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ABSTRACT

Brownian motion refers to the erratic random movement of microscopic particles suspended
in a fluid. In a simple fluid, Brownian motion exhibits two key properties: the mean-squared
displacement (MSD) increases linearly with time (the proportionality constant is the diffusiv-
ity D) and the displacement distribution is Gaussian. Although a linear MSD was initially
assumed to always imply Gaussian displacements, recent experiments show that non-Gaussian
displacements can coexist with a linear MSD in complex environments. Chubynsky et al. [PRL
113, 098302, 2014] have argued that such behavior arises when D has temporal and/or spatial
fluctuations that are convolved together and form a non-Gaussian distribution. Experiments to
date have been in complex settings where direct measurements ofD(x, t) have not been possible.
Here, we report experiments on a simple system where D(x, t) is known: the Brownian motion
of a colloidal sphere near a boundary wall. By choosing the particle size carefully, we ensure
that the bead explores a wide range of D. We observe a linear MSD curve and non-Gaussian
displacements for vertical motion and directly confirm the proposed mechanism of Chubynsky
et al. for such “diffusing diffusivity.”

Keywords: diffusivity, diffusing-diffusivity, mean-squared displacements, non-Gaussian
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Chapter 1

Introduction

In this work, we study the statistical properties of a Brownian colloidal sphere near a flat wall.
Our goal is to explore experimentally, in a simple setting, the consequences of a fluctuating
diffusion constant. Brownian diffusion is a basic model in soft matter and biophysics. His-
torically, “Brownian motion” refers to the inherent, incessant motion of microscopic particles
of matter when suspended in a fluid, a phenomenon first given serious consideration by the
Scottish botanist Robert Brown in 1827 [1]. Using a microscope, Brown was investigating the
fertilization process in plants when he noticed a “rapid oscillatory motion” of microscopic parti-
cles within the pollen grains suspended in water under the microscope. Such motions had been
observed prior to Brown but only in organic molecules, and their origin was credited to some
mysterious force that was characteristic of living matter. Brown was the first to show that the
problem was one of physics, not biology, since he verified that the diffusion did not arise from
the living origin of the particles. Brown tried many particles, even “a fragment of the Sphinx”
[1]. Upon this discovery, he reported,

“While examining the form of these particles immersed in water, I observed many of them very evidently in

motion...These motions were such as to satisfy me, after frequently repeated observation, that they arose neither

from currents of the fluid, nor from its gradual evaporation, but belonged to the particle itself.” (Brown 1828)

By the late 19th century, interest in Brownian motion grew among theoretical and exper-
imental physicists, who searched for a consistent explanation of its various characteristics. In
1905, Albert Einstein, driven by a desire to show that the physics of statistical fluctuations sup-
ports the atomic hypothesis of matter, gave an illuminating quantitative theory of Brownian
motion. In his first Brownian-motion paper, On the motion of particles suspended in a resting
fluid demanded by the molecular theory of heat, he wrote [2]
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“It is possible that the movements to be discussed here are identical with the so-called ‘Brownian molecular

motion’; However, the information available to me regarding the latter is so lacking in precision, that I can form

no judgment in the matter.”. (Einstein 1906)

Einstein’s theory of Brownian motion inspired experimental work by Jean Perrin in 1908 that
provided estimates of Avogadro’s number [3]. Perrin’s work quickly convinced the remaining
skeptics of the concept of the atomic hypothesis, and he received the Nobel Prize in Physics
in 1926. After Einstein’s 1905–1906 papers, theoretical and experimental work on Brownian
motion advanced rapidly. We summarize four key characteristics of Brownian motion found in
the work pioneered by Einstein and von Smoluchowski [4]:

(I) Thermal origin and stochastic nature of the motion
Einstein proposed that Brownian diffusion results from the quasi-random, microscopic
interactions of the suspended particle with thermally excited molecules forming the liq-
uid. His results offered firm evidence for the atomistic hypothesis of matter and were
supported by experimental work by Perrin [5]. From the equipartition theorem of statis-
tical mechanics, the temperature T of a fluid is equal to the average kinetic energy of the
constituent molecules. In three dimensions,

3
2 kBT = 1

2 m 〈v2〉 , (1.1)

where kB is the Boltzmann constant, m the mass of the molecule, and v its speed. In
thermal equilibrium, the molecules of the surrounding fluid are in spontaneous and con-
tinuous motion, with the typical “thermal velocity” vthermal =

√
3kBT/m. The observed

Brownian diffusion therefore reflects thermal fluctuations that are observable at our scale
[6]. The physical system can be viewed as “large molecules” in a solution, the large
molecules being the Brownian or colloidal particles.

The minimum and maximum permissible sizes of the particle to be considered Brownian
are not distinctly defined. For the minimum size, a Brownian particle should be signif-
icantly larger than the linear dimension of a solvent molecule, which is ≈ 1 nm. The
upper limit to the size of a Brownian particle is set by the requirement that it exhibits
measurable thermal motion. This implies a maximum size of ≈ 10 µm.

Owing to the very large number of solvent molecules in collision with each Brownian
particle, Einstein realized that the theoretical analysis of Brownian motion should be
based on probability theory. He assumed that the particle’s position is a Markov process
in time; i.e., it changes state according to a transition rule that depends only on the

2



current state. Brownian motion as a mathematical random process was first constructed
rigorously by Norbert Wiener [7] in a series of papers starting in 1918. The stochastic
description of Brownian diffusion processes was further developed by Langevin, Fokker,
Planck, Klein, Uhlenbeck and Ornstein, and Kramers [8].

(II) Self-similarity of the trajectories: Brownian diffusion mechanism was found to generate
fractal structures. This property of the trajectories was first observed in the experimental
work of Perrin in 1913 [5]. Today, it is referred to as statistical self-similarity: if one studies
the Brownian paths with a finer spatial resolution, they conserve the same appearance
and statistical properties. This self-similarity comes from the microscopic origin of the
movement: a displacement of the particle corresponds to a transient anisotropy in the
variation of momentum due to the very large number of random collisions of the fluid
molecules with the particle. This self-similarity property, therefore, holds at time scales
longer than the collision time between the solvent molecules (≈ 10−14 m). This also
explained the failure in previous experimental attempts to determine the instantaneous
velocity of the particles at time scales much longer than the time between collisions [8].
Perrin concluded that the instantaneous velocity was a badly defined observable because
of its dependence on the scale at which the motion is analyzed [5, 8].

(III) Mean-squared displacements that are linear in time: Investigations of the particle tra-
jectories from experiments reveal that the average displacement 〈x(t)〉 vanishes owing to
isotropy of the overall random motion: Displacements in one direction happen as fre-
quently as displacements in the opposite direction. In analyzing the properties of the
motion, neither the displacement nor the velocity is of any use for its quantitative de-
scription. However, a third quantity, the mean-squared displacement (MSD) 〈∆x2(t)〉,
is a relevant observable. Einstein predicted, and then Perrin confirmed, that Brownian
particles, at long times and for d spatial dimensions, obey the law

〈∆x2(t)〉 = 2dD∆t , (1.2)

indicating a linear relationship of the MSD with the elapsed time ∆t. The proportionality
constant D defines the diffusivity or the diffusion constant for the Brownian particle.
Diffusion satisfying this proportionality law is called normal diffusion. The observation
that the MSD increases linearly with time lag explained why the attempts to measure the
velocity at diffusion time scales were unsuccessful: If this relationship holds down to very
small time scales, then the particle path would be non-differentiable, and the velocity
is not well-defined. Einstein later realized that, at the shortest time scales, the law of
statistical independence of the displacements should break down [6]. Indeed recently,
Raizen et al. [9, 10] measured the instantaneous velocity of a Brownian particle both
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in a liquid and a gas at short time scales on the order of 10 ns. They succeeded in
observing the instantaneous velocity of the particle and verified that the velocities obey
the Maxwell-Boltzmann distribution.

(IV) Gaussian distribution of displacements: One important result from Einstein was that
for the free diffusion of a Brownian particle in a homogeneous medium, the probability
density of the displacements ∆x is Gaussian. In one dimension,

P (∆x,∆t) = 1√
4πD∆t

exp
(
− ∆x2

4D∆t

)
, (1.3)

where ∆t is the elapsed time. One can derive Eq. (1.3) using the statistical independence
of the increments. Indeed, when Brownian paths are viewed as a succession of steps, the
Central Limit Theorem implies that the long-time dynamics have to be Gaussian.

As we mentioned earlier, normal diffusion has the characteristic scaling 〈r2〉 ∼ t, with inde-
pendent spatial increments. Recent experiments in non-homogeneous and complex systems
[11, 12, 13], however, reveal deviations from normal diffusion, in that diffusion is either faster
or slower than normal. Diffusion processes that scale as

〈r2〉 ∼ tγ , γ 6= 1 , (1.4)

are termed as anomalous. The scaling index γ classifies the diffusion as normal diffusion when
γ = 1 and anomalous when γ 6= 1. The case γ > 1 defines super-diffusive processes, and the
case γ < 1 defines sub-diffusive processes. Such an anomaly in the diffusion can be theoretically
analyzed by treating the Brownian agent as a random walker. Anomalous diffusion can arise in
several situations: divergence of the average duration of the time steps, infinite variance of the
displacements and divergence of the correlation time. These scenarios led to the implementa-
tion of different models to explain anomalous diffusion [14, 15], all based on the random-walk
description of Brownian motion.

A fascinating conclusion drawn from previous experiments is that the linearity of the MSD
with time can be associated with Gaussian distribution of displacements. The initial assumption
was that time-linear MSD always imply Gaussian distribution of displacements. However, recent
experiments show that this is not always the case [16, 17, 18, 19, 20]. Granick and his group
[18, 19] observed that the MSD can be linear even though the distribution is non-Gaussian.
They considered a number of complex systems: colloidal beads on phospholipid bilayer tubes
[18], colloidal beads in entangled actin suspensions [18], and liposomes in a nematic solution of
aligned actin filaments [19]. In all three systems, the MSD was found to be precisely linear in
the elapsed time over the experimental time range, ∆t ≈ 1 s to a few seconds. However, the
displacements are non-Gaussian distributed for small ∆t. For larger ∆t, they smoothly revert

4



back to Gaussian. The non-Gaussian density functions typically have exponential tails whose
decay lengths λ grow as

√
∆t. Very recent experiments by Bhattacharya et al. [21] observed

similar behavior for diffusion of tracer molecules on polymer thin films and in simulations of a
2D system of discs. Another experiment from Granick’s group [20] shows non-Gaussian diffusion
in mixtures of hard spheres of different sizes. The general conclusion was that the nature of
the displacement distribution does not completely determine the MSD.

A recent paper by Chubynsky and Slater [22] describes such anomalous yet Brownian dif-
fusion behavior in terms of a diffusing diffusivity model. They proposed that such diffu-
sion anomalies arise in heterogeneous systems where the environment of the diffusing particles
changes slowly in space and time. An example of such a situation is one where the diffusivity
has temporal and/or spatial fluctuations. A suitable system is one in which the environment
gradually changes in space and time, so that D = D(r, t). Over length and time scales smaller
than those of these heterogeneities, the local environment is described by an approximately
constant diffusivity characterized by locally Gaussian dynamics. Over long time and length
scales, non-Gaussian diffusion results from the convolution of these localized Gaussian, inde-
pendently diffusive processes. This approach corresponds to breaking down complex processes
into diffusive processes, each described by a constant diffusivity [18]. Hence, the distribution of
diffusivities will determine the shape of the non-Gaussian distribution curves. By the Central
Limit Theorem, the distribution should revert back to a Gaussian at times much greater than
the correlation time of the fluctuations of the diffusivity. In previous experiments, the fluctua-
tions in D that drive this diffusing-diffusivity mechanism are unknown.

In this thesis, I pose the following question:

“Can this non-Gaussian yet normal diffusion be experimentally observed in a simpler
system where the complexity comes from known fluctuations in the diffusivity?”

Let us consider a simple system characterized by a space-dependent diffusivity, the Brownian
motion of a colloidal sphere near a flat rigid wall. For this system, theoretical and experimental
studies [23, 24, 25] have shown that the diffusivity decreases anisotropically with distance
from the wall, owing to the alteration of the hydrodynamic interaction between the sphere
and the fluid generated by the wall’s boundary conditions [24]. Our goal is to investigate,
theoretically and experimentally, the dynamics of this wall-hindered diffusion system and to
explore the emergence of non-Gaussian diffusion. We first explore this system theoretically
to study the statistical properties of the displacement distribution curves at different time
scales and search for experimental parameters that reveal non-Gaussian dynamics driven by
complexity due to diffusivity fluctuations only, coexisting with time-linear MSD. We then study
the system experimentally, for the setting of near-wall motion of a Brownian bead in water under
the influence of gravity and electrostatic double-layer forces.
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The chapters of the thesis are organized as follows: Chapter 2 serves as a concise theoretical
background relevant to the work. Chapter 3 discusses the wall-hindered diffusion system and the
simulations of the system, which provide guidelines for the choice of experimental parameters
that bring about fascinating properties of space-dependent diffusion. Chapter 4 focuses on the
second part of my research, the implementation of the experimental technique for studying the
system. Finally, in Chapter 5, we conclude with a summary and outlook.
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Chapter 2

Theoretical Background

There are several approaches to understanding the underlying mathematical concepts of Brow-
nian diffusion, as described in Chapter 1. The choice of approach one employs depends on the
system being analyzed and the goals of the investigation. For this study, we adopt both the
Langevin and Fokker-Planck approaches to study Brownian motion near a wall. Our discussion
will focus on describing individual spherical Brownian particles. Because of their experimen-
tally accessible time and length scales, hard-sphere colloids are an ideal model system to study
nonlinear behaviors in far-from-equilibrium systems [8].

This chapter is organized into four sections: Section 2.1 introduces the Langevin equation
concept. The interactions of a colloidal sphere with a rigid wall is considered in Sec. 2.2. In
Sec. 2.3, we discuss the modified overdamped Langevin equation describing the motion of a
Brownian sphere close to the wall. Section 2.4 introduces the Fokker-Planck equation as a tool
to gain insight into the diffusing-diffusivity dynamics of the particle.

2.1 Langevin equation

2.1.1 General Langevin equation

For a single free Brownian particle, Langevin started from the equation of motion given by
Newton’s second law, assuming that the particle experiences two forces from the surrounding
solvent molecules:

(i) Viscous drag −γv: the deterministic force coming from hydrodynamic friction. Here, v is
the velocity and γ is coefficient of friction governed by Stokes’ law [2]; i.e., γ = 6πηa, for
a sphere of radius a in a fluid with dynamic viscosity η.

(ii) Rapidly fluctuating force ξ(t): the thermal noise that causes random motions of the
suspended particle due to the thermal impacts of the liquid molecules on the particle.

7



This is the residual force exerted by the heat bath after the frictional force has been
subtracted.

The resulting equation of motion for a mass m diffusing in an unbounded fluid medium in one
dimension reads

m
d2x(t)
dt2

= −γ dx(t)
dt

+ Fext + ξ(t) , (2.1)

where Fext includes any other external forces. Equation (2.1) is called a stochastic differential
equation reflecting the presence of the stochastic noise term. To determine the trajectories from
Eq. (2.1), we need to know the statistical properties of the noise ξ.

