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Abstract 

Plug-in Hybrid Electric Vehicles (PHEVs) have been recognized as a solution to 

mitigate the green-house emission for transportation. A factor to succeed in the 

marketplace is to provide products that can meet customer expectations and satisfy 

various functional requirements. As such, the design of PHEVs for diverse market 

segments requires sufficient differentiation in this product to maximize customer 

satisfaction with the new technology. However, there are challenges coupled with 

diversity in production of such a complex product for various customers. This 

dissertation attempts to address the challenges.  

This thesis proposed the use of product family design to ensure both the manufacturing 

efficiency and the customer satisfaction for PHEVs in various market segments. A 

thorough review of the developments in product family design is first performed, and 

directions for developing an efficient family design methodology are identified.  In order 

to select the desired or the most preferred variants for the family design purposes, a 

review of the market studies and fleet data for PHEVs has been performed and 

summarized as well, based on which a set of five PHEVs- known as variants- are 

selected for family design assessments. Thirdly, a methodology is proposed for PHEV 

product family design to enable scale-based design of the selected PHEV variants. The 

proposed method is verified through a test problem from the literature, and its application 

to the PHEVs design provides design solutions for the PHEV product family under study. 

Since the vehicle performance is assessed through expensive simulations, it is shown 

that the selected optimization algorithm, along with the commonalization strategy and 

the decision criteria for commonalizing specific design variables make an efficient 

methodology in terms of the computational costs, and the overall performance of the 

obtained family solutions. The proposed methodology can also find applications in other 

product designs that involve expensive simulations and unknown design equations. 

Keywords:  Plug-in Hybrid Electric Vehicles (PHEV); Scalable Product Family Design 
(PFD); Platform Configuration; Meta-model based Design; Sensitivity 
Analysis; Radial Basis Function-High Dimensional Model Representation 
(RBF-HDMR) 
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Chapter 1. Introduction 
 

1.1. Background 

The urgent need to replace non-renewable energies with new energy types that are 

sustainable, less expensive, and more environment-friendly has resulted in development of 

Hybrid Electric Vehicles (HEV) and the more advanced version – Plug-in Hybrid Electric 

Vehicles (PHEV). These vehicles benefit from electrical energy as a supplementary source of 

propulsion, and are powered through the combination of an internal combustion engine (ICE) 

and an electric motor with a battery pack. PHEVs are differentiated from HEVs based on the 

ability of their battery pack to be charged through plugging the vehicle into the grid. The PHEV 

allows for operation in both a pure electric mode, and a conventional hybrid electric vehicle 

mode on longer trips.  

 The mileage that PHEVs can drive in the electric mode without using any fuel is referred 

to as All Electric Range (AER). PHEVx is a widely-known way of characterizing these vehicles, 

where x shows the range that the vehicle can drive purely on battery power [1]. A PHEV allows 

for operation in pure electric mode for limited distances, while possesses the operation and 

range of a conventional hybrid electric vehicle on longer trips. While AER can be one of the 

design factors, other requirements for the performance can be of equal importance, including 

the acceleration time, maximum speed, and gradeability. As such, the combination of three 

component sizes including the ICE, battery, and electric motor ─ together known as the 

powertrain ─ is of remarkable importance in PHEV design. Another important factor is the 

defined strategy to leverage the propulsion resources, referred to as the control strategy.  

Since the design requirements for PHEVs depend on the driving conditions and patterns 

(i.e., mileage per day, average distance travelled between two charges, maximum speed and 

acceleration requests), the optimality of a vehicle design will not be the same for different users. 
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As such, developing specific powertrains is required for meeting needs of different customer 

groups. However, while variety in the design can increase the marketability of such product and 

attract more market segments, it can in turn result in increased effort and cost for 

manufacturing. Therefore, in order to maximize the benefits of diversity in the design of this 

complex product, product family design can be an efficient solution to meet both targets (i.e., 

satisfying more customers, and obtaining manufacturing efficiency). 

Product family design (PFD) is a strategy to increase the manufacturing cost savings 

through commonalizing components/variables or functions in different products, and increasing 

the product diversity for a larger share of the market. Product family is a group of related 

products, known as variants, which are differentiated from a set of common components, 

modules, functions, or sub-systems known as platforms. Product family design (PFD) can be 

challenging due to the increased complexity from finding which components to be shared, and 

assigning common values to those components to increase commonality without sacrificing the 

performance of individual variants [2]. The platform configuration deals with determining the 

best variables to be in the platform, and the best variants to be included in each platform/sub-

platform, while losing as little as possible on the performance of individuals, and obtaining as 

much as possible on commonality [3]. The platform and the individual variants should be 

selected such that the individual performance targets are not compromised, or of the least 

allowable performance loss. There is an inherent trade-off between benefits and losses from 

family design, imposing difficulties to the product family design strategies. In this study, we 

address the product platform design based on quantitative analyses, as compared to  qualitative 

approaches that can be found in many of the business-oriented research studies [4] 

1.2. Motivation 

Though remarkable improvements are obtained toward PHEV design and technology 

advancements over the past few decades, most of the existing research studies have focused 

on performance requirements for the powertrain without coupling them to the manufacturing 

concerns or market integration. In addition, most of these studies have focused on optimization 

of single designs, where the manufacturing cost might be an issue due to the needed setup and 

added efforts for meeting needs of customers in various market segments. PHEV family design 

not only can assure satisfaction of more customer segments, but also allows efficient mass 
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customization. This study is motivated to fill this gap, i.e., to develop an efficient methodology 

(i.e., computationally non-expensive) for PHEV powertrain family design beneficial to both the 

manufacturer and the customers.  

Design of complex products such as PHEVs highly relies on well-customized design 

methodologies for the requirements and conditions of the problem under study. In the case of 

the research in this dissertation, the simulation-based design optimization puts significant load 

on the run time for objective function assessments, and therefore determining the best practice 

for its optimization as well as family design is an important part of the research and can risk the 

efficiency of outcomes, if not well tailored to the needs and hurdles of such a design problem. 

Through a thorough review of the literature on the available product family design 

methodologies for scale-based families, it was determined that a number of family design 

methodologies called two-stage approaches would be fitting this problem better as compared to 

the integrated approaches, due to the reduced complexity of their exploration process for 

platform configuration, and for the entire family optimization. More details on these approaches 

and advantage/disadvantages of each will be discussed in later chapters. Multi-objective 

optimization is the fitting approach leveraged in this research for reduced production costs, 

complexity, technological requirements, and reduced time to market, and of an optimal level of 

commonality versus uniqueness.  

In addition, the design process for a product like PHEV is highly dependent on the 

availability of valid platforms such as simulation models that allow for modeling the governing 

relations among all the components. It is of significant importance to develop or utilize 

simulation models that can meet the needs and purposes of the research. Among the required 

aspects to be modelled, the expected drive profile which is known as drive cycle, the powertrain, 

control strategy application to the model, connection of the powertrain to the transmission, and 

driver settings are a few to name. While there are a number of software tools available in the 

market for simulating the performance of the non-conventional vehicles, there are advantages 

and limitations to each, reducing their utility for the researchers. As such, a fundamental part of 

research for the design optimization of these vehicles is to develop a generic simulation model 

that allows users modeling the desired parameters, customizing the output, and applying 

modifications to the codes to facilitate connection of the simulation model to desired 

optimization algorithms. In this research, a generic model is developed for the aforementioned 
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purposes, which is validated through test data from Argonne National Laboratory (ANL), Electric 

Power Research Institute (EPRI), National Household Travel Survey (NHTS), and other studies 

in the literature. 

Since PHEVs are shown to serve as a solution for reducing emissions and dependency 

on non-renewable energy resources, they will attract more attention in future as a substitute for 

conventional ICE vehicles. For instance, first Prius PHEV was planned to join the market in late 

2011 and the production version was unveiled at the International Motor Show Germany in 

September 2011 [5].  While four major automakers including General Motors, DaimlerChrysler, 

Ford, and Volkswagen have manufactured prototypes of PHEVs, mass production of this 

vehicle has not yet been started in a large-scale [6]. Most of the PHEV design studies focused 

on prototyping and testing hundreds of design parameters for improving the performance of 

PHEVs, recently the emphasis of research has shifted to simulation-based optimization 

algorithms that work together in a loop with a computer simulation model to reach optimal 

design solutions [7]. To this point, no attention has been paid to the manufacturing efficiency 

aspect of PHEVs as a product family.  Moreover, the PHEV product family design will be 

challenging due to the large run-time and costly computational efforts for running complex 

simulation models each time the objective function and the performance constraints need to be 

evaluated toward the optimization. 

1.3. Objectives of research  

To address the needs for PHEV family design and to develop methods supporting family 

design based on simulations, the main objectives pursued in this thesis are as follows: 

1. Developing a PHEV powertrain design optimization problem formulation, which is derived 

from the market, manufacturing, and environmental consideration studies in the literature 

2. Expanding the developed problem into the family design domain 

3. Configuring a product platform for the obtained powertrain family, in order to maximize 

the manufacturing efficiency and to obtain optimal level of commonality 

4. Developing a generic methodology for platform configuration which is applicable to 

similar design problems, where expensive and black-box simulations can exponentially 

increase the design costs 
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1.4. Scope of the proposed work 

The research objectives are to be achieved through the following actions: 

 Identification of the PHEV market segments as references for family design 

 Modeling of the PHEV based on the selected specifications such as powertrain 

configurations, and validation of the developed model 

 Development of a generally applicable methodology for simulation-based PHEV family 

design. 

Ideally, the market segmentation for a family of products is identified through marketing 

research and close study of customer preferences. There are several methodologies developed 

for integrating preferences and analyzing them toward identification of the required product 

specifications for gaining the desired market share. As for the PHEV design, there are emerging 

studies and research performed by well-known research laboratories and universities across 

North America, Europe, and Japan to establish a platform for market identification for these 

vehicles. The findings of such research are used in this study as a basis for deciding the 

appropriate variants in a PHEV family. The details of the market studies review is discussed in 

Chapter 6. 

Product family design consists of scale-based or module-based approaches. Scale-

based families include variants that all possess the same variables/functions, and some of those 

variables can take common values, while other variables take unique values in each variant. 

The module-based family includes variants that share some functions, while each variant has 

some unique functions or modules. Each variant or product in the chosen family has design 

specifications, which are usually different from the specifications of the rest of the variants. The 

first stage in a typical family design study is to obtain optimal designs for each individual or 

variant, based on the market needs and customer expectations within the specific segment for 

which the variant has to be designed. The next stage is to decide and find the best 

components/variables/functions to be shared among some or all of the products in a family. 

Also, for an existing set of products, an objective of interest might be to identify opportunities for 

cost saving through modifying the existing designs. In such case, the product family design 

problem would be called a redesign problem which is a bottom-up approach that provides 

component sharing solutions –known as commonalization strategies- for modifying the existing 
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product designs in future production generations. The second strategy is a top-down approach 

which can be the basis for design of the products in the early stages before the actual product 

realization.  

The next step after deciding on the specifications and performance expectations from 

each variant is called the product platform configuration, which refers to the strategy that 

enables identification of the best candidates for sharing and commonalization among the entire 

family, as well as the best common value/specification for each of the commonalized 

variables/components.  

By obtaining an optimal platform configuration, the family design problem reduces to 

optimization of the non-shared or scalable variables, which results in obtaining the design 

solution for the entire family members. The sharing or commonalization of some variables 

increases the chance of losing optimality in performance for the individual products, as 

compared to when there was no commonalization and each variant would take its optimal 

specification values. The objective of the last stage in the family design process is to re-optimize 

non-shared variables in a new design problem with some fixed values on the commonalized 

components/variables, so that the resulting family members can stay as much within the desired 

performance range as possible. 

For modelling the performance of non-conventional vehicles, there are a number of 

commercial and customizable software applications available, each with advantages and 

disadvantages. PSAT, Advisor, PEV-CIM, and SimDriveline are some of such tools, with 

different approaches to assist the design. Advisor uses the backward looking approach, while 

PSAT uses the forward looking approach. SimDriveline is a toolbox of Matlab which allows 

modelling of a vehicle in either way and provides more freedom in the modelling and 

parameters setting. PSAT- upgraded and renamed to Autonomie- is a commercialized software 

platform developed by the Argonne National Laboratory, which allows assembling of all the 

components of the vehicle and changing the values for some of the parameters toward 

performance assessment. The ready library of component files makes it a convenient tool. 

However, depending on the optimization problem, it might be required to model the effect of 

more parameters than what are available in PSAT. As such, SimDriveline is used for developing 

and validating the desired PHEV model in this study. 



 

7 

 

The validated model can be connected to the efficient optimization algorithms which suit 

the challenging conditions of the simulation-based problem, i.e., the computational complexity 

resulting from expensive function calls for obtaining the objective function value. The selected 

algorithm in this study includes the Sequential Quadratic Programming (SQP) for the test 

problem, and the Trust Region Mode Pursuing Sampling (TRMPS2) algorithm applied to the 

PHEV optimizations. These algorithms will be explained in detail, in Chapters 5 and 6. 

1.5. Structure of the thesis 

This research has focused on developing a family design optimization problem which 

simultaneously takes the customer needs, manufacturing efficiency concerns, and 

environmental considerations into account. Furthermore, for efficiently solving the developed 

problem, appropriate algorithms are developed and their performances are studied over the 

course of family design for this product.  

The structure of the dissertation is as follows: 

Chapter 2 provides the review of literature for the two areas of interest, i.e., PHEV 

design optimization, and the product family design. The specific focus is then given to the 

platform configuration and family design optimization methodologies developed in the literature. 

A review of the current methods and their advantages as well as shortages in addressing the 

specific needs of our design problem is discussed afterwards. 

Chapter 3 will provide details on the PHEV simulation model developed for our study, 

along with the mathematical equations governing the relations of various components in the 

PHEV powertrain. Parametric modeling has been embedded into the developed simulation 

model, so that for various PHEVs the scaling of components is enabled for optimization.  

In Chapter 4 the proposed family design methodology will be presented and the steps 

are explained toward developing a platform configuration which can serve as the basis for the 

entire family design of the product variants. Chapter 5 provides a case study, or the 

performance assessment of the proposed method through applying it to the well-known problem 

of designing a family of ten universal electric motors. Further adjustments and improvements to 
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the methodology is then made toward increasing the commonality level, while keeping the 

performance loss within the allowed range. The methodology is further verified through 

designing test cases and evaluating the effect of various numerical values on the decision 

points for the platform configuration. 

In Chapter 6, the market review of PHEVs will be given, through which a list of selected 

variants will be obtained. The design problem is then presented in detail, and the selected five 

variants are optimized, each aiming at minimizing the CO2 emissions and the powertrain costs, 

and maximization of the fuel efficiency for each variant. Target values for each objective 

function are adapted from the literature. The improved PFD methodology will then be applied to 

the selected optimal variants in order to develop a platform configuration for the power-split 

PHEV powertrains, so that the maximum level of commonality among the powertrain 

components can be achieved while the gap between the optimal performance of each variant 

and its optimal design as a family member will be at the minimum possible level. Through 

comparing the performance loss on the three objectives of interest for the two cases (individual 

designs vs. family design), conclusion is made about the fitness of the proposed methodology to 

handle the simulation-based PHEV family design problem. 

Finally, Chapter 7 summarizes the contributions and addresses the questions answered 

through the dissertation. Open questions and potential ideas for further research are also 

provided at the end of the chapter, along with a list of limitations and assumptions made through 

the research in the dissertation. 
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Chapter 2. Theory and Literature Review 

 

Hybrid Electric Vehicles (HEV) and Plug-in Hybrid Electric Vehicles (PHEV) can be 

assessed from various aspects such as their charging infrastructure requirements, their impact 

on the grid and electricity demand, their drivability in different driving conditions, and their 

design requirements for meeting the road and driver requests. 

HEVs leverages from an electric moto, a battery and an IC engine. More attention has 

been paid to the flow control in the past two decades due to existence of two degrees of 

freedom in their energy or propulsion source. In HEVs, the battery is charged through the 

engine and by regenerative braking during the deceleration. But as the engine is used to charge 

the battery and then the battery is used to drive the vehicle, there are large losses in this loop 

while using the fuel. The electric drive mode is very limited for an HEV due to limited battery 

power. Therefore having a more powerful battery will increase the electric drive range of the 

vehicle, thus improving fuel economy. Since such a large battery cannot be charged solely by 

regenerative braking and charging via the engine would not be efficient, it needs to be charged 

externally by a domestic electric outlet. These HEVs, having an external charging facility for the 

large battery pack and having a significantly larger EV range, are called plug-in hybrid electric 

vehicles (PHEVs) [8].  

2.1. PHEV design 

As the global demand for automobiles continuously rises, the influence of fossil-fuel-

based automobiles on global warming increases accordingly as an important contributor to the 

environmental crisis. With promising technologies, many automobile companies have released 

their new generation PHEVs which incorporate electric machines with the conventional 
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combustion engine to improve the fuel economy and to reduce the gas emission, and these 

vehicles can be a dominating force in the future automobile market [9]. 

Compared with HEVs, PHEVs have the plug-in ability which further reduces the reliance 

on gasoline and extends the usage of the cleaner electricity. The extension on electricity usage 

also improves the overall efficiency of the vehicle, especially the efficiency of the engine, to 

reduce the undesirable emissions. 

PHEVs include an electric drivetrain and internal combustion drivetrain that can be 

coupled to each other and to the road. These drivetrains allow the energy paths to the road to 

be in parallel, in series or in combination, through a configuration known as power-split [10]. The 

trade-off among these configurations can be quite complex to balance the efficiency, cost, 

manufacturability, and driveability, and there is no clear globally optimal configuration 

accordingly. PHEVs can be constructed through optimizing the desired configuration for its 

component sizes [11].  

Another issue of importance coupled to the powertrain design is selection of a proper 

control strategy. The power management strategy ─the algorithm that determines the split of 

power request between the combustion engine and electric drive─ is a vital factor for the 

efficiency of a PHEV. Different control strategies result in different performance profiles due to 

imposing specific strategies for choosing operation modes. The operation modes of a PHEV 

include the Charge Depleting mode (CD), in which the battery is the only source of propulsion, 

and the Charge Sustaining (CS) mode in which the engine is leveraged as an auxiliary power 

source in order to keep the battery State of Charge (SOC) remaining in a specific range (In this 

case, PHEVs operate similar to HEVs [12]).  

The CD mode can also be either All Electric CD or blended CD; in All Electric CD mode, 

the engine is not allowed to turn on until the SOC reaches a pre-determined lower bound, while 

in CD blended mode the battery is the main source of power supply but not the only source. 

However in blended CD mode, the SOC will reduce on average, similar to All Electric CD mode 

and the engine turns on, only in cases that the power requirement exceeds the electric motor 

ability [13]. Typically, PHEVs provide greater amounts of on-board energy storage than HEVs 

by incorporating more onboard electricity storage, e.g., larger batteries. According to the 

literature, PHEV usually fall in the range of 10-60 miles of AER [14].  
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PHEV market penetration started from a few years ago, and the mass production is not 

released as much as conventional vehicles.  General Motors introduced the first Chevrolet 

Volt off the assembly line on November 30, 2010. Sales and deliveries began in December 

2010. GM planned production for 2011 for only 10,000 units. F3DM became the world's 

first mass produced plug-in hybrid compact sedan as it went on sale in China to government 

agencies and corporations on December 15, 2008. A global demonstration program involving 

600 pre-production test cars began in late 2009 and took place in Japan, Europe, 

Canada, China, Australia, New Zealand, and the United States. The production version was 

unveiled at the September 2011 Frankfurt Motor Show, and sales were scheduled to begin in 

Japan, the United States and Europe by early 2012 [15]. The production of this vehicle was 

terminated in late 2012 after selling 3760 units, and as of December 2015, more than 25 models 

of highway-capable PHEVs have been manufactured with various volumes of production [16] 

Research on the optimization of the powertrains has been of significant interest, and 

several studies have addressed this issue based on different objectives such as achievement of 

maximum fuel economy, minimum Greenhouse Gas Emissions, minimum operating cost and/or 

life cycle cost, etc. The main issues that need to be decided are configuration selection, power 

management strategy, the design variables for the powertrain, objective functions, and the 

performance constraints applied by the standards, the market, or both. The past research works 

about each of these issues are briefly reviewed. 

2.2. Product Family Design and Optimization 

A product family can be considered as a set of products that share a number of common 

components and functions, while each product has its unique specifications to meet demands of 

certain customers [17].  The common parts are usually defined as the product platform [18]. A 

successful product family depends on how well the trade-offs between the economic benefits 

and performance losses incurred from having a platform are managed [19]. Two literature 

review studies by Jiao et al. [20] and Pirmoradi et al. [21] show the advancements and 

developments in the product family design, which serves as a reliable solution for meeting the 

increased variety of customers’ expectations. It is a strategy that enables companies to offer 

products with more design varieties with less lead times.  While offering more variety in products 

can satisfy the increasing customers’ demands and helps companies gain more of market 

http://en.wikipedia.org/wiki/General_Motors
http://en.wikipedia.org/wiki/Chevrolet_Volt
http://en.wikipedia.org/wiki/Chevrolet_Volt
http://en.wikipedia.org/wiki/BYD_F3DM
http://en.wikipedia.org/wiki/Mass_production
http://en.wikipedia.org/wiki/Sedan_(car)
http://en.wikipedia.org/wiki/People%27s_Republic_of_China
http://en.wikipedia.org/wiki/Pre-production_car
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share; but in turn such increased variety can lead to higher design and production costs as well 

as longer lead times for new variants.  As a result, a trade-off arises between cost-effectiveness 

and satisfying demand diversity [22].  Such a trade-off can be properly managed by exploiting 

product family design (PFD) and platform-based product development. 

Platforms provide the core of product families.  They can be defined as sets of 

components, technologies, sub-systems, processes, and interfaces that form a structure to 

develop a number of products [23]. Platform design attempts to maximize commonality and 

minimize individual performance deviations.  Deviation of performance is considered as the 

difference of a variant design from ideal design—a design that satisfies a specific range of 

customer needs [18]. Three types of platforms exist: scalable platforms, in which variants can 

be produced through shrinkage or extension of scalable variables; modular platforms, which 

enable product differentiation through adding/removing/substituting different modules; and 

generational platforms, in which possible requirements for changing the design over a period of 

time are considered to allow variation of next generations [20].  

Market segmentation is vital to determine the appropriate platform leveraging strategy, 

developed in response to the competitive nature of the market in the recent decades. There are 

several data-driven techniques developed for this purpose, namely conjoint analysis, clustering, 

and use of neural networks [24]. Another well-known approach is called Market Segmentation 

Grid (MSG), which is a qualitative approach used for differentiation of the products developed 

by Mayer and Lehnerd [25]. A matrix approach that determines the user groups and tiers to the 

product performance/price is used in the MSG approach to determine the total market for a 

given product family. A typical grid is shown in Figure  2-1, where the segments are horizontally 

plotted and the performance tiers are vertically plotted to show unique market niche at the 

intersections. There are three leveraging strategies; 1) the horizontal leveraging strategy, where 

there are various products for the same given performance tier, spanning across different 

market segments. An example is the Gillette razors for male and female segments, flooding the 

market with derivatives of its Mach 3 product. 2) the vertical strategy is when the products are 

differentiated from low performance to high performance, for a given market segment. 3) the 

beachhead approach leverages both horizontal and vertical strategies, and most of the 

automotive platforms such as Toyota follow this combined strategy. These strategies are 

illustrated in Figure  2-1.  
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Figure  2-1: Market segments grid according to Mayer and Lehnerd [17] 

Not only does the platform configuration or architecture need to be determined in the early 

design stages (i.e., selection of the platform variables and the variant members for each 

platform/sub-platform), but also the design for the platform and the individual variants derived 

from that platform should be determined in a way that would not compromise the individual 

performance targets for each variant [26]. Since the benefits increase when sharing is increased 

and more variables and variants are added to the platform, the commonality maximization is a 

desired target from the manufacturing aspect. However, when more variables take the same 

value, there is more performance change in each variant performance, as compared to its 

optimal performance with unique variables/components. This inherent trade-off imposes 

difficulties to the product family design, and necessitates leveraging efficient optimization 

methods to find the best combination of values and variables for the platform. Product platform 

design research can be categorized into two approaches; a more qualitative approach that can 

be found in the business-oriented research studies [27], and quantitative methods, similar to the 
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proposed method of this dissertation, which attempt to make platform configuration decisions 

based on quantitative analyses. 

2.3. Scalable Family Design 

The scale-based design refers to design for a family of products that all possess the 

same variables, and some  of those variables can take common values among some or all of 

the products in that family, while other variables will take unique values for each product. The 

other type is called module-based family in which the variants share some modules while each 

has its unique modules that are absent in other variants. The scale-based design includes three 

stages. The first stage is called platform configuration, where the platform architecture is 

identified and the platform variables as well as the variants which share those variables are 

identified. The second stage is determination of the values to be shared for each variable in 

each platform/sub-platform, and the third stage relates to finding optimal values for the non-

shared variables so that the family performance targets are achieved and performance 

requirements can be met, or the resulting performance loss is within acceptable limits. 

Several approaches for design optimization of product families have been developed 

over the past decades. An extensive review and categorization for forty of such optimization 

approaches was implemented by Simpson [28]. While the scale-based and modular family 

design problems have been widely studied, they have been mainly addressed by assumptions 

such as pre-determined platform architecture, and restricted commonality where either the 

sharing shall be among all the variants, or there would be no sharing. Also, another 

categorization is made by Fujita [29], in which three different classes of design optimization 

problems have been defined: 1) The platform is known a priori and has a fixed configuration 2) 

Optimal module selection from a set of pre-determined values and 3) Simultaneous optimization 

of both attributes and the platform configuration.  

For the scale-based design, a number of methods have been developed, which either 

assume a fixed platform, or allow optimization of the architecture as a stage of the design. One 

development for the pre-selected platform cases is the Product Platform Concept Exploration 

Method (PPCEM) by Simpson et al. [30], which leverages robust design principles to minimize 

the performance sensitivity to the variation of the scale factors. Other developments for the fixed 
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platform case include integrating PPCEM and physical programming for product family design 

by Messac et al. [31], and treating commonality as a constraint to the design problem by Fellini 

et al. [32]. In regard to the case of unknown platform architecture, which involves the platform 

configuration task, the developments include integrating the configuration problem with the 

commonality-performance trade-off problem by Nayak et al. [33], known as Variation-Based 

Platform Design Methodology (VBPDM).  This approach attempts to maximize commonality 

within the family, while achieving the performance requirements through variation of the 

smallest number of design variables.  

The Product Family Penalty Function (PFPF) method developed by Messac et al. [34] is 

another work to find the best set of platform and scale variables, based on the performance 

losses resulting from commonalization. Since the identification and optimization for the platform 

and the scaling variables are correlated and dependent on each other, the case of solving a 

joint problem for addressing both of these subtasks at the same time is challenging and 

combinatorial in nature with computational complexities. A number of studies have tackled such 

a challenge. For example, a non-gradient based design optimization algorithm was developed 

by Chowdhury et al. [35] to increase the computational efficiency of the Mixed-Discrete Non-

Linear joint PFD problem. Also, the same authors [36] developed a Comprehensive Product 

Platform Planning (CP3) framework  to formulate the platform planning problem, independent 

from the optimization process. In later developments, Messac et al. [37] compared two of such 

one-step methodologies that enable converting the combinatorial PFD problems into continuous 

optimization problems. Another study in this area is a methodology which enables decomposed 

single-stage and gradient-based optimization of the PFD problems to efficiently solve the joint 

problem ([38]).  

The CP3 framework [36] is a performance-oriented method that attempts to find the 

commonalities which can result in the optimum cost and performance objectives for the family. 

In contrary, the proposed method here is a commonality-oriented approach which attempts to 

increase commonality within acceptable computational cost, while not sacrificing the family 

performance more than the allowed tolerance. The target of CP3 method is to provide a generic 

structure for the design problem to be solvable through any continuous optimization method 

(which needs gradients) or evolutionary algorithms (which are too expensive for black-box type 

problems).  This is not a target of interest in this dissertation, as the selection of the optimization 
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algorithm would depend on the problem type under study. Instead, the current method can be 

applied to any problem with any variables to provide information on the objective function and 

the design problem structure, and to allow making decisions toward platform configuration 

based on parsimonious assessments. 

Sensitivity analysis was first used by Fellini et al. [39] to calculate the performance 

losses resulting from sharing, and to use such information for identification of the appropriate 

variables that can serve as scale variables in a family of automotive body structures. Similarly, 

Wei et al. [40] used a multi-objective optimization-based platform design methodology 

(TMOPDM), which attempts to identify the platform variables based on their level of impact on 

the family performance, and uses the coefficient of variation as a decision parameter for 

identifying such variables. 

In a later study by Dai and Scott [27], the sensitivity analysis was performed to find the 

performance violations per change of each variable for each variant, and based on calculation 

of a global sensitivity index (i.e., the average of SI values for each variable over the entire 

family) the platform candidate set was selected for sharing assessments. In their study, the 

sharing decisions are made based on step by step performance evaluations for each pair-wise 

sharing through an agglomerative clustering analysis, and the best platform configuration is 

selected based on the minimum of accumulative performance losses from all the sharing steps. 

Our study has similarities to their method; however, we will discuss that our approach is 

different and more efficient in that the extensive function evaluations are not needed due to 

relying on insightful parameters when selecting the platform candidates, the preferred platform 

value(s), and the members of each platform/sub-platform. Among the other developments in the 

same area, Ninan and Siddique [41] leverage the platform cascading strategy to optimize the 

family based on a single-platform strategy, and then to cascade new platforms from the 

previous step so that allowable performance loss can be obtained through the minimum 

possible deviation from the previous platform configuration.  

2.4. Optimization of families and platforms 

While design optimization is widely applied to single products, its application for product 

families requires more caution due to expansion of the problem size, and necessity of additional 
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considerations. For example, the general formulation of a constrained optimization problem 

should expand to include the values of the design variables for each product in the family, so 

that a new set of constraints are satisfied while a set of objectives for the family optimization are 

achieved [42]. Therefore in the context of family design optimization and platform optimization, 

the trade-off between individual product performance and the commonality level among family 

members becomes a challenge. Identification of the Pareto frontier sets for resolving this trade-

off is one potential solution to this challenge [43]. Minimizing performance loss and maximizing 

commonality is another approach developed for product platform optimization [30]. The platform 

and family optimization problems can be classified into two problem types; in the first category, 

the platform is determined first and their values are optimized, and then family members are 

instantiated based on that platform through optimization of non-common variables. In the 

second class the platform variables as well as family design variables are optimized 

simultaneously, and decisions about which variables to be common among the family is made 

at the same time while deciding about best values for all variables. While determination of the 

common variables among a family of products can result in significant reduction of the problem 

size, selection of which variables to be common and which ones to be unique is a challenge and 

strongly affects the efficiency of the resulting problem. Since it might not be obvious that which 

variables affect the product performance more than the others, it might be quite risky to 

determine the platform variables prior to go through the family optimization problem. On the 

other hand, consideration of all possible variables for deciding about their commonality or 

uniqueness also adds significantly to the problem computational costs, because all different 

combinations of variables shall be separately examined in that case [42].  Forty approaches for 

optimizing product platforms and families of products are classified and reviewed by Simpson et 

al. in [42]. This classification is listed in Table 2-1. 

In the automotive industry, Volkswagen, Skoda, Seat and Audi, produce the Beetle, Golf, 

Bora, Octavia, Toledo and A3 from a single platform, sharing common components such as 

engine, transmission, brakes, seat, axles, etc. [44]. Another example of leveraging platforms is 

Honda, developing an automobile platform that can be scaled along its width and length to 

realize a ‘‘world car’’ [31]. Fellini et al., [45] applied a multi-objective optimization formulation to 

a family of three automotive powertrains. Their applied approach was developed by Nelson et 

al. [46] to quantify the trade-offs involved in designing product platforms. They made a 

comparison on efficiency of derivative-free global optimization algorithms, decomposition 
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methods, coordination strategies, and surrogate models for such a large dimensional problem. 

Though the aforementioned study is the only powertrain family design study, it is a conceptual 

design for seeking efficient ways to decompose a platform design problem, more than offering 

design solutions for the powertrain family. Their main focus has been on quantifying the 

encountered trade-offs in sharing components among the powertrains. 

Table  2-1: Categorization of product family and platform design optimization approaches 
[42] 

Category Possible options 

Product family type Module-based/ Scale-based 

Optimization 
objective 

Single objective/ Multiple objectives 

Market demand Modeled/ Not considered 

Manufacturing Costs Modeled/ Not considered 

Uncertainty Modeled/ Not considered 

Platform specification Priori/ Posteriori 

Number of stages Single-staged/ Two stages/ More than two stages 

Optimization 
algorithm 

GA/ SA/ Branch and Bound/ Exhaustive Search/ Patent Search/ Non-
linear Programming/ Sequential Linear Programming/ Sequential 
Quadratic Programming/ Dynamic Programming/ Generalized 
Reduced Gradient/ etc. 

