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Abstract

Recent years have witnessed the rapid growth of crowdsourced multimedia services, such
as text-based Twitter, image-based Flickr, and video streaming-based Twitch and YouTube
live events. Empowered by today’s rich tools for multimedia generation/distribution, as
well as the growing prevalence of high-speed network and smart devices, most of the mul-
timedia contents are crowdsourced from amateur users, rather than from commercial and
professional content providers, and can be easily accessed by other users in a timely manner.

Since cloud computing offers reliable, elastic and cost-effective resource allocation, it has
been adopted by many multimedia service providers as the underlying infrastructure. In this
thesis, we formulate the cloud resource allocation in crowdsourced multimedia services as a
standard network utility maximization (NUM) problem with coupled constraints, in which
real-time user interaction is a fundamental issue, and develop distributed solutions based
on dual composition. We further propose practical improvements for the content generation
and big data processing of crowdsourced multimedia services in a cloud environment.

Crowdsourced multimedia services also rely on convenient mobile Internet access, since mo-
bile users occupy a large portion of both content generators and content consumers. The
rich multimedia content, especially images and videos, put significant pressure on the infras-
tructure of state-of-the-art cellular networks. Device-to-device (D2D) communication that
smartly explores local wireless resources has been suggested as a complement of great po-
tential to support proximity-based applications. In this thesis, we jointly consider resource
allocation and power control with heterogeneous quality of service (QoS) requirements from
diverse multimedia applications.

Keywords: Crowdsourced multimedia; resource allocation
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Chapter 1

Introduction

Recent years have witnessed the rapid growth of crowdsourced multimedia services, such
as text-based Twitter1, picture-based Flickr2, and video streaming-based Twitch3 and Y-
ouTube live events. Empowered by today’s rich tools for multimedia generation/distribution,
as well as the growing prevalence of high-speed network and smart devices, most of the mul-
timedia contents are crowdsourced from amateur users with different backgrounds, talents,
and skills, rather than from commercial and professional content providers [1], and the
crowdsourced contents can be easily accessed by world-wide users in a timely manner.

Since cloud computing offers reliable, elastic and cost-effective resource allocation [2], it
has been adopted by many multimedia service providers as the underlying infrastructure.
With the aid of cloud computing, start-up companies can easily implement their ideas into
real products with minimum investment in the initial stage and expand the system scale
without much effort later on. A representative is Dropbox4, a typical cloud storage and file
synchronization service provider, which largely relies on Amazon Simple Storage Service
(S3) servers for file storage and leverages Amazon Elastic Compute Cloud (EC2) instances
to provide such key functions as synchronization and collaboration among different users.
The existing content/service providers can also migrate their legacy applications to cloud
platforms. For example, video streaming service providers, e.g., Netflix, have leveraged
cloud resources to handle burst traffic. They pay by bytes for bandwidth and storage re-
sources so that the long-term costs become much lower than those with overprovisioning in
self-owned servers. This elasticity of resources, without huge upfront infrastructure invest-
ment and with the ability to dynamically scale up/down according to user demand, is one
of the most charming characteristics of cloud computing.

There have been a lot of studies on how to efficiently utilize the cloud resources for
delivering multimedia content, especially videos. Many of them investigate the hybrid

1https://twitter.com/.
2https://www.flickr.com/.
3http://www.twitch.tv/.
4https://www.dropbox.com/.
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architectures that combines such traditional platforms as peer-to-peer (P2P) overlay net-
works and content delivery networks (CDNs) with cloud through service migration [3–5].
The latest studies focus on cloud-based video streaming systems over HTTP [6–8], with
the minimum requirements on the traditional platforms as well as service providers’ private
infrastructure. The critical issue is the trade-off between the costs of using cloud resources
and end users’ quality of service (QoS) requirements.

1.1 Overview of Crowdsourcing Services

According to the definition of Merriam-Webster dictionary, crowdsourcing refers to “the
practice of obtaining needed services, ideas, or content by soliciting contributions from a
large group of people and especially from the online community rather than from traditional
employees or suppliers”.5 Crowdsourcing systems encourage a large number of people from
different places to collectively make contributions to solve a variety of problems calling for
tedious human work.

The concept of crowdsourcing has been attracting broad interest from both industry
and academia in recent years [9]. As a distributed problem-solving and business production
model, crowdsourcing was proposed to conduct tasks that can be trivial for humans while
need considerable efforts for advanced computer programs [10]. With crowdsourcing, these
tasks can be efficiently performed with better utilization of labor resources and reduced
costs, as compared with the traditional approach that calls for employees or outsources to
a third-party organization. In crowdsourcing systems, the contributors come from public
and form loosely organized groups, especially from various online communities, driven by
financial or other virtual incentives, rather than from well organized enterprises. The rapid
development of network and semiconductor technologies makes the ubiquitous access to
Internet and ubiquitous computing a reality, which greatly boosts the surge of crowdsourcing
systems.

As one of the most famous crowdsourcing systems, Amazon Mechanical Turk (MTurk)6

provides a convenient platform to get job done. People register as “requesters” or “workers”.
Requesters can post their tasks on the website, with the corresponding monetary rewards.
Workers can browse the available tasks and are paid upon successful completion of each
task. A majority of the tasks are based on voting, which ask for the workers to select the
answer from a pool of candidates, and the answer selected by most people is considered
to be correct. Examples include geometric reasoning, named entity and image annotation,
natural language annotation, and relevance evaluation [10].

Apart from MTurk, there are also many other crowdsourcing systems based on virtual
incentives, for example, the knowledge sharing systems, represented by Wikipedia7, Yahoo!

5http://www.merriam-webster.com/dictionary/crowdsourcing.
6https://www.mturk.com/.
7http://en.wikipedia.org/.
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Answers8 and Stack Overflow9. This kind of systems greatly boost the propagation of
intelligence, which is beneficial to the whole society. People are willing to make contributions
to Wikipedia since this altruistic behavior can enhance their sense of meaningfulness, self-
determination, and sense of relatedness [11]. Further, virtual incentives have been widely
incorporated, say in the rating system in Yahoo! Answers and the reputation system in
Stack Overflow, to give credits to the people who post high quality questions or provide
expertise answers, which significantly foster the user participation.

In this thesis, we focus on crowdsourcing systems involving multimedia content distribu-
tion, especially the video streaming-based ones, including Twitch and YouTube live events.
For example, crowdsourced streaming generalizes the single-source streaming paradigm by
including massive contributors for a video channel [8]. Giving the worldwide distribution
of both content generators, namely crowdsourcers, and content consumers, and the large
volume of traffic over the Internet, ubiquitous access, reliable storage and network, timely
delivery, and convenient user interaction are the key factors to achieve good user experience,
calling for reliable infrastructure and careful system design.

Cloud computing, known for its high availability, reliability and scalability [2], is a
natural choice for hosting large scale crowdsourced multimedia services. The cloud in-
frastructure can provide computation, bandwidth, and storage resources with much lower
long-term costs than those with over-provisioning in self-owned servers, and react better
and faster to dynamic user demand.

1.2 Overview of Cloud Computing

Cloud computing refers to both the applications delivered as services over the Internet and
the hardware and systems software in the data centers that provide those services. And
the data center hardware and software is called a cloud [2]. As illustrated in Figure 1.1,
cloud users can access the cloud resources offered by cloud service providers via various
terminals (including PCs, laptops, smart phones and tablets) over the Internet. Cloud users
can easily deploy their applications on the powerful server clusters in a cloud without the
cumbersome hardware/software installation, management and upgrade. At the foundation
of cloud computing is resource virtualization and sharing. Cloud resources are shared by
multiple users with dynamical on-demand allocation so as to maximize the utilization of
aggregated physical resources. Each user sees its own dedicated virtual resources such as
CPU, GPU, memory and storage space.

The cloud services can be public or private. In a public cloud, the services and in-
frastructure are provided by such cloud service providers as Amazon and Google over the
Internet. These clouds offer efficient and flexible resource sharing; however, they can be less

8http://answers.yahoo.com/.
9http://stackoverflow.com/.
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Internet

Data Center

Smart Phones

Cloud 
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Figure 1.1: An illustration of cloud computing architecture

secure and more vulnerable than private clouds. Unlike public clouds, in a private cloud,
the services and infrastructure are maintained on a private network. Private clouds offer
higher level of security and control, though they require the company to still purchase and
maintain the software and infrastructure. In either case, there are a common set of essential
characteristics of cloud computing, as identified by the National Institute of Standards and
Technology (NIST) [12]:

• On-demand self-service. A user can unilaterally provision computing capabilities (e.g.,
server time and network storage) as needed without human interaction with each
service provider;

• Resource pooling and rapid elasticity. The provider’s resources are pooled to serve
multiple users, with different physical and virtual resources dynamically assigned and
reassigned according to user demand. To a cloud user, the resources available for
provisioning often appear unlimited and can be appropriated in any quantity at any
time;

4



• Measured service. Cloud systems automatically control and optimize resource use by
leveraging a metering capability at an abstraction level appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user accounts). The resource
usage can be monitored, controlled, and reported, providing transparency for both
the provider and the users;

• Broad network access. Persistent and quality network accesses are available to ac-
commodate heterogeneous client platforms (e.g., mobile phones, tablets, laptops, and
workstations).

Currently, there are three relatively mature cloud service models defining how to deliver
cloud resources to cloud users, namely Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS) [13].

Infrastructure as a Service (IaaS): IaaS is the very basic and the least abstract cloud
service. Well-known examples include the Amazon EC2, which allow users to rent virtual
machines to run applications, and the Amazon S3, which allow users to store and retrieve
data. IaaS providers, e.g., Amazon, manage a large pool of computing resources. Through
the virtualization technique, cloud providers are able to split, assign, and dynamically scale
up/down these resources, in the form of virtual machines (VMs), to cloud users. To deploy
their applications, cloud users select the number and type of virtual machines as well as
the operating-system images, and deploy the customized software stacks to develop and
run their services. Cloud providers typically bill IaaS services according to the amount of
resources allocated and consumed, which is also referred to as utility computing [13].

Platform as a Service (PaaS): PaaS providers deliver development environments as a ser-
vice. Applications can be built and run on PaaS providers’ infrastructure and then delivered
to end users via the Internet. The purchasing and managing the underlying hardware and
software layers, as well as automatic scaling resources according to applications’ demands
are made transparent to cloud users. Google App Engine is a typical example of PaaS.

Software as a Service (SaaS): SaaS allows an application to run on the infrastructure
and platforms offered by the cloud instead of on local hardware/software. Hence, the user
of a cloud-based application does not have to heavily invest on it own servers, software,
license, etc. SaaS is usually priced on a usage basis, or with a monthly or yearly flat fee per
user. Google Apps and Microsoft Office 365 are typical examples of SaaS.

Figure 1.2 illustrates the three cloud service models in a layered manner.10 IaaS has the
highest level of flexibility and controllability, and SaaS has the highest level of abstraction
and transparency. The majority of the related research areas focuses on public cloud with
the IaaS service model, say Amazon EC2, and thus we give a brief introduction of Amazon
EC2 in the following.

10We redrew this figure according to http://cioresearchcenter.com/2010/12/07/.
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Figure 1.2: An illustration of cloud service models

Amazon EC2 is a web service that provides resizable compute capacity in the cloud. It
provides users its centralized computing resources, in the form of virtual machine instances
with a variety of operating systems and customized application environment. Cloud users
have complete control of the provisioned virtual machines. Different instance purchasing
options are available to meet a user’s demand and financial budget11:

On-Demand Instances let the user pay for compute capacity by the hour with no long-
term commitments. This frees the user from the costs and complexities of planning, pur-
chasing, and maintaining hardware/software and transforms the commonly large fixed costs
into much smaller variable costs. On-Demand Instances also remove the need to buy safety
net capacity to handle periodic traffic spikes.

Reserved Instances give the user the option to make a one-time payment for each in-
stance s/he wants to reserve and in turn receive a significant discount on the hourly charge

11Amazon EC2, http://aws.amazon.com/ec2/
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for that instance. There are three Reserved Instance types: light, medium, and heavy uti-
lization reserved, enabling the user to balance the upfront investment with effective hourly
price. A Reserved Instance Marketplace is also available, which provides the user with the
opportunity to sell Reserved Instances if her/his needs change (i.e. want to move instances
to a new AWS Region, change to a new instance type, or sell capacity for projects that end
before your Reserved Instance term expires).

Spot Instances allow users to bid on unused EC2 capacity and run those instances for as
long as their bid exceeds the current spot price. The spot price changes periodically based
on supply and demand, and the user whose bids meet or exceed the price gains access to
the available instances. If the user has flexibility in when the applications can run, using
spot instances can significantly lower the costs.

An EC2 user can select from multiple instance types, operating systems, software pack-
ages, and locations to deploy instances. Each instance type corresponds to a configuration
of CPU, memory, storage size, and the boot partition size customized for specific choice of
application stacks and operating systems, e.g., Linux distributions or Microsoft Windows
Server. The user can also increase or decrease the capacity of instances according to the
change of demand in a short time. Amazon EC2 abides by a Service Level Agreement (SLA)
in which the user is compensated if the resources are not available for acquisition at least
99.95% of the time, 365 days/year.

Amazon EC2 has also developed a set of instance types optimized for different purposes,
and each type has several levels based on instance capacity.12 Internet service providers are
free to select the appropriate instance types according to their specific demands.

In this thesis, we study how to leverage cloud resources to deliver crowdsourced mul-
timedia content. Figure 1.3 illustrates a generic framework of cloud-based crowdsourced
multimedia services that also integrates user participation, say using the peer-to-peer (P2P)
technique [14, 15] as a complementary component [3]. This framework consists of a cloud
layer and a user layer, which adaptively leases and adjusts cloud servers in a fine granu-
larity to accommodate temporal and spatial dynamics of user demands. When the service
provider receives a user’s content request, the cloud layer redirects this user to a selected
cloud server, which is transparent to the user. Based on dynamic user demands over time,
server resources are adaptively leased from cloud service providers. The cloud layer can
serve a storage- and bandwidth-buffer for the user layer and can mitigate the impact of de-
mand dynamics. The users may also exchange the available content through P2P to reduce
the leasing cost of cloud resources.

12Amazon EC2 Instances, http://aws.amazon.com/ec2/instance-types/.
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Figure 1.3: A framework of cloud-based crowdsourced multimedia services

1.3 Thesis Contributions

In this thesis, we present a comprehensive study of crowdsourced multimedia content, from
the perspectives of cloud resource allocation, practical improvements for content generation
and data processing in typical virtualized cloud environments, as well as data transmission
with device-to-device (D2D) communications. The contributions of this thesis are summa-
rized as follows:

• In the emerging crowdsourced live broadcast services, represented by Twitch and Y-
ouTube live events, videos are crowdsourced from amateur users (e.g., game players),
rather than from commercial and professional TV broadcaster or content provider-
s. The viewers also actively contribute to the content through embedded open chat
channels. Such community interactions among viewers, or even between broadcasters
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and viewers, make the generated content highly diversified and engaging, particular-
ly for the young generation. In this context, cross-viewer synchronization is highly
desirable; otherwise the viewers with shorter broadcast latency may act as spoilers,
significantly affecting the user experience of other viewers. We show that the end-to-
end delay has a dramatically amplified impact on the broadcast latency for individual
viewers. We formulate the cloud resource allocation in crowdsourced multimedia ser-
vices as a standard network utility maximization (NUM) problem, in which real-time
user interaction is a fundamental issue, and develop distributed solutions based on
dual composition.

• We further provide practical improvements from the perspectives of both content gen-
eration and big data processing of crowdsourced multimedia services in a virtualized
cloud environment. First, considering the limited network bandwidth of crowdsourcer-
s, which is a potential bottleneck to provide real-time high quality live video broadcast,
we develop ShadowCast, which moves broadcasters to the cloud to provide high quali-
ty streams beyond broadcasters’ network bandwidth constraint. Its practicability and
effectiveness is demonstrated by our prototype implementation and testbed experi-
ments. Second, given the large volume of crowdsourced data, efficient data processing
is important. The de facto framework for big data processing, MapReduce [16], has
been increasingly embraced by both academic and industrial users. Data locality
seeks to co-locate computation with data, which effectively improves MapReduce’s
performance in physical machine clusters. State-of-the-art public clouds heavily rely
on virtualization to enable resource sharing and scaling for massive users, and through
real-world experiments, we show strong evidence that the conventional notion of data
locality is unfortunately not always beneficial for MapReduce in a virtualized envi-
ronment. We develop vLocality, a comprehensive and practical solution toward data
locality in virtualized environments. It incorporates a novel storage architecture that
efficiently mitigates the shared resource contention, and an enhanced task scheduling
algorithm that prioritizes co-located VMs. We implement a prototype of vLocality
and validate its effectiveness on a typical virtualized cloud platform.

• Crowdsourced multimedia services also rely on convenient mobile Internet access,
since mobile users occupy a large portion of both content generators and content con-
sumers. The rich multimedia content, especially images and videos, put significant
pressure on the infrastructure of state-of-the-art cellular networks. Device-to-device
(D2D) communication that smartly explores local wireless resources has been sug-
gested as a complement of great potential to support proximity-based application-
s [17–20]. Significant studies have been conducted on coordinating the D2D and the
cellular communication paradigms that share the same licensed spectrum, commonly
with an objective of maximizing the aggregated data rate. The new generation of
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cellular networks however have long supported heterogeneous networked applications,
which have highly diverse QoS specifications. We jointly consider resource alloca-
tion and power control with heterogeneous QoS requirements from the applications.
We closely analyze two representative classes of applications, namely streaming-like
and file-sharing-like, and develop optimized solutions to coordinate the cellular and
D2D communications with the best resource sharing mode. We further extend our
solution to accommodate more general application scenarios and larger system scales.
Extensive simulations under realistic configurations demonstrate that our solution en-
ables better resource utilization for heterogeneous applications with less possibility of
under- or over-provisioning.

1.4 Thesis Organization

The remainder of the thesis is organized as follows:

• In Chapter 2, we formulate the cloud resource allocation in crowdsourced multimedia
services as a standard network utility maximization (NUM) problem with coupled
constraints, in which real-time user interaction is a fundamental issue, and develop
distributed solutions based on dual composition.

• In Chapter 3, we propose practical improvements for content generation and data
processing of crowdsourced multimedia services in a virtualized cloud environment.

• In Chapter 4, we jointly consider resource allocation and power control with hetero-
geneous QoS requirements from diverse crowdsourced multimedia applications.

• In Chapter 5, we conclude this thesis and discuss some future directions.
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Chapter 2

Crowdsourced Live Broadcast with
Community Interactions:
Bottlenecks and Optimizations

2.1 Introduction

In recent years, live broadcast with community interactions has become very popular, rep-
resented by Twitch, YouTube live events, and hitbox1. A typical live broadcast channel
features a combination of a broadcaster’s high-fidelity game play graphics, her/his real-life
activities captured by a web camera, and an open chat channel shared by viewers in the
same channel (fellow viewers). The broadcaster can also communicate with the viewers in
real time. Such community interactions significantly foster user participation and largely
contribute to the success of the new live broadcast services [21]. Launched in the year 2011,
Twitch has already attracted over 45 million unique viewers per month and nearly 1 million
unique broadcasters per month by the year 2013 [22].

