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Abstract

Segmentation of the incoming speech stream and translating segments incrementally is a
commonly used technique that improves latency in spoken language translation. Previous
work of Oda et al. 2014 [1] has explored creating training data for segmentation by finding
segments that maximize translation quality with a user-defined bound on segment length.
In this work we provide a new algorithm that uses Pareto-optimality to find good segment
boundaries that can balance the trade-off between latency versus translation quality. We
compare against the state-of-the-art greedy algorithm from Oda et al. 2014. Our experi-
mental results show that we can improve latency by up to 12% without harming the Bleu
score for the same average segment length. Another benefit is that for any segment size,
Pareto-optimal segments maximize both latency and translation quality.

Keywords: Simultaneous Translation; Machine Translation; Segmentation; Simon Fraser
University
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Chapter 1

Introduction

Simultaneous Translation (ST) is a real-time form of Machine Translation (MT) and focuses
on the translation of the sentence before it comes to the end. ST systems assist people to
communicate in languages they don’t speak and understand (see Figure 1.1). Since the Paris
Peace Conference of 1919, human interpreters have been used in situations where speakers
and hearers have different native languages and where pre-translation or post-translation
is not possible. Some estimate that the Nuremberg Trials in 1945 and 1956 would have
taken ten years if all the material were translated in a batch mode compared to real-time
conference interpretation by expert human translators. It is a wide-open research question
if an MT system can replace humans in this capacity. This would create several additional
opportunities for the use of translation technology. However, the task of taking machine
translation systems into real-time conference interpretation is not trivial. There are many
challenges to be overcome before an MT system can be competitive in terms of latency,
quality and creativity compared to existing expert human interpreters. Thus the goal of
simultaneous translation is to enable more natural spoken multilingual interactions through
machine translation. This thesis targets one of the major current issues in simultaneous
translation and the rest of this chapter tries to justify the definition of the domain of the
problem. To this end, we first briefly overview the history of interpretation and simultaneous
translation, and next, we will motivate the problem and specify our contributions to the
problem.

1.1 The Birth of Conference Interpreting

Jesús Baigorri-Jalón [2] makes the case that the birth of simultaneous translation dates
back to the Paris Peace Conference of 1919 when the representatives of the nations gathered
together after World War I to decide on the strategies to spread peace around the world.
This conference is important since it was the first European multi-nation conference after
many years in which French was not the only official language. This conference had two
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Figure 1.1: An example use of a Simultaneous Translation system

official languages English and French and people could use either of them to represent their
ideas and communicate with the other diplomats. This was the reason for the urgent need
to train interpreters to provide speech to speech simultaneous translation, on either of the
languages not understood by diplomats.

Choosing interpreters was difficult in 1919 due to the absence of the definition of inter-
preter’s professional activity. Since interpretation was practiced by chance, learned on the
job and it was a temporary occupation with no necessity on dedication to work. Therefore
no one could determine a good interpreter from a bad one using a specified test. That’s
why Jean Herbert says “conference interpreting only actually started during the first World
War”.

Early definitions of conference interpretation define four modes to it.

First Long Consecutive at which the interpreter had to listen to the whole speech, take
notes and provide the translations after the speech. He also had to draft the minutes
based on his notes.

Second Short Consecutive at which the interpreter had to listen to either of the diplomats
says a few sentences and translate and tell them to the other diplomat. Taking notes
have not been possible in this case due to the pace of communication.

Third Sight Translation of Documents at which the interpreter had to read the document in
a language but say the translations instead while reading.

Fourth Chuchotage at which the interpreter was sitting next to the person whispering the
interpretations to his ear as the speaker went along.
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This occupation has been fairly difficult at the time since the interpretation had been
not necessarily sentence by sentence (the worst case has been the long consecutive mode)
and could be done in both directions, for example both French into English and English to
French. This fact means that the interpreter should have had an exceptional memory as
well as much amounts of attention and awareness regardless of fatigue and getting bored
by the subject. In addition technical equipment has not been available at the time and
the interpreter, sometimes, had to shout in the ears of the diplomat to help him hear the
translations. Next problem for any interpreter had been dealing with different accents of the
source language being presented while there could have been a very wide variety of different
accents in it. Furthermore, since they did not know what the speakers are going to talk
about they were not able to prepare themselves from before. Finally, the interpreters had
reported that the diplomats were insisting in getting monotone (word-by-word) translations
which might not have been good in quality. They reported that sometimes diplomats had
spoken for a few seconds and then they said “correct it, it is not what I meant to say”, so
they believed it is good to buffer a few words and then start providing the translation.

All of these points together made the evaluation of interpretation a very hard and
unclear task. Although, sometimes bilingual people were used to listen to both original and
interpreted speech and evaluate the interpreters, but the quality of speeches and the noisy
state of the auditorium (people who could not understand either of the languages started to
talk to each other), made it very difficult to concentrate on the topic (while sometimes the
interpreters themselves felt bored and lost their attention). In addition to the concentration
problem, sometimes interpreters produced much more or much less information from the
original and comparing the two could have been very difficult in such cases. The next point
has been the relation between the quality and subjective criteria. The evaluator should
have had sufficient knowledge about the topic to evaluate the translation quality. And the
last point in evaluation has been the difference in the ideas about the interpretation. Some
had believed that the interpretation can say something other than the words of the original
speech while it is providing the content, and the interpretation can smooth the language
or make it proper for the audience. The other believe that the translation should reserve
fidelity to the speaker. Evaluation can be a very different problem from either of these
perspectives.

Taking into account all of this information, we aim to define our problem in simulating
the interpretation task in the area of a machine translation. We aim to use the long history
of Machine Translation to attain a baseline for our simultaneous translation system. Given
this brief history, the next section motivates the problem which this thesis is tackling in
modern machine-based interpretation which is also called simultaneous translation.
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1.2 Motivation

Conventional machine translation systems translate a sentence at a time. Such a strategy in
translation guarantees a good translation quality but the delay in producing a translation
is unacceptable in a simultaneous translation setting. Monotonic translation (word by
word) is possible with current translation systems but the translations are lower quality
in such a system due to the lack of reordering between the source language and the target
language. Simultaneous translation (ST) systems try to solve the problem of long translation
waits by finding the points between the two consecutive words in the stream which can
split the stream into shorter chunks, called segments. Segmenting the stream on these
points and translating each segment separately may decrease the translation accuracy since
the rest of the sentence is not known while translating the earlier segments. However,
despite this shortcoming the ST system will be able to provide faster translations and
decrease translation delivery delays. Trading translation accuracy for achieving shorter
delays (minimizing the translation latency) is a common strategy in ST systems. The
segmentation points which can help achieve the best possible trade-off are called optimal
segmentation points.

In addition to segmentation, predicting what words may come next, and paraphrasing
some phrases may help the quality of a ST system. Furthermore, since the translation
quality is not the only measure in the description of performance for a ST system, evaluating
such a system can be one other major issue to be carefully taught about (see section 3.1).
Graham Neubig in his presentation slides [3] summarizes previous literature in this area and
makes the case that simultaneous translation has four challenges: segmentation, prediction,
paraphrasing, evaluation. Although, we do not get a chance to perform experiments in all
four major topics in ST in this thesis, we cover two of these important topics: segmentation
and evaluation.

In this thesis, we will try to find optimal segmentation points between the two adjacent
words in the stream. To perform this idea, the ST system needs a classifier which should
classify each point as to be a segmentation point or not. This segmentation classifier, like
any other supervised classifier, needs a segmented corpus to be trained on; however, as the
date of writing this thesis, segmentation for ST is not a solved problem and there are no
high quality annotated corpora for such a task. One of the reasons for this problem is that
the research community working on ST is still searching for a unified strategy for creating
such data and has not agreed on one yet. This is why this thesis will focus on the algorithms
which annotate an unsegmented corpus with the segmentation points and will assess the
quality of this annotated data.
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1.3 Contributions

In this work, we extend previous work [1] on finding optimal segments and provide a more
appealing algorithm, using Pareto-optimality (described in section 3.4), for finding good
segment boundaries that can balance the trade-off between latency and translation quality.
Using data that was produced by simultaneous translation by human interpreters, the study
in Mieno et al. [4] considers how humans view the trade-off between latency and translation
quality. What they found was that humans were very sensitive to translation quality,
and this implies that we need algorithms that can make a careful choice between different
segmentation decisions of the same latency to produce translations with the best translation
quality possible (for that latency). In this thesis, we provide efficient algorithms to find
segmentation decisions that explicitly rank these decisions based on the trade-off between
latency and translation quality. In addition, we introduce a more accurate latency measure
which will enhance the ability to deal with the concept of time in Simultaneous Translation.

We provide experimental results to evaluate our approach on the English-German TED
talk translation task which uses data from the IWSLT shared task data from 2010 to 2013.
We provide our experiments on one language pair because training on each language pair
takes several months (as will become apparent when our method is described in detail).
The English-German pair was chosen because we had access to more resources for these
languages. In addition, English-German is a challenging direction for the translation task
and good results in this language pair should be indicative of success in some other European
language pairs as well.

The results of our experiments show that we can provide qualitatively better segments
(compared to previous work) that improve latency without substantially hurting translation
quality. In the second part of our experiments, we perform a set of experiments to analyze
the impact of the feature space selection in increase/decrease of the segmentation quality
in the results.

1.4 An Overview of This Thesis

The chapters in this thesis are organized as follows:

Chapter 2 provides relevant background from the Machine Learning and Machine Trans-
lation literature. This chapter will cover definitions and explanations of Sta-
tistical Machine Translation approaches from different perspectives. The
chapter ends with an introductory section about different translation qual-
ity evaluation measures and provides and example to the one which is more
important to this thesis.
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Chapter 3 provides the background information about Simultaneous Translation and
explains the concept of segmentation and relates it to Simultaneous Trans-
lation in detail. The state-of-the-art Greedy Segmentation approach is re-
viewed in this chapter, as the basis for our Pareto-Optimal method. The
chapter ends with an introductory section about the concept of Pareto-
Optimality.

