
Constraint Programming Solutions to
LogicQL Program Verification and System

Resilience Problems
by

Heng Liu

B.Sc. Honours, St. Francis Xavier University, 2013

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

c© Heng Liu 2015
SIMON FRASER UNIVERSITY

Fall 2015

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, criticism, review and news reporting is likely to be in accordance with

the law, particularly if cited appropriately.

Approval

Name: Heng Liu

Degree: Master of Science (Science)

Title: Constraint Programming Solutions to LogicQL
Program Verification and System Resilience
Problems

Examining Committee: Chair: Dr. Andrei Bulatov
Associate Professor

Dr. Eugenia Ternovska
Senior Supervisor
Associate Professor

Dr. David Mitchell
Supervisor
Associate Professor

Dr. Arvind Gupta
Examiner
Professor
UBC

Date Defended: 14 December 2015

ii

Abstract

Constraint Programming (CP) is the study of solving problems by stating constraints on the
solution to be found. Many computer science problems can be viewed as a special case of
the constraint problem. In this thesis, we focus on using CP solvers for solving two distinct
problems. First, we develop and implement a framework for an automatic generation of
models that satisfy a program in LogicQL, a high-level database query language. We show
that our system gives immediate feedback to the user and can be used for incremental
development of LogicQL programs. Second, we consider a system resilience problem that
is important in many application domains. We present the design and implementation of
SR-solver, a novel integrated tool for evaluating system resilience. The SR-solver supports
a graphical representation of the system, thus making the evaluation of system resilience
accessible to general users.

Keywords: Constraint Programming; LogicQL; Program Verification; System Resilience

iii

Acknowledgements

I cannot express enough thanks to my research supervisors for their continued support
and encouragement: Dr. Eugenia Ternovska and Dr. David Mitchell. I offer my sincere
appreciation for useful critiques of this research work offered by Dr. Arvind Gupta.

I am also indebted to the members of the INOUE Laboratory at National Institute of
Informatics with whom I have interacted during the course of my NII internship. Particu-
larly, I would like to acknowledge Dr. Katsumi Inoue, Dr. Nicolas Schwind, Dr. Morgan
Magnin, Dr. Tony Ribeiro, Maxime Clement and Jacopo Panerati for the many valuable
discussions that helped me understand the system resilience problem better.

Finally, I wish to thank my parents, family, and friends for their support in reaching
this milestone.

iv

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 LogicQL program Verification using the IDP system 4
2.1 Background . 5

2.1.1 First Order Logic (FO) . 5
2.1.2 Model Expansion . 7
2.1.3 FO(ID) . 8
2.1.4 The IDP system . 9

2.2 LogicQL . 11
2.2.1 LogicQL Language . 12
2.2.2 LogicQL Program Verification as a Model Expansion Task 14

2.3 LogicQL Debugger . 14
2.3.1 LogicQL Debugger GUI . 15
2.3.2 The Translator . 17

2.4 Case study: Incremental Development of Automated Software Distribution
for Airplanes . 23
2.4.1 The problem . 24
2.4.2 LogicQL formulation . 24

2.5 Related work . 30
2.6 Conclusions and Future work . 30

v

3 System Resilience Problem 32
3.1 SR-model . 33

3.1.1 Resilience of the SR-model . 36
3.1.2 Determine the Resilience of a Dynamic System 41

3.2 On the Complexity of Evaluating Resilience Properties 42
3.2.1 A Polynomial Algorithm for Resistance 43
3.2.2 A Polynomial Algorithm for Recoverability 44
3.2.3 A Polynomial Algorithm for Functionality 48
3.2.4 Complexity of Evaluating Stabilizability 49

3.3 User Friendly Software for Solving System Resilience Problems using Gecode 51
3.4 Related work . 61
3.5 Conclusions . 61

Bibliography 63

Appendix A LogicQL Grammar 66

Appendix B IDP Grammar 69

vi

List of Tables

Table 2.1 IDP ASCII equivalents for Logical Connectives 10
Table 2.2 LogicQL ASCII equivalents for Logical Connectives 12

vii

List of Figures

Figure 2.1 IDP Program Structure . 9
Figure 2.2 3-Coloring Problem using IDP . 10
Figure 2.3 The High-level Architecture of the Debugger 15
Figure 2.4 Main GUI of LogicQL Debugger . 16
Figure 2.5 LogicQL Debugger GUI Showing Syntax Errors 16
Figure 2.6 LogicQL Debugger GUI for Defining Finite Domain 16
Figure 2.7 LogicQL Debugger GUI for showing Results 17
Figure 2.8 A Fragment of LogicQL Grammar 18
Figure 2.9 A (buggy) LogicQL Program for the First Two Policies 25
Figure 2.10 Finite Domain for the Debugger 25
Figure 2.11 The First Model from the Debugger 25
Figure 2.12 Refined LogicQL Program for the First Two Policies 26
Figure 2.13 New Finite Domain for the Debugger 27
Figure 2.14 Refined LogicQL Program for the Last Two Policies 27
Figure 2.15 First Five Models from the debugger 28
Figure 2.16 Final Version of LogicQL Program for the Automated Software Dis-

tribution for Airplanes . 29

Figure 3.1 Sample Dynamic System Graph . 36
Figure 3.2 Properties of Depth First Search . 45
Figure 3.3 SR-solver General Solving Scheme 51
Figure 3.4 Main GUI of the SR-solver . 52
Figure 3.5 A Dynamic Graph Example . 54
Figure 3.6 SR-solver Example . 60

viii

Chapter 1

Introduction

Constraint Programming (CP) is the study of solving problems by stating constraints such
that any solution of the problem must satisfy all of the stated constraints. For example,
if we consider two arithmetic constraints X + Y = 4 and X − Y = 2 together, then only
one solution is accepted: X = 3 and Y = 1. CP is a form of declarative programming, as
the problems are specified using a set of variables with a set of constraints between them,
without specifying how the solution is be computed. The use of CP can greatly reduce
the effort required to develop problem-specific algorithms and implementations. As stated
by Eugene C. Freuder, "Constraint programming represents one of the closest approaches
computer science has yet made to the Holy Grail of programming: the user states the
problem, the computer solves it." [5]

A problem specified in such a way is called a Constraint Satisfaction Problem (CSP). If
the variables in a CSP can only take values from a finite universe, then this CSP is called
a finite domain constraint satisfaction problem. A constraint programming framework
takes a CSP and tries to find an assignment to variables in the CSP that satisfies all of the
constraints. Solving CSPs is NP-hard in general, as the Propositional Satisfiability Problem
(SAT) is one of the most fundamental CSP.

Formally, a Constraint Satisfaction Problem is defined as follows [28]:

Definition 1 (Constraint Satisfaction Problem (CSP))
A CSP P is a triple P = 〈V,D,C〉 where

• V is an n-tuple of variables V = 〈v1, v2, ...vn〉 with n ≥ 0. Each variable vi

has a domain Di associated to it.

• D is a corresponding n-tuple of domain D = 〈D1, D2, ...Dn〉. Each domain
Di defines a set of admissible values for the corresponding variable vi. A
domain is not limited to the numerical domains. Some domains contain
strings, sets, and so on.

1

• C is a n-tuple of constraints C = 〈C1, C2, ...Cn〉. A constraint Ci is a pair
〈RSi , Si〉 where Si ⊆ V and RSi is a relation on the variables in Si. In
other words, Ri is a subset of the Cartesian products of the domains of the
variables in Si. Intuitively, a constraint Ci imposes a relation that must
hold among the variables in Si.

A solution to the CSP P is an n-tuple of A = 〈a1, a2, ..., an〉 where each ai ∈ Di

and for each Ci = 〈RSi , Si〉 ∈ C, the projection of A onto Si is an element
in RSi . That is to say, all the constraints in C must be satisfied. We denote
sol(P) as the set of all solutions for CSP P . If sol(P) is empty, then the CSP is
unsatisfiable. For some CSPs, we may want to find an optimal, or least costly
solution, given some cost function defined in terms of variables V.

Constraint Programming is well suited for many real-life problems as it provides an
intuitive way of expressing the problems. In [3], CP has been applied to the areas of as-
signment problems, operational research problems (such as scheduling problems), business
options trading, and bioinformatics. Further application areas include bounded program
verification for conventional programming languages, like Java or C [12], as well as product
configuration [29]. The success of applying CP to real-life problems leads us on the path
to solving two distinct problems using CP solvers. The first one is an automatic debugger
for the LogicQL programming language, a declarative, rule-based database language. Due
to the declarative semantics, tracing why a LogicQL program has unintentional behaviors
quickly gets tedious. We present a CP solver-based implementation for verifying the Log-
icQL program which we called LogicQL Debugger. For the second problem, we consider a
system resilience problem that is important in many application domains. We formulate the
problem of evaluating resilience as a CSP and provide a full GUI prototype implementation
for resilience analysis using a CP system.

Contributions

As stated in the previous section, in this thesis, we use CP for two distinct problems.
Therefore, the main contributions of this thesis are divided into two parts. With regards to
the LogicQL program Verifier part, the main contribution is to formally define and simulate
a LogicQL program based on a constraint satisfaction solver, specifically:

1. We formalize the task of the LogicQL program verification in the context of model
expansion.

2. We design and implement the LogicQL Debugger, a fully automatic, GUI-based, gen-
erator of satisfying LogicQL models that gives immediate feedback to the user.

3. We define and implement the translation of the LogicQL language to the language of
background solver.

2

4. We demonstrate that the debugger can be used to support the incremental develop-
ment of LogicQL programs.

With regards to the system resilience project, the two main contributions are:

• We present the computational complexity of evaluating each of the system resilience
properties.

• We define and evaluate system resilience based on a parallel constraint optimization
solver.

More specifically:

1. We prove that evaluating resistance, recoverability and functionality can be done in
polynomial time, whereas evaluating stabilizability is NP-Complete.

2. Given the fact that we are solving an NP-Complete problem, we formalize the system
resilience problem as a CSP.

3. We implement a fully graphical user interface, based on JUNG, a Java graph frame-
work, for users to define SR-models interactively.

4. We define and implement a translation of an SR-model to the language of underlining
solver.

5. We show that our implementation can scale to systems of a useful size.

3

Chapter 2

LogicQL program Verification
using the IDP system

Computers have been an essential tool for modern society. The dominance of computers is
not just because of their speed of processing, but; more importantly, it is because they are
free from making mistakes. Human beings, on the other hand (inevitably) make mistakes
from time to time. In the software engineering community, some estimates suggest that
over 50% of large software projects are never put into services [18]. Why does this happen?
The main reason is due to the method used in software development. The traditional way of
developing software can be summarized as "write, test, and fix". Theoretically speaking, this
method does work if we are able to test every possible case. However, in practice, it is an
impossible job since some errors may not show up for a very long time. One famous example
is the Millennium bug, also called the Y2K problem. Many software developers now choose
a rigorous approach to design an "error-free" system by writing down the specification of the
system in some logic-based language, then using the computer to help them guarantee the
behavior of the given computer system. This approach is quite feasible once the specification
is correct. But due to the nature of human, we cannot guarantee that the specifications are
correct. The problem of detecting whether a specification is correct is undecidable. What
we can do is to implicitly check the specification in a finite universe. There is a hypothesis,
called small scope hypothesis [17], argues that a high proportion of errors can be spotted
by testing the program for all possible inputs within a small bound. A counterexample
generator built on this hypothesis, called the Alloy Analyzer [16], has enjoyed considerable
success recently. Inspired Alloy’s success, our goal in this chapter is to provide a better tool
which enables us to debug LogicQL programs [13]. Our tool produces a (usually exhaustive)
set of models that satisfy the defined LogicQL program.

The rest of this chapter is organized as follows. Section 2.1 provides a brief review
of underlying concepts including first-order logic (FO), Model Expansion (MX), FO with
inductive definitions (FO(ID)), and the IDP system. In Section 2.2, we provide a description

4

of the LogicQL language followed by the formalization of LogicQL program verification as
a model expansion task. Section 2.3 describes the TXL source to source translator and the
implementation of the LogicQL Debugger using TXL as a LogicQL to IDP translator and
the IDP system as backend solver. Section 2.4 presents an example of using the LogicQL
Debugger as a tool for the incremental development of the LogicQL program. Section 2.5
reviews some work related to LogicQL program verification. Lastly, Section 2.6 concludes
this chapter with potential future work.

2.1 Background

2.1.1 First Order Logic (FO)

Definition 2 (Vocabulary and Structure)
A vocabulary σ is a set of relation and function symbols. Each symbol is asso-
ciated with an arity which is the number of its arguments. Constant symbols
are zero-ary function symbols.

A finite structure Å for vocabulary σ, or, a σ-structure, is a tuple containing a
finite universe A, and a relation (function) for each relation (function) symbol
of σ defined as follows:

• each n-ary relation symbol Ri ∈ σ is mapped to a n-ary relation RÅ
i over

finite universe A, i.e, RÅ
i ⊂ An,

• each n-ary function symbol fi ∈ σ is mapped to a n-ary function fÅ
i over

finite universe A, i.e, fÅ
i ⊂ An → A,

• each constant symbol ci ∈ σ is mapped to an element cÅ
i ∈ A.

In general, we write Å = (A;RÅ
1 , . . . , R

Å
n , c

Å
1 , . . . , c

Å
n , f

Å
1 , . . . , f

Å
n) where Ri, ci,

and fi are relation symbols, constant symbols, and function symbols respectively.
Relations are also called predicates. Throughout the thesis, we use these two
names interchangeably.

For example, if σ has constant symbols 0, . . . , 9 and a binary function symbol +, then,
assuming we are given a finite universe of discourse A= 0, . . . , 9, one possible finite structure
for σ is Å = (A; 0Å, . . . , 9Å,+Å) where 0Å = 0, . . . , 9Å = 9 and +Å has its standard meaning
of one digit addition on elements of universe A.

Assuming we have an infinite set of variables, we inductively define terms and formulas
of first-order logic over vocabulary σ as follows:

Definition 3 (FO Terms and Formulas)

5

• Every variable is a term.

• Each constant symbol is a term.

• If f is a n-ary function symbol and t1, t2, . . . , tn are terms, then f(t1, t2, . . . , tn)
is also a term.

• If R is a n-ary relation symbol and t1, t2, . . . , tn are terms, then R(t1, t2, . . . , tn)
is a well defined atomic formula.

• If φ1 and φ2 are two formulas, then ¬φ1, φ1 ∨ φ2 and φ1 ∧ φ2 are also
formulas.

• If φ is a formula, then ∀x φ and ∃x φ are formulas

¬,∨, and ∧ are boolean connectives and ∀ and ∃ are quantifiers. Formulas that
do not contain any boolean connectives or quantifiers are also called atoms.

A variable occurrence x in a formula φ is bound if it is paired with a quantifier
in formula φ and free otherwise.

A sentence is a formula that does not have any free variables. For example: ∀x∃y P(x,y)
is a sentence whereas ∃y P(x,y) is not. We denote that the set of free variables of formula φ
by φ(x̄). We use ∀~xR(~x) as an abbreviation for ∀x1 . . . ∀xn R(x1, . . . , xn), similarly, ∃~xR(~x)
for ∃x1 . . . ∃xn R(x1, . . . , xn).