Compared to traditional live streaming, most video sources in such new live broadcast
platforms are generated by amateur users with different backgrounds, talents, and skills,
rather than from commercial and professional content providers [1], which remarkably stim-
ulates content diversity. Taking one of the most popular genres games for example, people
can find numerous broadcasters on Twitch playing various games at almost any time, from
the hottest ones (e.g., Dota 2 and League of Legends), to the classic ones (e.g., StarCraft I
and Age of Empires II ). Apart from video broadcasters, viewers can also contribute to the
channel content: they can either comment on the broadcaster’s performance, or chat/argue
with fellow viewers. All these real-time community interactions displayed in the open chan-
nel in turn attract a significant portion of viewers’ attention. It has been reported that 61%
Twitch users chat with others during watching streams [22]

1http://www.hitbox.tv/
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Given the importance of community interaction, cross-viewer synchronization is high-
ly desirable. Otherwise the viewers with shorter broadcast latency may act as spoilers,
while the viewers with longer broadcast latency may post comments on the content already
watched by others a while ago, both significantly affecting user experience.2 Unfortunately,
synchronization in this context has to deal with not only the scale of the viewer base, but
also the amplified impact of the end-to-end network delay on the broadcast latency for
individual viewers. Through a series of controllable experiments, we find that even a slight
increase in the end-to-end delay can elongate the broadcast latency to over ten seconds,
which is intolerable for real-time community interaction. Considering the heterogeneous
network conditions of individual viewers, the end-to-end delay of individual viewers would
inevitably differ to a high degree, leading to highly unsynchronized playback.

To this end, we suggest smart rate adaptation to semi-synchronize playback among
fellow viewers. The rate-adaptation schemes for tradition live streaming mainly focus on
selecting the most suitable video rates that balances streaming quality and playback flu-
ency [23–27]. In the context of community interaction, we consider rate adaptation as a
network utility maximization (NUM) problem with constraints of the streaming capacity
and the bound of latency difference. We then develop a distributed algorithm based on du-
al decomposition [28], which allows viewers to select appropriate playback bitrates without
knowing others’ information, and extend our solution to the cloud environment.

2.2 Community Interaction: Delay Can Kill

It has been reported that community interaction has played an important role in Twitch-like
live broadcast services. For example, 61% Twitch users chat with community [22], and the
chat lines of all broadcast channels is found to constantly exceed 400 per second.3

Intuitively, it is desirable that fellow viewers are relatively synchronized such that in-
channel community interaction would not cause negative user experience. Yet according
to our own watching experience, out-of-synchronization chats are not uncommon due to
heterogeneous broadcast latency among fellow viewers. To investigate the impact of network
condition on broadcast latency, we conduct experiments with different end-to-end delays.
We set up two computers: one serves as the broadcaster and uses the Open Broadcaster
Software (OBS)4, one of the most widely use broadcast applications, to encode a source
video at 1500 Kbps bitrate; the other uses VirtualBox5 to host two identical virtual machines
(VMs). We create a Twitch channel, and the two VMs watch the video stream as viewers.
With this setting, the two viewers have almost identical network conditions. We use the

2Broadcast latency refers to the time lag of a live event when viewers watch the live streaming from the
source [1].

3http://twitchstatus.com/index.html.
4https://obsproject.com/.
5https://www.virtualbox.org/.
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Figure 2.1: Broadcast delay difference under different network conditions

ipfw tool [29] to change VMs’ propagation delays and bandwidth limits. First, we set the
bandwidth limit to 2000 kbps for both VMs. We then add the propagation delay of one
VM (VM A) from 100 to 400 ms, while keeping the other VM (VM B) unchanged. The
broadcast latency difference between the two viewers under different network conditions is
shown in Figure 2.1. We can see that, with added propagation delay, the broadcast latency
difference becomes significantly longer. Especially, when the added delay is 400 ms, the
broadcast latency difference has a sheer increase; a broadcast latency difference of almost
20 seconds is almost intolerable for real-time interaction between the viewers. The reason
is that, when the propagation delay becomes longer, it takes more time to fill the buffer.
In general, most streaming players require a number of chunks, say 2 to 3, to be received
before starting playback.

On the other hand, it is well-known that the end-to-end delay also depends on the
bandwidth. Hence, we changed the bandwidth of VM A to 4000 Kbps and kept the added
propagation delay at 400 ms. In this case, the broadcast latency difference is dramatically
reduced by half, since the buffer would be filled in a shorter time. Our experiments reveal
that divergent end-to-end delays can cause intolerable broadcast latency difference for fel-
low viewers. Such physical constraints as propagation delay and bandwidth limit however
are not easy to be lifted for viewers, and we instead should seek for solutions within the
broadcast platform.
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2.3 Cross-viewer Synchronization: Problem Formulation and
Algorithm Design

We now examine this critical issue of cross-viewer synchronization in the broadcast platform.
Intuitively, the problem could be solved by dividing viewers into smaller chat channels based
on viewers’ delay, which however would limit the user interaction in the community; for
example, if the broadcaster gives feedback to some viewer’s comments, the viewers in other
channels would get puzzled. We instead address this issue by adaptively tuning the video
rates at viewers, to achieve cross-viewer synchronization.

We start from a streaming session consisting of one broadcaster and a set of m viewers
(denoted by V). A streaming server with bandwidth capacity c serves the viewers in this
session, and the end-to-end throughput from the server to viewer i ∈ V is di. The original
video rate generated by the broadcaster is R∗; the exact video rate ri allocated to viewer
i however is adjustable through transcoding, as long as it is not exceeding R∗. Obviously,
we have the following constraint to guarantee that the buffer of viewer i will not experience
underflow: ri ≤ r̄i = min(di, R∗).

For viewer i, we use lti to represent the transmission delay for video data and lei to
represent other network-related delays (referred to as the network delay in the rest of this
paper), including propagation delay, processing delay and queuing delay. The end-to-end
delay of viewer i is then6: li = lei + lti = lei + ri

di
.

As in previous studies [30], we consider the viewing experience of viewer i is given by a
utility function Ui(ri), which is strictly concave, increasing and continuously differentiable
in ri. For the streaming session, our objective is then to optimize the viewers’ experience
through rate adaptation (i.e., tuning streaming rate ri of each viewer) and meanwhile en-
sure the difference between any pair of viewers’ network delay is bounded by an empirical
threshold (denoted by δ). Furthermore, the total streaming rates of all the viewers should
not exceed the server’s capacity c. This leads to the following network utility maximization
(NUM) problem:

max
∑
i∈V

Ui(ri)

s.t.
∑
i∈V

ri ≤ c

(lei + ri
di

)− (lej + rj
dj

) ≤ δ, ∀i, j ∈ V

0 ≤ ri ≤ r̄i ∀i ∈ V.

(2.1)

Since the objective function in problem (2.1) is differentiable, strictly concave, and the
feasible region is compact, the optimal solution exists (though it may not be unique) [31].
This convex problem can be directly solved in a centralized way via the classic simplex

6To be more accurate, lti should be equal to the total traffic during one time slot divided by the throughput,
namely, lti = ri∆t

di
. In this work, we set ∆t to one second, and hence is omitted for ease of exposition
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and interior point based algorithms [32, 33], provided that the streaming server has the
information of each viewer, namely the end-to-end throughput di and the end-to-end delay
lei . It is however worth noting that the second constraint in problem (2.1) actually contains
m × m inequalities; a centralized solver can therefore be very time-consuming for large
sessions of thousands of current viewers, not to mentioning viewers’ dynamic join and leave
activities.

2.4 Distributed Algorithm Design

We now show an efficient distributed solution through dual decomposition [28].
We first obtain the Lagrangian relaxation [31] of problem (2.1). It is worth noting that

directly relaxing the second constraint introduces m×m Lagrange multipliers, which, for a
large-scale session, would incur massive message passing as well as significant computation.
Rather, we consider the following compact form of this constraint:

max
i∈V

( ri
di

+ lei )−min
j∈V

( rj
dj

+ lej) ≤ δ, (2.2)

which is equivalent to:
max
j∈V

( rj
dj

+ lej)− ( ri
di

+ lei ) ≤ δ ∀i ∈ V

( ri
di

+ lei )−min
j∈V

( rj
dj

+ lej) ≤ δ ∀i ∈ V.
(2.3)

We use (2.3) to replace the second constraint in the original formulation and obtain the
Lagrangian form of problem (2.1) by relaxing the constraints while keeping the last one
(0 ≤ ri ≤ r̄i, i ∈ V) as follows:

L(r, λ,µ,ν) =
∑
i∈V

Ui(ri)− λ(
∑
i∈V

ri − c)

−
∑
i∈V

µi[max
j∈V

( rj
dj

+ lej)− ( ri
di

+ lei )− δ]

−
∑
i∈V

νi[(
ri
di

+ lei )−min
j∈V

( rj
dj

+ lej)− δ], (2.4)

where λ ≥ 0 and µ,ν � 0 are the Lagrange multipliers, or dual variables, which can be
interpreted as the shadow prices associated with the corresponding inequality constraints.
The dual function is then:

g(r, λ,µ,ν) = max
0≤ri≤r̄i

L(r, λ,µ,ν). (2.5)
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And the dual of problem (2.1) is defined as follows:

min g(r, λ,µ,ν)

s.t. λ ≥ 0,µ,ν � 0.
(2.6)

We solve it at two levels. At the lower level, each viewer solves the following subproblem:

max
0≤ri≤r̄i

{Ui(ri)− λri + µi
ri
di
− νi

ri
di
}

= max
0≤ri≤r̄i

{Ui(ri)− (λ− µi − νi
di

)ri}, (2.7)

which corresponds to maximizing the surplus (i.e., utility minus payment) of viewer i based
on the aggregate price λ− µi−νi

di
of bandwidth. Given that the utility function is strictly

concave, increasing, and continuous, the optimal solution to (2.7) is unique, denoted by

r∗i (λ, µi, νi) = arg max
0≤ri≤r̄i

{Ui(ri)− (λ− µi − νi
di

)ri}. (2.8)

Each viewer then feedbacks the value of r∗i (λ, µi, νi) to the streaming server.
At the higher level, the streaming server solves the following problem by adjusting the

dual variables λ, µ, and ν:

min
λ≥0
µ,ν�0

g(λ,µ,ν) =
∑
i∈V

gi(λ, µi, νi) + λc+
∑
i∈V

(µi − νi)lei

− lmax
∑
i∈V

µi + lmin
∑
i∈V

νi (2.9)

+ (
∑
i∈V

µi +
∑
i∈V

νi)δ,

where gi(λ, µi, νi) is the maximum value of (2.7) for given values of λ, µi, and νi; the pa-
rameters lmax and lmin are defined as lmax = maxj∈V( rjdj + lej) and lmin = minj∈V( rjdj + lej),
respectively, which can be easily computed according to the feedback information of individ-
ual viewers, namely r∗i (λ, µi, νi). Problem (2.9) can then be solved through a subgradient
method as follows:

λ(k+1) =
[
λ(k) + α(k)(

∑
i∈V

r
(k)
i − c)

]+
(2.10)

µ
(k+1)
i =

[
µ

(k)
i + α(k)(l(k)

max −
r

(k)
i

di
− lei − δ

)]+
(2.11)

ν
(k+1)
i =

[
ν

(k)
i + α(k)(r(k)

i

di
+ lei − l

(k)
min − δ

)]+
, (2.12)
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Algorithm 1 Distributed Algorithm for Single Server
Initialization: set iteration index k = 0; the streaming server broadcasts arbitrary positive

initial values for λ(0), µ(0), and ν(0) to all viewers.
1: for each viewer i ∈ V do
2: Locally determine the rate r(k+1)

i (λ(k), µ
(k)
i , ν

(k)
i ) = arg max0≤ri≤r̄i{Ui(ri) − (λ(k) −

µ
(k)
i −ν

(k)
i

di
)ri};

3: Send the value of r(k+1)
i (λ(k), µ

(k)
i , ν

(k)
i ) to the streaming server;

4: end for
5: The streaming server updates the dual variables λ(k+1),µ(k+1),ν(k+1) according to

(2.10)-(2.12), respectively, and the values of l(k+1)
max and l(k+1)

min based on r(k). The stream-
ing server then sends the updated values of λ(k+1), µ(k+1), and ν(k+1) to individual
viewers;

6: Set k = k + 1 and go to 1 until the stopping criterion is satisfied.

where k is the iteration index; α(k) > 0 is the step size at the k-th iteration which is
sufficiently small; [·]+ denotes the projection onto the nonnegative orthant; r(k)

i is short for
r∗i (λ(k), µ

(k)
i , ν

(k)
i ), namely the optimal solution to (2.7) for viewer i at the k-th iteration;

the values of l(k)
max and l(k)

min are updated according to ri(k) obtained at the k-th iteration.
The dual variables λ(k), µ(k), and ν(k) will converge to the corresponding dual optimal

λ∗, µ∗, and ν∗ as k →∞, if the step sizes satisfy limk→∞ α
(k) = 0 and

∑∞
k=1 α

(k) =∞ [30].
For example, we can select α(k) = t+1

t+k , where t is a nonnegative constant [34]. Let us denote
the maximum value of the primal problem (1) by z∗p and denote the minimum value of the
dual problem (8) by z∗d. According to the weak duality property [33], we have z∗p ≤ z∗d, and
the difference between the optimal solutions of the primal and dual problems, namely z∗d−z∗p ,
is referred to as the optimal duality gap. Since we have assumed that the utility functions
are continuous, increasing, and strictly concave, we have the strong duality z∗p = z∗d (Recall
that all the constraints in problem (1) are affine, and thus Slater’s condition holds under
the assumption that problem (1) is feasible [33].), which means that given the optimal dual
variables λ∗, µ∗, and ν∗, the corresponding primal variables r(λ(k),µ(k),ν(k)) are also the
optimal solution to the primal problem (1).

Algorithm 1 illustrates the distributed algorithm for problem (1) via dual decomposition.
The stopping criterion is that the difference between the current value and the updated value
for each of the variables λ, µi, and νi is below a certain threshold, namely 0 < ε� 1. It is
worth noting that in the initialization phase, the streaming server can set identical values
for µ(0)

i and ν(0)
i , ∀i ∈ V; while in line 5, the values of µ(k)

i and ν(k)
i would be different for

different viewers in general.
Remark: Compared to a centralized solver that directly obtains the optimal solution

to the primal problem (1) at the streaming server, our proposed Algorithm 1 is much easier
to implement in practical systems. As mentioned before, the centralized solver requires
the information of of all viewers’ utility functions. Even such information is available, the
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centralized solver is not scalable to large sessions due to the complexity of the objective
function, as well as the massive constraints. In Algorithm 1, on the other hand, only the
dual variables are to be updated by the server through simple arithmetic computation, and
each viewer only needs to solve a simple convex problem with a single constraint 0 ≤ ri ≤ r̄i.
At the k-th iteration, the message passing overhead consists of the following two parts: all
the viewers send back the updated value of r(k+1)

i (λ(k), µ
(k)
i , ν

(k)
i ) to the streaming server,

and the streaming server feedbacks the updated tuple (λ(k+1), µ(k+1)
i , ν(k+1)

i ) to each viewer
i ∈ V. All the information can be easily piggybacked in normal packets, e.g., video content
packets and ACK packets, with minimum overhead.

2.5 Prototype Implementation and Cloud Deployment

So far we have focused on the solutions for a single streaming server with abundant band-
width capacity to serve all the viewers. For larger sessions with thousands of or even tens of
thousands of viewers, which are common in the real world now, it is necessary to leverage a
cluster of servers so as to guarantee reasonable user experience. In this context, migrating
to a public cloud that offers elastic resource provisioning becomes a natural choice, partic-
ularly considering that such new media services, though potentially grow very fast, have
highly fluctuating user demands and limited upfront investment.

In our implementation, a collection of virtual machine (VM) instances from Amazon
are leased for delivering video content to end viewers. VM instances are the basic units of
resource provisioning in state-of-the-art public cloud service providers. They can be opened
and configured in a relatively short time and charged by the actual running time, offering
flexible pay-as-you-go pricing for cloud users. Given the cost of opening and maintaining a
VM instance (i.e., leasing cost), we need an optimal strategy for VM resource provisioning
that balances the operation costs and the QoS level for viewers.

For simplicity, all VM instances have identical service capacity c as well as identical
leasing cost f . Let n be the maximum number of VM instances that can be opened concur-
rently, which is bounded by the budget, and S be the set of this VM pool. We use a binary
variable yi to indicate the provisioning decision such that yi = 1 if VM i is opened, and
yi = 0 otherwise; similarly, for viewer i, another binary variable xij indicates the assignment
decision such that xij = 1 if viewer i is served by VM j, and xij = 0 otherwise.

We consider a single source scenario that each viewer can be served by only one VM,
which leads to a constraint

∑
j∈S xij = 1 (∀i ∈ V). Furthermore, it is obvious that xij ≤ yj

(∀i ∈ V and ∀j ∈ S), since xij can be positive only when VM j is opened.
Apart from the leasing cost of VMs, the cost of bandwidth usage should also be con-

sidered. Existing public cloud providers, e.g., Amazon EC2, typically charges on outbound
traffic from the cloud only, while the traffic into the cloud as well as the traffic within the
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cloud is free. We consider a flat rate charging policy that the cost of outbound traffic (per
second) is p

∑
i∈V ri, where p is the charge per unit traffic.

Now the extension problem that incorporates the leasing costs of VM instances and the
traffic charge is:

max ω
∑
i∈V

Ui(ri)− f
∑
j∈S

yj − p
∑
i∈V

ri

s.t.
∑
i∈V

rixij ≤ c ∀j ∈ S

∑
j∈S

xij = 1 ∀i ∈ V

xij ≤ yj ∀i ∈ V, ∀j ∈ S

(lei + ri
di

)− (lej + rj
dj

) ≤ δ ∀i, j ∈ V

0 ≤ ri ≤ r̄i ∀i ∈ V

xij , yj ∈ {0, 1} ∀i ∈ V, ∀j ∈ S,

(2.13)

where ω is a scalar weight parameter that reflects the trade off between utility and cost.
The optimal solution to the mixed-integer problem (MIP) formulated above is difficult

to obtain even in a centralized way, due to the integral constraints. In fact, a special case of
this problem can be regarded as the bin packing problem [35]. In this case, the viewers’ rates,
namely ri, are given, which satisfy the cross-viewer synchronization constraint, namely the
fourth constraint in the extension problem. Then the first term and the last term in the
object function are also fixed and thus can be eliminated. Now the problem becomes:

min
∑
j∈S

yj

s.t.
∑
i∈V

rixij ≤ c ∀j ∈ S

∑
j∈S

xij = 1 ∀i ∈ V

xij ≤ yj ∀i ∈ V, ∀j ∈ S

xij , yj ∈ {0, 1} ∀i ∈ V,∀j ∈ S

given ri ∀i ∈ V.

