𝑛𝑠;

A Bounding-Pruning-Refining Method

For a query object 𝑞 and a set of objects 𝑂, the likelihood 𝐿𝑆(𝑞|𝑂), computed by

Equation (5.1.3), is the sum of density contributions of objects in 𝑂 to 𝑞 in subspace 𝑆. In

Gaussian kernel estimation, given object 𝑜 ∈ 𝑂, the contribution from 𝑜 to 𝐿𝑆(𝑞|𝑂)

is
1

|𝑂|√2𝜋ℎ𝑆
|𝑆| 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2 . We observe that the contribution of 𝑜 decays exponentially as the

distance between 𝑞 and 𝑜 increases; thus, 𝐿𝑆(𝑞|𝑂) can be bounded.

For a query object 𝑞 and a set of objects 𝑂, the 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 (𝜖 > 0) of 𝑞 in

subspace 𝑆 is 𝑁𝑆
𝜖(𝑞) = {𝑜 ∈ 𝑂|𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜) ≤ 𝜖}. We can divide 𝐿𝑆(𝑞|𝑂) into two

parts; 𝐿𝑆(𝑞|𝑂) = 𝐿 𝑁𝑆
𝜖(𝑞|𝑂) + 𝐿𝑆

𝑟𝑒𝑠𝑡(𝑞|𝑂). The first part is contributed by the objects in the

72

𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑; that is, 𝐿 𝑁𝑆
𝜖(𝑞|𝑂) =

1

|𝑂|(√2𝜋ℎ𝑆)
|𝑆|
∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2𝑜∈𝑁𝑆

𝜖(𝑞) and the second part

is by the objects outside the 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑; that is, 𝐿𝑆
𝑟𝑒𝑠𝑡(𝑞|𝑂) =

1

|𝑂|(√2𝜋ℎ𝑆)
|𝑆|
∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2𝑜∈𝑂\𝑁𝑆

𝜖(𝑞) .

Let 𝑑𝑖𝑠𝑡𝑆(𝑞|𝑂) be the maximum distance between 𝑞 and all objects in 𝑂 in

subspace 𝑆. We have
|𝑂|−| 𝑁𝑆

𝜖(𝑞)|

 |𝑂|(√2𝜋ℎ𝑆)
|𝑆| ∙ 𝑒

−
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

2ℎ
𝑆2 ≤ 𝐿𝑆

𝑟𝑒𝑠𝑡(𝑞|𝑂) ≤
|𝑂|−| 𝑁𝑆

𝜖(𝑞)|

|𝑂|(√2𝜋ℎ𝑆)
|𝑆| ∙ 𝑒

−
𝜖2

2ℎ
𝑆2 .

The example in Figure 26 illustrates a 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 of object 𝑞 with respect to

object set 𝑂 in a 2-dimensional subspace 𝑆. We can see that 𝑁𝑆
𝜖(𝑞) = {𝑜1, 𝑜2, 𝑜3, 𝑜4, 𝑜5}

and 𝑑𝑖𝑠𝑡𝑆(𝑞|𝑂) = 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜10).

Figure 26 𝝐-𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒉𝒐𝒐𝒅 (within the dashed circle)

An upper bound of 𝐿𝑆
∗ (𝑞|𝑂+) using 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 denoted by 𝐿𝑆

∗𝜖(𝑞|𝑂+) is:

𝐿𝑆
∗𝜖(𝑞|𝑂+) =

∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2(𝜎𝑆𝑜𝑝𝑡_𝑚𝑎𝑥
ℎ′)

2

𝑜∈𝑁𝑆
𝜖(𝑞) +(|𝑂+|−|𝑁𝑆

𝜖(𝑞)|)𝑒

−
𝜖2

2(𝜎𝑆𝑜𝑝𝑡_𝑚𝑎𝑥
ℎ′)

2

|𝑂+|(√2𝜋𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′)
𝜏

where the meanings of 𝜎𝑚𝑖𝑛
′ , ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ , ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ and 𝜏 are the same as those in Equation

(5.1.5).

73

Pruning Rule 2. Given a minimum likelihood threshold 𝛿, if 𝐿𝑆
∗𝜖(𝑞|𝑂+) < 𝛿 in a

subspace 𝑆, all descendants of 𝑆 can be pruned.

Using the 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑, we have the following upper and lower bounds

of 𝐿𝑆(𝑞|𝑂).

Theorem 4 (Bounds). For a query object 𝑞, a set of objects 𝑂 and 𝜖 ≥ 0, 𝐿𝐿𝑆
𝜖(𝑞|𝑂) ≤

𝐿𝑆(𝑞|𝑂) ≤ 𝑈𝐿𝑆
𝜖(𝑞|𝑂)

where:

𝐿𝐿𝑆
𝜖(𝑞|𝑂) =

1

|𝑂|(√2𝜋ℎ𝑆)
|𝑆| (∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2

𝑜∈𝑁𝑆
𝜖(𝑞) + (|𝑂| − |𝑁𝑆

𝜖(𝑞)|)𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2)

and:

𝑈𝐿𝑆
𝜖(𝑞|𝑂) =

1

|𝑂|(√2𝜋ℎ𝑆)
|𝑆| (∑ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

2ℎ
𝑆2

𝑜∈𝑁𝑆
𝜖(𝑞) + (|𝑂| − |𝑁𝑆

𝜖(𝑞)|)𝑒
−

𝜖2

2ℎ
𝑆2).

Proof. For any object 𝑜 ∈ 𝑂\𝑁𝑆
𝜖(𝑞), 𝜖2 ≤ 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑂)

2 ≤ 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑂)
2.

Then:

 𝑒
−

𝜖2

2ℎ
𝑆2 ≥ 𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑂)
2

2ℎ
𝑆2 ≥ 𝑒

−
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑂)

2

2ℎ
𝑆2

.

 Thus:

(|𝑂| − |𝑁𝑆
𝜖(𝑞)|) 𝑒

−
𝜖2

2ℎ
𝑆2 ≥ (|𝑂| − |𝑁𝑆

𝜖(𝑞)|)𝑒

−𝑑𝑖𝑠𝑡𝑆(𝑞,𝑂)
2

2ℎ
𝑆2 ≥ (|𝑂| − |𝑁𝑆

𝜖(𝑞)|)𝑒
−
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑂)

2

2ℎ
𝑆2

.

Accordingly, 𝐿𝐿𝑆
𝜖(𝑞|𝑂) ≤ 𝐿𝑆(𝑞|𝑂) ≤ 𝑈𝐿𝑆

𝜖(𝑞|𝑂). We obtain an upper bound of 𝐿𝐶𝑆(𝑞)

based on Theorem 4 and Equation (5.1.4).

Corollary 1 (Likelihood Contrast Upper Bound). For a query object 𝑞, a set of

objects 𝑂+, a set of objects 𝑂− and 𝜖 ≥ 0, 𝐿𝐶𝑆(𝑞) ≤
𝑈𝐿𝑆

𝜖(𝑞|𝑂+)
𝐿𝐿𝑆
𝜖(𝑞|𝑂−)

.

Proof. By Theorem 4, we have 𝐿𝑆(𝑞|𝑂+) ≤ 𝑈𝐿𝑆
𝜖(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−) ≥ 𝐿𝐿𝑆

𝜖(𝑞|𝑂−).

Then, 𝐿𝐶𝑆(𝑞) =
𝐿𝑆(𝑞|𝑂+)

𝐿𝑆(𝑞|𝑂−)
≤

𝑈𝐿𝑆
𝜖(𝑞|𝑂+)
𝐿𝑆(𝑞|𝑂−)

≤
𝑈𝐿𝑆

𝜖(𝑞|𝑂+)
𝐿𝐿𝑆
𝜖(𝑞|𝑂−)

.

Using Corollary 1, we have the following rule.

74

Pruning Rule 3. For a subspace 𝑆, if there are at least 𝑘 subspaces whose likelihood

contrast are greater than
 𝑈𝐿𝑆

𝜖(𝑞|𝑂+)
𝐿𝐿𝑆
𝜖(𝑞|𝑂−)

, then 𝑆 cannot be a top-𝑘 subspace of the largest

likelihood contrast.

We implement the bounding-pruning-refining method in CSMiner to compute

bounds of likelihood and contrast ratio. We call this version CSMiner-BPR. For a candidate

subspace 𝑆, CSMiner-BPR calculates 𝑈𝐿𝑆
𝜖(𝑞|𝑂+), 𝐿𝐿𝑆

𝜖(𝑞|𝑂−) and 𝐿𝑆
∗𝜖(𝑞|𝑂+) using the 𝜖-

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑. If 𝑈𝐿𝑆
𝜖(𝑞|𝑂+) is less than the minimum likelihood threshold (𝛿), CSMiner-

BPR checks whether it is true that 𝐿𝑆
∗𝜖(𝑞|𝑂+) < 𝛿 (Pruning Rule 2) or 𝐿𝑆

∗ (𝑞|𝑂+) < 𝛿 (Pruning

Rule 1). Otherwise, CSMiner-BPR checks whether the likelihood contrasts of the current

top-𝑘 subspaces are larger than the upper bound of 𝐿𝐶𝑆(𝑞) (=
𝑈𝐿𝑆

𝜖(𝑞|𝑂+)
𝐿𝐿𝑆
𝜖(𝑞|𝑂−)

). If not, CSMiner-

BPR refines 𝐿𝑆
∗ (𝑞|𝑂+), 𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−) by involving objects that are out of the 𝜖-

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑. 𝑆 will be added to the current top-𝑘 list if 𝐿𝑆
∗ (𝑞|𝑂+) ≥ 𝛿 and the ratio of

𝐿𝑆(𝑞|𝑂+) to 𝐿𝑆(𝑞|𝑂−) is larger than one of the current top-𝑘 ones. The computational cost

for 𝐿𝑆
∗ (𝑞|𝑂+) is high when the size of 𝑂+ is large. Thus, for efficiency, we consider a

tradeoff between Pruning Rule 1 and Pruning Rule 3. Specifically, when we are searching

a subspace 𝑆, once we can determine that 𝑆 cannot be a top-𝑘 contrast subspace, then

we terminate the search of 𝑆 immediately. In this manner, CSMiner-BPR accelerates

CSMiner by avoiding the cost for computing the likelihood contributions of objects outside

the 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 to 𝑞 when 𝐿𝑆
∗𝜖(𝑞|𝑂+) < 𝛿 (Pruning Rule 2) or

𝑈𝐿𝑆
𝜖(𝑞|𝑂+)

𝐿𝐿𝑆
𝜖(𝑞|𝑂−)

< 𝛿 (Pruning

Rule 3).

The 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 is a critical instrument for decreasing the computational cost

for CSMiner-BPR. However, when dimensionality increases, the distance between objects

increases, as such, the value of 𝜖 should not be fixed. Standard deviation is a measure

that expresses the variability of a set of data. For subspace 𝑆, we set 𝜖 =

√𝛼 ∙ ∑ (𝜎𝐷𝑖+
2 + 𝜎𝐷𝑖−

2)𝐷𝑖∈𝑆 (𝛼 ≥ 0) where 𝜎𝐷𝑖+
2 and 𝜎𝐷𝑖−

2 are the marginal variances of 𝑂+ and

𝑂− respectively on dimension 𝐷𝑖 (𝐷𝑖 ∈ 𝑆), and 𝛼 is a system defined parameter. Our

experiments show that 𝛼 can be set in the range of 0.8 to 1.2 and is not sensitive.

Algorithm 3 provides the pseudo code of CSMiner-BPR. Theorem 5 guarantees that no

75

matter how varied the neighbourhood distance (𝜖) may be, the mining result of CSMiner-

BPR remains unchanged.

Theorem 5. Given data set 𝑂, query object 𝑞, minimum likelihood threshold 𝛿 and

parameter 𝑘, for any neighbourhood distance 𝜖1 and 𝜖2, 𝐶𝑆
𝜖1(𝑞|𝑂) = 𝐶𝑆𝜖2(𝑞|𝑂) where

𝐶𝑆𝜖1(𝑞|𝑂) (𝐶𝑆𝜖2(𝑞|𝑂)) is the set of contrast subspaces discovered by CSMiner-BPR

using 𝜖1 (𝜖2).

Proof by contradiction. Assume that subspace 𝑆 ∈ 𝐶𝑆𝜖1(𝑞|𝑂) but 𝑆 ∉ 𝐶𝑆𝜖2(𝑞|𝑂). As 𝑆 ∈

𝐶𝑆𝜖1(𝑞|𝑂), we have (∗) 𝐿𝑆(𝑞|𝑂+) ≥ 𝛿. On the other hand, 𝑆′ ∉ 𝐶𝑆𝜖2(𝑞|𝑂) means

that (𝑖) 𝐿𝑆
∗𝜖2(𝑞|𝑂+) < 𝛿 , or (𝑖𝑖) ∃𝑆′ ∈ 𝐶𝑆𝜖2(𝑞|𝑂) such that 𝑆′ ∉

𝐶𝑆𝜖1(𝑞|𝑂) and
𝑈𝐿𝑆

𝜖1(𝑞|𝑂+)
𝐿𝐿𝑆
𝜖1(𝑞|𝑂−)

< 𝐿𝐶𝑆′(𝑞). For case (𝑖), as 𝐿𝑆(𝑞|𝑂+) ≤ 𝐿𝑆
∗ (𝑞|𝑂+) ≤

𝐿𝑆
∗𝜖2(𝑞|𝑂+), we have 𝐿𝑆(𝑞|𝑂+) < 𝛿, contradicting (∗). For case (𝑖𝑖), as 𝐿𝐶𝑆(𝑞) ≤

𝑈𝐿𝑆
𝜖1(𝑞|𝑂+)

𝐿𝐿𝑆
𝜖1(𝑞|𝑂−)

 , we have 𝐿𝐶𝑆(𝑞) < 𝐿𝐶𝑆′(𝑞), contradicting 𝑆′ ∉ 𝐶𝑆𝜖1(𝑞|𝑂).

Corollary 2. Given data set 𝑂, query object 𝑞, minimum likelihood threshold 𝛿 and

parameter 𝑘, the mining result of CSMiner-BPR, no matter what the value of parameter

𝛼 is, the output is the same as that of CSMiner.

Proof. For subspace 𝑆, suppose 𝜖, computed by parameter 𝛼, is not less than 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑂).

We have 𝑁𝑆
𝜖(𝑞) = ∅. As such, 𝑈𝐿𝑆

𝜖(𝑞|𝑂+) = 𝐿𝑆(𝑞|𝑂+), 𝐿𝐿𝑆
𝜖(𝑞|𝑂−) = 𝐿𝑆(𝑞|𝑂−)

and 𝐿𝑆
∗𝜖(𝑞|𝑂+) = 𝐿𝑆

∗ (𝑞|𝑂+). This means that the execution flow of CSMiner-BPR

(Algorithm 3) is the same as that of CSMiner (Algorithm 2). Further, by Theorem 5, the

value of neighbourhood distance does not change the mining result of CSMiner-BPR.

 Algorithm 3 CSMiner-BPR (𝑞, 𝑂+, 𝑂−, 𝛿, 𝑘, 𝛼)

 Input: 𝑞: query object, 𝑂+: objects belonging to 𝐶+, 𝑂−: objects belonging to 𝐶−, 𝛿: likelihood threshold, 𝑘:

positive integer, 𝛼: neighbourhood parameter

 Output: 𝑘 subspaces with the highest likelihood contrast

 1: let 𝐴𝑛𝑠 be the current top-𝑘 list of subspaces; initialize 𝐴𝑛𝑠 as 𝑘 𝑛𝑢𝑙𝑙 subspaces associated with likelihood

contrast 0

 2: for each subspace 𝑆 in the subspace set enumeration tree searched in the depth-first manner

76

 do

 3: compute 𝜖, 𝜎𝑆+, 𝜎𝑆−, 𝜎𝑚𝑖𝑛
′ , ℎ𝑜𝑝𝑡, ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′ , ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′ ;

 4: 𝑁𝑆
𝜖(𝑞)+ ← ∅;𝑁𝑆

𝜖(𝑞)− ← ∅; 𝑑𝑖𝑠𝑡𝑆(𝑞|𝑂−) ← 0;

 5: for each object 𝑜 ∈ 𝑂+ ∪ 𝑂− do

 6: 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜)
2 ← 𝑑𝑖𝑠𝑡𝑆𝑃(𝑞, 𝑜)

2 + (𝑞.𝐷′ − 𝑜. 𝐷′)2 //𝑆𝑃(= 𝑆 ∪ {𝐷′}) is the parent of 𝑆.

 7: if 𝑜 ∈ 𝑂+ and 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜) < 𝜖 then

 8: 𝑁𝑆
𝜖(𝑞)+ ← 𝑁𝑆

𝜖(𝑞)+ ∪ {𝑜};

 9: end if

 10: if 𝑜 ∈ 𝑂− then

 11: if 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜) < 𝜖 then

 12: 𝑁𝑆
𝜖(𝑞)+ ← 𝑁𝑆

𝜖(𝑞)+ ∪ {𝑜};

 13: end if

 14: if 𝑑𝑖𝑠𝑡𝑆(𝑞|𝑂−) < 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜) then

 15: 𝑑𝑖𝑠𝑡𝑆(𝑞|𝑂−) ← 𝑑𝑖𝑠𝑡𝑆(𝑞, 𝑜);

 16: end if

 17: end if

 18: end for

 19: compute 𝑈𝐿𝑆
𝜖(𝑞|𝑂+), 𝐿𝐿𝑆

𝜖(𝑞|𝑂−), 𝐿𝑆
∗𝜖(𝑞|𝑂+) ; //bounding

 20: if 𝑈𝐿𝑆
𝜖(𝑞|𝑂+) < 𝛿 then

 21: if 𝐿𝑆
∗𝜖(𝑞|𝑂+) < 𝛿 then

 22: prune all descendants of 𝑆 and go to step 2; //Pruning Rule 2

 23: end if

 24: compute 𝐿𝑆
∗ (𝑞|𝑂+);

 25: if 𝐿𝑆
∗ (𝑞|𝑂+) < 𝛿 then

 26: prune all descendants of 𝑆 and go to step 2; //Pruning Rule 1

 27: end if

 28: else

 29: if ∃𝑆′ ∈ 𝐴𝑛𝑠 𝑠. 𝑡.
𝑈𝐿𝑆

𝜖 (𝑞|𝑂+)
𝐿𝐿𝑆

𝜖 (𝑞|𝑂−)
≥ 𝐿𝐶𝑆′(𝑞) then

 30: compute 𝐿𝑆
∗ (𝑞|𝑂+) using Equation (5.1.5); //refining

 31: if 𝐿𝑆
∗ (𝑞|𝑂+) < 𝛿 then

 32: prune all descendants of 𝑆 and go to step 2; //Pruning Rule 1

 33: else

 34: compute 𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−) using Equation (5.1.3); //refining

 35: if 𝐿𝑆(𝑞|𝑂+) ≥ 𝛿 and ∃𝑆′ ∈ 𝐴𝑛𝑠 𝑠. 𝑡.
𝐿𝑆(𝑞|𝑂+)
𝐿𝑆(𝑞|𝑂−)

≥ 𝐿𝐶𝑆′(𝑞) then

 36: insert 𝑆 into 𝐴𝑛𝑠 and remove 𝑆′ from 𝐴𝑛𝑠;

 37: end if

 38: end if

 39: end if

77

 40: end if

 41: end for

 42: return 𝐴𝑛𝑠;

5.1.4. Empirical Evaluation

In this section, we present a systematic empirical study using real data sets to

demonstrate the effectiveness and efficiency of CSMiner (or CSMiner-BPR). The focus of

the evaluation includes:

 How sensitive our methods are to the running parameters (𝛿, 𝑘, 𝛼) in terms of
discovered contrast subspaces and running time;

 How sensitive our methods are to different bandwidth values and kernel function
in terms of similarity among mined results.

All experiments were conducted on a PC with Intel Core i7-3770 3.40 GHz CPU

and 8GB RAM, running Windows 7 operating system. All algorithms were implemented

in Java and compiled with JDK 7. Defaults were set to 𝛿 = 0.001, 𝑘 = 10, 𝛼 = 0.8.

Effectiveness

Table 11 summarizes the 6 data sets obtained from UCI machine learning

repository (Bache et al., 2013) and characteristics of each data set. Non-numerical

attributes and all records that are missing values were removed from the data sets.

Table 11 Data Set Characteristics

Data Set # of Objects # of Attributes

Breast Cancer Wisconsin (BCW) 683 9

Climate Model Simulation Crashes (CMSC) 540 18

Glass Identification (Glass) 214 9

Pima Indians Diabetes (PID) 768 8

Waveform 5000 21

Wine 178 13

For each data set, we select one object as a query object 𝑞 at a time and put all

objects belonging to the same class as 𝑞 in the set, 𝑂1 (except 𝑞). All remaining objects

are put in 𝑂2. Using CSMiner, for each object, we compute:

(1) inlying contrast subspace taking 𝑂1 as 𝑂+ and 𝑂2 as 𝑂− and:

78

(2) outlying contrast subspace taking 𝑂1 as 𝑂+ and 𝑂2 as 𝑂−.