Owing to the large number of independent collisions of different fluid molecules on the
particle, the resulting random force is equally likely to push in one direction as in the other.
The average over all realizations of the force thus vanishes:

〈ξ〉 = 0 . (2.2)

Here, 〈·〉 denotes the ensemble average.
Time scales considered in the study of Brownian motion are set by the resolution of the

experiment or theory, and observables are averaged over the time intervals that set the time
scale. The smallest time scale considered is the collision time between the solvent molecules,
τsolvent. This solvent time scale is ≈ 10−14 s for a latex sphere of radius 1 µm. The Langevin
equation, together with the statistical properties of the random force, is valid on time intervals
much greater than τsolvent. It is essential also to specify the relevant time scales for the hy-
drodynamic regime of the translating sphere. We consider the momentum relaxation time τm,
the characteristic time taken by the Brownian sphere to lose its perturbed momentum arising
from thermal fluctuations. In the absence of external forces, the equation of motion for the
translating sphere with mass m and friction coefficient γ reads

mv̇ − γv = 0 , (2.3)

implying the momentum relaxation time

τm = m

γ
. (2.4)

In terms of the particle size a and mass density ρ, and the fluid’s viscosity η, the momentum
relaxation time is

τm =
4
3πρa

3

6πηa = 2
9
ρ

η
a2 . (2.5)
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For a colloidal latex sphere, diffusing in water, with size in the range a = 0.1–10 µm, the
momentum relaxation time falls in the range τm ≈ 10−10–10−6 s. The average 〈ξ(t)ξ(t′)〉 at two
distinct times t and t′ vanishes if the time differences |t−t′| are larger than τsolvent. The shortest
time scale considered for Brownian diffusion of colloidal particles is τm. Since τsolvent � τm,
it is a reasonable approximation to take the limit τsolvent → 0. This gives the time-correlation
function

〈ξ(t)ξ(t′)〉 = qδ(t− t′) , (2.6)

where q is the measure of the strength of the fluctuation force and is referred to as the fluctuation
strength. The delta (δ) function forces the average energy of the colloidal particle to be finite,
as required by the equipartition law [26]. By the fluctuation-dissipation theorem [26], the
fluctuation strength is given by

q = 2Dγ2 . (2.7)

We have introduced the diffusion constant, or diffusivity,

D = kBT

γ
= kBT

6πηa , (2.8)

where η is the fluid dynamic viscosity and a is the particle radius. Equation (2.8) is the famous
Stokes-Einstein relation for a translating sphere in an infinite fluid medium [2].

2.1.2 Overdamped Langevin equation

We define the third significant time scale for our system, the characteristic diffusion time scale

τa = a2

6D = πη

kBT
a3 , (2.9)

which is the time taken by the particle to diffuse a distance equal to its radius a. We rescale
time, velocity, and the stochastic and external forces as

t′ = t

τa
, v′ = τa

a
v, ξ′ = 1

γ

τa
a
ξ , F ′ext = 1

γ

τa
a
Fext , (2.10)

respectively. The Langevin Eq. (2.1) then transforms to(
τm
τa

)
dv′

dt′
= −v′ + ξ′ + F ′ext . (2.11)

We have just expressed the time and position in new units corresponding to the minimum
resolution for the coarsened description of the system. For a typical colloid of size a ≈ 0.1−1 µm
translating in water, τa falls within the range τ ≈ 10−3–100 s. Since τm � τa, the inertial term
on the left-hand-side of the Langevin Eq. (2.1) can be set to zero in the diffusion time scale,
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which defines the overdamped limit. The diffusive dynamics is then described by the overdamped
Langevin equation,

0 = −γ dx
dt

+ Fext + ξ . (2.12)

Below, in Sec. 2.3.1, we will see that we must be careful in dropping the inertial term. The
latter constitutes a singular perturbation and accounting for its effects, even when small, can
sometimes be important.

2.2 Near-wall effects

In this work, we explore the Brownian motion of a single colloidal sphere near a flat wall,
as shown in Fig. 2.1. Examples of compact, rigid spheres investigated in experiments include
polystyrene (latex) and amorphous silica particles. If the colloidal sphere diffuses close to a rigid
planar wall, the drag due to fluid viscosity increases, and its diffusion constant consequently
decreases. The corrections to the sphere diffusivity due to the alteration of the hydrodynamics
and the sphere-wall interactions will be considered below.

𝑎

𝑧

wall

Brownian sphere

Figure 2.1: Brownian sphere diffusing at a height z above a rigid wall.

2.2.1 Hindered Diffusion

For a freely diffusing Brownian sphere in an unbounded fluid medium, the diffusion coefficient
is given by Eq. (2.8). When the sphere diffuses near a planar wall, diffusion is hindered. This
effect has been studied by several groups theoretically and experimentally [23, 27, 28]. As the
particle diffuses towards the wall, its diffusivity D is reduced and becomes anisotropic.

These effects can be understood by considering the Navier-Stokes flow u of the fluid around
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the sphere and the no-slip boundary condition, which states that at a solid boundary, the fluid
will have zero velocity relative to the boundary. In this situation, the no-slip boundary condition
is applied at the surface of the sphere, i.e., u = usphere, and the solution to the Navier Stokes
Equation leads to the drag force F0 = 6πηau [24]. However, there is an additional no-slip

No-slip condition on wall boundary

wall shear stress

𝑢𝑠𝑝ℎ𝑒𝑟𝑒(𝑧)

No-slip condition on sphere boundary

𝑧

wall

Figure 2.2: Typical flow on the surface of the sphere usphere with reference to a wall.

condition imposed by the wall, which alters F0 appreciably when the sphere diffuses close to
the wall. For this case, the flow around the sphere, with reference to the wall, is shown in
Fig. 2.2. The flow profile decreases towards the wall, and it vanishes at the wall. Hence, the
presence of the wall introduces the shear force

F ∝ η
∂u

∂z
(2.13)

because of the development of near-wall velocity gradients. Owing to the no-slip condition on
the surface of the sphere, the drag force will increase inversely with distance towards the wall as
a result of additional hydrodynamic pressure arising from these velocity gradients. The particle
then experiences a local drag force that depends on both the distance z from the wall and the
direction of motion, and its diffusion is hindered.

We can separate the drag force into independent components for motion parallel and per-
pendicular to the wall, thanks to the linearity of the Navier-Stokes equations. We express the
drag force as a function of the height z from the wall,

F
‖
D(z) = F0

λ‖(z)
; and F⊥D (z) = F0

λ⊥(z) , (2.14)

where λ‖ and λ⊥ are, respectively, dimensionless z-dependent parallel and perpendicular cor-
rection factors to the drag force due to the presence of the wall. In other words, the diffusion
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coefficients for parallel and perpendicular motion relative to the wall are

D‖(z) = D0 λ‖(z) and D⊥(z) = D0 λ⊥(z) , (2.15)

where D0 is diffusion constant far away from the wall. Generally, the wall-hindered drag forces
given in Eqs. (2.14) are difficult to solve. There is an exact series solution for λ⊥, found by
Brenner [24]:

λ−1
⊥ = 4

3 sinh[α]
∞∑
n=1

n(n+ 1)
(2n− 1)(2n+ 3)

[
2 sinh[(n+ 1)α] + (2n+ 1) sinh[α]

4 sinh2[(n+ 1/2)α]− (2n+ 1)2 sinh2[2α]
− 1

]
, (2.16)

where α = cosh−1(z/a), with z the distance from the wall to the bottom of the sphere. A useful
second-order Pade approximation to Eq. (2.16) is [29]

λ⊥(z) = 6z2 + 2az
6z2 + 9az + 2a2 . (2.17)

The most commonly used representations of λ‖ are all approximate. The representations
are derived via the method of reflections, an iterative series-solution technique that decomposes
the velocity and the pressure fields into a linear superposition of terms of successively higher
order in the number of wall and sphere boundary interactions. In this method, it is assumed
that the motion of the Brownian sphere near a wall induces a pressure and velocity distribution
in the adjacent fluid. The terms in the expansion are constrained to alternately satisfy the
boundary conditions on both the sphere and the wall. The solutions for the parallel correction
factor obtained with this method are usually expressed as a power series in a/(a + z). Using
this method, one finds [24]

λ‖(z) ∼= 1− 9
16

(
a

a+ z

)
+ 1

8

(
a

a+ z

)3
− 45

256

(
a

a+ z

)4
− 1

16

(
a

a+ z

)5
+O

(
a

a+ z

)6
. (2.18)

Plots of the parallel and perpendicular diffusivity of the sphere with height from the wall are
shown in Fig. 2.3. The diffusivity is significantly reduced at heights on the order of the particle’s
radius. For the investigations reported in this thesis, the most important feature of Fig. 2.3 is
that D⊥(z → 0) = 0, whereas D‖(z → 0) ≈ 0.3D0.

2.2.2 Sphere-wall interactions

In order to understand the near-wall dynamics of the Brownian particle, we need to study the
external forces that act on it. In our system, these forces come from the interaction of the
sphere with the wall and from the gravitational field. There are several well-developed theories
that describe the interactions in such colloidal systems. Moreover, there are accurate direct
measurements of the forces acting between the particles as a function of the surface separation
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Figure 2.3: Anisotropic corrections to the diffusivity.

in liquids [28]. In this work, we assume that the Brownian sphere does not interact with other
Brownian spheres. This is the case for very dilute suspensions.

Figure 2.4: Sphere potential energy due to the wall and gravity. (a) Attractive van der Waals
potential and the repulsive double-layer potentials come from the wall. (b) The gravitational
potential is included. All these interactions act in the direction perpendicular to the wall.

Our description of the wall interactions are obtained from the DLVO theory, a theory named
after Derjaguin, Landau, Verwey, and Overbeek [30], which assumes that the forces between
two surfaces separated by the liquid arise from two main contributions: the attractive van der
Waals forces and the repulsive electrical double-layer forces, as shown in Fig. 2.4(a). Besides the
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electrostatic and van der Waals interactions, other “non-DLVO” forces in a solvent are present.
They become important at very small distances to the wall. In our study, these short-range
forces are not relevant because the particle never gets close enough to the wall to be affected
by them. In addition to the DLVO forces, the gravitational forces also affect the particle’s
dynamics. We next consider each one the the interactions.

Double-layer forces

The surface of the colloidal particle and the wall in a liquid may carry ionized chemical groups,
leading to repulsive double-layer forces. The repulsive electrostatic double-layer forces prevent
the Brownian particles from sticking to each other and to the surface of the wall.

Surface charges can originate from different mechanisms, such as ionization of surface groups,
specific adsorption of ions from solution onto a previously uncharged surface, or isomorphic
substitutions. Since the system is electrically neutral as a whole, the fluid must contain an
equivalent charge of the opposite sign. When the wall or sphere surface is negatively charged,
free negatively charged ions are released from the fluid close to the surface, while positive ions
are attracted towards the surface. Consequently, a double-layer charge distribution forms near
the surface (see Fig. 2.5). It should be noted that the resulting double-layer interaction potential

Figure 2.5: A Brownian sphere immersed in the liquid is surrounded by an electric double layer.
The same applies to the wall. One of the double layers is formed by the charge that accumulates
at the surface of the particles. Another layer is formed by the excess of oppositely charged ions
in the solution. The charge density decreases gradually with increasing distance into the bulk
liquid phase.

14



is not a Coulomb repulsion (which goes as 1/z) but is screened by the free ions in the fluid. Its
approximate form is [30]

Udl = B e−z/λD , (2.19)

where lD is the Debye length, which measures the effectiveness of the screening – the extent of
double-layer interaction effects. The Debye length is given by

lD =
√

εε0kBT

2 ·NAe2I
, (2.20)

with NA the Avogadro number, e the elemental electric charge, ε the dielectric permittivity of
the solvent, ε0 the relative dielectric permittivity of free space. Also, I is the ionic concentration
of the solvent, given by I = 1

2
∑
i ciZ

2
i , where ci is the molecular concentration and Zi the valence

of ion i. Screening is more efficient (i.e., lD becomes smaller) for larger concentrations of free
ions in the solvent. Adding salt, for example, can reduce the double-layer repulsion. The
prefactor B measures the strength of the double-layer potential and is given by

B = 16εa
(
kBT

e

)2
tanh

(
eψ1

4kBT

)
tanh

(
eψ2

4kBT

)
, (2.21)

where ψ1 and ψ2 are the Stern potentials of the substrate surface and the particle surface,
respectively. Typically, B ≈ 10–50 kBT [30].

Van der Waals forces

Van der Waals forces between two molecules include three different contributions: the force
between two permanent dipoles (Keesom orientation force), the force between a polar and a
non-polar molecule (Debye induction force), and the dispersion force or induced dipole-dipole
force, which acts between all atoms and molecules, including neutral ones. These forces are
very short ranged and are usually attractive. They can be screened by longer-ranged, repulsive
double-layer forces coming from the charges on the surfaces. For near-wall diffusion experiments,
one can add salt to the fluid to reduce the Debye length and bring the sphere closer to the wall.
However, this can lead to van der Waals interactions between the particles and the wall (the
particles stick to the wall), and coagulation of the particles (the particles stick to each other),
a situation that can be inhibited by steric stabilization [30].
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Gravitational Interaction

In addition to the sphere-wall interactions already mentioned, the sphere diffuses under the
influence of the gravitational potential

Ug = ∆mgz = 4
3π∆ρga3z , (2.22)

where ∆ρ is the mass density difference between the fluid and the sphere. We define the
gravitational decay length,

lg = kBT

∆mg = 3kBT
4π∆ρga3 , (2.23)

as the typical distance moved by the particle due to the gravitational potential against the
thermal forces. For lg � a, the particle does not feel the gravitational force. In the system
we study, we require that the particle size be of the order of the decay length. This ensures
that gravity is strong enough that the particle stays close to the wall, yet weak enough that it
explore an interesting range of distances from the wall. We, therefore, use gravity to position
the particle with respect to the horizontal wall.

The overall potential, including gravitation interaction, is illustrated in Fig. 2.4(b). It is
given by

U(z) = Uvdw + Udl + Ug . (2.24)

Clearly, close to the wall, the gravitational forces can be neglected and the DLVO theory can
correctly describe the physics of the system. At distances far away from the wall (z/a > 0.1 in
Fig. 2.4), DLVO forces can be neglected, and the particle feels only the gravitational force. In
later discussion, we will ignore van der Waals forces since they are very short-ranged (order of
a few nanometers) and, they are masked by the longer-ranged double-layer forces (effective to
about 50 – 100 nm in our experiments).

2.3 Langevin equation for wall-hindered diffusion

Having determined the external forces acting on the particle, we revisit the Langevin formulation
(Eq. 2.12) of the system’s dynamics. We integrate the one-dimensional, overdamped Langevin
equation over a time ∆t,

∆xi = − 1
γ(z)

∂U(z)
∂xi

∆t +
√

2D(z)∆t ξR , (2.25)

where ∆xi and ∆t are the space and time increments, respectively. Here, xi refers to any of the
rectangular coordinates (x, y, z), and ξR is a Gaussian random variable satisfying 〈ξR〉 = 0 and
〈ξ2
R〉 = 1, with no correlation between different time intervals. The function D(z) represents
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the height-dependent diffusivity, parallel or perpendicular according to the displacements being
considered. The particle diffuses freely along x and y, but there are external forces along z
that come from the repulsive double-layer and gravitational potentials discussed earlier. As
discussed in Sec 2.2.2, we neglect the van der Waals forces. Hence,

U(z) = Be−z/lD + 4
3π∆ρga3z ; D(z) = D‖,⊥(z), (2.26)

with all parameters explained previously. The wall is assumed to be located at z = 0.

2.3.1 Noise-induced drift

In the absence of external forces, the overdamped Langevin equation reduces to

∆xi =
ˆ t0+∆t

t0

√
2D(z) ξ(t′) dt′ . (2.27)

The space dependence of the diffusion coefficient introduces multiplicative noise for displace-
ments in the direction direction normal to the wall: Since the noise term is not a well-defined
function, Eq. (2.27), as it stands, is meaningless unless one specifies the time at which the
noise strength

√
2D(z) should be evaluated during the integration of Eq. (2.27) over the time

interval [t0, t0 + ∆t]. The physics depends on the noise calculus employed, and the requirement
that the long-time thermal equilibrium be consistent with the Boltzmann distribution places
an additional constraint on the Langevin equation.