Chapter 4 provides sufficient detail about the method of modeling latency and trans-
lation accuracy in our Pareto-Optimal segmentation approach. The chapter
ends with the detailed description of the algorithm which trades off latency
and translation accuracy in the unsupervised segmentation task.

Chapter 5 provides relevant information about the designed experiments to prove the
superiority of our suggested algorithm to the other available segmentation
algorithms and provides the experimental results and provides the analysis
of the provided algorithms.

Chapter 6 concludes the thesis, reviews the most important points about it and men-
tions what has to be done in the future.

6



Chapter 2

Machine Translation

In this chapter, we review the most important background information about Machine
Translation which is used in the rest of the thesis. Please note that our focus in this thesis
will be on Statistical Machine Translation and we do not cover other Machine Translation
types such as Neural Machine Translation. In this chapter, we first describe the generative
solution process of machine translation and introduce the pipeline of the generative model in
Machine Translation. Next, we will explain the discriminative machine translation process
and we will highlight its difference with the generative process. Then, we will define different
commonly used machine translation quality evaluation metrics. In the rest of the chapter,
we will define the idea of Simultaneous Translation as a real-time form of Statistical Machine
Translation. And, we will end the chapter with describing the idea of Pareto-Optimality
which is going to be used in the next chapters.

2.1 Generative Machine Translation

Machine Translation (MT) is a computational approach to translate utterances of one natu-
ral language to another one using mathematical models and algorithms. Statistical Machine
Translation (SMT) is an approach to Machine Translation which uses Machine Learning
techniques (e.g. maximum likelihood estimation) to perform the task of translation. Ap-
proaches to SMT can be either Generative (described in this section) or Discriminative
(described in section 2.2).

Generative methods in SMT try to translate a given sentence using estimations over
probability distributions (based on counts) of words (or phrases) in the given training data.
This training data (input to the generative process, also called parallel corpus or bitext)
usually contains a number of sentences in the source language (F ) and the corresponding
human translations in the target language (E). A parallel corpus (containing N parallel
sentences) will be of the form Equation (2.1) in which each fi represents a source sentence
and each ei is supposed to be the corresponding translation of it.

7



Parallel_Corpus = {(fi, ei) | i = 1 . . . N} (2.1)

The assumption in the process of generative SMT is that sentences are independent
of each other and, therefore, each sentence contains enough information to be used for
translating it. This assumption results in the definition of the translation input unit of the
generative process which is a sentence. So, to start the translation, we need to know the
whole sentence from the beginning to the end.

Given a sentence (f) in the source language, our generative SMT system tries to find
the most probable translation (e) in the target language among all possible translations
(Equation 2.2).

e = argmax
e′∈E

P (e′|f) (2.2)

This step is called ‘Decoding’ due to a memorandum published in 1949, from Warren
Weaver, one of the pioneering minds in machine translation [5]. One of the pages of the
memo reads:

When I look at an article in Russian, I say “This is really written in English,
but it has been coded in some strange symbols.” I will now proceed to decode.

Clearly, it is impossible to explore the whole space of possible sentences in the target
language to find the most probable one based on Equation (2.2). Generative SMT uses
the input parallel corpora, introduced in this chapter, to compute the result of this maxi-
mum likelihood estimation formula in an indirect way. Using Bayes rule, we can write the
probability distribution function of Equation (2.2) as Equation (2.3).

P (e′|f) = P (e′) · P (f |e′)
P (f) (2.3)

So, taking the argmax of Equation (2.3) will result in the indirect procedure of computing
the best translation for f in Equation (2.4). In this equation, note that taking argmax over
different values of e′ will treat the denominator (P (f)) as a constant. So, we can refrain
from considering it in the computations while still getting correct results.

e = argmax
e′∈E

P (e′|f) = argmax
e′∈E

P (e′) · P (f |e′)
P (f) = argmax

e′∈E
P (e′) · P (f |e′) (2.4)

e = argmax
e′∈E

{ P (e′)︸ ︷︷ ︸
Language Model

· P (f |e′)︸ ︷︷ ︸
Translation Model

} (2.5)

Equation (2.4) states that finding the best translation in the decoding step consists of
two sub-steps; finding the probability distributions of words, phrases and sentences in the
target language which is called Language Modeling, and finding the conditional probabilities

8



Parallel Corpora
Translation
Modeling

P(f|e)

Multilingual Corpora
(On Target Language)

Language
Modeling

P(e)
Target Sentence

Source Sentence

Decoding

Figure 2.1: The general architecture of a generative Statistical Machine Translation system

of each sentence in the source language given a specific sentence in the target language which
is called Translation Modeling. Figure 2.1 depicts the general architecture of a generative
SMT system. Sections 2.1.1 and 2.1.2 describe the two mentioned sub-steps.

2.1.1 Language Modeling

Language Modeling aims to provide a probability distribution over sentences in a language.
Language models are built using monolingual training data. They can help us attain a
scoring function which can tell a fluent translation from a less acceptable one to the native
speakers. The most commonly used language models in natural language processing are n-
gram language models where the probability of a sentence is built up from probabilities of
overlapping groups of n words. Suppose we have a sentence e = w1w2 . . . wN in the language
A. The language model probability of this sentence in the given language is computed based
on Equation (2.6).

P (e) = p(w1) · p(w2|w1) · . . . · p(wN |w1, w2, . . . , wN−1) (2.6)

We are not interested in the frequency distribution of large phrases (e.g. n > 10) because
increasing the number of words in n-grams will overfit the distributions to the training
sentences. The Markov independence assumption truncates the conditional probability to
consider a limited fixed history. The 5-gram language model that uses (at most) 4 words of
context to predict each word in the sentence is shown in Equation (2.7).

P (e) = p(w1) · p(w2|w1) · . . . · p(wN |wN−4, wN−3, wN−2, wN−1) (2.7)

Although this formula is good enough to assist in discovering more accurate sentences
(based on the language rules), out of vocabulary (OOV) words or phrases (the ones which
have not been observed) may result in the probability of a sentence that is zero. Smoothing
is an approach to address this issue. Smoothing tends to decrease a small portion of the
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seen probabilities and assign that portion to the unseen words. We do not cover the dif-
ferent smoothing methods because they are out of the scope of this thesis (see [6] for more
information about different smoothing methods).

2.1.2 Translation Modeling

The translation model is the second ingredient of Equation (2.5) in addition to the language
model which can help finding the best translation given an unknown source sentence. In
translation modeling, we aim to model P (f |e′) for all source translation units (f) given
the most probable target translation units (e′) based on an available Parallel_Corpus
(Equation 2.1). The so-called translation units can be either a word or a phrase. The
difference in the translation units has led to different approaches which will be covered in
this section.

2.1.2.1 Word-Based Translation Models

The simplest model for translation can be considered as a lexical translation model (word-
to-word translation model) [7, 8, 9]. During the translation, this model considers the words
solely and does not take the previous and coming words into account. In other words, the
model will look like a dictionary trying to align the words from one language to another
(one word may be mapped to more than one word with a different mapping confidence for
each). The model can be constructed by collecting the frequency statistics of words and
estimating their lexical probability distributions based on a maximum likelihood estimation
method. Using these estimated probabilities words can get aligned in a parallel corpus
(words of a source sentence to the words of the target sentence), so this process is called
alignment. Alignments can be illustrated using alignment diagrams (e.g. Figure 2.2).

I was in my twenties before I ever went to an art museum

Ich war in meine zwanzigerjahre bevor ich je ging zu ein kunst museum

Figure 2.2: An Example Alignment Diagram

Given a word-alignment model, the generative MT system can use the table to compute
the P (f |e′) term (Equation 2.5) using Equation (2.8) where the source sentence contains
W words and T (w) contains the list of valid translations for the word fw and p(fw|w′)
demonstrates the word-alignment probability of words fw and w′ in the source and target
language, respectively.
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P (f |e′) =
W∏
w=1

argmax
w′∈T (w)

p(fw|w′) (2.8)

Brown et. al [8] propose five unsupervised machine learning approaches (IBM Models 1
through 5) which focus on the problem of word alignment. The Expectation Maximization
(EM) algorithm can be one of the iterative algorithms which can be used to implement
these approaches. The EM algorithm contains two phases;

1. compute expectations for the lexical probability distributions (it usually starts by
uniformly aligning all source sentence words to all target sentence words)

2. maximize the log-likelihood of the lexical probability distributions (in this case up-
dating the probabilities based on the counts of words happening together in source
and target)

These two steps are repeated till the convergence of probability distributions. The higher
the number of IBM Model is the more complicated the log-likelihood becomes and the
more details it considers. For example, IBM Model 1 just considers word translations and
reordering of the translations in the target side while limiting the length of the source
and target sentence to be the same. IBM Model 2 removes the limit on the length of the
alignments but does not let a source word to be translated into many target words. IBM
Model 3 removes the limit on the number of target words a source word is allowed to be
translated into and so on. Since these concepts are well-known to the NLP community and
there has been quite a lot of work done in this area, a wide variety of tools to perform
the word alignment exists. GIZA++ [10] is one of such tools which has been used in our
experiments.

2.1.2.2 Phrase-Based Translation Models

Word-based translation models omit the context of the training sentences by removing the
adjacency information of the words in the sentence. This information can help producing
more fluent translations since there may be many translations for one word in the target
language and capturing the best fitting one for this specific case is not possible without
considering the context in which the word appears. Phrase-based translation models try
to address this issue [11, 12, 13]. In the phrase-based approach, the translation unit is
considered to be a phrase, an ordered collection of adjacent words. However, the approach
does not guarantee that phrases are syntactically or semantically aligned (e.g. “engineers
in order” in Figure 2.3 can be a phrase).