A valuation σ is a function mapping each variable to an element of the Universe A. We
denote σ(α/x) as the object assignment such that

σ(α/x)(y) =

α y = x

σ(y) y 6= x

The value of first order term t, with respect to structure Å and valuation σ, written
tÅ[σ], can be defined recursively by:

• If t is a constant symbol c, then tÅ[σ] = cÅ.

• If t is a variable x, then tÅ[σ] = σ(x).

• If t is of the form f(t1, . . . , tn), then tÅ[σ] = f(tÅ1 [σ], . . . , tÅn [σ]).

The intuition behind the valuation of terms of the form f(t1, ..., tn) is straightforward. To
determine the value of f(t1, . . . , tn), we first figure out the value of each argument t1, . . . , tn,
then we determine what function f denotes with respect to structure Å. At last, we apply
the function with the values of arguments to figure out the value of f(t1, . . . , tn)

Definition 4 (Semantics of FO Formula)
A first order formula φ with respect to structure Å and valuation σ is true,
written Å � φ[σ], is determined as follows:

6

• If φ is (t1 = t2), then Å � φ[σ] iff tÅ1 [σ] = tÅ2 [σ].

• If φ is R(t1, . . . , tn), then Å � φ[σ] iff (tÅ1 [σ], . . . , tÅn [σ]) ∈ RÅ.

• If φ is ¬ψ, then Å � φ[σ] iff Å 2 ψ[σ].

• If φ is ψ1 ∨ ψ2, then Å � φ[σ] iff Å � ψ1[σ] or Å � ψ2[σ].

• If φ is ψ1 ∧ ψ2, then Å � φ[σ] iff Å � ψ1[σ] and Å � ψ2[σ].

• If φ is ∀xψ, then Å � φ[σ] iff for every α in Å, Å � ψ[σ(α/x)].

• If φ is ∃xψ, then Å � φ[σ] iff for some α in Å, Å � ψ[σ(α/x)].

Note that if φ is a sentence, then the substitution σ has no effect on the truth value of
φ. Thus we simply write Å � φ, or Å 2 φ. In the case that Å � φ, we say that Å is a model
for φ.

2.1.2 Model Expansion

In [25], the authors introduced a declarative problem solving paradigm formalized as the
task of the model expansion (MX). In the following sections, we introduce the mathematical
background of MX and review the IDP system, an MX solver for FO(ID), an extension of
classical logic.

For a formula φ, we write vocab(φ) for the collection of exactly those relation, constant
and function symbols which occur in φ. Let σ ,υ, and τ be vocabularies such that σ∪υ = τ

and σ ∩ υ = ∅. Let Å = (A;σÅ) be a σ-structure. We say a τ -structure Ů = (U ; τŮ) is an
expansion of Å if their domains are the same (i.e., A = U), and τŮ = σÅ ∪ υŮ.

The MX problem is that of finding models of a given formula that expand a given finite
structure. We require that the user first axiomatizes the problem in some logic L, which has
to have a standard model theory. The axiomatization creates a relation from an instance of
the problem to its solutions. Logic L can be an extension of first-order logic, or the language
of Answer Set Programming, or a Datalog-like logic programming language.

Definition 5 (Model Expansion (MX))
Formally, the MX search problem for an arbitrary logic L, denoted

MX(L), is:
Given : 1. An L-formula φ with vocabulary τ = σ ∪ υ

2. A σ -structure Å
Search: a τ -structure Ů, which is an expansion of Å and satisfies φ

Thus, we expand the structure Å to τ such that it satisfies φ. If we can find a τ -structure
Ů that expands Å, then we will say σ-structure has a φ expansion.

7

2.1.3 FO(ID)

The basis of FO(ID) lies in classic first-order logic (FO) defined in the Section 2.1.1. In [25],
Mitchell and Ternovska proved that for any formula φ of first-order logic with vocabulary
τ = σ ∪ υ and vocabulary σ, the problem of deciding whether an σ-structure has a φ

expansion is in NP. And, more importantly, every problem in NP can be reduced in polytime
to the model extension problem MX(FO).

We illustrate MX(FO) with graph 3-coloring problem:

Example 1
A graph 3-coloring problem instance is a structure with vocabulary σ = {Vtx,
Edge(Vtx, Vtx), Color, R, G, B}. The solution is a function mapping from
vertices to one of the three colors so that neighbouring vertices have a different
color. We represent the expansion vocabulary υ = Coloring(Vtx), a function
from vertices to colours. The FO formula for this problem is:

φ = ∀v1∀v2 (Edge(v1, v2) =⇒ Coloring(v1) 6=Coloring(v2))

More formally, the task is to find an interpretation for function Coloring(Vtx)
such that:

(Vtx, Edge(Vtx, Vtx), Color, R, G, B, Coloring(Vtx)) � φ

A (inductive) definition 4 is a set of rules of the form ∀~x(X(~t)← φ), where ~x is a tuple
of variables, X is a predicate symbol, φ is a first-order formula, and ~t is a tuple of terms
such that any free variable in ~t is among the variables in ~x. X(~t) is called the head of the
rule and φ the body. The "←" symbol is called definitional implication and it has a different
semantic meaning from material implication "→". Intuitively, the definitional implication
should be read as "if", such as "X(~t) is true if φ is".

The FO(ID) formulas are constructed from boolean combinations of definitions 4 and
FO formulas. The semantics of FO(ID) extends FO with the well-founded semantics of logic
programming. More details can be found in [21] and [11].

In the context of finite structures, MX(FO(ID)) does not have more expressive power
than MX(FO). However, properties like transitive closure in a graph and rules in LogicQL
are not easily expressible in MX(FO). We shall see that supporting inductive definitions
makes expressing such properties natural and trivial.

To demonstrate the usefulness of FO(ID), consider the following program that computes
the transitive closure of a graph as well as the complement of the transitive closure tc. The
graph is given as input via a binary relation e containing its edges.

Example 2
∀x ∃y n(x) <- e(x,y).

∀x ∀y tc(x,y) <- e(x,y).

8

∀x ∀y ∀z tc(x,y) <- e(x,z) ∧ tc(z,y).

∀x ∀y ∀z ntc(x,y) <- n(x) ∧ n(y) ∧ !tc(x,y).

2.1.4 The IDP system

The IDP system [36] is an MX solver. Its specification language is based on FO(ID). More
concretely, the logic L for the IDP system is a full first-order logic with an order-sorted
type system, inductive definitions, partial functions, arithmetic, existential quantifiers with
numerical bounds and aggregates [36]. Though these extensions do not increase the class
of problems that can be modeled in MX(FO), they do considerably simplify the modeling
of the LogicQL language. For readability, we will use standard logical connective notations
throughout the thesis. For the ASCII notation of the connectives in IDP’s input language,
we refer to Table 2.1.

In this section, we describe the IDP Program. The basic overall structure of an IDP
Program consists of 4 sections:

vocabulary V {...}
theory T:V {...}
structure S:V {...}
procedure main() {...}

Figure 2.1: IDP Program Structure

Vocabulary has declarations of all types, predicate and functions symbols. Vocabulary
declares all the variables of the problem. Take the vocabulary part for the 3-coloring problem
as an example:

vocabulary V {
type Vtx
type Color subtype of int
type Edge(Vtx,Vtx)
Coloring(Vtx):Color
}

The vocabulary is named V and introduces two types: "Vtx" and "Color". Note that the
second type is a subtype of a predefined type: int. It also declares a binary predicate symbol
Edges, a relation between two vertices and a unary function symbol "Coloring" mapping
vertex to its color. All IDP vocabularies are well-typed as cyclic dependencies are forbidden
and will result in a compiler error. For example, "type A subtype of B and type A supertype
of B" are not allowed as A depends on B.

9

Theory has all FO sentences and inductive definitions. As an example, Figure 2.2 gives
the theory part for the 3-colouring problem:

theory T: V {
!v1[Vtx] v2[Vtx] : Edge(v1,v2) => Coloring(v1) ˜= Coloring(v2).
}

Figure 2.2: 3-Coloring Problem using IDP

Logical Connective ∀ ∃ ∧ ∨ ¬ → ←
IDP ASCII Representation ! ? & | ˜ => <-

Table 2.1: IDP ASCII equivalents for Logical Connectives

The meaning of this formula has been explained in Section 2.1.3. The theory part
consists of ASCII representations of FO(ID) formulas. The mapping from logical connectives
to ASCII symbols is provided in Table 2.1.

Structure defines a partial instance for the problem. One possible instance of the
3-colouring problem is:

structure T: V{

Vtx = { V1 ; V2 ; V3 }

Color = { 1..3}

Edge= { V1,V2;

V2,V3;

V3,V1;}

}

In the box above, "Vtx = {V1 ;V2 ;V3 }" specifies elements of Vtx to be V1, V2 and
V3. Similarly, elements of Color are 1, 2 and 3. "Edge={V1,V2; V2,V3; V3,V1;}" specifies
tuples of relation Edge to be {(V1,V2),(V2,V3),(V3,V1)}. There is no specification for
function "Colouring" as this is what we want to find.

The last part of an IDP program is Procedures. The procedure defines what kind
of inference we want to use. In the case of the 3-colouring problem, we want to perform
model expansion, since we want to search for an interpretation of function "Colouring" that
satisfies theory T. The procedure is the following:

10

stdoptions.nbmodels = 2

printmodels(modelexpand(T,S))

By default, IDP returns one model of the theory. By setting stdoptions.nbmodels to 2,
IDP will return 2 models (if there is more than 1). When set to 0, IDP will print all models
of the theory.

2.2 LogicQL

LogiQL is a declarative logic programming language developed by LogicBlox, Inc[13], to
harness the power of Datalog with first-order logic constraints to support building databases.
It has been developed based on Datalog.

Prolog is a popular logic programming language initially implemented in France in
1972. Both Prolog and LogiQL are built on first-order logic and provide elegant support
for deductive inferences, including recursive rules. Unlike Prolog, LogiQL programs are
guaranteed to terminate. This useful property is achieved by placing further syntactic
restrictions on the kinds of rules that can be formulated.

Datalog was also developed in the 1970s with a specific emphasis on providing access to
deductive databases. Unlike Datalog, LogiQL has been designed to handle large quantities
of data stored in industrial-strength databases. Hence, it can be thought of as a query
language for such databases. In fact, the name "LogiQL" combines "logic" with "QL", which
is shorthand for "query language."

From a database point of view, LogiQL has a few of differences with SQL:

SQL LogiQL
model tables predicates
data relations sets of tuples
logic queries views rules queries

There are two major differences between a predicate and a relational table:
(i) A predicate contains a set of tuples, whereas a table contains a bag of tuples. That is,
a table may contain many duplicate copies of the same tuple; a predicate only contains the
same tuple once. (ii) A predicate does not contain NULLs.

From the FO(ID) point of view, on the other hand, LogicQL is essentially a fragment
of FO(ID) with different syntax.

11

Logical Connective ∧ ∨ ¬ → ←
LogicQL ASCII Representation , ; ! -> <-

Table 2.2: LogicQL ASCII equivalents for Logical Connectives

2.2.1 LogicQL Language

The basic building blocks of the LogicQL language are the LogicQL formulas. LogicQL
formulas can be viewed as a proper subset of FO formulas in terms of their semantic meaning.
Specifically, the LogicQL formulas are defined inductively as follows:

• Every variable is a term.

• Each constant symbol is a term.

• If R is a n-ary predicate symbol and t1, t2, ..., tn are terms, then R(t1, t2, ..., tn) is an
atomic formula.

• If R is a n-ary functional predicate symbol and t1, t2, ..., tn are terms, then R[t1, t2, ..., tn−1] =
tn is an atomic formula.

• If φ1 and φ2 are two formulas, then !φ1, φ1;φ2 and φ1, φ2 are also formulas. "!", ";"
and "," are boolean connectives negation, disjunction and conjunction respectively.

Compared with FO formulas defined in Section 2.1.1, the LogicQL formulas have no
functions symbols but include functional predicates. The inclusion of functional predicates
does not increase the expressive power of the language as each functional predicate is equiv-
alent to an FO predicate with a functional constraint that makes sure no two tuples in the
predicate share the same sequence of first n-1 values.

Every variable in a LogicQL formula is implicitly bound to a quantifier. The variable
whose name consists of a single underscore character "_" is an anonymous variable that
is bound to an existential quantifier. By calling it anonymous, we mean that the name of
this variable does not matter and will not be used in other parts of the formula. All other
variables are bound with universal quantifiers. Therefore, every LogicQL formula can be
viewed as an FO sentence.

Now, we are ready to formally define the LogicQL programs:

Definition 6 (LogicQL program)
A LogicQL program D is a set clauses D = F ∪R ∪ C where:

• F is a set of facts. Each fact consists of an atomic formula,
e.g. "+House("Windsor")."

12

• R is a set of rules, that is, formulas connected by a left-hand arrow. Rules
provide instructions for deriving new facts from existing ones and can be
translated to an equivalent inductive definition that has the same semantic
meaning. For instance person(x)<-male(x) says all males are persons. This
rule is equivalent to: ∀x (person(x)<-male(x))

• C is a set of constraints. A constraint expresses an invariant property of the
data contained in the program’s workspace. It is expressed using a rightward
facing arrow (->). Constraints constrain predicate facts, e.g. with types or other
restrictions. The interpretation of a constraint, just like the implication of two FO
formulas, is that whenever the formula on the left-hand-side of the arrow holds
true, the formula on the right-hand side of the arrow must hold true, as well.
There are three forms of constraints:

– formula -> formula.
For example: hasGenderCode(:gc) -> gc = "M" ; gc = "F".
means Possible gender codes are M and F.

– -> formula. This is equivalent to TRUE -> formula
For example: ->Person(_).
means Person predicate is not empty.

– ! formula. This is equivalent to TRUE -> !formula
For example: !isParentOf(p, p).
means no person p is a parent of him or her self.

An Intensional DataBase (IDB) predicate is a predicate occurring in the head
of rules in D. All other predicates are Extensional DataBase (EDB) predicates.
The extensional (database) vocabulary, denoted vocab(EDB), consists of the set
of all EDB predicate symbols; whereas the intensional vocabulary vocab(IDB)
has all the IDB predicate symbols. Hence, the vocabulary for the program D,
vocab(D), is the union of vocab(EDB) and vocab(IDB).

We say that a constraint c ∈ C is an EDB constraint if vocab(c) ⊂ vocab(EDB),
i.e., if it contains only extensional predicate symbols. The remaining constraints
are said to be IDB constraints.

When running the LogicQL program D, the LogicQL engine handles the program D in
the following fashion:

• An EDB instance is created by all facts F ⊂ D.

• Check if the EDB instance satisfies all EDB constraints in D.

• If it is satisfiable, run all rules R ⊂ D to derive the instance of IDB.

• Check if the IDB instance violates the IDB constraints or not

• If inconsistency found, abort the program and rollback to the initial state.

13

It is worth noting that the complexity of checking constraints and deriving new IDB facts
are both polynomial time. Hence, it is impossible to directly use the LogicQL engine to
solve MX tasks (unless P=NP).