The diffusion coefficient appearing in Eq. (2.25) can generally be represented by D(z+α∆z)
[equivalently, D(z(t0 + α∆t))], for some α ∈ [0, 1]. The value of α chosen determines the time
at which the noise term is evaluated within the interval [t0, t0 +∆t0] [31, 32]. One has to decide
which value of α should be employed in order to specify completely the Langevin equation. If
we ignore the external forces, the perpendicular equation becomes

∆z =
√

2D(z + α∆z)∆t ξR . (2.28)

Expanding the diffusion coefficient to first order, we get

D(z + α∆z) ≈ D(z) + α
dD

dz
∆z +O(∆z2) . (2.29)
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Substituting this into Eq. (2.28) gives

∆z ≈
√

2
[
D(z) + α

dD

dz
∆z
]

∆t ξR = ξR

√
2D(z)∆t

(
1 + α

dD

dz

∆z
D(z)

) 1
2

≈ ξR
√

2D(z)∆t
(

1 + α

2
dD

dz

∆z
D(z)

)

= ξR

√
2D(z)∆t

1 + α

2
dD

dz

[
ξR
√

2D(z)∆t+O(∆t1)
]

D(z)


=
√

2D(z)∆t ξR + ξ2
Rα

dD

dz
∆t + O(∆t

3
2 ). (2.30)

Taking ∆t = Nδt, where δt is some smaller time displacement satisfying the last line of
Eq. (2.30), we note that the fluctuation term is negligible for δt → 0. Hence, within the time
interval ∆t, we can replace ξ2

R with its average value 1 so that the full overdamped Langevin
equation for perpendicular motion becomes

∆z = α
dD

dz
∆t − ∆t

γ(z)
∂U(z)
∂z

+
√

2D(z)∆t ξR . (2.31)

The additional α term is deterministic and implies a drift of the Brownian particle in the
direction of the diffusivity gradient. The drift is known as spurious flow, spurious drift, or
noise-induced drift. The resulting noise-induced drift velocity,

vni = α
dD

dz
, (2.32)

is expected to vanish when α = 0. It also vanishes for horizontal diffusion, since D‖ is inde-
pendent of x and y. Different values of α lead to different solutions to Eq. (2.31). Three values
have been most commonly adopted: the Itô (α = 0), Stratonovich (α = 1/2), and isothermal
(α = 1) conventions [33]. Although any value of α is mathematically admissible, it still re-
mains controversial what value of α is physically more meaningful than others. The isothermal
convention is appropriate for the system we are studying, since it is consistent with the equilib-
rium Boltzmann distribution. However, theoretical investigations reveal that starting from the
underdamped Langevin equation leads naturally to the Stratonovich convention, with a drift
term to be consistent with the Boltzmann distribution in equilibrium [34, 35].

The overall drift vd in the particle’s perpendicular motions comes from two contributions:
noise-induced drift due to the variation in D, given in Eq. 2.32, and drift due to the external
field,

vd(z) = α
dD⊥(z)
dz

− 1
γ(z)

∂U(z)
∂z

. (2.33)
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Hence, perpendicular motion can be presented in the compact form

∆z = vd∆t +
√

2D⊥(z)∆t ξR . (2.34)

From now on, we will examine the perpendicular (z) dynamical equations only. Lateral (x
and y) equations can be determined from the z equations by setting vd = 0 and using the
appropriate space-dependent diffusivity (D‖ instead of D⊥).

2.3.2 Deterministic vs. diffusive motion

The first term on the right-hand side of Eq. (2.34) leads to deterministic motion, and the
last term gives rise to random motion. Equation (2.34) suggests that the noise term (∼

√
∆t)

dominates the deterministic contribution (∼ ∆t) at very small time steps. The balance between
these two regimes can be set by the two time scales: the one-dimensional diffusion time scale

τa = a2

2D , (2.35)

is the typical time for a particle to diffuse over a distance comparable to its own radius. The
drift time scale,

τdrift = a

vd
, (2.36)

is the corresponding time for deterministic forces. Here, we assume that all the other length
scales (lD and lg) are of the same order of magnitude. A standard measure of the relative
importance of deterministic vs. random motion is the Péclet number,

Pe ≡ τa
τdrift

= vda

2D . (2.37)

Setting D = kBT/γ, we can express the Péclet number as

Pe ∼ γvda

kBT
, (2.38)

which is the ratio of the work needed to drive the particle a distance a by the deterministic
forces against the thermal energy. For Pe � 1, the particle undergoes free Brownian motion
in the normal direction, just as in parallel motion, and the drift term can be neglected in the
Langevin equation (2.34). For Pe � 1, the motion is deterministic, and Brownian motion can
be neglected. The Péclet number will take different values for different heights of the bead.
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2.4 Fokker-Planck equation

The motion of the Brownian particle can alternatively be described by the Fokker-Planck equa-
tion, which considers the time evolution of the particle distribution function P (z, t). Instead of
calculating explicit trajectories of the Brownian particle by solving the Langevin equation, we
can determine the probability density P (z, t) of finding the particle at a certain position z at
time t, given initial conditions. The probability density is defined such that P (z, t) dz is the
probability that the position lies within the interval [z, z + dz] at time t. The time evolution
of P (z, t) obeys the Fokker-Planck equation [33],

∂P (z, t)
∂t

= − ∂

∂z

{
vd(z)P (z, t)

}
+ ∂2

∂z2

{
D(z)P (z, t)

}
. (2.39)

The stationary solution to Eq. (2.39), found by setting ∂tP = 0, is the Boltzmann distribution,

PB(z) = 1
Z

exp
(
−U(z)
kBT

)
= 1
Z

exp
(
− B

kBT
e
− z

lD − z

lg

)
. (2.40)

Here, 1/Z is the normalization constant. From the integral formula [36]
ˆ ∞

0
exp

(
−βe−x − µx

)
dx = β−µγ(µ, β) , (2.41)

with γ the lower incomplete gamma function [36], the normalization constant is

Z = lD

[
B

kBT

]−lD/lg
γ

(
lD
lg
,

B

kBT

)
. (2.42)

If the particle starts at (z, t) = (z0, t0), then the initial condition for the density function is

P (z, t0) = δ(z − z0) . (2.43)

Since the drift vd and diffusivity D are independent of time, Eq. (2.39) can be formulated as

∂P (z, t)
∂t

= LFP(z) P (z, t) , (2.44)

where LFP is the time-independent Fokker-Planck operator, given by

LFP = − ∂

∂z
vd(z) + ∂2

∂z2 D(z) . (2.45)
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The formal solution to Eq. (2.44), with initial condition Eq. (2.43), is then

P (z, t|z0, t0) = eLFP(z)(t−t0) δ(z − z0)

= exp
[
− ∂

∂z
vd(z) (t− t0) + ∂2

∂z2 D(z) (t− t0)
]
δ(z − z0) . (2.46)

2.4.1 Conditional displacements for small times

It is hard to find the exact solutions to Eq. (2.46), since the drift and the diffusivity both
depend on the particle’s height from the wall. In the following, we consider the case where the
time ∆t = (t− t0) is small enough that the drift and the diffusivity are approximately constant.
Such a requirement for ∆t depends on z since the drift and the diffusivity vary more or less
sharply at different heights.

For sufficiently small ∆t, the drift and diffusivity are roughly constant, and we can represent
D and vd as functions of the initial position, z0, instead of z. Representing the δ function
appearing in Eq. (2.46) as a Fourier integral, we obtain, for small ∆t,

P (z,∆t|z0) = exp
[
− ∂

∂z
vd(z0) ∆t + ∂2

∂z2 D(z0) ∆t
]

1
2π

ˆ ∞
−∞

eiu(z−z0) du

= 1
2π

ˆ ∞
−∞

exp
[
−vd(z0)∆t ∂

∂z
eiu(z−z0) + D(z0)∆t ∂2

∂z2 e
iu(z−z0)

]

= 1
2π

ˆ ∞
−∞

exp
[
−iu vd(z0)∆t − u2D(z0)∆t+ iu(z − z0)

]
du . (2.47)

After a long exercise of calculus, the above reduces to [26]

P (∆z,∆t|z0) = 1√
4πD(z0)∆t

exp
(
− [∆z − vd(z0)∆t]2

4D(z0)∆t

)
, (2.48)

where ∆z = (z − z0) is the z displacement. This is just what we might expect: a Gaussian
distribution with mean µ(z0) = vd(z0)∆t and variance σ2(z0) = 2D(z0)∆t. For lateral motion,
characterized by vd = 0, we have µ = 0. Therefore, the presence of the external field and
noise-induced drift along z introduces asymmetry about 〈∆z〉 = 0 in the vertical displacement
distribution which vanishes with the time scale ∆t. Indeed, Mauricio et al. [37] observed this
asymmetry for colloidal particles close to a plane wall. The height-conditional n-th moments
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of the displacements can be shown to be [26]

µn(z0) = 〈(∆z)n|z0〉 =
[
−i
√
D(z0)

]n
× Hn

[
1
2 i vd(z0)

√
∆t

D(z0)

]
, (2.49)

where Hn(x) are the Hermite Polynomials (H0=1, H1 = 2x, H2 = 4x2 − 2, . . . ). The first four
moments (conditional on z0) are

〈∆z|z0〉 = vd∆t , (2.50a)

〈∆z2|z0〉 = 2D∆t + v2
d∆t2 , (2.50b)

〈∆z3|z0〉 = 6vdD∆t2 + v3
d∆t3 , (2.50c)

〈∆z4|z0〉 = 12v2
dD∆t3 + 12D2∆t2 + v4

d∆t4 , (2.50d)

and variations D(z) are slow enough. As long as ∆t� 2D/v2
d, the mean-squared displacement

will be linear with time, and perpendicular diffusion will be free of the bounding forces, just as
for parallel diffusion.

2.4.2 Diffusing diffusivity

Our interest in this work is to study the behavior of the overall diffusion of the particle. Instead
of considering the small-time conditional displacements probability density P (∆z,∆t|z0), we
examine the overall density P (∆z,∆t) which considers all possible initial states of the system.
From the law of conditional probability, the overall probability density takes the form

P (∆z,∆t) =
ˆ ∞

0
P (∆z,∆t|z0) PB(z0) dz0 . (2.51)

which is a sum of the Gaussian distributions P (∆z,∆t|z0) [given by Eq. (2.48)] over all the
possible initial states z0 weighted by the Boltzmann distribution PB(z). To gain an intuitive
understanding of the properties of the overall displacement density function given in Eqn.
(2.51), we analyze its alternative formulation in terms of the fluctuations in diffusivity:

P (∆z,∆t) =
ˆ Dmax

Dmin

P (∆z, ∆t |D) P (D) dD . (2.52)

This form comes from the transformation relation PB(z0) dz0 = P (D) dD, where P (D) is the
distribution of the particle’s diffusivities over its motion. In this form, we can interpret the
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system’s overall diffusion as a sum of the very-short-time (∆t) Gaussian diffusion processes
each identified by its diffusion constant (dependent on z0), or variance. We expect the resulting
displacements to be non-Gaussian.

At larger time scales, or at Pe � 1, the bounding potential along z also leads to different
dynamics and (2.52) does not hold. The overall distribution is the convolution of two Boltzmann
distributions, since the displacement ∆z = (z1 − z0) comes from independent draws from the
Boltzmann distribution, i.e.,

P (∆z,∆t) =
ˆ ∞
−∞

ˆ ∞
−∞

dz0 dz1 P (∆z, z0, z1)

=
ˆ ∞
−∞

ˆ ∞
−∞

dz0 dz1 P (∆z|z0, z1) PB(z0) PB(z1)

=
ˆ ∞
−∞

ˆ ∞
−∞

dz0 dz1 δ(∆z + z0 − z1) PB(z0) PB(z1)

=
ˆ ∞
−∞

dz0 PB(z0) PB(z0 + ∆z)

=
ˆ ∞
−∞

dz0 PB(z0) PB(z0 −∆z) . (2.53)

The last line arises from the symmetry P (∆z,∆t) = P (−∆z,∆t), which can be demonstrated
by changing variables to z = z0 −∆z in the integral. For the bounding potential in the system
we study, Eq. (2.53) is clearly non-Gaussian. If we consider only the gravitational potential,
then PB is an exponential distribution and P (∆z, ∆t) is a Laplace (bi-exponential) distribution
(see Fig. 2.6). The mean-squared displacement, on the other hand, must remain linear in time
as long as the Péclet number is very small. The typical displacement is taken from the sum
of many random variables each taken from a Gaussian distribution, irrespective of how the
diffusivities vary in space. In the next chapter, we will investigate the statistical properties of
the displacements in more detail.

Figure 2.6: (a) Form of the Boltzmann distribution assuming a gravitational potential only.
(b) The long-time stationary bi-exponential (Laplace) distribution of displacements.
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Chapter 3

Computer Simulations of Brownian
Diffusion Near a Wall

In this chapter, we explore numerically the dynamics of a colloidal sphere diffusing near a flat
wall using the tools presented in the previous chapter. We investigate the effects of the wall
and the gravitational interactions on its hindered diffusion dynamics. The results obtained are
guidelines for the near-wall Brownian diffusion experiments reported in Chapter 4. Our main
aim is to determine a set of experimental parameters that lead to non-Gaussian displacement
distributions of the particle due to fluctuations in the diffusivity.

This chapter is organized as follows: Section 3.1 introduces the Brownian dynamics simu-
lation algorithm used to find the bead’s trajectory. In Sec. 3.3, the effect of the time intervals
on the dynamics is considered, and the solutions of the Fokker-Planck equation for small time
intervals is presented in Sec. 3.2. In Sec. 3.4, we investigate the effect of the particle’s vertical
confinement on the dynamics at very short time scales, when the displacements are not affected
by the bounding potential.

3.1 Brownian dynamics simulation

We first study the characteristics of the particle’s trajectory by solving the Langevin equation
numerically for perpendicular and parallel motion.

3.1.1 Brownian dynamics

In Brownian dynamics simulations, particle displacements are computed based on temporal
discretization of the overdamped Langevin equation given in Eq. (2.31) [38]. For a Brownian
sphere close to a wall, horizontal and vertical displacements between simulation time step i and
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step i+ 1, with step size δt = (ti+1 − ti) can be represented as

xi+1 − xi =
√

2D‖(zi)δt ξR , yi+1 − yi =
√

2D‖(zi)δt ξR (3.1a)

zi+1 − zi = α
dD⊥(z)
dz

∣∣∣∣
zi

δt + D⊥(zi)
kBT

F (zi) δt +
√

2D⊥(zi)δt ξR , (3.1b)

where (x, z) is the particle’s position, D‖,⊥ are the anisotropic diffusion coefficients defined in
Chapter 2, ξR is a Gaussian random variable satisfying 〈ξR〉 = 0 and 〈ξ2

R〉 = 1, and F is the
sum of all external forces. We have

F (z) = − ∂U(z)
∂z

= B

lD
e
− z

lD − kBT

lg
, (3.2)

where lD and lg are the Debye and gravitational lengths, respectively, introduced in Chapter 2,
and B is the double-layer strength. By choosing the system’s length scale to be the particle’s
radius and the time scale to be the characteristic time the particle requires to diffuse its diameter
2a in two dimensions, τa = a2/D0, we introduce the dimensionless parameters

δt = δt

τa
= δtD0

a2 , (3.3a)

z̄ = z

a
, x̄ = x

a
, ȳ = y

a
(3.3b)

l̄D = lD
a
, B̄ = B

kBT
, (3.3c)

l̄g = lg
a

= 3kBT
4π∆ρga4 . (3.3d)

In these dimensionless units, Eqs. (3.1a) and (3.1b) become

x̄i+1 = x̄i +
√

2 λ‖(z̄i) δt ξR , ȳi+1 = ȳi +
√

2 λ‖(z̄i) δt ξR (3.4a)

z̄i+1 = z̄i + α
dλ⊥(z̄)
dz̄

∣∣∣∣
z̄i

δt + λ⊥(z̄i)
[
B̄

l̄D
e−z̄i/l̄D − 1

l̄g

]
δt +

√
2 λ⊥(z̄i) δt ξR . (3.4b)

Here, λ‖,⊥ = D‖,⊥/D0. In our simulations, we will investigate carefully the influence of the
Debye and gravitational length parameters, l̄D and l̄g, as well as the time parameter δt, on the
dynamics of the system. Typical values of the parameters l̄g and δt, for various bead sizes, are
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Figure 3.1: Simulation parameters vs. radius of sphere. (a) Gravitational decay length pa-
rameter l̄g for a latex bead (density = 1.055 g/cc) and a glass bead (density = 2.5 g/cc) in
water (density=1.0 g/cc). Dotted lines indicate that l̄g = 1 corresponds to different sizes for
the different bead types. (b) Time step parameter δt for different time steps δt (diffusion in
water; η = 0.001 Ns/m2, T=293 K)

shown in Fig. 3.1.