For this experiment, we only compute the top-1 subspace. For clarity, we denote

the likelihood contrasts of inlying contrast subspace by 𝐿𝐶𝑆
𝑖𝑛(𝑞) and those of outlying

contrast subspace by 𝐿𝐶𝑆
𝑜𝑢𝑡(𝑞). Tables 12 to 17 show the joint distributions of 𝐿𝐶𝑆

𝑖𝑛(𝑞) and

𝐿𝐶𝑆
𝑜𝑢𝑡(𝑞) in each data set. For most objects, 𝐿𝐶𝑆

𝑖𝑛(𝑞) are larger than 𝐿𝐶𝑆
𝑜𝑢𝑡(𝑞). This is

expected since 𝑞 and all objects in 𝑂1 belong to the same class. However, a good number

of objects have strong outlying contrast subspaces. For example, in CMSC, more than

40% of objects have outlying contrast subspaces, satisfying 𝐿𝐶𝑆
𝑜𝑢𝑡(𝑞) ≥ 103. Further,

except for PID, a considerable number of objects in each data set have both strong inlying

contrast subspaces and outlying contrast subspaces (e.g. 𝐿𝐶𝑆
𝑖𝑛(𝑞) ≥ 104 and 𝐿𝐶𝑆

𝑜𝑢𝑡(𝑞) ≥

102).

Table 12 Distribution of 𝑳𝑪𝑺(𝒒) in BCW (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏)

𝑳
𝑪
𝑺𝒊𝒏
(𝒒
)

𝑳𝑪𝑺
𝒐𝒖𝒕(𝒒)

 < 1 [1, 3) [3, 10) [10, 102) ≥ 102 𝑻𝒐𝒕𝒂𝒍
< 104 0 3 0 7 23 33

[104, 105) 7 4 2 4 7 24

[105, 106) 21 21 5 8 9 64

[106, 107) 184 33 5 4 9 235

≥ 107 121 31 74 66 35 327

𝑻𝒐𝒕𝒂𝒍 333 92 86 89 83 683

Table 13 Distribution of 𝑳𝑪𝑺(𝒒) in CMSC (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏)

𝑳
𝑪
𝑺𝒊𝒏
(𝒒
)

𝑳𝑪𝑺
𝒐𝒖𝒕(𝒒)

 [10, 102) [102, 103) [103, 104) [104, 105) ≥ 105 𝑻𝒐𝒕𝒂𝒍
< 103 1 11 12 2 0 26

[103, 104) 6 35 47 6 6 100

[104, 105) 10 46 44 8 2 110

[105, 106) 11 40 32 8 2 93

≥ 106 39 110 50 11 1 211

𝑻𝒐𝒕𝒂𝒍 67 242 185 35 11 540

79

Table 14 Distribution of 𝑳𝑪𝑺(𝒒) in Glass (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏)
𝑳
𝑪
𝑺𝒊𝒏
(𝒒
)

𝑳𝑪𝑺
𝒐𝒖𝒕(𝒒)

 < 1 [1, 3) [3, 10) [10, 102) ≥ 102 𝑻𝒐𝒕𝒂𝒍
< 102 0 0 0 1 7 8

[102, 103) 2 8 4 4 7 25

[103, 104) 28 91 6 4 5 134

[104, 105) 1 4 0 0 3 8

≥ 105 0 1 0 30 8 39

𝑻𝒐𝒕𝒂𝒍 31 104 10 39 30 214

Table 15 Distribution of 𝑳𝑪𝑺(𝒒) in PID (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏)

𝑳
𝑪
𝑺𝒊𝒏
(𝒒
)

𝑳𝑪𝑺
𝒐𝒖𝒕(𝒒)

 < 1 [1, 3) [3, 10) [10, 30) ≥ 30 𝑻𝒐𝒕𝒂𝒍
< 1 0 0 1 0 0 1

[1, 3) 2 241 62 8 2 315

[3, 10) 36 328 31 3 0 398
[10, 30) 23 23 2 0 0 48

≥ 30 3 3 0 0 0 6

𝑻𝒐𝒕𝒂𝒍 64 595 96 11 2 768

Table 16 Distribution of 𝑳𝑪𝑺(𝒒) in Waveform (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏)

𝑳
𝑪
𝑺𝒊𝒏
(𝒒
)

𝑳𝑪𝑺
𝒐𝒖𝒕(𝒒)

 [1, 3) [3, 10) [10, 102) [102, 103) ≥ 103 𝑻𝒐𝒕𝒂𝒍
< 10 0 24 34 8 2 68

[10, 102) 204 676 772 190 71 1913

[102, 103) 471 1049 981 228 56 2785

[103, 104) 53 103 67 4 4 231

≥ 104 0 2 1 0 0 3

𝑻𝒐𝒕𝒂𝒍 728 1854 1855 430 133 5000

Table 17 Distribution of 𝑳𝑪𝑺(𝒒) in Wine (𝜹 = 𝟎. 𝟎𝟎𝟏, 𝒌 = 𝟏)

𝑳
𝑪
𝑺𝒊𝒏
(𝒒
)

𝑳𝑪𝑺
𝒐𝒖𝒕(𝒒)

 < 1 [1, 3) [3, 10) [10, 102) ≥ 102 𝑻𝒐𝒕𝒂𝒍
< 103 0 13 8 7 5 33

[103, 104) 1 18 11 4 0 34

[104, 105) 2 23 12 5 2 44

[105, 106) 3 7 5 1 0 16

≥ 106 7 20 16 4 4 51

𝑻𝒐𝒕𝒂𝒍 13 81 52 21 11 178

Figures 27 and 28 show the distributions of dimensionality of top-1 inlying contrast

subspaces and outlying contrast subspaces with different minimum likelihood thresholds

80

(𝛿) respectively. In most cases, the contrast subspaces tend to have low dimensionality;

however, in CMSC and Wine, the inlying contrast subspaces tend to have high

dimensionality. Finally, as the value of 𝛿 decreases, the number of subspaces with higher

dimensionality typically increases.

Figure 27 Dimensionality distribution of top inlying contrast subspace (𝒌 = 𝟏)

 BCW CMSC Glass

 PID Waveform Wine

81

Figure 28 Dimensionality distribution of top outlying contrast subspace (𝒌 = 𝟏)

Efficiency

To the best of our knowledge, there is no previous method addressing the same

mining problem. As such, we will evaluate the efficiency of CSMiner and its variations; that

is, comparisons amongst Algorithms 1 (baseline), 2 (CSMiner), and 3 (CSMiner-BPR).

Since Waveform data set is the largest, we use this data set only and randomly select 100

objects as query objects and report the average runtime.

Figure 29 shows the runtime with respect to the minimum likelihood threshold 𝛿.

A logarithm scale has been used for the runtime to better demonstrate the difference in

the behaviours. Since the baseline method performs exhaustive subspace search, its

runtime is the same across all values of 𝛿. For CSMiner and CSMiner-BPR, as 𝛿 decreases,

their runtime increases exponentially. However, the heuristic pruning techniques

implemented in CSMiner and CSMiner-BPR accelerate the search substantially. CSMiner-

BPR is slightly more efficient than CSMiner.

 BCW CMSC Glass

 PID Waveform Wine

82

Figure 29 Scalability test with 𝜹 (𝒌 = 𝟏𝟎, 𝜶 = 𝟎. 𝟖)

Figure 30 shows the runtime with respect to the data set size. As can be observed,

the pruning techniques can achieve a roughly linear runtime. Both CSMiner and CSMiner-

BPR are considerably faster than the baseline method and CSMiner-BPR is slightly more

efficient than CSMiner.

Figure 30 Scalability test with data set size (𝒌 = 𝟏𝟎, 𝜹 = 𝟎. 𝟎𝟏, 𝜶 = 𝟎. 𝟖)

Figure 31 shows the runtime with respect to the dimensionality of the data set. As

the dimensionality increases, more candidate subspaces are generated and runtime

increases exponentially. Both CSMiner and CSMiner-BPR are considerably faster than the

baseline method and CSMiner-BPR is slightly more efficient than CSMiner.

83

Figure 31 Scalability test with dimensionality (𝒌 = 𝟏𝟎, 𝜹 = 𝟎. 𝟎𝟏,𝜶 = 𝟎. 𝟖)

CSMiner-BPR employs a user defined parameter 𝛼 to define the 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑.

Table 18 lists the average runtime of CSMiner-BPR for a query object with respect 𝛼 to for

each data set. The runtime of CSMiner-BPR is not sensitive to 𝛼 in general. The

experiments show the shortest runtime of CSMiner-BPR can be obtained when 𝛼 is

in [0.6, 1.0].

Table 18 Average runtime of CSMiner-BPR with 𝜶 (𝒌 = 𝟏𝟎, 𝜹 = 𝟎. 𝟎𝟏)

Data Set
Average Runtime (milliseconds)

𝛼 = 0.6 𝛼 = 0.8 𝛼 = 1.0 𝛼 = 1.2 𝛼 = 1.4

BCW 20.97 20.14 17.76 16.32 15.69

CMSC 11446.20 11643.50 12915.10 14125.00 15210.20

Glass 16.13 15.83 15.62 15.69 15.76

PID 4.21 4.17 4.23 4.25 4.29

Waveform 6807.10 7102.30 7506.70 7874.70 8183.70

Wine 18.51 18.16 18.42 18.69 19.12

Figure 32 shows the relative runtime of CSMiner-BPR with respect to 𝑘 for each

data set. It illustrates that CSMiner-BPR is linearly scalable as the value of 𝑘 increases.

84

Figure 32 Relative performance of CSMiner-BPR (𝜹 = 𝟎. 𝟎𝟏, 𝜶 = 𝟎. 𝟖)

Sensitivity to the Bandwidth

To test the sensitivity of the top-𝑘 contrast subspaces with respect to the bandwidth

value, we define the similarity measure for two lists of top-𝑘 contrast subspaces.

For any two subspaces 𝑆1 and 𝑆2, we measure the similarity between 𝑆1 and 𝑆2 by

the Jaccard similarity coefficient denoted by 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑆1, 𝑆2) =
|𝑆1∩𝑆2|

|𝑆1∪𝑆2|
. Given a positive

integer 𝑟, let ℙ𝑟be the set of all permutations of the set {𝑖|1 ≤ 𝑖 ≤ 𝑟}. Thus, |ℙ𝑟| = 𝑟!. For

permutation 𝑃 ∈ ℙ𝑟, we denote the 𝑗-th (1 ≤ 𝑗 ≤ 𝑟) element in 𝑃 by 𝑃[𝑖]. For example, by

writing each permutation as a tuple, we have ℙ3 =

{(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)}. Suppose 𝑃 = (2,3,1), then 𝑃[2] = 3.

Given two ranked lists of top-𝑘 contrast subspaces 𝓁1 and 𝓁2, without loss of

generality, we follow the definition of average overlap (Webber et al., 2010), also referred

to as average accuracy (Wu et al., 2003), or intersection metric (Fagin et al., 2003),

which derives the similarity measure by averaging the overlaps of two ranked lists at each

rank in order to measure the similarity between 𝓁1 and 𝓁2. Additionally, in consideration

for the fact that each subspace in a list is a set of dimensions, we incorporate the Jaccard

similarity coefficients into the overlap calculation. Specifically, let 𝓁1[𝑖] be the element

(subspace) at rank 𝑖(1 ≤ 𝑖 ≤ 𝑘) in list 𝓁1. The agreement of lists 𝓁1 and 𝓁2 at

rank 𝑟(1 ≤ 𝑟 ≤ 𝑘), denoted by 𝐴𝑔𝑟(𝓁1, 𝓁2, 𝑟) is:

85

𝐴𝑔𝑟(𝓁1, 𝓁2, 𝑟) =
1

𝑟
max {∑ 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝓁1[𝑃1[𝑖]], 𝓁2[𝑃2[𝑖]])|𝑃1, 𝑃2 ∈ ℙ

𝑟𝑟
𝑖=1 }.

Then the similarity between 𝓁1 and 𝓁2, denoted by 𝑆𝑖𝑚(𝓁1, 𝓁2) is:

𝑆𝑖𝑚(𝓁1, 𝓁2) =
1

𝑘
∑ 𝐴𝑔𝑟(𝓁1, 𝓁2, 𝑟)
𝑘
𝑟=1 .

Clearly, 0 ≤ 𝑆𝑖𝑚(𝓁1, 𝓁2) ≤ 1. The larger the value of 𝑆𝑖𝑚(𝓁1, 𝓁2), the more similar 𝓁1

and 𝓁2 are.

Given a set of objects 𝑂 and a query object 𝑞, to find top-𝑘 contrast subspaces for

𝑞 with respect to 𝑂 by CSMiner, we fix the bandwidth value ℎ𝑆 = 𝜎𝑆 ∙ ℎ𝑆_𝑜𝑝𝑡 and use the

Gaussian kernel function to estimate the subspace likelihood of 𝑞 with respect to 𝑂 in

subspace 𝑆. We then vary the bandwidth value from 0.6ℎ𝑆 to 1.4ℎ𝑆 for density estimation

in 𝑆. Let 𝓁ℎ𝑆 be the top-𝑘 contrast subspaces computed using the default bandwidth

value ℎ𝑆 and 𝓁ℎ�̃� be the top-𝑘 contrast subspaces computed using other bandwidth values.

For each object 𝑞 ∈ 𝑂 , we discover top inlying contrast subspaces and top outlying

contrast subspaces of 𝑞 by CSMiner using different bandwidth values. Figure 33 illustrates

the average value of 𝑆𝑖𝑚(𝓁ℎ𝑆 , 𝓁ℎ�̃�) of inlying contrast subspaces with respect to 𝑘 and

Figure 34 illustrates the average value of 𝑆𝑖𝑚(𝓁ℎ𝑆 , 𝓁ℎ�̃�) of outlying contrast subspaces

with respect to 𝑘. From the results, we can see that the contrast subspaces computed

using different bandwidth values are similar in most data sets. As expected, using a

bandwidth whose value is closer to ℎ makes less difference. Finally, we also observe that

with increasing 𝑘, the value of 𝑆𝑖𝑚(𝓁ℎ𝑆 , 𝓁ℎ�̃�) slightly increases.

86

Figure 33 Similarity scores of inlying contrast subspaces using different

bandwidth values with respect to 𝒌 (𝜹 = 𝟎. 𝟎𝟎𝟏)

 BCW CMSC Glass

 PID Waveform Wine

87

Figure 34 Similarity scores of outlying contrast subspaces using different
bandwidth values with respect to 𝒌 (𝜹 = 𝟎. 𝟎𝟎𝟏)

Comparison with Epanechnikov Kernel

Alternative to Gaussian kernel (Equation (5.1.2)) for multivariate kernel density

estimation is the Epanechnikov kernel:

𝐾𝑒(𝑥) = {
1

2
𝑐𝑑
−1(𝑑 + 2)(1 − 𝑥𝑇𝑥) if 𝑥𝑇𝑥 < 1

0 otherwise

where 𝑐𝑑 is the volume of the unit 𝑑-dimensional sphere and can be expressed by making

use of the Gamma function:

𝑐𝑑 =
𝜋
𝑑
2

𝛤(1 +
𝑑
2)
=

{

 𝜋

𝑑
2

(
𝑑
2) !

 if 𝑑 ≥ 0 is even

𝜋⌊
𝑑
2
⌋2⌈

𝑑
2
⌉

𝑑‼
 if 𝑑 ≥ 0 is odd

 BCW CMSC Glass

 PID Waveform Wine

88

where is 𝑑‼ the double factorial.

Plugging 𝐾𝑒(𝑥) into Equation (5.1.1), the density of a query object 𝑞 for a set of

objects 𝑂 in subspace 𝑆 can be estimated as:

𝑓𝑆(𝑞, 𝑂) =
1

|𝑂|ℎ𝑆
|𝑆|∑ (

1

2
𝑐|𝑆|−1(|𝑆| + 2)(1 −

𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)
2

ℎ𝑆
2))

𝑜∈𝑂∧
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

ℎ𝑆
2 <1

 (5.1.6)

where ℎ𝑆 is the bandwidth for subspace 𝑆. We calculate ℎ𝑆 as ℎ𝑆 = 𝜎𝑆 ∙ ℎ𝑆_𝑜𝑝𝑡.

As Silverman suggested (1986), 𝜎𝑆 is a single scale parameter that equals to the

root of the average marginal variance in 𝑆 and ℎ𝑆_𝑜𝑝𝑡 is the optimal bandwidth value which

equals to 𝐴(𝐾)|𝑂|
−1

(|𝑆|+4) where 𝐴(𝐾) = {8𝑐|𝑆|−1(|𝑆| + 4)(2√𝜋)
|𝑆|}

1

|𝑆|+4 for the Epanechnikov

kernel. For CSMiner, given a subspace 𝑆, let 𝒮 be the set of descendants of 𝑆 in the

subspace set enumeration tree in the descending order of standard deviation. Then,

𝐿𝑆(𝑞|𝑂+) and 𝐿𝑆(𝑞|𝑂−) can be computed by Equation (5.1.6) and 𝐿𝑆
∗ (𝑞|𝑂+) =

1

|𝑂|(𝜎𝑚𝑖𝑛
′ ℎ𝑜𝑝𝑡_𝑚𝑖𝑛

′)𝜏
∑ (

1

2
𝑐𝒮
𝑚𝑖𝑛−1(𝑑𝒮

𝑚𝑎𝑥 + 2)(1 −
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

𝜎𝑆ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′))

𝑜∈𝑂∧
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

(𝜎𝑆ℎ𝑜𝑝𝑡_𝑚𝑎𝑥
′)2

<1
 where 𝑑𝑆

𝑚𝑎𝑥 =

max{|𝑆′| | 𝑆′ ∈ 𝑆}, 𝑐𝑆
𝑚𝑖𝑛 = min {𝑐𝑑| |𝑆| < 𝑑 ≤ 𝑑𝑆

𝑚𝑎𝑥}. Using the Epanechnikov kernel,

𝑓𝑆(𝑞, 𝑂−) = 0 if for any object 𝑜 ∈ 𝑂−,
𝑑𝑖𝑠𝑡𝑆(𝑞,𝑜)

2

ℎ𝑆
2 < 1. Accordingly, 𝐿𝐶𝑆(𝑞) =

�̂�𝑆(𝑞,𝑂+)

�̂�𝑆(𝑞,𝑂−)
= +∞.

Given a data set 𝑂 (consisting of 𝑂+ and 𝑂−), the set of objects whose maximum likelihood

contrast computed using the Epanechnikov kernel is infinity is 𝑂𝐸
+∞ = {𝑜 ∈

𝑂|∃𝑆 𝑠. 𝑡. 𝐿𝐶𝑆(𝑜) = +∞}.

Let 𝓁𝐺 be the top-𝑘 contrast subspaces computed using the Gaussian kernel

and 𝓁𝐸 be the top-𝑘 contrast subspaces computed using Epanechnikov kernel. For each

query object 𝑞 ∈ 𝑂, we discover top-10 inlying contrast subspaces and top-10 outlying

contrast subspaces of 𝑞 using the Gaussian and Epanechnikov kernels and

compute 𝑆𝑖𝑚(𝓁𝐺 , 𝓁𝐸) in each data set. For subspaces whose likelihood contrast values

are infinity (𝐿𝐶𝑆(𝑞) = +∞), we sort them by 𝑓𝑆(𝑞, 𝑂+) in the descending order. Table 19

and 20 list the minimum, the maximum, and the average values of 𝑆𝑖𝑚(𝓁𝐺 , 𝓁𝐸) as well as

the ratio of |𝑂𝐸
+∞| to |𝑂|.

89

Table 19 Similarity between top-10 inlying contrast subspaces using different

kernel functions in data set 𝑶 (𝜹 = 𝟎. 𝟎𝟎𝟏)

Data Set 𝑶
𝑺𝒊𝒎(𝓵𝑮, 𝓵𝑬) |𝑶𝑬

+∞|

|𝑶|

𝑀𝑖𝑛 𝑀𝑎𝑥 𝐴𝑣𝑔

BCW 0.168 0.980 0.539 590/683=0.864

CMSC 0.066 0.826 0.391 540/540=1.000

Glass 0.242 0.984 0.814 76/214=0.355

PID 0.620 1.000 0.924 1/768=0.001

Waveform 0.189 0.981 0.690 2532/5000=0.506

Wine 0.159 0.993 0.670 145/178=0.815

Table 20 Similarity between top-10 outlying contrast subspaces using different
kernel functions in data set 𝑶 (𝜹 = 𝟎. 𝟎𝟎𝟏)

Data Set 𝑶
𝑺𝒊𝒎(𝓵𝑮, 𝓵𝑬) |𝑶𝑬

+∞|

|𝑶|

𝑀𝑖𝑛 𝑀𝑎𝑥 𝐴𝑣𝑔

BCW 0.239 1.000 0.916 67/683=0.098

CMSC 0.174 0.926 0.614 540/540=1.000

Glass 0.358 1.000 0.906 16/214=0.075

PID 0.655 1.000 0.938 1/768=0.001

Waveform 0.364 0.998 0.820 894/5000=0.179

Wine 0.209 1.000 0.804 40/178=0.225

From the results in tables 19 and 20, we can see that 𝑆𝑖𝑚(𝓁𝐺 , 𝓁𝐸) is related to
|𝑂𝐸
+∞|

|𝑂|
.

