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Abstract

Natural language is rich with layers of implicit structure, and previous research has shown
that we can take advantage of this structure to make more accurate models. Most attempts
to utilize forms of implicit natural language structure for natural language processing tasks
have assumed a pre-defined structural analysis before training the task-specific model. How-
ever, rather than fixing the latent structure, we may wish to discover the latent structure
that is most useful via feedback from an extrinsic task. The focus of this thesis is on jointly
learning the best latent analysis along with the model for the NLP task we are interested
in.

In this work, we present a generalized learning framework for discriminative training over
jointly learned latent structures, and apply this to several NLP tasks. We develop a high-
accuracy discriminative language model over shallow parse structures. We demonstrate
an efficient algorithm for learning this grammaticality classifier by combining the input of
multiple representations of the latent structures. Next, we set forth a framework for latent
structure learning for statistical machine translation (SMT), in which the latent segmenta-
tion and alignment of the parallel training data inform the translation model. This model
jointly optimizes segmentation and alignment for the translation task, novelly learning over
latent representations of the input. We also propose a discriminative bilingual topic model
over hierarchically structured latent topics, which allows for weighted contributions from
more informative inputs and can be optimized for SMT. We apply this model to morpho-
logical disambiguation and domain adaptation for SMT. Finally, we give an investigation
of large-scale distributed training for structured discriminative models and propose recom-
mendations for distributed computational topologies.

Keywords: discriminative learning; latent variable models; structured learning; statistical
machine translation; language modeling
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Chapter 1

Introduction

1.1 Summary

In this thesis we will explore learning latent structure in discriminative models for Natural
Language Processing (NLP). There are many different layers of implicit structure in natural
language corresponding to different levels of analysis, e.g., phonological, morphological,
syntactic, semantic, and this thesis explores how we can better use this hidden information
for NLP tasks.

There has been previous research showing that using latent structure can help model
performance. For example, learning the grammatical structure of text data is a useful step
in many NLP tasks, such as semantic parsing and question answering. However, the bulk
of this work has treated the step in which we infer the hidden structure as something of
a black box, using human-generated structural annotations where possible and automatic
methods elsewhere. The inferred latent structure is then generally taken to be fixed when
used within some extrinsic task.

The problems with this approach are that human-generated structural annotations are
expensive to get, and the automatically generated annotations are error-prone. So, rather
than taking some fixed latent structure from an external source, we would like to learn our
own hidden structure model in conjunction with learning a model for some extrinsic task,
which will provide feedback to the latent learner. In this way we can allow our task-specific
model to benefit from information generated by a latent learner specifically optimized for
the task at hand.

We first apply this framework to a discriminative language model (LM), which we frame
as a binary grammaticality classification task. In learning to distinguish between positive
and negative examples of grammatical text, the model iteratively learns a shallow parsing
model which provides structural features to the binary classifier. We extend this model
to learning over multiple different representations of the latent structures, and consider
different methods of combining the information from the different latent learners. We show

1



that this method attains a high accuracy on a grammaticality classification task, and that
it can learn a high quality model more quickly than using a single representation of the
latent structural information.

We then investigate how this learning framework can be applied to Statistical Machine
Translation (SMT). We again set up the problem as a discriminative learning task, in
this case that classifies the quality of translation output, while learning a model that jointly
aligns and segments the parallel input data. Data segmentation can be an important step in
producing good quality SMT output, particularly for languages such as Chinese for which no
word-based segmentation is necessarily present, and for morphologically rich languages, in
which the word-based segmentation may too densely packed with information to get useful
units for translation to or from a more isolating language. The segmentation-alignment
model is guided by feedback from the external loss over the translation quality, and is thus
able to optimize the segmentation of the data for the translation task. We focus on an
English-Turkish translation task, and we find that by allowing our model to consider sub-
word information in making segmentation and translation decisions, it is able to improve
performance over both a word-based and a morphologically segmented model.

We next focus on an investigation of using latent document-level information in SMT.
We discuss a discriminative latent topic model that assumes a hierarchical structure over the
hidden topics. This model is particularly aimed at making use of parallel data in estimating
the topic distributions. It directly optimizes the likelihood of the target data, given the
latent hierarchical topics and the source data. The intuition is that in the case of ambiguous
words or phrases that have multiple different possible translations, we expect that some
translations will be preferred over others depending upon the topic of the document in
which the phrase appears. Furthermore, by using a discriminative log-linear model over
features of the source data and the alignments, we can allow more highly indicative words
to have more sway in estimating the model parameters than words that are topic-neutral.
We explore using this latent discriminative topic model in an English-Turkish translation
task.

For all the models and tasks described in this thesis, we would like to perform training
on large data sets when possible, although the large number of parameters can make this
computationally expensive to do, particularly when the inference step to find the latent
structure is complex. However, since these models lend themselves easily to parallelization,
we also examine empirical considerations for how to train these models in the distributed
setting in order to make the best use of large data with finite computational resources. We
consider computational topologies for performing large-scale distributed training for these
kinds of structured models, and find that the choice of distributed representation of the
data and topology of the learners can affect both the speed and accuracy of model training.

2



1.2 Introduction

Natural language is rich with ambiguity. This can come in the form of lexical ambiguity,
when a word has multiple meanings (e.g. ‘bark’: from a tree, or from a dog), or in the form
of syntactic ambiguity (‘I helped the child with the raft’). This is what makes computational
Natural Language Processing (NLP) difficult. Linguists believe that humans are able to
resolve all this ambiguity so deftly by drawing upon external information other than just
the speech signal or printed text, such as conversational context cues or knowledge about
the world. In addition, they also make use of some internal assumptions about the way
language data is structured in order to make sense of the words on the page or the speech
signal.

It is these inferred multiple layers of hidden structure we are interested in recruiting
for NLP. Consider, for example, how principled patterns of phonology govern word pro-
nunciation in context, and patterns of syntactic well-formedness govern sentence structure.
We can even extend this view to larger linguistic units than the sentence– there has been
considerable study of the discursive structures that emerge from document-level natural
language data. Given the high level of ambiguity in raw text or speech data, it is therefore
natural to investigate how these kinds of hidden structures can be used to help with NLP
tasks. For example, suppose we are performing a language-understanding task and we are
given the sentence “felons appeal to the court.” In this case, it would be very helpful to
know the semantic structure of the sentence in order to distinguish between whether this
sentence describes the predilections of the court or an action taken by felons.

When using learning latent structure in order to inform some other task, we may consider
this a form of semi-supervised learning, in which we are provided with labels for the extrinsic
task, but not for the latent structure. There has been significant work done in the area
(see (Sarkar and Haffari, 2006; Zhu, 2005)), however, the majority of this has been within
the generative setting; we will discuss this further in Chapter 3. There has been much less
work done of this flavor in a discriminative framework; in this thesis we will explore learning
latent structures to inform discriminative models.

1.3 Discriminative Learning with Latent Structures

For a variety of tasks, it is often the case that we wish to learn the classification boundary
between two or more types of observed data points. However, in many domains, and
particularly when dealing with natural language data, there may not exist a boundary that
neatly separates all points of each class from each other.

3
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The idea behind latent discriminative learning is that if we project our observed data points
into some higher-dimensional feature space, we can find the separating surface between our
data classes. This general intuition fits nicely with our linguistic knowledge of natural
language data, which we know to be structured on many different levels. These structures
are not directly observed but rather inferred from the observed language data. We can
think of these latent structures as a source of information to predict groupings of and
relations between observed data points. Thus, for a simple example, if we want to decide
whether ‘bat’ should be clustered with the word ‘mouse’ or the word ‘hit’, it will help us
to know the more general, but unobserved part-of-speech (POS) of ‘bat’. Unlike learning
with kernels, in which we enrich the feature space by performing some kind of mathematical
transformation over the observed features and their relations to each other, in this thesis
we learn a higher dimensional feature space by inferring latent structures over the observed
features of the data from which we extract additional features. This can be considered an
orthogonal approach towards enriching the feature space from kernel learning; rather than
transforming observed features, our models learn entirely new sources of feature information.

Previous work has used information from inferred latent structures to inform classifiers,
e.g. (Chang et al., 2009), (Das and Smith, 2009), (Goldwasser and Roth, 2008), and (Mc-
callum and Bellare, 2005). However the limitation of this approach is twofold. First, the
methods used to generate these latent structures are rarely foolproof, and thus run the
risk of propagating error from the latent structures found into the classification pipeline.
Additionally, generating latent structure (say, getting a parse for a sentence) is quite expen-
sive to do by hand, and even hand-crafted structural annotations may not be agreed upon
by all annotators; in many tasks there are multiple right answers (consider, for example,
translation). Basically, the problem in using a pipelined approach towards using inferred
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structures in classification comes down to the abundance of ambiguity in natural language.
However, rather than viewing this to be a disadvantage, by learning over latent structures,
we can allow the task to guide the selection of the latent structure implicit in the data. To
consider it another way, we may not in fact prefer to learn the gold-standard, linguistically
correct hidden structure for the observed data. Since the NLP tasks we are interested in
may not exactly replicate the output of human cognition, we way instead prefer to learn
the latent structures that will help us most with the actual task as we have defined it, and
let the desired outcomes of our task guide the model learned for the latent information.

1.4 The Tasks

We will consider applying a latent discriminative learning framework to three NLP tasks
in this thesis: language modeling, machine translation, and topic modeling. These tasks
are all mature research areas but have had relatively little exploration in the discriminative
setting. Language modeling is a ubiquitous in NLP, and figures in the pipeline of many
diverse NLP tasks, making it an important application for this learning framework. We
also chose to focus on SMT for the combined reasons that discriminative approaches are
promising for handling language tasks that are difficult for state of the art MT systems but
efforts towards fully discriminative SMT are still in early development. Finally, we explore
a discriminative topic modeling task. This is an attractive task to consider in discrimina-
tive learning because of the overwhelming preponderance of generative approaches to topic
modeling in the literature, despite the fact that discriminative learning is ideally suited to
capturing arbitrary features over the training data, including long-distance, overlapping,
and document-level information which may be useful to the topic modeling task. We will
outline the motivation for each of these tasks in more detail in the following sections.

1.4.1 Discriminative Language Modeling with Latent Syntax

The first task that we explore is a language modeling task, which we frame as a binary
grammaticality classifier that uses feedback from a shallow parsing model in judging the
quality of text. Let us consider an example to motivate this approach: suppose we want to
judge the quality of the following two sentences:

(1) ‘The golden brown dog slept.’
‘The golden brown over medium.’

The most common way of doing this would be to use an n-gram LM, which estimates
the quality of a piece of text based on looking at the windows of length n and checking
how often they have been seen before in the training data. So, if we were using a trigram
LM, we would judge the first sentence on how frequently we have previously seen (The
golden brown), (golden brown dog), and (brown dog slept). The second sentence would be
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judged based on the frequency of (The golden brown), (golden brown over), and (brown
over medium). All of these are reasonably likely trigrams, so our trigram LM would have a
hard time judging one to be much better than the other, though a human English speaker
could easily tell you that the first sentence is permissible but the second is definitely not.

However, if we know something about the latent grammatical structure of these two
sentences, it clarifies things. Without attempting to generate a full parse tree, just chunking
the sentence into its constituents using part-of-speech (POS) tags helps distinguish between
these two sentences. For the first sentence, it is straightforward to assign it a sequence of
POS tags and constituent chunking:

(2) The/DET
Begin-NP

golden/ADJ
Inside-NP

brown/ADJ
Inside-NP

dog/NOUN
Inside-NP

slept/VERB.
End-NP

Since the second sentence is ungrammatical, it is more difficult to come up with a
definitive POS sequence and chunking, but a couple of possible such sequences are:

(3) The/DET
Begin-NP

golden/ADJ
Inside-NP

brown/ADJ
End-NP

over/PREP
Begin-PP

medium/ADJ
Inside-PP

The/DET
Begin-NP

golden/ADJ
End-NP

brown/VERB
Begin-VP

over/PREP
Inside-VP

medium/ADJ
End-VP

In either case, without some serious effort, we are left with a chunking sequence that
includes a noun phrase constituent that lacks a noun, or some other structure that is equally
improbable to be produced in natural language. The idea is that while the words and n-
grams in these two sentences may be similarly probable, their latent structures will be
different enough to allow our model to differentiate between them more easily. So, we can
extract features from hidden structures that our model infers to inform the classification
task, and also allow feedback from that task to influence the way that our model chooses
the latent structures.

Previous work on leveraging latent representations for discriminative language models
has used batch algorithms that require multiple passes though the entire training data.
Instead, we propose an online algorithm that efficiently jointly learns the latent structures
and the classifier. We further extend this to include multiple views on the latent struc-
tures with different representations, and we explore a variety of ways to incorporate these
multiple views in learning the classifier and their interaction. We evaluate our algorithms
in comparison to the most closely related batch algorithm, Learning over Constrained La-
tent Representations (LCLR) (Chang et al., 2010), and show that our online algorithm
significantly outperforms it on a grammaticality task. This completed work is described in
(Clifton, Whitney, and Sarkar, 2013).
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1.4.2 Joint Latent Segmentation and Alignment for Discriminative Ma-
chine Translation

We next investigate applying this discriminative learning framework to SMT over latent
segmentation and alignments. The key idea behind this work is that languages encode
information differently, and so for the purposes of translation, we want to take advantage
of similarities and try to bring into greater symmetry areas of great difference. This is
particularly important for translation for morphologically rich languages. Consider, for
example, the following sentence from Turkish:

(4) çöp
garbage

+lük
+AFF

+ler
+PL

+imiz
+1p/PL

+de
+LOC

+ki
+REL

+ler
+PL

+den
+ABL

+mi
+INT

+y
+AUX

+di
+PAST

‘Was it from those that were in our garbage cans?’

(Wintner, 2002)
In English, we require ten separate words to render the equivalent meaning of the one-

word Turkish sentence. So, if we are dependent on the word-based segmentation such as
this to train our translation system, our model will have to memorize sentence-long chunks
of English in order to capture Turkish words such as this one effectively.

In general, SMT systems tend to perform better on language pairs that are closely
related or have a high degree of symmetry. This is due to many reasons (for example,
less reordering is required), but an important factor has to do with the granularity of the
language and the way it encodes information. So if I wish to translate English into Turkish,
I may wish to break up the Turkish side into chunks that more closely resemble English.
Consider a much simpler example from Spanish; suppose I have the following two sentences
in my training data:

(5) no
No

want-1SG
quiero

bring-INF-it-OBJ
traerlo.

‘I don’t want to bring it’

(6) what
Qué

go-2SG
vas

to
a

bring-INF
traer?

‘What are you going to bring?’

and we need to translate the following new sentence:

(7) it-OBJ
Lo

have-2SG
tienes

‘You have it’
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In this case it will be helpful to consider breaking up the Spanish side of the parallel
data to help the translation task. Given that we have seen ‘traer’ and ‘traerlo’ in our
training data, if our model is able to consider sub-word segments of the data, it may be
able to learn that ‘traerlo’ can be split into ‘traer’ and ‘lo,’ and thus be able to suggest a
translation for ‘lo’ when it encounters it later. However, we may not want to split up every
morphologically inflected word form into its component parts– for example, we may have
seen ‘va’ translated as ‘she goes’ and ‘vas’ translated as ‘you go’ enough times that there is
no benefit in analyzing ‘vas’ into its morphological components.

This is the main idea behind our approach to discriminative SMT: we allow the model to
consider possible latent segmentations of the data in alignment, and we optimize those seg-
mentations for the translation task, guiding the joint model towards the segment-alignments
that produce the best translations

We implement and evaluate end-to-end discriminative max-margin training for machine
translation where the alignment and the segmentation of the source sentences are latent
variables. Our alignment model differs from much work in discriminative training for MT
in that it is end-to-end rather than doing only post-processing on the output of a generative
model (Koehn, 2010). It also differs from some other work in discriminative end-to-end
models in modeling the both the alignment as well as the source-side segmentation as
latent variables and in using a max-margin optimization. We apply this model towards
an English-Turkish translation task. We find that using the alignments learned by the
translation-segment driven model improve performance over a phrase-based baseline.

1.4.3 Latent Discriminative Topic Modeling over Hierarchical Topics

The next task we consider is applying a discriminative framework to learning latent topics
for SMT. For many NLP tasks, it can be helpful to have an idea what our data is about. For
example, consider a sentiment analysis task. Say we have a product review that describes
the item with the phrase ‘very small.’ If we are trying to figure out whether this review is
positive or negative, it will be very helpful to know whether we are talking about a hearing
aid, in which small is likely to be a positive attribute, or a hotel room, in which it is likely
to be a negative. Knowing something about the topic of our data may also help us in a
translation task. For example if we are trying to figure our how to translate the word ‘bat,’
it will be very helpful to know whether the topic of the document in which the word appears
is sports or animals. We extend this idea to propose that topic information may also help
with morphological disambiguation when translating from an uninflecting language into a
morphologically rich one. For example, for translating an unseen test sentence such as ‘they
burn brightly’ into Spanish, which requires gender inflection for pronouns, if we know that
the topic is ‘stars,’ then we have a clue that we should use the feminine form of the Spanish
pronoun, since the Spanish word for ‘stars’ is feminine.
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However, most documents are not annotated with information that specifies what they
are about. Or, if we do have some information about this, it may not be particularly
helpful for the task at hand. Thus, we would like to automatically learn models for how
latent topics are distributed in documents, and furthermore to optimize this learning for
the particular task we are interested in.

Conventional topic models have traditionally been learned over monolingual data. How-
ever when we have access to parallel data, we would like to make use of this in learning
topic models for SMT. Previous approaches to multilingual topic modeling jointly model
the observed data along with the hidden topics. However, we would prefer to directly opti-
mize the likelihood of the target data, conditioning on the source data and the translations.
The idea here is that we would like our model to give more weight to words that are more
highly indicative of a particular topic, rather than letting all words in a document hold
equal sway over the topic distributions, even though some words are quite topic-neutral.
So, we use a model that assumes the latent topics are learned in a hierarchical structure
that shares information between more and less general topics. The other main idea behind
this discriminative bilingual topic model is that we would like the topic model itself to
learn preferences for some translation options over others. The intuition is that we know
that some translations may be highly topic-dependent, and we want to incorporate these
translation preferences into the way we learn the distributions over topics.