A phrase can contain just one word; therefore, the word-based approach is a specific
case of the phrase-based one. The easiest algorithm to create a phrase-table is obtain-
able through the modification of the available word-alignment algorithms, but this is not
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Figure 2.3: An example phrase alignment diagram

usually done in the state-of-the-art approaches. Instead, phrase-tables are normally ex-
tracted from the word-alignments. Figure 2.3 depicts a phrase alignment diagram extracted
from the word-alignment table. A parallel phrase (e.g. “in order to change the world

||| um die welt zu verandern”) can be consistent with the word-alignment table and ex-
tracted as a valid phrase if both source and target side word collections are covered in the
parallel extracted phrase (e.g. “in order to ||| um die welt zu verandern” is not valid).

In addition, a phrase-based translation may reorder the phrases, while translation, and
put the translation of the ith phrase in the source sentence in the jth phrase position of the
translated sentence where (i 6= j). This idea is believed to capture the local relativity of
phrases in relation to each other, e.g. put the ‘object phrase’ before the ‘verb phrase’ in
the target language while the correct form is the other way around in the source language.
However, the distortion model, responsible for performing the reorderings, tends to prevent
long-distance phrase relocations; assuming that the translation of the ith phrase in the
source sentence might be somewhere near the ith phrase position in the translated sentence.

Given an extracted phrase-table, the generative MT system can use the phrase-table
to compute the P (f |e′) term (Equation 2.5) using Equation (2.9) where I is the number
of phrases to be translated, φ(.) is a function of translation probability of the phrases (it
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may not demonstrate a probability) and d(.) is a function which penalizes the score if the
translated phrase is reordered.

P (f |e′) =
I∏
i=1

φ(fi|e′i)d(starti − endi−1 − 1) (2.9)

2.1.2.3 Hierarchical Phrase-Based Translation Models

Due to translation quality improvements by phrase-based machine translation (PBMT)
systems, Kohen et al. [13] performed a series of analytical experiments on the performance
of PBMT systems given different corpus sizes, different maximum valid phrase lengths, and
different language pairs. The experiments over the maximum phrase length of translation
models revealed that phrases over 4 words long do not contribute much to improving the
translation quality since longer phrases are much less frequent resulting in more sparse
distribution vectors. Due to this fact, some implementations suggested that the phrase
length should be limited to a threshold (e.g. 3 or 4) to get faster translations without
substantially hurting the quality.

Chiang [14] introduced the idea of hierarchical phrases to benefit from longer phrases
instead of simply ignoring them. A hierarchical phrase is defined as a translation unit with
discontiguous phrases that can be modeled by a synchronous context-free grammar. As
of section 2.1.2.2, the main objective of introducing phrases was to learn local reorderings
among words to capture the local context while translating. The hierarchical model (Hiero
model) tries to exploit this idea to localize the phrases themselves. Given phrases can cap-
ture the word localizations, the longer phrases also can capture the subphrase localizations.

He uses the idea of synchronous context-free grammars (SCFG)s to describe the structure
of the hierarchical phrases. This type of grammar breaks the construction of a large phrase
into the construction of smaller subphrases and combining (gluing) the subphrases together.
A synchronous CFG can map a source sentence (f) to a combination of terminal terms and
non-terminal terms for each of which there will be in the target language. Terminals are
atomic subphrases which will be directly translated while non-terminals are subphrases
which will break down to other subphrases. For example the sentence ‘f = we desperately
need great communication’ containing 5 terminals can break down into the hierarchy of
Figure 2.4.

This figure shows that the hierarchical phrase-based models are trying to find a set of
rules for decomposing the sentence into phrases while some of them may not contain any
terminal phrases (to be translated) at all. The hierarchical phrase-based model will assign
a probability to each of the rules which may lead the sentence one step closer to the full
decomposition. The translation system will try to find the best set (R) of such rules which
lead to the decomposition with the highest probability. The formula to compute the P (f |e′)
term (Equation 2.5) in hierarchical phrase-based models will be as shown in Equation (2.10).
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Figure 2.4: An example hierarchical phrase decomposition in Hierarchical Phrase-Based
Translation Models

P (f |e′) =
∏

r∈R(f,e′)
p(r) (2.10)

2.1.2.4 Left-to-Right Hierarchical Phrase-Based Translation Models

The Hiero models were able to catch the longer-distance reorderings between source and
target languages. In addition, they were able to decrease the need for expensive language
model calls (due to storing more content in a hierarchical phrase). These properties helped
to introduce translation modeling approaches which were more focused on the concept of
real-time translation (more details in section 3). The first step towards this idea was to
think about left-to-right (incremental) translation models [15, 16].

In real-time translation, the output should be generated incrementally as the input is
being provided. The preference, in this case, will not be to hold the audience for a long
time to show them the translation result of a long sentence. Left-to-Right Hierarchical
Phrase-Based (Incremental) translation models try to address this issue by justifying the
Hiero models. As a review, Hiero models were using synchronous context-free grammars
(containing terminal and non-terminal terms) to produce the hierarchical translations. In-
cremental translation models try to filter the SCFG rules into the ones which are in Greibach
Normal Form (GNF). A rule will be in GNF if the right-hand side of it starts with a termi-
nal symbol, optionally followed by some non-terminals. Such rules will guarantee that no
terminal is appearing after a non-terminal (which is assuring the left-to-right translation).
In this case, any terminal which appears in a rule can be directly sent to the audience in a
real-time manner. As an example, in Figure 2.4, all the rules are in GNF since terminals
are appearing before non-terminals in all of them.
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The formula to compute the P (f |e′) term (Equation 2.5) in the left-to-right phrase-based
models will be the same as Equation (2.10) with a difference in the set of rules R. In the
left-to-right models, the hierarchical phrase alignment rules are filtered to the left-to-right
ones where terminals appear before non-terminals.

2.2 Discriminative Machine Translation

Generative machine translation methods show acceptable results as well as reasonable run-
ning times. But, they consider the noisy channel model components (language and trans-
lation models) as the only effecting components to the superiority of a translation over
another. Therefore, there is no straightforward way to extend a baseline generative statis-
tical MT model by including additional dependencies. Och and Ney [17] mention that this
assumption results in extendability problems when extra prior knowledge exists. In addi-
tion, they believe that the current formulae to approximate language and translation model
distributions are only poor approximations of the true probability distributions. Due to
the mentioned problems, they provide an alternative formula to Equation (2.3) where they
directly compute the probability distribution of P (e′|f) using a discriminative log-linear
model (also called a Maximum Entropy model).

The model, called Discriminative Translation Model, considers a set of M feature func-
tions hm(e, f), m = 1 . . .M , for each of which there exists a model parameter λm. The
maximum entropy objective of the training phase will be to find the best model parameter
set (λ) based on the collected feature values from the parallel sentences in the training set.
Once best model parameter set is discovered, P (e′|f) can be calculated using the Equation
(2.11).

P (e′|f) = PλM
1

(e′|f) = exp[
∑M
m=1 λmhm(e′, f)]∑

e′∈E exp[
∑M
m=1 λmhm(e′, f)]

(2.11)

Note that the denominator performs as the normalization term in the model; however, it
can be neglected since our search problem is from the argmax type and we can exclude fixed
values. This simplification will omit a very time-consuming part and will help to achieve
faster search results.

Based on the discriminative translation model, the most probable translation (e) in
Equation (2.2) can be the output of Equation (2.12).

e = argmax
e′∈E

P (e′|f) = argmax
e′∈E

M∑
m=1

λmhm(e′, f) (2.12)

This approach can describe the generative noisy-channel model as a special case where
the model contains only two feature functions h1(e′, f) = logPLM (e′, f) and h2(e′, f) =
logPTM (e′, f), given λ1 = λ2 = 1.
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We use the standard feature set used in [16] to build our log-linear discriminative trans-
lation model for the experiments in this thesis. The features in this set are as follows.

• relative-frequency translation probabilities p(f |e) and p(e|f)

• lexical translation probabilities pl(f |e) and pl(e|f)

• language model probabilities, word counts, and phrase counts

• word and phrase reordering penalties

• source side distortion features (total length of jumps between source phrases to pro-
duce the translation, . . . )

2.3 Evaluation of Machine Translation Systems

Given different translation models, a source sentence may have many valid translations
in the target language. Therefore, defining an evaluation measure which can rank the
translations and find the higher quality ones seems necessary. Though, this task is not
as trivial as it appears to be since there may be many equally correct translations for
one sentence (consider them as the paraphrases of each other) and it is fairly impossible
to formulate all possible translations for any possible source sentence. With this in mind,
different translation evaluation measures have been suggested with different intuitions about
what matters in the translation evaluation.

Evaluation can be performed at the word level, the sentence level, or the corpus level.
A sentence level evaluation will assume that there exists, at least, one human translation of
the source sentence (called reference sentence or gold standard) against which the machine
translated target sentence is evaluated. In the meantime, such an approach can perform in
the corpus level if the concatenation of all translated sentences (a huge sentence) be fed to
the evaluation method in addition to the concatenation of all reference sentences. Here, we
mention the most promising evaluation methods which are currently being used during the
recent years of research in Machine Translation.

TER The intuition behind Translation Edit Rate is to measure the edit distance
between the translation and human reference sentences. Equation (2.13) depicts
the method of deriving this measure [18].

TER = count(edits)
average(reference length in corpus) (2.13)

METEOR The idea of flexible matching has been resulted in the Metric for Evaluation of
Translation with Explicit ORdering. This evaluation metric is based on a word-
to-word (unigram) matching between the translation and reference sentence(s).
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Candidate: we desperately require great communication

Reference: we desperately need great communication
p1 = 4

5 , p2 = 2
4 , score = min (1, 5

5)(
∏2
n=1 pi)

1
2 = (4

5 ∗
2
4)

1
2 = 0.632455532

Figure 2.5: An example Bleu score computation for N = 2

In addition, the measure is not only matching the identical words but is also
detecting the morphological variants of them. It considers partial credits for
matching stems, matching synonyms and the use of paraphrases. The formula
to compute METEOR is a variation of F-Score with different descriptions of
precision and recall as explained in the beginning of this paragraph [19].