Optimization 
framework 

Decision-Based Design/ Target Cascading/ 0-1 integer programming/ 

Physical Programming / Compromise Decision Support Problem 

In regard with application of Product Family Design Optimization approaches to the 

vehicles and automotive components, a number of studies have been done, listed as follows: 

 Optimizing the number of platforms, applied to an automotive family for finding the optimal 

number of vehicle platforms that maximize the overall family profit [44] 

 Comparing product variety design concepts (standardization, modularity, mutability, etc.) for 

the automotive platforms design (product variety design tries to enable production of several 

related products for different market segments, from a common base) [47] 

 Developing an analytic model of component sharing among automotive braking systems [48] 

 Presenting a comprehensive view of modularity in design, production, and application for the 

global automotive industry [49] 

 Applying the Target Cascading methodology for evaluating the trade-off between family and 

individual design targets, and implementing it for a family of vehicles [50] 
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 Developing a platform selection approach based on information from individual optimization 

of the variants, applied to a family of automotive body structures  [39] 

 Optimizing a family of automotive body side frames and selecting the component sharing 

without exceeding user-specified performance bounds [51] 

In summary, up to this moment no research study is available about PHEVs design with 

simultaneous attention to the marketing, manufacturing, and environmental aspects. Objectives 

such as the fuel economy, and emissions (and very few cost considerations) are the only 

included items in design studies for these vehicles.  As a result, this study is motivated to 

develop market-oriented as well as manufacturing- oriented objectives into design of PHEVs, for 

obtaining increased customer acceptance, and production efficiency. The production efficiency 

is suited through developing a product family of PHEV powertrains. Platform optimization is the 

solution for assuring market coverage and minimizing loss of performance in the developed 

family (commonality sacrifices performance of individual products). It should be noted that all 

the subjects and tools mentioned in this literature review are required for pursuing the objectives 

mentioned above. In the following section, the proposed work and the objectives will be 

presented.  

In the next chapter, the modeling of a power-split PHEV will be presented with details on 

governing equations and the parameters affecting performance of each component in the power 

train. 
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Chapter 3. PHEV Modeling 

Since this dissertation aims at providing a family design solution for PHEVs, we 

need a reliable model of the vehicle performance to use at various stages of the PFD. For 

this purpose, this chapter will provide details of the model developed for the specific needs 

of this dissertation, which is a replication of well-known simulation models developed by 

Argonne National Laboratory (ANL), but is different from the existing models in that it is fully 

parametric and generic to enable optimization efforts based on any desired selection of 

design variables. 

A PHEV typically has an internal combustion engine (ICE), one or two electric 

motors, and a rechargeable battery. Depending on different power train configurations, 

different transmission systems are required to adjust the power flow. Since PHEVs are 

mainly designed to optimize the fuel efficiency, the power from the ICE and motors has to 

be delicately controlled for different operation modes. As a result, the powertrain design 

and power management are complicated.  

To study the PHEV technology and to make a model for simulation and optimization 

purposes, this chapter demonstrates a Toyota Hybrid System (THS) power train model and 

the associated control strategies for Toyota Prius 2004. The validation of the model is done 

by comparing the simulation results with the real-vehicle test data. The performance 

constraints are also examined to ensure the validity of this model. After the validation 

processes, the model is necessarily adjusted to be compatible with an existing optimization 

algorithm to find the optimized sizes of different components. 

As a preliminary work, we used Toyota Prius model in PSAT, for performing 

component sizing optimization. We connected the PSAT model to an optimization algorithm 

called Pareto Set Pursuing (PSP) multi-objective optimization approach for finding the best 
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components that enable PHEV20 and  PHEV40 to meet driving conditions imposed by two 

drive cycles (UDDS and the Winnipeg Weekly Drive Cycle WWDC), and meeting the 

performance constraints. The chosen optimization targets are fuel economy, operating 

cost, and emissions minimization. This algorithm helped to reduce computational cost of 

design space exploration for such high-dimensional problem (containing 4880 feasible 

points as combinations of 20 batteries, 14 motors, and 16 engines), and showed that 

optimization of design problems of discrete variables can be facilitated in tractable order of 

time, compared to approaches such as exhaustive search or evolutionary algorithms. The 

result of our study offered optimal hybridization degree of the powertrain components for 

PHEV20 and 40, under UDDS and WWDC cycles, and the summary of findings and 

conclusions are as follows [52]: 

 The proposed simulation and optimization model automated with PSAT simulator 

is an effective and efficient method in finding the best hybridization combination 

for PHEVs drivetrain components with respect to a given drive cycle. 

 Multi-objective optimization applied for PHEV drivetrain components 

hybridization design is a novel approach to achieve sustainable mobility. 

 The proposed approach can efficiently search for the optimal hybridization for 

PHEV’s considering multiple objectives. 

 In comparison to the exhaustive search approach which takes around 560 days 

of running simulations for 4480 combinations, this approach takes only 17 days 

and is a remarkable improvement for such expensive optimization problem. 

 Simulation results demonstrate that battery, motor, and engine work collectively 

in defining a hybridization scheme for optimum performance of PHEVs. In this 

regard, the integrated formulation of the powertrain design problem will be the 

next step, as mentioned in the research objectives. 

 The optimal design varies with several factors such as drive cycles, AER, 

configuration, etc.  

This chapter describes the components of a PHEV, including the powertrain, driver, 

external parameters such as resistant forces in the move of the car, etc. Also, the decision 
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triggers for switching the operation modes (from engine-only to battery-only or to both 

propulsion sources) are explained to clarify the control strategies applied to this model. 

 

3.1. Powertrain configurations 

Hybrid vehicles can be classified according to their powertrain configurations. Three 

configurations in use for HEV/PHEVs are as follows, and their benefits and limitations are 

briefly explained: 

3.1.1. Series configuration 

This configuration for an HEV/PHEV is equivalent to having an EV with an extended 

electric range. This configuration decouples the engine from the wheels so that the engine 

can be operating independently to charge the battery with the help of the generator. The 

motor supplies the power to the wheels and it takes its power from the battery [53]. It can 

be seen in Figure 3-1. 

The advantage of this configuration is that the engine can operate at its highest 

efficiency points for obtaining the best fuel economy. The power always follows the 

electrical path, which is of lower efficiency in comparison to the mechanical path, because 

of additional magnetic electric field transformation and the heat loss of the electric 

accessories. Therefore, it becomes relatively inefficient when the vehicle reaches the 

driving range that could be more efficiently driven by an engine directly. Such inefficiency 

increases  when the vehicle runs on the highway [54]. Therefore, the overall powertrain 

efficiency might fall down due to the lower efficiency of the electric machine(s) [55]. 
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Figure  3-1: Series powertrain configuration, ESS: Energy Storage System 

3.1.2. Parallel configuration 

In this configuration, the power is added from the engine to the wheels, and engine 

and motor are both directly connected to the wheel. Depending on the power split between 

the two actuators, the vehicle is propelled by both simultaneously [53]. The engine is not 

connected to the generator, but is coupled directly to the transmission. In this configuration, 

the mechanical coupling can be either pre-transmission or post-transmission, shown in 

Figure 3-2 and Figure 3-3 respectively. The drawback of this configuration is that a single 

electric machine is used both as a generator and as a motor. The electric power assistance 

must be constrained to avoid draining the battery and frequent role-reversal may be 

necessary [55]. 

 

Figure  3-2: Parallel powertrain configuration with pre-transmission mechanical 
coupling 
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Figure  3-3: Parallel powertrain configuration with post-transmission mechanical 
coupling 

3.1.3. Power-split configuration  

This configuration allows for operation in both series and parallel configurations. 

The configuration is illustrated in Figure 3-4 [56]. In this configuration, the power split 

depends on the power split device, referred to as planetary gear set. The advantage of this 

configuration is that in this configuration the engine speed is decoupled from the vehicle 

speed, and therefore the engine can be operated at maximum efficiency [53]. This 

advantage helps reducing emissions, and improving the fuel economy. Therefore, if proper 

control strategy is applied to this configuration, it is capable of taking advantages of 

previous configurations, while preventing their disadvantages [55]. 
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Figure  3-4: Power split configuration for PHEV [56] 

The single-mode power split configuration combines the ICE with two electric 

motor/generators (identified as MG1 and MG2) through a planetary gear set. The planetary 

gear set creates both series and parallel paths for power flow to the wheels. The parallel 

flow paths (dashed arrows) include a path from the engine to the wheels and a path from 

the battery, through the motors, to the wheels. The series flow path, on the other hand, 

takes power from the engine to the battery first, and then back through the electrical system 

to the wheels (solid arrows). This redundancy of power flow paths, together with battery 

storage capacity, increases the degree to which powertrain control for performance and 

efficiency can be adjusted, while meeting overall vehicle power demand [56]. Many dual-

mode hybrid vehicles are planned for production over the next several years from GM, 

Chrysler and BMW. It seems that power-split hybrids will remain dominant in the 

commercial hybrid market for the foreseeable future [55]. While in parallel and series 

configurations, the transmission connects the engine and final drive, in the power-split, this 

transmission is replaced by a power split device or the planetary gear system. Thus, a 

power-split configuration can operate in series when the speed is low, to avoid drawbacks 
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of the parallel, and switching to the parallel in highway driving and high speeds to avoid 

drawbacks of the series [54]. 

3.2. Power-split Powertrain 

Having been developed for over ten years, Toyota Prius has a popular hybrid 

system referred to as Toyota Hybrid System (THS), which features a planetary gear set to 

split the power from the engine. With such power-split configuration, the engine could 

propel the vehicle alone, or charge the battery through a generator. A traction motor 

provides another source of power to either assist the engine or independently drive the 

vehicle [54]. The flexibility of power management makes the power-split configuration more 

attractive upon improving the overall efficiency of the vehicle. The powertrain configuration 

and the operational modes of this THS are illustrated in is shown in Figure 3-5.   

 

PLG- Planetary Gear Unit 

PPS- Peak Power Source 

M/G- Motor/Generator 

TM- Traction Motor 

GB- Gear Box 

 

Figure  3-5 Engine alone (adapted from [57]) 

Power-split device  

According to the advantages and drawbacks mentioned in the earlier section of this 

chapter, the power-split configuration is chosen as the desired configuration for our 

powertrain design problem. The required performance equations and design considerations 

related to this configuration are explained in the next section. 



 

27 

 

As mentioned earlier, the main component for power split in this configuration is the 

power-split device, which determines the dynamics of the power split [53]. This system is 

shown in Figure 3-6. The flywheel-transmission-internal-combustion hybrid vehicle - a HEV 

leveraging from Flywheel energy storage as a secondary energy storage system which 

stores the energy in form of mechanical kinetic energy- and the planetary gear train with 

Continuously Variable Transmission (CVT) mechanism were the early power-split devices 

designed and studied at 1980 and 1993 respectively, though they were not applied to any 

passenger vehicles until late 1990s [54]. THS was the first power-split passenger vehicle 

introduced in 1997. Prius and most of the hybrid fleet from Toyota mainly leverage this 

system in their powertrain configuration. Another major power-split system design is the 

Allison Hybrid System known as AHSII, invented by GM as a dual-mode power-split 

system, and applied to several mid-sized SUV and pickup trucks and has become a major 

competitor in recent years [54]. 

 

Figure  3-6: The planetary gear system for power split ([53]) 

The gear in the center is called sun gear. The gear surrounding the sun gear is the 

planet gear. The planetary gear set has three sets of gears moving on the carrier, and the 

shaft of the planet is connected to the carrier. In a power split hybrid vehicle, the ICE is 

connected to the carrier, Motor/generator (MG2) is connected to the ring gear, and 
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Motor/generator (MG1) is connected to the sun gear [53]. MG1 is predominantly used as a 

generator, while MG2 is used as a motor. In mathematical computations of the vehicle 

dynamics, wherever MG1 serves as a generator, its power value will take positive sign, 

while for MG2 in case of operating as a motor its value will be positive. Otherwise, the 

power for these components will take negative values. The fundamental equation for 

planetary gearing derived by the Willis’ formula is that the gear must rotate so as to 

maintain a fixed ratio of angular speeds relative to the carrier body [58]. The speed 

relationships between the planetary gears set components can be written as: 

 𝜔𝑀𝐺1. 𝑆 +  𝜔𝑀𝐺2. 𝑅 =  𝜔𝑖𝑐𝑒 . (𝑅 + 𝑆) (3-1) 

Where:  

S: number of teeth of the sun gear ωMG1: Angular velocity of MG1 

R: number of teeth of the ring 

gear 

ωMG2: Angular velocity of MG2 

It shall be noted that the angular velocity of the powertrain components is equal to 

the speed of the gear connected to them: 

𝜔𝑀𝐺1= 𝜔𝑠, the speed of sun gear 

𝜔𝑀𝐺2= 𝜔𝑟,  the speed of ring gear 

𝜔𝐼𝑐𝑒= 𝜔𝑐, the speed of carrier gear 

The gear ratio of engine/motor is the ratio of number of the teeth of the ring gear to 

that of the sun gear: 
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𝐺𝑅 =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑛𝑔𝑖𝑛𝑒 𝑜𝑟 𝑚𝑜𝑡𝑜𝑟 𝑠𝑝𝑒𝑒𝑑 (

𝑘𝑚
ℎ

)

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 (
𝑘𝑚
ℎ

)
=  

𝑣𝑃𝑆,𝑚𝑎𝑥

𝑣𝑣,𝑚𝑎𝑥

=  
2. 𝜋. 𝑟𝑤ℎ𝜔𝑃𝑆,𝑚𝑎𝑥 . 3.6

𝑣𝑣,𝑚𝑎𝑥
 

(3-2) 

 

 

𝜔𝑃𝑆,𝑚𝑎𝑥 is the angular velocity of the propulsion source (engine or motor), 𝑣𝑣,𝑚𝑎𝑥 is 

the maximum speed of the vehicle (km/h), and 𝑟𝑤ℎ is the wheel radius. The max speed of 

the vehicle is in m/s which has to be converted to km/h, resulting in 3.6 showing on the 

numerator. 

The basic power balance equation for all possible operation modes of this 

configuration is as follows: 

 𝑃𝑟𝑒𝑞(𝑡) =  𝑃𝑓𝑐 + 𝑃𝑒𝑙 (3-3) 

Where 

𝑃𝑓𝑐: Power supplied through the fuel converter 

𝑃𝑒𝑙: Power supplied by the electric accumulator 

𝑃𝑟𝑒𝑞: Power request from the driver 

The electrical power is the sum of the powers supplied through MG1 and MG2: 

 𝑃𝑒𝑙 = 𝑃𝑒𝑙1 + 𝑃𝑒𝑙2 =  𝑃𝑀𝐺2 − 𝑃𝑀𝐺1 (3-4) 
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where 𝑃𝑀𝐺1 is the power of the electric motor number 1 (generally the generator), and 𝑃𝑀𝐺2 

is the power of the electric motor number 2 (generally the electric motor). 

3.3. Performance requirements for the vehicle 

The governing forces during propulsion of the vehicle in general are shown in Figure 3-

7.  Three major parameters come into effect for modeling the vehicle forces: grade, 

aerodynamic drag, and rolling resistance [59]. 

 

Figure  3-7: Governing forces during vehicle movement [59] 

Grade force: The grade force, 𝑓𝑔 is what the vehicle has to overcome when 

climbing hills, and is calculated using Newton’s second law of motion. Parameters such 

as vehicle mass and grade angle can affect the grade force, and accordingly affect the 

force required to drive the vehicle. 

                                 𝑓𝑔 = 𝑚. 𝑔. sin 𝜃       (3-5) 

𝑚: The vehicle mass in kg 

𝑔: Acceleration from gravity in 𝑚 𝑠⁄ 2  
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𝜃: The rode slope  

Aerodynamic drag force: A moving vehicle is resisted by the surrounding air around it, 

and through some simplifications such as ignoring the lateral forces, this force, 𝑓𝐴𝑑 can be 

calculated as follows: 

                                         𝑓𝐴𝑑 =
1

2
𝜌𝑎 . 𝐶𝐷. 𝐴𝑓 . 𝑣𝑟𝑣

2     (3-6) 

𝜌𝑎: Air density in 
𝑘𝑔

𝑚3⁄  

𝐶𝐷: Drag coefficient 

𝐴𝑓: Vehicle frontal area 

𝑣𝑣: Vehicle velocity in 𝑚 𝑠⁄  

Rolling resistance: This resistive force 𝑓𝑅𝑅 results from deformation of the tires at 

their contact point to the ground during rolling movement. While modeling this 

parameter depends on several other factors and generally complex enough, there are 

simplifications adopted from the literature to represent it in the following form: 

                              𝑓𝑅𝑅 = 𝑚. 𝑔. (𝑘1 + 𝑘2. 𝑣𝑣). cos 𝜃    (3-7) 

𝑘1 and 𝑘2 are rolling resistance coefficients that are determined by experiment. The 

required force at a specific speed to drive the vehicle is the sum of three forces 

discussed above. 

                                             𝑓𝑡𝑜𝑡𝑎𝑙 =  𝑓𝑅𝑅 + 𝑓𝐴𝑑 + 𝑓𝑔    (3-8) 

Watt is converted to kW as the required engine power. The engine power output is 

equal to the resistance power plus the dynamic power for acceleration of the vehicle. This 
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is the required power to overcome the forces at grade, which is accordingly calculated as 

follows: 

    𝑃𝑔𝑟𝑎𝑑𝑒 =
𝑣𝑣,𝑔𝑟𝑎𝑑𝑒

1000.𝜂
. 𝑓𝑡𝑜𝑡𝑎𝑙     (3-9) 

𝜂: The overall propulsion system efficiency 

𝑣𝑣,𝑔𝑟𝑎𝑑𝑒: Velocity at the grade 

𝑃𝑔𝑟𝑎𝑑𝑒: Vehicle power (in Kilowatts)  required 

to maintain a constant speed at the specified 

grade 

The minimum motor/engine size to meet the road grade requirement equals to the 

vehicle power requirement to maintain a constant speed at the specified grade. 

The Gear Ratio (GR) can be used to convert the tractive effort of the power source 

(PS) to the tractive effort at the drive wheels [60]. 

    𝐹𝑤ℎ = 𝐹𝑃𝑆. 𝐺𝑅     (3-10) 

𝐹𝑤ℎ: tractive force at the drive wheels 

𝐺𝑅: Gear Ratio (Introduced in Equation (3-4)) 

𝐹𝑃𝑆: Tractive force at the power source 

It shall be noted that the vehicle mass is dependent on the power source size, so such 

problem needs to solved iteratively, and after calculation of the PS mass at each iteration 

(depending on the power), the road load is then updated. 
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3.4. Powertrain components and performance equations 

3.4.1. Engine 

A generic spark ignition (SI) engine model is used for this study, using gasoline 

to produce mechanical energy. The generic engine model in SimDriveline provides the 

maximum torque available for a given engine speed, and has the following torque function 

[61]: 

𝜏 = (
𝑃𝑚𝑎𝑥

𝜔𝑜
) ∗ (

𝑝(𝑤)

𝑤
) , where ωo is the speed at 𝑃𝑚𝑎𝑥 , 𝑤 =

𝜔

𝜔𝑜
   (3-11) 

𝑝(𝑤) =  𝑝1𝑤 + 𝑝2𝑤2 − 𝑝3𝑤3, 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑝1 + 𝑝2 − 𝑝3 = 1, 𝑝1 + 2𝑝2 − 3𝑝3 = 0 

           (3-12) 

For spark-ignition type, all of the power demand coefficients, 𝑝1, 𝑝2, 𝑝3, equal to one. 

For diesel type, 𝑝1 = 0.6526, 𝑝2 = 1.6948, and 𝑝3 = 1.3474 [61]. 

Experimental data form test data and PSAT available in lookup tables are used in 

this study to calculate the output of the engine. A time constant of 0.2 seconds is used in 

this system.  

3.4.2. Fuel Consumption and Engine Efficiency 

A brake specific fuel consumption (BSFC) lookup table, indexed by engine speed 

and torque, is taken from the PSAT initialization file of the same engine type. The BSFC 

relates to the fuel consumption rate. By using the equations below, the fuel rate, total 

amount of fuel consumption, and engine efficiency could be calculated. 

 Fuel consumption rate = engine power * bsfc/3600/1000, where bsfc is in g/kWh, 

power in Watt, and fuel rate in gram/sec. 

 Consumed amount of fuel= ∫ 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 

 The efficiency of engine:  𝜂 =
𝑃

𝑚𝑓̇ ∗𝑄𝐻𝑉
      (3-13) 
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Where 𝑚𝑓̇  is the fuel rate in gram/s, and 𝑄𝐻𝑉 is the heating value of the fuel ranging 

from 11.7~12.2 kWh/kg, which is defined as the heat released from unit fuel with complete 

combustion at standard conditions and the combustion products cooling down to their 

original temperature [57]. In this model, 𝑄𝐻𝑉 is approximated as 12 kWh/kg. 

3.4.3. Gear Ratio 

The planetary gear set is the key part in power-split PHEV. Torque is supplied 

through the carrier to ring and sun gears. The key of the power-split mechanism is that 

power is split according to the number of teeth of the ring and sun gears.  

 

Figure  3-8: The planetary gear set and the lever diagram [62] 

 

For a THS, the ring has 78 teeth and the sun has 30 teeth [63]. The governing 

equations are: 

    𝑇𝑟 =  
𝑅

𝑅+𝑆
∗ 𝑇𝑐     (3-14) 

    𝑇𝑠 =  
𝑆

𝑅+𝑆
∗ 𝑇𝑐     (3-15) 

   𝜔𝑐 =
𝑅

𝑅+𝑆
𝜔𝑟 +

𝑆

(𝑅+𝑆)
𝜔𝑠     (3-16) 

𝜔𝑐, 𝜔𝑟, 𝜔𝑠: The speed of the carrier, ring gear, and the sun gear, respectively 

𝑇𝑐, 𝑇𝑟, 𝑇𝑠: The torque of the carrier, ring, and sun gear, respectively  
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R and S represent the number of teeth or the radius of the ring and sun gears, 

respectively. Equation (3-16) is the same as Equation (3-4), but represents the relationship 

in terms of the gear speeds, while Equation (3-4) shows the angular velocity of powertrain 

components. 

The SimDriveline model only requires the ring-to-sun gear ratio as the input, while 

the meshing and viscous losses are optional. In this model, the sun-planet efficiency and 

ring-planet efficiency is 0.96 and 0.98, respectively. 

  

Figure  3-9 Torque Converter & Planetary Gear Models in SimDriveline 

3.4.4. Emissions and After-treatment 

The emission data of the engine, HC, CO, and NOX, are obtained from the test data 

available from PSAT which is provided by Argonne National Laboratories, then fed into an 

exhaust after-treatment model. The rate of 𝐶𝑂2 is calculated based on the distance traveled 

by the vehicle. The equation is: 

   𝐶𝑂2
̇ =

𝐴𝑔∗𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 [

g

km
]    (3-17) 

Where  Ag is the gasoline CO2 emission coefficient = 2380
𝑔

𝐿
 

Fuel consumption is plugged-in here in Liter, and distance is in Kilometers. 
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3.4.5. Battery Model 

The open circuit voltage, Voc lookup table, indexed by temperature and state of 

charge (SOC), is taken from the PSAT initialization file of the same type of battery, i.e., Li-

ion Saft battery with 3 cells in each module and a nominal 3.6 Volt per cell. The conductive 

and convective heat transfer data is taken from the PSAT initialization file as well. The 

battery is modeled mainly based on mathematical approach for computational simplicity, for 

which the fundamental equations are explained shortly. The battery pack treats all the sub-

cells as a whole, and the nominal voltage is the aggregate of these sub-cells. The change 

in internal resistance of the battery is omitted since the variation is not significant. The 

mathematical battery model takes battery capacity and temperature into account to 

calculate the current, voltage, and state of charge (SOC). The inputs are the current of 

motor and generator which are added up to obtain the battery current. Negative current 

means the generator or motor is charging battery, whereas positive current means 

discharging. The outputs of the battery are the instantaneous voltage and the SOC. The 

fundamental equations to model a battery are as follows: 

 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑉𝑜𝑐 − 𝐼 ∗ 𝑅𝑖𝑛𝑡           (3-18) 

𝑉𝑜𝑐: The open circuit voltage 

𝐼: Current passing the battery 

𝑅𝑖𝑛𝑡: Internal resistance of the battery 

The time that a battery can sustain is a function of its capacity divided by its current: 

 𝑐𝑎𝑝𝑐𝑖𝑡𝑦 𝑢𝑠𝑒𝑑 = ∫ 𝐼 + (1 − 𝑉𝑜𝑐) ∗ 𝑚𝑎𝑥. 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦   (3-19) 

 𝑆𝑂𝐶 = 𝑐𝑎𝑝𝑐𝑖𝑡𝑦 𝑟𝑒𝑚𝑎𝑖𝑛𝑒𝑑/ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑎𝑝𝑐𝑖𝑡𝑦   (3-20) 

𝑄𝑔𝑒𝑛 = 𝑅𝑖𝑛𝑡𝐼𝑖𝑛
2 − 𝑉. 𝐼𝑖𝑛(1 − 𝜂𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑖𝑐)   For (𝐼𝑖𝑛 < 0)    (3-21) 
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𝑄𝑔𝑒𝑛 : The power loss from the battery 

𝜂𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑖𝑐: The columbic efficiency of the battery 

𝐼𝑖𝑛: Discharging current 

𝑆𝑂𝐶: State of charge of the battery, as a percentage of the capacity 

3.4.6. Electric Motor  

The traction motor occasionally functions as a generator, but mainly as a prime 

mover. Depending on the control strategy, it could be a dominant source of power or an 

assistive device. In a typical Prius configuration, the motor is an AC permanent magnet 

synchronous machine. However, since the battery is a DC device, an inverter must be used 

(ad hence included in the model) to connect the DC source to the AC motor. Since the 

inverter involves complex electronic elements such as transistors, and the AC circuits 

between the AC motor and inverter are also complicated, the AC motor is simplified as a 

DC motor with equivalent properties from the SimElectronics toolbox. The motor model is 

built through using a dynamic equation to show the torque, which is the rate of change 

in the angular momentum of the motor. The total torque is calculated through Equation 

(3-25), as the summation of the motor torque, plus the value of motor inertia multiplied 

by the angular acceleration of the motor. 

𝐿 = 𝐼𝑚𝜔 (3-22) 

𝜏 =
𝑑𝐿

𝑑𝑡
 

(3-23) 

𝜏 =  𝜔.
𝑑𝐼𝑚

𝑑𝑡
+ 𝐼𝑚.

𝑑𝜔

𝑑𝑡
 

(3-24) 
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𝜏𝑡𝑜𝑡𝑎𝑙 = 𝜏𝑚𝑜𝑡𝑜𝑟 + 𝐼𝑚.
𝑑𝜔𝑚

𝑑𝑡
 

(3-25) 

Where: 

 𝜏𝑚𝑜𝑡𝑜𝑟: The motor torque 

𝐼𝑚 : The motor moment of inertia 

𝜔𝑚: The angular velocity of the motor. 

𝐿: The angular momentum 

Another assumption is that the motor could achieve peak power all the time. As 

been tested, the temperature of the 50 kW motor rarely exceeds the upper limit. This is 

tested based on a PSAT block which calculates the heating index of the motor, as shown in 

Figure 3-10. In fact, the simulation results show that the maximum torque of the motor 

stays below the maximum continuous limit, so the assumption is more or less not 

important. 

 

 

Figure  3-10 Heating Index Calculation 

3.4.7. Generator 

The generator is modeled by the same SimElectronics model as the motor, but with 

different parameters, including the maximum torque (which is dependent on the motor size, 
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while for the generator it is equal to 200 N.m and fixed), and the speed at which the 

efficiency is measured (2300 rpm for motor, vs. 4500 rpm for the generator). Most of other 

parameters such as the electrical loss are the same. It is connected to the sun gear shaft to 

either allow the engine to charge the battery, propel the vehicle or start the engine from the 

off state. Through controlling the torque and the speed of the generator, the speed of the 

engine can be controlled to achieve higher operating efficiency and less emissions [63]. 

In this PHEV model, the engine start process is done by connecting a duplicated 

generator model to the output shaft of the engine. A constant current is fed into the 

generator to provide enough speed for the engine to start generating torque. The amount of 

current is considered as what the generator consumes. For different generator sizes, this 

amount of current might need to be adjusted. 

3.4.8. Vehicle Body and Tires 

The vehicle subsystem consists of a vehicle body, two sets of tires, braking system, 

and a differential gearbox. The inputs are the braking force, the longitudinal force from the 

tires, the wind speed, and the road incline angle. The outputs are the vehicle velocity and 

the normal force of the vehicle. The top level equation for the vehicle propulsion is: 

 𝑃𝑜 =
1

𝜂𝑇
(

𝑚𝑔𝑓𝑟𝑣

3600
+

𝐶𝐷𝐴𝑣3

76140
+

𝛿𝑚𝑣

3600
(

𝑑𝑣

𝑑𝑡
) +

𝑚𝑔𝑣𝑠𝑖𝑛𝛽

3600
)    (3-26) 

where 𝑃𝑜 is the demand power in kW, 𝜂𝑇 is the transmission efficiency, m is the vehicle 

mass in kg, g is the acceleration of gravity in m/𝑠2, 𝑓𝑟 is the rolling coefficient, v is the 

vehicle speed in km/h, 𝐶𝐷 is the aerodynamic drag coefficient, A is the frontal area of the 

vehicle in 𝑚2, 𝛿 is the rotating mass coefficient, and 𝛽 is the slope angle of the road in rad 

[63]. This equation is widely used in literature to provide a baseline for calculating the 

required power for the vehicle propulsion. The rest of fixed parameters used in the 

modeling of this study are shown in Table 3-1. The dynamic equations for the vehicle body 

used in SimDriveline are: 

   𝑚𝑉𝑥̇ = 𝐹𝑥 − 𝐹𝑑 − 𝑚𝑔𝑠𝑖𝑛𝛽    (3-27) 
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where 𝑉𝑥 is the longitudinal vehicle velocity, 𝐹𝑥 is the longitudinal force on wheels, 𝐹𝑑 is the 

aerodynamic drag force. 

    𝐹𝑥 = 𝑛(𝐹𝑥𝑓 + 𝐹𝑥𝑟)    (3-28) 

where f represents front wheels and r represents rear wheels, n is the number of wheels 

on each axle. 

   𝐹𝑑 =
1

2
𝐶𝐷𝜌𝐴(𝑉𝑥 − 𝑉𝑤)2𝑠𝑔𝑛(𝑉𝑥 − 𝑉𝑤)   (3-29) 

where 𝜌 is the mass density of air = 1.2kg/𝑚3; 𝑉𝑤 is the headwind speed. 

Table  3-1: Fixed parameters used in the PHEV model for this study 

 

 

 

 

 

 

 

 Brake 

The braking system consists of the built-in brake model. The input is a normal force 

that locks the frictional plates depending on the threshold value. The initial condition of the 

brake needs to be correctly specified according to the state of other components. The 

Parameter Value 

Vehicle glider mass (kg) 1228 kg 

Number of wheels per axle 2 

Horizontal distance from CG to front axle (m) 1.4 

Horizontal distance from CG to rear axle (m) 1.6 

CG height above ground (m) 0.5 

Frontal area (𝑚2) 3 

Drag coefficient 0.29 

Initial velocity  (m/s) 0 

Transmission efficiency  95% 

Rolling friction coefficient 0.007 

Wind speed (m/s) 1 

Tire effective radius (m) 0.305*0.95 
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braking force is calculated based on the negative torque demand from the driver. The 

governing equation is 

  𝐵𝑟𝑎𝑘𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 =
𝑡𝑜𝑟𝑞𝑢𝑒 𝑑𝑒𝑚𝑎𝑛𝑑∗𝐺𝑒𝑎𝑟_𝑟𝑎𝑡𝑖𝑜

𝑤ℎ𝑒𝑒𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 
   (3-30) 

In the calculation of torque demand, the overall torque demand is divided by the 

gear ratio, as the gear ratio is an intensifier of the torque. For calculating the braking force, 

however, the ratio is multiplied in the above equation to compensate and show the actual 

force required for stopping the vehicle. 

Clutches 

The clutches are similar to braking systems, but requiring a pressure signal as the 

input. Two sets of clutches are used to decouple the motor from the driving shaft, to enable 

the engine starter, and to lock the sun gear to the ground. These clutches are signaled by 

the controller to implement the control strategy. 

Driver 

As Wang [64] suggests, the driver is modeled as a PI controller in the following 

form: 

     𝑃 + 𝐼. 𝑇𝑠
1

𝑧−1
       (3-31) 

 

where p = 800, I = 0.5, and the initial time response constant is 0.2 seconds.  

 The speed error between the target speed and instantaneous speed of the vehicle 

is fed into the PI controller to calculate the torque demand for propelling the vehicle. The PI 

controller is tuned to give a reasonable value of torque while maintaining a fast response of 

the engine and motor to the speed error. The torque lost due to aerodynamic drag, rolling 

resistance, and road incline should also be added to the torque demand which is finally 

divided by the transmission ratio. Once the actual velocity exceeds the desired, the brake 
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signal is triggered. The torque demand could also be converted into power demand based 

on the equation below. 