We test this model by incorporating the learned topic distributions as lexical weights
into a English-Turkish translation task. Since English has very little morphology, the task
of translating into morphologically rich Turkish is very challenging in terms of selecting the
correct morphologically inflecting form corresponding to the impoverished English input.

1.4.4 Computational Topologies for Large-Scale Discriminative Learning

We finally turn to a consideration of large-scale training issues for the types of models
discussed in the preceding tasks. These discriminative models have large sets of features,
and inference over the latent structures and optimization over the model features can be
very expensive. However, training for these models is easily parallelizable, and it is therefore
commonplace to perform model training in the distributed setting.

Large-scale distributed training for these models opens up several questions. Sharding
the data into pieces, each of which gets sent to a different node for training can affect the
speed and accuracy of the resulting models. We conduct an investigation into how the
choice of sharding of the data and model updating and transmission affects learning, and
we examine the tradeoffs between these factors in order to best make use the the available
data and computational resources.
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1.5 Contributions

Previous work has considered using latent structures for NLP. The main contributions of
this thesis can be summed up as follows.

First, in our approach towards building a discriminative language model, our work
uses multiple representations of latent structures, as opposed to a single representation for
the latent information. In supervised structured learning tasks, various forms of model
combination and multiple representations have been found to be helpful when learning the
structure is the explicit task. This is the first work to allow the model to range over multiple
representations of the latent structure to guide the multiple learners towards the most useful
features for the explicit task.

Another main contribution is towards discriminative SMT, specifically in how our joint
segmentation-alignment model makes use of the latent information. This work builds upon
previous efforts towards discriminative SMT by novelly jointly learning over segmentations
as well as alignments. Previous work using latent structures for SMT has been concerned
with latent derivations of the output that specify a mapping from a fixed input to the
output generated. In contrast, our model makes it possible to learn a latent representation
of input, not just of derivations of the output, and therefore to optimize the segmentation
the model learns for the translation task.

Finally, we demonstrate a discriminative topic model in which latent hierarchically struc-
tured topics are learned over aligned bilingual data to help with ambiguity resolution for
SMT.

1.6 Outline

In the remainder of this thesis, we will begin with introductory material that summarizes
the basics about the tasks and models that will be used. In Chapter 2 we give background
about the tasks we tackle in this thesis: we will begin by discussing canonical approaches
towards language modeling in section 2.1; we will then briefly cover typical SMT methods
in section 2.2, focusing on phrase-based approaches. Chapter 3 gives an overview of latent
variable modeling for NLP, starting broadly and focusing in on the particular models of
interest for this thesis. We introduce latent variables and structured models, and then how
these can be combined in the discriminative setting. In Chapter 4 we describe our work with
discriminative language modeling over latent shallow syntax, where we will give a detailed
description of the task, the model and its training, and our experiments. Chapter 5 presents
our work on joint discriminative alignment and segmentation for SMT, where the task, the
model, and the experiments will be described in more detail. In Chapter 6, we present a
discriminative model of latent hierarchical topics and describe our experiments in applying
this to SMT. Finally, we turn to a consideration of how to select the topology of distributed
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computation for training these kinds of models in Chapter 7. The conclusion and future
work are given in Chapter 8.
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Chapter 2

Language Modeling and Statistical
Machine Translation

In this chapter we give an overview of the two NLP tasks central to this work. In section
2.1 we briefly introduce language modeling and in section 2.2 we give an introduction to
statistical machine translation (SMT), focusing on phrase-based MT.

2.1 Language Modeling

Language models are used in NLP to assign likelihood to text, based on its similarity to a
set of language data used to train the model. Language models were originally developed
primarily for the task of speech recognition, but are widely used in a variety of applications.
For example, language modeling is a key component of statistical machine translation, in
which it supplies judgements on the fluency of the SMT output.

Language models are most often formulated in a generative framework, in which we use
a markov model over fixed-length sequences of tokens or n-grams. These models assign
a probability to a piece of text given its history, and are estimated by counting up the
frequency of the different histories that tokens appear with in the training data. The tokens
over which these models are estimated are generally taken to be words, but can be estimated
over larger units such as phrases or over smaller units such as morphemes, phonemes, or
characters.

In this framework, the probability of a sequence such as a sentence is given as the
product of the probabilities of the tokens in the sequence. So, for sequence S of length L
composed of tokens s0..sL, the probability of the sequence is given by

P (S) =
L∏
i=0

p(si|h), (2.1)
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where h is a fixed-size history of preceding tokens. The probability of each token si is given
by the maximum likelihood estimate of si given the history si−1..si−n, i.e., the normalized
counts of how often we see token si following the sequence si−1..si−n versus all other possible
token that can follow this sequence.

N -grams LMs are simple and easy to use, and can capture helpful information about
the local fluency of a short text sequence. For example, they are easy to integrate into
a decoder for machine translation. However, they are limited in their ability to capture
long-distance, overlapping, or discourse-level information about text that we may wish to
use. For this reason, efforts have been made towards developing other approaches toward
language modeling that are able to leverage these kinds of information, including Neural
Network based and discriminative LMs, which will be discussed further in Chapter 4.

2.2 Statistical Machine Translation

The current state of the art SMT systems use generative word-alignment models and log-
linear phrase-based translation models, so we begin with a brief introduction to these un-
derlying models. This state of the art approach toward SMT also describes the baseline
systems we will use in Chapters 5 and 6.

2.2.1 Generative Models: Word Alignment

The basic SMT model starts by learning word-by-word alignments between each parallel
sentence in the corpora.

In a general translation model, we are looking for the target sentence t that is the best
translation of source sentence s, i.e., that maximizes Pr(t|s):

t̂ = arg max
t

Pr(t|s), (2.2)

which, by Bayes’ rule, we can reformulate as:

t̂ ≈ arg max
t

Pr(t) Pr(s|t). (2.3)

The second term is the probability of the target sentence, which can be supplied by the
language model. The first term, Pr(t), is just the likelihood of sentence t occurring in the
target language on its own, so then to find the translation probability Pr(s|t), we use word
alignments between the source and target sentences. For example, Figure 2.1 shows the
aligned words of an English-French parallel sentence.

Between any given source sentence sJ1 = s1, .., sJ and target sentence tI1 = t1, .., tI ,
there may be many possible alignments, some more probable than others; we denote the
probability of any particular alignment a as Pr(a|sJ1 , tI1). Since the probability of translating
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Figure 2.1: Unidirectional Alignment (Koehn et al., 2007a)

sentence sJ1 as sentence tI1 is equal to the sum over all possible alignments between them, we
can use this in conjunction with the Bayes rule to define Pr(sJ1 |tI1) in terms of alignments:

Pr(sI1|tJ1 ) =
∑
a

Pr(a, sJ1 |tI1), (2.4)

which gives us a way to estimate the translation probabilities. It is important to note that
while GIZA++ (Och and Ney, 2003), the alignment model used in many SMT systems,
allows multiple source words to be aligned to any given target word, it allows only one
target word to be aligned to each source word. In order to overcome this limitation, the
alignments are calculated in both directions, from source to target, and target to source,
and then combined using intersection or methods.

These word-by-word alignments are learned using the expectation-maximization (EM)
algorithm, which starts with an initial estimate of uniform probabilities for the word-to-
word translation probabilities, Pr(t|s). These word translation probabilities are then used
to compute the whole-sentence alignment probabilities for each sentence in the corpora,
Pr(a|sJ1 , tI1). The sentence alignments are then in turn used to recalculate the word align-
ments; this process repeats iteratively until convergence.

2.2.2 Log-Linear Models for Phrase-Based Translation

Once the model has the whole-sentence word alignments, it can then extract phrase pairs
for building the phrase-based translation model by creating a set of alignment points. To do
this, the model uses the bidirectional alignments, starting with the intersection of the two.
This set of alignment points on which both alignment directions agree is of high precision
and represents a lower bound on the size of the set. From here, the set of alignment points
is enlarged according to expansion heuristics, with an upper bound of the union of the
two alignment directions. Figure 2.2 shows the bidirectional alignment between a parallel
English-French sentence, while 2.3 gives its corresponding alignment matrix.

The basic expansion heuristic used to build the set of alignment points (from which the
phrases will be extracted) starts with an alignment point set from the intersection of the
two alignments and then adds neighboring points from the directed alignments not already
in the set. In this case, a point’s ‘neighbors’ are defined as those points in the matrix which
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Figure 2.2: Bidirectional Alignment (Koehn et al., 2007a)

Figure 2.3: Alignment Matrix (Koehn et al., 2007a)
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are vertically, horizontally, or diagonally adjacent; neighboring points from the directed
alignments are added to the set until all candidate points have been added.

From this completed set, each legal phrase pair (s̄, t̄) that is consistent with the alignment
is extracted. The phrases may be a single word, or a group of words, as long as the
aligned words in the phrase are only aligned to each other, not any word beyond the
phrase boundaries. These phrase pairs can then be used to compute the phrase translation
probabilities for each direction, based on their overall counts in the training corpora:

Pr(s̄|t̄) = count(s̄, t̄)
count(t̄)

. (2.5)

From the phrase pair translation probabilities, we get the sentence translation probabili-
ties, by splitting source sentence sJ1 into phrases s̄P1 = s̄1, .., s̄P . The component phrases are
translated into P target phrases t̄P1 = t̄1, .., t̄P , giving the sentence translation probability
as:

Pr(tI1|sJ1 ) =
P∏
p=1

Pr(t̄p|s̄p). (2.6)

When selecting the best translation output, we would like the model to take into account
various other features of the data, in addition to these phrase-based sentence translation
probabilities. So in order to make it easier to add other arbitrary feature functions into our
model, we take the log of the sentence translation probabilities as well as any other features
we wish to add, to combine them in a log-linear model:

fτ = log Pr(tI1|sJ1 ) =
P∑
p=1

log Pr(t̄p|s̄p), (2.7)

where fτ is the translation feature. We can now add other feature components to this in
a linear fashion. By taking the exponent, we can formulate the sum of all of our model
features thus:

Pr(tI1|sJ1 ) = exp(
∑
i=1

nλifi(tI1, sJ1 ))∑
t′I1

exp(
∑
i=1

nλifi(t′I1, sJ1 ))
(2.8)

where λi is the weight parameter for feature fi.
It is infeasible to enumerate all possible combinations to calculate the normalization

constant in the denominator; we therefore use nbest-lists to approximate this in training
the model weights. However, since the denominator is a constant, we can ignore this when
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decoding, finding the best translation for sentence sJ1 using:

t̂I1 = arg max
tI1

exp(
n∑
i=1

λifi(tI1, sJ1 )). (2.9)

The standard components that are added in addition to the translation probabilities are
the distortion model, the word penalty, and the phrase penalty, and the language model.
The distortion model captures how much reordering of the target-side phrases should be
done; the word penalty regulates the length of the target-side translation output, and the
phrase penalty captures how many phrase pairs should be used for each sentence.

2.2.3 Moses

Moses (Koehn et al., 2007b) is a widely used state of the art SMT system which we will use
in several experiments in this thesis, so we give a brief introduction to it here. Given some
set of word alignments over the parallel training data (such as those provided by GIZA++),
Moses extracts phrases from the alignments according to the method described in Section
2.2.2 to create a phrase table which is used in conjunction with a log-linear translation
model. This log-linear model customarily includes several translation features, a target-
side LM, a distortion model and a word penalty model. The translation features are the
forward and backward lexical and phrase translation probabilities. The distortion model
attaches a cost to reordering operations, and the word penalty discourages the model from
producing overly long or over short translations. The log-linear model features are tuned
discriminatively on a held-out development set using MERT (Och, 2003), or, when training
with more features than just the standard set described here, MIRA (Hasler, Haddow, and
Koehn, 2011) or PRO (Hopkins and May, 2011).

Except when otherwise noted, we will use the conventional set of features at their default
settings with Moses in this thesis.

2.2.4 Evaluation - BLEU, WER and TER

The evaluation measures used for measuring the quality of a translation warrant discussion.
Since it is impractical to have access to human judgement of translation on a quick and
regular basis, evaluation techniques were developed to approximate this judgement auto-
matically. The most common standard measure is the BLEU (Bilingual Evaluation Under-
study) (Papineni et al., 2002a) score, which has been shown to be closely correlated with
human judgments of translation quality, and is based on n-gram correspondences between
a candidate translation and a reference translation. “N -gram” simply refers to sequences
of contiguous items (in our case, words) in a text, where n specifies the number of items.
BLEU performs a comparison over the whole corpus based on the number of n-grams from
the reference translation that appear correctly in the MT output translation. By factoring
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in the scores for each order of n-gram, the BLEU method captures both content accuracy
and fluency; where unigrams reflect the extent to which the reference captures all the in-
formation, longer n-grams reflect fluent, well-constructed sentences. Scoring a candidate
translation on the basis of n-grams allows for multiple possible orderings of a translation
to be deemed equally valid. This approach was designed with an eye to the fact that there
are typically many ways to translate a sentence, and is more robust if multiple references
are provided. Thus, in order to make the evaluation compatible with multiple references
without requiring a candidate translation to include all the different phrasings of the same
input, this measure captures precision but sacrifices recall. The candidate translation’s n-
gram precision score is modified to make sure that it does not get credit for repeating an
n-gram more frequently than it was seen in the reference. This is known as clipping the
n-gram counts so as not to exceed their maximum in the reference.

BLEU does not explicitly account for recall, however, it can capture recall to some degree
when supplied with a large number of reference translations. In order to compensate for
this, BLEU includes a brevity penalty to keep the scores of translations that are composed
of reference words but are shorter than the reference from scoring artificially highly. To get
an intuition for why this is necessary, we include the following example:

(8) Candidate: of the

(9) Reference: It is the practical guide for the army always to heed the directions of
the party. (Papineni et al., 2002a)

In this example, the candidate translation is clearly very poor, but since it is composed of
elements found the reference, and these appear the same number of times in the candidate
and reference, its unigram precision is 2

2 (‘of’ and ‘the’), and its bigram precision is 1
1

(‘of the’). To keep this type of short translation from getting a perfect score, then, the
brevity penalty is included, which decreases the candidate’s score proportionally to how
much shorter it is than the reference. The brevity penalty (BP) is computed as:

BP =
{

1 if c > r,

e
1−r

c if c ≤ r.

Then the BLEU score is:

logBLEU = min(1− r

c
, 0) +

N∑
n=1

wn log pn, (2.10)

where wn are the positive weights for each order n-gram, summing to one.
Since BLEU keeps track of the number of reference n-grams that appear in the system

output translations, in theory the best score is 100%. In practice, however, scores are much
lower. The best systems tend to achieve scores in the high 30% to 40% range. However,
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this is very strongly affected by the amount of parallel data available between the language
pair under consideration, and how closely related the two languages are.

Since BLEU is the current standard measure in most common use and arguably has
the highest correlation with human judgement (Cer, Manning, and Jurafsky, 2010), we use
this as our primary evaluation tool. However, some studies also report translations’ Word
Error Rate (WER) (Nießen et al., 2000) and Translation Edit Rate (TER) (Matthew Snover
and Makhoul, 2006). These measures are based on the edit-distance between a translation
candidate and a reference. WER is an edit-distance measure that looks for the shortest
sequence of insertion, deletion, and substitution operations to get from the candidate to a
reference. TER also includes the operation of swapping of adjacent phrases, allowing for
phrase reordering. These edit-distance based measures are intended to have a high correla-
tion with human judgement with fewer references than BLEU, and penalize phrasal shifts
less than BLEU. Unlike BLEU, for WER and TER, lower scores are better. Throughout
this work we will report BLEU scores, as well as use BLEU as a tuning metric in SMT
system optimization.

2.2.5 Summary

In this chapter we have given a brief introduction to the most common methods in language
modeling and machine translation. These methods are very prevalent and well-developed
but have distinct limitations. These limitations become more pronounced when we try to
use these techniques in disadvantaged data settings, particularly for languages that have a
high degree of morphological complexity. We will explore these issues and methods that
attempt to address them in the following chapters.

19



Chapter 3

Latent Variable Models

In this chapter, we will give an overview of latent variable models, beginning with an
introduction to latent variables for NLP, and then considering the case of modeling over
latent structures. We will discuss how these can be used particularly within a discriminative
learning framework, and consider different approaches to this and their implications for the
complexity and convergence properties of training.

3.1 Latent Variable Models

In statistics as well as in many areas of computational modeling, it can be useful to consider
latent variables. By latent variables, we mean some property of the data that is not directly
observable– we may wish to explain the observed data by positing that each data point
also has some attribute or belongs to some class that is hidden. For example, in speech
recognition, given an audio recording of multiple people speaking, we may wish to make a
guess as to which person is speaking at a given time in order to make a better prediction
about what they said. Latent variable models are used widely in NLP, for tasks such as
part-of-speech tagging, coreference resolution, and PCFG annotation.

A well-known example of latent variable modeling in NLP is that of topic modeling.
Topic models assume that within natural language documents there exist one or more topics,
and that knowing the topic(s) of a piece of text can help to characterize and interpret it.
For example, having topic information can help in the search for documents that might be
relevant to a query, or they can help a translation model choose between multiple possible
translations of a word. However, this kind of information is rarely explicitly labeled; even
in the case when topic annotations are present they may not be at the granularity that is
most useful.

Approaches to topic modeling have been developed with increasing sophistication, but
here we will describe a simple Latent Dirichlet Allocation (LDA) topic model to provide an
introductory example to latent variable models. This approach to topic modeling proceeds
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in a generative fashion, where we assume that documents are composed of a mixture of
latent topics, and that each of these topics has different preferences for different words. For
example, we may consider a sociolinguistics text to contain several different topics, such
as linguistics, sociology, pragmatics, etc; and that a word such as ‘syntax’ may be more
favored by the linguistics topic than by sociology. In LDA, the basic generative story for
a document amounts to first picking a distribution over topics, and then for each word
position in the document, picking a topic from the topics distribution, and then picking
a word from that topic. To learn the model, the task is to infer the distribution over
topics in the document and over words in each topic. Given the observed words in a
document, our goal is to estimate the hidden topics that generated them. By modeling the
joint probability distribution between the observed words and the hidden topics, we can
compute the conditional distribution of the latent topic variables.