2.2.2 LogicQL Program Verification as a Model Expansion Task

To verify a LogicQL program, we embrace the idea of small scope hypothesis [17]: exhausting
the entire space of executions within some finite bounds, in which a program is analyzed for
all acceptable models. That is, we take a LogicQL program and a bound on the size of the
finite universe, the correctness of the program is checked against all potentiality satisfying
models. This explicit analysis is not only able to reveal bugs in the program but also errors
in the intended specification themselves.

Formally, given a LogicQL program D and a finite vocab(EDB)-structure Å, the task of
model expansion for a LogicQL program verification is:

Definition 7
Given:

1. A LogicQL program D with vocabulary vocab(D)=vocab(IDB) ∪ vo-
cab(EDB)

2. A finite vocab(EDB)-structure Å.
Search:

A vocab(D)-structure Ů, which is an expansion of Å and satisfies D.

2.3 LogicQL Debugger

In this section we present the LogicQL Debugger, an integrated tool for programming and
debugging the LogicQL programs based on the MX formulation defined in the previous
section. Rather than using trial and error method for finding satisfying models of the
LogicQL programs on the cumbersome platform-dependent LogicQL evaluation engine, our
LogicQL Debugger takes a LogicQL program D as input and asks the users to specify the
finite domain for D, and then translates program D, together with the domain, to an IDP
problem specifications and then it generates the satisfying models using the IDP solver. In
addition to the translation program, we provide a cross-platform Graphical User Interface
(GUI) for the general users to edit LogicQL programs and view the results from the IDP
solver. User knowledge of the IDP system is not required as every IDP-related task is done
automatically underneath the GUI.

The LogicQL Debugger has three components. i) the GUI-based editor and GUI-based
Model Scope editor, ii) the LogicQL to IDP translator and iii) the IDP solver. Figure 2.3
shows the architecture of the LogicQL Debugger.

14

Figure 2.3: The High-level Architecture of the Debugger

2.3.1 LogicQL Debugger GUI

Figure 2.4 presents the main GUI window of the LogicQL debugger. The GUI has a panel
for the LogicQL code area and another panel for the console messages. The users can either
load LogicQL code from an external file or just type the code in the code area. Once the
user decides to check the LogicQL code, he can then press the "Run" button in the lower
right. One of the following cases will occur:

Case 1: Syntax errors found in the code

Suppose the user entered the following code:

ServierName(n)->string(n).

Date(expDate)-> int(expDate)

Note that the user forgot to end the second constraint with the "dot". After the "run"
button is pressed, the debugger reports the syntax errors, as can be seen in Figure 2.5.

Case 2: No Syntax errors in the code

If the user had fixed the syntax error in case 1, a domain selection window would have
popped up, asking for the finite domain for this LogicQL program.

15

Figure 2.4: Main GUI of LogicQL Debugger

Figure 2.5: LogicQL Debugger GUI Showing Syntax Errors

Figure 2.6: LogicQL Debugger GUI for Defining Finite Domain

16

Suppose the user adds "John" to ServerName and 2012 to Date and then presses the run
button with "Find all models" option selected. The IDP solver tries to find all satisfying
models and the final result is shown in Figure 2.7.

Figure 2.7: LogicQL Debugger GUI for showing Results

Unsurprisingly, given the fact that the user defined everything in the domain selection
window and there are no rules in this LogicQL program, only one model can be found. And
this model is exactly what the user has entered.

2.3.2 The Translator

In this section, we provide the technical details on how the logicQL program is translated
to its equivalent IDP specifications. We use TXL [9], a hybrid functional and rule-based
language for performing source-to-source transformations. The TXL transformation process
consists of three parts:

• 1. Parse Phase. The TXL tokenizes the entire LogicQL program, and then parses
it according to the context-free grammar for LogicQL language. The grammar is
described in BNF-like notation. A portion of the LogicQL grammar is provided in
Figure 2.8.

• 2. Transformation Parse. It applies a set of transformation rules that takes the parse
tree of the LogicQL input and transforms it into a new tree that corresponds to the
equivalent IDP output.

• 3. Unparse Phase. It unparses the tree produced in step 2 and produces the IDP
output based on the context-free grammar for IDP language.

17

define LogicQL_program
[repeat clause]

end define

define clause
[constraint]

| [logicQLrule]
| [comment]
| [fact]

end define

define constraint
[formula] -> [formula] [end_formula]

| -> [formula] [end_formula]
| ’! [formula] [end_formula]

end define

Figure 2.8: A Fragment of LogicQL Grammar

The TXL transformation approach brings two benefits to the LogicQL Debugger. First,
the initial parse phase acts as a LogicQL syntax checker. Should the program contain any
syntax errors, TXL will detect and report these errors. Thus, no pre-processing is needed to
guarantee that the LogicQL program is syntactically correct. Second, we can dynamically
generate the finite domain selection table, since the parsed tree enables us to extract the
vocabulary of the input LogicQL program. Note that LogicQL program is strongly typed,
so the predicate-type binding tables can be extracted at the same time.

The transforming paradigm involves three steps: (1) build a typed symbol table for
both predicates and variables in the LogicQL program; (2) integrate the logicQL and IDP
grammars to form an intermediate translation grammar; (3) for each grammar non-terminal,
apply a set of independent translation rules to it.

Build symbol tables

The symbol tables serve as a database for the transformation process. The primary con-
tent of the symbol tables are the predicate or variable symbols and data type information
for each clause in the LogicQL program. This information is gathered by a special kind
of transformation rule in TXL called a constructor. A constructor is often used to build
intermediate subtrees for use later in the transformation processes. In our implementation,
a table entry looks like:

18

define typedVariableEntry

[number] [repeat identifier]

end define

function main

export table_typedVarlist [repeat typedVariableEntry]

_

...

}

Each table entry maintains an entry for each predicate or variable in the following
format:

Clause Number, symbol, type 1, ... ,type n

We allow multiple types for the same symbol due to the fact that we need to have a
symbol-type pair for variables as well as predicates. It is usually the case that the predicate
is a non-unary predicate. Therefore we need store one type for each of the arguments for
that predicate. For example, if the symbol table has to store information about the following
LogicQL program:

Vtx(v) -> String(v).

Edge(v1,v2) -> Vtx(v1), Vtx(v2).

Then the content of symbol table is:

1 v String

2 v1 Vtx

2 v2 Vtx

1 Vtx String

2 Edge Vtx Vtx

This symbol table is stored as a global variable that can be accessed any time during the
transformation process. Whenever a symbol needs to be searched in a symbol table, it is
searched by matching the clause number and the symbol altogether and thus guarantees we
looked up the intended symbol. In our implementation, we build a one table for predicates
and another for variables. The vocabulary of the input logicQL program is the collection
of all symbols in predicate symbol table.

19

Integrate source and target grammars

Beside the already defined logicQL grammar and IDP grammar (please refer to the appendix
for the full grammar), we build an integrated translation grammar as the media of exchange.
A program in the integrated grammar can either be a LogicQL program or an IDP program.
We also relax the definition of IDP sentences and formulas so that both the untranslated and
translated code are accepted in every context, allowing us to work independently on each of
the components. The integrated grammar is not used during the parse phase and unparse
phase and thus guarantees the input LogicQL program and the output IDP specification
are free of syntax errors.

include "logicQL.Grm"

include "IDP.Grm"

define program

[LogicQL_program]

| [IDP_program]

end define

redefine IDP_sentence

...

|[formula]

end redefine

redefine formula

...

| [formula] ’& [formula]

| [formula] ’| [formula]

| ’~ [formula]

end redefine

Translate to IDP

As stated in Section 2.1.4, the output IDP program has four (independent) sections, namely,
vocabulary, theory, structure, and procedure. Here, we present in detail how we build the
IDP program section by section. There are four independent sections in an IDP program,
We present the building procedure of these individual sections

Vocabulary is the section that declares of all types, predicate and functions symbols.
Formally, an IDP vocabulary section is defined as:

vocabulary [id] { [repeat IDP_symbol_declaration] }

20

where vocabulary is the keyword, [id] is the name of the vocabulary and it can be any string
beginning with a letter. We use V as the name of vocabulary. Each symbol declaration is
of the form:

[id] ([list id])

The following procedure illustrates the building procedure:

1. the section begins with "vocabulary [id] { "

2. For each table entry of the form: [Predicate] [Type 1] ... [Type n]
add [Predicate] ([Type 1], ..., [Type n]) to the section.

3. Close the section with "}"

Theory consists of all FO sentences and inductive definitions(rules). Recall that a
constraint LogicQL program is a set of clauses and each clause is either a fact, a constraint
or a rule. To help the transformation process, we employ three kinds of tables, one assigns
a unique clause number to each LogicQL clause and the other two is the predicate/ variable
symbol tables mentioned in the previous section. We now ready to present how each kind
of LogicQL clauses is transformed into IDP clauses:

1. Replace Every LogicQL logic connective with its equivalent IDP connective according
to Table 2.2 and Table 2.1.

2. Replace every functional predicate of the form:

[Predicate symbol] [[Argument list]] = [Argument]

with

[Predicate symbol] ([Argument list], [Argument])

That is to say, we treat each functional predicate as regular predicate. To preserve the
semantic meaning of the functional predicate, we include a functional constraint for
each functional predicate in the program. This is to ensure that the model generated
by the IDP solver is indeed an instance acceptable by the logicQL engine.
For example, for a functional predicate person_has_age(String):int, we will add the
following constraint to the IDP theory:

!x1[String] !y1[int] !y2[int]

: person_has_age[x1] = y1 & person_has_age[x1] = y2 => y1=y2

21

3. For every variable symbol of the form [variable] [type] we found by matching the clause
number in universal variable table, we append ![variable] [[type]] to the beginning
resulting sentence.

4. Similarly, for each symbol from existential variable table,
we append ?[variable] [[type]].

5. For each form of logicQL clause, transform to its sentimentally equivalent form in IDP
language:

• Clauses of the form: [formula] -> [formula] [end formula]
We replace the original clause of form: [formula] -> [formula] [end formula] with
:[formula] => [formula] and the final result is of the form:

! Variable1 [Type 1] !Variable2 [Type 2] ... ?VariableN [Type N]

:[formula] => [formula]

For example, the 3-colouring specification in LogicQL language is:

Edge(v1,v2) -> Coloring(v1) , ! Coloring(v2)

and will be translated to:

!v1[Vtx] !v2[Vtx] : Edge(v1,v2) => Coloring(v1) & ~Coloring(v2)

• Clauses of the form: -> [formula] [end formula]
is replaced with :
[formula]

• Clauses of the form: ! [formula] [end formula]
is replaced with :
∼[formula]

• Clauses of the form: [formula] <- [formula] [end formula]
is replaced with :
[formula] <= [formula]

Structure contains a (partial) instance description for the IDP specification. An in-
stance description contains the domain of types and may contain interpretations of predi-
cates. Interpretations of predicates are given as a set of semicolon spaced tuples, where each
element of tuples being comma-separated. There are two sources of the instance description:

1. For each fact in the LogicQL program of the form "+ PredicateName(Data).", we add
"Data" to the set of semicolon spaced tuples for PredicateName.

22

2. Alternatively, the user may want to populate the instance description from GUI.
Anything entered in GUI is already in IDP format and thus no further transformation
is needed.

Procedure defines what inference we want to use. In our case it is model expansion.
In the current implementation, the procedure section is fixed as shown in the following:

procedure main(){

stdoptions.nbmodels = n

printmodels(modelexpand(T,S))

}

The number "n" is the number selected by the user from the domain selection GUI, this
number represent the number of models the user wants to find by the IDP solver. By
default, the IDP solver returns all satisfying models.

2.4 Case study: Incremental Development of Automated Soft-
ware Distribution for Airplanes

In this section, we demonstrate how the debugger can be effectively used in finding out the
impact of changes in rules or finding bugs in the current implementation.

With the advances in electronic communication, we see an increasing need for electronic
collaboration. The applications areas include software distribution, healthcare, and many
others [15]. Many of these applications comprise confidential information and thus making
trust management between collaborated parties highly critical. Policies are described to
define conditions under which an action is approved or forbidden. The collaborators usually
only have a rough idea of what policies should be set and, as a consequence, policies are
typically described informally. Take the following statement as an example: "only the
airline-approved partner can perform a software update on airplanes". This statement is
a policy as it governs who may perform the software update on the airplane, based on
the airline-approved partner list. But it is not clear if this policy asks for the software
update on the planes or only forbids anyone who is not on the list from doing an update.
If the developer of electronic collaboration system misinterprets the ambiguous policy, the
collaborated parties may suffer lost revenue and breached security.

Our debugger produces a (usually exhaustive) set of models that satisfies the defined
policies. Whether a user is interested in the impact of changes in policies or finding bugs
in the current implementation, the user can check satisfying models to concretize policies’
behavior. By doing so, our tool provides an integrated environment for policy-based trust
management system based on LogicQL. In particular, the use case we focus on in this
section is automated electronic software distribution for airplanes. Given the immediacy

23

of the satisfying models the debugger provides, one can refine the (possibly unambiguous)
policies in a series of small modifications and additions.

2.4.1 The problem

Airplanes are maintained by service providers who are contracted by the airline. An airline
may have several contracted service providers, responsible for performing software main-
tenance of different airplane types or on different locations. The service providers have
to authenticate themselves to the airplane to perform maintenance, such as a short-term
authentication token must be obtained from the airline. The question is to decide for which
airplane types and which part of airplane service providers are authorized to install the
update. More details on the problem of Automated Software Distribution for airplanes can
be found in [19].

We assume that software updates were provided by trusted suppliers (i.e., Boeing) and
the airplane trusts all the information its airline provides. We also assume that the autho-
rization policy that state the condition under which a service provider can perform software
on which type of aircraft is specified as follows:

1. Airline keeps a list of which parts needs to be loaded into which tail.

2. Airline keeps a list of contracts with service providers that specify the service providers
name, expire date of the contact and the airplane type.

3. No work is assigned to a partner whose contract has expired.

4. The airline currently only working on loading parts to "tail123" on Boeing 787.

2.4.2 LogicQL formulation

We begin out with LogicQL formulation of the problem with declaring entity types. An
entity is a concrete object that may contain one or more values. Also, the collection of
entity declaration defines the structure of this LogicQL program. Note that throughout
this section, we conventionally start with an upper case letter for entity types and lower
case letters for all other non-entity predicates. Here is the LogicQL code for declaring entity
types:

ServierName(n) -> string(n).

AirplaneType(t) -> string(t).

PartName(p) -> string(p).

TailName(tail) -> string(tail).

Date(expDate) -> int(expDate).

24

This code introduces five entity types(or simply types) – Servier Name, Airplane Type,
Part Name, Tail Name and Date – each representing a set of objects. For example, the
ServierName entity type would contain the set of Servier Name used in the LogicQL pro-
gram. The code contains neither constraints nor rules, so there’s no need to start debugging
yet.

