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Abstract

Honeybees are masters of regulating their temperatures collectively, even in the absence of
a hive. A reproductive swarm consisting of a queen and about half a colony’s workers will
leave their hive to find a new home. Prior to settling on a permanent home, the honeybees
form a stationary swarm, where the bees cling onto one another from a roof-type structure,
completely exposed to the elements. Because bees are so sensitive to extremes of heat and
cold, it is essential that the swarm has ways to control its temperature. We present a
mathematical model to study how honeybees thermoregulate by adjusting their movement
and metabolic heat output. We introduce a system of coupled partial differential equations
and integral equations to describe the swarm temperature, density, and size, along with a
corresponding numerical scheme. We then relax the assumption of spherical symmetry and
extend the model by studying non-spherical swarms.

Keywords: Math modelling, bio-mathematics, honeybee swarming, computational PDEs
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Chapter 1

Introduction

Reproductive swarming serves as the primary means for honeybee colonies to divide [14,
15, 31, 41]. An old queen with about half a hives workers (ranging from 1,000 to 30,000
bees [15]) will leave their hive in search of a new home, leaving behind developing queens
in specialized cells. As the virgin queens are born, they either take some of the remaining
workers and also swarm (a process known as afterswarming), or stay in the hive and kill the
remaining queen bees [41]. Prior to settling on a permanent home, the honeybees searching
for a new hive will form a stationary swarm (which we henceforth call a swarm), where
the bees will cling onto one another from a roof-type structure (say a tree branch) while
scouts seek a new location [15]. Figures 1.1 and 1.2 depict examples of stationary swarms.
The bees will stay in this temporary home until the scout bees, typically the cluster’s most
experienced foragers, settle on a permanent home [27].

During this period, the swarm may be exposed to ambient temperatures lower than 5◦C
for a few hours to several days. Considering that honeybees become incapable of flight
at temperatures lower than 16◦C and incapable of movement at temperatures lower than
5◦C [14], the swarm must maintain reasonable temperatures to prevent perishing in the
cold. Yet, despite these frigid conditions, it has been documented the swarm can regulate
the temperatures to suitable levels – some swarms could maintain their core temperature
to within 1◦C of 35◦C (while most swarms could uphold their temperatures from 30◦C to
40◦C [29]), while also maintaining their exterior temperature 2◦C greater than the ambient
temperature or 17◦C (whichever was larger) [15]. They must perform this thermoregulation
without excessive heat loss, since generating heat by consuming their stores of honey is fatal
when their supply is depleted. This task is done by forming a thick layer of immobile bees
near the mantle, while the internal part of the swarm (which has no brood or honeycomb
hives) can be adapted solely for temperature control [29]. The thermoregulation is so
effective that, aside from small swarms with fewer than a thousand bees, the interior bees
do not need to produce any excess heat to maintain a temperature of 35◦C, their optimal

1



Figure 1.1: Melbourne swarm, retrieved from https://commons.wikimedia.org/wiki/
File:MelbourneSwarm.JPG. Used under Creative Commons Attribution-Share Alike 3.0
Unported license [1].

temperature for full activity [29]. In fact, their heat-preservation is so efficient that the
swarms often need to adapt the core to expel excess heat [15,29].

This impressive thermoregulation task is done seemingly without a centralized con-
troller, and without any apparent chemical or acoustic communication between the inner-
most and outermost bees [15]. Contrary to popular belief, a honeybee colony is not directed
by its queen bee – the queen’s sole purpose is to lay eggs to maintain a colony’s work-
force and not to direct the workforce [30]. Hence, the thermoregulation is self-organized,
meaning the whole swarm’s temperature is regulated through individual bees making de-
cisions for themselves. Yet from these decisions being made locally by individual bees,
global structures emerge throughout the entire swarm [6, 15]. Although swarm thermoreg-
ulation and the similar phenomenon of winter clusters (where honeybee colonies may be
subjected to freezing temperatures but within the confines of their hive) are well docu-
mented [11,14–17,25,29,31,34,35,41,42], the processes are not well understood.

Several Eulerian mathematical models on these phenomena have arisen where temper-
ature is modelled by the heat equation, while bee density is treated as a continuum and
thus modelled with a partial differential equation (PDE). Earlier models, such as Omholt-
Lønvik’s [24] model and Lemke-Lamprecht’s [20] model, assumed the bees knew about
non-local information about the swarm by modelling the metabolic heat output of each
bee as a function of the bee’s location in the swarm, violating self-organization. Myer-
scough [22] improved these models by allowing bees to make decisions based solely on local
information, but rather than predicting densities, the model simply assumed that density is
a function of local temperature. A further refinement of Myerscough’s model was presented
by Watmough-Camazine [40], where rather than specifying density as a function of temper-
ature, the density profile is described by the local movements of bees. Our thermoregulation
model is based on Watmough-Camazine’s model, and thus their model is extensively dis-
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Figure 1.2: Swarm of honey bees attached to a branch, retrieved from https://commons.
wikimedia.org/wiki/File:Swarm_of_Honey_Bees_attached_to_a_branch.JPG. Used
under Creative Commons Attribution-Share Alike 3.0 Unported license [5].

cussed in Chapter 2. Our work aims to recreate Watmough-Camazine’s model and improve
their numerical scheme.

Many earlier mathematical models on honeybee thermoregulation, including [8, 20, 22,
24,40], make the assumption of spherical symmetry. This vastly simplifies the mathematics
and computation of the problem because it reduces the number of spatial variables from
three to one. There are only a few papers describing models without spherical symmetry,
such as models by Basak-Rao-Bejan [4] and Ocko-Mahadevan [23]. Moreover, Sumpter-
Broomhead [37] present an agent-based model which allows the shape to be non-spherical.
These models are discussed in Chapter 4, where we examine how to relax the spherical
symmetry assumption.

In this thesis, we present our extension of Watmough-Camazine’s model, which we
describe in detail in Chapter 2. We then discuss our numerical scheme to simulate our
model in Chapter 3, and display the numerical convergence studies along with physical
results. Afterwards, in Chapter 4, we discuss a method for relaxing the assumption of
spherical symmetry by deriving a model of a swarm in a hemisphere. Finally, in Chapter 5
we discuss possible extensions to our model.

3
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Chapter 2

Thermoregulation Model of
Watmough and Camazine

Our work is based on the model presented by Watmough and Camazine in the paper, Self-
Organized Thermoregulation of Honeybee Clusters [40]. Hence, we go over the key features
and results of the model in detail. We refer to the authors and their paper as WC.

2.1 Model Assumptions

The WC model makes 7 key assumptions:

1. The swarm contains a large enough population of bees at high enough densities that
it can be approximated as a continuum. Thus quantities such as bee density can be
defined and treated as continuous functions.

2. Bees are self-organized and have no centralized controller, with individuals responding
only to local conditions.

3. A bee will move in the direction of decreasing temperature when too warm. Similarly,
a bee will move in the direction of increasing temperature when too cold.

4. Bees generate heat both passively and actively, especially when cold.

5. The swarm is spherically symmetric.

6. Heat transfer in the swarm interior is through conduction between neighbouring bees.

7. Bees are conserved and hence no bees leave or enter the swarm.

Modelling the swarm as a continuum of bees (Assumption 1) makes the problem contin-
uous rather than discrete. Hence differential equations can be used to describe heat transfer

4



and bee movement. This assumption is reasonable because bee swarms are observed to be
quite packed and dense, at least when the ambient temperature is low [14]. In contrast to
a discrete model, the continuum model fails to capture certain small-scale dynamics. For
instance, it is observed that cold bees on the surface of the swarm may push their way into
the warmer interior, thus exposing new bees to the exterior [14]. In this case when bees are
switching places, the continuum model would fail to capture this phenomenon. Despite this,
we use a continuum model rather because discrete models are much more computationally
expensive, even when simulating small swarms of honeybees.

Self-organization has several meanings in the literature [3, 9]. We use self-organization
(Assumption 2) to mean that bees in a swarm do not possess a centralized controller,
and thus the structure that emerges in the swarm is the result of individual bees making
decisions based on local conditions. This is consistent with the finding that there is no
centralized controller directing bees where to move or how to stay warm [32], and with the
observation that there is no communication between the swarm centre and exterior [15].
Mathematically, this means that the governing equations describing a fixed location will
only depend on local properties of the swarm such as density or temperature.