More formally, we define the joint distribution over the hidden topics and observed
data (as a collection of documents d1..D, each composed of words w1..N ) assuming a fixed
vocabulary of words and assuming a fixed number of topics β1..K . Each topic βk denotes
a distribution over words in the vocabulary; to characterize how prevalent a topic is in a
document, we use the parameter θd,k to denote the the proportion of a topic k in a document
d. To link this to the observed variables, we use topic assignments zd,n for each word wn
in d, which depend on the document-specific topic proportions; according to our generative
story, the words wd,n depend on the topic assignments and the distribution over topics:

p(β1..K , θ1..D, z1..D, w1..N ) =
∏
K

p(βk)
∏
D

p(θd)(
∏
N

p(zd,n|θd,k)p(wd,n|βk, zd,n)). (3.1)

Given this formulation, we wish to compute the conditional distribution over topics given
the observed data. In order to do this, we want to marginalize over the hidden topic variables
in equation 6.8. It’s easy to compute the joint distribution given any particular setting of the
hidden variables, but getting the conditional distribution requires summing over all their
possible settings, which is intractable. Thus, this is generally estimated approximately,
using either sampling or variational methods.

Latent variable models can be used for unsupervised learning, wherein we directly try
to learn the hidden values, as in the case of topic modeling, but they can also be used in
supervised learning, wherein we infer the values of the hidden variables in order to help
with some explicitly measurable extrinsic tasks. We will discuss this type of latent variable
modeling in Chapters 4 and 5.

3.2 Structured Models

In section 3.1, we discussed latent variable models, focusing on the task of topic modeling.
However, there are many problems where rather than assigning a single label or distributions
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over labels for some data, we would like instead to predict a whole latent sequence of
labels over the data, in which each component in the label sequence may take into account
overlapping views on the data, or the labels themselves may be interrelated. This thesis
focuses on this type of learning over sequences, or structured models. So, to give a brief
overview to structured models, we use the task of part-of-speech (POS) tagging as an
example.

The POS-tagging task assumes that we have an input sequence x composed of words
S = x1..xn, and we wish to find the tag sequence y which for each xi gives the correct POS
tag yi denoting the grammatical category of xi. For example, consider the input sentence
and its corresponding tagged output:

(10) ‘While
ADV

winter
NOUN

reigns
VERB

the
DETERMINER

earth
NOUN

reposes’
VERB

This is a very common NLP task, and is an important component of many other tasks such
as grammatical and semantic parsing. The main challenge in POS-tagging is the ambiguous
meaning of word forms: the same string of characters can denote multiple meanings with
different grammatical categories, e.g., ‘bat’ (the winged mammal) and ‘bat’ (to hit). The
word tokens in isolation may be informative– it might be much more frequent for the verb
form of ‘bat’ to occur in text than the noun form– but this is usually not enough to make
high-accuracy tagging predictions for ambiguous words. Looking at the context in which
the token occurs can help resolve this ambiguity (e.g. we can make a good guess that if
‘bat’ follows the word ‘the’ it is more likely to be a noun than a verb). So, when predicting
a label for any point in a sequence, we would like our structured model to take in to account
more than just the corresponding point in the sequence; we would also like for it to use
aspects of the context surrounding the point in question.

To learn a structured model that takes both the lexical preferences of the individual
tokens as well as the surroundings, we can use a generative model over (x, y) pairs:

p(x, y), (3.2)

which, using Bayes’ rule, can be decomposed into:

p(y)p(x|y), (3.3)

which allows us to model separately the likelihood of the label y and the likelihood of seeing
observation x given that that we have already seen label y, known as the noisy channel
model.
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Using this model, we can also derive a function to give us an estimate for the best label
y out of all possible labels Y for a new test example x:

f(x) = arg max
y∈Y

p(y)p(x|y), (3.4)

A standard way of computing the best sequence in Equation 3.2 is to use a Hidden
Markov Model (HMM). A HMM consists of a set of a set of labels Y , observable tokens X,
transition probabilities p(yi|yi−1..yi−m) that specify the likelihood of passing from one label
to the next (given some amount of history of lengthm of the previous labels in the sequence),
and emission probabilities p(xi|yi) that specify the likelihood of seeing an observation given
a particular label. With this we can define the probability of a sequence of length n as
follows:

p(x0..xn, y0..yn) =
∏
N

p(yi|yi−1..yi−m)
∏
N

p(xi|yi) (3.5)

In a HMM we assume that the label history we consider when computing p(xi) and p(yi) is
limited to some finite window, for example using only the previous 2 tags, rather than the
whole previous tag sequence. These independence assumptions make estimating the model
parameters straightforward to compute using the maximum likelihood estimates, which are
based on the frequency counts of seeing the words co-occur with the tags and the tags
co-occur with each other.

In this case, we are learning a probability distribution over sequences (x, y), where we
assume that we have access to the labels y. However, this same kind of HMM can also be
used without the labels to estimate an unsupervised tagging model, a variant of which we
will discuss more in Chapter 4.

3.3 Latent Structures

In the POS tagging task, we have looked at an example of supervised learning, where we
assume that for each input sequence, we have access to the gold output label sequence
to train against. However, later we will consider the case in which the sequence we wish
to learn is a latent variable that will be guided toward some different task objective that
towards matching a gold label sequence. It is useful then to consider the case where the
structured model we wish to learn is represented as a latent variable. In section 3.2 we
looked at learning a probability distribution over sequences (x, y) in which we assume that
we have access to the labels y. In a latent structured model, we assume that we do not have
access to labels for the structure we wish to learn and take a more unsupervised approach,
in which we treat the labels as latent states.
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A common example of unsupervised learning of latent structures is the task of word
alignment in order to generate translation components with which to train machine trans-
lation systems. Manually aligned data is expensive to produce, and thus the most common
approach to generating word alignments is to infer them in an unsupervised fashion from
sentence-aligned parallel data. Typical approaches to this task use some combination of an
unsupervised HMM and the IBM models. In an unsupervised HMM, rather than directly
computing the MLE over the observations and labels to train the model parameters, we
maximize the likelihood of the observed data marginalizing over all possible settings of the
latent variables and optimizing the model using standard methods such as expectation-
maximization.

To give a basic introduction to typical approaches to unsupervised latent structure
learning for word alignment, we consider IBM Model 1 and how to estimate it using EM. As
was briefly noted in 2.2.1, the probability of target sentence tI1 = t1, .., tI being a translation
of source sentence sJ1 = s1, .., sJ is formulated over the latent alignment a between them:

Pr(sI1|tJ1 ) =
∑
a

Pr(a, sJ1 |tI1), (3.6)

where a specifies a mapping for each word sj in s to some target word ti in t. To estimate
the alignment parameters under IBM 1 we start with some initial setting of the model
parameters, and then for each sentence in the parallel corpus we consider all possible align-
ments between the words in that sentence. Given the current parameter settings for p(ti|sj),
we gather fractional counts for each of these possible alignments and then aggregate them
over the number of times we observe each source-target word co-occur in the same parallel
sentence in entire corpus. We then update the model parameters towards maximizing the
likelihood of the parallel corpus.

This basic alignment model specifies lexical translation probabilities and is frequently
used to initialize more complex models that are more expensive to train. Like its more
sophisticated variants, as a generative model it jointly models the observed and latent
variables with the goal of discovering the optimal setting of the latent variables given the
observed data.

3.4 Latent Structured Discriminative Models

We have considered models that use supervised structured learning in section 3.2, as well as
unsupervised latent structure learning in section 3.3, both as means of inferring the correct
structure for the input observations. We would now like to consider the case in which we
want a model that will learn latent structures not as an explicit goal in itself, but rather to
inform some other task-based objective. In the models described in 3.2 and 3.3, given the
observations x we infer structure y by fitting a joint distribution over (x, y). We will now
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adjust the notation to fit discriminative models over latent variables. Given observed data
X, we will now directly model the probability of the labels Y ; we will refer to the latent
variables as Z, which we posit to inform the choice of label y for each input x.

Efforts towards using latent structures for discriminative learning include pipelined ap-
proaches, in which the latent structure is inferred and held fixed while the model parame-
ters are optimized using features from the latent structure. While appealingly simple, this
approach is problematic because it allows errors in the structure inference step to be propa-
gated downstream (Goldwasser and Roth, 2008). In addition, we also may wish to consider
optimizing our latent structure model for the a specific task. For example, consider the
task of how to segment data for machine translation. We may have a data set that does not
come pre-annotated with a word-based segmentation (such is often the case with Chinese
data), or we may have some parallel corpora in which the two languages are structurally
so dissimilar that it may be helpful to have one or both sides broken down into smaller
sub-word segments. In this scenario, we may want the data to be segmented in some form,
but since the desired goal is to do SMT, we may prefer the segmentation of the data that
is most helpful for this task, rather than the gold, linguistically-motivated segmentation.
For example, when translating between English and Finnish, we may wish to segment out
the Finnish case markers that have explicit lexical equivalents on the English side (such as
the genitive case) but not those case markers that have no explicit lexical realization on
the English side. Thus, we now consider latent discriminative models that jointly learn the
latent parameter settings along with the labels.

(Chang et al., 2010) present an approach to learning over latent structures to inform
some extrinsic task known as learning over constrained latent representations (LCLR). In
this framework the latent structures are jointly learned along with a binary discriminative
classifier. This model is based on a decision function that defines the score of input x based
on some parameter vector w and searching over Z, the space of possible latent structures
for x:

fw(x) = max
z∈Z

w · φ(x, z) (3.7)

To use this as a binary classifier, we assume that examples are positive for which fw(x) ≥ 0.
To train a model using this decision function, using some non-decreasing loss function

`, we then take as our objective:

min
w

λ

2 ‖w‖
2 +

∑
i

`(−yifw(xi)). (3.8)

This objective is semi-convex because of the inner maximization over latent structures inside
the outer minimization over the weight vector. This model searches for the best possible
latent structure while minimizing the overall loss, which makes optimization more complex
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than the standard convex case. In order to optimize this objective, we first find the latent
structure and then update our model parameters. This is straightforward for the negative
examples, since the objective is only nonconvex in the positive case. For the negative
examples, we iteratively search for the latent structure and then update the model weights
for each example, using a cutting-plane algorithm that rather than search at each iteration
over the space of all possible latent structures instead stores all previously seen latent
structures in a cache and searches over that. However, since the objective is nonconvex
for the positive examples, we search for the best latent structure and then must keep this
fixed when updating the model parameters. This method achieves high accuracy on several
classification tasks.

(Chiang, 2012) presents a method for discriminative optimization for machine trans-
lation over latent derivation structures (MIRA), in which the output labels being learned
are also structured, in the form of SMT output. This model also tackles a more complex
discriminative latent structure task in that the objective is less straightforward that the
binary case– instead of directly optimizing against a binary classification loss, we optimize
against an automatic translation evaluation metric. In this framework, the objective uses a
loss function that combines model loss with the extrinsic loss, as measured by the difference
in bleu score between a proposed translation candidate and some reference translation.

To formulate this model, we start with a typical linear max-margin objective over N
training examples:

L(w) = 1
N

∑
i

Li(w), (3.9)

where

Li(w = max
z∈Z

vi(w, z, zi), (3.10)

max
z∈Z

vi(w, z, zi) = `i(z, zi)−w · (φ(zi)− φ(z)), (3.11)

`i(z, zi) = B(z, zi)−B(z′, zi). (3.12)

The function B measures the bleu score of a translation candidate versus the reference
translation, allowing ` to capture the relative bleu loss between any pair of translation
candidates.

This objective can be optimized effectively using the MIRA quadratic programming
algorithm, which employs a cutting-plane style approach, similar to LCLR. We will discuss
this further in 5.2.

Neither LCLR nor MIRA hold fixed latent structures, nor do they make assumptions
about what the ‘correct’ latent structure is, instead they allow the model to be guided in its
latent structure learning by what yields the most informative features for the task at hand.
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3.5 Summary

In this chapter we have briefly introduced what will be the basic building blocks of our
models: structured learning, latent variable modeling, and putting them together in a
discriminative framework. In the following chapters we will go on to show how we develop
our models from this framework, and apply them to language modeling over latent shallow
syntax and discriminative SMT over joint latent segmentations and alignments.
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Chapter 4

Discriminative Language Modeling
over Latent Grammatical Structure

In this chapter we introduce latent discriminative learning for language modeling. We begin
in section 4.1 by motivating this modeling framework for this task and discussing previous
approaches. In section 4.3 we describe our model and the learning algorithms used to train
it, as well as the latent structure representations that the model uses. Finally, in section
4.4, we report the experiments run along with results and analysis.

4.1 Introduction

Natural language data is implicitly richly structured, and making use of that structure
can be valuable in a wide variety of NLP tasks, from machine translation to paraphrase
generation to question answering. However, finding these latent structures is a complex task
of its own right, enough to warrant extensive study. Early work used a two-phase pipeline
process, in which the output of a structure prediction algorithm acts as fixed input features
to train a classifier. (Chang et al., 2009), (Das and Smith, 2009), (Goldwasser and Roth,
2008), and (Mccallum and Bellare, 2005) have shown that this approach is problematic in
that it can propagate error from the fixed latent structures to the classifier, and that it
can fail to take full advantage of the labeled data for the final task in generating the latent
structures. Moreover, we may wish to allow feedback between the latent learner and the
final task learner in optimizing the latent representation of the data for the final task to be
performed. More recent work has come to approach latent structure learning for NLP from
the perspective of finding the best latent representation for a particular task, rather than
what is necessarily the “correct” underlying representation. Work in this vein has focused
on jointly learning the latent structures together with the task-specific classifier they inform
(Cherry and Quirk, 2008; Chang et al., 2010).
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(Chang et al., 2010) in particular set forth a useful framework for solving classification
problems using constraints over latent structures, referred to as Learning over Constrained
Latent Representations (henceforth, LCLR). Inspired by LCLR, we have extended this
framework for discriminative joint learning over latent structures to a novel online algorithm.
We evaluate the algorithm in comparison to the LCLR batch method on a grammaticality
test using a discriminative model that learns over shallow parse (chunk) structures. We show
that our online method has standard convergence guarantees for a max-margin learner, but
that it attains higher accuracy. Furthermore, in practice we find that it requires fewer
passes over the data, making it easier and faster to learn a high-quality model.

In addition, we explore the use of allowing multiple views on the latent structures using
different representations in the classifier. This is inspired by (Shen and Sarkar, 2005),
who found that using a majority voting approach on multiple representations of the latent
structures on a chunking task outperformed both a single representation as well as voting
between multiple learning models. We investigate several different methods of combining
the views and we show that the multiple-view approach to latent structure learning yields
modest improvements over the single-view classifier.

4.2 The Grammaticality Task

To evaluate our algorithms, we use a language modeling task as an example application.
Language modeling is an important task in many NLP applications, in which is it usually
responsible for making sure that generated text is fluent. The predominant n-gram form
of language model (LM) bases the likelihood of generated items upon previously seen word
histories. A well-known limitation of n-gram LMs is that they are informed only by the
previously seen word-string histories of a fixed maximum length. Thus, while they are
sensitive to local disfluencies, they ignore longer distance dependencies between more distant
parts of the sentence.

Consider the following example sentences generated by a 3-gram language model:

• chemical waste and pollution control ( amendment ) bill , all are equal , and , above
all else .

• kindergartens are now .

These fragments are composed of viable trigrams, but a human reader could easily judge
them to be ungrammatical. However, if our language model were to use latent information
such as a syntactic parse of the sentence, our model could recognize their lack of grammat-
icality based on syntactic cues.

Discriminative models, which have been successfully applied to many natural language
tasks, can take into account arbitrary features over a given example, and thus may be
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able to avoid the shortcomings of n-gram LMs in judging the grammaticality of a piece of
text. In the case of language modeling, however, there is no obvious choice of categories
between which the model should discriminate. (Cherry and Quirk, 2008) show that by
following the pseudo-negative examples approach of (Okanohara and Tsujii, 2007), they
can build a syntactic discriminative LM that learns to distinguish between samples from
a corpus generated by human speakers and samples generated by an n-gram model. In
this framework, the samples generated from the n-gram model serve as negative examples.
While both positive and negative examples will contain probable n-grams, the negative
examples can be expected to contain locally fluent constituents but lack global fluency or
structural coherence. Thus the discriminative LM learns to assign high scores to the more
grammatical structures that look human-generated and low scores to those that do not.

Our approach is similar to (Cherry and Quirk, 2008), but they use probabilistic context-
free grammar (PCFG) parses as latent structure, use a latent SVM as the learning model,
and handle negative examples differently. We use a latent passive-aggressive (PA) learn-
ing algorithm rather than the latent SVM used by (Cherry and Quirk, 2008). (Cherry
and Quirk, 2008) use a PCFG parse as a latent variable for each example. An alternate
representation of sentence structure is chunking, which can be seen as a shallow parse. A
chunking is represented by tagging each word in the sentence to indicate phrase member-
ship and boundaries, but there are various ways to choose tags to do so. (Shen and Sarkar,
2005) find that voting between several independently trained chunker models using different
such tag representations leads to better phrase identification than using only a single rep-
resentation. Using ideas from (Cherry and Quirk, 2008) and (Shen and Sarkar, 2005), we
introduce a discriminative LM which uses one or more chunking representations as latent
variables. We use a shallow parse formalism rather than a hierarchical grammatical model
such as a PCFG or dependency parse for several reasons. First, it is much more lightweight,
making it possible to find the latent parse structure in linear time. In addition to this, we
performed some early experiments using a PCFG rather than a chunking that showed that
our model was not more effective when using the hierarchical structure instead. Finally,
using a chunking formalism makes it easy to integrate and convert between using multiple
different representations of the latent structures.

We train our model on real sentences versus pseudo-negative sentences sampled from
an n-gram model. Our model simultaneously learns to apply multiple sets of chunk tags to
produce chunkings representing sentence structure and to prefer the shallow parse features of
the human sentences to those sampled from an n-gram LM. Since the shallow parse features
of the sampled examples are penalized in the learning algorithm, the chunker-based classifier
learns chunking models that prefer not necessarily the linguistically best chunking for each
example, but rather the chunking that will assign the widest margin between the positive
(grammatical) and negative (ungrammatical) examples.
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4.3 Latent Structure Classifier

Our generalized classifier is trained by simultaneously searching for the highest scoring latent
structure while classifying data instances. Rather than training the best latent structure
to adhere to a linguistically motivated gold-standard, we want to exploit the underlying
structure implicit in each example to produce the best classification of the data. Here we
use the discriminative latent learning framework due to (Chang et al., 2010) together with
the passive-aggressive (PA) updating strategy due to (Crammer and Singer, 2001).