Next, we add predicates to model the first two policies addressed in the previous section.
The following code declares two constraints that the first two lines of code restrict servicer
predicate to be a subset of ServierNameXDateXAirplaneType while the last two lines of
code restrict approvedPart predicate to be a subset of PartNameXTailName:

servicer(n,expDate,t) − > string(n),int(expDate),string(t).
servicer(n,expDate,t) − > ServierName(n),Date(expDate),AirplaneType(t).
approvedPart(p,tail) − > string(p),string(tail).
approvedPart(p,tail) − > PartName(p),TailName(tail).

Figure 2.9: A (buggy) LogicQL Program for the First Two Policies

We then give a scope that bounds the size each of the types: in our case, to two object in
each type, except for AirplaneType, which is limited to one object. Since, for now, we only
want to debug the first policy, the approvedPart predicates are also fixed as shown in Figure
2.10. Running the LogicQL Debugger finds 16 different models. Each of the models can be
shown in either textual or graphical, here the textual view of the first model is presented
in figure 2.11.

ServierName = "A";"B";
AirplaneType = "777"
PartName = "partA";"partB"
TailName = "tail123";"tail456"
Date = 2017;2015
approvedPart="partA","tail123"

Figure 2.10: Finite Domain for the Debugger

Date = 2015; 2017
AirplaneType = 777
Name = "A"; "B"
PartName = "partA"; "partB"
TailName = "tail123"; "tail456"
approvedPart = "partA","tail123"
servicer = "A",2015,777; "A",2017,777; "B",2015,777; "B",2017,777

Figure 2.11: The First Model from the Debugger

25

We immediately see that our model allows two distinct contracts for the same service
provider and airplane type pair with the only difference been in the "expDate". This result
is not surprising since we did not add any constraints that restricted the servicer predicate
to be a functional predicate (i.e. each service provider and airplane type should map to
only one expire date). We would like to make sure that this model will not happen again,
so we add a new constraint on servicer predicate:

servicer(n,expDate,t) − > string(n),int(expDate),string(t).
servicer(n,expDate,t) − > ServierName(n),Date(expDate),AirplaneType(t).
approvedPart(p,tail) − > string(p),string(tail).
approvedPart(p,tail) − > PartName(p),TailName(tail).
servicer(n,expDateA,t),servicer(n,expDateB,t) − > expDateA = expDateB.

Figure 2.12: Refined LogicQL Program for the First Two Policies

Running the debugger with the same scope described in figure 2.10 again gives nine
models, and we can check that all of the models are consistent with the policy. These little
simulations are useful because, with minimal effort on writing test cases, one can confirm
that the implementation of the policies not only considered obvious cases but also other
cases that might not have been considered at all. Next, we continue with the implementa-
tion of the last two policies that specify which service provider is approved to load which
part onto an airplane:

load(n,p) < − servicer(n,expDate,t), approvedPart(p,tail),
expDate > 2014
t= "787",tail="tail123" .

As service providers are contracted by airlines to perform software updates for one
particular software package, we express the policies as a LogicQL rule that automatically
derives and authenticates service providers to airplanes. As shown in the box above, a
servicer n is allowed to load package p into the airplane only if n’s contract has not expired
(expDate > 2014) , type of airplane is Boeing 787 (t= "787") and p is supposed to be
loaded into the plane with tail number "tail123" (tail="tail123").

Following the same strategy we used for debugging the LogicQL constraints, we firstly
give a scope of the domain. This time, we are limited to two objects in each type, except
for service provider that is limited to three objects as shown in figure 2.13. We choose
to fix the servicer predicate since exhausting all possible combinations of servicer predicate
gives more than 512 models. In theory, though, by not fixing some predicates, would give us
complete coverage of possible models than have hand generated test cases. Most flaws can be
illustrated by small scopes since those flaws arise from the cases being mistakenly handled
or simply forgotten to take into account whatever the size of scope. This observation is

26

Name = "A";"B";"C"
AirplaneType = "777";"787"
PartName = "partA";"partB"
TailName = "tail123";"tail456"
Date = 2013;2015
servicer = "A",2015,"787" ; "B",2013,"787" ; "C",2015,"787" ; "C",2013,"777"

Figure 2.13: New Finite Domain for the Debugger

called small scope hypothesis [16]. Therefore, in practice, we tend to fix some "bug-free"
predicate to limit the scope of models to a reasonable number (usually less than 50).

Running the debugger again gives us another 16 different models. The first five models
are shown in figure 2.15. By going through all the models, we notice that the load predicate
in first four models is empty which is acceptable since non-qualified service provider will
never be selected. But when we move to the model 5, we notice that two service providers
are authorized to load the same software part on the same plane. While this model does
satisfy all the policies, it also reveals a scenario that we forgot to handle – what if there is
more than one service provider who is qualified in performing software updates? Without
introducing new entity types, we add one more constraint specifying that there is only one
service provider selected to load each part into a plane:

load(n1,p),load(n2,p) − > n1 =n2.
load(n,p) < − servicer(n,expDate,t), approvedPart(p,tail),
, expDate > 2014
t= "787",tail="tail123" .

Figure 2.14: Refined LogicQL Program for the Last Two Policies

By running the debugger again, we conform that we’ve eliminated the redundant autho-
rization problem. The final version of the LogicQL code discussed in this section is shown
in figure 2.16.

27

Common Entity Types
Date = 2013; 2015
AirplaneType = 777; 787
Name = "A"; "B"; "C"
TailName = "tail123"; "tail456"
PartName = "partA"; "partB"

Model 1
servicer = "A",2015,787; "B",2013,787; "C",2013,777; "C",2015,787
load =
approvedPart = "partA","tail456"; "partB","tail456"

Model 2
approvedPart = "partA","tail456"
load =
servicer = "A",2015,787; "B",2013,787; "C",2013,777; "C",2015,787

Model 3

approvedPart = "partB","tail456"
load =
servicer = "A",2015,787; "B",2013,787; "C",2013,777; "C",2015,787

Model 4
approvedPart =
load =
servicer = "A",2015,787; "B",2013,787; "C",2013,777; "C",2015,787

Model 5
approvedPart = "partA","tail456"; "partB","tail123"; "partB","tail456"
load = "A","partB"; "C","partB"
servicer = "A",2015,787; "B",2013,787; "C",2013,777; "C",2015,787

Figure 2.15: First Five Models from the debugger

28

ServierName(n) − > string(n).
AirplaneType(t) − > string(t).
PartName(p) − > string(p).
TailName(tail) − > string(tail).
Date(expDate) − > int(expDate).
servicer(n,expDate,t) − > string(n),int(expDate),string(t).
servicer(n,expDate,t) − > ServierName(n),Date(expDate),AirplaneType(t).
approvedPart(p,tail) − > string(p),string(tail).
approvedPart(p,tail) − > PartName(p),TailName(tail).
servicer(n,expDateA,t),servicer(n,expDateB,t) − > expDateA = expDateB.
load(n1,p),load(n2,p) − > n1 =n2.
load(n,p) < − servicer(n,expDate,t), approvedPart(p,tail),
, expDate > 2014
t= "787",tail="tail123" .

Figure 2.16: Final Version of LogicQL Program for the Automated Software Distribution
for Airplanes

29

2.5 Related work

The LogicQL Debugger is, to our knowledge, the first program verifier for the LogicQL
language - a programming language that supports FO constraints and inductive definitions.
In this section, we review related work on the declarative program verification techniques
on related but usually less expressive languages.

Datalog is the foundation of the LogicQL language. Datalog can be viewed as a subset
of LogicQL language that contains only LogicQL rules. The DES system [7], a debugger for
Datalog, uses query debugging based on the principles of algorithmic debugging. A Datalog
query for a given Datalog Program is a single Datalog rule of interest. The result of applying
a query is the derived IDB on the basis of the Datalog Program. The DES system works
by requiring the users answer questions about the validity of the partial results obtained
for some sub-queries. If a buggy answer is found by the user, its associated portion of the
program is pointed out as buggy. Another approach, more closely related to ours, tries to
follow the computation model to find bugs. Existing proposals [20][35] are mainly based on
a variant of proof trees inspired by SLD resolution. SLD resolution is a sound and complete
procedure for Horn clauses, and it is the main computation procedure used in Prolog. In
our setting, we deal with a MX task on a language with almost full first-order logic and
inductive definitions. Thus, the use of SLD resolution is not a feasible approach. Besides
the mentioned approaches which rely on computation model of the programs, authors in
[24] use a translation from Answer-set programming (ASP) to natural language. Answer-
set programming (ASP) is a well-known declarative programming paradigm based on stable
model semantics. This approach eases the reading of an ASP program and thereby helps
program verification.

In the context of the first-order world, the Alloy Analyzer [16], a bounded testing tool
for first-order logic with relational calculus, has enjoyed considerable success lately [6]. The
Alloy Analyzer translates Alloy specifications to an intermediate language KodKod [34]
first, then the KodKod model finder solves the Allot specifications by reducing it to an SAT
problem. The Alloy Analyzer works as an automatic counter-example generator, when the
user simulates a partial program, the analyzer returns examples immediately that suggest a
new improvement to be made. Alloy’s success inspired us to develop the LogicQL Debugger.
Our debugger translates the LogicQL programs to an intermediate IDP language first, and
then the IDP system solves the LogicQL programs by applying its grounder and its solver
MiniSAT(ID).

2.6 Conclusions and Future work

We have presented a tool for debugging LogicQL programs. The key idea is to refine the
LogicQL program by exploring small satisfying models for the program under the small

30

scope hypothesis [16]. Our tool provides a fully automatic simulation of possible models
that gives immediate feedback. Moreover, a preliminary GUI is provided so that it would
require no specialized knowledge of the IDP system, thus making the debugger accessible
to all LogicQL users.

We have illustrated the incremental development of the LogicQL code by a process of de-
veloping LogicQL programs for automatic software distribution. The process demonstrated
in this chapter is closely correlated to development for a large-scale real-world example. The
prototypical LogicQL debugging system has been implemented, while we have presented a
tool for LogicQL only, it is not difficult to extend the debugger to support other Datalog-like
languages.

In future work, we plan to extend the debugger to support a richer set of LogicQL
languages, including but not limited to Aggregations and float number supports. Addition-
ally, further extension with the support of comparative debugging, which can automatically
track an error between executions of two similar programs, would also be useful.

31

Chapter 3

System Resilience Problem

Many systems may fail in an unexpected way after some "unpredictable" events that are
not only rare but also have a significant impact on the system. These kind of events are
usually called X-events [8]. For example, the 3.11 earthquake of Japan in 2011 brought
a tsunami 14 meters high, 8 meters over the anticipated height. The consequence was
devastating: roughly twenty-thousands people died and more than two hundred thousand
people lost their homes due to the three nuclear reactor meltdowns caused by the tsunami.
We recognize that X-events do happen, but it is unrealistic to design a system that claims
to be unbreakable no matter what happens. We can, however, assess the system’s ability to
withstand large perturbations and what is the cost of recovering from the damage caused
by these perturbations. We denote these properties as the resilience of the system [22].

The concept of resilience was first examined in the early 1970s [23] and its concep-
tual meanings has been defined in numerous ways. The common overlapping definition of
resilience is the ability to recover from X-events. In the context of man-made systems,
resilience is defined as "the ability to maintain its core purpose and integrity in the face
of dramatically changed circumstances" [30]. In [30], the authors formalize the resilience
problem based on the SR-model, a novel model for modeling systems that can change dy-
namically over time. Then, four SR-model properties that are believed to be central to the
idea of resilience are defined:

• Resistance: The ability to maintain some underlying costs under a certain threshold.

• Recoverability: The ability to recover to a baseline of acceptable quality as quickly
and inexpensively as possible.

• Functionality: The ability to provide a guaranteed average degree of quality for a
period of time.

• Stabilizability: The ability to avoid undergoing changes that are associated with high
transitional costs.

32

The next step in the development of the SR-model framework is the problem of evaluat-
ing system resilience for the SR-model. In this chapter, we take the initial step towards the
problem, namely the algorithms for evaluating each of the four resilience properties. Given
the transdisciplinary nature of this topic, we present a fully GUI-based software implemen-
tation for solving SR resilience problem. The software does not require any specialized
expertise from the system user, thus making the technology for solving system resilience
problems accessible to general users.

This chapter continues with a formal definition of the SR-model, which is addressed
in this work. Section 3.2 will then unveil the computational complexity of evaluating sys-
tem resilience properties. Given the fact that we are potentially trying to solve an NP
search problem, we present our implementation based on Gecode, which provides a parallel
constraints optimization solver with state-of-the-art performance, in Section 3.3.

3.1 SR-model

SR-model is a dynamic system model based on constrained systems, which are similar to the
systems in Constraint Optimization Problems (COP) [10]. A system must include variables:
objects or items that can take on a variety of values. The set of possible values for a given
variable is called its domain. For example, for a system modeling transportation logistics,
we may choose to see the methods of transportation as our variables, each with the same
domain, which is the number of cargoes to be shipped. A configuration is an assignment
that sets a value for each of the variables in a system. There is a cost associated with each
configuration, which acts as an additional constraint inherent to the system.

In the formal definition of a system, we are given a countable set of variables X =
{x1,x2,...} and a countable set D. These fixed sets form the language on which any system
is defined.

Definition 8 (System)
A system is a tuple S= < X, dom, c> where:

• X ⊆ X is a set of variables,

• dom is a domain function which maps each variable xi ∈ X with a finite
set dom(xi) ⊂ D,

• c is a cost function mapping from Ω(S) to R+, where Ω(S) is the set of all
assignments associating each xi ∈ X with dom(xi) .

An element of Ω(S), i.e., an assignment to all variables in S, is called a config-
uration of S and is denoted by α. α(xi) denote the value of xi with respect to
domain dom(xi). The pair (S,α) is called a system state.

33

For example, we consider a university of three campuses. It is necessary to assign
support staff to each of the campuses to ensure the campuses function properly. The cost
of each configuration depends on two parameters: the cost of the support staff, and the
level of (positive) impact of staff. The assignment of the support staff is governed by the
system’s controller whose goal is to minimize the cost per impact.

Example 3
The university under consideration can be modelled as the system S= < X, dom,
c> where:

• X = {B, S, V} where B, S, and V associate the number of staffs assigned
to campus B, campus S, and campus V respectively.

• dom(B) = dom(S) = dom(V) = {L, M, H}. Each of these values represents
the level of staff assigned to each campus.

•

ccost(α(V)) =

2 if α(V)=L

4 if α(V)=M

6 if α(V)=H

ccost(α(B)) = ccost(α(S)) =

1 if α(B) or α(S)=L

2 if α(B) or α(S)=M

3 if α(B) or α(S)=H

cimpact(α(V)) =

2 if α(V)=L

3 if α(V)=M

3 if α(V)=H

ccost(α(V)) =

2 if α(V)=L

4 if α(V)=M

6 if α(V)=H

c =
∑

x∈B,S,V ccost(α(x))∑
x∈B,S,V cimpact(α(x))

Since we have 3 variables in our system and each variable has a 3-value domain.
There are 27 elements in the set of all configurations: Ω(S). For instance, α =
{α(B) = H, α(V) = M , α(S) = L} represents the high level of staff which is
assigned to campus B, medium level to campus V and low level to campus S

34

respectively. The cost of this configuration is:

c = 3 + 2 + 2
3 + 2 + 2 = 1

In the SR model, we consider a special type of dynamic system called Discrete Event
System (DES) [27]. Our systems are subject to change with respect to a discrete represen-
tation of time. That is to say, this system can change only at discrete instants of time and
not between two-time steps. We assume that the period between any pair of consecutive
snapshots remains the same. For example, in Example 3, we may assume one-time step
represents one day. By making this assumption, we can model the system’s change from
one-time step to the next one that reflects the actions performed by the system’s controller
and the consequences of an exogenous event.

