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Abstract
The graph colouring problems ask if one can assign a colour from a palette of colour to every
vertex of a graph so that any two adjacent vertices receive different colours. We call the resulting
problem k-Colourability if the palette is of fixed size k, and Chromatic Number if the
goal is to minimize the size of the palette. One of the earliest NP-completeness results states
that 3-Colourability is NP-complete. Thereafter, numerous studies have been devoted to
the graph colouring problems on special graph classes. For a fixed set of graphs H we denote
Forb(H) by the set of graphs that exclude any graph F ∈ H as an induced subgraph. In this
thesis, we explore the computational complexity of graph colouring problems on Forb(H) for
different sets of H.

In the first part of this thesis, we study k-Colourability on classes Forb(H) when H con-
tains at most two graphs. We show that 4-Colourability and 5-Colourability are NP-
complete on Forb({P7}) and Forb({P6}), respectively, where Pt denotes a path of order t.
These results leave open, for k ≥ 4, only the complexity of k-Colourability on Forb({Pt})
for k = 4 and t = 6. Secondly, we refine our NP-completeness results on k-Colourability to
classes Forb({Cs, Pt}), where Cs denotes a cycle of length s. We prove new NP-completeness
results for different combinations of values of k, s and t. Furthermore, we consider two common
variants of the k-colouring problem, namely the list k-colouring problem and the pre-colouring
extension of k-colouring problem. We show that in most cases these problems are also NP-
complete on the class Forb({Cs, Pt}). Thirdly, we prove that the set of forbidden induced
subgraph that characterizes the class of k-colourable (C4, P6)-free graphs is of finite size. For
k ∈ {3, 4}, we obtain an explicit list of forbidden induced subgraphs and the first polynomial
certifying algorithms for k-Colourability on Forb({C4, P6}).

We also discuss one particular class Forb(H) when the size of H is infinite. We consider the
intersection class of Forb({C4, C6, . . .}) and Forb(caps), where a cap is a graph obtained from
an induced cycle by adding an additional vertex and making it adjacent to two adjacent vertices
on the cycle. Our main result is a polynomial time 3/2-approximation algorithm for Chromatic
Number on this class.

Keywords: Colouring; hereditary class; forbidden induced subgraphs; NP-complete; polynomial
time algorithms; approximation algorithms
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11
Introduction

1.1 Prelude

My first encounter with graph theory was in my senior year during my undergraduate study
at which time I took a course in discrete mathematics. In the study of the graph theory part
in the course, I was amazed by the elegant half-page proof of the five colour theorem: every
planar graph can be properly coloured using five colours. The proof reveals the unique beauty
of the graph theory language that is entirely different from languages in such traditional areas
of mathematics as analysis, algebra and geometry. When I saw it, I loved it! The experience
opens a fascinating world of the subject, particularly of graph colouring, which has now become
my topic in this dissertation.

The problem of ordinary graph colouring can be formally stated as follows. Given an undirected
graph and a palette of available colours, is there a way to assign a colour from the palette to
each vertex of the graph so that no two adjacent vertices receive the same colour? Five colour
theorem says that as long as the palette consists of five colours or more, such a task is always
achievable for planar graphs. (A graph is planar if it can be drawn on the plane in such a way
that its edges intersect only at their endpoints)

The interest in colouring planar graphs stems from the map colouring problem around the middle
of the nineteenth century. At that time, map makers observed that apparently every planar map
can be coloured using four colours in such a way that countries sharing a boundary have distinct
colours. In modern language of graph theory, to find a colouring of countries in a planar map
is essentially to find a face-colouring of the planar graph M that represents the map, and this
is equivalent to the ordinary graph colouring problem on the dual graph of M which is a planar
graph as well. The seemingly overwhelmingly true observation of map makers, however, was
not mathematically proven by anybody. This led the mathematician Guthrie to formulate this
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phenomenon in 1852 as the Four Colour Conjecture. Since then, a number of false proofs of
the conjecture have appeared, among which is a proof given by Kempe in 1879. Kempe’s proof
was perceived to be correct until 1890 when Heawood found that there was a flaw in the proof.
In addition to exposing the flaw, Heawood proved the five colour theorem, the one that leads
this author to the study of graph colouring.

As close to a proof of the Four Colour Conjecture as the five colour theorem sounds, it remained
the state-of-art for almost another century despite the tremendous efforts of many great minds.
It was not until 1976 that Appel and Haken [3, 4] announced a computer-aided proof of the
Four Colour Conjecture and hence the triumph over this old problem. The result is now known
as the Four Colour Theorem and is probably the most celebrated graph-theoretic result within
as well as outside graph theory community.

Theorem 1.1.1 (Four Colour Theorem) Every planar graph can be coloured using only four
colours.

The announcement of Apple and Haken, nevertheless, has attracted much controversy due to
the fact that the proofs rely largely on computer programs to check a considerable part of the
proofs that cannot be done by hand. Twenty years after the initial announcement, Robertson,
Sanders, Seymour, and Thomas [95] found a new proof of the Four Colour Theorem which is
a significant simplification of the original proof of Apple and Haken. Although their new proof
still appealed to a computer, Robertson, Sanders, Seymour and Thomas stated in their paper
[95] that “we are making it possible for other scientists to verify all steps in our proof, including
the computer programs and data”. With their proofs verified by peer scientists and computer
programs tested in different languages and on different platforms, Theorem 1.1.1 is nowadays
widely accepted among graph theorists and mathematicians.

1.2 NP-completeness theory

The confirmation of the Four Colour Conjecture is far from being the end of the story. Instead,
countless questions about graph colouring problems on planar graphs and other types of graphs
with special structures are raised every year and the area has grown at a rapid rate in the past
few decades, see [10, 94] for some recent surveys, and monograph of Jensen and Toft [72].

A dynamic area in the study of the graph colouring problems is the design of efficient algorithms.
The motivation for designing algorithms for graph colouring problems originates partly from the
fact that graph colouring and its variants model a large number of real-life problems, ranging from
scheduling committees, aircraft assignment, frequency assignment, physical layout segmentation
to optimizing register allocations and reassembling DNA fragments. In his dissertation, Marx
[86] gave an excellent and detailed account of how graph colouring problems provide a natural
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mathematical model for many of these problems. As such, efficient algorithms for finding optimal
solutions to colouring problems that model real-life situations are highly desirable. Unfortunately,
due to the intrinsic complexity of the problems, ‘efficient’ algorithms may be out of reach. To
capture the notion of the intractability of the problems, a whole new paradigm, the so-called
NP-completeness theory, has come into play since the beginning of the 1970s. The birth of the
theory is usually attributed to Cook who published in 1971 his seminal work [34] in which the
very first NP-complete problem (i.e., the satisfiability problem) was shown. Roughly speaking,
a NP-complete problem is the most difficult problem in a large class (called NP) of decision
problems. If an efficient (namely polynomial time) algorithm exists for any of the NP-complete
problems, all problems in NP would be efficiently solvable. The general belief is that this is
not the case: once shown to be NP-compete, a (NP) problem is unlikely to enjoy an efficient
algorithm. We refer to the monograph of Garey and Johnson [48] for a rigorous treatment of
the theory including the notoriously hard conjecture of P 6= NP that formulates the intuition
of ‘a problem is unlikely to enjoy an efficient algorithm’.

Since the satisfiability problem was shown to be NP-complete, many important problems from
areas like graph theory, computational geometry, game theory, linear programming, etc. were
shown to be NP-complete as well using the method of polynomial time reduction. The funda-
mental work that lays the foundation for the fast development of the NP-completeness theory
in subsequent years is due to Karp [75] who listed another 21 problems to the list of NP-
completeness problems only one year after Cook’s work. Among the 21 problems in Karp’s
paper is the graph 3-colouring problem, i.e., the ordinary graph colouring problem when the
palette consists of exactly three elements. In complexity theory, it is desirable to formulate the
problem at hand with the following form.

k-Colourability
Instance: An undirected graph G = (V,E).
Question: Is G k-colourable?

Although listed in Karp’s paper, 3-Colourability was first shown to be NP-complete by
Lovász [82]. Other principal NP-complete problems in Karp’s paper include 3-Dimensional
Matching, Vertex Cover, Max Cut, Undirected Hamilton Cycle, Knapsack,
Integer Programming, Job Sequencing among others (see [75] for formal definitions).
From then on, a considerable number of problems in mathematics and computer science have
been proven to be NP-complete and added to the already-large list of NP-complete problems
annually. As we pointed out earlier, the NP-completeness of those problems indicates that it is
unlikely to have a polynomial time algorithm for solving theses problems.
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1.3 Handling NP-complete problems

As tough as NP-complete problems are, there are always situations when solutions to those
problems are needed. Sometimes an approximate solution suffices. Other times one may not
specify deterministically what each step does in an algorithm; random choices turn out to make
algorithms fast and at the same time yield a good solution with high probability. What we
just described are two popular ways to attack NP-complete problems: approximation and ran-
domization. These two schemes have greatly advanced research on many central combinatorial
problems that are NP-complete, among which are Satisfiability, Knapsack, Max Cut,
Vertex Cover and beyond. Not only have both of them proven to be productive and pow-
erful as to solving NP-complete problems, they are now mature research fields on their own.
We refer to Vazirani [104] for approximation algorithms and Mitzenmacher and Upfal [88] for
randomized algorithms.

Besides approximation and randomization, there is a third common approach: that is, to restrict
the instances of the problem under consideration. The k-colouring problem, for instance, may
be asked for some particular graph class whose members possess certain special structure.
Theorem 1.1.1 implies that 4-Colourability can be trivially answered ‘yes’ for planar graphs.
One may feel that 3-Colourability is not more difficult than 4-Colourability. Yet,
somewhat surprisingly, 3-Colourability remains NP-completeness for planar graphs. This is
a result due to Stockmeyer.

Theorem 1.3.1 [100] 3-Colourability is NP-complete on the class of planar graphs.

Nevertheless, if we further forbid the occurrence of a triangle in a planar graph, then Grötzsch
proved in 1959 the beautiful theorem stating that every such graph is 3-colourable, making the
answer of 3-Colourability trivially ‘yes’ on this class of graphs.

Theorem 1.3.2 (Grötzsch’s theorem [58]) Every triangle-free planar graph is 3-colourable.

Theorem 1.3.1 and Theorem 1.3.2 illustrate the typical situation in the study of computational
complexity for combinatorial problems: adding constraints may or may not eliminate the in-
tractability of the problem. In this thesis, we would like to continue this line of research and
explore the complexity of graph colouring problems when additional structures are present in
the instances. On one hand, the aim is to identify the boundary between the NP-completeness
and the polynomial time solvability. We believe that this will enhance our understanding of
the nature of colouring problems. On the other hand, graphs that arise from real applications
normally have nice structural properties. In order to map the human genome, for instance,
biologists use interval graphs, to model the overlaps of DNA clones (segments of a genome)
[87]. The class of interval graphs forms a well-studied and well-understood class of graphs that
admits very efficient (linear time) algorithm for many combinatorial problems like determining
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chromatic number, clique number and independence number. We refer to Golumbic [54] for
efficient algorithms on interval graphs as well as further real-life applications. Our new results
in this thesis that adopt the methodology of ‘restricting the instances’, we hope, do not rule out
the possibility of (distant if not near) future applications.

1.4 Definitions and notation

Basic graph notions. All graphs in this thesis are finite, undirected and simple, i.e., they do
not have parallel edges or loops. A graph is a pair G = (V (G), E(G)) where V (G) is a set of
vertices and E(G) is a set of edges. The elements of E(G) are 2-element subsets of V (G).
Always it is convenient to write uv instead of {u, v} for an edge. We say that V (G) and E(G)
are the vertex set and the edge set of G, respectively. The quantity |V (G)| is the order of G.

The two vertices u, v ∈ V (G) are adjacent (or neighbours), respectively, non-adjacent (or
non-neighbours) if uv ∈ E(G), respectively, uv /∈ E(G). The open neighbourhood of a
vertex v, denoted by NG(v), is the set of neighbours of v. The closed neighbourhood of v is
NG[v] = N(v) ∪ {v}. For a set X ⊆ V (G), let NG(X) =

⋃
v∈X NG(v) \ X and NG[X] =

NG(X) ∪ X. The degree of v, denoted by dG(v), is equal to |NG(v)|. We shall omit the
subscript G if the context is clear, i.e., we will write N(v) instead of NG(v), etc. The minimum
degree (respectively maximum degree) of G is equal to min{dG(v) : v ∈ V (G)} (respectively
max{dG(v) : v ∈ V (G)}), and is denoted by δ(G) (respectively ∆(G)). Two edges e, f ∈ E(G)
are adjacent if e ∩ f 6= ∅; otherwise e and f are independent. A vertex v is incident with an
edge e if v ∈ e. The two vertices incident with an edge are its end-vertices or ends. We say
that a vertex v distinguishes an edge e = xy if v is adjacent to exactly one of x and y.

Subsets in graphs. A set of pairwise non-adjacent vertices is called an independent (or stable)
set; and a set of pairwise independent edges is called a matching. A clique is a set of pairwise
adjacent vertices. The clique number (respectively independence number) of G, denoted by
ω(G) (respectively α(G)), is the size of an independent set (respectively a clique) with maximum
cardinality. For two subsets X,Y ⊆ V (G), we say that X is complete (respectively anti-
complete) to Y if every vertex in X is adjacent (respectively non-adjacent) to every vertex in
Y . Clearly, X is complete (anti-complete) to Y if and only if Y is complete (anti-complete)
to X, and hence we may say that X and Y are complete (anti-complete) to each other. If X
consists of only a single element x, we simply say x, rather than {x}, is complete (anti-complete)
to Y . For a set S ⊆ V (G) and a vertex x ∈ V (G), we write NS(x) := NG(x) ∩ S. A set
D ⊆ V is dominating if ND(v) 6= ∅ for each v ∈ V \D. We say that D is a dominating set of
G.

Relations between graphs. For a graph G, the complement of G, denoted by G, is the
graph with the vertex set V (G) = V (G) and the edge set E(G) = {uv : uv /∈ E(G)}. Let
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G = (V,E) and G′ = (V ′, E′) be two graphs. We say that G and G′ are isomorphic if there
exists a bijection φ : V → V ′ such that xy ∈ E if and only if φ(x)φ(y) ∈ E′. Such a mapping
is called an isomorphism. If G′ = G, then it is called an automorphism. We say that G′ is a
subgraph of G if V ′ ⊆ V and E′ ⊆ E. If G′ is a subgraph of G and E′ = {xy ∈ E : x, y ∈ V ′},
then G′ is an induced subgraph of G, and we say that G′ is an induced subgraph on V ′. For
any S ⊆ V , we denote the subgraph induced on S by G[S].

Paths and cycles. Let t ≥ 1 be a positive integer. A path P is a sequence of vertices
P = v0− v1− v2− . . .− vt such that vivi+1 is an edge of G for each 0 ≤ i < t. The vertices v0

and vt are ends of the path and v1, . . . , vt−1 are internal vertices of the path. We say that P
connects v0 and vt. Sometimes we say that P is a v0vt-path. The quantity t is the length of P .
For any 0 ≤ i < j ≤ t, vi − . . .− vj is a sub-path of P . If in addition t ≥ 2 and v0 and vt are
also adjacent, then the sequence is called a cycle and we write C = v0− v1− v2− . . .− vt− v0.
The length of C is the quantity t+1. A chord of a path or a cycle is an edge vivj with j 6= i+1
(in case we talk about cycles, the indices are modulo the length of the cycle). A path or a cycle
is chordless if it does not contain any chord. We use Pt and Ct to denote a (chordless) path
and cycle containing t vertices, respectively. A chordless cycle of length at least four is called
a hole. A k-hole is a hole of length k. A hole is said to be even respectively odd if it is of
even respectively odd length. They are referred to as odd hole and even hole, respectively. An
antihole is the complement of a hole and k-antihole and odd antihole are defined analogously
to k-hole and odd hole. The girth of G is the length of a shortest cycle and is denoted by
g(G). Let P = v0 − . . . − vt and P ′ = u0 − . . . − us be two vertex-disjoint paths so that
vt and u0 are adjacent. The concatenation of P and P ′, denoted by P − P ′, is the path
v0 − . . . − vt − u0 − . . . − us. Note that any path can be viewed as the concatenation of its
sub-paths.

Connectivity. We say that G is connected if for any two vertices of G there exists a path
connecting them, and that G is disconnected if it is not connected. A connected component
of G is a maximal connected subgraph. We stipulate that graphs with at most one vertex
are connected. A vertex subset S of V is a cutset if G − S has more connected components
than G. Therefore, a cutset in a connected graph is a vertex subset whose removal results in
a disconnected graph. If a cutset S is also a clique, it is called a clique cutset. If a cutset S
consists of a single element v, then v is said to be a cut-vertex. A connected graph with no
cut-vertices is 2-connected. A block of G is a maximal 2-connected subgraph. For a set S ⊆ V ,
we say that S is connected if G[S] is connected.

Graph operations. Let G = (V,E) be a graph. For any subset E′ ⊆ E, the edge deletion of E′

is the operation of removing every edge in E′ from G. We denote the resulting graph (V,E \E′)
by G − E′. If E′ consists of a single element e, we write G − e instead of G − {e}. Similarly,
for any subset S ⊆ V , the vertex deletion of S is the operation of removing every vertex in S
and all edges that are incident with some vertex in S. We denote the resulting graph by G−S.
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If S consists of a single element v, we write G− v instead of G− {v}. We say that a vertex is
pendent if it has exactly one neighbour in G and universal if it is adjacent to all other vertices
in G. We say that a vertex v is pendent to u if u is the only neighbour of v. The operation
of adding a pendent (respectively universal) vertex to G is to create a new vertex u /∈ V (G)
and to make it adjacent to exactly one (respectively all) vertex in V (G). Let e = uv ∈ E.
The contraction of e = uv is the operation of deleting vertices u and v, creating a new vertex
w /∈ V (G) and making w adjacent to those vertices in G that were previously adjacent to u
or v. The subdivision of e is the operation of removing e and creating a new vertex w and
making it adjacent to u and v. Given two graphs G = (V (G), E(G)) and H = (V (H), E(H))
with V (G) ∩ V (H) = ∅, the disjoint union of G and H, denoted by G + H, is the graph
(V (G) ∪ V (H), E(G) ∪ E(H)). The disjoint union of r ≥ 2 copies of G is written as rG. We
note that any graph is the disjoint union of its connected components.

Special graphs. The graph (∅, ∅) is called the null graph. An empty graph is a graph with no
edges (note that the null graph is a special empty graph). A graph G = (V,E) is said to be a
complete multipartite graph if V can be partitioned into k ≥ 2 independent sets V1, . . . , Vk so
that Vi and Vj are complete to each other for 1 ≤ i 6= j ≤ k. These sets V1, . . . , Vk are partites
of G. In case that k = 2, the graph is called a complete bipartite graph. We use Kr,s to denote
the complete bipartite graph with one partite having size r and the other having size s. The
graph K1,s is called a star and the only vertex in V1 is the center of the star. A subdivided star
is a graph obtained from a star by subdividing each edge of the star exactly once. The graph
K1,3 is also known as a claw. In case that each Vi consists of a single vertex, the graph is a
complete graph and is denoted by Kk. The graph K3 is also called a triangle. We say that G is
bipartite if V can be partitioned into two subsets V1 and V2 (that are not necessarily complete
to each other); and is chordal bipartite if it is bipartite and every cycle of length at least 6 has
a chord. A graph is planar if it can be drawn on the plane in such a way that its edges intersect
only at their endpoints. A forest is a graph with no cycles at all. A tree is a connected forest. A
forest is said to be linear if it has maximum degree at most two. Equivalently, a linear forest is
a disjoint union of chordless paths. The line graph of a graph H, denoted by L(H), is a graph
with vertex set E(H) and edge set {ef : e and f are incident edges in H}. We say that G is a
line graph if G = L(H) for some graph H.

Colouring. A (proper) k-colouring of a graph G = (V,E) is a mapping φ : V → {1, 2, . . . , k}
such that φ(u) 6= φ(v) whenever uv ∈ E. The value φ(u) is usually referred to as the colour of
u under φ. We say that G is k-colourable if G admits a k-colouring. Observe that φ−1(i) (for
each 1 ≤ i ≤ k) is an independent set in G. Therefore, a k-colouring of G can be equivalently
described as a partition of V into k independent sets V1, . . . , Vk. We shall switch between the
two terminology whenever convenient. The chromatic number of G, denoted by χ(G), is the
smallest positive integer k such that G is k-colourable. Note that G is 1-colourable if and only
if G is an empty graph and G is 2-colourable if and only if G is bipartite. A k-list assignment of
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G is a mapping L : V (G)→ 2{1,2,...,k}. A graph G with a k-list assignment L is said to be L-
colourable if there exists a k-colouring φ : V → {1, 2, . . . , k} that respects L, i.e., φ(v) ∈ L(v)
for each v ∈ V . Such a colouring is also called a L-colouring of G. A pre-colouring of G is a
k-colouring φW : W → {1, 2, . . . , k} for some (possibly empty) subset W of V . We say that G
is φW -extendable if there exists a k-colouring φ of G such that φ|W = φW .

Decision problems. We list all decision problems that are relevant in this thesis. In the following
k ≥ 2 is a fixed integer.

k-Colourability
Instance: An undirected graph G = (V,E).
Question: Is G k-colourable?

List k-Colourability
Instance: An undirected graph G and a k-list assignment L of G.
Question: Is G L-colourable?

k-Prext
Instance: An undirected graph G and a pre-colouring φW for some subset W ⊆ V .
Question: Is G φW -extendable?

Chromatic Number
Instance: A graph G and a positive integer q.
Question: Is χ(G) ≤ q ?

3-Sat
Instance: A set X = {x1, . . . , xn} of variables and a set C of 3-literal clauses over X.
Question: Is C satisfiable, i.e, is there a truth assignment such that every clause contains
at least one true literal?

Not-All-Equal 3-Sat
Instance: A set X = {x1, . . . , xn} of variables and a set C of clauses each of which is a
disjunction of three positive literals over X.
Question: Is C satisfiable, i.e, is there a truth assignment such that every clause contains
at least one true literal and one false literal?

Maximum Weighted Independent Set
Instance: A graph G, a weight function w : V (G)→ R+ and a positive real number r.
Question: Is there an independent set S of G such that w(S) :=

∑
v∈S w(v) ≥ r?

A note on the notation. We will not distinguish a vertex subset S and the subgraph induced on
it. Namely, we use S to mean G[S] whenever it causes no confusion. Similarly, we often identify

8



the vertex set of a graph with the graph itself. We always let n := |V (G)| and m := |E(G)|
unless otherwise told. For a graph G, we write |G| instead of |V (G)| to mean the order of G.
Throughout the thesis, ‘linear time’ algorithm means an algorithm with running time O(m+n)
rather than O(n).
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22
Hereditary Graph Classes

In the study of graph problems, from both graph-theoretic and algorithmic view, restricting the
problems to special graph classes turns out to be an effective and productive approach. The
‘speciality’ naturally depends on what constraints are added to the input instances. One could
ask, for instance, the k-colouring problem with the constraints ‘the input graph has at most
100 vertices’. This, however, does not yield an interesting problem: there are at most k100 (this
number is a constant since k is fixed) possibly distinct k-colouring of the graph and checking
if any of them is indeed a k-colouring of the graph one by one gives a constant algorithm.
Instead of restricting the instances in an arbitrary way that may lead to trivial problems like
the above example, we would like to take a systematic approach. A fairly successful approach
taken in the literature is to forbid the appearance of certain structures in the input graphs.
In other words, the input graphs are required to contain certain fixed graphs nowhere locally.
The statement that ‘a graph contains another graph’ leaves some space for interpretation. The
precise interpretation rests on a containment relationship between graphs. In this chapter,
we survey several common graph containment relationships and the theories that arise from
their corresponding containment relationships. The emphasis is given to ‘induced subgraph’
relationship from which the theory of hereditary graph classes results.

2.1 Subgraph relation

The most natural containment relationship one may come up with is the subgraph relationship.
Recall that H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). One alternative way to
define subgraph relation can be achieved through graph operations.

Definition (Subgraph) A graphH is a subgraph ofG ifH can be obtained fromG via repeatedly
performing vertex deletions and edge deletions.
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Ramsey theory, one of the most exciting branches in combinatorics, deals with order in structures.
Problems in Ramsey theory typically ask a question of the form: how big must a mathematical
structure be in order to ensure that no matter how the original structure is cut into pieces at
least one of the pieces has a given interesting property? In the context of graphs, the question
may read as: given a fixed graph H does there exist a positive integer n so that for every graph
G of order n either G or G contains H as a subgraph. Here the underlying structure is the
complete graph Kn with G and G being its two pieces while the property that is of interest
is ‘contains H as a subgraph’. One of the most beautiful theorems in graph theory is due to
Ramsey who gave a positive answer to the question.

Theorem 2.1.1 (Ramsey’s theorem [92]) For every fixed graph H, there exists a positive
integer n such that either G or G contains H as a subgraph provided that G has at least n
vertices.

The original Ramsey’s theorem [92] was stated solely for H = Kr where r is a positive in-
teger. Theorem 2.1.1 is a direct consequence of the original theorem, simply because H is a
subgraph of Kh for h := |H|. Roughly speaking, Ramsey’s theorem says that total chaos is
impossible. Knowing the existence of such an integer in Theorem 2.1.1 does not fully satisfy
mathematicians. Instead, they want to decide the smallest positive integer that makes the
property in Theorem 2.1.1 hold. We denote this number by R(H) and call it Ramsey number.
Ramsey number is usually quite large. A constructive proof of the original Ramsey’s theorem
shows that R(Kr) ≤ 22r−3. On the other hand, R(Kr) is not ‘too far’ from the upper bound:
R(Kr) ≥ 2r/2 which was shown via probabilistic method, see [2] for a proof. This means that
the Ramsey number R(Kr) grows exponentially in r. Nonetheless, the upper bound can be
significantly reduced to be linear if the target graph H has its maximum degree bounded. This
is a result due to Chvátal, V. Rödl, Szemerédi and Trotter [29].

Theorem 2.1.2 [29] For every positive integer ∆ there is a constant c such that

R(H) ≤ c|H|

for all graphs H with ∆(H) ≤ ∆.

As nice as the linear upper bound in Theorem 2.1.2 looks, determining the exact value of Ramsey
number is counted as one of the most difficult problems in combinatorics. Even in the case that
H = Kr very little is known in this respect. The largest r for which R(Kr) is known is r = 4
and the corresponding Ramsey number is 18. For r = 5 it is known that 43 ≤ R(K5) ≤ 49
but no one has succeeded in finding the exact value. As to R(K6), the difficulty can be well
illustrated by a quote of Erdős from Spencer’s book [99], “ Erdős asks us to imagine an alien
force, vastly more powerful than us, landing on the earth and demanding the value of R(K5)
or they will destroy our planet. In that case, he claims, we should marshal all our computers
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and all our mathematicians and attempt to find the value. But suppose, instead, that they ask
for R(K6). In that case, he believes, we should attempt to destroy the aliens.” We refer the
readers to [55] for more topics on Ramsey theory.

2.2 Minor relation

A different containment relation is the minor relation which is more subtle than the subgraph
relation. Let us begin with the definition.

Definition (Minor) We say that H is a minor of G if H can be obtained from G via repeatedly
performing vertex deletions, edge deletions and edge contractions. In this case, we say that G
contains H as a minor. If G does not contain H as a minor, G is said to be H-minor-free.

By definition, any graph is a minor of itself. The minor relation gives rise to the study of so-
called minor-closed classes. A graph class G is called minor-closed if it is closed under taking
minors, i.e., for every member G ∈ G it holds that any minor of G also belongs to G. Every
minor-closed class G can be characterized by a setM(G) of excluded minors in the sense that a
graph G belongs to G if and only if G is M -minor-free for every M ∈M(G). This is true since
M(G) can be taken as the set of graphs that are not in G. Conversely, given a setM of graphs,
the set of graphs that are M -minor-free for every M ∈ M form a minor-closed class. In other
words, a graph class is minor-closed if and only if it can be characterized by a set of excluded
minors. However, much more can be said about the set of excluded minors for a minor-closed
class. The class of planar graphs, for example, can be characterized by exactly two excluded
minors, namely K5 and K3,3 due to a celebrated theorem of Kuratowski [78]. In particular, the
set of excluded minor is finite in this case. This motivated Wagner in 1970 to conjecture:

Conjecture 2.2.1 (Wagner’s conjecture [105]) Every minor-closed class can be characterized
by a finite set of excluded minors.

In the early 1980s, Robertson and Seymour started their monumental project on graph minors
and proved Conjecture 2.2.1 in 2003 with a series of 23 papers. In fact, they offered a stronger
theorem: the minor relations is well-quasi-ordered, i.e., for any infinite sequence of graphs
G1, G2, . . . , there exist two indices i and j with i < j such that Gi is a minor of Gj . This
became known as the Graph Minor Theorem.

Theorem 2.2.2 (Graph Minor Theorem) The minor relation on the set of all finite graphs is
well-quasi-ordered.

The fact that Theorem 2.2.2 proves Conjecture 2.2.1 can be seen as follows. Take any minor-
closed class G and suppose that M(G) is the set of excluded minors that characterizes G. By
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definition no graph in M(G) belongs to G. We may further assume that each graph M ∈
M(G) is minimal in the sense that any minor of M other than M itself lies in G. Suppose by
contradiction that M(G) is infinite. It follows then from Theorem 2.2.2 that there exist two
graphs F and H inM(G) such that F is a minor of H. The minimality of H and the fact that
F ∈ M(G) thus imply that F = H and this is a contradiction. Over the course of the graph
minor project, Robertsen and Seymour [96] also developed a cubic time algorithm to decide if
a graph G is H-minor-free, provided that H is a fixed graph. This together with the truth of
Wagner’s conjecture implies the following.

Theorem 2.2.3 [96] For any minor-closed class of graphs, the membership can be tested in
cubic time.

2.3 Induced subgraph relation

For a graph H to be a subgraph of G, we allow vertex deletions and edge deletions. In contrast,
if we allow merely vertex deletions from the graph G, the subgraph H we end up with is said
to be induced. The formal definition of induced subgraph relation is as follows.

Definition (Induced subgraph) A graph H is an induced subgraph of G if H can be obtained
from G via repeatedly performing the vertex deletion operation. In this case, we say that G
contains H as an induced subgraph. If G does not contain H as an induced subgraph, G is said
to be H-free. For a family H of graphs, G is H-free if it is H-free for every H ∈ H.

The induced subgraph relation results in the study of hereditary classes. A graph class G is
hereditary if it is closed under taking induced subgraphs, i.e., for every member G ∈ G it holds
that every induced subgraph of G also belongs to G. Hereditary classes can be characterized by
forbidden induced subgraphs in the same way minor-closed classes are characterized by excluded
minors.

Observation 2.3.1 A family G of graphs is hereditary if and only if there exists a set H of
graphs such that a graph G ∈ G if and only if G is H-free.

Definition (Characterization set) The set H in Observation 2.3.1 is called the characterization
set of the class G. We also denote by Forb(H) the class of H-free graphs and write G =
Forb(H).

Unlike minor relation, however, the set of all finite graphs is not well-quasi-ordered under the
induced subgraph relation, since C3, C4, . . . , is an infinite sequence of graphs so that no Ci is
an induced subgraph of Cj for i 6= j. Therefore, Theorem 2.2.2 fails to hold for the induced
subgraph relation. Nor does Wanger’s conjecture hold in the context of hereditary classes:
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F(G) is not always finite for any hereditary class G. The class of bipartite graphs is apparently
hereditary. It is well-known, see [42] among others, that the characterization set for this
class is the set of odd cycles, which is of infinite size. Despite the lack of a general theorem
analogous to Theorem 2.2.2, hereditary classes have generated a large body of research in
the past decades. Two common approaches towards the investigation of hereditary classes
are taken in the literature: (1) define a hereditary class by certain graph properties and
then try to determine the characterization set or (2) define a hereditary class by specifying its
characterization set and then seek graph properties it exhibits. Both approaches yield non-trivial
and challenging questions that are not only interesting on their own but also linked to other
areas of graph theory and computer science. We now survey a number of fundamental hereditary
classes that illustrate the two approaches.

2.3.1 Perfect graphs

The chromatic number of a graph G is at least as big as its clique number, simply because
any pair of vertices in a clique must not be coloured alike. Therefore, the clique number
ω(G) of G provides a lower bound for χ(G). Nevertheless, this lower bound is ‘bad’ in the
sense that the difference χ(G) − ω(G) can be arbitrarily large. This fact was first shown by
Mycielski [90] who constructed in 1955 a family of triangle-free graphs with arbitrarily large
chromatic number. With the aid of probabilistic method, Erdős [45] generalized Mycielski’s
‘large chromatic number’ result on triangle-free graphs to graphs with arbitrarily high girth four
years later.

Theorem 2.3.2 [45] For every positive integer t there exists a graph F with girth g(F ) > t

and chromatic number χ(F ) > t.

Erdős’s result is quite discouraging: even if the local structure around every vertex is as simple
as trees the chromatic number of which is merely two, properly colouring the whole graph still
requires a significant number of colours. Berge, probably not disappointed by Theorem 2.3.2,
took a different approach to study chromatic number of a graph. Instead of trying to bound
the chromatic number from above by the clique number (Mycielski’s and Erdős’s result say
that this is impossible but it becomes possible if further constraints are added to the graphs),
Berge wondered whether or not those graphs G that do satisfy χ(G) = ω(G) possess interesting
properties. One may soon realize that requiring only χ(G) = ω(G) might not be the ‘right’
definition. For instance, take any graph of order 10000 and take the disjoint union of the graph
with the complete graph K10000. The resulting graph thus has the property that its chromatic
number equals its clique number. This is, however, not so interesting since nothing can be
deduced about the graph picked in the first place. To overcome this difficulty, Berge made
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the property ‘chromatic number equals clique number’ hereditary. Here is Berge’s definition of
perfect graphs.

Definition (Perfect graph) A graph G is perfect if χ(H) = ω(H) for every induced subgraph
H of G.

The definition of perfect graph implies that any induced subgraph of a perfect graph is again
perfect. In other words, the class of perfect graphs is a hereditary class. Thus, the class
admits a forbidden induced subgraph characterization. For any q ≥ 2, the odd hole C2q+1 has
χ(C2q+1) = 3 and ω(C2q+1) = 2. This means that any odd hole is not perfect. Neither is the
complement of such a graph. Berge made in 1962 the far-reaching conjecture stating that these
are the only forbidden induced subgraphs for the class of perfect graphs. The conjecture was
confirmed in 2002 by Chudnovsky, Robertson, Seymour, Thomas.

Theorem 2.3.3 (Strong Perfect Graph Theorem [27]) A graph is perfect if and only if it does
not contain any odd hole or odd antihole as an induced subgraph.

The proof of Strong Perfect Graph Theorem falls into the paradigm of ‘structural decomposition’.
Results on structural decomposition for a graph class C are generally of the form: every member
in C is either of a certain (usually well-understood) basic type, or can be decomposed via certain
cutsets into smaller parts. As observed earlier, a perfect graph cannot contain any odd hole
or its complement as an induced subgraph. These graphs are called Berge graphs. To prove
Theorem 2.3.3, Chudnovsky, Robertson, Seymour, Thomas proved a decomposition theorem for
the class of Berge graphs: every Berge graph G is either of five basic types each of which is
known to be perfect, or G admits one of the three cutsets, proper 2-join, complement proper 2-
join and balanced skew partition. This decomposition theorem implies Theorem 2.3.3: suppose
that the theorem is false. Then there exists a Berge graph that is not perfect. Choose such a
graph G with minimum number of vertices. It is known that any minimal counterexample does
not admit any of the three cutsets and therefore G has to be one of five basic types. This,
however, contradicts the assumption that G is imperfect. The complete proof spans over almost
200 pages and we refer to [27].

One year after the announcement of Chudnovsky, Robertson, Seymour, Thomas’s proof of
Theorem 2.3.3, the first polynomial time algorithm for recognizing perfect graphs was also found
by Chudnovsky, Cornuéjols, Liu, Seymour and Vušković. Somewhat strangely, their algorithm is
independent of the proof of Theorem 2.3.3.

Theorem 2.3.4 [21] There exists a O(n9) algorithm to recognize if a graph of order n is
perfect.

Not only does the recognition of perfect graphs admit a polynomial time algorithm, a number
of combinatorial problems that are NP-complete in general can be solved in polynomial time on
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the class of perfect graphs. Of particular interest to our work is a result of Grötschel, Lovász
and Schrijver.

Theorem 2.3.5 [57] Chromatic Number is polynomial time solvable for perfect graphs.

In addition to Chromatic Number, polynomial solvability of the maximum independent set,
the maximum clique and the clique covering problem were shown in the same paper [57]. We
remark that those algorithms exist long before the validation of Strong Perfect Graph Theorem,
and moreover, they make use of the ellipsoid method from linear programming and hence are not
combinatorial. It is still a challenging open problem whether or not a combinatorial algorithm
exists for optimally colouring perfect graphs. With the availability of Theorem 2.3.3, the quest
we feel has a greater chance to reach a positive answer, see for example a partial result [28] in
this respect.

2.3.2 Chordal graphs

The first approach of studying hereditary class we mentioned above is perfectly illustrated by
the class of perfect graphs while the class of chordal graphs provides a representative example
of the second approach. A graph is chordal if it does not contain any hole. In other words,
the characterization set for the class of chordal graphs is {C4, C5, . . .}. Historically, the study
of chordal graphs dates back to the beginning of 1960s when Dirac investigated them under
the name of ‘rigid circuit graphs’. The principal result in Dirac’s paper [43] is a decomposition
theorem for the class of chordal graphs:

Theorem 2.3.6 (Dirac’s theorem [43]) Every connected chordal graph is either a complete
graph or admits a clique cutset.

As a matter of fact, every chordal graph can be built from smaller chordal graphs by pasting
them together on clique cutsets. A direct consequence of Dirac’s decomposition theorem is the
fact that every chordal graph that is not a complete graph contains two non-adjacent simplicial
vertices, i.e., a vertex whose neighbourhood induces a clique. This, together with the obvious
fact that any complete graph contains a simplicial vertex, implies that every chordal graph
has a simplicial vertex. The removal of a simplicial vertex in a chordal graph G results in a
smaller chordal graph to which the fact can be again applied. One may repeat this process until
the graph becomes the null graph. Putting the vertices of G in the order they were removed
during the process forms a liner ordering v1, v2, . . . , vn of V (G). The ordering has the special
property that for each i the vertex vi is a simplicial vertex of the subgraph of G induced on
{vi, vi+1, . . . , vn}. Such an ordering is referred to as a perfect elimination ordering the concept
of which is originally due to Fulkerson and Gross [47]. Without too much difficulty it can be
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seen that the existence of a perfect elimination ordering prevents the occurrence of any hole in
the graph.

Another profound result in the study of chordal graphs says that chordal graphs can be char-
acterized as intersection graphs. Let S be a family of non-empty sets. The intersection graph
of S is obtained by representing each set in S by a vertex and connecting two vertices by an
edge if and only if their corresponding sets intersect. In 1974, Gavril [49] discovered that a
graph is chordal if and only if it is the intersection graph of a family of subtrees of a tree. The
following theorem summarizes equivalent characterizations of chordal graphs that come from
distinct perspectives.

Theorem 2.3.7 (Characterization of Chordal Graphs [43, 47, 49]) For a graph G, the following
statements are equivalent: (1) G is chordal; (2) G can be built from smaller chordal graphs
by pasting them on clique cutsets. (3) G admits a perfect elimination ordering; (4) G is the
intersection graph of a family of subtrees of a tree.

The proof of Theorem 2.3.7 can be found in [54]. The characterizations in Theorem 2.3.7, on
one hand, certify that the class of chordal graphs is a natural and beautiful class worth studying.
They, on the other hand, serve as tools in the research of chordal graphs. Dirac’s decomposition
theorem, for instance, allows one to deduce the perfectness of chordal graphs.

Proposition 2.3.8 [7] Any chordal graph is perfect.

Proof. Let G be a chordal graph. We may assume that G is connected. It suffices to
show that χ(G) ≤ ω(G). We prove this by induction on |G|. Since any complete graph is
perfect, we may assume that G is not complete. It then follows from Theorem 2.3.7 that G
admits a clique cutset K such that G − K is a disjoint union of two subgraphs H1 and H2

of G. Let Gi = Hi ∪ K for i = 1, 2. Each Gi has strictly fewer vertices than G and by
the inductive hypothesis we deduce that χ(Gi) ≤ ω(Gi). Since K is a clique, it follows that
χ(G) = max{χ(G1), χ(G2)} ≤ max{ω(G1), ω(G2)} ≤ ω(G). �

Proposition 2.3.8 and Theorem 2.3.4 imply that a chordal graph of order n can be recognized
in O(n9) time. Nevertheless, a much faster algorithm due to Rose, Tarjan and Leuker [97]
recognizes chordal graphs in linear time. Their algorithm uses lexicographic breadth-first search
and outputs a linear ordering of the vertices of the input graph. The analysis of the correctness
of the algorithm is based on perfect elimination ordering: if the input graph is chordal, then
the ordering obtained at the end of the algorithm is a perfect elimination ordering (this is the
heaviest work); and the other direction follows readily from Theorem 2.3.7.

Theorem 2.3.9 [97] There exists an O(m + n) time algorithm to decide if a graph with n
vertices and m edges is chordal. Furthermore, the algorithm finds an induced cycle Cs for some
integer s ≥ 4 if the input graph is not chordal.
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By slightly modifying the algorithm of Rose, Tarjan and Leuker [97], it is also possible to find
the chromatic number (= clique number) of a chordal graph in linear time.

Theorem 2.3.10 [47] If G is chordal, then one can determine χ(G) (= ω(G)) in linear time.