4.3.1 PA Learning

The latent structure classifier training uses a decision function that searches for the best
structure z∗i ∈ Z(xi) for each training sentence xi with a space of possible structures Z(xi)
according to feature weights w, i.e.:

fw(xi) = arg max
zi

w · φ(xi, zi) (4.1)

where φ(xi, zi) is a feature vector over the sentence-parse pair. The sign of the prediction
y∗i w · φ(xi, z∗i ) determines the classification of the sentence xi.

Using passive-aggressive max-margin training (Crammer and Singer, 2001), we incorpo-
rate this decision function into our global objective, searching for the w that minimizes

1
2‖w‖

2 +
X∑
i=1

`(w · φ(xi, zi), yi), (4.2)

where ` is a loss function. Setting ` to be hinge loss, at each iteration and for each
example xi we find and update according to a new weight vector w′ that minimizes:

1
2‖w−w′‖2 + τ(1− yi(w′ · φ(xi, z∗i )), (4.3)

where w is the previous weight vector, z∗i is the structure found by Eqn. (4.1), yi ∈ {−1, 1}
is the true label (ungrammatical or grammatical) for the example, and τ ≥ 0 is a La-
grange multiplier proportional to the example loss. The second term penalizes classification
examples proportionally to the degree to which they violate the margin (see Alg. 1).

4.3.2 Optimization Method

Because Eqn. (4.3) contains an inner max over z∗i , it is not convex for the positive examples,
since it is the maximum of a convex function (zero) and a concave function (1 − yi(w′ ·
φ(xi, z∗i )). In hinge loss, when we drive the inner function to higher values it minimizes
the outer problem for negative examples, but maximizes it for the positive ones. So, as
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1 initialize w0
2 for t = 0, ..., T − 1 do
3 for each training example xi in X do
4 repeat
5 find z∗i = arg maxzi

wt · φ(xi, zi)
6 let y∗i = wt · φ(xi, z∗i )
7 let loss lt = max{0, 1− yiy∗i )}
8 let multiplier τt = lt

‖φ(xi,z∗i )‖2

9 update wt+1 := wt + τtyiφ(xi, z∗i )
10 until yi > 0 or (y∗i = yi if yi < 0);
11 return wT

Algorithm 1: Online PA algorithm for binary classification with latent structures.

in LCLR, we hold the latent structures fixed for the positive examples but can perform
inference to solve the inner minimization problem for the negative examples.

To perform inference to find the inner max over z∗i , we can use dynamic programming.
The complexity of this search is linearly dependent on the length of the sequence and
quadratic in the number of chunk-tags.

4.3.3 Online Training

Our online training method is shown as algorithm 1. It applies the structured prediction
and PA update of section 4.3 on a per-example basis in a variant of the cutting plane
algorithm discussed in (Joachims and Yu, 2009). Since for the positive examples the latent
structures are fixed per-iteration, it does a single search and update step for each example
at each iteration. For negative examples it repeats the prediction and PA update for each
example until the model correctly predicts the label (i.e. until y∗i = yi). Since the negative
examples should never be associated with good latent structures under the model, we wish
to penalize all possible structures for the negative examples. However, because this is
intractable to compute, we use the approximation of the single-best structure for each
negative example. We re-decode the negative examples until the highest scoring structure
is correctly labeled as negative. This approximation is analogous to the handling of inference
over negative examples in the batch algorithm described in (Chang et al., 2010). In the
batch version, however, updates for all negative examples are performed at once and all
are re-decoded until no new structures are found for any single negative example. We
do not retain any information about negative examples between iterations as do (Cherry
and Quirk, 2008) or a cache of negative structures per-example as in LCLR. While we
tested using a persistent cache of negative structures, we found that since the features from
previous negative structure examples are persistent in the model it was unnecessary for us
to explicitly retain previously found structures to keep the model from oscillating.
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Alg. 1 is a soft-margin classifier and we can write down the objective function in terms
of a slack variable ξ and assuming hinge loss:

wt+1 = arg min
w
‖w−wt‖2 +

∑
i

ξ2
i

s.t. ∀i max(0, 1− yi(maxz∈Z(xi)(w · φ(xi, z)))) ≤ ξi.
The update in line 9 of Alg. 1 is justified using Lagrange multipliers to optimize the

objective per iteration as shown in (Crammer and Singer, 2001). This is a semi-convex
problem which becomes clear if the above objective function is expanded into two special
cases: one for positive and one for negative examples. The first max in the above objective
means that the objective for positive examples is convex when we fix the value of z while
the objective for negative examples is convex even if we search for the maximum z. This is
what we do repeatedly for negative examples in Alg. 1 while we make a step in the objective
using the arg max value of z for all positive examples.

4.3.4 Multiple Views on Latent Representations

To incorporate multiple views on the latent representations, we perform inference separately
for each view for each training example.

In our single-view model, the latent structures are provided by a chunker which splits a
sentence into phrasal constituents. (Shen and Sarkar, 2005) find that using multiple chunk-
ing representations is advantageous for the chunking task itself. Moreover, they demon-
strate that the careful selection of latent structure can yield more helpful features for a
task-specific classifier. We thus generate separate latent structures for each of their five
chunking representations (which are mostly from (Sang and Veenstra, 1999)) at line 5 of
Alg. 1.

The addition of multiple views on latent representations retains the same semi-convexity
properties of our single-view algorithm. Each view r is a convex function generating some
latent structure over training example xi. Since the combination of the views is just the
sum over each function r, the result is another convex function, so the objective function
remains the same.

Each of the views use a different representation of the chunk structures, which we will
briefly describe here. For more detailed information, please see (Sang and Veenstra, 1999).
Each representation uses a set of tags to label each token in a sentence as belonging to a
non-overlapping chunk type. We refer to the chunking schemas as IOB1, IOB2, IOE1, IOE2,
and O+C. The total set of available tags for each of the representations are B- (current
token begins a chunk), I- (current token is inside a chunk), E- (current token ends a chunk),
S- (current token is in a chunk by itself), and O (current token is outside of any chunk).
All chunks except O append the part-of-speech tag of the token as a suffix. IOB1, IOB2,
IOE1, and IOE2 are variant of inside/outside representations. The IOB representations
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Token IOB1 IOB2 IOE1 IOE2 O+C
In O O O O O
early I B I I B
trading I I I E E
in O O O O O
Hong I B I I B
Kong I I E E E
Monday B B I E S
, O O O O O
gold I B I E S
was O O O O O
quoted O O O O O
at O O O O O
$ I B I I B
366.50 I I E E E
an B B I I B
ounce I I I E E
. O O O O O

Table 4.1: The five different chunking representations for the example sentence “In early
trading in Hong Kong Monday , gold was quoted at $ 366.50 an ounce .”

distinguish only between B, I, and O. IOB1 differs from IOB2 in that it assigns the tag B
only if the token that follows is inside a chunk. IOE1 and IOE2 only use E, I, and O, and
they differ in that IOE2 assigns the E tag regardless of whether the token that follows is
inside a chunk. Table 4.1 shows the different chunking schemas on an example sentence.

Each of these chunking schemas can be conceived as a different kind of expert. The
inside/outside schemas vary over their sensitivity to finding chunks that span multiple
tokens. The IOB variants will be better at detecting where a chunk begins, whereas the
IOE variants will do better at detecting the chunk’s end. O+C allows for a more fine-grained
representation of the chunk types.

It is straightforward to use dynamic programming to find the best chunking for each
representation. The features of φ(x, z) are 1-, 2-, 3-grams of words and POS tags paired
with the chunk tags thus found, as well as bigrams of chunk tags. Such features are taken
across the chunkings for each representation. We use entirely separate chunk tags for each
representation. E.g., although each representation uses an “O” tag to indicate a word
outside of any phrase, we consider the “O” for each representation to be distinct. Like the
single-view version, this model can optionally be initialized by using weights obtained by
training for the standard phrase-identification chunking task. The algorithm is given in
algorithm 2. In the following sections we describe some different approaches toward using
the multiple representations generated by the different views by modifying the combine step
on line 7.
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1 initialize w0
2 for t = 0, ..., T − 1 do
3 for each training example xi in X do
4 repeat
5 for view r ∈ R do
6 find z∗ir = arg maxzi

wt · φ(xi, zi)
7 let φ(xi, z∗i ) = COMBINE({φ(xi, z∗ir ) : r})
8 let y∗i = wt · φ(xi, z∗i )
9 let loss lt = max{0, 1− yiy∗i )}

10 let multiplier τt = lt
‖φ(xi,z∗

i
)‖2

11 update wt+1 := wt + τtyiφ(xi, z∗i )
12 until yi > 0 or (y∗i = yi if yi < 0);
13 return w
Algorithm 2: Online PA algorithm for binary classification with multiple views latent
structures.

1 COMBINE(xi, {z∗ir : r}):
2 for all r ∈ R do
3 convert z∗ir to common representation Zir
4 get consensus structure Ẑi by voting between {Z∗ir : r}
5 for all r ∈ R do
6 convert Ẑi into view-specific representation ẑ∗ir
7 return φ(xi, zi) =

∑
r φ(xi, ẑir )

Algorithm 3: Majority voting method of combining multiple views.

Method 1 - Adding Representations

In our first method, we simply extract the features used in each of the different representa-
tions and combine the features for each example xi. The resulting z∗i is a tuple of chunking
structures, and φ(xi, zi) is a feature vector across all representations, which is then used in
the weight vector update. Since the features generated by each representation’s inference
are distinct to that representation, they are shared in updating the model, but not in infer-
ence. Therefore the features contributed by each example are distinct, and φ(xi, zi) can be
considered the sum of separate feature vectors for each representation r:

∑
r φ(x, zir ).

Method 2 - Majority Voting

In the majority voting method, we combine the output of the views by converting the
structures found under each representation to a single common representation, from which
we then pick the consensus structure and update the model towards that. However, the
consensus structure is first converted back to each of the individual representations for the
weight vector update step so that we update weights pertaining to features for each of the
representational forms.

This method of combining the different latent representations is illustrated in Figure
4.1.
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Figure 4.1: A majority-voting scheme for combining multiple latent structures with different
representations.

1 COMBINE(xi, {z∗ir : r}):
2 for all r ∈ R do
3 for each representation s 6= r do
4 convert zsi to common representation Zirs

5 get consensus structure Ẑir by voting between all {Zirs
: s 6= r}

6 convert Ẑir into view-specific representation ẑ∗ir
7 return φ(xi, zi) =

∑
r φ(xi, ẑir )

Algorithm 4: Co-training based method of combining multiple views.

Method 3 - Co-training

The final method we examined for combining the multiple views was inspired by co-
training (Blum and Mitchell, 1998). In co-training, the predictions of a weak classifier
are bolstered by information supplied by alternative views on the data. Intuitively, we
surmise that allowing the alternative views to guide each single view may act as a form of
regularization while still retaining the information from the different experts. Our method
is similar to co-training in that we allow each view to be informed by the output of the
other view. However, it does not obey the strict condition on co-training that the feature
sets from each view should be conditionally independent from each other.

In this method, for each training example, we again begin by converting each of the
views’ best latent structure to a common representation. Then, for each single view ri ∈
r = 1..R, the best structure for ri is selected by voting from the other R − 1 views. That
consensus structure is converted into r’s representation and added to the feature vector for
all views for that example and the weights are updated accordingly.
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Figure 4.2: A co-training inspired scheme for combining multiple latent structures with
different representations.

Figure 4.2 illustrates the co-training inspired method of combining the different latent
structure representations.

4.4 Experiments

We trained several settings of our chunker-classifier as well as the batch baseline classifier,
as we detail in 4.4.1. We then evaluated the resulting trained models on the grammaticality
task.

4.4.1 Training

For the chunkers we used the CONLL 2000 tagset (consisting of 23 constituent chunk tags),
modified for the five chunking representations of (Shen and Sarkar, 2005).

For training data we used the English side of the HK Chinese-English parallel corpus.
For positive examples, we used 50,000 sentences taken directly from the English side. For
negative examples we used the pseudo-negative approach of (Okanohara and Tsujii, 2007):
we trained a standard 3-gram language model on the 50,000 sentences plus 450,000 addi-
tional sentences from the same corpus. From this we sampled 50,000 sentences to create
the negative training data set.
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This choice of training data is similar to (Cherry and Quirk, 2008). However, they do
not include the positive examples in the sentences used to train the n-gram LM for pseudo-
negative generation, and they do not filter the result to use only words from the positive
data. We made these choices so as to make the positive and negative training examples more
similar in terms of the words used. If the positive and negative examples have substantially
different vocabulary, it artifically makes the task much simpler since it makes it possible
for the classifier to avoid using the latent features; a basic 1-gram model can distinguish
between positives and negatives based on vocabulary alone with high accuracy, but this
situation does not approximate the kind of fluency decisions that we are interested in.

The chunker-classifier can either be started with a zero weight vector or with weights
from training on the chunking task itself; we tried both initializations. For the latter option
we used weights from supervised discriminative training against gold-standard chunking.
This supervised training used the same features as the chunker-classifier with the CONLL
2000 chunking tagset, which (Shen and Sarkar, 2005) refer to as the IOB2 representation.
To transfer the weights to the classifier, we scaled them to the range of weight values
observed after training the zero-initialized chunker-classifier, approximately [−0.1, 0.1] with
a single representation and [−0.01, 0.01] with all five representations. This gives non-zero
initial weights for some of the features corresponding to the IOB2 representation, but not
for any of the other representations.

4.4.2 Batch Baseline

We implemented two batch baselines. The first is a strict implementation of the LCLR
algorithm as it appears in (Chang et al., 2010), with per-outer-iteration example caching
(LCLR). The only difference is that we use a Passive-Aggressive large-margin classifier
instead of an SVM. In (Chang et al., 2010), the SVM was trained using a coordinate descent
algorithm on the dual (Hsieh et al., 2008), while we train our PA algorithm as we specify
earlier. This allows us to consistently use the same learning algorithm to compare between
batch and online learning with latent variables. However, we found that in practice, this
algorithm severely overfits to our application task. The inner loop that repeatedly performs
batch updates to the negative examples swayed the model such that while training error
approached zero, it disproportionately classified the test data sets as negative. So, we also
implemented a variant that skips the inference step in the inner loop. This variant treated
the latent structures found in the inference step of the outer loop as fixed, but relabeled
and updated accordingly until convergence, where it would resume the next outer iteration.
Since this variant was competitive with the online algorithms, we present its results as
LCLR-variant in Sections 4.4.3 and 4.4.4. The algorithm is given in Alg. 5.
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1 initialize w
2 for t = 0, ..., T − 1 do
3 repeat
4 for each training example xi in X do
5 find z∗i = arg maxzi

w · φ(xi, zi)
6 for each training example xi in X do
7 repeat
8 let y∗i = w · φ(xi, z∗i )
9 let loss l = max{0, 1− yiy∗i )}

10 let multiplier τ = l
‖φ(xi,z∗

i
)‖2

11 update w := w + τyiφ(xi, z∗i )
12 until yi > 0 or (y∗i = yi if yi < 0);
13 until convergence;
14 return wT

Algorithm 5: Batch-variant PA algorithm for binary classification with latent structures.

Model Classification Accuracy
LCLR 90.27
LCLR-variant 94.55
online 1-view 98.75
online multi-1 98.70
online multi-2 98.78
online multi-3 98.85

Table 4.2: Classification accuracy (percent) after 40 outer iterations. Multi-1 refers to
the additive method of combining representations; Multi-2 refers to majority voting, and
Multi-3 refers to co-training.

4.4.3 Evaluation

One way to evaluate discriminative LMs is on the intrinsic classification of distinguishing real
grammatical sentences from generated (and presumably ungrammatical) pseudo-negative
sentences. The idea is that we want to train a model that can do better than an n-gram
LM, so we sample from an n-gram LM to generate our negative examples. This does
not guarantee that all negative examples will in fact be ungrammatical; it is up to the
discriminative model to learn to tell the difference between real, grammatical data and
data sampled from the n-gram LM.

As test data for this task we used the Xinhua data from the English Gigaword corpus.
We used the first 3000 sentences as positive examples. For negative examples we trained
a 3-gram LM on the first 500,000 examples (including those used for positive data), with
no filtering. We used this 3-gram LM to generate five separate 3000 example negative data
sets. To account for random variation due to using pseudo-negatives results are reported
as a mean over the positive data paired with each negative set.

The results are summarized in Table 4.2.
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B B (B I) B B
hong kong is a conspicuous example

B B B B (B I )

Table 4.3: Output chunking on a sample phrase “hong kong is a conspicuous example” from
the single-view model (on top) and the co-train based multi-view model (at the bottom).
The chunking shown is IOB2 for both models.

4.4.4 Analysis

As shown in Table 4.2, all online algorithms outperform the batch versions. We also see a
slight increase in classification accuracy with some of the multi-view approaches, in particu-
lar the co-training based approach. Improved performance of methods 2 and 3 for combining
over method 1 might be expected. Since the motivation for using multiple representations is
that the model might be guided towards those features that are most helpful to the classifi-
cation problem, intuitively we can suppose that this is more likely to occur when the views
are being driven towards agreement, which is not enforced under method 1. The co-training
based method in particular is well-positioned to take advantage of having multiple views
on the latent structure. This approach encourages agreement between the views, but by
retaining multiple consensus structures, it can capitalize on the different kinds of expertise
of the various views, which may be lost in a simple majority voting approach.

The sentence shown in Table 4.3 is taken from the positive examples in the testset; it
illustrates the advantage that came from having multiple views on the latent structures.
This example was correctly classified by the co-train based model but incorrectly classified
by the single-view model. As the latent structure prediction was optimized to distinguish
between real and synthetic data (rather than to match a gold-standard chunking), neither
chunking reflects the linguistically accurate one. However, we see that there were different
groupings between the two models: the single view groups “is a” together in a chunk
constituent, whereas the multi-view groups together “conspicuous example”. While “is”
and “a” may frequently co-occur, “conspicuous” and “example” may together form a more
coherent constituent.