(2.14)

This is a bin packing problem, which is known to be NP-hard, and various approximation
algorithms have been developed [35]. Consider the widely used LP-relaxation, which can
be obtained by relaxing the integral constraints, namely xij , yj ∈ {0, 1} to xij , yj ≥ 0 (∀i ∈
V,∀j ∈ S). A fractional yj can be interpreted a partially opened VM, and a fractional xij
can be interpreted a partial assignment of viewer i’s traffic demand to VM j. The solution
to the relaxed problem can be obtained through a centralized method, which is an upper
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Algorithm 2 Distributed Algorithm for Cloud Deployment
1: Set ri = r̄i, ∀i ∈ V; the service provider computes the values of yj and xij using the

Next-Fit algorithm and assigns viewers to VMs accordingly;
2: Each opened VM initializes dual variables and sends them to its connected viewers;
3: for each opened VM j ∈ Ŝ do
4: Each connected viewer i ∈ V̂j computes the rate of each viewer according to (2.15);
5: Compute local lmax and lmin;
6: Send local lmax and lmin to the service provider;
7: end for
8: The service provider computes global lmax and lmin and broadcasts them to all opened

VMs.
9: Each opened VM updates dual variables;

10: Repeat lines 3-9 until convergence;
11: The service provider updates the values of yj and xij using the Next-Fit algorithm and

re-assigns viewers to VMs accordingly;
12: Repeat lines 3-11 until the stopping criterion is satisfied.

bound of the optimal solution to (13). Rounding can then be used to obtain a feasible
solution to (13), which is a lower bound of the optimal solution to (13).

Rather than developing the best approximate centralized algorithm for (13), we propose
a distributed algorithm. The main idea is shown in Algorithm 2. In the first phase, the rate
of each viewer i ∈ V is set to r̄i, and problem (13) now becomes the form of (14), namely
a bin packing problem. The service provider then uses heuristic algorithms, for example,
Next-Fit (online, running time O(n), 2-approximation ratio) or First-Fit-Decreasing (offline,
running time O logn, 3/2-approximation ratio) [35], to determine the set of opened VMs
(denoted by Ŝ) and the assignment of viewers to opened VMs. In the second phase, for
each opened VM and the connected viewers, a NUM subproblem similar to (1) is solved in a
distributed way using Algorithm 1, which updates the viewers’ rates r. In the third phase,
the service provider uses the same heuristic algorithm to solve the bin packing problem,
based on the newly obtained rates r. The last two phases are repeated until the stopping
criterion is satisfied.

There are some details to be further explained. First, in line 3, the leasing cost of an
VM is amortized over the connected viewers’ rates. As such, for an opened VM j ∈ Ŝ, each
connected viewer i ∈ Vj solves the following subproblem:

r∗i = arg max
0≤ri≤r̄i

{ωUi(ri)− ( f∑
v∈Vj rv

+ p+ λj −
µi − νi
di

)ri}, (2.15)

where
∑
v∈Vj rv is the sum of all connected viewers’ rates (namely the actual consumed

bandwidth of the considered VM) in the previous iteration, f∑
v∈Vj

rv
is the leasing cost per

unit consumed bandwidth, p is the charge per unit traffic, and λj , µi, as well as νi are
the dual variables as the same in (2.7). It is worth noting that λj is computed at each
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opened VM j locally, while µi and νi are computed based on global lmax and lmin. Second,
each opened VM, which acts as the central streaming server in Algorithm 1, also needs
to compute the value of

∑
v∈Vj rv and sends it to the connected viewers. Third, for the

heuristic algorithm solving the bin packing problem, we use the online Next-Fit algorithm
to minimize the overhead such as redirecting viewers to different VMs, as well as to make
timely decision.

The stopping criterion of Algorithm 2 is different from that of Algorithm 1. Algorithm
1 is guaranteed to converge, which is not the case in Algorithm 2. The reason is that in
Algorithm 2, the heuristic Next-Fit algorithm does not ensure to find the optimal solution,
so the computed assignment may require additional VMs for the newly obtained rates, which
reduces the overall surplus and may lead to oscillation when running lines 3-11 iteratively.
Recall that we start from the maximum number of VMs by setting the initial rate of each
viewer to the maximum and wish to find the optimal number of VMs which balances the
operation costs and the QoS level for viewers. In practice, it is not feasible to frequently
shut down and resume VMs, which incurs considerable operational delays caused by opening
and configuring a VM, and it is also not cost-efficient to let idle VMs standby. Hence, one
stopping criterion is that if additional VMs are needed by the heuristic algorithm, Algorithm
2 stops. If the number of VMs does not increase, lines 3-11 are repeated for a number of
iterations.

Remark: Our proposed Algorithm 2 solves the extension problem (13) by dividing it
into two subproblems that are solved alternatively. In the first subproblem, we assume
that the viewers’ rates are given and minimize the number of opened VMs by solving a bin
packing problem. This problem is solved at the service provider through a centralized
approach that is scalable to very large systems. In the second subproblem, given the
opened VMs and the assignment of viewers, we maximize the surplus of each opened VM
through adapting the connected viewers’ rates through the previously developed distributed
Algorithm 1 (with slight modifications).

2.6 Performance Evaluation

In this section, we evaluate our proposed rate adaptation algorithms through extensive
simulations.

2.6.1 Single Server Scenario

As for the proposed distributed Algorithm 1, we first examine its convergence, and then
compare its performance against the centralized method. We use MATLAB 2013a to build
up our customized simulator, and CVX, a package for specifying and solving convex pro-
grams [36,37].
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Figure 2.2: Convergence of (a) Network utility; (b) Maximum delay difference.

Our experimental settings are as follows. The bandwidth capacity of the streaming
server is 10 Mbps, and the number of viewers is 10. Each viewer’s bandwidth is uniformly
distributed between 0.5 and 5 Mbps, and the network delay is uniformly distributed between
50 and 500 ms. The source encoding rate is 5 Mbps. The value of the end-to-end delay
bound δ is 200 ms. We consider a widely used log utility function U(r) = log(r) for all
viewers.

We first set the maximum number of iterations to 50, and illustrate the convergence of
the network utility, namely the sum of all viewers’ utility, and the convergence of the maxi-
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mum delay difference in Figure 2.2. We can see that our proposed distributed Algorithm 1
converges very fast; in about 25 iterations, the network utility is already close to optimum
computed by a centralized solver, and the maximum delay difference already satisfies the
cross-viewer synchronization constraint. Hence, we set the maximum number of iterations
to 25 for Algorithm 1 in the remaining simulations.

We now compare Algorithm 1 with a baseline MaxUtility in a larger system. In MaxUtil-
ity, the network utility is maximized only subject to the bandwidth capacity of the streaming
server, while the cross-viewer synchronization constraint is not considered. The bandwidth
capacity of the streaming server is 100 Mbps, and the number of viewers is 50. We vary the
end-to-end delay bound δ from 50 to 300 ms with the step size of 50ms, and other settings
are the same as before. We run each value of δ 10 times with random generated viewers’
bandwidth/network delay.

We report the average and the standard deviation of network utility of Algorithm 1
and MaxUtility under different delay bounds in Figure 2.3(a). Since the delay bound is not
considered in MaxUtility, the obtained network utility does not change. The network utility
obtained by Algorithm 1 becomes higher as the delay bound increases, since the feasible
region of the optimization problem (1) also expands with larger delay bound. Although
MaxUtility outperforms Algorithm 1 in terms of network utility, the real-time community
interaction becomes intolerable. In our simulation, the maximum end-to-end delay differ-
ence of MaxUtility ranges from 826.0 to 914.4 ms, with an average of 861.4 ms. As evidenced
by the observation in Section 2.2, this level of delay difference would easily lead to tens of
seconds broadcast delay among viewers.

We also plot the empirical cumulative distribution function (CDF) of the computed
individual viewers’ rates in Figure 2.3(b). Recall that the utility function is log(r) for each
viewer. Due to the concavity of the log function, the marginal utility of unit rate diminishes
as the original rate increases. Hence, the maximum network utility will be obtained when
the deviation of all viewers’ rates is minimum. Hence, we can see that with MaxUtility,
almost half viewers have the same rates, while the remaining viewers’ rates already achieve
the bandwidth limit. In fact, all viewers’ rates will be equal if their bandwidth are all over
2 Mbps. As for the proposed Algorithm 1, due to the end-to-end delay bound, the viewers
with shorter network delays will have larger rates, while the viewers with longer network
delays will have lower rates. When the delay bound becomes larger, the viewers’ rates tend
to concentrate, in order to obtain higher network utility. We can see from Figure 2.3(b) that
the distribution of the viewers’ rates gets closer to that of MaxUtility, namely the deviation
of the viewer’s rates becomes smaller, when the delay bound increases from 100 to 300 ms.

2.6.2 Cloud Scenario

We next evaluate Algorithm 2 that addresses the cross-viewer synchronization problem in
the cloud. For such system parameters as VMs’ bandwidth and leasing cost, as well as
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Figure 2.3: (a) Comparison of network utility; (b) CDF of viewers’ rates.

the outbound traffic charge, we take Amazon EC2 as our main reference: 200 Mbps stable
network capacity of each VM, $0.126 hourly leasing cost for each m4.large type On-Demand
VM, and $0.09 per GB outbound traffic from EC2 to Internet. We normalize the cost to
one minute, which is in line with the user engagement of video streaming services [38]. The
number of viewers is set to 500, with the same bandwidth/network delay settings as in
previous simulations. We compare our proposed Algorithm 2 with a baseline MaxSurplus,
which is similar to Algorithm 2 yet does not subject to the cross-viewer synchronization
constraint.
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Table 2.1: Comparison of total surplus ($)

ω = 0.01 ω = 0.05

Algorithm 2
δ=100ms -2.576 (0.006) 10.964 (0.219)
δ=300ms -2.363 (0.014) 13.421 (0.212)

MaxSurplus -2.137 (0.007) 14.264 (0.532)

Table 2.2: Comparison of viewers’ total rates (Mbps)

ω = 0.01 ω = 0.05

Algorithm 2
δ=100ms 932.001 (2.899) 1168.140 (11.783)
δ=300ms 891.159 (2.211) 1319.338 (16.321)

MaxSurplus 829.825 (5.446) 1367.254 (37.847)

We investigate the resource provisioning with different values of the scalar weight pa-
rameter ω (0.01, and 0.05) under different delay bound (100 and 300 ms). The value of ω
denotes the monetary reward ($) per unit utility per minute. We run at most 25 iterations
for per-VM surplus maximization, and 5 iterations for overall surplus maximization for both
Algorithm 2 and MaxSurplus. For each setting, we run the simulation for 10 times. We
report the total surplus and viewers’ total rates in Table 2.1 and Table 2.2, respectively, in
the format average (standard deviation).

We can see that MaxSurplus has the highest surplus in all settings, since it has the
largest feasible region for the optimization problem, and the viewers’ rates are more con-
centrated, as analyzed before. Similarly, the broadcast latency difference of MaxSurplus is
not desirable for real-time community interaction. The average broadcast latency difference
of MaxSurplus is 1058.2 and 448.7 ms on average, when ω = 0.01 and 0.05, respectively.

As for the proposed Algorithm 2, an appropriate value of the end-to-end delay needs
carefully examination, which balances the surplus and user experience. The reward factor
ω plays an important role in Algorithm 2. A higher reward factor, say ω = 0.05, would
favor larger end-to-end delay that leads to higher network utility.

2.7 Discussion

In our proposed cross-viewer synchronization approach, a viewer’s video rate is assumed
to be adjusted continuously between zero and the source rate that is configured by the
broadcaster. Yet in such existing video streaming and broadcast platforms as YouTube and
Twitch, the source video is normally encoded into several versions with different bitrates to
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accommodate users with heterogeneous network conditions [39, 40]. Our proposed solution
can be adapted to this discrete video rate scenario in the following ways.

First, when computing the optimal solution of (2.8) for each viewer, we can replace
the original domain of viewer’s rate, which is continuous between 0 and r̄i, with the set of
available video rates. When the number of video versions is small, the optimal video rate
for each viewer in each iteration can be obtained efficiently by enumerating.

The second approach is to increase the number of video versions through advanced
transcoding techniques. For example, through scalable video coding (SVC) [41,42], viewers
can adapt the requested video bitrate in a much broader range. Combined SVC with
cloud-based online transcoding [43,44], a viewer can be provided with a video stream with
customized bitrate.

Another issue in our cross-viewer synchronization framework is the feasibility of the
optimization problem. In fact, in our simulation, the range of network delay, which is
from 50 to 500 ms, already covers a wide spectrum of network conditions, where a feasible
solution can always be obtained. Theoretically, rate adaptation can tune the end-to-end
delay to a maximum of one second. Considering a end-to-end delay bound of 200 ms, our
problem is infeasible only when the network delay between a pair of viewers has a 1200 ms
difference, which is a very rare case in practice.

2.8 Summary

In this work, we identified that the end-to-end delay has a remarkably amplified impact on
viewers’ broadcast latency. In order to achieve cross-viewer synchronization, which is nec-
essary for real-time community interaction, an important feature in today’s live broadcast
services, we suggested smart rate adaptation, and develop distributed algorithms based on
dual decomposition. We further extended our solution to the cloud environment, where the
leasing costs of VM instances and the traffic charge were considered.

For the future work, we plan to implement our proposed rate adaptation algorithm in the
existing HTTP streaming protocol, and deploy it on the cloud, to evaluate its performance
in real systems. We will also extend our problem to the multi-source scenario, where
multiple broadcasters at different locations collaboratively generate video sources, and the
geo-distributed cloud is to be incorporated.
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Chapter 3

Practical Improvements for Cloud
Deployment

In this chapter, we provide practical improvements for the content generation and data
processing of crowdsourced multimedia services in a typical cloud environment.

3.1 ShadowCast: Moving Broadcasters to the Cloud

We first discuss optimizations for cloud-based live broadcast, so as to provide high quality
video streams beyond amateur broadcasters’ network bandwidth. In the new generation of
Twitch-like social media, the crowdsourced video sources from amateur users remarkably
stimulate the content diversity, which however also introduce new challenges to both con-
tent generation and content distribution. The source video quality of a channel, one of the
most important factors determining the streaming quality received by viewers, is strictly
limited by the broadcaster’s upload speed. Considering that many of the amateur broad-
casters rely on home networks, which have relatively low and unstable bandwidth (e.g., 512
Kbps to 2.5 Mbps upload bandwidth for typical home use Internet plans provided by ISP
providers in Canada), uploading a high quality video stream in real time can be difficult
or impossible to achieve. For example, the recommended bitrate for 1080p videos of the
Open Broadcaster Software (OBS)1, one of the most widely used broadcast applications
for Twitch-like services, is 3,000-3,500 Kbps, plus an audio bitrate of 64-128 Kbps; the
bitrate of standard quality 1080p YouTube videos is even higher, around 8,000 Kbps. For
the emerging 4K videos, the bitrate requirement can be easily over 20 Mbps. Further, We
have observed that for a broadcaster who simultaneously plays game and generates video
streams, the high- fidelity video recording/encoding activities can consume a large portion
of computation and network resources, and thus cause noticeable interference to the game
experience, e.g., significantly lower frames per second (FPS).

1https://obsproject.com/.
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To overcome the bandwidth limitation of broadcasters, which is unlikely to be improved
with trivial costs, as well as to alleviate the overhead of video recording/encoding, we
develop a hybrid video game live broadcast system, ShadowCast, based on the cutting-edge
cloud gaming technique [45, 46]. In ShadowCast, a broadcaster only need to transfer the
control data such as keyboard/mouse operations, and the web camera capture video which
has relatively low bitrate, to a shadow client deployed in a public cloud virtual machine,
say Amazon EC2. This shadow client also runs the same game application and reconstructs
the gameplay graphics according to the control data, which are delivered to the streaming
server for content distribution. With this design, the bandwidth demand on broadcasters
can be effectively offloaded to the cloud. Considering that the cloud servers often have
much higher and more stable bandwidth than ordinary users, the streaming quality can
be significantly improved. Besides, the network usage of broadcasters is also remarkably
reduced, which benefits broadcasters a lot since they may be charged extra if they exceed
the data usage plan.

We implement a proof-of-concept prototype of ShadowCast and validate its effectiveness
through real testbed experiments. Incorporating the latest cloud gaming technique, we set
up a Shadow Client on the Amazon GPU virtual Instance (G2) which perfectly mimics
the state of broadcasters and streams the videos to Twitch servers. We take Dota 2, one
of the most popular games played and live-broadcasted nowadays. The results show that
ShadowCast can minimize the impact on game experience for broadcasters while provide
high definition video streams way beyond the low bandwidth of broadcasters.

3.1.1 Motivation

In this section, we discuss the motivation of ShadowCast from two aspects. First, we show
that the video quality is highly diverse across different channels, which is largely caused
by the heterogeneous upload bandwidth capacities of broadcasters. We then show that the
streaming activities of the existing Twitch-like systems, which involve monitor capturing
and video encoding, can dramatically degrade the game experience of broadcasters.

The channels on Twitch are highly diverse, in terms of content (the games played by the
broadcasters) and quality (the encoding rates selected by the broadcasters). Twitch suggests
that the users selecting OBS for video encoding use CBR (constant bitrate) with padding
enabled, and the maximum bitrate should not exceed 80% of the upload bandwidth, which
trades off between the video quality and fluent playback. To adapt to the heterogeneous
network conditions of individual viewers, Twitch will normally transcode the source videos
into several versions with different resolutions and bitrates. The source version corresponds
to the original version uploaded by broadcasters. The Flash plugin on Twitch provides such
statistics as video resolution, and real-time/average playback rate. We choose four popular
games on Twitch, namely League of Legends, Dota 2, Hearthstone, and Counter-Strike, and
randomly select 100 channels for each. We plot the CDF of the average playback rates of
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Figure 3.1: CDF of average playback rates of selected channels

the selected channels (source version) in Figure 3.1. We can see that for all the selected
games, the source video quality is highly diverse across different channels (from 480p to
1080p), which largely depends on the broadcaster’s CBR settings and network conditions.

To take a closer look at how the upload bandwidth quantitatively affects the received
video quality, we have conducted a series of experiments with bandwidth control. We set up
a testbed with one computer serving as the broadcaster. The broadcaster is connected to the
Internet through a switch (Netgear GS108PEv2 ) that can limit the maximum bandwidth
of specific links. We apply a Twitch account and use the broadcaster to stream a 10-minute
Dota 2 game replay video to our Twitch channel. Specifically, we use OBS as the video
streaming and recording software, and adopt two recommended encoding settings: 720p at
2,000 Kbps, and 1080p at 2,800 Kbps. We enable the recording function of OBS, so the
frames that are successfully uploaded will be also stored locally. We repeat the experiments
under different settings of upload bandwidth, namely 512 Kbps, 1 Mbps, 2 Mbps, and no
limit. We analyze the OBS log files, and find that OBS will not upload a frame if the
bandwidth is not enough to upload the frame timely. We obtain the frame loss ratio at the
broadcaster under different settings of bandwidth, which is shown in Figure 3.2. We can
see that the upload bandwidth is critical to the frame loss ratio of the source video. When
the bandwidth is high, the result is perfect, no frame loss ratio. When the bandwidth is not
enough for timely streaming, a significant portion of frames will be discarded; the frame
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Figure 3.2: Frame loss ratio under different bandwidth

loss ratio becomes higher when the gap between the upload bandwidth and the source video
bitrate gets larger.