2.3.3 Cographs

In this subsection we present another extensively studied hereditary class, i.e., the class of
cographs. We begin with the definition.

Definition (Cographs) A graph G is called a cograph if for every induced subgraph H of G
with at least two vertices either H or H is disconnected.

The definition of cographs implies that the class of cographs is hereditary and therefore can be
characterization by forbidden induced subgraphs. In the 1970s, Seinsche [98] proved that the
forbidden induced subgraph for a cograph is a single graph, namely the chordless path P4. Later
on, Corneil, Lerchs and Burlingham discovered an equivalent way of defining cographs. They
investigated cographs under the name ‘complement reducible graphs’.

Definition (Complement reducible graphs [35]) A complement reducible graph is defined re-
cursively as follows:

(i) A graph on a single vertex is a complement reducible graph.

(ii) If G1, G2, . . . , Gk are complement reducible graphs, then so is their disjoint union G1 +G2 +
. . .+Gk.

(iii) If G is a complement reducible graph, then so is its complement G.

The fundamental result in [35] is that complement reducible graphs are precisely cographs. The
following theorem shows that P4-free graphs and complement reducible graphs are the same as
cographs.

Theorem 2.3.11 (Characterization of Cographs [35, 98]) For a graph G the following state-
ments are equivalent:

(a) G is a cograph.

(b) G is a complement reducible graph.

(c) G is P4-free.

Proof. We prove the theorem by proving the following three implications.
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(a) ⇒ (b). Let G be a cograph and we use induction on |G|. We may assume that |G| ≥ 2.
Since G is a cograph, either G or G is disconnected. Without loss of generality, we assume that
G is disconnected. Thus, G is the disjoint union of its connected components Gi for 1 ≤ i ≤ k.
Applying the inductive hypothesis on each Gi we conclude that Gi is a complement reducible
graph. Therefore, the G is also a complement reducible graph. �

(b) ⇒ (c). Let G be a complement reducible graph. We use induction on the number r of
complementation and disjoint union operations that are needed to construct G. If r = 0, then
G is a single vertex and thus is P4-free. Now suppose that r ≥ 1. If the last operation applied
is the complementation, then G = F , where F is the graph obtained using the first r − 1
operations. It follows from the inductive hypothesis that F is P4-free. Since P4 = P4, G is
also P4-free. If the last operation applied is the disjoint union, then G = G1 +G2 + . . .+Gk,
where each Gi for 1 ≤ i ≤ k is constructed using less than r operations. Thus, Gi is P4-free
by the inductive hypothesis. Clearly, the disjoint union cannot create an induced P4 and so G
is P4-free. �

(c) ⇒ (a). Let G be a P4-free graphs. It suffices to show that either G or G is disconnected.
We use induction on |G|. Pick any vertex a ∈ V (G) and let G′ = G − a. Then G′ or G′ is
disconnected by the inductive hypothesis, since G′ is P4-free and has fewer vertices than G.
Without loss of generality, we assume that G′ is disconnected. Therefore, G′ is the disjoint union
of its connected components F1, F2, . . . , Fk for some integer k ≥ 2. If a has no neighbour in
Fi (i = 1, 2, . . . , k), then G is disconnected. On the other hand, if a is adjacent to each vertex
in G′, then G is disconnected. Therefore, we assume that a has a neighbour bi ∈ Fi for each
i = 1, 2, . . . , k and a has a non-neighbour n in F1. Since F1 induces a connected subgraph of
G′, we may assume that b1 and n are adjacent. But then n− b1 − a− b2 induces a P4 in G. �

The theorem follows from three implications. �

The equivalence between (a) and (c) and between (a) and (b) are originally proven in [98]
and [35], respectively. Our proofs are slightly different from those in the literature. The join
operation is a binary operation that takes two vertex-disjoint graphs G1 and G2 and adds an
edge between any vertex in G1 and any vertex in G2. It is not difficult to see (by induction)
that the complementation operation in the definition of complement reducible graphs can be
replaced by the join operation. Theorem 2.3.11 thus implies that any cograph can be recursively
constructed via the disjoint union and join operations. This leads to a canonical representation
for cographs, i.e., the co-tree representation. The co-tree C(G) of a cograph G is a tree in
which leaves are vertices of G while the internal nodes of the tree are labeled as 0 and 1 which
correspond to the join and disjoint union operations that reflect the construction of G. The
co-tree of a cograph can be constructed in linear time [36]. This is due to Corneil, Pearl and
Stewart who offered in the same paper the first linear time algorithm for recognizing cographs.
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With the availability of the co-tree representation, the chromatic number of any cograph can
be found in linear time in a bottom-up fashion on the co-tree.

Theorem 2.3.12 [36] If G is a cograph, then one can determine χ(G) in linear time.

The algorithm that finds χ(G) for a cograph in fact outputs a χ(G)-colouring. This colouring
turns out to be a ω(G)-colouring: cographs are perfect. This can be easily seen from Theo-
rem 2.3.11 (b): the complementation and the disjoint union operations preserve the perfection
of a graph. Another important fact about cographs is due to Damaschke [41] who proved that
the class of cographs is well-quasi-ordered under the induced subgraph relation.

In addition to its own development, the study of cographs also motivates additional related
research. Here we briefly mention some that follows the line of ‘generalizing cographs’. The
clique-width of a graph G is defined to be the minimum number of labels that are needed in
order to construct G under certain rules. The disjoint union and join operations are two of those
rules. It can be easily deduced from Theorem 2.3.11 (b) that cographs are exactly the graphs
that have clique-width at most two. Hence, graphs of clique-width at most some constant
k ≥ 2 generalize cographs. The concept of clique-width was introduced in the early 1990s and
its importance is manifested in an algorithmic meta-theorem on polynomial solvability of a large
class of problems proved by Courcelle, Makowsky and Rotics [37]. We refer to a recent survey
[74] for formal definition and results on clique-width as well as its relation to tree-width.

Another way of generalizing cographs is achieved through the lens of the forbidden induced
subgraph characterization (c) in Theorem 2.3.11. Relaxing the requirement ‘nowhere containing
induced P4’ to ‘containing locally not too many induced P4’s’ leads to so-called P4-reducible
and P4-sparse graphs. A graph G is P4-reducible if no vertex of G belongs to more than one
induced P4, and G is P4-sparse if every set of five vertices contains at most one induced P4.
Clearly, any P4-reducible graph is P4-sparse. The classes of P4-reducible and P4-sparse graphs
were introduced in 1980s by Jamison and Olariu [70] and Hoàng [61], respectively. Both classes
admit a linear time recognition algorithm [70, 71]. The class of P4-sparse graph is hereditary
and the forbidden induced subgraphs for this class are those graphs on five vertices that contain
more than one induced P4. Hoàng [61, 62] also gave a number of characterizations for P4-sparse
graphs and showed that these graphs are perfect.

More recently, there has been significant focus on the class of Pt-free graphs for fixed integer
t ≥ 1. When t ≥ 5, the class generalizes the class of cographs in the most straightforward way.
The first non-trivial generalized class of this kind is the class of P5-free graphs. Bácso and Tuza
[6] revealed that every connected P5-free graphs has a dominating set that induces either a P3

or a clique. Later on, Liu and Zhou [81] provided a characterization of P5-free graphs: a graph
G is P5-free if and only if each connected induced subgraph H of G admits a dominating set
D (of H) such that D induces either a 5-hole or a clique. Similar characterization was then
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obtained for the class of P6-free graphs by van’t Hof and Paulusma [103]. Such a theorem for
general Pt-free graphs was not available until last year. In particular, the following theorem is
due to Camby and Schaudt [17].

Theorem 2.3.13 (Characterization of Pt-free graphs [17]) Let G be a graph and t ≥ 4 be an
integer. Then G is Pt-free if and only if, for every connected induced subgraph H of G, H
admits a connected dominating set D such that D induces either a Ct or a Pt−2-free graph.

Note that the result of Liu and Zhou is a special case of Theorem 2.3.13, namely when t = 5.
For t = 4, the theorem gives a characterization of cographs: a graph G is a cograph if and only
if every connected induced subgraph of H has a dominating set that induces either a C4 or P1

(this was also previously proved). To prove the characterization theorem, Camby and Schaudt
first demonstrated a critical property of the connected dominating sets in a connected Pt-free
graph: any minimum connected dominating set is either Pt−2-free or isomorphic to Pt−2. They
showed in addition such a dominating set can be found in polynomial time.

The hereditary classes presented here form just the tip of the iceberg. There are numerous graph
classes that are of special structural properties. The monograph of Brandstädt, Le and Spinrad
[13] provides a comprehensive survey on graph classes and their relations. Despite the fact
that Theorem 2.3.13 is quite recent, the study of combinatorial problems on Pt-free graphs has
existed long before that. The colouring problems, for example, has received much attention in
the past decade. In the next three chapters, we devote ourselves to the computational complexity
of ordinary colouring problems on the class of Pt-free graphs and related classes. New results
in this thesis will be presented.

21



33
k-Colourability of Pt-Free Graphs

Theorem 2.3.11 and Theorem 2.3.12 imply that the chromatic number of a P4-free graph can
be determined in linear time. This is no longer true if we enlarge our graph under consideration
from being P4-free to being Pt-free for any fixed t ≥ 5. Král, Kratochvíl, Tuza and Woeginger
[77] showed that it is NP-complete to determine the chromatic number of a Pt-free graph
whenever t ≥ 5. This fact is a corollary of the main result in [77], which is a dichotomy of
computational complexity of Chromatic Number for H-free graphs.

Theorem 3.0.1 [77] Chromatic Number is polynomial time solvable for the class of H-free
graphs if H is an induced subgraph of P4 or P3 + P1; and NP-complete otherwise.

Roughly speaking, Theorem 3.0.1 says that for most graphs H, forbidding H in the input graph
does not make computing chromatic number easier. In the same paper, Král, Kratochvíl, Tuza
and Woeginger initiated a study of the computational complexity of Chromatic Number
for graphs that do not contain two specified graphs H1 and H2 as induced subgraphs. Unlike
forbidding a single graph, this problem seems to be much harder and no dichotomy is known
so far for (H1, H2)-free graphs. We refer to [40, 53, 84] for some partial results and a recent
survey by Golovach, Johnson, Paulusma and Song [50] for a summary in this respect.

In this chapter, we devote ourselves to k-Colourability of H-free graphs, with emphasis on
the case H = Pt. The chapter is organized as follows. In Section 3.1 we validate the interest
of k-Colourability of Pt-free graphs by surveying known results on k-Colourability of
H-free graphs for various graphs H. We then present, in Section 3.2, a novel framework that
allows us to deduce new NP-completeness results. Our results improve upon all previous NP-
completeness results on k-Colourability of Pt-free graphs and narrow the attention to two
major open problems in this area. In Section 3.3, we demonstrate a partial result towards one
of these problems.
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3.1 Problem history

Computing the chromatic number of H-free graphs enjoys a dichotomy of computational com-
plexity as shown by Theorem 3.0.1. The situation is, however, more elusive when it comes to
k-Colourability. Nevertheless, the problem has received much attention in the past decade
and much progress has been made. Kamiński and Lozin [73] showed that, for any fixed k ≥ 3
and g ≥ 3, k-Colourability is NP-complete for the class of graphs of girth at least g. Their
result has the following immediate consequence.

Theorem 3.1.1 [73] For any fixed k ≥ 3, k-Colourability is NP-complete for the class of
H-free graphs whenever H contains a cycle.

In the early 1980s, Holyer [65] proved that 3-Colourability is NP-complete for line graphs.
Later, Leven and Galil [80] extended this result by showing that k-Colourability is also
NP-complete for line graphs for k ≥ 4. These two results, together with the fact that line
graphs are claw-free, have the following consequence.

Theorem 3.1.2 [65, 80] For any k ≥ 3, k-Colourability is NP-complete for the class of
H-free graphs if H is a forest with a vertex of degree at least three.

Due to Theorem 3.1.1 and Theorem 3.1.2, only the case thatH is a linear forest remains. Clearly,
a path is the simplest linear forest and hence much study has been done on k-Colourability
of Pt-free graphs. The problem is trivial for Pt-free graphs when t ≤ 3. The first non-trivial case
is the class of P4-free graphs, namely cographs. Theorem 2.3.12 says that one can even find
the chromatic number of a cograph and hence solve k-Colourability in linear time. This
result was superseded by a breakthrough work due to Hoàng , Kamiński, Lozin, Sawada, Shu
[63] who exhibited an elegant recursive algorithm confirming that k-Colourability can be
solved in polynomial time for P5-free graphs for any fixed k ≥ 1. In addition, their algorithm
applies to List k-Colourability of P5-free graphs.

Theorem 3.1.3 [63] List k-Colourability is polynomial time solvable for P5-free graphs.

When it comes to t = 6, only 3-Colourability is known. The polynomial solvability of 3-
Colourability of P6-free graphs was first shown by Randerath and Schiermeyer [93]. Their
result was generalized by Broersma, Fomin, Golovach, Paulusma [14] to List 3-Colourability
of P6-free graphs and by Chudnovsky, Maceli and Zhong [25, 26] to 3-Colourability of P7-
free graphs.

On the negative side, Woeginger and Sgall [106] demonstrated in 2001 the NP-completeness of
5-Colourability of P8-free graphs and 4-Colourability of P12-free graphs. Their paper
[106] was the very first one to study the colouring problem on Pt-free graphs, although the
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result of Kamiński and Lozin [73] that made the story more compelling was published 6 year
later. Later on, Le, Randerath and Schiermeyer [79] improved 4-Colourability result of
Woeginger and Sgall from P12-free to P9-free graphs. This was further improved to P8-free
graphs by Broersma, Golovach, Paulusma and Song [15].

As much effort as researchers spent, no NP-completeness result was known for P6-free graphs
and P7-free graphs around 2010. Therefore, List k-Colourability and k-Prext were also
considered. Both problems generalize, and hence are harder than, k-Colourability. The
hardness of these problems in fact makes the NP-completeness proof easier. Not surprisingly,
the NP-completeness on P6-free graphs and P7-free graphs was soon established in the context
of these problems. It was shown by Broersma, Golovach, Paulusma and Song [15] that 4-Prext
is NP-complete for the class of P7-free graphs and by Broersma, Fomin, Golovach, Paulusma
[14] that 5-Prext is NP-complete for the class of P6-free graphs. The latter result still holds
for P6-free graphs as far as List 4-Colourability is concerned [52].

We use the following table to summarize all results in the literature. Here P and NP-c denote
polynomial solvability and NP-completeness, respectively, while “?” means that the complexity
status is still open. The literature corresponding to the maximal polynomial and minimal NP-
complete results is listed.

k-Colourability k-Prext List k-Colourability
t k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6

t ≤ 5 P P P P P P P P P P P P
t = 6 P ? ? ? P ? NP-c [14] NP-c P [14] NP-c [52] NP-c NP-c
t = 7 P [25, 26] ? ? ? ? NP-c [15] NP-c NP-c ? NP-c NP-c NP-c
t ≥ 8 ? NP-c [15] NP-c NP-c ? NP-c NP-c NP-c ? NP-c NP-c NP-c

Table 3.1: The complexity status of k-Colourability, k-Prext and List k-
Colourability of Pt-free graphs.

3.2 A new framework

As we mentioned earlier, all NP-complete results of k-Colourability of Pt-free graphs stop
at t = 8, and no progress was made on P7-free graphs. In this section, we derive new NP-
complete results that break this barrier. Our main result here (cf. also [67]) is the following
theorem.

Theorem 3.2.1 4-Colourability of P7-free graphs and 5-Colourability of P6-free graphs
are NP-complete.

In order to prove Theorem 3.2.1, we provide a novel reduction framework that allows us to
derive both results simultaneously. Before presenting the framework, we briefly explain why
previous methods fail. In their groundbreaking work on k-Colourability of Pt-free graphs,
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Woeginger and Sgall [106] demonstrated the NP-completeness of the problem when k = 5 and
t = 8 via a reduction from 3-Sat: for any 3-Sat instance I they constructed a graph GI by
introducing the gadget H∗ (see Figure 3.1) for each clause of I. All subsequent improvements
[14, 15, 93] are based on the same method by either choosing a different graph as the gadget or
considering k-Prext. The graph constructed this way, however, inherently contains an induced
P7. Specifically, regardless of the choice of the gadget, the construction as given in these papers
always contains a copy of P7. Therefore, all existing methods fail to work for P7-free graphs.
This issue is underscored by a subtle error in the proof of the claim that 6-Colourability is
NP-complete for P7-free graphs in [14]. This error was first noted in [66].

Figure 3.1: A nice 4-critical graph H∗: χ(H∗)=4 and ω(H∗) = ω(H∗ − {c1, c2, c3}) = 3.

We now present our novel framework that not only fixes the error in [14] but also allows us to
prove Theorem 3.2.1. A graph G is called k-critical if χ(G) = k and χ(G − v) < k for any
vertex v ∈ V (G).

Definition (Nice critical graphs) A k-critical graph G is nice if ω(G) = k−1 and moreover there
exist three pairwise non-adjacent vertices c1, c2, c3 in G such that ω(G− {c1, c2, c3}) = ω(G).

As strange as the definition sounds, nice critical graph do exist. For instance, any odd hole of
length at least 7 with any its three pairwise non-adjacent vertices is a nice 3-critical graph. The
graph H∗ in Figure 3.1 with vertices c1, c2 and c3 is a nice 4-critical graph. Nice critical graphs
hold the key to our new reduction.

3.2.1 Construction

Let I be a 3-Sat instance with variable setX = {x1, x2, . . . , xn} and clause set C = {C1, C2, . . . , Cm}.
Let H be a nice k-critical graph with three specified independent vertices c1, c2, c3. We now
construct a graph GH,I that corresponds to H and I as follows.

Construction: GH,I .
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• For each variable xi, introduce a variable component Ti that consists of two adjacent
vertices xi and xi. These vertices are said to be X-type.

• For each variable xi, introduce a vertex di. These vertices are said to be D-type.

• For each clause Cj = yi1 ∨ yi2 ∨ yi3 , introduce a clause component Hj that is isomorphic
to H, where yit is either xit or xit for 1 ≤ t ≤ 3. The three specified independent vertices
in Hj are then denoted by citj for 1 ≤ t ≤ 3. Those vertices citj are said to be C-type
while the remaining vertices in Hj are said to be U -type.

Without confusion we also denote X, D, C and U by the set of X-type, D-type, C-type
and, respectively, U -type vertices. In other words, V (GH,I) = X ∪ D ∪ C ∪ U . For a
C-type vertex cij in GH,I , the vertex xi or xi is said to be its corresponding literal vertex,
depending on whether xi ∈ Cj or xi ∈ Cj . We now describe the edges of GH,I .

• Add an edge between each U -type vertex and each D-type vertex.

• Add an edge between each U -type vertex and each X-type vertex.

• For each C-type vertex cij , add an edge between cij and its corresponding literal vertex
and add an edge between cij and di.

This completes the construction of the graphGH,I . We note that clause components are pairwise
disjoint in GH,I . We shall show that the colourability of GH,I encodes the satisfiability of I. Our
main contribution is the following theorem that makes the connection between NP-completeness
and nice critical graphs.

Theorem 3.2.2 Let t ≥ 6 and k ≥ 3 be fixed integers. Then k-Colourability of Pt-free
graphs remains NP-complete whenever there exists a Pt-free nice (k − 1)-critical graph.

The proof of Theorem 3.2.2 will follow from two lemmas presented in the next subsection.

3.2.2 Proof of Theorem 3.2.2

Throughout the subsection, we assume that I is a 3-Sat instance, H is a nice k-critical graph,
and GH,I is the graph constructed the way we present in subsection 3.2.1.

Lemma 3.2.3 I is satisfiable if and only if GH,I is (k + 1)-colourable.

Proof. We assume that I is satisfiable. Let σ be a truth assignment satisfying each clause Cj .
We define a mapping φ : V (GH,I)→ {1, 2, . . . , k + 1} as follows.

• Set φ(di) := k + 1 for 1 ≤ i ≤ n.

26



• For 1 ≤ i ≤ n, if σ(xi) = TRUE, set φ(xi) := k + 1 and φ(xi) := k. Otherwise, set
φ(xi) := k and φ(xi) := k + 1.

• Let Cj = yi1 ∨ yi2 ∨ yi3 be the jth clause of I. Since σ satisfies Cj at least one literal in Cj
is TRUE, say yit for some t ∈ {1, 2, 3} . The corresponding literal vertex of citj is therefore
assigned colour k + 1 under φ (note that this colour is the same colour that dit receives under
φ). We set φ(citj) := k so that the colour of citj conflicts with neither its corresponding literal
vertex nor dit .

• Since Hj is isomorphic to H and H is k-critical, it follows that Hj − citj admits a (k − 1)-
colouring φj : V (Hj − citj)→ {1, 2, . . . , k − 1}. We set φ := φj on V (Hj − citj).

This completes the definition of φ and it can be readily checked that φ is indeed a mapping
from V (GH,I) to {1, 2, . . . , k + 1}. Note that all vertices in X ∪D are assigned colours either
k or k + 1 while all vertices in U is never assigned colour k or k + 1. This fact, together with
the definition of φ, implies that φ is a (k + 1)-colouring of GH,I .

Conversely, suppose that GH,I is (k + 1)-colourable. Let φ : V (GH,I)→ {1, 2, . . . , k + 1} be a
(k + 1)-colouring of GH,I . For each 1 ≤ j ≤ m, Hj is a nice k-critical graph. It follows from
the definition of nice critical graphs that ω(Hj ∩U) = k− 1. Let Rj ⊆ V (Hj ∩U) be a clique
of size k− 1. Observe that Rj ∪ T1 is a largest clique in GHI

and |Rj ∪ T1| = k+ 1. Since φ is
a (k+ 1)-colouring of GHI

, it follows that φ(u) 6= φ(v) for any two distinct vertices u and v in
Rj ∪ T1. We may assume, without loss of generality, that {φ(x1), φ(x1)} = {k, k + 1}. Since
U is complete to X ∪D, the following properties of φ hold.

(P1) For each 1 ≤ i ≤ n, {φ(xi), φ(xi)} = {k, k + 1}.

(P2) For each 1 ≤ i ≤ n, φ(di) ∈ {k, k + 1}.

(P3) For each u ∈ U , φ(u) ∈ {1, 2, . . . , k − 1}.

We then construct a truth assignment σ : {x1, x2, . . . , xn} → {TRUE,FALSE} as follows.

σ(xi) :=
{
TRUE if φ(xi) = φ(di).
FALSE if φ(xi) 6= φ(di).

It follows from (P1) and (P2) that σ is indeed a truth assignment. It remains to show that
σ satisfies each clause in I. Suppose that some clause Cj = yi1 ∨ yi2 ∨ yi3 is not satisfied
under σ. This means that σ(yit) = FALSE for 1 ≤ t ≤ 3. It then follows from our definition
of σ that the corresponding literal vertex of citj receives a colour different from φ(dit). This,
together with (P1) and (P2) , implies that φ(citj) /∈ {k, k + 1} for 1 ≤ t ≤ 3. Therefore,
φj := φ|V (Hj) is a (k − 1)-colouring of Hj due to (P3). This, however, contradicts the fact
that χ(H) = k. �
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Lemma 3.2.4 Let t ≥ 6 be a fixed integer. If H is Pt-free, then GH,I is Pt-free.

Proof. Assume that H is Pt-free. We prove the lemma by contradiction. Let P = Pt be an
induced path in GH,I with t ≥ 6. We show the following properties of P .

(i) P contains at least one vertex in X ∪D.

Note that G− (X ∪D) is the disjoint union of m copies of H. If P contains no vertex
in X ∪D, then V (P ) ⊆ V (Hj) for some 1 ≤ j ≤ m. This contradicts the assumption
that H is Pt-free. This proves (i). �

(ii) P contains at least one vertex in U .

Let Ci and Ci denote the set of C-type vertices that are neighbours of xi, and respectively,
xi. Observe that every connected component of G−U has a specific structure, namely it
is the result of substituting independent sets into a 5-hole (and possibly removing some
vertices). Specifically, the five independent sets are, in the cyclical order, X0 = {xi},
X1 = Ci, X2 = {di}, X3 = Ci, and finally X4 = {xi}. This subgraph of GH,I does
not contain an induced Pt, since the 5-hole does not and substituting independent sets
cannot create a Pt. This proves (ii). �

(iii) P contains at most three vertices in X ∪D ∪U and these vertices form a sub-path of P .

We recall that U and X ∪ D are complete to each other. By (i) and (ii), P contains
at least one vertex u ∈ U and one vertex x ∈ X ∪ D. This implies that u and x are
consecutive on P . In addition, the other neighbour x+ of x on P (if it exists) is not
from X ∪D (since it would be adjacent to u but P is induced), and similarly the other
neighbour u+ of u on P (if it exists) is not from U . By the same token, all other vertices
on P (apart from x, u and their neighbours on P ) are from C. Furthermore, at least
one of x+ and u+ is also from C, for otherwise x+ is in U , and u+ is in X ∪D implying
that x+ and u+ are adjacent, but this is impossible since P is induced. Consequently, we
conclude that apart from x, u and exactly one of x+ and u+, there are no other vertices
on P from X ∪D ∪U , and clearly those that are from X ∪D ∪U are consecutive on P .
This proves (iii). �

It follows from (iii) that all but at most three consecutive vertices on P are from C. This implies
P ∩C contains adjacent vertices due to our assumption that P has at least t ≥ 6 vertices. This
is impossible since C is an independent set. This completes the proof. �

We are ready to prove our main result in this section.

Proof of Theorem 3.2.1. As we noticed before that H∗ is a nice 4-critical graph and C7

is a nice 3-critical graph. Moreover, it is routine to verify that the longest induced path in H∗
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has five vertices. In other words, H∗ is P6-free. Clearly, C7 is P7-free. Applying Theorem 3.2.2
with H∗ and C7 completes the proof. �

3.2.3 Consequences

Theorem 3.2.1 demonstrates for the first time the existence of an integer k such that k-
Colourability of P7-free and P6-free graphs is NP-complete. It improves upon the NP-
complete results from [14, 15] including those on k-Prext. The following table is an updated
complexity status with our new results.

k-Colourability
t k = 3 k = 4 k = 5 k ≥ 6

t ≤ 5 P P P P
t = 6 P ? NP-c NP-c
t = 7 P NP-c NP-c NP-c
t ≥ 8 ? NP-c NP-c NP-c

Table 3.2: Updated complexity status of k-Colourability of Pt-free graphs. Our new results
are indicated in bold cells.

As easily seen from Table 3.2, our result almost completes the classification of the complexity
of k-Colourability of Pt-free graphs when k ≥ 4, leaving as the only missing case 4-
Colourability of P6-free graphs. We conjecture that this problem can be solved in polynomial
time.

Conjecture 3.2.5 4-Colourability of P6-free graphs admits a polynomial time algorithm.

The conjecture is supported in part by the following observation.

Observation 3.2.6 There exists no P6-free nice 3-critical graphs.

Proof. Suppose that H is a P6-free nice 3-critical graphs where c1,c2 and c3 are pairwise non-
adjacent vertices in H. It is well-known that odd holes and the triangle are the only 3-critical
graphs. Therefore, H = C2s+1 for some integer s ≥ 1. Since H is not a clique and does not
contain any induced path with six vertices or more, it follows that s = 2, i.e., H is isomorphic
to a 5-hole. This contradicts the fact that the 5-hole has independence number two. �

Observation 3.2.6 preludes the possibility of applying Theorem 3.2.2 to showing the NP-completeness
of 4-Colourability of P6-free graphs. This is some evidence that Conjecture 3.2.5 should
hold. Moreover, Golovach, Paulusma and Song [51] completed the classification of 4-Colourability
ofH-free graphs whenH has at most five vertices. The classification states that 4-Colourability
is polynomial time solvable on the class of H-free graphs when H is a linear forest, and NP-
complete otherwise. We note that linear forests with at most five vertices and no more than
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two connected components are induced subgraphs of P6. Therefore, most polynomial cases in
the classification are subclasses of the class of P6-free graphs.

Besides Conjecture 3.2.5, the remaining question marks in Table 3.2 are the ones that correspond
to 3-Colourability. This problem seems to be notoriously hard: it is not even known whether
or not there exists an integer t ≥ 8 such that 3-Colourability becomes NP-complete on
the class of Pt-free graphs. It is not difficult to see that the existence of such an integer is
equivalent to the existence of an integer r so that List 3-Colourability is NP-complete for
Pr-free graphs.

Problem 3.2.7 Is there an integer t ≥ 8 such that (List) 3-Colourability is NP-complete
for Pt-free graphs?

3.3 A polynomial case

In this section we prove that Conjecture 3.2.5 is true for a subclass of Forb({P6}). As we indi-
cated before, Conjecture 3.2.5 seems plausible due to Observation 3.2.6. Nevertheless, the prob-
lem resists an answer so far. This is largely because the usual techniques for 3-Colourability,
see [14, 15, 93, 106] for example, do not apply. It turns out that the problem becomes easier if
an additional induced subgraph is forbidden. For instance, it was shown that every (P6, C3)-free
graph is 4-colourable, see [94]. A paw is a graph obtained from a triangle by adding a pendent
vertex. A classical result of Olariu [91] says that every connected component of a paw-free
graph is either triangle-free or a complete multipartite graph. This implies that the result of 4-
Colourability of (P6, C3)-free graphs extends to (P6, paw)-free graphs. Another interesting
result in this direction was due to Golovach, Paulusma and Song [53].

Theorem 3.3.1 [53] For any fixed positive integers k, r, s and t, List k-Colourability of
(Kr,s, Pt)-free graphs is polynomial time solvable.

Taking k = 4, r = s = 2 and t = 6, it follows that 4-Colourability of (P6, C4)-free graphs is
polynomial time solvable. The banner is the graph obtained from a 4-hole by adding a pendent
vertex. See Figure 3.2.

Figure 3.2: The banner graph.
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The class of banner-free graphs generalizes the class of C4-free graphs the same way the class
of paw-free graphs does for the class of C3-free graphs. It has been studied for Maximum
Weighted Independent Set in several papers in the context of Pt-free graphs, say [11, 89].
Here we show that Conjecture 3.2.5 is true for banner-free graphs. Before we present our
algorithm, the following tools are needed.

Lemma 3.3.2 [44] Let G = (V,E) be a graph with a list L(v) of admissible colours such that
|L(v)| ≤ 2 for each vertex v ∈ V . Deciding whether or not G admits a colouring that respects
the lists can be solved in polynomial time.

Lemma 3.3.3 [14] List 3-Colourability can be solved in polynomial time for P6-free
graphs.

We are now ready to prove our main result in this section.

Theorem 3.3.4 4-Colourability is polynomial time solvable for (P6, banner)-free graphs.

Proof. Let G = (V,E) be a (P6, banner)-free graph with n vertices and m edges. It is folklore
that G is k-colourable if and only if each block of G is k-colourable. In addition, all blocks of
G can be found in O(n + m) time using depth-first search [101]. This allows us to assume
that G is 2-connected. We may also assume that G does not contain as an induced subgraph
a K5, a C7 with an additional vertex that is complete to the C7 or a C5 with two additional
adjacent vertices that are complete to the C5, for otherwise we immediately conclude that G is
not 4-colourable, and it takes O(n8) time to detect the presence of such an induced subgraph.
We proceed by appealing to Theorem 2.3.4 to distinguish two cases according to whether or not
G is perfect. If G is perfect, then we apply Theorem 2.3.5 to optimally colour G. From now on
we assume that G is not perfect. We then test if G contains a C5 or a C7 in O(n7) time. If the
answer is no, then by the Strong Perfect Graph Theorem and the fact that G is P6-free, G must
contains an odd antihole of length at least 9 whose chromatic number is at least 5. Hence, G
is not 4-colourable. So, we assume in the following that G contains either a C5 or a C7 as an
induced subgraph. We suppose first that G contains an induced C = C7 = v0−v1−. . .−v6−v0

where vivj ∈ E if and only if 2 ≤ |i− j| ≤ 5 (the indices are modulo 7).

(i) Every vertex in V \ C with at least one neighbour on C has at least four neighbours on
C.

Consider a vertex x ∈ V \ C with at least one but at most three neighbours on C. We
may assume, without loss of generality, that x is adjacent to v0 and non-adjacent to v1

and v2. If x is non-adjacent to both v4 and v5, then {x, v0, v1, v4, v5} induces a banner in
G. If x is adjacent to exactly one of v4 and v5, then {x, v1, v2, v4, v5} induces a banner
in G. Therefore, x is adjacent to both v4 and v5. Since x has at most three neighbours
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on C, it follows that NC(x) = {v0, v4, v5}. This implies that {x, v1, v2, v5, v6} induces a
banner in G. This proves (i). �

(ii) Every vertex in V \ C has at least one neighbour on C.

Consider a vertex y ∈ V \ C with no neighbour on C. Since G is connected, y can be
chosen with the property that it has a neighbour x ∈ V \C such that x has a neighbour
on C. It follows from (i) that x has at least four neighbours on C. This implies that there
exists some index 0 ≤ i ≤ 6 such that both vi and vi+1 are neighbours of x. We assume
without loss of generality that i = 0. If x is non-adjacent to vi where i ∈ {3, 4, 5}, then
the set {y, x, v0, v1, vi} induces a banner in G. We therefore conclude that x is adjacent
to vi for each 3 ≤ i ≤ 5. This implies that x is also adjacent to v2 and v6, for otherwise
either {y, x, v2, v4, v5} or {y, x, v3, v4, v6} induces a banner in G. This contradicts our
assumption that G does not contain C∪{x} as an induced subgraph. This proves (ii). �

Apparently, there are at most 47 different 4-colouring of the 7-antihole C, and G is 4-colourable
if and only if there exists at least one such colouring of C that can be extended to G. Therefore,
it suffices to explain how to decide if a given pre-colouring φC : C → {1, 2, 3, 4} of C can be
extended to a 4-colouring of G in polynomial time. This amounts to deciding in polynomial
time whether or not G admits a 4-colouring that respects the following 4-list assignment.

L(v) =
{
{1, 2, 3, 4} if v /∈ C
{φC(v)} otherwise

We say that vertices with |L(v)| = 1 have been pre-coloured. We then reduce the lists of
possible colours for other vertices in G using the following procedure.

Update the lists. For any pre-coloured vertex v and any x ∈ N(v) we remove the colour φ(v)
from the list of x, i.e., we let L(x) := L(x) \ {φ(v)}.

Since every vertex x ∈ V \ C has at least four neighbours on C (due to (i) and (ii) above), it
follows that the list for x contains at most two distinct colours after updating the lists. Therefore,
Lemma 3.3.2 allows us to decide in polynomial time if φC can be extended to a 4-colouring of
G.

This shows that testing whether or not G is 4-colourable can be done in polynomial time if
G contains an induced C7. Therefore, we assume in the following that G contains a 5-hole
C = v0− v1− v2− v3− v4− v0 where ij ∈ E if and only if |i− j| ∈ {1, 4} (indices are modulo
5). For 0 ≤ i ≤ 5, a vertex v ∈ V \C is said to be an i-vertex if |NC(v)| = i, and let Si denote
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the set of i-vertices. Clearly, V (G) = V (C) ∪
⋃5
i=0 Si. For each 0 ≤ i ≤ 4, we define

S1(vi) = {x ∈ S1 : NC(x) = {vi}}.

S2(vi) = {x ∈ S2 : NC(x) = {vi−2, vi+2}}.

S3(vi) = {x ∈ S3 : NC(x) = {vi−1, vi, vi+1}}.

S4(vi) = {x ∈ S4 : NC(x) = V (C) \ {vi}}.

(a) The set S5 is an independent set and moreover all vertices in S5 are coloured alike in any
4-colouring φ of G.

Let φ : V (G) → {1, 2, 3, 4} be a 4-colouring of G. Since χ(C5) = 3, it follows that at
least three colours appear on C, say colours 1, 2 and 3. For any vertex u ∈ S5, it follows
that φ(u) = 4 since u is complete to C. This and the fact that φ is a proper colouring
imply that S5 is an independent set. This proves (a). �

(b) For each 1 ≤ j ≤ 4, Sj =
⋃4
i=0 Sj(vi).

It suffices to prove (b) for j = 2 and j = 3, since it is trivially true for j = 1 and j = 4.
This is equivalent to prove that for each x ∈ S2 ∪ S3, the neighbours of x on C are
consecutive along the cycle. Suppose that the neighbours of x on C are not consecutive.
We assume without loss of generality that x is adjacent to v0 and v2 but non-adjacent to
v1 and v4. This implies that {x, v0, v1, v2, v4} induces a banner in G. This proves (b). �

(c) For each 3 ≤ j ≤ 4 and 0 ≤ i ≤ 4, Sj(vi) is a clique of size at most two.

Suppose by contradiction that for each 3 ≤ j ≤ 4 there exists some i such that Sj(vi) is
not a clique. We assume without loss of generality that i = 0 when j = 3 and i = 3 when
j = 4. Since Sj(vi) is not a clique, it contains two non-adjacent vertices x and y. Thus,
{x, y, v1, v3, v4} induces a banner in G, since neither x nor y is adjacent to v3 (in both
cases). This proves that Sj(vi) is a clique. Since G is K5-free, it follows that each set has
size at most two. This proves (c). �

It follows from (b) and (c) that |Sj | ≤ 10 for j = 3, 4. This implies that |C ∪ S3 ∪ S4| ≤ 25.
Therefore, there are at most 425 different 4-colourings of C ∪ S3 ∪ S4, and G is 4-colourable
if and only if there exists at least one such colouring of C ∪ S3 ∪ S4 that can be extended to
G. It remains to explain how to decide in polynomial time whether or not a given 4-colouring
φ : C ∪S3 ∪S4 → {1, 2, 3, 4} can be extended to a 4-colouring of G. This amounts to deciding
in polynomial time whether or not G admits a 4-colouring that respects the following 4-list
assignment.

L(v) =
{
{1, 2, 3, 4} if v /∈ C ∪ S3 ∪ S4

{φ(v)} otherwise
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Just like before, starting from the pre-colouring φ of C ∪S3 ∪S4, we iteratively update the lists
of uncoloured vertices by removing a colour i from L(v) if v has a neighbour u with L(u) = {i}.
Any time during updating the lists if the list of some vertex becomes empty, it means that there
is no 4-colouring of G that extends φ . We then reject φ right away (this also applies to Step 1
and Step 2 in the algorithm below). After updating the lists it follows from (a) that |L(x)| = 1
for each vertex x ∈ S5. Thus, all vertices in V \ (S0 ∪ S1 ∪ S2) have been pre-coloured at
this point. Moreover, |L(x)| ≤ 2 for each vertex x ∈ S2. It remains to list-colour vertices
in S0 ∪ S1 ∪ S2. It clearly suffices to explain how to individually list-colour each connected
component of these vertices, since different components can be coloured independently of each
other. In the following algorithm we refer to U as the set of currently uncoloured vertices,
namely those whose lists contain more than one colour. Initially we have U = S0 ∪ S1 ∪ S2.

Algorithm: whether or not φ extends to S0 ∪ S1 ∪ S2.

Step 1 For each 0 ≤ i ≤ 4, test if |S1(vi)| ≤ 3, and if so, then pre-colour all vertices in
S1(vi) and update the lists of remaining vertices. Note that this changes the set
U .

Step 2 If S2 is not anti-complete to S1, pick a vertex w ∈ S2 that has a neighbour in S1,
pre-colour w and update the lists. This again changes the set U . Note that in this
step we pre-colour at most one vertex.

Step 3 For each connected component K of U , do the following:

(i) if every vertex v ∈ K satisfies that |L(v)| ≤ 2, Lemma 3.3.2 allows us to find
a L-colouring of K or conclude that none exits;

(ii) if some colour i ∈ {1, 2, 3, 4} is absent from the lists of all vertices in K,
Lemma 3.3.3 allows to find a L-colouring of K or conclude that none exists.

Step 4 If all required colourings in Step 3 exist, return Y es; otherwise return No.

Note that the algorithm pre-colours at most additional 16 vertices. Branching on these vertices,
i.e., considering all possible 4-colouring of these vertices, leads to a constant number of sub-
problems. Furthermore, each subproblem amounts to calling the polynomial time algorithms in
Lemma 3.3.2 and Lemma 3.3.3 in Step 3 (i) and Step 3 (ii) at most n times, for U has at
most n connected components. Therefore, the algorithm runs in polynomial time. We are left
to prove the correctness of the algorithm, i.e., to prove that for any connected component K
of U , either (i) or (ii) applies in Step 3. To this end, we first discuss the vertices in S0.

Claim A The following properties hold for S0.

(A1) S0 is anti-complete to S1 ∪ S2.
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(A2) Any two vertices in S0 that lie in the same connected component of S0 have exactly the
same neighbours in S3.

(A3) Any vertex in S0 is either complete or anti-complete to S5.

(A4) If two vertices in S5 have neighbours in a connected component A of S0, A is complete
to S5.

To prove (A1), take any vertex y ∈ S0 and suppose that y is adjacent to some
x ∈ S1 ∪ S2. We assume without loss of generality that x is adjacent to v0 but non-
adjacent to v2, v3 and v4. Now y − x − v0 − v4 − v3 − v2 induces a P6 in G. This
proves (A1).

To prove (A2), it suffices to show that for any edge of S0, its ends have the same
neighbours in S3. Suppose that this is not the case, i.e., there exist an edge e = xy of
S0 and a vertex z ∈ S3 such that z distinguishes x and y, say z is adjacent to x but not
to y. Moreover, we assume by symmetry that z ∈ S3(v0). Now y−x−z−v1−v2−v3

induces a P6 in G. This proves (A2).

To prove (A3), let x be an arbitrary vertex in S0. Suppose by contradiction that x is
neither complete nor anti-complete to S5. This means that there exist two vertices y
and z in S5 such that x distinguishes y and z, say x is adjacent to y but not to z.
Now {v0, v2, x, y, z} induces a banner in G. This proves (A3).