Figure 4.3 shows the per-iteration test set accuracy of the different models. The batch
versions are much slower to improve their testset accuracies. Though LCLR-variant attains
more competitive accuracy with the online version than LCLR, it seems to be overfitting
past the 35th iteration. The online versions, on the other hand, learn quickly and maintain
high accuracies. While all online models eventually reach high accuracies, the voting and co-
train multiple-views models reach a high accuracy much faster than the simpler models. In
particular, the co-training based method reaches an accuracy over 98% by the fifth iteration;
for the single-view and the simple multi-view combine methods, it takes at least twice as
many iterations. This indicates that co-training based method using mutiple views on the

40



 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40

T
es

t a
cc

ur
ay

PA updates

LCLR
LCLR-variant
online 1-view
online multi-1
online multi-2
online multi-3

Figure 4.3: Per-iteration test accuracies up to 40 (outer) iterations for the classifiers with
weight-vector initialization.

latent representations gives an advantage when training on a budget. We surmise that this
is because the enforced consensus between the multiple views finds latent structures that
are helpful to the classification task much more quickly.

In addition to reaching high accuracy on test data quickly, we also find that in practice,
the online algorithm requires fewer updates total in training than the batch version. In the
online algorithm, each negative example is re-decoded until it is correctly labeled, whereas
in LCLR, all negative examples must be re-decoded each time for any single incorrectly
labeled example. We found that for both models, incorrectly labeled examples usually only
needed to be re-decoded once to receive a correct label. Because there are generally only
a small number of “difficult” examples that need to be re-decoded in each iteration, this
means that the batch algorithm is forced to repeat the inference step and perform increased
computation on the order of the size of the negative training set.

4.5 Related Work

Our work is most similar to (Chang et al., 2010), which proposes a batch algorithm for
learning over latent representations. We expand upon their framework by developing an
efficient online algorithm and exploring learning over multiple views on the latent represen-
tations. However, there are several works that have explored a similar task to the one we
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report on. Max-margin LMs for speech recognition focus on the word prediction task (Gao
et al., 2005; Roark, Saraclar, and Collins, 2007; Singh-Miller and Collins, 2007). This focus
is also shared by other syntactic LMs (Chelba and Jelinek, 1998; Xu, Chelba, and Jelinek,
2002; Schwartz et al., 2011) which use syntax but rely on supervised data to train their
parsers and then decode for LMs from left to right but also bottom-up (Charniak, 2001).
(Charniak, Knight, and Yamada, 2003) and (Shen, Xu, and Weischedel, 2010) use parsing
based LMs for machine translation but LM integration into the decoder limits the number
of features used compared to a full-sentence discriminative LM. Our focus is on fully ex-
ploiting the latent variables and training whole-sentence discriminative LMs. Our chunker
model is related to the semi-Markov model described by (Okanohara and Tsujii, 2007), but
ours can take advantage of latent structures. Our work is related to (Cherry and Quirk,
2008) but differs in ways previously described. They report significantly lower classification
accuracy, but this is not comparable since they use a different data set. Other approaches
to language modeling that go beyond n-gram LMs include trigger-based LMs (Singh-miller,
2007) and neural LMs (Bengio et al., 2003). We do not report comparable perplexity or
word error rate results to these kinds of approaches since our model works on the sentence
level, rather than over word prediction.

4.6 Conclusion and Future Work

In future work, we plan to apply our algorithms to more tasks to corroborate its effectiveness
in other areas. We would also like to undertake more thorough analysis of the properties
of online learning algorithms over latent structures. For multiple views in latent structure
learning, we have explored separate inference for each representations’ view; in the future,
we will examine the use of joint inference across multiple latent representations.

Additionally, we intend in future work to conduct an analysis of the convergence bounds
of the co-training inspired strategy for combining multiple views on the latent strucures.

We have presented a general online algorithm for learning over constrained latent repre-
sentations, and we have shown that it attains higher accuracy on a binary grammaticality
test. We have also explored the use of multiple views on latent representations via concate-
nation, majority voting, and co-training. This type of training can be applied to various
NLP tasks that stand to benefit from latent structure information.
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Chapter 5

Joint Latent Discriminative
Segmentation and Alignment for
SMT

5.1 Introduction

In this chapter, we discuss our model for joint segmentation and alignment for SMT. We im-
plement and evaluate discriminative max-margin training for machine translation, wherein
the alignment and the segmentation of the source data are latent variables. Our model uses
fully discriminative training to learn the translation model, whereas much work in discrimi-
native training for MT does only reranking or other adjustment to a generative model. Our
model is similar to the discriminative models of (Watanabe et al., 2007), (Tillmann and
Zhang, 2006) and (Liang et al., 2006), but differs from those works in several ways: first,
unlike these works, it requires no precomputed phrase table, but rather learns the phrase
correspondences as part of truly end-to-end discriminative training. Second, our work uses
a max-margin optimization rather than simple perceptron-like updates, and does so in the
full model training, rather than in tuning only. Third, this work models both the alignment
as well as the segmentation of the data as latent structures, making it possible to select
optimize the segmentation for the translation task.

We evaluate our new model against a 2012 release of the Moses ((Hoang et al., 2007))
phrase-based translation system baseline on a Turkish-English translation task. We consider
using the translation system that our model learns as an alignment system that can act as a
drop-in replacement for GIZA++ as well as a source of new phrases, features, and weights
for the Moses translation system. Since our model considers translating on the morpheme
level, we also ran a baseline Moses system trained on the morpheme-tokenized version of
the data. In order to evaluate the morpheme-analyzed baseline against the other systems,
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we stitch the morphologically-segmented output back into full words before evaluating it
against the reference.

5.2 End-to-End Discriminative Model

Here we develop a discriminative translation model that jointly learns the segmentation and
translation of the source data, using MIRA-style updates (Chiang, 2012). Our model splits
the inference step into two phases: in the first, we optimize over the best segmentation of
the source sentence for the translation model given a fixed (source, target) pair from parallel
training data. In the second phase, the decoder uses these best segmentations to find the n-
best scoring translations. These are then used in discriminative training on a BLEU-based
((Papineni et al., 2002b)) loss function, which updates towards some oracle translation.
The oracle translation can be selected in a number of ways, most frequently by using either
a local or global update strategy, or else by updating towards a ‘hope’ translation (Chiang,
2012) (see section 5.2.4). Thus, the model learns to prefer the segmentations which lead to
the highest scoring alignments.

Our model objective seeks to minimize the translation loss over example points D =
〈xi, yi〉N1 with respect to BLEU; thus, we search for the parameters w that minimize:

L(w) = 1
N

∑
i

Li(w),

where
Li(w) = `i(d, di)−w · (φ(di)− φ(d)),

and
d(x, y;w) = arg max

y
max
s,h

w · φ(x, y, s, h),

where (x, y) is a parallel sentence pair with x a sequence of source characters and y a
sequence of target words, di the oracle translation derivation, s is the latent segmentation,
h is the latent alignment, w is the weight vector, and φ(x, y, s, h) is the feature vector for
x, y, s, h. `i is a measure of the extrinsic loss of the candidate against the oracle translation,
measured using BLEU scores. This will be discussed further in section 5.2.6.

Our training algorithm is as follows. Given parallel training data {(xi, yi)}, we initialize
a weight vector w and an indicator phrase table t. The phrase table t simply determines
which phrases are available, while the phrase weights are determined by w. At each iteration
we do the following steps for each source–target pair (xi, yi):
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1. Find the best segmentation. We force decode with fixed xi and yi from the parallel
training data (where xi is unsegmented):

s∗i = arg max
s

max
h

w · φ(xi, yi, s, h)

2. Update the phrase table. We take each source-target subsequence alignment feature
induced by s∗i and add it to t.

3. Re-decode the unsegmented xi (this time without looking at the target reference) using
the updated phrase table t, according to the model f(x;w). We take the model’s n-
best list and compute the BLEU score of each output against the oracle translation
di. Each yj in the n-best induces a corresponding assignment of the latent variables:
the segmentation sj and alignment hj .

4. Update w. Following (Chiang, 2012), we optimize the candidate translations in the
nbest list, as an approximation for the space of all possible translations, using a cutting
plane-style algorithm. To update the weights, minimize

1
2η |w

′ −w|2 + ξi

subject to

`i(y, yi)−w · (φ(xi, s∗, h∗, yi)− φ(xi, s, h, y))− ξi ≤ 0 ∀y ∈ nbesti.

In this process, segmenting inflected forms may allow the model to find useful trans-
lations that it may not otherwise have access to. However, if we have robust statistics
on inflected forms, we prefer to keep them unseparated, since the more fine-grained of
a segmentation we do, the more we expose the model to search errors, especially when
word/segment order is different from source to target. We will elaborate further on these
steps in the following sections. However, to get a better idea for how this algorithm plays
out on the data, let us consider a toy example. Assume we have the segmented parallel
Spanish-English sentences given in figure 5.1, where the original forms are shown on the first
and third lines and our model receives the (partially) segmented input and output shown
on the second and fourth lines.

In the force-decoding step, our model first finds a segmentation of the source and target
sides of each parallel sentence that will induce an alignment. During this step, our decoder
is not restricted to using a pre-computed phrase table, but rather considers all possible
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(11) voy a traerlo
ir-1SG a traer+ +lo
I will bring it
I will bring it

(12) se aprobó oficialmente
se aprobó oficial+ +mente
it is officially approved
it is official+ +ly approved

(13) vas a traer el regalo
ir-2SG a traer el regalo
you are going to bring the gift
you are going to bring the gift

(14) oficialmente en sesión
oficial+ +mente en sesión
officially in session
official+ +ly in session

Figure 5.1: Example training sentences with some morphological segmentation.

segmentations and alignments of each parallel sentence. In the representation we use, where
each token is a morphological segment, this means that our model considers all possible ways
of grouping morphemes together, either on the sub-word level or grouping together multiple
morphemes into units that can extend beyond the original word boundaries. Some of these
segmentation-alignments will be better than others. For example, for sentences (11) and
(12), the model may initially find the segmentation-alignments shown in figures 5.2 and 5.3,
respectively (tokens that are treated as a single segment are shown grouped in a block).

The alignment features from these segmentations are then added to the phrase table, a
few of which are shown in Table 5.1.

ir-1SG a, I will 0.1
lo-OBJ, it 0.1
mente+, approved 0.1
oficial+, +ly 0.1
se aprobó, it is official+ 0.1
traer+, bring 0.1

Table 5.1: Sample phrases in the phrase table extracted from the segmentation-alignment
force decoding step with initial weights.
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ir-1SG a

I will

traer+ +lo-OBJ

bring it

Figure 5.2: A good segmentation produced in the forced decoding step.

se aprobó

it is official+

oficial+ +mente

+ly approved

Figure 5.3: A bad segmentation produced in the forced decoding step.
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ir-2SG a

you will

traer+ el regalo

bring the gift

Figure 5.4: A good translation candidate produced in the free decoding step. The feature
weights for the segmentations used to produced this candidate will be rewarded.

oficial+

+ly

+mente en sesión

approved in session

Figure 5.5: A bad translation candidate produced in the free decoding step. The features
weights for the segmentations used to produced this candidate will be penalized.

Using this updated phrase table, we re-decode the training data without looking at the
target to generate an n-best list of translations. The segmentation features that produce
good translation candidates will be upweighted in the learning step and the bad segmen-
tation features will be downweighted. For example, given the phrase table shown in figure
5.1, we might generate the good translation candidate shown in figure 5.4 and the bad
translation candidate shown in figure 5.5 for sentences (13) and (14), respectively.

Next, in the weight update step, the features that constitute these translations are
extracted, and the features corresponding to the good translation is rewarded, while the
features from the bad translation are penalized, as shown in Table 5.2.

In this manner, the model finds the segmentations that lead to helpful alignments for
the translation task.
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ir-1SG a, I will 0.5
lo-OBJ, it 0.5
mente+, approved -0.2
oficial+, +ly -0.2
se aprobó, it is official+ -0.2
traer+, bring 0.5

Table 5.2: Sample phrases added to the phrase table extracted from the segmentation
alignment.

5.2.1 Decoding step

The decoding step takes a source sequence s, a phrase table t, and a weight vector w, and
produces an n-best list and the features for each translation in the list.

We use a standard stack-based beam decoder with a histogram beam of size l. A hy-
pothesis is defined by the position in the target and the set of covered source sub-sequences.
We use a stack for each number of source segments covered and generate the target from
left to right, while consuming the source in any order within the distortion limit. To ex-
pand a hypothesis, we range over all uncovered source sub-sequences within the maximum
source segment length and the distortion limit, and make an expansion for each entry in
the phrase table which matches this source sub-sequence. We keep track of all the features
which are used by each hypothesis, and score the hypothesis as the sum of the weights of
these features in w.

Distortion is defined in the usual way as the absolute difference between the start position
of the source sub-sequence being considered and the start position of the last sub-sequence
used by the hypothesis being expanded. However, we use a relaxed distortion limit to
ensure that there are always at least m uncovered source sub-sequences within the limit:
when expanding, we first look for the uncovered source sub-sequences with distortion less
than a fixed threshold l. If there are at least m such sub-sequences than we use them.
Otherwise we use the m sub-sequences with smallest distortion.

Because early in a run of the algorithm the phrase table is small, it is not always possible
for the decoder to find a hypothesis that covers both the source and target completely: it
may not have phrases that match at all, or even if there is a valid alignment it may not have
any hypothesis within the beam limit that can be completed. This problem is exacerbated
by the uniform initial weights, which cause the beam to simply take the first hypothesis
expanded. Stacks with several source words covered are likely to end up containing only
very similar hypotheses, and if these are unable to be completed, the earlier hypotheses that
would be needed to backtrack to the correct alignment may have fallen out of the beam.

To handle these cases we return the n-best list from the last non-empty stack, making
early updates (Collins and Roark, 2004) from these partial translations. The intuition be-
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hind this approach is that the hypotheses that make it impossible to reach a valid translation
of the complete source sentence should be penalized by the model. The relaxed distortion
limit also helps to avoid some such cases. In later iterations the weights should allow the
beam to make better choices.

5.2.2 Segmentation step

The segmentation step takes a source sequence s, a target sequence t (fixed to be the
reference translation) no longer than s, and a weight vector w, and produces a k-best list
of source-side segmentations with their features.

We use a modification of the beam decoder used for the decoding step. Here hypothesis
expansion again ranges over the uncovered source sub-sequences of up to the maximum
length, but the target for the phrase is fixed to be the next uncovered word in t. However,
we extend our decoder to consider all possible segmentations of the target side as well, as
long as the segmentation generates the target in a monotonic order.

In addition, we do not have to limit the alignments to match a phrase table; we instead
let it range over all possible segmentations within the segment-length and distortion limits.
This theoretically increases the complexity of decoding exponentially. Traditional stack
decoding for SMT is quadratic in length of the input; this reduces to linear with constrained
reordering. By allowing our decoder to consider all possible subsequences of the input for
segmentation, the search becomes exponential in the length of the input. However, in
practice we limit this to a fixed maximum segment length which we pick in proportion to
the average number of morphemes per word in each language.

Some hypotheses can be rejected because they finish covering the target while there
is still source remaining uncovered, or because they do not have enough source segments
remaining uncovered to align to the remaining target words. Here, because the source sub-
sequences which can be used for expansion are not limited by a phrase table, the only way
for the segmenter to be unable to continue is if all hypotheses in some stack are outside
the distortion limit, or if all are are rejected as described above. The relaxed distortion
limit addresses the former concern, and we have not observed the latter to occur often in
practice. None the less, we still allow the segmenter to return partial results if it is unable
to complete both sides. We note that the beam search with initial uniform weights will
again produce only very similar hypotheses in later stacks, and again rely on the training
procedure to correct this by making better weights.

Since allowing our decoder to consider multiple segmentations of the input slows it down,
we implemented a more lightweight version of dynamic programming decoding for the force
decoding step. In this formulation, we monotonically tile the source side of each parallel
sentence. Rather than keeping a stack of hypotheses for each amount of the source covered
and expanding them, we instead populate a chart where we keep just the single best way
of reaching each index into the source. While this in theory should make the decoder much
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more susceptible to search error, we found that in practice it managed to fully tile almost
all sentences in the training data. Crucially, this can be assumed to only be a viable option
in the force decoding step, since both the source and target are fixed and the search is only
over alignments, rather than over multiple translation options in free decoding.

5.2.3 Decoding with the Moses Decoder

Our in-house decoder proved to be too slow to scale to the full datasets for the free decoding
step. While we were able to implement fast decoding for the segmentation step in which
we force decode the source to output the fixed target (decoding each sentence in a few
seconds), when the decoder had to range over all possible translations in the free decoding
step, decoding could take minutes for a single sentence. So, we also tried decoding with
an out-of-the-box decoder, from the Moses SMT system ((Hoang et al., 2007)). In order
to use this decoder with our system, we wrote out all of the phrases our model learns
to a Moses-style phrase table, along with the normalized alignment feature weight as the
phrase translation probability. We then added a column to the phrase table for each of the
additional feature weights for all of the features that were triggered by that phrase pair.

After decoding with the Moses decoder, we extract the features used to generate each
example in the nbest list from Moses output. We can then use these feature representations
to proceed with learning as usual.

5.2.4 Update strategy

Local updating In the local update strategy, we take the oracle di to be the decoder
output with the best BLEU score against the reference yi. In this case, the updates are
more conservative, since we encourage the model to prefer translations with higher BLEU
scores, but it isn’t explicitly aware of the reference translation. However, the danger with
this approach is that it requires both a good enough single best translation as well as enough
variety in the n-best list to learn to generate outputs that get closer the actual reference.
Failing these conditions, the model might not move aggressively enough in the direction of
the reference to produce outputs with increasing improvements to BLEU.