From Eq. (3.4b), the rescaled drift velocity becomes

v̄d(z̄) = α
dλ⊥(z̄)
dz̄

+ λ⊥(z̄)
[
B̄

l̄D
e−z̄/l̄D − 1

l̄g

]
. (3.5)

3.1.2 Simulation time step

Numerical accuracy requires that the simulation time step be short enough that the drift func-
tion, v̄d, and diffusivity are essentially constant during each time period δt = t̄i+1 − t̄i and
spatially independent in each range δz = z̄i+1 − z̄i:

v̄d (z̄ ∈ [z̄i, z̄i+1]) ≈ v̄d(z̄i) , (3.6a)

λ‖,⊥ (z̄ ∈ [z̄i, z̄i+1]) ≈ λ‖,⊥(z̄i) . (3.6b)

For parallel motion, the minimum time step required is constrained only by the particle’s dif-
fusivity, whereas the drift imposes further constraints on perpendicular motion. Since λ‖ varies
less rapidly than λ⊥, we will consider only perpendicular motion, as it limits our choice of the
simulation time step. One needs to take into account the fact that the dynamics strongly de-
pends on the particle’s z-position. Figure 3.2(a) shows the gradients of the drift and diffusivity
as a function of height. As the bead gets closer to the wall, the drift gradient increases signif-
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icantly, and the diffusivity reaches the maximum slope, which is unity. This drastic change in
diffusion is more pronounced near the wall than at positions away from the wall. As a result, the
choice of the simulation time step is essentially constrained by the degree of drift fluctuations
very close to the wall, where z̄ � l̄D. The perpendicular diffusivity very close to the wall is
approximately linear in the height

λ⊥,wall ∼ λ0z̄ , (3.7)

with the dimensionless slope λ0 approaching unity as z̄ goes to 0. If we neglect the gravitational
contribution, the drift very close to the wall can be approximated as

v̄d,wall = λ0

l̄D

[
l̄D + B̄z̄ e−z̄/l̄D

]
= λ0

l̄D

[
l̄D + B̄z̄

{
1− z̄

l̄D
+O

([
z̄

l̄D

]2
)}]

' λ0

l̄D

(
l̄D + B̄z̄

)
. (3.8)

At any position very close to the wall, the simulation spatial jumps, δz, have to satisfy the
constraints given in Eqs. (3.6a) and (3.6b) at any position z̄. Constraint (3.6a) is the stronger
of the constraints, since v̄′d,wall = B̄λ0/l̄D � λ0 = λ′⊥,wall for realistic experimental parameters.
We therefore require that

v̄d,wall(z̄ + δz)− v̄d,wall(z̄)
v̄d,wall(z̄)

� 1 . (3.9)

This condition can be rearranged to give

δz � l̄D

B̄
+ z̄ . (3.10)

The required time step therefore depends on position as follows:

δt ' (δz)2

2λ⊥,wall
�

(
l̄D
B̄

+ z̄
)2

2λ0z̄
= δtmax(z̄) . (3.11)

Plots of the maximum permissible time step function δtmax(z̄), at different heights, are shown
in Figure 3.2(b). The best choice for the simulation time step should be one that minimizes
δtmax. Clearly, (3.11) has a minimum z̄m, satisfying

dδtmax(z̄)
dz̄

∣∣∣∣
z̄=z̄m

= 0 =⇒ z̄m = lD

2B̄
. (3.12)
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The appropriate choice of the simulation time step should be

δt� min
z̄

{
δtmax(z̄)

}
=

(
l̄D
B̄

+ z̄
)2

2z̄

∣∣∣∣∣
z̄=z̄m

= 9
4
l̄D

B̄
(3.13)

Figure 3.2: (a). Gradients of the drift and diffusivity vs. height. (b). The maximum allowed
δt as a function of height for different Debye length l̄D parameters. The scaled height z̄m is for
the lD = 0.04 curve.

3.1.3 Numerical simulation algorithm

To simulate the particle’s trajectory, I wrote a computer program in the Igor Pro1 language.
Having determined the simulation time step, the other parameters are set depending on the
aim of the computation. The initial position for each trajectory is assumed to be known. Since
the particle’s long time dynamics is independent of the initial position, any choice from possible
(x̄0, z̄0) values can be used. We choose x̄0 = 0. However, for z̄0, one has to ensure that the
particle visits that height in the duration of the trajectory. In our simulation, we choose the
most-probable height, z0 = zmp, as our initial z position, given by

∂U(z̄)
∂z̄

∣∣∣∣
z̄=z̄mp

= 0 =⇒ z̄mp = l̄D ln
[
B̄

l̄D l̄g

]
. (3.14)

The constraint given in Eq. (3.13) limits the computational speed of the algorithm. If a time
step is too large, the particle may hit the wall after a few steps because of the greater drift
and diffusion gradients near the wall. To get the trajectory for a given time step ∆t > δt, we
pick data points separated by about n = ∆t/δt simulation steps. In this thesis, we focus on

1Igor Pro, WaveMetrics Inc., USA. www.wavemetrics.com
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steady-state equilibrium probability distributions. For such steady states, it is often convenient
to assume ergodic motion and thus to estimate ensemble averages , denoted 〈·〉, by taking
long-time averages from single simulated trajectories.

3.1.4 Results

Figure 3.3 shows a portion of the particle’s trajectory on the xy plane. It undergoes free
Brownian diffusion because of the absence of external forces. In Fig. 3.4, we show the motion
along z arising from the effect of Brownian diffusion under the confinement introduced by
the gravitational and electrostatic potentials. As the particle diffuses closer to the wall, it gets
pushed upwards by the double-layer force. The heights are compared with the perpendicular and
normal displacements. The connection between the height of the particle and the displacements
can be clearly observed for vertical motion: The more the particle moves closer to the wall,
the smaller the displacements, as seen in Fig. 3.4. Hence, the particle spends more time in the
regions very close to the wall than it does far away. Without an external force, this is also
true for, e.g., Ito calculus, but for the isothermal calculus this effect is compensated by the
noise-induced drift. For parallel motion, the displacements have less dependence on height.

51

50

y 
/ a

100.5100.0
x / a

1000050000
simulation steps

Figure 3.3: Two-dimensional simulated trajectory. (δt = 6 × 10−3, l̄g = 0.5, l̄D = 50 ×
10−3, B̄ = 15)

The height distribution, obtained from binning the particle’s heights over a single trajectory,
is shown in Fig. 3.5. We see that in the isothermal case, when α = 1, the height distribution
curve converges to the Boltzmann distribution. The particle spends more time close to the
wall. Figure 3.6 shows the displacement distributions obtained from forming histograms of the
displacements (z̄i+1 − z̄i). We see that the distributions are non-Gaussian at all time scales for
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Figure 3.4: Heights and displacements (a) The particle’s trajectory along z. (b) Diffusion
close to the wall is characterized by small normal displacements. (c) The behavior for parallel
displacements is not clearly visible. (δt = 6× 10−3, l̄g = 0.05, l̄D = 50× 10−3, B̄ = 15)
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Figure 3.5: Distribution of heights of the particle. For simulations we used α = 0, 1/2, and
1. Solid curve represents the expected Boltzmann distribution, which agrees with the α = 1
simulation (δt = 6× 10−3, l̄g = 0.33, l̄D = 50× 10−3, B̄ = 16).

perpendicular motion. The distribution tends to have broader tails compared to the Gaussian
fits. For parallel motion, however, the distributions are approximately Gaussian.

The non-Gaussian z displacements in Fig. 3.6(a) come from two contributions: the bound-
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Figure 3.6: Distribution of displacements for time steps ∆t = 0.0001, 0.005, 0.05, and 0.1.
(a) Distinctly non-Gaussian vertical distributions b) Nearly Gaussian horizontal displacements.
( l̄g = 0.2, l̄D = 30× 10−3, B̄ = 16)

ing potential and the spatial fluctuations in diffusivity. Parallel diffusion exhibits very nearly
Gaussian dynamics for all experimentally accessible parameters. This results from the absence
of external potential and the very small range of fluctuations in the parallel diffusivity, as can
be seen from Figure 2.3. Hence, our only hope of observing non-Gaussian dynamics is to study
perpendicular motion. However, perpendicular motion is complicated because of the bounding
potential. The effect of the potential can be seen from the mean-squared displacement graphs
shown in Fig. 3.7(b), which show nonlinear z mean-squared displacements at long time scales
with strong dependence on the gravitational decay length. In this thesis, we are interested in
identifying non-Gaussian dynamics due to diffusivity variations only, and not due to the poten-
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tial. If we were able to measure non-Gaussian dynamics in horizontal motion, we would be able
to conclude immediately that the non-Gaussian behavior comes from D fluctuations. But the
effects are too small, and we focus instead on vertical motion. So far, it is not clear whether the
non-Gaussian behavior in the vertical displacement distributions shown in Fig. 3.6(a) come from
the potential only, or from both the potential and diffusivity fluctuations. Our goal is to find
conditions where we can show that diffusivity fluctuations are the only cause of non-Gaussian
dynamics in the vertical direction.
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Figure 3.7: The mean-squared-displacement (MSD) vs. time steps from simulations. (a) Linear
MSD for horizontal motion. (b) Vertical MSD is linear at very small time step sizes and
saturates at long time steps because of the external potential.

3.2 Time Scales and non-Gaussian dynamics

We begin by investigating the role played by the time interval ∆t in the emergence of non-
Gaussian dynamics of the particle. This will enable us to understand the diffusive regimes of
the system. Numerical results are from Brownian dynamics simulations.

To characterize non-Gaussianity, we determine the excess kurtosis of the displacements. Ex-
cess kurtosis, denoted κ, is defined as the measure of “peakedness” or flatness of the distribution
relative to a normal distribution. Mathematically [39],

κ ≡ µ4
(µ2)2 − 3 , (3.15)

where µn = 〈(∆z̄)n〉 is the n-th moment of the displacements. Normally distributed displace-
ments have κ = 0. A distribution with positive kurtosis has heavier tails and a higher peak
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than the normal distribution, whereas a distribution with negative kurtosis has lighter tails
and is flatter, as illustrated in Fig. 3.8. (For the rest of the thesis, we will simply use the term
kurtosis to refer to excess kurtosis.)

Figure 3.8: Excess kurtosis of distributions on (a) linear and (b) semi-log scales.

Figure 3.9 shows results from numerical simulations (outlined in Sec. 3.1) for the particle’s
dynamics at different time scales. At small time scales the kurtosis is constant [see Fig. 3.9(a)].
As the time scales get larger the presence of the bounding potential results to an increase in
the kurtosis after some time step ∆τc. We thus classify the diffusive process into two time
regimes: the diffusing-diffusivity (∆t < ∆tc) and the Boltzmann (∆t > ∆tc) regimes. In
the diffusing-diffusivity regime, the non-Gaussian dynamics is driven by D fluctuations and
the bounding potential has negligible influence. In this regime, the displacements are non-
Gaussian; yet the MSD grows linearly with time. The non-Gaussian displacement distribution
is generated by the diffusivity distribution P (D) via Eq. 2.52. In Fig. 3.9(b), we investigate
the kurtosis when the variation in the diffusivity is turned off for different dimensional time
intervals. In this case, the absence of diffusivity fluctuations forces the kurtosis to go to zero
at small time intervals corresponding to the diffusing-diffusivity regime. This confirms that the
non-Gaussianity of the displacement observed in the diffusing-diffusivity regime in Fig. 3.9(a)
arises solely from fluctuations inD. In the Boltzmann regime, the bounding potential dominates
the D fluctuations, and the MSD saturates. At very large time steps, we can view each position
measurement as an independent sample from the equilibrium Boltzmann distribution. In the
long-time limit, the displacement distribution then is given by Eq. 2.53.

3.3 Displacement distributions at small times

To gain insight into the underlying statistical properties of the displacements, we simulate N
trajectories and form histograms of the displacements ∆z̄ = (z̄ − z̄0). To reduce noise in the
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Figure 3.9: Excess kurtosis at different time steps for (a) variable D and (b) constant D values.
∆tc is the transition time scale and λ = Deff/D0 determines the constant effective diffusivity.
Parameters used are l̄g = 0.04, l̄d = 0.03 and B̄=15.

results, we need to simulate a very large number of trajectories. In this section, we introduce the
numerical approximation of Eq. 2.52 for very small time steps, used in the diffusing-diffusivity
regime. This approximation is based on Eq. (2.48) for very small fixed time steps:

P (δz) =
ˆ ∞

0
P (δz|z̄0) PB(z̄0) dz̄0 , (3.16)

where PB(z̄0) is the Boltzmann distribution of heights and P (z̄|z̄0) is the conditional distribution
of displacements, which is Gaussian at very short times [see Eq. (2.48)].

Figure 3.10 shows the displacement distributions obtained from integrating Eq. (3.16) over
all possible starting positions, compared with results from numerical simulations of the Langevin
equation. The results agree with simulations, especially at very small time steps.
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Figure 3.10: Displacement distributions from discrete-time Fokker-Planck solution method
(solid lines) compared to results from discrete-time integration of the Langevin equation (data
points). Parameters used are l̄g = 0.5, l̄d = 0.03 and B̄ = 15.

3.4 Diffusing-diffusivity dynamics

By analyzing the excess kurtosis at different time scales, we can classify the diffusion process
based on the relative importance of diffusivity fluctuations and the external field. The most
interesting scenario occurs when the diffusivity is the only contribution to non-Gaussian dy-
namics. In the following chapter, we will present an experiment to measure this non-Gaussian
effect due solely to diffusivity fluctuations. In the experiment, we choose parameters so that
the time interval lies in the diffusing-diffusivity regime. We now study the system’s dynamics
in the diffusing-diffusivity region, focusing on the effect of the gravitational decay length and
Debye length parameters on the non-Gaussian behavior. We search for a set of parameters that

(i) eliminate the influence of the bounding potential on the displacements, so that we are in
the diffusing-diffusivity regime, and

(ii) maximize non-Gaussian dynamics within the diffusing-diffusivity regime.
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3.4.1 Diffusing-diffusivity parameter choice

For the dynamics to be in the diffusing-diffusivity regime, we require that the time scale be
much less than the transition time; i.e., ∆t� ∆tc. The transition time ∆tc is set by the balance
between the average thermal displacement

√
〈∆z2〉therm =

√
2D∆t and the average external

field displacement
√
〈∆z2〉ext = − 1

γ
∂U
∂z ∆t. In dimensionless parameters, this gives

∆tc = 2

λ⊥(z̄)
(
B̄
l̄D
e−z̄/l̄D − 1

l̄g

)2 . (3.17)

Hence, the choice of parameters depends on the height of the particle. At heights very close
to the most-probable position, z̄mp = l̄D ln

[
B̄
l̄D l̄g

]
, almost any choice of parameters is allowed

since the external forces vanish and ∆tc becomes very large. Next, we explore Eq. (3.17) at two
regions: at heights very close to the wall and at heights away from the wall. Close to the wall,
where z̄ � l̄D and the gravitational potential can be neglected, Eq. (3.17) becomes

∆tc ≈
2
λ0z̄

(
l̄D

B̄

)2

e2z̄/l̄D , (3.18)

and the diffusivity follows λ⊥(z̄) = λ0z̄. The right-hand-side of Eq. (3.18) takes a minimum at
z̄ = l̄D/2. Hence,

∆tc ≤
4e
λ0B̄2 l̄D . (3.19)

Away from the wall, we neglect the double-layer forces and, using λ0 ≈ 1, we get from Eq. (3.17)
that the parameters required for diffusion must satisfy

∆tc ≈ 2 l̄2g . (3.20)

From Eqs. (3.18) and (3.20), the location of ∆tc on the time axis is more sensitive to the Debye
length than the gravitational decay length. Reducing the Debye length or the gravitational
length pushes the diffusing-diffusivity region to shorter time scales.