To prove (A4), let x and y be two vertices in S5 such that both of them have a
neighbour in some connected component A of S0. It follows from (A3) that every
vertex in A is either complete or anti-complete to S5. We define A′ = {a ∈ A :
a is complete to S5}. Note that A′ 6= ∅ due to (A3). Take any vertex t ∈ A \ A′.
We may assume that t has a neighbour t′ ∈ A′ due to the connectivity of A. Thus,
{v0, x, y, t, t

′} induces a banner, since t is anti-complete to S5. This shows that the
vertex t cannot exist. This prove (A4).

This completes the proof of Claim A. �

Let K be an arbitrary connected component of U that contains a vertex from S0. It follows
from (A1) that K ⊆ S0. If K is anti-complete to S3, then there exist at least two vertices
in S5 that have a neighbour in K due to the assumption that G is 2-connected. Hence, K is
complete to S5 by (A4). Recall that all vertices in S5 have been pre-coloured and have the same
colour, say i ∈ {1, 2, 3, 4}, due to (a). This colour does not appear on the list of any vertex of
K because we already updated the lists. If K has a neighbour in x ∈ S3, it follows from (A2)
that φ(x) does not appear on the list of any vertex of K. In both cases, Step 3 (ii) applies
to K. In the following we assume that K ∩ S0 = ∅. If K ⊆ S2, then Step 3 (i) applies to
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K. Thus, let K contain a vertex u from S1. We assume that without loss of generality that
u ∈ S1(v0).

Claim B For each 0 ≤ i ≤ 4, S1(vi) is complete to S1(vi+2) and anti-complete to S1(vi+1).
Furthermore, if both S1(vi) and S1(vi+2) are not empty, then |S1(vi)| ≤ 3 and |S1(vi+2)| ≤ 3.

It suffices to prove Lemma 5.2.3 for i = 0. Let x ∈ S1(v0). If x is non-adjacent to a
vertex z ∈ S1(v2), then x−v0−v4−v3−v2−z is an induced P6 in G. If x is adjacent
to a vertex y ∈ S1(v1), then {v0, v1, v2, x, y} induces a banner. This implies the first
part of the claim. Suppose that |S1(v0)| ≥ 4. Since G is K5-free, S1(v0) contains two
non-adjacent vertices x and x′. But then {v0, v4, x, x

′, z} (where z ∈ S1(v2)) induces
a banner. �

We now consider the case K ⊆ S1. Note that the vertex u is not pre-coloured since u lies in
U . This implies that K does not contain a vertex from S1(vj) for j = 2, 3 by Step 1 and
Lemma 5.2.3. In addition, S1(v0) is anti-complete to S1(v1) ∪ S1(v4) by Lemma 5.2.3. The
connectivity of K then implies that K ⊆ S1(v0). Consequently, the colour φ(v0) is absent on
the list of any vertex in K. In other words, (ii) applies to K in Step 3. Finally, we consider the
case that K contains also a vertex v ∈ S2. Since K is connected, the vertices u and v can be
chosen to be adjacent. This means that the algorithm pre-coloured a vertex w ∈ S2 in Step 2.

Claim C For each 0 ≤ i ≤ 4, S1(vi) is anti-complete to S2(vj) for each j 6= i; moreover, if for
some i and j with i 6= j both S1(vi) and S1(vj) are not empty, then S1(vi) is also anti-complete
to S2(vi).

It suffices to prove Claim C for i = 0. Let x ∈ S1(v0), y ∈ S2(v1) and z ∈ S2(v2). If
x is adjacent to y, then {v0, v1, v4, x, y} induces a banner. If x is adjacent to z, then
v1 − v2 − v3 − v4 − z − x induces a P6. This implies the first part of the claim by
symmetry. For the second part, suppose that S1(v1) ∪ S1(v2) contains a vertex, say
y′. If x has a neighbour z′ ∈ S2(v0), then y′ − v1 − v0 − x− z′ − v3 induces a P6 if
y′ ∈ S1(v1), and v4 − v0 − x − z′ − v2 − y′ induces a P6 in G if y′ ∈ S1(v2). This
proves the second part of the claim. �

Recall that u ∈ S1(v0) is adjacent to v. It follows from Claim C that v lies in S2(v0).

Claim D S2(v0) is a star.

We show that v is adjacent to any other vertex in S2(v0). Suppose by contradiction that
S2(v0) contains a vertex y that is non-adjacent to v. Since y−v2−v−u−v0−v4 does
not induce a P6, it follows that u and y are adjacent. This implies that {v0, v2, u, v, y}
induces a banner. Therefore, S2(v0) is a star centered at v, since G is K5-free. �
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Note that the list of any vertex in S2(v0) is a subset of {1, 2, 3, 4} \ {φ(v2), φ(v3)}. It follows
from Lemma 5.2.4 that pre-colouring any vertex in S2(v0) forces the colour of all remaining
vertices in S2(v0) (after iteratively updating the lists). Since v ∈ S2(v0)∩U is not pre-coloured,
we conclude that no vertex of S2(v0) is pre-coloured in Step 2. This implies that the vertex
w (pre-coloured in Step 2) is in S2(vi) for some i 6= 0. The choice of w implies that w has
a neighbour in S1 and this neighbour must lie in S1(vi) by Claim C. In particular, S1(vi) is
not empty, and therefore S1(v0) is anti-complete to S2(v0) by Claim C. This contradicts the
fact that u ∈ S1(v0) and v ∈ S2(v0) are adjacent. Therefore, no connected component of U
contains a vertex from both S1 and S2. We have shown that in Step 3 of the algorithm, either
(i) or (ii) applies to each connected component K of U . This proves the correctness of the
algorithm. �
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44
k-Colourability of (Cs, Pt)-Free Graphs

Table 3.2 shows that k-Colourability of Pt-free graphs remains NP-complete for most values
of k and t. In this chapter, we refine our NP-complete results on Pt-free graphs to the class
Forb({Cs, Pt}). The graphs in Forb({Cs, Pt}) are called (Cs, Pt)-free graphs. The study of k-
Colourability of (Cs, Pt)-free graphs dates back to 2001. In addition to demonstrating the
NP-completeness of 5-Colourability of P8-free graphs, Woeginger and Sgall [106] showed
that every (C3, P5)-free graph is 3-colourable. Later on, Randerath and Schiermeyer [79] proved
that 4-Colourability can be solved in polynomial time for (C5, P5)-free graphs. These
results exist before the polynomial solvability of k-Colourability of P5-free graph was shown
(Theorem 3.1.3). When it comes to P6-free graphs, we already mentioned that every (C3, P6)-
free graph is 4-colourable. Lemma 3.3.3 thus completes the study of k-Colourability of
(C3, P6)-free graph. Up to date, t = 7 is the largest integer such that forbidding triangles makes
k-Colourability polynomial time solvable for Pt-free graphs [25]. As to forbidding cycles
of length at least four, the only systematic result is Theorem 3.3.1.

In this chapter, we undertake a systematic study of the complexity of k-Colourability of
(Cs, Pt)-free graphs. Throughout the chapter, we assume that (1) t ≥ s: for otherwise the
class of (Cs, Pt)-free graphs coincides with the class of Pt-free graphs; (2) s 6= 4: this is due
to Theorem 3.3.1; (3) t ≥ 6: this is due to [63]. The chapter is organized as follows. In
Section 4.1, we investigate the problem when s ≥ 5. The triangle-free case (namely s = 3) is
studied in Section 4.2. Our results find that for most values of k, s and t, the problem remains
NP-complete. In Section 4.3, a number of NP-complete results are shown in the context of
List k-Colourability and k-Prext. We then provide a summary of the complexity of all
three problems in Section 4.4.
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4.1 Forbidding large cycles

In this section, we forbid cycles of length at least five. Unlike colouring Pt-free graphs, k-
Colourability of (Cs, Pt)-free graphs does not enjoy the monotonicity with respect to s. As
such, individual treatment for different values of s is needed.

4.1.1 The case s ≥ 6

It turns out that our framework (Theorem 3.2.2) can be generalized to (Cs, Pt)-free graphs
(Theorem 4.1.2 below). We follow the notation from Section 3.2. Specifically, suppose that I
is a 3-Sat instance, H is a nice k-critical graph, and GH,I is the graph constructed the way we
present in subsection 3.2.1.

Lemma 4.1.1 Let s ≥ 6 be a fixed integer. If H is Cs-free, then GH,I is Cs-free.

Proof. Assume that H is Cs-free. We prove the lemma by contradiction. Let Q = Cs be
an induced cycle in GH,I with s ≥ 6. Due to our assumption that H is Cs-free and s ≥ 6,
the proof of Lemma 3.2.4 (i) and (ii) applies to Q: Q contains a vertex u ∈ U and a vertex
x ∈ X ∪D. We recall that U and X ∪D are complete to each other. This implies that u and
x are consecutive on Q (since Q is induced). Let x+ and u+ be the other neighbour of x and
u on Q, respectively. Thus, x+, x, u, u+ are four consecutive vertices on Q. Furthermore, all
vertices in Q \ {x+, x, u, u+} are from C. Since s ≥ 6, Q \ {x+, x, u, u+} contains an edge.
This contradicts the fact that C is an independent set. �

Lemma 3.2.4 and Lemma 3.2.3 have the following consequence.

Theorem 4.1.2 Let s, t ≥ 6 and k ≥ 3 be fixed integers. Then k-Colourability of (Cs, Pt)-
free graphs remains NP-complete whenever there exists a (Cs, Pt)-free nice (k−1)-critical graph.

We now use Theorem 4.1.2 to deduce our main results in this subsection.

Corollary 4.1.3 For any fixed integers s, t ≥ 6 and k ≥ 5, k-Colourability of (Cs, Pt)-free
graphs is NP-complete.

Proof. For fixed s, t ≥ 6, it suffices to prove the corollary for k = 5. The longest induced
cycle in H∗ (Figure 3.1) has lenght five and thus H∗ is Cs-free. Hence, H∗ is a nice 4-critical
(Cs, Pt)-free graph, for any fixed s, t ≥ 6. The corollary then follows from Theorem 4.1.2. �

Corollary 4.1.4 For fixed s, t ≥ 6, 4-Colourability of (Cs, Pt)-free graphs is NP-complete
if

(1) s ≥ 6 but s 6= 7, and t ≥ 7; or
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(2) s ≥ 6 but s 6= 9, and t ≥ 9.

Proof. It suffices to demonstrate the existence of a nice 3-critical (Cs, Pt)-free graph in each
case: C7 is a nice 3-critical (Cs, Pt)-free graph when t ≥ 7 and s ≥ 6 but s 6= 7, and C9 is a
nice 3-critical (Cs, Pt)-free graph when t ≥ 9 and s ≥ 6 but s 6= 9. �

4.1.2 The case s = 5

The main result in this subsection is the following.

Theorem 4.1.5 4-Colourability of (C5, P7)-free graphs is NP-complete.

Construction

To prove Theorem 4.1.5, we offer a reduction from Not-All-Equal 3-Sat. Suppose that I
is an instance of Not-All-Equal 3-Sat with variable set X = {x1, x2, . . . , xn} and clause
set C = {C1, C2, . . . , Cm}. We construct a graph GI out of I as follows.

• For each 1 ≤ i ≤ n, introduce a single vertex xi. These vertices are said to be X-type.

• For each1 ≤ i ≤ n, introduce an induced path Fi = di − e′i − ei − d′i (in this order).

• For each clause Cj = xi1 ∨ xi2 ∨ xi3 , introduce clause components Hj and H ′j that are
isomorphic to a 7-hole so that clause components are pairwise disjoint. Pick three pairwise
non-adjacent vertices in Hj , and respectively in H ′j , and denote them by ci1j , ci2j and ci3j , and
by c′i1j , c

′
i2j and c′i3j , respectively. For each 1 ≤ t ≤ 3, citj is said to be C-type while c′itj is

said to be C ′-type. The remaining vertices in Hj ∪H ′j are said to be U -type.

We also denote X, U , C and C ′ by the set of X-type, U -type, C-type and, respectively, C ′-
type vertices. In addition, we denote by F the union of all vertices in Fi. In other words,
V (GI) = X ∪ U ∪ C ∪ C ′ ∪ F . We now describe the edges of GI .

• Add an edge between each vertex in U and each vertex in X ∪ F .

• For each C-type vertex cij , add an edge between cij and xi, and between cij and di.

• For each C ′-type vertex c′ij , add an edge between c′ij and xi, and between c′ij and d′i.

This completes the construction of GI . We shall show that the colourability of GI encodes the
satisfiability of I. Furthermore, GI is (C5, P7)-free.
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Proof of Theorem 4.1.5

Lemma 4.1.6 I is satisfiable if and only if GI is 4-colourable.

Proof. We assume that I is satisfiable. Let σ be a truth assignment satisfying each clause
Cj , i.e., Cj contains one true literal and one false literal under σ. We define a mapping
φ : V (GI)→ {1, 2, 3, 4} as follows.

• For each 1 ≤ i ≤ n, set φ(xi) := 3 if σ(xi) = TRUE; otherwise set φ(xi) := 4.

• For each 1 ≤ i ≤ n, set φ(di) := φ(e′i) := 3, and set φ(d′i) := φ(ei) := 4.

• Let Cj = xi1 ∨xi2 ∨xi3 be the jth clause. Since σ satisfies Cj , it contains a true as well as a
false literal. We assume without loss of generality that σ(xi1) = TRUE and σ(xi2) = FALSE.
Thus, both xi1 and di1 are assigned colour 3 under φ. We set φ(ci1j) := 4 so that the colour
of ci1j conflicts with neither xi1 nor di1 . Since Hj is 3-critical, there exists a 2-colouring
φj : V (Hj − ci1j) → {1, 2} of Hj − ci1j . By the same token, we set φ(c′i2j) := 3 so that
the colour of c′i2j is different from φ(xi2) (= φ(d′i2) = 4). Moreover, there exists a 2-colouring
φ′j : V (H ′j − c′i2j)→ {1, 2} of H

′
j − c′i2j .

• For each 1 ≤ j ≤ m, set φ := φj on V (Hj − ci1j), and set φ := φ′j on V (H ′j − c′i2j).

This completes the definition of φ and it can be readily checked that φ is indeed a mapping
from V (GI) to {1, 2, 3, 4}. Note that all vertices in X ∪ F are assigned colours either 3 or 4
while all vertices in U are assigned colours 1 or 2. This fact, together with the definition of φ,
implies that φ is a 4-colouring of GI .

Conversely, suppose that GI is 4-colourable. Let φ : V (GI) → {1, 2, 3, 4} be a 4-colouring of
GI . For each 1 ≤ j ≤ m, Hj (as well as H ′j) contains two U -type vertices that are adjacent.
We assume that two such vertices in H1 are coloured with colour 1 and 2 under φ, respectively.
Since U is complete to X ∪ F , the following properties of φ hold.

(P1) For each 1 ≤ i ≤ n, φ(xi) ∈ {3, 4}.

(P2) For each 1 ≤ i ≤ n, {φ(di), φ(d′i)} = {3, 4}.

(P3) For each u ∈ U , φ(u) ∈ {1, 2}.

We then construct a truth assignment σ : {x1, x2, . . . , xn} → {TRUE,FALSE} as follows.

σ(xi) :=
{
TRUE if φ(xi) = φ(di).
FALSE if φ(xi) = φ(d′i).

It follows from (P1) and (P2) that σ is indeed a truth assignment. It remains to show that σ
satisfies each clause in I. Suppose that some clause Cj = xi1 ∨xi2 ∨xi3 is not satisfied under σ.
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This means that σ(xit) = FALSE for 1 ≤ t ≤ 3 or σ(xit) = TRUE for 1 ≤ t ≤ 3. Suppose
that we are in the first case. It then follows from our definition of σ that dit receives a colour
different from φ(xit) for each 1 ≤ t ≤ 3 . This, together with (P1) and (P2) , implies that
φ(citj) /∈ {3, 4} for 1 ≤ t ≤ 3. Therefore, φj := φ|V (Hj) is a 2-colouring of Hj due to (P3).
This, however, contradicts the fact that χ(Hj) = 3. The case that all three literals are TRUE
is similar. �

Lemma 4.1.7 GI is (C5, P7)-free.

Proof. We prove the lemma by contradiction. Let Q be an induced subgraph of GI that is
isomorphic to either a P7 or a C5. We show the following properties of Q.

(i) Q contains at least one vertex in X ∪ F .

Note that G − (X ∪ F ) is the disjoint union of 2m copies of 7-holes. If Q contains no
vertex in X ∪ F , then V (Q) ⊆ V (Hj) or V (Q) ⊆ V (H ′j) for some 1 ≤ j ≤ m. This
contradicts the fact that C7 is (C5, P7)-free. This proves (i). �

(ii) Q contains at least one vertex in U .

Let Ci and C ′i denote the set of C-type and C ′-type vertices that are neighbours of di
and d′i, respectively. Observe that every connected component of G − U has a specific
structure, namely it is the result of substituting independent sets into a 7-hole (and
possibly removing some vertices). Specifically, the seven independent sets are, in the
cyclical order, X0 = {xi}, X1 = Ci, X2 = {di}, X3 = {e′i}, X4 = {ei}, X5 = {d′i}, and
finally X6 = C ′i. This subgraph of GI does not contain an induced Q, since the 7-hole
does not, and substituting independent sets cannot create a Q. This proves (ii). �

By (i) and (ii), Q contains at least one vertex u ∈ U and one vertex x ∈ X ∪ F . This implies
that u and x are consecutive on Q. Following the proof of Lemma 3.2.4 (iii) (with P and
D replaced by Q and F respectively) we conclude that Q contains at most three vertices in
X ∪ F ∪ U and these vertices are consecutive on Q. Since Q is isomorphic to either a C5 or a
P7, V (Q) \ (X ∪ F ∪ U) (⊆ C ∪ C ′) contains an edge. This contradicts the fact that C ∪ C ′

is an independent set. �

Since k-Colourability of (Cs, Pt)-free graphs is monotone with respect to both k and t, the
following result follows.

Corollary 4.1.8 For any fixed integers k ≥ 4 and t ≥ 7, k-Colourability of (C5, Pt)-free
graphs is NP-complete.

We remark that Theorem 4.1.5 does not apply to P6-free graphs. Chudnovsky, Maceli, Sta-
cho, and Zhong [24] recently developed a polynomial time algorithm deciding whether or not
a (C5, P6)-free graph is 4-colourable. However, k-Colourability of (C5, P6)-free graphs re-
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mains unknown when k ≥ 5. For k = 5, we observe that the framework Theorem 4.1.2 is not
sufficient to prove the NP-completeness.

Observation 4.1.9 There exists no nice 4-critical (C5, P6)-free graphs.

Proof. Suppose not. Let H be a nice 4-critical (C5, P6)-free graphs. Since χ(H) = 4 and
ω(H) = 3, H is imperfect. By Theorem 2.3.3 and the fact H is (C5, P6)-free, we conclude that
H contains an induced C2s+1 for some s ≥ 3. Since H is 4-critical, H = C7. This contradicts
the fact that α(C7) = 2. �

4.2 Forbidding Triangles

In this section we investigate the case s = 3, namely forbidding triangles. The existing NP-
hardness reductions for k-Colourability of (Cs, Pt)-free graphs, say Theorem 3.2.2 and
Theorem 4.1.2 are based on the presence of triangles in the gadgets and therefore do not apply
for (C3, Pt)-free graphs. In order to make a NP-completeness proof for triangle-free graphs, the
main task is to design a triangle-free gadget that can replace a number of edges of a graph
G without long induced paths in such a way that the resulting graph becomes triangle-free,
and at the same time keep the length of the longest induced path relatively small. The first
NP-completeness result for (C3, Pt)-free graphs was obtained this way. This is a result due to
Golovach, Paulusma and Song.

Theorem 4.2.1 [53] 4-Colourability is NP-complete for (C3, P164)-free graphs

The edge-replacement gadget designed in [53] is fairly sophisticated. Nevertheless, the gadget
itself contains ‘long’ induced paths so that the replacement of it results in a large increase
on the length of the longest induced path in the resulting graph. Our main result here is an
improvement on Theorem 4.2.1 (see also [69]).

Theorem 4.2.2 4-Colourability is NP-complete for (C3, P22)-free graphs

The proof of Theorem 4.2.2 follows the scheme we just described. The main technical con-
tribution here is that we make use of the well-known Mycielski graphs. By carefully exploring
colouring properties and induced paths in (nearly) Mycielski graphs we are able to bring the
constant down from 164 to 22.
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Figure 4.1: The Mycielski graph M5. The vertex subsets {1, 2}, {i : 1 ≤ i ≤ 5} and {i : 1 ≤
i ≤ 11} induce M2, M3 and M4, respectively.

4.2.1 Mycielski graphs

Definition (Mycielski construction) The Mycielski construction of a graph G is created by
adding, for each vertex v of G, a new vertex that is adjacent to each vertex in NG(v), and then
adding a further vertex that is adjacent to each of the other new vertices.

The Mycielski construction ofK2, for instance, is a 5-hole, and the Mycielski construction of a 5-
hole is the well-known Grötzsch graph. These examples are the first ones in an infinite sequence
of graphs M2,M3,M4 . . . where M2 = K2 and Mr, r ≥ 3, is the Mycielski construction of
Mr−1. The graphs Mr (r ≥ 2) are called Mycielski graphs. Mycielski [90] showed that each
Mr is C3-free and has chromatic number r. The proof of this fact may be found in [8].

Theorem 4.2.3 [90] For any fixed r ≥ 2, Mr is C3-free. Moreover, χ(Mr) = r and for any
edge e = uv ∈ E(Mr), χ(Mr − e) = r − 1.

Of particular importance to our proof is the graph M5, see Figure 4.1. Since we make consider-
able use of this graph below, let us explain its construction carefully. For clarity, in the following
text we denote an edge between two vertices u and v by {u, v} instead of uv. Suppose that we
start withM3 where V (M3) = {1, 2, 3, 4, 5} and E(M3) = {{1, 2}, {2, 3}, {3, 5}, {5, 4}, {4, 1}}.
Then M4 is obtained by adding each vertex i, 6 ≤ i ≤ 10, and making it adjacent to the neigh-
bours of vertex the vertex i − 5 in M3 and to a further vertex 11. Finally, M5 is obtained by
adding a vertex i, 12 ≤ i ≤ 22, making it adjacent to the neighbours of the vertex i− 11 in M4

and to a further vertex 23.
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We note that NM5(17) = {2, 4, 11, 23}. Let M ′ be the graph obtained from M5 by removing
the edge {17, 23}. It follows from Theorem 4.2.3 that M ′ is 4-colourable. The following simple
observation is crucial to our NP-complete reduction.

Lemma 4.2.4 Let φ : V (M ′)→ {1, 2, 3, 4} be any 4-colouring of M ′. The following holds.

(1) φ(17) = φ(23);

(2) {φ(2), φ(4), φ(11), φ(17)} = {φ(2), φ(4), φ(11), φ(23)} = {1, 2, 3, 4}.

Proof. Since χ(M5) = 5, φ is not a proper colouring of M5 and this implies the first item. We
may assume that φ(17) = φ(23) = 4. Suppose that {φ(2), φ(4), φ(11), φ(17)} 6= {1, 2, 3, 4}.
This means that some colour i ∈ {1, 2, 3} is assigned to none of {2, 4, 11} under φ. Therefore,
we can define a new colouring φ′ : V (M)→ {1, 2, 3, 4}:

φ′(j) :=
{
i if j = 17.
φ(j) otherwise.

Clearly, φ′ is a proper 4-colouring of M5 and this contradicts that χ(M5) = 5. Therefore,
{φ(2), φ(4), φ(11), φ(17)} = {1, 2, 3, 4}. �

We denote by T the subset {2, 4, 11, 23} of V (M ′). We shall use M ′ as our edge-replacement
gadget. To this end, we need to bound the length of induced paths that have one end in T .

Lemma 4.2.5 The following holds for paths in M ′.

(M1) Every induced path connecting two vertices in T contains as most 7 vertices.

(M2) Every induced path with one end in T contains at most 8 vertices.

(M3) No disjoint union of two induced paths such that each of them has one end in T is
isomorphic to a P8 + P1 or a 2P7.

Proof. First let us make a few observations and definitions. Note that M ′ has many automor-
phisms. This means that, for instance, finding a path from 2 to 23 is equivalent to finding a
path from 4 to 23 as there is an automorphism that maps 2 to 4 and fixes 23. In our proofs,
we will often state that the number of cases can be reduced ‘by symmetry’ without explicitly
describing any automorphisms. We introduce the notation V j

i = {i, i + 1, . . . , j} and also let
+V j

i and −V j
i denote V j

i ∪ {17} and V j
i \ {17}, respectively. We note that V 11

1 is isomorphic
to M4 and also note that M4 is known to be P6-free (checking this is an easy exercise). We
now prove the three properties one by one.

(M1). Suppose by contradiction that P = v1−· · ·−vp is an induced path ofM ′ with p ≥ 8. We
must consider the cases (v1, vp) ∈ {(2, 4), (2, 11), (2, 23), (11, 23)} (the other cases are covered
by symmetry). Here, and in later proofs, we use P ji to denote {vi, vi+1, . . . , vj}.
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Case 1. v1 = 2 and vp = 4.

We can make much use of the symmetry of M ′ in this case: for example, if there is no such P
with v2 = 8, then we can also assume that vp−1 6= 10. By considering which vertices neighbour
v1 and vp but not both we find that v2 ∈ A = {3, 8, 14, 19} and vp−1 ∈ B = {5, 10, 16, 21}.
We have immediately that v2 6= 3 as 3 is adjacent to every vertex in B, and, by symmetry, that
vp−1 6= 5.

If v2 = 8, then v3 ∈ {11, 13, 22} since the other neighbours of 8 are in B. If v3 = 11, then
vp−1 is adjacent to v2 or v3, but this contradicts the assumption that P is induced. If v3 = 13,
then v4 = 23 is the only possibility. This further implies that v5 ∈ C = {15, 18, 20}, and v6 is a
neighbour of a vertex in C that is not adjacent to any vertex in P 4

1 ∪{vp} = {2, 4, 8, 13, 23} nor
a member of either this set or B. It is easy to check that there is no such vertex. If v3 = 22,
then vp−1 must be 21, but then vp−2 has a neighbour in P 3

1 . Thus v2 6= 8 and we can also
conclude that vp−1 6= 10. Hence, vp−1 is either 16 or 21.

If v2 = 14, then v3 = 7 since the other neighbours of 14 are adjacent to vp or vp−1. If v4 = 11,
then vp−1 = 16 and neither v5 nor v6 belongs to V 11

1 as each of its vertices is in or adjacent to
P 4

1 ∪ {vp} or, in the case of 9, is adjacent to both v4 and vp−1. So, as v5 and v6 are in V 23
12 ,

one of them must be 23 for otherwise they would not be adjacent. But 23 is a neighbour of v2.

Therefore, we must have v2 = 19 and vp−1 = 21. But this implies that v3 is either 11 or 23
which are both also adjacent to 21.

Case 2. v1 = 2 and vp = 11.

If p = 8, then P p−2
3 must induce a path on at least four vertices. These vertices all belong

to A = {4, 5, 13, 15, 16, 23}, the set of vertices adjacent to neither 2 nor 11. Note that P 6
4 ⊆

A \ NM ′(v2). We know that v2 ∈ {1, 3, 12, 14}, and it is easy to check that, in each case,
A \NM ′(v2) does not contain a subset that induces a path on three vertices.

Case 3. v1 = 2 and vp = 23.

If P contains 8 vertices, then P p−2
3 must induce a path on at least four vertices. These vertices

all belong to {4, 5, 7, 9, 10}. Since the vertex 7 is not adjacent to the other vertices, it is not on
P which must therefore contain the P4 induced on {4, 5, 9, 10} with ends 9 and 10. Therefore
vp−1 must be adjacent to 23, exactly one of 9 or 10 and neither of 4 and 5. It is easy to check
that there is no such vertex.

Case 4. v1 = 11 and vp = 23.

We can see that P 6
3 ⊆ V 5

1 since every vertex in V 23
6 is a neighbour of either 11 or 23. So, v5

and v6 are the two vertices of V 5
1 that are not neighbours of v3. But v2 is a neighbour of 11 but

not 23 and thus belongs to +V 10
6 , and, as each of these vertices is adjacent to two non-adjacent
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Figure 4.2: The graph C from Case 1 of the proof of (M2) where x ∈ {4, 5}.

vertices of V 5
1 , it is adjacent to either v5 or v6 as well as v3. This final contradiction completes

the proof of (M1).

(M2). We will prove by contradiction. Let P = v1 − · · · − v9 be an induced path of M ′ with
v1 ∈ {2, 11, 23}.

Case 1. v1 = 2.

Let A = {4, 5}. If both vertices of A are on P , then A = P 4
3 since every neighbour of

2 is adjacent to a vertex in A. Then V 9
6 ⊂ {7, 11, 13, 18, 22, 23} = B, the set of vertices

that do not neighbour 2, 4 or 5. Then v2 ∈ NM ′(2) = {1, 3, 6, 8, 12, 14, 17, 19} cannot be
adjacent to more than two vertices in B. A quick check reveals that either v2 ∈ {12, 14} and
P 9

6 = {11, 13, 18, 22}, or v2 ∈ {17, 19} and P 9
6 = {7, 13, 18, 22}, but neither of these sets

induces a P4.

If neither of the vertices in A is on P , then P 9
3 contains vertices of V 23

6 that induce a P7. If 23
is in P 9

3 , then P 9
3 \− V 23

12 is a subset of +V 11
6 and contains four vertices that induce one or two

paths, a contradiction. So, P 9
3 contains only vertices of V 22

6 . If 11 is in P 9
3 , then P 9

3 \− V 11
6

is a subset of +V 22
12 and contains four vertices that induce one or two paths, a contradiction.

Thus, remembering now it contains no neighbour of 2, we have that P 9
3 contains only vertices in

{7, 9, 10, 13, 15, 16, 18, 20, 21, 22}, and the graph induced on these vertices contains only three
vertices of degree more than one and so is P7-free.

Thus we know that P contains exactly one vertex of A. Let this vertex be x. We have that
x = vi for i ∈ {3, . . . , 9}. The vertices of P apart from 2, x and their neighbours form a subset
of {7, x+5, 11, 13, x+11, 18, x+16, 22, 23}. The subgraph ofM ′ that they induce is displayed
in Figure 4.2; we will use C to denote both the vertex set and the graph.

If i = 3 or i = 9, then, respectively, v4 or v8 is a neighbour of x — and therefore also a
neighbour either of 23 or of both 11 and 22 — and adjacent to the end of a P5 that is a induced
subgraph of C. But every induced P5 in C contains 23 and either 11 or 22 as an internal vertex.
If i = 4, then one of v2 and v3 is in V 10

6 and the other is in V 21
12 , and so neither 22 nor 23 is on

P . This contradicts that P 9
6 is a subgraph of C.
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So, i ∈ {5, 6, 7} and P contains four vertices of C that induce either a 2P2 or a P1 + P3.
In the former case, one P2 contains 11 and the other contains 23, but each vertex in D =
{v2, vi−1, vi+1} must be adjacent to either 11 or 23, a contradiction. In the following we
assume that the vertices of C on P induce a P1 + P3. Then the P3 can only include 23 if it
is the vertex of degree two. Then D ⊂ V 10

6 . Thus each vertex in D is adjacent to 11 which
cannot therefore be on P . Thus, the P1 is either 7 or x+ 5 and therefore not adjacent to any
vertex in D, a contradiction. If the P1 is 23, then the P3 has ends 7 and x + 5 which implies
that each member of D is a neighbour of 23. So, we must have that 23 is not on P , and then
the P1 is either 13 or x + 11 and adjacent to at least one vertex of D which must be in V 10

6 .
But this implies it is also adjacent to both 11 and 22, one of which must also be on P .

Case 2. v1 = 11.

Let A = V 5
1 ∪ V 16

12 ∪ {23} and note that this set induces a graph that is isomorphic to M4 and
so is P6-free. The six vertices in P 9

4 are not neighbours of 11 and so belong to A ∪ {22}, and
must include 22 as they induce a P6. But then no vertex in V 10

6 is on P as each is adjacent
to both 11 and 22. The only other neighbour of 22 is 23, but we must have v3 = 23 as it is
adjacent to v2. Then v4 = 22 and there is no vertex that can be v5.

Case 3. v1 = 23.

The only vertex of −V 22
12 on P is v2. Thus P 9

3 ⊂+ V 11
1 . Note that in the subgraph of M ′

induced on +V 11
1 , 6 and 17 have the same neighbours. This and the fact that M4 is P6-free

imply that +V 11
1 is also P6-free. This contradicts the fact that P 9

3 has 7 vertices.

Thus, the proof of (M2) is complete.

(M3). We will prove by contradiction. Let P = v1 − · · · − vp and Q = w1 − · · · − wq be paths
such that P + Q is an induced subgraph of M ′ where (p, q) ∈ {(8, 1), (7, 7)} and v1 and w1

belong to T . We can assume, by symmetry, that v1 is in {2, 11, 23}.

Case 1. v1 = 2.

Suppose that 23 is on Q. Then P p3 ⊆ {4, 5, 7, 9, 10, 11}. The only induced P5 on these vertices
contains 9, 10 and 11 as internal vertices, but every neighbour of 2 is adjacent to one of these
vertices.

Suppose instead that 23 is not on Q. Then 17 is in neither P nor Q since it is adjacent to v1

and w1. If 23 is on P , then no vertex of V 22
12 is in Q. Thus Q is a subgraph of M4, and so we

must have p = 8 and q = 1. By (M1), 23 has two neighbours on P , say x and y.

If w1 = 4, then only the nine vertices in the set A = {2, 3, 7, 8, 9, 11, 23, x, y} can be on P ,
and as 3 and 8 are neighbours of 2 only one is on P (and is v2). Thus, all the other vertices in
A must be on P . As only two of 7, 8 and 9 can be on P (since all are neighbours of 11), we
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must have v2 = 3. Then v3 = 7, v4 = 11 and v5 = 9 and the remaining three vertices on P
are x, 23 and y. So x (or, equivalently, y) is a common neighbour of 9 and 23 and so one of
{12, 16, 22}, but these vertices are each adjacent to other vertices in the path.

If w1 = 11, then the vertices of P must be in V 5
1 ∪ {23, x, y}, but the graph they induce does

not contain an induced path on 8 vertices.

Finally suppose that 23 is in neither P nor Q. If w1 = 4, the vertices of V 11
1 that might be

on P are in B = {2, 3, 7, 8, 9, 11}. These vertices induce a 5-hole with a pendant edge. As P
contains at least 7 vertices, if it contains r vertices of V 22

12 , it must contain 7− r vertices of B
and these vertices must induce a graph having at least r components (as V 22

12 is an independent
set). It is easy to check that this is impossible for all values of r. If w1 = 11, the vertices of V1

that might be on P are in V 5
1 which induce a 5-hole and a similar argument can be used.

Case 2. v1 = 11.

If 23 is on Q, then P p3 is a subset of V 5
1 . This implies p < 7.

If 23 is not on Q, we can assume that w1 = 2. Suppose that 23 is on P . Then the vertices of Q
must all be in V 11

1 and so it has fewer than 6 vertices and p = 8 and q = 1. Let the neighbours
of 23 on P be x and y. Note that at most one vertex of V 11

6 is on P since they are neighbours
of 11. The other vertices that might be on P are in {4, 5, 23, x, y} and so P cannot have 8
vertices.

Finally suppose that 23 is in neither P nor Q. Thus the vertices of V 11
1 that might be on P are

11, at most one of its neighbours, and the adjacent vertices 4 and 5. As these vertices induce a
graph with at most two components, at most two vertices of V 22

12 are on P and it cannot have
more than 6 vertices.

Case 3. v1 = 23.

The only vertex of NM ′(23) =− V 22
12 on P is v2, and 17 is not on P as it is adjacent to w1.

Thus P p3 ⊂ V 11
1 and cannot induce a P6. Therefore p = q = 7.

If w1 = 11, then P contains no vertex in V 10
6 which implies P 7

3 = V 5
1 , a contradiction. So we

can assume w1 = 2. As Q has seven vertices it must contain a vertex not in V 11
1 and this vertex

must be 17 since 23 is on P . So, w2 = 17 and w3 is either 4 or 11. In either case the number
of vertices in V 11

1 that are not in or adjacent to Q is less than 5, contradicting that each vertex
of P 7

3 must belong to this set.

This completes the proof of (M3) and thus the lemma. �
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4.2.2 Intermediate construction

To prove Theorem 4.2.2, we reduce Not-All-Equal 3-Sat to 4-Colourability of (C3, P22)-
free graphs. We shall construct a graph (denoted by J∗I below) out of an instance I of Not-All-
Equal 3-Sat. To describe our reduction we need a number of intermediate steps. Throughout
this subsection, we assume that I is an instance of Not-All-Equal 3-Sat with variable set
X = {x1, x2, . . . , xn} and clause set C = {D1, D2, . . . , Dm}.

The graph JI

In their paper [52], Golovach, Paulusma and Song constructed, out of I, a graph JI with an
admissible list L(v) ⊆ {1, 2, 3, 4} for each vertex v ∈ JI as follows.

Construction: JI .

• x-type vertices: for each variable xi, JI contains a vertex xi with L(xi) = {1, 2}.

• a-type and b-type vertices: for each clause Dj , JI contains two clause components Dj

and D′j each isomorphic to a P5. Considered along the paths the vertices in Dj are aj,1,
bj,1, aj,2, bj,2 and aj,3 with lists of admissible colours {2, 4}, {3, 4}, {2, 3, 4}, {3, 4} and
{2, 3}, respectively, and the vertices in D′j are a′j,1, b′j,1, a′j,2, b′j,2 and a′j,3 with lists of
admissible colours {1, 4}, {3, 4}, {1, 3, 4}, {3, 4} and {1, 3}, respectively.

This completes the description of the vertices of JI and their lists. We use X, A and B
to denote the set of x-type, a-type and b-type vertices, respectively. We now describe the
edges of JI .

• Add an edge between each x-type vertex and each b-type vertex.

• For every clause Dj , its variables xi1 , xi2 , xi3 are ordered in an arbitrary (but fixed) way.
For each 1 ≤ h ≤ 3, add an edge between xih and aj,h, and between xih and a′j,h.

This completes the construction of JI . See Figure 4.3 for an example of the graph JI . In this
figure, Dj is a clause with ordered variables xi1 , xi2 , xi3 . The thick edges indicate the connection
between these vertices and the a-type vertices of the two copies of the clause component. Indices
of vertices in Dj and D′j have been omitted to aid clarity.

The graphs J ′I

Definition (The graph J ′I) Subdividing every edge between an a-type vertex and a x-type vertex
in JI results in a new graph J ′I . Every newly added vertex is assigned list {1, 2} and is said to
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a b a b a a b a b a
Dj D′j

x1 xi1 xi2 xi3 xn

Figure 4.3: An example of a graph JI as shown in [69]. Only the clause Dj = xi1 ∨ xi2 ∨ xi3
is displayed.

be of c-type. The set of c-type vertices is denoted by C. The 4-list assignment of vertices in
J ′I is denote by L′. Thus, (J ′I , L′) is an instance of List 4-Colourability.

Note that each c-type vertex has exactly two neighbours in J ′I , one a-type and the other x-type.

Lemma 4.2.6 I is satisfiable if and only if J ′I has a 4-colouring that respects L′.

Proof. We assume that I is satisfiable. Let σ be a truth assignment satisfying each clause
Cj , i.e., Cj contains one true literal and one false literal under σ. We define a mapping
φ : V (GI)→ {1, 2, 3, 4} as follows.

• For each variable xi, set φ(xi) := 1 if σ(xi) = TRUE; otherwise set φ(xi) := 2.

• For each clause Dj = xi1 ∨ xi2 ∨ xi3 , assume without loss of generality that σ(xi1) =
TRUE, σ(xi2) = FALSE and σ(xi3) = FALSE. Set φ(aj,1) := 1 (= φ(xi1)) and
alternatively assign colours 3 and 4 to bj,1, aj,2, bj,2 and aj,3 (in this order). Similarly, set
φ(a′j,3) := 2 so that it is the same as φ(xi3). Alternatively assign colours 3 and 4 to a′j,1,
b′j,1, a′j,2 and b′j,2 (in this order).

• For each c-type vertex, either its two neighbours have the same colour i ∈ {1, 2} under φ
or the a-type neighbour of it has been assigned colour 3 or 4. In both case, it is possible
to assign a colour from {1, 2} to this vertex.

It can be readily checked that φ is a 4-colouring of J ′I such that φ(v) ∈ L′(v) for each v ∈ J ′I .

Conversely, suppose that J ′I has a 4-colouring φ that respects L′. We construct a truth assign-
ment σ : {x1, x2, . . . , xn} → {TRUE,FALSE} as follows.

σ(xi) :=
{
TRUE if φ(xi) = 1.
FALSE if φ(xi) = 2.
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Since the list of each x-type vertex is {1, 2}, σ is a truth assignment. Consider a clause
Dj = xi1 ∨ xi2 ∨ xi3 (in this order). Suppose that σ(xit) = FALSE for each 1 ≤ t ≤ 3.
This means that each xit is coloured with colour 2 under φ. Since φ is a proper colouring,
all their c-type neighbours have colour 1. This implies that all a-type vertices in Dj are not
coloured with colour 1, and so φ(aj,1) = 4 and φ(aj,3) = 3. This contradicts the fact that in
any 2-colouring of P5, the two ends must be coloured alike. Therefore, not all literals in Dj are
FALSE. Similarly, not all literals in Dj are TRUE. �

Although JI is not triangle-free in general, the graph J ′I is. We prove a stronger property of J ′I .