 𝑃𝑜𝑤𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 = (
𝑡𝑜𝑟𝑞𝑢𝑒𝑑𝑒𝑚𝑎𝑛𝑑

𝑤ℎ𝑒𝑒𝑙𝑟𝑎𝑑𝑖𝑢𝑠
) ∗ 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑝𝑒𝑒𝑑   (3-32) 

The torque loss is calculated through Equation (3-33): 

𝐹𝑙𝑜𝑠𝑠 = (𝑓𝑟 + 0.00012𝑉)𝑚𝑣𝑒ℎ𝑔 +
𝜌𝐶𝑑𝐴𝑉2

2
+ 𝑚𝑣𝑒ℎ𝑔𝑠𝑖𝑛(𝑔𝑟𝑎𝑑𝑒)   (3-33) 

   𝑇𝑙𝑜𝑠𝑠 = 𝐹𝑙𝑜𝑠𝑠 ∗ 𝑟𝑤ℎ𝑒𝑒𝑙     (3-34) 

3.5. Control Strategies 

Due to the plug-in ability, the PHEV is designed to mainly take advantage of the 

electric machines. Ideally, the PHEV is expected work in all-electric-range (AER) mode in 

which the vehicle is propelled only by the electric power. However in many commercial 

PHEVs, the strategies are to maintain the engine at high efficiencies with the assistance 

from the battery. 

3.5.1. Electric Dominant Strategy 

This type of control mostly is to utilize the traction motor to drive the vehicle as long 

as the constraints are not met. The engine only provides the extra amount of power 

regardless of efficiency [65]. The challenge of this strategy is that the size of the battery 

should be large enough to allow the vehicle for a long distance of drive, but the price of the 

battery also constrains the size. Because of the sustainability problem, true AER vehicles 

are not as practical as commercial PHEVs that take advantage of the engine dominant 

strategy.  

3.5.2. Rule-Based Engine Dominant Strategy 

Engine Optimal Region 
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The operation of engine depends on the torque and speed. An ideal operation 

region is the desired state for engine to operate at the best efficiency [66], as shown in 

Figure 3-11. Usually this state is accomplished by controlling the torque and speed of the 

engine. The efficiency of the model is shown to be mostly affected by the power of the 

engine. Within a rough range between 15 to 50 kW, the efficiency could be maintained 

above 30%. However, further tests reveal that by controlling the torque output of the engine 

by a PID controller, the efficiency could be maintained above 30% as well. The torque 

range for the best efficiency is 63 to 114 Nm. The advantage of controlling the torque 

output is that the amount of torque required could be easily converted to a throttle signal 

that feeds into the engine model. 

 

Figure  3-11 Engine Ideal Operational Line [57] 

The engine torque depends on the engine size which is the engine displacement 

and is defined as the volume swept by the piston from top dead center (TDC- the furthest 

point in piston's travel, where the upward stroke changes to downward stroke) to bottom 

dead center (BDC). The mean effective pressure (mep), is a more useful relative 

performance measure defined as the work per cycle per displacement [66]. The Brake 
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Mean Effective Pressure (BMEP) is a measure of the efficiency of a given engine at 

producing torque from a given displacement.  

Being able to control the minimum and maximum torque for the best efficiency, 

different operational mode could be achieved. Taking the SOC of the battery and the 

vehicle speed as constraints, the controlling of acceleration could be divided into three 

regions: low torque, medium torque, and high torque. The general control implementation is 

to control the input of the engine and motor and to enable or disable particular clutches. 

Accelerating Mode 

The accelerating mode consists of two sub-modes which are charge depleting (CD) 

and charge sustaining (CS) modes. As long as the SOC is above the lower limit, the CD 

mode implements the engine-dominant strategy to continuously decrease the SOC. When 

the SOC hits the lower limit, 30%, the Equivalent Consumption Minimization Strategy, or 

ECMS, is applied to maintain the SOC at 30% while propelling the vehicle as demanded. 

Charge Depleting Mode 

Low Torque Region 

The low torque region in this Prius 2004 model is defined for torque demands less 

than 63 Nm, under which the motor is the only source to assist propulsion if the SOC is 

above the threshold of 30%. This mode could also be triggered when the vehicle speed 

(engine turn-on speed) is less than 5 m/s. In this case, the torque demand for the motor is 

controlled by the output voltage of the battery which is scaled by the torque gain defined as 

the torque demand to maximum continuous torque ratio. This way of controlling motor 

torque may not be sufficiently accurate but as many trials have been done, the results show 

that such way of controlling could generate almost the same torque as demanded.  
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Table  3-2: Rules in Low Speed Region 

Low speed region Engine torque [Nm] Motor torque [Nm] Battery state 

SOC > 0.3 0 𝑇𝑑𝑚𝑑 Discharging 

 

Medium Torque Region 

As long as the torque demand is within 63 ~ 114 Nm, the vehicle enters the medium 

torque region. The torque of the generator should be compensated by the motor because a 

fraction of torque from engine is converted into electricity by the generator. Different modes 

of operation are listed in Table 3-3.  

Table  3-3: Rules in Medium Speed Region 

Medium speed region Engine torque [Nm] Motor torque [Nm] Battery state 

SOC > 0.3 63 𝑇𝑑𝑚𝑑- 63 +𝑇𝑔𝑒𝑛 Discharging 

 

High Torque Region 

When the torque demand exceeds 114 Nm, the vehicle works in blended mode. 

The operation modes are similar to the medium region except the minimum torque of the 

engine should be 114 Nm, as shown in Table 3-4. 

Table  3-4: Rules in High Speed Region 

High speed region Engine torque [Nm] Motor torque [Nm] Battery state 

SOC > 0.3 114 𝑇𝑑𝑚𝑑-114 + 𝑇𝑔𝑒𝑛 Discharging 
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Sharp Acceleration 

To satisfy the demand from the driver, sharp acceleration is accomplished by set 

the engine throttle to 1 to indicate when the throttle is open, and let the motor provide of the 

required power. In this case, the engine is not necessarily working in its best efficiency 

range. The torque threshold, 200 Nm, of turning on this mode might not be realistic. The 

acceleration mode contains the above CD and CS modes which are designed to control the 

propulsion of the vehicle. The deceleration mode, overwriting the acceleration mode once 

triggered, decouples the motor from the driving shaft, and enables the braking subsystems.  

3.6. SimDriveline for creating generic PHEV models 

Professional software such as PSAT and ADVISOR have been effectively used in 

vehicle modeling of various studies in the literature. However, more detailed models could 

be accomplished using SimDriveline in Simulink. SimDriveline includes an adequate 

number of mechanical models such as brake, clutch, coupling, drive, engine, gearbox, tire, 

and vehicle body. It takes advantage of Simulink abilities for developing comprehensive 

models, which allow modeling of numerous external and internal factors and studying their 

effect on vehicle performance.  

By choosing other mechanical elements from the fundamental library under 

Simscape, a complete and illustrative mechanical model of the powertrain could be built. 

The Simscape fundamental library contains all the basic elements in mechanical, electrical, 

and thermal fields. These elements could be used with the physical modeling product 

family, including SimDriveline, SimElectronics, and Simpowersystems, to make a complete 

model. On the electrical side, different motors are available in SimElectronics, and other 

elements could be found in the electric fundamental library under Simscape. More 

advanced modeling of the electric components could be done by the Simpowersystems 

toolbox which includes better models of motors and some other electrical and electronic 

elements. Simscape also provides models for thermal elements which could also be 

applied in vehicle modeling. 
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The advantage of this Simulink-based modeling tool is that an illustrative physical 

model that resembles a real powertrain could be developed rather than pure mathematical 

models in PSAT. With all the parameters specified, Simulink processes the equations 

behind each component and provides the results. 

Validation 

A validation process is done typically by comparing the simulation results with the 

previous validated results. Since the test data for the MY04 Prius model is available, the 

simulation results are compared with the test data. The output of each component is 

verified to be similar to realistic components in term of rated performance. 

Selected Control strategy 

A strategy similar to the electric dominant strategy is applied in this study, where 

engine assists the vehicle as needed, and is not strictly turned off. As such, it is observed in 

Figure 3-13 that a decrease in SOC until a specific threshold. However, depending on the 

power demands at various times of the drive cycle, SOC is showing a relatively flat line with 

occasional small increases in the form of little spikes in the graph during the charge 

sustaining mode). The urban dynamic drive schedule, or UDDS, is used for testing the 

performance of the PHEV under urban driving conditions since PHEV is primarily used 

within cities. The properties of the drive schedule are shown in Table 3-5. 

Table  3-5: UDDS specifications 

 Max speed 

(mph) 

Average 

speed 

(mph) 

Max 

acceleration 

(m/s2) 

Max 

deceleration 

(m/s2) 

Cycle 

distance 

(miles) 

UDDS 56.7 19.6 1.48 -1.48 7.45 
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The vehicle speed closely follows the speed demand of UDDS, as shown in Figure 

3-13.  

 

Figure  3-12 SOC diagram over time for an electric dominant strategy 

The plot in this picture is captured during a run of the simulation, and as it can be 

observed, the vehicle velocity is closely following the expected velocity imposed by the 

UDDS drive cycle.  
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Figure  3-13: Results of the simulation model following the UDDS cycle 

Performance Tests 

The maximum vehicle speed, acceleration, and gradeability were tested by setting 

the engine throttle to one, and the motor only supplies the extra power. The general 

performance constraints for PHEV are: 

Max. vehicle speed ≥ 85 mph (3-35) 

Max. vehicle acceleration ≥ 0.5g (3-36) 

5-second distance ≥ 140 feet (3-37) 
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The tests Implemented in separate and simplified models, show that the model 

operates within all the above constraints. As such, the model is capable of serving design 

optimization purposes, and will be used toward adapting our desired problem formulation in 

the following chapter. The details results of model validation are presented in Appendix B. 

In summary, this chapter provided a presentation of the developed simulation model 

which has adopted the governing equations and fixed parameters from the literature for 

utilization toward our optimization and family design purposes in the next chapters. 

0-60 mph time ≤ 12 sec (3-38) 

0-85 mph time ≤ 23.4 sec (3-39) 

40 – 60 mph time ≤ 5.3 sec (3-40) 

HC emissions ≤ 0.125 g/mile (3-41) 

CO emissions ≤ 1.75 g/mile (3-42) 

𝑁𝑂𝑥  emissions ≤ 0.075 g/mile (3-43) 
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Chapter 4. Proposed Family Design Method 

In this chapter the proposed product family design methodology of this dissertation 

will be explained in detail. An efficient non-conventional sensitivity analysis, the 

detachability property of each variable, and the coefficient of variation are among the 

techniques mainly used towards making platform configuration decisions. As mentioned in 

Chapter 1, the need for this methodology comes from lack of efficient techniques to 

address simulation-based family design problems, and the set of techniques integrated into 

the proposed methodology here, are shown to ensure computational saving throughout the 

family design stages.  

Meta-modeling techniques are employed to provide reliable correlation intensities 

information, with remarkable savings in the number of function calls. It is shown that the 

proposed method is efficient for designing scalable product families through its application 

to a family of universal electric motors. The outstanding features are: 1) It obtains the 

design solution with more commonality levels over a number of previously developed 

methods; 2) The resultant family design is within allowable performance loss range, and 

there is improvement in the aggregated preference objective function value, as compared 

to the previously published family design methods; 3) The method provides comparable 

computational efficiency, with promises to work efficiently for high-dimensional expensive 

black-box (HEB) design problems. A test case is also designed to study more about the 

impact of the leveraged parameters on the performance of our proposed method. It is 

shown that the proposed method suits well to high dimensional expensive black-box (HEB) 

design problems, which makes it an efficient approach for designing product families based 

on simulations with no explicit mathematical equations.  For such HEB problems, 

metamodeling is usually used. Based on recent works in [67, 68], knowledge can be gained 

about the black-box function, along with the variable correlations and sensitivities.  The 
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proposed method leverages this new technique for product family design on HEB 

problems, which results in significant savings in the function calls.  

This chapter leverages a non-conventional sensitivity analysis of the design 

variables for identification of the appropriate platform candidate set. Rather than sensitivity 

analysis used in Dai and Scott [27], the information on the sensitivity of the variables are 

obtained through a strategy that combines the Radial Basis Function-High Dimensional 

Model Representation (RBF-HDMR) and the Random Sample HDMR (RS-HDMR) meta-

modeling techniques, in order to quantify the impact of each variable on the performance 

function and provide a measure of the correlations among variables. Differing from previous 

works, the sensitivity analysis is performed on the meta-model, not on the original 

expensive function, and the cost of the sensitivity analysis procedure is thus remarkably 

reduced through using computationally cheap sample points rather than original expensive 

ones. The results of our family design will be compared to the results obtained by Dai and 

Scott [27] and Ninan and Siddique [41]. Further comparisons are also made to the PPCEM 

and VBPDM in the later stages of our study, and conclusions are made on the performance 

of our method in terms of the level of commonality obtained, the objective function value, 

and the computational effort needed for making platform configuration decisions. 

4.1. Introduction 

As indicated in the literature review, product family design is an efficient strategy for 

increasing the manufacturing cost savings through commonalizing the 

components/variables or functions in different products, while attempting to maximize the 

diversity in order to gain more market shares. Product family includes a group of related 

products, called variants, which are differentiated from a group of common functions, 

components, modules, or sub-systems (i.e., a platform) to serve different market segments’ 

needs. The challenge in designing a product family relates to the increased complexity 

resulting from the added task of finding the components to be shared, and assigning them 

common values that would increase commonality among family members without 

sacrificing their individual performance [69]. 
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Many studies have imposed restrictions such as pre-determined platform 

architecture, assuming single-platform cases in which, each platform variable is either 

shared across the entire product family or is kept unique for each variant without any 

sharing. Our proposed approach does not impose the limitation of pre-determined platform 

architecture, and finds the optimal configuration based on information about the impact of 

each variable on the aggregated performance function. It also allows multiple-platform 

product design, in which the design variables can be shared among any subset of product 

variants within the family. The approach possesses a number of similarities to the proposed 

design method developed by Dai and Scott; however, we will show that our proposed 

method can perform more efficiently for the same test problem, in terms of the aggregated 

performance of the family, as well as the obtained level of commonality. 

The major difference is that our proposed method only requires the function values 

to decide on the platform configurations (as compared to leveraging gradient-based 

techniques as some of the references do).  Also under the assumption of expensive black-

box evaluation, our approach presents greater efficiency due to the use of efficient 

metamodeling strategy as compared to evolutionary algorithms, which normally require 

many function calls.  Therefore our method can be claimed to be the first of its kind to 

tackle expensive black-box problems in family design.  

To explain this in more detail, it is elaborated on the following two important 

aspects: 

1. Higher efficiency as compared to population-based algorithms: Our 

proposed method is shown to be more efficient than population-based algorithms 

due to the frugal sampling and knowledge gained through metamodeling. It is thus 

believed to be applicable to black-box functions with acceptable cost. 

2. Independence from gradient information: The joint problem adds complexity to 

the initial problem by defining new variables and new constraints accountable for 

the sharing cases among the variants. Therefore, relaxation into continuous space 

is a remedial action to cope with the added complexity of such discrete commonality 

variables. As noted by Khajavirad and Michalek [38], "while GAs (Genetic 
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algorithms) offer global search, their stochastic nature limits the ability to 

ensure local or global optimality, and requires significant time for parameters tuning. 

Therefore, for cases where variant design can be analytically formulated, gradient-

based methods are preferred in that they guarantee at least local optimality and 

global optimality for convex problems, and are computationally efficient." This 

obviously indicates on the need for either population-based methods, or shifting to a 

gradient-based optimization method. Since the method proposed in this dissertation 

not only does not add further variables for potential sharing cases, but also does not 

need the problem to be analytically formulated, therefore, use of gradient-based 

methods is not necessary and the method can be applied to black-box problems 

with less difficulty. 

Among other developed approaches that are explained in Section 2.3, CP3 [34] is 

of superiority in terms of its greedy look to performance optimization. However, while the 

CP3 framework can be generally applied to all types of design problems such as MDINLP, 

but its required number of evaluations and complexity will be remarkable due to the added 

commonality variables/constraints, which is a challenge for black-box type of problems. In 

the best case, an approximation of the black-box shall be provided for further proceeding 

with that approach. Therefore, our proposed approach and CP3 framework differ from each 

other in terms of their challenges when being applied to black-box design problems. 

There are limited studies addressing the family design for black-box problems. The 

work by Fellini et al. [70] leveraged a surrogate model for designing a family of three 

automotive engines, by using radial basis function artificial neural network and sampling 

from a Latin Hypercube design of experiments. Also, Fellini et al. [45] have recommended 

approximating three to four-variable simulations (for automotive powertrain models) and 

using Kriging approximations towards generating Pareto sets and optimizing the power 

train family. The other notable study is Simpson et al. work [71], which employed second 

order response surface models to approximate the mean and standard deviation of 

performance parameters towards robust design of a family of aviation aircraft. This 

approach focuses on designing scalable families through minimization of the noise that is 

the variations in the scale factor. 
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4.2. The proposed method 

The following steps form the proposed method in this dissertation: 

1.  Individual optimization of the variants 

Through optimizing each variant, the set of optimal values for each variable as well 

as the optimal values of the performance function are obtained for further use in 

later stages of platform configuration. 

2. Sensitivity and correlation (detachability) analysis 

Through applying the RBF-HDMR and RS-HDMR meta-modeling techniques, the 

information about sensitivity of each variable and its quantified correlation with other 

variables will be obtained and will be used for platform candidate set selection. 

3. Platform candidate set selection 

Decision points will be determined to allow selection of appropriate variables for 

sharing, by selecting the variables with desired sensitivity value and level of 

correlations. 

4. Platform members and value(s) selection 

The decision on single vs. multiple platforms and the preferred value for each 

platform or sub-platform will be made, based on a proposed partitioning strategy. 

5. Entire family design optimization 

The selected platform and sub-platforms values are fixed, the family variants design 

will be optimized with the remaining variables 

6. Performance evaluations 

The family performance will be compared to the individual performance of each 

variant.  

If the performance loss is unacceptable, the variable with the highest sensitivity is 

excluded from the platform set and the variants are optimized with the new set of 
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scale variables. This procedure is repeated until the desired performance is 

obtained for the whole family. 

The proposed method has common steps with a number of the existing methodologies, 

including the initial and Steps 5 and 6. However, as a result of applying the differentiating 

steps of this methodology, the obtained platform configurations and the family design 

solutions would be different from the literature.  The flowchart of this approach is shown in 

Figure 4-1. 

 

Figure  4-1: Flowchart of the proposed family design method 

Step 1: Individual optimization of variants 

The general form of the design optimization problem is: 
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∀ 𝑖 = 1,2, . . , 𝑚 

Find 𝑥𝑖 = {𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑘
𝑖 } 

To minimize 𝐴𝑂𝐹(𝑥𝑖, 𝑝𝑖) 

s.t.: 

𝑔𝑗(𝑥𝑖 , 𝑝𝑖) < 0, 𝑗 = 1,2, … , 𝑛 

(4-1) 

 

 

𝑥𝐿
𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑈

𝑖  

 

 

This definition is adopted from [27], and the aggregated objective function (AOF) is a scalar 

function that aggregates the preference functions of the problem, combining the multiple 

performance objectives and integrating all different performance targets into a single 

objective function, so that a measure of overall performance for each design solution can 

be obtained. 𝑔𝑗(𝑥𝑖, 𝑝𝑖) represents the design constrains on the ith product in the family, and 

𝑥𝐿
𝑖  and 𝑥𝑈

𝑖  are the lower and upper bounds for a given design variable, 

Aggregated Objective Function (AOF) 

The adopted AOF in this study is the same as the AOF used in Dai and Scott’s 

study, following the form of: 

    𝒫𝑠 = (
𝜔1𝛼1

𝑠+𝜔2𝛼2
𝑠

𝜔1+𝜔2
)

1
𝑠⁄      (4-2) 

Where  𝜔1  and 𝜔2 are is the relative importance of each preference function 𝛼𝑖; s is 

a measure of level of compensation; and 𝒫𝑠 is the aggregated preferences function which 

has included all the objectives of interest into a single objective function. As noted by Dai 

and Scott [27], adjustment of the set of these decision parameters (i.e., p =  ω1, ω2, s, α1, α2 ) 
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will result in the best platform decision. However, the efficacy of the method does not 

depend on an optimized set of such parameters. The selected values for the test problem 

in our study are adopted from the same research study, as follows: 

 𝜔1, 𝜔2  = (0.5, 0.5)  

𝑠 = −1 
(4-3) 

The preference functions 𝛼𝜂 and 𝛼𝑀 will be explained for the used test problem in 

later sections. 

Step 2: Platform candidates set selection 

2-a) RBF-HDMR  

The technique used in this stage is driven from the method proposed by the authors 

for decomposing HEB (high dimensional expensive black-box) functions. The main strategy 

and techniques for this part are briefly presented in this section. 

In many of the physical systems and phenomena, the system output is dependent 

on several input variables. For many systems, such dependencies might be unknown and 

finding the structure of such relations can be quite challenging. The widely used technique 

for addressing this issue is interpolation of a mathematical model based on sampling a 

number of output points. However, the required number of samples grows exponentially in 

order to obtain the desired modeling accuracy, and extensive sampling can impose 

remarkable computational costs to the system. High Dimensional Model Representations 

(HDMR) follows the general form of:   

𝑓(𝑥) = 𝑓0 + ∑ 𝑓𝑖(𝑥𝑖)

𝑑

𝑖=1

+ ∑ 𝑓𝑖𝑗(𝑥𝑖, 𝑥𝑗)

1≤𝑖<𝑗≤𝑑

+ ∑ 𝑓𝑖𝑗𝑘

1≤𝑖<𝑗<𝑘≤𝑑

(𝑥𝑖 , 𝑥𝑗, 𝑥𝑘) + ⋯

+ ∑ 𝑓𝑖1𝑖2⋯𝑖𝑙

1≤𝑖1<⋯<𝑖𝑙≤𝑑

(𝑥𝑖1
, 𝑥𝑖2

, ⋯ , 𝑥𝑖𝑙
) + ⋯ + 𝑓12⋯𝑑(𝑥1, 𝑥2, ⋯ , 𝑥𝑑) 

(4-4) 

where 𝑓0 is a constant value, representing the zero-th order effect on 𝑓(𝑥). 𝑓𝑖(𝑥𝑖) is the first-

order effect, i.e., the effect of the variable 𝑥𝑖 acting independently on the output 𝑓(𝑥), which 
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can be linear or non-linear. Second-order effect 𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗) is the residual correlated 

contribution of variables 𝑥𝑖 and 𝑥𝑗 on 𝑓(𝑥) after accounting their first-order contributions 

through the first-order components. Other correlated effects are represented similarly by 

the corresponding components. A fundamental feature of HDMR expansion is that the 

component functions are orthogonal and are the optimum reflectors for the input 

contribution to the output. In practice, it is shown that in most of the cases, high-order 

component functions have small effects and the HDMR expansion can be reduced to a 

second-order expansion [72]. 

𝑓(𝑥) = 𝑓0 + ∑ 𝑓𝑖(𝑥𝑖)

𝑑

𝑖=1

+ ∑ 𝑓𝑖𝑗(𝑥𝑖, 𝑥𝑗)

1≤𝑖<𝑗≤𝑑

 (4-5) 

The RBF-HDMR leverages the RBF function to model each of the component 

functions in the HDMR model [73]. Test points are used to identify the needed component 

function and then sample points are added adaptively until the desired accuracy is 

achieved. In this way, when there is no correlation between two specific variables, the 

corresponding component is not built in the model and there is no need to sample in the 

corresponding sub-space.  

Sensitivity and Detachability Analysis 

The strategy of our proposed PFD method starts from modeling the black-box 

function by the RBF-HDMR technique, and then the RS-HDMR is used for easing the 

calculation of sensitivity indices that were introduced by Sobol [74], and Alis and Rabitz 

[75].  The existing studies on RBF-HDMR show that the variable correlations and the 

relative strengths of the correlations are estimated well by this technique [67]. The HDMR 

component functions are built one-by-one from one-dimensional to L-dimensional 

components based on the complexity of the problem, and the sampling for the 

corresponding lines, planes and hyper-planes are continued until a pre-defined accuracy is 

met. Based on the obtained information, the variables with sufficiently low sensitivity can be 

selected as platform candidates. Other pieces of information that are useful for platform 
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candidate set selection include the correlations of each variable to the rest of variables. 

This parameter can show the variables that are more isolated and have less mutual effect 

with the rest of variables, and in case that a variable has low sensitivity and low 

correlations, it can be one of the most appropriate candidates to be considered for platform 

configuration. Also the coefficient of variation is leveraged for the vector of individual 

optimal values of each variable, in order to identify the relative freedom of sharing that 

variable vs. sharing other variables. Among the platform candidate set members, the 

variables with lower coefficient of variation are better candidates to take common values, 

indicating that less performance loss would result from sharing that variable.  

In comparison to other meta-modeling approaches, RBF-HDMR can significantly 

reduce the number of expensive function calls (i.e., simulations) for constructing the meta-

model of HEB problems, thus reducing the computational intensity. RBF-HDMR helps to 

reveal the functional form of the black-box function, and provides qualitative information 

about the variable correlations [76]. The authors developed an strategy called 

“decomposition of HEB problems through quantified correlation” to tackle the HEB 

challenge by quantifying the variables correlations for “black-box” objective function, and 

then used such information toward decomposing and optimizing HEB problems. The 

proposed method is shown to overcome the limitation of RBF-HDMR for decomposition in 

[67] through capturing the information about the most important input variables and 

correlations. The strength of the variable correlations is obtained by applying the Sobol 

sensitivity analysis method to the RBF-HDMR meta-model. The main novelty of this part is 

performing sensitivity analysis on basis of the variable structure uncovered by RBF-HDMR. 

Empirical results show that the results of sensitivity analysis on RBF-HDMR meta-model 

are sufficiently close to those implemented on the black-box function [67].  

2-b) Obtaining the sensitivity information 

For the sensitivity analysis, RS-HDMR meta-model is built and its component 

coefficients are used to calculate Sobol sensitivity indices [75]. The sensitivity indices are 

used as the input in a two dimensional matrix, 𝑆, in which the diagonal components 

represent the variables intensities (their independent impact on the performance), and the 
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off-diagonal components show the intensities of the variable correlations. Note that 

although the RBF-HDMR meta-model is built for all of the existing orders of correlations, 

the sensitivity analysis is performed on the second order, and the higher orders are 

neglected, following the observations in [72, 77], i.e., the less important correlations are 

removable and smaller sub-problems can be obtained to reduce the computational cost. 

The efficiency of this approach has been evaluated for eight problems in [67] and according 

to the comparisons presented in that study, the proposed decomposition-based 

optimization technique is of high efficiency in terms of accuracy of modeling and the 

number of needed function calls. The same idea has been used in the product family 

design study here, for identifying the variables with the lowest to highest impact on the 

objective function. The variables with sufficiently low sensitivity are candidates for entering 

a platform and taking a shared value to enable commonalization.  

The required steps and decisions for platform candidate selection are as follows: 

a) Sensitivity Indices ranking:  Based on the heuristically determined sensitivity index 

(SI) threshold, the variables for which the average SI value (ASI) is lower than the 

ASImin, are selected and recorded as a platform candidate set. This set is called set 

#1. 

b) Detachability ranking: Since the variables with small correlations to other variables 

can have small mutual effects on the objective function and are more isolated with 

more independence from other variables, paying attention to the correlations can 

help to reduce the performance loss through commonalization. Through sorting the 

global correlation measures in a non-descending order, the variables with 

sufficiently low correlation to the rest of variables are identified and recorded as the 

second platform candidate set (set #2).  

c) Ultimate candidate set selection: The intersection of these two sets will result in the 

finalized set of variable candidates for platform configuration. Such variables are 

guaranteed to result in the least possible performance loss in case of 

commonalization, as well as their little impact on the design, if being considered as 

a constant and excluded from the variables set. 
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d)  The ultimate set will be sorted in non-descending order of the GSI values, and will 

be assessed for commonalization based on the partitioning strategy that will be 

presented in the next step.  

Step 3: Platform value(s) determination  

The basic idea to determine the common value for each candidate variable is to 

leverage the coefficient of variation (CV) parameter information. The CV for a single 

variable aims to describe the dispersion of the variable in a way that does not depend on 

the variable's measurement unit. This idea is taken from the robust design principles which 

have been addressed and applied to the product family design by Simpson et al. [71]. 

Although this idea is used here with some modification and simplifications, the main logic 

behind both are the same, i.e., to attempt to keep the mean of the new design as close as 

possible to the target mean, and to minimize the deviation in separate goals. The robust 

design in their study attempts to adjust some control factors through a compromise 

decision support problem (DSP). However, since it is necessary to commonalize the 

platform candidates among the appropriate variants, and since the attempt is to achieve the 

minimum performance loss, the idea of using the standard deviation and mean of the 

individual optimal values are adopted from [71] and modified for suiting our purposes in this 

study.  

The coefficient of variation is preferred to the standard deviations in this study and 

the reason is that the standard deviations of two variables cannot be compared to each 

other meaningfully to determine which variable has greater dispersion. As a result, since 

the design variables are of different units and fall within a diverse range of design bounds, 

in order to be able to treat them equally in the platform candidate selection procedure (as 

well as the platform value determination decisions), CV is calculated for each candidate, 

taking the individual optimal values for that variable into account. Let the matrix P represent 

the optimal values for the design variables (j=1…, m) over the entire family of p products, 

obtained from the first step when no platform has been used. 
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𝑥𝑖
∗𝑗

: The optimal value of ith product for the jth variable 

𝑃 = [
𝑥1

∗1 ⋯ 𝑥1
∗𝑚

⋮ ⋱ ⋮
𝑥𝑝

∗1 ⋯ 𝑥𝑝
∗𝑚

] 

(4-6) 

The equation of this parameter is shown in Equation (4-7): 

 CV =
σ

μ
∗ 100% (4-7) 

 𝐶𝑉 = [
𝜎(: ,1)

𝜇(: ,1)
∗ 100% ⋯

𝜎(: , 𝑚)

𝜇(: , 𝑚)
∗ 100%] (4-8) 

Where 𝜎 and 𝜇 are the standard deviation and mean operators, respectively. A 

higher value of this parameter indicates more dispersion of the vector values.  Since the 

units of the standard deviation and mean of a variable are the same, taking the ratio of 

these two cancels the units.   

By using this parameter as a reference for the platform member selection, the 

commonalization scheme is expected to result in the least possible deviation of the variants 

from their individual optimal value. This strategy allows single platform configuration for the 

variables with sufficiently low CV value, and attempts to identify the minimum number of 

multiple platforms with a desired average CV after clustering. This strategy is referred to 

here as the optimal partitioning strategy, which includes a clustering step, and then 

assigning the desired value to each platform or sub-platform. 

3-a) Clustering for determining the platform members 

The tool used for clustering for multiple platforms is the k-means clustering analysis. 

This technique is popular for cluster analysis in data mining, which partitions 

the observations into k clusters. This technique allows clustering a set of data into k 
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clusters, and the clusters are formed through an iterative algorithm that minimizes the sum 

of distances from each object to its cluster centroid, over all clusters. The algorithm finds a 

partition in which objects within each cluster are as close to each other as possible, and as 

far from objects in other clusters as possible. Each observation or data point is treated as 

an object with a location in space, and each resulting cluster has a centroid, to which the 

sum of distances from all objects in that cluster is minimized [78]. Different measures can 

be used to compute cluster centroids, and k-means minimizes the sum with respect to the 

specified measure.  The objects are moved between clusters by this technique until the 

sum cannot be decreased further. The result is a set of clusters that are as compact and 

well-separated as possible. 

In order to decide the best value assigned to each single platform and sub-platform, 

the individual optimal values from the first step are used for considering different clusters 

and identifying the best number of clusters that would result in the desired average 

coefficient of variation. As mentioned earlier, the main basis for deciding on the platform 

configurations is the ASI. As per our set strategy, for a member of the platform candidate 

set that has a GSI value less than 0.025, the single platform configuration is suggested in 

our approach. For the variables with ASI ∈ [0.025, 0.05], the clustering analysis will be 

performed and the smallest possible number of sub-platforms will be selected. It should be 

noted that the GSI range is depending on the problem under study, and the decision points 

are heuristically determined for the applied test problem. 

 In order to achieve the optimum platform configuration, the sub-platform members 

are selected such that the average of sub-CV values (i.e., the new CV values for the 

resulting clusters) will be less than a particular value. Through applying this criterion, for 

each of the variables under consideration, the proximity of the sub-platform members’ value 

to their individual optimal value is guaranteed. Also, the unnecessary granulation of the 

platform can be avoided through starting from one cluster and considering more clusters 

until meeting the stop criteria. Since more sharing is desired for commonality improvement 

objectives, as soon as a desired level of reduction in the total CV is obtained (i.e., the stop 

criterion for the clustering section), the partitioning or clustering can be terminated. 
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If the average sub-CV values is not sufficiently reduced until several clusters are 

considered, the underlying variable is excluded from platform set and will be considered as 

a scale variable for preserving performance of the variants. Two reasons can be noted for 

this decision: 

1) It is assumed that there is little advantage having too many sub-platforms, each 

consisting of very few variants, since it defeats the purpose of product family design.  For 

instance, if five clusters are allowed for a 10-variant family, the number of possible values 

for each variable is then reduced from ten to five.  If considering only one variable, the 

number of set-ups for manufacturing the 10-variant family will be reduced by 50%.  