Bleu Another explored idea as an automated translation evaluation measure has been
to count the number of n-gram overlaps between the reference and the trans-
lated sentence, since such an algorithm may tend to assign higher scores to
shorter target sentence translations, a brevity penalty is considered in the scor-
ing formula. Equation (2.14) depicts the Bleu scoring function[20].

Bleu = min (1, output-length
reference-length)(

N∏
n=1

precisioni)
1
N (2.14)

Please note that this measure is typically computed over the entire corpus (en-
tire corpus is assumed to be a huge sentence). The main vulnerability of the
mentioned scoring function is related to the time when one precision value (es-
pecially for larger values of N) is zero (turning the total score to be zero). N
is normally limited to 4 and precision values may get smoothed.

Bleup1 The Oracle Ranking for Gisting Evaluation (Orange) is a variation of Bleu
(also called Bleu+1 or Bleup1) which focuses on the problem of ranking dif-
ferent translations of one source sentence. The main assumption about this
variation is that each sentence in the corpus is independent of the other sen-
tences and the scoring function should not consider credits for the translation
of this sentence if the n-gram reference translation of this sentence has hap-
pened to be available in another corpus sentence translation. Bleup1 scores
the corpus by computing the local Bleu scores for each sentence and taking
the average of the computed scores for all the sentences [21].

Due to the importance of Bleu evaluation measure in this thesis, we provide the Bleu
computation example of Figure 2.5 for a candidate-reference pair with just one word dif-
ference and N = 2. As shown in the example, this measure is sensitive to the reference
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sentence to the extent that even one word difference may substantially decrease the score.
We will use this feature to increase our accuracy in finding the optimal segmentations (see
section 3.2).

2.4 Summary

In this chapter, we reviewed the most important background knowledge about Machine
Translation and we introduced different modeling techniques in it. We explained the con-
cepts of language modeling and translation modeling and how they come to importance to
get acceptable results in Machine Translation. In the last section, we introduced the most
important translation quality evaluation metrics and suggested further information for the
measure which is going to be used in this thesis. In the next chapter, we will introduce
the concept of Simultaneous Translation and explain the way it is different from Machine
Translation.
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Chapter 3

Simultaneous Translation

Sections 2.1 and 2.2 briefly explained the problem of machine translation and provided
the best practices for modeling the solutions. But, the solutions were assuming that the
whole sentence from the beginning to the end is available when the translation is starting.
This assumption is not valid for Real-Time Machine Translation (also called Simultaneous
Translation and Machine Interpretation).

In Simultaneous Translation, the process starts before receiving the end of the sentence,
and the evaluation objective is not only sensitive to the translation quality, but it is also
caring about the translation latency; the difference between the receiving time of the utter-
ance in the source language and the delivery time of its translation in the target language.
Figure 3.1 provides an example stream of words in Japanese as well as the outputs of both
Machine Translation and Simultaneous Translation strategies (borrowed from Graham Neu-
big - NAIST 2015 [3]). We will use this figure to define and explain four major issues in
Simultaneous Translation; Segmentation, Prediction, Paraphrasing, and Evaluation.

3.1 Major Issues in Simultaneous Translation

The Simultaneous Translation output (Interpretation) is fairly different from the Machine
Translation output in terms of length, wording and content, in some cases (one example is
shown in Figure 3.1). Clearly this difference comes from the major differences in producing
the output.

The first difference is in segmentation task done in ST where we have to segment the
stream of receiving utterances into a number of chunks and produce the translation of
each segment separately, to achieve lower latency translations. Each of these segments are
translated separately regardless of what comes next and may or may not consider what
utterances have come before. This strategy enhances the speed of translation (consider
it as 1

latency ) one the one hand, but it also diminishes the quality of translation, on the
other hand. This fact defines a trade-off between the translation quality and latency in
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Translation
Five years ago, as a college senior, I created the video that you just
saw as a reference material for a mock trial, one year before the
much-talked-about jury system commenced in Japan.

Interpretation

You just saw
∣∣∣ this video clip.

∣∣∣ Five years ago, at that time
∣∣∣ in Japan,

∣∣∣
the ordinary people’s justice system, jury system, was very much
talked about in Japan,

∣∣∣ and I created this video as a reference
material for that.

Figure 3.1: The translation and interpretation outputs of a Japanese stream of words (from
Graham Neubig in a NAIST 2015 presentation). The ‘Translation’ row has been produced
as the whole input stream has been accessible to the translator, while the ‘Interpretation’
row has been produced by a human interpreter, segment by segment.

the Segmentation task. The segment separators are shown in the example of Figure 3.1 as
vertical bars in the Source and Interpreted output rows.

The second difference is in the prediction task which is a crucial task when the linguistic
structure of the source and target languages are not the same and monotone translation
is not an option, e.g. the source language is subject-object-verb (like Japanese) while the
target language is subject-verb-object (like English). In this case, when the system receives
the object phrase in the source language, has to predict the verb phrase to produce the
correct translation of the object phrase in the target language. Prediction will help in
choosing the correct word and phrase translations of the phrase we have not still received.
For example, in Figure 3.1, when we receive the phrases ‘you’ and ‘the video’, we have to
predict the correct form of the verb ‘to visit’ as being ‘to see’ and use the correct form of
it.

The third difference is in paraphrasing (or rewording) which is a necessary task which
helps improving latency measures by producing less translation holding the same content.
In addition to reducing the delivery delay, paraphrasing can help reduce disfluencies by
converting passive to active sentence voice or using clearer words to covey the actual meaning
of the source sentence. This task can even remove irrelevant parts of the source sentence (to
the pre-specified topic) to improve the extent of understanding about the topic. In Figure
3.1, the fourth segment actually means "in the country of the rising sun", but considering
the context, the actual paraphrase "in Japan" seems more reasonable to convey the meaning
in this case.
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The last difference is in evaluation task. The most important fact about human in-
terpretation evaluation is that people do evaluate how interpreting is done not just based
on the translation accuracy but with the understanding that there is some time pressure.
Therefore quality scores (such as Bleu) cannot evenly evaluate the ST outputs. Another
measure is necessary in this case which may consider the translation creation in a timely
way, and that measure is going to score based on the latency.

Considering all of these issues and the solutions suggested for them, the ST output
may still need some improvements given the fact that currently available interpretation
corpora may lack the translation of some segments exactly such as the translation of the
fifth segment in the example of Figure 3.1 which is available in the Translation output as
the underlined parts but is not existing in the Interpretation output since the interpreter
has simply not been able to catch up with the speaker and decided to translate the next
segment with a better quality instead of focusing on what he has not heard correctly.

Among these four different issue types, the segmentation and evaluation types are the
issues targeted by this thesis. Sections 3.2 and 3.3 provide more explanations and details
in these areas.

3.2 Segmentation

Segmentation is the task of finding reasonable chunks, regarding an evaluation function,
in a given text or speech. This task has shown to be useful in various applications one of
which is Simultaneous Translation. To illustrate this application, we demonstrate different
segmentation strategies over a source sentence in Figure (3.2) for the German language.
Figures (3.2a) and (3.2b) depict two extreme cases of segmentation where Figure (3.2a) is
preferring to make certain segmentations (with a high accuracy and a bad latency) and
Figure (3.2b) has decided to segment any received word at the arrival time without even
waiting for one more word (fairly low latency but a bad translation quality).

A good segmentation strategy, tries to find a tradeoff between these two extreme choices
to decrease the number of segmentation points from all possible to some of the good ones
(improving accuracy in Figure (3.2b)) while it does not wait untill the end of sentence
(making shorter latency gaps in Figure (3.2a)). This segmentation strategy is implemented
as a segmentation classifier in the Simultaneous Translation system which is receiving the
stream of utterances while they are being produced and makes a decision upon receiving each
word to segment the stream or not. Figure (3.2c) is depicting two segmentation decisions
made by a modest segmentation classifier.

The technique of segmenting the input is often referred to as the “salami technique”
in the field of conference interpreting (by humans) [22] referring to the slicing up of the
input into small, predictably sized units for translation. In spoken language translation,
the “salami technique” has been mostly focused on fixed length segments or segments based
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(a)

(b)

(c)

Figure 3.2: Different segmentation startegies on a source sentence

on monolingual features in the input such as pauses and other similar cues [23, 24, 25, 26] to
break the input into segments for incremental translation. In order to train a segmentation
classifier, one can go beyond simple cues such as pauses and annotate training data with
good segmentation boundaries [27, 28]. These techniques require either heuristic or human
annotation of segment boundaries for some data in the source language. The segmentation
classifier can be tightly integrated into a stream decoding process for incremental transla-
tion [16]. The impact of the choice of segment length has been studied in some previous
work on segmentation [29] and stream decoding [30]. However, none of these approaches
explicitly consider the impact of selecting between different segments (perhaps of the same
size) on the translation quality in the target language. In the context of this thesis, we want
to choose segments that are optimal in some way with respect to latency and/or transla-
tion quality and we wish to train a segmentation strategy that provides such an optimality
guarantee (on the training data).

Oda et al. (2014) [1] have explored finding segments that maximize translation quality
with a user-defined bound on segment length (more details in section 3.2.2). The training
data set required for this is much more complex because, in order to optimize for segments
with good translation quality, we need a training set translated with all possible segment
choices and sizes and the eventual translation quality for each possible segmentation choice.
Once such a training data set is built, one can apply the algorithms in [1] to find segmen-
tation decisions that are optimal with respect to some evaluation measure of translation
quality such as Bleu [20] score.
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3.2.1 Review on Segmentation Approaches

In speech translation, the segmentation task can be performed on speech or the transcribed
text. Early work on speech translation uses prosodic pauses detected in speech as segmen-
tation boundaries [23, 24]. Segmentation methods applied on the transcribed text can be
divided to two categories: heuristic methods which use linguistic cues, like conjunctions,
commas, etc. [25]; and statistical methods which train a classifier to predict the segmen-
tation boundaries, like what Xiong et al. [31] have done in detecting the translation zones
(which can be interpreted as the segment). Some early methods use prosodic and lexical
cues as features to predict soft boundaries [32]; while most recent methods rely on word
alignment information to identify contiguous blocks of text that do not contain alignments
to words outside them [27, 28]. In addition to these segmentation approaches which are
applied before calling the translation decoder, there is another strategy which performs the
segmentation during decoding which is usually called stream or incremental decoding. Dif-
ferent incremental decoding approaches have been proposed for phrase-based [30, 33] and
hierarchical phrase- based translation [28, 34]. He et al. [35] focus on language pairs with
divergent word order by designing syntactic transformations and rewriting batch trans-
lations into more monotonic translations. Some research has been conducted on human
simultaneous interpretation to determine the effect of the latency and accuracy metrics on
the human evaluation of the output of simultaneous translation. The results indicate that
latency is not as important as accuracy [4]. This implies that we need algorithms that
can make a careful choice between different segmentation decisions of the same latency to
produce translations with the best translation quality possible (for that latency) which we
have done in this thesis.