Assumptions regarding the thermoregulation mechanism (Assumptions 3 and 4) are
based on experimental results. Bee movement can only be described qualitatively rather
than quantitatively since, to our knowledge, there is no experimental data describing how
bees move in response to change in the swarm. On the other hand, their heat production
has been measured in experiments (see Section 2.3.2).

Spherical symmetry (Assumption 5) is a mathematically convenient assumption that
allows us to study the problem in just one spatial variable (distance from the origin, r) rather
than three variables, which greatly simplifies the model and accelerates the computations.
This assumption matches observations reasonably well at colder ambient temperatures;
however, the spherical symmetry breaks down at warmer ambient temperatures when the
swarm is observed to become elongated [15]. Furthermore, other physical effects may break
the spherical symmetry including gravity, the structure the swarm clings onto (such as a
tree branch), or asymmetry in heat convection. In Chapter 4, we explore the problem of
swarm thermoregulation without spherical symmetry.

Assuming heat transfer is dominated by heat conduction (Assumption 6) means that
we may ignore the effects of heat convection. This seems reasonable because the swarm is
stationary, and because the denseness of the swarm results in little air flow throughout the
cluster. However, during warmer ambient temperatures, the swarm is less crowded, and it
is observed that ventilating channels emerge within the swarm that allow the interior to
rapidly cool [15]. When this occurs, heat convection becomes more important than heat
conduction, and thus Assumption 6 no longer holds.

Conservation of bees (Assumption 7) is used to derive an equation for the dependent
variable R, the swarm radius. Strictly speaking this assumption is not correct since bees may
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die. Bees left on the exterior of the swarm for too long may consume all their honey stores,
eventually leading them to become immobile, falling off the swarm, and freezing [15]. This
is especially common when bee clusters swarm for prolonged periods of time, or for smaller
bee swarms (i.e., less than 6,000 bees) [15]. Nevertheless, this assumption is acceptable so
long as the timescale of a simulation is not too long (shorter than three days) so that not
too many bees would die. Additionally, scouts seeking a new location for a permanent hive
will leave and enter the swarm, relaying information about potential nest sites with other
scouts; however the number of scouts is small (roughly 5% [27]), so the change in swarm
numbers due to scouts coming and going may also be ignored.

2.2 Mathematical Formulation

In order to study the swarming phenomenon mathematically, we need to define both in-
dependent and dependent variables, their governing equations, and their constitutive func-
tions. Furthermore, boundary conditions are imposed to describe how the exterior of the
swarm interacts with the ambient air.

2.2.1 Variables

In order to create their model, WC introduce two independent variables, time t and space
r. Note that rather than dealing with three spatial dimensions, Assumption 5 reduces the
space dependence to the distance from the origin, radius r ∈ R1, r ≥ 0. Since we are
interested in how bees move to adapt to cold temperatures, WC also introduce dependent
variables temperature T = T (t, r) [◦C] and bee density ρ = ρ(t, r) [dg cm−3]. Finally, the
size of the swarm is allowed to change in time, so that R = R(t) [cm] is defined as the
time-dependent radius of the swarm.

Note that Assumption 1 allows the density to be treated as a continuous variable. We
will aim to compare our results with biological experiments which report a number of bees
rather than a mass of bees, and thus would like to eventually describe the density as a
number of bees. Heinrich [15] uses 115 mg as a standard weight for a bee, and reports that
a European honeybee worker with an empty stomach weights 93 mg. As such, we assume
each bee weights 1

10 g, or 1 dg. Thus we use the convention that ρ = n corresponds to n
bees, and hence bee mass can be described by a number of bees.

In addition to these variables, we also require the following constitutive functions:

• λ(ρ), the thermal conductivity of bees [W cm−1 K−1], describes how heat is passed
along the bees based on how crowded they are (Assumption 6);

• f(T ), the metabolic heat production of a bee [W dg−1], models the passive and active
heat production of bees as a function of local temperature (Assumption 4);

6



• µ(ρ), the motility function [cm2 s−1], a barrier function that has little physical rele-
vance which forces the swarm to be neither too sparse nor too dense;

• and χ(T ), the thermotactic velocity [cm2 K s−1], outlines whether bees are driven to
warm or cold regions (Assumption 3).

The functions are thoroughly explained in Section 2.3, and a summary of all the variables
and parameters is presented in Table 2.2.

2.2.2 Equation for Swarm Temperature

WC model the swarm temperature T (t, r) using the heat equation, which has a diffusive
term that captures the mechanism of heat conduction (Assumption 6), and a source term
encompassing the heat production of bees (Assumption 4). Thus we have

c
∂T

∂t
= ∇ · (λ(ρ)∇T ) + ρf(T ), (2.1)

where c is the heat capacity of the swarm [J ◦C cm−3], λ the thermal conductivity, and f
a source term that describes the metabolic heat output per bee. In spherical coordinates
with symmetry about the origin, this becomes

∂T

∂t
= 1
r2

∂

∂r

[
r2λ(ρ)∂T

∂r

]
+ ρf(T ). (2.2)

2.2.3 Equation for Bee Density

To capture variations in bee density ρ(t, r) Assumptions 2 and 3 must be accounted for,
along with the fact that bees do not want to be overly crowded or spread out. Thus to
describe change in density, it is assumed the bees move along the temperature and density
gradient levels according to the advection-diffusion equation

∂ρ

∂t
= ∇ · (µ(ρ)∇ρ)−∇ · (χ(T )ρ∇T ), (2.3)

where µ is the bee motility and χ is a thermotactic velocity. In spherical coordinates with
symmetry about the origin, this becomes

∂ρ

∂t
= 1
r2

∂

∂r

[
r2µ(ρ)∂ρ

∂r

]
− 1
r2

∂

∂r

[
r2χ(T )ρ∂T

∂r

]
. (2.4)

This equation is similar to other mathematical models for chemotaxis; the reader is directed
to [21, Chapter 1.3] for an example.
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2.2.4 Equation for Swarm Radius

Bee swarms are observed to expand or contract in response to changes in the ambient
temperature [15]. As such, the radius of the swarm is allowed to vary with time. We can
count the total initial number of bees B0 by integrating across the initial spherical swarm
of radius R(0)

4π
R(0)∫
0

r2ρ(0, r)dr = B0.

According to Assumption 7 the total number of bees is constant in time, so we obtain

4π
R(t)∫
0

r2ρ(t, r)dr = B0. (2.5)

Rather than dealing with two partial differential equations (2.1), (2.3) and one integral
equation (2.5), WC transform this integral equation into a differential equation by taking
the time derivative of Equation (2.5) to obtain

dR
dt =

(
−µ
ρ

∂ρ

∂r
+ χ

∂T

∂r

) ∣∣∣∣∣
r=R(t)

. (2.6)

The derivation of this differential equation is discussed in Appendix A.1.

2.2.5 Boundary Conditions

The spherical swarm geometry requires imposing boundary conditions at the centre of the
sphere (a computational boundary) and the exterior of the swarm. We often refer to the
exterior as the swarm mantle or surface.

For the core, from Assumption 5, spherical symmetry gives the boundary conditions

∂T

∂r
(t, 0) = 0, (2.7)

∂ρ

∂r
(t, 0) = 0. (2.8)

Heat loss at the exterior is assumed to obey Newton’s law of cooling

(
λ(ρ)∂T

∂r

) ∣∣∣∣∣
r=R(t)

= hc (Ta(t)− T (R(t), t)) , (2.9)

where hc is the average rate of convective heat transfer [W ◦C−1 cm−2] at the surface and
Ta(t) is the ambient temperature [◦C].
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The density on the exterior is taken to satisfy the Dirichlet boundary condition

ρ(R(t), t) = ρR, (2.10)

where ρR is some constant representing the number of bees on the outermost layer of the
swarm, typically chosen between 2 to 5. WC claim they experimented with boundary
conditions dependent on the ambient temperature and cluster radius, neither of which gave
significant changes in the results.

WC do not discuss their choice of initial conditions, and so we can only estimate them
from the given solution plots.