Now we are ready to formally define dynamic systems. This graph-like structure allows
us to represent the evolution for a system. For each system in the dynamic system, there
is a set of actions that can be performed by the system’s controller, but the consequence
of the chosen action may contain non-deterministic effects that depend on the exogenous
event.

Definition 9 (Dynamic System)
A Dynamic System (DS) : is a tuple DS= <S0, S, A, poss, ΦA> where:

• S0, where S0 ∈ S, is the "initial" system,

• S denotes the set of all possible systems,

• A is a non-empty set of all possible actions,

• poss gives a (non-empty) set of possible moves for each system ,

• ΦA is a partial function from S X A to 2S , ΦA specifies how a given system
may change in response to some actions.

Note that the consequences of the exogenous events are explicitly given. A dynamic
system can be represented as a graph where each node represents a system, and each edge
represents the (potential) consequence of some move that would transform the current
system into another one. Thus, we sometimes use dynamic system graph to refer to a
Dynamic System (DS).

Example 4

Figure 3.1 represents a simple dynamic system with S = {S0, A,B,C,D} and
A = {noop, a0, a1, a2, a4, a5}. It’s worth noting that we do not require that every
action be executed on every system in the DS. Suppose the controller chooses
an action a1 at the initial system S0, in the next time step, we may fall into
either system A or system D depending on exogenous events.

35

A

B C

S0

Da1

a1

noop

a2 a3

a4

a2

a5

Figure 3.1: Sample Dynamic System Graph

3.1.1 Resilience of the SR-model

In the case of resilience properties for SR-models which we are about to define, those
properties evaluate the behavior of the system that is specified by system trajectories. A
system trajectory is simply the list of systems that occurs during a particular dynamic
system path.

Definition 10 (System Trajectory)
A system trajectory ST is a (possibly infinite) sequence of systems (S0, . . ., Sn,
. . .).

Each Si ∈ ST represents the system (as defined in Definition 8) at time step i whereas
the first element for every ST is S0, the initial system defined in the SR-model. Adjacent
systems in the ST are not required to satisfy any relationship.

Resilience properties are not defined based on system trajectories but on the state trajec-
tory. Intuitively, a state trajectory is a system trajectory ST together with a configuration
for each system in ST. Once again, adjacent states are not required to satisfy any relation-
ship.

Definition 11 (State Trajectory)
A state trajectory SST is a (possibly infinite) sequence of system states { (S0,
α0), (S1, α1), . . .}.

36

Example 5

Let us consider a ST with two systems: S0 and S1 where S0 is our university
example defined in Example 3. S1 is similar to S0, but

c1impact(α(B)) = 2
3 c0impact(α(B)) = 2

3 cimpact(α(B))

This is to model the situation that with new buildings on the B campus open-
ing at time step 1, the impact per support staff is reduced. Then, an ex-
ample of a state trajectory is { (S0,{α(B) = H,α(V) = M,α(S) = L}),
(S1,{α(B) = H,α(V) = M,α(S) = L})}. That is while the configuration
between two systems remains unchanged, the cost to the second system state
was raised to:

c1 = 3 + 2 + 2
2 + 2 + 2 = 1.17

compared with c0=1 in Example 3

Now we are ready to formally define the resilience proprieties:

Resistance

Definition 12 (Resistance)
Resistance: given a state trajectory SST{ (S1, α1), (S2, α2), . . .} and a non-
negative number L, SST is L-resistant if for each state (Si, αi) ∈ SST, ci(ai) ≤ L

A state trajectory is L-resistant if the cost of each system state is always below the
threshold L. That is to say, we guarantee the system never exceeded a certain degree of
quality. If there is a system state where the cost is greater than L, then we say this SST is
not L-resistant.

Example 6
For simplicity, we denote α = MML as an abbreviation for α = {α(B) =
H,α(V) = M,α(S) = L}. The following figure illustrates an SST for the
university staff allocation Dynamic System DS where there is only one system
S0, as defined in Example 8, in the DS. The dynamic system graph for this DS
is simply a node with a self-loop.

37

0 1 2 3 4 5 6

0.7

0.8

0.9

1

1.1

LLL

LLH

LMLMML

LMM

MMLMML

(Si, αi)

C
os
t

This SST is 1-resistant but not 2-resistant.

Recoverability

Definition 13 (Recoverability)
Recoverability: Given a SST { (S1,α1), (S2,α2), . . .} and two non-negative num-
bers P and Q, SST is < P,Q > −recoverable if for any subsequence {(Sa,αa),
. . ., (Sb,αb)}of SST with ∀i ∈ [a, b], ci(ai) > P , the following conditions are
satisfied:
(i)

b∑
i=a

(ci(ai)− P) ≤ Q, and

(ii) The system state (Sb+1,αb+1) after (Sb,αb) has cost cb+1(ab+1) ≤ P .

Recoverability is a quantitative formulation of the ability to spring back to a former
position or shape. Similar to Resistance, this two-parameter property exploits the cost of
each system state in the given SST. The first parameter P acts as the threshold for "normal"
cost. If the cost is always kept under P, then this SST is vacuously recoverable. On the other
hand, a system state with the cost greater than P does not make this SST "unacceptable".
The second parameter Q captures the maximum amount of extra cost that is necessary for
the system state to get back to a "normal" state. There are two cases when we say a SST
is not < P,Q > −recoverable:

• The system never comes back to a state with a cost no greater than P.

• The system does come back to a "normal" state, but the cumulative extra cost is
greater than Q.

We illustrate the property using our university example:

38

Example 7

0 1 2 3 4 5 6

1

2

3

4

LLL

LHH

HMLMML

LMH

MML

MHL

(Si, αi)

C
os
t

Suppose we want to check if this SST is < 1, 5 > −recoverable. The first step
is to find all sub-SST where every element in the subset has a cost greater than
1. In this example, there are two subsets satisfying this condition:

1. {(S1, α1), (S2, α2), (S3, α3)} with corresponding costs {2,3,3}.
This sub-SST has a cumulative extra cost of 5.

2. {(S4, α4)} with corresponding cost {4}. This sub-SST has a cumulative
extra cost of 3.

Since both sub-SSTs have a subsequent "normal" state in the SST and the extra
cost never exceeded 5. We say this SST is indeed < 1, 5 > −recoverable. How-
ever, this SST is not < 0.5, 5 > −recoverable as there is no system state with
the cost below 0.5.

Functionality

Definition 14 (Functionality)
Functionality: Let avg(SST) denote the average cost of the given SST, then the
SST is said F-functional if avg(SST) ≤ S, where S is a non-negative number.

avg(SST) =

k−1∑

0

Ci(αi)
k − 1 if SST has a finite size of k

lim
k→+∞

k∑
i=0

Ci(αi)
k

otherwise

39

This property requires for a state trajectory SST that the average cost be kept under
some threshold f. This property provides a guaranteed average degree of quality in the long
run while recovering from the X-events that may destabilize the system. We illustrate the
distinction between functionality and resilience in the following example.

Example 8

0 0.5 1 1.5 2 2.5 3

1

1.5

2

2.5

3

(Si, αi)

C
os
t

SST1
SST2

Both SST1 and SST2 are 3-resistant. However, we have avg(SST1) = 1+3+3+2
4 = 2.25,

and avg(SST2) = 3+1+1+2
4 = 1.75. Therefore, SST2 is 2-functional whereas SST1 is not.

Stabilizability

Definition 15 (Stabilizability)
Stabilizability: Given a distance function d((Si,αi), (Sj ,αj)) that calculates the
distance (the penalty of changes) between system states. A SST is said K-
stabilizable if for every i ∈ {2, 3, ...} d((Si−1,αi−1),(Si,αi)) ≤ K.

Stabilizability evaluates the ability of a system to avoid changes in the configuration
while maintaining the integrity of the system. The quantitative evaluation is achieved by
introducing a distance (penalty) between two system states. The distance is calculated based
on the system states and the distance function provided by the user. We do not impose
any constraint on the distance functions as long as they can be calculated efficiently. Let
us demonstrate this property within our university example:

Example 9
Suppose the distance function for our university example is defined as

d((Si, αi), (Sj , αj)) =
∑

xi∈X

dxi(αi(xi), αj(xi))

40

where for every xi ∈ X = B, V, S
dxi(αi(xi), αj(xi)) = 0 ifαi(xi) = αj(xi)

dxi(αi(xi), αj(xi)) = 1 if(αi(xi), αj(xi)) ∈ {LM,ML,MH,HM}

dxi(αi(xi), αj(xi)) = 3 if(αi(xi), αj(xi)) ∈ {LH,HL}

Then for system states (S1,MML) and (S2,LHH), the distance is:

d((S1,MML), (S2, LHH)) = 1 + 1 + 3 = 5

3.1.2 Determine the Resilience of a Dynamic System

Before we extend the resilience properties defined in the previous section for system state
trajectories to dynamic systems, we define the set of state trajectories that are realizable in
a given Dynamic System.

Definition 16 (Realizable System States Trajectories)
Given a dynamic system DS = < S0, S, A, poss, ΦA >, a state trajectory SST =
{ (S0,α0), (S1,α1), . . . } is said to be realizable in DS if for every (Si, αi) ∈ SST
with i ≥ 1, there is an action a ∈ poss(Si−1) such that Si ∈ ΦA(Si−1, a) and αi

is a proper configuration for the system Si

To address the issue of control of the dynamic system, we introduced the notion of
strategy. A strategy is the choice made by system’s controller, which lies in two level of
controls in a dynamic system:

• 1. The first level consists in tuning the system’s configuration. That is to say, for a
given system S, the configuration of S is determined by the controller.

• 2. The second level decides which action can be performed on a system to cope with
system’s changes over time. For example, the cost function may change over time.

What is not under the control of the system’s controller is the non-determinism consequence
of the each chosen action. A strategy consists of choosing a specific configuration and
specifying an action for every system in DS. Formally, a strategy of a DS is:

Definition 17 (Strategy of a Dynamic System)
A strategy is a set of (action,configuration) pairs of the form
{(action0, configuration0), . . . , (actionn, configurationn), . . .}
that satisfies the following condition:

• For every system Si ∈ DS, we have one (action,configuration) pair
(actioni, configurationi) for Si.

41

• actioni must be a valid choice of action for Si,and configurationi is a
proper configuration for Si.

From this definition, we are now ready to define the Resilience of a Dynamic System:

Definition 18 (Resilience of Dynamic System)
Let DS be a dynamic system and STR be the set of all possible strategies for
this DS. Then we say

• DS is x-resistant if x= min{max{L ∈ R | L is the resistance of SST realized
by strategy st }|st ∈ STR}

• Given a number P, DS is < P, x > −recoverable if x= min{max{Q ∈ R |
<P,Q> is the recoverability of SST realized by strategy st }|st ∈ STR}

• DS is x-functional if x= min{max{F ∈ R | F is the functionality of SST
realized by strategy st }|st ∈ STR}

• DS is x-stabilizable if x= min{max{S ∈ R | S is the Stabilizability of SST
realized by strategy st }|st ∈ STR}

Intuitively, given a specific strategy st, we use the aggregation function max to find the
worst case, and we can provide a guarantee for the resilience properties by setting the value
of x to capture this worst case scenario for the strategy st. Then, the use of aggregation
function min that allows us to figure out the best possible case one could get by adopting the
appropriate strategy. In sum, we want to determine an optimal strategy such that we get
the lowest threshold value for a resilience property in any possible uncontrollable scenario.

3.2 On the Complexity of Evaluating Resilience Properties

In this section, we unveil the complexity of evaluating resilience properties defined in the
previous section by presenting algorithms for each of the resilience properties. Each of the
algorithms takes a dynamic system and solves one of the resilience problems defined in
Definition 18.

Proposition 1
For Resistance, Functionality and Recoverability, to obtain the lowest threshold
value in any possible uncontrollable scenario, it is always right to choose the
configuration with the lowest cost for each system.

Proof. (For Resistance) Suppose one of the system Si is not configured with the lowest cost,
say, ci > cimin and an optimum strategy is determined that gives us the lowest threshold
value x. Then there is a set of system state trajectories (SSTs) realized by the strategy such
that every sst ∈ SSTs is x-resistant. There are two cases for system S1:

42

1. Si does not appear every sst ∈ SSTs. Hence, changing the configuration of Si to a
lower cost one can result in an equally good answer (threshold value). Since the value
of resistance is proportional to the cost of systems among the sst, the cost of Si will
not affect the resistance of the sst without Si.

2. Si is in every sst ∈ SSTs. Then changing the configuration of Si to a lower cost one
would result in a better answer(threshold value), which contradicts the assumption of
the optimum strategy that gets the optimal threshold value x.

Therefore, it is always right to choose the configuration with the lowest cost for the case of
resistance.

We can apply a similar argument for the Functionality and Recoverability since the
threshold value is also proportional to the cost of the system along the realizable SSTs.

Given Proposition 1, the task of evaluating resilience properties can be reduced to
determine an action to make for each system s ∈ S. And thus, the notation of Dynamic
systems can be simplified to:

A Dynamic Systems DS is a tuple < S0, G >, where:

• S0 is the "initial" system state (node),

• G = (S,E) denotes the dynamic system graph where each vertex s ∈ S represents a
system state and each edge e ∈ E represents the consequence of an action that would
transform the current system (node) into another one. Additionally, each e ∈ E is
labeled with an action and a cost of changes between system states.

3.2.1 A Polynomial Algorithm for Resistance

Recall that L-Resistance of DS is defined as for any realisable system state sequence(SST){
(S1, α1), (S2,α2), . . .}, the DS is L-resistant if for each state (Si, αi) ∈ SST, ci(ai) ≤ L.

The problem of deciding the resistant of the dynamic system DS, denoted as is L-
Resistance of DS, is the following:

Instance: A dynamic system graph G = (S,E) and S0

Question: What is the best choice of action for each system so that we achieve
the lowest threshold value for the resistance property in any possible uncontrol-
lable scenario?

We present an algorithm which, given a dynamic system graph, output the choice of
action for every system state in the graph. There are three kinds of labels in the algorithm:

• Visited label, this label determines whether a system is already been visited,

• L,a-Resistant label denotes that if this system chooses action a, then every SST start
from this system is L-Resistant

43

• L-Resistant label denotes that the action to choose for this system has been determined
and every SST start from this system is L-Resistant

Observe that the threshold value L is dependent on the system state(node) with the
highest cost, the algorithm works by incrementally mark the highest cost node that a
(system, action) pair can reach. Whenever a system s gets a k,a-Resistant label for every
action in s, the algorithm selects the action that results in the lowest value of L.

The algorithm proceeds as follows:

1. Initially, every system in S is unvisited with no label assigned to it.

2. Select an unvisited system s ∈ S with the highest cost c, mark s as a visited. If there
is no l-Resistant label assigned to s, then label s as c-Resistant.