Generally, in the experimentally-accessible parameter space, 4e
λ0B̄2 l̄D � 2 l̄ 2

g . For overall
diffusion at fixed ∆t, the requirement that ∆t � ∆tc is therefore set by the minimum of ∆tc
which is attained very close to the wall. Hence, for the diffusion dynamics to exhibit diffusing
diffusivity, we require that

∆t� 4e
λ0B̄2 l̄D . (3.21)
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The required diffusing-diffusivity time scale is more constrained by the Debye length than by
the gravitational decay length.

3.4.2 Optimizing non-Gaussian dynamics

Having established the time scales [given by relation (3.21)] for the particle to be in the diffusing-
diffusivity regime, we now explore the influence of the length parameters l̄g and l̄D on the
dynamics and look for the parameters that maximize the non-Gaussian dynamics within this
regime. The influence of the double-layer potential strength B̄ is not investigated since it
is difficult to vary experimentally. We use the experimentally determined value, B̄ = 15.6,
throughout this study.

Figure 3.11(a) shows the plot kurtosis for one value of the Debye length as a function of the
gravitational decay length. We see that, for fixed l̄D, there is a corresponding gravitational decay
length that optimizes the kurtosis. For a given Debye length, the motion becomes Gaussian
at large decay lengths, since the particle does not feel the gravitational force. It undergoes
free diffusion away from the wall where the diffusivity is almost constant, with the dominating
stochastic solvent fluctuations pushing it away from the wall. As the decay length is reduced, the
particle is brought closer to the wall by gravity, and the dynamics tends to become non-Gaussian
on account of the diffusivity fluctuations introduced by the wall. As the gravitational decay
length is reduced further, however, the particle becomes more confined by the gravitational and
double-layer potential, and it diffuses over a shorter z range. This reduces the z-dependent
diffusivity fluctuations, and the dynamics reverts to Gaussian. We therefore conclude that
there is an optimal balance between the gravitational and double-layer forces that maximizes
the non-Gaussianity (kurtosis) of the dynamics.

A family of curves of the kurtosis against the decay length for different Debye lengths is
shown in Fig. 3.11(b). For very large Debye lengths, the kurtosis does not reveal a well-defined
optimum for reasonable gravitational decay lengths. In this case, only extremely large l̄g (too
large for the particle to be considered Brownian) can reveal optimum kurtosis. Figure 3.11(c)
shows kurtosis versus the Debye length for different decay length parameters. We see that
shorter Debye lengths maximize non-Gaussian dynamics. At short Debye lengths, the particle
is likely to diffuse very close to the wall owing to the the presence of the gravitation force.
The frequent changes in the diffusivity near the wall lead to non-Gaussian dynamics, which
increases continuously with decreasing height. From Fig. 3.11(c), we note that at l̄D = 0.1
the red curve, corresponding to l̄g = 1, maximizes the non-Gaussianity. At the smallest Debye
length, the l̄g = 0.2 curve maximizes the non-Gaussianity. Hence, the right combination of l̄D
and l̄g optimizes non-Gaussian dynamics of the particle.

37



0.6

0.4

0.2

E
xc

es
s 

ku
rt

os
is

,  
κ

2 4 6 8
0.1

2 4 6 8
1

2 4 6 8
10

2

lg

 
 lD  = 0.03
         0.05
         0.08
         0.10
         0.15
         0.20
         0.30

-

-

1.0

0.5E
xc

es
s 

ku
rt

os
is

,  
κ

5 6 7 8 9
0.01

2 3 4 5 6 7 8 9
0.1

2

lD 

  lg = 0.2
         0.1
         0.05
         0.01
         1

 
 

-

-

0.4

E
xc

es
s 

ku
rt

os
is

,  
κ

2 3 4 5 6
0.1

2 3 4 5 6
1

2 3 4 5 6
10

2

 lg

Optimum kurtosis balance

-

-

(a)

(b)

(c)

Figure 3.11: (a) Typical optimum of the kurtosis for a unique combination of the Debye length
and gravitational decay length parameters. (b) Kurtosis vs. gravitational decay length for
various Debye length parameters. (c) Kurtosis vs. Debye length for various gravitational decay
length parameters (∆t = δt = 0.0005).
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3.4.3 Non-Gaussian dynamics vs. diffusivity distribution

We have seen that a specific form of the bounding potential will optimize non-Gaussian dy-
namics of the Brownian particle. We now investigate the physics behind the specific choice
of the optimizing parameters. Assuming that we are in the diffusing-diffusivity time regime,
there should be a connection between the particle’s non-Gaussian dynamics and its diffusivity
distribution. The distribution of the particle’s diffusivity takes the form

P (D) =
{
PB(z)
D0

[
dλ⊥(z)
dz

]−1} ∣∣∣∣∣
z=D0λ

−1
⊥ (D/D0)

, (3.22)

where λ−1
⊥ (D/D0) is the inverse of the diffusivity correction function λ⊥(z), and PB(z) is the

Boltzmann distribution.

Figure 3.12: Distribution of the diffusivity for (a) various Debye lengths and (b) various gravi-
tational decay lengths.

Figure 3.12 shows the distribution of the particle’s diffusivity at different gravitational length
parameters. Smaller Debye lengths and longer gravitational decay lengths result in larger
spreads of the distributions. A measure of the spread of P (D) will determine the non-Gaussian
properties of the particle’s dynamics. Larger diffusivity spreads will result in strong fluctuations
in D. The spread of the distribution can be found by evaluating the variance of the diffusivity,
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σ2
D = 〈(D − 〈D〉)2〉, where

σ2
D =

ˆ Dmax

Dmin

(D − 〈D〉)2P (D) dD . (3.23)

To evaluate Eq. (3.23), we need to know the range of heights explored by the particle within a
certain duration of time, since the limits of the diffusion coefficient are given byDmax = D(zmax)
and Dmin = D(zmin). In the following, we determine the extreme heights, zmin and zmax.

Extreme heights

How high will the particle go over a time T , given length parameters l̄D and l̄g? We start by
approximating z̄max from the cumulative Boltzmann distribution of the particle :

Pc(z̄) =
ˆ z̄

0
PB(z̄′)dz̄′ = 1− exp

(
− z̄
l̄g

)
, (3.24)

where we have neglected the double-layer potential, assuming that zmax is at distances far away
from the wall. For n measurements of the height having the random variables Z1, Z2, . . . , Zn,
extreme-value statistics suggests that the cumulative probability of getting the maximum Zmax

of the n random variables is given by [40, 41]

P (Zmax ≤ z) = P (Z1 ≤ z, Z2 ≤ z, . . . , Zn ≤ z) = [Pc(z)]n . (3.25)

Hence, the cumulative distribution of the maximum height at very large n becomes

Pc(z̄max) =
[
1− exp

(
− z̄max

l̄g

)]n

=
[
1− 1

n
exp

(
−(z̄max + l̄g log[n])

l̄g

)]n

= exp
[
−e−

(z̄max+z̄g log[n])
l̄g

]
, (3.26)

where limn→∞(1− x/n)n = e−x. Equation (3.26) is the well-known Gumbel cumulative distri-
bution function [40, 41] with mode µ = l̄g log[n] and scaling parameter β = l̄g. The associated
Gumbel density function is

P (z̄max) = ∂Pc(z̄max)
∂z̄max

= 1
β

exp
{
−
(
z̄max − µ

β

)
+ exp

[
− z̄max − µ

β

]}
. (3.27)

40



The expectation value of z̄max is

〈z̄max〉 = µ+ γβ = l̄g log[n] + γl̄g (3.28)

where γ ≈ 0.5772 is the Euler constant. The number n can be scaled by the decay length l̄g
according to n = T D0/l

2
g .

To find zmin, we apply another extreme-value-statistics relation,

Ps(z ≤ Zmin) = P (z ≤ Z1, z ≤ Z2, . . . , z ≤ Zn) = [Ps(z)]n , (3.29)

where Ps is the survival distribution function, given by

P (z̄) =
ˆ ∞
z̄

P (z̄′) dz̄′ =
ˆ ∞
z̄

1
Z

exp
(
−B̄e−z̄′/l̄D

)
dz̄′ . (3.30)

The gravitational force has been neglected in this case. Assuming z̄min to be less than the Debye
length, we expand B̄e−z̄/l̄D ≈ B̄ − B̄z̄/l̄D. This holds true for z̄ ≤ z̄mp, where z̄mp is the most-
probable height given by Eq. (3.14). We consider the displacements from the most-probable
height, δzmp = (z̄mp − z̄) ≥ 0.

Ps(δzmp) =
ˆ ∞
δzmp

1
Z ′

e
− B̄

l̄D
δz
′
mp dδz

′
mp =

[
1− e

− B̄
l̄D
δzmp

]
. (3.31)

Here, Z ′ is the new normalization function ensuring that z̄ ≤ zmp, i.e., at very small heights
before the gravitational potential is felt. Therefore, the minimum height follows the cumulative
distribution

Pc(δzmin) =
[
1− e

B̄
l̄D
δzmin

]n
. (3.32)

where δzmin = (z̄mp − z̄min). Applying the same technique we used for obtaining zmax

distribution in Eq. (3.26), we find the Gumbel distribution for z̄min with the parameters µ =
l̄D
B̄

log[n] and β = − l̄D
B̄
. Hence,

〈δzmin〉 = 〈(z̄mp − z̄min)〉 = l̄D

B̄
log[n] − γ

l̄D

B̄
. (3.33)

Using Eq. (3.14) for the most-probable height, we have

z̄min = l̄D ln
(
B̄

l̄D l̄g

)
− l̄D

B̄
(log[n] − γ) , (3.34)
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where n is now scaled by the Debye length according to n = T D0/l
2
D. For a 1 µm bead diffusing

in water, we obtain the typical values (T = 60 s): z̄min = 0.04 and z̄max = 5.3
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Figure 3.13: The sets of parameters that optimize the non-Gaussian dynamics and those that
maximize the spread of the diffusivity distribution.

Using Eqs. (3.34) and (3.28) for the extreme values after a number of simulation steps, we
construct the spread or variance of the particle’s diffusivity at different sets of parameters. An
interesting result is shown in Fig. 3.13. For given values of the decay length, we search for the
corresponding Debye length values that optimize the kurtosis and then look for those Debye
lengths that optimize the spread of the diffusivity distribution resulting from the particle’s
motion. We find that the two curves nearly match each other. Hence, non-Gaussian dynamics
can alternatively be determined by the variance of the diffusivity fluctuations as the particle
visits the possible states of the system. By maximizing this variance, we can optimize non-
Gaussian dynamics.

3.4.4 Height-conditional displacements

From the previous discussion, we predicted that non-Gaussian dynamics can be determined
from the variance of the diffusivity, not the height variance. The overall diffusion can be seen
as a sum of diffusive processes, each with specific diffusivity at small height intervals. In this
case, the non-Gaussian dynamics is also determined by the spread of ranges of heights explored
by the Brownian particle. We analyze this scenario by dividing the accessible height into small
intervals each with length δz, as shown in Fig. 3.14, and we study the dynamics in each interval.

Figure 3.15 shows results for the motion at very short displacements. In Fig. 3.15(a), we
have the displacement distribution obtained from intervals δt = 0.1 in succession with distance
away from the wall. This was found by the path-integral methods, with limits of integration
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Figure 3.14: The accessible heights split into small intervals each with size δz.

set by the intervals explored. The time step size was the same for all intervals. Each individual
displacement follows an approximately Gaussian distribution. The overall distribution, however,
is characterized by broader tails and is clearly non-Gaussian. We claim that the non-Gaussian
dynamics results from the longer range of heights the particle explores in the overall diffusion
case. In Fig. 3.15(b), we look at the kurtosis at small intervals divided all the way to the wall,
and each curve is for a different size of the intervals. For intervals very close to the wall, the
dynamics start deviating from Gaussian. The dotted line indicates the level of the kurtosis
of the overall diffusion. Interestingly, we note that an increment of size δz = 0.5 very close
to the wall has kurtosis equal to that of the overall diffusion. This implies that the range
of heights is not the only variable determining the non-Gaussian dynamics, but the range of
diffusivities is more significant. Thus, the height-conditional diffusive processes very close to
the wall contribute more to the overall dynamics than those far away from the wall. This is
caused by the stronger diffusivity fluctuations close to the wall.

Figure 3.15: (a) Displacements from each interval tend to be Gaussian, but the overall diffusion
becomes non-Gaussian. (b) Non-Gaussian dynamics is strongly dependent on the degree of
fluctuations in D. (δt = 0.0001)
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3.5 Diffusing-diffusivity experiments

In Sec. 3.4, we discussed the parameter choice for maximizing non-Gaussian displacement dis-
tributions in terms of scaled parameters. Here, we consider their implication for choosing
physical parameters. These optimal parameter values will be used in the experiments reported
in Chapter 4. We also investigate the impact of measurement noise from experiments in our
simulations.

3.5.1 Experimental choice of parameters

In the diffusing-diffusivity regime, fluctuations in D are the sole contribution to non-Gaussian
dynamics. For the system to be in this regime, Eq. (3.21) requires

B2

kBT

1
η

1
a2lD

∆t� 24πe
(
or ε ≡ B2∆t

24πeηa2lDkBT
� 1

)
. (3.35)

In this description, the time interval ∆t is set by the minimum resolution of our experiments.
The radius a and the Debye length lD can be tuned to satisfy Eq. (3.35) for a given experimental
time step ∆texp. In the experiment, to be discussed in Chapter 4, the experimental time step
∆texp = 0.033 s, which is determined by the frame rate at which the camera acquires the images
of the particle. It should be emphasized that the inequality in Eq. (3.35) is not a strong one:
The derivation of Eq. (3.35) considered the extreme case when the particle is very close to the
wall, z � lD. However, the bead is less likely to be at such small heights in real experiments.
We can therefore work in the regime

ε < 1 . (3.36)

The second requirement for successful diffusing diffusivity experiments is that the parame-
ters should optimize non-Gaussian dynamics (kurtosis). As mentioned in Sec. 3.4.2, the right
combination of the Debye and gravitational decay length will optimize non-Gaussian dynamics
in the diffusing-diffusivity time scales. Before deciding on the choice of parameters for diffusing-
diffusivity dynamics, experiments involving near-wall diffusion of latex beads (a=1.5 µm) in
pure water were conducted, and some key parameters were obtained. A full discussion of
the experiment will be given in Chapter 4. By fitting the distribution of the measured z-
positions with the Boltzmann function, we obtained the parameters for the double-layer poten-
tial: B/kBT ≈ 15 and lD ≈ 0.08 µm. These experiments had parameters that do not satisfy
Eq. (3.35) (ε ≈ 1.5). We therefore could not tell whether the non-Gaussian displacements
obtained came from the bounding potential or from D fluctuations. Three parameters could
be altered from the initial experiments to satisfy Eq. (3.36): ∆texp, lD and a. However, we
decided to change only the radius: Changing ∆texp would be costly, since fast cameras can be

44



Figure 3.16: Contour plot of (a) the parameter ε and (b) kurtosis from simulations for the Debye
length vs. the radius. Dotted lines shows the experimentally chosen parameters: a = 2.5 µm
and lD = 0.08 µm. Other parameters used in simulations are B/kBT = 15, ∆t = 0.033 s,
∆ρ = 0.055 g/cc, η = 0.0009 kg/ms, and T = 299K.

expensive. The Debye length could be changed by applying salt to the samples, but this would
lead to the beads sticking to the wall by van der Waals forces. This could be prevented by steric
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stabilization. However, adding salt would also change some other parameters such as ∆ρ, η and
B , and it would be hard to keep track of all the parameters. We decided to change the radius
since it strongly affects ε, and a variety of bead sizes are cheaply available commercially. Also,
changing the radius does not have much effect on the other parameters, and the experiments
can thus be done in a controlled manner.