This observation poses challenges to both broadcasters and viewers in Twitch-like live
broadcast systems. Broadcasters need to carefully set the video encoding rate, say not
exceeding 80% of the nominal upload bandwidth. However, the nominal upload bandwidth
is not always guaranteed. In fact, the achievable throughput between a certain broadcaster
and the streaming server can be highly dynamic due to a lot of factors, e.g., the traffic
congestion at the edge network, or the streaming server becomes overloaded. Buffering
is useful to deal with slight variation of bandwidth; on the other hand, if the achievable
bandwidth becomes constantly lower than the encoding rate for a relatively long period of
time, the buffer would be quickly overflow, which results in intolerably high frame loss ratio.
The broadcaster needs to lower the encoding rates for smooth playback, which however,
degrades the received video quality at viewers. When some frames get lost, the viewers will
experience a period of graphics freeze until a certain amount of new frames are received and
played. It has been shown that such graphics freeze, together with the bitrate, have strong
correlation with the user engagement in live video streaming [38,47].

To examine the possible impact of live broadcast on gaming experience, and the frame
rate drop in particular, we have run the 3DMark gaming benchmark with and without live
streaming videos of 720p and 1080p, respectively. The benchmark contains a physics test
that benchmarks the CPU-wise performance, and a combined test that benchmarks both
the CPU-wise and GPU-wise performance. These tests allow us to understand how live
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broadcast activities affect the gaming experience. For the broadcaster, our test system is
equipped with an Intel Haswell Xeon E3-1245 quad core processor, 8 GB 1600 MHz DDR3
main memory, 1 Gbps Ethernet card, and in particular a recently released NVIDIA GTX
970 Maxwell GPU with 4 GB GDDR5 memory. The measurement results are shown in
Figure 3.3, which show strong evidence that the live broadcast activities have noticeable
negative influence on the game experience of broadcasters. For example, compared with
the baseline without live video streaming activities, the performance penalty reaches about
25.3% on the combined test for 720p, and 52.1% for 1080p. The physics test incurs a
penalty of around 26.5% and 27.3% for 720p and 1080p, respectively. Hence, the significant
performance degradation triggers us to optimize the existing design of Twitch-like systems
to alleviate the burden on broadcasters.

3.1.2 Architecture Design of ShadowCast

Our observations motivates us to optimize the architecture of the existing live broadcast
systems, where the dual role of broadcasters as the content generator and publisher, as
shown in Figure 3.4(a), potentially throttles the video quality and may also cause interfer-
ence on gaming experience. The block Twitch server in Figure 3.4(a) itself is a complex
system and consists of many components, e.g., load balancers, video servers, and interaction
servers. On the broadcaster side, the broadcaster plays game on his/her local computer,
which may require connecting to the game server for necessary account authentication and
information exchange. At the same time, the broadcaster uses OBS or similar softwares,
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Figure 3.4: The architecture of (a) Twitch-like and (b) ShadowCast live broadcast systems

which essentially works as a window capture tool, to encodes the game graphics and the
web camera content together according to a selected target bitrate. The encoded video
is then transmitted to a specific Twitch video server determined by the load balancers.
The video is normally transcoded into several versions with diverse bitrates for adapting to
heterogeneous viewers. Many Twitch-like service providers also utilize CDN servers along
with caching strategies when the number of viewers significantly increases. We have also
identified that the open chat channel services of Twitch which allow viewers to communicate
are hosted by separate interaction servers.

The drawbacks of the existing architecture of Twitch-like systems have been illustrated
previously. In a word, the dual role of broadcasters of the content generator and publisher
limits the video quality and also causes interference. Inspired by the emerging cloud gaming
techniques [45,48], we propose ShadowCast, which offloads the role of content publisher to
cloud. The system architecture of ShadowCast is shown in Figure 3.4(b). In ShadowCast,
a broadcaster exclusively acts a content generator that s/he plays games as a ordinary
player and no longer needs to conduct video encoding/uploading. Instead, the broadcaster
transmits the necessary game information such as keyboard and mouse operations, game
session information for multi-player games, as well as the web camera content to a shadow
client deployed in a public cloud platform. The Shadow client, which also installs the game
application, will reconstruct the game play graphics, encode the graphics together with the
web camera content, and upload them to the Twitch server.
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ShadowCast has two major benefits. First, the broadcasters do not need to perform
complex video encoding/uploading tasks. Hence, his/her game experience will not be im-
paired. Second, the video quality is not limited by broadcasters’ upload bandwidth any
more. Actually, ShadowCast can provide even better image quality than that on the the
original broadcaster’s game once the shadow client is powerful enough. Considering that
Twitch-like service providers may directly deploy their servers on cloud servers, the network
bandwidth between the shadow client and Twitch servers can be very high, which is more
than enough to transmit 4K videos.

We have also considered a pure cloud gaming system design that broadcasters play
games directly on the cloud virtual instance and their own computers work only as thin
clients. Yet we find that this solution is sub-optimal, as compared with ShadowCast, for
the following reasons. First, the cloud gaming incurs additional network and processing
delay, which can remarkably impair the game experience of broadcasters [49], since the
commands need to be transmitted to cloud for computation, and the graphics are needed to
be streamed back to broadcasters’ local computer for rendering. Second, the computation
power of broadcasters’ powerful local computers are wasted. Our ShadowCast, on the other
hand, decouples the dual role of broadcasters in the existing Twitch-like systems, and thus
can fully utilize the resources of both broadcasters’ local device as well the cloud servers.

It is worth noting that here we just take gaming as an example to illustrate the design
of ShadowCast, yet ShadowCast is not limited to the gaming scenario. Once the video
content can be reconstructed from the meta data, the live broadcast service provider can
leverage ShadowCast for delivering high quality video content, minimizing the requirements
on broadcasters.

3.1.3 Performance Evaluation

To conduct a synthetic evaluation on the ShadowCast framework, we choose the multi-
player online game Dota 2 as the gaming application, which is one of the most popular
games played and live-broadcasted nowadays. With the high-end system setup, we are
allowed to play Dota 2 at 4K resolution (3840×2160) with the highest graphics and texture
settings while achieving satisfying FPS.

To measure the bandwidth consumption, we set up a software router with Linux in-
stalled, and used the nload tool2 to record the network behaviors. For the broadcaster,
our test computer is equipped with an Intel Haswell Xeon E3-1245 quad core processor, 8
GB DDR3 1600 MHz RAM, 1 Gbps Ethernet card, and in particular a recently released
NVIDIA GTX 970 Maxwell GPU with 4 GB GDDR5 memory. To collect game-specific
data such as FPS, we configure and use the statistic tools provided by the Dota 2 game
engine. Meanwhile, Dota 2 supplies a feature called the Spectator Mode where other gamer

2http://www.roland-riegel.de/nload/
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Table 3.1: Comparison of average frame-rate (FPS) and bandwidth (Kbps)

Player Mode Frame-rate In-bandwidth Out-bandwidth
Baseline 85 88.25 33.11
Local broadcast 68 168.12 3732.07
ShadowCast 85 85.60 33.91

players, namely spectators, can watch live gameplay in a player’ first person views, so every
operation executed by the player will be forwarded to the Dota 2 server and then delivered
to the spectators’ own Dota 2 game engine to be replayed. We can therefore conveniently
build up a proof-of-concept prototype of ShadowCast.

To establish a baseline, we set up the Dota 2 game engine to supply 4K resolution, the
highest graphics effects, and a maximum of 120 FPS frame rate. We launch the game and
carefully select a normal game scene of Dota where there is only minor frame rate fluctuation
(±1 FPS). We then start the network bandwidth and frame rate measurement which lasts
for 5 minutes. It is also worth noting that we fix these game settings and select scene across
the following local-broadcast and ShadowCast experiments to make a consistent and fair
comparison.

In the local-broadcast experiment, we also choose OBS as the broadcasting software.
We configure it to capture and encode frames in the CBR mode with 3500 Kbps and 2 key
frames per second. The capture resolution will be down-scaled and down-sampled from 4K
at higher than 60 FPS to 1080p at 60 FPS, as in reality viewers have lower frame rate and
resolution demands than the players. Noticeably these settings are also recommended by
Twitch for broadcasting at 1080p.

On the other hand, for our ShadowCast prototype, locally we use the same setup as the
local-broadcast one, except that we do not run broadcasting software on the broadcaster
anymore. Instead we cast the game commands and controls to the remote Shadow Client,
which is hosted remotely on the Amazon GPU virtual Instance (G2) in Oregon. We also
install Dota 2 on the virtual instance and leverage the Spectator Mode to replay each and
every operation of our local player does. We then start the OBS on the instance with
identical settings to broadcast the game.

The experiment results are shown in Table 3.1. As we can see, compared with the
baseline without live broadcast, the local-broadcast, the default setup of the existing Twitch
broadcaster, have a significantly degraded game experience for players/broadcasters; the
FPS is nearly 20% lower. On the other hand, ShadowCast allows the broadcaster to play
game with nearly zero performance penalty. In terms of network usage, we can see that
ShadowCast consumes no more than the baseline, while the local-broadcast setting requires
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more than 3600 Kbps for uploading video streams. Here we did not involve the broadcaster’s
web camera content; yet it will not affect the advantage of ShadowCast. Considering
that a 360p video only needs 600-800 Kbps after encoding, which is affordable by most
broadcasters’ network conditions, ShadowCast can still significantly outperform the local-
broadcaster in both game experience and network usage.

3.1.4 Summary

Through a series of experiments, we have identified the drawbacks of the existing system
design of Twitch-like live broadcast services. First, the source video quality is strictly limited
by the broadcasters’ upload bandwidth. Second, the video encoding/streaming activities
can have noticeable interference on broadcasters’ game experience. To this end, we have
developed ShadowCast, a novel live video game streaming system, based on the cutting-edge
cloud gaming technique. Our prototype illustrates that ShadowCast can effectively offload
the bandwidth demand to the cloud, and simultaneously solve the above problems. In the
future work, we plan to investigate such practical issues as the optimal virtual machine
selection in terms of cost and video quality and implementing multi-view video streams by
allowing the Shadow Client switching from multiple players in the same game.

3.2 Crowdsourced Data Processing in the Cloud

Given the large volume of crowdsourced data, efficient data processing is important. MapRe-
duce [16] has become the de facto framework for big data processing, and such practical
implementations as the open-source Apache Hadoop project3 have been increasingly em-
braced by both academic and industrial users. Yet, not all the MapReduce users, or po-
tential users, have dedicated MapReduce clusters due to various reasons, e.g., the costly
upfront investment on hardware/software, and the lack of expertise on cumbersome config-
uration, not to mention the challenges on expanding the cluster when the application scale
escalates. Fortunately, the readily available cloud resources provide an alternative solution
for big data analytics. The cloud users can rent virtual machines (VMs) from public cloud
providers, say Amazon Web Services (AWS)4, and deploy the Hadoop stack as well as other
standard/customized tools. As such, they can enjoy the convenient and flexible pay-as-you-
go billing option, as well as the on-demand resource scaling. For example, Yelp5, a famous
business rating and review site, successfully saved 55,000 dollars in upfront hardware costs
by using MapReduce on the AWS to processes 3 TB of data per day [50].

As one of the most important technical foundations of virtualized clouds, virtualization
techniques (e.g., Xen, KVM, and VMware) allow multiple virtual machines (VMs) run-

3http://hadoop.apache.org.
4http://aws.amazon.com.
5http://www.yelp.com.
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ning on a single physical machine (PM), which achieves highly efficient hardware resource
multiplexing, and effectively reduces the operating costs of cloud providers. Yet, it has
been identified that MapReduce jobs running on virtual machines can take significantly
longer finish time, as compared with directly running on physical counterparts [51]. The
reasons are two-fold. First, the virtualization technology itself introduces nontrivial perfor-
mance overheads to almost every aspect of computer systems (e.g., CPU, memory, storage,
and network). Most applications, no matter computation or I/O intensive, will experience
certain performance penalty when running on virtual machines. Second, the off-the-shelf
MapReduce systems, e.g., Hadoop, are originally designed for physical machine clusters;
the unique characteristics of virtual machines, say resource sharing/contention and VM
scheduling, are yet to be accommodated, which further exaggerate the negative impact of
virtualization on MapReduce tasks.

Realizing the great need and potential of running MapReduce on virtualized public
clouds, there have been pioneer studies toward improving the performance of MapReduce
over virtual machine clusters, e.g., [52–56]. One important aspect, data locality that seeks
to co-locate computation with data, however has yet to be addressed in this new context.
Since fetching data from remote servers across multiple network switches can be costly, data
locality can effectively improve the MapReduce performance in a physical machine cluster
or datacenter with high over-provisioning ratio [57]. Intuitively, it should also work well by
placing data close to VMs, which unfortunately is not true in a virtualized cloud.

Through real-world experiments, we show strong evidence that the conventional notion
of data locality designed for physical machines needs substantial revision to accurately reflect
the data locality in virtualized environments. In particular, node-local, which indicates that
running tasks fetch data from vicinity, should be extended. Simply distributing data to
nearby VMs, i.e., VM-local, is not necessarily helpful; only if the VMs are co-located in the
same physical machine, i.e., PM-local, will a large portion of congested disk I/O be effectively
offloaded through the highly efficient memory sharing. Modifying the storage architecture to
improve PM-locality however is nontrivial, as the current task scheduler module in Hadoop
is unable to distinguish the difference: when scheduling tasks, co-located VMs have the
same priority as the VMs on other physical machines in the same rack. To this end, we
develop an enhanced task scheduling algorithm, namely, vScheduling, that assigns higher
priority to co-located VMs.

These efforts together lead to the development of vLocality, a comprehensive and prac-
tical solution toward data locality in virtualized environments. We closely examine the
design and deployment issues of vLocality and have implemented it in Hadoop 1.2.1. Its
effectiveness has been validated on a typical virtualized cloud platform, which shows that
vLocality improves the job finish time of typical MapReduce applications by up to 24.3%
as compared to baseline.
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Figure 3.5: A typical MapReduce workflow.

3.2.1 Background

In this section, we offer the necessary background for our work, including a brief overview
of MapReduce as well as typical machine virtualization technologies.

The MapReduce System

A MapReduce cluster generally consists of a master, which acts as a central controller,
and a number of slaves, which store data and conduct user-defined computation tasks in a
distributed fashion [16]. A slot is the basic unit of computing resources; each slave has a
fixed number of map and reduce slots depending on its computation capability, commonly
one or two slots per CPU core.

State-of-the-art MapReduce implementations, say Hadoop, adopt a hybrid data storage
architecture. The persistent data, including the input data, the final output data after
running MapReduce tasks, and the log files, are partitioned into file blocks (the block size
is 64 MB by default and can be modified by users) and stored in a distributed file system,
e.g., the Hadoop distributed file system (HDFS) or the Google file system (GFS). The
temporary data, most of which are the intermediate outputs, are stored in the local file
system of each node, e.g., in the hadoop.tmp.dir directory for Hadoop.

A typical MapReduce workflow consists of two major phases. First, the map processes
(mappers) on slaves read the input data from the distributed file system and transform the
input data to a list of intermediate key-value pairs (known as the map phase); the reduce
processes (reducers) then merge the intermediate values for the distinct keys, which are
stored in the local disks of slaves, to form the final results that are written back to the
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Figure 3.6: Xen architecture.

distributed file system (known as the reduce phase). Both the map and reduce phases can
be further divided into multiple steps, as shown in Figure 3.5.

In this framework, co-locating computation with data, which largely avoids the costly
massive data exchange crossing switches, can significantly improve the job finish time of
most tasks [57]. Real-world systems, such as Hadoop and Google’s MapReduce, attempt
to achieve better data locality through replicating each file block on three servers, so that
two of them are within the same rack and the remaining one is in a different rack. More
advanced data locality solutions have also been developed [58–60], though mostly working
for physical machine clusters.

Virtualization

In state-of-the-art systems, virtualization is often achieved through the use of a software
module known as a Hypervisor, which works as an arbiter between a VM’s virtual devices
and the underlying physical devices [61].

Using Xen [61], an open source virtualization tool that has been widely used by public
clouds, including Amazon Web Services and Rackspace6, as a representative, Figure 3.6
shows the overall architecture of a typical Xen-based virtualized system. A Xen Hypervisor,
which is also called the virtual machine monitor (VMM), provides the resource mapping

6http://www.rackspace.com/.
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between the virtual hardware and the underlying real hardware of the physical machine.
A privileged VM, namely, the Domain0, is created at boot time and is allowed to use the
control interface. The Hypervisor works together with the host OS running on the Domain0
to provide system management utilities for users to manage the physical machine as well
as VMs, e.g., the CPU scheduling policy and the resource allocation. The OS running
on an unprivileged domain (DomainU) VM is called the guest OS, which can only access
the resources that are allocated by the Hypervisor. It is worth noting that the host OS
and the guest OSes can be different. The DomainU VMs cannot directly access the I/O
devices; rather, the Domain0 VM handles all of the I/O processing. Xen uses the shared
memory mechanism for data transfer between co-located VMs [61]. Intuitively, existing
data locality mechanisms should also work well in a virtualized environment, which has yet
to be validated (or invalidated).

3.2.2 When Data Locality Meets Virtualization

In a physical machine cluster, each slave node in MapReduce has a DataNode that stores
a portion of data, and a TaskTracker that accepts and schedules tasks, as shown in Fig-
ure 3.7(a). The NameNode on the master node keeps the directory tree of all files on
DataNodes, and keeps track of the locations of files. Similarly, in a virtual machine cluster,
each virtual machine serving as a slave also has a DataNode and a TaskTracker by default, as
shown in Figure 3.7(b). This balanced architecture is very straightforward and is supposed
to provide the best performance since each virtual machine can access the data locally,
achieving the maximum data locality. On the other hand, a single DataNote can be set up
on only one virtual machine to serve all the other co-located virtual machines, as shown in
Figure 3.7(c). Intuitively, this imbalanced architecture incurs more remote accesses and has
a lower degree of data locality, since the virtual machines without DataNodes need to fetch
data remotely.

We have conducted a series of experiments in a testbed cloud platform to understand
and compare the performance of data locality under the different configurations above. Our
experimental results reveal the distinct characteristics when data locality meets virtualiza-
tion, which indeed contradict our intuition, suggesting that the conventional data locality
strategies working for physical machines should be revised.

Our testbed consists of three state-of-the-art Dell servers (OPTIPLEX 7010), each e-
quipped with an Intel Core i7-3770 3.4 GHz quad core CPU, 8 GB 1333 MHz DDR3 RAM,
a 1 TB 7200 RPM hard drive, and a 1 Gbps Ethernet Card. Hyper-Threading is enabled
for the CPU so that each CPU core can support two threads. All the physical machines
are inter-connected through a D-Link 8-port gigabit switch. This cluster of controlled scale
allows the machines to be interconnected with the maximum speed and enables us to closely
examine the interplay among all of them, without concerning the background interference
from many other machines.
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Figure 3.7: MapReduce Node Setup. (a) Each physical machine (PM) has a DataNode and
a TaskTracker; (b) Each virtual machine (VM) has a DataNode and a TaskTracker; (c)
Co-located virtual machines share a DataNode.