Therefore, when the clustering analysis does not result in the expected CV reduction, it 

indicates that commonalization would be of little or no benefit and the performance loss 

would be too much to commonalize that variable.  This Sub-CVmin value can be fine-tuned 

for the best trade-offs in terms of production cost and commonality target. 

2) In case of having chosen an inappropriate candidate variable from Step 2, the 

assessment of the average CV value can reveal the nature of the variable and thus avoid 

commonalization of this variable. 

3-b) Platform and sub-platform values determination 

Recall that the partitioning strategy uses k-means algorithm to cluster the individual 

optimal values (of the multiple platform candidates) into different number of clusters, and 

for each variable under study, the variants in each sub-platform are determined based on 

assessment of the average coefficient of variation. 

To illustrate the procedure of selecting a common value for each sub-platform (i.e., 

a set of variants sharing a variable), the following mathematical presentations are 

necessary. Let the matrix P represent the optimal values for the variants from the first step. 

The sensitivity vectors for each product are obtained through the RBF-HDMR and RS-

HDMR, and those vectors are then collected into a matrix we call Sensitivity  

Index or SI: 
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 𝑆𝐼 = [
𝑆𝐼1

∗1 ⋯ 𝑆𝐼1
∗𝑚

⋮ ⋱ ⋮
𝑆𝐼𝑝

∗1 ⋯ 𝑆𝐼𝑝
∗𝑚

] (4-9) 

For the test problem of this study, there are eight variables and ten product variants, 

therefore the matrix P will have ten rows and eight columns.  

For a given variable 𝑥𝑖, assume that the following clusters are suggested through 

the partitioning scheme, which is shown as an example below with 2 clusters or sub-

platforms: 

𝑠𝑢𝑏𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚1 = {𝐏𝟏, 𝐏𝟐, . . . , 𝐏(𝐢)}   

𝑠𝑢𝑏𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚2 = {𝐏(𝐢 + 𝟏), 𝐏(𝐢 + 𝟐), … , 𝐏(𝐩)}  

According to this information, now two values should be determined for 𝑥𝑖, one to be 

shared by the first five products, and the second one as the platform value for products 

number six to ten.  The common value for the corresponding variants (in the first sub-

platform) are selected from the following set of values:  

W ={ 𝑊1
1 =

(∑ 𝑆𝐼𝑘
𝑖 ∗𝑥𝑘

∗𝑖5
𝑘=1 )

∑ 𝑆𝐼𝑘
𝑖5

𝑘=1

; 𝑊1
2 =

(∑ 𝑥𝑘
∗𝑖5

𝑘=1 )

5
; 

𝑊1
3 = 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑; 𝑊1

4 =  𝑆𝐼𝑘
𝑖

𝑥𝑘
∗𝑖

arg max
 , (𝑘 = 1 𝑡𝑜 5)} 

(4-10) 

The common value for the corresponding variants in each sub-platform for a 

platform variable are selected from the following set W including the cluster centroid, a 

weighted sum of members (i.e., the local sensitivity indices are used as weights), the 

average of optimal values, and the individual optimal value of the variable, for the variant 

that has the highest local sensitivity in that sub-platform. The platform/sub-platform will take 

the value shown in Equation (4-12).  
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𝐹𝑜𝑟 𝑧 = 1 𝑡𝑜 4:  

 𝑆𝑈𝑀𝑧 =  ∑|𝑊1
𝑧 − 𝑋𝑠𝑢𝑏𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚1

∗1 | 

(4-11) 

 𝑥𝑠𝑢𝑏𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚1
∗1 = 𝑆𝑢𝑚𝑧𝑊1

𝑧
arg min

 (4-12) 

𝑋𝑠𝑢𝑏𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚1
∗1  represents the vector of optimal value of 𝑥1 in the first sub-platform 

which includes five variants. 𝑆𝑈𝑀𝑧 is the summation of the absolute value difference 

between 𝑊1
𝑧 and each member of the sub-platform vector. Equation (4-12) shows which 

option among the four candidates, 𝑊1
𝑧 (𝑧 = 1 … 4), will be selected as the common value for 

𝑥1 in the first sub-platform.  A flowchart of the whole partitioning and commonalization 

strategy is shown in Figure 4-2. The steps are numbered to show the order of proceeding 

through the flowchart. 

Step 4: Entire family design optimization 

After obtaining the optimal configuration and the values assigned to the platform 

variables, the design problems with a fewer number of variables will be obtained for each 

variant, which will be optimized similar to Step 1, with the following problem definition: 

 

∀ 𝑖 = 1,2, . . , 𝑝 and given the fixed platform from Step 3 

Find 𝑥𝑛𝑜𝑛−𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚(𝑁𝑃)
𝑖 =  𝑥𝑁𝑃1

𝑖 , 𝑥𝑁𝑃2

𝑖 , … , 𝑥𝑁𝑃𝑚−𝑁

𝑖   

To minimize 𝐴𝑂𝐹(𝑥𝑖, 𝑣𝑖) 

                              S.T.: 

𝑔𝑗(𝑥𝑖, 𝑣𝑖) < 0, 𝑗 = 1,2, … , 𝑛 

 

(4-13) 
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𝑥𝐿
𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑈

𝑖  

Where 𝑥𝑁𝑃
𝑖  is the non-platform variable for the ith variant, and N is the number of 

platform variables that are now fixed. 

Step 5: Performance evaluation 

The obtained objective function value of each variant will be compared to the 

individual optimal target values and if the performance change is within the allowed range 

(i.e., maximum of 10% loss according to the previous studies for the same design problem), 

the design can be accepted for the family. 

In case of violating the performance requirements (obtaining infeasible design), the 

following strategy will be implemented until a feasible design is obtained: 

(1)  Considering multiple sub-platforms instead of a single platform, adjust the value of 

individual variable in order to reduce the variation from the individual optima among the 

new sub-platform members. 

(2)  Increase the degree of freedom by adding to the number of non-platform variables, 

i.e., excluding the last member in the platform candidate set, and optimizing the variant 

with the new set of non-platform variables. 

In summary, this chapter provided the details of the proposed product family design 

methodology of this dissertation, which is different from the existing methods from two 

aspects, i.e., leveraging a meta-model based sensitivity analysis technique, which 

results in less number of function evaluations needed, and applicability to simulation-

based design problems which are expensive and complex to handle by other existing 

PFD methodologies. 
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Figure  4-2: The partitioning strategy for finding platform members and values 

 

In the next chapter, this methodology will be applied to a test problem, and its 

performance will be discussed from aspects such as the percentage of performance 

loss as well as the obtained commonality. 
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Chapter 5. Application of the proposed PFD method 
to universal electric motors family design 

In this chapter, the performance of the proposed approach in Chapter 4 is tested by 

designing a family of scalable products. A family of universal electric motors with a scalable 

product platform includes ten universal electric motors, which are supposed to meet ten 

market segments’ needs by affording specific power and unique torque values for each 

variant. The desired market segmentation grid is created by Simpson et al. [30] for this 

problem, and the same definitions and design ranges are adopted here.  The entire 

problem specifications can be found in Appendix A. 

Since ten separate preference functions exist for mass depending on the torque 

requirement, the objective function of each product in the family will be unique. The mass 

preference for each motor indicates that the closer the mass value gets to the value shown 

in row two of Table 5-1 (adopted from the literature), the higher value is obtained for the 

mass preference function, and considered completely satisfactory, while any mass above 

the value shown in the third row of the table for that variant is of no preference and 

considered unacceptable. These limits are determined based on different torque 

requirements, with 0.05 added to both upper and lower limit [27].   

Table  5-1: Mass range for different torques (Kg) 

Variant 1 2 
 

3 4 5 6 7 8 9 
1

0 

Best 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 

Worst 1.75 1.8 1.85 1.9 1.95 2.0 2.05 2.1 2.15 2.2 

The preference functions derived from the performance targets are defined as 

follows: 
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5.1. Application of the methodology 

As explained in later parts of section 4.2, in order to integrate various objectives of 

interest into a single objective function, the aggregated objective function (AOF) concept is 

used here as well, which allows defining preference functions for each objective of interest, 

and then integrating them into a single statement through use of weights for each 

preference function, as well as applying a parameter called level of compensation (s). 

Preference functions (α):  

Efficiency (η): 

 𝛼𝜂 =  
𝜂 − 0.15

0.7 − 0.15
 (5-1) 

Mass (M):  

Depending on the desired torque for the motor, the acceptable range of mass will 

be different, as Table 5-1 shows. The preference function follows Equation (5-2). 

 𝛼𝑀 =  
𝑀𝑤𝑜𝑟𝑠𝑡 − 𝑀

𝑀𝑤𝑜𝑟𝑠𝑡 − 𝑀𝑏𝑒𝑠𝑡
 (5-2) 

Step 1: Individual optimization of variants 

At this step, each variant is optimized for its specific objective function. The 

abbreviations used over the rest of the paper are shown in Table 5-2. 

Table  5-2: The abbreviations used for the proposed approach details 

m 

n 

k 

Number of variants in the family 

Number of constraints 

Number of design variables 

SI 

QC 

CV 

Sensitivity Index 

Quantified Correlation 

Coefficient of Variation 



 

72 

 

The algorithm used for optimizing the variants is Sequential Quadratic Programing 

(SQP) and the results of individual optimizations are shown in Table 5-3. 

Table  5-3: Individual variant design optimization solutions 

Variant 
----------

- 
Design 
Variabl

e 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

𝑵𝒄 144 155 159 162 164 165 165 165 164 159 

𝑵𝒔 324 413 443 467 500 500 500 500 500 500 

𝑨𝒘𝒂 0.2586 0.2639 0.2703 0.2762 0.2812 0.2813 0.2836 0.2855 0.2879 0.2899 

𝑨𝒘𝒇 0.2586 0.2640 0.2703 0.2762 0.2812 0.2813 0.2836 0.2855 0.2879 0.2899 

𝒓𝟎 17.338 20.02 21.08 21.96 23.29 24.38 25.31 26.19 26.90 28.05 

𝒕 4.2896 5.2437 5.6543 5.9787 6.3827 6.4764 6.5883 6.7481 6.866 7.067 

𝑰 3.0314 3.2485 3.3314 3.4062 3.5670 3.7142 3.8569 3.9931 4.127 4.439 

𝑳 18.897 21.278 22.054 22.793 24.302 26.571 28.521 30.084 31.59 33.94 

𝜂 0.8605 0.8030 0.7830 0.7658 0.7313 0.7023 0.6763 0.6532 0.6320 0.5876 

𝑀 0.2960 0.4347 0.4968 0.5547 0.6509 0.7396 0.8215 0.8991 0.9717 1.0899 

AOF 1.2805 1.1821 1.1433 1.1082 1.0447 0.9883 0.9376 0.8905 0.8467 0.7669 

Sensitivity index values for each variable in each variant are obtained through 

building the RBF-HDMR meta-model of the objective function, and then performing the 

sensitivity analysis on the RS-HDMR model, and modifying the Sobol sensitivity indices to 

quantify the correlations. The values for each variant are obtained from the diagonal 

elements of the matrix S which is representing the variation explained by each variable. An 

average SI is calculated for each variable afterwards, which is the average of the ten local 

SI values. The obtained local and average SI’s are presented in Table 5-4. The design 

variables of interest and the ranges include: 

1. Number of turns of wires on the armature (100 ≤ 𝑁𝑐 ≤ 1500) turns 

2. Number of turns of wire on each field pole (1 ≤ 𝑁𝑠 ≤ 500) turns 

3. Cross-sectional area of the wire used on the armature (0.01 ≤ 𝐴𝑤𝑎 ≤ 1.0) 𝑚𝑚2 

4. Cross-sectional area of the wire used on the field poles (0.01 ≤ 𝐴𝑤𝑓 ≤ 1.0) 𝑚𝑚2 

5. Radius of the motor (10 ≤ 𝑟0 ≤ 100 𝑚𝑚) 

6. Thickness of the stator (0.5 ≤ 𝑡 ≤ 10 𝑚𝑚) 
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7. Current drawn by the motor (0.1 ≤ 𝐼 ≤ 6.0 𝐴𝑚𝑝) 

8. Stack Length (1 ≤ 𝐿 ≤ 100 𝑚𝑚) 

Step 2: Platform candidates set selection 

The information about correlations and mutual effect of variables is also used in the 

selection of candidates for platform configuration. The variables with small correlations to 

the rest of variables can be more freely detached from other variables, and assuming a 

fixed value for them will have less significant impact on the performance or objective 

function, as compared to a variable that is highly correlated to the rest of design variables. 

The off-diagonal elements of matrix S represent the correlations among variables. The 

quantified correlations are presented in Table 5-5.  This information can be used toward 

selecting candidates to form a platform. Variable 7 is the current, so it is excluded from 

platform candidate considerations, since it is a state variable rather than a manufacturing 

variable. In other words, there is no manufacturing advantage in holding current as a 

platform [41]. 

Table  5-4: Local and Average sensitivities of variables 
Design Variable 𝑵𝒄 𝑵𝒔 𝑨𝒘𝒂 𝑨𝒘𝒇 𝒓𝟎 𝒕 𝑰 𝑳 

SI(1) 0.0022 0.0199 0.0112 0.0266 0.0737 0.0058 0.1344 0.0603 

SI(2) 0.0213 0.0444 0.0133 0.0233 0.0717 0.0216 0.1742 0.0479 

SI(3) 0.0214 0.0431 0.0133 0.0256 0.0722 0.0217 0.1675 0.0495 

SI(4) 0.0216 0.0421 0.0134 0.0280 0.0727 0.0218 0.1617 0.0511 

SI(5) 0.0217 0.0411 0.0134 0.0302 0.0732 0.0219 0.1565 0.0526 

SI(6) 0.0217 0.0402 0.0134 0.0324 0.0737 0.0220 0.1519 0.0540 

SI(7) 0.0218 0.0395 0.0134 0.0345 0.0741 0.0221 0.1478 0.0554 

SI(8) 0.0219 0.0388 0.0134 0.0366 0.0745 0.0222 0.1441 0.0568 

SI(9) 0.0219 0.0382 0.0135 0.0386 0.0749 0.0223 0.1408 0.0581 

SI(10) 0.0219 0.0376 0.0135 0.0406 0.0753 0.0223 0.1378 0.0593 

Average SI 

(ASI) 
0.0197 0.0385 0.0132 0.0316 0.0736 0.0204 0.1517 0.0545 
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Table  5-5: Correlations and mutual effects 

Design Variable 𝑵𝒄 𝑵𝒔 𝑨𝒘𝒂 𝑨𝒘𝒇 𝒓𝟎 𝒕 𝑰 𝑳 

QC(1) 0.0123 0.0175 0.0129 0.0177 0.0139 0.0201 0.0173 0.0201 

QC (2) 0.0123 0.0175 0.0129 0.0177 0.0138 0.0200 0.0173 0.0200 

QC (3) 0.0123 0.0174 0.0129 0.0177 0.0138 0.0200 0.0173 0.0200 

QC (4) 0.0122 0.0174 0.0129 0.0176 0.0137 0.0199 0.0172 0.0199 

QC (5) 0.0121 0.0173 0.0128 0.0176 0.0136 0.0198 0.0172 0.0198 

QC (6) 0.0121 0.0173 0.0128 0.0175 0.0135 0.0197 0.0171 0.0197 

QC (7) 0.0120 0.0172 0.0128 0.0174 0.0134 0.0196 0.0170 0.0196 

QC (8) 0.0119 0.0171 0.0127 0.0173 0.0133 0.0195 0.0169 0.0195 

QC (9) 0.0118 0.0170 0.0126 0.0172 0.0132 0.0194 0.0168 0.0194 

QC (10) 0.0117 0.0169 0.0126 0.0171 0.0131 0.0193 0.0167 0.0193 

Global QC 0.0121 0.0173 0.0128 0.0175 0.0135 0.0197 0.0171 0.0197 

Step 3: Platform value(s) determination 

The first part of this step is to find the orders of SI and detachability of the design 

variables, as well as their coefficient of variation. The information being used toward this 

decision making stage is shown in Table 5-6. 

Table  5-6: SI, correlation, and Coefficient of Variation- the universal motor problem 

Parameter Vector value 
Non-descending sorted index 

of variables 

ASI 
[0.0197 0.0385 0.0132 0.0316 0.0736 0.0204  0.1517 

0.0545] 
[3     1     6     4     2     8     5     7] 

Correlation 
[ 0.0121 0.0173 0.0128 0.0175 0.0135 0.0197 0.017 

0.0197] 
[1     3     5     7     2     4     6     8] 

CV [ 4.12 12.51 3.77 3.76 14.34 13.98 11.91 18.98] [3     4     1     7     2     5    6     8] 

 

The selected values to serve as thresholds for SI and QC are presented in Table 5-

7 and Table 5-8 respectively. It shall be noted that these thresholds are selected 
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heuristically and they can be fine-tuned for increasing the robustness of the resulting 

platform configuration. 

Table  5-7: The applied decision points for platform candidate selection 

GSI range (for each variable) Minimum number of clusters to be assessed 

ASI<0.025 All-or-none platform case 

0.025<ASI<0.05 
Determined through optimizing the partitioning 

scheme 

0.05<ASI Non-platform 

Table  5-8: Decision points for platform candidate selection 

Correlation measure range (for each 

variable) 

Minimum number of clusters to be 

assessed 

QC≤0.0175 
Eligible for platform configuration 

consideration 

0.0175< QC Non-platform variable 

 

Based on the values shown above, the following sets of variables are created: 

Platform candidate set#1: [X3     X1     X6     X4     X2    X8] 

Platform candidate set#2: [X1     X3     X5     X7     X2   X4] 

Intersection of set# 1 & 2: [X1     X2     X3     X4]     

 

As presented in Table 5-9, variables 5, 6, 7, and 8 will be non-platform variables. 

Variables 1 and 3 are assigned to a single platform, since their GSI values are less than 

0.025. ASI. Also, variables 2, and 4 are assessed as candidates of multiple platform 

configurations due to higher sensitivity. Their optimal number of clusters is determined 

based on the partitioning strategy of Figure 2, which is obtained through clustering until the 

resulting average CV of the clusters is less than 0.65 of the initial CV for that variable. 
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Table  5-9: The determined number of platform/sub-platforms for the proposed method 

Variable Number of clusters to be assessed 

1,3 All-or-none platform 

2,4 2 

5,6,7,8 Scale variable 

Table 5-10 shows the selected values for each platform/sub-platform, and the 

members of each sub-platform. As mentioned earlier, the preferred value for a platform or 

sub-platform is selected from the list of average, weighted average (based on local 

sensitivity indices), cluster centroid, and the optimal value of the variant with highest 

sensitivity in each cluster. The chosen value is the one that results in the least total 

absolute differences with optimal individual values of that cluster. 

Table  5-10: Platform configuration based on the proposed partitioning scheme 
Platform Candidate X1 X3 X2 X4 

Number of platforms 

Single platform 

2 2 

Platform variants 
P1: {p1, p2, p3, p4 

P2: p5, p6, p7, p8, p9, p10} 

P1: {p1, p2, p3,  p4, p5, p6, p7 

P2: p8, p9, p10} 

Platform preferred value 162 0.2783 
X2 (P1)=412 X4(P1)=0.2642 

X2 (P2)= 500 X4(P2)= 0.2837 

Step 4: Entire family design optimization 

With the determined platform values, each variant (i.e., family member) can be 

optimized with less number of variables by setting the values of platform variables to the 

fixed values determined in Step 3. The same optimization algorithm has been applied to the 

final stage optimizations as well, that is the SQP algorithm for nonlinear constrained 

optimization subject to the performance requirements. The entire family design is shown in 

Table 5-11, along with the obtained efficiency and mass for each variant, and the 

communalized values are shown in colors. 
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Table  5-11: Platform and scale optimized values based on the proposed partitioning scheme 
Variant 

----------- 

Design 

Variable 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

𝑵𝒄 (x1) 162 162 162 162 162 162 162 162 162 162 

𝑵𝒔 (X2) 412 412 412 412 500 500 500 500 500 500 

𝑨𝒘𝒂(X3) 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 

𝑨𝒘𝒇(X4) 0.2642 0.2642 0.2642 0.2642 0.2642 0.2642 0.2642 0.2837 0.2837 0.2837 

𝒓𝟎(X5) 19.795 20.837 21.377 21.880 23.514 24.601 25.691 25.895 26.886 28.962 

𝒕(X6) 7.455 5.7161 5.489 5.3861 6.7820 6.9324 7.232 6.6546 6.993 7.7845 

𝑰(X7) 3.0425 3.235 3.3196 3.4009 3.6417 3.8120 3.981 4.0211 4.174 4.4929 

𝑳(X8) 13.371 20.095 22.938 25.496 23.686 25.811 27.329 30.500 31.391 31.963 

𝜼 0.8574 0.8063 0.7858 0.7670 0.7163 0.6843 0.6552 0.6487 0.6250 0.5806 

𝑴 0.3017 0.4407 0.5027 0.5611 0.6252 0.7075 0.7827 0.8897 0.9566 1.0749 

𝒇 1.103 1.030 1.011 0.9942 0.9508 0.9132 0.8801 0.8539 0.8282 0.7661 

Step 5: Performance evaluation 

5-a) Comparison to the individual variants design  

Table 5-12 shows the performance change for both efficiency and mass. The 

positive change in efficiency indicates performance improvement, while a positive change 

in mass target indicates performance loss over the reference design solution. For almost all 

of the variants the performance loss is less than 3%, which indicates an allowable level of 

performance loss.  

5-b) Comparison to other approaches 

In order to compare the performance of our proposed approach to the existing 

methods, the percentages of change in mass and efficiency of our proposed family design 

are compared to the platform design approach through sensitivity and clustering analysis 
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by Dai and Scott [27], and the platform cascading approach (PCM) proposed by Ninan and 

Siddique [41].  

Table  5-12: Proposed family solution comparison to the individual optima 

Motor No. 

Individual optima Product Family Solutions Difference (%) 

𝛈 M (kg) 𝜼 M(Kg) 𝜼 M 

1 0.8605 0.2960 0.8574 0.3017 -0.3603 1.9257 

2 0.8030 0.4347 0.8063 0.4407 0.4110 1.3803 

3 0.7830 0.4968 0.7858 0.5027 0.3576 1.1876 

4 0.7658 0.5547 0.7670 0.5611 0.1567 1.1538 

5 0.7313 0.6509 0.7163 0.6252 -2.0511 -3.9484 

6 0.7023 0.7396 0.6843 0.7075 -2.5630 -4.3402 

7 0.6763 0.8215 0.6552 0.7827 -3.1199 -4.7231 

8 0.6532 0.8991 0.6487 0.8897 -0.6889 -1.0455 

9 0.6320 0.9717 0.6250 0.9566 -1.1076 -1.5540 

10 0.5876 1.0899 0.5806 1.0749 -1.1913 -1.3763 

Average Change -1.15% -1.13% 

Since the problem is multi-objective, conclusion on performance of different 

approaches might not be straightforward, particularly when one or some of the objectives 

show performance improvement, while there is performance loss in other objective(s). For 

handling such cases, the family design solution of the previous approaches is plugged into 

our objective function equation, and used the aggregated preference function (AOF) as 

defined in Equation (4-2) to enable comparison. The obtained AOF values for solutions of 

these reference methods are shown in Table 5-13. Table 5-14 shows the comparison of 
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results between our solution and Dai and Scott’s. The details of comparison to Ninan and 

Siddique’s suggested family design are also presented in Table 5-15. 

Table  5-13: The optimal AOF values for the suggested designs in previous publications 

Author | variant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Dai and Scott 
1.086 0.998 0.974 0.947 0.935 0.9067 0.8776 0.8605 0.8352 0.7756 

Ninan 
1.093 1.02 1.01 0.975 0.866 0.7998 0.760 0.729 0.701 0.660 

Table  5-14: Comparison of the proposed family to the solution from [27] 

Motor 

No. 

Dai and Scott’s PFD 

solution 

Product Family 

Solutions 
Difference (%) 

 𝜂 M (kg) 𝜂 M(Kg) 𝜂 M AOF 

1 0.862 0.347 0.8574 0.3017 -0.5336 -13.0548 1.5654 

2 0.713 0.388 0.8063 0.4407 13.0856 13.5825 3.2064 

3 0.70 0.425 0.7858 0.5027 12.2571 18.2824 3.7988 

4 0.671 0.478 0.7670 0.5611 14.3070 17.3849 4.9842 

5 0.6600 0.534 0.7163 0.6252 8.5303 17.0787 1.6898 

6 0.648 0.637 0.6843 0.7075 5.6019 11.0675 0.7169 

7 0.626 0.717 0.6552 0.7827 4.6645 9.1632 0.2849 

8 0.630 0.826 0.6487 0.8897 2.9683 7.7119 -0.7670 

9 0.503 0.879 0.6250 0.9566 24.2545 8.8282 -0.8381 

10 0.560 0.988 0.5806 1.0749 3.6786 8.7955 -1.2249 

Average Change + 8.88% +9.88% +1.34% 

The summarized results of average percentage of difference for sections A and B are 

shown in Table 5-16. The performance loss on the efficiency objective is 1.15% on 

average, while there is a same percentage of reduction on the mass, which is considered 

as improvement.  As a result, this family design solution is acceptable and within allowed 
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performance loss range. The commonality of this design includes two single platforms and 

two multiple platforms, each consisting of two sub-platforms.  

Table  5-15: Results of comparing the proposed family to the suggested family solution in [41] 

Motor 

No. 

Ninan’s PFD solution 
Product Family 

Solutions 
Difference (%) 

𝜼 M (kg) 𝜼 M(Kg) 𝜼 M AOF 

1 0.81 0.35 0.8574 0.3017 5.8519 -13.8000 0.9149 

2 0.80 0.46 0.8063 0.4407     0.7875    -4.1957     0.9804 

3 0.78 0.50 0.7858 0.5027     0.7436     0.5400     0.0990 

4 0.72 0.51 0.7670 0.5611     6.5278    10.0196     1.9692 

5 0.66 0.59 0.7163 0.6252     8.5303     5.9661     9.7921 

6 0.63 0.66 0.6843 0.7075 
    8.6190     7.1970    

14.1785 

7 0.58 0.70 0.6552 0.7827 
   12.9655    11.8143    

15.8026 

8 0.55 0.74 0.6487 0.8897 
   17.9455    20.2297    

17.1331 

9 0.49 0.76 0.6250 0.9566 
   27.5510    25.8684    

18.1455 

10 0.43 0.77 0.5806 1.0749 
   35.0233    39.5974    

16.0758 

Average Change +12.45% +10.32% +9.5% 

In terms of effectiveness (performance improvement), our approach has 8.88% average 

improvement on efficiency, and has 9.88% loss on average on the mass target. The lost 

performance is still acceptable based on the rule of thumb adopted from the literature (i.e., 

less than 10% of loss is allowed), and since the AOF in our proposed approach is on 

average 1.3% better than Dai and Scott’s proposed family solution, it can be concluded that 

a the Pareto set of our design is of similar level of performance to that design.  

Comparison of the proposed design to the PCM approach by Ninan and Siddique [41] 

results in a similar trend, and a 9.5% better value on average on the AOF values indicates 

a more desired Pareto set for the solution obtained through the proposed solution. Such 
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difference between AOFs of the two reference methods can be explained based on the 

difference in orientation of those approaches. 

Table  5-16: The results of comparing the proposed method to references [27, 41] 

Design solution 
Individual 

optimal design 
Dai and Scott’s design Ninan’s design 

Objective 𝜼 M 𝜼 M AOF 𝜼 M AOF 

% Average 

difference 
-1.15% -1.13% + 8.88% +9.88% +1.34% +12.4% +10.2% +9.5% 

Dai and Scott’s approach is quite conservative and obtains commonality through step-

by-step comparisons and performance evaluations, while the PCM method focuses on 

commonalization through the single-platform strategy and its attempt to cascade new 

platforms by the minimum variation from the previous single platforms. Therefore, the better 

performance of our proposed family solution is expected based on our intent of 

performance-preserving, as compared to the PCM design solution. 

5.2. Method verification and improvement 

In order to find the effect of sensitivity analysis on the performance of the proposed 

approach, the plan is to design a test scheme, without taking the SI and correlation 

information into account and using the CV or dispersion information as the only basis for 

selecting platform candidates and finding platform configuration. This consideration has 

resulted in the following scheme, called as “commonality-oriented scheme”. 

Based on the coefficient of variation for the vector of individual values from the first 

step, the variants with the closest optimal values are selected as the candidates for 

platform configuration. The flowchart illustrating this scheme details is shown in Figure 3. 

This test scheme provides higher levels of commonality, and is expected to result in more 

performance loss over the previous scheme (i.e., performance-preserving). However, the 

increased commonality is beneficial per se in terms of manufacturing savings it can create. 

The heuristically chosen thresholds for CV parameter are shown in Table 5-17. 
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Table  5-17: The number of platform(s) to assess for commonality-oriented test scheme 

CV range (for the optimal values 

vector) 
The number of clusters to be assessed 

CVmax=10% 
All-or-none platform (i.e., to be shared over the entire 

family) 

𝑠𝑢𝑏 𝐶𝑉𝑚𝑖𝑛
𝑖 =

2

3
∗ (𝐶𝑉𝑚𝑎𝑥) The decision point for clustering assessments termination 

If 5≤ j Non-platform 

Since in this scheme all the variables can be assessed for possible sharing, the 

strategy of Figure 2 is modified and includes decision points to assign a variable into a 

single or multiple platforms, based on the coefficient of variation information. The modified 

strategy for this test scheme is presented in Figure 5-1. The optimal number of platforms or 

sub-platforms to assess is shown in Table 5-18. 

Table  5-18:  The number of platform/sub-platforms based on the commonality-
oriented test scheme 

Variable Number of clusters to be assessed 

1,3,4 All-or-none platform 

2,5,6 2 

7,8 Scale variable 

Table 5-19 shows the platform configuration for this scheme, along with the 

determined platform values. By repeating the same procedure as described for our 

proposed method here, the obtained results for the entire family optimization are shown in 

Table 5-20. 

As it can be observed, with the chosen fixed values, there is no feasible design 

obtained for variants 2, 3, 4, 8, 9, and 10. This can be caused by a number of reasons 

listed as follows: 
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Table  5-19: Platform configuration of the variants based on the commonality-oriented 
scheme 

Platform 

Candidate 
X1 X3 X4 X5 X6 X2 

Number of 

platforms 

Single platform 

2 2 2 

Platform 

variants 

P1: {p1, p2, p3} 

P2: {p4, p5, p6, p7, p8, 

p9, p10} 

P1: {p1, p2, p3,  

p4} 

P2: {p5, p6, p7, 

p8, p9, p10} 

P1: {p1,p2, p3, p4}  

P2: {p5, p6, p7, 

p8, p9, p10} 

Platform values 162 0.2783 0.2783 

X5(P1)=20.0898 
X6(P1)= 

5.3116 
X2(P1)= 412 

X5(P2)= 25.6820 X6(P2)= 6.584 X2(P2)=500 

A- Permissive or Restrictive Decision points 

Depending on the chosen thresholds for CV, three adverse effects might result: 

1. A variable (or more) might be wrongly chosen as platform candidate.  In such 

case, there is a reduction in the degree of freedom for the last stage family 

design, and there is much more limited design space to search for an optimal 

design solution.  

2. A variable that would be better to form multiple sub-platforms might be wrongly 

assigned to the single platform set, resulting in more performance loss. 

3. A scale variable that would result in significantly more desired performance, 

would be confined due to its wrong selection as a candidate for multiple 

platforms. 

B- Inadequate decision parameter(s) 

The other potential reason is that the decisions on platform configuration are made 

based on incomplete information and considerations, which is a confirmation on the 

importance of taking other parameters into consideration towards platform configuration 

decisions. The effect of each parameter can be studied further to gain more insight about 

the issue. However, in order to find out if the infeasibility problem is mainly resulted from 
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the second cause rather than the first set of causes, it was decided to apply corrective 

actions based on the set of causes in the first category, i.e., to allow multiple platforms for 

variables with high CV and repeat the optimization procedure. In case that this corrective 

action will not resolve the infeasibility issue, the next action is to increase the degree of 

freedom and completely exclude such variables from the platform candidate set, so that the 

design space is reasonably expanded. The procedure is then repeated with the same 

structure, until the optimal design for the entire family is achieved. 