Global updating In the global updating strategy, we take the reference translation itself
to be the oracle di. This updating strategy moves the model more aggressively towards the
reference when reachable by the model, though it is often the case that the reference is not
reachable. In this case, the model can fail to generate output at all. Therefore, we couple
this updating strategy with the early updating approach discussed in 5.2.1. However, (Yu
et al., 2013) argue that this updating strategy is incorrect. Briefly, the intuition behind this
is that when we update towards the reference translation itself, rather than some (perhaps
partial) candidate produced by our system, it makes it possible for the update to be invalid.
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To be valid, an update must happen in the cases when a bad candidate gets a higher model
score that a good candidate. In global updating, a good partial candidate may be pruned
and therefore not reach the final bin, but may rank higher in the model than any (perhaps
worse) candidate that survives to the final bin. In this case, while the model prefers the good
(pruned) candidate, the optimization step updates against the surviving bad candidate. (Yu
et al., 2013) argue that without ensuring valid updates, the algorithm is not guaranteed to
converge.

Updating against the Hope Derivation (Chiang, 2012) discusses another updating
strategy, referred to as updating towards the ‘hope’ versus ‘fear’ candidate translations. The
idea behind this updating strategy is that we want to select candidates to update towards
and against that take into account a combination of both the model score and the extrinsic
loss. So, to summarize, the ‘fear’ derivation is the one that has the best model score but
worst extrinsic score, and the ‘hope’ derivation is the candidate with the best combined
model score and extrinsic score. More formally, these various updating strategies can be
contrasted thus, where y is a translation candidate, yi is the reference translation, scoreext
is the extrinsic (BLEU) score, and scoremodel is the model score:
Global updating strategy oracle translation:

〈yi, h∗〉 = arg max h(yi) (5.1)

Local updating strategy oracle translation:

〈y∗, h∗〉 = arg max 〈y, h〉scoreext(yi, y) (5.2)

Global and local updating strategy update translation:

〈ŷ, ĥ〉 = arg max 〈y, h〉scoremodel(yi, y) (5.3)

Hope and Fear updating strategy oracle (hope) translation:

〈y+, h+〉 = arg max 〈y, h〉scoremodel(yi, y) + scoreext(yi, y) (5.4)

Hope and Fear updating strategy update (fear) translation

〈y−, h−〉 = arg max 〈y, h〉scoremodel(yi, y)− scoreext(yi, y) (5.5)

Using the ‘Hope and Fear’ updating strategy allows us to maximize the model score,
while penalizing the candidates that do this at the expense of the extrinsic score. In order
to use this updating strategy, according to the MIRA algorithm for each example in we
iteratively find a new fear derivation from the nbest list and update the model weights
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against the hope derivation. We continue to compute a new fear derivation and update
until there is no longer a bad (fear) candidate in the nbest list that is better scoring under
the model than the good (hope) candidate; we then move on to the next training example.

5.2.5 Initialization

We consider two ways of initializing the weight vector w. In the first method, we gen-
erate features for all possible allowed alignments with all possible allowed segmentations
of the source and give them all uniform initial weights. In the second approach, we take
segmentations for each training sentence from a separate segmenter, and for each source
segment and each target word that appear in the same sentence pair, we give that phrase a
uniform weight of one. Given these initial segmentation-based feature weights, we still run
the segmenting step before decoding in the first iteration as usual. Thus, while the decoder
and segmenter are allowed to generate new alignment features on the fly, the features cor-
responding to the initial segmentation will be preferred at the outset. The phrase table t is
initialized by the segmenting step in the first iteration.

5.2.6 Other Implementation Issues

We found that our implementation of BLEU was a very harsh metric when applied on the
sentence level. It was often the case that an initial candidate sentence would contain several
correct 1-, 2-, and 3-grams, but no 4-grams from the reference. The negative log weight
(approximating log zero) incurred by this would have the effect of canceling out the scores
from the other n-grams, giving too many translations zero BLEU scores to be helpful to
the model. Thus, we changed our version of BLEU for use within the training procedure to
behave more gently on a sentence-level by doing simple add-one smoothing on the n-gram
counts, after the method introduced by (Lin and Och, ).

However, this smoothed sentence-level BLEU is still quite a rough approximation of the
full BLEU score. BLEU was originally designed to be a corpus-based metric, in which ngram
counts are aggregated over the whole corpus. Thus, performing BLEU at the sentence level
only may be unnecessarily harsh. So, we followed (Watanabe et al., 2007), who approximate
corpus-level BLEU using an oracle document. The oracle document is composed of all the
previously seen single-best translations for each sentence in the corpus. To measure the
score for a translation candidate for a single sentence, we swap the candidate sentence in
to the oracle document and take the corpus level BLEU score. The sentence-level score
is defined as the change in document-level BLEU from the oracle document to the oracle
document with the translation candidate substitution.
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5.2.7 Features

We report results for training with different features in the discriminative model. The
basic features we consider in all experiments are: source-target aligned phrase pairs, target-
side-only monolingual features (to act similarly to a language model in translation), and
insertion/deletion features to capture null-aligned tokens. In addition to this, we use fea-
tures that keep track of whether a proposed aligned pair/segmentation matches the original
word boundaries or whether it instead breaks up a word internally. The intuition with these
features is that we want the model to stick to the original word boundaries, except when
it has a good reason to break up a word– this is similar to how PBMT memorizes longer
translation units/phrases but needs to rely on smaller units when statistics are sparser– so,
we initialize these features to reward preserving the original word boundaries and penalize
breaking up words.

For example, consider the following parallel English-Spanish sentence:

(15) she likes dogs
le gustan los perros

where our model receives the segmented input:

(16) she like+ +3SG dog+ +PL
le gustar+ +3PL el+ +PL perro+ +PL

Then the word boundary features form a tuple over the word boundary matches on the
source and target sides, firing 0 for a match, and 1 for a subword segment. E.g., for the
possible phrase pair (‘like+’, ‘gustar+ +3PL’), the word boundary feature would be (1, 0)
because it interrupts a word on the source side.

We also use morphosyntactic tag features extracted from the annotations on the Turkish-
English corpora provided by a hand-crafted morphological analyzer.

Since all the features encode information about the aligned segment pairs or else a
context window around them, the number of features scales linearly with the number of
aligned segment pairs in each parallel sentence.

5.3 Experiments

Our model can be used in several different ways in the translation task. We can use it
a) as a full end-to-end SMT system, b) to provide alignments for use in a SMT system,
for example, as a drop-in replacement for GIZA++, or c) to provide additional phrases,
features, and weights to augment the phrase table learned by a conventional SMT system.

We train and test our model on Turkish-English and English-Turkish translation tasks.
We chose Turkish because it is a language with a very rich morphological system, making
it very difficult for conventional SMT systems to produce good-quality output. In addition,
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unlike more fusional languages with rich morphology, Turkish’s agglutinative morphology
combines together in regular ways that are more amenable to segmentation. Thus, is is not
as difficult in Turkish to map between an abstract representation of a stem with morpho-
logical tags to a fully inflected surface word form as it might be in more fusional languages.

We use a data set due to (Eyigoz, Gildea, and Oflazer, 2013) of 50,000 parallel sentences,
with 1000-sentence dev and test sets. The data set is annotated with a morphological
analysis on both the Turkish and English sides, which provides the morphemes in words
with their derivational and inflectional morphology. The English morphological analyses
come from the CELEX database; the Turkish morphological analysis comes from (Oflazer,
1993), a hand-crafted, finite state analyzer designed for Turkish. In the our model’s force-
decoding segmentation step, we allow it to consider taking morphological segments on their
own, or to treat them as part of a larger unit with its surrounding morphological segments.
While it is in possible to consider smaller minimal units for the segmentation such as
characters, we chose to use the morphological segments as the minimal units instead for
two reasons: 1) the model already has a tendency to oversegment the data, so there was no
obvious benefit to using smaller units, and 2) character-by-character decoding is excessively
slow, because it makes the input sentences on the order of hundreds of tokens in length.

We train each model on the train set from this data and evaluate each by BLEU score
on a test set. For evaluation, we use a standard BLEU measure from the multi-bleu script
of Moses.

For all trials of the novel model, we used k = 1 best segmentations, n = 500 best
alignments, a distortion limit of l = 7 and m = 10, a maximum source segment length of
W = 10, a stack size limit of 100, and an update rate of C = 1. For the current experiments
we used only hope/fear updates. We tested both with and without using the initialization
from the external segmentation.

During force-decoding, the decoder searches over all possible segmentations, and when a
new segmentation/alignment pair is encountered, this is then added to the model with some
corresponding initial weight. However, in successive steps we limit our model to include
only the features used in one of the k best segmentations from the force-decoding step,
instead of keeping all features explored by the decoder when searching for the segmentation
that tiles the parallel sentence. This means that we only have the features that correspond
to segmentations that survive the beam and lead to alignments that can cover the sentence
pair. This shrinks the model size considerably and speeds up decoding and learning. Using
this constraint, the trained model size for Turkish-English was 1,883,125 and 1,211,129 for
English-Turkish for the models used in the results given in 5.3.1.

As it is difficult within the scale of this work to build a full end-to-end discriminative
SMT system that is competitive with a mature system like Moses, we also consider other
ways of using the discriminative model output in the SMT pipeline. For the Turkish-
English experiments, we consider using our system’s alignment outputs as a replacement
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for the GIZA++ alignments in Moses. We also consider using the discriminative system’s
model weights and phrases learned to augment the Moses phrase table.

5.3.1 Augmenting Moses with Discriminative Features

In this set of experiments, we train the discriminative model and then extract the aligned
phrases it learns along with their weights and add them to the phrase table learned by
Moses. For phrases found in either Moses or the discriminative model but not both, we
give them a small non-negative weight of 0.001 to avoid underflow in the Moses translation
candidate scoring in MERT. In order to use our discriminatively learned phrase pairs and
model weights with the conventional Moses translation table, we stitched and segmented
forms back into full words so that they will be compatible with the Moses word-based
system. For the Turkish-English system, the phrase table size was 399,923 before adding in
the discriminatively-learned phrases and 2,150,196 after. For the English-Turkish system,
the phrase table size went from 374,837 to 1,955,228.

Discriminative Weights as Dense Features

In introducing the features and their weights that our discriminative model learns into the
Moses system, one option is to treat the learned discriminative feature weights like the
other dense features that Moses uses, such as the translation probabilities and the language
model probability. In this manner, the feature weights our model learns can be added to
the Moses translation table for each phrase in the phrase table that also exists in our model,
and then the degree to which the dense feature value learned by our discriminative model
contributes to Moses’ log-linear translation model can be tuned in the standard way, using
MERT. We consider three settings of how to use the weights learned by the discriminative
model as dense features: 1) taking only the weight learned for the aligned phrase pair; 2)
taking the dot product of all the weights with all the discriminative features that fire for
an aligned phrase pair; 3) augmenting the Moses phrase table with each of the individual
weights separately for all the features that fire for an aligned phrase pair. For the first
two of these approaches, this means adding a single extra weight to the Moses phrase table
(meaning, 6 phrase weights instead of the typical 5). For the third approach, this means
adding as many as 5 extra weights to the Moses phrase table for a total of 10; this is still
within the range of the number of feature weights that MERT can stably optimize.

However, out of these three methods for using the discriminative model information
in the Moses phrase table, simply using the discriminative feature weight for the aligned
phrase performed the best out of the three, so we include results for this method.
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system best BLEU
Moses words 26.36
Moses morphemes 22.86
Discrim-Seg+wordboundfeats 26.85
Discrim-Seg+wordboundfeats+syntax 26.25

Table 5.3: Turkish-English system BLEU score comparison on test set. Boldface denotes a
statistically significant result.

system best BLEU
Moses words 17.90
Moses morphemes 14.77
Discrim-Seg+wordboundfeats 18.45
Discrim-Seg+wordboundfeats+syntax 18.33

Table 5.4: English-Turkish system BLEU score comparison on test set

Results

Table 5.5 gives the results using the Moses phrase table augmented with the discriminative
model phrases and weights for translation from Turkish into English.

Table 5.6 gives the results using the Moses phrase table augmented with the discrimi-
native model phrases and weights for translation from English into Turkish.

Discriminative Weights as Sparse Features

Another approach towards using the features learned by our discriminative model in Moses
is to treat them as sparse features. In this approach, the discriminatively-learned feature
values can be individually tuned alongside the dense features using Moses’ implementation
of batch MIRA training over a development set.

Sparse Feature Results

Table 5.5 gives the results using the Moses phrase table augmented with the discriminative
model phrases and weights for translation from Turkish into English using sparse feature
tuning.

Table 5.6 gives the results using the Moses phrase table augmented with the discrim-
inative model phrases and weights treated as sparse features for translation from English
into Turkish.
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system best BLEU
Moses 26.36
Discrim-Seg+wordboundfeats 26.95

Table 5.5: Turkish-English system BLEU score comparison on test set tuning with sparse
features. Boldface denotes a statistically significant result.

system best BLEU
Moses 17.90
Discrim-Seg+wordboundfeats 19.00

Table 5.6: English-Turkish system BLEU score comparison on test set tuning with sparse
features.

5.3.2 Effects of Initialization

We found that the initially segmented model learned faster than the model with uniform
segment weights. This is to be expected, as we would predict that the word based seg-
mentation would contain many segments with direct translation equivalents on the English
side, which would be useful to the model. However, we also found that initially reward-
ing segmentations that match the original word-based segmentation was not enough to get
good performance; it was also necessary to add features that capture whether the current
segmentation under consideration matches the word-based segmentation in order for the
model to learn not to over-segment the data.

5.3.3 Effects of Updating Strategy

The choice of updating strategy was an important factor in model performance. Under
the local updating strategy, the model would stop improving after a few iterations, and
would attain much lower BLEU scores than the globally updating model. However, the
best performance was achieved using the hope-fear updating strategy. We surmise that
it is due to two factors: 1) theoretically, as noted in Section 5.2.4, the global update is
not always necessarily valid, since the model’s best hypothesis may not survive the beam
in search, and 2) practically, the hope-fear updates allow for the most aggressive updates
towards the extrinsic loss while still maximizing the model score. This updating strategy
captures similar advantages as doing loss-augmented inference, with the added benefit that
it still allows for a valid update even when the reference is not reachable.

5.3.4 Analysis

There are several patterns that emerge from the experiments using the discriminative model
to inform the Moses phrase table. First, we see that the discriminative model consistently
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helps more with translation into Turkish than into English. This is consistent with our in-
tuitions motivating the use of this model; translation from a morphologically rich language
into a morphologically poor language is an inherently information-lossy process. So, we
expect that much of the morphological information on the Turkish side can be effectively
ignored when translating into a language like English, making the task easier and conven-
tional methods more suitable. However, we see that adding in morphologically motivated
segmentations when translating into Turkish yields a more sizeable improvement, ostensi-
bly since retaining access the morphological information when useful for the translation task
helps produce more complete and fluent Turkish output.

In addition, treating the discriminative model features as dense versus sparse when tun-
ing the Moses system did not make a dramatic difference. We hypothesize that this is due to
the twofold nature of the new information that our discriminative model is contributing the
the Moses system. In augmenting Moses with our model features, our model contributes
its learned weights over many phrase pairs that already existed in the Moses phrase ta-
ble. In addition to this, it also contributes new phrases that the Moses system did not
learn previously. We conjecture that the reason that the sparse versus dense optimization
did not dramatically differ was that the contribution of the new phrases learned by the
discriminative model outweighed the contribution of the weights it attaches to the phrase
pairs.

5.4 Related Work

Much of the previous work in using discriminative models for machine translation has used
discriminative training to tune the parameters of a pre-existing generative model (Chiang,
Knight, and Wang, 2009; Watanabe et al., 2007). These models are prevalent and perform
well, but because they restrict discriminative training to the tuning phase, training of their
translation model is not able to incorporate the breadth of features discriminative modeling
allows.

(Tillmann and Zhang, 2006) and (Liang et al., 2006) extend the use of discriminative
training for MT, in that they train the full translation model discriminatively, but build
this on top of pre-extracted parallel phrase alignments constructed using conventional word-
alignment and phrase-extraction methods without the use of discriminative modeling. As
in this work, all the works above learn the hidden alignments, however they used a fixed
segmentation of the data. While their use of word-based phrases allows a degree of flexibility
in the segments of the parallel data that are aligned, this flexibility is constrained to the
segments induced by conventional word-alignment and phrase-extraction methods.

For the English-Turkish translation task, (Eyigoz, Gildea, and Oflazer, 2013) report
results several bleupoints higher than ours on a similar data set using a morphologically-
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aware generative model. However, we do not have access to the representation of the data
that they used and are thus unable to make a direct comparison.

5.5 Discussion and Future work

For the SMT task, we found that using the joint discriminative segmentation-alignment
features in a phrase-based system improves performance, particularly for translation into
a morphologically rich language. However, we found that using the discriminative system
as a stand-alone SMT system could not achieve results that were competitive with the
conventional phrase-based system. We attribute this the the long history of generative
aligners such as GIZA++ and the high degree of engineering that has gone into making
them achieve high performance for SMT, and we remain hopeful that in the future our
system could be more competitive as a stand-alone SMT system with more development.

For the purposes of this work, we have treated the choice of the kind latent structure used
to inform the NLP task as fixed. However, this is somewhat arbitrary. Natural language
has many different layers of posited latent structure, beyond the kinds we have seen in
the work (morphological and shallow grammatical). Full grammatical structure, semantic
relations, discursive relations and more can also be recruited to inform NLP tasks. We
may also wish to consider latent structure that is less intuitively linguistically interpretable,
which is optimized for some particular NLP task without assuming anything about how we
model the latent information. This type of approach brings us closer to Neural Network-
style approaches towards NLP. However, we do not consider a comparison to deep learning
approaches in this work since deep learning for SMT is not yet competitive with the state
of the art as an out-of-the-box baseline.

Primary future work to be done for this task is to run experiments using the framework
we have developed on other data sets for other languages. We have focused on using
this model for translation for morphologically rich languages; however it would be very
interesting to apply this model to translation for languages like Chinese in which no word-
based segmentation is necessarily present.

Would like to extend our implementation of the discriminative joint segmentation–
alignment model to explore a wider range of more expressive features, and thus exploit
one of the natural strengths of discriminative models. In particular, we will add in explicit
lexicalized reordering features, which can then be easily utilized by the existing Moses de-
coder. Further, we would like to add in features that capture aspects of the broader context
or provenance such as topic features.