Specifically, the smaller the value of
|𝑂𝐸
+∞|

|𝑂|
, the more similar 𝓁𝐺 are 𝓁𝐸. For example, when

mining inlying contrast subspaces, the values of
|𝑂𝐸
+∞|

|𝑂|
 for BCW, CMSC, Waveform and

Wine are larger than 0.5 which is larger than the values of
|𝑂𝐸
+∞|

|𝑂|
 for PID and Glass while

the values of 𝑆𝑖𝑚(𝓁𝐺 , 𝓁𝐸) are smaller for BCW, CMSC, Waveform and Wine than those

for PID and Glass. When mining outlying contrast subspaces, the values of
|𝑂𝐸
+∞|

|𝑂|
 are less

than 0.1 for BCW, Glass and PID while the values of 𝑆𝑖𝑚(𝓁𝐺 , 𝓁𝐸) for these data sets are

over 0.9.

Finally, we compute 𝑆𝑖𝑚(𝓁𝐺 , 𝓁𝐸) in 𝑂\𝑂𝐸
+∞ for each data set except CMSC since

for CMSC, 𝑂\𝑂𝐸
+∞ = Ø. From the results shown in Table 21 and 22, we can see that 𝓁𝐺 is

more similar to 𝓁𝐸 when we do not consider the objects whose maximum likelihood

contrast is infinity.

90

Table 21 Similarity between top-10 inlying contrast subspaces using different

kernel functions in data set 𝑶\𝑶𝑬
+∞ (𝜹 = 𝟎. 𝟎𝟎𝟏)

Data Set 𝑶\
𝑶𝑬
+∞

𝑺𝒊𝒎(𝓵𝑮, 𝓵𝑬) |𝑂\𝑂𝐸
+∞ |

𝑀𝑖𝑛 𝑀𝑎𝑥 𝐴𝑣𝑔

BCW 0.643 0.980 0.922 93

Glass 0.720 0.984 0.929 138

PID 0.620 1.000 0.924 767

Waveform 0.324 0.981 0.754 2468

Wine 0.527 0.988 0.904 33

Table 22 Similarity between top-10 outlying contrast subspaces using different

kernel functions in data set 𝑶\𝑶𝑬
+∞ (𝜹 = 𝟎. 𝟎𝟎𝟏)

Data Set 𝑂\
𝑂𝐸
+∞

𝑺𝒊𝒎(𝓵𝑮, 𝓵𝑬) |𝑂\𝑂𝐸
+∞ |

𝑀𝑖𝑛 𝑀𝑎𝑥 𝐴𝑣𝑔

BCW 0.561 1.000 0.934 616

Glass 0.629 1.000 0.925 198

PID 0.655 1.000 0.938 767

Waveform 0.437 0.998 0.836 4106

Wine 0.482 1.000 0.863 138

5.2. Outlying Aspects

In a multidimensional dataset, given a query object 𝑞, we want to find a subspace

in which 𝑞 is most unusual or outlying. By mining outlying aspects, we seek an answer

for “In what context does the organization stand out most?”, for example. Using the Figure

1 example, Figure 35 illustrates two example subspaces.

91

Figure 35 Example Subspaces

In the cholesterol-cardiovascular subspace (on the left), the company 𝑞 (red dot)

is part of the “normal” population, meaning this company’s performance is similar to many

others’ for cholesterol and cardiovascular and the gap is marginal. On the other hand, in

the obesity-mental health subspace (on the right), 𝑞 is significantly outlying, meaning that

its rate of obesity and mental health is unusual and the performance gap is material. The

insight this example brings may be that the company 𝑞 needs to develop a program to

reduce the rate of obesity and/or mental health across its workforce. While this example

only shows 2 dimensions for visual simplicity, mining outlying aspects detects top-𝑘 (where

𝑘 can be any number of dimensions) most prominent dimensions in which 𝑞 is an outlier.

5.2.1. Rank Statistics

In order to identify top-𝑘 subspaces in which a query object 𝑞 is outlying most, the

ability to compare the outlyingness degree of 𝑞 in different subspaces is required. We use

rank statistics as a vehicle for comparison.

Problem Definition

Let 𝐷 = {𝐷1, … , 𝐷𝑑} be a 𝑑-dimensional space where the domain of 𝐷𝑖 is ℝ, a set

of real numbers. A subspace 𝑆 ⊆ 𝐷 (𝑆 ≠ 0) is a subset of 𝐷 and 𝐷 is also referred to as

the full space. The value of an object 𝑜 in dimension 𝐷𝑖 (1 ≤ 𝑖 ≤ 𝑑) is denoted as 𝑜. 𝐷𝑖.

C
h
o
le

s
te

ro
l
P

re
v
a
le

n
c
e

Cardiovascular Prevalence

Company 𝑞

O
b
e
s
it
y
 P

re
v
a
le

n
c
e

Mental Health Prevalence

Company 𝑞

92

For a subspace 𝑆 = {𝐷𝑖1 , … , 𝐷𝑖𝑙} ⊆ 𝐷, the projection of 𝑜 in 𝑆 is 𝑜𝑆 = {𝑜. 𝐷𝑖1 , … , 𝑜. 𝐷𝑖𝑙}. The

dimensionality of 𝑆, denoted by |𝑆|, is the number of dimensions in 𝑆.

In a subspace 𝑆 ⊆ 𝐷, we assume that we can define a measure of outlyingness

degree, 𝑂𝑢𝑡𝐷𝑒𝑔(∙), such that for each objet 𝑜 ∈ 𝑂, 𝑂𝑢𝑡𝐷𝑒𝑔(𝑜) measures the outlyingness

of 𝑜. Without loss of generality we assume that the lower the 𝑂𝑢𝑡𝐷𝑒𝑔(𝑜), the more outlying

the object 𝑜. In this thesis, we consider a generative model; that is, the set of objects 𝑂 is

generated (i.e. sampled) from an often unknown probability distribution. Accordingly, we

can use the probability density of an object 𝑜, denoted by 𝑓(𝑜), as the equivalent

to 𝑂𝑢𝑡𝐷𝑒𝑔(𝑜). The smaller the value of 𝑓(𝑜), the more outlying the object 𝑜.

How can we compare the outlying degree of an object in different subspaces? We

unfortunately cannot compare them directly since the probability density values depend

on the properties of specific subspaces, such as, their scales. For example, it is well

known that probability density tends to be low in subspaces of higher dimensionality since

such subspaces often have a larger volume and thus sparser.

To address this issue, we consider the use of rank statistics. In a subspace 𝑆, we

rank all objects in 𝑂 in their outlyingness degree ascending order. For an object 𝑜 ∈ 𝑂,

we denote by:

𝑟𝑎𝑛𝑘𝑆(𝑜) = |{𝑜
′|𝑜′ ∈ 𝑂,𝑂𝑢𝑡𝐷𝑒𝑔(𝑜′) < 𝑂𝑢𝑡𝐷𝑒𝑔(𝑜)}| + 1 (5.2.1)

the outlyingness rank of 𝑜 in subspace 𝑆. The smaller the rank value, the more

outlying the object is compared to the other objects in 𝑂 in subspace 𝑆. We can compare

the outlyingness of an object 𝑜 in two subspaces 𝑆1 and 𝑆2 using 𝑟𝑎𝑛𝑘𝑆1(𝑜) and 𝑟𝑎𝑛𝑘𝑆2(𝑜).

Object 𝑜 is more outlying in the subspace where it has the smaller rank. In Equation

(5.2.1), for objects with the same outlyingness degree (probability density value), their

outlyingness ranks are the same.

Suppose for object 𝑜, there are two subspaces 𝑆 and 𝑆′such that 𝑆 ⊂ 𝑆′

and 𝑟𝑎𝑛𝑘𝑆(𝑜) = 𝑟𝑎𝑛𝑘𝑆′(𝑜). Since 𝑆 is more general than 𝑆′, 𝑆 is more significant in

manifesting the outlyingness of 𝑜 at the rank of 𝑟𝑎𝑛𝑘𝑆(𝑜) relative to the other objects in the

data set. Consequently, 𝑆′ is redundant given 𝑆, in terms of outlying aspects.

93

In high dimensional subspaces where the values of probability densities of objects

are very small, comparing the ranks may not be reliable since the subtle differences in

values may be due to noise or sensitivity to parameter settings in the density estimation.

Further to note that high dimensional subspaces may not be interesting since the results

are hard to understand. Thus, we assume a maximum dimensionality threshold, 𝓁 > 0

and consider only the subspaces whose dimensionalities are not greater than 𝓁.

Definition 1 (Problem definition). Given a set of objects 𝑂 in a multi-dimensional space

𝐷, a query object 𝑞 ∈ 𝑂 and a maximum dimensionality threshold 0 < 𝓁 ≤ |𝐷|, a

subspace 𝑆 ⊆ 𝐷(0 < |𝑆| ≤ 𝓁) is called a minimal outlying subspace of 𝑞 if

1. (Rank minimality) there does not exist another subspace 𝑆′ ⊆ 𝐷(𝑆′ ≠ ∅) such

that 𝑟𝑎𝑛𝑘𝑆′(𝑞) = 𝑟𝑎𝑛𝑘𝑆(𝑞); and

2. (Subspace minimality) there does not exist another subspace 𝑆′′ ⊆ 𝑆 such

that 𝑟𝑎𝑛𝑘𝑆′′(𝑞) = 𝑟𝑎𝑛𝑘𝑆(𝑞).

The problem of minimal outlying subspace is to find the minimal outlying subspaces

of 𝑞. Given a query object 𝑞, there exists at least one and may be more than one

minimal outlying subspace.

We use KDE (Breiman et al., 1977) to estimate the density given a set of objects 𝑂.

To reduce sensitivity to outliers, we employ Härdle’s rule of thumb (1990) instead of

Silverman’s and set the bandwidth:

 ℎ = 1.06min {𝜎,
𝑅

1.34
}𝑛−

1

5 (5.5.2)

where 𝑅 = 𝑋[0.75𝑛] − 𝑋[0.25𝑛], and 𝑋[0.25𝑛] and 𝑋[0.75𝑛] respectively are the first and the third

quartiles.

For 𝑑-dimensional (𝑑 ≥ 2), 𝑜 = (𝑜. 𝐷1, … , 𝑜. 𝐷𝑑)
𝑇 and 𝑜𝑖 = (𝑜𝑖. 𝐷1, … , 𝑜𝑖 . 𝐷𝑑)

𝑇 (1 ≤

𝑖 ≤ 𝑛). Then the probability density of 𝑓 at point 𝑜 ∈ ℝ𝑑 can be estimated by:

𝑓𝐻(𝑜) =
1

𝑛
∑ 𝐾𝐻(𝑜 − 𝑜𝑖)
𝑛
𝑖=1

94

where 𝐻 is a bandwidth matrix. The product kernel, consisting of the product of one-

dimensional kernels, is a good choice for a multivariate kernel density estimator (Scott,

1992; Härdle et al., 2004). Hence, we have:

 𝑓𝐻(𝑜) =
1

𝑛∏ ℎ𝐷𝑗
𝑑
𝑗=1

∑ {∏ 𝐾(
𝑜.𝐷𝑗−𝑜𝑖.𝐷𝑗

ℎ𝐷𝑗
)𝑑

𝑗=1 }𝑛
𝑖=1 (5.2.3)

where ℎ𝐷𝑖 is the bandwidth of dimension 𝐷𝑖(1 ≤ 𝑖 ≤ 𝑑). We use Gaussian kernel and the

distance between two objects is measured by Euclidean distance. Thus, the kernel

function is:

𝐾 (
𝑜−𝑜𝑖

ℎ
) =

1

√2𝜋
𝑒
−
(𝑜−𝑜𝑗)

2

2ℎ2 (5.2.4)

Plugging Equation (5.2.4) into (5.2.3), the density of a query object 𝑞 ∈ 𝑂 in

subspace 𝑆 can be estimated as:

 𝑓𝑆(𝑞) = 𝑓𝑆(𝑞
𝑆) =

1

𝑛(2𝜋)
|𝑆|
2 ∏ ℎ𝐷𝑖𝐷𝑖∈𝑆

∑ 𝑒
−∑

(𝑞.𝐷𝑖−𝑜.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

𝑜∈𝑂 (5.2.5)

Since we are only interested in the rank of 𝑞 (i.e. 𝑟𝑎𝑛𝑘𝑆(𝑞)) and:

 𝑐 =
1

𝑛(2𝜋)
|𝑆|
2 ∏ ℎ𝐷𝑖𝐷𝑖∈𝑆

 (5.2.6)

is a factor common to every object in subspace 𝑆 and does not affect the ranking at all,

we can rewrite Equation (5.2.5) as:

 𝑓𝑆(𝑞)~𝑓𝑆(𝑞) = ∑ 𝑒
−∑

(𝑞.𝐷𝑖−𝑜.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

 𝑜∈𝑂 (5.2.7)

where “~” means equivalence for ranking. For clarity, we refer to 𝑓𝑆(𝑞) as quasi-density

of 𝑞 in 𝑆. Using 𝑓𝑆(𝑞) instead of 𝑓𝑆(𝑞) not only simplifies the description but also saves the

computational cost for calculating 𝑟𝑎𝑛𝑘𝑆(𝑞).

95

Proposition 1 (Invariance). Given a set of objects 𝑂 in space 𝑆 = {𝐷1, … , 𝐷𝑑}, define a

linear transformation 𝑔(𝑜) = (𝑎1𝑜. 𝐷1 + 𝑏1, … , 𝑎𝑑𝑜. 𝐷𝑑 + 𝑏𝑑) for any 𝑜 ∈ 𝑂

where 𝑎1, … , 𝑎𝑑 and 𝑏1, … , 𝑏𝑑 are real numbers. Let 𝑂′ = {𝑔(𝑜)|𝑜 ∈ 𝑂} be the

transformed data set. For any objects 𝑜1, 𝑜2 ∈ 𝑂 such that 𝑓𝑆(𝑜1) > 𝑓𝑆(𝑜2) in 𝑂,

𝑓𝑆(𝑔(𝑜1)) > 𝑓𝑆(𝑔(𝑜2)) if the product kernel is used and the bandwidths are set using

Equation (5.2.2).

Proof. For any dimension 𝐷𝑖 ∈ 𝑆(1 ≤ 𝑖 ≤ 𝑑) , the mean value of {𝑜. 𝐷𝑖|𝑜 ∈ 𝑂}, denoted

by 𝜇𝑖, is
1

|𝑂|
∑ 𝑜.𝐷𝑖𝑜∈𝑂 , the standard deviation of {𝑜. 𝐷𝑖|𝑜 ∈ 𝑂}, denoted by 𝜎𝑖,

is√
1

|𝑂|
∑ (𝑜. 𝐷𝑖 − 𝜇𝑖)

2
𝑜∈𝑂 , and the bandwidth of 𝐷𝑖(ℎ𝑖) is 1.06min {𝜎𝑖,

𝑅

1.34
}|𝑂|−

1

5 where 𝑅 is

the difference between the first and the third quartiles of 𝑂 in 𝐷𝑖. We perform the linear

transformation 𝑔(𝑜). 𝐷𝑖 = 𝑎𝑖𝑜. 𝐷𝑖 + 𝑏𝑖 for any 𝑜 ∈ 𝑂. Then, the mean value

of {𝑔(𝑜). 𝐷𝑖|𝑜 ∈ 𝑂} is
1

|𝑂|
∑ (𝑎𝑖𝑜. 𝐷𝑖 + 𝑏𝑖) = 𝑎𝑖𝜇𝑖 + 𝑏𝑖𝑜∈𝑂 and the standard deviation

of {𝑔(𝑜). 𝐷𝑖|𝑜 ∈ 𝑂} is√
1

|𝑂|
∑ (𝑎𝑖𝑜. 𝐷𝑖 + 𝑏𝑖 − 𝑎𝑖𝜇𝑖 − 𝑏𝑖)

2
𝑜∈𝑂 = 𝑎𝑖√

1

|𝑂|
∑ (𝑜. 𝐷𝑖 − 𝜇𝑖)

2
𝑜∈𝑂 =

𝑎𝑖𝜎𝑖. Thus, the bandwidth of 𝐷𝑖 is 1.06min {𝑎𝑖𝜎𝑖,
𝑎𝑖𝑅

1.34
}|𝑂|−

1

5 after the linear

transformation. As the distance between two objects in 𝐷𝑖 is also enlarged by 𝑎𝑖, the

quasi-density calculated by Equation (5.2.7) remains unchanged. Thus, the ranking is

invariant under linear transformation.

5.2.2. Mining Methods

Baseline Method

Using quasi-density estimation (Equation (5.2.7)), we can develop a baseline

algorithm for computing the outlyingness rank in a subspace 𝑆 (Algorithm 1). The baseline

method estimates the quasi-density of each object in a data set and ranks them. For the

total number of objects 𝑛, the baseline method has to compute the distance between every

pair of objects in every dimension of 𝑆. Thus, the time complexity is 𝒪(𝑛2|𝑆|) in each

subspace 𝑆.

Algorithm 1 The baseline algorithm

96

 Input: 𝑂: a set of objects, 𝑞: query object ∈ 𝑂, 𝑆: subspace

 Output: 𝑟𝑎𝑛𝑘𝑆(𝑞)

 1: for each object 𝑜 ∈ 𝑂 do

 2: compute 𝑓𝑆(𝑜) using Equation (5.2.7);

 3: end for

 4: return 𝑟𝑎𝑛𝑘𝑆(𝑞) = |{𝑜|𝑜 ∈ 𝑂, 𝑓𝑆(𝑜) < 𝑓𝑆(𝑞)}|+1;

OAMiner Framework

To reduce computational cost, we propose OAMiner (for Outlying Aspect Miner) in

Algorithm 2.

Algorithm 2 OAMiner

 Input: 𝑂: a set of objects, 𝑞: query object ∈ 𝑂

 Output: a set of minimal outlying subspaces for 𝑞

 1: initialize 𝑟𝑏𝑒𝑠𝑡 ← |𝑂| and 𝐴𝑛𝑠 ← ∅;

 2: remove 𝐷𝑖 from 𝐷 if the values of all objects in 𝐷𝑖 are identical;

 3: compute 𝑟𝑎𝑛𝑘𝐷𝑖(𝑞) in each dimension 𝐷𝑖 ∈ 𝐷;

 4: sort all dimensions in 𝑟𝑎𝑛𝑘𝐷𝑖(𝑞) ascending order;

 5: for each subspace 𝑆 searched by traversing the set enumeration tree in a depth-first manner do

 6: compute 𝑟𝑎𝑛𝑘𝑆(𝑞);

 7: if 𝑟𝑎𝑛𝑘𝑆(𝑞) < 𝑟𝑏𝑒𝑠𝑡 then

 8: 𝑟𝑏𝑒𝑠𝑡 ← 𝑟𝑎𝑛𝑘𝑆(𝑞), 𝐴𝑛𝑠 ← {𝑆};

 9: end if

 10: if 𝑟𝑎𝑛𝑘𝑆(𝑞) = 𝑟𝑏𝑒𝑠𝑡 and 𝑆 is minimal then

 11: 𝐴𝑛𝑠 ← 𝐴𝑛𝑠 ∪ {𝑆};

 12: end if

 13: if a subspace pruning conditions is true then

 14: prune all descendants of 𝑆

 15: end if

 16: end for

 17: return 𝐴𝑛𝑠;

As a first step, OAMiner removes the dimensions where all values of objects are

identical since no object is outlying in such dimensions. As a result, the standard deviation

of all dimensions involved in outlying aspect mining are greater than 0.

97

To ensure that OAMiner finds the most outlying subspaces, we need to enumerate

all possible subspaces in a systematic way. We again use the set enumeration tree

introduced in section 5.1.3 (Figure 25).

OAMiner searches subspaces by traversing the subspace enumeration tree in a

depth-first manner. Given a set of objects 𝑂, a query object 𝑞 ∈ 𝑂 and a subspace 𝑆,

if 𝑟𝑎𝑛𝑘𝑆(𝑞) = 1, then every descendant of 𝑆 cannot be a minimal outlying subspace and

thus can be pruned.

Pruning Rule 1. If 𝑟𝑎𝑛𝑘𝑆(𝑞) = 1, according to the dimensionality minimality condition

(Definition 1), all descendants of 𝑆 can be pruned.

In the case of 𝑟𝑎𝑛𝑘𝑆(𝑞) > 1, OAMiner prunes subspaces according to the current

best rank of 𝑞 in the search process. Heuristically, we want to find subspaces where the

query object 𝑞 has a low rank early on so that the pruning technique is more effective.

Consequently, we compute the outlyingness rank of 𝑞 in each dimension 𝐷𝑖 and order

dimensions in the ascending order of 𝑟𝑎𝑛𝑘𝐷𝑖(𝑞).

In general, the outlyingness rank does not have any monotonicity with respect to

subspaces; that is, for subspaces 𝑆1 ⊆ 𝑆2, neither 𝑟𝑎𝑛𝑘𝑆1(𝑞) ≤ 𝑟𝑎𝑛𝑘𝑆2(𝑞) nor 𝑟𝑎𝑛𝑘𝑆1(𝑞) ≥

𝑟𝑎𝑛𝑘𝑆2(𝑞) holds.