3.2.2 Greedy Segmentation Approach

Greedy segmentation (Oda et al. 2014) [1] is the state-of-the-art method for creating seg-
mentation training data. In this approach, the best possible segmentation points are found
over an unsegmented corpus which maximize the translation accuracy of the segmented
sentences in a greedy way.

The algorithm in [1] has a parameter for the number of expected segments, K, which is
given by Equation 3.1. Using this equation, the segmentation model is trained on a parallel
corpus F = 〈F,E〉 which has N source/target sentence pairs. |f | provides the length of
sentence f in words and µ is the average segment length.

K := max(0,
⌊∑

f∈F |f |
µ

⌋
−N) (3.1)

Finding each of these K segmentation points in the algorithm involves searching through all
the N sentences in the corpus and examining each segment boundary in the whole corpus.
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For K = 1, one sentence in the corpus is segmented into two chunks. This way, they will
produce all possible hypothesized segmentations of the entire corpus, one of which is going
to be the optimal one.

Given an MT system, D, which is already tuned on a given development set, D(f, s)
is the translation output of the MT system D for a given source sentence f obtained by
concatenating the translations of the individual segments defined by the set of segmentation
decisions s. This set s is created by adding a segmentation point at each place where a
segmentation classifier fires. In [1] the segmentation classifier is determined by checking
a single feature firing. This single feature is a bigram part of speech (POS) tag. Each
segmentation of the corpus is a collection of such features called Φ. Thus, s, the set of
segmentation points is proportional to the number of sentences in F and the features Φ
that determine the segments: s ∝ {F ,Φ}.

The accuracy score of each possible segmentation choice for a given number of segments
s is computed for the whole corpus as follows:

B(s) =
N∑
j=1

β(D(fj , s), ej) (3.2)

where D(fj , s) produces target translations for each source sentence fj based on the seg-
ments in s. Each output sentence is scored by β which can be any automatic evaluation mea-
sure for translation quality. [1] uses per-sentence smoothed Bleu score (Bleu+1) [20, 21]
as the translation quality evaluation measure. B(s) is the sum of the translation quality
scores for each segmented sentence. The argmax of B(s) finds the optimal segmentation for
the entire corpus, searching over all possible s segment boundary points. This argmax of
B(s) is repeatedly computed for every segmentation set of size k = 1 . . .K, and the set of
size K is returned.

Because such an approach is computationally complex, Oda et al. (2014) [1] introduce
the idea of feature grouping. Using feature grouping, once a feature has been greedily
chosen, all the points exhibiting that feature are segmented at the same time and added to
the set of selected features. Moreover, they take advantage of dynamic programming (DP)
implementation of the greedy approach to reflect optimal feature grouping. DP is used to
build larger sets of segmentation points from smaller sets. This method is called Greedy-DP
or the GDP Segmentation approach in their paper.

Finally, they introduce a regularizer coefficient α to their accuracy scoring function
which is aimed to control the number of selected features out of the set Φ; as a higher α
will choose a smaller set of features in Φ which occur frequently to produce the necessary
number of segments while a lower α tends to prefer a larger set of features in Φ, each of
which occur less frequently.

Bα(s) = B(s)− α|Φ| (3.3)
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In an English-German translation task, consider the three-sentence sample example of
Figure 3.3 (a corpus with 43 tokens) and the features used for choosing the segmentation
points to be the bigram part of speech (POS) tags (like [1]). In this example, each point
has been labeled with a coarse POS tag out of the set P={N[noun], V[verb], D[determiner],

J[adjective], P[preposition], S[possessive pronoun], A[adverb], R[particle], .[dot]}.

(1) I
N

am
V

a
D

contemporary
J

artist
N

with
P

a
D

bit
N

of
P

an
D

unexpected
J

background
N

.

.

(2) I
N

was
V

in
P

my
S

twenties
N

before
P

I
N

ever
A

went
V

to
P

an
D

art
N

museum
N

.

.

(3) I
N

grew
V

up
R

in
P

the
D

middle
N

of
P

nowhere
N

on
P

a
D

dirt
N

road
N

in
P

rural
J

Arkansas
N

.

.

Figure 3.3: Example training set for segmentation choices containing the source sentences
and part of speech tags (target German sentences are not shown in this figure but appear
later).

Feat Freq Feat Freq Feat Freq
N-P 6 J-N 3 V-R 1
P-D 5 N-N 2 P-S 1
D-N 4 P-N 2 P-J 1
N-. 3 D-J 2 S-N 1
N-V 3 R-P 1 A-V 1
V-D 3 N-A 1

FSS Size 40

Table 3.1: Frequencies of the bigram part of speech tags in the example from Figure 3.3.

Table 3.1 shows the feature frequencies of the sample corpus. For µ = 1 (setting each
word as one segment) for the example in Figure 3.3, the GDP segmentation algorithm will
set K = 40 = max(0,

⌊
[
∑

f∈F
|f |=43]

[µ=1]

⌋
− [N = 3]). Likewise, if we set µ = 8, we will have

K = 2, and our possible segmentation sets will be in {{N-N}, {P-N}, {D-J}, {[R-P],[N-A]}, {[V-

R],[P-S]}, ...} for our running example. Therefore, the segmentation set will contain all the
different ways to segment the segmentation training data to obtain the average segment
length of 8. If we want to consider different possible segmentations of the second sentence
in our sample corpus with µ = 8, the possible segmentations will be one of the sets inside
spossible= {{}, {N-N}, {P-N}, {{N-A}, {P-S}}, {{N-A}, {S-N}}, {{A-V}, {P-S}}, {{A-V}, {S-N}}, {{A-

V}, {N-A}}, {{P-S}, {S-N}}} .
Table 3.2 shows the possible segmentations of the second sentence of the example in

Figure 3.3 for K = 2. We show Φ only for the second sentence, so when Φsent 2 is ∅ the two
segments were chosen in other sentences not shown in this table. The GDP algorithm will
choose the segmentation that maximizes accuracy, so for K = 2, the GDP algorithm will
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pick either sentence 8 or 10 from Table 3.2 (the algorithm has to break ties arbitrarily in
the sorted order for segmentations with equal accuracy).

The GDP algorithm thus picks the segmentation decisions that result in the best accu-
racy on the training set. However, the GDP algorithm considers only accuracy to find the
optimal segmentations, so it tends to prefer larger segments that can result in worsening
the latency. Furthermore, the trade-off between accuracy and latency is not modelled in
the search for good segmentations. This trade-off is crucial in the design of simultaneous
translation systems. Another issue can be observed in Table 3.2, in choosing to spread
the segmentation points to more sentences or concentrating them in fewer sentences, the
GDP algorithm tends to choose the latter (oversegmentation) in spite of the regularizer on
the size of Φ. Equation 3.3 does not consider the number of segments which are placed
in each individual sentence. We try to address both of these issues in our Pareto-optimal
segmentation approach.

3.2.3 Integrating Segmentation Into Simultaneous Translation Systems

Considering the need for segmentation (see section 3.2) for Simultaneous Translation, inte-
gration of a segmentation strategy with the ST system can be done in different manners.

The most obvious idea of integration can be to perform the translation in a segment
by segment manner and paste the outputs together. Taking one step further, you can keep
track of what you have translated so far (keep all the hypotheses) and by receiving the
new segment you update the whole translation but you just output the translation of the
last segment (the previous segments have been already delivered), even if it is inconsistent.
And finally, the stream decoding technique which is producing the output by looking at
the stream word by word (not just considering fixed rules to segment), and consults with
a heuristic function to decide on generating the output. This heuristic mostly takes care
of the length of the current phrase (stream of untranslated words) in comparison to the
maximum valid phrase in the phrase table.

Karlsruhe (KIT) Lecture Translator [36] contains a reinforcement learning classifier
which is deciding on the length of translation creation delay in addition to the stream
decoding conditions. If the translation generation delay goes higher than a threshold, the
system decides to produce the translation even though the results are not of a superior
quality.

NICT Speech Translator [37] and Skype Translator [38] are two other Speech-to-Speech
translation systems which are trying to use the Simultaneous Translation concepts in a
product. The issue of training data selection and preparation has been one of the problems
that Skype Translator project has been concentrating on [39, 40, 41, 42].

Domain Adaptation [43] is also one of the concepts which makes a difference when such
Simultaneous Translation systems are commercialized, since what has been done in the area
of stream decoding. Since the training phase is mainly done in the news domain while a
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Speech-to-Speech system needs to perform the translation in other domains, as well. With
this point in mind, we still focus on the news domain and let the reader to adjust the
information using the domain adaptation techniques to the other domains.

3.3 Latency

Minimizing latency is a challenge for any spoken language translation system that does
simultaneous translation. Ideally the system should produce the translation of an utterance
soon after it has been produced. However, translation often involves reordering and this
means that a monotone translation which immediately translates as soon as possible can be
quite poor in translation quality. Waiting until the end of the input can typically improve the
quality of translation but has very bad latency, while translating short segments improves
latency but typically makes the quality of translation much worse. A common technique
in the literature [25, 44, 45, 46] is to segment the incoming speech stream into chunks that
can capture re-ordering between source and target languages and translate these chunks in
order to improve latency.