Lemma 4.2.7 J ′I is a P8-free chordal bipartite graph.

Proof. Note that both A∪X and B∪C are independent sets in J ′I and they form a bipartition
of V (J ′I). Therefore, J ′I is bipartite. It remains to show that J ′I is (C6, C8, P8)-free. We prove
this by contradiction. Suppose that Q is an induced subgraph of J ′I that is isomorphic to a C6,
a C8 or a P8.

(i) Q contains at least one vertex in X.

Note that J ′I −X has a special structure, namely it is obtained from JI −X (which is
the disjoint union of 2m copies of P5) by adding vertices pendent to the vertices in A.
Clearly, this subgraph contains no cycle. In addition, the longest induced path in JI −X
has five vertices and adding pendent vertices increases this number by 2. Thus, Q must
be a path containing at most 7 vertices if it does not contain a vertex from X. This is a
contradiction to our assumption. �

(ii) Q contains at least one vertex in B.

Note that J ′I −B has a special structure, namely it is a disjoint union of subdivided stars.
Therefore, it contains no cycles or paths with six or more vertices. �

By (i) and (ii), Q contains a vertex x ∈ X and a vertex b ∈ B. Since ∆(Q) ≤ 2, Q is induced
and X ∪ B is a complete bipartite graph, Q contains at most three vertices from B ∪X and
there vertices form a sub-path of Q. This implies that Q− (B ∪X) contains an edge as Q has
at least 6 vertices. This is, however, impossible, since A ∪X is independent. �

The next lemma (which we need later in our proofs of Theorem 4.2.2) bounds the length of the
longest induced path in certain subgraph of J ′I .

Lemma 4.2.8 J ′I − C is P6-free.

Proof. We prove the lemma by contradiction. Suppose that P = Pt is an induced path such
that t ≥ 6.

(i) P contains at least one vertex in X.
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Note that J ′I − (C ∪X) is the disjoint union of 2m copies of the clause components each
of which is isomorphic to an induced P5. The claim thus follows from our assumption
that t ≥ 6. �

(ii) P contains at least one vertex in B.

This follows from the fact that A ∪X is an independent set in J ′I . �

By (i) and (ii), P contains at least one vertex x ∈ X and one vertex b ∈ B. Similar to the
argument in Lemma 4.2.7, we conclude that P contains at most three vertices from X ∪B and
these vertices form a sub-path of P . Consequently, P − (X ∪ B) (⊆ A) contains an edge due
to the assumption that t ≥ 6. This contradicts the fact A is an independent set. �

The graph JkI

Definition (The graph JkI ) For fixed integer k ≥ 4, the graph JkI is obtained by adding, for
each vertex u ∈ V (J ′I), k − |L′(u)| pendant vertices to u and pre-colouring these vertices with
different colours from {1, . . . , k} \ L′(u). Denote the set of pendent vertices added by Wk.
Thus, JkI with the pre-colouring φWk

: Wk → {1, 2, . . . , k} is an instance of k-Prext.

It is clear from the definition of JkI that it admits a k-colouring that extends the pre-colouring
φWk

if and only if J ′I has a 4-colouring that respects L′. Moreover, adding pendent vertices
increases the length of the longest induced paths by 2. This fact, Lemma 4.2.6 and Lemma 4.2.7
immediately imply the following.

Lemma 4.2.9 For any fixed integer k ≥ 4, I is satisfiable if and only if JkI admits a k-colouring
that extends the pre-colouring φWk

. Moreover, JkI is P10-free and chordal bipartite.

The next lemma says that certain induced subgraph of JkI does not contain long induced paths.

Lemma 4.2.10 Every induced path in J4
I −B has

(i) at most 7 vertices;

(ii) at most 6 vertices if it contains only one pendant vertex of J4
I −B;

(iii) at most 5 vertices if it contains no pendant vertex of J4
I −B.

Proof. We observe that J4
I − B is a forest each connected component of which has a special

structure, namely it is obtained from a subdivided star by adding one or more pendent vertices
to each vertex. Since the longest induced path in any subdivided star contains five vertices and
adding pendent vertices increase this length by at most 2, the lemma follows. �
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4.2.3 The final graph J∗I

Having defined the graphs J ′I and JkI , we are ready to describe the final graph J∗I we work with.
The graph J∗I is obtained from J4

I with pre-colouring φW4 in the following way.

Construction: J∗I .

• Remove all vertices that are pendant to vertices in B ∪ C.

• Add a copy of M ′. Denote t1 = 2, t2 = 4, t3 = 11 and t4 = 23

• Let S be the set of vertices pendant to vertices in A∪X. For each v ∈ S do as follows:
if φW4(v) = i then add an edge between v and tj for each j ∈ {1, 2, 3, 4} \ {i}.

• Add an edge between every vertex in B and ti for i = 1, 2.

• Add an edge between every vertex in C and ti for i = 3, 4.

We say that the vertices that are pendent to vertices in A∪X are p-type and that the vertices
in T are t-type. Note that V (J∗I ) = V (J ′I)∪ S ∪ V (M ′). We remark that J∗I is not P21-free in
general. In order to see this take a chordless path with vertices of type

a− c− x− c− a− p− t− p− a− c− x− c− a− p− t− p− a− c− x− c− a.

The path contains 21 vertices. Note that such a path merely uses two vertices of M ′ and this
two vertices must be t1 and t2 (since t3 and t4 are adjacent to all c-type vertices). As such,
trying to optimize bounds in Lemma 4.2.5 (which we believe is possible) does not help us with
improving Theorem 4.2.2.

4.2.4 Proof of Theorem 4.2.2

Lemma 4.2.11 I is satisfiable if and only if J∗I admits a 4-colouring.

Proof. It suffices to show that J∗I admits a 4-colouring if and only if J4
I has a 4-colouring that

is an extension of cW4 due to Lemma 4.2.9.

Suppose first that J4
I has a 4-colouring φ that extends φW4 . Note that every vertex v ∈

V (J∗I ) \ V (M ′) is assigned a colour φ(v) under φ. We now extend φ to V (M ′): set φ(tj) := j

for each 1 ≤ j ≤ 4. Moreover, by Lemma 4.2.4 there exists a 4-colouring φ′ of M ′ such that
φ′(tj) = φ(tj). It is straightforward to verify that φ ∪ φ′ is a 4-colouring of J∗I .

Conversely, suppose that J∗I has a 4-colouring φ. Recall that t1 = 2, t2 = 4, t3 = 11 and t4 = 23.
By Lemma 4.2.4 we assume without loss of generality that φ(tj) = j for each 1 ≤ j ≤ 4. Due
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to our construction it follows that every vertex u ∈ S (the set of vertices pendant to vertices
of A ∪X) has the colour φ(u) = φW4(u), and that every vertex of B has a colour from {3, 4},
and every vertex of C has a colour from {1, 2}. Therefore, φ can be extended to a colouring
of J4

I in such a way that any vertex v pendent to B ∪ C receives the colour φW4(v). In other
words, this colouring is a 4-colouring that extends φW4 . �

It remains to show that J∗I is (C3, P22)-free.

Lemma 4.2.12 J∗I is C3-free.

Proof. Suppose by contradiction that Z is a triangle in J∗I . We note first that for any vertex
m ∈ V (M ′) \ T , NJ∗I

(m) ⊆ V (M ′), and therefore m /∈ Z due to the fact that M ′ is C3-free.
This means that Z ⊆ A∪X ∪T ∪B∪C∪S. This is impossible, since A∪X ∪T and B∪C∪S
are two independent sets. �

Lemma 4.2.13 J∗I is P22-free.

Proof. Let P be an induced path in J∗I . Let α be the number of vertices on P that are from
T = {t1, t2, t3, t4}, i.e., α = |T ∩ V (P )|. We distinguish five cases according to the value of α.

Case 1. α = 0.

Either P ⊆ J4
I in which case |P | ≤ 9 by Lemma 4.2.9 or P ⊆ M ′ − T in which case

|P | ≤ |V (M ′) \ T | = 19.

Case 2. α = 1.

It follows that P can be written as P = PL−tj−PR for some 1 ≤ j ≤ 4, where each of
the sub-paths PL and PR is fully contained in either J4

I or M ′. If both PL and PR are
contained in M ′, then P ⊆M ′ in which case |P | ≤ |V (M ′) \T ∪{tj}| = 20; if one of
PL and PR is contained in M ′ and the other is contained in J4

I , then |P | ≤ 8+9 = 17
by Lemma 4.2.5 and Lemma 4.2.9; otherwise both sub-paths are contained in J4

I in
which case |PL|, |PR| ≤ 9 by Lemma 4.2.5, and therefore |P | ≤ 9 + 1 + 9 = 19.

Case 3. α = 2.

In other words, P contains two vertices from T , say ti and tj for some i, j ∈ {1, 2, 3, 4}
and i 6= j. It follows that P can be written as P = PL − ti − PM − tj − PR, where
each of the sub-paths PL, PM and PR is fully contained in eitherM ′ or J4

I . We bound
the length of PL and PR first.

Claim E Each of the sub-paths PL and PR has at most 6 vertices.

It suffices to prove the claim for PL due to symmetry. Suppose that PL ⊆ M ′. This
means that PL − ti and tj are two disjoint paths in M ′, and therefore |PL| ≤ 6 by

55



Lemma 4.2.5. It remains to consider the case PL ⊆ J4
I . Since t1 and t2, and t3 and

t4 are in symmetric position, we have two subcases.

(i) ti = t1.

Let t−1 denote the right end of PL. Since t1 is anti-complete to A ∪ X ∪ C,
t−1 ∈ B ∪ S. Recall that in J∗I each vertex in S is adjacent to three vertices in
T and t1 is complete to B. This implies that PL ∩ (B ∪ S) = {t−1 }, since P
is induced. In other words, PL \ {t−1 } ⊆ J4

I − B. If t−1 ∈ B, then PL \ {t−1 }
does not contain any vertex from S, and so |PL| ≤ 5 + 1 = 6 by Lemma 4.2.10;
otherwise t−1 ∈ S and PL contains exactly one vertex (namely t−1 ) in S, implying
that |PL| ≤ 6 by Lemma 4.2.10.

(ii) ti = t3.

Let t−3 denote the right end of PL. Since t3 is anti-complete to A ∪ X ∪ B,
t−3 ∈ C ∪ S. Recall that in J∗I each vertex in S is adjacent to three vertices in
T and t3 is complete to C. This implies that PL ∩ (C ∪ S) = {t−3 }, since P is
induced. In other words, PL \ {t−3 } ⊆ J4

I − (C ∪ S) = J ′I −C. By Lemma 4.2.8,
PL \ {t−3 } contains at most five vertices, and this proves that |PL| ≤ 6.

This completes the proof of Claim E.

Claim F |PM | ≤ 7.

Suppose first that PM ⊆ M ′. This means that ti − PM − tj is a path in M ′. By
Lemma 4.2.5, it follows that |PM | ≤ 5. In the following, we assume that PM ⊆ J4

I .
We have three cases to consider up to symmetry.

(i) {ti, tj} = {t1, t2}.

If PM contains a vertex from B, then PM is this b-type vertex, since {t1, t2}
is complete to B. Thus, |PM | = 1. If PM contains no vertex from B, then
PM ⊆ J4

I −B, and so |PM | ≤ 7 by Lemma 4.2.10.

(ii) {ti, tj} = {t3, t4}.

If PM contains a vertex from C, then PM is this c-type vertex, since {t3, t4} is
complete to C. Thus, |PM | = 1. If PM contains no vertex from C, then both
ends of PM are from S and all internal vertices of PM are contained in J ′I − C.
By Lemma 4.2.8, it follows that |PM | ≤ 1 + 5 + 1 = 7.

(iii) {ti, tj} = {t1, t3}. Without loss of generality, assume that P = PL − t1 − PM −
t3 − PR.
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Let PM = t+1 − . . . − t
−
3 . As before, PM ∩ B ⊆ {t+1 } and PM ∩ C ⊆ {t−3 }. If

t+1 /∈ B, then PM ⊆ J4
I − B, and so |PM | ≤ 7 by Lemma 4.2.10. Therefore,

we assume that t+1 ∈ B. Note that t−3 ∈ C ∪ S and in particular t−3 6= t+1 . In
addition, PM ∩ (C ∪ S) ⊆ {t−3 }. This implies that no internal vertex of PM is
from C ∪ S, i.e., PM \ {t+1 , t−3 } ⊆ J4

I − (C ∪ S) = J ′I − C. It then follows from
Lemma 4.2.8 that |PM | ≤ 1 + 5 + 1 = 7.

This completes the proof of Claim F. Finally, we conclude from Claim E and Claim F
that

|P | = |PL|+ 1 + |PM |+ 1 + |PR| ≤ 6 + 1 + 7 + 1 + 6 = 21.

Case 4. α = 3.

We write P as P = PL − th − P 1
M − ti − P 2

M − tj − PR for some h, i, j ∈ {1, 2, 3, 4},
where each of the sub-paths PL, P 1

M , P 2
M and PR is fully contained in either M ′ or

J4
I . Since P is induced and each vertex in S is adjacent to three vertices in T , we

conclude that, for each i = 1, 2, |P iM | = 1 if P iM contains a vertex from S. In addition,
|PL| ≤ 6 and |PR| ≤ 6 by the same arguments in Case 3. By the aforementioned
symmetry between vertices and vertex pairs of {t1, t2, t3, t4}, we assume without loss
of generality that t1, t3, t4 ∈ P . We consider the following subcases according to the
relative positions among these three vertices on P .

Case 4.1 P = PL − t1 − P 1
M − t3 − P 2

M − t4 − PR.

We first prove the following claim.

Claim G For each 1 ≤ i ≤ 2, P iM is either contained in M ′ or consists of a
single vertex.

For i = 1, suppose that P 1
M is not contained in M ′. In other words, P 1

M ⊆
J4
I . We note that the right end of P 1

M cannot be in C due to the presence
of t4, and hence it is in S, since t3 is anti-complete to A ∪ X ∪ B. This
implies that |P 1

M | = 1.

For i = 2, suppose that P 2
M is not contained in M ′. Note that P 2

M contains
a vertex from C ∪ S. If P 2

M contains a vertex from C, then P 2
M is this

c-type vertex, since it is adjacent to t3 and t4 and P is induced. Otherwise,
P 2
M contains a vertex from S and thus the claim follows from our earlier

observation. This completes the proof of Claim G �

If P 1
M and P 2

M are contained in M ′,

|P | = |PL|+ |t1 − P 1
M − t3 − P 2

M − t4|+ |PR| ≤ 6 + 7 + 6 = 19,
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by Lemma 4.2.5 and the fact that |PL| ≤ 6 and |PR| ≤ 6. Therefore, one of
P 1
M and P 2

M is not contained in M ′. By symmetry, assume that P 1
M ⊆ J4

I . So,
|P 1
M | = 1 due to Claim G. Moreover, again by Claim G, P 2

M is either contained in
M ′ or consists of a single vertex. In the former case, the sub-path t3−P 2

M − t4 of
P contains at most 7 vertices by Lemma 4.2.5, and this implies that |P | ≤ 6+1+
1+7+6 = 21. In the latter case, |P | = |PL|+|t1−P 1

M−t3−P 2
M−t4|+|PR| ≤ 17.

This completes the proof of Case 4.1.

Case 4.2 P = PL − t3 − P 1
M − t1 − P 2

M − t4 − PR.

Since C is complete to {t3, t4} and P is induced, P contains no vertices from
C. Recall that for each i = 1, 2, |P iM | = 1 if P iM contains a vertex from S.
These two facts imply that Claim G still holds, since {t3, t4} is anti-complete to
A ∪X ∪B. Repeating the argument in Case 4.1 we find that |P | ≤ 21.

Case 5. α = 4.

In other words, all vertices tj are on P . We write P as P = PL − th − P 1
M − ti −

P 2
M − tj−P 3

M − tk−PR for {h, i, j, k} = {1, 2, 3, 4}, where each of the sub-paths PL,
P 1
M , P 2

M , P 3
M and PR is fully contained in either M ′ or J4

I . Observe that P does not
contain any vertex from S, since any such vertex has three neighbours (namely those
from T ) on P . We consider the following subcases up to symmetry.

Case 5.1 P = PL − t1 − P 1
M − t3 − P 2

M − t2 − P 3
M − t4 − PR.

Since B is complete to {t1, t2} and C is complete to {t3, t4}, P contains no
vertex from B∪C, for otherwise such a vertex makes P not induced. Recall that
A ∪X is anti-complete to V (M ′). Therefore, P ⊆M ′ and so |P | ≤ 21.

Case 5.2 P = PL − t1 − P 1
M − t3 − P 2

M − t4 − P 3
M − t2 − PR.

Since B is complete to {t1, t2}, P contains no vertex from B. By the same token,
all sub-paths of P other than P 2

M are contained in M ′ and moreover |P 2
M | = 1

in case P ∩C 6= ∅. This implies that PL − t1 − P 1
M − t3 and t4 − P 3

M − t2 − PR
are paths in M ′, and so each contains at most 8 vertices by Lemma 4.2.5. If
P ∩ C = ∅, then P ⊆ M ′ and so |P | ≤ 21. Otherwise P ∩ C = P 2

M and so
|P | ≤ 8 + 1 + 8 = 17.

Case 5.3 P = PL − t1 − P 1
M − t2 − P 2

M − t3 − P 3
M − t4 − PR.

Since P is induced and contains no vertex from S, we conclude that PL, P 2
M and

PR are contained inM ′, and moreover each of P 1
M and P 3

M is either a single vertex
(in B ∪ C) or contained in M ′. If both P 1

M and P 3
M are contained in M ′, then

P ⊆M ′ and so |P | ≤ 21; if exactly one of P 1
M and P 3

M , say P 3
M , is contained in
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M ′, then |P | = |PL−t1|+|P 1
M |+|t2−P 2

M−t3−P 3
M−t4−PR| ≤ 8+1+8 = 17 by

Lemma 4.2.5; otherwise |P 1
M | = |P 3

M | = 1. Since P is induced, PL− t1, t2−P 2
M ,

and t4 − PR are pairwise disjoint paths in M . By Lemma 4.2.5, the sum of the
order of any two such paths is at most 13, and so |P | ≤ 3 × 13/2 + 2 = 21.5,
implying that |P | ≤ 21.

We have considered all the cases and this completes the proof. �

Theorem 4.2.2 follows then from the above three lemmas. We now prove a final result for
(C3, Pt)-free graphs. This result extends a result of Golovach, Paulusma and Song [53] who
proved that for all s ≥ 6, there exists a constant ts such that 4-Colourability is NP-complete
for (C5, . . . , Cs−1, Pts)-free graphs. Recall that Theorem 3.3.1 says that forbidding C4 makes
k-Colourability polynomial time solvable for Pt-free graphs. Therefore, we must exclude
C4 from the list of forbidden induced subgraphs in order to get a NP-complete result. In this
sense, our new hardness result can be seen as best possible.

Theorem 4.2.14 For all fixed integers k ≥ 4 and s ≥ 6, there exists a constant tsk such that
k-Colourability is NP-complete for (C3, C5, . . . , Cs−1, Pts

k
)-free graphs.

Proof. Let k ≥ 4 and s ≥ 6 be fixed integers. By Theorem 2.3.2, there exists an edge-minimal
graph F with χ(F ) = k + 1 and g(F ) = s. Pick any edge e = pq ∈ E(F ). By the definition
of F , F − e is k-colourable. Moreover, in every k-colouring of F − e, p and q must receive
the same colour. Let F ′ be the graph obtained from F by adding a new vertex q∗ and adding
an edge between q∗ and q. In other words, q∗ is a vertex pendent to q in F ′. It follows from
the colouring property of F that p and q∗ must receive a different colour in every k-colouring
of F ′. An F ′-identification of an edge uv in a graph G is the following operation: delete the
edge uv and add a copy of F ′ between u and v by identifying vertices u and v with p and q∗,
respectively (we call these two new vertices u and v again). We now construct a graph from JkI
as follows.

• Take a complete graph on k new vertices r1, . . . , rk. Recall that there is a pre-colouring
φWk

on the subset Wk ⊆ V (JkI ). We add an edge between a vertex ri and a vertex
u ∈Wk if and only if φWk

(u) 6= i, for each 1 ≤ i ≤ r.

• Perform an F ′-identification of every edge between two vertices ri and rj and of every
edge between a vertex ri and a vertex in Wk.

Let GkI be the resulting graph (without any pre-colouring). It is clear from our construction
that GkI admits a k-colouring if and only if JkI has a 4-colouring that extends φWk

. It then
follows from Lemma 4.2.9 that I is satisfiable if and only if GkI is k-colourable. We observe that
GkI is not C4-free. However, since JkI is chordal bipartite (by Lemma 4.2.9) and we performed
appropriate F ′-identifications, GkI is (C3, C5, . . . , Cs−1)-free. It remains to bound the length of
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the longest induce path in GkI . Take any induced path Q in GkI . Let h = |V (Q)| ∩ {r1, . . . , rk}.
It can be seen that Q can be written as Q = Q1− ri1 −Q2− ri2 − · · ·Qh− rih −Qh+1, where
V (Qi) is fully contained in either an F ′-copy or JkI for each 1 ≤ i ≤ h + 1. Since |F ′| is a
constant that depends only on k and s, say |F ′| = αks , and JkI is P10-free (by Lemma 4.2.9), we
find that there exists a constant tsk ≤ max{|F ′|, 10} · (h+ 1) + h ≤ max{αks , 10} · (k + 1) + k

such that Q has length at most tsk. In other words, GkI is Pts
k
-free. Clearly, tsk depends solely on

k and s and this completes the proof. �

Corollary 4.2.15 For any integer k ≥ 5, there exists a constant tk (depending only on k) such
that k-Colourability is NP-complete for (C3, Ptk)-free graphs.

Proof. Take tk := t6k where t6k is the constant from Theorem 4.2.14. �

We remark that a slight modification of the construction used in the proof of Theorem 4.2.14
gives us a better upper bound for tk. Instead of using an edge-minimal graph F with chro-
matic number k + 1 and girth s, we take the Mycielski graph Mk+1. Following the proof
of Theorem 4.2.14 we pick an edge pq of Mk+1 and obtain a modified graph M ′k+1. Since
|V (Mk)| = 3 · 2k−2 − 1 for all k ≥ 2, replacing αsk in the computation for tsk with |V (Mk+1)|
gives that tk ≤ max{|V (Mk+1)|, 10} · (h+ 1) + h ≤ (3 · 2k−1 − 1)(k + 1) + k.

4.3 Two variants of k-Colourability

In this section, we use the graphs JI , J ′I and JkI introduced in subsection 4.2.2 to prove some
new NP-complete results on list colouring and pre-colouring extension problems for the class of
(Cs, Pt)-free graphs.

4.3.1 List k-colourability

Theorem 4.3.1 List 4-Colourability is NP-complete for (C5, C6, P6,K4, P1 + 2P2, P1 + P4)-
free graphs.

Proof. It was shown that in [52] that JI is P6-free, and that it has 4-colouring that respects
L if and only if I is satisfiable. Note that JI is 3-colourable since it can be partitioned into
three independent sets A, B and X. Thus, JI is K4-free. It remains to show that no induced
subgraph H of JI is isomorphic to a graph in F = {C5, C6, P1 + 2P2, P1 + P4}. Suppose not.

Case 1. H ∈ {C5, C6}.

Note that both JI−X and JI−B are forests and hence contain no cycles. This implies
that H contains at least one vertex from each of the sets X and B. Since X and B
are complete to each other and H is C4-free, it follows that H contains at most three
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vertices from X∪B and these vertices form an induced path in H. Thus, H−(X∪B)
contains an edge, since H is either a C5 or a C6. This, however, contradicts the fact
that the remaining vertices in H are from A which is an independent set.

Case 2. H ∈ {P1 + 2P2, P1 + P4}.

Let u be the vertex that has degree 4 in H. Since any a-type vertex has degree at most
three in JI , u ∈ B ∪X. Since u is universal in H, it follows that H − u is completely
contained in JI −X or JI −B depending on whether u ∈ X or u ∈ B. As we noted
before, both subgraphs JI −X and JI −B are forests. This immediately implies that
H cannot be a P1 + 2P2, for otherwise H − u induces a C4. Thus, H = P1 + P4 and
H − u is an induced P4. This implies that u ∈ X, for otherwise u ∈ B and H − u
is contained in JI − B (which is a disjoint union of stars), but JI − B is P4-free.
Therefore, H−u ⊆ JI −X and this subgraph is the disjoint union of 2m copies of the
clause components. Hence, H − u is contained in some clause component, say Dj for
some 1 ≤ j ≤ m. As a result, two vertices in H − u are from A. This is impossible,
as each x-type vertex has at most one a-type neighbour in a clause component.

This completes our proof. �

The next result follows immediately from Lemma 4.2.6 and Lemma 4.2.7.

Theorem 4.3.2 List 4-Colouring is NP-complete for P8-free chordal bipartite graphs (and
hence for (C3, P8)-free graphs).

4.3.2 Pre-colouring extension

The first result follows immediately from Lemma 4.2.9.

Theorem 4.3.3 For all k ≥ 4, k-Prext is NP-complete for the class of P10-free chordal
bipartite graphs (and hence for (C3, P10)-free graphs).

Our second result is slightly more complicated.

Theorem 4.3.4 4-Prext is NP-complete for the class of (C5, C6, C7, C8, P8)-free graphs.

Proof. Recall that JI is the graph with list assignment L as constructed at the start of
subsection 4.2.2. We now add new vertices to JI and pre-colour these vertices (the pre-colouring
of any vertex in JI is therefore removed).

• For each clause component Dj , add five new vertices, sj , tj , uj,1, uj,2, uj,3, and pre-colour
sj , tj , uj,1, uj,2, uj,3 with colours 3, 4, 1, 1, 1, respectively.
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• For each clause component D′j , add five new vertices, s′j , t′j , u′j,1, u′j,2, u′j,3, and pre-colour
s′j , t′j , u′j,1, u′j,2, u′j,3 with colours 3, 4, 2, 2, 2, respectively.

• Add edges aj,1sj , aj,3tj and aj,huj,h, and add edges a′j,1s′j , a′j,3t′j and a′j,hu
′
j,h for each

h = 1, 2, 3.

• Add two new vertices c1, c2 and for each 1 = 1, 2 and each x-type vertex u, add an edge
between ci and u; similarly, add two new vertices y1, y2 and for each 1 = 1, 2 and each c-type
vertex u, add an edge between yi and u.

• Pre-colour c1, c2, y1, y2 with colours 3, 4, 1, 2, respectively.

This results in a new graph J ′′I . It is desirable to view y1 and y2 as x-type vertices, and similarly
view c1 and c2 as b-type vertices. Except c1, c2, y1, y2 , any other new vertex is a pendant vertex
in J ′′I . Since JI is (C5, C6, P6)-free (by Theorem 4.3.1), we find that J ′′I is (C5, C6, C7, C8, P8)-
free. Moreover, the pre-colouring in J ′′I forces the list L(v) on every vertex v of JI . This means
that J ′′I admits a 4-colouring extending this pre-colouring if and only if JI has a 4-colouring that
respects L. This completes our proof by a result in [52] that JI has 4-colouring that respects
L if and only if I is satisfiable. �

Here is the final result in this subsection.

Theorem 4.3.5 For all k ≥ 5, k-Prext is NP-complete for (C5, C6, P6)-free graphs.

Proof. In [14] the authors constructed a graph GI with some vertices being pre-coloured (out
of I) in such a way that GI is P6-free and GI has 5-colouring that extends the pre-colouring if
and only if I is satisfiable. To prove the theorem, it suffices to show that GI is (C5, C6)-free.
We refer to the concrete construction of GI in [14]. Here we sketch the structure of GI that
are helpful for our purpose. V (GI) is the union of 8 subsets, A, B, C, X, P1, P1, Q1 and
Q1. We let V1 = C ∪ P1 ∪ Q1, V2 = X ∪ P1 ∪ Q1 and V3 = A ∪ B. It can be seen from the
construction that each Vi is an independent set and V1∪V2 induces a complete bipartite graph.
Suppose that Q is an induced subgraph of GI that is isomorphic to a C5 or a C6. The graph
GI has the property that neither of GI − V1 and GI − V2 contains a C5 or a C6. As a result,
Q contains a vertex from both V1 and V2. This implies that Q contains at most three vertices
from V1 ∪ V2, for otherwise Q would contain an induced C4 (since V1 ∪ V2 induces a complete
bipartite graph). Moreover, these vertices form an induced path on Q since Q is an induced
cycle. So, Q− (V1 ∪ V2) contains an edge. However, this is impossible as all remaining vertices
on Q are from V3 which contains no edge. �
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4.4 A summary

In this section we give a summary of the complexity of k-Colourability, k-Prext and
List k-Colourability for (Cs, Pt)-free graphs. Before that we need the follow result due to
Gravier, Hoàng and Maffray.

Theorem 4.4.1 [56] For fixed integers s, t ≥ 1, every (Ks, Pt)-free graph G has χ(G) ≤
(t− 2)s−2.

Here is our summary.

Theorem 4.4.2 Let k, s and t be three (fixed) positive integers. The following statements hold
for (Cs, Pt)-free graphs.

i List k-Colourability is NP-complete if

(i.1) k ≥ 4, s = 3 and t ≥ 8.
(i.2) k ≥ 4, s ≥ 5 and t ≥ 6.

List k-Colourability is polynomial time solvable if

(i.3) k ≤ 2, s ≥ 3 and t ≥ 1.
(i.4) k = 3, s = 3 and t ≤ 7.
(i.5) k = 3, s = 4 and t ≥ 1.
(i.6) k = 3, s ≥ 5 and t ≤ 6.
(i.7) k ≥ 4, s = 3 and t ≤ 6.
(i.8) k ≥ 4, s = 4 and t ≥ 1.
(i.9) k ≥ 4, s ≥ 5 and t ≤ 5.

ii k-Prext is NP-complete if

(ii.1) k = 4, s = 3 and t ≥ 10.
(ii.2) k = 4, s = 5 and t ≥ 7.
(ii.3) k = 4, s = 6 and t ≥ 7.
(ii.4) k = 4, s = 7 and t ≥ 8.
(ii.5) k = 4, s ≥ 8 and t ≥ 7.
(ii.6) k ≥ 5, s = 3 and t ≥ 10.
(ii.7) k ≥ 5, s ≥ 5 and t ≥ 6.

k-Prext is polynomial time solvable if

(ii.8) k ≤ 2, s ≥ 3 and t ≥ 1.
(ii.9) k = 3, s = 3 and t ≤ 6.

(ii.10) k = 3, s = 4 and t ≥ 1.
(ii.11) k = 3, s ≥ 5 and t ≤ 6.
(ii.12) k ≥ 4, s = 3 and t ≤ 6.
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(ii.13) k ≥ 4, s = 4 and t ≥ 1.
(ii.14) k ≥ 4, s ≥ 5 and t ≤ 5.

iii k-Colourability is NP-complete if

(iii.1) k = 4, s = 3 and t ≥ 22.
(iii.2) k = 4, s = 5 and t ≥ 7.
(iii.3) k = 4, s = 6 and t ≥ 7.
(iii.4) k = 4, s = 7 and t ≥ 9.
(iii.5) k = 4, s ≥ 8 and t ≥ 7.
(iii.6) k ≥ 5, s = 3 and t ≥ tk where tk is a constant that only depends on k.
(iii.7) k ≥ 5, s = 5 and t ≥ 7.
(iii.8) k ≥ 5, s ≥ 6 and t ≥ 6.

k-Colourability is polynomial time solvable if

(iii.9) k ≤ 2, s ≥ 3 and t ≥ 1.
(iii.10) k = 3, s = 3 and t ≤ 7.
(iii.11) k = 3, s = 4 and t ≥ 1.
(iii.12) k = 3, s ≥ 5 and t ≤ 7.
(iii.13) k = 4, s = 3 and t ≤ 6.
(iii.14) k = 4, s = 4 and t ≥ 1.
(iii.15) k = 4, s = 5 and t ≤ 6.
(iii.16) k = 4, s ≥ 6 and t ≤ 5.
(iii.17) k ≥ 5, s = 3 and t ≤ k + 2.
(iii.18) k ≥ 5, s = 4 and t ≥ 1.
(iii.19) k ≥ 5, s ≥ 5 and t ≤ 5.

Proof. We first consider the intractable cases of List k-Colourability. Note that (i.1)
follows from Theorem 4.3.2, and Theorem 4.3.1 implies that List 4-Colourability is NP-
complete for the class of (C5, C6, P6)-free graphs which proves (i.2). We now consider the
tractable cases. Lemma 3.3.2 implies that List 2-Colourability is polynomial time solvable
on general graphs implying (i.3). Bonomo, Chudnovsky, Maceli, Schaudt, Stein and Zhong
[9] showed that List 3-Colourability is polynomial time solvable for (C3, P7)-free graphs.
This result and Lemma 3.3.3 imply (i.4) and (i.6). Theorem 3.3.1 implies (i.5) and (i.8). The
class of (C3, P6)-free graphs was shown to have bounded clique-width by Brandstädt, Klembt
and Mahfud [12]. This implies that for any k ≥ 1, List k-Colourability is polynomial
time solvable on (C3, P6)-free graphs [37]. This proves (i.7). Finally, (i.9) follows from Theo-
rem 3.1.3.

We now consider k-Prext. All the tractable cases follow from the results of List k-Colourability.
We are left to consider the NP-complete cases. Theorem 4.3.3 implies (ii.1) and (ii.6), and
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Theorem 4.3.4 and Theorem 4.3.5 imply (ii.4) and (ii.7), respectively. Finally, (iii.15), (ii.3)
and (ii.5) follow immediately from Corollary 4.1.4 and Corollary 4.1.8.

We finally consider k-Colourability. Theorem 4.2.2 and Corollary 4.2.15 imply (iii.1) and
(iii.6), respectively. All the other NP-completeness subcases follow from our results in Sec-
tion 4.1. For the polynomial cases, Chudnovsky, Maceli and Zhong [25, 26] proved that 3-
Colourability is polynomial time solvable for P7-free graphs, which gives us (iii.10) and
(iii.12). Chudnovsky, Maceli, Stacho and Zhong [24] proved that 4-Colourability is poly-
nomial time solvable for (C5, P6)-free graphs, implying (i.2). Theorem 4.4.1 gives us (iii.17). All
other tractable cases follow from the corresponding tractable cases in List k-Colourability.
This completes the proof. �

Theorem 4.4.2 leaves the following cases open in the classification of the complexity of graph
colouring problems for (Cs, Pt)-free graphs (recall that tk is a constant only depending on k).

(i) For List k-Colourability the following cases are open:
• k = 3, s = 3 and t ≥ 8.
• k = 3, s ≥ 5 and t ≥ 7.
• k ≥ 4, s = 3 and t = 7.

(ii) For k-Prext the following cases are open:
• k = 3, s = 3 and t ≥ 7.
• k = 3, s ≥ 5 and t ≥ 7.
• k = 4, s = 3 and 7 ≤ t ≤ 9.
• k = 4, s ≥ 5 and t = 6.
• k = 4, s = 7 and t = 7.
• k ≥ 5, s = 3 and 7 ≤ t ≤ 9.

(iii) For k-Colourability the following cases are open:
• k = 3, s = 3 and t ≥ 8.
• k = 3, s ≥ 5 and t ≥ 8.
• k = 4, s = 3 and 7 ≤ t ≤ 21.
• k = 4, s ≥ 6 and t = 6.
• k = 4, s = 7 and 7 ≤ t ≤ 8.
• k ≥ 5, s = 3 and k + 3 ≤ t ≤ tk − 1.
• k ≥ 5, s = 5 and t = 6.

The class of (C5, P6)-free graphs enjoys an interesting behavior with respect to these colouring
problems. Specifically, the complexity of List k-Colourability and k-Colourability are
in sharp contrast: the former being NP-complete and the latter being polynomial time solvable,
for k = 4. For this reason, we feel it worths a closer study.
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Problem 4.4.3 For k ≥ 5, is there a polynomial time algorithm for k-Colourability of
(C5, P6)-free graphs?

Problem 4.4.4 What is the complexity of 4-Prext of (C5, P6)-free graphs?

From the list above these two problems are the only open problems left for (C5, P6)-free graphs.
Another interesting class is the class of (C3, P7)-free graphs. The polynomial algorithm from
[9] is quite involved and it seems difficult to generalize to k ≥ 4. The class of bipartite P7-free
graphs is, however, more promising.

Problem 4.4.5 Is there a polynomial time algorithm for List k-Colourability (in particular
k = 4) of bipartite P7-free graphs?

For any fixed k ≥ 4, t = 7 is the only problem left for List k-Colourability of bipartite
Pt-free graphs due to Theorem 4.3.2 and Theorem 4.4.2.
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55
k-Colourability of (C4, P6)-Free Graphs

In this chapter we focus on the class Forb({C4, P6}). By Theorem 3.3.1, List k-Colourability
(and hence k-Colourability) is known to be polynomial for this class. Here we study the
class through the lens of obstructions.

Definition (Obstructions) A graph G is said to be an obstruction to k-Colourability if it
is not k-colourable; and a minimal obstruction if it is an obstruction but no proper induced
subgraph of G is an obstruction.

Equivalently, a minimal obstruction to k-Colourability is simply a (k + 1)-critical graph.
In the following we always talk about the k-colouring problem, and so we simply say that a
graph is an (minimal) obstruction without explicitly mentioning k-Colourability whenever
convenient. The reason for studying minimal obstructions is that any obstruction must contain a
minimal obstruction (that can be obtained by removing vertices). In this sense, the occurrence
of minimal obstructions is the essential cause for a graph not to be k-colourable. Given a
hereditary class G and a fixed integer k ≥ 1, let Gk be the set of all k-colourable graphs that
are in G, and let F(Gk) denote the set of minimal obstructions to k-Colourability that are
also in G. The typical question in the study of obstructions takes the follow form:

• the characterization problem: determine the set F(Gk).

It turns out that this is a difficult question in general: the answer for general graphs is known
only for k ≤ 2. When restricted to special graph classes, very few cases can be completely
answered. A weaker version of the problem asks

• the finiteness problem: whether or not F(Gk) has finite size.
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The finiteness problem is a meaningful because the characterization set for a hereditary class
is not necessarily of finite size. More importantly, the finiteness of F(Gk) has a fundamental
implication.

Theorem 5.0.1 (Finiteness theorem) Let G be a hereditary graph class and k ≥ 1 be an integer.
If |F(Gk)| is finite, then k-Colourability is polynomial time solvable for G .

Proof. Suppose that F(Gk) = {F1, . . . , Fr} for some finite integer r ≥ 1 and |V (Fi)| = ni for
1 ≤ i ≤ r. Let G ∈ Gk be a graph with n vertices. Then G is k-colourable if and only if G is
Fi-free for each 1 ≤ i ≤ r. We now brute-force on all ni-tuples of V (G) and check whether
or not the given tuple induces a subgraph isomorphic to Fi. Since Fi has ni vertices, there are
at most nni such tuples, and this implies that it takes O(nni) time to decide if G is Fi-free.
Therefore, it takes

∑
iO(nni) ≤ O(nmax{n1,...,nr}) time to determine if G is k-colourable. Since

r is finite, the running time is a polynomial function in n. �

Theorem 5.0.1 says that the finiteness of F(Gk) generalizes the polynomial time solvabil-
ity. In this case, we say that G admits a finite characterization to k-Colourability or
k-Colourability of G admits a finite characterization. We remark that the converse of the
theorem is not true. The class of all graphs does not admit a finite characterization to 2-
Colourability (since odd cycles are the minimal obstructions) but 2-Colourability can
still be solved in polynomial time for general graphs.

Beside the case that the characterization set for 2-Colourability of general graphs is known,
the set of obstructions is also known for perfect graphs: for each k ≥ 1 the complete graph
Kk+1 is the only obstruction (by definition). Other than that, not much can be said for the
characterization problem. Not much is known for the finiteness problem, either. This is not
surprising, because k-Colourability is NP-complete for many restricted classes and this
implies by Theorem 5.0.1 that these classes do not admit a finite characterization (assuming
that P 6= NP ). Despite that, the research on obstructions for Pt-free graphs has been active
in recent years. It was shown by Bruce, Hoàng and Sawada [16], and Maffray and Morel [83],
that the class of P5-free graph admits a finite characterization to 3-Colourability, while
Hoàng, Moore, Recoskie, Sawada, and Vatshelle [64] proved that the class does not when
k = 4. The latter result implies that for fixed integers k ≥ 4 and t ≥ 5, k-Colourability of
Pt-free graphs does not admit a finite characterization. Recall that the class of P4-free graphs
is perfect and thus admits a finite characterization. This leaves the finiteness problem open only
for 3-Colourability of Pt-free graphs when t ≥ 6. Very recently, Chudnovski, Goedgebeury,
Schaudt and Zhong [22] gave a complete answer to this problem: the class of Pt-free graph
admits a finite characterization to 3-Colourability if t = 6, and it does not when t ≥ 7.

We follow the line of a result in [64] where the authors have shown, aided by a computer
search, that 4-Colourability of (P5, C5)-free graphs admits a finite characterization. We
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consider the obstructions for (Cs, Pt)-free graphs, mainly for (C4, P6)-free graphs. Since every
(C3, P6)-free graph is 4-colourable, there is no obstruction for k-Colourability when k ≥ 4.
This, together with the result on 3-Colourability [22], completes the study of (C3, P6)-free
graphs (indeed there is a single obstruction M4 for 3-Colourability, see for example [94]).
For (C5, P6)-free graphs, it is not even known whether or not k-Colourability is polynomial
time solvable when k ≥ 5 (see the summary at the end of Chapter 4). For (C6, P6)-free graphs,
we have shown that k-Colourability is NP-complete on this class when k ≥ 5. We therefore
focus on (C4, P6)-free graphs. After exploring structural properties of (C4, P6)-free graphs in
Section 5.1, we show in Section 5.2 that for any k ≥ 1, the class of (C4, P6)-free graphs
does admit a finite characterization. We prove this by showing that any (C4, P6)-free minimal
obstruction has at most O(k6) vertices. For k = 3 and k = 4, the exact minimal obstructions are
found and these results are presented in Section 5.3 and Section 5.4, respectively. In Section 5.5,
we turn our proofs into polynomial time certifying algorithms for k-Colourability (k = 3, 4)
of (C4, P6)-free graphs.