Example 1. Given a set of objects 𝑂 = {𝑜1, 𝑜2, 𝑜3, 𝑜4} with 2 numeric attributes 𝐷1 and 𝐷2,

the values of each object in 𝑂 are listed in Table 23. Using Equation (5.2.7), we

estimate the quasi-density values of each object for different subspaces (Table 24).

We can see that 𝑓{𝐷1}(𝑜2) > 𝑓{𝐷1}(𝑜4) and 𝑓{𝐷2}(𝑜2) > 𝑓{𝐷2}(𝑜4) which

indicate 𝑟𝑎𝑛𝑘{𝐷1}(𝑜2) > 𝑟𝑎𝑛𝑘{𝐷1}(𝑜4) and 𝑟𝑎𝑛𝑘{𝐷2}(𝑜2) > 𝑟𝑎𝑛𝑘{𝐷2}(𝑜4). However, for

subspaces {𝐷1, 𝐷2}, since 𝑓{𝐷1,𝐷2}(𝑜2) < 𝑓{𝐷1,𝐷2}(𝑜4), 𝑟𝑎𝑛𝑘{𝐷1,𝐷2}(𝑜2) < 𝑟𝑎𝑛𝑘{𝐷1,𝐷2}(𝑜4).

Table 23 A numeric data set example

𝑜𝑏𝑗𝑒𝑐𝑡 𝑜𝑖. 𝐷1 𝑜𝑖. 𝐷2
𝑜1 14.23 1.50

𝑜2 13.20 1.78

𝑜3 13.16 2.31

𝑜4 14.37 1.97

98

Table 24 quasi-density values of objects in Table 23

𝑜𝑏𝑗𝑒𝑐𝑡 𝑓{𝐷1}(𝑜𝑖) 𝑓{𝐷2}(𝑜𝑖) 𝑓{𝐷1,𝐷2}(𝑜𝑖)

𝑜1 2.229 1.832 1.305

𝑜2 2.220 2.529 1.300

𝑜3 2.187 1.626 1.185

𝑜4 2.113 2.474 1.314

A further challenge is that the probability density itself does not have any

monotonicity with respect to subspaces either. For subspaces 𝑆1 ⊆ 𝑆2, according to

Equation (5.2.5), we have:

�̂�𝑆1(𝑞)

�̂�𝑆2(𝑞)
=

∑ 𝑒

−∑
(𝑞.𝐷𝑖−𝑜.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆1

𝑜∈𝑂

𝑛(2𝜋)
|𝑆1|
2 ∏ ℎ𝐷𝑖𝐷𝑖∈𝑆1

/
∑ 𝑒

−∑
(𝑞.𝐷𝑖−𝑜.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆2

𝑜∈𝑂

𝑛(2𝜋)
|𝑆2|
2 ∏ ℎ𝐷𝑖𝐷𝑖∈𝑆2

 = (2𝜋)
|𝑆1|−|𝑆2|

2 ∏ ℎ𝐷𝑖
𝐷𝑖∈𝑆2\𝑆1

∑ 𝑒
−∑

(𝑞.𝐷𝑖−𝑜.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆1

𝑜∈𝑂

∑ 𝑒
−∑

(𝑞.𝐷𝑖−𝑜.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆2

𝑜∈𝑂

 Since 𝑆1 ⊆ 𝑆2,
∑ 𝑒

−∑
(𝑞.𝐷𝑖−𝑜.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆1

𝑜∈𝑂

∑ 𝑒

−∑
(𝑞.𝐷𝑖−𝑜.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆2

𝑜∈𝑂

≥ 1 and (2𝜋)
|𝑆1|−|𝑆2|

2
 ≥ 1. However, in the

case ∏ ℎ𝐷𝑖𝐷𝑖∈𝑆2\𝑆1 < 1, there is no guarantee that
�̂�𝑆1(𝑞)

�̂�𝑆2(𝑞)
> 1 always holds.

Consequently, neither 𝑓𝑆1(𝑞) ≤ 𝑓𝑆2(𝑞) nor 𝑓𝑆1(𝑞) ≥ 𝑓𝑆2(𝑞) holds in general.

A Bounding-Pruning-Refining Method

Bounding Probability Density

To obtain rank statistics, OAMiner needs to compare the density of the query object

with the densities of other objects. In order to speed up density estimation, we exploit the

observation that the contributions to the density of an object from remote objects are small;

thus, the density of an object can be bounded. Similar to the concept of 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑

with CSMiner, we can derive upper and lower bounds of the density of an object using a

neighbourhood.

99

Given objects 𝑜, 𝑜′ ∈ 𝑂, subspace 𝑆 and a subset 𝑂′ ⊆ 𝑂, we denote by 𝑑𝑐𝑆(𝑜, 𝑜
′)

the quasi-density contribution of 𝑜′ to 𝑜 in 𝑆 and 𝑓𝑆
𝑂′(𝑜) the sum of quasi-density

contributions of objects in 𝑂′ to 𝑜. That is:

𝑑𝑐𝑆(𝑜, 𝑜
′) = 𝑒

−∑
(𝑜.𝐷𝑖−𝑜′.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

𝑓𝑆
𝑂′(𝑜) = ∑ 𝑒

−∑
(𝑜.𝐷𝑖−𝑜′.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

𝑜′∈𝑂′

To estimate the bounds of 𝑓𝑆(𝑜) efficiently, we define two kinds of neighbourhood.

For an object 𝑜 ∈ 𝑂, a subspace 𝑆 and {𝜖𝐷𝑖|𝜖𝐷𝑖 > 0,𝐷𝑖 ∈ 𝑆},

the 𝜖-𝑡𝑖𝑔ℎ𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 of 𝑜 in 𝑆, denoted by 𝑇𝑁𝑆
𝜖,𝑜, is {𝑜′ ∈ 𝑂|∀𝐷𝑖 ∈ 𝑆, |𝑜. 𝐷𝑖 − 𝑜

′. 𝐷𝑖| ≤

𝜖𝐷𝑖}, the 𝜖-𝑙𝑜𝑜𝑠𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 of 𝑜 in 𝑆, denoted by 𝐿𝑁𝑆
𝜖,𝑜, is {𝑜′ ∈ 𝑂|∃𝐷𝑖 ∈ 𝑆, |𝑜. 𝐷𝑖 −

𝑜′. 𝐷𝑖| ≤ 𝜖𝐷𝑖}. Based on the definitions of 𝑇𝑁𝑆
𝜖,𝑜 and 𝐿𝑁𝑆

𝜖,𝑜, we depict the following

properties.

Property 1. 𝑇𝑁𝑆
𝜖,𝑜 ⊆ 𝐿𝑁𝑆

𝜖,𝑜.

Property 2. 𝑇𝑁𝑆
𝜖,𝑜 = 𝐿𝑁𝑆

𝜖,𝑜if |𝑆| = 1.

Using 𝑇𝑁𝑆
𝜖,𝑜 and 𝐿𝑁𝑆

𝜖,𝑜, 𝑂 can be divided into three disjoint subsets: 𝑇𝑁𝑆
𝜖,𝑜,

𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜, 𝑂\ 𝐿𝑁𝑆
𝜖,𝑜. For any object 𝑜′ ∈ 𝑂, we obtain a lower bound and an upper

bound of 𝑑𝑐𝑆(𝑜, 𝑜
′) as follows:

Theorem 1 (Single quasi-density contribution bounds). Given an object 𝑜 ∈ 𝑂, a

subspace 𝑆 and {𝜖𝐷𝑖|𝜖𝐷𝑖 > 0,𝐷𝑖 ∈ 𝑆}, then:

for any object 𝑜′ ∈ 𝑇𝑁𝑆
𝜖,𝑜, 𝑑𝑐𝑆

𝜖 ≤ 𝑑𝑐𝑆(𝑜, 𝑜
′) ≤ 𝑑𝑐𝑆

𝑚𝑎𝑥(𝑜);

for any object 𝑜′ ∈ 𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜, 𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) ≤ 𝑑𝑐𝑆(𝑜, 𝑜

′) ≤ 𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜);

for any object 𝑜′ ∈ 𝑂\𝐿𝑁𝑆
𝜖,𝑜, 𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ 𝑑𝑐𝑆(𝑜, 𝑜
′) ≤ 𝑑𝑐𝑆

𝜖

where:

 𝑑𝑐𝑆
𝜖 = 𝑒

−∑
𝜖𝐷𝑖
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

100

 𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) = 𝑒

−∑
min
𝑜′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

 𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) = 𝑒

−∑
max
𝑜′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

.

Proof.

1) Given an object 𝑜′ ∈ 𝑇𝑁𝑆
𝜖,𝑜, for any dimension 𝐷𝑖 ∈ 𝑆, min

𝑜′′∈𝑂
{|𝑜. 𝐷𝑖 − 𝑜

′′. 𝐷𝑖|} ≤

|𝑜. 𝐷𝑖 − 𝑜
′. 𝐷𝑖| ≤ 𝜖𝐷𝑖. Thus, 𝑒

−∑
𝜖𝐷𝑖
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

≤ 𝑒
−∑

|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

≤

𝑒
−∑

min
𝑜′′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

. That is, 𝑑𝑐𝑆
𝜖 ≤ 𝑑𝑐𝑆(𝑜, 𝑜

′) ≤ 𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜).

2) Given an object 𝑜′ ∈ 𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜, for any dimension 𝐷𝑖 ∈ 𝑆, min
𝑜′′∈𝑂

{|𝑜. 𝐷𝑖 − 𝑜
′′. 𝐷𝑖|} ≤

|𝑜. 𝐷𝑖 − 𝑜
′. 𝐷𝑖| ≤ max

𝑜′′∈𝑂
{|𝑜. 𝐷𝑖 − 𝑜

′′. 𝐷𝑖|}. Thus, 𝑒
−∑

max
𝑜′′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

 ≤

𝑒
−∑

|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

≤ 𝑒
−∑

min
𝑜′′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

. That is, 𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) ≤ 𝑑𝑐𝑆(𝑜, 𝑜

′) ≤

𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜).

3) Given an object 𝑜′ ∈ 𝑂\𝐿𝑁𝑆
𝜖,𝑜, for any dimension 𝐷𝑖 ∈ 𝑆, 𝜖𝐷𝑖 ≤ |𝑜. 𝐷𝑖 − 𝑜

′. 𝐷𝑖| ≤

max
𝑜′′∈𝑂

{|𝑜. 𝐷𝑖 − 𝑜
′′. 𝐷𝑖|}. Thus, 𝑒

−∑
max
𝑜′′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

≤ 𝑒
−∑

|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

≤

𝑒
−∑

𝜖𝐷𝑖
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

. That is, 𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) ≤ 𝑑𝑐𝑆(𝑜, 𝑜

′) ≤ 𝑑𝑐𝑆
𝜖.

Using the size of 𝑇𝑁𝑆
𝜖,𝑜and 𝐿𝑁𝑆

𝜖,𝑜, we obtain a lower and an upper bound of 𝑓𝑆(𝑜)

as follows.

Corollary 1 (Bounds by neighbourhood size). For any object 𝑜 ∈ 𝑂,

|𝑇𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝜖 + (|𝑂| − |𝑇𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ 𝑓𝑆(𝑜)

𝑓𝑆(𝑜) ≤ |𝐿𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝜖

Corollary 1 allows us to compute the quasi-density bounds of an object without computing

the quasi-density contributions of the other objects to it.

101

Proof. We divide 𝑂 into disjoint subsets 𝑇𝑁𝑆
𝜖,𝑜, 𝐿𝑁𝑆

𝜖,𝑜\ 𝑇𝑁𝑆
𝜖,𝑜, 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜. By Theorem 1, for

objects belonging to 𝑇𝑁𝑆
𝜖,𝑜, we have:

 |𝑇𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝜖 ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈𝑇𝑁𝑆

𝜖,𝑜 ≤ |𝑇𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝑚𝑎𝑥(𝑜),

 for objects belonging to 𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜, we have:

 (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈ 𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜

 ≤ (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜),

 for objects belonging to 𝑂\ 𝐿𝑁𝑆
𝜖,𝑜, we have:

 (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈ 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 < (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝜖 as:

 𝑓𝑆(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈𝑂 = ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈𝑇𝑁𝑆
𝜖,𝑜 +

 ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈ 𝐿𝑁𝑆

𝜖,𝑜\ 𝑇𝑁𝑆
𝜖,𝑜 +

 ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈ 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 .

Thus:

 𝑓𝑆(𝑜) ≥ |𝑇𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝜖 + (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜)

 = |𝑇𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝜖 + (|𝑂| − |𝑇𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜)

𝑓𝑆(𝑜) ≤ |𝑇𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝑚𝑎𝑥(𝑜) + (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖

 = |𝐿𝑁𝑆
𝜖,𝑜|𝑑𝑐𝑆

𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝜖.

 Finally, if 𝐿𝑁𝑆
𝜖,𝑜 ⊂ 𝑂; that is, 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 ≠ ∅, then:

 𝑓𝑆
𝑂′(𝑜) < |𝐿𝑁𝑆

𝜖,𝑜|𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖.

Corollary 2 (Bounds by 𝝐-𝒕𝒊𝒈𝒉𝒕 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒔). For any object 𝑜 ∈ 𝑂 and 𝑂′ ⊆ 𝑇𝑁𝑆
𝜖,𝑜,

𝑓𝑆
𝑂′(𝑜) + (|𝑇𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝜖 + (|𝑂| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) ≤ 𝑓𝑆(𝑜)

𝑓𝑆(𝑜) ≤ 𝑓𝑆
𝑂′(𝑜) + (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖

Proof. Since 𝑂′ ⊆ 𝑇𝑁𝑆
𝜖,𝑜, for objects belonging to 𝑂\ 𝑂′, we divide them into 𝑇𝑁𝑆

𝜖,𝑜\Ο′,

𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜, 𝑂\ 𝐿𝑁𝑆
𝜖,𝑜. Then:

 𝑓𝑆(𝑜) = 𝑓𝑆
𝑂′(𝑜) + ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈𝑇𝑁𝑆
𝜖,𝑜\Ο′ +

 ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈ 𝐿𝑁𝑆

𝜖,𝑜\ 𝑇𝑁𝑆
𝜖,𝑜 +

102

 ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈ 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 .

 By Theorem 1, for objects belonging to 𝑇𝑁𝑆
𝜖,𝑜\ 𝑂′, we have:

 (|𝑇𝑁𝑆
𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆

𝜖 ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′) ≤ (|𝑇𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜),𝑜′∈ 𝑇𝑁𝑆

𝜖,𝑜\ 𝑂′

 for objects belonging to 𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜, we have:

 (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈ 𝐿𝑁𝑆
𝜖,𝑜\ 𝑇𝑁𝑆

𝜖,𝑜

 ≤ (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜),

for objects belonging to 𝑂\ 𝐿𝑁𝑆
𝜖,𝑜, we have:

 (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈ 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 ≤ (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝜖.

Thus:

 𝑓𝑆(𝑜) ≥ 𝑓𝑆
𝑂′(𝑜) +

 (|𝑇𝑁𝑆
𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆

𝜖 + (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜)

 = 𝑓𝑆
𝑂′(𝑜) + (|𝑇𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝜖 + (|𝑂| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜)

𝑓𝑆(𝑜) ≤ 𝑓𝑆
𝑂′(𝑜) +

 (|𝑇𝑁𝑆
𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑎𝑥(𝑜) + (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑇𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖

 = 𝑓𝑆
𝑂′(𝑜) + (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖.

 Finally, if 𝐿𝑁𝑆
𝜖,𝑜 ⊂ 𝑂; that is, 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 ≠ ∅, then:

 𝑓𝑆(𝑜) < �̃�𝑆
𝑂′(𝑜) < (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖.

Corollary 3 (Bounds by 𝝐-𝒍𝒐𝒐𝒔𝒆 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒔). For any object 𝑜 ∈ 𝑂 and 𝑇𝑁𝑆
𝜖,𝑜 ⊂ 𝑂′ ⊆

𝐿𝑁𝑆
𝜖,𝑜,

 𝑓𝑆
𝑂′(𝑜) + (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ 𝑓𝑆(𝑜)

𝑓𝑆(𝑜) ≤ 𝑓𝑆
𝑂′(𝑜) + (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖

Proof. Since 𝑇𝑁𝑆
𝜖,𝑜 ⊂ 𝑂′ ⊆ 𝐿𝑁𝑆

𝜖,𝑜, for objects belonging to 𝑂\ 𝑂′, we divide them

into 𝐿𝑁𝑆
𝜖,𝑜\Ο′ and 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜. Then:

 𝑓𝑆(𝑜) = 𝑓𝑆
𝑂′(𝑜) + ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈𝐿𝑁𝑆
𝜖,𝑜\𝑂′ + ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈ 𝑂\ 𝐿𝑁𝑆
𝜖,𝑜 .

 By Theorem 1, for objects belonging to 𝐿𝑁𝑆
𝜖,𝑜\ 𝑂′, we have:

103

 (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′) ≤ (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜),𝑜′∈ 𝐿𝑁𝑆

𝜖,𝑜\ 𝑂′

for objects belonging to 𝑂\ 𝐿𝑁𝑆
𝜖,𝑜, we have:

 (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′)𝑜′∈ 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 ≤ (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝜖.

Thus:

 𝑓𝑆(𝑜) ≥ 𝑓𝑆
𝑂′(𝑜) +

 (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) + (|𝑂| − |𝐿𝑁𝑆
𝜖,𝑜|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜)

 = 𝑓𝑆
𝑂′(𝑜) + (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜)

 𝑓𝑆(𝑜) ≤ 𝑓𝑆
𝑂′(𝑜) + (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖.

 Finally, if 𝐿𝑁𝑆
𝜖,𝑜 ⊂ 𝑂; that is, 𝑂\ 𝐿𝑁𝑆

𝜖,𝑜 ≠ ∅, then:

 𝑓𝑆(𝑜) < �̃�𝑆
𝑂′(𝑜) < (|𝐿𝑁𝑆

𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) + (|𝑂| − |𝐿𝑁𝑆

𝜖,𝑜|)𝑑𝑐𝑆
𝜖.

Corollary 4 (Bounds by a superset of 𝝐-𝒍𝒐𝒐𝒔𝒆 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒔). For any object 𝑜 ∈

𝑂 and 𝐿𝑁𝑆
𝜖,𝑜 ⊂ 𝑂′ ⊆ 𝑂,

𝑓𝑆
𝑂′(𝑜) + (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ 𝑓𝑆(𝑜)

𝑓𝑆(𝑜) ≤ 𝑓𝑆
𝑂′(𝑜) + (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝜖

Proof. 𝐿𝑁𝑆
𝜖,𝑜 ⊂ 𝑂′ ⊆ 𝑂. Then:

 𝑓𝑆(𝑜) = 𝑓𝑆
𝑂′(𝑜) + ∑ 𝑑𝑐𝑆(𝑜, 𝑜

′)𝑜′∈𝑂\Ο′ .

 By Theorem 1, for objects belonging to 𝑂\ 𝑂′, we have:

 (|𝐿𝑁𝑆
𝜖,𝑜| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜) ≤ ∑ 𝑑𝑐𝑆(𝑜, 𝑜
′) ≤ (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝜖
𝑜′∈ 𝑂\ 𝑂′ .

Thus:

 𝑓𝑆(𝑜) ≥ 𝑓𝑆
𝑂′(𝑜) + (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜)

 𝑓𝑆(𝑜) ≤ 𝑓𝑆
𝑂′(𝑜) + (|𝑂| − |𝑂′|)𝑑𝑐𝑆

𝜖

Since the density of 𝑜 is the sum of the density contributions of all objects in 𝑂 and

the density contribution decreases with the distance, OAMiner first computes the quasi-

density contributions from the objects in 𝑇𝑁𝑆
𝜖,𝑜, then from the objects in 𝐿𝑁𝑆

𝜖,𝑜\𝑇𝑁𝑆
𝜖,𝑜, and

finally from the objects in 𝑂\𝐿𝑁𝑆
𝜖,𝑜.

104

By computing the bounds of 𝑓𝑆(𝑜), OAMiner takes a bounding-pruning-refining

method, shown in Algorithm 3, to perform density comparison efficiently in Subspace 𝑆.

Initially OAMiner estimates the quasi-density of query object 𝑞 denoted by 𝑓𝑆(𝑞). Then, for

an object 𝑜, it first computes the bounds of 𝑓𝑆(𝑜) by the sizes of 𝑇𝑁𝑆
𝜖,𝑜 and 𝐿𝑁𝑆

𝜖,𝑜(Corollary

1) and compares the bounds with 𝑓𝑆(𝑞) (Steps 1 to 8). If 𝑓𝑆(𝑞) is smaller than the lower

bound or greater than the upper bound, then we have 𝑓𝑆(𝑞) < 𝑓𝑆(𝑜) or 𝑓𝑆(𝑞) > 𝑓𝑆(𝑜). That

is, the relationship between 𝑓𝑆(𝑞) and 𝑓𝑆(𝑜) is determined; thus, the Algorithm 3 stops.