Figure 3.16(a) shows a two-dimensional contour plot of the parameter ε for different values
of a and lD, with all other parameters determined from the experiment. Clearly, larger Debye
lengths and larger bead sizes help satisfy condition (3.36). Figure 3.16(b) shows the correspond-
ing contour plot for the excess kurtosis. Here, smaller Debye lengths maximize non-Gaussian
dynamics, and the contours are peaked, as expected from the discussion in Sec. 3.4.2. From
these graphs, we realized that the bead size a = 2.5 µm should be chosen for the experiment
to be in the diffusing-diffusivity regime. This can be explained by studying the dotted lines in
Fig. 3.16(a) and (b). The horizontal dotted lines indicate the value of the experimental Debye
length. We note from Fig. 3.16(a) that a = 2.5 gives ε = 0.4 at the experimental value of lD
and, hence, satisfies Eq. (3.36). Figure 3.16(b) shows that a = 2.5 is also around the optimum
kurtosis (κ ≈ 0.6) for lD = 0.08 µm. We then chose to change only the radius from the initial
experiments to 2.5 µm, with all other parameters fixed.

3.5.2 Measurement Uncertainty

With the right parameters, we expect the bead’s displacements to be non-Gaussian, as predicted
by simulations. However, we have to consider some other factors that come into play in exper-
iments. One is the presence of measurement uncertainty. In this section, we explore the effect
of measurement noise on the dynamics, to see how much it changes the results from simulations.

In our experiments, there are two key contributions to measurement noise:

(i) observation noise: this comes from the equipment and the finite resolution of the optical
microscope used;

(ii) camera integration noise: the position is typically measured by integrating a camera over
a finite time ∆ts that is comparable to the experimental time ∆texp (the time interval
between the acquisition of images), and this introduces random error.

To simulate the experimental results, these effects can be included in the Langevin equation
describing the observed position z̃ of the particle (z is the true position). Using the result from
Yun and Bechhoefer [42], the observed positions z̃n of the particle at time intervals ∆texp can
be approximated by

z̃n+1 = z̃n + dD

dz

∣∣∣∣
z=z̃n

∆texp −
1

γ(z̃n)
∂U(z)
∂z

∣∣∣∣
z=z̃n

∆texp + ξ̃n , (3.37)
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where ξ̃n is the sum of terms due to thermal fluctuations ξn, observation noise σn and camera
integration noise χn. The effective noise ξ̃n is a linear combination of Gaussian random variables,
and it is characterized by [42]

〈ξ̃2
n〉 = 2D(z̃n)∆texp −

2
3D(z̃n)∆ts + 2σ2

n , (3.38a)

〈ξ̃nξ̃n+1〉 = 1
3D(z̃n)∆ts − σ2 , (3.38b)

〈ξ̃nξ̃n+p〉 = 0, p ≥ 2 . (3.38c)

To simulate Eq. (3.37), we write ξ̃n in terms of uncorrelated Gaussian random variables ψn ∼
N (0, 1) [43]

ξ̃n = c+ψn+1 + c−ψn, c± = 1
2

(√
2D∆texp ±

√
2D∆texp −

4
3D∆ts + 4σ2

)
. (3.39)

The values of σ obtained from the experiment (to be discussed in Chapter 4) were σx = 0.006 µm
and σz = 0.012 µm for horizontal and vertical diffusion, respectively. The camera exposure time
was ∆ts = 0.01 s. Plugging these values into Eq. (3.39), we simulated the bead’s trajectories
using Eq. (3.37), with all parameters from the experiment. We compared the results to those
for simulations without noise (with experimental parameters) in measurements. The results are
shown in Fig. 3.17. We conclude that measurement noise has little impact on the displacement
distributions at ∆t = 0.05 s, and noise effects vanish at long time scales.

Figure 3.17: Comparison of simulations of the bead’s dynamics with and without measure-
ment noise for the displacement distributions. Blue lines/points represent simulations with
measurement noise, and green lines/points are for simulations without measurement noise.
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Chapter 4

Experimental Investigations

In this chapter, we report the results of direct measurements of hindered diffusion of latex
beads in water near a flat wall. Measurements of colloidal diffusion have long been of interest
for detailed study by optical methods, but Brownian motion prevents vertical observation of
one single particle for extended periods because the target particle goes out of focus. Different
techniques for measuring precisely vertical positions for near-wall diffusion have been reported
in the literature. These include total internal reflection fluorescence microscopy [23], three-
dimensional digital video microscopy [27], digital holographic microscopy [25], optical tweezers
[44], optical Fourier processing [45], double-helix point-spread function technique [46], and off-
focus imaging [47]. In this work, we designed and implemented a feedback tracking system to
determine the vertical position of the latex bead near the wall. A feedback-controlled piezo
vertical stage follows the bead as it diffuses up and down. This method enables us to measure
the position of the particle over a wide range of heights, z ≈ 5µm. We study the statistical
properties of the displacements of the particle, as outlined in Chapter 3. A key point is to
choose a sphere size and density such that the Boltzmann distribution due to the gravitational
potential has a decay length comparable to the particle radius. As a result, the particle explores,
over a reasonable time scale, a wide range of diffusion constants. The experimental parameters
are chosen so that diffusion is in the diffusing-diffusivity regime, as discussed in Chapter 3.

We organize this chapter as follows: Section 4.1 introduces the basic parts of the setup used
and the sample preparation. The measurement techniques for horizontal and vertical positions
are presented in Sec. 4.2. In Sec. 4.3, we present results for the diffusing-diffusivity dynamics
of the bead.
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4.1 Experimental setup

We used and then improved the setup built by Schertel [48] and developed by Omelchenko [49].
The setup was mounted onto an air-damped optical table1, supported by an anti-vibration base2,
to reduce low-frequency mechanical noise. A schematic diagram of our home-built microscope
and feedback loop is shown in Fig. 4.1. All experiments were performed at room temperature.
In this section, we outline the basic parts of the setup: the microscope, the sample, and the
camera.

Figure 4.1: Schematic diagram of the microscope and feedback loop used to track the beads.

4.1.1 Microscope

We assembled a vertically aligned, bright-field microscope that imaged in reflection. A halogen
bulb fiber-optic illumination3 was used as a light source, made more uniform by putting a
ground-glass plate in front of it. The path followed by light is shown in Fig. 4.1. Light from
the illuminator was sent through two auxiliary lenses, the diaphragm, two lenses that form
a condenser, and focused onto the back focal plane of the objective. We used a 60X water-
immersion objective4.

1Melles Griot, Rochester NY, USA.
2Model STL-3072-OPT, Newport Corporation, Irvine CA, USA.
3Model 190 Fiber-Lite Halogen Illuminator, Dela-Jenner Industries, Boxborough MA, US.
4UPlanSApo 60X/1.20W, NA=1.2, Olympus Corporation, Shinjuku, Tokyo, Japan
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4.1.2 Sample

Samples were prepared as follows: Latex spheres were diluted and mixed with purified water, at
volume fractions low enough (≈ 10−6) that each bead can be considered to move independently
from all others. We started with different bead sizes between 0.5 and 1.5 µm in radius. Sample
chambers were made by placing four pieces of parafilm5 between a microscope slide (1 mm
thick) and a No. 1 coverslip (≈ 0.17 mm thick). Samples were ≈ 60–80 µm in thickness, and
the lateral separation between beads was ≈ 30 µm. The coverslip was first cleaned using a
nitrogen gas ionizing gun6 before use. The cell was partially sealed using parafilm melted on
a hot plate, then filled (without bubbles) with the beads in solution. Finally, the cell was
completely sealed with melted wax in order to avoid fluid flow due to evaporation or convection
and allowed to cool.

Figure 4.2: The design of the sample used in this experiment.

The sample was then placed on an XY translation stage7, which moved the sample in search
of beads to be captured by the camera. A feedback-controlled piezo stage8 was used for tracking
the z-positions of the bead. A schematic diagram of the sample design is shown in Fig. 4.2.
In this design, light coming from the objective passed through the cover-slip, then through the
fluid, and was either reflected by the bead or passed into the microscope. Some of the light was
reflected at the fluid-microscope slide interface and returned to the objective as background
light.

4.1.3 Camera

The reflected light from the sample was scattered and passed through the infinity-corrected
objective and a beam splitter and was focused by a tube lens onto a CCD camera9. The image

5American National Can, Neenah WI, USA.
6Top Gun Static Neutralizer, SIMCO Inc., Hatfield PA, USA.
725 mm-ranged XY translation stage model 406, Newport Corporation, MT, Irvine CA, USA.
8Nano-drive 85, Mad City Labs, Madison WI, USA.
9Model FL3-FW-03S1M-C, Point Grey Research, Richmond BC, Canada.
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acquired was processed via the computer, using LabVIEW software, to determine the position
of the bead (see Sec. 4.2). The camera was triggered by the rising edge of a square wave from a
function generator10. The camera’s frame rate was set to 30 Hz, and the shutter speed was set
to τs = 10 ms. Intensities were digitized at 12-bit resolution (212 = 4096) and mapped onto a
16-bit intensity scale (216 = 65536). The field of view of the camera was about 60 µm × 40 µm.
This imposed a limit to the amount of time the particle remained in the field of view and,
therefore, the amount of data that was collected from a single particle. The average amount
of time the particle spends within a one-dimensional distance l takes the form τ ∼ l2/2D. For
a bead of radius 3 µm freely diffusing in pure water, the diffusion constant D ≈ 0.1 µm2/s.
Assuming that the bead started diffusing from the center of the field of view, the minimum
distance the bead could travel is l = 20 µm. We can then estimate the total average time the
bead spent within the field of view as follows: τ ≈ (20µm)2/(2 · 0.1µm2/s) = 2000 s, which
corresponds to ≈ 66 000 time steps.

4.2 Position measurements

We acquired and processed images at fixed time intervals (33 ms) to determine the bead’s
trajectory. We did this until the bead diffused out of the field of view, or got stuck to the
wall. In practice, we were able to collect data for up to 10000 s: When the monitored bead
diffused out of the field of view, we used the XY stage to manually reset the bead’s image to
the center of the field of view and continued collecting data on the same bead. In the following,
we describe how we determined the bead’s horizontal and vertical positions.

4.2.1 Horizontal position measurements

To track the position of the bead in the xy-plane, we used the centroid-tracking algorithm from
the IMAQ Vision module for LabVIEW, which locates a circular edge in a defined search area.
The algorithm detects intersection points between a set of search lines defined by a spoke and
the edge of an object. The intersection points are mainly determined based on the contrast in
the image. This method works by first making an initial guess for the location of the bead.
Next, any background intensity below some intensity threshold is set to zero, in order not to bias
the center-of-mass calculation. Finally, a local region around the initial guess is selected, and
the center of mass is used to estimate the center of the bead. Figure 4.3 shows the y-projection
of the method for an image on the xy-plane. The pixel coordinates of the bead’s center of mass
were then converted to real units. To calibrate distances, we imaged a 2D grating with 5×5 µm
grid squares, as shown in Fig. 4.4.

102 MHz Function Generator, Model 3011b, B&K Precision Corporation, Yorba Linda CA, USA.
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Figure 4.3: y-projection of the method used for locating the bead in the xy-plane.

We found that for x, 1 pixel = 0.125 µm; and for y, 1 pixel = 0.127 µm. Since we expect
equal scale factors in both directions, we take our calibration factor to be

1 pixel = 0.126± 0.001 µm . (4.1)

Figure 4.4: (a) An image of the calibration grating with 5 × 5 µm squares. (b) The related
intensity profile across the calibration grating (along red line).

A typical 2D trajectory for a latex bead with radius a = 2.5 µm is shown in Fig. 4.5(a).
Uncertainties in our measurements were introduced by the presence of measurement noise.
To determine the size of displacements (∆xn and ∆yn) introduced by measurement noise, we
measured the positions (x̃, ỹ) of an immobilized bead, stuck on the surface. The results are
shown in Fig. 4.5(b). We found the position displacements of the stuck bead via ∆x̃i = x̃i+1−x̃i
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and ∆ỹi = ỹi+1 − ỹi. Assuming that the stuck bead measurement noise is not correlated in
time, we attributed these displacements to measurement noise; i.e., ∆x̃i = ∆xn and ∆ỹi = ∆yn.
Plots of the measurement-noise displacements are shown in Fig. 4.5(c). We formed histograms
of the displacements, finding Gaussian curves [see Fig. 4.5(d)]. The obtained width σ2

∆xy of the
fitted Gaussian histograms gives the apparent displacement σxy due to measurement noise for
horizontal motion. We found σ∆xy ≈ 0.0089±0.00001, implying σxy = 0.0089/

√
2 = 0.0062 µm.

Figure 4.5: Bead trajectory and measurement noise determination. (a) Trajectory of a latex
bead (radius = 2.5 µm). (b) x- and y-positions of a bead stuck to the microscope slide. (c)
Apparent displacements of the stuck bead due to measurement noise. (d) Histograms of the
noise displacements.

4.2.2 Vertical position measurements

The vertical position of the bead was found by measuring its intensity. A 3 µm bead would
diffuse a vertical range of ≈ 4 µm after 20 minutes. This distance of 4 µm exceeds the depth
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of focus of the microscope. To keep the bead in focus, we tracked it by a feedback loop (to
be discussed below), which used a vertical piezo-stage to move the sample following the bead’s
motion. We recorded intensity measurements in a 3 × 3 pixel region centered on the pixel
containing the bead’s intensity maximum. This is shown in Fig. 4.6. We then took an average
of these nine intensity values to give the intensity of the bead.

x

Pixel coordinate

Intensity average
in the shaded region

Bead center 
coordinate

Figure 4.6: Intensity of a bead was found by averaging over a 3 × 3 pixel region around the
bead’s center xy-position.

Intensity profile and calibration

We first determined how the intensity of the bead changed with height. This was achieved by

Figure 4.7: The intensity profile of a bead stuck to the microscope slide. Beads were trapped
in the shaded (blue line) region, where displacements depended linearly on intensity values.
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vertically moving an immobilized bead, using a voltage applied to a piezo-stage, and measuring
the intensity of the bead from the images taken. Figure 4.7 shows the intensity of the bead
with distance from the objective. The stage needed to be calibrated, as well, to find the
relation between the applied voltages and actual distance. Using a Linear Variable Differential
Transformer11 (LVDT) gave a calibration of 1 V= 6.54 µm for the piezo-stage [48]. The intensity
calibration was repeatedly performed for each set of measurements, as the setup would change
if one tampers with it. We assumed that the optical properties of a diffusing bead are close to
those of the stuck bead.

Feedback loop

We introduce the feedback loop used in the experiments. In the next subsection, we will see
that the feedback was applied to a stuck bead, not a Brownian bead. For now, however, we
study how the feedback works for any bead. The goal of the feedback loop was to keep the bead
trapped at a fixed height z0 from the objective, in the linear region shown in Fig. 4.7. This was

V

V
𝑡1 𝑡2

move sample up

move sample down

sample

objective objective

Δ𝑧1

Δ𝑧2

Δ𝑧2Δ𝑧1

Set plane 𝑧𝑜

Piezo stage

(𝑎)
(𝑐)

(𝑑)

(𝑏)

Figure 4.8: Schematic diagram of the feedback loop. (a) At time t1 the bead is displaced a
distance ∆z1 from the set plane z0. (b) We apply a voltage to the piezo-stage to move the
sample up a distance ∆z1 to bring the bead to z0. (c). At a later time t2 (t2− t1 = 33 ms), the
bead diffuses a new displacement ∆z2. (d). We then move the sample to bring the bead down
to z0 by the feedback voltage applied in the opposite direction, and the iteration continues.

achieved by applying a feedback via the piezo-stage to move the sample so that the intensity
of the bead was kept near some value I0 (corresponding to z0). A schematic diagram of the
feedback loop is illustrated in Fig. 4.8. We chose the region of steepest slope as the trap region,
on either side of the intensity profile. This ensured that the bead had the highest sensitivity
to intensity changes with height. Furthermore, the chosen region was slightly out of focus, to
prevent any ambiguity about the sign of the required feedback. The bead’s intensity changes

11Schaevitz/Measurement Specialties, Hampton VA, USA.
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were then translated to actual distances moved by the bead using the linear fit of the intensity
profile (see blue line in Fig. 4.7).

The feedback loop follows these steps:

• an image is taken;

• the LabVIEW program determines the bead’s intensity I and calculates the difference
∆I = I − I0 from the desired set point intensity I0;

• the slope b from a linear fit of the intensity profile is used to calculate the required voltage
v ∝ ∆I to move the particle back to the set plane. Via a LabVIEW Data Acquisition
(DAQ) device12, the voltage is applied to the stage to move the sample to keep the bead
near z0.