5.1 Structure around a hole

Let G = (V,E) be a connected (C4, P6)-free graph. Since the only perfect obstruction is Kk+1,
we assume that G is imperfect. By the Strong Perfect Graph Theorem (Theorem 2.3.3), G
must contain a 5-hole C = v0 − v1 − v2 − v3 − v4 − v0 with ij being an edge if and only if
|i− j| = 1 (indices are modulo 5).

Definition (C5-structure) A vertex v ∈ V \ C is said to be a p-vertex with respect to C if v
has exactly p neighbours on C. The set of p-vertices, for each 0 ≤ p ≤ 5, is denoted by Sp.
Moreover, we define

S1(vi) = {x ∈ S1 : NC(x) = {vi}}.

S2(vi, vi+1) = {x ∈ S2 : NC(x) = {vi, vi+1}}.

S3(vi) = {x ∈ S3 : NC(x) = {vi−1, vi, vi+1}}.

It follows immediately from the C4-freeness of G that S4 = ∅ and Sp =
⋃4
i=0 Sp(vi) for each

1 ≤ p ≤ 3. In the remaining of this chapter, we shall use Sp, S1(vi), S2(vi, vi+1) and S3(vi)
whenever we talk about a 5-hole C. Brandstädt and Hoàng [11] discovered an important
property about 5-holes in (C4, P6)-free graphs that do not have clique cutsets.

Lemma 5.1.1 [11] Suppose that G is a (C4, P6)-free graph containing an induced five-cycle C
defined above. If G does not contain any clique cutset, C is a dominating set of G, i.e., S0 = ∅.
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The following lemma lists a number of properties we find regarding the adjacency among vertices
in different subsets. All indices are modulo 5.

Lemma 5.1.2 Suppose that G is a (C4, P6)-free graph containing an induced five-cycle C
defined above. Then the following holds for G.

(P1) For each 0 ≤ i ≤ 4, S5 ∪ S3(vi) is a clique.

(P2) For each 0 ≤ i ≤ 4, S1(vi) is complete to S1(vi+2) and anti-complete to S1(vi+1);
moreover, if both S1(vi) and S1(vi+2) are non-empty, then both sets are cliques.

(P3) S2(vi, vi+1) is complete to S2(vi+1, vi+2) and anti-complete to S2(vi+2, vi+3); moreover,
if both S2(vi, vi+1) and S2(vi+1, vi+2) are non-empty, then both sets are cliques.

(P4) S3(vi) is anti-complete to S3(vi+2).

(P5) S1(vi) is anti-complete to S2(vj , vj+1) if j 6= i+ 2; moreover, if y ∈ S2(vi+2, vi+3) is not
anti-complete to S1(vi), then y is adjacent to any other vertex in S2(vi+2, vi+3).

(P6) S1(vi) is anti-complete to S3(vi+2).

(P7) S2(vi+2, vi+3) is anti-complete to S3(vi).

(P8) One of S1(vi) and S2(vi+3, vi+4) is empty, and one of S1(vi) and S2(vi+1, vi+2) is empty.

(P9) One of S2(vi−1, vi), S2(vi, vi+1) and S2(vi+2, vi+3) is empty.

(P10) If both S1(vi−1) and S1(vi+1) are non-empty, then S2 = ∅; if both S1(vi) and S1(vi+1) are
non-empty, then S2 = S2(vi, vi+1); if both S2(vi, vi+1) and S2(vi+1, vi+2) are non-empty,
then S1 = S1(vi+1).

(P11) Let x ∈ S3(vi). If both S2(vi+1, vi+2) and S2(vi+3, vi+4) are non-empty, then x is either
complete or anti-complete to S2(vi+1, vi+2) ∪ S2(vi+3, vi+4). In the former case, both
S2(vi+1, vi+2) and S2(vi+3, vi+4) are cliques. Moreover, if S2(vi+2, vi+3) is also non-
empty, then x is anti-complete to S2(vi+1, vi+2) ∪ S2(vi+3, vi+4).

(P12) If S1(vi) is not anti-complete to S2(vi+2, vi+3), then S1 = S1(vi).

(P13) If G has no clique cutsets, then S1(vi) is complete to S3(vi).

Proof. We prove these properties one by one.

(P1). Suppose by contradiction that S5 ∪ S3(vi) contains two non-adjacent vertices x and y.
Then {vi−1, x, vi+1, y} induces a C4 in G.

(P2). Let x ∈ S1(v0), y ∈ S1(v1) and z ∈ S1(v2). Then xy /∈ E, for otherwise x−v0−v1−y−x
induces a C4, and xz ∈ E for otherwise x−v0−v4−v3−v2−z induce a P6. Thus, the first part
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follows. Suppose further that S1(v2) is not a clique. Then S1(v2) contains two non-adjacent
vertices z′, z′′. Now x− z′ − v2 − z′′ − x induces a C4.

(P3). Let x ∈ S2(v0, v1), y ∈ S2(v1, v2) and z ∈ S2(v2, v3). If xy /∈ E, then x−v0−v4−v3−
v2−y induces a P6. If xz ∈ E, then x−v1−v2−z−x induces a C4. This proves the first part.
Suppose that S2(v1, v2) contains two non-adjacent vertices y′ and y′′. Then x−y′−v2−y′′−x
induces a C4.

(P4). Let x ∈ S3(v0) and y ∈ S3(v2). If xy ∈ E, then x− v4 − v3 − y − x induces a C4.

(P5). The first statement follows from the fact G is (C4, P6)-free. For the second part, it
suffices to prove for i = 0. Let x ∈ S1(v0) and y ∈ S2(v2, v3) with xy ∈ E. Suppose that y is
not adjacent some vertex y′ ∈ S2(v2, v3) with y′ 6= y. Since x− y − v2 − y′ − x (in this order)
does not induce a C4, it follows that xy′ /∈ E. But then y′ − v2 − y− x− v0 − v4 induces a P6

in G, a contradiction.

(P6). Let x ∈ S1(v0) and y ∈ S3(v2). If xy ∈ E, then x− v0 − v1 − y − x induces a C4.

(P7). Let x ∈ S3(v0) and y ∈ S2(v2, v3). If xy ∈ E, then x− v4 − v3 − y − x induces a C4.

(P8). It suffices to prove the property for S1(v0) and S2(v1, v2). Let x ∈ S1(v0) and y ∈
S2(v1, v2). Since v0 − v1 − y − x − v0 does not induce a C4, we conclude that xy /∈ E. But
then x − v0 − v4 − v3 − v2 − y induces a P6, a contradiction. Therefore, one of S1(v0) and
S2(v1, v2) is empty.

(P9). It suffices to prove the property for i = 0. Suppose that x ∈ S2(v0, v1), y ∈ S2(v0, v4)
and z ∈ S2(v2, v3). It follows from (P3) that xy ∈ E, xz /∈ E and yz /∈ E. Now z− v2− v1−
x− y − v4 induces a P6.

(P10). Suppose that S1(v0) and S1(v2) are non-empty. Let x ∈ S1(v0) and y ∈ S1(v2). Note
that xy ∈ E by (P2). Moreover, S2 = S2(v0, v4)∪S2(v2, v3) by (P8). Suppose that S2(v0, v4)
contains a vertex z. Then z is not adjacent to x by (P5). Since z − y − x − v0 − z does
not induce a C4, zy /∈ E. But now z − v0 − x − y − v2 − v3 induces a P6. This shows that
S2(v0, v4) = ∅. Similarly, S2(v2, v3) = ∅. This proves the first statement. The second and third
statement follow directly from (P8).

(P11). It suffices to prove the property for i = 0. Let x ∈ S3(v0), y ∈ S2(v1, v2) and
z ∈ S2(v3, v4). It follows from (P3) that yz /∈ E. If x is adjacent to exactly one vertex
in {y, z}, say xy ∈ E but xz /∈ E, then v0 − x − y − v2 − v3 − z induces a P6 in G, a
contradiction. This shows that x is either completer or anti-complete {y, z}. If x is anti-
complete to S2(v1, v2)∪S2(v3, v4), then the property holds. In the following, we assume that x
is complete to {y, z}. Applying the above argument for {y, z} to {y, z′} where z′ is an arbitrary
vertex in S2(v3, v4), we conclude that x is complete to S2(v3, v4), which in turn implies that x is
also complete to S2(v1, v2). Since G is C4-free, both S2(v3, v4) and S2(v3, v4) are cliques. This
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proves the first statement. Moreover, if S2(v2, v3) contains a vertex w, then x is anti-complete
to S2(v1, v2) ∪ S2(v3, v4), for otherwise x − z − w − y − x induces a C4. This completes the
proof.

(P12). Let x ∈ S1(v0) and y ∈ S2(v2, v3) with xy ∈ E. Then S1(v1) = S1(v4) = ∅ by (P8).
Suppose that S1(v3) contains a vertex z. Note that zx ∈ E and zy /∈ E by (P2) and (P5),
and this implies that z − x− y − v3 − z induces a C4. This shows that S1(v3) = ∅. Similarly,
S1(v2) = ∅, and the property follows.

(P13). It follows directly from Lemma 5.1.1. �

Let P be the graph obtained from the Petersen graph (see Figure 5.1) by adding a universal
vertex. A graph is called specific if it results from replacing each vertex of P by a clique of
arbitrary size (including possibly size 0, resulting in the deletion of the vertex). The next lemma
explores the structure around a 6-hole in a (C4, P6)-free graph and will play an important role
in subsequent proofs. The result is again due to Brandstädt and Hoàng.

Figure 5.1: The Petersen graph.

Lemma 5.1.3 [11] Let G be a (C4, P6)-free graph with no clique cutset. One of the following
holds.

1. either G is C6-free;

2. or G is not C6-free but every 6-hole is dominating.

3. or G is not C6-free and G is specific.

5.2 Obstructions for general k

In this section our main result (cf. also [60]) is the following.

Theorem 5.2.1 For any fixed positive integer k, any (C4, P6)-free minimal obstruction G has
O(k6) vertices. In particular, the class of (C4, P6)-free graphs admits a finite characterization.
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Before proving the theorem, we need a preliminary result whose proof is a folklore.

Lemma 5.2.2 (Folklore) Any minimal obstruction G to k-Colourability has δ(G) ≥ k and
no clique cutset.

Moreover, our proof is based on the following two lemmas.

Lemma 5.2.3 Let G be a (C4, C6, P6,Kk+1)-free graph so tha G contains an induced five-cycle
C = v0−v1−v2−v3−v4−v0 and has no clique cutset. For each 0 ≤ i ≤ 4, |S1(vi)| = O(k6).

Lemma 5.2.4 Let G be a (C4, C6, P6,Kk+1)-free graph so tha G contains an induced five-
cycle C = v0 − v1 − v2 − v3 − v4 − v0 and has no clique cutset. For each 0 ≤ i ≤ 4,
|S1(vi, vi+1)| = O(k6).

We leave the proofs of Lemma 5.2.3 and Lemma 5.2.4 later and now prove the main result using
these lemmas.

Proof of Theorem 5.2.1. Let G be a (C4, P6)-free minimal obstruction. By Lemma 5.2.2,
G has δ(G) ≥ k and no clique cutset. If G contains Kk+1, then G is isomorphic to Kk+1.
From now on, we assume that G is Kk+1-free. In particular, since G is not k-colourable, we
conclude that G is imperfect. This implies that G is not chordal, since any chordal graph is
perfect by Proposition 2.3.8. Therefore, G contains an induced cycle C of length 5 or 6, since
G is (C4, P6)-free.

Suppose first that C is an induced 6-cycle. It follows from Lemma 5.1.3 that either G is specific
or C is dominating. If G is specific, then |G| ≤ 11k by the definition of specific graph and
the fact that G is Kk+1-free, and the theorem holds. We thus assume that C is dominating,
and we analyze the remaining vertices as to their connection to C, analogously to what we did
in the previous section for C being a five-cycle. We define, for any X ⊆ C, the set S(X) to
consist of all vertices not in C that have X as their neighbourhood on C. Note that C being
a dominating set in G means that S(∅) = ∅. Let X ⊆ C. If X is not a clique, then S(X)
is a clique due to the C4-freeness of G. If X is a clique, then 1 ≤ |X| ≤ 2 and we note that
S(X) = ∅, for otherwise a vertex in S(X) and C contain an induced P6. Therefore, S(X) is
a clique and hence |S(X)| ≤ k for any X ⊆ C. Since there are at most 26 subsets of C, it
follows that |G| =

∑
X⊆C |S(X)|+ |C| ≤ 64k + 6.

We now assume that G is C6-free and C = v0− v1− v2− v3− v4− v0 is an induced five-cycle.
We use the notations Sp, S3(vi), S2(vi, vi+1), and S1(vi) from Section 5.1. Recall first that
each S3(vi) ∪ S5 is a clique by (P1). Since G is Kk+1-free, |S5| ≤ k − 2 and |S3(vi)| ≤ k − 2
for each i. Moreover, S0 = ∅ by Lemma 5.1.1. Now it follows that

|G| = |S5|+ |S3|+ |S2|+ |S1| = O(k6)
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by Lemma 5.2.3 and Lemma 5.2.4, and this completes the proof of the theorem. �

We remark that Theorem 5.2.1 is best possible in the sense that there are infinitely many P6-free
minimal obstruction and infinitely many C4-free minimal obstructions. The former fact follows
from [64] where it is shown that there are infinitely many P5-free minimal obstruction, and the
latter fact follows from Theorem 2.3.2.

5.2.1 Proof of Lemma 5.2.3

Let G be a (C4, C6, P6,Kk+1)-free graph so tha G contains an induced five-cycle C = v0 −
v1− v2− v3− v4− v0 and has no clique cutset. It suffices to prove the claim for i = 0. Assume
that S1(v0) is not an empty set, for otherwise there is nothing to prove. If S1(v2)∪S1(v3) 6= ∅,
then S1(v0) is a clique by (P2) and thus of size at most k, which proves the lemma. We thus
assume that S1(vj) = ∅ for j = 2, 3 and then S1(v0) is anti-complete to S1 \ S1(v0) by (P2).

Dealing with vertices in S1(v0) that have a neighbour in S2

Let X = {x ∈ S1(v0) : N(x)∩ S2(v2, v3) 6= ∅} and Y = {y ∈ S2(v2, v3) : N(y)∩ S1(v0) 6= ∅}.
We recall first that each y ∈ Y is universal in S2(v2, v3) by (P5). This implies that |Y | ≤ k− 2
since G is Kk+1-free. Moreover, N(y) ∩ S1(v0), for any y ∈ Y , is a clique since G is C4-free,
and so has size at most k. Clearly, X ⊆

⋃
y∈Y N(y) ∩ S1(v0) and so

|X| ≤ (k − 2)k = O(k2). (5.1)

Let S′1(v0) = S1(v0) \X. It follows from the definition and (P5) that S′1(v0) is anti-complete
to S2. The goal now is to consider each connected component of S′1(v0), and we shall argue
that there are not too many connected components and each such component has bounded
size. To this end we fix a connected component A of S′1(v0).

Claim H Each x ∈ X ∪ S3(v1) ∪ S3(v4) is either complete or anti-complete to A.

Let x be any vertex in X ∪ S3(v1) ∪ S3(v4), and yz be any edge in A. In case when
x ∈ X, we also let p ∈ S2(v2, v3) be a neighbour of x. If x is adjacent to exactly
one vertex in {y, z}, say xy ∈ E but xz /∈ E, then z − y − x − v2 − v3 − v4 or
z − y − x− v4 − v3 − v2 or z − y − x− p− v3 − v4 induces a P6 in G, depending on
which set x lies in. �

We now distinguish two types of connected components. We say that A is of type 1 if A has a
neighbour in both S3(v1) and S3(v4), and of type 2 otherwise. Let ni be the number of vertices
in components of type i, i = 1, 2.
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Dealing with components of type 1

Let A be of type 1 and assume that A has a neighbour u ∈ S3(v1) and a neighbour w ∈ S3(v4).
By Claim H, u and w are complete to A. Moreover, u and w are not adjacent by (P4), and
this further implies that A is a clique since G is C4-free. Hence, |A| = O(k). On the other
hand, each such component corresponds to a pair of neighbours (u,w) with u ∈ S3(v1) and
w ∈ S3(v4) by definition. Since each S3(vj) (j = 1, 4) has at most k−2 vertices, the number of
such pairs (u,w) is less than k2. This implies that there are at most k2 connected components
of type 1, for otherwise there exist two such components A and B corresponding to the same
pair (u,w) of neighbours by the pigeonhole principle, and then the vertices u, w, a vertex from
A and a vertex from B induce a C4. This shows that

n1 = O(k3). (5.2)

This takes care of the components of type 1.

Dealing with components of type 2

Let A be a connected component of type 2. We assume by symmetry and Claim H that A is
anti-complete to S3(v4). Let X ′ = {x ∈ X : x is complete to A} and S′3(v1) = {v ∈ S3(v1) :
v is complete to A}. Namely, X ′ and S′3(v1) are the subsets of X and S3(v1), respectively,
that consist of precisely those vertices that are complete to A. Let xi ∈ X ′ (i = 1, 2) be two
arbitrary vertices in X, and let a be a vertex in A. Recall that a is anti-complete to S2.

(i) X ′ is a clique.

We show that x1x2 ∈ E. Suppose not. If x1 and x2 have a common neighbour y ∈
S2(v2, v3), then x1−a−x2−y−x1 induces a C4. If there exist yi ∈ S2(v2, v3) (i = 1, 2)
such that xiyi ∈ E but xiyj /∈ E for i 6= j. Then y1 and y2 are adjacent by (P5) and
thus x1− y1− y2− x2− a− x1 is a 5-hole that is anti-complete to v1, which contradicts
Lemma 5.1.1. This shows that X ′ is a clique. �

(ii) S′3(v1) is complete to X ′.

Let x ∈ X ′ with a neighbour y ∈ S2(v2, v3), and let z ∈ S′3(v1). If zx /∈ E, then either
z − v0 − x− y − z induces a C4 or z − a− x− y − v3 − v4 induces a P6, depending on
whether or not zy ∈ E. Thus, zx ∈ E and this proves (ii). �

Let V ′ = {v0} ∪ S3(v0) ∪ S′3(v1). If some x ∈ S3(v0) is not adjacent to some y ∈ S′3(v1), then
x− v1 − y − a− x induces a C4. Thus, V ′ is a clique. Moreover, V ′ ∪ S5 is a clique by (P1),
and V ′ ∪X ′ is clique by (ii) and (P13). Since G contains no clique cutset, A has a neighbour
x ∈ X ′ and a neighbour u ∈ S5 with ux /∈ E. In other words, each connected component
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A of type 2 corresponds to a pair of non-adjacent neighbours (x, u) with x ∈ X ′ ⊆ X and
u ∈ S5. Since |X| = O(k2) and |S5| ≤ k, the number of such pairs (x, u) is at most k3. This
implies that there are at most O(k3) components of type 2, for otherwise there exist two such
components A and B corresponding to the same pair (x, u) of neighbours by the pigeonhole
principle, and then the vertices x, u, a vertex from A and a vertex from B induce a C4.

It remains to bound the size of a component A of type 2. We define S∗5 = {u ∈ S5 : N(u)∩A 6=
∅}, i.e., S∗5 is the set of vertices in S5 that have a neighbour in A. Let R ⊆ S∗5 be the set of
vertices that have a non-neighbour in X ′ and let S′5 = S∗5 \R. Note that R 6= ∅. By definition,
S′5 is complete to X ′. We then define T = {a ∈ A : N(a)∩R 6= ∅}. Clearly, T ⊆

⋃
r∈RNA(r).

By definition of R, any r ∈ R is not adjacent some x ∈ X ′. Recall that x is complete to A.
This implies that NA(r) is a clique, for otherwise any two non-adjacent neighbours of r in A, x,
and r induce a C4. Therefore |NA(r)| ≤ k for any r ∈ R and so |T | ≤ k2. We now claim that
A = T . By contradiction, suppose that A \ T is not empty. Take any (non-empty) connected
component B of A \ T . We shall find a clique cutset in G that separates B from the rest of G
in the following way.

Let SB5 ⊆ S′5 be the set of vertices that have a neighbour in B. Clearly, V ∗ = V ′ ∪X ′ ∪ SB5 is
a clique.

(iii) Each vertex t ∈ T is either complete or anti-complete to B.

Let t ∈ T be any vertex and bb′ be any edge in B. Then t has a neighbour r ∈ R, and
r is not adjacent to some vertex x ∈ X ′, which has a neighbour y ∈ S2(v2, v3). The
existence of r, x and y follows from the definition of the sets T , R and X. If t is adjacent
to exactly one vertex in {b, b′}, say tb ∈ E but tb′ /∈ E, then ry /∈ E or t− r− y− x− t
induces a C4, and this implies that b′− b− t−r−v2−y induces a P6. This contradiction
shows that each vertex t ∈ T is either complete or anti-complete to B. �

Let T ′ ⊆ T be the set of vertices that are complete to B. We now show:

(iv) V ∗ ∪ T ′ is a clique.

It is clear that T ′ is complete to V ′ ∪X ′. It then remains to show T ′ is a clique and it
is complete to SB5 . Let b ∈ B be a vertex, and let t1 and t2 be two arbitrary vertices
in T . Suppose that t1t2 /∈ E. Then t1 and t2 do not have a common neighbour in
R, for otherwise this common neighbour, t1, t2 and b induces a C4. Thus, we assume
that ti has a neighbour ri ∈ R for i = 1, 2 such that t1r2, t2r1 /∈ E. Observe that now
Q = b− t1 − r2 − r1 − t2 − b is a 5-hole. Take a vertex xi ∈ X ′ be a non-neighbour of
ri and yi ∈ S2(v2, v3) be a neighbour of xi, i = 1, 2. Since ri − v0 − xi − yi − ri does
not induce a C4, ri is not adjacent to yi. If y1 = y2 or x1 = x2 (then also y1 = y2), then
Q does not dominate y1, which contradicts Lemma 5.1.1. This implies that x1 6= x2,
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y1 6= y2 and yixj /∈ E for i 6= j. But then x1 − y1 − y2 − x2 − x1 induces a C4. This
proves that t1t2 ∈ E and so T ′ is a clique.

Let q ∈ SB5 . Note that we may choose b ∈ B to be a neighbour of q. Since q−b−t1−r1−q
does not induce a C4, we conclude that q is adjacent to t1, and this proves that T ′ is
complete to SB5 . �

By (iv), V ∗ ∪ T ′ is the desired clique cutset separating B from G, which contradicts the fact
that G has no clique cutset. We have indeed showed that A = T and so |A| = O(k2). Recall
that there are at most k3 connected components of type 2, and this implies that

n2 ≤ O(k2)×O(k3) = O(k6). (5.3)

This takes care of the components of type 2.

Completing the proof

Finally, it follows from (5.1), (5.2) and (5.3) that

|S1(v0)| = |X|+ n1 + n2 ≤ O(k2) +O(k3) +O(k6) = O(k6)

and this completes the proof of Lemma 5.2.3.

5.2.2 Proof of Lemma 5.2.4

It suffices to prove the claim for S2(v2, v3). Assume that S2(v2, v3) is not an empty set, for
otherwise there is nothing to prove. If S2(v1, v2) ∪ S2(v3, v4) 6= ∅, then S2(v2, v3) is a clique
and by (P3) has at most k vertices, which proves the lemma. In the following we assume that
S2(v1, v2) ∪ S2(v3, v4) = ∅, and this implies that S2(v2, v3) is anti-complete to S2 \ S2(v2, v3)
by (P3).

Dealing with vertices in S2(v0) that have a neighbour in S1

Let Y ⊆ S2(v2, v3) be the set of vertices that have a neighbour in S1(v0)∪S3(v1)∪S3(v4). Note
that any vertex x ∈ S3(v1)∪S3(v4) satisfies that |NS2(v2,v3)(x)| ≤ k since G is (C4,Kk+1)-free.
This, together with (P5), implies that

|Y | ≤ 2k2 + k = O(k2). (5.4)
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Let S′2(v2, v3) = S2(v2, v3)\Y . By definition, S′2(v2, v3) is anti-complete to S2∪S3(v1)∪S3(v4).
Take an arbitrary connected component A of S′2(v2, v3). Let a ∈ A be any vertex.

Bounding the number of components of S′2(v2, v3)

We begin with a few claims.

(i) Any vertex y ∈ Y ∪ S3(v2) ∪ S3(v3) is either complete or anti-complete to A.

By definition, y has a neighbour x ∈ S1(v0) ∪ S3(v1) ∪ S3(v4) if y ∈ Y . If y is adjacent
to exactly one vertex of some edge aa′ in A, say ya ∈ E but ya′ /∈ E, then a′ − a− y −
v1− v0− v4, a′−a− y− v4− v0− v1, a′−a− y−x− v0− v4 or a′−a− y−x− v0− v1

induces a P6, depending on where y and x lie in. This, together with the connectivity of
A, proves the observation. �

Let Y ′, S′3(v3) and S′3(v2) be the subsets of Y , S3(v3) and S3(v2), respectively that are complete
to A. Let V ′ = {v3, v2} ∪ S′3(v2) ∪ S′3(v3). If p ∈ S′3(v2) is not adjacent to q ∈ S′3(v3), then
p − a − q − v4 − v0 − v1 − p induces a C6 in G, which is impossible. This shows that V ′ is a
clique.

(ii) Y ′ is a clique.

By contradiction, suppose that Y ′ contains two non-adjacent vertices y1 and y2. Let xi
be a neighbour of yi in S1(v0) ∪ S3(v1) ∪ S3(v4), i = 1, 2. Then xi /∈ S1(v0) by (P5).
If x1 = x2, then x1 − y1 − v3 − y2 − x1 or x1 − y1 − v2 − y2 − x1 induces a C4. This
means that x1y2, x2y1 /∈ E. If both x1 and x2 are in some S3(vj), say in S3(v4), then
x1− y1− a− y2−x2−x1 is a 5-hole in G and it does not dominate v1. This contradicts
Lemma 5.1.1. If x1 ∈ S3(v4) and x2 ∈ S3(v1), then x1 − y1 − a − y2 − x2 − v0 − x1

induces a C6. This proves that Y ′ is a clique. �

(iii) Y ′ is complete to S′3(v2) ∪ S′3(v3).

Suppose not, let y ∈ Y ′ be non-adjacent to some x ∈ S′3(v3), say. Then y has a neighbour
z ∈ S1(v0) ∪ S3(v1) ∪ S3(v4). Since z − y − a − x − z does not induce a C4, it follows
that xz /∈ E. This implies that x− a− y − z − v0 − v1 induces a P6. �

We have so far proved that V ′ is a clique, Y ′ is a clique and Y ′ is complete to V ′. This means
that V ′∪Y ′ is a clique. Clearly, V ′∪S5 is a clique. Since G contains no clique cutset separating
A, A corresponds to a pair of non-adjacent neighbours (y, u) with y ∈ Y ′ ⊆ Y and u ∈ S5 such
that y is complete to A. Since |Y | = O(k2) and |S5| ≤ k, the number of such pairs (y, u) is at
most O(k3). This implies that

the number of connected components of S′2(v2, v3) = O(k3), (5.5)
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for otherwise there exist two components A and B corresponding to the same pair (y, u) of
neighbours by the pigeonhole principle, and then the vertices y, u, a vertex from A and a vertex
from B induce a C4.

Bounding the size of components of S′2(v2, v3)

It remains to bound the size of A. We define S∗5 , R, S′5, and T as in Lemma 5.2.3, except that
X ′ is replacd by Y ′ in the definition. Similar to the case in Lemma 5.2.3, it can be shown that
|T | ≤ k2. We now claim that A = T . By contradiction, suppose that A \ T is not empty. Take
any connected component B of A\T . We shall find a clique cutset in G that separates B from
the graph G in the following way.

Let SB5 ⊆ S′5 be the set of vertices that have a neighbour in B. Then V ∗ = V ′ ∪ Y ′ ∪ SB5 is
a clique. Using the same argument in Lemma 5.2.3, it can be shown that each vertex t ∈ T is
either complete or anti-complete to B. Let T ′ ⊆ T be the set of vertices that are complete to
B. Recall that V ∗ = V ′ ∪ Y ′ ∪ SB5 is a clique. We now show that V ∗ ∪ T ′ is a clique. It is
clear that T ′ is complete to V ∗ \ SB5 . It then remains to show T ′ is a clique and it is complete
to SB5 .

(iv) T ′ is a clique and it is complete to SB5 .

Let b ∈ B be a vertex, and let t1 and t2 be two arbitrary vertices in T . Suppose that t1t2 /∈
E. Then t1 and t2 do not have a common neighbour in R, for otherwise this common
neighbour, t1, t2 and b induce a C4. Thus, we assume that ti has a neighbour ri ∈ R for
i = 1, 2 such that t1r2, t2r1 /∈ E. Observe that now Q = t1−r1−r2−t2−b−t1 induces a
5-hole. Take a vertex yi ∈ Y ′ be a non-neighbour of ri and xi ∈ S1(v0)∪S3(v1)∪S3(v4)
be a neighbour of yi, i = 1, 2. Since ri− v0−xi− yi− ri does not induce a C4, ri is not
adjacent to xi. If x1 = x2 or y1 = y2 (then also x1 = x2), then Q does not dominate x1,
which contradicts Lemma 5.1.1. This implies that x1 6= x2, y1 6= y2 and y1x2, y2x1 /∈ E.
Then x1x2 /∈ E or x1 − y1 − y2 − x2 − x1 induces a C4. Moreover, x1r2, x2r1 ∈ E, for
otherwise x1 (or x2) is anti-complete to Q, and this contradicts Lemma 5.1.1. Finally,
since y1 − t1 − r1 − r2 − y1 does not induce a C4, y1r2 /∈ E. Similarly, y2r1 /∈ E. But
now {y1, y2, x1, x2, r1, r2} induces a C6. This proves that T ′ is a clique.

Now let q ∈ SB5 and we may choose b to be a neighbour of q. Since b− t1 − r1 − q − b
does not induce a C4 and br1 /∈ E, t1 is adjacent to q. This shows that T ′ is complete
to SB5 . This means that V ∗ ∪ T ′ is a clique cutset in G, a contradiction. �

Therefore, each connected component A of S′2(v2, v3) has

|A| = O(k2). (5.6)
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(a) K4. (b) W5. (c) The Hajós graph. (d) F .

Figure 5.2: All (C4, P6)-free minimal obstructions to 3-Colourability.

Completing the proof

It follows from (5.5) and (5.6) that |S′2(v2, v3)| ≤ O(k2) × O(k3) = O(k6). Finally, it follows
from (5.4) that

|S2(v2, v3)| = |Y |+ |S′2(v2, v3)| ≤ O(k2) +O(k6) = O(k6),

and this completes the proof of Lemma 5.2.4.

5.3 Exact obstructions for 3-Colourability

In this section we explicitly describe (C4, P6)-free minimal obstructions to 3-Colourability.
We note that [83], in conjunction with [16], describe all P5-free minimal obstructions to 3-
Colourability, and that [64] describes all (P5, C5)-free minimal obstructions to 4-Colourability.

Theorem 5.3.1 There are exactly four (C4, P6)-free minimal obstructions, given in Figure 5.2.

Proof. Let G be a (C4, P6)-free minimal obstruction to 3-Colourability. From the first few
lines of the proof of Theorem 5.2.1, we know that G has δ(G) ≥ 3, contains no clique cutset,
is K4-free, and contains an induced five-cycle C = v0 − v1 − . . .− v4 − v0. By Lemma 5.1.1 it
follows that S0 = ∅. Moreover, |S5| ≤ 1, for otherwise G contains a K4. If |S5| = 1, then G is
isomorphic to W5. If there exists an index 0 ≤ i ≤ 4 such that S3(vi) 6= ∅ and S3(vi+2) 6= ∅,
then G is the Hajós graph. From now on, we assume that S5 = ∅ and at most two S3(vi)’s are
not empty. Furthermore, each S3(vi) is clique by (P1), and so contains at most one vertex or
G contain a K4. It follows that |S3| ≤ 2. We distinguish three cases.

Case 1 |S3| = 2. Without loss of generality, assume that S3(v0) = {x} and S3(v1) = {y}.

Note first that xy /∈ E or G contains a K4. Moreover, if S1(v3) contains a vertex t, then
t − v3 − v2 − y − v0 − x is a P6. This shows that S1(v3) = ∅. Thirdly, if x is non-adjacent
to some vertex d ∈ S2(v3, v4), then d − v3 − v2 − y − v0 − x is a P6. This means that x is
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complete to S2(v3, v4). By symmetry, y is complete to S2(v2, v3). This implies that S2(v3, v4)
and S2(v3, v2) are cliques of size at most one, or G contains a K4. Since d(v3) ≥ 3 and
S1(v3) = ∅, at least one of S2(v3, v4) and S2(v3, v2) is non-empty. By symmetry, we assume
that S2(v2, v3) = {z}. If S2(v3, v4) is also non-empty, say S2(v3, v4) = {z′}, then S1 = ∅ by
(P8) and the fact that S1(v3) = ∅, and S2 = {z, z′} by (P9) and (P11). Now G admits a 3-
colouring, namely {v3, x, y}, {v0, v2, z

′}, {v4, v1, z}, contradicting the fact that G is a minimal
obstruction.

In the following, we assume that S2(v3, v4) = ∅. Note first that S1(v1) = S1(v4) = ∅ by
(P8). If S2(v0, v4) contains a vertex z′, then yz′ ∈ E by (P11) and now C \ {v1} ∪ {y, z, z′}
induces the Hajós graph. This shows that S2(v0, v4) = ∅. If S1(v2) 6= ∅, then S1(v0) = ∅
due to (P10) and the existence of z. This implies that {v2, y} is a clique cutset separating
S1(v2) from G, a contradiction. Therefore, S1(v2) = ∅. Next we show that S1(v0) is also
empty. If not, let u0 ∈ S1(v0). Note that x is complete to S1(v0). Since {u0, x, v1, y} does
not induce a C4. u0y /∈ E. This proves that y is anti-complete to S1(v0). Since {v0, x} is
not a clique cutset separating S1(v0), u0 has a neighbour in S2(v2, v3), i.e., u0z ∈ E. Now
C ∪{x, u0, z} induces the graph F . Therefore, S1(v0) = ∅. So far, we have proved that S1 = ∅
and S2 = {z} ∪ S2(v0, v1) ∪ S2(v1, v2). If S2(v1, v2) contains a vertex p, then yp ∈ E by (P3)
and so either {y, v1, p, z} induces a C4 or {v1, v2, y, p} induces a K4, depending on whether
yp ∈ E. This shows that S2(v1, v2) = ∅. Finally, we prove that S2(v0, v1) = ∅. Suppose
by contradiction that S2(v0, v1) contains a vertex p. Note that S2(v0, v1) is an independent
set or G contains a K4. Since G has no clique cutset, p is adjacent to both x and y. But
then {p, v0, v1, x} induces a K4. This contradiction proves that S2(v0, v1) is indeed empty.
Consequently, V (G) = C ∪{x, y, z} and G admits a 3-colouring, namely {x, y, v3}, {z, v4, v1},
{v0, v2}.

Case 2 |S3| = 0, i.e., V = C ∪ S1 ∪ S2.

It follows from (P9) that there exists some index i such that S2(vi−1, vi) ∪ S2(vi, vi+1) = ∅.
Since d(vi) ≥ 3, it follows that S1(vi) 6= ∅. By symmetry, assume that i = 0. Note that
S2(v3, v4) = S2(v1, v2) = ∅ by (P8). We claim that S1(v3) 6= ∅ and S1(v4) 6= ∅. If not,
since d(v3) ≥ 3 and d(v4) ≥ 3, we conclude that S2(v2, v3) 6= ∅ and S2(v0, v4) 6= ∅, and
S1(v3) = S1(v4) = ∅. By (P8) and (P9), we have that S2(v0, v1) = S1(v1) = ∅. This implies
that d(v1) = 2, which is impossible. This indeed shows that both S1(v3) and S1(v4) are not
empty. By symmetry, S1(v1) 6= ∅ and S1(v2) 6= ∅. We have shown that S1(vi) is non-empty
for each i. Let ui ∈ S1(vi) for 0 ≤ i ≤ 5. Note that each of them is a clique, and G = C ∪ S1.
Also, |S1| ≤ 7 or G contains a K4. It is easy to check that G is 3-colourable if |S1| ≤ 6. Finally,
assume that |S1| = 7 and |S1(v0)| = |S1(v1)| = 2. Let u′i ∈ S1(vi) with u′i 6= ui for i = 0, 1.
Now the subgraph induced on {u3, u1, v1, v0, u0, u

′
0, u
′
1} is isomorphic to the Hajós graph.
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Case 3 |S3| = 1. Without loss of generality, assume that S3 = S3(v0) = {x}. We note that
each S2(vi, vi+1) is independent, for otherwise G contains a K4. We consider two subcases.
Suppose first that S1(v0) = ∅. We first prove a claim.

Claim I S2(v2, v3) = ∅.

We prove the claim by contradiction. Assume that S2(v2, v3) contains a vertex z. Note that
S2(v2, v3) is independent and anti-complete to x by (P7). By (P5) and our assumption, the set
S2(v2, v3) is anti-complete to S1. Since {v2, v3} is not a clique cutset separating S2(v2, v3), one
of S2(v3, v4) and S2(v1, v2) is non-empty. We assume by symmetry that S2(v3, v4) 6= ∅ and let
w ∈ S2(v3, v4). By (P8), S1 = S1(v3). Moreover, x is anti-complete to S2(v1, v2)∪S2(v3, v4).
Otherwise we consider the 5-hole C ′ = x − v1 − v2 − v3 − v4 − x, and define S′3 with respect
to C ′ in the same way as we define S3. It is easy to check that |S′3| ≥ 2 and we are now in
Case 1. Furthermore, S2(v0, v4) = ∅. If not, let t ∈ S2(v0, v4). Since x− v0 − t− w − z − v2

does not induce a P6, x must be adjacent to t, and thus {x, v0, v4, t} induces a K4. Note also
that S2(v0, v1) = ∅ by (P9). This implies that S1(v3) = ∅, for otherwise {v3} is a clique cutset
of G. This shows that S1 = ∅. Now G admits a 3-colouring, namely {v1, v4, z}, {v2, w, v0},
{x, v3} ∪ S2(v1, v2). This proves the claim. �

By (P8), one of S2(v3, v4) and S1(v2) is empty, and one of S2(v1, v2) and S1(v3) is empty. On
the other hand, S2(v3, v4)∪ S1(v3) 6= ∅ and S2(v1, v2)∪ S1(v2) 6= ∅, by Claim I and δ(G) ≥ 3.
This leads to the following two subcases.

(i) S1(v2) 6= ∅ and S1(v3) 6= ∅ while S2(v1, v2) = S2(v3, v4) = ∅.

By (P8), we conclude that S2(v0, v1) = S2(v0, v4) = ∅, and so S2 = ∅. Since {v3}
is not a clique cutset separating S1(v3), we have S1(v1) 6= ∅. Similarly, S1(v4) 6= ∅.
Let ui ∈ S1(vi) for i 6= 0. By (P2), each S1(vi) is a clique, for i 6= 0. Moreover,
|S1(v1)| + |S1(v3)| = |S1(v2)| + |S1(v4)| = 3 as δ(G) ≥ 3 and G contains no K4.
If |S1(v1)| = 2, then |S1(v4)| = 1 and this further implies that |S1(v2)| = 2. Now
{u4, v1, v2}∪S1(v1)∪S1(v2) induces the Hajós graph. Therefore, |S1(v1)| = |S1(v4)| = 1
and |S1(v2)| = |S1(v3)| = 2. Note that x is anti-complete to {u1, u4} or G would
contain a W5, since G is C4-free. Now G admits a 3-colouring, namely {v1, u3, u2, v4},
{v0, v3, u1, u

′
2}, {x, u4, u

′
3, v2} where u′j ∈ S1(vj) (if exists) with u′j 6= uj , j = 2, 3. �

(ii) S2(v1, v2) 6= ∅ and S2(v3, v4) 6= ∅ while S1(v2) = S1(v3) = ∅.

Let y ∈ S2(v3, v4) and z ∈ S2(v1, v2). If x is not anti-complete to S2(v1, v2)∪ S2(v3, v4),
then x is complete to the set by (P11) and so C \ {v0} ∪ {y, z} induces the Hajós
graph. Hence, x is anti-complete to S2(v1, v2) ∪ S2(v3, v4) By (P9), we have S2 =
S2(v1, v2) ∪ S2(v3, v4). Since {v3, v4} is not a clique cutset, S2(v3, v4) has a neighbour
in S1(v1). Similarly, S2(v1, v2) has a neighbour in S1(v4). However, this contradicts
(P12). �
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This completes the proof of the case that S1(v0) = ∅. Now assume that S1(v0) 6= ∅. Let
y ∈ S1(v0). Note first that xy ∈ E by (P13). Furthermore, it follows from (P8) that
S2(v1, v2) = S2(v3, v4) = ∅. If S1(v0) is not anti-complete to S2(v2, v3), G contains the
graph F . Therefore, we assume that S1(v0) is anti-complete to S2(v2, v3). This implies that
S2(v2, v3) = ∅, for otherwise {v2, v3} is a clique cutset of G. Since δ(G) ≥ 3, we have that
S1(v2) 6= ∅ and S1(v3) 6= ∅. By (P10), S2 = ∅. Let u2 ∈ S1(v2) and u3 ∈ S1(v3). Note that
u2u3 /∈ E, u2y ∈ E and u3y ∈ E by (P2). Consider the 5-hole C ′ = y−u2− v2− v3−u3− y.
We define p-vertices, S′3 and S′p(v0) with respect to C ′ in the same way we define S3 and Sp(v0)
for 0 ≤ p ≤ 5. If S1(v2) contains a vertex u′2 different from u2, then C ′ ∪ {x, u′2} induces the
Hajós graph. Therefore, S1(v2) = {u2}. Similarly, S1(v3) = {u3}. Moreover, S1(v0) is a clique
by (P2), and hence S1(v0) = {y}. This implies that S′3 = ∅ and now we are in Case 2.