The state-of-the-art [28, 47] define latency as the average time spent on segment trans-
lation in a sentence. In these works, the underlying translation system greatly affects the
general performance of the system. In this thesis, we define another latency measure which
is more careful about the elements which will be effective to the performance of the ST
system. In the designed experiments, we will compare the two described measures in terms
of performance and quality of the results.

3.4 Pareto-Optimality

Pareto-optimality shows how one could choose different equally important n-dimensional
points (n > 1) in the space while one point may be superior to the others in one dimension
but not in the other dimensions. Here, we consider the two-dimensional space of latency
and accuracy.

Considering translation latency-accuracy points depicted in Figure 3.4 as an example, a
point will be Pareto-Optimal if and only if there is no other point which is both faster and
more accurate than this point (or even equal in one aspect). In other words, a point p1 is
Pareto-optimal if and only if for each point p2 in the region we have

Λ{p2} < Λ{p1} & B{p2} < B{p1} (3.4)

where Λ and B are representing functions measuring latency and accuracy. Therefore, point
p1 dominates any such point p2, shown as p1 B p2. If the dominated point p2 has an equal

28



0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

La
te

n
cy

Pareto-Optimality Line

Weakly Pareto-Optimal

Figure 3.4: Pareto-Optimal and Weakly Pareto-Optimal points as well as the dominated
points scored on the two metrics of interest in this thesis: latency and translation accuracy
scores (e.g. Bleu).

latency or accuracy measure to the dominating point p1, we call p2 a Weakly Pareto-Optimal
point [48].

Based on these concepts and paying attention to the Pareto-Optimality Line in Figure
3.4, we see that there may be more than one optimal point on which one could tune the
MT system to enhance the performance of stream decoding in Simultaneous Translation.
Each of these points is one Pareto Frontier Point. The Pareto frontiers provide a range
of equally optimal points rather than one most accurate point and we use this fact in our
search for optimal segmentation points.

3.5 Summary

In this chapter, we defined the two main concepts of Simultaneous Translation, latency
and translation accuracy, and we related these two using the idea of segmentation. We
mentioned that the segmentation classifier is responsible for segmentation decisions and
training such a classifier needs high quality annotated data which is not currently available,
and we reviewed the Greedy Segmentation Approach as the latest method for creating the
training data for the segmentation classifier. In the next chapters, we will introduce our
Pareto-Optimal segmentation approach which will consider both latency and accuracy in
training data creation for segmentation classifier and we will explain the experiments done
to prove the superiority of our approach.
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Chapter 4

Pareto-Optimal Segmentation
Approach

In this section, we will show how Pareto-optimality can help producing a better segmenta-
tion with respect to both latency and accuracy. In our approach, we use the same notation
of K and µ introduced in the Greedy approach of chapter 3.2.2 to explore the space of
possible segmentations in the training corpus. However, in our algorithm, the parameter µ
(the average segment length) can be seen as a way to explore the trade-off between latency
and accuracy. Longer segments (with a higher µ value) tend to be associated with higher
translation qualities. But, the cost of this higher accuracy is that our translation system
will have a worse latency. Shorter segments (with a smaller µ value) tend to be associated
with better latencies (on average there will be more segments translated per second). In
this case the translation fluency scores tend to become worse. We compare our approach
to the Greedy approach by (Oda et al., 2014) [1] which takes the value of K as an input, in
addition to the naïve heuristic on prosodic cues (comma, end of sentence, . . . ). We consider
different values of K in our algorithm to balance the latency-accuracy trade-off. To describe
our algorithm, we first describe the way we model the translation accuracy in section 4.1
and the way we model the translation delivery latency in section 4.2. We finally describe
the model and provide a running example of it in section 4.3.

4.1 Modeling the Translation Accuracy

We demonstrate our translation accuracy model by virtue of Equation 4.1 which is a modi-
fication of Equation 3.3 where K = |s|=

∑N
j=1 |sj | holds and |sj | is the number of segments
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(i.e. the number of segmentation points plus one) for each sentence fj .

Bα(s) =
N∑
j=1

β(D(fj , sj), ej)
|sj |︸ ︷︷ ︸

Accuracy Scoring Function

− α|Φ|︸ ︷︷ ︸
Weighted Regularizer

(4.1)

In the Equation (4.1), the first term is the actual accuracy scoring function (ASF) which
is aimed to score the translation quality and like any other machine learning model, the
second term is going to regulate the modeling error. As mentioned before, the ASFs in
Equations (3.3) and (4.1) are sentence level functions. Although, there is no necessity to
stick with the sentence-level measures, and one can consider using the corpus level Bleu
scores as an ASF.

One main reason of adding the |sj | term denominator to the Equation 4.1 or considering
another level of calculating accuracy in the mentioned ASF is to distinguish the effect of the
number of segments or the accuracy measuring level to the oversegmentation phenomenon
which was pointed to be a drawback of the Greedy segmentation approach. We think
manipulating the ASF, to some extent, can solve the problem of corpus oversegmentation
and we aim to provide experiments to test this idea out in this thesis.

Furthermore, in both Equations (3.3) and (4.1), the regularizer term is supposed to be
fixed and equal to the size of selected features set (|Φ|). While there can be other useful
regularizer terms (a Γ term) with useful features. Equations (4.2),(4.3), and (4.4) can be
three example regularization terms which can be used in the related experiments.

Γ0 = |Φ| (4.2)

Γ1 = |Φ|
K

(4.3)

Γ2 =

√√√√ l∑
i=1

( 1∑l
i=1 ci

)2 & ci = count(ith selected feature) (4.4)

Based on the provided explanations, we describe our general translation quality model as
Equation 4.5 where Accuracy(.) can be either a sentence-level or a corpus level translation
accuracy measuring function and Γ function can be any regularizer term defined for the
model given the specific segmentation set of s.

B(s) = Accuracy(s)− αΓ (4.5)
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4.2 Modeling Translation Latency

As mentioned in section 3.3, in the state-of-the-art, the latency scoring function is defined
as the average number of segments translated in the unit of time, which can be simply
computed by dividing the total number of segments by the total translation time as Equation
(4.6) where γ function measures the time taken for computing D(fj , s).

Λ(s) = |s|∑N
j=1 γ(D(fj , s))

(4.6)

However, latency is defined as the time gap between the presentation of the word in
the source language and delivering the translation in the target language. The more the
latency of the ST system, the more the audience should wait to receive the translation.
Although Equation (4.6) has provided good results in the prior experiments, this equation
does not accurately reflect all the factors that affect latency, especially in the case of speech
translation, one of the important use cases of simultaneous translation, where the translation
time is not the only factor causing the time gap, and the speaking time of the speaker
and the text-to-speech time of the translated sentences are not negligible. As the study
by Bendazzoli et al. [49] shows that the probability of simultaneous speaking of both the
speaker and interpreter is less than twenty percent for English-Spanish. We assume that
this time gaps are frequent, to some extent, for other language pairs as well.

On the other hand, translation times are normally computed using hardware queries
(e.g. taking the run time or subtracting the end translation time from the start time) and
these computations are not accurate enough to differentiate between close alternatives. We
need to consider these facts in modeling the latency. Figure 4.1 tries to illustrate this idea
by presenting latency gaps as hatched rectangles.

t

Interpreter

Speaker

0 1 2 3 4 5 6 7 8 9 10 11

t1 t2 t3

t′1 t′2 t′3

Figure 4.1: The figure to simulate the concept of latency

In this figure, when the speaker starts to talk, the ST system holds to receive the first
segment. During this time, no translation is performed and the audience should wait.
So, the length of the first segment is shown as a cross-hatched segment as the first term
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calculated in measuring latency. After receiving the first segment, the interpreter needs
some time to perform the translation of the segment; a time during which the audience
should wait again. The latency caused by this translation process is shown as a horizontally
hatched rectangle in Figure 4.1. Unlike the latency caused by an empty buffer (the cross-
hatched rectangle), the latency caused by the translation process happens exactly before
translating each segment.

Figure 4.1 can be the best case of providing the input stream to the ST system since
each segment has been completely received before the system needs that segment to start
the translation; however, this is not always the case. As an example of this case, we present
Figure 4.2 in which the second segment is longer than the translation of the first segment.
In this example, because the translation of the first segment (t′1) has been presented before
receiving the end of the second segment, the ST system has to hold for some more time
(presented as the dotted rectangle in Figure 4.2) to get the end of the segment before
starting the translation. This example implies that the segment reception delay can be the
third factor which may impose the latency to our ST system (in addition to the empty
buffer delay and segment translation delay). Note that the empty buffer delay is a special
case of segment reception delay in which the system faces delay since it has not received
any segments.

t

Interpreter

Speaker

0 1 2 3 4 5 6 7 8 9 10 11

t1 t2 t3

t′1 t′2 t′3

Figure 4.2: The figure to simulate the concept of latency - second case

Considering the presented examples, the latency scoring function can be described based
on the two major factors resulting in it; the segment reception delay (SRD) and the segment
translation delay (STD). STD can be calculated by measuring the time taken by the ST
system to translate the segment. SRD can be calculated by subtracting the time duration
of each segment in source side (ti) from the time duration of the previous presented segment
on the target side (t′i−1) [considering t′0 = 0 for the empty buffer delay]. Note that SRD
can be zero if the end of current segment has been received before the previous translated
segment has been completely presented (SRD = 0 if ti < t′i−1). Equation (4.7) represents
the latency scoring function of a sentence (a unit of translation containing only one empty
buffer delay case and an arbitrary number of segments). Note that in this equation, Λ is
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the total latency (measured in time units) of a sentence with N segments, max(ti− t′i−1, 0)
represents the SRD, γi represents the STD, and t′0 = 0.

Λ =
N∑
i=1

max(ti − t′i−1, 0) + γi (4.7)

In Equation (4.7) the weight of SRD and STD terms are assumed to be equal while in
real-time application this may not be the case. SRD may not be as important to the users
as the translation delay.