Table  5-20: Platform and scale optimized values based on a commonality-oriented 
scheme 

Variant 

Design 

Variable 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

𝑵𝒄 (x1) 162 162 162 162 162 162 162 162 162 162 

𝑵𝒔 (X2) 412 412 412 412 500 500 500 500 500 500 

𝑨𝒘𝒂(X3) 0.278 0.278 0.278 0.278 0.278 0.278 0.278 0.278 0.278 0.278 

𝑨𝒘𝒇(X4) 0.278 0.278 0.278 0.278 0.278 0.278 0.278 0.278 0.278 0.278 

𝒓𝟎(X5) 20.09 20.09 20.09 20.09 25.68 25.68 25.68 25.68 25.68 25.68 

𝒕(X6) 5.312 5.312 5.312 6.584 6.584 6.584 6.584 6.584 6.584 6.584 

𝑰(X7) 3.060 
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𝑳(X8) 11.49 21.47 24.93 27.82 

𝜂 0.853 0.717 0.691 0.666 

𝑀 0.309 0.679 0.753 0.815 

Variables 1, 3 and 4 are single platform candidates, and x1 has the highest CV 

value among them. By moving  x1 into the multiple candidate set, a value of x1 = 161 is 

assigned to the infeasible variants, and ran the optimization again. This action resulted in 

infeasibility again, and as a result the next action was applied (variable 1 is added to the 

non-platform set). Through optimizing its value for variants 2, 3, 4, 8, 9 and 10, the family 

design shown in Table 5-21 was obtained.  
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Figure  5-1: Platform values determination basis in the commonality-oriented scheme 

The resulting family design does not assure feasibility for integer values of 𝑁𝑐 for 

variants 3 and 9, and therefore suffers from performance challenges. However, for this 

design solution, the results have been compared to our proposed family design, and the 

results are shown in Table 5-22.  
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Table  5-21: The family design after corrective actions on commonality-oriented scheme 

Variant 

----------- 

Design 

Variable 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

𝑵𝒄 (x1) 162 158 153.73 149 162 162 162 158 151.75 137 

𝑵𝒔 (X2) 412 412 412 412 500 500 500 500 500 500 

𝑨𝒘𝒂(X3) 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 

𝑨𝒘𝒇(X4) 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 

𝒓𝟎(X5) 20.089 20.089 20.089 20.089 25.682 25.682 25.682 25.682 25.682 25.682 

𝒕(X6) 5.3116 5.3116 5.3116 6.584 6.584 6.584 6.584 6.584 6.584 6.584 

𝑰(X7) 3.0598 3.206 3.285 3.363 3.639 3.7735 3.913 4.0732 4.257 4.711 

𝑳(X8) 11.49 21.525 26.259 33.076 21.448 24.903 27.792 30.682 33.414 37.786 

𝜼 0.8525 0.8135 0.794 0.7756 0.7172 0.6913 0.6666 0.6404 0.6126 0.5537 

𝑴 0.3093 0.4526 0.5193 0.6047 0.6795 0.7534 0.8153 0.8758 0.9321 1.020 

𝒇 1.0964 1.0297 1.0095 0.9817 0.9299 0.9011 0.8772 0.8522 0.8264 0.7594 

Table  5-22: Average percentage of change in performance for the test scheme vs. the 
performance-preserving design 

% of difference (test case from the proposed family design) 

𝜼 M AOF 

-0.25% +2.63% -0.7% 

Compared to our proposed family design, this family design results in decreased 

efficiency and increased mass at the same time, and has a lower average AOF value. 

Since this design is obtained after mitigating the effect of permissive or restrictive decision 

points, it can be concluded that the main reason for less desired performance of this 

scheme is the less insightful decision parameter applied. Even with an equal degree of 

freedom to the performance-preserving scheme, the performance of the resulting family is 

worse. This indicates that the right set of variables was not selected for platform 
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configuration, due to relying on just the dispersion of the individual optima and not including 

more parameters into decision making. 

5.3. Information integration: A moderate scheme 

The proposed scheme and the test scheme results show that by including the 

information on sensitivity of the variables and their detachability, a reliable platform within 

the desired performance range can be obtained, whereas there is risk of infeasible design 

when the configuration decision is not based on such information. However, the attempt is 

to achieve a higher level of commonality in our study while preserving the performance, by 

leveraging the information on SI, detachability, and CV in a more insightful way, based on 

what is observed from the past two configuration schemes of this chapter. A moderate 

scheme is suggested in this section, to achieve this goal by considering both CV and SI 

information and combining them toward attaining the most possible commonality and the 

least possible performance loss.  

This scheme allows consideration of all variables, based on the information on their 

sensitivity and coefficient of variation, and provides the opportunity to include all the 

variables into some level of commonalization, depending on their condition. The criteria 

used for platform configuration are as follows: 

A) If both the sensitivity of a variable and its coefficient of variation for the vector of 

individual optimal values are sufficiently low, that variable is considered as a 

platform variable with the shared value over all the variants (i.e., single platform). 

The shared value determination procedure will be similar to the previous schemes, 

based on the optimal partitioning strategy.  

B) For variables that have a mid-range value for both CV and SI, different clustering 

schemes will be assessed toward selecting the best number of clusters (sub-

platforms). 

C) For a variable that has either a high value of SI or CV or both, the sharing will not be 

considered and the variable will be kept as a scale variable.  
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In this scheme, the CV thresholds for a variable with sufficiently low sensitivity 

should be different from that for a variable with higher SI value. Similarly, for a variable with 

higher sensitivity, even if CV is sufficiently low, the number of sub-platforms shall be 

carefully decided in order to avoid any substantial performance loss, and capturing more 

commonalization possibilities. Although it might contain subjectivity to some extent, 

however a general guideline for setting such thresholds is to select specific percentiles of 

the distribution of the SI and CI values on each side. The initial categorization of single, 

multiple, and non-platform variables is determined based on Table 5-23 and Table 5-24. 

Figures 5-2(a) and (b) show the lookup table and the application to the PHEV family. 

Table  5-23: Decision points based on SI values 

SI range (for each 

variable) 

Minimum number of clusters to be 

assessed 

SI≤0.035 All-or-none platform case 

0.035<SI≤0.07 2 

0.07<SI Scale variable 

Table  5-24: Decision points based on CV values 

CV range (of the optimal 

values vector) 
Minimum number of clusters to be assessed 

CV≤7.5% All-or-none platform 

7.5%<CV≤15% 2 

15%< CV Scale variable 

 

  

Figure  5-2: (a) Platform configuration scheme   (b) PHEV platform 
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The platform configuration and the number of sub-platforms based on the moderate 

scheme are shown in Table 5-25. The platform composition and the obtained values for 

each platform or sub-platform variable are shown in Table 5-26.  

Table  5-25: The number of platform/sub-platforms based on the improved scheme 
Variable Number of clusters to be assessed 

1,3,4 All-or-none platform 

6 2 

2 3 

5,7,8 Scale variable 

As our purpose is to obtain more commonality, and since the suggested scheme for 

x2 includes a single variant detached from the rest of the variants, two configurations are 

assessed, one with three sub-platforms for x2, and the other  with two sub-platforms, by 

including variant number one into the first sub-platform. The results did not differ 

significantly, while by sharing a new value among the first three motors, more 

commonalization is obtained (The average performance loss for commonalizing x2 of the 

first motor is 0.03% for efficiency, and 0.21% for mass, which is ignorable). 

Table  5-26: Platform and scale optimized values based on the improved scheme 

Platform 

Candidate 
X1 X3 X4 X6 

X2 

(partitioning 

suggestion) 

X2 

(After 

integrating P1 

and P2) 

Number of 

platforms 

Single platform 

2 3 2 

Platform 

variants 

P1: {p1, p2, p3} 

P2: {p4, p5, p6, p7, 

p8, p9, p10} 

P1: {p1} 

P2: {p2, p3} 

P3: {p4, p5, p6, 

p7, p8, p9, p10} 

P1:{p1, p2, p3} 

P2: {p4, p5, p6, 

p7, p8, p9, p10} 

Platform values 162 0.2783 0.2783 

X6(P1)= 5.3116 X2(P1)= 324 X2(P1)= 393 

X6(P2)= 6.584 
X2(P2)= 428 

X2(P2)= 500 

X2(P3)= 500 
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For the sake of space saving, only the second configuration (with more 

commonality) is presented in Table 5-27, as a feasible design with no need for any 

corrective strategy. Since the goal of this scheme was to increase commonality based on 

intuitive CV and SI thresholds, the results of performance comparison to the individual 

optima (Table 5-3) shows acceptable level of performance loss, and makes this scheme 

superior to the performance-preserving scheme, with more commonality obtained through 

the new platform configuration. 

The results are compared to the individual optima, as shown in Table 5-28, and the 

comparison results to Dai and Scott’s design and Ninan and Siddique’s design are shown 

in Table 5-29 and Table 5-30 respectively. Our proposed method has improved the 

average efficiency by 8.8% at the cost of adding the mass by 11% in comparison to Dai 

and Scott’s design. Our solution’s AOF is better by 1.2% in average, indicating acceptable 

performance of this methodology.  

Table  5-27: Optimal family design for the improved moderate scheme 

Variant 

----------- 

Design 

Variable 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

𝑵𝒄 (x1) 162 162 162 162 162 162 162 162 162 162 

𝑵𝒔 (X2) 393 393 393 500 500 500 500 500 500 500 

𝑨𝒘𝒂(X3) 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 

𝑨𝒘𝒇(X4) 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 

𝒓𝟎(X5) 19.599 20.565 21.032 22.094 23.0895 24.090 25.117 26.197 27.375 30.553 

𝒕(X6) 5.3116 5.3116 5.3116 6.584 6.584 6.584 6.584 6.584 6.584 6.584 

𝑰(X7) 3.0398 3.1932 3.267 3.418 3.5768 3.735 3.898 4.070 4.257 4.761 

𝑳(X8) 12.556 21.550 25.106 21.513 24.887 27.195 28.650 29.373 29.400 26.655 

𝜂 0.8582 0.8169 0.7984 0.7630 0.7293 0.6983 0.6691 0.6409 0.6128 0.5478 

𝑀 0.3062 0.4587 0.5268 0.5510 0.6477 0.7324 0.8074 0.8740 0.9328 1.023 

𝑨𝑶𝑭 1.101 1.0293 1.0092 0.9954 0.9518 0.9147 0.8824 0.8532 0.8261 0.7527 
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As compared to the individual optimization solution, the moderate scheme has 

improved the average mass by 0.17% and has a loss of 1.05% on efficiency. This amount 

of loss is acceptable, and the design can be approved with two single platforms and three 

multiple platforms, each consisting of two sub-platforms. Also, as compared to the PFD 

approach suggested by Dai and Scott, our family design solution is of 8.8% improvement in 

average on efficiency target, and of 11% loss on mass in average. The value of AOF 

function in our study is better than that of Dai and Scott’s family design by average of 1.2%, 

indicating acceptable performance for our moderate design scheme. As compared to Ninan 

and Siddique’s solution, in average there is a +12.2% improvement on the efficiency 

objective, and the resultant average mass of our family solution is 0.08 kg more in average 

(i.e., 11.03%) than the average mass obtained through the PCM suggested solution. The 

aggregated performance functions are also compared, and the AOF of our family is better 

by 9.3% in average (in a maximization problem), indicating superior performance of our 

proposed moderate scheme. Table 5-31 also summarizes the entire comparisons 

implemented for this scheme. 

Table  5-28: Comparison of individual solutions to the improved family design 

Motor 

No. 

Individual optima Family Solutions Difference (%) 

𝜼 M (kg) 𝜼 M(Kg) 𝜼 M 

1 0.8605 0.2960 0.8582 0.3062 -0.2673 3.4459 

2 0.8030 0.4347 0.8169 0.4587 1.7310 5.5210 

3 0.7830 0.4968 0.7984 0.5268 1.9668 6.0386 

4 0.7658 0.5547 0.7630 0.5510 -0.3656 -0.6670 

5 0.7313 0.6509 0.7293 0.6477 -0.2735 -0.4916 

6 0.7023 0.7396 0.6983 0.7324 -0.5696 -0.9735 

7 0.6763 0.8215 0.6691 0.8074 -1.0646 -1.7164 

8 0.6532 0.8991 0.6409 0.8740 -1.8830 -2.7917 

9 0.6320 0.9717 0.6128 0.9328 -3.0380 -4.0033 

10 0.5876 1.0899 0.5478 1.0230 -6.7733 -6.1382 

Average Change -1.05% -0.17% 
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Table  5-29: Comparing the proposed family to the family solution of Dai and Scott [27] 

Motor 

No. 

Dai and Scott’s solution Our solution Difference (%) 

𝜼 M (kg) 𝜼 M(Kg) 𝜼 M AOF 

1 0.862 0.347 0.8582 0.3062 -0.4408 -11.7579 1.3812 

2 0.713 0.388 0.8169 0.4587 14.5722 18.2216 3.1363 

3 0.70 0.425 0.7984 0.5268 14.0571 23.9529 3.6140 

4 0.671 0.478 0.7630 0.5510 13.7109 15.2720 5.1109 

5 0.66 0.534 0.7293 0.6477 10.5000 21.2921 1.7968 

6 0.648 0.637 0.6983 0.7324 7.7623 14.9765 0.8823 

7 0.626 0.717 0.6691 0.8074 6.8850 12.6081 0.5469 

8 0.63 0.826 0.6409 0.8740 1.7302 5.8111 -0.8483 

9 0.503 0.879 0.6128 0.9328 21.8290 6.1206 -1.0896 

10 0.56 0.988 0.5478 1.0230 -2.1786 3.5425 -2.9526 

Average Change +8.84% +11% +1.15% 

Table  5-30: Comparing the proposed family to the family solution of Ninan and Siddique [41] 

Motor 

No. 

Ninan’s solution Our solution Difference (%) 

𝜼 M (kg) 𝜼 M(Kg) 𝜼 M AOF 

1 0.81 0.35 0.8582 0.3062 5.9506 -12.5143 0.7319 

2 0.80 0.46 0.8169 0.4587 2.1125 -0.2826 0.9118 

3 0.78 0.50 0.7984 0.5268 2.3590 5.3600 -0.0792 

4 0.72 0.51 0.7630 0.5510 5.9722 8.0392 2.0923 

5 0.66 0.59 0.7293 0.6477 10.500 9.7797 9.9076 

6 0.63 0.66 0.6983 0.7324 10.8413 10.9697 14.3661 

7 0.58 0.70 0.6691 0.8074 15.3621 15.3429 16.1053 

8 0.55 0.74 0.6409 0.8740 16.5273 18.1081 17.0370 

9 0.49 0.76 0.6128 0.9328 25.0612 22.7368 17.8459 

10 0.43 0.77 0.5478 1.0230 27.3953 32.8571 14.0455 

Average Change +12.2% +11.03% +9.3% 
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Also, as compared to the PFD approach suggested by Dai and Scott, our family 

design solution is of 8.8% improvement in average on efficiency target. The loss on mass is 

11% less than Ninan and Siddique’s solution on average. The results are also compared to 

two solutions provided by the PPCEM method suggested by Simpson et al. [30] shown in 

Table 5-32, and a less commonalized solution shown in Table 5-33.  

Table  5-31: Comparison of the family design solution with the individual optima, and 
existing PFD approaches results for the universal electric problem: the moderate scheme 

Design 

solution 

Individual 

optimal design 
Dai and Scott’s design 

Ninan and Siddique’s 

design 

Objective 𝜼 M 𝜼 M AOF 𝜼 M AOF 

% Average 

difference 
-1.05% -0.17% +8.84% +11% +1.15% 

+12.2
% 

+11.03
% 

+9.3% 

Table  5-32: Results of comparing the improved scheme to PPCEM approaches 

Motor 

No. 

𝛈 M (kg) AOF 

This 

study 
PPCEM %Diff 

This 

study 
PPCEM %Diff 

PPCEM %Diff 

1 0.858 0.768 11.7448 
-

19.4211 
-19.421 -19.4211 

1.0072 9.313  

2 0.817 0.782 4.4629 
-

11.7885 
-11.788 -11.7885 

0.935 10.086 

3 0.798 0.70 14.0571 -8.5417 -8.5417 -8.5417 0.9173 10.019 

4 0.763 0.679 12.3711 
-

11.8400 
-11.840 -11.8400 

0.9010 10.478 

5 0.7293 0.639 14.1315 -7.8663 -7.8663 -7.8663 0.8584 10.880 

6 0.6983 0.602 15.9967 -3.5046 -3.5046 -3.5046 0.8232 11.115 

7 0.6691 0.568 17.7993 1.3049 1.3049 1.3049 0.7955 10.924 

8 0.6409 0.536 19.5709 6.5854 6.5854 6.5854 0.7691 10.934 

9 0.6128 0.505 21.3465 12.3855 12.3855 12.3855 0.7444 10.975 

10 0.5478 0.448 22.2768 24.7561 24.7561 24.7561 0.6803 10.642 

 +15.37%  -1.79%  +10.53% 
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Table  5-33: Comparison of the moderate scheme to PPCEM solution with less commonality 

Motor 

No. 

𝜼 M (kg) AOF 

Proposed 
PFD 

PPCEM %Diff 
Proposed 

PFD 
PPCEM %Diff PPCEM %Diff 

1 0.8582 0.747 14.886 0.3062 0.397 -22.872 0.9861 11.652 

2 0.8169 0.721 13.301 0.4587 0.456 0.5921 0.9628 6.907 

3 0.7984 0.711 12.292 0.5268 0.477 10.440 0.9656 4.5153 

4 0.7630 0.701 8.8445 0.5510 0.499 10.421 0.9681 2.819 

5 0.7293 0.675 8.0444 0.6477 0.568 14.0317 0.9384 1.424 

6 0.6983 0.648 7.7623 0.7324 0.646 13.3746 0.9054 1.023 

7 0.6691 0.622 7.5723 0.8074 0.712 13.3989 0.8781 0.4874 

8 0.6409 0.599 6.9950 0.8740 0.774 12.9199 0.8459 0.8546 

9 0.6128 0.577 6.2045 0.9328 0.833 11.9808 0.8247 0.1661 

10 0.5478 0.538 1.8216 1.0230 0.941 8.7141 0.7663 -1.774 

 +8.77%  +7.3%  +2.8% 

Comparison to the VBPDM method proposed by Nayak et al. [33] is also presented 

in Table 5-34. Our suggested design performs better than the highly commonalized 

PPCEM method solution, in terms of both objectives. For their less commonalized solution, 

there is again the trade-off including improvement in efficiency, and losing performance on 

the mass objective. It shall be noted that our approach allows for generalized commonality, 

while the PPCEM is an all-or-none platform design approach, which imposes less flexibility 

to the design over the multiple platform configuration cases. 
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Table  5-34: Comparison of the moderate scheme and the VBPDM method solutions 

Motor 

No. 

𝜼 M (kg) AOF 

Moderate 
scheme 

VBDM %Diff 
Moderate 
scheme 

VBDM %Diff VBPDM %Diff 

1 
0.8582 0.89 -3.5730 0.3062 0.5 -38.7600 1.024 7.5195 

2 
0.8169 0.82 -0.3780 0.4587 0.5 -8.2600 1.004 2.5199 

3 
0.7984 0.79 1.0633 0.5268 0.5 5.3600 1.0074 0.1786 

4 
0.7630 0.76 0.3947 0.5510 0.5 10.2000 1.0099 -1.435 

5 
0.7293 0.71 2.7183 0.6477 0.57 13.6316 0.9719 -2.0681 

6 
0.6983 0.67 4.2239 0.7324 0.63 16.2540 0.9453 -3.237 

7 
0.6691 0.64 4.5469 0.8074 0.67 20.5075 0.9220 -4.295 

8 
0.6409 0.60 6.8167 0.8740 0.72 21.3889 0.90623 -5.852 

9 
0.6128 0.58 5.6552 0.9328 0.76 22.7368 0.89216 -7.405 

10 
0.5478 0.53 3.3585 1.0230 0.83 23.2530 0.84859 -11.300 

Average difference +2.48% Average difference +8.6%  -2.537% 

5.4. Effect of varying the number of sub-platforms (k) on the 
family design 

Since the partitioning strategy to some extent relies on subjective parameters such 

as k (the number of sub-platforms), it is worth to assess the resulting family design 

performance for different values of such parameter. In this section this assessment is 
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provided in brief. For this purpose, k is varied for a variable with sufficiently low SI and CV 

value (i.e., 𝑥1, as shown to be a good candidate for all-or-non platform in Figure 5-2), and 

obtained the resulting family design for k=1 to 4. The average performance deviation from 

the individual optima is illustrated in Figure 5-3. Similarly such analysis was applied to 𝑥2 

which belongs to a middle range in the SI-CV look-up chart and is a candidate for multiple 

platforms. 

As Figure 5-3 shows, the deviation reduction is quite small for increased k, 

indicating that no significant benefit would be obtained for increasing the diversity in design 

for 𝑥1. As such, commonalizing this variable over the entire family would be more beneficial 

in terms of increasing the commonality, while keeping the performance loss at the allowed 

level. This assessment confirms the important role of the sensitivity analysis to identify the 

more appropriate candidates toward commonalization.  

Also, as Figure 5-4 shows the trend of convergence in performance, k=3 would be 

the most appropriate point for the number of sub-platforms for 𝑥2. It is worth to note that the 

slope of this diagram is steeper and more variation is observed for varying k for 𝑥2, which 

implies the more impact of 𝑥2 on the performance of the family. All-or-none platform for this 

variable is not acceptable, since its resulting family design solution faces a performance 

loss greater than the allowed 10% on the mass objective. Also, as shown here and 

discussed earlier in this study, the performance loss for choosing two sub-platforms for 𝑥2 

in average is less than 0.1%, as compared to three sub-platforms case. Therefore, k=2 is 

the ultimate option for obtaining more commonality. 

These figures illustrate the impact of relying on SI-CV information for platform 

configuration, and the trends of each diagram confirm that it is more important to 

appropriately select the candidates, rather than imposing extra computational cost for 

optimizing the value of k in the partitioning strategy. As discussed in Section 4.5, for the 

variables which are not appropriate candidates for any commonalization, neither increasing 

k, nor switching them from platform candidate to non-platform variable would result in 

desired performance. 
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Figure  5-3: Performance deviation per k, for X1 

 

Figure  5-4: Performance deviation per k, for X2 
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5.5. Commonality measure comparisons 

In addition to comparing the objectives and AOF value for each approach, a 

comparison on the level of commonality achieved through each solution can help to 

evaluate the efficiency of suggested schemes. Several indices and metrics have been 

developed for providing insight on the level of commonalization obtained for a family 

design. Each of the developed metrics need specific inputs, such as the number of 

common components, cost information, manufacturing and assembly information, BOM of 

the products, and other relevant information in order to provide a quantified measure about 

different designs and enable their comparison. A comprehensive comparison of six of such 

indices can be found in [79]. In order to compare different designs in terms of the tooling 

cost savings resulted from their commonality degree, the Commonality Index developed by 

Martin and Ishi [80] is adopted here, because our comparison purposes are similar to that 

of Khajavirad and Michalek [81]. The CI varies between 0 and 1, and provides a measure 

of the percentage of commonalization in the whole family. It can be interpreted as the ratio 

of the number of unique components to the total number of parts [79]. Assuming 𝑝 variants 

and 𝑛 components in each variant (or design variables in our case), for a design with 𝑢 as 

the total number of unique components, CI will be as follows: 

                              𝐶𝐼 = 1 −
𝑢−𝑛

𝑛(𝑝−1)
        (5-3) 

 This metric for finding the CI for our desired designs results in the values shown in 

Table 5-35. 

Table  5-35: The commonality index values for the proposed schemes in this study, 
and other published methods 

Commonality measure 
Dai and 

Scott 

Ninan and 

Siddique 

Performance-

preserving 

Scheme 

Moderate 

Scheme 

(% of variables shared) 0.680 0.653 0.556 0.694 

The obtained value for our moderate scheme is higher than the other existing 

approaches, and also than the proposed performance-preserving scheme, indicating more 
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tooling cost saving due to commonalization. Therefore, our proposed approach performs 

better in terms of the commonality comparisons as well. 

The family solution of the moderate scheme is compared to the solutions of the 

performance-preserving and the commonality-oriented schemes as shown in Table 5-36.  

Table  5-36: Results of comparing the improved scheme to the initial scheme and the 
test scheme 

Moderate scheme 

performance 
𝜼 M AOF 

% of difference from 

the commonality-

oriented scheme 

+0.29% -1.5% +1.92% 

% of difference from 

the performance-

preserving scheme 

-0.01% +1.04% -0.16% 

As the results show, the performance on both objectives has been improved in 

comparison to the commonality-oriented scheme where the SI information was not taken 

into account. Also, by comparing this scheme (moderate) to the performance-preserving 

scheme, it is observed that commonality has been increased while a very small amount of 

performance is lost (i.e., on average, the maximum loss is 1% on mass).  This scheme 

confirms that including SI information along with the CV parameter through the suggested 

configuration scheme would result in a moderate design which is of more commonality, yet 

within allowable performance loss range.  The moderate scheme has more benefits than 

the performance preserving scheme, as it has obtained higher level of commonality (3 

single platforms, and 2 multiple platform variables), and also has more benefits than the 

commonality-oriented case because its commonality level is the same, while the 

performance loss (from individual optima) is less. 

The results of comparing both schemes to the individual optima, and the solutions 

of [27, 41] are all shown in Table 5-37. It can be observed that out of the two suggested 

schemes (scheme1: performance-preserving, scheme2: moderate), both schemes have 

made improvement on mass target, compared to the individual variant optimal designs. The 
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AOF value shows improvement on both schemes, compared to both of the existing 

methods in the literature. This indicates that our proposed approach is performing well and 

is of comparable performance of to the previously developed methods.  

In regard to the Commonality Index (CI), the CP3 method has resulted in a CI=0.28 

while our method yields in 0.56 and 0.69, which is much higher than the CP3 method. The 

average motor efficiency in our method is 71.3%, while CP3 has resulted in an average of 

81%. This is expected, since the commonality of CP3 is much less than that of this 

approach, and as noted earlier in this document, CP3 is a performance-oriented approach 

as compared to the proposed commonality-oriented proposed method.  As such, each 

method pursues a different objective and it cannot be strictly concluded about the 

superiority of one over the other. 

Table  5-37: Integrated view of comparison results for the initial proposed and the 
improved design schemes 

 compared 

to→ 

↓Scheme 

Individual 

optimal design 

PFD(Dai and Scott’s 

design) 
PCM(Ninan’s design) 

𝜼 M 𝜼 M AOF 𝜼 M AOF 

Performance

- preserving 
-1.03% -1.15% +8.86% 

+9.87

% 
+1.33% +12.4% +10.2% +9.5% 

Moderate -1.05% -0.2% +8.85% 
+10.9

% 
+1.17% +12.2% +11% +9.3% 

Regarding the number of function calls, since the universal electric motors design 

problem is not a black-box function, the comparison to previous publications for this 

problem is not meaningful. The number of necessary function evaluations for this eight-

variable family design problem, based on the structure of the platform configuration and 

family design method in Dai and Scott’s method. 

Sensitivity Analysis: (10 motors)*(8 variables)*(2 variations/variable)*(n 

optimization iterations)= 160n 

Cluster analysis: (10 motors)*(k candidate variables)*(10 points / variable curve 

fitting) = 100k 
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Platform value selection: (K)*(K+1)/2 performance loss considerations  

(K=5 variables)→ 515+160n       (5-4) 

This number for the proposed method in this dissertation is limited to the number of 

expensive sample points needed to build the metamodel, which is 45 for the 8-variable 

design problem, and by running 10 metamodeling algorithms for the entire family, 450 

samples or expensive function evaluations will be needed. The number of iterations for 

optimization is 10n, and the total number will be 450+20n for out proposed method. This 

value is significantly less than the number needed in the aforementioned family design 

strategy, which can be an evidence for further concluding on capability of the proposed 

method for family design of expensive and black-box design problems. 

The initial and final stages of the PFD approaches in this chapter are the same as 

those in Dai and Scott’s method, including individual optimization of each variant, as well as 

the scale variables optimization stage at the end. On the other hand, the function 

evaluations in our proposed approach concurrently obtain the SI matrix and “whiten” the 

structure of the black-box function. Since the use of meta-modeling techniques will be 

inevitable for simulation-based design problems with high dimensions and long running 

times, it can be concluded that our proposed approach is able to provide reliable family 

design solutions with less number of function evaluations needed for black-box functions, 

as compared to the proposed method in [27]. The platform design based on sensitivity and 

clustering analysis by Dai and Scott needs function evaluations for obtaining sensitivity 

vectors, clustering analyzes and other performance evaluations in different stages, all of 

which are unnecessary in our approach. Also, the platform cascading method (PCM) 

suggested by Ninan and Siddique would be exposed to high computational cost because of 

optimizing the family design problem with a larger number of variables due to adding 

commonality variables.  

It shall be noted that for the family design problem in this chapter, a number of different 

lower and upper bounds for the meta-modeling part were examined and it was found out 

that for a properly narrowed down range, both the sensitivities and correlations follow the 
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same order for all the variants, and within a sufficiently down-sized design space, the 

orders of impact of the variables as well as their detachability will be the same, regardless 

of the variant under study. This is quite helpful in reducing the number of function calls 

needed for this section, since it helps to identify the indices of variables for set#1 and se#2, 

based on just one variant rather than the entire family. The meta-modeling step is run for all 

the variants, while it can be avoided for saving computational cost, if the design range is 

intuitively shrinked for any intended design problem.  

In regard to the proposed method by Khajavirad et al. [81], though it takes 

advantage of concurrent optimization of the platform configuration and the entire family 

design, it is of higher computational complexity as compared to two-stage methods for 

platform and family design. For problems with high dimensional and black-box objective 

functions, it might require remarkable computational time to optimize a product family.  

5.6. Conclusion 

In this chapter, a new family design method was proposed and its performance was 

assessed by applying to the universal electric motors family design problem. Two platform 

configuration schemes were suggested; one for cases with high priority for keeping the 

performance of the variants as close as possible to their individual optimal performance; 

and the second one as a moderate scheme attempting to achieve more commonality while 

sacrificing allowable amount of performance. The main strategy behind the platform 

candidate selection in both schemes are to leverage the information on the importance of 

the variables towards aggregated performance, and the dispersion or coefficient of 

variation (CV) for the vector of individual optimal values of each variable in the family. 

Information such as the quantified correlations was also exploited towards suggesting 

platform configurations and variables commonalization. Through an effective sampling, the 

correlations among variables were identified by RBF-HDMR, and their quantified correlation 

measures obtained through sensitivity analysis served as the basis for identifying desired 

candidates for sharing. 
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The proposed method was shown to perform both efficiently (obtaining a desired 

level of performance), and effectively (increasing commonality within the family, while 

satisfying all performance requirements), and showed improvement in the aggregated 

preference function compared to the previously developed approaches (i.e., [27, 41]). The 

computational efficiency of the proposed approach is another contribution of the study, 

enabling design of the product families involving high-dimensional, expensive, black-box 

(HEB) functions. Even for the same test problem (i.e., the universal motor family), as 

reported by Simpson et al. [82], the problem would become intractable due to remarkable 

increase in the number of design variables, constraints, and objectives. Therefore, the use 

of a two stage design approach instead of the integrated or concurrent optimization is 

beneficial and efficient in reducing the dimensionality. 

As for the method from Wei et al. [40], the role of the SI and ACQ  are verified 

through designing a test scheme, and this clearly shows how our work differs from that 

work. In summary, the proposed method does not require gradient information and 

demands a limited number of function evaluations as compared to evolutionary algorithms.  

These features are developed towards solving black-box type of family design problems.  

Using a well-known test case can establish our work in the context of the existing literature 

and can clearly show the steps of the proposed method.  It is to be noted that although the 

test case has explicit equations, they were treated as black-boxes and only the function 

values are used in the underlying steps.  Using test cases and benchmark mathematical 

problems in metamodel-based design optimization (MBDO) area for black-box type of 

problems is common and has been widely accepted by the community. 

There are a number of parameters used in our study, which have been determined 

heuristically and their tuning would result in design solutions with better performance (less 

loss and/or more improvement for the mass and efficiency targets). This sort of parameter 

selection imposes some limitations on all similar studies, and if fine tuning is implemented 

to find the best value of each of such parameters (e.g., thresholds for SI, CV, and weights 

of each preference function), more robust results can be obtained. However, the task of 

trying different values would also incur some computational cost to the system, and it can 

be a subject of further research in the area. 
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This approach is mainly designated for HEB family design problems and the 

improvements achieved for the test problem in this chapter serves as a motivation for 

studying its efficiency for the intended HEB family design problems. The next chapter 

purpose is planned to expand and assess the performance of our proposed approach for 

such problems, which are simulation-based complex products that have not been 

considered for family design before.  

It is also to be noted that the proposed method only uses function values (no 

gradients or other information) in metamodeling and decomposition for platform selection. 

The total number of function evaluations is limited due to the frugal sampling strategy used 

by RBF-HDMR. These features make the proposed method attractive for solving problems 

with expensive black-box functions. The efficiency of this approach will be tested in chapter 

6, with the PHEV design problem as a real black-box engineering problem that involve such 

functions.  
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Chapter 6. Application of the proposed PFD method 
to PHEV Family Design 

This chapter provides the details of application of the proposed product family 

design methodology to the PHEVs family. The first part of the chapter deals with 

presentation of the selected variants and the basis for this selection, i.e., a review of the 

market penetration scenarios and purchase behaviors of the potential PHEV buyers. 

Afterwards, the specification of the design problems will be provided along with target 

performance values for each objective and each variant. The steps of the proposed PFD 

methodology will then be applied to the PHEV family in hand. 