Correcting mechanical drift

One problem encountered in our feedback-based measurements came from mechanical drift due
to temperature changes. These temperature changes caused thermal expansion or contraction
of components of the microscope. Mechanical drift between the sample cell and the microscope
objective was a serious problem, as it could produce large uncertainties in the height of the
bead relative to the sample cell’s bottom plate. As a consequence of the drift, the trap region
in Fig. 4.7 shifted. The feedback was not robust to such drifts and would mistake the shift for
a change in the bead’s position. This drift was seen when we measured the intensity of a stuck
bead. One would expect the recorded intensity values to have some experimental noise fluctu-
ations around a constant value since the bead was stationary. However, we typically obtained
results such as those shown in Fig. 4.9(a), which reveal a drift. Measurement noise resulted in
uncertainty in the z-position of the stuck bead. To evaluate the apparent displacements ∆zn
due to measurement noise, we first converted the intensity fluctuations of the stuck bead to
z-position fluctuations. We then applied the same method we used for evaluating horizontal
noise displacements: We took differences between successive z-positions of the stuck bead as the
displacements due to measurement noise [see Fig. 4.9(b)], having assumed that the positions
are not correlated in time. Figure 4.9(c) shows the histogram of the noise displacements, which
is Gaussian. The width of the Gaussian fit was σ∆zn ≈ 0.018±0.0002 µm. Hence, the standard
deviation, for a single z-position measurement, was σz ≈ (0.018/

√
2) µm = 0.012 µm.

To correct for this mechanical drift, we tracked two beads: a stuck bead and a freely diffusing
Brownian bead, as shown in Fig. 4.10(a). We used the stuck bead as a reference from which
the position of the Brownian bead could be determined. This enabled us to locate the bottom
of the sample. To eliminate the mechanical drift, we applied the feedback loop to the stuck

12NI USB-6212, National Instruments, Austin TX, USA.
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Figure 4.9: The intensity of a 5 µm latex bead stuck at the microscope slide. (a) The in-
tensity values drift with time. (b) The measurement noise position displacements from in-
tensity displacements. (d) Histogram of the noise displacements (σ∆z ≈ 0.018 ± 0.0002 µm
=⇒ σz = 0.0018/

√
2 µm = 0.012 µm)

bead, controlling its vertical distance from the objective, while the Brownian bead’s z-position
was determined from the intensity difference between the two beads. We kept the two beads
at the right side of the intensity profile, as illustrated in Fig. 4.10(b). This ensured that none
of the beads had positions on the other side of the profile, which would lead to ambiguity in
the bead’s position, as the profile is almost symmetric at the peak. The intensity values of the
stuck bead then should always be larger than those of the Brownian bead.

Practically, the Brownian bead would diffuse over the region fitted by the green curve in
Fig. 4.10(b), which is not perfectly linear. To correctly determine the separation between the
beads from the intensity values, we could fit a nonlinear function (from the green curve) for the
measured intensity values. However, in our experiments, we mainly used larger beads, of radius
a = 2.5 µm, where the maximum vertical separation between the two beads was zmax ≈ 1.5 µm.
Hence, both beads would fall within the linear region of the intensity profile (shown as dotted
black line in Fig. 4.10). We used a linear fit to convert intensities to actual separation distances
between the beads. The systematic error from ignoring nonlinearities is proportional to the
beads’ separation distance z. At the maximum height (zmax ≈ 1.5 µm), the maximum error
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Figure 4.10: (a) Image of a stuck bead and a Brownian bead. (b) The beads on the intensity
profile. The stuck bead was kept at height z0 by a feedback loop, while the Brownian bead
diffused above the stuck bead.

Figure 4.11: Intensity readings for a feedback-controlled stuck bead (blue) and a Brownian
bead (red).

σmax ≈ 0.1 µm. At the most-probable height zmp ≈ 0.4 µm, σmp ≈ 0.001 µm. The error
vanishes at z = 0. The uncertainty at zmp was negligible. Clearly, using the slope b in our
calibration had less effect on our measurements. The uncertainty at large z could be ignored
since measurement accuracy is more important at small heights, and the bead spent less time
at large heights.

Figure 4.11 shows the intensity values recorded for the stuck bead and the Brownian bead
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of size 5 µm. We used the feedback loop to control the z-position of the stuck bead, which was
controlled about a setpoint of I0 = 25, 000.

Correcting background illumination variations

Because the Brownian bead was always more out of focus than the stuck bead (see Fig. 4.10),
it scattered less light. However, we notice from Fig. 4.11 that, after a long time, the Brownian
bead sometimes was brighter than the stuck bead. We attribute this to uneven background
illumination, as shown in Fig. 4.12. The intensity variation was mostly due to the microscope
light source, which was brighter at the center of the image than at the edges.
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Figure 4.12: Non-uniform background illumination. (a) The Brownian bead motion on the xy-
plane with uneven background illumination (The colors indicate changes in the local intensity
as the bead diffuses). (b) The local background intensity over the bead’s motion. (This data is
from the same measurements as presented in Fig. 4.11).

To correct for uneven illumination, we took a background image from an average of 500
images with no bead in the field of view. This procedure was done before and repeated after
the Brownian bead measurements were taken, to ensure that the background image stayed
uniform throughout the experiment. Then the Brownian bead intensity was divided pixel by
pixel by the corresponding intensity of the background image.

The light-source intensity would fluctuate, affecting the vertical position measurements of
the bead. We corrected for this by recording the intensity of the illumination using a photodi-
ode13 (see Fig. 4.1). We then normalized by the measured illumination intensity. We reduced
fluctuations in the illumination by building a box (black, lightweight panels used) over the mi-
croscope to block unwanted ambient light. The improvements due to blocking unwanted light
can be seen in Fig. 4.13.

13PDA100A Si Amplified detector 400-1100 nm, Thorlabs Inc., Newton NJ, USA.
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Figure 4.13: (a) Bead intensity as measured by the unshielded apparatus. (b) Reduced intensity
noise for a shielded microscope setup. Note the 2000x decrease in scale.

Figure 4.14: A portion (total time = 50 s) of the three-dimensional trajectory of the bead from
experiment. The coloring of the trajectory represents time elapsed (all distances in µm).

4.2.3 Results

Let Is, IB, Iback and Iill denote the stuck bead intensity, the Brownian bead intensity, the image
background intensity, and the illumination intensity (from the photodiode), respectively. The
position of the Brownian bead with respect to the stuck bead was then determined by

zB = (Is − IB)
b

1
ĨbackĨill

, (4.2)

where Ĩback = Iback/ 〈Iback〉 and Ĩill = Iill/ 〈Iill〉. The averages 〈Iback〉 and 〈Iill〉 were taken
over the neighborhood of intensity points (≈ 500 points) at which the corresponding intensities
(Iback and Iill) were evaluated. The slope b is taken from the linear feedback region of the
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Figure 4.15: Experimental results. (a) A portion of the time series of bead heights. (b) The
height distribution of the bead. Error bars represent the standard error. (d) Variation of the
bead’s horizontal and vertical diffusivity with height from, compared with theoretical curves.
[Bead radius = 2.471± 0.004 µm, ∆t = 0.033 s, N=119, 645 data points, total time = 3948 s.]

intensity profile. This was applied for situations where the separation between the two beads
does not get very large. This worked well for 2.5 µm beads, which have a small gravitational
decay length.

A portion of the bead’s three-dimensional trajectory is shown in Fig. 4.14. Figure 4.15(a)
shows part of the bead’s trajectory along z. The distribution of heights is shown in Fig. 4.15(b).
The solid line was obtained by fitting the distribution to the Boltzmann function (Eq. 2.26)
taking into account the double-layer and the gravitational potentials. The variation of the bead’s
diffusivity with height from the wall is shown in 4.15(c). The diffusion coefficients are measured
by conditional displacements ∆z in a narrow interval (≈ 0.1 µm) centered on height z above
the substrate. To compare our results with theory, we considered the uncertainty in the bead
radius that was introduced by size variation in the latex beads. The other independent variable,
temperature, could slowly vary over time due to changes in room temperature or fluctuations in
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lg [µm] lD [µm] B
kBT

Experimental 0.1211± 0.0006 0.0767± 0.0007 15.2± 0.2
Theoretical 0.11± 0.02 − −

Table 4.1: Values obtained for experimental parameters compared with theoretical values based
on experimental material parameters.

illumination intensity. In addition, the temperature variation would affect the viscosity of water,
which is a known function of temperature. Given this function, a temperature uncertainty of 1oC
would create a 2% uncertainty in the viscosity [50]. Table 4.1 shows the parameters obtained
from the experiment, compared to theoretical values. To calculate the range of theoretical
values, we used the bead radius a = 2.5± 0.1 µm (as given by the manufacturer), temperature
T = 299 ± 1 K, bead density 1.055 ± 0.003 g/cc, and the dynamic viscosity of water η =
(0.88 ± 0.02) × 10−3 N s/m2 (corresponding to measured T = 298.5K). The double-layer
strength B/kT , the Debye length lD and gravitational decay length lg were obtained from
fitting the height distribution with the Boltzmann function [see Fig 4.15(b)]. The range of
expected values was primarily limited by the uncertainty in the size of the bead. Since the
uncertainty in the measured value of lg is less than the a priori uncertainty calculated from the
range of sizes of the bead, we decided to use the measured Boltzmann distribution to estimate
the size of each bead studied in the experiment.

4.3 Displacements and the diffusing-diffusivity dynamics

The bead’s displacements ∆xn were obtained by subtracting successive positions. The minimum
displacements obtained correspond to the minimum time resolution of our experiment, which
is ∆texp = 0.033 s. For longer time intervals ∆t > ∆texp, we picked those data points with the
temporal spacing ∆t/∆texp. Hence, ∆xn = xi+n − xi = ∆x(n∆texp). To study the dynamics
at long times, we needed a large number of data points to reduce noise from statistical error.

Typical horizontal displacements for the time intervals ∆t = 0.033 s, 0.066 s, and 0.33 s
are shown in Fig. 4.16, which are nearly Gaussian at all time scales. Figure 4.17 shows vertical
displacements and their distributions, and all distributions were found to be non-Gaussian. Our
goal was to see if these non-Gaussian dynamics could be seen in the diffusing-diffusivity regime
identified in simulations.

4.3.1 Diffusing-diffusivity dynamics results

From 14 separate runs with different spheres (all having a ≈ 2.5µm), we collected time series
of position measurements to investigate non-Gaussian diffusing-diffusivity dynamics.
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Figure 4.16: Horizontal displacements for (a) ∆t = 0.033 s, (b) ∆t = 0.066 s, and (c) ∆t = 0.33
s. Corresponding displacement distributions are shown on the right column. Solid curves show
results of Gaussian fits. Error bars come from the standard error for Poisson counting (

√
N).

[These are from Run 10 in Table 4.2: Bead radius = 2.531±0.004 µm, N=139, 716 data points,
Total time = 4610 s]

Figure 4.17: non-Gaussian vertical displacements corresponding to Fig. 4.16

We first looked at the mean-squared displacement (MSD) of the bead at different time scales
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Run N lg [µm] lD [µm] B
kBT

a [µm] D0 [µm2/s]
1 68 966 0.1194(8) 0.0763(9) 14.7(2) 2.482(5) 0.087(3)
2 71 628 0.1185(8) 0.0793(9) 14.5(2) 2.488(6) 0.087(3)
3 100 394 0.1160(6) 0.0745(7) 16.0(2) 2.506(4) 0.086(2)
4 119 155 0.1209(6) 0.0818(8) 13.3(1) 2.472(4) 0.087(2)
5 123 603 0.1147(6) 0.0829(7) 14.2(1) 2.515(4) 0.087(2)
6 62 869 0.1157(8) 0.071(9) 15.9(2) 2.513(6) 0.087(3)
7 38 763 0.127(1) 0.075(1) 14.4(2) 2.467(7) 0.087(3)
8 34 892 0.104(1) 0.078(1) 13.9(2) 2.591(9) 0.086(3)
9 80 065 0.1169(7) 0.0782(8) 14.4(1) 2.499(5) 0.087(2)
10 139 716 0.1126(5) 0.0830(7) 14.0(1) 2.531(4) 0.087(2)
11 119 645 0.1211(6) 0.0767(7) 15.2(2) 2.471(4) 0.087(2)
12 82 324 0.1183(7) 0.0745(8) 14.7(2) 2.490(5) 0.087(2)
13 54 923 0.1053(8) 0.083(1) 15.2(2) 2.588(6) 0.087(3)
14 51 932 0.1054(8) 0.083(1) 15.4(2) 2.587(7) 0.087(3)

Mean 82 947 0.1151(5) 0.079(4) 14.82(7) 2.51(4) 0.087(2)

Table 4.2: Values obtained for experimental parameters from 14 different runs. N is the number
of data points. The radius a is approximated using the measured temperature T = 298.5K,
the latex bead density ρb = 1.055 g/cc. and the lg values found.

(normalized by l2g/D0, where average values of lg and D0 were used). The results are shown
in Fig. 4.18 for a single trajectory of duration ≈ 80 minutes, with parameters B/kBT = 14.0,
lg = 0.112 µm and ld = 0.083 µm. For horizontal motion, the MSD is linear with time for all
explored time scales. For vertical diffusion, the mean-squared displacement curve is linear at
short time scales, corresponding to the diffusing-diffusivity regime [see Fig. 4.18(b)], and it is
nonlinear after D0∆t/l2g ≈ 5 due to the bounding potential. At very large time scales, the MSD
saturates. The solid lines in Fig. 4.18 correspond to the theoretical results obtained via

MSD = 2Deff∆t = 2∆t
ˆ zmax

zmin

PB(z)D‖,⊥(z)dz , (4.3)

using the parameters obtained from the trajectory. The extreme heights zmin and zmax are
taken from the measured positions, and their theoretical evaluations are discussed in Sec. 3.4.3.

We then explored the excess kurtosis at different time scales. Since kurtosis is calculated
from the fourth moment of displacements, we faced the results obtained were too noisy. Hence,
we needed lots of data points. We collected 14 sets of data for different trajectories averaging
about 45 minutes (82 000 data points) each. Each set was fitted to the Boltzmann distribution
to obtain 14 sets of the parameters lg, ld and B, ensuring that the parameter sets match
and are consistent with theory. The results are summarized in Table 4.2. Notice that the
standard deviation of the 14 results for all quantities is larger than the statistical uncertainty
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Figure 4.18: (a) Mean-squared displacements at different time scales for horizontal and vertical
motion (dashed lines are theoretical results based on Eq. 4.3 ). (b) Short time MSD for vertical
motion is nearly linear. Results are from Run 10.

of individual measurements. The added variation suggests that it arises mainly from bead-to-
bead differences. Unfortunately, it was not possible in these experiments to visually distinguish
between “new” and “old” beads, and it is likely that some of the runs were done on identical
beads. The amount of variation seen in radius (≈ 2%) is typical of manufacturer specifications
for the coefficient of variation of the diameter.

The overall kurtosis was then obtained from the weighted average (weighted by the lengths
of the trajectories) of the kurtosis from all the data sets. Each kurtosis curve, corresponding
to each data set, was obtained as follows: Starting from N time series position measurements
z1, z2, . . . , zi, . . . , zN ; separated by the experimental time resolution ∆texp = 0.033 s, we com-
puted the displacements at time interval ∆t ≡ ∆tn = n∆texp using ∆zn = zi+n − zi , for
i = 0, 1, 2, . . . , (N −n). These displacements were computed for each of equally spaced time in-
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tervals, i.e., for n = 1, 2, . . . , nmax. Here, nmax determines the maximum time interval explored.
From the resulting kurtosis vs. time calculations, we further reduced the noise by averaging
neighbouring data points within successive intervals that grow logarithmically with the time
scale.