We have considered all the cases and hence our proof is complete. �

5.4 Exact obstructions for 4-Colourability

It is clear that the graph obtained from any (C4, P6)-free minimal obstruction to 3-Colourability
by adding a universal vertex is a (C4, P6)-free minimal obstruction to 4-Colourability. In
this way, we already identify four minimal obstructions to 4-Colourability which arise from
graphs in Figure 5.2. We call those obstructions trivial. The main result in this section is that
there are 9 additional non-trivial minimal obstructions to 4-Colourability.

Theorem 5.4.1 There are exactly 9 non-trivial (C4, P6)-free minimal obstructions to 4-Colourability,
given in Figure 5.3.

Our proof for Theorem 5.4.1 consists of two parts. The first part deals with the case when G
contains an induced W5 (see Figure 5.2). In the second part of the proof, we handle the case
when G has no induced W5. The technique we use here is to choose a 5-hole with certain
minimality conditions and derive some additional properties, valid for graphs without induced
W5.

5.4.1 The case G contains a W5

Lemma 5.4.2 Let G be a (C4, P6)-free minimal obstruction that contains an inducedW5. Then
either G is a trivial obstruction or G is isomorphic to F1 or F2, see Figure 5.3.

Proof. Let W = {v0, v1, v2, v3, v4, w} be an induced W5 in G, where C = v0 − v1 − v2 − v3 −
v4 − v0 is a 5-hole and w is complete to C. We define Sp, S3(vi), S2(v,vi+1) and S1(vi) with
respect to C as before. Clearly, |S5| ≥ 1 since w ∈ S5. Moreover, G has no clique cutset and
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(a) F1. (b) F2. (c) GP4 . (d) H1. (e) H2.

(f) G3,1. (g) G2,2. (h) G2,1,1. (i) G1,1,1,1.

Figure 5.3: 9 non-trivial (C4, P6)-free minimal obstructions to 4-Colourability. In all fig-
ures, the blue part is the underlying induced C5 or W5. It is not difficult to verify
that each graph is a minimal obstruction.

has δ(G) ≥ 4 by Lemma 5.2.2. If |S5| ≥ 2, then G is a trivial obstruction arising from W5.
Thus, we assume from now on that S5 = {w}. Recall that S5 is complete to S3 by (P1). If
there exists i such that S3(vi) 6= ∅ and S3(vi+2) 6= ∅, then G is a trivial obstruction arising
from the Hajós graph. This implies that there are at most two non-empty S3(vi). Furthermore,
|S3(vi)| ≤ 1 or G contains a trivial obstruction K5. So, |S3| ≤ 2.

Case 1 |S3| = 2. We may assume that S3(v0) = {x} and S3(v1) = {y}.

Note first that xy /∈ E or G contains a trivial obstruction K5. If S1(v3) contains a vertex t,
then t − v3 − v4 − x − v1 − y induces a P6. This shows that S1(v3) = ∅. If x is not adjacent
to some vertex d ∈ S2(v3, v4), then d − v3 − v2 − y − v0 − x is a P6. This shows that x is
complete to S2(v3, v4), and y is complete to S2(v2, v3) (by symmetry). Consequently, S2(v3, vj)
for j = 2, 4 is a clique since G is C4-free. Moreover, w is complete to S2(v2, v3) ∪ S2(v3, v4),
for otherwise a non-neighbour of w in S2(v2, v3) ∪ S2(v3, v4), v3, w and y (or x) induce a C4.
Hence, S2(v3, vj) (for j = 2, 4) contains of a single element, or G contains a trivial obstruction
K5. Since d(v3) ≥ 4, NS2(v3) is non-empty. By symmetry, we assume that S2(v2, v3) = {z}.
If S2(v3, v4) is also non-empty, say S2(v3, v4) = {z′}, then S1 = ∅ by (P8) and the fact that
S1(v3) = ∅, and S2 = {z, z′} by (P9) and (P11). Now G admits a 4-colouring, namely
{v3, x, y}, {v0, v2, z

′}, {v4, v1, z}, {w}.

In the following, we assume that S2(v3, v4) = ∅. Note first that S1(v1) = S1(v4) = ∅ by
(P8). If S2(v0, v4) contains a vertex z′, then yz′ ∈ E by (P11) and thus wz′ ∈ E. Now
C \ {v1} ∪ {y, z, z′, w} induces a trivial obstruction arising from the Hajós graph. This shows
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that S2(v0, v4) = ∅. If S1(v2) 6= ∅, then S1(v0) = ∅ due to (P10) and the existence of z. This
implies that {v2, y, w} is a clique cutset separating S1(v2) from G, a contradiction. Therefore,
S1(v2) = ∅. Next we show that S1(v0) is also empty. If not, let u0 ∈ S1(v0). Note that x is
complete to S1(v0). Since {u0, x, v1, y} does not induce a C4. u0y /∈ E. This proves that y
is anti-complete to S1(v0). Since {v0, x, w} is not a clique cutset separating S1(v0), u0 has a
neighbour in S2(v2, v3), i.e., u0z ∈ E. Recall that wz ∈ E and this implies that wu0 ∈ E. Now
C ∪ {x, u0, z, w} induces a trivial obstruction arising from the graph F . Therefore, S1(v0) = ∅.
So far, we have proved that S1 = ∅ and S2 = {z}∪S2(v0, v1)∪S2(v1, v2). If w is non-adjacent
to a vertex q ∈ S2(v1, v2), then w − v1 − q − z − w induces a C4. This shows that w is
complete to S2(v1, v2) and hence y is anti-complete to S2(v1, v2), for otherwise G contains a
trivial obstruction K5. If S2(v1, v2) contains a vertex q, then yq /∈ E and thus y−v1−q−z−y
induces a C4. Therefore, S2(v1, v2) = ∅. Finally, assume that S2(v0, v1) contains a vertex p.
Take a connected component A of S2(v0, v1). Since G is P6-free, each of x and y is either
complete or anti-complete to A. Then x and y are complete to A, since neither {v0, v1, w, x}
nor {v0, v1, w, y} is a clique cutset. This shows that {x, y} are complete to S2(v0, v1). As a
result, w is adjacent to p or {w, x, p, y} induces a C4. So, w is a universal vertex in G and so
G is a trivial obstruction and the lemma holds. This shows that S2 = {z} and clearly G admits
a 4-colouring.

Case 2 |S3| = 0.

It follows from (P9) that there exists some index i such that S2(vi−1, vi) ∪ S2(vi, vi+1) = ∅.
Since d(vi) ≥ 4, it follows that S1(vi) 6= ∅. By symmetry, assume that i = 0. Applying the
argument for Case 2 in Theorem 5.3.1, we conclude that S1(vi) 6= ∅ for each 0 ≤ i ≤ 4, and
so G = W ∪ S1 by (P10). Let ui ∈ S1(vi), i = 0, 1, 2, 3, 4. Suppose that w is adjacent to u0.
Then w is adjacent to u2, since w − u0 − u2 − v2 − w does not induce a C4. This together
with (P2) implies that w is either complete or anti-complete to S1. If w is anti-complete to S1,
then w − v2 − u2 − u4 − u1 − u3− induce a P6. Therefore, w is complete to S1 and so w is a
universal vertex in G. This implies that G is a trivial obstruction and the lemma holds.

Case 3 |S3| = 1. We assume that S3 = S3(v0) = {x}. We consider two cases. Suppose
first that S1(v0) = ∅. We first claim that S2(v2, v3) = ∅. By contradiction, suppose that
S2(v2, v3) contains a vertex z. Then S1(v1) = S1(v4) = ∅ by (P8). Moreover, x is anti-
complete to S2(v2, v3) by (P7). Since {v2, v3, w} is not a clique cutset separating S2(v2, v3),
one of S2(v3, v4) and S2(v1, v2) is not empty. By symmetry, we assume that S2(v3, v4) contains
a vertex p. Then S2(v0, v1) = ∅ by (P9). Also, S1 = S1(v3) by (P8). If S1(v3) 6= ∅, then
{v3, w} is a clique cutset separating S1(v3) from G. This shows that S1 = ∅. By (P9), one
of S2(v4, v0) and S2(v1, v2) is empty. In either case, there are at most S2(vi, vi+1) are non-
empty and each of them is a clique (by (P3)) and has at most two vertices (or G contains
a trivial obstruction K5). This implies that G has at most 13 vertices. A straightforward
(but tedious) case-by-case analysis according to how many vertices each non-empty S2(vi, vi+1)
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contains shows that G is either 4-colourable (this is a contradiction) or a trivial obstruction and
the lemma holds. This proves that S2(v2, v3) = ∅.

Now similar to Case 3 in Theorem 5.3.1, the following two cases are possible.

(i) S1(v2) 6= ∅ and S1(v3) 6= ∅ while S2(v1, v2) = S2(v3, v4) = ∅.

Then S2 = ∅ by (P8). If S1(v1) = ∅, then {v3, w} is a clique cutset separating S1(v3) from
G. This shows that S1(v1) 6= ∅. Similarly, S1(v4) 6= ∅. Let ui ∈ S1(vi) for i = 1, 2, 3, 4.
Note that w is either complete or anti-complete to S1. If w is anti-complete to S1, then
w− v2− u2− u4− u1− u3 induces a P6. Therefore, w is complete to S1, and thus w is a
universal vertex in G. This implies that G is a trivial obstruction and the lemma holds. �

(ii) S2(v1, v2) 6= ∅ and S2(v3, v4) 6= ∅ while S1(v2) = S1(v3) = ∅.

It then follows from (P9) that S2 = S2(v1, v2) ∪ S2(v3, v4). If x has a neighbour q ∈
S2(v3, v4), then C ′ = C \ {v0} ∪ {x} induces a 5-hole and its corresponding set S′3 of
3-vertices contains v0 and q. In other words, we are in Case 1. This shows that x is anti-
complete to S2. Since {v3, v4, w} is not a clique cutset separating S2(v3, v4), S2(v3, v4)
has a neighbour in S1(v1). Similarly, S2(v1, v2) has a neighbour in S1(v4). However, this
contradicts (P12). �

Now assume that S1(v0) 6= ∅. Let y be a vertex in S1(v0). Then S2(v1, v2)∪ S2(v3, v4) = ∅ by
(P8). Suppose first that S2(v2, v3) = ∅. Since d(v2) ≥ 4 and d(v3) ≥ 4, both S1(v2) and S1(v3)
are not empty. This implies that S2 = ∅ by (P10), and thus G = W ∪{x}∪S1. Let p ∈ S1(v3)
and q ∈ S1(v2). Note that w is either complete or anti-complete to S1. If w is complete to S1,
then w is a universal vertex in G. So, G is a trivial obstruction and the lemma holds. From now
on we assume that w is anti-complete to S1. If S1(v1) (or S1(v4)) contains a vertex t, then
w−v1− t−p−y− q (or w−v4− t− q−y−p) induces a P6 in G, a contradiction. This shows
that S1 = S1(v0) ∪ S1(v2) ∪ S1(v3). Moreover, S1(vj)(j = 0, 2, 3) is a clique (by (P3) ) and
contains at most two vertices (or G contains a trivial obstruction K5). Moreover, |S1(v0)| ≤ 2
since x is complete to S1(v0) by (P13). If S1(v0) = {y}, then both S1(v3) and S1(v2) have
exactly 3 vertices, since d(p), d(q) ≥ 4. Now S1(v3)∪S1(v2)∪{y, v2, v3} induces a G3,1. Since
G is a minimal obstruction, G = G3,1 but this contradicts the assumption that G contains a
W5. Therefore, S1(v0) contains a vertex y′ different from y, and S1(v0) = {y, y′}. Again,
since d(p) ≥ 4, S1(v3) contains a vertex p′ other than p. But then {v0, y, p, v3, v4, x, y

′, p′, w}
induces a GP4 with respect to the 5-hole v0 − y − p − v3 − v4 − v0. So, G = GP4 but this
contradicts the assumption that G contains a W5.

Now assume that S2(v2, v3) contains a vertex z. Since {v2, v3, w} is not a clique cutset sepa-
rating S2(v2, v3), S2(v2, v3) is not anti-complete to S1(v0). Without loss of generality, we may
assume that yz ∈ E. If wy ∈ E, then wz ∈ E since w−y−z−v3−w is not a C4. This implies
that G is a trivial obstruction arising from the graph F (see Figure 5.2). We assume, therefore,
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in the following that w is anti-complete to {y, z}, or more generally, to any edge between S1(v0)
and S2(v2, v3). On the other hand, S1 = S1(v0) by (P12). Furthermore, one of S2(v0, v1) and
S2(v0, v4) is empty by (P9), say S2(v0, v1) = ∅. This further implies that S2(v0, v4) = ∅ or
{w, x, v0, v4} is a clique cutset. Thus, G = W ∪ {x} ∪ S1(v0) ∪ S2(v2, v3). Note that neither
of S1(v0) and S2(v2, v3) contains a triangle or G contains a trivial obstruction K5. This implies
that any triangle T ⊆ S1(v0) ∪ S2(v2, v3) contains a vertex from both S1(v0) and S2(v2, v3),
and so T ∪W ∪ {x} is isomorphic to F1 or F2, i.e., G is isomorphic to either F1 or F2 if such
triangle exists. Therefore, no such triangle exists and the edges between S1(v0) and S2(v2, v3)
form a matching (since G is C4-free). Since d(y) ≥ 4 and d(z) ≥ 4, we conclude that y and
z have a neighbour y′ ∈ S1(v0) and z′ ∈ S2(v2, v3), respectively. Then y′z, yz′ /∈ E, and this
implies that y′z′ /∈ E or z′ − y′ − y − z − z′ induces a C4. If w is complete to {y′, z′}, then
{w, y, y′, z, z′x, v0, v2, v3} induces a G3,1 with respect to the 5-hole w − y −′ y − z − z′ − w.
So, G is isomorphic to G3,1 but this contradicts that G contains a W5 since G3,1 is W5-free.

If wy′ ∈ E, then wz′ /∈ E and so v1 − w − y′ − y − z − z′ induces a P6 in G. This shows
that wy′ /∈ E, and (by symmetry) that wz′ /∈ E. On the other hand, z is a universal vertex
in S2(v2, v3) by (P5), and this implies that z′ cannot have a neighbour in S2(v2, v3) different
from z, for otherwise G contains a trivial obstruction K5. Again, since d(z′) ≥ 4, z′ has
a neighbour y′′ in S1(v0). Clearly, y′′ /∈ {y, y′}. Recall that w is anti-complete to {z′, y′′}.
Then y′′ is not adjacent to y or y′, for otherwise either y′′ − y − z − z′ − y′′ induces a C4 or
y′′ − y′ − y − z − v3 − w induces a P6. Now y′′ must have a neighbour y′′′ ∈ S1(v0) since
d(y′′) ≥ 4. Clearly, y, y′, y′′, y′′′ are pairwise distinct. If y′′′ is adjacent to both y and y′′, then
{y, y′, y′′′, v0, x} induces a trivial obstruction K5. On the other hand, y′′′ is adjacent to at least
one of y and y′ since y′′′ − y′′ − z′ − z − y − y′ does not induce a P6. This implies that y′′′

is adjacent to exactly one vertex in {y, y′}. But then {y, y′, y′′, y′′′, z′, v2} induces a P6. This
final contradiction completes the proof of this case.

We have considered all the cases and hence our proof is complete. �

5.4.2 The case G is W5-free

We now investigate minimal obstructions with no induced W5.

Observation 5.4.3 Suppose that G is a (C4, P6,W5,K5)-free graph. Let C = v0 − v1 − v2 −
v3−v4−v0 be an induced five-cycle in G so that |S3| is minimum among all induced five-cycles.
Suppose that ti ∈ S3(vi) for i = 2, 3 and t2 and t3 are non-adjacent, then the the following
properties hold.

(O1) If both S1(vi−1) and S1(vi+1) are non-empty, then S3(vi) is anti-complete to S1(vi−1)∪
S1(vi+1).
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(O2) If S2(vi−1, vi) and S2(vi, vi+1) are non-empty, then S3(vi) is complete to S2(vi−1, vi) ∪
S2(vi, vi+1).

(O3) Let x ∈ S3(vi−1)∪ S3(vi+1) and pq be any edge with p ∈ S1(vi) and q ∈ S2(vi+2, vi+3).
Then x is anti-complete to {p, q}.

(The above three properties hold for any induced five-cycle.)

(O4) S2(v0, v1) contains a neighbour of t2 and S2(v0, v4) contains a neighbour of t3. In
particular, S2(v0, vj) is non-empty for j = 0, 4.

(O5) S2 = NS2(v0).

(O6) S2(v0, vj) is a clique of size at most two for j = 0, 4, and S2 contains at most three
vertices.

(O7) S1 is an empty set.

(O8) S3(vj) and S3(vj+1) are complete to each other for any j 6= 2.

(O9) Either S3(v2) or S3(v3) consists of a single element.

Proof. We prove them one by one. For (O1)-(O3), it suffices to prove for i = 0.

(O1). Let x, y and z be arbitrary vertices in S1(v4), S1(v1) and S3(v0), respectively. Then
xy ∈ E by (P2) and this implies that v4 − v0 − v1 − y − x − v4 induces a 5-hole. Since
{v4, v0, v1, x, y, z} does not induce aW5, it follows that z is not adjacent to x or y, say zx /∈ E.
Then it also implies that zy /∈ E or z − y − x − v4 − z induces a C4. This proves that z is
anti-complete to {x, y} and hence the claim (by (P2)).

(O2). Let x, y and z be arbitrary vertices in S2(v4, v0), S2(v0, v1) and S3(v0), respectively. Then
xy ∈ E by (P3). Since {v4, v0, v1, x, y, z} does not induce a W5, it follows that z is adjacent
to x or y, say zx ∈ E. Then it also implies that zy ∈ E, for otherwise z − x − y − v1 − z
induces a C4. So, the claim follows.

(O3). Without loss of generality, assume that x ∈ S3(v1). Note that v0 − v1 − v2 − q− p− v0

induces a 5-hole in G and x is adjacent to v0, v1 and v2. Then the same argument used in
(O1) shows that x is adjacent to neither p nor q. This proves (O3).

To prove (O4)-(O9), we consider the induced five-cycles C ′ = C\{v2}∪{t2}. Note that t3 /∈ S′3
since t3t2 /∈ E. It then follows from the minimality of C that S′3 ∩ (S1 ∪ S2) contains a vertex,
say p. It is easy to see by the definition of 3-vertex and (P7) that p ∈ S2(v3, v4)∪S2(v0, v1). In
addition, p is adjacent to t2. If p ∈ S2(v3, v4), then p is non-adjacent to t3 since {p, t3, t2, v2}
does not induce a C4. But now the induced five-cycle p− v4 − t3 − v2 − t2 − p and the vertex
v3 induce a W5. This shows that p lies in S2(v0, v1), i.e., S2(v0, v1) contains a neighbour of t2.
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By symmetrically considering the induced five-cycles C \ {v3} ∪ {t3}, it follows that S2(v0, v4)
contains a neighbour of t3, say q. This proves (O4) (see Figure 5.4 below).

Since S2(v0, vj) is non-empty for j = 0, 4, it follows by (P9) that S2(v2, v3) = ∅. On the other
hand, since pt2 ∈ E and qt3 ∈ E, it follows by (P11) that S2(v1, v2) = S2(v3, v4) = ∅. This
proves (O5). (O6) follows directly from (P3) and the fact that G is K5-free. Since S2(v0, vj)
is non-empty, we derive from (P8) that S1 = S1(v0). Moreover, if S1(v0) contains a vertex,
say u0, then t3− v3− t2− v1− v0−u0 induces a P6. This shows that S1 = ∅ and hence proves
(O7). (O8) follows immediately from (O4) and (O5).

Finally, suppose that both S3(v2) and S3(v3) have at least two vertices. Since G is K5-free, it
follows that |S3(vj)| = 2 for j = 2, 3. We assume that S3(v2) = {t2, t′2} and S3(v3) = {t3, t′3}.
We claim that S3(v2) ∪ S3(v3) contains at most one edge. To this end, assume without loss
of generality that t′2 and t′3 are adjacent. Since G is K5-free, t′2 and t′3 are non-adjacent to
t3 and t2, respectively. This further implies that t2 and t3 are non-adjacent, for otherwise
S3(v2) ∪ S3(v3) induces a C4. It follows from the proof of (O4) that S2(v0, v1) and S2(v0, v4)
contain two neighbours of t2 and t3, respectively. But then {v0} ∪ S2 contains a K5. This
contradiction proves (O9).

We have considered all items and hence our proof is complete. �

Figure 5.4: Illustration of (O4)-(O9). The blue part is the underlying 5-hole C. The fact that
t2 and t3 are non-adjacent implies that S2(v0, v1) contains a vertex p and S2(v0, v4)
contains a vertex q. Moreover, S2 = S2(v0, v1) ∪ S2(v0, v4), 2 ≤ |S2| ≤ 3 and
S1 = ∅.

We now prove the main result in this subsection.

Lemma 5.4.4 Suppose thatG is a (C4, P6,W5,K5)-free minimal obstruction to 4-Colourability.
Then G is isomorphic to one of the graphs in {G3,1, G2,2, G2,1,1, G1,1,1,1, H1, H2, GP4} (see Fig-
ure 5.3).
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Proof. LetG be a (C4, P6,W5,K5)-free minimal obstruction. By Lemma 5.2.2, G has δ(G) ≥ 4
and no clique cutset. Since G is an obstruction, G is not 4-colourable. We conclude that G is
imperfect, and thus G contains a 5-hole by the Strong Perfect Graph Theorem. We choose a
5-hole C = v0 − v1 − v2 − v3 − v4 − v0 such that

|S3| is as small as possible.

If both S3(vi) and S3(vi+2) contains at least two vertices for some i, then C∪S3(vi)∪S3(vi+2)
induces a subgraph that is isomorphic to G3,1, and since G is a minimal obstruction, we conclude
that G = G3,1. Moreover, since G is K5-free, each S3(vi) contains at most two vertices. This
shows that |S3| ≤ 7. In the remaining of the proof, we shall frequently consider some induced
five-cycle C ′ different from C. We define p-vertices with respect to C ′ the same way we define
these notions for C and adapt those definitions by employing the notation S′p. For instance, S′1
is the set of vertices in V \C ′ that are adjacent to exactly one vertex on C ′. Let s = (s0, . . . , s4)
be an integer vector. We say that C is of type s if S3(vi) has size si for each 0 ≤ i ≤ 4.

We proceed by considering different possibilities of types of C. It follows from (O9) that at
most one S3(vi) contains two vertices. Therefore, |S3| ≤ 6. If |S3| = 6, then there is some i
such that |S3(vi)| = 2 and |S3(vj)| = 1 for any j 6= i. Since G is K5-free, both S3(vi−1) and
S3(vi+1) are not complete to S3(vi). This, however, contradicts (O8). By the same token, there
are only two distinct configurations among S3 when |S3| = 5: C is of type either (1, 1, 1, 2, 0)
or (1, 1, 1, 1, 1). If C is of type (1, 1, 1, 1, 1), then S3 contains at most one non-edge due to
(O8). But then G contains GP4 as an induced subgraph. We now assume that C is of type
(1, 1, 1, 2, 0). Let ti ∈ S3(vi) for i 6= 4, and t′3 ∈ S3(v3). Since G is K5-free, we assume that
t2 and t3 are non-adjacent. This implies by (O8) that t0t1, t1t2 ∈ E, and therefore t2 and t′3
are non-adjacent, for otherwise C ∪ S3 \ {t3} induces a GP4 . It then follows from the proof of
(O4) that S2(v0, v1) contains two neighbours of t2, say q and q′, and that S2(v0, v4) contains
a neighbour p of t3, and S2 = {p, q, q′}. In addition, t0 is complete to S2 by (O2) and (O5).
But now {t0, v0, p, q, q

′} induces a K5, a contradiction. This proves that |S3| ≤ 4.

Case 1: 2 ≤ |S3| ≤ 4 and there is some i such that S3(vi) and S3(vi+1) are not complete
to each other.

Whenever possible, we choose i = 2. In other words, we always assume that some vertex
t2 ∈ S3(v2) is non-adjacent to a vertex t3 ∈ S3(v3).

Case 1.1. |S3| = 4 and S3(v3) = {t3, t′3}. It follows from (O8) and K5-freeness of G that
one of S3(v2) and S3(v4) is empty. We may assume that S3(v4) = ∅.

Case 1.1.a. S3(v2) = ∅. This means that |S3(vi)| = 1 for i = 0, 1. Let ti ∈ S3(vi) for
i = 0, 1.
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Then t0t1 /∈ E by (P4) and our assumption. It then follows from (O4) that S2(v2, v3)
and S2(v3, v4) are non-empty and S2 = S2(v2, v3)∪ S2(v3, v4). This implies that S3(v3) is
complete to S2 by (O2). But now {v3} ∪ S3(v3) ∪ S2 contains a K5, a contradiction.

Case 1.1.b. S3(v2) 6= ∅ and S3(v0) 6= ∅.

Let ti ∈ S3(vi) for i = 0, 2. We may assume that t3t2 /∈ E (since G has no K5). Let
p ∈ S2(v0, v4) and q ∈ S2(v0, v1) be a neighbour of t3 and t2, respectively, as shown in
(O4). Note that t0 is complete to NS2(v0) by (O2). Since G is K5-free, we conclude that
S2 = {p, q}. This further implies that t2t′3 ∈ E (for otherwise the minimality of C forces
S2 to have at least three vertices). Note that p and t′3 may or may not be adjacent. In
either case, G admits a 4-colouring, namely {v2, v4, q}, {v1, v3, p}, {t0, t2, t3}, {v0, t

′
3}.

Case 1.1.c. S3(v2) 6= ∅ and S3(v1) 6= ∅.

Let ti ∈ S3(vi) for i = 1, 2. We assume that t3t2 /∈ E. Moreover, t1 and t2 are adjacent
by (O8). Let p ∈ S2(v0, v4) and q ∈ S2(v0, v1) be a neighbour of t3 and t2, respectively,
as shown in (O4). Note that pt1 /∈ E since {p, t3, v2, t1} does not induce a C4. We now
claim that t2 is complete to S2(v0, v1). If t2q /∈ E, then either {t2, v1, q, p} induces a C4

or t2 − v1 − q − p − v4 − v3 induces a P6, depending on whether t2p ∈ E. This proves
the claim and therefore S2(v0, v1) = {q}. This, together with the proof of (O4), implies
that t2t′3 ∈ E. Then pt′3 /∈ E since {p, q, t2, t′3} does not induce a C4. Now G admits a
4-colouring, namely {v1, v3} ∪ S2(v0, v4) \ {p}, {v2, v4, q}, {v0, t2, t3}, {t1, t′3, p}.

Case 1.2. |S3| = 4 and every S3(vi) contains at most one vertex.

By symmetry, let ti ∈ S3(vi) for i 6= 0. Then, there is exactly one index i ∈ {1, 2, 3} such that
titi+1 /∈ E.

Case 1.2.a. t2t3 /∈ E, and t1t2, t3t4 ∈ E.

Let p ∈ S2(v0, v4) and q ∈ S2(v0, v1) be a neighbour of t3 and t2, respectively, as shown
in (O4). Applying the same argument in Case 1.1.c, we conclude that t1 is complete to
S2(v0, v1) and therefore S2(v0, v1) = {q}. Symmetrically, S2(v0, v4) = {p}. Now G admits
a 4-colouring, namely {v2, v4, q}, {v1, v3, p}, {v0, t2, t3}, {t4, t1}.

Case 1.2.b. t3t4 /∈ E, and t1t2, t2t3 ∈ E.

Let p ∈ S2(v0, v1) and q ∈ S2(v1, v2) be a neighbour of t4 and t3, respectively, as shown
in (O4). Note that t1 is complete to S2 by (O2). This implies that S2 = {p, q} since
G is K5-free. Moreover, qt2 /∈ E since {t1, t2, v1, v2, q} is not a K5. Now G admits a
4-colouring, namely {v0, q, t2}, {v2, v4, p}, {t1, t3, t4}, {v1, v3}.

Case 1.3. 2 ≤ |S3| ≤ 3, and S3(vi) = {ti} for i = 2, 3 with t2t3 /∈ E.
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It follows from (O4) that t3 and t2 have a neighbour p ∈ S2(v0, v4) and q ∈ S2(v0, v1),
respectively.

Case 1.3.a. S3(v0) = {t0}.

It follows from (O2) that t0 is complete to S2. Consequently, S2 = {p, q}. Now G admits
a 4-colouring: {v0, t2, t3}, {v1, v3, p}, {v2, v4, q}, {t0}.

Case 1.3.b. S3(v1) = {t1}.

Note first that t1p /∈ E since {t1, p, t3, v2} does not induce a C4. This implies that t1q ∈ E,
for otherwise t1 − v1 − q − p − t3 − v3 induces a P6. This shows that t1 is complete to
S2(v0, v1) and thus S2(v0, v1) = {q}. Let p′ ∈ S2(v0, v4) be a second (possible) vertex.
Now G admits a 4-colouring, namely {v0, t2, t3}, {v1, v3} ∪ S2(v0, v4) \ {p}, {v2, v4, q},
{t1, p}.

Case 1.3.c. S3(v3) \ {t3} contains at most one vertex, say t′3.

Note that 2 ≤ |S2| ≤ 3 by (O5) and (O6). Let r be a possible third vertex in S2. We
claim that t′3r /∈ E. If t′3 does not exist, the claim is trivially true. Now assume that
t′3 exits. If t′3t2 /∈ E, then the proof of (O4) shows that r ∈ S2(v0, v1) and this implies
that rt′3 /∈ E by (P7). So, t′3t2 ∈ E and r ∈ S2(v0, v4). This implies that rt′3 /∈ E, for
otherwise {r, t′3, t2, q} induces a C4. This proves the claim. Now G admits a 4-colouring,
namely {v0, t2, t3}, {v1, v3, p}, {v2, v4, q}, {t′3, r}.

This completes the proof of Case 1. In the following, we assume that |S3| ≤ 4 and S3(vi)
and S3(vi+1) are complete to each other for each i. If |S3| = 4 and there is some i such that
|S3(vi)| = 2, say i = 3, then it must be the case that S3(v0) 6= ∅ and S3(v1) 6= ∅. But then G
is G2,2. If |S3| = 4 and each S3(vi) has at most one vertex, then G is GP4 . Therefore, |S3| ≤ 3.
We distinguish four cases.

Case 2: |S3| ≤ 2 and S3 = S3(v0) ⊆ {t0, t′0}.

It follows from (P9) that there exists some index i such that NS2(vi) = ∅. We consider two
subcases.

Case 2.1. S1 = ∅.

Since δ(G) ≥ 4, it follows that S3(v0) = {t0, t′0}. In addition, i /∈ {2, 3}. By symmetry, there
are two subcases.

Case 2.1.a. i = 1, i.e., S2(v0, v1) ∪ S2(v1, v2) = ∅.

Since d(v2) ≥ 4, it follows that S2(v2, v3) contains at least two vertices, say d23 and d′23.
Recall that S3(v0) is anti-complete to S2(v2, v3) by (P7). This implies that S2(v3, v4)
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contains a vertex, say d34, for otherwise {v2, v3} is a clique cutset separating S2(v2, v3)
from G. It then follows from (P3) and K5-freeness of G that S2(v2, v3) = {d23, d

′
23} and

S2(v3, v4) = {d34}. Moreover, S2(v0, v4) is a clique of size at most two, and let S2(v0, v4) ⊆
{d04, d

′
04}. Since G is (K5, C4)-free, S2(v0, v4) ∪ S3(v0) contains at most one edge. We

may assume by symmetry that {d04, t
′
0} is the only (possible) edge in S2(v0, v4) ∪ S3(v0).

Now G admits a 4-colouring, namely {v0, v2, d34}, {v1, v4, d23}, {v3, d04, t0}, {t′0, d′23, d
′
04}.

Case 2.1.b. i = 0, i.e., S2(v0, v1) ∪ S2(v0, v4) = ∅.

Suppose first that S2(v2, v3) = ∅. Since d(vj) ≥ 4 for j = 2, 3, it follows that S2(v1, v2)
and S2(v3, v4) contain at least two vertices. Recall that S2(v1, v2) and S2(v3, v4) are anti-
complete to each other by (P3). Since {v1, v2} does not separate S2(v1, v2), we may
assume that t0 has a neighbour in S2(v1, v2), and therefore t0 is complete to S2 by (P11).
This implies that S2(vi, vi+1) is a clique of size two for i = 1, 3. Now C \ {v0} ∪ {t0} ∪ S2

contains G3,1 as an induced subgraph. This settles the case that S2(v2, v3) = ∅. In the
following we assume that S2(v2, v3) 6= ∅. Since {v2, v3} does not separate S2(v2, v3),
S2(v1, v2) ∪ S2(v3, v4) 6= ∅, say S2(v1, v2) is non-empty. If S2(v3, v4) is also non-empty,
then S3 is anti-complete to S2 by (P11), and it is easy to check that G admits a 4-
colouring. This shows that S2 = S2(v1, v2) ∪ S2(v2, v3). Since d(v3) ≥ 4, it follows that
S2(v2, v3) = {d23, d

′
23} and S2(v1, v2) = {d12}. Now G admits a 4-colouring, namely

{v1, v4, d23}, {v3, v0, d12}, {t0, v2}, {t′0, d′23}.

Case 2.2. S1(v0) 6= ∅.

Then S2(v1, v2) ∪ S2(v3, v4) = ∅ by (P8). Suppose first that S3(v0) ⊆ {t0}. Since d(vj) ≥ 4
for j = 3, 4, we conclude that either S2(v2, v3) and S2(v0, v4) are non-empty or S1(vj) 6= ∅ for
j = 3, 4 and S2(v2, v3)∪S2(v0, v4) = ∅. In the former case, it follows from (P8) and (P9) that
S2(v0, v1) = ∅ and S1(v1) = ∅. Consequently, v1 has degree at most three in G and this is a
contradiction. Therefore, both S1(v3) and S1(v4) are non-empty. Symmetrically, it follows that
S1(v1) and S1(v2) are non-empty. In other words, S1(vi) 6= ∅ for each i ∈ {0, 1, 2, 3, 4}. This
implies that S2 = ∅ by (P10). Let ui ∈ S1(vi) for each i. If S3 = ∅, then since δ(G) ≥ 4, each
set S1(vi) contains at least two vertices, and then S1 contains GP4 as an induced subgraph.
Therefore, let S3(v0) = {t0}. Note that |S1(vj)| ≥ 2 for j = 2, 3, and |S1(v0)| ≤ 2 since G is
K5-free. Furthermore, each S1(vi) is a clique of size at most three and |S1(vi)∪ S1(vi+2)| ≤ 4
by (P2) and the fact that G is K5-free. In the following we shall use u′i and u′′i to denote the
second and the third vertex in S1(vi), respectively (if they exist).

Case 2.2.a. |S1(v0)| = 2.

This implies that |S1(vj)| = 2 for j = 2, 3. If S1(v1) or S1(v4) contains two vertices, then
S1 is GP4 . Therefore, both S1(v1) and S1(v4) are singletons. Now G admits a 4-colouring,
namely {v2, v4, u0, u1}, {v1, v3, u

′
0, u4}, {v0, u2, u3}, {t0, u′2, u′3}.
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Case 2.2.b. |S1(v0)| = 1.

We may assume that |S1(v1)| = 1, for otherwise S1 contains GP4 . If |S1(v2)| = |S1(v3)| =
3, then {u0, v2, v3} ∪ S1(v2) ∪ S1(v3) induces a G3,1. Suppose first that |S1(v3)| = 3.
Then |S1(v2)| = 2. If |S1(v4)| = 2, then S1 induces a G2,2. Otherwise, |S1(v4)| = 1 and
G admits a 4-colouring, namely {v1, v4, u2, u3}, {v0, v2, u

′′
3, u4}, {v3, u0, u1}, {t0, u′2, u′3}.

Now assume that |S1(v3)| = 2. Note that |S1(v4)| ≤ 2. Since |S1(v2) ∪ S1(v4)| ≤ 4,
either |S1(v2)| = 2 and |S1(v4)| = 2 or |S1(v2)| = 3 and |S1(v4)| = 1. Let r be either the
third vertex in S1(v2) or the second vertex in S1(v4). Now G admits a 4-colouring, namely
{v1, v4, u2, u3}, {v0, v3, u1, u

′
2}, {v2, u0, u4}, {t0, u′3, r}.

This completes the proof for the case |S3| ≤ 1. In the following we let S3(v0) = {t0, t′0}.
Recall that our assumption is that S1(v0) 6= ∅. Let u0 be a vertex in S1(v0). Since
{v0, t0, t

′
0} is not a clique cutset separating S1(v0) from G, u0 has a neighbour in S1 ∪ S2,

and the neighbour lies in S1(v2) ∪ S1(v3) ∪ S2(v2, v3) by (P2) and (P3).

Case 2.2.c. u0 has a neighbour in S1(v2).

In particular, S1(v2) 6= ∅. It then follows from (P10) that S2 = ∅. Since d(vj) ≥ 4, we
conclude that S1(vj) contains at least two vertices for j = 2, 3. Moreover, S1(vj) is a clique
by (P2) for j = 0, 2, 3, and hence S1(v0) = {u0} (recall that G is K5-free). If |S1(v2)| ≥ 3,
then {v0, t0, t

′
0, v1, u0, v2} ∪ S1(v2) induces a G3,1. This shows that |S1(v2)| = 2. By

symmetry, |S1(v3)| = 2. On the other hand, if |S1(v1)| ≥ 2, then {v0, t0, t
′
0, v1, u0} ∪

S1(v1) ∪ S1(v3) induces a G2,2. This shows that |S1(v1)| ≤ 1, and likewise |S1(v4)| ≤ 1.
Now it is not difficult to see that G admits a 4-colouring.

Case 2.2.d. u0 has a neighbour d23 in S2(v2, v3).

Recall that S3(v0) is complete to S1(v0) by (P13), and S1 = S1(v0) by (P12). Moreover,
S2(v1, v2), S2(v3, v4), and one of S2(v0, v1) and S2(v0, v4) are empty by (P8) and (P9).
By symmetry, we assume that S2(v0, v1) = ∅. This implies that S2(v0, v4) is also empty,
for otherwise {v0, v4, x, x

′} is a clique cutset. This shows that S2 = S2(v2, v3). If u0 has
two neighbours in S2(v2, v3), then the two neighbours, u0 and C ∪ S3(v0) induce a G2,1,1.
If d23 has two neighbours in S1(v0), then the two neighbours and {v0, t0, t

′
0} induce a K5.

This proves that the edges between S1(v0) and S2(v2, v3) form a matching. If u′0d′23 is an
edge between S1(v0) and S2(v2, v3) different from u0d23, then d23 and d′23 are adjacent to
by (P5), and therefore u0 and u′0 are not adjacent due to the C4-freeness of G. Recall
that u0 and u′0 are adjacent to t0 and t′0. But then C ∪ {t0, t′0, u0, u

′
0, d23, d

′
23} induces

a G1,1,1,1. Therefore, {u0, d23} is the only edge between S1(v0) and S2(v2, v3). Since
G has no clique cutset, we conclude that S1(v0) = {u0} and S2(v2, v3) = {d23}. Now
G = C ∪ {t0, t′0, u0, d23} and admits a 4-colouring.
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Note that the proof of Case 2.2 shows that S1(vi) = ∅ for each i if S3 = ∅. Hence, Case 2.1
and Case 2.2 reach a contradiction if S3 = ∅. In the following, we assume that {t0} ⊆ S3(v0) ⊆
{t0, t′0}. Moreover, S1(v0) = ∅.

Case 2.3. S1(v2) 6= ∅.

Since {v2} does not separate S1(v2) from G, S1(v2) has a neighbour in either S2(v0, v4) or
S1(v4). If S1(v2) has a neighbour in S2(v0, v4), then S1 = S1(v2) by (P12). Furthermore,
S2(v3, v4) = ∅ by (P8). Since d(v3) ≥ 4, it follows that S2(v2, v3) 6= ∅. This implies that
S2(v1, v2) = ∅ by (P9). Recall that S1(v0) = ∅ and S2(v2, v3) is anti-complete to S2(v0, v4)
by (P3). Now {v2, v3} is a clique cutset separating S2(v2, v3) from G. Therefore, S1(v2) has
a neighbour in S1(v4), and consequently S2 = ∅ by (P10). Since d(vj) ≥ 4, it follows that
|S1(vj)| ≥ 2 for j = 2, 3. In particular, S1(v3) 6= ∅ and this implies that S1(v1) 6= ∅, for
otherwise {v3} is a clique cutset. Note that S3(v0) is anti-complete to S1 by (O1) and (P6).
If S3(v0) = {t0}, this implies that d(t0) = 3, a contradiction. Therefore, S3(v0) = {t0, t′0}. If
|S1(v1) ∪ S1(v4)| ≥ 4, then {v0, t0, t

′
0, v1, v4} ∪ S1(v1) ∪ S1(v4) induces a G3,1 or G2,2. This

shows that 2 ≤ |S1(v1) ∪ S1(v4)| ≤ 3. Without loss of generality, assume that |S1(v1)| = 1.
If |S1(v2)| = 3, then |S1(v4)| = 1; otherwise |S1(v2)| = 2 and |S1(v4)| ≤ 2. In either case,
|S1(v3)| ≤ 3. Let ui, u′i, u′′i be the first, second, and third vertex (if exist) in S1(vi), respectively,
for i 6= 0. For example, u2, u

′
2 and u4 exist but u′′2 or u′4 may not exist. In fact, we denote x a

possible third vertex in S1(v2) or second vertex in S1(v4). Now G admits a 4-colouring, namely
{v0, v3, u1, u2}, {v1, v4, u

′
2, u
′
3}, {v2, u3, u4, t0}, {t′0, u′′3, x}. This completes the proof of this

subcase.