6.1. Introduction 

The transportation sector has become the largest consumer of the oil resources in the 

recent decades, absorbing around 49% of such energy resources, and the estimations 

show that if the current trend continues, all such resources will be depleted by 2038 [83]. 

Accordingly, the need for reduction of the emissions to control air pollution and global 

warming, as well as the importance of reduction in the dependency on oil has directed the 

attention of the developed countries toward technology advancement for vehicles since a 

few decades ago.  

The conventional ICE-powered vehicles are short of impressive overall efficiency when 

they are operated in lower loads [84]. Although the pure Electric Vehicles (EV) can be of 

the highest benefits in terms of fuel replacement and Green House Gas (GHG) emissions 

elimination, they have limited ability for long driving ranges and the battery technology 

needs remarkable improvement to enhance their functionality.  
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The Plug-in Hybrid Electric Vehicles can use electric energy over longer distances as 

compared to HEVs, which comes from the electric outlet connection feature embedded in 

their design. Use of larger battery packs helps meeting this target and provides the 

possibility of charging the battery overnight or off the peak hours.  

The trade-off among the PHEV configurations can be quite complex to balance the 

efficiency, cost, manufacturability, and driveability, and there is no globally optimal 

configuration when all criteria are considered. However, for any chosen configuration, 

PHEVs can be constructed through optimizing the component sizes [11]. 

Another issue of importance coupled to the powertrain design is selection of a proper 

control strategy. The power management strategy is the algorithm that determines the split 

of power request between the combustion engine and electric drive. It is a vital factor for 

the efficiency of a PHEV, as different control strategies result in different performance 

profiles due to the different basis of choosing operation modes. The operation modes of a 

PHEV include the Charge Depleting mode (CD) in which the battery is the only source of 

propulsion, and the Charge Sustaining (CS) mode where the engine is leveraged as an 

auxiliary power source for keeping the battery State of Charge (SOC) within a specific 

range. In this case, PHEVs operate similarly to HEVs [12]. There are several types of 

control strategies, such as: 1) electric vehicle mode where the PHEV runs purely on electric 

energy and like an EV; 2) the charge depleting mode where the SOC decreases until 

reaching a specified percentage, and the engine may turn on depending on the torque 

demand within the SOC discharge window, and when its minimum down time has been 

met; and 3) the charge sustaining mode where the SOC is controlled to stay in a narrow 

range [13].  PHEVx can drive a determined distance (x) in the electric vehicle mode (the 1st 

type of control) [85]. 

Understanding the purchase behaviors of the potential PHEV buyers is the key for 

designing efficient vehicles, and for promoting the benefits of this new technology. Several 

efforts have been made in this area, including consumer surveys on the owners of HEVs 

and PHEVs, projection of PHEV purchase probability for the next decades based on 

different market penetration scenarios, integration of factors such as the daily driven 
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mileage and the distance between charges of PHEVs along with assessment of their 

impact on optimality of a specific design. The research studies in this area span from 

holistic views such as categorization of the customers based on demographic attributes, to 

more detailed studies such as simulation-based studies for determining the proper design 

specifications.  The desired variants for the family design of the PHEV powertrains are 

concluded based on a review of such studies [86-96], which are not presented in detail 

here, but their summary (i.e., the selected variants for family design assessments) will be 

provided in Section 6.3. 

The scale-based family design is of interest for PHEVs in this study, assuming that all 

the variants will have the same configuration. The chosen powertrain configuration is the 

power-split PHEV which takes advantage of both parallel and series configurations. Several 

methods for designing scalable families have been developed, either assuming a fixed 

platform, or allowing optimization of the architecture as a part of the design. The Product 

Platform Concept Exploration Method (PPCEM) by Simpson et al. [30], is among the early 

developments in this area, leveraging robust design principles to minimize the performance 

sensitivity to the variation of the scale factors. Fixed platform variables have been assumed 

in Messac et al. [31], where PPCEM and physical programming have been aggregated for 

product family design. Commonality was treated as a constraint in the design problem by 

Fellini et al. [51]. Unknown platform architecture involves the task of platform configuration 

as well, and Nayak et al. integrated this task with the commonality-performance trade-off 

problem, known as the Variation-Based Platform Design Methodology (VBPDM) [33]. 

VBPDM attempts to maximize commonality within the family while achieving the 

performance requirements by varying the smallest number of design variables. The Product 

Family Penalty Function (PFPF) is another method developed by Messac et al. [34] to find 

the best set of platform and scale variables for minimum performance losses of 

commonalization.  

The concept of sensitivity analysis was used by Fellini et al. [39] where the performance 

losses resulting from sharing were measured through sensitivity analysis for identifying the 

proper candidates as scale variables. Wei et al. developed two-stage multi-objective 

optimization-based platform design methodology (TMOPDM) to identify the platform 
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variables based on their impact on the family performance [40]. Dai and Scott also 

leveraged the sensitivity analysis to find the performance violations per change of design 

variables and measured a global sensitivity index (i.e., the average of SI values for each 

variable over the entire family). By assessing pair-wise commonalization cases for less 

sensitive variables, they provided a family solution with the least possible performance loss 

among all the possible sharing profiles [27]. For family design of simulation-based problems 

that might be challenging due to the large number of function calls, in this dissertation an 

efficienct PFD strategy was developed and was shown to perform well on a test problem [3] 

. The proposed method uses a metamodel-based analysis approach which enables 

creating reliable surrogate modes for expensive black-box design problems, and 

simultaneously provides useful information about the impact of the variables on the 

performance of the product, and reveals the correlations among the design variables.  This 

method is used in our study to assess a family of Plug-in Hybrid Electric Vehicles, to 

evaluate the potential of the chosen variants for family design and platform configuration. 

The only powertrain family design study that exists so far in the literature is Fellini et al. 

[45], where a family of three powertrains, including a conventional vehicle, an EV, and a 

mid-sized parallel-configuration HEV powertrain is assessed. Techniques such as 

derivative-free global optimization and decomposition techniques are explored for 

addressing the challenges resulting from the high level of the design complexity in their 

study. This study is the first of its kind in assessing platform configuration and family design 

for the PHEV 

The PHEV variants are determined based on a vertical leveraging strategy, where 

there are products for small, medium, and high AER range, spanning from low to high cost 

according to their performance on AER. 

6.2. Market study of the PHEVS for variants selection 

In order to decide which variations of PHEVs would be the most appealing vehicles 

to different customer segments, a review of the research in the following areas were 

conducted in this research: a) the studies which have performed market penetration 
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scenario analyses; b) the ones that have conducted surveys to analyze customer 

behavior/preferences and to find more about their perceived benefits in regard to these 

vehicles; and c) those have assessed customer data from resources such as National 

Household Transportation Survey (NHTS) for finding the fitting available vehicle designs for 

various segments. These studies were reviewed and the parts which assist identification of 

proper PHEV candidates for various segments are summarized in this section. 

6.2.1. Long-term market of PHEVs 

In a comprehensive environmental assessment of electric transportation, the 

Electric Power Research Institute (EPRI) and the Natural Resources Defense Council 

(NRDC) examined the greenhouse gas emissions and air quality impacts of plug-in hybrid 

electric vehicles (PHEV). The purpose of the program was to evaluate the environmental 

impacts of potentially large numbers of PHEVs in the US over a time period of 2010 to 

2050. The year 2010 was assumed to be the first year PHEVs would become available in 

the U.S. market, while 2050 would allow the technology sufficient time to fully penetrate the 

U.S. vehicle fleet [97]. Detailed models of the U.S. electric and transportation sectors 

resulted in creation of a series of scenarios  for PHEV fleet penetration over the 2010 to 

2050 timeframe [97]. The same study developed three distinct market adoption scenarios, 

each based on PHEVs entering the market in 2010 and achieving maximum new vehicle 

market share in 2050, results of which are shown in Table 6-1. 

Table  6-1: Peak PHEV market share for 2050, based on 3 market adoption scenarios [97] 

Market share of PHEV fleet by 2050 

based on scenario under study 

  Vehicle Type 

Conventional 
Hybrid 

(HEV) 

Plug-in Hybrid 

(PHEV) 

Penetration 

Scenario 

Low penetration 56% 24% 20% 

Medium 

Penetration 
14% 24% 62% 

High Penetration 5% 15% 80% 



 

110 

 

The global market for Plug in Hybrid Electric Vehicles (PHEVs) is estimated to be 

130,000 vehicles by 2015, and North America (NA) is expected to hold a strong market for 

PHEVs with estimated volumes of 101,000 by 2015, while PHEVs will be introduced to 

Europe by 2012 with reduction of costs but with less numbers. Japan is likely to lag behind 

since Japanese market is more inclined towards Fuel Cell Vehicles rather than PHEVs [20]. 

For US buyers, tax credits1 of up to $7,500 is provided for each new PHEV purchase 

starting from 2010, according to the American Recovery and Reinvestment Act of 2009 

(ARRA), which was signed into law on February 17, 2009 [89, 98].  

General Motors (GM), Toyota, Ford and Daimler Chrysler are to be the primary 

players in Plug-in Hybrid Market. GM is expected to have a market share of over 50 

percent for plug in hybrids by 2015 [20].  

6.2.2. Drivers’ perception study 

Institute of Transportation Studies at University of California Davis conducted a 

study to examine early users’ experiences with PHEVs, in 2007 [90]. In their study, 25 to 30 

vehicles that had been converted from hybrid electric vehicles (HEVs) to PHEVs were on 

the road, and through interviews with 23 potential buyers of these vehicles, it was explored 

how they use and recharged their vehicles, and it was investigated how they think about 

PHEVs, including the benefits and drawbacks they perceive from the new vehicles. Also, 

the comments and recommendations of these drivers for future PHEV designs was 

reported, based on which, the following results have been obtained: The preferred All 

Electric Range (AER) is between 20 to 40 miles, though some drivers have also preferred 

higher AERs. 20 miles of AER seems to be the minimal acceptable amount according to 

this study [90]. However, this is an observation from a sample of the potential users, and 

not all of them. Even for drivers who needed the vehicle for less than 10 miles of driving per 

day, it seemed that 20 miles is their perception of a minimum acceptable AER. A few users 

acknowledged interest in PHEVs with lower AER, but they explained AER below 20 miles 

 
1
 US Congress has approved tax credits amounting to $758 million to subsidize the purchase of up to 250,000 PHEVs over 

the next few years, which amounts to a range from $2500 to $7500 per vehicle, depending on vehicle attributes. 
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was acceptable only in initial vehicles, and it is expected that manufacturers improve PHEV 

technology.  

6.2.3. PHEV purchase probability projection study 

Oak Ridge National Laboratory (ORNL) developed a model for projecting the 

probabilities of purchasing advanced vehicle technologies, as a function of consumer 

attributes, costs, performance, and energy prices and policies. The developed model is 

called Market Acceptance of Advanced Automotive Technologies (MA3T), and it is 

developed for the US DOE to support analyses of vehicle technology policies. It draws 

information on households and their characteristics from the U.S. census data and national 

travel surveys, obtains projections of total vehicle sales, and energy prices from the 

Department of Energy’s Energy Information Administration (DOE/EIA). The analysis is 

enabled through simulation of consumer purchase behavior for the new energy vehicles 

(including PHEVs), through using vehicle technology characterizations developed by 

Argonne National Laboratory [86]. All U.S. new light-duty vehicles (LDV) consumers are 

grouped by this model based on six dimensions (region, area, attitude toward technology 

risk, vehicle usage intensity, home charge availability, and work charge availability) into 

1,458 segments. According to this model, the variants of Spark Ignition (SI) PHEV comes in 

three types based on their on-board electricity storage capacity and electric motor power: 

(1) 10-mile all electric range (AER), (2) 20-mile AER, and (3) 40-mile AER. All the PHEV 

designs (SI PHEV10, SI PHEV20, and SI PHEV40) are blended hybrids with limited all-

electric capabilities. 

The MA3T model projects purchase probabilities for PHEV according to 

disaggregation of the US household Light Duty Vehicle market, and a reference market 

segment is defined as the set of early adopters of the new technology vehicles, living in the 

suburban areas, driving frequently, having access to home recharge, and not having 

access to recharging at work. By variation of these conditions, new segments are formed 

and compared to this reference segment. A subset of the National Household Travel 

Survey (NHTS) 2001 data containing 3755 new car owners that work full-time driving to 

work and rarely working at home, have been selected and clustered into three levels of 
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vehicle usage intensity. A data set including their weight in the population, annual usage of 

the primary vehicle, commuting distances, and associated region and residential area has 

been extracted and 3755 gamma distributions of daily vehicle usage are then estimated by 

following the modeled relationship between the distribution parameters and the daily usage 

mean and mode. The shares of these driver types by region and area are estimated from 

the NHTS2001, and usage levels are as follows: 

 Modest-Driver (driving 8,656 miles annually) 

 Average-Driver (16,068 miles) 

 Frequent-Driver (28,288 miles) 

Four fuel efficiency estimates for PHEVs (CD and CS modes, UDDS and HWFET 

cycles) and 2 electricity efficiency estimates (CD only, 2 test cycles) have been applied to 

the selected PHEVx vehicles, and the results show that frequent drivers benefit more on 

fuel saving by owning a PHEV and thus frequent drivers may be more likely PHEV buyers 

[86]. 

6.2.4. Cost-benefit study for PHEVs 

National Renewable Energy Laboratory (NREL) conducted a cost-benefit study on 

PHEVS in order to compare them to conventional vehicles in terms of vehicle cost, and 

energy cost, as well as Petroleum consumptions [91]. PHEV2, 5, 10, 20, 30, 40, 50, and 60 

vehicles were considered in the study, through developing a performance model which 

allows component sizing based on performance constraints, and provides desired output 

such as energy use through application of the UDDS drive cycle. A number of criteria have 

been provided for comparing PHEVs to conventional vehicles, which can be used as 

means of measuring performance and deviations from a target performance for our 

powertrain family design problem.  

Daily mileage 

In order to satisfy more customer groups, it is important to consider the mileage or 

daily driven distance of the potential drivers. Figure 6-1 shows the US vehicle daily mileage 
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distribution based on data collected in the 1995 National Personal Transportation Survey 

(NPTS). The majority of daily mileages are relatively short, with 50% of days being less 

than 30 miles (48 km).  

 

Figure  6-1: Daily mileage distribution for US motorists based on the 1995 National 

Personal Transportation Survey [91] 

The Utility Factor (UF) curve for the 1995 NPTS data is shown in the same figure, 

representing the fraction of total vehicle-miles-traveled (VMT) that occurs within the first D 

miles of daily travel. For example, for a distance of 30 miles (48 km), the utility factor is 

approximately 40%. This means that a PHEV30 can displace Petroleum consumption 

equivalent to 40% of VMT, (assuming the vehicle is fully recharged each day). Similarly, an 

all-electric PHEV60 can displace about 60%. This low- daily-mileage characteristic shows 

that PHEVs have potential to displace a large fraction of per-vehicle Petroleum 

consumption. The daily mileage or kilometers driven in US are classified into three groups 

in [99], and the trip share of each interval can be shown in Table 6-2. 
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Table  6-2: U.S. travel statistics as a function of daily distance driven 
Daily Distance (Km) 0-32 32-64 > 64 Total 

Trip Share (%) 60.0 21.4 18.6 100 

Share of time spent 40.8 23.5 35.7 100 

According to the data in Table 6-2, it is suggested that either that universal 

powertrains have to be designed with great versatility or that if a diversity of powertrains is 

offered in the future, the need for the extra low and high AER values and the fast may be 

greater than the need for those in the middle. 

Emission Targets in different regions 

As mentioned earlier in this section, emission targets are set by different 

organizations and governments in order to foster sustainable mobility and environmental 

considerations over the coming years and decades. According to [99], European Union has 

announced a long-term CO2 emission target for 2020, while US has chosen a more 

aggressive approach essentially pulling the 2020 National Highway Traffic Safety 

Administration (NHTSA) target forward to 2016. Japan has only announced a medium-term 

CO2 emission target and China had set an ambitious CO2 emission target for 2015. By 

sponsorship of  the U.S. Department of Energy's Office of Energy Efficiency and 

Renewable Energy (EERE), Argonne National Laboratory (ANL) has developed a full life-

cycle model called GREET (Greenhouse gases, Regulated Emissions, and Energy use in 

Transportation), in order to evaluate various vehicle and fuel combinations [100].   

Target fuel economy 

The PHEV fuel economy and operating costs are measured and reported using a 

procedure based on a modification of the Society of Automotive Engineers' (SAE) J1711 

Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of 

Hybrid-Electric Vehicles [101]. The fuel and electricity use in both CD and CS-modes are 

measured and weighted according to the Utility Factor (UF), assuming PHEVs are fully-
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recharged each day. The measurability of the fuel economy, however, is subject to applying 

a driving scheme which is categorized as drive cycles, explained below. 

Studies show that the markets for HEVs and PHEVs are complementary rather than 

competitive [99] . PHEVs will be the best choice for suburbanites driving at higher speeds 

and are suitable for replacing the conventional vehicles (CV) in the suburbs, since garages 

are desirable locations for plugging in overnight, usually found in suburbia. HEVs will be the 

best choice for driving at low speeds in congested urban environments.  The PHEV option 

has the potential to expand the market for the fundamental HEV powertrain further into 

suburbs and small towns. The estimates indicate that the comparative advantage of the 

PHEV technology will be in suburbia in the United States and generally in upper-income 

nations and communities with low densities where single-family homes and garages are 

relatively common. For those who travel long distances per day at relatively high speed, the 

emerging clean compression ignition, direct injection fuel-distillated vehicles (CIDI) 

technology may be more desirable than PHEVs [99]. 

According to MA3T model, the probability of different customer segments to buy 

PHEVs is the highest for those in urban areas, and those with ability of work recharge. The 

objective has been to estimate the distribution of daily vehicle usage. Since longitudinal 

travel data have not been readily available, especially nationwide, the gamma distribution 

has been proposed for vehicle daily usage and then maximum likelihood estimates of the 

parameters are obtained based on longitudinal refueling survey data of over 2000 vehicles. 

The purchase probabilities for different market segments are subject to different 

conditions. The consumers in the reference segment become more likely over time to buy a 

PHEV mainly due to the technology progress that makes PHEVs increasingly cost 

competitive, but other factors such as improved charging availability, purchase tax credit, 

and technology novelty also play roles. The temporary and sudden drop of purchase 

probability is due to the expiration of the PHEV tax incentive. Urban consumers may be 

more likely to buy a PHEV than suburban consumers because of higher share of stop-and-

go driving and therefore larger fuel-saving benefits [86]. 
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In regard to components of the powertrain, the results of simulation performed by 

Hauffe et al. [102] show that battery weight is a key factor affecting the cost, emissions, and 

fuel economy of PHEVs. Their recommendation is that best choice of PHEV battery 

capacity depends on the driven distance between charges, as well as the structural weight 

required to carry the batteries. They also suggest that since 60% of U.S. passenger vehicle 

miles are traveled by vehicles driving less than 30 miles per day, cost and GHG emissions 

can be potentially reduced by appropriate battery capacity sizing to achieve a 30 mile 

range. On the other hand, there exist three potential complications according to the same 

study: 1) The significance of the variance in miles traveled per day can adversely affect the 

optimality of the capacity designed for the average distance; 2) Irregular charging behavior 

could lead to significantly longer distances between charges than the average daily 

distances, and thus it might be risky to assume access to charging once a day; 3) 

Conversely, installation of widespread charging infrastructure in public parking places 

would enable charging more than once per day, enabling shorter distances between 

charges [102], which is possibly the case for over-work charging times. 

While some analysts view AER as a critical advantage of PHEVs, an interesting 

observation is recorded in [90], that is the questionability of the AER necessity. PHEV 

without AER would still deliver fuel economy benefits and could offer faster acceleration 

and higher top speed [103]. It is suggested that PHEV0 (i.e., similar to HEV, but with a 

larger batter pack to use less fuel during a trip) would have acceptable potential to 

penetrate market compared to those with All-Electric driving capability. This is because 

delivering quick acceleration and operation over a wide range of speeds in all-electric mode 

requires a larger electric motor as well as a battery with high power output. In contrast, a 

PHEV that only operates in “blended” mode can constantly provide propulsion power from 

its internal combustion engine, allowing the use of a smaller electric motor and decreasing 

the peak power requirements for the battery [90]. As a result, a PHEV0 is likely to be less 

expensive than a PHEV offering AER and thus, for those consumers who place less value 

on AER, being a more desirable option. This conclusion is another side of the case, as 

compared to the drivers perception study results in [90]. 
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Another observation is the multi-objective nature of the PHEV selection problems. 

Not only do many parameters affect the performance, but also the performance can be 

defined and assessed from various aspects. Shaiu et al. [104] found that for drivers with 

distances of less than 10 miles between charging, a PHEV of about 7 miles of AER will 

result in the least cost, GHG emissions and fuel consumptions, while for distances between 

10-20 miles (between charging), depending on the objective, the optimality of PHEV will be 

different; PHEV7 has the least life time cost, while PHEV20 has the least GHG emissions 

and fuel consumption. Finally, for moderate to long distances between charging (20-100 

miles), while PHEVs release less GHG emissions, but HEVs are of less cost. Their study 

suggests that the small-capacity PHEVs are dominant over larger capacity PHEVs in a 

wide variety of scenarios, and conclude that government incentives for increasing adoption 

of PHEVs may be best targeted toward adoption of small-capacity PHEVs by urban drivers 

who are able to charge frequently [104]. 

6.3. Selected variants for PHEV powertrain family design 

As it was mentioned earlier in this study, the PHEVs are varied in the AER range, in 

a scale of 10 to 60 miles and according to [90], PHEVs 20 to 40 miles are the more desired 

ones. Some studies have also recommended a case of PHEVs less than 10 for the sake of 

cost, for particular drivers. Since it is desired to provide a family satisfying more customers, 

the attempt is to pick the best options among the entire assessed range to include in our 

product family design study. The basic assumptions made earlier in this regard, includes 

the powertrain configuration which has been decided to be a power-split configuration that 

takes advantage of both series, and parallel ones.   

As noted earlier in this section, based on Shiau et al. [1], the optimality of the x 

miles and the chosen vehicle (between HEV and PHEVs) highly depends on what objective 

is under consideration. As such, the vehicle with minimized GHG emissions might be 

different from the one with minimized life time cost or the fuel consumption. Based on a 

review of the studies mentioned above, the following variants of PHEVs with a nominal 

AER of 7, 20, 30, 40, and 60 miles are identified and selected for platform configuration 
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assessment in this study with a specified range of fuel economy, emissions, and powertrain 

cost to demonstrate our approach. The following assumptions, considerations and 

measurements apply to the selected variants [104]: 

 The general configuration settings follow the design of Toyota MY04 Prius as 

modeled in PSAT, with power-split powertrain configuration which is consistent with 

the intended configuration of our study. 

 The studied battery is Saft Li-Ion which is widely used and evaluated in different 

studies for their great potential as energy storage devices for PHEV due to higher 

energy density and specific energy. 

 A thorough simulation-based study is done for finding the optimal PHEV 

specifications for meeting different ranges of AER through an extended-range 

charge-depleting control strategy (which is a modification to the power split hybrid 

control strategy in PSAT). 

The three objectives (i.e., fuel economy, emissions, and powertrain cost) are integrated 

into an aggregated objective function (AOF), based on the principles adopted from [105]. It 

should be noted that in case that the optimization convergence would turn out to be 

challenging, larger objective values can be replaced by the rows labeled as “worst” in Table 

6-3 for the cost and emissions. The same applies for the fuel economy (where lower values 

for the worst value can be allowed, depending on the subsequent optimization challenges). 

The AOF is created from integrating the preference functions for each design objective, 

where each preference function attempts to find a value close to the best value, and not 

more (not less) than the worst value in Table 6-3. For example, for PHEV7, the preference 

for fuel economy indicates that any fuel economy more than 90 miles/gallon can be 

considered satisfactory, with a high preference, while any fuel economy below 70 

miles/gallon is considered unacceptable, or with a low preference.  

The weighted aggregation of these three functions allows a single-objective 

optimization. The AOF of this problem and the preference functions are as follows: 
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𝒫𝑠 = (
𝜔1𝛼1

𝑠 + 𝜔2𝛼2
𝑠 +  𝜔3𝛼3

𝑠

𝜔1 + 𝜔2 + 𝜔3
)

1
𝑠⁄  

(6-1) 

Fuel Efficiency 𝛼1 =  
𝑓1−𝑓1_𝑤𝑜𝑟𝑠𝑡

𝑓1_𝐵𝑒𝑠𝑡−𝑓1_𝑤𝑜𝑟𝑠𝑡
 (6-2) 

Cost 𝛼2 =  
𝑓2_𝑤𝑜𝑟𝑠𝑡−𝑓2

𝑓2_𝑤𝑜𝑟𝑠𝑡−𝑓2_𝐵𝑒𝑠𝑡
 (6-3) 

CO2 Emissions 𝛼3 =  
𝑓3_𝑤𝑜𝑟𝑠𝑡−𝑓3

𝑓3_𝑤𝑜𝑟𝑠𝑡−𝑓3_𝐵𝑒𝑠𝑡
 (6-4) 

The cost functions are mostly adopted from the literature (i.e., [106, 107]) and the 

objectives of interest include the operating cost, the ESS cost, motor, and engine cost. The 

weights are set to be equal (i.e., 1/3), and s=-1.  

The design variables and the ranges are as follows: 

1. Upper limit for SOC (0.6 ≤ 𝑥1 ≤ 0.95)  

2. Lower limit for SOC (0.25 ≤ 𝑥2 ≤ 0.5)  

3. Engine size (40 ≤ 𝑥3 ≤ 85) kW 

4. Motor size (30 ≤ 𝑥4 ≤ 75) kW 

5. Number of Battery modules (20 ≤ 𝑥5 ≤ 143) 

6. Power-split device ratio: 
𝑥6

𝑥7
∈ {2.6, 2.75, 2.9, 3.0, 3.2, 3.25, 3.4} 

Depending on the certain needs in this study, the cost functions have been modified to 

represent costs in terms of other parameters such as the engine and motor sizes. The new 

functions have been obtained through interpolation of the cost functions in the literature, 

and then curves have been fit to the data obtained from the interpolations. 
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Table  6-3: Selected range for different objectives 

Variant  1 2 3 4 5 

Fuel economy (miles/gallon) 

Best  90 85 80 75 65 

Worst  75 65 60 55 42 

Cost (K$) 

Best  2.5 3 3.3 3.6 4 

Worst  3 3.5 4 4.5 5 

Emission (grams/mile) 

Best  130 150 165 180 205 

Worst  145 170 185 200 230 

The cost equations are as follows: 

Cost =Operating Cost+ ESS Cost+ Motor Cost+ Engine Cost 

𝐸𝑆𝑆 𝐶𝑜𝑠𝑡 =  651.2 × 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 + 680 

𝐸𝑛𝑔𝑖𝑛𝑒 𝐶𝑜𝑠𝑡 = 145 × 10−5 × 𝐸𝑛𝑔𝑖𝑛𝑒 𝑀𝑎𝑥 𝑃𝑜𝑤𝑒𝑟 + 531 

𝑀𝑜𝑡𝑜𝑟 𝐶𝑜𝑠𝑡 = 217 × 10−4 × 𝑀𝑜𝑡𝑜𝑟 𝑀𝑎𝑥 𝑃𝑜𝑤𝑒𝑟 + 425 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡

=  
1

𝐷𝑖𝑠𝑡𝑖𝑎𝑛𝑐𝑒 𝑖𝑛 𝑚𝑖𝑙𝑒𝑠
× ( 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑒 × 𝑐𝑜𝑠𝑡𝑒

𝜂𝐶𝐷 × 𝜂𝐶ℎ
 +

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑓 × 𝑐𝑜𝑠𝑡𝑓

𝜂𝐶𝑆
) 

(6-5) 

(6-6) 

(6-7) 

(6-8) 

 

(6-9) 
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𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑒: The distance traveled on electric energy 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑓: The distance traveled purely on fuel 

𝑐𝑜𝑠𝑡𝑒: The cost of electricity= 0.11 $/Kwh 

𝑐𝑜𝑠𝑡𝑓: The cost of gasoline= 3 $/gallon 

𝜂𝐶𝐷: Electrical Efficiency of the vehicle in the charge-depleting mode: 5.2 

miles/Kwh 

𝜂𝐶ℎ: Charging efficiency= 0.88 

𝜂𝐶𝑆: Fuel Efficiency in the charge-sustaining mode that is 59.5 miles/gallon. 

The ESS cost is for the Li-ion battery based on the battery energy.  The unit prices are 

adopted from US prices [52]. The control strategy parameters are decided to be fixed 

except the upper and lower SOC bounds, and the decision points follow a default strategy 

as created by the Argonne National Library in the PSAT.  

The fuel efficiency is calculated based on the logic adapted from [101], where SAE 

J1711 Recommended Practice has been applied. The required equations for obtaining fuel 

economy value is presented below. 

𝐷𝑖𝑠𝑡𝑖𝑎𝑛𝑐𝑒 𝑖𝑛 𝑚𝑖𝑙𝑒𝑠: The entire miles of the driven distance 

     𝑚𝑝𝑔𝐶𝑆 =  
𝐷

𝑉𝑓𝑢𝑒𝑙
     (6-10) 

    𝑚𝑝𝑔𝐶𝐷 =  
𝐷

𝑉𝑓𝑢𝑒𝑙+
𝐸𝑐ℎ𝑎𝑟𝑔𝑒

𝐸𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒

    (6-11) 
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𝐷  is the distance traveled and 𝑉𝑓𝑢𝑒𝑙 is the volume of consumed fuel. 𝐸𝑐ℎ𝑎𝑟𝑔𝑒 is required 

electrical recharge energy in kilowatt-hours, and 𝐸𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒 is constant and equal to 33.44 

kWh/gal. 

The weighted CD-mile per gallon rating is then calculated as follows: 

   𝑚𝑝𝑔𝐶𝐷,𝑈𝐹 =  
𝐷

𝑈𝐹

𝑚𝑝𝑔𝐶𝐷
+

(1−𝑈𝐹)

𝑚𝑝𝑔𝐶𝑆

     (6-12) 

UF is the utility factor, determined based on the findings indicating that 50% of fleet 

VMT occurs within the first 40 miles of travel [101]. Based on the standard test cycles of 

UDDS, a full charge test distance of 30 miles is used to determine the 𝑚𝑝𝑔𝐶𝐷, and the 

utility factor for this value is 0.42.  

The final step according to SAE J1711 is to calculate the cycle fuel economy based on 

the following equation: 

    𝑚𝑝𝑔𝐶𝑦𝑐𝑙𝑒 =  
2

1

𝑚𝑝𝑔𝐶𝐷,𝑈𝐹
+

1

𝑚𝑝𝑔𝐶𝑆

    (6-13) 

The other dynamic specifications applied in the simulations are shown in Table 6-4. The 

design variables in our study include a set of component sizes, along with two variables 

from the control strategy.  The control strategy is a blended strategy that enables engine to 

assist in the propulsion. In this strategy, the vehicle normally operates in the CD mode, but 

if the torque demand exceeds a specific value, even though the SOC might have not 

reached the lower limit, the engine is started to assist in propulsion and then turned off as 

soon as the required torque is reached, resulting a mix of charge depletion and charge 

sustaining modes. 
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Table  6-4: The Vehicle dynamics specifications for simulation 

Parameter Feature/Value 

Drag Coefficient 0.26 

Frontal Area 2.25 m2 

Glider mass 1228 kg 

Engine 1.5-L, 40-85 kW Atkinson 4 cylinder; 

5000 rpm Maximum Speed 

Motor 30-75 kW, 400 Nm, 

6500 rpm Maximum Speed 

Generator 30 kW, 10,000 rpm Maximum Speed 

Battery Li-ion Saft, Series, 3 cells per module, 20-143 NBM 

Final Drive Ratio 2.6-3.4 

Wheel Radius [m] 0.305 

We assess a range of possible values for the power-split ratio, which span from 2.6 

to 3.4, according to a study in this area [107] that leveraged Dynamic Programming to find 

a range of optimal ratios that can split the torque in the component sizes such that the fuel 

consumption is minimized and the vehicle performance stays within a desired range. For 

the sake of maintaining discrete nature of the power-split ratio, we defined a new variable 

as the ratio of the ring gear to the sun gear, 
𝑥6

𝑥7
.  The sensitivity analysis, however, has been 

performed on a set of seven variables to allow us analyze the impact of each gear ratio 

separately. The constraints are shown in Table 6-5.  
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6.4. Platform candidates identification  

By obtaining our validated simulation model of the PHEVs (As shown in Appendix B), 

along with specified ranges for the objectives of designing each variant, the next step is 

identification of the appropriate platform candidate set. The information on the sensitivity of 

the variables is obtained through a strategy that combines the Radial Basis Function-High 

Dimensional Model Representation (RBF-HDMR) and the Random Sample HDMR (RS-

HDMR) metamodeling techniques to provide a measure of the correlations among 

variables and impact of each variable on the objective function. 