2.3 Constitutive Functions

In addition to the three key dependent variables (temperature, bee density, and swarm
radius), four important constitutive functions are used in the model. Aside from µ, these
are all motivated by experimental observations and fit to measured data on actual bees.

2.3.1 Conductivity λ

A bee’s heat conductivity is typically less than that of air and depends on how tightly
packed the bees are, so the thermal conductivity coefficient is treated as a function of
density. Fundamentally, the conductivity of the swarm λ = λ(ρ) must decrease as density
increases. Hence the conductivity of a very dense group of bees is nearly zero, allowing a
thick layer of bees to act as an insulating layer. Conductivity λ is modelled by the equation

λ(ρ) = λair − (λair − λbee)
(
ρ

10

) 2
3
, (2.11)

where the heat conductivity of λair is assumed to be greater than that of the typical bee
conductivity λbee. For the computation, λair = 10 mW/cm◦C and λbee = λair

2 . Since there
is a lack of experimental data regarding the conductivity of a bee swarm, this equation
assumes that local conductivity depends solely on local density. This particular choice of
λair and λbee is in agreement with data reported in [33]. A plot of λ(ρ) is given in Figure
2.1.

2.3.2 Metabolic Heat Production f

According to Assumption 4, bees generate heat passively, while also generating heat metabol-
ically when cold. To model this effect, the function f = f(T ) is introduced, which describes
heat production by individual bees in both warm and cold temperatures. Passive heat pro-
duction in warm air is assumed to have a Q10 coefficient of 2.4 [18,20], which suggests that
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Figure 2.1: Coefficient of heat conductivity as a function of bee density, in W cm−1 K−1.

the resting metabolic output increases by a factor of 2.4 for every 10◦C increase in local
temperature. The reader is directed to [13] for a discussion of the Q10 thermal coefficient.

For cold temperatures, when a bee is colder than the shivering temperature Ts, it in-
creases its heat production 50-fold by shivering until Tm, where their heat production caps
at the metabolism of a bee in flight (50mW). This gives the following expression

f(T ) =


50f18, if T < Tm,

50f18e
α(Tm−T ), if Tm ≤ T < Ts,

f18(2.4)
T−18

10 , if T ≥ Ts,

(2.12)

where f18 is the resting metabolism of a bee at 18◦C and the constant α is chosen so that
f(T ) is continuous at T = Ts. Some arithmetic shows that to ensure continuity, we require

α =
Ts−18

10 log(2.4)− log(50)
Tm − Ts

. (2.13)

Typically, Tm is assumed to be 15◦C, while Ts is about two degrees greater than Tm. Also,
f18 is taken to be 1 mW/dg. The function f(T ) and its parameter values are in reasonable
agreement with results from [18, 20, 28, 34]. A plot of f(T ) is given in Figure 2.2. The
reader is directed to [12] for a further reading on experimental data on the metabolism of
individual honeybees.

2.3.3 Motility µ

In order to maintain bee densities at a desirable level, we introduce the motility function
µ = µ(ρ). When bees are too crowded or spread out, the motility increases exponentially.
With such motility, the bees are forced to within a desired density range. This function is
artificial and has no direct physical relevance; rather, it serves as a “barrier function” that
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Figure 2.2: Metabolic heat production of a single bee f as a function of local temperature
T , in W dg−1.

Figure 2.3: Motility µ as a function of density, in cm2 s−1.

forces the bee density to lie within the domain [2, 10]. Such a function is

µ(ρ) =



µ0(100)2−ρ, if ρ < 2;

µ0, if 2 ≤ ρ ≤ 10;

µ0(10)ρ−10, if 10 < ρ ≤ 13;

1000µ0, if ρ > 13.

(2.14)

The motility function µ(ρ) is plotted in Figure 2.3. Note that the shape of the graph is
important, not its absolute scale.

2.3.4 Thermotactic Velocity χ

The thermotactic velocity χ = χ(T ) describes how bees move in the direction of increasing
temperature. Fundamentally, this function is positive if the local temperature is below Th

(the huddling temperature) and negative otherwise. Hence bees move up the temperature
gradient when cold and down the temperature gradient when warm. For simplicity, WC
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Figure 2.4: Thermotactic velocity χ as a function of local temperature, in cm ◦C−1 s−1.

use the hyperbolic tangent function

χ(T ) = χ0 tanh
(
Th − T

4

)
,

which is plotted in Figure 2.4 for values of χ0 = 10−3 and Th = 25.

2.3.5 Ambient Temperature

To simulate bees responding to the temperature changes over the course of a day, we use
a sinusoidal ambient temperature function with mean Tmean and amplitude Tamp. We
typically take the mean temperature as 0◦C and the amplitude no greater than 15◦C.

2.3.6 Typical Parameter Values

In Table 2.1, we state the default parameter values for numerical simulations. All of these
are explicitly stated in [40, Figure 5], except for f18, Tm, Ts, and ρR. We found f18 from
[40, Figure 2], while Tm, Ts, and ρR were guessed by inspecting figures throughout [40].
Moreover, in Table 2.2, we present a summary of all our parameters and variables along
with some typical values.
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Parameter Value
B0 8,104 dg
Tamp 15◦C
Th 25◦C
Tm 13◦C
Tmean 0◦C
Ts 15◦C
c 1 J ◦C cm−3

f18 1× 10−3 W dg−1

hc 2.5× 10−3 W ◦C−1 cm−2

hf
∗ 2× 10−3 W ◦C−1 cm−2

λair 10×10−3 W ◦C−1 cm−1

λbee 5×10−3 W ◦C−1 cm−1

µ0 8× 10−4 cm2 s−1

ρR 2 dg cm−3

χ0 8× 10−4 cm ◦C−1 s−1

Table 2.1: The typical parameter values we used in the numerical simulations.
∗ note that hf is not used in the one-dimensional simulations.
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Symbol Quantity Units Typical Values
B0 Initial number of bees dg 5,000 to 30,000
M Number of points in discretization

in φ (2D)
dimensionless 23 to 25

N Number of points in discretization
in x or r

dimensionless 24 to 29

R(t) Radius of swarm cm Equation (2.5)
T (t, r) Temperature of swarm at a point ◦C Equation (2.1)
Ta(t) Ambient temperature ◦C Tmean ± Tamp
Tamp Ambient temperature amplitude ◦C 0 to 15 ∗
Th Thermotactic huddling temperature ◦C 25 ∗
Tm Minimum temperature bees con-

tinue to increase shivering
◦C 1 to 3 less than Ts †

Tmean Mean ambient temperature ◦C usually 0 ∗
Ts Temperature bees begin to shiver ◦C 3 to 15 †
c Heat capacity of honeybees J ◦C cm−3 ≤1 ∗
f(T ) Metabolic heat production of bees W dg−1 0 to 50f18
f18 Resting heat production of bees at

18◦C
W dg−1 1 mW per bee †

hc Rate of heat convection at swarm
surface

W ◦C−1 cm−2 about 2.5×10−3 ∗

hf Rate of heat convection at roof (2D) W ◦C−1 cm−2 2×10−3 [7]
r Distance from cluster centre cm 0 to R(t)
t Time s 0 to tf
tf Final time s ≤ 3 days ∗
∆t Time-step s 10−3 to 1, depending on N
λ(ρ) Heat conduction coefficient W ◦C−1 cm−1 0 to λair
λair Heat conductivity of air W ◦C−1 cm−1 10×10−3 ∗

λbee Heat conductivity of a bee W ◦C−1 cm−1 1
2λair

∗

µ(ρ) Motility function cm2 s−1 µ0 to 10,000 µ0
µ0 Motility coefficient cm2 s−1 8× 10−4 ∗

ρ(t, r) Density of bees dg cm−3 Equation (2.3)
ρR Density of bees at swarm surface dg cm−3 2 to 5 †
χ(T ) Thermotactic velocity function cm ◦C−1 s−1 −χ0 to χ0
χ0 Thermotaxis coefficient cm ◦C−1 s−1 8× 10−4 ∗

Table 2.2: A summary of variables and parameters including their typical values. ∗ denotes a
value given from [40, Figure 5], while † denotes a value that was estimated by inspecting [40]
because it was not explicitly stated in [40, Figure 5].
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Chapter 3

Numerical Methods and
Comparison of Results

In this chapter we propose the following numerical methods for solving the spherically
symmetric thermoregulation problem:

1. WC, a direct implementation of the method described by WC;

2. FCI, WC’s method with an updated scheme for swarm radius R(t);

3. and ODE15S, the previous method updated to use MATLAB’s built-in solvers.