In longer term future work, we are interested in exploring how this framework can be
used for domain adaptation. Since our framework is designed to learn over latent features
of the data, it would be well-suited to learning latent domains and using them for dynamic
domain adaptation.
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Chapter 6

Latent Topics as Subdomain
Indicators

6.1 Introduction

In Chapter 5, we explored discriminative models for joint segmentation and alignment
for SMT. One of the strengths of these kinds of models is that they lend themselves to
making use arbitrary features that can capture different granularities of information. In this
chapter, we specifically delve into methods that leverage document-level information in the
SMT task. As a motivating example, consider translating the sentence “He couldn’t find a
match.” This sentence provides little guidance on how to translate the word ‘match’, which
could be either a small instrument used to start a fire, or a correspondence between two types
of objects. Whether we include word-based, phrasal, or even more long-distance features
including syntax or argument structure, the system does not have sufficient information to
pick the proper translation. However, if we know that the topic of the document relates to
finding medical documents (e.g. transplant donors) rather than starting fires, the system
may be able to predict the appropriate translation.

Finer grained document-level information may also be useful in disambiguating the cor-
rect translation from multiple candidates in other ways. For example, consider translating
the following English-Spanish sentence pair:

(17) the women are not worried
las mujeres no están preocupadas

To translate this English sentence correctly into Spanish, the adjective ‘worried’ must agree
with the gender and number of the subject ‘the women.’ However, since English does not
mark adjectives for gender and number, ‘worried’ may map to multiple different forms on
the Spanish side. Thus from the training data the lexical translation of ‘worried’ may be
ambiguous; we are likely to have multiple possible translations, as shown in Table 6.1.
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worried preocupado
worried preocupada
worried preocupados
worried preocupadas

Table 6.1: Multiple candidate translations from English into Spanish.

However, if we know from the context that this sentence is about some women, and that
previously in similar contexts the model prefers the feminine plural form ‘preocupadas,’
then that may help our model to pick the correctly inflected form, even without access to
a syntactic parse or morphological analysis of the text.

Indeed, previous work has shown that both explicit document-level information such as
document provenance (Chiang, DeNeefe, and Pust, 2011) and implicit domain indicators
such as topic models (Eidelman, Boyd-Graber, and Resnik, 2012) can be helpful for the MT
task, when considering both coarse- and fine-grained document-level information.

In this work, we investigate using fine-grained topic information for SMT, focusing on
translation into morphologically rich languages. We consider the setting wherein we have
a relatively small amount of parallel corpora and therefore only sparse statistics over how
to translate from uninflecting English into morphologically rich Turkish. We do this by
learning a discriminative topic model that takes into account the bilingual information in
the parallel text when estimating topic distributions.

6.2 Latent Topic Models

Following prior work (Eidelman, Boyd-Graber, and Resnik, 2012), we start our considera-
tion of using latent topic information with LDA topic models, in which each document di is
represented by a mixture of topics zn, as described in previously in Chapter 3.1. Associated
with each topic zn is a probability distribution generating words p(wi|zn, β). Given a set
of documents, this model learns topic distributions for each document and a global set of
word distributions for each topic to optimize the likelihood of the full dataset.

6.3 Lexical Weighting Models

Lexical weighting models aim to modify the translation probabilities of bilingual aligned
word or phrase pairs by a distributions over topics, thus capturing the preferences differ-
ent topics may have for the translation. This can be computed by conditioning on either
the document-level distribution or the document- and token-level posterior distribution.
(Eidelman, Boyd-Graber, and Resnik, 2012) found that the latter results in more peaked
document-level topic distributions that were most helpful for MT. Following this approach,
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the topic-based lexical weights can be estimated using a generative LDA topic model over
the source data by incorporating word alignment information according to the following
criteria: For aligned word pair (t, s), we can compute the expected count tzn(t, s) under
topic zn thus:

tzn(t, s) =
∑
di∈D

p(zn|di)
∑
xj∈di

cj(t, s). (6.1)

Then compute the lexical probability conditioned on the topic distribution:

pzn(t, |s) = tzn(t, s)∑
t tzn(t, s) . (6.2)

For the token-topic-conditioning models, we add the additional conditioning context of the
source word:

tzn(t, s) =
∑
di∈D

∑
xj∈di

∑
sk∼t∈xj

p(zn|di, fk), (6.3)

where

p(zn|di, sk) ∝ p(sk|zn) · p(zn|di). (6.4)

To go from the lexical weights over aligned word pairs to phrase pairs, we take the
product of the lexical weights over each aligned word pair in the phrase, normalized by the
phrase length:

pzn(t̄, |s̄) =
|t̄|∏
i=1

1
|ai|

∑
j∈ai

tz(ti | sj). (6.5)

These lexical weighting models can then be added as a feature in a log-linear translation
model. We compute the lexical weight over all words in a phrase and use it as a feature in
phrase-based translation:

fzn(t̄|s̄) = − log{pzn(t̄, |s̄)p(zn|d)} (6.6)∑
p

λphp(t̄, s̄) +
∑
zn

λznfzn(t̄|s̄). (6.7)

63



6.3.1 Lexical Weight Feature Functions in SMT

Once we have computed the topic-based lexical weights for the phrase pairs, we consider two
different options for using them in the Moses system log-linear translation model, following
(Eidelman, Boyd-Graber, and Resnik, 2012). If we have K topics, we use an additional
K feature functions in the Moses phrase table. One way to formulate these features is to
have one feature corresponding to each topic, i.e., for topics z0, .., z3 and phrase pair (s, t),
f0 = pz0(t|s), .., f3 = pz3(t|s). In other words, using these features for incorporating the
topic lexical weights into Moses gives the informativeness of z0, .., z3 for all the phrases in
the phrase table. This assumes that any given topic will have roughly the same degree of
usefulness for all sentences in the dev/test set. However, another option for formulating the
topic lexical weight feature functions is to consider them in order of informativeness, that
is, in order of how high a probability each topic assigns to the phrase pair in its document
context. So, with this method, our feature functions would be f0 = maxz∈Z pz(t|s), .., f3 =
minz∈Z pz(t|s), giving the lexical weight features in ranked order from most to least preferred
for the phrase pair. In this way, the topic that is dominant in the document gets the most
sway in choosing the phrase translation. To illustrate the effects of these two different ways
of using the topic lexical weights as feature functions in Moses, let us imagine that our topic
model has learned four topics z0, .., z3, where z0 corresponds to sociology, z1 corresponds to
public policy, z2, corresponds to epidemiology, and z3 corresponds to public health. Then
in the first method for establishing feature functions over the topic lexical weights, the
translation model will learn a single dense weight that reflects the usefulness of sociology,
public policy, et cetera for the whole dev set. In the second way of formulating feature
functions over the lexical weights, if epidemiology is the preferred topic for phrase pair X
and public health is the preferred topic for phrase pair Y , then the translation model will
learn a weight reflecting the overall usefulness in the dev set for each phrase’s respective
preferred topic, second-best topic, and on through the ranking of topics for each phrase
pair. This approach is better suited to our setting, in which we want to dynamically choose
the most informative topic for each new sentence, and so this is the method we use.

6.4 Discriminative Latent Variable Topics

While building generative topic models for lexical weighting for SMT may prove helpful,
this approach is not necessarily ideal. When the goal is to use the topic information for the
SMT tasks, we can safely assume that we have access to some parallel data, since this will
be used to train the translation mode. So, ideally our topic model will also take advantage
of the target as well as the source side of the parallel text, though this target information
is not part of the generative topic model estimation. Efforts to extend topic modeling to
use parallel data have resulted in proposed polylingual topic models (Mimno et al., 2009;
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Platt, Toutanova, and tau Yih, 2010; Jagarlamudi and III, 2010), which seek to model the
joint likelihood of the source and target sides of the parallel data.

However, mono- and polylingual generative approaches to topic modeling have some
shortcomings for SMT. Recall the formulation of the LDA topic model as a joint distri-
bution over the observed documents d1..D (where a document can be anything from a
multi-paragraph chunk of text down to a single sentence) and the latent topics discussed in
Chapter 3.1:

p(β1..K , θ1..D, z1..D, w1..N ) =
∏
K

p(βk)
∏
D

p(θd)(
∏
N

p(zd,n|θd,k)p(wd,n|βk, zd,n)). (6.8)

Firstly, under this formulation, all the words in a document contribute equally to the
estimation of the distribution over latent topics for that document. However, this is not
necessarily desirable, as we may suppose that some words will be much more highly indica-
tive of a given topic than others. For example, we may imagine that a noun like ‘thing’
might tell us much less about the topic of a document than a noun like ‘mezzo-soprano,’
and we would prefer a model that gives more weight to more highly indicative terms when
estimating the hidden topic assignments.

Secondly, we would like a bilingual topic model to be able to capture the fact that some
words are more likely to be translated differently from one topic to another than others.
For example, the word ‘thing’ will usually be translated into Spanish as ‘cosa,’ regardless
of the topic, whereas the word ‘hot’ must be translated as ‘calór’ in some topics (i.e., the
weather) but ‘picante’ in others (i.e., cooking). Under generative topic models, each topic’s
distribution over words is learned independently; we would prefer to have shared information
across topic distributions when estimating topic assignments in order for the topic model
to distinguish between translation pairs that are more topic dependent.

In order to address these issues, we use a discriminative bilingual latent variable topic
model that optimizes the conditional likelihood of the target text given the source and the
latent topics. This likelihood is formulated as the probability of the latent topic given the
whole source document, and the probability of the target given its aligned source and the
latent topic, where we use a log-linear model to estimate both of these distributions. More
formally, for source document S and target document T with alignment pairs (s, t), we wish
to compute the following discriminative model over a mixture of latent topics z:

p(T |S) =
∑
z

p(z|S)
∏

(s,t)∈S,T
p(t|s, z). (6.9)
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Figure 6.1: A hierarchical organization of topics.

The two terms in Equation 6.9 are each formulated as log-linear distributions, with topic
distribution

p(z|S) ∝ exp(θ · f(S, z)), (6.10)

and translation distribution

p(t|s, z) ∝ exp(λ · g(s, z, t)). (6.11)

Using these feature-based log-linear distributions, we can allow more strongly discrimi-
native words to have a higher weight in estimating the topic distributions. While tradition-
ally topic models have used documents consisting of multiple sentences or paragraphs, here
we will consider each sentence to be its own document or micro-domain. The idea is that
since our SMT systems make translation decisions on the sentence level, it makes sense to
consider the topic of just the sentence we are currently translating. This approach has been
shown to be more helpful than larger conventional document sizes for topic modeling for
SMT in (Eidelman, Boyd-Graber, and Resnik, 2012).

In order to capture the idea that some words and alignment pairs are more strongly
indicative of particular topics than others, we use a hierarchical topic structure. We for-
mulate the topics in terms of a binary tree structure, where topics go from most general to
most specific as we proceed down from the root to the leaf topic nodes. Whenever a feature
fires for a topic, all of its more general antecedent topics in the tree also fire. In this way
we can learn to set the parameters of more topic-dependent words lower in the tree while
the parameters for more topic-agnostic words will only fire higher in the tree for the general
topics. For example, if we choose to learn 4 specific topics 1, 2, 3, 4, then our model will also
learn the more general topics {1, 2}, {3, 4}, and {1, 2, 3, 4}. Intuitively, we might suppose
that this could correspond to a semantic schema such as that shown in Figure 6.1.

To illustrate what this model learns, consider a small example using the parallel sen-
tences given in Figure 6.2. Using two leaf topics, we would get distributions shown in Table
6.2.
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(18) La sopa está caliente
The soup is hot

(19) Hace calór en el verano
It is hot in the summer

Figure 6.2: Example training sentences

Topic 0 Topic 1
Sentence 18 0.1 0.9
Sentence 19 0.9 0.1

Table 6.2: Per-sentence document topic distributions.

Table 6.3 shows the topic distributions over translations. ‘Soup’ and ‘verano’ do not
have topic-dependent translations, but they are strong indicators of topics, enough to sway
the per-sentence document topic distribution. This is in turn helpful in influencing the
ambiguous translation of ‘hot.’

6.4.1 Training

To learn the topic distributions under this formulation, we can use the posterior distribution
for a topic z given an aligned source-target document (S, T ):

p(z|S, T, θ, λ) = p(z, T |S, θ, λ)
p(T |S, θ, λ) . (6.12)

To compute the gradient of this posterior, we can use the difference between the expected
values of the true counts versus the empirical counts under the current parameter settings,
using the partial derivatives of the components of the topic parameters θ and λ respectively:

source target Root Topic 01 Topic 0 Topic 1
the la 1.0 1.0 1.0
hot caliente 0.4 0.1 0.9
hot calór 0.6 0.9 0.1
soup sopa 1.0 1.0 1.0
summer verano 1.0 1.0 1.0

Table 6.3: Topic distributions over word translations.
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∂

∂θi
logP (T |S, θ, λ) = Ez∼|S,T,θ,λ fi(S, z)− Ez′|S,θ fi(S, z′), (6.13)

∂

∂λi
logP (T |S, θ, λ) = Ez∼|S,T,θ,λ

∑
(s,t)∈(S,T )

(
gi(s, z, t)− Et′|s,z,λ gi(s, z, t′)

)
. (6.14)

We perform batch gradient descent optimization using RProp (Calandra, 2011). We
initialize the model with a vector of random weights and we use L2 regularization. However,
we keep the weight on the regularizer small (0.1 maximum) so as to encourage sharply
peaked distributions over the topics.

6.4.2 Lexical Weighting with Discriminative Bilingual Topic Models

To compute the lexical weights for the phrase pairs from the topic models, we follow a
procedure similar to that described in Section 6.3. To calculate the probability of phrase
pair (s, t) from source document S under each leaf topic zn, we use the following:

pzn(t|s) = p(zn|S)p(t|s, zn), (6.15)

where

p(zn|S) =
∑
s∈S

p(zn|s). (6.16)

To get the lexical weights for multiword phrases, we take the product over all the aligned
word pairs in the phrase as in Equation 6.5.

We start with this above conventional formulation of the lexical weights, but we also
consider several variants. We consider computing lexical weights using the translation topics
distribution, without additionally conditioning on the source sentence. The idea with this
formulation for the lexical weights was that conditioning on new source sentences can make
the lexical weights quite sparse if they are quite different from the topic model training data.
In this way we might retain more robust statistics for the dev/test sets using the alignments
alone. We also considered a version in which we sum over all leafs topics and thus have a
single topic-based lexical weight. This approach again was devised to help combat sparse
statistics in the topic lexical weights. We hypothesize that by summing over the leaf topics,
the lexical weight for the phrase pair will still be dominated by the single most preferred
topic but will smoothed by the overall preference for that phrase pair among all topics.
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6.5 Experiments

We train the discriminative topic model on the same 50,000 sentence English-Turkish paral-
lel corpus used in Chapter 5, this time using the word-based version, rather than the version
that has been segmented into morphemes. We also train a Moses phrase-based translation
system on this parallel data. We then use two distributions output from the topic model
to compute lexical weights for the translation system: 1) a distribution that specifies the
topic distribution over each aligned word pair from the aligned corpus, and 2) a distribution
that specifies the document-level distribution over topics for each bilingual document in the
corpus. We follow (Eidelman, Boyd-Graber, and Resnik, 2012) and use micro-documents
consisting of a single sentence, and we select four as the number of leaf topics on which
we train the topic model. Previous work has found that using a small number of topics
(between 5-10) is most effective for SMT (Eidelman, Boyd-Graber, and Resnik, 2012).

To use the resulting lexical topic weights with Moses, we treat them as additional dense
translation weights, with which we augment the pre-trained phrase table. To derive the
lexical topic weights for the development and test sets, we compute the distribution over
topics for the source side of each per-sentence document in the dev/test set in order to
compute Equations 6.16 and 6.15. To incorporate the topic lexical weights as dense features
in the Moses phrase table, we use the second method described in Section 6.3.1, wherein the
feature functions give the descending order ranking of lexical weights by topic preference
f0 = maxz∈Z pz(t|s), .., f3 = minz∈Z pz(t|s).

In order to use these dynamically computed topic-based lexical weights in Moses, we
have to generate new phrase tables for the dev/test sets that are augmented with the new
features. To do this, we first filter the original phrase table for each sentence in the dev/test
set. So, since our dev and test sets are each 1,000 sentences long, we get 1,000 new per-
sentence phrase tables for each set. Next, we compute the sentence-document-level topic
distributions to compute the lexical weights for the phrases in each of the per-sentence-
filtered phrase tables. We also annotate all the tokens in each sentence and all the phrases
in each sentence-filtered phrase table with a markup of the sentence/document ID. With
this markup, we can then concatenate all the per-sentence phrase tables together so as
to be able to tune and decode the whole dev/test set at once, while assuring that each
sentence-document will only be decoded using the appropriate document-specific lexical
weights.

To compute the lexical weights without conditioning on the sentence context, we can
simply augment the original Moses phrase table directly. Since these lexical weight features
do not depend on the source context, we can also try treating these as sparse features and
learning individual weights for each lexicalized feature.

We tuned both the baseline and the system augmented with topic lexical weights using
MERT for the dense features and KBMIRA for the sparse features. We generated the word
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system best BLEU
baseline 18.47
+lex weights leaf sum sparse 18.60
+lex weights leaf sum dense 18.72
+lex weights leaf sum+favorite sparse 18.55
+lex weights leaf sum+favorite dense 18.73

Table 6.4: English-Turkish system BLEU score comparison on test set. Boldface denotes a
statistically significant result.

alignments and phrase tables using the February 2015 Moses 3.0 release. This newer Moses
distribution produces higher initial baseline scores than the older version used in Chapter
5.

6.5.1 Results

Results for the English-Turkish SMT experiments are summarized in Table 6.4. We ran
experiments using a Moses phrase table that is augmented with lexical weights from a four-
topic and an eight-topic discriminative hierarchical topic model. However, we found that
using four rather than eight leaf topics performed best, so we present results using four leaf
topics. In addition, we found that formulating the lexical weights using just the topic-based
translation distribution was more effective than conditioning on the source context, so we
present the results using the lexical weights formulated in this manner.

As summarized in Table 6.4, augmenting the Moses phrase table with topic-based lexical
weights yields a models but statistically significant improvement in BLEU scores. The fixed
ordering of topics was not a useful feature, but taking the most preferred topic and the sum
over the leaf topics were helpful in guiding the system towards better translations. However,
these features were most beneficial when treated as dense features; using the topic lexical
weights as sparse features led to overfitting.