Table  6-5: The system constraints for the PHEV design problem 

Time from 0 to 60 mile/hour speed 𝑡1 ≤ 12 seconds 

Time from 0 to 85 mile/hour speed 𝑡2 ≤ 23.4 seconds 

Time from 40 to 60 mile/hour speed 𝑡3 ≤ 5.3 seconds 

Maximum acceleration 0.5×g ≤Max 

acceleration 

Traveled distance within the first 5 seconds 140 ft ≤ 5S distance 

Maximum grade ability percentage at 55 mile/hr 6.5% ≤Max %grade 

Maximum speed 85 mph ≤ Max speed 

All Electric Range AER =  7, 20, 30, 40, 

60  miles 

Metamodels are built based on sampling a number of points (or input-output pairs) 

which allow finding information about the structure of the function under study. Since the 

required number of samples grows exponentially by increasing the number of variables, 

extensive sampling can impose remarkable computational costs to the system. High 

Dimensional Model Representation (HDMR), developed by Sobol [109], is an efficient 

metamodeling approach, as used in [3] for platform configuration purposes. The component 

functions in HDMR are orthogonal and optimal in HDMR, as the functions are chosen to 

minimize the least square approximation error.  The RBF-HDMR uses the RBF function to 



 

125 

 

model each of the component functions in HDMR [73]. The needed component functions 

will be identified through test points, and then sample points will be adaptively added until 

obtaining a desired accuracy. In case of no or very small correlation between two variables, 

the corresponding component function will not be built in the model, and no further samples 

will be taken from the corresponding sub-space. The variable correlations are shown to be 

well estimated by use of this technique [67]. Other specifications for design are consistent 

to Toyota MY04 Prius, as reported in Table 6-6. 

Table  6-6: The general vehicle specifications for all the variants (from [104]) 

Component Specification Component Specification 

Engine Baseline Size: 57kW 
1.4L 4-Cylinder 

Nominal output 
voltage1 

3.6 V 

Motor Baseline: 50 kW 

Permanent Magnet 

Battery packaging 
weight factor2 

1.25 

Battery Saft Li-Ion Package Module weight (3-cell) 0.65 Kg 

# of cells per 
module 

3 (in Series) Control strategy Hybrid 
Power split 

Cell Specific 
Energy 

100 Wh/Kg SOC range 30-70% 

Cell Weight 0.173 Kg SOC  for switching to 
CS 

35% 

Cell capacity 6 Ah   

The nomenclature of design variables and the objectives of interest in the 

PHEV design problem have been listed in Table 6-7. 

 
1
 It shall be noted that these battery characteristics are per cell, and the cumulative parameters such 
as capacity are scaled for vehicles of higher AER, on a linear basis. 

2
 The total battery size and capacity can be scaled by specifying an integer number of battery 
modules. 
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Preference functions (α): 

Depending on the desired range of efficiency, powertrain cost, and expected 

emissions, the acceptable range of each objective will be different, as shown in the 

tables above. 

1. Fuel Efficiency (𝛼1): 

    𝛼1 =  
𝑓1−𝑓1_𝑤𝑜𝑟𝑠𝑡

𝑓1_𝐵𝑒𝑠𝑡−𝑓1_𝑤𝑜𝑟𝑠𝑡
     (6-14) 

2. Cost (𝛼2):  

    𝛼2 =  
𝑓2_𝑤𝑜𝑟𝑠𝑡−𝑓2

𝑓2_𝑤𝑜𝑟𝑠𝑡−𝑓2_𝐵𝑒𝑠𝑡
    (6-15) 

3. CO2 Emissions (𝛼3): 

    𝛼3 =  
𝑓3_𝑤𝑜𝑟𝑠𝑡−𝑓3

𝑓3_𝑤𝑜𝑟𝑠𝑡−𝑓3_𝐵𝑒𝑠𝑡
    (6-16) 

Table  6-7: The Nomenclature for the PHEV Design Problem 

𝒙𝟏 Upper limit for SOC [%] 𝑥6

𝑥7
 Power-split device ratio 

[ring gear/sun gear] 

𝒙𝟐 Lower limit for SOC [%] 𝑓1 Fuel Economy [miles/gallon] 

𝒙𝟑 Engine size [KW] 𝑓2 Powertrain cost [$] 

𝒙𝟒 Motor size [KW] 𝑓3 Co2 emission [g/mile] 

𝒙𝟓 Number of Battery modules AOF Aggregated objective function 

While the best weights and value for the  level of compensation 𝑠 can be identified 

through a trade-off strategy, however in this study since the focus is on finding information 

on the relation and impacts of the design variables rather than performing optimization, the 

weights are set to be equal, i.e, 1 3⁄ , and 𝑠 is set to -1. 
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6.5. Application of the PFD methodology to the PHEV family 
design problem 

Step 1: Individual optimization of variants 

At this step, each variant is optimized toward its specific objective function. The 

algorithm used for optimizing the variants is TRMPS2. 

TRMPS2 algorithm 

Mode Pursing Sampling (MPS) is a global optimization algorithm for expensive 

simulation-based optimization with the ability of performing global optimization [110]. MPS 

has been tested and is shown to be effective and efficient for low-dimensional design 

problems. The trust-region based MPS algorithm was later developed to integrate the 

concept of trust regions into the framework of the PMS algorithm, which was shown to 

dramatically improve the performance and efficiency of high dimensional problems. The 

benchmark against Genetic Algorithm (GA), Dividing Rectangles (DIRECT), and Efficient 

Global Optimization (EGO), through a suite of standard test problems and an engineering 

design problem by Cheng et al. [111] show that on average it performs better than GA, 

EGO, DIRECT, and MPS for high dimensional, expensive, and black box (HEB) problems. 

MPS relies on stochastic sampling and metamodeling as the primary techniques in 

order to do optimization. Random sampling is used in MPS to generate a small set of 

expensive points from the black-box function, and uses them afterwards to create a 

metamodel of the objective function. A large number of points are fitted onto the metamodel 

in a discriminative sampling process first and then the metamodel points are used to pick 

new expensive points and add to the old expensive points set. By identifying the most 

promising sub-region of the search space, a quadratic model is constructed in the sub-

region, and local optimization is performed on this sub-region by using the obtained 

quadratic model.  

For nonlinear high dimensional problems that are highly constrained or are of more 

than ten design variables, the performance of MPS decreases due to generating a RBF 
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metamodel in each iteration and using all of the expensive points available which 

dramatically increases with each iteration. The computational cost of MPS and the required 

CPU time and memory to store the large matrices makes it not as much efficient for 

complex problems like the PHEV multi-objective simulation-based design problem.  

The TRMPS2 algorithm forms two hyper-quadrilaterals or regions called S and B, 

which vary in size at different stages of the optimization. At the beginning of the 

optimization, in both trust regions processes similar to those of MPS are started. If a better 

optimum point is discovered through the searches, then S expands to let exploration of 

further areas and avoiding falling into a local minimum region, and B contracts to allow 

further exploitation of that promising region [111]. If the search does not improve within a 

specific number of iterations, S contracts to exploit the promising region where seems to 

have the best points so far, and B expands for better exploration of the search space. The 

TRMPS2 uses this dynamic balance between exploitation and exploration to increase the 

efficiency of the sampling in the search space. Complete set of details and parameters for 

this algorithm can be found in [111]. It is assumed that the distance between charges is 

beyond the AER considerations, for example more than 60 miles, and by applying the 

TRMPS2 algorithm to the PHEV design problem, the results shown in Table 6-8 are 

obtained.  

GHG emissions in Shiau study [112] decrease for larger PHEVs. However, for 

driving a longer distance on a single charge, specifically for blended control strategy 

used in this research, the total emissions are not far from expectation to increase for 

bigger AER PHEVs. Since the SOC decreases and ultimately results in more frequent 

use of engine for longer AER values, it makes sense to have increased GHG emissions 

and fuel consumption for larger x values in PHEVx. The GHG and fuel consumption are 

in line to each other. The cost increases for the increments in AER value, but since the 

AOF is an aggregation of the three objectives, the trends in its value may not be linear. 
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Table  6-8: Individual variants design optimization solutions 

Variant  

Design Variable 
P1 P2 P3 P4 P5 

𝒙𝟏 0.79 0.94 0.94 0.90 0.93 

𝒙𝟐 0.25 0.28 0.34 0.34 0.30 

𝒙𝟑 83885 84697 84945 84366 83717 

𝒙𝟒 48346 50125 53623 54033 55467 

𝒙𝟓 20 42 71 75 88 

𝒙𝟔 78 79 82 81 80 

𝒙𝟕 29 27 27 27 25 

Fuel Efficiency (Miles/gallon) 198.4 192.73 187.15 113.9 97.03 

Cost ($) 2820.8 2860.6 2936.9 2944.9 2975.1 

CO2 Emissions (Grams/mile) 154.47 155.94 157.78 170.7 180.83 

AOF 2.25 1.27 1.93 1.87 1.74 

Convergence of optimization 

Figure 6-2 to Figure 6-6 show the reasonable convergence trend for all the 

variants over 700 iterations. 

 

Figure  6-2: Convergence diagram for optimization of PHEV7 
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Figure  6-3: Convergence diagram for optimization of PHEV20 

 

 

Figure  6-4: Convergence diagram for optimization of PHEV30 
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Figure  6-5: Convergence diagram for optimization of PHEV40 

 

Figure  6-6: Convergence diagram for optimization of PHEV60 

The first variant optimization was run for 1000 iterations, but since from about the 

600th iteration the objective function value remained fixed around the optima, it was decided 

to reduce the number of iterations for the sake of avoiding excessive and unnecessary 

optimization run time. As the convergence diagrams above show, the 700 is a reasonable 

number of iterations which has resulted in an acceptable level of convergence for all the 

variants in our first optimization stage. 
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Step2: Platform candidates set selection 

After obtaining the sensitivity index values for each variable in each variant, a global 

SI is calculated for each variable, which is the average of the five local SI values. The 

obtained local and global SI’s are presented in Table 6-9. Similarly, by collecting the 

maximum of the off-diagonal elements in the S matrix of each variant, the quantified 

correlations (QC) among the variables for each of the five variants, i.e., PHEV7,  PHEV 20, 

PHEV 30, PHEV 40, and PHEV60 are obtained as shown in Table 6-10. 

Table  6-9: Local and Global Sensitivities of variables in PHEV family design problem 

Design 
Variable 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝑥6 𝑥7 

SI(1) 
0.0008 0.0003 0.0025 0.9242 0.0006 0.0030 0.0003 

SI(2) 
0.0086 0.0139 0.0150 0.5933 0.0105 0.0039 0.0110 

SI(3) 0.0098 0.0083 0.0321 0.2588 0.0095 0.0196 0.0030 

SI(4) 
0.0110 0.0114 0.0468 0.1048 0.0126 0.0014 0.0015 

SI(5) 
0.0151 0.0395 0.0444 0.0282 0.0372 0.0132 0.0265 

Global 
SI 

0.0091                        0.0147 0.0282 0.3819 0.0141 0.0082 0.0085 

                           

Table  6-10: Quantified Correlation of variables in the PHEV family design problem 

Design 
Variable 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝑥6 𝑥7 

QC (1) 
0.0060   0.0055 0.0067 0.0066 0.0067 0.0066 0.0034 

QC (2) 
0.0344 0.0185 0.0185 0.0344 0.0385 0.0385 0.0271 

QC (3) 
0.0353 0.0508 0.0742 0.0384 0.0508 0.0742 0.0381 

QC (4) 
0.0665 0.0644 0.0665 0.0460 0.0625 0.0551 0.0644 

QC (5) 
0.0546    0.0463 0.0463 0.0546 0.0901 0.0901 0.0588 

Global 
QC 

0.0394                       0.0371 0.0424 0.0360 0.0497   0.0529 0.0384 

The metamodeling accuracy was assessed for the sampled points and the results of 

this comparison are shown in Figure 6-7, and a more zoomed view for a portion of the 

graph is shown in Figure 6-8. 
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Figure  6-7: Metamodel accuracy for 500 sample points 

 

Figure  6-8:  Zoomed view of the metamodel for 20 sample points 

The graphical presentation of the simulation output versus the metamodel output 

shows high conformance or accuracy. However, to have a quantified measure of the 
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accuracy, the widely known accuracy measures such as R-Square and RMSE are shown in 

Table 6-11. 

Table  6-11: The accuracy measures for the metamodel 

Parameter Value 

R-square 0.9981 

RAAE 0.0242 

RMAE 0.4919 

  

Root mean square error:  𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦̂𝑖)2𝑚

𝑖=1

𝑚
   (6-17) 

Relative average absolute error:  𝑅𝐴𝐴𝐸 =
∑ |𝑦𝑖−𝑦̂𝑖|𝑚

𝑖=1

max(𝑆𝑇𝐷)
   (6-18) 

Relative maximum absolute error:  𝑅𝑀𝐴𝐸 =  
𝑀𝐴𝑋

𝑆𝑇𝐷
    (6-19) 

R-square shows the accuracy in sampling points; RAAE and RMAE show the global 

and local accuracy in test points, respectively. Since RBF-HDMR goes through the 

sampling points, R-square should be ideally 1, while RAAE and RMAE ideally should be as 

close to zero as possible. In our case, the small value of RAAE and the value of RMAE 

indicates that a local area might have lower modeling accuracy than the rest of areas, due to 

potential complexities in the relationships of variables in that specific area [73].  

While these measures along with the plot for sample points show reliability of the 

metamodel information, however, for the sake of more observations and comparisons, a 

one-variable conventional sensitivity analysis is also performed on the design problem. 

2-a) Analysis of linearity for the impact of design variables 

It can be helpful to assess the linearity of effects for the design variables, as for the 

strong linearity it can be concluded that the objective function can be decomposable for 

specific variables, resulting in reduced efforts for optimization and family design. 
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A) SOC bounds (𝒙𝟏, 𝒙𝟐) 

When setting smaller values as the bound for lower SOC, the vehicle has a wider 

range of operation on electric energy, and consuming less fuel potentially, which as the 

figure shows, results in more fuel economy. In contrary, when a smaller value is chosen as 

the upper bound of SOC, there is reduced opportunity of leveraging electric energy, as the 

window of SOC is narrowed down. 

For the case of varying the upper bound of SOC, more sensitivity can be seen. This 

implies that a larger value of the upper bound allows leveraging more of the electric energy 

for propulsion, which results in increased fuel efficiency, less emissions, and as expected, 

no change in the powertrain costs. The AOF value slightly improves by increasing the 

upper SOC. 

However, the sensitivity analysis based on the RBF-HDMR technique shows that for 

the higher range of upper SOC values, this variable does not come into affecting the 

performance of some variants. The reason is that our variants have a main differentiation 

point, which is the range to be driven on pure electric power. Since the initial SOC matters 

significantly in affecting the control strategy decision points specifically for small AER 

ranges (e.g., the first and second variants), if initial SOC would be selected as a design 

variable, different optimization results and sensitivity information might be obtained from the 

current observations. Second, the upper and lower SOCs, to some extent, couple with each 

other, meaning that isolated assessment of impact of them on the performance can be 

misleading, depending on the range under study for these variables. The impact of these 

variables on our objectives of interest is shown in Figure 6-9 and Figure 6-10 respectively. 
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Figure  6-9: Impact of upper SOC on the design objectives (for Variant #1) 

 

 
Figure  6-10: Impact of lower SOC on the design objectives 

B) Engine Size (𝒙𝟑) 

The increase in the engine size results in more consumption of the fuel and more 

emissions, and increase in the cost of the powertrain. The engine size might be minimized 
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by the optimization algorithm for reducing emissions and improving the efficiency. However, 

the decrease in the aggregated objective function is not significant due to the cancelling 

impacts of the emissions and fuel efficiency. The fuel consumption is an issue that can be 

impacted significantly by the selected control strategy and the thresholds for switching 

between alternate sources of power. As such, further research on the coupled impact or 

control parameters and the fuel consumption can be an interesting area for investigation, 

as it can reveal or impose a different behaviour at the optimization stage. The impact of 

engine maximum size on all the objectives of interest is shown in Figure 6-11. 

 
Figure  6-11: Impact of engine maximum power on the design objective 

C) Motor Size (𝒙𝟒) 

The motor size (maximum power in kW) positively affects the aggregated objective 

function, implying that the increase in its size is more desired for higher fuel efficiency and 

less emissions. The slope of increase and decrease in the aggregated performance 

function seem to be larger for the motor size than other factors, which might be a sign of 

high impact of this variable on the AOF, which is consistent with the SI value obtained 

through the RBF-HDMR technique. Figure 6-12 shows this impact on the objectives. It 

should be noted that though in the market there are discrete sizes available for motor and 

engine so far, this study is based on the ideal case assumptions, indicating that in an ideal 

case where there will be no manufacturing constraints limiting the options, what sizes can 

result in optimal performance of the PHEV. 
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Figure  6-12: Impact of motor maximum power on the design objectives 

 

D) NBM (𝒙𝟓) 

The performance change with increasing the battery modules is similar in trend and 

significance to that of the motor size, but the AOF is less sensitive to the changes, and this 

is consistent with the SI values obtained through the RBF-HDMR technique. It should be 

noted that the cost modeled in this study is a supervisory level cost. A detailed cost 

modeling which can incorporate the manufacturing and depreciation costs of batteries will 

be a worthwhile part for future studies, as it can change the sensitivity analysis results due 

to its more significant impact on the overall performance of the vehicle. In this study, the 

cost model is developed based on an extrapolation of the information in the literature, 

specifically from the study by Markel et al. [106], where the battery pack cost is formulated 

as a function of the battery energy (kWh), and a fixed cost of 680 dollars. The visual impact 

is shown in Figure 6-13. 
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Figure  6-13: Impact of the number of battery modules on the design objectives 

E) Power-split device Ratio (
𝒙𝟔

𝒙𝟕
) 

 The power-split device ratio is similar to SOC bounds in terms of affecting the 

powertrain cost, but of an opposite impact on fuel efficiency and emissions. The increase in 

the fuel efficiency for higher ratio values implies that more torque (and consequently power) 

is taken from the motor in propulsion, resulting in a similar effect to that of the increase in 

the motor size which was discussed above. The percentage of change per changing this 

variable is shown in Figure 6-14. 

In summary, the individual sensitivity analyses of this section show reasonable 

consistency with the metamodeling results. The visualized impact of each variable has 

some advantages and some limitations. An advantage is its ease of observation and 

conclusion about the trends per change of each variable. However, this feature might not 

be very helpful for cases that the output is of insignificant changes, or the range of change 

is very small, as compared to other output. This is the case for AOF in our study, where the 

value spans the range of [1 2.5] for the entire design space. In such cases, the comparison 

between the impacts of different variables becomes challenging and with high chances of 

errors. Besides, a graphical presentation only provides information about the first order 

effects, and is based on the assumption of linear impacts. In case of non-linearity and 

correlations among various variables, some other important pieces of information would be 
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missed in such type of assessment. Also, since for each and every point an expensive 

simulation is needed to run, this type of conventional sensitivity analysis can be of 

significant costs.  

 
Figure  6-14: Impact of the ring to sun gears ratio on the design objectives 

2-b) Analysis and findings on candidates for platform configuration 

The sorted SI vector shows that the numbers of teeth for the ring gear and the sun 

gear (in the power-split device), x6 and x7, respectively, are the least impacting factors on 

the performance of the vehicle. This might be due to the narrow range for these teeth 

numbers that assure meeting the performance requirements. Also, since these gears are 

connected to the component sizes, it is expected that their impact mostly depends on the 

chosen sizes for the underlying component. As such, their own impact is not as much 

concerning as that of the component sizes in changing the output of the objective function. 

Accordingly, from the commonalization perspective, a fixed power-split device gear ratio 

can be a promising candidate toward the family design of PHEVs.  

The next rank set of impacts relates to the upper and lower bound of SOC and the 

battery modules (x1, x5, x2). For the upper and lower SOC, sine they are control strategy 

parameters, they are not expected to be as much impactful as the component sizes. 

However, the proximity of effect of NBM to the effect of x1, and x2 makes sense since the 

battery size and its SOC window are a set of highly coupled parameters governing the 
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electric power supply for the vehicle. It should be noted that for x1, and x2, there is no 

benefit or manufacturing cost saving in choosing any shared value.  

The engine size, x3, comes next in the SI sorted vector. Though in the SI ranks, it 

seems that the engine is on the extreme right side of the sorted GSI vector, but all the GSI 

values except for the motor size are quite similar and in a range less than 0.03, which is 

significantly less than the GSI value for x4, i.e., 0.38 or more than ten times. As such the 

engine size can be considered for commonalization to some extent as well. While further 

determination of its potential for being a multiple sub-platforms vs. the need for keeping it 

as a scale variable can only be possible after the detailed family design is obtained, 

however, the insight provided from the sensitivity analysis can be beneficial for 

manufacturers and designers in early stages. 

At the extreme right side of the sorted SI vector in Table 6-9, the motor size, x4, with 

a high SI value, which indicates significant impact of the motor size on the PHEV 

performance, and potentially significant performance loss for commonalization of this 

variable. Since the engine is able to be decoupled from the propulsion sources and 

because it can be controlled to operate in its most efficient mode, it is expected that its 

impact on the performance can be less than the impact of the electric motor. The highest 

impact of the motor size comes from the fact that appropriate battery size alone would not 

result in the desired performance of the vehicle, unless the motor is also of the right size to 

be powered by the battery and transfer the power to the transmission.  The observations 

discussed above are consistent with the logic of automatic component sizing, which is one 

of the widely-used component sizing strategies. In that strategy, the motor size that meets 

the peak mechanical power required to follow the desired driving cycle is the very first item 

to be determined. The battery peak discharge power is then defined as the electrical power 

that the motor requires to produce that peak mechanical power. The engine is then sized to 

achieve the gradeability requirement of the vehicle and the 0-60 mph performance 

requirement [113, 114].  

 The observations on this section are summarized in Table 6-12. Since another 

effective parameter on making platform configuration decisions is the coefficient of variant, 
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the decision on whether a variable such as the motor size is beneficial or disadvantageous 

for any commonalization level highly depends on the span of the optimal values for any 

given variable on the variants under study, as well as the expected performance range for 

the variants. In other words, based on the improved scheme developed in Chapter 5 

(section 5.7), even the high ranks of SI value will not preclude a variable from being a good 

option to take a common size for some variants, if not all of them. 

Table  6-12: Suggestions for commonalization based on the sensitivity and 
correlation analysis findings 

Variable Platform configuration suggestions 

1, 2 No benefit in commonalization 

3, 6, 7 Candidate for single or multiple platforms 

4, 5 Scale variables or potential multiple 

platforms 

Step 3: Platform value(s) determination 

As per the structure of our platform configuration strategy, at this step an additional 

parameter toward decision making is to find the coefficient of variation (CV) for the vector of 

optimal values from Step 1. The CV value for each variable is obtained and the resulting 

vector sorted in non-descending order, shown in Table 6-13. 

Table  6-13: SI, Correlation, and Coefficient of Variation for the variables in the 
universal motor problem 

Parameter  Sorted 

GSI 
𝐺𝑆𝐼

= [0.0091 0.0147  0.0282  0.3819  0.0141  0.0082  0.0085] 
[6     7     1     5     2     3     4] 

Correlation 𝐴𝑄𝐶
= [0.0394 0.0371  0.0424  0.0360  0.0497 0.0529 0.0384] 

[4     2     7     1     3     5     6] 

CV 
𝐶𝑉

= [7.0711 12.9097 0.6184 5.6657 46.6504 1.9520 5.2378] 
[3     6     7     4     1     2     5] 

 

The partitioning scheme is updated in this chapter based on the range of obtained 

values for global sensitivity indices (GSI) and the CV values, to allow multiple platforms. As 
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concluded from Chapter 3, while the CV and SI values might recommend keeping specific 

variables as scale or non-platform variables, however the assessments of the universal 

electric motors family problem revealed that  commonalization of those specific variables 

(i.e., recommended to be non-platform variable) might also be possible, at least to some 

extent. A cautious commonalization of the variables at the right end of the non-descending 

sorted vectors of SI and CV not only may not result in significant performance loss, but also 

may result in savings due to a higher degree of commonalization. Besides, in case of 

exceeding the allowed performance loss, it is always possible to increase the degree of 

freedom and reduce the commonality level. As such, it is desired to implement a moderate 

scheme like the third part of chapter 4, where more possibilities of commonalization were 

provided to most of the variables. The platform candidates are accordingly obtained as 

shown in Figure 6-15. 

 

Figure  6-15: The partitioning scheme for the PHEV family design problem  

The next step is to determine sub-platform values for multiple platform candidates, 

and common value for single platform candidates. By applying the clustering strategy to the 

multiple platform candidates, the obtained values and sub-platforms is shown in Table 6-

14, and the best values for commonalization is shown in Table 6-15. 

Table  6-14: The determined number of platform/sub-platforms- PHEV PFD 

Variable Commonalization level 

6,7 All-or-none platform 

3,4 2 sub-platforms 

1,2,5 Scale variable 
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The values of sub-platforms are obtained through applying the strategy discussed in 

Part (b) of Section 5 from Chapter 3. The two sub-platforms suggested for engine size and 

motor size result in groups of variants whose CV value is reduced by 70%, as compared to 

the case of a single platform for these variables. 

Table  6-15: Platform configuration of the variants based on the proposed optimal 
partitioning scheme 

Platform Candidate X6 X7 X3 X4 

Number of platforms 

Single platform 

2 2 

Platform variants 

P1= {p1, p5} 

P2= {p2, p3, p4} 

P1= {p1, p2} 

P2=  {p3,  p4, p5}  

Platform preferred value X6=81 X7=27 

X3 (P1)= 83801 X4(P1)=49236 

X3(P2)= 84670 X4(P2)= 53865 

For the motor size, since there is a significant variance for the SI values, the best 

suggested value by our algorithm is the weighted average for sub-platform 2, where the SI 

values span the range of [0.02,0.25], as shown in Table 6-9. This makes sense in terms of 

the algorithm vision that is avoiding performance loss by staying as close to the optimal 

values from step 1, as possible. Therefore, when variants 3, 4, and 5 are suggested to form 

a separate sub-platform for this variable, obviously variant number 3 gets a higher priority 

due to its larger SI value for x4.  

Step 4: Entire family design optimization 

With the determined platform values, each variant is now optimized with less number of 

variables by setting the values of platform variables to the fixed values determined in Step 

3. The results of the entire family design are shown in Table 6-16, along with the obtained 

efficiency, emissions, and cost for each variant. The commonalized values are shown in 

hatches and shaded forms for an illustrative presentation of the multiple platform family 

design. 
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Table  6-16: Family Design based on the proposed method- PHEV PFD problem 

 

Step 5: Performance evaluation 

At this stage, the best reference for assessing the family design solution obtained in 

the previous step is the individual optimal designs from Step 1. By pair-wise comparison of 

the new values for all the three objectives as well as the aggregated objective function 

(AOF), the percentage of change in each variant performance is measured and collected in 

Table 6-17. 

5-a) Comparison with individual optimal designs 

The results show that for fuel efficiency objective, in the worst case, there is 9.8% 

loss for PHEV60, in case of sharing the variables as per the suggested configuration. This 

indicates about 10 miles per gallon reduction in the fuel efficiency, as compared to the 

expected performance of the PHEV60 at its optimal design before family design. There are 

some improvements for PHEV7 and PHEV40, indicating the better performance of the 

Variant 

----------- 

Design Variable 

P1 P2 P3 P4 P5 

𝒙𝟏 0.8100  0.8578     0.9334 0.9292 0.9497 

𝒙𝟐 0.3388 0.2979    0.2554 0.2786 0.2551 

𝒙𝟑 83801 84670 84670 84670 83801 

𝒙𝟒 49236 49236 53865 53865 53865 

𝒙𝟓 20 52 52 65 70 

𝒙𝟔 81 81 81 81 81 

𝒙𝟕 27 27 27 27 27 

Fuel Efficiency (Miles/gallon) 203.82 189.98 184.55 118.99 87.45 

Cost ($) 2840.0 2841.3 2941.7 2941.7 2940.5 

CO2 Emissions (Grams/mile) 152.54 156.07 157.83 169.60 183.09 

AOF 2.39 1.27 1.91 1.94 1.46 
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vehicle with the new component sizes. The average loss on the fuel efficiency is 1.1% 

which is within the acceptable loss range.  

Table  6-17: The results of comparing our proposed method to the individual optima 

Variant 
Difference (%) 

𝐅𝐮𝐞𝐥 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 Cost Emissions AOF 

1 2.7319 0.6807 -1.2494 5.7778 

2 -1.4269 -0.6747 0.0834 0 

3 -1.3893 0.1634 0.0317    -1.0363 

4 4.4688 -0.1087 -0.6444     3.7433 

5 -9.8732 -1.1630 1.2498   -16.0920 

Average 
Change 

-1.0977 -0.2204 -0.1058 -1.5214 

The losses on the cost objective are all less than 1%, indicating insignificant 

increase in the cost after commonalization. The biggest increase on the cost is for PHEV7 

that is $20 in a scale of ~ $2800. There are even slight reductions in the cost, based on the 

selected configuration, which indicates the fixed sizes for the components at the family 

design stage have resulted in slightly reduced cost of the powertrain. The overall change in 

the powertrain cost for the entire family is a few dollars reduction in the cost.  

A quite similar variation in the emission objective values can also be recorded, as all 

the ups and downs in the emission after the family design stage are less than 1.5%, that is 

about 3 grams per mile of CO2, as compared to the range of 180 grams/mile. As expected, 

fuel efficiency and emissions are moving in the same direction, i.e., for the variants with 

improved fuel efficiency after the commonalization, there is reduction in the emissions, and 

vice versa. However, there is not such a straight forward relation between the trends for 

fuel efficiency and the cost. In other words, increase in the fuel efficiency may not 

necessarily result from a more costly component size (such as battery and motor), and 

therefore as the results show, there are cases where cost shows increase for increased 
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fuel efficiency (e.g., PHEV40), while there are also instances of reduced cost with better 

efficiency (e.g., PHEV7). In addition to the component sizes, some of the other parameters 

in effect for fuel efficiency include the driven distance, the control strategy parameters. 

AOF values before and after family design show more changes, as compared to the 

individual objectives of interest. One observation is that the AOF value is highly affected by 

the fuel efficiency, even though all the objectives have the same weight in AOF formulation. 

PHEV7 and PHEV40 have better AOF values after the commonalization by 5.7% and 3.7% 

respectively, and PHEV30 and PHEV60 have lost 1.3% and 16% of the AOF after the 

commonalization respectively. This can be an interesting subject for further exploration, in 

the sense that other weight values can be examined to find out how the optimization results 

and family design can be affected. As the linearity assessment in section 6.5.1 showed, 

emission and efficiency could be perceived to be of a cancelling effect, and due to the 

insignificant changes of the cost, the AOF also showed insignificant changes. However, 

more significant impacts of the individual objectives on AOF is revealed here, and the 

observations can provide directions for fine-tuning of the weights in the aggregated 

objective function formulation. 

The 16% loss of performance on the AOF value for the PHEV60 is worth more 

consideration. Since this value is a measure of the overall performance on fuel efficiency, 

emissions, and the cost of powertrain as well as the operating cost, it can be concluded 

that the overall performance of these objectives in the aggregated mode has a 16% loss. 

For better analysis and conclusion, however, the single objectives are better to be 

assessed for this variant.  The detailed performance values are 10 MPG reduction in fuel 

efficiency, $20 cost reduction, and 3 g/mile increase in CO2 emissions in the design of this 

vehicle after the platform configuration. The fuel efficiency has the highest loss among the 

three objectives of interest, indicating that the family design solution for this variant has the 

largest impact on increasing the assumption of fuel in this variant. As compared to the 

individual optimal design for PHEV60, the observation is that the motor size reduction of 

~1.5 KW as well as the reduced number of battery modules (from 88 to 70) has resulted in 

more dependency on the engine during the simulation, or in an increase in the fuel 

consumption over the cycle that this variant is run for our optimization purposes. However, 
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regardless of the current optimal solution in the family design, this variant is expected to 

have more fuel consumption due to its longer nominal AER miles. The seemingly large 

amount of 16% is dependent on the priorities set by the manufacturer, and it might be 

acceptable (in the trade-of between benefits of commonalization), or unacceptable (in the 

trade-off between customer preferences and product positioning purposes). In this case, 

the increase of CO2 emissions and decrease in fuel efficiency penalize the AOF value for 

PHEV60, even though the cost is reduced. Looking at the family as a whole, the average 

performance loss of 1.52% over the whole family is not a significant loss. Besides, as noted 

in the market studies, the majority of the driven miles per day is less than 30 miles for 50% 

of the drivers in US, which can be an important factor in decision making for the level of 

allowed performance loss for PHEV60.  

5-b) Commonality Index Measurement 

As per the CI index, with 𝑝 variants (5 in this problem) and 𝑛 components in each 

variant (or design variables in our case to be 7), for a design with 𝑢 as the total number of 

unique components,(15 as per our obtained family solution in Table 6-16), the value 

obtained for this family design solution is 71.4% which is a fairly high value for the family. 

Since the problem under study is not applied elsewhere, at this stage no further 

comparisons can be made in regard to the commonalization capability of the proposed 

family design strategy. 