4.3 Latency-Accuracy Trade-off Model

We search for the best set s, containing K segments (total number of expected chunks) over
the stream of an expected known size. The cardinality of this segmentation set may vary
from 0 (no segmentation at all), to W =

∑N
i=1{|fi|−1} (take each word as a segment). A

‘full segmentation set’ (FSS) will contain all possibleW segments. Sall represents a superset
containing all possible segmentation sets over F (source sentences in parallel corpora).

Algorithm 1 Pareto-Optimal Segmentation
1: S∗0 ← ∅
2: for k = 1 to K do
3:

S∗k ← arg pareto frontier
p∈FSS∧p 6∈S∗

k−1

{
B(S∗k−1 ∪ {p}),Λ(S∗k−1 ∪ {p})

}
4: end for
5: return S∗K

S∗ ∈ Sall is defined as a set of best segmentation strategies which maximizes an evalua-
tion function over latency and accuracy (Equation 4.8). Using the proposed scoring models
for latency and accuracy in sections 4.1 and 4.2, We define our search method for S∗ as
Equation (4.8).

S∗ = arg pareto frontier
s∈Sall

{B(s),Λ(s)} (4.8)

Note that in Equation (4.8), the output of “arg pareto frontier” is the Pareto-optimality
line in the accuracy-latency plot. Therefore, S∗ might contain more than one best set of
segmentations.
S∗ can be found using a naïve algorithm as described in Algorithm 1. However, this

algorithm is computationally expensive and its time complexity is exponentially increased
by increasing the size of K.

34



Algorithm 2 Computationally Efficient Pareto-Optimal Segmentation
1: Φ0 ← ∅
2: for k = 1 to K do
3: for j = 0 to k − 1 do
4: Φ′← {φ : (φ 6∈ Φj) ∧ (count(φ;F) = k − j)}
5: Φk,j ← Φj ∪

{
arg pareto frontier

φ∈Φ′{Bα(s(F ,Φj ∪ {φ})),Λα(s(F ,Φj ∪ {φ}))}
}

6: end for
7: if k < K then . To reduce the computational complexity
8: Φk,j ← argmaxφ∈{Φk,j :0≤j≤k}Bα(s(F , φ))
9: end if

10: Φk ← arg pareto frontierΦ∈{Φk,j :0≤j≤k}{Bα(s(F ,Φ)),Λα(s(F ,Φ))}
11: end for
12: return s(F ,ΦK)

Algorithm 2 depicts our Computationally Efficient Pareto-Optimal Segmentation Method
to find S∗. The main loop (lines 2-11) each time finds the next best segmentation feature
(φ) and adds it to the set of best segmentation points which are already found (creating
a set of k points). Each feature is a bigram part of speech tag. The inner loop (line 3)
implements the dynamic programming (DP) condition as in [1]. For instance, for Φ3 this
inner loop would combine the features in the set Φ0,Φ1 and Φ2 (for j = 0, 1, 2) with the
features that occur with a count of 3, 2 and 1 respectively. So take Φ3,1 which is the set
that is updated in line 5, the points satisfying the Pareto frontier criteria are selected out of
Φ′ and combined with the segmentation points of the chunked sub-segments. Φ3,1 contains
the union of all features in Φ1 computed previously in the DP table with new features of
count 2 collected in line 4. Eventually Φ3,1 is used to search over Pareto frontier candidates
to produce Φ3 in line 10. Line 7 limits the computational complexity of producing Pareto
frontiers out of a set containing previously computed Pareto frontiers. This line sets the
most accurate point out of currently discovered Pareto frontiers, to be the only Φ of the
next step (to build Φj+1). In Line 10, all possible segmentation points are analyzed (for
k < K there is just one point) and the Pareto frontiers out of them are stored as Φk.
Finally, in line 12, the result of segmentation with the discovered segmentation points of
ΦK is produced and returned.

Performing the same segmentation task from Section 3.2.2, over our running example
using this Pareto-optimal segmentation approach, will initially result in the same segmented
sentences but our algorithm has a different intuition about choosing the best translations.
Table 3.2 reports PO segmenter accuracy (using Equation (4.1)), total translation time and
latency measurement values besides the reported accuracy of GDP segmenter over different
segmented versions of second sample example (in Figure 3.3) as well as the actual feature
set (Φ) for each specific segmentation and translation.

35



0.05 0.10 0.15 0.20 0.25
PO Segmenter Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

#
 S

e
g
m

e
n
ts

 p
e
r 

se
co

n
d

Φ1

Φ2

Φ2,0

P-SS-N

A-V

N-AN-N

P-N

P-S,S-N

P-S,A-V

P-S,N-A

No Segmentation

k=1, j=0

k=2, j=0

k=2, j=1

Figure 4.3: Evaluation results of different segmentation strategies in one loop of the algo-
rithm 2

To explain the algorithm we have used the running example in Figure 3.3 and traced
the output of our Algorithm 2 for K = 2 and provided the plot of accuracy-latency values
during one execution of this algorithm in Figure 4.3. We have used Equations (4.1) and
(4.6) to model the translation accuracy and latency.

By running the algorithm, we get the highest accuracy with the worst latency in the
beginning. Then the algorithm starts to find the first best segmentation point (K = 1; j = 0)
and it finds four possible segmentation candidates (depicted as filled circles in Figure 4.3).
It chooses the best accuracy as Φ1 and moves to the next round to find the second (last)
segmentation point. It first considers features happening twice (K = 2; j = 0), then it
again chooses the best accuracy as Φ2,0. Next, it examines the strategy of adding a single
repeated feature to Φ1 which ends up to the points depicted as diamonds. When it finds the
second strategy which dominates the first strategy, it chooses the Pareto-optimal points out
of the new strategy and reports it as Φ2. Although in this example, the final segmentation
set (Φ2) contains just one point, this is not always the case.
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Chapter 5

Experiments

5.1 Experimental Setup

We evaluate our approach on the English-German TED speech translation data [50]. We
used Moses [51] which is a conventional phrase-based SMT system using the standard set of
features in the discriminative log-linear model for SMT to produce the translations for each
possible segmentation decision in our segmentation training data. We used the Stanford
POS-Tagger [52] to tokenize and produce the POS tags over the train and test data (the
default tag set has been the Penn Treebank POS tag set [53]). We used IWSLT 2013 Train
data plus half of the Europarl data [54] to train our MT system on English-German and
IWSLT Test 2012 to tune it using MERT [55]. Our German language model was trained
using the monolingual data from WMT 2013 Shared Task 1. The segmentation training data
was taken from IWSLT Shared Task Dev 2010 and 2012 and Test 2010 and it has been
tested on IWSLT Shared Task Test 2013. Our model parameter estimation experiments
have been over IWSLT Shared Task Test 2011 as a held-out set. Table 5.1 shows the
statistics of data used in our experiments.

Sentences Types Tokens
MT Train 1033491 105267 27948041
MT Tune 1730 3937 31568
Seg Train 3651 6628 72964
Seg Held-out 1461 3561 27567
Seg Test 1025 3179 22000

Table 5.1: Size of cleaned datasets used in our experiments.

The corpus translation evaluation results will be reported in Bleu+1 [20, 21] and the
number of translated segments per time unit (S/T) as segment translation quality and
latency, respectively, although different translation quality and latency measures have been

1http://statmt.org/wmt13/translation-task.html
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explored in the model training phase (which will result in a set of fixed features to be
segmented on). These two measures have been reported to unify the testing results reporting
mechanism and make it easier to compare different modeling methods. We have tried
different α regularizer coefficients for parameter tuning which will be reported in each
experiment, separately.

We train the MT system and use it in all experiments. Using the trained MT system,
we translate all possible segments and store them in a lattice (like [1]). In this way, we can
access to a translation instantly while computing the evaluation metrics (Equation (4.8)).

We compute the translation time of each segment (γ in Equations (4.6) and (4.7)) using
the Moses [51] log reported time. However, this computed translation time is the result of
many factors and different seek and search algorithms and may depend on low-level issues
such as cache misses on the hardware where the MT system is running. Our results were
consistent across more than 50 runs in corroborating the conclusions mentioned at the end
of this section. So, we do not consider such issues to be dominant in our experimental
results.

In case of using Equation (4.7) as the latency model, the segment reception and delivery
times (ti and t′i) have been computed using the sayit2 script by Hal Daumé III (University
of Maryland) which receives the content of the segment (in text format) and estimates
the time it takes from a human to say the segment in any of the languages English (US),
German, French, Italian, Spanish, and Japanese.

Based on Hal Daumé III, the script is using a pre-trained model on a speech synthe-
sis program to extract the saying time of each word. The speech synthesis program has
produced the equivalent speech form of 50K-100K most frequent words for each of the
mentioned languages to extract the time lengths. Next step in preparing the ‘sayit’ model
has been to extract features out of the words; features like number of characters, number
of vowels, number of consonant groups, number of non-letters, number of vowel-consonant
switches, number of digits of various lengths, and whether the word starts or ends with a
vowel. The last step has been to relate the features and extracted times to estimate the
regression weight vector of the feature space over the training data. The actual script esti-
mates the saying time of a segment based on a regression mixture model over the segment
tokens.

5.2 Accuracy vs. Latency-Accuracy Evaluation

In this experiment, we would like to assess the effect of adding latency to the accuracy
metric in the segmentation task. In our experiments, we use two baselines: the state-of-
the-art speech segmenter (Rangarajan et al. 2013) [25] and GDP (Oda et al. 2014) [1]. We
implemented a heuristic segmenter based on (Rangarajan et al. 2013) [25] which segments

2http://www.umiacs.umd.edu/ hal/sayit.py
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on surface clues such as punctuation marks. These segments reflect the idea of segmentation
on silence frames of around 100ms in the ASR output used in [24]. This type of heuristic
segmenter is a special case of a PO segmenter which inserts segment boundaries only for
POS bigrams that end with a punctuation POS tag.