Therefore, S1(v2) = ∅. By symmetry, S1(v3) = ∅. Due to Case 2.1 and Case 2.2, we assume
by symmetry that S1(v1) 6= ∅. Then S2(v2, v3) = ∅ by (P8). Since {v1} ∪ S3(v0) does not
separate S1(v1) from G, S1(v1) has a neighbour in either S1(v4) or S2(v3, v4). If S1(v1) has
a neighbour in S1(v4), then S2 = ∅ by (P10) and therefore v3 has degree two in G. This
contradicts the fact that δ(G) ≥ 4. Therefore, S1(v1) has a neighbour in S2(v3, v4). This
implies that S1 = S1(v1) by (P12). Since d(v2) ≥ 4 and d(v3) ≥ 4, it follows that both
S2(v1, v2) and S2(v3, v4) have at least two vertices. Thus, S2 = S2(v1, v2) ∪ S2(v3, v4) by
(P9). Since {v1, v2} does not separate S2(v1, v2) from G, S2(v1, v2) is not anti-complete to
S3(v0), say t0 has a neighbour in S2(v1, v2). This implies that t0 is complete to S2 by (P11).
But now C \ {v0} ∪ {t0} ∪ S2 induces a G3,1. This completes the proof of this case.

Case 3: Let ti ∈ S3(vi) for i = 0, 1, 4.

By our assumption, t0tj ∈ E for j = 1, 4. We consider two subcases.

Case 3.1. S2(v2, v3) is empty.
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Since δ(G) ≥ 4, it follows from (P8) that either both S2(v1, v2) and S2(v3, v4) are non-empty
but S1(v2) and S1(v3) are empty or both S2(v1, v2) and S2(v3, v4) are empty but S1(v2) and
S1(v3) are non-empty.

Case 3.1.a. S2(v1, v2) 6= ∅, S2(v3, v4) 6= ∅, and S1(v2) = S1(v3) = ∅.

Then S2 = S2(v1, v2) ∪ S2(v3, v4) by (P9) and our assumption that S2(v2, v3) is empty.
Moreover, S1 = S1(v1) ∪ S1(v4) by (P8). Since S2 6= ∅, we may assume by (P10) that
S1(v4) = ∅. If t0 has no neighbour in S2(v1, v2), then {v1, v2, t1} is a clique cutset of
G separating S2(v1, v2) from G. This shows that t0 has a neighbour in S2(v1, v2) and
therefore is complete to S2 by (P11). Recall that t0 is adjacent to both t1 and t4. Let d12

and d34 be a vertex in S2(v1, v2) and S2(v3, v4), respectively. Now the induced five-cycle
C \ {v0} ∪ {t0} together with {d12, t1, d34, t4} induces a G3,1. This completes the proof of
this subcases.

Case 3.1.b. S1(vj) 6= ∅ for j = 2, 3, and S2(v1, v2) ∪ S2(v3, v4) = ∅.

Then S2 = ∅ by our assumption and (P8). Note that |S1(v0)| ≤ 2. Let ui ∈ S1(vi) for
i = 2, 3. We first claim that S1(v0) = ∅. Suppose not, let u0 ∈ S1(v0). Then u0 is adjacent
to u2 and u3 by (P2). Furthermore, t1 and t4 are anti-complete to {u0, u2} and {u0, u3},
respectively by (O3). Consider the induced five-cycle C ′ = u3 − v3 − v2 − u2 − u0 − u3.
Note that tj , vj /∈ S′3 for j = 0, 1, 4. It follows from minimality of C that S′3 ∩ S1 contains
at least three vertices. Clearly, these vertices are in S1(v0) ∪ S1(v2) ∪ S1(v3). If S1(v2)
contains two of them, then {v2, u0} ∪ S1(v2) ∪ {v0, t0, v1, t1} induces a G2,2. This shows
that |S′3 ∩ S1(v2)| ≤ 1. Similarly, |S′3 ∩ S1(v3)| ≤ 1. Moreover, |S′3 ∩ S1(v0)| ≤ 1. This
implies that |S′3 ∩ S1(vj)| = 1 for j = 0, 2, 3. But now {v0, t0, v1, t1} ∪ S1(v0) ∪ S1(v2)
induces a GP4 . This shows that S1(v0) is indeed empty. Since G has no clique cutset, it
follows that S1(vj) contains a vertex, say uj , for j = 1, 4. If S1(v1) or S1(v4) contains two
vertices, then {v0, v1, v4, t0, t1, t4} ∪ S1(v1) ∪ S1(v4) contains a GP4 . Since d(u2) ≥ 4, it
follows that |S1(v2)| = 3. Similarly, |S1(v3)| = 3. Now it is easy to check that G admits a
4-colouring.

Case 3.2. S2(v2, v3) 6= ∅.

Let d23 be a vertex in S2(v2, v3). It follows from (P8) to (P10) that there are at most two
non-empty S1(vi). If there exists i such that S1(vi) 6= ∅ and S1(vi+1) 6= ∅, then i = 2 due to
(P8) and the fact that S2(v2, v3) 6= ∅. But then {v2, t1} is a clique cutset separating S1(v2).
In other words, S1 = S1(vi) for some i. Note that i 6= 1, 4 by (P8). If S2(v1, v2) contains two
vertices d12 and d′12, then t1 is non-adjacent to one of them, say d12. Since {t1, v1, d12, d23}
does not induce a C4, t1 is not adjacent to d23. But then t1− v1− d12− d23− v3− v4 induces
a P6. This proves that |S2(v1, v2)| ≤ 1. Similarly, |S2(v3, v4)| ≤ 1. Furthermore, if t1 has two
neighbours in S2(v2, v3), say r and r′, then the induced five-cycle v0 − t1 − r − v3 − v4 − v0
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and its four 3-vertices {v2, r
′, t0, t4} induce a G2,2. This shows that tj (j = 1, 4) has at most

one neighbour in S2(v2, v3). Thirdly, no vertex in S2(v2, v3) is adjacent to both t1 and t4, for
otherwise the vertex, v0, v1 and v4 induce a C4.

Case 3.2.a. S1 = ∅.

If S2(v1, v2)∪S2(v3, v4) 6= ∅, then S2(v2, v3) is a clique of size at most two by (P3). Assume
that S2(v2, v3) ⊆ {d23, d

′
23}. By symmetry, assume that S2(v1, v2) = {d12}. Consider first

that S2(v0, v1) is empty. Recall that |S2(v3, v4)| ≤ 1 and we let S2(v3, v4) ⊆ {d34}. Note
that t0 is anti-complete to S2 by (P11) if S2(v3, v4) 6= ∅. If S2(v2, v3) = {d23, d

′
23},

then tj has a non-neighbour nj ∈ S2(v2, v3) for j = 1, 4. Now G admits a 4-colouring,
namely {v2, t0} ∪ S2(v3, v4), {v3, v0, d12}, {v4, t1, n1}, {v1, t4, n4} or {v2, t0} ∪ S2(v3, v4),
{v3, v0, d12}, {t1, t4, n1}, {v4, v1}∪S2(v2, v3)\{n1} depending on whether or not n1 = n4.
If S2(v2, v3) = {d23}, then G admits a 4-colouring, namely {v2, t0, d34}, {v3, v0, d12},
{v4, v1, d23}, {t1, t4}. This shows that S2(v0, v1) 6= ∅. It follows from (P11) and (O2)
that t4 is anti-complete to S2 and that t1 is complete to NS2(v1). This implies that
S2(v0, v1) = {d01} and t0 and d01 are non-adjacent since G is K5-free. Recall that t1 has
at most one neighbour in S2(v2, v3), say d23 is the only possible neighbour of t1. Now
G admits a 4-colouring, namely {v2, t0, d01}, {v0, v3, d12}, {v1, v4, d23}, {t1, t4, d′23} (the
vertex d′23 may or may not exist).

We have shown that S2(v1, v2) ∪ S2(v3, v4) = ∅. Suppose now that S2(v0, v4) contains a
vertex d04. Since {v0, v4, t0, t4} does not separate S2(v0, v4) from G, t1 has a neighbour
in S2(v0, v4) and this implies that t1 is complete to S2 by (P11), and each non-empty
S2(vj , vj+1) is a clique of size at most two. In addition, d04 and t0 are adjacent, since
{v4, d04, t1, t0} does not induce a C4. This implies that t0 is complete to S2(v0, v4) and
therefore S2(v0, v4) = {d04}. On the other hand, if S2(v2, v3) contains a vertex different
from d23, say d′23, then C ′ ∪ {v2, d

′
23, t0, t4} induces a G2,2. This shows that S2(v2, v3) =

{d23}. Note also that t4d04 /∈ E or {v0, v4, t0, t4, d04} induces a K5. Recall that S2 =
{d23, d04} by (P9) and (P11). Now G admits a 4-colouring, namely {v3, t0}, {v0, v2},
{v1, d23, d04, t4}, {v4, t1}. This proves that S2(v0, v4) = ∅ and similarly S2(v0, v1) = ∅.
Now G = C ∪ {t0, t1, t4} ∪ S2(v2, v3). Note that S2(v2, v3) is a bipartite graph. Let
S2(v2, v3) = X ∪Y be a bipartition of S2(v2, v3). Recall that tj has at most one neighbour
in S2(v2, v3) and we call this neighbour nj for j = 1, 4. If n1 and n4 lie in the same partite
of S2(v2, v3), say in X, then G admits a 4-colouring, namely {v2, t0}, {v3, v0}, {t4, t1}∪Y ,
{v1, v4} ∪X. Otherwise n1 and n4 are in different partite, say n1 ∈ X and n4 ∈ Y , then
G admits a 4-colouring, namely {v2, t0}, {v3, v0}, {v4, t1} ∪ Y , {v1, t4} ∪X.

Now we can assume that S1 = S1(vi) 6= ∅ for some i. Recall that i ∈ {0, 2, 3}.

Case 3.2.b. i = 2, i.e., S1 = S1(v2) 6= ∅.
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Let u2 ∈ S1(v2). Since {v2, t1} is not a clique cutset separating S1(v2) from G, S1(v2) is
not anti-complete to S2(v0, v4). We may assume that u2 has a neighbour d04 ∈ S2(v0, v4).
Then S2 = S2(v2, v3) ∪ S2(v0, v4) by (P8) and (P9). It follows from (O3) that t1 is anti-
complete to {u2, d04}. This implies that t1 is anti-complete to S2 by (P11). Consider the
induced five-cycle C ′ = d04−u2−v2−v3−v4−d04. Note that t0, t1, v0, v1 /∈ S′3. This implies
that S′3∩(C∪S3) ⊆ {t4}. It follows from the minimality of C that S′3∩(S1∪S2) contains at
least two vertices, say r and r′. Clearly, r, r′ /∈ S2(v2, v3). Since d23−v2−u2−d04−v0−t0
does not induce a P6, t0 is adjacent to d04. This shows that d04 is the only neighbour
of u2 in S2(v0, v4), for otherwise {t0, v0, v4} ∪ S2(v0, v4) contains a K5. Consequently,
r, r′ /∈ S2(v0, v4). Therefore, r, r′ ∈ S1(v2). By the definition of S′3, r and r′ are adjacent
and they are also adjacent to u2. But then {u2, r, r

′, v2, d04} induces a K5 minus an edge
and {t0, v0, t1, v1} induces a K4, and the union induces a G2,2.

Case 3.2.c. i = 0, i.e., S1 = S1(v0) 6= ∅.

Let u0 ∈ S1(v0). Then S2(v1, v2)∪ S2(v3, v4) = ∅ by (P8). Suppose first that d23u0 ∈ E.
Consider the induced five-cycle C ′ = u0 − v0 − v1 − v2 − d23 − u0. Clearly, v3, v4 /∈ S′3.
In addition, t4 is anti-complete to {u0, d23} by (O3). This implies that t4 /∈ S′3. It
follows from the minimality of C that S′3 ∩ (S1 ∪ S2) contains a vertex, say r. Note that
r /∈ S2(v0, v4) ∪ S2(v0, v1), and this means that r ∈ S1(v0) ∪ S2(v2, v3). By the definition
of S′3, r is adjacent to u0 and d23. Now G is isomorphic to either H1 or H2 depending
on whether r ∈ S1(v0) or r ∈ S2(v2, v3). We have therefore shown that S1(v0) and
S2(v2, v3) are anti-complete to each other. This implies that {t1, t4} is complete to S1(v0)
since G has no clique cutset. On the other hand, since {v2, v3} is not a clique cutset
separating S2(v2, v3) from G, we may assume that d23t1 ∈ E. Then d23t4 /∈ E since
G is C4-free. Since d23 has at least four neighbours in G, it follows that there exists a
vertex, say d′23, in S2(v2, v3) with d′23d23 ∈ E. If d′23t1 ∈ E, then {d23, d

′
23, v2, v3, t1} and

{v4, t4, v0, t0} induce a G2,2. If d′23t4 ∈ E, then {u0, v0, t0, t1, t4} and {v2, v3, d23, d
′
23}

induce a G2,2. This shows that d′23 is anti-complete to {t1, t4}. Since d′23 has at least four
neighbours in G, it follows that there exists a vertex d′′23 ∈ S2(v2, v3) with d′′23 6= d23 and
d′′23d

′
23 ∈ E. Moreover, d23d

′′
23 /∈ E since {d23, d

′
23, d

′′
23, v2, v3} is not a K5, and d′′23t1 /∈ E,

since d′′23− t1−d23−d′23−d′′23 is not a C4. Note that P = d′′23−d′23−d23− t1 now induces
a P4. Since P − u0 − t4 does not induce a P6, d′′23 is adjacent to t4. But now v4 − t4 − P
induces a P6. This completes the proof of the case.

Case 4: Let {t0} ⊆ S3(v0) ⊆ {t0, t′0} and S3(v2) = {t2}.

Case 4.1. S1(v3) contains a vertex u3.
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Since {v3, t2} is not a clique cutset separating S1(v3) from G, we may assume that u3 has a
neighbour, say n, in S2(v0, v1) or in S1(v0) ∪ S1(v1). If n ∈ S2(v0, v1), then S1 = S1(v3)
and S2(v0, v4) ∪ S2(v1, v2) = ∅ by (P8) and (P12). If S3 = {t0, t2}, then since d(vj) ≥ 4 for
j = 2, 4, it follows that both S2(v2, v3) and S2(v3, v4) are non-empty. This, however, contradicts
(P9). If S3 = {t0, t′0, t2}, it then follows from (O3) that t2 is anti-complete to {n, u3}. Since
t2 − v3 − u3 − n − v0 − t0 does not induce a P6, n is adjacent to t0. Similarly, nt′0 ∈ E. But
then {n, v0, v1, t0, t

′
0} induces a K5. This proves that S1(v3) is anti-complete to S2(v0, v1), and

therefore n ∈ S1(v0) ∪ S1(v1). This implies that S2 = ∅ by (P10). Since d(v2) ≥ 4, it follows
that S1(v2) contains a vertex, say u2. In the remaining proof of this case, for each i we shall
use ui, u′i and u′′i to denote the first, second and the third vertex in S1(vi), respectively (if they
exist).

Case 4.1.a. S3 = {t0, t2}.

Note first that |S1(vj)| ≤ 2 for j = 0, 2. In addition, if both S1(v0) and S1(v2) have size two,
then {v0, v1, v2, t0, t2}∪S1(v0)∪S1(v2) induces a GP4 . Thus, one of S1(v0) and S1(v2) has
size one. Since δ(G) ≥ 4 and S2 = ∅, it follows that S1(vi) contains a vertex ui for i 6= 1.
Let u1 be a vertex in S1(vi) if S1(vi) is not empty. Note that C ′ = v3−u3−u1−u4−v4−v3

is an induced five-cycle. Clearly, S′3 ⊆ S1(v1)∪ S1(v3)∪ S1(v4). We consider the following
subcases in terms of the size of S1(v1). If |S1(v1)| = 3, then |S1(v3)| = |S1(v3)| = 1,
since G is K5-free. This implies that |S′3| = 2 and we are in Case 2. Now assume that
|S1(v1)| = 2. Then |S1(v3)| ≤ 2 and |S1(v4)| ≤ 2. If both S1(v3) and S1(v4) have size
two, then |S1(v0)| = |S1(v2)| = 1, for otherwise S1 contains a GP4 . Thus, G admits a
4-colouring, namely {v0, v2, u3, u4}, {v1, u

′
3, u
′
4}, {v4, u0, u1, t2}, {v3, u2, u

′
1, t0}. So, we

may assume that |S1(v4)| = 1. It then follows from the minimality of C that |S1(v3)| = 2.
Moreover, if |S1(v0)| = 2, then S1(v3)∪S1(v1)∪S1(v0)∪{t0, v0, v1} induces a GP4 . Hence,
S1(v0) = {u0}. Now G admits a 4-colouring, namely {v0, u3, u4, t2}, {v1, v4, u

′
3, u2},

{v2, u0, u1}, {v3, u
′
1, u
′
2, t0}.

Next, assume that |S1(v1)| = 1. Suppose first that |S1(v3)| = 3. Then |S1(v0)| = 1. If
|S1(v4)| > 2, then S1(v3) ∪ S1(v4) ∪ {u1, v3, v4} induces a G3,1. On the other hand, if
|S1(v4)| < 2, then C ′ has S′3 = S′3(u3) and |S′3| = 2, and thus we are in Case 2. This shows
that |S1(v4)| = 2. This implies that |S1(v2)| = 1, for otherwise S1 induces a G2,2. Now G

admit a 4-colouring: {v1, v4, u2, u3}, {v0, u4, u
′
3, t2}, {v2, u

′′
3, u
′
4, t0}, {v3, u0, u1}. Thus,

we have |S1(v3)| ≤ 2. By symmetry, |S1(v4)| ≤ 2. It then follows from the minimality of
C that |S1(v3)| = |S1(v4)| = 2. Recall that |S1(vj)| ≤ 2 for j = 0, 2, and one of S1(v0)
and S1(v2) have size one. Without loss of generality, assume that S1(v0) = {u0}. Now G

admit a 4-colouring: {v2, u0, u4}, {u3, u
′
4, t0, t2}, {v0, v3, u1, u2}, {v1, v4, u

′
2, u
′
3}.

Finally, assume that |S1(v1)| = 0. If t0 is adjacent to u4, then t0−u0−u2−u4− t0 induces
a C4. This shows that t0 is anti-complete to S1(v4). Similarly, t2 is anti-complete to S1(v3).
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Suppose first that |S1(v4)| = 3. Then |S1(v2)| = 1. If |S1(v0)| = 2, then {v0, v4, t0, u2} ∪
S1(v0) ∪ S1(v4) induces a G2,2. Hence, |S1(v0)| = 1. Let S1(v3) ⊆ {u3, u

′
3, u
′′
3}. Then G

admits a 4-colouring, namely {v3, u0, u4}, {v0, u3, u
′
4, t2}, {v2, u

′′
4, u
′
3, t0}, {v1, v4, u2, u

′′
3}.

So, |S1(v4)| ≤ 2. Symmetrically, |S1(v3)| ≤ 2. We may assume that S1(v0) = {u0}. Now
G is an induced subgraph of the graph in the case where |S1(v1)| = 1 and |S1(vj)| ≤ 2 for
j = 3, 4. Hence, G is 4-colourable. This completes the proof of this subcase.

Case 4.1.b. S3 = {t0, t′0, t2}.

We first show that S1(v0) = ∅. Suppose not, let u0 ∈ S1(v0). Since G is K5-free, we
have S1(v0) = {u0}. If |S1(v3)| = 3, then {v0, t0, t

′
0, v3, v4, u0} ∪ S1(v3) induces a G3,1. If

|S1(v2)| ≥ 2, then {v0, t0, t
′
0, v1, v2, u0, t2}∪S1(v2) induces a G2,2. Therefore, |S1(v3)| ≤ 2

and |S1(v2)| = 1. Now consider the induced five-cycle C ′ = v3 − u3 − u0 − u2 − v2 − v3.
It is routine to check that S′3 ⊆ {t2} ∪ S1(v3) \ {u3}. In particular, |S′3| < 3 and this
contradicts the minimality of C. This proves the claim that S1(v0) = ∅. Therefore, u3 has
a neighbour in S1(v1), say u1. Since {v2, t2} is not a clique cutset separating S1(v2), we
have S1(v4) 6= ∅. By (O1), {t0, t′0} is anti-complete to S1 and {t2} is anti-complete to
S1 \ S1(v2). If |S1(v1)| + |S1(v4)| ≥ 4, then {v0, v1, v4, t0, t

′
0} ∪ S1(v1) ∪ S1(v4) contains

either a G3,1 or a G2,2. Thus, |S1(v1)|+ |S1(v4)| ≤ 3. Now consider the induced five-cycle
C ′ = v3−u3−u1−u4−v4−v3. Clearly, t0, t′0, t2 /∈ S′3 and S′3 ⊆ S1(v1)∪S1(v3)∪S1(v4).
The fact that |S1(v1)| + |S1(v4)| ≤ 3 means that |S′3 ∩ (S1(v1) ∪ S1(v4))| ≤ 1. Also,
|S′3 ∩ S1(v3)| ≤ 2. It then follows from the minimality of C that |S1(v3)| = 3. Thus,
|S1(v1)| = 1 and |S1(v4)| = 2. Moreover, |S1(v2)| ≤ 2. Now G admits a 4-colouring,
namely {v1, v4, u2, u3}, {v0, v2, u

′
3, u
′
4}, {t0, t2, u′′3, u4}, {v3, u1, t

′
0, u
′
2}.

In the following we assume that S1(v3) = ∅.

Case 4.2. S2(v2, v3) = ∅.

Since d(v3) ≥ 4, it follows that S2(v3, v4) contains at least one vertex, say d34. This implies
that S1(v2) = ∅ by (P8) and then S1(v1, v2) 6= ∅ since d(v2) ≥ 4. Let d12 ∈ S2(v1, v2).
It then follows from (P8) and (P9) that S2 = S2(v1, v2) ∪ S2(v3, v4) and S1 = S1(v1) ∪
S1(v4). If S3 = {t0, t2}, this means that d(v0) = 3, a contradiction. In the following we
let S3 = {t0, t′0, t2}. We first claim that S1(v4) = ∅. Suppose not, let u4 ∈ S1(v4). Then
S1(v1) = ∅ by (P10) and the fact that S2 6= ∅. Since {v4, t0, t

′
0} is not a clique cutset of G, it

follows that S1(v4) is not anti-complete to S2(v1, v2). Without loss of generality, assume that
u4d12 ∈ E. Note that {t0, t′0} is anti-complete to {u4, d12} by (O3). Consider the induced
five-cycle C ′ = u4 − v4 − v3 − v2 − d12 − u4. Note that t0, t′0 /∈ S′3. It then follows from the
minimality of C that S′3 ∩ (S1 ∪ S2) contains at least two vertices, say r and s. Clearly, both
r and s are in S2(v1, v2) ∪ S1(v4) and complete to {u4, d12} by definition. If r, s ∈ S1(v4),
then {t0, t′0, v0, v1, v4} ∪ S1(v4) ∪ S2(v1, v2) induces a G3,1. Therefore, we may assume that
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s ∈ S2(v1, v2). SinceG isK5-free, we may assume that t2s /∈ E. But then t2−v2−s−u4−v4−v0

induces a P6.

Therefore, S1(v4) = ∅. Since {v1, v2, y} is not a clique cutset separating S2(v1, v2) from G,
S2(v1, v2) has a neighbour in S3(v0), say t′0. It then follows from (P11) that t′0 is complete
to S2. This implies that S2(v1, v2) and S2(v3, v4) are cliques of size at most two. Moreover,
S2(v3, v4) and S1(v1) are anti-complete to each other by (O3). Note also that t2d34 /∈ E or
t′0 − d34 − t2 − v1 − t′0 induces a C4. We now show that S1(v1) = ∅. Suppose not, let A be
any connected component of S1(v1). Since {v1, t0, t

′
0} is not a clique cutset separating A, t2

has a neighbour a ∈ A. Furthermore, since v0 − t′0 − d34 − v3 − t2 − a does not induce a P6, a
is adjacent to t′0. But now either the 5-hole a− t′0 − d12 − v2 − t2 − a and v1 induce a W5 or
{t′0, d12, t2, a} induces a C4 depending on whether t2d12 ∈ E.

Now G = C ∪ S2 ∪ S3. Note also that if d34t2 ∈ E, then {d34, t2, v1, t
′
0} induces a C4. This

shows that t2 is anti-complete to S2(v3, v4). Since d(t2) ≥ 4, it follows that t2d12 ∈ E. If
S2(v3, v4) = {d34, d

′
34}, then {t′0, v4, d34, d

′
34, v3} and {v1, d12, v2, t2} induce a G2,2. Finally, let

S2(v3, v4) = {d34}. Then d34 is adjacent to t0, since d34 has at least four neighbours in G. This
implies that t0 is complete to S2 by (P11). Now the induced five-cycle t′0−d12−v2−v3−d34−t′0
and its four 3-vertices {t2, v1, t0, v4} induce a GP4 .

Case 4.3. Let d23 be a vertex in S2(v2, v3).

Case 4.3.a. S3 = {t0, t2}.

By symmetry, Case 4.2 shows that S2(v0, v4) 6= ∅. Let d04 be a vertex in S2(v0, v4).
If S2(v3, v4) = ∅, it follows from (P8) and (P9) that S1 = S1(v0) ∪ S1(v2) and S2 =
S2(v0, v4) ∪ S2(v2, v3). Since {v2, v3, t2} does not separate S2(v2, v3), S2(v2, v3) is not
anti-complete to S1(v0). Similarly, S2(v0, v4) is not anti-complete to S1(v2). But this
contradicts (P12). This proves that S2(v3, v4) contains a vertex d34. So, S1 = ∅ by
(P10). If t2 is not adjacent to d23, then either {t2, v2, d23, d34} induces a C4 or t2 − v2 −
d23 − d34 − d04 − v0 induces a P6. This shows that t2 is complete to S2(v2, v3) and thus
S2(v2, v3) = {d23}. Similarly, S2(v0, v4) = {d04}. Note that any vertex in S2(v3, v4) is
non-adjacent to either t0 or t2. We assume that d34t0 /∈ E. If S2(v3, v4) = {d34}, then G
admits a 4-colouring, namely {v1, v4, d23}, {v3, d01}, {v2, t0, d34}, {v0, t2}. Otherwise let
d′34 be the second vertex in S2(v3, v4). Then G admits a 4-colouring, namely {v1, v4, d23},
{v3, d01}, {v2, t0, d34}, {v0, t2, d

′
34} or {v1, v4, d23}, {v3, d01}, {t2, t0, d34}, {v0, v2, d

′
34}

depending on whether or not t2d34 ∈ E (in which case t2d′34 /∈ E).

Case 4.3.b. S3 = {t0, t′0, t2}.

Suppose first that S2(v1, v2) ∪ S2(v3, v4) is empty. Since {v2, v3, t2} is not a clique cutset
separating S2(v2, v3) from G, we assume that d23 has a neighbour u0 ∈ S1(v0). Note
that u0 is complete to S3(v0) by (P13). Moreover, S1 = S1(v0) by (P12). Consider the
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induced five-cycle C ′ = u0−v0−v4−v3−d23−u0. Note that t2 /∈ S′3. It then follows from
the minimality of C that S′3 ∩ (S1 ∪ S2) contains a vertex, say r. By the definition of S′3,
r ∈ S1(v0)∪S2(v2, v3), and is adjacent to u1 and d23. If r ∈ S1(v0), then {t0, t′0, v0, u1, r}
induces a K5. If r ∈ S2(v2, v3), then {t0, t′0, v0, v1, v4, u1, v3, v2, d23, r} induces a G2,1,1.

Now let d12 be a vertex in S2(v1, v2). Then S1 = S1(v2) by (P8) and this implies that
S1 = ∅, for otherwise {v2, t2} is a clique cutset of G. Furthermore, it follows from (O2)
that t2 is complete to S2(v1, v2) ∪ S2(v2, v3). This implies that S2(v2, v3) = {d23} and
S2(v1, v2) = {d12}. We claim that S2(v0, v1) = ∅. Suppose not, let d01 ∈ S2(v0, v1). Since
v3− v2− d12− d01− v0− t0 does not induce a P6, t0 is adjacent to either d01 or d12. If t0
is adjacent to d12, then t0 is also adjacent to d01, since {t0, v0, d01, d12} does not induce
a C4. This shows that t0 is adjacent to d01. Similarly, t′0 is also adjacent to d01 and then
{v0, v1, d01, t0, t

′
0} is a K5. Now let S2(v3, v4) ⊆ {r, r′}. If S2(v3, v4) 6= ∅, then S3(v0) is

anti-complete to S2 by (P11). Note that we may assume t2r′ /∈ E if S2(v3, v4) = {r, r′},
since {r, r′, d23, v3, t2} is not a K5. Now G admits a 4-colouring, namely {v1, v4, d23},
{v0, v3, d12}, {v2, t0, r}, {t′0, t2, r′}.

Finally, assume that S2(v1, v2) = ∅ and let d34 be a vertex in S2(v3, v4). Then S1 = ∅ by
(P8) and Case 4.1. If S2(v0, v4) contains a vertex r, then we may assume that rt0 /∈ E
but then either v2 − d23 − d34 − r − v0 − t0 induces a P6 or {t0, v0, r, d34} induces a C4,
depending on whether t0d34 ∈ E. This shows that S2(v0, v4) = ∅. If t2d23 /∈ E, then either
t2 − v2 − d23 − d34 − v4 − v0 induces a P6 or {t2, v2, d23, d34} induces a C4. This proves
that t2 is complete to S2(v2, v3) and so S2(v2, v3) = {d23}. If S2(v3, v4) = {d34}, then
G admits a 4-colouring, namely {v0, v2, d34}, {v1, v4, d23}, {v3, t0}, {t2, t′0}. Otherwise
S2(v3, v4) = {d34, d

′
34}. We may assume that t2d34 /∈ E. If t2d′34 ∈ E, then d′34t0, d

′
34t
′
0 /∈

E since G is C4-free. Otherwise, t2d′34 /∈ E and we may assume without loss of generality
that d′34t0 /∈ E. In either case G admits a 4-colouring, namely {v1, v4, p}, {v0, t2, d34},
{v2, t0, d

′
34}, {t′0, v3}.

Case 5: Let S3(vi) = {ti} for i = 2, 3 with t2t3 ∈ E and S3(v0) ⊆ {t0}.

Case 5.1. S2(v2, v3) 6= ∅.

Let d23 be a vertex in S2(v2, v3). Recall that S2(v2, v3) and S3(v0) are anti-complete to each
other by (P7). Since {v2, v3, y, z} is not a clique cutset separating S2(v2, v3), we assume
that d23 has a neighbour n in S1(v0) or S2(v1, v2) ∪ S2(v3, v4). If n ∈ S1(v0), then since
t2−v2−d23−n−v0−v4 does not induce a P6, t2 is adjacent to d23. Symmetrically, t3 is adjacent
to d23. But then {v2, v3, t2, t3, d23} induces a K5. Therefore, n ∈ S2(v1, v2) ∪ S2(v3, v4). By
symmetry, we assume that n ∈ S2(v1, v2) and in particular S2(v1, v2) 6= ∅. Then S2(v0, v4) = ∅
and S1 = S1(v2) by (P8) and (P9). Since d(v0) ≥ 4, it follows that S2(v0, v1) contains a vertex,
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say d01. On the other hand, t2 is adjacent to d23 and n by (O2). This implies that t3d23 /∈ E.
Since {t3, v3, d23, n} is not a C4, t3 is non-adjacent to n. But now t3− v3− d23−n− d01− v0

induces a P6.

In the following we assume that S2(v2, v3) = ∅.

Case 5.2. S1(v0) 6= ∅ and let u0 ∈ S1(v0).

Note first that S1(v0) is anti-complete to S2 by (P5). Since {v0} ∪ S3(v0) is not a clique
cutset, it follows that u0 has a neighbour in S1(v2)∪S1(v3). Without loss of generality, assume
that u2 ∈ S1(v2) is a neighbour of u0. This implies that S2 = ∅ by (P10). If |S1(vj)| ≥ 2
for j = 2, 3, then {u0, v2, v3, t2, t3} ∪ S1(v2) ∪ S1(v3) contains a GP4 . This shows that one of
S1(v2) and S1(v3) contains at most one vertex.

Case 5.2.a. S3 = {t2, t3}.

Since d(vj) ≥ 4 for j = 0, 1, 4, it follows that |S1(v0)| ≥ 2, |S1(v1)| ≥ 1, and |S1(v4)| ≥ 1.
The fact that |S1(v0)| ≥ 2 implies that S1(vj) contains at most one vertex for j = 2, 3, for
otherwise S1(v0)∪S1(v2)∪S1(v3)∪{v2, v3, t2, t3} induces a GP4 . Consequently, S1(v2) =
{u2}. Let uj ∈ S1(vj) for j = 1, 4. Consider the induced five-cycle C ′ = u1 − v1 − v0 −
v4 − u4 − u1. Note that v2, v3, t2, t3 /∈ S′3. It then follows from the minimality of C that
S′3∩S1 contains at least two vertices r and r′. Clearly, r, r′ ∈ S1(v1)∪S1(v4). This implies
that |S1(v1)|+ |S1(v4)| ≥ 4 and therefore |S1(v1)|+ |S1(v4)| = 4 by (P2) and the fact that
G is K5-free. If both r and r′ are in S1(vj) for some j = 1, 4, then S′3 = S′3(vj) = {r, r′}
and we are in Case 2. This shows that |S1(v1)| = |S1(v4)| = 2. If |S1(v0)| = 3, then
S1(v3) = ∅, for otherwise S1(v0)∪S1(v2)∪S1(v3)∪{v2, v3, t2, t3} induces a G2,2; otherwise
|S1(v0)| = 2. Recall that |S1(v3)| ≤ 1. Let ui, u′i, u′′i be the first, second, and third vertex
in S1(vi) for each i. We denote x either u′′0 or u3 depending on the size of S1(v0). Now G

admits a 4-colouring, namely {v1, t3, u4, u0}, {v2, u
′
4, x}, {v0, v3, u1, u2}, {v4, t2, u

′
0, u
′
1}.

Case 5.2.b. S3 = {t0, t2, t3}.

Note first that S1(vj) is a clique of size at most two, for j = 0, 2, 3. Let {u0} ⊆ S1(v0) ⊆
{u0, u

′
0}. If both S1(v0) and S1(v2) contain two vertices, then {v0, v1, v2, t0, t2}∪S1(v0)∪

S1(v2) contains a GP4 . This show that one of S1(v0) and S1(vj) is of size at most one,
for j = 2, 3. Recall that one of S1(v2) and S1(v3) contains at most one vertex. We first
consider the case where S1(v3) contains a vertex u3. Thus, two of S1(v0), S1(v2) and S1(v3)
are single-element sets. Consider the induced five-cycle C ′ = v3 − u3 − u0 − u2 − v2 − v3.
Clearly, S′3 ⊆ S1(v0) ∪ S1(v2) ∪ S1(v3) ∪ {t2, t3}. Thus, the minimality of C implies
that one of S1(v0), S1(v2) and S1(v3) has size two. Therefore, we conclude that exactly
one of S1(v0), S1(v2) and S1(v3) has size two and the other two sets have size one. If
|S1(v2)| = 2 or |S1(v3)| = 2, then we are in Case 3. Hence, we assume that |S1(v0)| = 2
and |S1(v2)| = |S1(v3)| = 1. Moreover, if |S1(v4)| = 3, then S1(v4)∪{u2, v4, v2, t2, v3, t3}
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induces a G2,2. This shows that |S1(v4)| ≤ 2. Similarly, |S1(v1)| ≤ 2. Let S1(vj) ⊆
{uj , u′j} for j = 1, 4. Now G admits a 4-colouring, namely {v0, u3, u4, t2}, {v1, v3, u0, u

′
4},

{u1, u2, t0, t3}, {v2, v4, u
′
0, u
′
1}.

Now we assume that S1(v3) = ∅. If |S1(v4)| = 3, then S1(v4) ∪ {u2, v4, v2, t2, v3, t3}
induces a G2,2. Thus, |S1(v4)| ≤ 2. Moreover, if both S1(v2) and S1(v4) contain two
vertices, then S1(v4) ∪ S1(v2) ∪ {v4, v2, t2, v3, t3} induces a GP4 . This shows that either
S1(v2) or S1(v4) contains at most one vertex. Next consider the induced five-cycle C ′ =
u2 − u0 − v0 − v1 − v2 − u2. Clearly, t0 ∈ S′3(v0) and t2 ∈ S′3(v2). The minimality of C
implies that one of S1(v0) and S1(v2) has size two. On the other hand, if both of them have
size two, then C ′ ∪ {t0, t2, u′0, u′2} induces a GP4 , where u′2 ∈ S1(v2). Therefore, one of
S1(v0) and S1(v2) has size two and the other has size one. We now show that |S1(v1)| ≤ 2.
If S1(v4) contains a vertex u4, then C ′′ = v4 − u4 − u2 − u0 − v0 − v4 is a 5-hole. Clearly,
t0 ∈ S′′3 but t2, t3 /∈ S′′3 . Moreover, S′′3 contains at most one vertex from S1(v0)∪S1(v2). It
then follows from the minimality of C that S′′3 contains a vertex from S1(v4). In particular,
|S1(v4)| ≥ 2 and this implies that |S1(v1)| ≤ 2, since S1(v1) ∪ S1(v4) is a clique of size at
most four. If S1(v4) = ∅, then since G has no clique cutset, {t0, t2} is complete to any
connected component of S1(v1). This implies that S1(v1) is a clique of size at most two,
since G is (C4,K5)-free.

We have thus proved that |S1(v1)| ≤ 2. Recall that |S1(v4)| ≤ 2. Let S1(vj) ⊆ {uj , u′j} for
j = 1, 4. Note that t0 and t3 are anti-complete to S1(v4). If |S1(v2)| = 1, then S1(v0) =
{u0, u

′
0}, and G admits a 4-colouring, namely {v1, u0, u4, t3}, {t0, t2, u′4}, {v0, v3, u1, u2},

{v2, v4, u
′
0, u
′
1}. Otherwise, |S1(v2)| = 2, and therefore S1(v0) = {u0} and S1(v4) ⊆ {u4}.

Let S1(v2) = {u2, u
′
2}. Since {v2, t2, u2, u

′
2, t3} is not a K5, t3 is not adjacent to one

of u2 and u′2, say u′2. Now G admits a 4-colouring, namely {v0, v3, u1, u2}, {v1, u
′
2, t3},

{v2, v4, u0, u
′
1}, {t0, t2, u′4}. This completes the proof of this subcase.

In the following we assume that S2(v2, v3) = S1(v0) = ∅. Since d(v0) ≥ 4, it follows that
NS2(v0) 6= ∅. Assume by symmetry that S2(v0, v1) contains a vertex d01.

Case 5.3. d01 has no neighbour in S2 or equivalently S2(v0, v4) = S2(v1, v2) = ∅.

Note that S2 = S2(v0, v1) ∪ S2(v3, v4) and S1 = S1(v3) ∪ S1(v1) by (P8). In case of S3 =
{t2, t3}, S2(v3, v4) contains a vertex d34 since d(v4) ≥ 4. Since {v0, v1}∪S3(v0) is not a clique
cutset separating S2(v0, v1) from G, either d01 has a neighbour u3 ∈ S1(v3) or d01 is adjacent
to t2.

Case 5.3.a. d01 has a neighbour u3 ∈ S1(v3).

Then S1 = S1(v3) by (P12). Suppose first that S3 = {t2, t3}. Recall that S2(v3, v4) 6= ∅.
Since {v3, v4, t3} does not separate S2(v3, v4) from G, we may assume that d34 is adjacent
to t2. This implies that t2 is complete to S2 by (P11) and in particular is adjacent to d01.
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This, however, contradicts (O3). Now let S3 = {t0, t2, t3}. Since v2−v3−u3−d01−v0−t0
does not induce a P6, t0 and d01 are adjacent. This implies that d01 is the only neighbour
of u3 in S2(v0, v1), for otherwise a second such neighbour and {v0, v1, d01, t0} induce a
K5. Consider the induced five-cycle C ′ = d01 − v1 − v2 − v3 − u3. Clearly, v0, v4, t0 /∈ S′3.
It then follows from the minimality of C that S′3 ∩ (S1 ∪ S2) contains a vertex r. Note
that r ∈ S1(v3) ∪ S2(v0, v1). Furthermore, r is complete to {d01, u3} by the definition of
S′3. Since d01 is the only neighbour of u3 in S2(v0, v1), it follows that r ∈ S1(v3). Recall
that t3 is complete to {u3, r} by (P13). Now G is isomorphic to H2 (with respect to C ′:
t3 ∈ S′3(v3), t2 ∈ S′3(v2), r ∈ S′3(u3), v4 ∈ S′1(v3), t0, v0 ∈ S′2(d01, v1)).

Case 5.3.b. d01 is adjacent to t2.