The schemes are discussed extensively in Section 3.3. We perform numerical simulations
with each of the three methods to compare their results and offer recommendations on
which approach is the best. We also discuss the biological and physical conclusions drawn
from our simulations.

3.1 Computational Coordinate System

In this section, we discuss the basic spatial discretization used, which is based on a finite
difference approach for a mapped radial coordinate system.

3.1.1 Mapped Coordinate System

As of now, our independent variables are t and r. For our computational domain, t varies
from 0 to some final time tf . On the other hand, for a fixed time, we have r ∈ [0, R(t)],
which means that a direct discretization of the governing equations has mesh points that
move in time. To avoid this, we introduce a new dimensionless independent variable

x = r

R(t) , (3.1)
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and corresponding dependent variables

u(t, x) = T (t, r(t, x)), (3.2)

v(t, x) = ρ(t, r(t, x)). (3.3)

Hence, we need to transform Equations (2.1) and (2.3) into equations for u and v. After
transforming the derivatives using the chain rule, the equations become

c
∂u

∂t
− cxR′

R

∂u

∂x
= 1
x2R2

∂

∂x

[
x2λ

∂u

∂x

]
+ vf, (3.4)

∂v

∂t
− xR′

R

∂v

∂x
= 1
x2R2

∂

∂x

[
x2µ

∂v

∂x
− x2χv

∂u

∂x

]
. (3.5)

For a complete derivation, see Appendix A.2.
Similarly, Equations (2.5) and (2.6) become

4π
∫ 1

0
x2R(t)3v(t, x)dx = 0, (3.6)

dR
dt = − µ

vR

∂v

∂x
+ χ

R

∂u

∂x

∣∣∣∣∣
x=1

. (3.7)

The transformation of the integral equation is described in Appendix A.3, while the deriva-
tion of the new differential equation (3.7) from the new integral equation (3.6) follows a
similar argument to Appendix A.1.

Finally, the boundary conditions at the origin (Equations (2.7) and (2.8)) become

∂u

∂x

∣∣∣∣
x=0

= 0, (3.8)

∂v

∂x

∣∣∣∣
x=0

= 0; (3.9)

(3.10)

while the exterior boundary conditions (Equations (2.9) and (2.10)) become

∂u

∂x

∣∣∣∣
x=1

= −hcR
λ

(u− Ta)
∣∣∣∣
x=1

, (3.11)

v
∣∣
x=1 = ρR. (3.12)

3.1.2 Discretizing the Spatial and Temporal Variables

Our problem has both space and time dependence. In the dimensionless spatial coordinate
system, we use N cells and N + 1 grid points. We use a mesh that is uniform in space, so
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...
x0 x1 x2 x3 xN

∆x

Figure 3.1: A visualization of the spatial mesh, withN cells andN+1 grid points. Moreover,
as a result of rescaling r by R(t), we must always have x0 = 0 and xN = 1.

our grid points are
xi = i∆x, (3.13)

where ∆x = 1
N and i = 0, 1, . . . , N . Hence a larger value of N corresponds to a finer

computational grid. Notice that xi has distance i∆x from the origin. Figure 3.1 depicts the
spatial discretization. For the time variable we simply choose some constant ∆t, so that
the nth time-step is denoted

tn = n∆t. (3.14)

Note that in some of our numerical methods, MATLAB automatically chooses a time-step
and thus in this case we do not explicitly prescribe a time-step.

We now introduce notation to describe how we discretize the dependent variables. Sup-
pose we have a function g = g(t, x), then we denote its discrete approximations as

gni ≈ g(xi, tn).

In general, the subscript refers to a point in space, while the superscript refers to a point
in time.

3.2 Finite Difference Approximation of Governing Equations

3.2.1 Temperature

Recall Equation (3.4)

c
∂u

∂t
− cxR′

R

∂u

∂x
= 1
x2R2

∂

∂x

[
x2λ

∂u

∂x

]
+ vf.

We discretize the equation semi-implicitly in time by “freezing-coefficients,” in which v, R,
and the coefficients are evaluated at the previous time-step tn, while u is evaluated at the
next step tn+1.

For space, suppose we know uni for all i. We wish to have a discrete approximation for
un+1
i . Firstly, we consider non-boundary terms (i = 1, . . . , N − 1) and examine each term

in (3.4).
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Figure 3.2: Using ODE15S, we calculate a solution using two finite differencing methods for
the mesh advection term: an upwind scheme and a cell-centred scheme. The parameters
used were those from Table 2.1, except B = 16, 244.

For the time derivative, we use a forward difference approximation

(
c
∂u

∂t

)
i
≈ cu

n+1
i − uni

∆t . (3.15)

Regarding the mesh advection term, WC use an upwind scheme. However, we found that
the difference between an upwind scheme and a centred scheme was negligible, as seen in
Figure 3.2. Hence, for simplicity, we use a centred approximation

(
cxR′

R

∂u

∂x

)
i
≈ cxi(R′)n

Rn
un+1
i+1 − u

n+1
i−1

2∆x . (3.16)

We discuss how to approximate the coefficient R′ in Section 3.2.4. To discretize the diffusion
term, we use a cell-centred finite difference

( 1
x2R2

∂

∂x

[
x2λ

∂u

∂x

])
i
≈
x2
i+ 1

2
λn
i+ 1

2
(un+1
i+1 − u

n+1
i )− x2

i− 1
2
λn
i− 1

2
(un+1
i − un+1

i−1 )

(Rn)2x2
i∆x2 . (3.17)

Notice that the dependent variables are evaluated at cell-edges, whereas the coefficients are
located at the cell-centres. Hence interpolation is necessary for the coefficients. We use the
exact value xi+ 1

2
= (i+ 1

2)∆x and the approximate value

λi+ 1
2
≈ λi+1 + λi

2 .

Finally, the metabolic output is simply

(vf)i ≈ vni fni . (3.18)
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3.2.2 Bee Density

Recall Equation (3.5)

∂v

∂t
− xR′

R

∂v

∂x
= 1
x2R2

∂

∂x

[
x2µ

∂v

∂x
− x2χv

∂u

∂x

]
.

To solve for vn+1
i , assume we know everything from time-step n and the temperature from

time-step n+ 1. Similar discretizations to above for non-boundary terms (i = 1, . . . , N − 1)
give

(
∂v

∂t

)
i
≈ vn+1

i − vni
∆t , (3.19)(

xR′

R

∂v

∂x

)
i
≈ vi(R′)n

Rn
vn+1
i+1 − v

n+1
i−1

2∆x , (3.20)

( 1
x2R2

∂

∂x

[
x2µ

∂v

∂x

])
i
≈
x2
i+ 1

2
µn
i+ 1

2
(vn+1
i+1 − v

n+1
i )− x2

i− 1
2
µn
i− 1

2
(vn+1
i − vn+1

i−1 )

(Rn)2x2
i∆x2 , (3.21)

( 1
x2R2

∂

∂x

[
x2χv

∂u

∂x

])
i
≈
x2
i+ 1

2
χn
i+ 1

2
vn
i+ 1

2
(un+1
i+1 − u

n+1
i )− x2

i− 1
2
χn
i− 1

2
vn
i− 1

2
(un+1
i − un+1

i−1 )

(Rn)2x2
i∆x2 .

(3.22)

3.2.3 Boundary Conditions

We now discuss the discretization of the boundary terms at the centre (i = 0) and the
exterior (i = N).

Centre Boundary

Here we derive an equation for un+1
0 given the solution at time n. The time derivative and

shiver terms are similar to the non-boundary terms, and the mesh advection term is zero.
The only term that behaves differently is the diffusive term which is undefined at x = 0
and thus must be treated carefully.

Expanding the diffusive term using the product rule for differentiation gives

1
x2

∂

∂x

[
x2λ

∂u

∂x

]
= 2
x

(λux) + ∂

∂x
[λux].