We use a separate physical machine as the master node, which, as the central controller,
involves heavy I/O operations and network communications to maintain the state of the
whole cluster and schedule tasks. Using a dedicated physical machine, rather than a virtual
machine, ensures fast response time with minimized resource contention, and accordingly
enables a fair comparison with fully non-virtualized systems [62]. Other physical machines
that host virtual slave nodes run the latest Xen Hypervisor (version 4.1.3). On each physical
machine, besides the Domain0 VM, we configure three identical DomainU VMs, which act
as slave nodes. For the operating systems running on VMs (both Domain0 and DomainU),
we use the popular Ubuntu 12.04 LTS 64 bit (kernel version 3.11.0-12). All the VMs are
allocated two virtual CPUs and 2 GB memory. We use the logical volume management
(LVM) system, which is convenient for resizing, to allocate each DomainU VM a 100 GB
disk space by default. We run the Hadoop version 1.2.1 on the VMs of our MapReduce
clusters.
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Figure 3.8: Datanode: Less is better. Three VMs (a, b, and c) co-locate on the same PM.

DataNode Placement: Less is Better

Our first observation is that the number of DataNodes per physical machine has a remark-
able impact on the MapReduce performance. We start from a simple cluster as shown in
Figure 3.8, in which two physical machines are inter-connected through the switch, one
serving as the master node and the other hosting three VMs (a, b, and c). The three
VMs act as slaves, each having a TaskTracker. We extract 3.5 GB wikipedia data from the
wikimedia database7, which are uploaded to the HDFS as the input data and then divided
into 60 file blocks. We select the widely used Sort application as our microbenchmark,
which arranges the lines of text in the input files in alphabetical order. For the DataNode
placement, we examine three representative settings: 1. Setting up a DataNode on only
one VM; 2. Randomly selecting two VMs and setting up a DataNode on each; 3. Setting a
DataNode on each VM. When there are more than one DataNode, the input data will be
almost evenly stored on them.

We run the benchmark application five times for each configuration, and the average
job finish times of the above three configurations are 458.0, 487.0, and 524.5 seconds, re-
spectively.

It can be seen that, the less the number of DataNodes per physical machine, the shorter
the job finish time. This contradicts to that with traditional MapReduce clusters of physical
machines. In a physical machine cluster, the highest data locality will be achieved when
all tasks can access the input data from local nodes (node local), and the job finish time is
generally shorter than that with a lower-degree of data locality. For virtualized MapReduce
clusters, our results however indicate that achieving complete VM locality can be harmful.
A closer look shows that the reasons are three-fold. First, many MapReduce tasks, say Sort

in the example, are both computation and I/O intensive; considering the contention for the
shared resources, adding more DataNodes will significantly increase the burden of VMs and
the extent of inter-VM interference. Second, both reading data from and writing data to

7Available at http://dumps.wikimedia.org/
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Figure 3.9: Total disk read/write throughput during MapReduce running time

HDFS involve meta-data exchange with the master node; having multiple DataNodes also
increases the overhead of such information exchange. Third, besides HDFS involved I/O
operations, each VM also generates massive intermediate data, which is generally several
times more than the amount of input and output data; the intermediate data needs to be
written to and read from the local disk of each VM to bridge the map and reduce phases,
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as shown in Figure 3.5. Yet the concurrent I/O operations of HDFS and local disks will
aggravate the intra- and inter-VM contention for the disk.

The observations suggest that selecting one VM hosting the DataNode serving all co-
located VMs can be a better choice. This architecture overcomes the above drawbacks of
one DataNode per VM and thus mitigates the contention for disk. To understand this, we
use the iotop tool, which is available in most Linux distros, to measure the real-time disk
read/write throughput during the process of two experiments (one DataNode per VM and
one DataNode per PM), and plot the total disk read/write throughput of the three VMs in
Figure 3.9. We can see that one-DataNode-per-PM setting has a noticeably higher average
disk read/write throughput (read: 19.03 MB/sec vs. 15.19 MB/sec, write: 27.39 MB/sec vs.
21.23 MB/sec) and lower variation.8 Further, the data exchange between co-located VMs is
very efficient, which has been validated using the iperf tool. The measurement shows that
the network bandwidth between two co-located VMs exceeds 15 Gbps, clearly indicating
that co-located VMs have directly used the memory bus for data exchange. Hence, the
added latency caused by remote access across co-located VMs is negligible.

Virtual Locality: Nearest is Not the Best

To further verify that remote data access across co-located VMs does not add noticeable
performance penalty, our another set of experiments use two physical machines, which are
connected through a switch. For the non-master physical machine, we have two configu-
rations (Figure 3.10): in configuration (a), we boot up only one DomainU VM, which has
both TaskTracker and DataNode; in configuration (b), we boot up two DomainU VMs: one
has a TaskTracker only and the other has a DataNode only. Other experimental settings
are the same as in the previous experiment. We again run each experiment five times for
each configuration. The average job finish times of configurations (a) and (b) are 799.0 and
433.3 seconds, respectively. The result is very interesting. In configuration (a), the VM
can access all the data from its local disk; while in configuration (b), all the input/output
data needs to be transmitted between the two VMs. Yet the latter is much more efficient
in terms of MapReduce job finish time, which not only verifies our previous conjecture that
remote access across co-located VMs does not add noticeable performance penalty, but also
indicates that the MapReduce can significantly benefit from decoupling TaskTracker and
DataNode.

Though the scale of our testbed platform is not large, it can well reflect the drawbacks
of the conventional data locality strategies that work for physical machines. By running the
MapReduce tasks on a single physical machine which hosts multiple virtual machines, the
variation caused by cross-machine traffic can be minimized, enabling us to focus on the major
performance concern in a virtualized MapReduce cluster, namely, the interference among

8It is worth noting that iotop itself introduces some overhead and thus the job finish time becomes
slightly longer, which however exists for all the cases and thus will not affect the relative differences.
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Figure 3.10: Configurations with different degrees of virtual locality. Configuration (a) has
perfect virtual locality, and configuration (b) has zero virtual locality.

co-located VMs. Further, as the basic component of a virtualized MapReduce cluster, a
deep understanding of the performance bottlenecks on a single physical machine provides
useful guidelines for the design of larger scale systems, as will be discussed in the next
section.

3.2.3 vLocality: Architecture Design and Prototype Implementation

Given the observations above, it is necessary to re-visit the notation of data locality for
MapReduce in virtualized clouds. This inspires our design and development of vLocality,
which seeks to improve the effectiveness of locality in the virtualized environment, yet with
minimized modifications to the existing MapReduce implementations. In this section, we
first illustrate the high-level design of vLocality and then, using Hadoop as a representative,
discuss a series of practical issues toward real-world implementation that offers a convenient
interface configure parameters based on specific virtual environments.

System Design

Figure 3.11 illustrates the architecture of vLocality. For the VMs that are co-located on
the same PM, we only set up a single DataNode on one of them; all the other VMs on this
PM each has a TaskTracker only.

To reduce the cross-server network traffic during the job execution, the task scheduler
on the master node usually places a task onto the slave, on which the required input data is
available if possible. Yet this is not always successful since the slave nodes having the input
data may not have free slots at that time. Recall that the default replication factor is three
in the Hadoop systems, which means that each file block is stored on three servers—two
of them are within the same rack and the remaining one is in a different rack. Hence,
depending on the distance between DataNode and TaksTracker, the default Hadoop defines
three levels of data locality, namely, node-local, rack-local, and off-switch. Node-local is the
optimal case that the task is scheduled on the node having data. Rack-local represents a
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Figure 3.11: vLocality Architecture Design. A core switch is a high-capacity switch inter-
connecting top-of-rack (ToR) switches, which have relatively low capacity.

suboptimal case that the task is scheduled on a node different from the node having data;
yet the two nodes are within the same rack. Rack-local will incur cross-server traffic. Off-
switch is the worst case, in which both the node-local and rack-local nodes have no free slots,
and thus the task needs to retrieve data from a node in a different rack, incurring cross-
rack traffic. When scheduling a task, the task scheduler takes a priority-based strategy:
node-local has the highest priority, whereas off-switch has the lowest.

In virtualized MapReduce clusters, however, the three-level design is not enough to
accurately reflect the data locality. For example, in Figure 3.11, for a file block stored on
VM 1-a, scheduling the task on VM 1-b or VM 2-b are considered identical by the task
scheduler, for both are rack-local. Yet data exchanges between co-located VMs (e.g., VM
1-a and VM 1-b) are much faster than those between remote VMs (e.g., VM 1-b and VM
2-b), and hence the two cases should have different scheduling priorities. To this end, we
modify the original three-level priority scheduling strategy by splitting node-local into two
priority levels, namely, VM-local and PM-local, in virtualized MapReduce clusters, defined
as follows:

Definition 1. VM-local. A task and its required data are on the same virtual machine;
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Algorithm 3 vScheduling: Task scheduling in vLocality MapReduce systems
1: when the task scheduler receives a heartbeat from node v:
2: if v has a free slot then
3: sort the pending tasks according to the priority policy and obtain a list T
4: schedule the first task to node v
5: end if

Definition 2. PM-local. A task and its required data are on two co-located virtual ma-
chines, respectively.

At the beginning of running a MapReduce job, vLocality launches a topology config-
uration process that identifies the structure of the underlying virtualized clusters from a
configuration file. Then a VM is associated with a unique ID, in the format of rack-PM-VM
such that the degree of locality can be easily obtained. A vScheduling algorithm (see Algo-
rithm 1) then schedules the tasks in a virtualized MapReduce cluster based on the newly
designed priority-levels as follows. When a VM has free slots, it requests new tasks from the
master node through heartbeat, and the task scheduler on the master node assigns tasks
according to the following priority order: PM-local if this VM has no DataNode (VM-local
if this VM has a DataNode), rack-local, and off-switch.

Implementation Details

The above high-level description provides a sketch of the vLocality’s workflow. Implement-
ing it in real-world MapReduce systems however is nontrivial. In particular, we need to
modify the original priority level as well as the corresponding scheduling policy, calling for
careful examination of the whole Hadoop package to identify the related classes and meth-
ods. We also need to ensure that our modifications are compatible with other modules.

To demonstrate the practicability of vLocality and understand its practical performance,
we have implemented a prototype of vLocality based on Hadoop 1.2.1. We now highlight
the key modifications in the practical implementation in the following. In the configuration
file core-site.xml, we add a property virtual.environment.type to declare whether
the hadoop cluster is running in a virtualized environment or not. The host names of the
VMs with no DataNodes are set in the excludes file. The user also needs to customize a
configuration file slaves on the master node according to following syntax: the host names
of co-located VMs are in a line, and the VMs in the same rack are embraced with a pair of
brackets. If the value of virtual.environment.type is true, the topology configuration
process parses the slaves file, and generates a Pyhton script file rack-topology.py, which
is set as the value of the property topology.script.file.name of core-site.xml for
computing the degree of locality.

As we have re-defined the locality levels in vLocality, and have revised the task scheduling
algorithm accordingly, implementing them needs substantial modifications:

46



First, we split the original NODE-LOCAL to PM-LOCAL and VM-LOCAL as follows. In file
Locality.java, NODE_LOCAL is replaced by VM_LOCAL or PM_LOCAL depending on whether
the VM has DataNode or not. In file NodeBase.java, the physical machine location is
inserted as a property to each VM by a Python script file vmlocation.py. The class
NetworkTopology in NetworkTopology.java, which defines the hierarchical tree topology
of MapReduce clusters, is extended to class VirtualNetworkTopology by overriding such
methods as getDistance() and pseudoSortByDistance(). During the initialization of
NameNode, VirtualNetworkTopology returns clusterMap, which is the network topology,
to the DataNode Manager.

Second, we modify the task scheduling algorithm according to our proposed vScheduling,
which is mainly implemented in files JobInProgress.java and JobQueueTaskScheduler.java.
We modify the original JobQueueTaskScheduler() method to respond to TaskTracker
heartbeat requests. We implement our vScheduling algorithm to replace the default policy.
The getMachineLevelForNodes() method in file JobInProgress.java is the key compo-
nent of the task scheduler, where the task priority is updated to PM-local (0), VM-local (1),
rack-local (2), and off-switch (3), based on the distance between data (DataNode) and com-
putation (TaskTracker). Then the task scheduler in vLocality first assigns the VM-local and
PM-local tasks through obtainVmOrPmLocalMapTask(), then the rack-local tasks through
obtainRackLocalMapTask(), and finally other tasks through obtainNonLocalMapTask().
All these three methods are encapsulated in a general method obtainNewMapTask(). We
keep the original interfaces of obtainNewMapTask() to ensure the compatibility.

3.2.4 Performance Evaluation

In this section, we evaluate the performance of vLocality based on our testbed virtualized
cloud platform. Our platform consists of eight physical machines, which are inter-connected
through a gigabit switch. We use one dedicated physical machine as the master node, and
create three DomainU VMs on each of the remaining seven physical machines. The setup of
each VM is the same as that in Section 3.1.1. Hence, our virtualized MapReduce cluster has
twenty-two nodes in total, namely, one physical master node and twenty-one virtual slave
nodes. We compare vLocality with two other systems, Default and HDFS-only. Default
runs the standard Hadoop 1.2.1 system with one DataNode on each virtual slave node,
which serves as the baseline; HDFS-only adopts the one DataNode per PM setting with
the original task scheduling algorithm. We select three widely used Hadoop benchmark
applications Sort, ShortestPath, and PageRank. We use the 3.5 GB wikipedia data as the
input for Sort, and process the data to the input format (directed graph) of ShortestPath

and PageRank.9 The PageRank application ranks the vertices according to the PageRank
9Each URL in the file is represented by a vertex, and each hyperlink is represented by a directed edge.

47



algorithm, and the ShortestPath application finds the shortest path for all pairs of vertices
in the input file.
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Figure 3.12: Job finish time of different systems

48



It is noting that in all the experiments, all the file blocks are evenly distributed on
all the VMs, and thus all the PMs as well. In each experiment, the file access pattern is
uniform, which means that each file block is accessed once. In this scenario, the Default
system already achieves the optimal node-local data locality, as discussed in [58, 63]. Since
vLocality takes the major efforts on minimizing the interference of co-located VMs, as
well as differentiating between PM-local and rack-local, our testbed platform, where all the
nodes connected with one switch, focuses on the improvements in the rack level. The results
are representative, and the conclusion can be extended to larger systems since cross-rack
scheduled tasks only account for a marginal portion of the total tasks [56].

Job Finish Time

We first compare the job finish time of different systems. For each system, we run the
experiments for each benchmark application five times, and plot the average job finish
time, as well as the standard deviation in Figure 3.12.

It is observed that vLocality significantly improves the performance of all the selected
MapReduce applications over the other systems. Compared with Default, HDFS-only im-
proves the job finish time by 9.6% on average for Sort, which again verifies the effectiveness
of revising the DataNote placement strategy. vLocality, by adapting the task scheduling al-
gorithm to be virtual aware, can further improve the job finish time by 16.3% on average, as
compared with HDFS-only (24.3% as directly compared with Default). The improvements
on ShortestPath and PageRank are less significant (16.2% and 12.3% as compared with
Default, respectively), since the number of reducers in these two applications is less than
that in Sort, and thus the reduce phase, in which data locality has less impact, accounts
for most of the running time. Further, these two applications involve iterative steps, which
incur a lot of communication overhead.

Since data locality is mainly related to the map phase, we plot of the empirical CDF of
the map task finish time in Figure 3.13, which gives us a much more clearer picture of the
impressive improvements of vLocality over Default. We can see that the system design has
a remarkable impact on the finish time of individual map tasks. Taking Sort as an example,
in the Default system, all the map tasks take more than 20 seconds, and nearly 30% tasks
need more than 40 seconds. On the other hand, in both HDFS-only and vLocality systems,
more than 70% tasks can be finished in less than 18 seconds, indicating that the reduced
number of DataNodes can effectively mitigate the interference and speed up task execution.
The remaining tasks, accounting for about 20% of the total, have divergent finish time
distributions in HDFS-only and vLocality: all the remaining tasks can be finished within
40 seconds in vLocality, while most of them need more than 40 seconds in HDFS-only,
implying that vScheduling significantly reduces rack-local (cross-PM) tasks.
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Figure 3.13: Empirical CDF of map task finish time of different systems

Data Locality

To take a closer look at the improvement of vLocality, we investigate the data locality
of different systems when running applications. We calculate the distribution of different
degrees of data locality for each system running the benchmark applications, and report
the results of Sort in Table 3.2. The results are similar for ShortestPath and PageRank,
which are omitted for the sake of conciseness.

Table 3.2 explains the advantages of vLocality over Default and HDFS-only. In Default,
most tasks are VM-local, a few are rack-local, and the PM-local cases are very rare. Con-
current running VM-local tasks on co-located VMs will incur serve inter-VM interference,
leading to increased task finish time. HDFS-only successfully reduces VM-local tasks by
reducing the number of DataNodes per PM, yet it incurs many rack-local tasks since the o-
riginal task scheduler regards PM-local and rack-local as identical. In vLocality, most tasks
are assigned to the appropriate VMs, minimizing the non-necessary rack-local tasks. It is
worth noting that vLocality cannot completely eliminate the rack-local tasks. To identify
the root cause, we analyze the log files, and find that in some cases, the VMs on one PM
are all busy and have no free slots, while some VMs on other PM have free slots. Hence,
the task scheduler has to allocate the pending tasks, which are rack-local to these VMs;
otherwise the slot resources would be wasted.
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Table 3.2: Degrees of data locality in different systems

VM-Local PM-local rack-local
Default 90.0% 1.7% 8.3%
HDFS-only 31.7% 38.3% 30.0%
vLocality 25.0% 71.7% 3.3%

3.2.5 Related Work

It has been shown that running MapReduce tasks on virtual machines incurs noticeable over-
head as compared with running on physical machines [51, 52]. Much effort has been taken
to unveil the bottlenecks and to develop improvements. Ibrahim et al. [52] identified that
different disk pair schedulers cause Hadoop performance variation and accordingly proposed
an adaptive disk I/O scheduling algorithm. Fang et al. [62] discussed the I/O scheduling
in Xen-based virtualized clouds, and suggested two improvements: enhancing Domain0’s
weight dynamically, and using physical machines as master nodes. Kang et al. [53] proposed
the MapReduce Group Scheduler (MRG), targeting multiple MapReduce clusters running
on the same physical machine cluster. Yuan et al. [64] developed an interference-aware algo-
rithm that smartly allocates MapReduce tasks to different VMs. Given the multi-tenancy
nature, the performance of virtual machines can be highly heterogeneous and variant, and
the LATE scheduling algorithm [65] was proposed for job scheduling in this new context.

Data locality is critical to the performance of MapReduce tasks, and there have been
significant studies toward improving data locality [57]. Scarlett [58] and DARE [59] adopt a
popularity-based strategy, which smartly place more replicas for popular file blocks. There
have also been substantial efforts on directly scheduling tasks close to data, e.g., [60,66–68].

These works on data locality have yet to address the distinguished challenges from virtual
machines in a public cloud. In the virtualized environment, a location-aware data allocation
strategy was proposed in [63], which allocates file blocks across all physical machines evenly
and the replicas are located in different physical machines. Purlieus [54] improves the data
locality through locality-aware VM placement such that the data transfer overhead is min-
imized. DRR [55] enhances locality-aware task scheduling through dynamically increasing
or decreasing the computation capability of each node. An interference and locality-aware
(ILA) scheduling strategy has been developed for virtualized MapReduce clusters, using
a task performance prediction model to mitigate inter-VM interference and preserve task
data locality [56].