Otherwise, OAMiner updates the lower and upper bounds of 𝑓𝑆(𝑜) by involving the quasi-

density contributions of objects in 𝑇𝑁𝑆
𝜖,𝑜 (Steps 10 to 20), in 𝐿𝑁𝑆

𝜖,𝑜\𝑇𝑁𝑆
𝜖,𝑜 (Steps 21 to 31)

and in 𝑂\𝐿𝑁𝑆
𝜖,𝑜 (Steps 32 to 42) and repeatedly compares the updated bounds with 𝑓𝑆(𝑞)

until the relationship between 𝑓𝑆(𝑞) and 𝑓𝑆(𝑜) is fully determined.

Algorithm 3 Density Comparison

 Input: quasi-density of the query object: 𝑓𝑆(𝑜), object: 𝑜 ∈ 𝑂, subspace: 𝑆, the 𝜖-𝑡𝑖𝑔ℎ𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 of 𝑜:

𝑇𝑁𝑆
𝜖,𝑜, and the 𝜖-𝑙𝑜𝑜𝑠𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 of 𝑜: 𝐿𝑁𝑆

𝜖,𝑜

 Output: a Boolean value indicating 𝑓𝑆(𝑜) < 𝑓𝑆(𝑞) is true or not

 1: 𝐿 ← the lower bound of 𝑓𝑆(𝑜) computed by Corollary 1; //bounding

 2: if 𝐿 > 𝑓𝑆(𝑞) then

 3: return false; //pruning

 4: end if

 5: 𝑈 ← the upper bound of 𝑓𝑆(𝑜) computed by Corollary 1; //bounding

 6: if 𝑈 < 𝑓𝑆(𝑞) then

 7: return true; //pruning

 8: end if

 9: 𝑂′ ← ∅; 𝑓𝑆
𝑂′(𝑜) ← 0;

 10: for each 𝑜′ ∈ 𝑇𝑁𝑆
𝜖,𝑜 do

 11: 𝑓𝑆
𝑂′(𝑜) ← 𝑓𝑆

𝑂′(𝑜) + 𝑑𝑐𝑆(𝑜, 𝑜
′); 𝑂′ ← 𝑂′ ∪ {𝑜′}; //refining

 12: 𝐿 ← the lower bound of 𝑓𝑆(𝑜) computed by Corollary 2; //bounding

 13: if 𝐿 > 𝑓𝑆(𝑞) then

 14: return false; //pruning

 15: end if

 16: 𝑈 ← the upper bound of 𝑓𝑆(𝑜) computed by Corollary 2; //bounding

 17: if 𝑈 < 𝑓𝑆(𝑞) then

 18: return true; //pruning

 19: end if

 20: end for

105

 21: for each 𝑜′ ∈ 𝐿𝑁𝑆
𝜖,𝑜\𝑇𝑁𝑆

𝜖,𝑜 do

 22: 𝑓𝑆
𝑂′(𝑜) ← 𝑓𝑆

𝑂′(𝑜) + 𝑑𝑐𝑆(𝑜, 𝑜
′); 𝑂′ ← 𝑂′ ∪ {𝑜′}; //refining

 23: 𝐿 ← the lower bound of 𝑓𝑆(𝑜) computed by Corollary 3; //bounding

 24: if 𝐿 > 𝑓𝑆(𝑞) then

 25: return false; //pruning

 26: end if

 27: 𝑈 ← the upper bound of 𝑓𝑆(𝑜) computed by Corollary 3; //bounding

 28: if 𝑈 < 𝑓𝑆(𝑞) then

 29: return true; //pruning

 30: end if

 31: end for

 32: for each 𝑜′ ∈ 𝑂\𝐿𝑁𝑆
𝜖,𝑜 do

 33: 𝑓𝑆
𝑂′(𝑜) ← 𝑓𝑆

𝑂′(𝑜) + 𝑑𝑐𝑆(𝑜, 𝑜
′); 𝑂′ ← 𝑂′ ∪ {𝑜′}; //refining

 34: 𝐿 ← the lower bound of 𝑓𝑆(𝑜) computed by Corollary 4; //bounding

 35: if 𝐿 > 𝑓𝑆(𝑞) then

 36: return false; //pruning

 37: end if

 38: 𝑈 ← the upper bound of 𝑓𝑆(𝑜) computed by Corollary 4; //bounding

 39: if 𝑈 < 𝑓𝑆(𝑞) then

 40: return true; //pruning

 41: end if

 42: end for

 43: return false;

In OAMiner, the neighbourhood distance in dimension 𝐷𝑖, denoted by 𝜖𝐷𝑖, is

defined as 𝛼𝜎𝐷𝑖 where 𝜎𝐷𝑖 is the standard deviation in dimension 𝐷𝑖 and 𝛼 is a parameter.

Our experiments show that 𝛼 is not sensitive and can be set in the range of 0.8 to1.2.

OAMiner runs efficiently with this range. Theorem 2 guarantees that regardless of the

neighbourhood distance, the ranking results remain unchanged.

Theorem 2. Given an object 𝑜 ∈ 𝑂 and a subspace 𝑆, for any neighbourhood

distances 𝜖1 and 𝜖2, 𝑟𝑎𝑛𝑘𝑆
𝜖1(𝑜) = 𝑟𝑎𝑛𝑘𝑆

𝜖2(𝑜) where 𝑟𝑎𝑛𝑘𝑆
𝜖1(𝑜) (𝑟𝑎𝑛𝑘𝑆

𝜖2(𝑜)) is the

outlyingness rank of 𝑜 in 𝑆 computed using 𝜖1 (𝜖2).

Proof by contradiction. Let 𝑂 be a set of objects, 𝑆 be a subspace, 𝜖1 and 𝜖2 be

neighbourhood distances and 𝑞 be the query object. For any object 𝑜 ∈ 𝑂, denote

106

by 𝐿𝜖1 the lower bound of 𝑓𝑆(𝑜) estimated by 𝜖1, 𝑈𝜖2the upper bound of 𝑓𝑆(𝑜) estimated

by 𝜖2. Assume that 𝑓𝑆(𝑞) < 𝐿𝜖1 and 𝑓𝑆(𝑞) > 𝑈𝜖2. Since 𝐿𝜖1is a lower bound of 𝑓𝑆(𝑜)

and 𝑈𝜖2 is an upper bound of 𝑓𝑆(𝑜), 𝐿𝜖1 < 𝑓𝑆(𝑜) < 𝑈𝜖2. Then, we have 𝑓𝑆(𝑞) < 𝐿𝜖1 <

𝑓𝑆(𝑜) and 𝑓𝑆(𝑜) < 𝑈𝜖2 < 𝑓𝑆(𝑞). Consequently, 𝑓𝑆(𝑜) < 𝑓𝑆(𝑞) < 𝑓𝑆(𝑜). A contradiction.

Thus, 𝑟𝑎𝑛𝑘𝑆
𝜖1(𝑞) = |{𝑜 ∈ 𝑂|𝑓𝑆(𝑜) < 𝑓𝑆(𝑞)}| + 1 = 𝑟𝑎𝑛𝑘𝑆

𝜖2(𝑞).

Efficiently Estimating Density Bounds

 Given a candidate subspace 𝑆 ⊆ 𝐷 and an object 𝑜 ∈ 𝑂, to estimate lower and

upper bounds of 𝑓𝑆(𝑜), OAMiner has to compute 𝑇𝑁𝑆
𝜖,𝑜, 𝐿𝑁𝑆

𝜖,𝑜, 𝑑𝑐𝑆
𝜖 , 𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜), 𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜)

and 𝑑𝑐𝑆(𝑜, 𝑜
′) where 𝑜′ ∈ 𝑂. For |𝑆| = 1, we compute 𝑇𝑁𝑆

𝜖,𝑜, 𝑑𝑐𝑆
𝜖 , 𝑑𝑐𝑆

𝑚𝑖𝑛(𝑜), 𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜)

and 𝑑𝑐𝑆(𝑜, 𝑜
′) according to their definitions. 𝑇𝑁𝑆

𝜖,𝑜 = 𝐿𝑁𝑆
𝜖,𝑜 in this case. Further, the

density contribution is symmetrical such that the computational cost for 𝑑𝑐𝑆(𝑜′, 𝑜) can be

saved if 𝑑𝑐𝑆(𝑜, 𝑜
′) is available. Since OAMiner searches subspaces by traversing the

subspace enumeration tree in a depth-first manner, for a subspace satisfying |𝑆| ≥ 2, we

denote by 𝑝𝑎𝑟(𝑆) the parent subspace of 𝑆. Suppose 𝑆\𝑝𝑎𝑟(𝑆) = 𝐷′(|𝐷′| = 1). Then we

have:

 𝑇𝑁𝑆
𝜖,𝑜 = 𝑇𝑁𝑝𝑎𝑟(𝑆)

𝜖,𝑜 ∩ 𝑇𝑁𝐷′
𝜖,𝑜

 𝐿𝑁𝑆
𝜖,𝑜 = 𝐿𝑁𝑝𝑎𝑟(𝑆)

𝜖,𝑜 ∪ 𝐿𝑁𝐷′
𝜖,𝑜

𝑑𝑐𝑆
𝜖 = 𝑒

−∑
𝜖𝐷𝑖
2

2ℎ𝐷𝑖
2 𝐷𝑖∈𝑆

= 𝑒
−(∑

𝜖𝐷𝑖
2

2ℎ𝐷𝑖
2 +

𝜖𝐷′𝑖
2

2ℎ𝐷′𝑖
2 𝐷𝑖∈𝑝𝑎𝑟(𝑆)

)

= 𝑑𝑐𝑝𝑎𝑟(𝑆)
𝜖 ∙ 𝑑𝑐𝑆𝐷′

𝜖

𝑑𝑐𝑆
𝑚𝑖𝑛(𝑜) = 𝑒

−(∑
max
𝑜′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2 +

max
𝑜′∈𝑂

{|𝑜.𝐷′−𝑜′.𝐷′|}
2

2ℎ
𝐷′
2)𝐷𝑖∈𝑝𝑎𝑟(𝑆)

 = 𝑑𝑐𝑆\𝑝𝑎𝑟(𝑆)
𝑚𝑖𝑛 (𝑜) ∙ 𝑑𝑐𝐷′

𝑚𝑖𝑛(𝑜)

𝑑𝑐𝑆
𝑚𝑎𝑥(𝑜) = 𝑒

−(∑
min
𝑜′∈𝑂

{|𝑜.𝐷𝑖−𝑜
′.𝐷𝑖|}

2

2ℎ𝐷𝑖
2 +

min
𝑜′∈𝑂

{|𝑜.𝐷′−𝑜′.𝐷′|}
2

2ℎ
𝐷′
2)𝐷𝑖∈𝑝𝑎𝑟(𝑆)

107

 = 𝑑𝑐𝑆\𝑝𝑎𝑟(𝑆)
𝑚𝑎𝑥 (𝑜) ∙ 𝑑𝑐𝐷′

𝑚𝑎𝑥(𝑜)

𝑑𝑐𝑆(𝑜, 𝑜
′) = 𝑒

−∑
(𝑜.𝐷𝑖−𝑜

′.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

= 𝑒
−(∑

(𝑜.𝐷𝑖−𝑜
′.𝐷𝑖)

2

2ℎ𝐷𝑖
2 +

(𝑜.𝐷𝑖−𝑜
′.𝐷𝑖)

2

2ℎ𝐷𝑖
2)𝐷𝑖∈𝑝𝑎𝑟(𝑆)

 = 𝑑𝑐𝑝𝑎𝑟(𝑆)(𝑜, 𝑜
′) ∙ 𝑑𝑐𝐷′(𝑜, 𝑜

′)

Accordingly, OAMiner can efficiently estimate the bounds of 𝑓𝑆(𝑜) using 𝑝𝑎𝑟(𝑆)

and 𝑆\𝑝𝑎𝑟(𝑆).

Subspace Pruning

While OAMiner is traversing the subspace enumeration tree, let 𝑆1 be the set of

subspaces it has searched so far and 𝑆2 be the set of subspaces it has not searched yet.

|𝑆1 ∪ 𝑆2| = 2
|𝐷| − 1. Given a query object 𝑞, let 𝑟𝑏𝑒𝑠𝑡 = min

𝑆∈𝑆1
{𝑟𝑎𝑛𝑘𝑆(𝑞)} be the best rank 𝑞

has achieved so far. We can then use 𝑟𝑏𝑒𝑠𝑡 to prune some subspaces not searched yet;

that is, for a subspace 𝑆 ∈ 𝑆2, once we determine that 𝑟𝑎𝑛𝑘𝑆(𝑞) > 𝑟𝑏𝑒𝑠𝑡, then 𝑆 cannot be

an outlying aspect and thus can be pruned.

Observation 1. When subspace 𝑆 is met in a depth-first search of the subspace

enumeration tree, let 𝑟𝑏𝑒𝑠𝑡 be the best rank of 𝑞 in all subspaces searched so far. Given

object 𝑞 with 𝑟𝑎𝑛𝑘𝑆(𝑞) > 1, if for every proper superspace 𝑆′ ⊃ 𝑆, 𝑟𝑎𝑛𝑘𝑆′(𝑞) > 𝑟𝑏𝑒𝑠𝑡 then

all proper superspace of 𝑆 can be pruned.

For 𝑟𝑎𝑛𝑘𝑆(𝑞) = 1, all superspaces of 𝑆 can be pruned due to dimensionality

minimality condition as per Pruning Rule 1. As a result, we only consider the case

where 𝑟𝑎𝑛𝑘𝑆(𝑞) > 1. To implement Observation 1 in a subspace 𝑆 where 𝑟𝑎𝑛𝑘𝑆(𝑞) > 1,

we check if there are at least 𝑟𝑏𝑒𝑠𝑡 objects that are ranked better than 𝑞 in every

superspace of 𝑆. If true, all superspaces of 𝑆 can be pruned. The common factor 𝑐 as per

Equation (5.2.6) does not affect the outlyingness rank. For simplicity, OAMiner computes

quasi-density 𝑓𝑆(𝑜) (Equation (5.2.7)) instead of probability density 𝑓𝑆(𝑜) (Equation (5.2.5))

for ranking. Thus, we have the following monotonicity of 𝑓𝑆(𝑜) with respect to subspaces.

108

Lemma 1. For a set of objects 𝑂 and two subspaces 𝑆 and 𝑆′ satisfying 𝑆′ ⊃ 𝑆, let 𝐷𝑖 ∈

𝑆′\𝑆. If the standard deviation of 𝑂 in 𝐷𝑖 is greater than 0, then for any object 𝑜 ∈

𝑂, 𝑓𝑆(𝑜) > 𝑓𝑆′(𝑜) .

Proof. Given 𝐷𝑖 ∈ 𝑆′\𝑆, for any object 𝑜′ ∈ 𝑂, we have
(𝑜.𝐷𝑖−𝑜

′.𝐷𝑖)
2

2ℎ𝐷𝑖
2 ≥ 0. Since the standard

deviation of 𝑂 in 𝐷𝑖 is greater than 0, there exists at least one object 𝑜′′ ∈ 𝑂 such

that
(𝑜.𝐷𝑖−𝑜

′′.𝐷𝑖)
2

2ℎ𝐷𝑖
2 > 0; that is, 𝑒

−
(𝑜.𝐷𝑖−𝑜

′′.𝐷𝑖)
2

2ℎ𝐷𝑖
2

< 1.

Thus:

𝑓𝑆(𝑜) = ∑ 𝑒

𝑜′∈𝑂

−∑
(𝑜.𝐷𝑖−𝑜

′.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

 > ∑ 𝑒𝑜′∈𝑂

−(∑
(𝑜.𝐷𝑖−𝑜

′.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

+∑
(𝑜.𝐷𝑖−𝑜

′.𝐷𝑖)
2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆′\𝑆

)

 = 𝑓𝑆′(𝑜)

As preprocessing, per Step 2 of Algorithm 2, OAMiner removes dimensions with

standard deviation 0. Consequently, the standard deviation of any dimension 𝐷𝑖 ∈ 𝑆′\𝑆 is

greater than 0. OAMiner sorts all dimensions in in the ascending order of 𝑟𝑎𝑛𝑘𝐷𝑖(𝑞)(𝐷𝑖 ∈

𝐷) and traverse the subspace set enumeration tree in the depth-first manner. Given 𝑅 the

ascending order of 𝑟𝑎𝑛𝑘𝐷𝑖(𝑞), for a subspace 𝑆 = {𝐷𝑖1 , … , 𝐷𝑖𝑚}, let 𝑅(𝑆) =

{𝐷𝑗|𝐷𝑗 is behind 𝐷𝑖𝑚 in 𝑅}. By Lemma 1, for any subspace 𝑆′ such that 𝑆 ⊂ 𝑆′ ⊆ 𝑆 ∪ 𝑅(𝑆),

the minimum quasi-density of 𝑞, denoted by 𝑓𝑠𝑢𝑝 (𝑆)
𝑚𝑖𝑛 (𝑞), is 𝑓𝑆∪𝑅(𝑆)(𝑞). An object 𝑜 ∈ 𝑂 is

called a competitor of 𝑞 in 𝑆 if 𝑓𝑆(𝑜) < 𝑓𝑠𝑢𝑝 (𝑆)
𝑚𝑖𝑛 (𝑞) and the set of 𝑞’s competitors is denoted

by 𝐶𝑜𝑚𝑝𝑆(𝑞). For any 𝑜 ∈ 𝐶𝑜𝑚𝑝𝑆(𝑞) by Lemma 1, we have 𝑓𝑆′(𝑜) < 𝑓𝑆(𝑜) < 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) ≤

𝑓𝑆′(𝑞). Thus, 𝑟𝑎𝑛𝑘𝑆′(𝑜) < 𝑟𝑎𝑛𝑘𝑆′(𝑞). Further we have the following property of 𝐶𝑜𝑚𝑝𝑆(𝑞).

Property 3. Given a query object 𝑞 and a subspace 𝑆, for any subspace 𝑆′ such that 𝑆 ⊂

𝑆′, 𝐶𝑜𝑚𝑝𝑆(𝑞) ⊆ 𝐶𝑜𝑚𝑝𝑆′(𝑞).

109

Proof. Since 𝑆 ⊂ 𝑆′, by Lemma 1, for any 𝑜 ∈ 𝐶𝑜𝑚𝑝𝑆(𝑞), 𝑓𝑆′(𝑜) < 𝑓𝑆(𝑜) < 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞).

Since 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) ≤ 𝑓sup(𝑆′)

𝑚𝑖𝑛 (𝑞), we have 𝑓𝑆′(𝑜) < 𝑓𝑆(𝑜) < 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) ≤ 𝑓sup(𝑆′)

𝑚𝑖𝑛 (𝑞).

Thus, 𝑜 ∈ 𝐶𝑜𝑚𝑝𝑆′(𝑞); that is, 𝐶𝑜𝑚𝑝𝑆(𝑞) ⊆ 𝐶𝑜𝑚𝑝𝑆′(𝑞).

Accordingly, OAMiner performs subspace pruning based on the number of

competitors.

Pruning Rule 2. When subspace 𝑆 is met in a depth-first search of the subspace

enumeration tree, let 𝑟𝑏𝑒𝑠𝑡 be the best rank of 𝑞 in all subspaces searched so far. If

there are at least 𝑟𝑏𝑒𝑠𝑡 competitors of 𝑞 in 𝑆; that is, |𝐶𝑜𝑚𝑝𝑆(𝑞)| ≥ 𝑟𝑏𝑒𝑠𝑡, then all proper

superspaces of 𝑆 can be pruned.

When maximum dimensionality threshold of an outlying aspect 𝓁 is less than |𝑆| +

|𝑅(𝑆)|, |𝑆| < |𝑆′| ≤ 𝓁 < |𝑆| + |𝑅(𝑆)|. It is unsuitable to use 𝑓𝑆∪𝑅(𝑆)(𝑞) as 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞).

Intuitively, we can set 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) to min{𝑓𝑆′(𝑞)| |𝑆

′| = 𝓁, 𝑆 ⊂ 𝑆′ ⊂ 𝑆 ∪ 𝑅(𝑆)}. However, the

computational cost may be high since the number of candidates is (|𝑅
(𝑆)|

𝓁−|𝑆|
). Alternatively,

we consider a method that uses a lower bound of 𝑓𝑆′(𝑞) to compute 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) efficiently.

For object 𝑜′, the quasi-density contribution of 𝑜′ to 𝑞 in 𝑆, denoted by 𝑓𝑆(𝑞, 𝑜′) ,

is 𝑒
−∑

(𝑜.𝐷𝑖−𝑜
′.𝐷𝑖)

2

2ℎ𝐷𝑖
2𝐷𝑖∈𝑆

. Let 𝑅(𝑆, 𝑜′) be the set of (𝓁 − |𝑆|) dimensions in 𝑅(𝑆) with the largest

values of
|𝑞.𝐷𝑗−𝑜

′.𝐷𝑗|

ℎ𝐷𝑗
(𝐷𝑗 ∈ 𝑅(𝑆)). Then, the minimum quasi-density contribution of 𝑜′ to 𝑞

in 𝑆′ (𝑆 ⊂ 𝑆′) is 𝑓𝑆∪𝑅(𝑆,𝑜′)(𝑞, 𝑜′). Since 𝑓𝑆′(𝑞) = ∑ 𝑓𝑆′(𝑞, 𝑜′)𝑜′∈𝑂 , we have 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞). If we

compared 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) with the quasi-density values of all objects in 𝑂, the computational

cost for density estimation would be considerably high especially when the size of 𝑂 is

large. For efficiency, a trade-off needs to be made between subspace pruning and object

pruning. That is, when a subspace 𝑆 is searched, once 𝑟𝑎𝑛𝑘𝑆(𝑞) > 𝑟𝑏𝑒𝑠𝑡 is determined, the

search of 𝑆 can be terminated immediately.