In the first term of the right-hand side, the numerator and denominator tend to zero as x
tends to zero. So we apply L’Hôpital’s rule to obtain

1
x2R2

∂

∂x

[
x2λ

∂u

∂x

] ∣∣∣∣∣
x=0

= 3
R2

∂

∂x
[λux]

∣∣∣∣∣
x=0

, (3.23)
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which eliminates the problem with the factor of zero in the denominator. Applying centred-
finite differences to this expression yields

3
R2

∂

∂x
[λux]

∣∣∣∣∣
x=0

≈ 3
(Rn)2

λn1
2
(un+1

1 − un+1
0 )− λn− 1

2
(un+1

0 − un+1
−1 )

∆x2 .

We then use Equation (3.8) (derived from spherical symmetry) and get u−1 = u1 and
λ− 1

2
= λ 1

2
. Thus our approximation of the diffusion term at the origin is

( 1
x2R2

∂

∂x

[
x2λ

∂u

∂x

])
i=0
≈

6λn1
2
(un+1

1 − un+1
0 )

(Rn)2∆x2 . (3.24)

Similarly, for bee density, the time derivative term is the same as the non-boundary
terms, the mesh advection term is zero, and the motility and thermotactic terms are ap-
proximated by

( 1
x2R2

∂

∂x

[
x2µ

∂v

∂x

])
i=0
≈

6µn1
2
(vn+1

1 − vn+1
0 )

(Rn)2∆x2 , (3.25)

( 1
x2R2

∂

∂x

[
x2χv

∂u

∂x

])
i=0
≈

6χn1
2
vn1

2
(un+1

1 − un+1
0 )

(Rn)2∆x2 . (3.26)

Exterior Boundary

For the boundary temperature un+1
N , the discrete equations are the same as those presented

in Section 3.2.1 where we take i = N . This involves values of xN+ 1
2
, λN+ 1

2
, and un+1

N+1, all
of which need to be extrapolated from interior values. For x, we can simply use

xN+ 1
2

= xN + ∆x
2 . (3.27)

To approximate λ, we estimate ∆λ
∣∣
x=1 ≈ λN − λN−1, giving the approximation

λN+ 1
2
≈ λN + λN − λN−1

2 . (3.28)

For uN+1, we use a second-order approximation(
∂u

∂x

)
i=N
≈ uN+1 − uN−1

2∆x ,

and solve for uN+1 to obtain

uN+1 ≈ uN−1 + 2∆x∂u
∂x

∣∣∣∣
i=N

.
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Moreover, discretizing Equation (3.11) gives(
∂u

∂x

)
i=N
≈ hcR

λN
(Ta − uN ). (3.29)

Thus putting this all together gives the approximation

uN+1 ≈ uN−1 + 2∆xhcR
λN

(Ta − uN ). (3.30)

The ghost term uN+1 will appear for i = N in Equations (3.16) and (3.17); in these cases
we replaced uN+1 with the right-hand side of Equation (3.30).

For the density, we simply use the Dirichlet condition

v|N = ρR. (3.31)

3.2.4 Radius

We explore two different methods for approximating the swarm radius, R(t). The first
method is the one proposed by WC, where the differential equation (2.6) is used. The
second method is a direct approximation of the original integral equation (2.5).

Differential Equation for Radius

This is the method described by WC. By approximating dR
dt at each time-step, the radius

can be updated using Forward Euler

Rn+1 = Rn + ∆tdRdt

n

. (3.32)

To estimate dR
dt , recall Equation (3.7)

dR
dt = − µ

vR

∂v

∂x
+ χ

R

∂u

∂x

∣∣∣∣∣
x=1

.

This gives an explicit equation for dR
dt
n

dR
dt

n

≈ − µnN
vnNR

n

(
∂v

∂x

)n
N

+ χnN
Rn

(
∂u

∂x

)n
N
, (3.33)

where ∂u
∂x is computed by Equation (3.11)

(
∂u

∂x

)n
N

= hcR
n

λnN
(Tna − unN ). (3.34)
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and ∂v
∂x is computed with a second order one-sided scheme

(
∂v

∂x

)n
N

=
3vnN − 4vnN−1 + vnN−2

2∆x . (3.35)

Note that since un+1 and vn+1 are computed before R in our frozen coefficients approach,
then dR

dt
n+1 can be updated explicitly using un+1 and vn+1.

Integral Equation for Radius

It turns out that updating R using the approach just described has many computational
difficulties (this will be discussed extensively in Section 3.3.2, and in Figure 3.4). As such,
we derive an alternate approach to update R.

We can calculate the number of bees by integrating density over the sphere. Because of
spherical symmetry, the number of bees B(t) in the cluster at anytime t is given by

B(t) = 4π
R(t)∫
0

r2ρ(t, r)dr,

which on a normalized grid becomes

B(t) = 4πR(t)3
∫ 1

0
x2v(t, x)dx (3.36)

(see Appendix A.3 for the details). To discretize this integral, we use the trapezoidal rule
to obtain

∫ 1

0
x2v(t, x)dx ≈ ∆x

2

N−1∑
i=0

(x2
i vi + x2

i+1vi+1)

= ∆x
(
N−1∑
i=1

x2
i vi + 1

2x
2
NvN

)
,

where ∆x = 1
N , N is the number of cells, and xi = i∆x, for i = 0, 1, . . . , N . Putting this

all together and assuming we have a constant number of bees B0 (and with Assumption 7,
conservation of bees, in mind), we obtain the discrete equation

4πR3∆x
(
N−1∑
i=1

x2
i vi + 1

2vN

)
= B0.
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This can be rewritten as an explicit equation for R(t)

R(t) =

 B0

4π∆x
(
N−1∑
i=1

x2
i vi + 1

2vN

)


1
3

, (3.37)

which is easily computed once the values of vi are known.

Coefficient R′

Notice that R′ = dR
dt appears as a coefficient in the upwinding terms for both u and v. We

estimate this coefficient in two ways.
The first approximation is a direct application of Equation (3.33), which we demonstrate

later introduces numerical difficulties (see Section 3.3 and Figure 3.4). We therefore propose
a second approximation using Forward Euler

dR
dt

n

= Rn −Rn−1

∆t . (3.38)

3.2.5 Initial Conditions

Since we discretize our equations using a combination of forward and backward Euler time-
stepping, we need an initial solution profile to proceed. That is, we require the initial
conditions R(0), and for all r ∈ [0, R(0)] we require T (0, r), and ρ(0, r). WC do not
describe their choice of initial conditions, and so we propose two options for creating initial
conditions.

The first option is to take a constant temperature and density throughout the swarm.
The density is taken as the Dirichlet boundary condition ρR to ensure the boundary condi-
tion is satisfied, while the temperature is more arbitrary (in practise, we choose a constant
value from 20◦C to 30◦C). After picking a constant density, R(0) is calculated to ensure
that the radius is consistent with density. In particular, with a constant initial density ρR
throughout the swarm, we require R(0) to satisfy

B0 = 4πρR
3 R(0)3. (3.39)

The other method is slightly more sophisticated. After fixing the parameters of an
experiment, we simulate a full period of the sinusoidal ambient temperature on a fine grid
(i.e., number of grid points N = 29 or greater), then save the final temperature profile,
density profile, and radius. These final profiles are then used as initial conditions for the
next experiment using the same parameters. Note that for coarser grids (i.e., N ≤ 29), we
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interpolate values from the fine grid; in this case the radius is recalculated to ensure the
correct number of bees.

3.3 Three Numerical Methods

To solve the discretized equations, we implemented three different methods into MATLAB.
Here, we discuss the key differences between them.

3.3.1 Rescale Method, WC

This implementation is what we believe to be the method used by Watmough-Camazine
based on the description in [40, Appendix]. We replicate their method as described in their
appendix.