Our vLocality improves the data locality in a virtualized cloud environment by observing
that directly applying the conventional data locality strategies in physical machine clusters
to virtual machine clusters, namely, achieving complete VM-locality, can be harmful to the
MapReduce performance given the shared resource contention nature. We have revised the
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underlying data placement strategy and accordingly propose a customized virtual-aware
task scheduling algorithm. The existing improvements, e.g., Delay Scheduling [60], DR-
R [55], and interference-aware scheduling [56], can be further incorporated into vLocality
after being customized for the new architecture of vLocality. We plan to work on this issue
in the future work.

3.2.6 Summary

As an important practice to improve MapReduce performance, data locality has been ex-
tensively investigated in physical machine clusters. In this work, we showed strong evi-
dence that the conventional efforts on improving data locality can cause negative impact on
typical MapReduce applications in virtualized environments. By examining the inter-VM
contention for the shared resources, we suggested to adapt the existing storage architec-
ture to be virtual-machine-aware, which offloads a large portion of congested disk I/O to
the highly efficient network I/O with memory sharing. This new storage design demands
revision on the traditional three-level data locality, so does the task scheduling. To this
end, we developed vLocality, a systematic solution to improve data locality in virtualized
MapReduce clusters. Through real-world implementation and deployment of vLocality, we
demonstrated the superiority of vLocality against state-of-the-art Hadoop systems. There
is one potential limit of vLocality that it requires the topology information of the underlying
cluster, which is not readily available in current public clouds. Yet, we believe that this
information will be provided by cloud providers in the near future to facilitate cloud users,
to further improve the performance through topology-aware resource provisioning.

For the future work, we will explore the following directions. First, we plan to further
optimize the two basic components of vLocality: for the storage design, we can incorpo-
rate the file popularity issue to balance the workloads of individual DataNodes; for the task
scheduling, we may incorporate other advanced strategies, e.g., the Delay Scheduling [60] to
the virtualized environment. Second, our preliminary vLocality design in this work focuses
on a single user scenario. In the multi-user scenario, the fairness among users should be ad-
dressed too for storage design and task scheduling. Third, we will investigate the possibility
of more flexible resource allocation in vLocality. Given that not all VMs have DataNodes,
the workloads of different types of VMs can be different, leading to a heterogeneous envi-
ronment. We plan to conduct a more detailed profiling analysis to identify the potential
performance bottleneck of the vLocality design, and compare both offline solutions that
allocate different amounts of resources (e.g., CPU and memory) based on workloads, and
online solutions that dynamically adjusts the capabilities of VMs through the Xen control
interfaces.
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Chapter 4

Resource Allocation for
Crowdsourced Multimedia
Applications with Device-to-Device
Communication

The proliferation of such high performance mobile devices as smartphones and tablets,
and the advances in cellular network technologies, provide convenient platforms for the
generation and distribution of crowdsourced multimedia contents. It has been shown that
80% active Twitter users access Twitter services through mobile devices1, and 30% Twitch
viewers watch streams from mobile devices2. Mobile data traffic has been experiencing a
phenomenal rise in the past decade, which is expected to reach 24.3 exabytes per month by
2019, a nearly tenfold increase over 2014 [69].

Such ever increasing data traffic has put significant pressure on the infrastructure of
state-of-the-art cellular networks. There have been great efforts on the development and
deployment of next generation wireless communication systems, notably the 3GPP Long
Term Evolution (LTE)3. The widespread penetration of WiFi networks have also successfully
offloaded a certain portion of the traffic [70]. Yet the cellular Base Stations (BSes) and WiFi
Access Points (APs) remain bottlenecks that limit the achievable data rate for individual
mobile devices. Also the availability of WiFi APs can hardly be guaranteed, particularly in
rural areas, not to mention that most of the APs are not readily shared.

On the other hand, it is known that proximity-based services have constituted a con-
siderable portion of the mobile data traffic [17]. Such services enable geographically close
users to directly exchange data, which is of particular interest in the new generation of social

1https://about.twitter.com/company
2http://www.polygon.com/2014/6/12/5801580/twitch-xbox-one-ps4-ios-android-mobile
3http://www.3gpp.org/
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applications. As an example, the popular WhatsApp4, can utilize a Near Field Communi-
cation (NFC) [71] module that is readily available on the latest smartphones and tablets
to support peer-to-peer file sharing for nearby users, albeit with a slow speed of 424 Kbp-
s. The more powerful Bluetooth [72] has served for proximity-based data exchange for a
long period, which however needs cumbersome manual device pairing and still has a rather
limited communication range as well as data rate; new standards, e.g., Wi-Fi Direct [73],
remain at a very early stage to be widely adopted. Moreover, Bluetooth and Wi-Fi Direct
are both standalone standards that are independent of the cellular networks; they operate
on unlicensed spectrum, which often incur severe and unpredictable interference [74].

Recently, Device-to-device (D2D) communication underlaying cellular networks has been
suggested as a new paradigm of great potential toward supporting proximity-based appli-
cations [17–20]. With this new paradigm, the cellular BS-based and the direct D2D com-
munications are coordinated to operate on the same licensed spectrum. Different resource
allocation strategies can be applied to allocate the spectrum and to adjust the transmit
power to optimize the overall system performance [75]. D2D communication can benefit
crowdsourced services from two aspects. First, when crowdsourced services demand data
exchange among proximate mobile users, these users can directly utilize D2D communica-
tion that is more cost-efficient. Second, when crowdsourced services transfer data from/to
remote servers through cellular BS-based communication, D2D communication can provide
better QoS through reducing the traffic on BSes.

Significant studies have been conducted with a common objective of maximizing the
aggregated data rate [76, 77]. The new generation of cellular networks however have long
supported heterogeneous applications, which can have highly diverse Quality of Service
(QoS) specifications. For example, file sharing applications generally demand high data
rate but can smoothly adapt to a wide range of data rates. On the other hand, such
streaming applications as VoIP and Internet Protocol Television (IPTV) generally have a
lower limit for the minimum acceptable quality, and often encode the source into multiple
versions with different encoding bitrates [40]. Even their bottlenecks, whether on the uplink
or the downlink, can be different. Maximizing the overall data rate without differentiating
the needs of these applications can often lead to under- or over-provisioning, as revealed by
our experiments.

In this work, we consider a modern D2D underlay to cellular networks serving diverse
types of applications. We jointly consider resource allocation and power control with het-
erogeneous QoS requirements from the applications for selecting the best resource sharing
mode. We closely analyze two representative classes of applications, namely streaming-like
and file-sharing-like, and develop optimized solutions for coordinating the cellular and D2D
communications. We further extend our solution to accommodate more general application
scenarios and systems of larger scales. The effectiveness of our solution has been validated

4http://www.whatsapp.com/
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Figure 4.1: D2D communication as an underlay to a cellular network.

through extensive simulations with realistic configurations. The results demonstrate that,
as compared with state-of-the-art allocation schemes that maximize the total data rate only,
our solution enables with better resource utilization for different types of applications with
less possibility of under- or over-provisioning.

4.1 Background

The concept of D2D communication as an underlay to a cellular network is illustrated
in Fig. 4.1, where BS represents a Base Station and UE represents a User Equipment.
The UEs can be served by the BSes, as in traditional cellular networks; they can also
communicate with each other directly through D2D links. A distinct feature here is that
the two types of communications share the same spectrum, which apparently needs careful
coordinations [17,76]:
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(1) Dedicated mode: The cellular network allocates an exclusive portion of resources
dedicated for the direct communications between D2D device pairs. There is no interference
between the cellular and D2D communications;

(2) Cellular mode: D2D devices work as traditional cellular devices, and D2D commu-
nications are relayed by the BS;

(3) Reuse mode: D2D communications reuse a portion of or the whole resources allocated
to cellular network. This mode can be further divided into downlink reuse (DLre) and uplink
reuse (ULre), where the downlink/uplink of the D2D communications reuse the shared
resources and may cause interference to the downlink/uplink of cellular users.

Maximizing the total data rate for the cellular uplink and the D2D pairs has been widely
used as the optimization objective in this context [76]. Doppler et al. [76] studied the optimal
mode selection strategy for both single-cell and multi-cell scenarios, aiming at reliable D2D
communications with limited interference to the cellular network. They showed that the
mode selection highly depends on the locations of the devices. Liu et al. [78] studied the
mode selection problem and showed that the introduction of relay nodes offers D2D pairs a
higher probability to share the resources with cellular users. For each of the above modes,
both power control and resource sharing need careful examination in order to achieve the
maximum data rate.

4.1.1 Power Control with D2D Communication

Smart power control mitigates the interference among users sharing the same spectrum,
which is critical for the coexistence of D2D and cellular users. Early efforts have been
spent on exploiting the capacity gain of D2D connections without generating significant
interference to cellular users [17,77], which is closely related to the problem in the cognitive
radio context that secondary users should not generate harmful interference to primary
users [79]. Yet recent works have shown that the overall performance can be improved by
giving slight priority to D2D links [80]. Yu et al. [81] further derived the optimal power
allocation approach under both prioritized or non-prioritized cellular communications.

4.1.2 Resource Allocation with D2D Communication

Resource allocation is usually jointly considered with mode selection and power control
to improve the total data rate or spectrum efficiency. Zulhasnine et al. [82] formulated
this problem as a mixed integer nonlinear programming and proposed a greedy heuristic
algorithm to reduce the interference to cellular users. Yu et al. [75] analyzed the optimal
resource allocation and power control between cellular and D2D links that share the same
resources for different sharing modes. Xu et al. [83] further proposed a sequential second
price auction-based mechanism to allocated the resources to D2D pairs. Our work differs
from the above works in that we pave an application-oriented avenue toward power control
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Figure 4.2: Single cell scenario with a pair of D2D UE and a cellular UE.

and resource allocation. We take the QoS specifications of heterogeneous applications into
consideration, which calls for a revisit to the problem.

Most of the above studies assumed that the BSes have the CSI of all the involved links
and adopt centralized schemes to allocate the resources for both cellular and D2D users.
Recent works have shown that cell statistics can be used instead of the instantaneous CSI
in resource allocation, although its accuracy remains to be examined [84]. A distributed
game-theoretic allocation scheme was proposed in [85], but the solution is suboptimal due to
the lack of accurate resource management and tight cooperation. We advocate a centralized
control with readily available CSI in our work, which however can be extended in the future
when smarter CSI data collection tools are available.
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4.2 QoS-Aware Resource Allocation: Model and Problem

We start from a single cell scenario with one cellular user UE1 and a D2D pair (UE2 and
UE3), as illustrated in Figure 4.2. We assume that the inter-cell interference is well managed
by cooperative power control or resource allocation mechanisms across cells [86], which allow
us to focus on the spectrum within individual cells. In line with existing studies [75,76], we
assume that the BS has all the CSI available and aim at designing a centralized resource
allocation scheme. The cellular network adopts Frequency Division Duplexing (FDD) such
that the uplink and the downlink each occupies half of the whole spectrum (denoted by
W ), as in the LTE standard [87]. We also assume symmetric channels, and use gi to denote
the channel gain between the BS and UEi, and gij the channel gain between UEi and UEj.
Typically, the channel gain includes the path loss, shadow fading and fast fading [88]. We
denote the power of the Additive White Gaussian Noise (AWGN) at the receiver by N0,
and the allocated transmit power of UEi by Pi. The maximum transmit power of the UEs,
denoted by Pmax, is up to 23 dBm in LTE standard. We also denote the allocated transmit
power of the BSes by PB. The maximum transmit power of the BSes, denoted by PmaxB ,
depends on their cover range, for example, up to 20 dBm for a Home BS, 24 dBm for a
Local Area BS, and no upper limit for a Wide Area BS in LTE [87]. In most wireless
communication systems, there is an upper limit on the spectrum efficiency such that a
Signal to Interference plus Noise Ratio (SINR) higher than a maximum value, γh, does not
further increase the data rate when the link spectrum efficiency is limited to rh bps/Hz.
A link adaptation technique will select a proper MCS from a limited number of options
according to the current channel condition [89] and rh is achieved when the current SINR
is high enough to support the highest MCS, e.g., 64QAM Rate 11/12 for LTE [90]. On the
other hand, the SINR should be no lower than a minimum value, γl, to support the lowest
MCS with the spectrum efficiency of rl bps/Hz.

Both the cellular and D2D communications can support heterogeneous networked ap-
plications. A user’s experience largely depends on such network conditions as delay and
data rate. In our system, the delay of the cellular communication is mainly determined by
the backhaul and core networks, which are relatively independent of the operations in a
cell; the delay of the D2D communication is very low given short distance between a D2D
pair. Hence, in this work we focus on the data rate as the key factor that impacts user
experience. We summarize the notations in Table 4.1.

The relationship between user experience and data rate however is not homogeneous for
different classes of applications. Assume that there are K classes of applications, each of
them having a utility function Ui,∀i ∈ {1, ...,K} that quantifies the relationship between
user experience and data rate. We then define cell utility and D2D utility as the total utility
of the cellular applications and the D2D applications, respectively. We can further assign
different weights to the cellular and D2D utilities, which give different priorities to each of
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them. Our target is then to identify the optimal strategy to allocate the resources and to
adjust the transmit power of the BS and UEs to maximize the weighted cell utility. This
QoS-aware resource allocation problem can be formulated as follows:

Maximize WCU = λUc(Rc) + λ′Ud(Rd) (4.1)

Subject to Pi ≤ Pmax, ∀i ∈ {1, 2, 3},

PB ≤ PmaxB ,

γl ≤ γc, γd ≤ γh,

λ′ = 1− λ,

Given Uc, Ud ∈ {U1, ..., UK},

where λ (0 < λ < 1) is the weight assigned to the cellular utility; Rc and Rd are the data
rates of the cellular and D2D communications, respectively, and will be derived in the later
section; Uc and Ud are the utility functions of the cellular and D2D communications and
are determined by the corresponding applications, respectively.

4.2.1 Utility Functions of Applications

We first focus on two representative classes of applications, namely, file sharing for typical
generic data exchange applications and streaming for typical multimedia communication
applications.

File Sharing Applications

File sharing applications generally expect a short finish time or equivalent, high data rate;
yet they are highly adaptive to a broad range of data rates with no stringent demand. Given
the file size of a specific task, the utility function thus depends on the date rate. Let Rmax

be the maximum achievable data rate, we have the utility function Uf (R) = R
Rmax if the

user’s experience is linear with the data rate, or finish time. To ensure proportional fairness
in resource allocation, however, logarithmic relation has also been widely used [91], leading
to a utility function of Uf (R) = log2(1 + R

Rmax ).

Streaming Applications

Likewise, streaming applications also benefit from high data rate and adapt to a certain
range, but generally has a lower bound for most of the audio/video multimedia data. On the
other hand, if the data rate is higher than a certain encoding bitrate, the marginal utility
quickly diminishes. In between, the operational rates of the encoder are discrete given the
limited set of admissible quantizers [92]. Moreover, to meet the heterogeneous capacities or
capabilities of users, a stored source video has often been encoded into multiple versions,
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each with a different encoding bitrate [39]. For example, the videos on YouTube can have
3-5 versions, of such resolutions as 240p, 360p, 480p, 720p and 1080p for different users [40].

Assume there are M admissible quantizers in source coding, or the source video is
encoded into M versions. The encoding bitrate for version i is Ri, i = 1, 2, ...,M , where
version 1 obviously has the lowest quality and version M the highest quality. The utility
value of version i is given by ui, i = 1, 2, ...,M , which denotes the perceived user experience.

The utility function of a typical streaming application can then be described as:

Us(R) =


uM if R ≥ RM ,

ui if Ri ≤ R < Ri+1,∀i ∈ {1, ...,M − 1},

0 otherwise,

(4.2)

where R represents the available data rate, and a user always chooses the version with the
highest quality that is commensurate with the user’s data rate.

It is worth noting that delay, particularly its jitter, is also a critical concern in stream-
ing applications that demand continuous playback. In practice, if the data rate can be
maintained above the source encoding rate, then the delay jitter can be effectively masked
through buffering, which is available in all modern media streaming engines, e.g., Windows
Media Player, Adobe Flash Player, and Apple QuickTime [93,94]. Advertisements can also
be inserted to mitigate the impact of the delay perceived by end users and to serve as a
major income source, which are very common in today’s commercial video sharing plat-
forms, notably YouTube. Hence, in this work, we use the data rate as the key parameter
for utility calculation, and we consider both the linear relation ui = Ri

RM
,∀i ∈ 1, ...,M , and

the logarithmic relation ui = log2(1 + Ri
RM

),∀i ∈ 1, ...,M . The latter not only addresses
the inter-user fairness but also reflects the non-linear relation between the perceived video
quality and encoding bitrate of state-of-the-art video encoders [95,96].

4.3 Optimal Sharing with Different Modes

Given the resource allocation problem and the utility functions of the applications, it is nec-
essary to first derive the optimal allocation strategy for each of the sharing modes between
the cellular and D2D communications.

4.3.1 Resource Allocation with Dedicated Mode

We first investigate the dedicated mode, in which the D2D communications take an exclu-
sive portion of the spectrum resources from the cellular network and leave the remaining
resources to the cellular users. Hence, the cellular and D2D communications do not cause
interference to each other.
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Table 4.1: Summary of notations

Notation Description
W System bandwidth
gi Channel gain between UEi and the BS
gij Channel gain between UEi and UEj
γ SNR or SINR value
r Spectrum efficiency
Us Utility function for streaming applications
Uf Utility function for file sharing applications
Pi Transmit power of UEi (the maximum value is Pmax)
PB Transmit power of the BS (the maximum value is Pmax

B )
Rc Data rate of cellular communications
Rd Data rate of D2D communications
N0 Noise power
WCU Weighted cell utility
DM Dedicated mode
CM Cellular mode
ULre Uplink reuse mode
DLre Downlink reuse mode
α ∈ Ωα The portion of resources allocated to D2D communications
M Number of video versions

We use α to denote the portion of resources reserved for the cellular communications.
Assuming that UE2 is transmitting, with the Shannon capacity formula [88], we can obtain
the data rate of the cellular and D2D communications, respectively, as follows:

RDMc→BS = αW

2 log2(1 + γDMc→BS) = αW

2 log2(1 + g1P1
N0αW/2

), (4.3)

RDMBS→c = αW

2 log2(1 + γDMBS→c) = αW

2 log2(1 + g1PB
N0αW/2

), (4.4)

RDMd = α′W

2 log2(1 + γDMd ) = α′W

2 log2(1 + g23P2
N0α′W/2

), (4.5)

where 0 ≤ α ≤ 1, α′ = 1− α, W is the total frequency bandwidth that is equally occupied
by the uplink and downlink, as previously described, and γ reflects the channel condition
of the corresponding link.