3. For each edge (si, s) with an action a, If there is no l,a-Resistant label on si, mark
si as c,a-Resistant. If there is l,a-Resistant label for every possible action on si, then
select the action that has the lowest value of l (say lmin), mark si as lmin-Resistant
and change the cost of si to lmin

4. repeat step 2 and 3 until all systems are labeled "Visited".

This algorithm not only determines the action each system must take in order to achieve
the lowest resistance, but also reports L-Resistant for each system. Every node is visited
exactly once in the main loop and at every iteration of the main loop, the algorithm traverses
an entire graph in the worst case. Therefore, this algorithm runs in O(|S|(|S|+ |E|)) time.

3.2.2 A Polynomial Algorithm for Recoverability

Recoverability is defined as: for any realisable system state sequence(SST){(S1, α1), (S2,
α2), . . .}, the DS is < P,Q > −recoverable if for any subsequence (Sa, αa), . . .,(Sb, αb)}of
SST with ∀i ∈ [a, b], ci(ai) > P , the following conditions are satisfied:

(i)
b∑

i=a
(ci(ai)− P) ≤ Q, and

(ii) there is a system state (St,αt) after (Sb,αb) such that t > b and ct(at ≤ P).

Assume that P is a given number and we have a new dynamic system graph Ĝ with
the cost of each system updated to ((the Original cost) - P). The problem of deciding the
recoverability of a dynamic system DS, denoted as is < P,Q >-recoverable of DS, is the
following:

Instance: A dynamic system graph Ĝ = (S,E) and S0

Question: What is the best choice of action for each system so that we achieve
the lowest threshold value for Q in any possible uncontrollable scenario?

44

S0 S2

S3S1

S4T

T TF

C

C

B

(a)

S0

S2

S3

S1

S4

C

B

F

C

(b)

Figure 3.2: (a) An example of a graph with exactly one back edge (S2,S1), one forward edge
(S0,S3), one cross edge (S3,S1) connecting a node to another node in the same depth-first
tree and one cross edge (S4,S3) connecting a node to another node in a different depth-first
tree. (b) A redraw of part (a) in a depth-first tree form with thicker tree edges.

45

We use three kinds of labels in this algorithm:

• system color (WHITE, GRAY or BLACK). WHITE denotes the system has not been
discovered; GRAY denotes the system is in the process of exploring edges; BLACK
denotes that we have finished exploring all edges of the system.

• < P,Q >,a-recoverable denotes that if this system chooses action a then every SST
start from this system is < P,Q >-recoverable.

• < P,Q >-recoverable label denotes that the action to choose for this system has been
determined and every SST start from this system is < P,Q >-recoverable. Every
system that is labeled BLACK has this < P,Q >-recoverable label as we have explored
all outgoing edges of the system.

To evaluate the recoverability efficiently, we make use of an important property of depth-
first search (DFS) on graphs that can be used to classify edges of the input dynamic graph.
The idea is that when we explore an edge (s,v) using depth-first search, the color of sys-
tem(node) v can be used to indicate four different kinds of edge types:

1. If v is WHITE, then (s,v) is a tree edge. That is to say, system(node) v is first
discovered by edge (s,v).

2. If v is GRAY, then (s,v) is a back edge. For back edge (s,v), system(node) s is
connected to an ancestor system v in a depth-first tree, which means we found a cycle
s− v s.

3. If v is BLACK, the (s,v) is either a forward or cross edge. A forward edge is an edge
(s,v) connecting a system s to a descendant v in a depth-first tree. A cross edge (s,v)
are edges that cross between nodes in either the same depth-first tree or different
depth-first tree as long as one is not an ancestor of the other one.

Figure 3.2 provides an example of different edges labels of a graph. Edges label T, B, F,
C indicates tree edge, back edges, forward edge and cross edge respectively. Figure 3.2(b)
shows a redrawing of Figure 3.2(a) in a depth-first tree form.

The Depth-first search-based labeling algorithm for recoverability, DFS-LABEL-R(Ĝ),
works by recursively labeling the threshold value Q for each (system,choice) pair from the
DFS and converging to a conclusion of the best choice of action for system s after every
outgoing edge of s has been explored. When an edge (s,v) is explored, the threshold value Q
is determined based on the type of edge (s,v). If this edge is a back edge, that is, this edge
leads to a cycle, then a sst of infinite length can be formed and the value Q is calculated
on this SST using the definition of recoverability stated above. Note that if every system
in the cycle has a cost greater than 0, then Q = ∞ as Q equals the sum of the cost of an
infinite subsequence of SST. If this edge is either a forward or cross edge, then this edge

46

lead to a system v where the best choice has already determined. The algorithm then tries
to propagate a SST using the choice of action for system v and calculates the value of Q
accordingly.

Specifically, DFS-LABEL-R(Ĝ) is defined as follows:

DFS-LABEL-R(Ĝ)

1. Initially, every system s ∈ S is WHITE.

2. For each system s ∈ S, if s is WHITE then call DFS-LABEL-VISIT-R(Ĝ,s)

DFS-LABEL-VISIT-R(Ĝ,s)

1. Change the color of s to GRAY.

2. For each edge (s, v) ∈ E with action a

• If v is WHITE, then call DFS-LABEL-VISIT-R(Ĝ,v).

• If v is GRAY, then (s, v) is a back edge and we have found a cycle v s− v.

– If there is no system with cost less or equal to 0 in the cycle v s− v, then
for every edge ((si, sk)) with action ai, label sk as < P,∞ >, ai-recoverable

– Else If there is a system with cost less or equal to 0 in the cycle v s− v,
then calculate the max possible value of Q in this cycle. After that for every
edge ((si, sk)) with action ai, label sk as < P,max(Q) >, ai-recoverable

– Note that if there already exists a label < P,Q1 >, ai-recoverable on sk

when we want label sk as < P,Q2 >, ai-recoverable, the label < P,Q1 >, ai-
recoverable is replaced with < P,Q2 >, ai-recoverable if and only if Q2 > Q1

• If v is BLACK, then form a path s-v-v1...-vn such that every system between s
and vn is BLACK and vj is the successor state of vi in the path only if
i: vi chooses action ai

ii: there is an edge (vi,vj) with label ai

iii: both systems are < P,Q >-recoverable
We continue propagating the path until either one of the following condition is
satisfied:

– vn is GRAY, i.e., there is a cycle s − v s. We perform the same compu-
tation as in Step 2.2 when v is GRAY.

– vn is BLACK and vn is already been visited in the path, then there is a cycle
vn vn in this path. We compute the max value of Q for SST s vn vn

and label s as as < P,max(Q) >, a-recoverable

47

3. Among all < pi, qi > ai-recoverable labels on system s, choose the action aj that has
the lowest value of Q (say Qmin), mark s as < P,Qmin >-recoverable and change the
color of s to BLACK.

At each step of DFS, DFS-LABEL-R(Ĝ) traverse an entire graph in the worst case.
Since DFS takes time O((|E|+ |S|))), this algorithms runs in O((|E|+ |S|)2)) time.

3.2.3 A Polynomial Algorithm for Functionality

Functionality of DS is defined as for any realisable system state sequence(SST){(S1,α1),
(S2,α2), . . .}, the DS is f-functional if avg(SST) ≤ S. For infinite SST, avg(SST) is equal to
the average cost of all systems in a cycle.

The problem of deciding the Functionality of a dynamic system DS, denoted as is f -
functional of DS, is the following:

Instance: A dynamic system graph G = (S,E) and S0

Question: What is the best choice of action for each system so that we achieve
the lowest threshold value f in any possible uncontrollable scenario?

The algorithm proposed in this section can be viewed as a simplified version of the
Depth-first search-like labeling algorithm DFS-LABEL-R(Ĝ) for Recoverability. We no
longer check the condition of costs on the SSTs and the value of f is calculated using the
average cost of STTs.

Once Again, we have three kinds of labels:

• system color (WHITE, GRAY or BLACK). WHITE denotes the system has not been
discovered; GRAY denotes the system is in the process of exploring edges; BLACK
denotes that we have finished exploring all edges of the system.

• f,a-functional denotes that if this system chooses action a then every SST start from
this system is f-functional

• f-functional label denotes that the action to choose for this system has been determined
and every SST start from this system is f-functional

Depth-first search-like labeling algorithm works as follows:
DFS-LABEL-F(G): same as DFS-LABEL-R(G).

DFS-LABEL-VISIT-F(G,s)

1. Change the color of s to GRAY.

2. For each edge (s, v) ∈ E with action a

• If v is WHITE, then call DFS-LABEL-VISIT(G,v).

48

• If v is GRAY, then (s, v) is a back edge and we have found a cycle v s− v.

– Calculate average cost (say fi) of the cycle, and then for every edge ((si, sk))
in the cycle with action ai, label sk as fi-functional.

– Same as the recoverability case, if there already exists a label f1, ai-functional
on sk when we want label sk as f2, ai-functional, the label is replaced with
f2, ai-functional if and only if f2 > f1

• If v is BLACK, then form a path s-v-v1...-vn such that every system between s
and vn is BLACK and vj is the successor state of vi in the path only if
i: vi chooses action ai

ii: there is an edge (vi,vj) with label ai

iii: both systems are fi-functional
We continue propagating the path until either one of the following condition is
satisfied:

– vn is GRAY, i.e., there is a cycle s − v s. We perform the same compu-
tation as in Step 2.2 when v is GRAY.

– vn is BLACK and vn is already been visited in the path, then there is a
cycle vn vn in this path. Suppose vn is fi-functional, we label s as as
fi, a-functional

3. Among all fi, ai-functional labels on system s, choose the action aj that has lowest
value of f (say fmin), mark s as fmin-functional and change the color of s to BLACK.

While the computation of threshold value of functionality if simpler than recoverability,
DFS-LABEL-F(G) still traverses the entire graph in the worst case. Thus, algorithms also
run in O((|E|+ |S|)2)) time.

3.2.4 Complexity of Evaluating Stabilizability

Stabilizability is defined as: given function d((Si,αi), (Sj ,αj)) that calculates the distance
(the penalty of changes) between system configurations. A DS is said s-stabilizable if for
any realizable system state sequence(SST){ (S1, α1), (S2, α2), . . .}:

d((Si−1, αi−1), (Si, αi)) ≤ s.

Proposition 2
For Stabilizability, it is not always right to choose the configuration with the
lowest cost for each of the systems.

Proof. This is a trivial claim as one can define a high penalty for any changes between
system configurations but no penalty if the configurations remain unchanged. For any

49

dynamic system that has to assign different configurations to achieve the lowest cost, we
can not obtain best Stabilizability by choosing the configuration with the lowest cost.

Therefore, the problem of deciding the Stabilizability of a dynamic system DS, denoted as
is s-stabilizable of DS, is the following:

Instance: A dynamic system DS
Question: What is the best strategy (defined in Section 3.1.2) for DS so that
we achieve the lowest threshold value s in any possible uncontrollable scenario?

Instead of proposing an algorithm for Stabilizability, we show that even with a less ex-
pressive DS, determine whether such DS is s-stabilizable or not is NP-complete. We restrict
ourselves to a group of DS where every edge is labeled with same action (i.e. label function
L is no longer needed) and the distance function d is constant-time computable. For sim-
plicity, this problem is named as restricted s-stabilizable problem.

Lemma 1: Restricted s-stabilizable Problem is in NP

Proof. Given any configuration of the system(C), our verifier will calculate and check the
distance of every edge (in O(|E|) time). For a yes instance (DS, C), our certificate is any
edge has a distance less than s; our verifier will accept such a configuration, otherwise our
verifier will reject the configuration.

Lemma 2: Restricted s-stabilizable Problem is in NP-Hard

Proof. We show that 3-Coloring <P Restricted s-stabilizable Problem. Given an instance
of 3-Coloring Gcolor = (Vcolor, Ecolor), we construct a DS=< S0, G, d > for the Restricted
0-stabilizable Problem as follows.

For each vertex in vi ∈ Vcolor, we construct a system si with only one variable of domain
size 3: R, G, B and add si to S. We let S0 = s0 since we do not care about the initial system.
Next, for each edge of the form (vi, vj) ∈ Ecolor, we add an edge (si, sj) to E. Finally the
distance function d is defined as:

d((Si, αi), (Sj , αj)) =
{

0 if αi 6= αj

∞ otherwise

We now run our solver for Restricted 0-stabilizable Problem on DS= (S0, G, d) and
return the same result it gives. (This construction is poly-size and poly-time because G has
O(m) nodes and O(n) edges.)

Proposition 3
A 3-Coloring instance is satisfiable if and only if DS= (S0, G, d) is 0-stabilizable.

50

It is a trivial proposition.

Proposition 4
Restricted s-stabilizable Problem is NP-Complete

Proof. We showed that Restricted s-stabilizable Problem is in NP and 3-Coloring <P Re-
stricted s-stabilizable Problem, therefore Restricted s-stabilizable Problem is NP-Complete.

3.3 User Friendly Software for Solving System Resilience
Problems using Gecode

In the previous section, we have shown that by choosing the configuration with the lowest
cost for each system in the SR-model, we can find an optimal strategy that is as good
as all others strategies for most of the resilience properties. Therefore, in our prototype
implementation, we assume that each node in the dynamic graph of the SR-model is already
assigned with an optimum configuration. That is, each node in the dynamic graph is now
a system state rather than a system.

JUNG
based
GUI

Gecode
Model
Generator

Compile and
Run

A Gecode model
written in C++

Post-
Processor

Dynamic System Graph

Resilience Property

Best Solution/ No solution

Mapping from
systems/actions to
Gecode variables

Resilience value/

No answer

Figure 3.3: SR-solver General Solving Scheme

In this section, we present SR-solver, an integrated software for drawing SR-models and
determining the resilience for SR-models. The general solving scheme for SR-solver is shown

51

Figure 3.4: Main GUI of the SR-solver

in Figure 3.3. The GUI of SR-solver allows users to describe the dynamic graph, specify a
resilience property of interest and a bond on the length of the state trajectories (SSTs). The
module identified as "Gecode Model Generator" in Figure 3.3 generates the Gecode model
written in C++ and then complies with the model with the Gecode library. After running
the complied program, the result is sent to the "Post-Processor". If there is a solution in the
result, "Post-Processor" maps the solution back to the systems and actions in the dynamic
graph. SR-solver is able to compute the answers to the queries on resistance, recoverability,
functionality and stabilizability. Specifically, for each query, SR-solver allows the user to
add additional constraints on the realizable SSTs and to report the best strategy one can
take to achieve the best resilience in the given model.

Figure 3.4 presents the main GUI window of the SR-solver, with the left half of GUI
being the dynamic system graph drawing area and the right half being the control panel.
The users can either load the graph from external XML files or just create the graph in the
drawing area.

The software has a JUNG [33] based graphical user interface for users to draw dynamic
system graphs. JUNG is a free Java software library that can be used for analysis, manipu-
lation, and the visualization of graphs and networks. The major features of JUNG include
the support of a variety of graphs, including directed and undirected graphs and hyper-
graphs and have the built-in mechanisms for annotating graphs as well as the metadata
attached to nodes and edges in the graph.