We ran our PO segmenter and the GDP segmenter with different values of parameter µ
(average segment length) between 2 and 15 as well as the heuristic segmenter over the same
data explained in Section 5.1. Considering the main objective of this experiment which
was to compare our segmenter with the other state-of-the-art ones, we chose a single value
α = 0.5 for both GDP and PO, since this value for α avoids selecting features with extremely
high or low frequency. Furthermore, in this experiment, we have used Equations (4.1) and
(4.6) to model the translation accuracy and latency in our PO segmenter. The reason for
this decision has been to keep our PO model as close as possible to the GDP segmenter and
the heuristic segmenter to get a better sense of comparison between the results.

Due to the large number of generated points and outputs, we summarize the results in
Figure 5.1 and Figure 5.2. Our experiments show that different possible values of µ will
divide the accuracy-latency area into districts and each experiment is expected to exhibit
a number of samples of each district for each µ. We show each district with a circle in the
figures as the representative of the group of obtained points relating to one specific µ. This
circle is put in the centroid of the points in the group. To show the size ratio of districts to
each other, the more points found in one district, the bigger the circle is depicted. But not
all the points in the group are Pareto-optimal, so we add another circle inside the outer one
showing the ratio of Pareto-optimal points to the whole group of points. If all of the points
for one µ were Pareto-optimal, both circles would have the same radius and the inner circle
would not have been visible. In addition, we show the results of the baseline heuristic and
GDP segmenter using ♦s and Xs, respectively. Moreover, we plot the real Pareto-optimality
line with the actual points on it to give the reader the chance to compare the actual results
of the experiments to the baseline results.

Our choice of the axis is different from previous works in this area. Commonly, seg-
mentation results are reported with accuracy on the y-axis, but we use the x-axis instead
in order to easily get a better visual understanding of pushing the Pareto-optimality line
towards the trade-off area we care about (the “knee” of our plots).

Figure 5.1 shows the latency (average number of segments translated per second) and
translation quality (Bleu) on the segmented translated training data. Figure 5.2 shows the
latency and accuracy on the segmented translated unseen test set. These figures show that
Pareto-optimality is a useful idea to explore the various options for segmentation boundary
selection. Optimizing for Pareto-optimality leads to segmentations that provide latency
and accuracy improvements simultaneously and provide choices for the trade-off between
latency and accuracy.
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While Figure 5.2 shows the overall trend for various segment sizes on the test data, we
chose some specific segment lengths and show a head to head comparison between the two
segmenters in Table 5.2. This comparison shows that our PO segmenter can provide faster
latency compared to the GDP segmenter while retaining translation accuracy.

µ = 3 µ = 8
Latency Accuracy Latency Accuracy

GDP 0.424 0.18 0.305 0.21
PO 0.474 0.18 0.315 0.21

Table 5.2: Result comparison for µ = 3 and µ = 8.

Our approach of optimizing over the latency in addition to the translation quality always
results in better latencies compared to the baseline while keeping the same translation
quality or even improving it in some cases.

At the end of this section, we would like to bring up an important tip about the latency
measure. Although, it is possible to increase the accuracy at the expense of latency, users
may not tolerate the latency more than a threshold and may give up on using the ST
system. There are different works on analyzing the relationship between the maximum
tolerable latency and accuracy [4, 56] but none have stated a specific boundary on the
maximum tolerable latency, to the best of our knowledge. In data selection if one increases
µ one should attempt to evaluate the maximum tolerable latency for your source and target
language pair for your chosen latency measure.

5.3 Granularity of Feature Space Evaluation

Comparison between different segmentation approaches showed that we can use the PO
segmenter to generate segmentation models which consider both latency and accuracy. One
important factor in the process of modeling the segmentation distributions over the corpus
can be the feature space by which we describe the segmentation points. As mentioned in
section 5.1, the default POS tag set in the experiments done in section 5.2 has been the
Penn Treebank tag set which contains 36 different POS tags.

The first question to be answered about the feature space is how sensitive is the seg-
mentation strategy to it. We needed to know what would happen if we choose a coarser or
finer feature space or what would happen if we change the tag set. To find out the result,
we designed the experiment to take the Universal POS Tag Set [57] with twelve coarse
grained POS tags of the Table 5.3 and two finer grained sets of a hundred and four-hundred
tags created using Brown Clustering [58] ID (BCID) generation. Brown Clustering is a
hierarchical clustering approach that tries to maximize the mutual information between the
words. Using brown clustering idea, we can cluster the whole vocabulary of words in a
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language (or the top 100K most frequent words) into q Clusters and assign each cluster a
unique label which can be used instead of the POS tag in our application.

We trained our monolingual English language most frequent vocabulary over English
Gigaword Corpus [59] and used the mkcls Brown clustering tool [60] to assign the Brown
clustering ids to the words. We considered two strategies for OOVs one was to assign all
OOVs to one BCID equal to NULL class. The other was to assign each new OOV to a new
randomly generated BCID. Both of these strategies have been tried out in our experiments.
We used the mentioned held-out set (details in Table 5.1) for different parameters to find
the best settings showing the differences between different feature space descriptors. Using
this held-out set, we changed the settings of the experiments in section 5.2 since we were
not worried about the comparison with other works anymore. Here, we explain the settings
used for this set of experiments to fulfill the building blocks of Equation 4.8.

VERB verbs (all tenses and modes) CONJ conjunctions
NOUN nouns (common and proper) DET determiners
PRON pronouns NUM cardinal numbers
ADJ adjectives PRT particles or other function words
ADV adverbs X other
ADP prepositions and postpositions . punctuation

Table 5.3: The course Universal POS tags used in the second experiment

In the translation accuracy modeling (Equation (4.5)), we selected the corpus-level Bleu
score as our ASF since we discovered that the locality of the sentence-level scoring func-
tions will most of the times result in the oversegmentation (the evaluator does not see the
translations together, so it cannot tell whether a sentence has been segmented too much, or
another is remaining unsegmented). We tried all three mentioned regularization functions
of Equations (4.2), (4.3), and (4.4) during our parameter estimation phase, but we just
report the results of the experiments with the Equation (4.3) as the best regularizer due to
the reporting space limit. Our best reporting α parameter has had the value 0.5.

In the translation latency modeling, we used the more detailed model of Equation (4.7) to
consider the segment receive and delivery times in addition to the segment translation times
which were not exact due to the system errors in data collection. Using the proper estimated
receive and delivery times could not only help us achieve a more detailed description of one
aspect of our trade-off algorithm (latency), but also it could help us decrease the effect
of translation time calculation error to our modeling approach (using Equation (4.7), the
segment translation time is not the only factor which can control the latency aspect of the
trade-off).

Given these explanations, we ran our PO segmenter using the four mentioned POS tag
sets and evaluated the results in terms of what has been reported in section 5.2. Table 5.4
shows a head-to-head comparison for µ = 5. The plotted results of Figure 5.3 show that

41



the larger feature sets decrease the segmented stream translation speed. Another point out
of the results is that the smaller sets provide the system with a larger number of Pareto-
Optimal points which can be used in further steps of training and tuning the system. The
last point we can grasp out of the results can be the range of parameter µ in the discovered
Pareto-Optimal points which decreases as the size of feature space goes up. All in all, the
results of this experiment showed that the size of feature space is very important to the
performance of the unsupervised segmenter and large sized feature spaces will not perform
as good as smaller ones.

After performing this experiment, we concluded that there is another adjustable param-
eter in the problem of training data annotation for segmenter classifier and that is the size
of feature set. Figure 5.4 tries to depict the 3 dimensional space of (latency,accuracy,feature
set size). In this figure we have compared the Pareto-optimal points of different µs for each
individual plot in Figure 5.3 and we have chosen the overal Pareto-optimal points. Indeed,
we have selected the best that each feature space can perform and we have put these best
point sets besides each other in Figure 5.4. As it is shown in figure, except the plot which
belongs to Penn Treebank tag set, all the other graphs contain at least one best point which
is not dominated by any other plot. This shows that no feature space can be obviously
preferred to another and we have to consider the best points belonging to each space if we
need better annotations, although, computational costs and running time limits may force
us to decide to choose one of the spaces and perform the training over that space, solely. In
this case we recommend picking the feature space which puts more emphasis on the measure
of interest (accuracy or latency).

µ = 5
SetSize Segs/Sec Bleu

Universal Tagset 12 1.06 19.63
Penn Treebank Tagset 36 0.853 20.38
Brown Uniq 100C 677 0.873 21.69
Brown Null 100C 99 0.864 21.71
Brown Uniq 400C 976 0.647 22.11
Brown Null 400C 389 0.782 22.29

Table 5.4: Result comparison for µ = 5
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Figure 5.3: Experimental results of experiment over different feature spaces
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Chapter 6

Conclusion

This thesis explores multi-metric optimization in simultaneous translation that learns seg-
mentations that optimize both latency and translation quality. We provided an efficient
algorithm for Pareto-optimal segmentation and conducted a series of experiments that com-
pared our approach to Oda et al. [1] which used translation quality as the only criteria to
select segmentation choices. We showed that Pareto-optimality provides a better trade-off
between latency and translation quality. For any segment size, Pareto-optimal segments
maximize latency and translation quality. We also performed a set of experiments regard-
ing the feature set selection and we showed that there is a negative relation between the
number of selected features and the number of Pareto-Optimal points achieved.

In future work, we would like to perform experiments which can capture more context
information (e.g. tri-grams and four-grams) and compare the results with the current ones.
We plan to iteratively use a weighted segmentation model that is trained using the Pareto
frontier points in order to iteratively find new weights for the segmentation model that will
extend the “knee” of the Pareto frontier curve. Such an approach was explored in [61] for
multi-metric tuning of SMT models, but has not been explored for training a segmentation
model.

In addition, since the European Parliament Interpretation Corpus (EPIC) [49], an actual
interpreted speech set, is available, we aim to try segmenting the original transcripted speech
and translate the segmented data and compare the translation quality of our translated
segments with the quality of human interpreted translated chunks.

As another next step, we would like to train a segmentation classifier using the actual
annotated data to be used in a LR-Hiero stream decoder [16] and compare the translation
results with the translations by other available ST systems.
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