We use the method of freezing coefficients. We first solve for u by freezing v, R, and the
coefficients λ and f at time tn. This reduces the problem to inverting a tridiagonal matrix.
Next, we compute v by freezing R and the coefficients µ, χ, and v at tn, and using the
updated un+1. Like u, solving for v is equivalent to inverting a tridiagonal matrix. Finally,
R is solved using the differential equation (3.33). To ensure that Assumption 7 is satisfied,
the number of bees is calculated using the updated v and R, and then the density is rescaled
so that the number of bees is equal to the initial number of bees B0. In particular, the
following update is applied at every time-step:

vn+1 := ςn+1vn+1, (3.40)

where we have the scale-factor ς

ςn+1 = B0

4π(Rn+1)3 ∫ 1
0 x

2vn+1dx
. (3.41)

Note because we derived R(t) from the Assumption 7 (conservation of bees), we would have
ς = 1 at all time-steps if there was no error from numerics. The discretization of the PDEs
is described in Section 3.2.

We refer to this method as WC to indicate that it is our attempt to reproduce the method
presented by Watmough-Camazine in [40]. We also sometimes denote this method rescale

to emphasize that at every time-step, the density profile needs to be rescaled to conserve
the number of bees.

3.3.2 Updated Method, FCI

While the WC method gives seemingly physical results, the last step of rescaling the density
profile to conserve bees is questionable. Without rescaling, the experiments exhibit bee-
drift, where the number of bees grows quite rapidly. This causes the model to lose all
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Figure 3.3: The scale-factor ς shows how much the density profile needs to be rescaled at
every time-step (left). As a result of the rescaling, the Dirichlet boundary condition is also
changing in time (right).

physical relevance because new bees are artificially introduced into the swarm. Assumption
7, conservation of bees, is built into the equations, and yet this assumption is clearly being
violated. To remedy this problem, WC rescale the density profile by a factor of ς at every
time-step, but this causes other problems.

In Figure 3.3, we demonstrate the effects of rescaling by plotting the scale-factor ς,which
is a measure of the bee-drift. Since conservation of bees is built into the equations, we should
always have ς = 1 (i.e. no rescaling), yet clearly this is not the case. Note that if no rescaling
is done, the number of bees can blow up to infinity. To make matters worse, the Dirichlet
boundary condition (2.10) is also changing, meaning the Dirichlet boundary condition is
changing arbitrarily in time - this makes little physical or computational sense.

We believe the cause of the drift is due to using the differential equation to compute R(t),
and thus we investigate this in Figure 3.4. Assuming forward Euler is close to correct, then
with N = 64, dR

dt computed with the differential equation often has the wrong magnitude;
and by inspecting R(t) vs t, it often has the wrong sign, a cause for alarm. Notice that
upon refining the grid to N = 128, computing dR

dt using either the differential equation or
forward Euler makes little difference, as demonstrated by the overlapping plots.

With this in mind, we introduce a second numerical method to solve the equations.
This method is identical to WC except for the way we compute R. Rather than using the
differential equation (3.7), we use the integral equation (3.6), which eliminates the need to
rescale the density to maintain the correct number of bees. Using the updated values of
v and discretizing the integral with the trapezoidal rule, the following explicit equation is
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Figure 3.4: Swarm boundary speed coefficient dR
dt computed using forward Euler and Equa-

tion (3.33). Note these calculations are made using method FCI, so R(t) is computed with
the integral equation (3.42); the differential equation is computed solely for comparison.
Results are computed with N = 64 (left) and N = 128 (right) grid points.

used to compute R(t)

R(t) =

 B0

4π∆x
(
N−1∑
i=1

x2
i vi + 1

2vN

)


1
3

, (3.42)

which is derived in Section 3.2.4. We refer to this method as FCI, a shorthand for the
method of freezing coefficients with the integral constraint.

3.3.3 MATLAB’s Built-in Solvers, ODE15S

The previous two methods used semi-implicit time discretizations and frozen coefficients,
whereas our third approach is an implicit approach in which u, v, and R are integrated in
time simultaneously using MATLAB’s built-in ODE-solvers. We use the same discretiza-
tion as in FCI, but instead of freezing v and R to calculate u, all three are computed at the
same time. Note that coefficients are still frozen at the previous time-step, including the
coefficient v in the thermotactic term. Like FCI, R is computed using the integral equation
(3.42), which upon discretization takes the form of an algebraic constraint. Thus we write
a fully implicit scheme and let MATLAB’s built-in function ode15s solve the equations.
This method eliminates the need to prescribe a time-step ∆t because ode15s automati-
cally calculates ∆t to satisfy prescribed error tolerances, which will drastically decrease the
computation time.

Notice that in Equations (3.4) and (3.5), dR
dt appears as a coefficient in the mesh ad-

vection term. Rather than using Equation (3.7) (which leads to problems, as demonstrated
above), we edit MATLAB’s built-in ode15s code to keep a global variable for dR

dt . We refer
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Figure 3.5: Computation time of the three methods, calculated using the built-in MATLAB
tic and toc functions. The parameters used were those from Table 2.1 with tf = 3 hours.

to this method as ODE15S. We emphasize that the lower-case ode15s refers to MATLAB’s
built-in solver, while ODE15S refers to our numerical method.

As demonstrated in Figure 3.5, the methods WC and FCI are typically over a hundred
times slower than ODE15S. This is because ode15s does adaptive time-stepping, whereas
the former two methods use a constant fixed ∆t. Note the computation time in WC and FCI

could be improved by picking a larger ∆t, but this could introduce large time errors. In
other words, picking a good time-step ∆t is non-trivial, and thus using MATLAB’s built-in
time-stepping is a good idea.

3.4 Convergence Studies

We now perform several numerical convergence studies to ensure that our numerics are
valid. We first demonstrate that each method is convergent (as ∆x→ 0 and ∆t→ 0), and
then show that all three methods converge to the same result with the expected order of
accuracy.

3.4.1 Individual Convergence

Here, we demonstrate each of our three methods is convergent without yet doing any explicit
comparisons between one another. The parameter values used were the ones described in
Table 2.1, where tf = 3 hours.

To demonstrate numerical convergence in space, we first fix a scheme (WC, FCI, or
ODE15S). We then compute the solution on a time-dependent problem (i.e. Tamp 6= 0)
with a very fine spatial grid (number of cells N = 29 or N = 210) and take this as fine
solution as the “true” solution. Then, with the same parameters (except N), we succes-
sively shrink ∆x by taking larger values of N , (recall ∆x = 1

N ). In particular, we take N
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Figure 3.6: Error of the three methods plotted against the number of grid points for our
three dependent variables. We simulated a time-dependent problem, then compared the
final profiles.

as increasing powers of 2. We then choose ∆t sufficiently small so that numerics are stable
on the finest grid and hold ∆t constant for all values of N .

We then compare the solution on each grid to the “true” solution at all points on
the coarse grids (note that by construction, no interpolation is needed since the coarse
grid points all coincide with fine grid points). To measure error, we use the `2-norm and
normalize with respect to the number of grid points and the mean of the true value. The
errors are plotted in Figure 3.6. Note that because R is scalar (i.e., has no N dependence)
the convergence in space seems less regular than for u or v. This is probably the cause for
the negative value in Table 3.1, and for the strange behaviour for convergence in Figure 3.6.

To estimate convergence rates, we take ratios of successive errors and take the logarithm
(base 2, since N grows as powers of 2). This gives an approximation to the order of
convergence, as seen in Table 3.1. The finite differencing is first order in time and second
order in space, and the table shows that at least in v, the spatial convergence is in reasonable
agreement with the expected second order.
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u v R

log2

(
Err16
Err32

)
0.8435 0.5280 0.3483

log2

(
Err32
Err64

)
0.8187 1.3643 4.4024

log2

(
Err64
Err128

)
1.2985 1.2723 0.5735

log2

(
Err128
Err256

)
0.9970 1.1280 3.2750

log2

(
Err256
Err512

)
1.4151 1.7627 -2.2336

log2

(
Err512
Err1024

)
3.2003 1.7055 1.0678

Table 3.1: Convergence rates of ODE15S. We use ErrN to denote the error of a solution
using N points. The error was calculated using the `2-norm. The “true” solution is taken
as the output using N = 2048.

3.4.2 Inter-Comparison of the Three Methods

Next, we demonstrate that all three methods converge to the same solution. The parameter
values used were the ones described in Table 2.1, where tf = 3 hours.

In Figure 3.7, by plotting final profiles in all three methods against x, we see that the
profiles overlap as N increases. Note that the final radius R differs slightly between the
three methods, especially for smaller N , which also means that the points in the physical
domain are at different locations in space, which introduces additional errors in T and ρ.
However, as N increases, the computed radii in all three methods become very close, and
thus these additional errors become negligible.