Since the purpose of the GUI is to retrieve dynamic system graph from users in various
ways, the software should realize user changes impeccably. In our implementation, we adopt
a Model-View-Controller (MVC) pattern to address this issue as shown in the following:

• A model stores the dynamic graph G=(V, E) where V is a set of nodes (system
states), E the a set of edges, together with the metadata attached to them. Nodes

52

are extended from the basic node class in JUNG with an addition of cost metadata.
Each node represents a system state in the SR-model. Edges are also extended with
additional action and distance metadata.

For any nodes v1 and v2 ∈ V , there is an edge (v1, v2) with action a ∈ E if and only
if one of the consequences of applying action a on node (system state) v1 is v2.

• A view generates the graphical presentation of the graph G. JUNG provides Visual-
izationViewer for these components.

• A Controller manipulates the model based on user commands. Any updates to the
model are immaterially updated in the view. The controller is able to achieve following
operations:

– Save the graph: the user has an option of saving the dynamic graph to a
GraphML file with an extension of XML. The GraphML file keeps not only
the graph, but also the position of each node/edges and the initial node.

– Load pre-saved graph: if the user desires to open a graph saved in the external
source, the user selects "Load from file" from the "Edition" menu. A dialog box
appears and asks for the ".xml" file directory. The file must be a GraphML file
in XML structure. When the new graph is loaded, the old one is removed if it
exists.

– Clear dynamic graph: the "Clear" button removes all nodes and edges from the
drawing panel.

– Set number of CPU cores to use: the user can set the number of CPU cores for
the background solver to do parallel search in a shared memory environment. It
is worth noting that the point of parallel search is not to perfectly utilize the
available parallel hardware, but to make a faster search.

– Zoom in and Zoom out: the users are able to zoom in or zoom out by using the
scroll wheel.

– Change mouse mode: there are two options of manipulating the graph. One
is Editing mode: users can either create a new node by left-clicking on the
unoccupied space or draw an edge between two nodes by "dragging" the edge out
of the origin note to the destination node. Users can also update a node’s or
an edge’s metadata and remove nodes and edges by right-clicking on the desired
node or edge. The other mode is Picking mode: User can change the positions
of a chosen node.

In sum, the GUI is intended to provide a pretty intuitive way to draw the dynamic
system graph interactively. An example of dynamic graph in the GUI can be seen in Figure
3.5:

53

Figure 3.5: A Dynamic Graph Example

Figure 3.5 displaces a simple dynamic graph with 4 nodes (system states). The initial
node is N0 with cost 1 and it’s marked red. It is worth noting that while we require a pre-
determined configuration for each system in the dynamic graph for now, the underlining
data structure and the solver supports the full definition of the SR-model. Determining the
best configuration for each system can be a COP problem of its own. COP is an extension of
CSP in the way that it is a CSP with a cost function that must be minimized or maximized.
The COP is NP-hard, since solving it involves solving CSP which is NP-complete. Given the
fact that we are potentially trying to solve an NP-complete problem, we choose an existing
efficient COP solver in our implementation. Our software implements a solving engine
based on Gecode [1] which provides a Constraint Optimization Problem(COP) solver with
state-of-the-art performance.

There are several advantages of using Gecode as a back-end solver than other COP
solvers like MiniZinc [14] or Sugar++ [31]:

• Open Source

• Rich Constraint families support: arithmetics, Boolean, ordering,...

• Portable and extendible: written in standard C++

• Efficient: won all gold medals in all categories at the MiniZinc Challenges from 2008
to 2012

• Parallel: built-in support for multithreading

54

The way Gecode works is by efficiently searching the finite solution space and returning
all solutions found during the search by using the DFS search (or returning the best solution
found by using Branch and Bound search). Just like any other CSP specification, specifying
the resilience problem in Gecode consists of variables, constraints between the variables,
and the cost function that maps each variable assignment with a cost. The goal is to
find the variable assignment that minimizes the cost. Unlike other CSP solvers, there are
other performance-related components the users can customize for the problem, such as
Propagators and Branchers. A propagator’s task is to infer the assignment of variables
that are in conflict with the constraint. That is, a propagator may prune some assignments
from the domain that are certain to violate the constraint and thus reduce the solution
space. Branchers, on the other hand, are used to describe the shape of the search tree.
In the current implementation of the SR-solver, we only use the predefined Propagators
and Branchers, for more detailed instruction on customizing Propagators and Branchers in
Gecode, they can be found in the Modeling and Programming with Gecode [2].

We are now ready to describe how to represent the resilience problem using variables,
constraints and cost functions and then define branchers for solving this problem in Gecode.
Recall that the resilience problem is Given a dynamic system DS= < S0, G, L, d > and a
bound k on the length of realizable SSTs, we want to determine a strategy (choice of actions
for each system) such that we got the smallest threshold value for the desired Resilience
property.

Creating variables

Given the DS, we can easily find out the total number of distinct actions: num_actions and
the number of nodes: num_nodes. We assume that each action in the DS maps to a unique
integer number ranging from 0 to num_actions-1. Similarly, each node gets an unique
integer ranging from 0 to num_nodes-1. Knowing this, we can create a unique mapping
of actions and nodes to the natural numbers, which allow us to deal with them as integer
variables.

Then we see the strategy to be determined as an array choice of num_nodes integer
variables where each variable in the array can take values from 0 to num_actions-1. An-
other integer array of k variable we need to define is for the SSTs, which we call sst. Each
variable in sst can take values from 0 to num_nodes-1. In Gecode, a variable declaration is
of the form:

SR_model(void)

: path(*this, path_length, 0, n_nodes-1),

choice(*this,n_nodes,0,n_actions-1) {

[constraints on variables]

}

55

Posting constraints

Constraints are posted to sst to restrictive Gecode solver with realized SSTs. For any nodes
n1 and n2 in the dynamic graph, if there is no edge connecting n1 to n2, then we post
a constraint specifying that the next system state cannot be n2. The detailed algorithms
for posting sst constraints are illustrated in Algorithm 1. Similarly, for the variable array
choice, we post a "choice[i] not equal to a" constraint if action a is not in the set of L(a),
that is, there are no outgoing edges with action a from i.

Algorithm 1: Constraints for variable array sst
Data: Set of edges E, num_nodes, bound k
Result: Set of constraints
for i← 0 to k − 1 do

for n1 ← 0 to num_nodes-1 do
for n2 ← 0 to num_nodes-1 do

if (n1, n2) ∈ E then
Add constraint:
If sst[i]=n1 and n1 chooses the action on edge (n1, n2)
then sst[i+1] can be n2;

end
end

end
end

Algorithm 2: Constraints for variable array choice
Data: Edge labeling function L, num_actions , num_nodes
Result: Set of constraints
for i← 0 to num_nodes-1 do

for a← 0 to num_actions-1 do
if a /∈ L(i) then

Add constraint: choice(i) not equal to a ;
end

end
end

Cost function

Once the strategy and SSTs have been defined, the minimum threshold value for the re-
quested property can be easily computed. In the current implementation of SR-solver, only
one resilience property can be checked at a time. Therefore, the cost function is just the
function for calculating such threshold value as defined in Section 3.1.1. For example, if we

56

are interested in functionality, then the cost function is:

cost(SST) =
k−1∑

0

Ci(αi)
k

Branching

Gecode’s predefined variable-value branching is used. We have two branchers - for choice
variables and for the sst:

branch(*this,choice,INT_VAR_NONE(), INT_VALUES_MIN());

branch(*this, sst, INT_VAR_NONE(), INT_VALUES_MAX());

The branching starts by selecting the first unsigned variable in the choice array: choice[0]
with the minimum value from the domain of choice. If there is no conflict with the con-
straints for choice, then the search continues. The branching again selects the first unas-
signed variable with a minimum value from the domain. Branching commands are executed
in order of creation, that is to say, the sst brancher will not start assigning values to sst until
the choice brancher have assigned every variable of the choice array with a value. This order
is especially important because branching a realizable SST requires a complete strategy.

Searching for solutions

Gecode’s parallel branch and bound engine is generic with respect to any type of Gecode
model and it is written in C++. The search engine uses a work-stealing architecture for the
parallel search. Initially, all the work of exploring the search tree is allocated to the main
CPU, making the CPU busy. All other CPUs are initially idle and try to steal the work
of exploring parts of the search tree from the main CPU. The work-stealing architecture is
indeterministic, as the work that is stolen depends on machine load and other factors. The
degree of parallelism is specified using the following command:

Gecode::Search::Options search_op;

search_op.threads = n_threads;

n_threads is a number entered by the user via GUI’s "Set number of CPU cores to use"
menu. This number sets the number of CPU cores to use during the branch and bound
search. By default, n_threads = 1. Suppose x is the number of CPU cores in the machine.
If n_threads is greater than x, then only the actual number of CPU cores are utilized by
the search engine.

We use the default parallel branch and bound engine with the cost function defined in
the previous section to find the worst case of each strategy. Then, we select the optimal
strategy with the lowest cost from all strategies return by the branch and bound engine.

57

An Example

We demonstrate the SR-solver by using the dynamic system presented in Figure 3.5. From
the figure, it is obvious that a strategy is just the choice of action for system state N2 since
it is the only system in this dynamic system graph with more than one actions. Suppose
the length of sst is fixed to 5, by running the SR-solver, we get:

• 3-Resistance by choosing action b at N2.
If we choose action a at N2, then the worst case scenario sst is N0 ∼ N1 ∼ N1 ∼
N2 ∼ N3. This sst is 4-Resistance.

• Not < 2, Q > −Recoverable.
This is due to the fact that N1 can stuck in a self-loop for any arbitrary number of
time steps. In the worst case sst is N0 ∼ N1 ∼ N1 ∼ N1 ∼ N2. Since the cost of
last system state is 3, this dynamic system is not < 2, Q > −Recoverability whatever
the choice of action at N2.

• 2-Functional by choosing action b at N2. Similar to the resistant case, if we choose
action a, the worst case sst is N0 ∼ N1 ∼ N1 ∼ N2 ∼ N3. This sst is
1 + 2 + 2 + 3 + 4

5 = 2.4-Functional

• 3-Stabilizable by choosing action a at N2.
Note that for the Stabilizability, unlike other resilience properties, the optimum strat-
egy is to choose action a at N2. If we choose action b, then it is 5-Stabilizable.

(a)

58

(b)

(c)

59

(d)

Figure 3.6: The dynamic system presented in Figure 3.5 is: (a) 3-Resistance. (b) Not
< 2, Q > −Recoverable. (c) 2-Functional. (d) 3-Stabilizable.

60

3.4 Related work

The work described in this chapter is, to our knowledge, the first complexity analysis and
implementation for resilience problem based on SR-model. In this section, we review work
related to the problem of system resilience.

Discrete event dynamic systems (DEDS) [26] are similar to the SR-model we considered
in this chapter. A DEDS consists of discrete state spaces and event-driven state transitions
where the transitions occur at a discrete instant of time. The difference between discrete
event systems and SR-models lies in how dynamics are presented in the system. A DEDS,
unlike the SR-model, does not allow an explicit occurrence of controlled decisions and
exogenous events at the same time. We believe that our model is more realistic in the
context where a system is subject to changes under the combination of controlled decisions
and exogenous events at certain time step.

As to properties of dynamic systems regarding resilience, the exact set of resilience prop-
erties is largely debatable. In [4], the authors introduced a weaker notion of stabilizability:
k-maintainability. A DEDS is said k-maintainable if certain "good" states can be reached
in k steps and if there is no interference from the environment during those steps. While k-
maintainability is close related to stabilizability, it is not directly relevant in the SR-model
as we always deal with the exogenous event in any circumstances. In [32], the authors
focus on other aspects of system resilience, namely robustness and resiliency. Robustness
is defined as the capacity of self-protecting from unexpected events while resiliency is the
ability of self-healing in case of system failures. They propose a Petri net based framework
where both robustness and resiliency can be formally defined and measured.

3.5 Conclusions

This chapter provides the study, complexity analysis and implementation of a user-friendly
software for the resilience problem. We have shown that the complexity of determining the
resilience of a given SR-model can be as hard as NP-complete. Then, we provide a novel
approach that used a constraint optimization solver to solve the resilience problem. We
can confirm that Gecode is, indeed, a viable approach to real-life system resilience analysis.
Finally, a fully graphical user interface for modeling SR-models was created, thus making
the technology for solving system resilience problems accessible to general users.

We believe that we are taking important initial steps in addressing the core aspects of
system resilience, namely the underlying complexity of evaluating resilience properties and
the preliminary implementation of the SR-solver. As a future direction, we plan to extend
the capabilities of SR-solver to capture the full definition of dynamic systems. Another
direction is to add support for user preferences over resilience properties. As can be seen
in the previous section, the optimal strategies for each of the resilience properties are not

61

necessarily the same. Adding preference will address this problem and thus further increase
the applicability of the SR-solver.

62

Bibliography

[1] Generic constraint development environment. http://www.gecode.org/. Accessed:
2015-10-30.

[2] Modeling and programming with gecode. www.gecode.org/doc-latest/MPG.pdf. Ac-
cessed: 2015-10-30.

[3] Krzysztof Apt. Principles of Constraint Programming. Cambridge University Press,
New York, NY, USA, 2003.

[4] Chitta Baral, Thomas Eiter, Marcus Bjäreland, and Mutsumi Nakamura. Maintenance
goals of agents in a dynamic environment: Formulation and policy construction. Artif.
Intell., 172(12-13):1429–1469, August 2008.

[5] Roman Barták. Constraint programming: In pursuit of the holy grail. In In Proceedings
of the Week of Doctoral Students (WDS99 -invited lecture, pages 555–564, 1999.

[6] Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterexample generator
for higher-order logic based on a relational model finder (extended abstract). Technical
report, IN TAP 2009: SHORT PAPERS, ETH, 2009.

[7] Rafael Caballero, Yolanda García-Ruiz, and Fernando Sáenz-Pérez. A theoretical
framework for the declarative debugging of datalog programs. In Semantics in Data
and Knowledge Bases, Third International Workshop, SDKB 2008, Nantes, France,
March 29, 2008, Revised Selected Papers, pages 143–159. 2008.

[8] John L. Casti. X-events : the collapse of everything. William Morrow, New York, 2013.

[9] James R. Cordy. The TXL source transformation language. Science of Computer Pro-
gramming, 61(3):190 – 210, 2006. Special Issue on The Fourth Workshop on Language
Descriptions, Tools, and Applications (LDTA 04).

[10] Rina Dechter. Constraint processing. Morgan Kaufmann Publishers, San Francisco,
2003.

[11] Marc Denecker, Maurice Bruynooghe, and Victor Marek. Logic programming revisited:
logic programs as inductive definitions. ACM Transactions on Computational Logic,
2:2001, 2001.

[12] Greg Dennis, Kuat Yessenov, and Daniel Jackson. Bounded verification of voting soft-
ware. In Natarajan Shankar and Jim Woodcock, editors, Verified Software: Theories,
Tools, Experiments, volume 5295 of Lecture Notes in Computer Science, pages 130–145.
Springer Berlin Heidelberg, 2008.