Algorithm 4 gives the pseudo code of computing outlyingness rank and pruning

subspaces in OAMiner.

110

Algorithm 4 𝑟𝑎𝑛𝑘𝑆(𝑞)

 Input: query object: 𝑞 ∈ 𝑂, subspace: 𝑆, the set of competitors of 𝑞 discovered in the parent subspaces of 𝑆:

𝐶𝑜𝑚𝑝 (𝐶𝑜𝑚𝑝 is empty if |𝑆| = 1), the best rank of 𝑞 in the subspaces searched so far: 𝑟𝑏𝑒𝑠𝑡

 Output: 𝑟𝑎𝑛𝑘𝑆(𝑞)

 1: compute 𝑓𝑆(𝑞) using Equation (5.2.7);

 2: 𝑟𝑎𝑛𝑘𝑆(𝑞) ← |𝐶𝑜𝑚𝑝| + 1;

 3: for each object 𝑜 ∈ 𝑂\𝐶𝑜𝑚𝑝 do

 4: if 𝑓𝑆(𝑜) < 𝑓𝑆(𝑞) then

 5: 𝑟𝑎𝑛𝑘𝑆(𝑞) ← 𝑟𝑎𝑛𝑘𝑆(𝑞) + 1;

 6: if 𝑓𝑆(𝑜) < 𝑓sup(𝑆)
𝑚𝑖𝑛 (𝑞) then

 7: 𝐶𝑜𝑚𝑝 ← 𝐶𝑜𝑚𝑝 ∪ {𝑜};

 8: if |𝐶𝑜𝑚𝑝| = 𝑟𝑏𝑒𝑠𝑡 then

 9: prune descendants of 𝑆 and return; //Pruning Rule 2

 10: end if

 11: end if

 12: if 𝑟𝑎𝑛𝑘𝑆(𝑞) > 𝑟𝑏𝑒𝑠𝑡 then

 13: return;

 14: end if

 15: end if

 16: end for

 17: return 𝑟𝑎𝑛𝑘𝑆(𝑞);

Theorem 3 guarantees that Algorithm 4 can find all minimal outlying subspaces.

Theorem 3 (Completeness of OAMiner). Given a set of objects 𝑂 in a multi-dimensional

space 𝐷, a query object 𝑞 ∈ 𝑂 and a maximum dimensional threshold 0 < 𝓁 ≤ |𝐷|,

OAMiner finds all minimal outlying subspaces of 𝑞.

Proof by contradiction. Let 𝐴𝑛𝑠 be the set of minimal outlying subspaces of 𝑞 found by

OAMiner and 𝑟𝑏𝑒𝑠𝑡 be the best rank. Assume that subspaces 𝑆 ∉ 𝐴𝑛𝑠 satisfying 𝑆 ⊆ 𝐷

and 0 < |𝑆| ≤ 𝓁 is a minimal outlying subspace of 𝑞. Since OAMiner searches

subspaces by traversing the subspace enumeration tree in a depth-first manner

and 𝑆 ∉ 𝐴𝑛𝑠, 𝑆 is pruned by Pruning Rule 1 or Pruning Rule 2. If 𝑆 is pruned by Pruning

Rule 1, 𝑆 is not minimal. A contradiction. If 𝑆 is pruned by Pruning Rule 2, then there

exists a subspace 𝑆′ such that is 𝑆′ a parent of 𝑆 in the subspaces enumeration tree

and 𝐶𝑜𝑚𝑝𝑆′(𝑞) ≥ 𝑟𝑏𝑒𝑠𝑡. Per the property of competitors, we have 𝐶𝑜𝑚𝑝𝑆′(𝑞) ⊆

111

𝐶𝑜𝑚𝑝𝑆(𝑞). Accordingly, 𝑟𝑎𝑛𝑘𝑆(𝑞) ≥ |𝐶𝑜𝑚𝑝𝑆(𝑞)| ≥ |𝐶𝑜𝑚𝑝𝑆′(𝑞)| ≥ 𝑟𝑏𝑒𝑠𝑡. A

contradiction.

5.2.3. Empirical Evaluation

In this section, we present a systematic empirical study using several real data

sets as well as synthetic data sets to verify the effectiveness and efficiency of OAMiner.

All experiments were conducted on a PC with Intel Core i7-3770 3.40 GHz CPU and 8GB

RAM, running Windows 7 operating system. All algorithms were implemented in Java and

compiled with JDK 7. Since it is hard to comprehend the meaning of subspaces with

dimensionality over 5, defaults were set to 𝓁 = 5, 𝛼 = 1.0.

Effectiveness

Mining Outlying Aspects with Synthetic Data Sets

Keller et al. (2012) provided a collection of synthetic data sets, each set consisting

of 1,000 data objects. Each data set contains some subspace outliers which deviate from

all clusters in at least one 2-5 dimensional subspaces. As observed by Keller et al. (2012),

an object can be an outlier in multiple subspaces independently. We performed our tests

on the data sets of 10, 20, 30, 40, and 50 dimensions denoted by 𝑆𝑦𝑛𝑡ℎ_10𝐷, 𝑆𝑦𝑛𝑡ℎ_20𝐷,

𝑆𝑦𝑛𝑡ℎ_30𝐷, 𝑆𝑦𝑛𝑡ℎ_40𝐷, and 𝑆𝑦𝑛𝑡ℎ_50𝐷 respectively.

For an outlier 𝑞 in a data set, let 𝑆 be the ground truth outlying subspace of 𝑞. Note

that 𝑆 may not be an outlying aspect of 𝑞 if there exists another outlier more outlying than 𝑞

in 𝑆 since OAMiner finds the subspaces in which the query object is most outlying. To

verify the effectiveness of OAMiner, using the known ground truth outlying subspaces with

multiple implanted outliers in 𝑆, we select one outlier as a query object 𝑞 at a time and

remove the other outliers, and repeat this process for each implanted outlier. Since 𝑞 is

the only implanted outlier in subspace 𝑆, OAMiner is expected find the ground truth outlying

subspace 𝑆 where 𝑞 takes rank 1 in outlyingness; that is, 𝑟𝑎𝑛𝑘𝑆(𝑞) = 1. We divide the

mining results of OAMiner into the following 3 cases:

Case 1: only the ground truth outlying subspace is discovered by OAMiner with

outlyingness rank 1.

112

Case 2: in addition to the ground truth outlying subspace, OAMiner finds other outlying

aspects with outlyingness rank 1.

Case 3: instead of the ground truth outlying subspace, OAMiner finds a subset of the

ground truth as an outlying aspect with outlyingness rank 1.

Mining results for 𝑆𝑦𝑛𝑡ℎ_10𝐷 are shown in Table 25. Results use the same object

ID’s and dimension ID’s as in the original data set in the work of Keller et al. (2012).

Table 25 Outlying Aspects with 𝑺𝒚𝒏𝒕𝒉_𝟏𝟎𝑫

Query
Object

Ground Truth Outlying
Subspace

Outlying Aspect with
Outlyingness Rank 1

Case

172 {8,9} {8,9} 1

183 {0,1} {0,1}, {0,6,8} 2

184 {6,7} {6,7} 1

207 {0,1} {0,1} 1

220 {2,3,4,5} {2,3,4,5} 1

245 {2,3,4,5} {2,5} 3

315 {0,1},{6,7} {0,1}, {6,7}, {3,4}, {3,5,9}, {4,6,9} 2

323 {8,9} {8,9} 1

477 {0,1} {0,1} 1

510 {0,1} {0,1} 1

577 {2,3,4,5} {2,3,4,5}, {0,3,7} 2

654 {2,3,4,5} {2,3,4,5} 1

704 {8,9} {8,9}, {0,2,3,4} 2

723 {2,3,4,5} {2,3,4,5} 1

754 {6,7} {6,7}, {2,4,8}, {2,6,8}, {4,6,8} 2

765 {6,7} {6,7}, {1,4,6}, {3,4,5,6} 2

781 {6,7} {6,7} 1

824 {8,9} {8,9} 1

975 {8,9} {8,9}, {2,5,9}, {5,6,8}, {2,3,5,8} 2

For all outliers used as query objects, outlying aspects with outlyingness rank 1

were identified. Also, for objects 183, 315, 577, 704, 754, 765 and 975, OAMiner found

not only the ground truth outlying subspaces but also other outlying subspaces (Case 2).

For object 245, the outlying aspect discovered by OAMiner is a subset of the ground truth

outlying subspace (Case 3). For the other 11 objects, the outlying aspects identified by

OAMiner are identical to the ground truth subspaces (Case 1).

Table 26 summarizes the mining results for all of 𝑆𝑦𝑛𝑡ℎ_10𝐷, 𝑆𝑦𝑛𝑡ℎ_20𝐷,

𝑆𝑦𝑛𝑡ℎ_30𝐷, 𝑆𝑦𝑛𝑡ℎ_40𝐷, and 𝑆𝑦𝑛𝑡ℎ_50𝐷.

113

Table 26 Statistics on the mining results of OAMiner

Data Set # of Outliers # of Case 1 # of Case 2 # of Case 3

𝑆𝑦𝑛𝑡ℎ_10𝐷 19 11 7 1

𝑆𝑦𝑛𝑡ℎ_20𝐷 25 1 23 1

𝑆𝑦𝑛𝑡ℎ_30𝐷 44 0 40 4

𝑆𝑦𝑛𝑡ℎ_40𝐷 53 0 52 1

𝑆𝑦𝑛𝑡ℎ_50𝐷 68 0 65 3

The number of Case 2 instances increases with higher dimensionality which

indicates that more outlying aspects can be found when more attributes of data are in

scope for search, which is consistent with the experimental observations with the real data

sets shown later.

To further illustrate the effectiveness of OAMiner, Figure 36 shows how visually

object 245 (Case 2) stands out, likewise, Figure 37 object 315 (Case 3).

Figure 36 Outlying aspect of object 245 (𝑺𝒚𝒏𝒕𝒉_𝟏𝟎𝑫)

114

Figure 37 Outlying aspect of object 315 (𝑺𝒚𝒏𝒕𝒉_𝟏𝟎𝑫)

Mining Outlying Aspects with Real Data Sets

We use the same UCI data set (Bache et al., 2013) in section 5.1.4 for measuring

the effectiveness of OAMiner. Again non-numerical attributes and all records that are

missing values were removed from the data sets. Data set statistics is shown in Table 27.

Table 27 UCI data set characteristics

Data Set
of

Objects
of

Attributes

Breast Cancer 194 33

Climate Model 540 18

Concrete Slump 103 10

Parkinson’s 195 22

Wine 178 13

Figure 38 shows the distributions of the best outlyingness ranks for the UCI data

set. The best rank values are small for most objects, meaning most objects are ranked

well in some subspaces.

115

Figure 38 Distribution of outlyingness ranks: UCI (𝓵 = 𝟓)

Figure 39 shows the distributions of the number of minimal outlying subspaces

where the objects achieve the best outlyingness ranks (i.e. outlying aspects). For most

objects, the number of outlying aspects is small, indicating that most objects can be

distinguished from others by a small number of factors.

 Parkinson’s Wine

 Breast Cancer Climate Model Concrete Slump

116

Figure 39 Distribution of # of outlying aspects: UCI (𝓵 = 𝟓)

Table 28 exhibits the mining results of OAMiner when 𝓁 = 4, 5, 6. As the value of 𝓁

increases, the average outlyingness rank decreases while the average number of outlying

aspects as well as the average dimensionality increases. It can be observed that more

outlying aspects can be found as the number of attributes and the objects increases; for

example, the average number of outlying aspects found for the breast cancer data is the

largest.

 Breast Cancer Climate Model Concrete Slump

 Parkinson’s Wine

117

Table 28 Sensitivity of OAMiner effectiveness with respect to 𝓁 (UCI)

Data set 𝓵
Outlyingness Rank # of Outlying Aspects Dimensionality

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Breast
Cancer

4
5
6

1
1
1

70
62
56

8.04
7.74
7.57

1
1
1

232
2,478

11,681

9.57
43.37

243.10

1
1
1

4
5
6

3.47
4.67
5.77

Climate
Model

4
5
6

1
1
1

33
15
15

1.97
1.45
1.28

1
1
1

30
78

149

4.57
10.18
16.97

1
1
1

4
5
6

3.65
4.43
5.07

Concrete
Slump

4
5
6

1
1
1

27
24
24

4.67
4.44
4.41

1
1
1

8
8
8

1.56
1.64
1.65

1
1
1

4
5
6

2.38
2.59
2.66

Parkinson’s
4
5
6

1
1
1

74
74
74

12.13
11.51
11.33

1
1
1

156
400
889

4.20
7.63

14.30

1
1
1

4
5
6

3.25
4.09
5.01

Wine
4
5
6

1
1
1

37
37
37

7.65
7.47
7.46

1
1
1

26
26
26

1.49
1.59
1.66

1
1
1

4
5
6

2.66
2.96
3.09

Mining Outlying Aspects with NBA Data Sets

To evaluate the usefulness of outlying aspect mining, we analyze outlying aspects

of some NBA players in detail. We first investigate the outlying aspects of all NBA guards,

forwards and centres in the 2012-2013 Season. The technical statistics for 20 numerical

attributes were collected from http://sports.yahoo.com/nba/stats/. Table 29 lists the

names of dimensions and Table 30 the data set characteristics. The data for centres for

3-Points are removed since the statistics for most centres are 0.

Table 29 NBA 20 data dimensions

1: Game played 6: 3-Points (M) 11: Free throw (Pct) 16: Turnover

2: Minutes 7: 3-Points (A) 12: Rebounds (Off) 17: Steal

3: Field goal (M) 8: 3-Points (Pct) 13: Rebounds (Def) 18: Block

4: Field goal (A) 9: Free throw (M) 14: Rebounds (Tot) 19: Personal foul

5: Field goal (Pct) 10: Free throw (A) 15: Assist 20: Points/game

Table 30 NBA data set characteristics

Data set
of

Objects
of

Attributes

Guards 220 20

Forwards 160 20

Centres 46 17

http://sports.yahoo.com/nba/stats/

118

Figure 40 shows the distributions of the best outlyingness ranks for the NBA data

set. Consistent with the UCI data set findings, the best rank values are small for most

objects; for example, 90 guards (40.9%), 81 forwards (50.6%) and 32 centres (69.6%)

have an outlying rank of 5 or better (i.e. smaller rank values). This means most players

have some subspaces where they are substantially different from the others; justifying the

need for outlying aspect mining.

Figure 40 Distributions of outlyingness ranks: NBA (𝓵 = 𝟓)

Figure 41 shows the distributions of the number of outlying aspects. Again,

consistent with the UCI data set results, for most objects, the number of outlying aspects

is small. For example, 150 (68.2%) guards have only 1 outlying aspect.

Figure 41 Distribution of # of outlying aspects: NBA (𝓵 = 𝟓)

Table 31 exhibits the mining results of OAMiner when 𝓁 = 4, 5, 6. Similar to the

observations made with the UCI data set, the average number of outlying aspects and the

average dimensionality increases along with the value of 𝓁, whereas the average

 Guards Forwards Centres

 Guards Forwards Centres

119

outlyingness rank decreases. This observation is coherent with the well-known fact that

probability density tends to be low in subspaces of higher dimensionality since such

subspaces often have a larger volume and thus sparser.

Table 31 Sensitivity of OAMiner effectiveness with respect to 𝓁 (NBA)

Data set 𝓵
Outlyingness Rank

of Outlying
Aspects

Dimensionality

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Guards
4
5
6

1
1
1

72
72
72

13.94
13.70
13.50

1
1
1

49
111
359

2.02
3.05
5.67

1
1
1

4
5
6

2.79
3.68
4.83

Forwards
4
5
6

1
1
1

48
47
46

8.79
8.54
8.43

1
1
1

40
41
71

2.24
2.37
2.98

1
1
1

4
5
6

2.77
3.13
3.77

Centres
4
5
6

1
1
1

13
13
13

3.70
3.57
3.54

1
1
1

15
15
18

3.28
3.65
3.61

1
1
1

4
5
6

2.74
3.08
3.23

A player receives a good outlyingness rank (i.e. a small rank value) in a subspace

if very few other players are close to him. Table 32 lists 10 guards who have the largest

number of rank 1 outlying aspects where 𝓁 = 3. Dimensions in Table 32 corresponds to

the serial numbers in Table 29. Two types of reasoning can be made as to why certain

objects stand out in some subspaces. One is there are not enough comparable statistics

for the objects in any subspace; another is there are enough statistics and these objects

are truly unique by the characteristics these subspaces represent.

Table 32 Guards with most rank 1 outlying aspects

Name Outlying Aspect (𝓵 = 𝟑)

Quentin Richardson
{1}, {12}, {14}, {2,17}, {3,4}, {3,13}, {4,17}, {5,8}, {5,11},
{5,13}, {13,17}, {13,20}, {2,3,16}, {2,4,5}, {2,5,6}, {2,5,7},
{2,5,9}, {4,5,7}

Will Conroy
{2,5}, {5,8}, {5,11}, {5,12}, {5,13}, {5,14}, {5,16}, {4,5,6},
{4,5,9}, {4,5,10}, {4,5,7}, {4,5,19}, {5,6,7}, {5,7,9}

Brandon Rush {5}, {1,19}, {2,19}, {17,19}

Ricky Rubio {3,17}, {7,17}, {16,17}, {17,20}

Rajon Rondo {15}, {16}, {1,17}, {1,2,20}

Scott Machado {19}, {2,16}, {5,8,18}

Kobe Bryant {3}, {4}, {20}

Jamal Crawford {19,20}, {4,19}, {2,3,19}

James Harden {9}, {10}

Stephen Curry {6}, {7}

120

The first several players in Table 32 are not well known and their outlyingness

ranks are due to the fact that no other players have similar statistics. For example:

 Quentin Richardson played only one game during which he did well at rebounds

but poorly at field goal;

 Will Conroy played four games and his performance for shooting was poor;

 Brandon Rush played two games and his number of personal fouls is large;

 Ricky Rubio performed well at stealing;

 Rajon Rondo assisted well but his statistics for turnover is large;

 Scott Machado played 6 games and did not make any personal fouls.

The remaining 4 players are famous and their overall performance in every aspect

is much better than most other guards. For example:

 Kobe Bryant excels at scoring;

 Jamal Crawford has very low personal fouls;

 James Harden excels at free throw;

 Stephen Curry leads in 3-points scoring.

Table 33 lists guards who were not ranked well in any subspace; in other words,

they do not stand out in any particular subspace.

Table 33 Guards with poor ranks in outlying aspects

Outlyingness
Rank

Nam
Outlying Aspect

72 Terence Rose {11}

70 E’Twaun Moore {18}

69 C.J. Watson {8,12,13,14,18}

61 Jerryd Bayless {2,3,4,19,20}

58 Nando De Colo {1,2}, {3,4,5,11,20}

56 Alec Burks {2,9,10,11}

55
Rodrigue
Beaubois

{1,2,8,11,15}

52 Marco Belinelli {9,10,12}

49 Aaron Brooks {2,3,5,7,16}

48 Nick Young {1,3,16,18,20}

Although subspace outlier detection is fundamentally different from outlying aspect

mining, the results of subspace outlier ranking can be utilized to verify the discovered

121

outlying aspects. Specifically, we take the objects that are ranked the best by either HiCS

(Keller et al., 2012) or SOD (Kriegel et al., 200) and determine their outlyingness ranks for

comparison.

Since HiCS randomly selects subspace slices, we ran it 3 times independently on

each data set with the default parameters. The parameter for the number of nearest

neighbours in both HiCS and SOD was varied across 5, 10 and 20, and the best ranks were

reported. In SOD, the parameter 𝑙 which specifies the size of the reference sets cannot

be larger than the number of nearest neighbours, as such, we set it to the number of

nearest neighbours for our experimentation.

Table 34 shows the results. 𝑟𝑎𝑛𝑘𝐻𝐿 means the ranks computed by HiCS, 𝑟𝑎𝑛𝑘𝑆𝑂𝐷

the ranks computed by SOD and 𝑟𝑎𝑛𝑘𝑆 the outlyingness rank computed by OAMiner.

Table 34 Comparison of 𝒓𝒂𝒏𝒌𝑯𝑳, 𝒓𝒂𝒏𝒌𝑺𝑶𝑫, 𝒓𝒂𝒏𝒌𝑺

Position Name
𝒓𝒂𝒏𝒌𝑯𝑳 𝒓𝒂𝒏𝒌𝑺𝑶𝑫 𝒓𝒂𝒏𝒌𝑺 (# of Outlying

Aspects)

Guard

Quentin
Richardson
Kobe Bryant
Brandon Ray

1
1

32

1
9
1

1(54)
1(3)
1(4)

Forward
Carmelo Anthony

Kevin Love
1
3

5
1

1(26)
1(41)

Centre
Dwight Howard
Andrew Bogut

1
10

2
1

1(15)
1(9)

The results show that every player ranked top with either HiCS or SOD has some

outlying aspects where he is ranked number 1. The rankings produced by OAMiner match

those either by HiCS or SOD, although the results by HiCS and SOD are not consistent with

each other except for Quentin Richardson.