The final kurtosis curves are shown in Fig. 4.19. We plotted the individual curves for the
14 different data sets; the black data points represent the weighted average from the individual
curves. For vertical diffusion, we observed the two distinct time regimes: the diffusing-diffusivity
and the Boltzmann regime. The transition between two regimes was at D0∆t/l2g ≈ 10–100.
Hence, for small time scales, the non-Gaussian dynamics obtained can be attributed to the
fluctuations in D only. For D0∆t/l2g > 100, the non-Gaussian dynamics arises because of
the bounding potential. The green lines show the theoretical kurtosis values for the diffusing-
diffusivity and Boltzmann regimes predicted by Eqs. 2.52 and 2.53, respectively, given the
parameters found from the experiment and their uncertainties. The results from both the
diffusing diffusivity and the Boltzmann regime do match the theory. Our analysis of kurtosis
leads to correlated errors in the Boltzmann regime, as demonstrated by the coherent fluctuations
in asymptotic levels in individual kurtosis curves, resulting in a shift of the curve up and down
in the Boltzmann regime, within the error indicated. The error is more pronounced in the
Boltzmann regime. This is seen in the theory plots, where the shaded region indicates the
error from the weighted standard deviation of the mean. Figure 4.19(b) shows the kurtosis for
horizontal diffusion, which is almost zero at all time scales. The observed horizontal kurtosis
dip at large time scales perhaps arises from insufficient statistics.

Finally, to give a direct demonstration of the diffusing-diffusivity mechanism, we sliced up
the vertical positions (from run 10 in Table 4.2) of the bead into small-height intervals, of
about 0.01–0.05 µm, and studied the displacement distribution in each interval. We analysed
the corresponding displacements for every position measurements that begin in the particular
interval. The results are shown in Fig. 4.20. We confirm the diffusing-diffusivity mechanism:
The displacements are Gaussian at each interval (see the right-hand side of Fig. 4.20), while
the overall distribution is non-Gaussian, as shown on the displacement distribution curve on
the left side of Fig. 4.20.
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Figure 4.19: Excess kurtosis as a function of time interval for (a) vertical and (b) horizontal
motion. Data points represent the average from the solid individual curves. Green dotted lines
show the theoretical values. Error bars were obtained from the standard deviation of the mean
(weighted by the amount of data for each trajectory).
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Figure 4.20: Displacements at intervals of ≈ 0.02 µm close to the wall. The right side shows
the nearly Gaussian height conditional distributions, taken from the narrow range of heights
indicated by the short vertical blue bars. The left side shows the non-Gaussian distribution
from all heights explored by the bead.
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Chapter 5

Conclusion

In this thesis, we investigated experimentally the Brownian motion of colloidal spheres near a
wall. We showed that the mean-squared displacements can grow linearly with time and the
displacements can be non-Gaussian distributed because of fluctuations in the diffusion coefficient
D. This behavior has been previously observed in complex environments, where the form of D
is unknown. In our near-wall-diffusion system, however, the spatial variation of D is known.

We first modeled the system by the overdamped Langevin equation, under the influence
of the gravitational and double-layer forces in the vertical direction, and we ran simulations
to understand the dynamics expected in experiments. We found that horizontal displacements
are nearly Gaussian at all time scales, and vertical displacements were always non-Gaussian.
The non-Gaussian dynamics in the vertical motion was attributed to two effects: the bounding
potential and D fluctuations. Based on the mean-squared displacements, we classified the
diffusion process into two main time regimes: the diffusing-diffusivity regime, at very small time
scales where the dynamics is dominated by Brownian diffusion, and the Boltzmann regime, at
long time scales where the bounding potential dominates.

In our work, we were more interested in the diffusing-diffusivity regime, where the non-
Gaussian dynamics observed is a result of the diffusivity fluctuations only, and the dynamics
should be at time scales small enough that it does not feel the potential. From simulations,
we observed that controlling the shape of the potential, by varying parameters such as the
particle size and the Debye length, changes the nature of the displacement distribution curves.
We showed that the right combination of parameters can maximize the non-Gaussianity (as
measured by excess kurtosis) of the distributions. This optimum is realized when the range
of fluctuations in D is maximized. Based on the simulation results, we chose the right size of
the bead that optimizes fluctuations in D and gives the diffusing-diffusivity dynamics at the
smallest time resolution of our experiment (∆t = 0.033 s).

We then implemented experimentally a feedback tracking system, where a piezo vertical
stage follows the bead’s vertical motion. Our experimental results agreed with simulations. By
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fitting the height distribution to the Boltzmann function, we obtained parameters that agree
with theory. We confirmed the diffusing-diffusivity mechanism proposed by Chubynsky et al
[22]: We obtained non-Gaussian displacements coexisting with mean-squared displacements
that grow linearly with time. The conditional distributions at small heights from the wall were
seen to exhibit nearly Gaussian dynamics.

The experimental investigations presented in this thesis have several possible future perspec-
tives. Instead of studying rigid spheres, we could study the motion of fluctuating biomolecules,
such as DNA, near a wall. The displacements for such molecules would then be explored. The
experiment could be further improved for precise measurement of vertical positions using, for in-
stance, digital holographic microscopy, that has extended depth of field [25]. An understanding
of near-wall Brownian motion is important for its technological and biological relevance. The
behavior of biomolecules diffusing near boundaries will determine their macroscopic properties
and impact their biological functions, such as collective motion of sperm cells near interfaces
[51] and swimming bacteria in thin films [52]. Near-wall flows of colloidal suspensions are also
ubiquitous in industrial processes from food processing to petrol recovery [53].

70



Bibliography

[1] Robert Brown. A brief account of microscopical observations made in the months of June,
July and August 1827, on the particles contained in the pollen of plants; and on the general
existence of active molecules in organic and inorganic bodies. Philos. Mag. Lett., 4:161–173,
1828.

[2] Albert Einstein. On the theory of the Brownian movement. Annalen der Physik, 4:371–381,
1906.

[3] John S Rigden. Einstein 1905: The standard of Greatness. Harvard University Press, 2005.

[4] Marian von Smoluchowski. Sur le chemin moyen parcouru par les molécules d’un gaz et sur
son rapport avec la théorie de la diffusion (On the mean path of molecules of gas and its
relationship to the theory of diffusion), Bulletin International de l’Académie des Sciences
de Cracovie. pages 202–213, 1906.

[5] J Perrin. Brownian movement and molecular reality. 1910.

[6] Robert M Mazo. Brownian Motion: Fluctuations, Dynamics, and Applications, volume 2.
Clarendon press Oxford, 2002.

[7] Norbert Wiener. Selected Papers of Norbert Wiener: Including Generalized Harmonic
Analysis and Tauberian Theorems. MIT Pr., 1965.

[8] Daniel Thomas Gillespie and Effrosyni Seitaridou. Simple Brownian Diffusion: An Intro-
duction to the Standard Theoretical Models. Oxford University Press, 2012.

[9] Mark G Raizen and Tongcang Li. The measurement Einstein deemed impossible. Phys.
Today, 68:56–57, 2015.

[10] Simon Kheifets, Akarsh Simha, Kevin Melin, Tongcang Li, and Mark G Raizen. Obser-
vation of brownian motion in liquids at short times: Instantaneous velocity and memory
loss. Science, 343:1493–1496, 2014.

[11] Iva Marija Tolić-Nørrelykke, Emilia-Laura Munteanu, Genevieve Thon, Lene Oddershede,
and Kirstine Berg-Sørensen. Anomalous diffusion in living yeast cells. Phys. Rev. Lett.,
93:078102, 2004.

[12] Stas Burov, Jae-Hyung Jeon, Ralf Metzler, and Eli Barkai. Single particle tracking in
systems showing anomalous diffusion: the role of weak ergodicity breaking. Phys. Chem.
Chem. Phys., 13:1800–1812, 2011.

71



[13] Jean Farago, Hendrik Meyer, and AN Semenov. Anomalous diffusion of a polymer chain
in an unentangled melt. Phys. Rev. Lett., 107:178301, 2011.

[14] Igor M Sokolov. Models of anomalous diffusion in crowded environments. Soft Matter,
8:9043–9052, 2012.

[15] Ralf Metzler and Joseph Klafter. The random walk’s guide to anomalous diffusion: A
fractional dynamics approach. Phys. Rep., 339:1–77, 2000.

[16] Giuseppe Forte, Fabio Cecconi, and Angelo Vulpiani. Non-anomalous diffusion is not
always Gaussian. Eur. J. Phys. B, 87:1–9, 2014.

[17] Gyemin Kwon, Bong June Sung, and Arun Yethiraj. Dynamics in crowded environments:
Is non-Gaussian Brownian diffusion normal? J. Phys. Chem. B, 118:8128–8134, 2014.

[18] Bo Wang, Stephen M Anthony, Sung Chul Bae, and Steve Granick. Anomalous yet Brow-
nian. PNAS, 106:15160–15164, 2009.

[19] Bo Wang, James Kuo, Sung Chul Bae, and Steve Granick. When Brownian diffusion is
not Gaussian. Nat. Mater., 11:481–485, 2012.

[20] Juan Guan, Bo Wang, and Steve Granick. Even hard-sphere colloidal suspensions display
fickian yet non-Gaussian diffusion. ACS Nano, 8:3331–3336, 2014.

[21] Sukanya Bhattacharya, Dharmendar Kumar Sharma, Saumya Saurabh, Suman De, Anir-
ban Sain, Amitabha Nandi, and Arindam Chowdhury. Plasticization of Poly (vinylpyrroli-
done) thin films under ambient humidity: Insight from single-molecule tracer diffusion
dynamics. J. Phys. Chem. B, 117:7771–7782, 2013.

[22] Mykyta V Chubynsky and Gary W Slater. Diffusing diffusivity: A model for anomalous,
yet Brownian, diffusion. Phys. Rev. Lett., 113:098302, 2014.

[23] Arindam Banerjee and Kenneth D Kihm. Experimental verification of near-wall hindered
diffusion for the Brownian motion of nanoparticles using evanescent wave microscopy. Phys.
Rev. E, 72:042101, 2005.

[24] John Happel and Howard Brenner. Low Reynolds Number Hydrodynamics: With Special
Applications to Particulate Media, volume 1. Springer Science & Business Media, 1983.

[25] Prerna Sharma, Shankar Ghosh, and S Bhattacharya. A high-precision study of hindered
diffusion near a wall. Appl. Phys. Lett., 97:104101, 2010.

[26] Hannes Risken. The Fokker-Planck Equation. Methods of Solution and Applications.
Springer Series in Synergetics, 1989.

[27] Yuncheng Liang, Nidal Hilal, Paul Langston, and Victor Starov. Interaction forces between
colloidal particles in liquid: Theory and experiment. Adv. Colloid Interface Sci., 134:151–
166, 2007.

[28] David S Sholl, Michael K Fenwick, Edward Atman, and Dennis C Prieve. Brownian
dynamics simulation of the motion of a rigid sphere in a viscous fluid very near a wall. J.
Chem. Phys., 113:9268–9278, 2000.

72



[29] Michael A Bevan and Dennis C Prieve. Hindered diffusion of colloidal particles very near
to a wall: Revisited. J. Chem. Phys., 113:1228–1236, 2000.

[30] Jacob N Israelachvili. Intermolecular and Surface Forces. Academic press, 2011.

[31] Nicolaas Godfried Van Kampen. Stochastic Processes in Physics and Chemistry, volume 1.
Elsevier, 1992.

[32] Crispin Gardiner. Stochastic methods. Springer Berlin, 2009.

[33] Andy WC Lau and Tom C Lubensky. State-dependent diffusion: Thermodynamic consis-
tency and its path integral formulation. Phys. Rev. E, 76:011123, 2007.

[34] Jose M Sancho. Brownian colloidal particles: Ito, Stratonovich, or a different stochastic
interpretation. Phys. Rev. E, 84:062102, 2011.

[35] Oded Farago and Niels Grønbech-Jensen. Langevin dynamics in inhomogeneous media:
Re-examining the Itô-Stratonovich dilemma. Phys. Rev. E, 89:013301, 2014.

[36] Ryzhik Gradshteyn. Table of Integrals, Series, and Products (Seventh Edition), 2007.

[37] Mauricio D Carbajal-Tinoco, Ricardo Lopez-Fernandez, and José Luis Arauz-Lara. Asym-
metry in colloidal diffusion near a rigid wall. Phys. Rev. Lett., 99:138303, 2007.

[38] Jim C Chen and Albert S Kim. Brownian dynamics, molecular dynamics, and Monte Carlo
modeling of colloidal systems. Adv. Colloid Interface Sci., 112:159–173, 2004.

[39] Henry C Thode. Testing for Normality, volume 164. CRC press, 2002.

[40] Laurens De Haan and Ana Ferreira. Extreme Value Theory: An Introduction. Springer
Science & Business Media, 2007.

[41] EJ Gumbel. Statistics of Extremes. Columbia Univ. Press, New York, 1958.

[42] Yonggun Jun and John Bechhoefer. Virtual potentials for feedback traps. Phys. Rev. E.,
86:061106, 2012.

[43] Momčilo Gavrilov, Yonggun Jun, and John Bechhoefer. Real-time calibration of a feedback
trap. Rev. Sci. Instrum., 85:095102, 2014.

[44] Chungil Ha, HD Ou-Yang, and Hyuk Kyu Pak. Direct measurements of colloidal hydrody-
namics near flat boundaries using oscillating optical tweezers. Physica A, 392:3497–3504,
2013.

[45] Adam S Backer and WE Moerner. Extending single-molecule microscopy using optical
fourier processing. J. Phys. Chem. B, 118:8313–8329, 2014.

[46] Michael A Thompson, Jason M Casolari, Majid Badieirostami, Patrick O Brown, and
WE Moerner. Three-dimensional tracking of single mRNA particles in Saccharomyces
cerevisiae using a double-helix point spread function. PNAS, 107:17864–17871, 2010.

73



[47] Michael Speidel, Alexandr Jonáš, and Ernst-Ludwig Florin. Three-dimensional tracking
of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt.
Lett., 28:69–71, 2003.

[48] Lukas Schertel. Development of a 3D feedback trap for colloidal particles and biological
molecules. Bachelor’s thesis, Simon Fraser Univ./Univ. of Konstanz, 2012.

[49] Paul Omelchenko. 3D feedback colloidal tracking method to measure hindered diffusion.
Bachelor’s thesis, Simon Fraser Univ., 2014.

[50] Marco A Catipovic, Paul M Tyler, Josef G Trapani, and Ashley R Carter. Improving the
quantification of Brownian motion. Am. J. Phys., 81:485–491, 2013.

[51] Ingmar H Riedel, Karsten Kruse, and Jonathon Howard. A self-organized vortex array of
hydrodynamically entrained sperm cells. Science, 309:300–303, 2005.

[52] Andrey Sokolov, Igor S Aranson, John O Kessler, and Raymond E Goldstein. Concen-
tration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett.,
98:158102, 2007.

[53] William B Russel, Dudley A Saville, and William R Schowalter. Colloidal Dispersions.
Cambridge University Press, 1992.

74


	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Theoretical Background
	Langevin equation
	General Langevin equation 
	Overdamped Langevin equation 

	Near-wall effects
	Hindered Diffusion
	Sphere-wall interactions

	Langevin equation for wall-hindered diffusion
	Noise-induced drift
	Deterministic vs. diffusive motion

	Fokker-Planck equation
	Conditional displacements for small times
	Diffusing diffusivity


	Computer Simulations of Brownian Diffusion Near a Wall
	Brownian dynamics simulation
	Brownian dynamics
	Simulation time step
	Numerical simulation algorithm
	Results

	Time Scales and non-Gaussian dynamics
	Displacement distributions at small times
	Diffusing-diffusivity dynamics
	Diffusing-diffusivity parameter choice
	Optimizing non-Gaussian dynamics
	Non-Gaussian dynamics vs. diffusivity distribution
	Height-conditional displacements

	Diffusing-diffusivity experiments
	Experimental choice of parameters
	Measurement Uncertainty


	Experimental Investigations
	Experimental setup
	Microscope
	Sample
	Camera

	Position measurements
	Horizontal position measurements
	Vertical position measurements
	Results

	Displacements and the diffusing-diffusivity dynamics
	Diffusing-diffusivity dynamics results


	Conclusion
	Bibliography