63

http://www.gecode.org/
www.gecode.org/doc-latest/MPG.pdf

[13] Todd J. Green, Molham Aref, and Grigoris Karvounarakis. Logicblox, platform and
language: A tutorial. In Proceedings of the Second International Conference on Dat-
alog in Academia and Industry, Datalog 2.0’12, pages 1–8, Berlin, Heidelberg, 2012.
Springer-Verlag.

[14] NICTA Optimisation Research Group. Minizinc, a modelling language and tool chain
for constraint optimisation problems. www.minizinc.org. Accessed: 2015-10-30.

[15] Peter Hartmann, Monika Maidl, David von Oheimb, and Richard Robinson. A case
study in decentralized, dynamic, policy-based, authorization and trust management–
automated software distribution for airplanes. In Security and Trust Management,
pages 68–83. Springer, 2011.

[16] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2006.

[17] Daniel Jackson and Craig A. Damon. Elements of style: Analyzing a software design
feature with a counterexample detector. In Proceedings of the 1996 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA ’96, pages 239–249,
New York, NY, USA, 1996. ACM.

[18] Peter Ladkin. Formal methods in modern critical-software de-
velopment. http://www.abnormaldistribution.org/2009/06/22/
formal-methods-in-modern-critical-software-development/. Accessed: 2015-
10-30.

[19] Monika Maidl, David von Oheimb, Peter Hartmann, and Richard Robinson. Formal
security analysis of electronic software distribution systems. In Michael Harrison and
Mark-Alexander Sujan, editors, Proc. of the 27th International Conference on Com-
puter Safety, Reliability and Security (SAFECOMP), volume 5219 of LNCS, pages
415–428. Springer, 2008. http://ddvo.net/papers/SAFECOMP08.html.

[20] Sarah Mallet and Mireille Ducassé. Generating deductive database explanations, 1999.

[21] Victor W. Marek and Miroslaw Truszczynski. Stable models and an alternative logic
programming paradigm. CoRR, cs.LO/9809032, 1998.

[22] Hiroshi Maruyama. Towards systems resilience. In Dependable Systems and Networks
Workshop (DSN-W), 2013 43rd Annual IEEE/IFIP Conference on, pages 1–4, June
2013.

[23] Ann S. Masten. Resilience in developing systems: Progress and promise as the fourth
wave rises. Development and Psychopathology, 19:921–930, 6 2007.

[24] Artur Mikitiuk, Eric Moseley, and Miroslaw Truszczynski. Towards debugging of
answer-set programs in the language pspb. In Proceedings of the 2007 International
Conference on Artificial Intelligence, ICAI 2007, Volume II, June 25-28, 2007, Las
Vegas, Nevada, USA, pages 635–640, 2007.

[25] David G. Mitchell and Eugenia Ternovska. A framework for representing and solving
NP search problems. In In AAAI, pages 430–435. AAAI Press/MIT Press, 2005.

64

www.minizinc.org
http://www.abnormaldistribution.org/2009/06/22/formal-methods-in-modern-critical-software-development/
http://www.abnormaldistribution.org/2009/06/22/formal-methods-in-modern-critical-software-development/
http://ddvo.net/papers/SAFECOMP08.html

[26] Peter J. Ramadge and W. Murray Wonham. Supervisory control of a class of discrete
event processes. SIAM J. Control Optim., 25(1):206–230, January 1987.

[27] Peter J. Ramadge and W. Murray Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77(1):81–98, Jan 1989.

[28] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Program-
ming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY,
USA, 2006.

[29] Oxana Sachenkova. Using CSP solvers for Partial Configuration in Automotive Con-
figuration Problems. Master’s thesis, Chalmers University of Technology, GOTHEN-
BURG, SWEDEN, 2011.

[30] Nicolas Schwind, Tenda Okimoto, Katsumi Inoue, Hei Chan, Tony Ribeiro, Kazuhiro
Minami, and Hiroshi Maruyama. Systems resilience: A challenge problem for dynamic
constraint-based agent systems. In Proceedings of the 2013 International Conference on
Autonomous Agents and Multi-agent Systems, AAMAS ’13, pages 785–788, Richland,
SC, 2013. International Foundation for Autonomous Agents and Multiagent Systems.

[31] Tomoya Tanjo, Naoyuki Tamura, and Mutsunori Banbara. Sugar++: A sat-based
max-csp/cop solver. In Proceedings of the 3rd International CSP Solver Competition,
pages 77–82, 2009.

[32] Madjid Tavana, Timothy E. Busch, and Eleanor L. Davis. chapter Modeling Oper-
ational Robustness and Resiliency with High-Level Petri Nets, pages 170–191. IGI
Global, Hershey, PA, USA, 2013.

[33] The JUNG Framework Development Team. Jung, java universal network graph frame-
work. http://jung.sourceforge.net/index.html/. Accessed: 2015-10-30.

[34] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Proceedings of
the 13th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’07, pages 632–647, Berlin, Heidelberg, 2007. Springer-
Verlag.

[35] Christial Wieland. Two explanation facilities for the deductive database management
system DeDEx, 1990.

[36] Johan Wittocx and Marc Denecker. The idp system: a model expansion system for an
extension of classical logic. In LaSh, pages 153–165, 2008.

65

 http://jung.sourceforge.net/index.html/

Appendix A

LogicQL Grammar

1 % LogicQL language grammar
% Heng Liu , May 2015

3

5 % Warning1 : Using TXL d e f a u l t [id] d e f i n i t i o n , the complete LogicQL I d e n t i f i e r
d e f i n i t i o n i s a l i t t l e b i t d i f f e r e n t .

% Warning2 : Using o ld LogicQL f l o a t i n g number d e f i n i t i o n (v e r s i o n 3 .1 and
e a r l i e r) .

7 % Warning3 : Current ly no support f o r two LogicQL data−types : date and time
% Warning4 : Current ly no support f o r LogicQL aggregate s

9 keys
t rue f a l s e

11 end keys

13 compounds
!= <= >= −> <− << >> =>

15 end compounds

17 comments
//

19 /∗ ∗/
end comments

21

d e f i n e i d e n t i f i e r
23 [id]

| [id] : [id]
25 end d e f i n e

27

d e f i n e LogicQL_program
29 [r epeat c l a u s e]

end d e f i n e
31

d e f i n e c l a u s e
33 [c o n s t r a i n t]

| [l og i cQLru l e]
35 | [comment]

| [f a c t]
37 end d e f i n e

66

39 d e f i n e f a c t
[formula] [end_formula]

41 end d e f i n e

43 d e f i n e log i cQLru l e
[formula] <− [formula] [end_formula]

45 end d e f i n e

47 d e f i n e c o n s t r a i n t
[formula] −> [formula] [end_formula]

49 | −> [formula] [end_formula]
| ’ ! [formula] [end_formula]

51 end d e f i n e

53 d e f i n e formula
[atom]

55 | [expr] [r epeat comparator_expr+]
| [formula] ’ , [formula]

57 | [formula] ’ ; [formula]
| ’ ! [formula]

59 | ([formula])
end d e f i n e

61

d e f i n e end_formula
63 .

| [space] .
65 end d e f i n e

67 d e f i n e atom
[opt de l taop] [i d e n t i f i e r] [opt s i z e] [opt s tage] ([a r g l i s t])

69 end d e f i n e

71 d e f i n e de l taop
+

73 | −
| ^

75 | ∗
end d e f i n e

77

d e f i n e s i z e
79 ’ [[integernumber] ’]

end d e f i n e
81

d e f i n e s tage
83 @prev

| @previous
85 | @in i t

| @ i n i t i a l
87 | @ f ina l

end d e f i n e
89

d e f i n e a r g l i s t
91 [l i s t expr]

end d e f i n e
93

d e f i n e comparator_expr
95 = [expr]

| != [expr]

67

97 | < [expr]
| > [expr]

99 | >= [expr]
| <= [expr]

101 end d e f i n e

103 d e f i n e more_expr
, [expr]

105 end d e f i n e

107 d e f i n e expr
[i d e n t i f i e r]

109 | [l i t e r a l]
| [expr] [a r i thop] [expr]

111 | [i d e n t i f i e r] ’ [[a r g l i s t] ’]
| ([expr])

113 end d e f i n e

115 d e f i n e l i t e r a l
[s t r i n g l i t]

117 | [boolean]
| [number]

119 end d e f i n e

121 d e f i n e ar i thop
+

123 | −
| ∗

125 | /
end d e f i n e

127

d e f i n e boolean
129 t rue f a l s e

end d e f i n e

code/logicQL.Grm

68

Appendix B

IDP Grammar

% IDP language grammar
2 % Heng Liu , May 2015

4 % Warning1 : Only conta in s f r a c t i o n o f IDP language that are used in the
t r a n s l a t i o n

% Warning2 : Using TXL d e f a u l t [id] d e f i n i t i o n .
6 % Warning3 : Current ly no support f o r Namespaces and inc lude statements

% Warning4 : Current ly no support f o r IDP aggregate s
8

keys
10 i n c lude us ing vocabulary type i s a conta in s t rue f a l s e

nat char abs
12 end keys

14 compounds
~= <= >= <=> −> <− ?< ?=< ?= ?> . .

16 end compounds

18 comments
//

20 /∗ ∗/
end comments

22

24

d e f i n e IDP_program
26 [NL] [IDP_vocabulary_part] [NL]

[NL] [IDP_theory_part] [NL]
28 [NL] [IDP_structure_part] [NL]

end d e f i n e
30

% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ vocabulary_part s t a r t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗
32 d e f i n e IDP_vocabulary_part

vocabulary [id] ’ { [NL] [r epeat IDP_symbol_declaration] ’ }
34 end d e f i n e

36

d e f i n e IDP_symbol_declaration
38 [IDP_type_declaration] [NL]

| [IDP_predicate_declarat ion] [NL]

69

40 | [IDP_function_declarat ion] [NL]
end d e f i n e

42

d e f i n e IDP_type_declaration
44 type [id] [opt IDP_subtype_declaration] [opt IDP_supertype_declaration]

end d e f i n e
46

d e f i n e IDP_subtype_declaration
48 i s a [l i s t id]

end d e f i n e
50

d e f i n e IDP_supertype_declaration
52 conta in s [l i s t id]

end d e f i n e
54

d e f i n e IDP_predicate_declarat ion
56 [id] ’ ([l i s t id] ’)

end d e f i n e
58

d e f i n e IDP_function_declarat ion
60 [id] ’ ([l i s t id] ’) : [id]

end d e f i n e
62 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ vocabulary_part end ∗∗∗∗∗∗∗∗∗∗∗∗∗∗

64

% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ theory_part s t a r t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗
66

d e f i n e IDP_theory_part
68 theory [id] : [id] ’ { [NL] [r epeat IDP_theory_content] [NL] ’ }

end d e f i n e
70

d e f i n e IDP_theory_content
72 [IDP_sentence] ’ . [NL]

| [IDP_induct ive_def in i t ions] [NL]
74 end d e f i n e

76 d e f i n e IDP_sentence
’ t rue

78 | ’ f a l s e
| [id] ’ ([l i s t IDP_term] ’)

80 | [IDP_term] ’= [IDP_term]
| ’ ~ [IDP_sentence]

82 | [IDP_sentence] & [IDP_sentence]
| [IDP_sentence] | [IDP_sentence]

84 | [IDP_sentence] => [IDP_sentence]
| [IDP_sentence] <= [IDP_sentence]

86 | [IDP_sentence] <=> [IDP_sentence]
| ! [r epeat IDP_id_with_type+] ’ : [IDP_sentence]

88 | ? [r epeat IDP_id_with_type+] ’ : [IDP_sentence]
end d e f i n e

90

d e f i n e IDP_id_with_type
92 [id] ’ [[id] ’]

| [id]
94 end d e f i n e

% no func t i on here . Treat a l l f u n c t i o n s as p r e d i c a t e s
96 d e f i n e IDP_term

[id]

70

98 | [IDP_constant]
end d e f i n e

100

d e f i n e IDP_constant
102 [s t r i n g l i t]

| [number]
104 end d e f i n e

d e f i n e IDP_induct ive_def in i t ions
106 ’ { [NL] [r epeat IDP_inductive_rules] [NL] ’ }

end d e f i n e
108

d e f i n e IDP_inductive_rules
110 ! [r epeat IDP_id_with_type+] ’ : [IDP_sentence] <− [IDP_sentence] ’ . [NL]

| [IDP_sentence] <− [IDP_sentence] ’ . [NL]
112 end d e f i n e

114 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ theory_part end ∗∗∗∗∗∗∗∗∗∗∗∗∗∗
% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ s t ructure_part s t a r t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗

116 d e f i n e IDP_structure_part
s t r u c t u r e [id] : [id] ’ { [r epeat IDP_structure_containt] ’ }

118 end d e f i n e

120 d e f i n e IDP_structure_containt
[IDP_type_enumeration]

122 | [IDP_predicate_enumeration]
| [IDP_function_enumeration]

124 end d e f i n e

126 d e f i n e IDP_type_enumeration
[id] = ’ { [IDP_term] [r epeat IDP_term_semicolon_list] ’ }

128 | [id] = ’ { [IDP_term] . . [IDP_term] ’ }
end d e f i n e

130

d e f i n e IDP_term_semicolon_list
132 ’ ; [IDP_term]

end d e f i n e
134

d e f i n e IDP_predicate_enumeration
136 [id] = ’ { [opt ’ (] [l i s t IDP_term] [opt ’)] [r epeat

IDP_predicate_term_semicolon_list] ’ }
end d e f i n e

138

d e f i n e IDP_predicate_term_semicolon_list
140 ’ ; [opt ’ (] [l i s t IDP_term] [opt ’)]

end d e f i n e
142

d e f i n e IDP_function_enumeration
144 [id] = ’ { [l i s t IDP_term] −> [IDP_term] [r epeat

IDP_function_semicolon_list] ’ }
end d e f i n e

146

d e f i n e IDP_function_semicolon_list
148 ’ ; [l i s t IDP_term] −> [IDP_term]

end d e f i n e
150

% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ s t ructure_part end ∗∗∗∗∗∗∗∗∗∗∗∗∗∗

code/IDP.Grm

71

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	LogicQL program Verification using the IDP system
	Background
	First Order Logic (FO)
	Model Expansion
	FO(ID)
	The IDP system

	LogicQL
	LogicQL Language
	 LogicQL Program Verification as a Model Expansion Task

	LogicQL Debugger
	LogicQL Debugger GUI
	The Translator

	Case study: Incremental Development of Automated Software Distribution for Airplanes
	The problem
	LogicQL formulation

	Related work
	Conclusions and Future work

	System Resilience Problem
	SR-model
	Resilience of the SR-model
	Determine the Resilience of a Dynamic System

	On the Complexity of Evaluating Resilience Properties
	 A Polynomial Algorithm for Resistance
	A Polynomial Algorithm for Recoverability
	A Polynomial Algorithm for Functionality
	Complexity of Evaluating Stabilizability

	User Friendly Software for Solving System Resilience Problems using Gecode
	Related work
	Conclusions

	Bibliography
	Appendix LogicQL Grammar
	Appendix IDP Grammar