Efficiency

Once again, to the best of our knowledge, there is no previous method addressing

the efficiency of the same mining problem. As such, we will evaluate the efficiency of

OAMiner and its variations; that is, comparisons amongst baseline (Algorithm 1 with

Pruning Rule 1), OAMiner-𝑝𝑎𝑟𝑡 (the version that does not use bounds), and OAMiner-𝑓𝑢𝑙𝑙

(the version that uses all techniques).

122

The same synthetic data set provided by Keller et al. (2012) was used. The set

consists of 1,000 data objects and the dimensionality is 50. 10 data points (non-outliers)

were randomly chosen as query objects and the average runtime was reported. For all 3

variations, 𝓁 = 5 and for OAMiner-𝑓𝑢𝑙𝑙, 𝛼 = 1.0.

Figure 42 shows the runtime (on logarithm scale) with respect to data set size. As

expected, the baseline method is time consuming. The pruning techniques can achieve

a roughly linear runtime; both 𝑝𝑎𝑟𝑡 and 𝑓𝑢𝑙𝑙 versions of OAMiner are substantially faster

than the baseline and 𝑓𝑢𝑙𝑙 is more efficient than 𝑝𝑎𝑟𝑡.

Figure 42 Runtime with respect to Data Set Size

Figure 43 shows the runtime (on logarithm scale) with respect to dimensionality.

As expected, as the dimensionality increases, the runtime increases exponentially. The

pruning techniques can achieve a roughly linear runtime; both 𝑝𝑎𝑟𝑡 and 𝑓𝑢𝑙𝑙 versions of

OAMiner are substantially faster than the baseline and 𝑓𝑢𝑙𝑙 is more efficient than 𝑝𝑎𝑟𝑡.

123

Figure 43 Runtime with respect to Dimensionality

Figure 44 shows the runtime (on logarithm scale) with respect to maximum

dimensionality threshold (𝓁). As the value of 𝓁 increases, the more subspaces are

enumerated and thus the runtime increases. The pruning techniques can achieve a

roughly linear runtime in practice; both 𝑝𝑎𝑟𝑡 and 𝑓𝑢𝑙𝑙 versions of OAMiner are substantially

faster than the baseline and 𝑓𝑢𝑙𝑙 is more efficient than 𝑝𝑎𝑟𝑡.

Figure 44 Runtime with respect to 𝓁

Using the real data sets (both UCI and NBA), the efficiency of OAMiner has been

tested against the outlyingness of the query object. Figure 45 shows the runtime with

124

respect to outlyingness rank of the query object. The runtime is proportional to the

outlyingness rank of the query object.

Figure 45 Runtime with respect to Outlyingness Rank

Not surprisingly, the objects with large outlyingness rank cost more runtime since

OAMiner prunes subspaces based on the rank of the query object by means of either

Pruning Rule 1 or Pruning Rule 2.

 Breast Cancer (UCI) Climate Model (UCI) Concreate Slump (UCI)

 Parkinson’s (UCI) Wine (UCI)

 Guards (NBA) Forwards (NBA) Centres (NBA)

125

Finally, the sensitivity of the parameter 𝛼 for bounding quasi-density has been

tested with varying values of 𝛼. The value of 𝛼 sets the 𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 distance. Table

35 lists the average runtime of OAMiner for each data set.

Table 35 Average Runtime of OAMiner with respect to 𝜶

Data Set
Average Runtime (second)

𝛼 = 0.6 𝛼 = 0.8 𝛼 = 1.0 𝛼 = 1.2 𝛼 = 1.4

Guards 4.459 4.234 4.213 4.303 4.315

Forwards 2.810 2.519 2.424 2.418 2.413

Centres 0.260 0.234 0.216 0.212 0.220

Breast Cancer 58.476 58.228 57.927 57.613 57.982

Climate Model 6.334 6.268 6.339 6.253 6.410

Concrete Slump 0.047 0.044 0.044 0.045 0.045

Parkinson’s 6.164 6.154 6.083 6.218 6.243

Wine 0.351 0.341 0.339 0.344 0.350

The runtime of OAMiner is not sensitive to 𝛼 in general. Experimentally, the

shortest runtime of OAMiner is achieved when 𝛼 is in [0.8,1.2].

126

Conclusion

In this thesis, we explored a multitude of techniques applicable to multidimensional

benchmarking.

Benchmarking is an important business practice which sets organizations’

performance improvement targets by comparing them to others and identifying areas

where the performance gaps exist. While in practice many organizations limit their

benchmarking scope to the numerical quantification of performance gaps (e.g. company

A’s service level is 15% below the benchmark), it is well recognized that quantitative

benchmarking alone does not help organizations actually achieve performance

improvement. In order to improve performance, organizations need to understand the key

drivers for the gaps. Why then do organizations not take more qualitative approach? It is

because, in the author’s opinion, qualitative measures are difficult to model. In this thesis,

we claimed that multidimensional analysis approach can be used as a step towards more

qualitative benchmarking.

Existing multidimensional benchmarking methods build upon economic efficiency

analysis, such as, frontier models which estimate the ability of a producer to produce

maximum output from a given set of inputs. Chapter 2 presented two representative

methods of the model; stochastic frontier production function and data envelopment

analysis. The chapter also briefly touched on non-systematic proprietary approach

including Gartner Magic Quadrant and Forrester Wave.

Despite that the main concern of multidimensional benchmarking is to consider

multiple dimensions simultaneously, to the best of the author’s knowledge, there are no

notable techniques in the industry which take advantage of data warehouses (i.e.

multidimensional databases) and associated computational algorithms. The key ideas

presented in this thesis aim to expand the scope of multidimensional benchmarking by

leveraging data warehousing and business intelligence, outlier detection in data

warehouses, and subspace analysis:

127

 Identifying significant benchmarks efficiently in data warehouses (Chapter 3).

Rather than comparing organizations to “any” population, it is more

meaningful to compare them to the population that renders the largest

performance gap (i.e. a significant benchmark). Finding significant benchmarks

only without looking at everything in the data warehouse that constitutes a

population requires an efficient computational approach. We developed 2 efficient

methods: SIIC/SIICP and DAM. DAM outperforms SIIC/SIICP because it only

stores and searches the dominant answers in the quotient groups.

 Detecting outliers in data warehouses as a basis for multidimensional

benchmarking (Chapter 4).

When organizations conduct benchmarking, they are mainly concerned

with identifying areas for performance improvement; that is, areas where their

performance is out of the norm. To this end, we claim that finding outliers in a data

warehouse lends itself to viable multidimensional benchmarking. By employing

outlier detection techniques, we find what drives organizations to deviate from the

norm (i.e. benchmarks). We defined two types of outliers: type-I (organization is

an outlier because a small number of underlying units are outliers) and type-II (a

majority of them are outliers). Since this it is to look into the makeup of self, we

referred to the technique developed in this chapter as “reflective benchmarking”.

 Identifying contexts in which organizations are significant outliers (Chapter 5).

In this last chapter, we draw our attention to defining the contexts (or

subspaces) in which organizations perform most exceptionally (positively or

negatively), the primary benefit of multidimensional benchmarking for presenting

key drivers for performance gaps. We defined two types of subspaces: contrast

subspace and outlying aspect. A contrast subspace is a subspace in which an

organization is most similar to a group of organizations while it is most different

from another group. This is essentially a model selection problem where one of

the two models must be selected on the basis of observed data. Outlying aspect

is a subspace where an organization outlies most. To identify outlying aspects,

we used rank statistics to compare different subspaces.

128

While multidimensional benchmarking for computational performance efficiency

(i.e. CPU, I/O bandwidth, etc.) is well defined and research materials abundantly available,

the counterpart in business performance management somewhat lacks in rigor in

definitions and systematic methods. This thesis attempted to provide technical definitions

along with more objective and methodical approach to multidimensional benchmarking in

the business setting. The thesis focused on establishing technical foundation for

multidimensional benchmarking and demonstrating the effectiveness and the efficiency of

the techniques devised. These techniques can be applied to a variety of benchmarking

scenarios to supplement quantitative benchmarking. Once numerical performance gaps

are shown through quantitative benchmarking, the techniques proposed in this thesis can

be employed as a next step to identify factors that are driving the gaps or contexts in which

the gaps are most significant. These factors or contexts will then become the focal areas

in which improvement programs can be created to boost performance. Primary

contributions made in the thesis are:

1. Modeling

We have claimed that organizations do not conduct qualitative benchmarking because
qualitative measures are difficult to model because measures cannot be single
numerical values. To this end, we technically modelled qualitative measures including
significant benchmarks, reflection, contrast subspace, and outlying aspect.

2. Computational Efficiency

When multiple dimensions are incorporated into analysis, computational efficiency
needs to be a consideration due to the well known curse of dimensionality. The time
complexity tends to be np-hard. We devised practical heuristics using bounding,
pruning, and refining methods. Through experimental results, we showed that our
methods are effective and efficient.

3. Application Impact

If some of the ideas proposed in this thesis are commercialized in a form of a business
application, organizations can conduct qualitative benchmarking in a systematic and
objective manner. To the best of the author’s knowledge, there is no such application
in business today. In view of the fact that benchmarking is so common, such an
application can make a significant impact on business.

129

6.1. Future Directions

Business intelligence applications, such as, multidimensional benchmarking

analysis should be interactive by providing summary, drill-down and what-if scenario

capabilities. Such applications should take user feedback intelligently, allowing ad-hoc

inputs, and enable users to navigate and analyze data, memorizing insights to allow

informed decision making. In chapter 3, we defined a benchmark query whereby the

performance of a query object with selected properties (i.e. 𝑈𝐼𝐷 attributes) can be

compared to the performance of others with the same properties in certain aspects (i.e.

combinations of 𝐷𝐼𝑀 attributes). If the application is to become interactive, the ability to

change query properties and aspects on the fly needs to be considered. This type of user

interaction can be enabled by allowing benchmark queries at different levels of

aggregation hierarchy and reusing the assets already built for techniques, such as, DAM

and SIIC. For example, a query object’s properties may be age-group and gender (e.g.

young males) initially but the user later on wishes to see what the performance gap may

look like if he/she removed age-group from the properties such that the query object is

now all males. Since the aggregate group, all males, is an ancestor of the aggregate

group, young males, DAM can still answer this revised benchmark query efficiently without

re-materializing or re-indexing. This applies to other scenarios where attributes are

removed from or added to properties (𝑈𝐼𝐷) and/or aspects (𝐷𝐼𝑀).

To support what-if scenarios, data mining techniques should be incorporated such

that queries, such as, “If we enhanced the education levels of my young male staff, how

much sales volume increase can we expect?” can be answered.

Finally, in the author’s opinion, among the most significant challenges for

multidimensional benchmarking is the intuitive representation of query results. If the

techniques developed in this thesis were to be adopted as a common practice in business,

the results must be easily understandable. To this end, an effective data visualization

approach should be considered with the goal to analyze vast amounts of multidimensional

data to visually distill the most valuable and relevant information content. The visual

representation should reveal relevant data properties for easy perception by the analyst.

An appropriate user interface should be developed such that analysts can focus on tasks

130

at hand, as such, the interfaces should not be overly technical or complex. Visually

representing multidimensional data on a 2-dimensional plane is a challenge. Existing

multidimensional data representations tend to be somewhat technical requiring users to

have some statistics background. To address this, interaction techniques which support

seamless and intuitive visual communication between the users and the system should

be developed.

131

References

I. A. Ajibefun

 "An Evaluation of Parametric and Non-Parametric Methods of Technical
Efficiency Measurement: Application to Small Scale Food Crop Producton in
Nigeria," Journal of Agriculture & Social Sciences, ISSN Print: 1813-2235, 2008.

C. Aggarwal

 Outlier Analysis, Springer, 2013.

C. Aggarwal, N. Ta, J. Wang, J. Feng and M. J. Zaki

 "Xproj: A Framework for Projected Structural Clustering of XML Documents," in
ACM KDD, 2007.

C. Aggarwal and P. S. Yu

 "Outlier detection for high dimensional data," in ACM Sigmod Record, ACM, vol
30, pp 37-46, 2001.

C. Aggarwal and P. S. Yu

 "Online Analysis of Community Evolution in Data Streams," in SDM, 2005.

C. Aggarwal, Y. Zhao and P. S. Yu

 "Outlier Detection in Graph Streams," in ICDE Conference, 2011.

R. Aggarwal and R. Srikant

 "Fast algorithms for mining association rules," in Proceedings of the 20th
International Conference on Very Large Data Bases, VLDB, pp 487-499, 1994.

L. Akoglu, M. McGlohon and C. Faloutsos

 "OddBall: Spotting Anomalies in Weighted Graphs," PAKDD’10 Proceedings of
the 14th Pacific-Asia conference on Advances in Knowledge Discovery and Data
Mining, vol. Part II, pp. 410-421, 2010.

S. Albrecht, J. Busch, M. Kloppenburg, F. Metze and P. Tavan

 "Generalized radial basis function networks for classification and novelty
detection: self-organization of optimal Bayesian decision," Neural Networks, vol.
13, pp. 1075-1093, 2003.

American Productivity and Quality Center

 "What is best practice?," 1999. [Online]. Available: http://www.apqc.org.

F. Anguilli, F. Fassetti and L. Palopoli

 "Detecting outlying properties of exceptional objects,” ACM Trans Database Syst
34(1):7:1-7:62, 2009.

F. Anguilli, F. Fassetti, L. Palopoli and G. Manco

 "Outlying property detection with numerical attributes,” CoRR abs/1306.3558,
2013.

132

M. Augusteijn and B. Folkert

 "Neural network classification and novelty detection," International Journal on
Remote Sensing, 2002.

K. Bache and M. Lichman

 UCI machine learning repository, 2013.

D. Baldry, V. Koss and D. Wyatt

 "Building Global Card-Issuing Capabilities: A Multi-Dimensional Benchmarking
Approach," Booz & Company, 2009.

S.D. Bay and M. J. Pazzani

 "Detecting group differences: Mining contrast sets," Data Mining and Knowledge
Discovery 5(3):213-246, 2001.

I. Ben-Gal

 Data Mining and Knowledge Discovery Handbook: A Complete Guide for
Practitioners and Researchers, Kluwer Academic Publishers, 2005.

K. Beyer and R. Ramakrishnan

 "Bottom-up computation of sparse and iceberg cubes" in Proceedings of ACM-
SIGMOD International Conference on Management of Data, pp 359-370, 1999.

K. Beyer, J. Goldstein, R. Ramakrishnan and U. Shaft

 "When is the “nearest neighbor” meaningful?" in Proceedings of the 7th
International Conference on Database Theory, pp 217-235, 1999.

K. Bhaduri, B. L. Matthews and C. R. Giannella

 "Algorithms for speeding up distance-based outlier detection," in Proceedings of
the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD, pp 859-867, 2011.

C. M. Bishop

 "Novelty detection and Neural Network validation," in IEE Conference on Vision,
Image and Signal Processing, 1994.

C. E. Bogan and M. J. English

 "Benchmarking for best practices: winning through innovative adaptation,"
McGraw-Hill, New York, 1994.

K. Bohm, F. Keller, E. Muller, H.V. Nguyen and J. Vreeken

 "CMI: An information-theoretic contrast measure for enhancing subspace cluster
and outlier detection," in Proceedings of the 13th SIAM International Conference
on Data Mining, SDM, pp 198-206, 2013.

D. Breiter and S. Kline

 "Benchmarking quality management in hotels," FIU Hospitality Review, 13(2), 45
52, 1995.

M. Breunig, H. P. Kriegel, R. Ng and J. Sander

133

 "LOF: Identifying Density-based Local Outliers," in ACM SIGMOD, 2000.

L. Breiman, W. Meisel and E. Purcell

 "Variable kernel estimates of multivariate densities," Technometrics 19(2), 135-
144, 1977.

C. E. Brodley and M. A. Friedl

 "Identifying and Eliminating Mislabeled Training Instances," Journal of Artificial
Intelligence Research, vol. 11, pp. 131-167, 1996.

Y. Cai, H. K. Zhao, H. Han, R. Y. K. Lau, H. F. Leung and H. Min

 "Answering typicality query based on automatically prototype construction," in
Proceedings of the 2012 IEEE/WIC/ACM International Join Conference on Web
Intelligence and Intelligent Agent Technology, Volume 01, pp 362-366, 2012.

R. Camp

 “Benchmarking: the Search for Industry Best Practices that Leads to Superior
Performance,” ASQC Quality Pres, Milwaukee, Wisconsin, 1989.

A. Campbell

 “Outlier Detection: A Survey of Methods and Applications to Healthcare,” PhD
Depth Examination, School of Computing Science, Simon Fraser University,
2014.

Canadian Institute for Health Information

 "National Health Expenditure Trends, 1975 to 2013," 2013.

Carbon Dioxide Information Analysis Centre (CDIAC)

 2015 [Online]. Availble: http://cdiac.ornl.gov/ftp/ndp026b/.

G. A. Carpenter and S. Grossberg

 "The ART of adaptive pattern recognition by a self–organising neural network,"
IEEE Computer, vol. 21, pp. 77-88, 1988.

D. Chakrabarti

 "AutoPart: Parameter-Free Graph Partitioning," in PKDD, 2004.

V. Chandola, A. Banerjee and V. Kumar

 "Anomaly detection: A survey," ACM Comput Surv, 41(3):15:1-15:58, 2009.

P. Chebyshev

 "Sur les valeurs limites des integrales," Imprimerie de Gauthier-Villars, 1874.

Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin

 "Pnp: Sequential, external memory, and parallel iceberg cube computation," in
Distributed Parallel Databases, 23(2):99-126, 2008.

L. Chen and G. Dong

134

 "Masquerader detection using OCLEP: One class classification using length
statistics of emerging patters," in Proceedings of International Workshop on
INformation Processing over Evoving Networks (WINPEN), p 5, 2006.

C. Chen, X. Yan, F. Zhu, J. Han, and P.S. Yu

 "Graph OLAP: A multi-dimensional framework for graph data analysis,"
Knowledge Information Systems, 21(1):41-63, 2009.

W. Cohen

 "Fast Effective Rule Induction," in Machine Learning, Lake Tahoe, 1995.

S. Cook

 "Practical Benchmarking: a Manager’s Guide to Creating a Competitive
Advantage," Kogan Page, London, 1995.

A. Cox and I. Thompson

 "On the appropriateness of benchmarking," Journal of General Management,
23(3), 1 20, 1998.

P. Crook and G. Hayes

 "A robot implementation of a biologically inspired method for novelty detection,"
in Towards Intelligent Mobile Robots, 2001.

R. Cross and P. Leonard

 "Benchmarking: a strategic and tactical prespective," in Date, B.G (ed.),
Managing Quality, 2nd edn, Prentice Hall, New Jersey, 497 513, 1994.

K. Das and J. Schneider

 "Detecting Anomalous Records in Categorical Datasets," in KDD, San Jose,
2007.

P. Davies

 "Benchmarking," Total Quality Management, 309 10, 1990.

G. Dong, J. Han, J.M.W. Lam, J. Pei, and K. Wang

 "Mining multi-dimensional constrained gradients in data cubes," in Proceedings
of the 27th International Conference on Very Large Data Bases, VLDB ‘01, pp
321-330, 2001.

G. Dong, J. Han, J.M.W. Lam, J. Pei, K. Wang and W. Zou

 "Mining Constrained Gradients in Large Databases," IEEE Transactions on
Knowledge and Data Engineering, Volume 16, Number 8, pages 922-938, 2005.

L. Dong and J. Bailey

 "Contrast Data Mining: Concepts, Algorithms, and Applications,” CRC Press,
2013.

L. Dong and J. Li

135

 "Efficient mining of emerging patterns: discovering trends and differences," in
Proceedings of the 5th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD, pp 43-52, 1999.

L. Duan, G. Tang, J. Pei, J. Bailey, G. Dong, A. Campbell and C. Tang

 "Mining Contrast Subspaces," in Pacific-Asia Conference on Knowledge
Discovery and Data Mining, Taiwan, 2014.

L. Duan, G. Tang, J. Pei, J. Bailey, A. Campbell and C. Tang

 "Mining Outlying Aspects on Numeric Data," in ECML/PKDD, 2014.

N. Duforet-Frebourg and M. G. B. Blum

 "Bayesian Matrix Factorization for Outlier Detection: An Application in Population
Genetics," Springer Proceedings in Mathematics & Statistics, vol. 63, pp. 143-
147, 2014.

W. Eberle and L. B. Holder

 "Mining for Structural Anomalies in Graph-based Data," in DMIN, 2007.

E. Eskin, A. Arnold, M. Prerau, L. Portnoy and S. Stolfo

 "A geometric framework for unsupervised anomaly detection: Detecting
intrusions in unlabeled data," in Aplications of Data Mining in Computer Security,
6:77-102, 2002.

M. Ester, H. Kriegel, J. Sander and X. Xu

 "A density-based algorithm for discovering clusters in large spatial databases
with noise," in Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD-96), 1996.