6.6. Effect of varying the number of sub-platforms (k) on the 
family design 

Similar to the analysis implemented in Section 4.9, it is desired in investigating the 

effect of the number of sub-platforms on the performance of the resulting family. Since the 

AOF value is an aggregated representation of the overall performance, a better reflector of 

the fitness of the platform candidates is to assess the impact of various number of sub-

platforms on the three objectives of interest. This is done through assessing more sub-

platforms for variables with high SI value, and doing the family design optimization stage 

again to compare the new family results. The motor size is the best candidate to assess 
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such consideration for, based on its high impact on the objective function value. Through 

considering one to 3 sub-platforms for the motor size, it is obtained the platform 

configuration cases as shown in Table 6-18.  

Table  6-18: Three platform configurations for x4 based on clustering of k 

Platform Candidate X4 X4 X4 

Number of platforms 1 2 3 

Platform variants 
All variants sharing 

the motor size 

P1= {p1, p2} 

P2=  {p3,  p4, p5} 

P1= {p1, p2} 

P2= {p3,  p4} 

P3= {p5} 

Platform preferred value X4(P)= 52319 

X4(P1)=49236 X4(P1)= 49235 

X4(P2)= 53865 
X4(P2)= 53828 

X4(P3)= 55467 

The family design results for all-or-non platform of the motor size is obtained and 

shown in Table 6-19.  

Table  6-19: Family design optimal results for all-or-none platform for x4 

 

 

As for the case of three sub-platforms, the family solution is shown in Table 6-20. 

Variant 

----------- 

Design Variable 

P1 P2 P3 P4 P5 

𝒙𝟏 0.8430 0.9341 0.9480 0.9292 0.9497 

𝒙𝟐 0.3518 0.2719 0.2511 0.2786 0.2551 

𝒙𝟑 83801 84670 84670 84670 83801 

𝒙𝟒 52319 52319 52319 52319 52319 

𝒙𝟓 20 48 50 58 67 

𝒙𝟔 81 81 81 81 81 

𝒙𝟕 27 27 27 27 27 

Fuel Efficiency (Miles/gallon) 203.02 193.32 179.49 113.10 81.11 

Cost ($) 2880.3 2918.6 2930.2 2939.9 2949.5 

CO2 Emissions (Grams/mile) 152.31 158.51 162.23 167.91 194.37 

AOF 2.37 1.32 1.63 1.86 1.10 
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By comparing the results with the individual PHEVs design in Table 6-8, the 

following results on the percentage of lost performance for the three objectives of interest, 

as well as the AOF values per variant are obtained. 

Table  6-20: Family design optimal results for three sub-platforms for x4 

 

As it is observed in Table 6-21, the all-or-none platform for the motors size results in 

more performance loss, which is about 8% in AOF, where the two sub-platform case results 

in 1.52% average loss on AOF, and the three sub-platform case results in 10.3% average 

loss, which is quite a decrease as compared to our initial family solution of two sub-

platforms for the motor size. Also, as shown in Table 6-22, the level of performance loss is 

decreased with three sub-platforms for the motor size, as compared to our family solution 

where there are two sub-platforms for the motor size. The biggest loss is 10% for PHV60 

on the AOF value. This design is better than the one with 2 sub-platforms, but the 

difference is insignificant as shown in the last row of Table 6-22. This observation again 

reassures us toward the appropriate decision criteria selected in our proposed family 

design methodology in this dissertation, and shows the capability of this method is 

providing information on the more fitting platform candidates, as well as their fitting level of 

commonalization or differentiation. 

Variant 

----------- 

Design Variable 

P1 P2 P3 P4 P5 

𝒙𝟏 0.8100 0.8575 0.9451 0.9459 0.9321 

𝒙𝟐 0.3389 0.2979 0.2513 0.2561 0.2600 

𝒙𝟑 83801 84670 84670 84670 83801 

𝒙𝟒 49235 49235 53828 53828 55467 

𝒙𝟓 21 52 56 68 69 

𝒙𝟔 81 81 81 81 81 

𝒙𝟕 27 27 27 27 27 

Fuel Efficiency (Miles/gallon) 197.97 190.02 184.11 115.46 94.45 

Cost ($) 2840.7 2841.9 2934.3 2936.2 2969.85 

CO2 Emissions (Grams/mile) 152.5 155.87 154.32 166.50 173.23 

AOF 2.3 1.28 1.91 1.93 1.56 
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The plot in Figure 6-16 shows the trends of performance loss per k, for the motor 

size, which illustrates the benefit of multiple platform over all-or-none platform, and also 

shows the insignificant gain in using 3 sup-platforms as compared to the 2-sub-platform 

case. 

Table  6-21: The results of comparing the individual PHEVs design to the family 
solution for one platform for the motor size 

Variant 
Difference (%) 

𝐅𝐮𝐞𝐥 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 Cost Emissions AOF 

1 2.3286 2.1093 -0.1508 -0.8368 

2 0.3061 2.0275 1.5634 3.9370 

3 -4.0930 -0.2281 2.7878 -14.6597 

4 -0.7024 -0.1698 -0.9965 -4.1237 

5 -16.4073 -0.8605 6.1609 -24.6575 

Average 
Change 

-3.7136     0.5757 1.873 -8.0681 

 

Table  6-22: The results of comparing the individual PHEVs design to the family 
solution for 3 sub-platforms of motor size 

Variant 
Difference (%) 

𝐅𝐮𝐞𝐥 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 Cost Emissions AOF 

1 -0.2167 0.7055 -1.2753 2.2222 

2 -1.4061 -0.6537 -0.0449 0.7874 

3 -1.6244 -0.0885 -2.1929 -1.0363 

4 1.3696 -0.2954 -2.4605 3.2086 

5 -2.6590 -0.3109 -4.2028 -10.3448 

Average 
Change 

-0.9073 -0.1286 -2.0353 -1.0326 
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Figure  6-16: Performance deviation per k for X4 

6.7. Summary 

The family design for a family of 5 PHEV variants was obtained in this chapter, by 

applying the strategy proposed in Chapter 3 of this study. Among the considered design 

variables, the upper and lower SOC bounds were excluded from consideration toward 

commonality, due to their different nature as compared to the rest of design variables. The 

commonalization and partitioning strategies suggested a single platform for the power-split 

device ratio, while multiple sub-platforms were suggested for the engine size and motor 

size. The number of battery modules was also kept as a non-platform variable, and the 

family design stage was implemented with three design variables for each PHEV at Step 4 

of this chapter. The percentage of change in performance of fuel efficiency, costs, and 

emissions, as well as the AOF value was less than 2% in average for the entire family, 

while a few improvements were also obtained on some variants for some individual 

objectives.  

Two observations are made; one is that since the variants are of differences in 

desired objective values, some might lose performance through a commonalization 

scheme, while some others can benefit from the new shared value which can positively 
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affect their performance. The other observation is that there are more than one objective to 

affect the optimization algorithm behaviour, and improvement on one objective or some of 

the objectives of interest is a possible circumstance in presence of more objectives or 

effective parameters on the overall performance of the product.  Both observations are in 

line with the benefits resulting from the family design, which is the reduced cost of 

producing more variants through commonalization. Though the cost modeling for 

manufacturing the powertrain is not included into this study, however, it is clear that the 

manufacturing set-up costs, the inventory costs, and the delivery time for products obtained 

through family design methodologies will be less than those of non-shared production 

specifications. 

In addition, the obtained family design shows acceptable loss in average over the 

entire family for all the objectives of interest, and can be used as a solution to obtain cost 

savings in shared powertrain component sizes, while meeting the expectations on 

performance for the target market segments. In case of the strong preferences to reduce 

the performance loss to below 10%, the first action recommended based on the last step of 

our family design algorithm is to exclude the motor size from the commonalization scheme 

for this vehicle, and repeat the optimization with four design variables (i.e., SOC window 

bounds, motor size, and NBM). The resulting design can have a larger motor size, which 

increases the utilization of electric energy, but at the same time imposes some additional 

cost to the design, and the trade-off between these objectives determines the level of 

improvement in the AOF value. 
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Chapter 7. Conclusion, contributions, limitations, 
and future directions 

The motivation for this study comes from the unaddressed need for a design 

framework for the PHEV that integrates both the market side and the manufacturing side 

concerns and provides design solutions for this complex product within reasonable time 

and computational cost. The main objective to pursue was to develop an approach to 

support product family design for PHEV powertrains that can cover a wide range of 

customers’ needs in different market segments. 

7.1. Summary of contributions 

This thesis provides answers to three fundamental questions related to PHEV family 

design as summarized below:  

1. How to ensure both the manufacturing efficiency and the customer 

satisfaction for PHEVs in various market segments? 

This question was addressed through the concept of product family design, where 

the best trade-off between the benefits of manufacturers and customers can be obtained. 

Product family design is an attempt to find the right level of sharing among various parts, 

components, and/or functionalities of members of a family of products, so that reasonable 

saving can be obtained through shared parts, while the new design solutions can still meet 

the diverse expectations of customers in various market groups or segments.  

A thorough review of the existing developments in the family design research area 

was implemented to facilitate the recognition of available methods, through which the gap 

between specific needs for a PHEV family design optimization study and the current 

developments was identified. The main unaddressed need was a method with sufficient 

efficiency to provide supporting information for a complex problem like the PHEV design, 
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within reasonable computational cost and desired reliability. Since the selected family was 

a scale-based family, the review of the literature was narrowed down to scale-based family 

design methods in Chapter 2, and more detailed review of the existing approaches created 

the idea of leveraging sensitivity analysis to decide on proper candidates for platform 

configuration.  

The main gap that this dissertation addressed in using sensitivity analysis for family 

design includes the high dependency of conventional sensitivity analyses on several 

function evaluations. This issue is a challenge for simulation-based problems such as our 

PHEV problem, since for assessing performance of the vehicle even for small distances 

such as 7 miles, a few minutes was needed to obtain the simulation output. For longer 

distances such as the 60 miles, this number turned into order of hundreds of minutes, 

making it significantly slow and inefficient to apply the conventional sensitivity analysis-

based method.  

The proposed method in this dissertation was shown to use significantly less 

number of function evaluations toward facilitating platform configuration decisions. For 

example, in Chapter 4 it was shown that the required samples for the universal electric 

motors family design problem through the proposed method is by 65+140n samples less 

than that of the method proposed by Dai and Scott , where n is the average number of 

optimization iterations. 

2. Which PHEV can be the best for each market segment? 

There are several studies in the literature which have addressed the following issue: 

a) Assessment of various market penetration scenario; b) Surveys to analyze customer 

behavior/preferences and to identify their perceived benefits in regard to PHEVs; and c) 

Assessment of customer data from resources such as National Household Transportation 

Survey (NHTS) for finding the level of fitness of available vehicle designs for various 

segments. Through review of such studies, a set of five PHEVs were selected as our 

reference for family design.  

By assessing all the existing suggestions and findings from such studies, in Chapter 

6, five variants were selected as the proper representatives of customers’ needs in the 

PHEV market. The main criterion for differentiation of the variants is the distance to be 

traveled on the electric energy, known as AER, and the selected values included 7, 20, 30, 
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40, and 60 miles for such parameter. Other typical performance constraints such as the 

maximum time to achieve specific speed and acceleration, as well as gradeability 

constraint was applied to all the vehicle designs at the optimization stage, so that the 

obtained solutions are assured to meet other requirements on top of AER for each 

segment. 

The following assumptions, considerations and measurements apply to the selected 

variants: 

 The general configuration settings follow the design of Toyota MY04 Prius as 

modeled in PSAT, with power-split powertrain configuration which is consistent with 

the intended configuration of this study. 

 The studied battery is Saft Li-Ion which is widely used and evaluated in different 

studies for their great potential as energy storage devices for PHEV due to higher 

energy density and specific energy. 

 A thorough simulation-based study is done for finding the optimal PHEV 

specifications for meeting different ranges of AER through an extended-range 

charge-depleting control strategy (which is a modification to the power split hybrid 

control strategy in PSAT). 

 

3. What methodology can be the most efficient for facilitating the design of 

such a complex family? 

In Chapter 3 an approach was proposed to enable identifying the platform 

configuration based on sensitivity analysis and evaluation of all the design variables.  

The specific contribution of this part is that the proposed family design and platform 

configuration approach in this dissertation has the capability of handling expensive black-

box design problems such as PHEV design which is simulation-based. The performance of 

the proposed method was first tested in Chapter 4, on a well-known test problem in the 

family design research area, i.e., a family of ten universal electric motors with eight design 

variables each. The reason for such application was to compare the results of the obtained 

family design with the existing contributions in the literature, as well as to make sure that 

the information provided through this method is reliable to be applied to real black-box 
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design problems for which no benchmark exists. The results of application to the test 

problem showed efficiency of the proposed method in identifying the appropriate 

candidates for commonalization, as well as its efficiency in providing desired solution for 

the shared value of each platform and sub-platform.  

The proposed method was then further improved based on detailed assessments 

and comparisons, and enabled obtaining family design solutions with more commonality as 

compared to the family designs in the literature for the electric motors family problem, while 

the number of needed function evaluations for making platform configuration decisions are 

significantly reduced through the proposed approach. 

The required model for facilitating this family design was developed in SimDriveline, 

as presented in Chapter 5 of this study, and was validated according to the existing data 

from well-known test labs such as the Argonne National Laboratory. The validated model 

was then used in Chapter 6 though connection to an efficient optimization algorithm called 

TR-MPS 2.0, and the proposed meta-model based family design strategy was applied to 

the problem.  

The accuracy of the metamodel provided assurance on the reliability of information 

provided about impact of various design variables. Further assessment of the impact of 

each design variable was also studied through a small conventional sensitivity analysis 

study, which provided consistent results about relative impact of variables on the fuel 

efficiency, emissions, and cost, as well as on the aggregated objective function.  

The platform configuration was determined in section 6.5 and 6.6, and the family 

design was obtained afterwards for 3 design variables in each variant design problem. 

The results of the family design indicated reasonable level of loss on performance, 

with an average of less than 2% on all the objectives for the entire family. The level of 

commonality obtained was also measured through the Commonality Index (CI), as 78% 

increase in sharing, compared to the no-family design case. 

In terms of PHEV product family design, following benefits have been obtained: 

 The needs of a vast part of the market are covered in our study, through a thorough 

review of the market penetration scenarios, current market, features and utility factor of 

different specifications of PHEVs for users, and the detailed information such as cost 

models developed for such studies in the literature 
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 The proposed family design method suits for the expensive simulation-based design 

optimization problem for the PHEVs and results in computational cost savings 

 Desired information toward making commonalization decisions are conveniently 

provided by this approach, through merging two important phases of family design for 

black-box problems, i.e., the structure of the objective function for the problem under 

study, and the relative impact of each variable on the overall vehicle performance.  

 The design framework is flexible and can be updated for providing optimum design 

options based on market changes and any future modifications in the effective 

parameters such as the unit costs. 

  The design approach is applicable to other powertrain configurations as well as other 

variations of the unconventional vehicles, such EV and HEVs. 

The contributions of this research are as follows: 

1. Review of the market-related studies and research on market penetration scenarios 

for PHEVs, and identification of the variants in demand by various market segments 

2. Development of a generic simulation model for the power-split PHEVs with full 

parametric modeling capability for design optimization purposes. 

3. Formulation of the powertrain family design problem for optimizing multiple 

objectives including the fuel efficiency, GHG emissions, and the operating and 

powertrain costs 

4. Development of an efficient platform configuration and product family design 

strategy for problems involving expensive and unknown functions. 

Analysis and comparison of various parameters on the PHEV performance and 

discussion on the implications for obtaining savings in the manufacturing costs while 

increasing the market share through mass customization. 

7.2. Limitations and open questions 

The performance of the obtained solution for the PHEV family can be compared 

with more results upon availability, both in terms of alternate optimization algorithms, and 
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alternate family design strategies. Since this problem is entirely designed in this research 

with no previous assessments at this level, there is no clue on whether other optimization 

algorithms would improve the solutions obtained. The only evidence in this dissertation is 

the convergence plots used to monitor the behaviour of the algorithm. Use of alternate 

algorithms which might be able to handle the constraints in a more efficient way, can be a 

future contribution for this research. Also, similar to the universal electric motors family 

design problem, if other existing methods in the literature are applied to the same design 

problem, a better understanding of strengths and weaknesses of both methods can be 

obtained. 

One interesting parameter to include in potential future research is developing more 

customer-oriented objectives, upon availability of more data in future. Techniques such as 

choice modeling will enable ranking the customer preferences in regard with PHEVs, and 

the entire objective setting can become more intuitive, emphasizing more on the real 

parameters of importance based on customers’ input. 

In regard to the PHEVs, evaluation of the resulting family solutions coupled with 

various types of control strategies can be also an interesting direction for further research. 

One of the observations in this study was that using larger engine results in more fuel 

consumption and more reliance of the vehicle on the engine as main source of propulsion. 

This behaviour can be controlled through playing around the chosen thresholds for the 

control strategy, and an interesting area of study can be optimization of more parameters 

related to the control strategy. The only chosen parameters for optimization in this study 

were the SOC window bounds, which appeared helpful in allowing commonalization of the 

non-control parameters such as the engine size and the power-split device ratio. However, 

the design of the vehicles can be improved further, if an optimal strategy for power control 

is first obtained, and then the component sizes are optimized within such strategy. This 

approach however can be challenging too, in the sense that the optimality of control 

parameters and component sizes are not fully independent from each other. A 

simultaneous optimization of all the design and control strategy parameters in an integrated 

formulation can prevent sub-optimality. However, such approach will have remarkable 

computational complexities and the entire decision making in this regard comes to the 
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trade-off between the level of sacrificed performance versus the level of cost savings in 

computations for optimization. 

Another consideration to discuss is the impact of distance between charges, and 

the distance the vehicle would be driven over. As per Shiau [112], the minimum operation 

cost in terms of $/mile  would happen when the AER is almost the same as the distance 

between charges. For AERs higher than that specific value, if the vehicle is not charged, 

this operating cost increases rapidly. As such, taking the distance between the charges into 

account can be a worthwhile factor to be integrated into future studies as well.  

Another observation is the higher impact of the fuel efficiency on the AOF value, in 

the sense that the AOF to a great extent moves in the same way as the fuel efficiency has 

moved after commonalization. Examination of other weights rather than 0.33 for each 

objective can reveal interesting facts about the nature of this specific deign problem, and 

can provide guidelines in regard to the appropriate directions for focus in design.  

Another area for more research is the integration of detailed life cycle cost models 

for the powertrain and specifically the battery with the performance optimization and vehicle 

family design. Such formulation can provide a thorough assessment of the effective 

parameters on the ultimate performance of the product, and the optimization results to be 

obtained from such a comprehensive formulation can be a more solid solution for the 

manufacturers. 

Using SimDriveline and other toolboxes in Simscape requires all the components to 

be correctly constrained, and the debugging process can be quite challenging otherwise. 

Another drawback is that the models in SimDriveline and SimElectronics may not generate 

the most accurate results as mathematical models do since most of these models are ideal. 

Different power losses need to be additionally modeled as well in the physical context. 

In summary, it is worth to note that the effect of the control strategy and modeling 

specifications can be different in reality. Depending on the chosen control strategy, the 

correlations or sensitivities of the various available variables on the PHEV's objective 
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function might accordingly take different values. As such, it may not be far from expectation 

to observe differences in the GSI vector order for a different set of control strategy and 

driving conditions.  

In the end, only a small portion from the myriad of possible explorations was 

investigated in this dissertation. The trade-off between the complexities resulting from 

increased degrees of freedom and integrated parameters into the modeling resulted in 

limitations and the need to set a scope for the level of assessments. However, the hope is 

that by future developments of the research in the family design area, as well as the high-

dimensional back-box expensive problems optimization area, more capable methodologies 

to handle such family design challenges will be developed. The author hopes this study can 

facilitate the required knowledge for future research in this regard. 
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Appendix A.  
 
The Universal Electrics Motor Design Problem 
Specifications 
 

The universal electric motors family design problem formulation is presented in this 

section, taken from Simpson et al. [30]. The nomenclature is presented in Table A-1. Error! 

Reference source not found. shows the value of the fixed parameters for this problem. 

Table A-1: The nomenclature for the universal electric family design problem 
Symbol Definition Symbol Definition 

a  Number of current paths on the armature Nc Number of turns of wire on the 

armature 

Aa Area between a pole and the armature 

[mm2] 

Ns Number of turns of wire on the field, 

per pole 

Awa Cross-sectional area of wires on armature ρ Resistivity of copper [Ohms/m] 

Awf Cross-sectional area of wires on field 

[mm2] 

ρcopper Density of copper [kg/m3] 

I Magnetomotive force [Ampere×turns] ρsteel Density of steel [kg/m3] 

K Magnetic flux [Webers, Wb] Parmature Number of poles on the armature 

B Magnetic field strength (generated by the 

current in the field windings) [Tesla, T] 

𝔑 Total reluctance of the magnetic circuit 

[Ampere×turns/m] 

H Magnetizing intensity [Ampere×turns/m] Pfield Number of poles on the field 

I Electric current [Amperes] P Gross Power Output [W] 

K Motor constant [n.m.u.] ro Outer radius of the stator [m] 

lr Diameter of armature [m] Ra Resistance of armature windings 

[Ohms] 
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Table A-1 (Continued) 

Symbol Definition Symbol Definition 

lg Length of air gap [m] Rs Resistance in the field windings [Ohms] 

lc Mean path length within the stator [m] 𝔑 a Reluctance of one air gap 

[Ampere×turns/m] 

L Stack length [m] 𝔑 s Reluctance of the stator [Ampere×turns/m] 

μsteel Relative permeability of steel [n.m.u.] 𝔑 r Reluctance of the armature 

[Ampere×turns/m] 

μo Permeability of free space [Henrys/m] t Thickness of the stator [m] 

μair Relative permeability of air [n.m.u.] T Torque [Nm] 

m Plex of the armature winding [n.m.u.] Vt Terminal voltage [Volts] 

Ω Rotational speed [rad/sec] Z Number of conductors on the armature 

M Mass [kg] η Efficiency  

Details of the design problem 

The equations for the performance of the electric motors are presented as follows: 

Power (P) 

𝑃 =  𝑃𝑖𝑛 − 𝑃𝑙𝑜𝑠𝑠𝑒𝑠        (A-1) 

𝑃𝑖𝑛 = 𝑉𝑡𝐼         (A-2) 

𝑃𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑃𝐶𝑜𝑝𝑝𝑒𝑟 + 𝑃𝐵𝑟𝑢𝑠ℎ       (A-3) 

𝑃𝐶𝑜𝑝𝑝𝑒𝑟 =  𝐼2(𝑅𝑎 + 𝑅𝑠)        (A-4) 

𝑃𝐵𝑟𝑢𝑠ℎ =  𝛼𝐼         (A-5) 
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α = 2 volts. So, by substitution: 

𝑃 =  𝑉𝑡𝐼 − 𝐼2(𝑅𝑎 + 𝑅𝑠) − 2𝐼       (A-6) 

Resistance of the armature and field windings can be written in terms of the design 

variables: 

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
(𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦)(𝐿𝑒𝑛𝑔𝑡ℎ)

𝐴𝑟𝑒𝑎𝑐𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛
      (A-7) 

𝑅𝑎 =  
𝜌(2𝐿+4(𝑟0−𝑡−𝑙𝑔𝑎𝑝))𝑁𝑐

𝐴𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒−𝑤𝑖𝑟𝑒
       (A-8) 

𝑅𝑠 =  
𝜌(2)(2𝐿+4(𝑟0−𝑡))𝑁𝑠

𝐴𝑓𝑖𝑒𝑙𝑑−𝑤𝑖𝑟𝑒
        (A-9) 

Table A-2: Fixed parameters for the test problem 

Parameter Value 

a 2 

lr 0.7 mm 

μ0 4𝜋10−7 

μair 1 

m 1 

ρ 1.68 * 10-8 Ohms/m 

ρcopper 8940 Kg/m3 

ρsteel 7850 Kg/ m3 

Parmature 2 

Pfield 2 

Vt 115 volts 
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Efficiency (η) 

𝜂 =
𝑃

𝑃𝑖𝑛
          (A-10) 

Mass (M) 

𝑀𝑎𝑠𝑠 =  𝑀𝑠𝑡𝑎𝑡𝑜𝑟 + 𝑀𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒 + 𝑀𝑤𝑖𝑛𝑑𝑖𝑛𝑔𝑠     (A-11) 

𝑀𝑠𝑡𝑎𝑡𝑜𝑟 =  𝜋(𝑟0
2 − (𝑟0 − 𝑡 )2)(𝐿)(𝜌𝑠𝑡𝑒𝑒𝑙)     (A-12) 

𝑀𝐴𝑟𝑚𝑎𝑡𝑢𝑟𝑒 =  𝜋(𝑟0 − 𝑡 − 𝑙𝑔𝑎𝑝 )
2

(𝐿)(𝜌𝑠𝑡𝑒𝑒𝑙)     (A-13) 

𝑀𝑤𝑖𝑛𝑑𝑖𝑛𝑔𝑠 = (𝑁𝑐 (2𝐿 + 4(𝑟0 − 𝑡 − 𝑙𝑔𝑎𝑝)) 𝐴𝑤𝑎 + 2𝑁𝑠(2𝐿 + 4(𝑟0 − 𝑡))𝐴𝑤𝑓) 𝜌𝑐𝑜𝑝𝑝𝑒𝑟 

           (A-14) 

Torque 

𝑇 = 𝐾𝜙𝐼         (A-15) 

𝐾 =  
(𝑍)(Ρ𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒)

2𝜋𝑎
        (A-16) 

𝑍 = 2𝑁𝑐         (A-17) 

𝑎 = 2𝑚 = 2, 𝑎 is the number of current paths on the armature. 

Ρ𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒 = 2 ⇨ 𝐾 =  
𝑁𝑐

𝜋
       (A-18) 

𝜙 =  
ℑ

𝔑
          (A-19) 

ℑ = 𝑁𝑠𝐼         (A-20) 

𝔑 =  𝔑𝑠 + 𝔑𝑟 + 2𝔑𝑎        (A-21) 
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Reluctance 𝔑 in genral is: 

𝔑 =  
𝐿𝑒𝑛𝑔𝑡ℎ

(𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦)(𝐴𝑟𝑒𝑎𝑐𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛)
      (A-22) 

𝔑𝑠 =
𝑙𝑐

2𝜇𝑠𝑡𝑒𝑒𝑙𝜇0𝐴𝑠
 ,  𝑙𝑐 =  𝜋(2𝑟0 + 𝑡)/2      (A-23) 

𝔑𝑟 =
𝑙𝑟

𝜇𝑠𝑡𝑒𝑒𝑙𝜇0𝐴𝑟
          (A-24) 

𝔑𝑎 =
𝑙𝑎

𝜇𝑎𝑖𝑟𝜇0𝐴𝑎
         (A-25) 

Cross-section area of the stator: 𝐴𝑠 = 𝑡𝐿 

Cross-section area of the armature: 𝐴𝑟 =  𝑙𝑟𝐿 

Cross-section area of the air-gap: 𝐴𝑎 =  𝑙𝑔𝑎𝑝𝐿 

Following the main references for the universal motor family design problem, the two cross-

section areas of armature and the air-gap are assumed to take the same value. 

𝐴𝑟 = 𝐴𝑎 =  𝑙𝑟𝐿         (A-26) 

  {
𝜇𝑠𝑡𝑒𝑒𝑙 =  −0.2279𝐻2 + 52.411𝐻 + 3115.8

𝜇𝑠𝑡𝑒𝑒𝑙 =  −1486.33 ln(𝐻) + 11633.5
𝜇𝑠𝑡𝑒𝑒𝑙 = 1000

         
𝐻 ≤ 220

220 < 𝐻 ≤ 1000
1000 < 𝐻

  (A-27) 

𝐻 =
𝑁𝑐𝐼

𝑙𝑐+𝑙𝑟+2𝑙𝑔𝑎𝑝
         (A-28) 

Mass and efficiency are the objectives of design to achieve the minimum possible 

mass as well as the maximum possible efficiency, subject to satisfying the design 

constraints and performance requirements. The design constraints are described below, 

and are summarized in Table A-3. Each motor has eight design variables, whose 

description and design range are as follows: 

1. Number of turns of wires on the armature (100 ≤ 𝑁𝑐 ≤ 1500) turns 
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2. Number of turns of wire on each field pole (1 ≤ 𝑁𝑠 ≤ 500) turns 

3. Cross-sectional area of the wire used on the armature (0.01 ≤ 𝐴𝑤𝑎 ≤ 1.0) 𝑚𝑚2 

4. Cross-sectional area of the wire used on the field poles (0.01 ≤ 𝐴𝑤𝑓 ≤ 1.0) 𝑚𝑚2 

5. Radius of the motor (10 ≤ 𝑟0 ≤ 100 𝑚𝑚) 

6. Thickness of the stator (0.5 ≤ 𝑡 ≤ 10 𝑚𝑚) 

7. Current drawn by the motor (0.1 ≤ 𝐼 ≤ 6.0 𝐴𝑚𝑝) 

8. Stack Length (1 ≤ 𝐿 ≤ 100 𝑚𝑚) 

Efficiency (η): The target efficiency is 70% for all the motors, but it shall never fall 

below 15% (note that other published works have used the same values [1, 3, 21]). 

Mass (M): There are different mass targets due to the variation of the torque 

expected from each variant. The maximum allowable mass varies between 1.75 kg for 

variant one which shall give less torque, and 2.2 kg for motor number ten with the highest 

torque requirement. The desired or target mass varies between 0.25 and 0.7 kg 

accordingly. 

Magnetizing intensity (H): A magnetizing intensity below 5,000 is required for 

assuring that the magnetizing flux within the motor will not exceed the physical flux carrying 

capacity of the steel.  

Power (P): The desired power is 300W for each motor in the family, imposing an 

equality constraint to the design problem.  

Table A-3: The system constraints for the universal electric motor problem 

Magnetizing intensity, H 𝐻𝑚𝑎𝑥 ≤ 5000 

Feasible geometry 𝑡 < 𝑟0 

Power output, P 𝑃 = 300 𝑊 

Motor efficiency, h: 𝜂 ≥ 0.15 

Mass, M 𝑀 ≤ 2.0 𝐾𝑔 

Torque, T T =  0.05, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5  Nm 
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Appendix B.  
 
Validation of the simulation model 

For the simulation-based design and optimization studies, the validation process is 

done by comparing the simulation results with the previously validated results obtained 

from or published by test labs, research labs, or automotive makers. Since the test data for 

the MY 2004 Prius model is available, the simulation results are compared with the test 

data. The number of data points is different between the simulation results and the test 

data, and only the trend can be compared as well as some sample points. The time scale is 

the same in both simulation and test. Besides, the output of each component is verified and 

is found to be highly similar to realistic components in term of maximum or rated 

performance. 

B-1. Engine Validation 

The simulation results for engine are not smooth curves, and the comparison with 

the test data is not very straight forward at the sample points. However, the trends in 

engine torque and efficiency are very similar to the test data, as shown in Figure B-1. 



 

177 

 

 

Figure B-1: Engine Torque Comparison 

 

Figure B-2 Engine Power Comparison 
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Figure B-3 Engine Efficiency Comparison 

B-2. Motor Validation 

As seen in the plots of Figure B-4, the trend in the simulation generally matches the 

test data. The regenerative torque in the simulation, however, is slightly less than the test 

data. This is because the regenerative torque in the simulation is scaled down by the 

transmission efficiency, regenerative range, and battery charging efficiency. The motor 

torque plot illustrates that the motor only assists the engine since the motor only generates a portion 

of its available torque. As seen in the plot, the torque of the motor generally stays below its 

maximum continuous torque, 200 Nm. Negative torque in the plot reflects the regenerative braking 

of the vehicle. The reason for the spikes in the plot looks like to be caused by the clutch engaging 

and disengaging. 
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Figure B-4 Motor Torque Comparison 

B-3. Battery Validation 

The SOC in simulation follows the test data as shown in Figure B-5, except that it 

decays slower. This difference is resulted from the inherent differences between the 

triggers in the control strategies of the simulation model and the test data, but the overall 

trend of having charge-depletion and dominance of the motor and the battery as the 

propulsion source, are all in line with the test data, implying the model is reliable for future 

simulation and design purposes.   
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Figure B-5 Battery SOC Comparison 

The results of comparing the battery current per simulation run for the test data and 

the simulation model of our study are also shown in Figure B-6, again showing identical 

trends in peaks and valley of the current over time, which is depending on the power-split 

portfolio, where zero current occurs when the engine is the only source of propulsion, and 

negative current shows the moments during which the battery has been charged either by 

the engine, or through regenerative breaking. 
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Figure B-6: Battery Current Comparison 

B-4. Vehicle Validation 

The validation of the vehicle model is obtained through comparing the actual torque 

on wheels per time (taken from test data in the literature), versus the simulation output for 

the same parameter. The results are shown in Figure B-7. 
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Figure B-7: Torque on Wheel Comparison 

The comparison points out that the actual torque on the wheel matches the test 

data although the negative torque in the simulation are smaller. The negative torque is 

scaled down by the regenerative range and transmission efficiency so they are less than 

the test data. 
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