We also give an `2-norm measure of the difference between ODE15S and the other two
methods. We compare the final profile (u, v, and R) computed by FCI and ODE15S using
the same N , and then observe how this difference changes as N increases. We repeat the
experiment comparing WC with ODE15S. The results are plotted in Figure 3.8. We see that as
N increases, the differences between the methods shrink. This is evidence for demonstrating
that all three methods are indeed computing the same results.

3.4.3 Comparison to Watmough-Camazine

To demonstrate our code is a correct implementation of the method described in Watmough-
Camazine’s paper, we use the online applet WebPlotDigitizer [26] to extract the data pre-
sented in the original paper [40, Figure 5]. We computed a solution with ODE15S using the
same parameters as those described under the figure, which are the parameters displayed in
Table 2.1. We then plotted our results against the extracted data. To ensure the axes and
scale are correct we compare the sinusoidal ambient temperature which is explicitly known
– our ambient temperature overlapped exactly with the extracted data.

The results are presented in Figure 3.9. Our solution qualitatively matches the digitized
plot in both the 8,104 bee and 16,244 bee simulations, and is quantitatively similar. It
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Figure 3.7: For various N , the final profiles are plotted against x, the non-dimensionalized
distance from the centre of the cluster. For comparison, the results from all three methods
are included in each graph.

Figure 3.8: Comparisons between FCI (and WC) and ODE15S. We omit u as it is similar to
v. As N increases, the difference between the methods shrink. Error is computed using the
`2-norm.
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Figure 3.9: Plots extracted from Watmough-Camazine [40, Figure 5] and our replication of
the results using ODE15S, using a swarm with 8,104 bees (left) and 16,244 bees (right). The
top curve represents the innermost bees temperature, the second curve the outermost bees
temperature, and the bottom curve the ambient temperature.

Figure 3.10: Similar to [40, Figure 5]. We chose to plot the radius alongside two of the most
important locations of the swarm (the centre and exterior).

captures key features such as mean temperature, intervals of increase and decrease, and the
strange hump seen in the 16,244 bee case. The cause for the differences is probably because
of the unknown parameters Tm, Ts, and ρR.

3.5 Physical Results

We now discuss some physical interpretations of our model results, much of which follows
the discussion presented in [40]. The results here are all simulated data generated from
ODE15S, using parameter values from Table 2.1.

Figure 3.10 shows how the radius and the temperature at two key locations change in
time. We simulate a small swarm with 8,104 bees, exposing them to a time-periodic am-
bient temperature. The results for the most part seem quite intuitive. A drop in ambient
temperature causes the outermost bees’ temperature to also drop; this should be expected
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Figure 3.11: Similar to [40, Figure 6], temperature at the swarm centre and exterior vs
ambient temperature.

since the outermost bees are in direct contact with the ambient air. Perhaps somewhat
surprisingly though, as demonstrated in Figure 3.11, the ambient temperature is inversely
related to the core temperature – that is, a drop in the ambient temperature causes an
increase in core temperature, and vice versa. This inverse-relationship is observed in ex-
perimental data [14, 15]. Perhaps the best explanation for this lies in Figure 3.12, and the
change in radius. A lower ambient temperature causes the bees to huddle closer to their
neighbours, causing a thicker layer of bees to form near the swarm exterior. The thickening
of bees reduces conductivity and hence helps trap heat on the inside, which is what causes
the escalation in core temperature. Hence, this denser outer layer of bees acts as a thermally
insulating layer.

For more details about the temperature and density profiles, we include heat-map plots
in the sphere for the most interesting ambient temperatures (the extremes -15◦C and 15◦C,
and 0◦C), as seen in Figure 3.13. Notice that the swarm expands when the ambient tem-
perature becomes warm. Moreover, in response to the cold, a thick layer of bees will form
near the exterior.

For a more detailed discussion of the implications of this model, the reader is directed
to [40, Section 4].
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Figure 3.12: Similar to [40, Figure 8], temperature and density profiles for various ambient
temperatures.

33



Figure 3.13: Temperature and density profiles for the most interesting ambient tempera-
tures.
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Chapter 4

Hemispherical Swarms

4.1 Problem Motivation

Assuming spherical symmetry significantly simplifies the mathematics of our problem, since
it reduces the number of spatial dimensions from three to just one. However, physically
this assumption oversimplifies the problem. As seen in Figures 1.1, 1.2, 4.1, and 4.2, the
shape of swarms found in nature are not spherical. Furthermore, assuming that the bees
are hanging from the upper-bounding surface (which we call the swarm roof ) as a sphere
means the swarm’s point of contact with the roof is a single point, which would mean that
a single bee is holding up the entire swarm. In addition to the problem with the shape, the
effects of gravity and heat convection would also break the symmetry.

Many earlier models on the thermoregulation of honeybee swarms or winter clusters
assume spherical symmetry, including [8, 20, 22, 24, 40]. The model presented by Ocko-
Mahadevan [23] breaks spherical symmetry in the temperature field by including the effects
of thermal buoyancy; however their model still assumes the swarm-shape is spherical.

In a paper published by Basak-Rao-Bejan [4], a model is presented to study a non-
spherical swarm. The swarm’s shape is imposed to match observations from [15, Figure 7].

Figure 4.1: Image taken directly from [14, Figure 1] with permission. Contour plot of
temperature for a swarm with 16,600 bees at three different ambient temperatures.
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Figure 4.2: Image taken directly from [15, Figure 1] with permission. Contour plot of
temperature for a swarm with 5,284 bees at four different ambient temperatures.

However, their model makes other non-physical simplifying assumptions. The density profile
is taken as constant throughout the swarm. Also, the shape of the swarm is prescribed, and
their discretization is handled in a case-by-case basis – that is, given an arbitrary cluster
shape, the authors must manually create a mesh. We aim for a more robust numerical
method.

Rather than using an Eulerian model, a Lagrangian model could be used to study
swarms. A model that investigates non-spherical honeybee clusters is presented by Sumpter-
Broomhead [37], where a winter cluster is studied using a Lagrangian model to allow the
bees to move around the domain based on some attraction-repulsion assumptions. To ease
the computation, they use only 100 bees in their standard colony, which is far fewer than
the thousands of bees observed in real colonies [11,30]. Fetecau-Guo [10] also use an agent
based model to study honeybee swarming; in particular, they examine how a non-stationary
honeybee swarm moves from the location of the stationary swarm to the selected nest site.
Although they do not study the temperature of the swarm, their attraction-repulsion criteria
for the locomotion of individual bees, along with their corresponding numerical methods
which handles over 600 agents in a two-dimensional computational domain, could be adapted
to our problem. We ultimately decided to avoid using an agent-based model because we
would rather build on the existing continuum model we developed.

We aim to extend our model to break spherical symmetry while still maintaining cylin-
drical symmetry about the z-axis. As a first step, we assume that the swarm hanging from
the roof is a hemisphere. Notice that the sketches of swarm-profiles from [14,15], shown in
Figures 4.1 and 4.2, are closer to semicircles than circles. Although going from a sphere to
a hemisphere may seem like a trivial extension, there are significant changes to the model
because the roof gives rise to different boundary conditions. Moreover, the numerics must
be updated to handle two spatial dimensions. Note that the hemispherical shape simpli-
fies many terms from the divergence and gradient in spherical coordinates. Bear in mind
that by imposing the shape of a hemisphere, we are avoiding the issue of modelling exactly
how a swarm’s shape changes. Nonetheless, using a hemisphere is one step further toward
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Figure 4.3: Semicircular computational domain. Rotational symmetry allows us to study a
quarter-circle rather than a semicircle.

addressing this problem, and gives rise to many interesting changes from the spherically
symmetric swarm.

4.2 Mathematical Formulation

Wherever applicable, we will use the same variables, governing equations, and constitutive
functions from our one-dimensional model in Section 2.2.

4.2.1 Variables

We use t to denote time, and for space we use r as the distance from the origin, φ as
the polar angle, and θ as the azimuthal angle. The azimuthal angle θ is dropped in most
calculations due to rotational symmetry.