It is interesting to consider whether the improvements in translation output from using
the topic-based features are due to improved lexical choice or to better morphology. In
order to probe at this, we analyzed the testset and split all explicitly inflected words into
their stem and suffix. From this we generated two files, one containing the stemmed version
of all inflected words and another containing the suffixes; uninflected words were copied into
both files without change. We did this for the baseline translation output, the translation
using topic-based features, and the reference, and then re-ran the BLEU scores. Table 6.5
summarizes these results. We can infer from this analysis that there was a small improve-
ment in lexical choice over the baseline, but that the morphology was distinctly improved
over the baseline.
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system BLEU
baseline stems 21.82
+lex weights stems 22.08
baseline suffixes 19.73
+lex weights suffixes 19.44

Table 6.5: Comparison of morphologically analyzed versions of the test set.

6.6 Related Work

As described in Section 6.4, (Mimno et al., 2009) present a bilingual approach to topic mod-
eling in the generative setting, however, this is not directly used in SMT model translation
decisions. The most directly comparable approach is described in (Hu et al., 2014), who
show that by using polylingual tree-based topic models they can improve domain adaptation
on a Chinese-English translation task.

6.7 Conclusion and Future Work

In this chapter, we have demonstrated an approach towards hierarchical, discriminative
topic modeling, and we have applied it to an English-Turkish translation task. Since this
task requires us to translate from a morphologically poor language into a morphologically
rich one, we leverage sentence-level document topic information to help disambiguate the
proper target translation among many possible for an uninflecting source word. This model
is designed with the translation task in mind, because unlike previous work that either fails
to make use of bilingual information, or else jointly models the observed data and the latent
topics, this model directly optimizes the conditional likelihood of the target data given the
aligned source data and the latent topics.

This use of topic information from sentence-level documents could also be considered a
form of dynamic domain adaptation over micro-domains. We would like to extend this work
into explicit domain adaptation for SMT, since this approach promises to be particularly
helpful in domain adaptation settings where we don’t have access ahead of time to knowledge
about the domain of our test set. We are also interested in extending this model to a
multilingual setting, where by leveraging small multi-parallel corpora and allowing topic
information to influence translation preferences, we can boost the alignment quality across
languages.
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Chapter 7

Training Issues for Large-Scale
Structured Models

Chapters 4 and 5 describe structured discriminative models for NLP tasks and give algo-
rithms for optimizing these models. An important consideration in learning these models
is how to perform large-scale training, since inference can be costly and we wish to train
our models on large datasets when available. Fortunately, the linear sum objectives used
in the models discussed in this thesis make them ‘embarrassingly parallelizable.’ However,
the method and effects of sharding the data and running parallel training are not neces-
sarily straightforward. In this chapter we investigate different computational topologies
for distributed training for large-scale structured discriminative learning, using a simple
perceptron algorithm as our model.

Perceptron training is commonly used to learn structured models for various natural
language processing tasks, making it desirable to apply on very large datasets. We im-
plemented a distributed perceptron training algorithm in a MapReduce framework for a
structured output chunking task and evaluated it on a cluster and on multi-core systems.
Our work extends (McDonald, Hall, and Mann, 2002) into two areas of analysis. We com-
pare two methods for implementing the algorithm and find that the choice of topology in
the MapReduce operations significantly affects runtime, with the unexpected result that
duplicating computation increases overall performance. We also examine the behavior with
different numbers of data shards and find a tradeoff between runtime and accuracy.

While perceptron optimization is simpler than some of the latent structured model
training algorithms we have explored in this thesis, it is sufficient to demonstrate general
empirial considerations of large-scale distributed structured learning.

73



7.1 Introduction

The perceptron algorithm (Rosenblatt, 1958), in particular the global linear model of (Collins,
2002), has been employed to handle natural language processing tasks such as part-of-speech
tagging, parsing, and segmentation. Many such tasks require vast training data to create
robust models, making them very time-consuming and computationally intensive to train
on. It is natural to look to employing distributed systems to speed up training for these
tasks.

We implemented distributed perceptron training following the algorithm of (McDonald,
Hall, and Mann, 2002) using MapReduce (Dean and Ghemawat, 2008), chosen as a simple
and common framework for distributed computation. (McDonald, Hall, and Mann, 2002)
also use MapReduce but do not give details of their implementation or evaluation of choices
involved. We achieved similar results to (McDonald, Hall, and Mann, 2002) in that our
implementation not only is significantly faster than the serial algorithm but also achieves a
higher accuracy. (Chiang, Marton, and Resnik, 2008) also use a parallel setting for training
the online learner MIRA (Crammer and Singer, 2001), but do not discuss the parameter
combining topology.

This work has the following novel contributions. We examine two topologies for handling
the combination of separately trained weight vectors at each iteration, and find that the
choice which duplicates computation leads to a shorter runtime. We also vary the number
of data shards and observe a tradeoff between runtime and the final testing accuracy. Unlike
previous work, we ran our system on both an HPC cluster and single multi-core systems and
find similar results in both environments. We report cache miss statistics for the multi-core
setting. These findings promise to help to make effective use of the distributed perceptron
for NLP applications.

7.2 Algorithm and MapReduce

Algorithm 6 shows the distributed perceptron of (McDonald, Hall, and Mann, 2002). Here
OneEpochPerceptron(Ti,w) is one iteration of standard perceptron training on data Ti with
initial weights w, and µ1, ..., µS are weight mixing coefficients which in our work we fix to
be constant µi = 1

S (so that line 5 is just a mean). The data is split into S shards, which can
be processed separately. At each iteration the new weight vectors resulting from training
on each shard are combined to form a single new weight vector for the next iteration.
(McDonald, Hall, and Mann, 2002) show that this algorithm has the same convergence
guarantees as the serial version, with a worst-case learning rate of a single update per
iteration.

MapReduce uses two operations over data which is represented as a distributed collection
of key-value pairs. A map operation executes a function on each key-value pair, while a
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Require: training data T = {(xt,yt)}|T |t=1
1: shard T into S pieces T1, . . . , TS
2: let w be the zero weight vector
3: for iteration n : 1..N do
4: w(i) = OneEpochPerceptron(Ti,w)
5: w =

∑
i µiw(i)

6: end for
7: return w

Algorithm 6: Distributed perceptron

reduce operation executes a function on each set of pairs with the same key. Both operations
output a new set of pairs, which is the input to the next operation.

In our implementation we use S processes for computation. The algorithm is initialized
with zero weight vectors for each shard as (i,w) pairs with keys i ∈ {1, . . . , S}. The training
step (line 4) is a map operation which for each pair (i,w) performs OneEpochPerceptron(Ti,w)
and outputs the new weight vector as a set of feature-weight pairs. Each process handles
the training for one shard. The averaging step (part of line 5) is a reduce operation which
for feature j averages all S new weights for j and outputs a single feature-weight pair. We
let MapReduce choose how to distribute this operation across the processes.

Finally, to start the next iteration it is necessary to combine the feature-weight pairs
into (i,w) pairs each with a complete copy of the new weight vector. We call this the
combine step, and consider two methods which are described in section 7.6.

We note that although the algorithm as presented uses a single global weight vector, in
fact each training map operation needs as input only the weights for features present in its
own shard. We did not find a successful way to exploit this, but we do not rule it out for
future improvements.

7.3 Experimental setup

We ran our experiments on an HPC cluster and on two multi-core systems (not part of
the cluster). The cluster consists of 64-bit x86 machines (the precise number of nodes used
varied in our experiments), which we could not isolate from the load of other users. The
multi-core systems were both AMD Opteron systems with 24 cores over 4 chips. The first
was temporarily extracted from the cluster for exclusive testing, and the second was set up
for hardware counter measurements and used for detailed bottleneck testing. On the cluster,
the processes were distributed across multiple machines; on the two exclusive systems the
processes were all on different cores.
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Figure 7.1: Training times for different shardings.

Our implementation used the MapReduce-MPI1 library running on top of MPI. We also
used the mpi4py2 library for other MPI coordination. Besides the S processes described in
section 7.2 our system includes one extra process for logging.

We tested the algorithm on a chunking task using the CONLL-2000 shared task standard
data and test set 3. We present only a single repetition of each experiment here, but we
did at least 2-3 repetitions of each experiment and found the results to be consistent on
the points presented. In our experiments here we sharded the data by taking equally sized
sections in sequential order. The data was made available to all processes on a network file
system.

1http://www.sandia.gov/∼sjplimp/mapreduce.html
2http://mpi4py.scipy.org/
3http://www.cnts.ua.ac.be/conll2000/chunking/
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7.4 Convergence and comparison to serial

We first checked convergence by comparing training and testing accuracy for 60 iterations
on the cluster (not shown here), with both 5 shards and 20 shards. As expected for a data
set which is likely not strictly linearly separable, as the number of training mistakes drops off
with increasing iterations the testing accuracy improves up to a point where overfitting and
oscillation begin. We observed that 15-30 iterations were sufficient to reach good accuracy,
and therefore limited further experiments to this range.

To compare accuracy and runtime, we ran the parallel algorithm with various numbers S
of shards and compared against the standard serial algorithm. Figure 7.1 shows results for
15 iterations on the cluster using 2 cores per machine,

⌈
S+1

2

⌉
machines, and multi-combine

(see section 7.6). Note that while the serial version attains slightly better accuracy than
the state-of-the-art of 93.53% (Collins, 2002), the distributed runs are all able to improve
on this. (McDonald, Hall, and Mann, 2002) also note this behaviour, and suggest that it
is due to the averaging effect of combining weight vectors from each shard. We also ran
this experiment on the cluster with 1 core and with 4 cores per machine, and on the first
exclusive machine, obtaining similar results in each case.

7.5 Number of shards

Although the distributed runs all finish 15 iterations more quickly than the serial version
in figure 7.1, in varying the number of shards there appears to be a tradeoff between
improvement in runtime and improvement in accuracy; the 10 shard run finds the highest
accuracy. It is also interesting to note that while training time decreases as the number of
shards increases, there is little difference between 5 and 10 shards, and between 15 and 20
shards, respectively.

We conjecture that the tradeoff may be due to two competing factors. On one hand,
averaging across the different weights from training on different shards can act as a reg-
ularizer, keeping certain locally useful features from getting too heavily weighted so as to
overfit. On the other hand, increasing the number of shards limits the number of features
and amount of interaction between features in each shard, making the feature weights less
useful.

7.6 Combine step topologies

We consider two methods for the combine step, which we call single-combine and multi-
combine. In single-combine, the input feature-weight pairs (the output of the averaging step)
are all sent to a single process, which combines them into a single weight vector and then
outputs copies as index-weight vector pairs with indices 1, . . . , S. In multi-combine, each
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Figure 7.2: Transmission of weights between processes through the averaging, combine, and
train steps. Dashed lines represent individual weights and solid lines represent complete
weight vectors.
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Figure 7.3: Transmission of weights between processes through the averaging, combine, and
train steps. Dashed lines represent individual weights and solid lines represent complete
weight vectors.

input pair is duplicated S−1 times so that each process gets a copy and can independently
produce a combined weight vector; then each process has a local copy and can begin the next
training step without further network activity. We implement both methods by modifying
the output of the averaging step and adding a second reduce operation. Figures 7.2 and 7.3
show the communication patterns for the two methods.

Both methods require duplicating and transmitting the same number of weights, al-
though they make the duplication with different granularity and different communication
patterns. We initially thought that single-combine might be faster since it avoids dupli-
cation of computation, but we found multi-combine to perform faster in practice. Figure
7.4 shows the runtimes for both methods on the cluster, with 2 cores per machine,

⌈
S+1

2

⌉
machines, and varying numbers of shards; multi-combine does significantly better in each
case.

We believe that this difference is due to single-combine creating a bottleneck at the
combining process, which becomes responsible for all the computation and all the trans-
mission of duplicated weights. On the shared cluster we were unable to make bandwidth
measurements to evaluate this, so we instead used the second exclusive system. Here the
MPI implementation used the multi-core environment directly (not through the network
interface). On this system the L3 cache is per-chip while L1 and L2 are per-core. The L3
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Figure 7.4: Training time for both combining methods.

miss rate is therefore an estimate of traffic between chips, and we used it as an equivalent
to network bandwidth for this setting.

Figures 7.5 and 7.6 show miss rates versus time for both methods for 15 iterations
and 15 shards. Multi-combine finishes in less than half the time of single-combine. The
peaks in both graphs correspond to the combine step, which is the most communication
intensive part of the algorithm. Note that multi-combine has a similar miss rate for each
process, while in single-combine one process has much higher miss rate than the others.
Moreover, the peaks for single-combine are (very roughly) twice as high and twice as long
as those for multi-combine. This suggests that the system is indeed bottlenecked on the
single combining process.

7.7 Conclusions

We have shown two useful properties of the implementation of the distributed perceptron for
NLP data: duplicating computation when combining weights can improve overall efficiency,
while the runtime and accuracy can be balanced by adjusting the number of data shards. We
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Figure 7.5: Miss rates for the multi-combine method, with a line for each process, labelled
by the ID of the core it ran on. (The core IDs and their order correspond to the way in
which cores are arranged in the machine.)

expect that these findings are generalizable for distributed learning for various structured
models.
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Figure 7.6: Miss rates for the single-combine method, with a line for each process, labelled
by the ID of the core it ran on. (The core IDs and their order correspond to the way in
which cores are arranged in the machine.)
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Chapter 8

Conclusion

8.1 Summary

In this thesis, we have examined using discriminative latent structure learning for NLP. We
began in Chapter 2 with an introduction to the tasks we apply this kind of model to in this
thesis: language modeling and SMT. We then gave an overview of the learning framework,
piece by piece: we separately introduce latent variable models, structured models, and
how to put them together in a discriminative framework in Chapter 3. In Chapter 4,
we applied our model to a language modeling task framed as a grammaticality classifier.
We saw that by training a discriminative model over latent shallow parse structures, we
can produce a classifier that can distinguish with a high degree of accuracy between real
human-generated text data and pseudonegative data sampled from an n-gram language
model. We also looked at multiple different representations of the latent information and
examined how to take advantage of using several different latent learners, each with their
own representational form. We demonstrated an algorithm that quickly optimizes the semi-
convex objective for the binary classifier. In Chapter 5, we considered a more complex
objective over structured outputs, where we investigated using this latent discriminative
learning framework for SMT. In this task, we allowed the model to range over possible
segmentations when searching for how to align sentence tokens, and thus to learn the best
segmentation of the parallel data for the SMT task. Training this model can be done
effectively using the MIRA algorithm, which is already used to optimize over latent target
derivations; we adapted the algorithm to introduce the additional latent segmentation of
the source and target alongside the conventional use of the latent derivation of the target.
We tested this model in an English-Turkish translation task against a phrase-based SMT
baseline, and observed that the addition of the discriminative model features boosted BLEU
scores.

We also investigated a different approach to translation into morphologically rich lan-
guages with our exploration of discriminative topic models. We demonstrated an approach
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to topic modeling over hierarchically structured topics that makes it possible to capture
differing degrees of informativeness of different words and to scale their contribution to
estimating the model parameters. Since this model jointly learns translation preferences
along with topic distributions, it makes it possible for the model to learn to judge the
suitability of a translation pair based on the distribution of topics in the document. By
directly optimizing the likelihood of the target document as a translation of the source, the
topic model is optimized for the SMT task. We tested this model on an English-Turkish
translation task, where we use the sentence-document microdomain preferences to guide
the translation mode.

We explored strategies for performing distributed training with structured models, and
showed that there are tradeoffs in efficiency and model accuracy in the size and number
of shards of data chosen. We also demonstrated that reduplicating the weight averaging
computation on multiple nodes can be more efficient than using a single central averaging
node to perform and broadcast the averaged model.

8.2 Contributions

The major contributions of this thesis are in the novel use of latent structures to help with
NLP tasks, as demonstrated for language modeling and SMT.

In the language modeling task, we have shown how multiple latent structures can be
combined to improve the performance of the grammaticality classifier with fewer iterations
of training. While using a single representation of the latent structure already achieves
high accuracy, by combining multiple different representations and learners for the latent
information, we show that this can be boosted further to achieve high accuracy with very
few rounds of training. This process allows the model to effectively select the formalism
that most quickly hones in on the most useful distinctions for the grammaticality classifier.

For SMT, we have shown that by jointly optimizing the alignment and the segmentation
of the data for the translation task we can attain high quality translations. In particular,
in optimizing over the segmentation for SMT, our model novelly considers latent represen-
tations of the input, rather than just latent derivations of the output. This approach allows
our model to align the representation of the parallel data that produces the best translation
output.

For the topic modeling task, we show that by building a bilingual discriminative topic
model over the aligned parallel data we can directly optimize the likelihood of the target
over features of the aligned source and hidden topic information. In this way, using the
same small set of data that is used to train the translation model, we can further boost our
translation system performance.
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8.3 Future Work

For the binary grammaticality classifier in particular, we would like to further extend this
work with more exploration of the theoretical properties of the semi-convex training algo-
rithm. In particular, we will conduct an investigation into how the use of multiple latent
structures affects the convergence bounds of the algorithm, since the co-training flavored
strategy alters the inference step from being a straightforward linear sum over the latent
structure output.

For the discriminative joint segmenter-aligner for SMT, we would like to investigate how
to add in other sources of latent structural information. Specifically, we are interested in
incorporating the discriminative LM over latent shallow parse structures into the alignment
model. We believe this could provide a helpful source of orthogonal information and would
be a lightweight way of injecting more useful syntactic information into the model.

In addition, there are several directions in which we would like to extend this general
framework in the future that are not task-specific. We have seen in Chapter 4 that learning
over the latent structures required performing semi-convex optimization. In future work we
would like to explore further analysis of convergence properties with semi-convex learning.
On a related note, we are also interested in investigating other approaches to optimization,
for example we would like to apply the recent technique of Stochastic Averaged Gradient
to explore its properties in the semi-convex case.

We also believe that this type of learning could prove useful in other NLP tasks. We
would like to explore applying our methods to, for example, textual entailment and semantic
role labeling over latent argument structure.
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