It is worth noting that here we distinguish between the uplink and downlink of a cellular
user, which extends the existing works that take the uplink data rate as the cellular data
rate when maximizing the sum rate [75,76]. The reason is twofold. First, the transmit power
of the BS is much higher than that of the UEs and thus the downlink peak data rate is also
higher in most cellular systems. Second, we deal with heterogeneous applications, which
can be throttled by either the uplink, e.g. file sharing when a cellular user is transmitting
data, or the downlink, e.g. video streaming; certain applications can be even throttled by
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Algorithm 4 Resource Allocation for Dedicated Mode
1: PB = PmaxB , Pi = Pmax, ∀i ∈ {1, 2, 3};
2: WCUmax = 0;
3: for α ∈ Ωα do
4: Calculate RDMBS→c, RDMd , and WCU according to Eqs. (4), (5) and (6), respectively;
5: if WCU > WCUmax then
6: WCUmax = WCU ; α∗ = α; R∗ = max

Ri∈R1,...,RM
Ri ≤ RDMBS→c;

7: end if
8: end for
9: α = α∗; PB = (2

2R∗
αW − 1)N0αW/2)/g1;

10: Return WCUmax, PB, α;

both, e.g. 2-way video calling [97]. As such, only considering the resource allocation for the
uplink of may lead to over/under-provisioning of resources for applications with different
demands, as will be validated in Section 4.5.

First we assume that the cellular communications are serving a video streaming appli-
cation, and the D2D communications are serving a file sharing application. We will extend
to other application scenarios and larger system scales in Section 4.4. Then the weighted
cell utility becomes:

λUs(RDMBS→c) + λ′Uf (RDMd )

= λUs(
αW

2 log2(1 + γDMBS→c)) + λ′Uf (α
′W

2 log2(1 + γDMd ))

= λUs(
αW

2 log2(1 + g1PB
N0αW/2

)) + λ′Uf (α
′W

2 log2(1 + g23P2
N0α′W/2

)). (4.6)

The domain of α can be either continuous between 0 and 1 if the spectrum can be
partitioned arbitrarily, which is an ideal situation; or a set of values if the spectrum is
allocated at a granularity of subcarrier, which is adopted in practical cellular networks [98].
In this work, we consider the latter case and use Ωα to denote the set of all the possible
values of α.

Since in the dedicated mode, there is no interference between the cellular and D2D
communications, the BS and UEs can use the maximum power to transmit if necessary.
Hence, we can simply set the transmit power of the BS and all UEs to the maximum
values PmaxB and Pmax, respectively. By calculating the weighted cell utility with each of
the possible values of α, we can obtain the value of α giving the maximum weighted cell
utility. Then we can reduce the transmit power of the BS to the highest value that does not
degrade the cellular utility for the purpose of power efficiency. The pseudo-code is shown in
Algorithm 4. After running the algorithm, the obtained α and PB determine the optimal
resource allocation strategy for the dedicated mode that offers the highest weighted cell
utility (WCUmax). The computational complexity is O(|Ωα| log2M), where |Ωα| denotes
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the number of values of α, which is in the order of the number of subcarriers, and we use
binary search in step 10.

4.3.2 Resource Allocation with Cellular Mode

The operations in the cellular mode are quite similar to those of the dedicated mode except
that the BS works as a relay node for the communications between D2D pairs. Hence,
we can easily extend the system model and problem formulation of the dedicated mode to
the cellular mode. Similar to the dedicated mode, a portion of the cellular resources are
exclusively allocated to D2D communications. A D2D device first needs to transmit the
data to the BS, and then the BS relays the data to the paired D2D device. Assuming that
UE2 is transmitting, the data rates in the cellular mode are as follows:

RCMBS→c = αW

2 log2(1 + γCMBS→c) = αW

2 log2(1 + g1PB
N0αW/2

), (4.7)

RCMd = α′W

2 · 1
2log2(1 + γCMd )

= α′W

4 log2(1 + min( g2P2
N0α′W/2

,
g3PB

N0α′W/2
)). (4.8)

The weighted cell utility can be calculated as follows:

λUs(RCMBS→c) + λ′Ut(RCMd )

= λUs(
αW

2 log2(1 + g1PB
N0αW/2

))

+ λ′Ut(
α′W

4 log2(1 + min( g2P2
N0α′W/2

,
g3PB

N0α′W/2
))). (4.9)

Similar to the dedicated mode, we need to find the optimal partitioning of the spectrum
resources. We can reuse Algorithm 4 with slight modifications to obtain the optimal resource
allocation strategy for the cellular mode as follows. First we need to find the link (from the
transmitter to the BS or from the BS to the receiver) having lower SNR, which determines
the achievable data rate of the D2D communications. We then calculate theWCU according
to Eq. (4.9) for different values of α, and find the optimal one offering the highest WCU .
The computational complexity is also O(|Ωα| log2M).

4.3.3 Resource Allocation with Reuse Mode

In the reuse mode, the D2D communications can use either the uplink or downlink spec-
trum resources of the cellular users. We do not need to consider the partitioning of the
spectrum resources in the reuse mode since the D2D communications will reuse the whole
uplink/downlink spectrum. On the other hand, we need to carefully set the transmit power
of the BS and UEs to control the interference, which is more challenging. The transmit
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power of the BS and UEs cannot be simply set to the respective maximum values as in the
dedicated and cellular modes, because the interference will also be maximized and signif-
icantly impact the data rate of the interfered links. The interference may come from any
D2D user depending on which one is transmitting at the moment. Similar to the previ-
ous section, we assume that UE2 is the transmitter in the file sharing application. The
derivation follows the same steps when UE3 is the transmitter.

Since the reuse mode can be further categorized into uplink reuse and downlink reuse
modes, we need different resource allocation strategies for each of them.

Uplink Reuse

We start from the uplink reuse mode, which is relatively easier to analyze since in our
application scenario the cellular communication is throttled by the downlink that does not
interfere with the D2D communication.

The data rates of the cellular and D2D communications in the uplink reuse mode are
as follows:

RULreBS→c = W

2 log2(1 + γULreBS→c) = W

2 log2(1 + g1PB
N0W/2

), (4.10)

RULred = W

2 ·
1
2log2(1 + γULred ) = W

4 log2(1 + g23P2
g13P1 +N0W/2

). (4.11)

And the weighted cell utility can be calculated as follows:

λUs(RULreBS→c) + λ′Uf (RULred )

= λUs(
W

2 log2(1 + g1PB
N0W/2

)) + λ′Uf (W4 log2(1 + g23P2
g13P1 +N0W/2

)). (4.12)

Since the downlink of the cellular and D2D communications do not generate interference
to each other, we can optimize them separately. We set the transmit power of the BS to
the maximum value, PmaxB , to maximize the cell utility. We also set the transmit power of
UE2 the maximum value Pmax, and set the transmit power of UE1 to the value that can
support the lowest MCS to minimize its interference to the D2D communications. This
strategy will offer the highest weighted cell utility for the uplink reuse mode.
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Downlink Reuse

Similarly, we can derive data rates in the downlink reuse mode as follows:

RDLreBS→c = W

2 log2(1 + γDLreBS→c)

= W

2 log2(1 + g1PB
max(g12P2, g13P3) +N0W/2

), (4.13)

RDLred = W

2 ·
1
2log2(1 + γDLred ) = W

4 log2(1 + g23P2
g3PB +N0W/2)). (4.14)

In this case, the downlink of the cellular communication experiences the interference
caused by the D2D communication and vice versa. Therefore, we need to jointly adjust the
transmit power of the BS and UEs. The weighted cell utility can be derived as:

λUs(RDLreBS→c) + λ′Uf (RDLred )

= λUs(
W

2 log2(1 + g1PB
max(g12P2, g13P3) +N0W/2

))

+ λ′Uf (W4 log2(1 + g23P2
g3PB +N0W/2

)). (4.15)

Since the utility function of streaming applications (Us) is not continuous and thus is
not differentiable, we cannot obtain a closed form of the optimal values of PB, P2 and P3.
Fortunately the optimal solution can be obtained by exploiting the discreteness of the utility
function Us. The main idea is as follows. First we compute the highest feasible SINR γ′,
where γ′ = g1PmaxB

N0W/2 . Further we use γ
(i) to denote the required SINR for version i. Then for

each γ(i) ≤ γ′ we solve the following optimization problem to obtain the highest weighted
cell utility WCU (i) in this case:

Maximize g23P2
g3PB +N0W/2

(4.16)

Subject to PB ≤ PmaxB ,

P2 ≤ Pmax,
g1PB

g12P2 +N0W/2
≥ γ(i),

PB, P2 ≥ 0.

To maximize the objective function, P2 should be as high as possible and PB should be as
low as possible. The optimal value is reached when the SINR constraint g1PB

g12P2+N0W/2 = γ(i)
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is satisfied. Substituting this equality into the objective function, we have:

g23P2
g3PB +N0W/2

= g23P2
g3
g1
γ(i)(g12P2 +N0W/2) +N0W/2

= g23
g3
g1
γ(i)(g12 + N0W/2

P2
) +N0W/2

. (4.17)

We can see that the objective function increases monotonically with P2. Hence, the
maximum of the objective function is obtained when P2 takes the maximum value subject
to the SINR constraint as follows:

P2 = min( 1
g12

(g1P
max
B

γ(i) −N0W/2), Pmax). (4.18)

Substituting this into the SINR constraint, we have

PB = γ(i)(g12P2 +N0W/2)
g1

. (4.19)

We also consider the case where the cellular user has no enough data rate to watch
the video of the lowest version. Then highest weighted cell utility WCU (0) is obtained by
setting PB = 0 and P2 = Pmax. At last the value of PB and P2 resulting in the highest
WCU is selected as the optimal strategy for the downlink reuse mode (we can simply set
P3 = g12P2

g12
such that the SINR constraint is not violated). The pseudo-code is shown in

Algorithm 5. The computational complexity is O(M).
The strategies for all the above resource sharing modes refer to the transmit power

of the BS and each UE, plus the value of α that determines the allocation of bandwidth
resources for the dedicated and cellular modes. After obtaining the resource allocation
strategies for all the resource sharing modes, we can select the one with the highest weighted
cell utility as well as the corresponding mode. The overall computational complexity is
O(max(|Ωα| log2M,M)).

4.4 Extension and Further Discussion

We now discuss how to extend our solutions to other general application scenarios and
larger systems with multiple cellular users and D2D pairs.

4.4.1 General Application Scenarios

If the cellular communications serve a file sharing application, the bottleneck is the uplink,
and the utility function changes to Uf (Rc→BS). If the cellular communications serve a 2-way
video calling application, both the uplink and downlink can be the bottleneck. Assuming
the utility function of video calling applications as Uvc, the utility function of the cellular
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Algorithm 5 Resource Allocation for Downlink Reuse Mode

1: γ′ = g1PmaxB
N0

;
2: for i = 1 : M do
3: if γ(i) ≤ γ′ then
4: Calculate P2, PB and WCU (i) according to Eqs. (4.18), (4.19) and (4.15), respec-

tively;
5: if WCU (i) > WCUmax then
6: WCUmax = WCU (i); P ∗2 = P2; P ∗B = PB;
7: end if
8: else
9: break
10: end if
11: end for
12: WCU (0) = λ′Uf (W4 log2(1 + g23Pmax

N0
));

13: if WCU (0) > WCUmax then
14: WCUmax = WCU (0); P ∗2 = Pmax; P ∗B = 0;
15: end if
16: P2 = P ∗2 ; PB = P ∗B; P3 = (g12P2)/g12;
17: Return WCUmax, PB, P2, P3;

communications changes to Uvc(min(Rc→BS , RBS→c)). If the D2D communications serve
different applications other than the file sharing applications, we can also change the utility
function accordingly.

Since there is no interference in both the dedicated and cellular modes, the optimization
is almost the same. We can set the transmit power of the BS and UEs to the respective
maximum values, and search for the optimal value of α offering the highest WCU .

The case for the reuse mode is more complex due to interference. If the cellular com-
munications serve file sharing applications and the D2D communications serve streaming
applications, for uplink reuse, we can set P2 and P3 to Pmax. We calculate γ(i) according
to Eq. (4.13). The strategy of adjusting transmit power offers the highest WCU under
different values of γ(i) is selected, which is similar to Algorithm 5. For downlink reuse, we
can set the transmit power of all the UEs to the maximum value and the transmit power
of the BS to the value that can support the lowest MCS for all the UEs.

If both the cellular and D2D communications serve streaming applications, the solution
for uplink reuse is the same as in our original scenario. For downlink reuse, the approach
to finding the optimal strategy is similar to Algorithm 5, and the worst case complexity is
also O(M). For each γ(i) received at the cellular user, we also set P2 = min{ 1

g12
(g1PmaxB

γ(i) −
N0W/2), Pmax} to maximize the D2D utility.

If both the cellular and D2D communications serve file sharing applications, the solution
for the uplink reuse mode is the same as the original scenario. The solution for the downlink
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reuse case is different. The weighted cell utility now is given by:

λUf (RDLreBS→c) + λ′Uf (RDLred )

= λUf (W2 log2(1 + g1PB
max(g12P2, g13P3) +N0W/2

))

+ λ′Uf (W4 log2(1 + g23P2
g3PB +N0W/2

)). (4.20)

Since both utility functions are continuous and differentiable, we can obtain a closed form
of the optimal solution by letting the partial derivative of the expression on the right side of
Eq. (4.20) with respect to PB and P2 to be zero, respectively, and then solving the system
of equations to get the transmit power of the BS and UEs. The method can be generalized
to other application scenarios with given continuous or discrete utilities functions.

4.4.2 Larger Systems with Multiple Users

For larger systems with multiple cellular users and D2D pairs, we can assume that the
spectrum resources are equally shared among the cellular users [76], or are allocated based
on the link qualities of different users [99, 100]. We further assume that the base station
adopts some admission control mechanisms such that the number of D2D pairs allowed is
no more than the number of cellular users and each reuse group consists of one cellular user
and at most one D2D pair. This matching can be obtained by randomly picking a cellular
user and a D2D pair, or picking a cellular user and a D2D pair who are far away enough
such that the maximum interference is below a given threshold.

After the matching, the spectrum allocation and transmit power adjustment problem
of the whole system now transforms to independent subproblems for each group that con-
sists of one cellular user and at most one D2D group, which is exactly the scenario we
were discussing in the previous section. Assuming that there are N cellular users and
N D2D pairs, then the worst case complexity of the proposed centralized algorithm is
O(N ∗max(|Ωα| log2M,M)). The centralized algorithm can be distributed as follows such
that the computational burden on BSes can be effectively mitigated. We assume that all
the UEs will report their location information to the BSes. Hence, the base station can
deliver the location information of the matching D2D pair to each cellular UE (thus the
channel gain can be calculated). Then each cellular UE will find the optimal strategy for
its own group, with the worst case complexity of O(max(|Ωα| log2M,M)), and send back
to the BSes, which then deliver the strategy to the corresponding D2D pair.

4.4.3 Implementation Requirements of D2D Communication

The infrastructure of existing cellular systems needs several modifications to effectively im-
plement D2D communications. For example, UEs need to be able to directly communication
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with each other using the spectrum resources of cellular systems. Further, the channel gain
information between UEs is required for resource allocation. The dedicated and cellular
modes are easy to implement since the cellular and D2D communications operate on dif-
ferent spectrum and thus all the UEs can transmit at the maximum power to achieve the
highest data rate, without generating interference to each other. While for the reuse mode,
sophisticated power control mechanisms are needed to limit the interference and more chan-
nel gain information is required. Further, the movement of users would change the extent
of interference significantly, and thus demanding more frequent updating channel gain and
tuning the spectrum allocation and power control strategy. On the other hand, the reuse
mode can provide higher spectrum utilization in many occasions, as will be validated in
Section 4.5.

4.5 Performance Evaluation

We have performed extensive simulations to evaluate the performance of the proposed QoS-
aware resource allocation scheme. We developed a customized simulator using the Python
programming language (version 2.7.3) to capture the essence of state-of-the-art LTE sys-
tems. The simulator was run on a PC with an Intel Core i7-3770 CPU at 3.40 GHz, 8 GB
of RAM, and the 64bit Linux Ubuntu 12.04 operating system. Table 4.2 summarizes the
simulation parameters and their default values, mostly adapted from [82, 90]. We allocate
the spectrum resources at a granularity of Resource Blocks (RBs), each composed of 12
adjacent subcarriers of 15 KHz and thus the RB bandwidth is 180 KHz, as in the LTE
system [90]. The carrier frequency is 2 GHz, and the path loss is composed of the distance
attenuation 35.3 + 37.6× log(d), where d is the distance in terms of meters, and shadow
fading. We first simulated a single cellular network with one cellular user (UE1) coexisting
with a pair of D2D users (UE2 and UE3). We further conducted a simulation with larger
system scale. In both simulations, the BS is located at the center of a rectangular area of
200 m × 200 m. The location of the UEs are uniformly distributed in the area while the
distance between the D2D users ranges from 1 to 50 m. The mean and standard deviation
of the shadow fading variables are 0 dB and 8 dB, respectively. The CSI is calculated at
the UEs and then fed back to the BS. We adopt an advanced link adaptation technique
in [90], where a proper MCS is selected from the available MCSes (e.g., QPSK, 16QAM and
64QAM) with different coding rates ranging from 1/12 to 11/12 according to the estimated
SINR value. Each MCS has a SINR threshold value that corresponds to 10% BLER (see [90]
for details).

4.5.1 One Cellular User and One D2D Pair: A Case Study

For this scenario, we have experimented with a total bandwidth of both 5 MHz and 10
MHz, which is equally occupied by the uplink and downlink. The number of RBs is 24 with
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Table 4.2: Simulation parameters

Parameter Value
Area size 200 m × 200 m
Carrier frequency 2.0 GHz
System bandwidth 5 MHz, 10 MHz, 20 MHz
Number of subcarriers per RB 12
Subcarrier bandwidth 15 kHz
RB bandwidth 180 kHz
Number of RB 24, 50, 100
Max BS Tx power 20 W (43 dBm)
BS antenna gain 14 dBi
BS noise figure 5 dB
Max UE Tx power 100 mW (20 dBm)
UE antenna gain 0 dBi
UE noise figure 9 dB
Distance between D2D UEs 1 to 50 m
Antenna pattern Omni
MCS QPSK: 1/12, 1/9, 1/6, 1/3, 1/2, 3/5

16QAM: 1/3, 1/2, 3/5
64QAM: 1/2, 3/4, 3/5, 5/6, 11/12

Distance attenuation 35.3 + 37.6× log(d)
Log-normal shadowing std 8 dB
Noise density -174 dBm/Hz
Bandwidth efficiency 0.83
User distribution Uniform
Video encoding bitrate 500, 1000, 2500, 5000, 8000 kbps

5 MHz system bandwidth and 50 with 10 MHz system bandwidth. The maximum data rate
Rmax is obtained by allocating all the RBs, coded using the MCS with the highest coding
rate, to the D2D communications. The source video is encoded into 5 versions, namely
240p, 360p, 480p, 720p and 1080p, with the corresponding bitrates ranging from 500 to
8000 kbps, which are the recommended bitrates for standard quality uploads of YouTube5.

Performance of Different Modes

We first evaluate the performance of the resource allocation of different resource sharing
modes. For each mode, we also investigate the impact of the two different types of utility
functions. Here we set the value of λ to 0.5 such that the cellular and D2D communications
are given equal weight. We will investigate the impact of different values of λ later. We
perform 500 times of simulations with different locations of UEs to mitigate randomness.