We also assume by Case 5.3.a that S2(v0, v1) is anti-complete to S1(v3). Suppose first
that S3 = {t2, t3}. Recall that S2(v3, v4) contains a vertex d34. Since d(v0) ≥ 4, it
follows that |S2(v0, v1)| = 2. On the other hand, t2 is complete to S2 by (P11). Now
(C \ {v2}) ∪ {t2} ∪ S2 ∪ {t3} induces a G3,1.

Now let S3 = {t0, t2, t3}. If S1(v3) 6= ∅, then S1(v1) = ∅ due to (P10) and the fact that
S2 6= ∅. But then {v3, t3, t2} is a clique cutset separating S1(v3) from G. This proves
that S1(v3) = ∅ and hence S1 = S1(v1). If some vertex s ∈ S1(v1) is adjacent to a vertex
t ∈ S2(v3, v4), then t2 is adjacent to t by (P11). This, however, contradicts (O3). This
shows that S1(v1) is anti-complete to S2(v3, v4). We now claim that S1(v1) is a clique. Let
A be an arbitrary connected component of S1(v1). Note first that tj (j = 0, 2) is either
complete or anti-complete to A since G is P6-free. Since neither {v1, t0} nor {v1, t2} is a
clique cutset separating A from G, we conclude that tj is complete to A, for j = 0, 2. Since
A is arbitrary, it follows that t0 and t2 are complete to S1(v1). The (C4,K5)-freeness of
G, therefore, implies that S1(v1) is a clique of size at most two. Moreover, since δ(G) ≥ 4,
S1(v1) contains either no vertex or two vertices.

We next claim that S2(v3, v4) = ∅. Suppose not. Let d34 ∈ S2(v3, v4). It follows from
(P11) that t2 is complete to S2. This implies that t3 is complete to S2(v3, v4) or v4− t3−
t2−d34−v4 is a C4. Since G isK5-free, it follows that S2(v3, v4) = {d34}. Now S1(v1) = ∅,
for otherwise {v1, t0, t2, v3, v4, t3} ∪ S1(v1) ∪ S2(v3, v4) induces a G3,1. If |S2(v0, v1)| ≥ 2,
then (C \ {v2}) ∪ {t2} ∪ S2 ∪ {t3} induces a G3,1. Therefore, S2(v0, v1) = {d01}. Since
{t0, d34, t2, v1} does not induce a C4, t0 is non-adjacent to d34. This implies that t0 is
adjacent to d01 since d(t0) ≥ 4. But now G− v2 induce a G2,2. Therefore, S2(v3, v4) = ∅.

Next we show that t0d01 ∈ E. If not, consider the induced five-cycle C ′ = t3 − v4 − v0 −
d01−t2−t3. Note that v1, v3 ∈ S′3 and t0, v2 /∈ S′3. It follows from the minimality of C that
S′3∩(S1∪S2) contains a vertex, say s. Clearly, s ∈ S2(v0, v1) and thus is adjacent to v0, d01

and t2 by definition of S′3. Moreover, since G is K5-free, it follows that S′3∩(S1∪S2) = {s}
and therefore S′3 = {v3, v1, s}. Now it is easy to see that we are in Case 4 (s, v1 ∈ S′3(d01)).
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This proves that t0 is adjacent to d01. In fact, the argument shows that t0 is adjacent to
any neighbour of t2 in S2(v0, v1). It implies that X = S2(v0, v1) \ {d01} is anti-complete
to t2, and thus X = ∅, for otherwise {v0, v1, t0, d01} is clique cutset separating X from G.
It is easy to see that G admits a 4-colouring.

Case 5.4. d01 has a neighbour in S2.

Clearly, the neighbour is in S2(v0, v4) or in S2(v1, v2) by (P3). We first claim that t2 is complete
to S2(v1, v2). If not, let d12 ∈ S2(v1, v2) be non-adjacent to t2. Then either {d01, d12, v2, t2}
induces a C4 or t2 − v2 − d12 − d01 − v0 − v4 induces a P6, depending on whether or not
t2d01 ∈ E. This proves the claim and this implies that S2(v1, v2) ⊆ {d12} (since G is K5-free).

Case 5.4.a. The neighbour is in S2(v0, v4). Let d04 ∈ S2(v0, v4).

Note that S1 = S1(v0) = ∅ by (P8) and Case 5.2. Moreover, we may assume that
S2(v3, v4) = ∅ by (P9). Note that if S2(v1, v2) 6= ∅, then t3 is anti-complete to S2 by
(P11). Suppose first that S3 = {t0, t2, t3}. It then follows from (O2) that t0 is complete
to S2(v0, v1) ∪ S2(v0, v4). This implies that S2(v0, v1) = {d01} and S2(v0, v4) = {d04},
since G is K5-free. Now G admits a 4-colouring φ: {v1, v3, d04}, {v2, v4, d01}, {t0, t2},
{v0, t3} ∪ S2(v1, v2).

Now let S3 = {t2, t3}. If S2(v0, v1) = {d01}, then G admits a 4-colouring, namely
{v1, v3, d04}, {v2, v4, d01}, {v0, t3} ∪ S2(v1, v2), {t2} ∪ S2(v0, v4) \ {d04}. This shows
that S2(v0, v1) = {d01, d

′
01}, and then S2(v0, v4) = {d04}. If S2(v1, v2) = ∅, then G

admits a 4-colouring, namely {v1, v3, d04}, {v2, v4, d01}, {v0, t2}, {t3, d′01}. Finally, let
S2(v1, v2) = {d12}. We may assume that t2d01 /∈ E since {t2, d12, v1, d01, d

′
01} is not a

K5. Note also that t3d04 /∈ E by (P11). Now G admits a 4-colouring, namely {v4, t2, d01},
{v1, t3, d04}, {v3, v0, d12}, {v2, d

′
01}.

Case 5.4.b. The neighbour is in S2(v1, v2).

Recall that t2 is complete to S2(v1, v2). Consequently, S2(v1, v2) = {d12} and t2d12 ∈ E.
In addition, S2(v0, v4) = ∅ due to Case 5.4.a. Note that S2(v3, v4) = ∅ by (P9) and
S1 = S1(v1) by (P8). Since d(v4) ≥ 4, it follows that t0 exits, i.e., S3 = {t0, t2, t3}.
Applying the same argument in Case 5.3.b, it follows that both t0 and t2 are complete
to S1(v1). We claim that t0 is complete to S2(v0, v1). If not, suppose that t0d01 /∈ E.
Then either v3 − v2 − d12 − d01 − v0 − t0 induces a P6 or {t0, v0, d01, d12} induces a C4,
depending on whether t0d12 ∈ E. Therefore, S2(v0, v1) = {d01}. If u1 ∈ S1(v1), then
either u1− t2− t3− v4− v0− d01 induces a P6 or {d01, u1, t0, t2} induces a C4, depending
on whether t2 is adjacent to d01. This proves that S1 = S1(v1) = ∅. Now S2 = {d01, d12}
and then G admits a 4-colouring, namely {v0, v3, d12}, {v2, v4, d01}, {t0, t2}, {t3, v1}.

Our proof of Lemma 5.4.4 is now complete. �

106



5.5 Certifying algorithms

We now apply our results from previous sections to the questions of complexity of k-Colourability
of (C4, P6)-free graphs. Reference [53] gives a linear time algorithm for k-Colourability of
(C4, Pt)-free graphs for any fixed integers k ≥ 1 and t ≥ 1. However, that algorithm depends
on Ramsey-type results, and ends up using tree-decompositions with very high widths. We
offer more practical algorithms for 3-Colourability and 4-Colourability of (C4, P6)-free
graphs. Moreover, our algorithms are certifying algorithms. Indeed, they are based on our
characterizations of (C4, P6)-free minimal obstructions, and when no colouring is found, they
exhibit a forbidden induced subgraph from Theorem 5.3.1 and Theorem 5.4.1.

We first consider 3-Colourability. The proof of Theorem 5.3.1 in fact outputs a 3-colouring
of the input graph G if it exists and a minimal obstruction if G is not 3-colourable. The proof
involves the operations of partitioning V (G) into subsets, determining the size of certain sets
and deciding if there are edges between certain subsets. All these steps can be implemented
in linear time. To obtain a certifying algorithm, we still need to deal with (C4, P6)-free graphs
containing a 6-hole.

Lemma 5.5.1 Suppose thatG is a (C4, P6)-free graph containing a 6-hole C = v0−. . .−v5−v0.
If G has δ(G) ≥ 3 and no clique cutsets, then there is a linear time algorithm that either finds
a 3-colouring of G or an induced subgraph isomorphic to a graph in Figure 5.2.

Proof. For any X ⊆ V , we define

S(X) = {x ∈ V \ C : NC(x) = X}.

If S(∅) 6= ∅, i.e., there is a vertex in V \ C that is anti-complete to C, then G is a specific
by Lemma 5.1.3. Moreover, by slightly modifying the proof of Theorem 7 in [11] one can find
in linear time a 3-colouring of G if it exists or an induced subgraph isomorphic to a graph in
Figure 5.2.

So, assume that S(∅) = ∅. It is straightforward to verify (by the fact G is (C4, P6)-free) that

V (G) = C ∪
⋃
i

S(vi, vi+3) ∪
⋃
i

S(vi−1, vi, vi+1) ∪
⋃
i

S(vi−1, vi, vi+1, vi+2) ∪ S(C).

Moreover, each vertex in S(C) is a universal vertex in G, each such set S(X) is a clique, since
G is C4-free. If some vertex x ∈ S(v5, v0, v1) is non-adjacent to a vertex y ∈ S(v0, v1, v2),
then y − v2 − v3 − v4 − v5 − x is a P6; if some vertex x ∈ S(v5, v0, v1) is adjacent to a vertex
y ∈ S(v2, v3, v4), then x − v1 − v2 − y − x is a 4-hole. So, we conclude that S(vi−1, vi, vi+1)
is anti-complete to S(vi+2, vi+3, vi+4) and is complete to S(vi, vi+1, vi+2).
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If S(C) contains a vertex, say u, then G is 3-colourable if and only if G−u is bipartite. Thus, the
lemma holds since testing bipartiteness can be done in linear time. Hence, we assume that S(C)
is also empty. If S(vi, vi+3) contains a vertex, say d, then vi−vi+1−vi+2−vi+3−d−vi is a 5-
hole; if S(vi−1, vi, vi+1, vi+2) contains a vertex, say q, then vi+2−vi+3−vi+4−vi−1−q−vi+2 is a
5-hole. Also, if some vertex x ∈ S(vi−1, vi, vi+1) is adjacent to a vertex y ∈ S(vi+1, vi+2, vi+3),
then x − vi−1 − vi−2 − vi−3 − y − x is a 5-hole. In all such cases, we follow the proof of
Theorem 5.3.1. Since testing these conditions can clearly be done in linear time, the algorithm
runs in linear time if such a 5-hole occurs.

We therefore may further assume that V (G) = C ∪
⋃
i S(vi−1, vi, vi+1). Since S(vi−1, vi, vi+1)

is complete to S(vi, vi+1, vi+2), at most one of them is non-empty, for otherwise G contains a
K4. Therefore, at most three such sets are non-empty. If any of such sets contains two vertices,
then we find a K4 in G. So, each set contains at most one vertex. Now |G| ≤ 9 and it is easy
to see that G is 3-colourable. This completes our proof. �

We now present an algorithm for 3-Colourability of (C4, P6)-free graphs with no clique
cutsets or vertices of degree at most two.

Algorithm 1: A certifying algorithm for 3-Colourability of (C4, P6)-free graphs
Input: A connected (C4, P6)-free graph G with δ(G) ≥ 3 and no clique cutsets.
Output: A 3-colouring of G if it exists or one of the minimal obstructions in Figure 5.2.

1 if G is chordal then
2 if |G| ≥ 4 then G contains a K4;
3 else G is a clique of size at most 3;
4 end

// Now G is not chordal and contains a hole C of length 5 or 6
5 if C is a 5-hole then follow the proof of Theorem 5.3.1;

// Now C is a 6-hole

6 else
7 Apply Lemma 5.5.1
8 end

Theorem 5.5.2 Algorithm 1 correctly decides if G is 3-colourable and runs in linear time.

Proof. Suppose that G is chordal. Then since G has no clique cutsets, G must be a clique by
Theorem 2.3.6. Therefore, line 2 and 3 correctly determine whether or not G is 3-colourable. If
G is not chordal, the correctness follows directly from Theorem 5.3.1 and Lemma 5.5.1.

For the running time, we first test if G is chordal and in case that G is not chordal we find an
induced cycle of length 5 or 6. All these steps can be done in linear time by Theorem 2.3.9.
Therefore, the total running time is O(m+ n) by Theorem 5.3.1 and Lemma 5.5.1. �
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For 4-Colourability, the situation is similar but needs some clarification. The proof of
Lemma 5.4.2 finds in linear time either a 4-colouring of G or a minimal obstruction or a universal
vertex. In the last case, the problem reduces to 3-Colourability and so the proof is a linear
time certifying algorithm. For Lemma 5.4.4 we first point out that the proof is a linear time
certifying algorithm if the 5-hole C satisfies the minimality condition (those arguments that use
the absence of W5 reduce to Lemma 5.4.2). To find such a 5-hole, we could try all 5-holes
but it can in worst case takes O(n5) and thus the algorithm would not be linear. Indeed, those
parts of the proof that use the minimality condition of C could fail if C is not minimum. We
note, however, that in these cases the proof actually finds another 5-hole C ′ (the red parts in
the proof) with |S′3| < |S3|. So, we can apply the proof to C ′. Since |S3| ≤ 7 (as we showed),
this can happen at most 7 times. In other words, it takes O(m + n) time to turn the initial
5-hole to the one that satisfies the minimality condition. Therefore, the total running time of
Lemma 5.4.4 is O(m+ n).

Similarly, if G contains a 6-hole, we follow the idea in the proof of Lemma 5.5.1 to show that
in linear time we either reduce to Lemma 5.4.2 and Lemma 5.4.4 or finds a 4-colouring of G or
a minimal obstruction. So, the following holds.

Theorem 5.5.3 For k = 3 and k = 4, there exists an O(m+n) certifying algorithm for deciding
if a (C4, P6)-free graph with minimum degree at least k and no clique cutsets is k-colourable.

Colouring general (C4, P6)-free graphs

We now show that for general (C4, P6)-free graphs there is a polynomial time certifying algo-
rithm. Clearly, we want to make use of Theorem 5.5.3. Hence, we need to decompose a general
(C4, P6)-free graph G into subgraphs that have no clique cutsets or vertex of degree smaller
than k.

Let G be a connected (C4, P6)-free graph. If G has a clique cutset K, then G−K is a disjoint
union of two subgraphs H1 and H2 of G. We let Gi = Hi ∪ K for i = 1, 2 and decompose
G into G1 and G2. If we recursively decompose Gi via clique cutsets, then it was shown by
Tarjan [102] that one can decompose G into at most n subgraphs (which are called atoms)
in O(mn) time such that each of the subgraphs has no clique cutsets and G is k-colourable if
and only if each atom is k-colourable. However, we cannot directly use Tarjan’s decomposition
because our proofs rely heavily on the fact the graph has δ(G) ≥ k. Moreover, deleting a vertex
of degree less than k in an atom may create a clique cutset (consider any odd hole for k = 3).
So, removing vertices of small degree in an atom may end up with a graph that is not an atom.

We now present a combination of decomposition via clique cutsets and removing vertices of
small degree. Again, if G has a clique cutset K we decompose G into G1 and G2 as above.
On the other hand, if G contains a vertex v with dG(v) < k then we replace G by G− v. We
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then further decompose G1 and G2 or G − v in the same way until either the graph has no
clique cutsets and no vertex of degree less than k or the graph has at most k vertices. We refer
to these subgraphs that are not further decomposed as k-atoms. The decomposition procedure
can be represented by a binary tree T (G) whose root is G, and G may have two children G1

and G2 or only one child G − v, depending on the way G is decomposed. Each leaf in T (G)
corresponds to a k-atom. We prove that there are only polynomially many nodes in T (G). The
proof idea is similar to that in [11].

Observation 5.5.4 T (G) has O(n2) nodes.

Proof. To see this, it is enough to prove that there are O(n2) internal nodes in T (G). We
label each internal node X of T (G) with a pair of ordered vertices as follows.

• If X is decomposed via a clique cutset K into two subgraphs X1 and X2, then we choose a
vertex a ∈ X1 −K and a vertex b ∈ X2 −K, and label X with (a, b).

• If X is decomposed via removing a vertex v with dX(v) < k, then we choose a non-neighbour
u of v in X (note that this is always possible because X is not a k-atom and so has at least
k + 1 vertices) and label X with (v, u).

Due to our choice of labeling, if X is labeled with (x, y), then x, y ∈ X and xy /∈ E. Now we
show that no two internal nodes have the same label. Suppose not, let A and B be two internal
nodes of T (G) that have the same label, say (x, y). Suppose first that B is a descendant of
A. If A is decomposed via a clique cutset into A1 and A2, then the unique path connecting A
and B in the subtree rooted at A goes through either A1 or A2, say A1. Then the fact that
A has label (x, y) implies that y /∈ A1. On the other hand, the fact that B has label (x, y)
implies that y ∈ B. But this is a contradiction, since B is an induced subgraph of A1. So, A
is decomposed via removing a vertex of degree less than k. This means that A− x is the only
child of A in T (G) and so the unique path connecting A and B in the subtree rooted at A
goes through A− x. Again, the label of B implies that x ∈ B but this is a contradiction, since
B ⊆ A− x.

So, we assume that B is not a descendant of A. Similarly, A is not a descendant of B. Let X
be the lowest common ancestor of A and B. Then X must be decomposed via a clique cutset
K into two subgraphs X1 and X2, for otherwise X − v for some v ∈ X with dX(v) < k would
have been a common ancestor that is lower than X. Similarly, A and B lie in the subtree rooted
at X1 and X2, respectively. As we observed earlier, x, y ∈ A ⊆ X1 and x, y ∈ B ⊆ X2. This
implies that x, y ∈ X1 ∩X2 = K. Since K is a clique, xy ∈ E but this is a contradiction.

Since there are at most n2 distinct pairs of vertices, the number of internal nodes is O(n2). �

We note that if G is connected, then every k-atom is also connected. This can be seen as
follows. If G is decomposed via a clique cutset K, then both G1 and G2 are clearly connected.
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If not, this means that G contains no clique cutset. In particular, G has no cut-vertex. Thus,
deleting a vertex preserves the connectivity. Tarjan [102] shows that one can find a clique
cutset of G in O(m) time if one exists. Moreover, detecting a vertex of degree less than k can
be done in O(n) time. Hence, a single decomposition step takes O(m + n) time. This and
Observation 5.5.4 imply the following.

Lemma 5.5.5 For any graph G, T (G) can be found in O(mn2) time.

Now we prove the final result.

Theorem 5.5.6 For k = 3 and k = 4, there exists an O(mn2) time certifying algorithm for
deciding if a (C4, P6)-free graph is k-colourable.

Proof. We may assume that G is connected, for we can apply the algorithm to each connected
component of G. By Lemma 5.5.5 we build T (G) in O(mn2) time. Moreover, during the
decomposition of G, we output a Kk+1 whenever we encounter a clique cutset K with size
k + 1. This shows that G is not k-colourable and we stop.

So, assume that the above situation never happens. Suppose that A1, . . . , Ar are k-atoms
that have at least k + 1 vertices. Let ni and mi be the number of vertices and edges in Ai,
respectively. We now apply Theorem 5.5.3 to each Ai. If some Ai is not k-colourable, then
the algorithm outputs a minimal obstruction and we stop. If each Ai is k-colourable, then
the algorithm returns a k-colouring φi of Ai. Since any k-atom that has at most k vertices
has a k-colouring (simply assigning pairwise distinct colours to the vertices), we conclude that
G is k-colourable. Moreover, combining these colouring and φi we obtain a k-colouring of
G. Therefore, the algorithm is indeed a certifying algorithm. Moreover, the running time of
colouring all Ai’s is

r∑
i=1

O(ni +mi) = O(m+ n) + (k2 + k)O(n2) = O(n2),

where the first equality comes from the fact each decomposition step can increase the size of G
by the size of the clique cutset K. Therefore, the total running time is O(mn2). �

Note that the most expensive part of the algorithm is to find T (G). Once T (G) is given, the
algorithm runs in O(n2) time. We finally notice that for general k, a polynomial time certifying
algorithm for k-Colourability of (C4, P6)-free graphs can be obtained using Theorem 5.2.1
and the observation that a k-colourable (C4, P6)-free graph must have bounded tree-width (by
a result of Atminas, Lozin and Razgon [5]): by brute force, we check all minimal obstructions to
see if G contains any of them. If so, we output such an obstruction and G is not k-colourable. If
this never happens, then we know that G is k-colourable and therefore has bounded tree-width.
A standard dynamic programming algorithm thus finds a k-colouring of G in linear time.

111



66
Colouring Even-Hole-Free Graphs

In previous three chapters, we investigated the colouring problems on classes Forb(H) when
H is of finite size. We now turn our focus to a class with H being infinite size, namely
H = {C4, C6, . . .}. In this case, the graphs in Forb(H) are referred to as even-hole-free graphs.
In this chapter, we study a subclass of even-hole-free graphs, namely (even-hole,cap)-free graphs.
A cap is a graph induced by a hole with an additional vertex that is adjacent to exactly two
adjacent vertices on the hole. If the hole has length k, then the cap is called a k-cap (see
Figure 6.1). A graph is cap-free if it is k-cap-free for any k ≥ 4. Our main result (cf. also [68])
in this chapter is the following.

Theorem 6.0.1 For any (even-hole,cap)-free graph G, χ(G) ≤ b3
2ω(G)c.

We also develop a 3/2-approximation algorithm for colouring (even-hole,cap)-free graphs. We
shall give some background and recent work on even-hole-free graphs in Section 6.1 and then
proceed to the main results.

Figure 6.1: The 5-cap.
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6.1 Background

The structure of even-hole-free graphs was first studied by Conforti, Cornuéjols, Kapoor and
Vušković in [31, 32]. They focused on showing that even-hole-free graphs can be recognized
in polynomial time (a problem that at that time was not even known to be in NP), and their
primary motivation was to develop techniques that can then be used in the study of perfect
graphs.

A vertex set S ⊆ V (G) is a k-star cutset of G if S is a cutset and S contains a clique of size k
that dominates S. A 1-star, 2-star and 3-star are referred to as star, double star and triple star,
respectively. A graph G has a 2-join V1|V2, with special sets (A1, A2, B1, B2), if the vertices of
G can be partitioned into sets V1 and V2 so that the following holds.

(J1) For each 1 ≤ i ≤ 2, Ai and Bi are non-empty and disjoint with Ai ∪Bi ⊆ Vi.

(J2) A1 and B1 are complete to A2 and B2, respectively, and these are the only edges between
V1 and V2.

(J3) For each 1 ≤ i ≤ 2, the graph G[Vi] induced on Vi contains a path with one end in Ai
and the other in Bi but G[Vi] is not a chordless path.

In 2002, Conforti, Cornuéjols, Kapoor and Vušković [31, 32] obtained the first decomposition
theorem for even-hole-free graphs that uses 2-joins and star, double star and triple star cutsets.
Using this decomposition theorem, they then developed the first polynomial time recognition
algorithm for even-hole-free graphs. Since the main motivation was to show the existence of
such an algorithm, they did not intend to optimize the running time which is O(n40). Soon
after, Chudnovsky, Kawarabayashi and Seymour [23] developed an O(n31) recognition algo-
rithm. Their algorithm is not based on decomposition theorems but on directly finding even
holes in graphs and a technique called cleaning. Later on, Silva and Vušković obtained a new
decomposition theorem which avoids double star and triple star cutsets.

Theorem 6.1.1 [39] Every connected even-hole-free graph is either basic or admits a star cutset
or a 2-join.

Here the description of ‘basic’ graphs is somewhat technical and we refer to [39] for formal
definitions. Taking advantage of this strengthened decomposition, Silva and Vušković [39] were
able to obtain an O(n19) algorithm to recognize even-hole-free graphs which is a significant
improvement over the ones from [23, 32]. Very recently, Chang and Lu [19] showed that the
O(n19) algorithm does not fully exploit the power of Theorem 6.1.1 and they developed the
best known recognition algorithm so far.
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Theorem 6.1.2 [19] For a graph G with n vertices and m edges, there exists an algorithm
that runs in O(m3n5) time to decide if G is even-hole-free. Moreover, the algorithm outputs
an even hole if one exists.

χ-boundedness and β-perfectness

Note that by excluding a 4-hole, one also excludes all antiholes of length at least 6. If we switch
parity, the analogous class to even-hole-free graphs is the class of perfect graphs rather than just
the class of the odd-hole-free graphs, i.e. graphs that do not contain any odd hole as an induced
subgraph. Theorem 2.3.5 says that Chromatic Number can be solved in polynomial time for
perfect graphs. In contrast, it remains open whether one can optimally colour an even-hole-free
graph (this is also the case for k-Colourability).

Problem 6.1.3 What is the complexity of Chromatic Number for even-hole-free graphs?

Despite the unknown status of the complexity of determining χ(G) for even-hole-free graphs, an
approximate version does exist. In 2008, Addario-Berry, Chudnovsky, Havet, Reed and Seymour
[1] settled a conjecture of Reed by proving that every even-hole-free graph contains a bisimplicial
vertex (a vertex whose neighbourhood induces a graph that is a union of two cliques). Since
the degree of a bisimplicial vertex is at most 2ω(G) − 2, this has the following immediately
consequence.

Theorem 6.1.4 [1] If G is an even-hole-free graph, then χ(G) ≤ 2ω(G)− 1.

Gyárfás [59] introduced the concept of χ-bounded graphs as a natural extension of perfect
graphs. A hereditary class G is called χ-bounded with χ-binding function f if for every induced
subgraph G′ of G it holds that χ(G′) ≤ f(ω(G′)). The class of perfect graphs is a χ-bounded
family with identity function f(x) = x being its χ-binding function. Translating Theorem 6.1.4
into this language, it says that the class of even-hole-free graphs belongs to the family of χ-
bounded graphs with χ-binding function f(x) = 2x − 1. On the other hand, it is well-known
that finding a maximum clique in C4-free graphs (hence even-hole-free graphs) can be achieved
in polynomial time. It was first observed by Farber [46] that 4-hole-free graphs have O(n2)
maximal cliques and all of them can be listed in polynomial time. For even-hole-free graphs,
Theorem 6.1.4 implies that the neighbourhood of a bisimplicial vertex is a chordal graph. The
existence of a vertex whose neighbourhood induces a chordal graph in even-hole-free graphs was
first proved by Silva and Vušković [38]. Since it takes linear time to find the clique number of
a chordal graph (Theorem 2.3.10), this fact implies that ω(G) can be computed in O(mn) for
even-hole-free graphs. This and Theorem 6.1.4 imply:

114



Theorem 6.1.5 There exists an O(mn) 2-approximation algorithm for computing the chromatic
number of even-hole-free graphs. Moreover, the algorithm outputs a (proper) colouring of G
that uses at most 2ω(G)− 1 colours.

Another motivation for the study of even-hole-free graphs is their connection to β-perfect graphs
introduced by Markossian, Gasparian and Reed [85]. For a graph G, consider the following linear
ordering on V (G): order the vertices by repeatedly removing a vertex of minimum degree in
the subgraph of vertices not yet chosen and placing it after all the remaining vertices but
before all the vertices already removed. Colouring greedily on this order gives the upper bound
χ(G) ≤ β(G), where

β(G) = max{δ(G′) + 1 : G′ is an induced subgraph of G}.

A graph is β-perfect if for each induced subgraph H of G, χ(H) = β(H). Clearly, β(C2s) = 3
and χ(C2s) = 2 for any s ≥ 2. This means that any β-perfect graph must be even-hole-free.
The converse of the statement is not necessarily true (replacing each vertex of a 5-hole by a
clique of size two gives a counter-example). Nevertheless, if we forbid an additional graph in
addition to even holes, it is possible to obtain β-perfect graphs. A recent result of Kloks, Müller
and Vušković [76] showed that if the additional forbidden graph is the diamond, then this is
indeed the case. A diamond is the graph obtained from K4 by removing an edge.

Theorem 6.1.6 [76] Every (even-hole,diamond)-free graph is β-perfect.

The β-perfectness of (even-hole,diamond)-free graphs is a consequence of the fact that every
such graph contains a simplicial extreme, namely a vertex that is either simplicial or of degree
two, which in turn follows from a decomposition theorem for (even-hole,diamond)-free graphs
that uses 2-joins, clique cutsets and bisimplicial cutsets (a special type of a star cutset). The β-
perfectness of (even-hole,diamond)-free graphs implies that χ(G) can be computed in polynomial
time by colouring greedily on the particular ordering of vertices we described above.

Corollary 6.1.7 Chromatic Number can be solved in O(n2) time for (even-hole,diamond)-
free graphs.

Proof. Let G be a (even-hole,diamond)-free graph. By Theorem 6.1.6, G is β-perfect.
This implies that χ(G) = β(G). More accurately, let v1, v2, . . . , vn be the linear ordering
obtained from the procedure we described above, i.e., vi is a vertex of minimum degree in
Gi = G[{v1, . . . , vi}]. Then χ(G) ≤ max{δ(Gi)+1 : 1 ≤ i ≤ n} ≤ β(G) = χ(G). This means
that χ(G) = max{δ(Gi) + 1 : 1 ≤ i ≤ n}. Clearly, it takes O(i) time to find vi in Gi for each
i. Thus, finding such a linear ordering can be done in O(n2) time. Moreover, greedily colouring
G on v1, . . . , vn can be done in O(m+ n) time. Therefore, the corollary holds �
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In addition, the existence of a simplicial extreme immediately implies that the class of (even-hole,
diamond)-free graphs is a χ-bounded family with χ-binding function f(x) = x+ 1.

Corollary 6.1.8 [76] For any (even-hole, diamond)-free graph G, χ(G) ≤ ω(G) + 1.

Very recently, efforts are made on subclasses of even-hole-free graphs by forbidding additional
graphs besides even holes. The result of diamond-free graphs [76] already demonstrates the
richness of this approach.

A pan is a graph induced by a hole with an additional vertex pendent to some vertex on the
hole. Note that every pan contains a claw. Cameron, Chaplick and Hoàng [18] investigated
(even-hole,pan)-free graphs which contains the class of (even-hole,claw)-free graphs. They first
obtained a decomposition theorem for (even-hole,pan)-free graphs: every such graph can be
decomposed via clique cutsets into (essentially) unit circular-arc graphs. The decomposition
allows them to obtain an O(mn) recognition algorithm and a polynomial time colouring algo-
rithm. Although the class of (even-hole,pan)-free graphs is not β-perfect, it was shown to be
χ-bounded with χ-binding function f(x) = 3

2x.

Recall that a cap is a graph induced by a hole with an additional vertex that is adjacent to exactly
two adjacent vertices on the hole. It was shown by Conforti, Gerards and Pashkovich [33] that
the problem of maximum weighted independent set can be solved in polynomial time for (even-
hole,cap)-free graphs. We study Chromatic Number for (even-hole,cap)-free graphs below.
Like the pan-free case, (even-hole,cap)-free graphs need not to be β-perfect. We show that the
class of (even-hole,cap)-free graphs is a χ-bounded family with the same χ-binding function
f(x) = 3

2x.

6.2 Decomposition of cap-free graphs

In 1999, Conforti, Cornuéjols, Kapoor and Vušković [30] proved a decomposition theorem for
cap-free graphs. To state their decomposition, we first define a special kind of ‘cutset’. Let
X = (V1, A1, V2, A2,K) be an array of disjoint sets with union V (G). We say that X is an
amalgam of G if the following properties hold:

• A1 and A2 are complete to each other and both are non-empty.

• K is a clique (possibly empty) and K is complete to A1 ∪A2.

• V1 is anti-complete to A2 ∪ V2 and V2 is anti-complete to A1 ∪ V1.

• |V1 ∪A1| ≥ 2 and |V2 ∪A2| ≥ 2.

Note that possibly K may have neighbours in V1 ∪ V2.
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Theorem 6.2.1 [30] Every cap-free graph with a triangle either admits an amalgam or a clique
cutset or contains a universal vertex.

Therefore, cap-free graphs can be built from triangle-free graphs. We say that two vertices u
and v are twins in G if N [u] = N [v], and that G contains twin vertices if there are vertices that
are twins in G. We notice in the following that if we forbid even holes in cap-free graphs, then
an amalgam of G gives rise to twin vertices.

Lemma 6.2.2 Suppose that G is an (even-hole, cap)-free graph containing no clique cutset. If
G contains an amalgam X = (V1, A1, V2, A2,K), then G contain a pair of twin vertices.

Proof. Suppose that both A1 and A2 are not cliques. Then A1 (respectively A2) contains two
non-adjacent vertices, say, u, u′ (respectively v, v′). But then {u, u′, v, v′} induces a 4-hole. So
at least one of A1 and A2 induces a clique. By symmetry, we assume that A1 induces a clique.

If V1 6= ∅, then A1 ∪K is a clique cutset separating V1 from V2 ∪A2. So V1 = ∅, and therefore
|A1| ≥ 2. But then any two vertices of A1 are twins in G. �

Note that the proof of Lemma 6.2.2 makes use of merely the absence of 4-holes. The following
decomposition of (even-hole,cap)-free graphs is an immediate consequence of Theorem 6.2.1
and Lemma 6.2.2.

Theorem 6.2.3 Suppose that G is (even-hole,cap)-free graph that contains no universal ver-
tices, no twin vertices, and no clique cusets. Then G is triangle-free.

6.3 Colouring (even-hole, cap)-free graphs

In this section, we prove our main result in this chapter. Then we turn our proof into a
polynomial time approximation algorithm. First we note that ‘two vertices being twin vertices’
in fact defines an equivalence relation ∼T . Moreover, each equivalence class is a clique and for
any two equivalence classes X and Y , X and Y are either complete or anti-complete to each
other.

We are now ready to prove Theorem 6.0.1.

Proof of Theorem 6.0.1. We prove the theorem by induction on |G|. We may assume that G
is connected, for otherwise applying the inductive hypothesis to each connected component of G
completes the proof. If G contains a universal vertex u, then G−u has χ(G−u) ≤ 3

2ω(G−u).
Clearly, χ(G) = χ(G− u) + 1 and ω(G) = ω(G− u) + 1. It follows that

χ(G) = χ(G− u) + 1 ≤ 3
2ω(G− u) + 1 = 3

2(ω(G)− 1) + 1 ≤ 3
2ω(G).
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If G contains a clique cutset K, then G−K is a disjoint union of two subgraphs H1 and H2.
Let Gi = Hi ∪K for i = 1, 2. Then χ(G) = max{χ(G1), χ(G2)}. Thus,

χ(G) = max{χ(G1), χ(G2)} ≤ max{3
2ω(G1), 3

2ω(G2)} ≤ 3
2ω(G).

Therefore, G has no universal vertices or clique cutsets. Now we partition V (G) into equivalence
classes T1, T2, . . . , Tr under ∼T . Take an arbitrary vertex ti ∈ T for 1 ≤ i ≤ r and let
G′ = G[{t1, . . . , tr}]. Note that G′ is obtained from G by successively removing twin vertices.
We claim that removing twin vertices does not create a clique cuset or a universal vertex.

Claim J Suppose that u and v are twin in G. Then G−u does not contain any universal vertex
or clique cutset.

Suppose not. If G− u contains a universal vertex, say x. Then x is adjacent to each
vertex in G−u, in particular to v. This implies that x is also adjacent to u, since u and
v are twins in G. Now x is a universal vertex in G, contradicting to our assumption.
So, G− u contains no universal vertices.

Suppose that G − u contains a clique cutset K. Now G − K is disjoint union of
two vertex-disjoint subgraphs H1 and H2. Let Gi be the subgraph of G induced by
V (Hi) ∪K for i = 1, 2. If v is in H1 or H2, then K is still a clique cutset in G. So,
v ∈ K. But then K ∪ {u} is a clique cutset of G, a contradiction. �

Hence, by Claim J and Theorem 6.2.3 we conclude that G′ is triangle-free, and so χ(G′) ≤ 3
by Corollary 6.1.8. On the other hand, note that G′ is connected (since G is connected). In
particular, each vertex of G′ lies in an edge of G′. Therefore, any maximal clique in G′ is an
edge. This means that any maximal clique of G is a union of two Tj ’s, which implies that
ω(G−G′) = ω(G)− 2. By the inductive hypothesis, χ(G−G′) ≤ 3

2ω(G−G′). Then

χ(G) ≤ χ(G−G′) + χ(G′) ≤ 3
2ω(G−G′) + 3 = 3

2(ω(G)− 2) + 3 = 3
2ω(G).

Since χ(G) is an integer, the theorem follows. �

The bound in Theorem 6.0.1 is attained by odd holes and the Hajós graph (see Figure 5.2).
Note that these graphs have clique number at most 3. For graphs with large clique number, we
do not have an example showing that the bound is tight. Nevertheless, the optimal constant is
at least 5/4. For any integer k ≥ 1, let Gk be the graph obtained from a 5-hole by replacing
each vertex of the 5-hole with a clique of size 2k and making two cliques complete (respectively
anti-complete) if the two original vertices are adjacent (respectively non-adjacent) on the 5-hole.
Clearly, |Gk| = 10k, α(Gk) = 2 and ω(Gk) = 4k. Hence, χ(Gk) ≥ |Gk|

α(Gk) = 5k. Moreover, it is
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easy to see that Gk does admit a 5k-colouring. So, χ(Gk) = 5k = 5
4ω(Gk). A natural question

is that whether or not one can reduce b3/2c to d5/4e.

Problem 6.3.1 Is it true that χ(G) ≤ d5
4ω(G)e for every (even-hole,cap)-free graph G?

It was shown in [20] that this is true for the class of (C4, P5)-free graphs which is a subclass of
(even-hole,cap)-free graphs.

A 3/2- approximation algorithm

We now turn our proof of Theorem 6.0.1 into a 3/2-approximation algorithm for colouring (even-
hole,cap)-free graphs. The algorithm outputs a 3

2ω(G)-colouring of G in polynomial time. We
need one more observation.

Observation 6.3.2 Suppose that G is a graph without clique cutsets. If u ∈ V (G) is a universal
vertex, then G− u contains no clique cutsets.

Proof. If K is a clique cutset in G− u, then K ∪ {u} is a clique cutset in G. �

The proof of Theorem 6.0.1 is almost algorithmic except for the last step where we deal with
G with no clique cutsets or universal vertices. Essentially we want to successively remove a
triangle-free subgraph, one vertex from each equivalence class, from G so that the removal of
it reduces the clique number of the graph exactly by 2. During the removal process, however, if
the graph becomes disconnected, a maximal clique could just be one equivalence class, say Ti
(that forms a connected component of the graph). If Ti happens to be a maximum clique of
the current graph, then removing a single vertex from Ti may reduce the clique number by at
most 1. This happens when either Ti has at least two vertices or the current graph is just an
independent set. But both cases have an easy fix. In the former case, we simply remove two
vertices from Ti, and in the latter case we colour the independent set with a new colour that
has not been used (at this point all vertices of G have been coloured). Clearly, the number of
subgraphs we removed is at most ω(G)/2 = O(n). Moreover, each time it takes O(m+n) time
(determining the connected components) to find such a subgraph. Therefore, it takes O(mn)
time in total for finding subgraphs. On the other hand, by Corollary 6.1.7 we can colour all
subgraphs in O(n2) time.

Lemma 6.3.3 Suppose that G is a (even-hole,cap)-free graph without universal vertices or
clique cutsets. If the equivalence classes Ti’s under ∼T are given, one can find a 3

2ω(G)-
colouring for G in O(mn) time.
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We now present the algorithm for colouring general (even-hole,cap)-free graphs.

Algorithm 2: A 3/2-approximation algorithm for Chromatic Number
Input: A (even-hole,cap)-free graph G.
Output: A 3

2ω(G)-colouring of G.
1 Do clique cutset decomposition of G [102] and obtain a binary decomposition tree T (G).
2 for each atom A do
3 A′ := A;
4 for each a ∈ V (A) do
5 if |NA(a)| = |A| − 1 then // a is a universal vertex in A

6 A′ := A− a;
7 end
8 end
9 Partition A′ into equivalence classes T1, . . . , Tr under ∼T ;
10 Obtain a 3

2ω(A′)-colouring φA′ of A′ by Lemma 6.3.3;
11 Extend φA′ to a colouring φA of A by colouring each vertex in A \A′ with a new

colour;
12 end
13 Combine colouring φA of the atoms along T (G) and obtain a colouring φ of G.

We show that the algorithm is correct.

Theorem 6.3.4 Algorithm 2 is correct and runs in O(mn2) time.

Proof. We first discuss the running time. The clique cutset decomposition can be found in
O(mn) time and there are at most n atoms, see [102]. The for loop from line 4 to line 8
and line 11 apparently take O(n) time. To partition A′ into T1, . . . , Tr, we test for each edge
e = xy ∈ E(A′) whether or not N [x] = N [y]. For each edge it takes O(n) time and so line 9
takes O(mn) time. Line 10 takes O(mn) time by Lemma 6.3.3. In a word, the colouring φA,
for each atom A, can be found in O(mn) time. Since there are O(n) atoms, the total running
time is O(mn2).

To prove the correctness, we first note that A′ (after line 8) contains no universal vertices.
Suppose not, let b ∈ A′ be a universal vertex in A′. Since all vertices A \ A′ are universal
vertices in A, they are all adjacent to b. This implies that b is a universal vertex in A and
so it would have been removed during the for loop from line 4 to line 8, a contradiction.
Furthermore, A′ contain no clique cutsets by Observation 6.3.2. Therefore, the correctness
follows from Lemma 6.3.3 and the fact that universal vertices and clique cutsets preserve the
χ-binding function. �
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