R. Fagin, R. Kumar and D. Sivakumar

 "Comparing top k lists," In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, PA, pp 28-36, 2003.

C. Faloutsos, F. Korn, A. Labrinidis, Y. Kotidis, A. Kaplunovich and D. Perkovic

 "Quantifiable Data Mining Using Principal Component Analysis," Institute for
Systems Research, University of Maryland, College Park, MD, 1996.

Forrester

 "THE FORRESTER WEVE METHODOLOGY GUIDE ," 2015. [Online]. Available:
https://www.forrester.com/marketing/policies/forrester-wave-methodology.html.

J. Gao, H. Cheng and P. N. Tan

 "A Novel Framework for Incorporating Labeled Examples into Anomaly
Detection," in SIAM International Conference on Data Mining, 2006.

J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun and J. Han

 "On Community Outliers and their Efficient Detection in Information Networks," in
KDD, Washington, 2010.

136

Gartner, Inc.

 "Gartner Magic Quadrant," 2015. [Online]. Availble:
http://www.gartner.com/technology/research/methodologies/research_mq.jsp.

B. Gerber

 "Benchmarking: measuring yourself against the best," Training, November, 36
44, 1990.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow
and H. Pirahesh

 "Data cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub-totals," in Data Mining Knowledge Discovery, 1(1):29-53, 1997.

H. P. Grünwald

 "MDL Tutorial," 2010.

M. Gupta, J. Gao, Y. Sun and J. Han

 "Integrating Community Matching and Outlier Detection for Mining Evolutionary
Community Outliers," in KDD, 2012.

J. Han, M. Kamber and J. Pei

 Data Mining: Concepts and Techniques, Morgan Kaufmann, 2011.

J. Han, J. Pei, G. Dong, and K. Wang

 "Efficient computation of iceberg cubes with complex measures,” in Proceedings
of the 2001 ACM SIGMOD International Conference on Management of Data,
SIGMOD’01, pages 1-12, 2001.

W. Hardle

 Smoothing Techniques: With Implementation in S. Springer-Verlang, New York,
1990.

W. Hardle, A. Werwatz, M. Muller and S. Sperlich

 Nonparametric and Semi-parametric Modelss, Springer Series in Statistics,
Springer, 2004.

V. Harinarayan, A. Rajaraman, and J. D. Ullman

 "Implementing data cubes efficiently," in SIGMOD, 1996.

M. Hauskrecht, M. Valko, I. Batal, G. Clermont, S. Visweswaran and G. F. Cooper

 "Conditional Outlier Detection for Clinical Alerting," in AMIA Annual Symposium,
2010.

D. Hawkins

 Identification of Outliers, Chapman and Hall, 1980.

S. Hawkins, H. He, G. Williams and R. Baxter

 "Outlier Detection Using Replicator Neural Networks," Data Warehousing and
Knowledge Discovery, vol. 2454, pp. 170-180, 2002.

http://www.gartner.com/technology/research/methodologies/research_mq.jsp

137

Z. He, P. Wong, B. Kao, E. Lo, and R. Cheng

 "Fast evaluation of iceberg pattern-based aggregate queries," In Proceedings of
the 22nd ACM International Conference on Information and Knowledge
Management, pp. 2219-2224, 2013.

Z. He, X. Xu and S. Deng

 "Discovering cluster-based outliers," Pattern Recognition Letters, vol. 24, no. 9-
10, 2003.

Z. He, X. Xu, J. Z. Huang and S. Deng

 "A Frequent Pattern Discovery Method for Outlier Detection," Springer-Verlag
Berlin Heidelberg, no. 3129, p. 26–732, 2004.

V. Hodge and J. Austin

 "A Survey of Outlier Detection Methodologies," Artificial Intelligence Review, vol.
22, no. 2, pp. 85-126, 2004.

S. Holder, B. Veronese, P. Metcalfe, F. Mini, S. Carter and B. Basalisco

 "Cost Benchmarking of Air Navigation Service Providers: A Stochastic Frontier
Analysis ," NERA Economic Consulting, London, UK, 2006.

J. Hu, F. Wang, J. Sun, R. Sorrentino and S. Ebadollahi

 "A Healthcare Utilization Analysis Framework for Hot Spotting and Contextual
Anomaly Detection," in American Medical Informatics Association Annual
Symposium, Chicago, 2012.

M. Hua, J. Pei and A. W. Fu

 "Top-k typicality queries and efficient query answering methods on large
databases,” The VLDB Journal 18(3) 809-835, 2009.

IBNET

 "BENCHMARKING METHODOLOGIES," [Online]. Availble: http://www.ib-
net.org/en/Benchmarking-Methodologies/PerformanceBenchmarking-
DataEnvelopAnalysis.php?L=6&S=2&ss=3, 2015.

IBS Centre for Management Research

 "Xerox – The Benchmarking Story," [Online]. Availble:
http://www.icmrindia.org/free%20resources/casestudies/xerox-benchmarking-
1.htm, Case Code: OPER012, 2006.

T. Imielinski, L. Khachiyan and A. Abdulghani

 "Cubegrades: Generalizing association rules," Data Mining Knowledge
Discovery, 6(3): 219-257 2002.

R. Jacobs

 "Alternative Methods to Examine Hospital Efficiency: Data Envelopment Analysis
and Stochastic Frontier Analysis," in Discussion Paper 177, The University of
York Centre for Health Economics, 2000.

A. Jagota

http://www.icmrindia.org/free%20resources/casestudies/xerox-benchmarking-1.htm
http://www.icmrindia.org/free%20resources/casestudies/xerox-benchmarking-1.htm

138

 "Novelty detection on a very large number of memories stored in a Hopfield-style
network," in International Joint Conference on Neural Networks, 1991.

H. Jeffreys

 "The Theory of Probability," 3rd Edition, Oxford, 1961.

T. Ji, D. Yang and J. Gao

 "Incremental Local Evolutionary Outlier Detection for Dynamic Social Networks,"
Lecture Notes in Computer Science, Springer, vol. 8189, pp. 1-15, 2013.

Q. Jian, A. Campbell, G. Tang and J. Pei

 "Multi-level Relationship Outlier Detection," International Journal of Business
Intelligence and Data Mining (IJBIDM), vol. 7, no. 4, pp. 253-273, 2012.

W. Jin, A. Tung and J. Han

 "Mining Top-n Local Outliers in Large Databases," in ACM KDD, 2001.

W. Jin, A. Tung, J. Han and W. Wang

 "Ranking outliers using symmetric neighborhood relationship," in PAKDD, 2006.

M. V. Joshi, R. Agarwal and V. Kumar

 "Mining needle in a haystack: classifying rare classes via two-phase rule
induction," in ACM SIGMOD Record, volume 30, pages 91-102, 2001.

M. V. Joshi, R. Agarwal and V. Kumar

 "Predicting rare classes: Can boosting make any weak learner strong?" in
Proceedings of the 8th ACM SIGMOD International Conference on Knowledge
Discovery and Data Mining, pages 297-306, 2002.

M. V. Joshi and V. Kumar

 "CREDOS: Classification Using Ripple Down Structure," in SDM, 2004.

J. FL. Kay

 "Health Care Benchmarking,” Medical Bulletin, VOL.12 NO.2, February 2007.

B. Karlof and S. Ostblom

 "Benchmarking: a Signpost of Excellence in Quality and Productivity,” John Wiley
& Sons, Chichester, 1993.

F. Keller, E. Muller and K. Bohm

 "HiCS: High contrast subspaces for density-based outlier ranking,” ICDE 1037-
1048, 2012.

B. Kleine

 "Benchmarking for continuous performance improvement: tactics for suces,"
Total Quality Environmental Management, Spring, 283 95, 1994.

E. Knorr and R. T. Ng

 "Algorithms for Mining Distance-based Outliers in Large Datasets," in VLDB,
1998.

139

E. Knorr and R. T. Ng

 "Finding intentional knowledge of distance-based outliers," in Proceedings of the
25th International Conference on Very Large Data Bases, VLDB, pp 211-222,
1999.

R. M. Konijn, W. Duivesteijn, W. Kowalczyk and A. J. Knobbe

 "Discovering Local Subgroups, with an Application to Fraud Detection," Lecture
Notes in Computer Science, Springer, vol. 7818, pp. 1-12, 2013.

P. Kriegel, P. Kroger, E. Schubert and A. Zimek

 "Outlier detection in axis-parallel subspace of high dimensional data,” PAKDD
‘09, pp 831-838, 2009.

P. Kriegel, M. Schubert and A. Zimek

 "Angle-based outlier detection in high-dimensional data,” in Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD, pp 444-452, 2008.

T. S. Kuhn

 The Structure of Scientific Revolutions, Chicago: University of Chicago Press,
1962.

J. Kulmala

 "APPROACHES TO BENCHMARKING,” Finnish Employers’ Management
Development Institute, FEMDI,
http://www15.uta.fi/yksikot/entrenet/hankerekisteri/hanke5_benchmarking.htm,
[accessed] 2015.

S. Kullback and R. Leibler

 "On information and sifficiency," The Annals of Mathematical Statistics, 1951.

L.V.S. Lakshmanan, J. Pei and J. Han

 "Quotient cube: How to summarize the semantics of a data cube," In
Proceedings of the 28th Internaltional Conference on Very Large Data Bases,
VLDB ‘02, pages 778-789, VLDB Endowment, 2002.

J. Li , K.-Y. Huang, J. Jin and J. Shi

 "A survey on statistical methods for health care fraud detection," Science +
Business Media, Springer, 2007.

E. Lo, B, Kao, W.S. Ho, S.D. Lee, C.K. Chui, and D.W. Cheung

 "OLAP on sequence data," in Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD 08, pages 649-660,
2008.

Z. Long, A. Bakar and A. Raz

 "Frequent Pattern using Multiple Attribute Value for Itemset Generation," in
Conference on Data Mining and Optimization, Selangor, 2011.

Z. Long, A. R. Hamdan and A. Bakar

http://www15.uta.fi/yksikot/entrenet/hankerekisteri/hanke5_benchmarking.htm

140

 "Anomaly Based On Frequent-Outlier for Outbreak Detection in Public Health
Surveillance," World Academy of Science, Engineering and Technology, vol. 7,
2013.

A. Lourenco, H. Silva, C. Carreiras and A. Fred

 "Outlier Detection in Non-intrusive ECG Biometric System," Lecture Notes in
Computer Science, Springer, vol. 7950, pp. 43-52, 2013.

C. A. K. Lovell

 "Frontier Analysis in Health Care," Department of Economics, University of
Georgia, Athens, GA 30602, USA, 2003

C. McNair and K. Leibfried

 "Benchmarking; a Tool for Continuous Improvement," Harper Business, New
York, 1992.

Microsoft

 "Data Warehousing and OLAP," Technet Library, 2015 [Online]. Availble:
https://technet.microsoft.com/en-us/library/aa197903(v=sql.80).aspx.

J. Mourão-Miranda, D. R. Hardoon, T. Hahn, A. F. Marquand, S. C. R. Williams, J.
Shawe-Taylor and M. Brammer

 "Patient classification as an outlier detection problem: An application of the One-
Class Support Vector Machine," NeuroImage, no. 58, pp. 793-804, 2011.

E. Muller, I. Assent, P. Iglesias, Y. Mulle and K. Bohm

 "Outlier ranking via subspace analysis in multiple view of the data,” ICDM ‘12,
pp529-538, 2012a.

E. Muller, F. Keller, S. Blanc and K. Bohm

 "OutRules: A framework for outlier descriptions in multiple context spaces,”
ECML/PKDD (2), pp 828-832, 2012b.

E. Muller, M. Schiffer and T. Seidl

 "Statistical selection of relevant subspace projections for outlier ranking,” in
Proceedings of the 27th IEEE International Conference on Data Engineering,
ICDE, pp 434-455, 2011.

A. Nairac, N. Townsend , R. Carr, S. King, P. Cowley and L. Tarassenko

 "A system for the analysis of jet system vibration data," Integrated
ComputerAided Engineering, vol. 6, no. 1, p. 53 – 65, 1999.

R. T. Ng, A. Wagner, and Y. Yin

 "Iceberg-cube computation with pc clusters," In Proceedings of the 2001 AM
SIGMOD International Conference on Management of Data, SIGMOD -01, pages
25 – 36, 2001.

M. Nguyen, E. Muller and J. Vreeken

 "CMI: An information-theoretic contrast measure for enhancing subspace cluster
and outlier detection,” SDM 198-206, 2013.

141

C. Noble and D. Cook

 "Graph-Based Anomaly Detection," in SGKDD, Washington, 2003.

P. K. Novak, N. Lavrac and G. I. Webb

 "Supervised descriptive rule discovery: A unifying survey of contrast set,
emerging pattern and subgroup mining," Journal of Machine Learning Research,
10:377-403, 2009.

Y. A. Ozcan

 "Health Care Benchmarking and Performance Evaluation: An Assessment using
Data Envelopment Analysis (DEA)," International Series in Operational Research
& Management Science, Volume 210, Springer, 2008.

C.H. Papadimitriou and M. Yannakakis

 "Optimization, approximation, and complexity classes," Journal of Computer and
System Sciences, 3(3):425-440, 1991.

R. Paravastu, H. Kumar and V. Pudi

 "Uniqueness mining,” in Proceedings of the 13th International Conference on
Database Systems for Advanced Applications, DASFAA, pp 84-94, 2008.

C. Phua, D. Alahakoon and V. Lee

 "Minority report in fraud detection: classification of skewed data,” in ACM
SIGKDD Explorations Newsletter, 6(1):50-59, 2004.

S. Ramaswamy, R. Rastogi and K. Shim

 "Efficient algorithms for mining outliers from large data sets,” in Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data,
SIGMOD, pp 427-438, 2000.

R. Rymon

 "Search through systematic set enumeration," in Principle of Knowledge
Representation and Reasoning, 1992.

S. Sarawagi, R. Agrawal and N. Megiddo

 "Discovery-driven exploration of OLAP data cubes," In Proceedings of the 6th
International Conference on Extending Database Technology: Advances in
Database Technology, EDBT ‘98, pages 168-182, 1998.

D. W. Scott

 "Multivariate Density Estimation: Theory, Practice, and Visualization," Wiley
Series in Probability and Statistics, Wiley, New York, 1992.

Y. Shan, D. W. Murray and A. Sutinen

 "Discovering inappropriate billings with local density based outlier detection
method," in The 8th Australasian Data Mining Conference, Melbourne, 2009.

H. D. Sherman and J. Zhu

142

 "DATA ENVELOPMENT ANALYSIS EXPLAINED," Service Productivity
Management, Springer, XXII, 328p, 2006.

K. Singh and and S. Upadhyaya

 "Outlier Detection: Applications And Techniques," International Journal of
Computer Science Issues, vol. 9, no. 1, 2012.

B. W. Silverman

 "Density Estimation for Statistics and Data Analysis," Chapman and Hall/CRC,
1986.

M. C. Sokol, K. A. McGuigan, R. R. Verbrugge and R. S. Epstein

 "Impact of Medication Adherence on Hospitalization Risk and Healthcare Cost,"
Medical Care, vol. 43, 2005.

I. Steinwart, D. Hush and C. Scovel

 "A Classification Framework for Anomaly Detection," Journal of Machine
Learning Research, vol. 6, p. 211–232, 2005.

J. Sun, S. Papadimitriou, P. Yu and C. Faloutsos

 "Graphscope:Parameter-free Mining of Large Time-Evolving Graphs," in KDD,
San Jose, 2007.

J. Sun, Y. Xie, H. Zhang and C. Faloutsos

 "Less is More: Compact Matrix Representation of Large Sparse Graphs," in
SIAM Conference on Data Mining, 2007.

G. Tang, J. Bailey, J. Pei and G. Dong

 "Mining multidimensional contextual outliers from categorical relational data,” in
Proceedings of the 25th International Conference on Scientific and Statistical
Database Management, SSDBM, pp 43:1-43:4, 2013.

D. M. Tax and R. P. Duin

 "Support Vector Data Description," Machine Learning, vol. 54, no. 1, p. 4566,
2004.

O. Taylor and D. Addison

 "Novelty Detection Using Neural Network Technology," in COMADEN, 2000.

J. Thongkam, G. Xu, Y. Zhang and F. Huang

 "Support Vector Machine for Outlier Detection in Breast Cancer Survivability
Prediction," Lecture Notes in Computer Science, Springer, vol. 4977, pp. 99-109,
2008.

H. Tong and C. Y. Lin

 "Non-Negative Residual Matrix Factorization with Application to Graph Anomaly
Detection," in SDM Conference, 2011.

TPC-H

 Available: http://www.tpc.org/tpch/

143

R. Vilalta and S. Ma

 "Predicting rare events in temporal domains," In Proceedings of 2002 IEEE
International Conference on Data Mining, pages 474-481, 2002.

K. Vaziri

 "Using competitive benchmarking to set goals," Quality Progress, October, 81 5,
1992.

N. Wale, X. Ning and G. Karypis

 "Trends in Chemical Data Mining," in Managing and Mining Graph Data, 2010.

F. Wang, S. Chawla and D. Surian

 "Latent Outlier Detection and the Low Precision Problem," in ODD'13, Chicago,
2013.

J. Wang, J. Han and J. Pei

 "Closed Constrained-Gradient Mining in Retail Databases,” IEEE Transactions
on Knowledge and Data Engineering, Volume 18, Number 6, pages 764-769,
IEEE Computer Society, 2006

L. Wang, H. Zhao, H. Dong and G. Li

 "On the complexity of finding emerging patterns,” Theoretical Computer Science,
335(1) 15-27, 2005.

G. Watson

 "Strategic Benchmarking: How to Rate Your Company’s Performance Against the
World’s Best,” John Wiley & Sons, Canada, 1993.

W. Webber, A. Moffat and J. Zobel

 "A similarity measure for indefinite rankings,” ACM Trans Inf Syst 28(4):20:1-
20:38, 2010.

G. Weiss and H. Hirsh

 "Learning to predict rare events in event sequences,” In Proceedings of the 4th
International Conference on Knowledge Discovery and Data Mining, pages 359-
363, 1998.

Wikipedia

 "Inverted Index," March 2016. [Online]. Available:
https://en.wikipedia.org/wiki/Inverted_index

Wikipedia

 "Magic Quadrant," March 2015. [Online]. Available:
http://en.wikipedia.org/wiki/Magic_Quadrant

W. K. Wong, A. Moore, G. Cooper and M. Wagner

 "Rule-Based Anomaly Pattern Detection for Detecting Disease Outbreaks," in
AAAI, 2002.

S. Wrobel

144

 "An algorithm for multi-relational discovery of subgroups," in Proceedings of the
1st European Symposium on Priciples of Data Mining and Knowledge Discovery,
, pp 78-87, 1997.

S. Wu and F. Crestani

 "Methods for ranking information retrieval systems without relevance
judgements," in Proceedings of the 2003 ACM Symposium on Applied
Computing, ACM, New York, pp811-816, 2003.

World Health Organization

 "Adherence to Long-term Therapies: Evidence for Action," January 2003.
[Online]. Available:
http://www.who.int/chp/knowledge/publications/adherence_report/en/.

A. Yeung

 "Matrix Factorization: A Simple Tutorial and Implementation in Python," 16
September 2010. [Online]. Available:
http://www.quuxlabs.com/blog/2010/09/matrix-factorization-a-simple-tutorial-and-
implementation-in-python/.

M. Yousaf, M. Welzl and B. Yener

 "Accurate Shared Bottleneck Detection Based On SVD and Outliers Detection,"
2008.

H. Yu, J. Pei, S. Tang and D. Yang

 "Mining most general multidimensional summarization of probable groups in data
warehouses," in Proceedings of the 17th international conference on scientific
and statistical database management, Lawrence Berkely Laboratory, 2005.

D. Zhang, D. Gatica-Perez, S. Bengio and I. McCowan

 "Semi-supervised Adapted HMMs for Unusual Event Detection," in Computer
Vision and Pattern Recognition, 2005.

Y. Zhang, N. Meratnia and P. Havinga

 "Adaptive and Online One-Class Support Vector Machine-based Outlier
Detection Techniques for Wireless Sensor Networks," in Advanced Information
Networking and Applications Workshops, 2009.

K. Zhang, S. Shi, H. Gao and J. Li

 "Unsupervised outlier detection in sensor networks using aggregation tree," in
Advanced Data Mining and Applications, pages 158-169, 2007.

Y. Zhao, P.M. Deshpande and J.F. Naughton

 "An array-based algorithm for simultaneous multidimensional aggregates," in
Proc. 1997 ACM-SIGMOD International Conference on Management of Data,
pages 159-170, 1997.

S. Zhu, Y. Wang and Y. Wu

http://www.who.int/chp/knowledge/publications/adherence_report/en/

145

 "Health Care Fraud Detection Using Nonnegative Matrix Factorization," in The
6th International Conference on Computer Science & Education, SuperStar
Virgo, Singapore, 2011.

A. Zimek, E. Schubert and H. P. Kriegel

 "A survey on unsupervised outlier detection in high-dimentional numerical data,"
Stat Anal Data Min, 5(5):363-387, 2012.