5According to the advanced encoding settings of YouTube: http://support.google.com/youtube/bin/
answer.py?hl=en&answer=1722171.
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We find that all of the sharing modes can offer the cellular user the highest quality video,
yet different data rates of the D2D users (referred to as D2D data rate in the following). We
plot the average over 500 simulations (5 MHz and 10 MHz) in Figure 4.3, and also report
the detail statistics in Table 4.3. W represents the overall system bandwidth, and the same
in the following tables. When the system bandwidth is 5 MHz, both the uplink reuse and
downlink reuse modes have higher average D2D data rates than those of the remaining two
modes. The reason is that in the two reuse modes, half of the system bandwidth is available
for the D2D users, and the cellular user exclusively occupies the other half. Yet, in both
dedicated and cellular modes, the D2D users need to compete for the bandwidth resources
with the cellular user. The D2D data rates of both dedicated and cellular modes are rather
consistent, which are largely determined by the distance between the D2D users. The D2D
data rates of both two reuse modes however incur very high variation, likely caused by the
interference from the cellular communications. For downlink reuse, the D2D data rate will
be higher if the receiving UE (UE3) is far away from the BS and could be zero if it is too
close. Similarly, the D2D data rate with uplink reuse depends on the distance between UE1

and UE3. The uplink reuse mode has a higher D2D data rate since the transmit power
of UE1 is generally lower than that of the BS and thus the interference caused by UE1 is
smaller. The cellular mode is only feasible when the D2D users are far apart from each
other, as compared with their respective distance to the BS. Recall that we have limited
the maximum distance between the D2D users to 50 m, and so the cellular mode is rarely
selected in our simulation setting.
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Figure 4.3: Average D2D data rate for different resource sharing modes.

On the other hand, when the system bandwidth is 10 MHz, the dedicated mode offers a
significantly higher D2D data rate, as compared with other modes. The reason is that, after
allocating bandwidth resources enough for the video of the highest quality to the cellular
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Table 4.3: Statistics of D2D data rate (Mbps).

Mode W Max Min Mean Median Std

DM 5 MHz 1.658 1.351 1.657 1.658 0.020
10 MHz 12.438 3.317 12.258 12.438 1.045

CM 5 MHz 0.829 0.176 0.804 0.829 0.103
10 MHz 6.219 0.448 5.269 6.219 1.614

ULre 5 MHz 4.975 0 3.653 4.975 1.884
10MHz 10.365 0 7.536 10.365 3.931

DLre 5 MHz 4.975 0 2.071 1.058 2.144
10MHz 10.365 0 4.953 2.764 4.527

Table 4.4: Number of each mode selected in simulations

W DM CM ULre DLre
5 MHz 116 0 363 21
10 MHz 497 3 0 0

communications, all the remaining bandwidth resources are allocated to the D2D commu-
nications. While in the uplink reuse mode, half of the resources are always allocated to the
downlink of the cellular communications, which is far beyond the encoding bitrate of the
highest quality video. This over-provisioning leaves less resources to the D2D communica-
tions, as compared with the dedicated mode. When the system bandwidth keeps growing
or Multiple Input Multiple Output (MIMO) that supports higher spectrum efficiency is
adopted, the gap between the dedicated and reuse modes will be further expanded.

We present the number of each mode selected as the best using the proposed scheme
in Table 4.4. The results verifies the above discussion on mode selection. The cellular
mode is selected in very few cases since in this mode, D2D communications need two steps.
Whether to select the dedicated mode or the reuse mode mainly depends on the system
bandwidth. When the system bandwidth is limited, say 5 MHz in our simulation, the reuse
mode is preferred. Specifically, the uplink reuse mode is more preferred than the downlink
reuse mode since the bottleneck links of the two applications are decoupled. According to
Eq. (4.12), we can set the transmit power of the BS and UE2 to the maximum without
causing interference to each other. While for the downlink reuse mode, the BS and UE2

will cause interference to each other, leading to higher SINR. Further examination shows
that the downlink reuse mode is superior only when UE1 is far from the BS but close to
UE3 such that even UE1 even using the lowest MCS (and thus the lowest transmit power)
would cause significant interference at UE3. On the other hand, when the system bandwidth
becomes larger, say 10 MHz, the dedicated mode dominates other three modes since it only
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allocates the exact bandwidth resources needed to support the highest quality video, which
do not increase with the system bandwidth. Hence, the increased bandwidth resources are
all exclusively allocated to the D2D communications.

Impact of Weight

Table 4.5: Number of videos in each version for linear utility function

Version W λ
0.1 0.2 0.3 0.4 0.5

0 5 MHz 4 4 0 0 0
10 MHz 9 3 0 0 0

1 5 MHz 495 492 486 128 0
10 MHz 482 472 0 0 0

2 5 MHz 1 3 2 2 0
10 MHz 6 0 0 0 0

3 5 MHz 0 1 0 0 0
10 MHz 0 4 0 0 0

4 5 MHz 0 0 5 4 0
10 MHz 1 1 0 0 0

5 5 MHz 0 0 7 366 500
10 MHz 2 20 500 500 500

We next investigate the impact of the weight value λ on the system performance. We
vary the value of λ from 0.1 to 0.9 with a step of 0.1, and for each λ we select the mode
with the highest weighted cell utility. We report the number of videos in each version with
different values of λ for the two utility functions in Table 4.5 and Table 4.6, respectively.
Version 0 refers to that the cellular data rate is lower than the bitrate of version 1 and thus
even the lowest quality video can not be played smoothly. We omit the results when the
value of λ is higher than 0.5 since with λ = 0.5, the cellular user can already watch the
highest quality video and the results will remain the same. When the system bandwidth is
5 MHz, the video quality quickly shifts from the lowest to the highest with increasing λ for
both utility functions. When the system is 10 MHz, the two functions offer almost the same
video quality with different values of λ. Further, we can see that the benefit of increasing
system bandwidth for the cellular user is insignificant when too little weight is assigned to
the cellular communications.

We also plot the average D2D data rate with different λ for the two utility functions
in Figure 4.4. When the system bandwidth is 5 MHz, the log utility function offers almost
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Table 4.6: Number of videos in each version for log utility function

Version W λ
0.1 0.2 0.3 0.4 0.5

0 5 MHz 0 0 0 0 0
10 MHz 0 0 0 0 0

1 5 MHz 497 485 180 0 0
10 MHz 484 493 0 0 0

2 5 MHz 1 4 2 0 0
10 MHz 6 3 0 0 0

3 5 MHz 2 5 2 139 0
10 MHz 0 1 0 0 0

4 5 MHz 0 3 5 5 0
10 MHz 3 3 0 0 0

5 5 MHz 0 3 311 356 500
10 MHz 7 0 500 500 500

Table 4.7: Number of videos in each version

Version W Proposed Baseline1 Baseline1 (0.7) Baseline1 (0.9) Baseline2 Baseline2 (0.7) Baseline2 (0.9)

0 5 MHz 0 1 4 7 0 0 0
10 MHz 0 1 3 4 0 0 0

1 5 MHz 0 56 34 1 0 0 0
10 MHz 0 82 32 3 0 0 0

2 5 MHz 0 278 22 13 41 0 0
10 MHz 0 2 19 8 0 0 0

3 5 MHz 0 10 29 33 2 0 0
10 MHz 0 254 23 5 39 0 0

4 5 MHz 0 5 33 24 3 0 0
10 MHz 0 9 25 9 0 0 0

5 5 MHz 500 150 378 422 454 500 500
10 MHz 500 152 398 471 461 500 500

identical D2D data rate, as compared with the linear utility function with λ = 0.1, 0.2,
and 0.5. Yet the log utility function offers slightly lower D2D data rate with λ = 0.3 and
0.4, since more resources are allocated to cellular communications, which is consistent with
the observation that the average video quality is better. When the system bandwidth is
10 MHz, the two utility functions have almost the same average D2D data rate since they
also offer almost the same video quality which quickly shifts from the lowest to the highest
when λ reaches 0.3.
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Figure 4.4: Average D2D data rate with different λ.

Comparison with Baseline Schemes

We further compare our solution with a state-of-the-art scheme that maximizes the total
data rate with no QoS differentiation [75]. The original scheme, referred to as baseline1
(Base1), defines the total data rate as the sum of the uplink data rate of the cellular user
and the D2D data rate. This baseline scheme ignores the fact different applications can be
throttled by either the uplink or the downlink, e.g., the data traffic of both streaming and
file sharing applications can be highly asymmetric. On the other hand, our scheme considers
the data rate of the communication link which carries the major traffic. To ensure a fair
comparison, we modify baseline1 to maximize the total data rate of the communication link
carrying the major traffic, referred to as baseline2 (Base2).

Since baseline1 does not give priority to either cellular or D2D communications, we
also set the weight parameter λ to 0.5 in our scheme, and use the linear utility function,
which, as shown before, performs identically to the log utility in this case. We report the
number of videos in each version of all the schemes in Table 4.7 and plot the average D2D
data rates of all the schemes in Figure 4.5 and Figure 4.6 with different system bandwidth,
respectively. The numbers in the bracket are the values of weights assigned to the cellular
communications.

Compared with baseline1, our solution offers much better video quality for the cellular
user. Although the average D2D data rate of the our solution is lower, the gap quickly
decreases with increasing system bandwidth, and with more system bandwidth, our solution
would eventually have a higher D2D data rate. Further, if we slightly reduce the value of
λ without impacting the video quality, say to 0.3, the D2D data rate with our solution will
be higher than that with baseline1. When a higher weight is assigned to the cellular user
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Figure 4.5: Average D2D data rate with 5 MHz system bandwidth.
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Figure 4.6: Average D2D data rate with 10 MHz system bandwidth.

in baseline1, the video quality can be improved, but is still worse than ours, and meanwhile
its D2D data rate will become much lower than ours.

On the other hand, baseline2 offers similar video quality as compared with our scheme
since it optimizes the bottleneck communication links of applications. Its D2D data rate
however is lower than our scheme and the gap keeps growing with more bandwidth. The
reason is that baseline2 assigned more bandwidth resources which is far beyond the require-
ment of the highest quality video, leading to unnecessary over-provisioning.

The running time of simulations is shown in Table 4.8. We can see that the efficiency
of our scheme is comparable to that of the two baseline schemes.
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Table 4.8: Running time of 500 simulations (second)

W Proposed Baseline1 Baseline2
5 MHz 0.09 0.07 0.07
10 MHz 0.13 0.12 0.12

In summary, baseline1 does not consider the different bottleneck links of diverse applica-
tions and thus the QoS specifications of applications may not be satisfied; baseline2 is only
feasible when all the applications are of the file sharing type. When streaming applications
are involved, baseline2 may lead to over-provisioning for the streaming applications and
the precious spectrum resources will not be fully utilized to better serve the file sharing
applications. Although we focus only on the two classes of applications, they are quite rep-
resentative in real world, and our solution and discussions can be easily extended to other
applications once given their specific QoS utility functions.

4.5.2 System Performance with Larger User Population

In this scenario, we set the total bandwidth to 20 MHz, which corresponds to 100 RBs.
Our simulation is conducted on four system scales, namely 5 cellular users/5 D2D pairs,
10 cellular users/10 D2D pairs, 25 cellular users/25 D2D pairs, and 50 cellular users/50
D2D pairs,respectively. We run the simulator 100, 50, 20 and 10 times for the four system
scales, respectively, such that the number of total data points is 500 for all of them. In each
simulation, each cellular user is randomly matched with exactly one D2D pair to form a
reuse group. The total bandwidth is equally distributed to all reuse groups. We use linear
utility function in our scheme and compare the performance of our scheme with the two
baseline schemes. Given that the spectrum resources per reuse group becomes less as the
system scale increases, we set λ = 0.9 to respect the priority of cellular users.

We report the number of videos in each version in Table 4.9 and the average D2D data
rate in Table 4.10, respectively. We can see that the proposed scheme significantly out-
performs baseline1 in terms of both the video quality and D2D data rate. Compared with
baseline2, the proposed scheme provides identical video quality to cellular users, and re-
markably improves the average D2D rate at least 28.9% and up to 41.3%. The results again
validate that the proposed scheme can better utilize the spectrum resources by considering
the QoS specifications of applications.

We also report the number of each mode selected in simulations with different system
scales in Table 4.11. We can see there is no clue that one mode dominates the others as
the system scale increases. Yet we still have several interesting observations. Similar to the
simulation with small scale, cellular mode is rarely selected; the uplink reuse mode is more
preferred than the downlink reuse mode since the bottleneck links are decoupled. Both
the dedicated and reuse modes have their own advantages depending on the system scale
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Table 4.9: Number of videos in each version with different system scales

System scale Version Proposed Baseline1 Baseline2

5-5

0 0 12 0
1 0 6 0
2 0 24 0
3 0 25 0
4 0 75 0
5 500 358 500

10-10

0 0 22 0
1 0 17 0
2 0 37 0
3 500 424 500
4 0 0 0
5 0 0 0

25-25

0 0 56 0
1 0 26 0
2 500 418 500
3 0 0 0
4 0 0 0
5 0 0 0

50-50

0 0 81 0
1 500 419 500
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0

Table 4.10: Average D2D data rate with different system scales (Mbps)

System scale Proposed Baseline1 Baseline2
5-5 3.104 1.003 2.409
10-10 1.703 0.450 1.205
25-25 0.632 0.169 0.482
50-50 0.316 0.082 0.241

and topology. Different from the small scale system with plenty of spectrum resources (e.g.
10 MHz), in the system with larger scale where each reuse group is allocated with limited
spectrum resources, the reuse mode is more preferred than the dedicated mode since it has
the potential to achieve higher spectrum efficiency via sharing the spectrum resources.

78



Table 4.11: Number of each mode selected in simulations with different system scales

System scale DM CM ULre DLre
5-5 0 0 477 23
10-10 122 0 355 23
25-25 0 0 472 28
50-50 0 0 472 28

4.6 Summary

In this work, we addressed the resource allocation problem for device-to-device (D2D) com-
munications in cellular networks serving applications of heterogeneous QoS requirements.
We systematically investigated the problem under different resource sharing modes, includ-
ing dedicated, cellular and reuse modes. We developed optimized solutions for the cellular
and D2D communications to coordinated using the same licensed spectrum, so as to max-
imize the users’ utility. Our solution was evaluated under diverse configurations and we
also compared it with state-of-the-art schemes tuned for homogeneous applications. The
results demonstrated that the superiority of our solution in terms of better resource utiliza-
tion that effectively differentiates applications and users, and less possibility of under- or
over-provisioning.

There are many possible directions toward extending our solution. We have presented
preliminary discussion on accommodating more general applications and large system scales,
which is worth of further investigations. We are also interested in extending our solution to
a multi-cell scenario to better allocate the resources across cells. Further, we will consider
multi-hop D2D communications where D2D users can relay data transmission for relatively
distant users. In this context, we will investigate such key issues as spectrum resource
allocation, incentive mechanism to enable multi-hop communication, and multi-hop path
routing.

79



Chapter 5

Conclusion and Future work

In this thesis, we covered a broad spectrum of crowdsourced multimedia content, from the
perspectives of cloud resource allocation, practical improvements for content generation and
data processing in typical virtualized cloud environments, as well as data transmission with
device-to-device communication.

5.1 Summary of the Thesis

• First, we identified that the end-to-end delay has a remarkably amplified impact on
viewers’ broadcast latency. In order to achieve cross-viewer synchronization, which
is necessary for real-time community interaction, an important feature in today’s
live broadcast services, we suggested smart rate adaptation, and develop distributed
algorithms based on dual decomposition. We further extended our solution to the
cloud environment, where the costs of leasing VMs from cloud providers and network
traffic are considered.

• Second, we examined practical deployment issues of crowdsourced multimedia services
on virtualized cloud platforms. For crowdsourced content generation, we presented
the concept of ShadowCast based on the cutting-edge cloud gaming technique, which
moves broadcasters to the cloud to provide high quality streams beyond broadcasters’
network bandwidth constraint. In ShadowCast, the broadcaster only transfers the
control data such as keyboard/mouse operations to a shadow client deployed in a
public cloud virtual machine. This shadow client running the same game application
then reconstructs the gameplay graphics given the control data, which are delivered
to the streaming server for content distribution. Considering that the cloud servers
often have much higher bandwidth than ordinary users, the streaming quality can
be significantly improved. For big data processing on cloud, we developed vLocality,
a systematic solution to improve data locality in virtualized MapReduce clusters.
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Through real-world implementation and deployment, we demonstrated the superiority
of vLocality against state-of-the-art Hadoop systems.

• Third, we investigated the crowdsourced data transmission issue with D2D commu-
nications. We addressed the resource allocation problem for D2D communications
in cellular networks serving applications of heterogeneous QoS requirements. We
systematically investigated the problem under different resource sharing modes and
developed optimized solutions for the cellular and D2D communications to coordinat-
ed using the same licensed spectrum, so as to maximize the users’ utility. Our solution
was evaluated under diverse configurations and we also compared it with state-of-the-
art schemes tuned for homogeneous applications. The results demonstrated that the
superiority of our solution in terms of better resource utilization that effectively dif-
ferentiates applications and users, and less possibility of under- or over-provisioning.

5.2 Future Work

There are many open issues that can be further explored in the future work.
Selecting Cloud VM Instance: In Chapter 2, we considered leasing homogeneous

VMs to deliver broadcast services to viewers. Since there are many types of cloud VM
instances with different amounts of computation, storage, and bandwidth resources provided
by public cloud providers, we need to select the appropriate type of VM for cost-efficiency.
Further, in our model, we considered the bandwidth as the capacity of a VM, yet the
computation and memory resources may also limit the number of concurrent streaming
sessions that a single VM can support. Even for the same type of cloud VM instance, the
exact capacity of each VM instance may slightly differ from each other, due to the dynamic
interference of co-located VMs. Performance profiling and testbed experiments are needed
to provide the guidance on selecting cloud VMs, as well as update running VMs’ capacity.
The selection of cloud VM instance issue is also important in deploying ShadowCast, since
the introduction of shadow client inevitably increases the cost for live broadcast service
providers, and different applications may have different requirements on the specifications
of the shadow client.

Multi-hop D2D Communications with Mobile Users: In Chapter 4, we consid-
ered one-hop D2D communications that only D2D users within the communication range
can communicate with each other. A natural extension is to consider multi-hop D2D com-
munications which can significantly expand the opportunities of D2D communication in
larger scale systems, especially for relatively distant users. In the multi-hop scenario, the
end-to-end data rate is limited by the minimum data rate along the communication path.
Hence, the one-hop based resource allocation schemes only work for the multiple-hop sce-
nario when the SINR of all links are equal. Another limitation of the existing works is that
users are generally assumed to be static, and thus the communication links are also static.
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Taking users’ mobility into consideration poses new challenges since the channel conditions
will become dynamic. For example, the received signal strength of a given pair of users
can vary greatly, and some communication links may become unavailable, as the distance
between the transmitter and receiver exceeds a certain threshold due to usersâĂŹ mobility.
This problem becomes more challenging for multi-hop communication, since when any node
on a communication path moves away, the whole path will be unavailable. In the future
work, we will solve the resource allocation problem for multi-hop D2D communication with
mobile users.
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