For our dependent variables, we use T = T (t, r, φ) for swarm temperature and ρ =
ρ(t, r, φ) for bee density. We again use R(t) to denote the radius of the semicircular swarm.
Note that if we were to extend the model to non-spherical or non-hemispherical shapes,
describing R as a “radius” no longer makes sense.

4.2.2 Computational Domain

We take the roof to correspond to the xy-plane. With rotational symmetry, it suffices to
use spherical coordinates in a quarter-circle as the computational domain. Thus compu-
tationally, the swarm lies in the region θ = 0, φ ∈ [π2 , π], and r ∈ [0, R(t)]. Note that if
R = R(t, φ) (i.e. non-semicircular), then for a fixed φ we would have r ∈ [0, R(t, φ)]. In
Figure 4.3, we present the discretization of our computational domain, with more details
provided in Section 4.4.2.
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4.2.3 Equation for Temperature and Density

Recall Equation (2.1)
c
∂T

∂t
= ∇ · (λ∇T ) + ρf,

where we now have T = T (t, r, φ). In spherical coordinates, with symmetry about θ, this
becomes

c
∂T

∂t
= 1
r2

∂

∂r

[
r2λ

∂T

∂r

]
+ 1
r sinφ

∂

∂φ

[
λ sinφ
r

∂T

∂φ

]
+ ρf. (4.1)

Similarly, Equation (2.3)

∂ρ

∂t
= ∇ · (µ(ρ)∇ρ)−∇ · (χ(T )ρ∇T )

becomes
∂ρ

∂t
= 1
r2

∂

∂r

[
r2µ

∂ρ

∂r

]
+ 1
r sinφ

∂

∂φ

[
µ sinφ
r

∂ρ

∂φ

]
− 1
r2

∂

∂r

[
r2χρ

∂T

∂r

]
+ 1
r sinφ

∂

∂φ

[
χρ sinφ

r

∂T

∂φ

]
.

(4.2)

4.2.4 Equation for Hemispherical Swarm Radius

Similar to the one-dimensional case, we derive an equation for R(t). Recall the formula to
integrate a function f(r, φ, θ) across the entire R3 space in spherical coordinates

2π∫
0

π∫
0

∞∫
0

f(r, φ, θ)r2 sin(φ)drdφdθ.

With initial number of bees B0 and Assumption 7 (conservation of bees), integrating across
the hemisphere for any fixed time yields

2π
π∫
π
2

 R(t)∫
0

ρ(t, r, φ)r2dr

 sin(φ)dφ = B0. (4.3)

4.3 Boundary Conditions

We need to describe boundary conditions at the interior or core (which occurs at the z-
axis, φ = π), along the swarm exterior or mantle (which occurs at r = R(t)), and at
the roof (which occurs in the xy-plane, φ = π

2 ). See Figure 4.4 for a visualization of the
boundaries. The interior and exterior of the swarm will have boundary conditions similar
to the one-dimensional case, whereas the roof will need new conditions.

38



Figure 4.4: The three spatial boundaries in our computational domain.

4.3.1 Interior

For the interior boundary along φ = π, rotational symmetry gives the boundary conditions

∂T

∂φ
(t, r, π) = 0, (4.4)

∂ρ

∂φ
(t, r, π) = 0. (4.5)

4.3.2 Exterior

Exterior Temperature - Newton’s Law of Convective Heat Transfer

The temperature at the exterior is assumed to obey Newton’s law of cooling. We have for
fixed φ the Robin condition

∇T · ~n
∣∣∣∣
r=R

= hc
λ

(Ta(t)− T )
∣∣∣∣
r=R

, (4.6)

where ~n is the outward normal. For a hemisphere, the outward normal is simply the vector
from the origin to the exterior, thus

∂T

∂r
(t, R(t), φ) = hc

λ
(Ta(t)− T )

∣∣∣∣
r=R

. (4.7)

Exterior Temperature - Dirichlet Condition

We will also sometimes use the temperature Dirichlet condition

T (t, R(t), φ) = Ta(t). (4.8)

Note that this is the boundary condition for temperature used in Ocko-Mahadevan’s pa-
per [23]. This may seem unreasonable since it allows the outermost bees to drop below
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freezing temperatures which would rapidly kill them. However, in [23], T is defined as air
temperature throughout the swarm, and in their model they allow the bees to be uncrowded
at the mantle; hence the sparse mantle bees contribute little to the air temperature at the
mantle. Moreover, in lab experiments from Heinrich [15], the recorded mantle temperature
is not measured at the outermost extent of the swarm due to highly variable measurements
there; rather it was measured directly underneath the outermost layer. This means that
the recorded data from Heinrich does not actually report on the actual outermost bees, and
that the mantle’s temperatures are highly sporadic, and thus difficult to model correctly.

Exterior Density

For the exterior, the density is described by the Dirichlet condition

ρ(t, R(t), φ) = ρR. (4.9)

4.3.3 Roof

A novel aspect of our hemispherical swarm is considering how the swarm interacts with
the roof. Note that we aim to compare our results to laboratory experiments presented
in [14, 15] (see Figure 4.1). In [14], Heinrich does not describe in what type of vessel the
captured swarm is contained in, and so we assume that he confined the swarm in a cylindrical
Plexiglas container, which was what he used in the experiments from [15].

Roof Temperature

We now describe how heat is lost through the roof keeping in mind that Plexiglas is not
a good insulator. Plexiglas’s coefficient of thermal conductivity is assumed to be that of
polymethyl methacrylate, which is 0.0017-0.0025 W ◦C−1 cm−2 [7]. Thus we take the roof’s
coefficient of heat conductivity as hf = 0.002 W ◦C−1 cm−2, which is roughly four times
more conductive than λbee. Heinrich placed the Plexiglas containers into rooms and changed
the ambient temperatures Ta, and thus Newton’s law of cooling gives

∇T (t, r, π2 ) · ~n = hf
λ(t, r) (Ta(t)− T (t, r))

∣∣∣∣
φ=π

2

. (4.10)

After computing the outward normal at the roof, which is discussed in Appendix B.1, we
obtain

∂T

∂φ

(
t, r,

π

2

)
= −rhf

λ
(Ta(t)− T )

∣∣∣∣
φ=π

2

. (4.11)
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Roof Density

The bee density at the roof is uncertain because of a lack of experimental results. One
choice is to use a Dirichlet condition

ρ(t, r, π2 ) = ρf , (4.12)

where ρf would be some chosen value. This boundary condition is similar to how the
density is described at the exterior mantle. However, as observed in [14, Figure 1], unlike
the somewhat uniform temperature across the swarm mantle, the temperature at the roof
varies greatly between the interior and exterior of the swarm. Hence assuming the bees
are uniform across the roof seems inappropriate, especially since our numerical results from
before demonstrate that densities will vary as the temperature changes.

As such, we use the no-flux boundary condition

∂ρ

∂φ
(t, r, π2 ) = 0. (4.13)

This seems fitting since bees cannot leave the swarm through the roof, and also allows for
the bees to move along the roof to adapt to the local temperature changes.

4.4 Hemispherical Computational Coordinate System

In this section, we discuss the spatial discretization used, which is based on a finite difference
approach for a mapped spherical coordinate system with rotational symmetry.

4.4.1 Mapped Coordinate System

Similar to the one-dimensional case, a direct discretization of r ∈ [0, R(t)] will result in
moving mesh points, and hence we introduce the dimensionless computational coordinate

x = r

R(t) . (4.14)

We also introduce the corresponding dependent variables

u(t, x, φ) = T (t, r(t, x), φ), (4.15)

v(t, x, φ) = ρ(t, r(t, x), φ). (4.16)

Transformed Governing Equations

We need to transform the equations for T and ρ (Equations (4.1) and (4.2)) into corre-
sponding equations for u and v. In Appendix C.1, we derive the transformations for these
equations in general convex two-dimensional domains. The hemisphere is a special case of
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this and hence the transformation we seek comes from setting P = ∂R
∂φ = 0 in Equations

(C.12) and (C.13). Thus we have the new equation for temperature

c
∂u

∂t
− cxṘ

R

∂u

∂x
= 1
x2R2

∂

∂x

[
x2λ

∂u

∂x

]
+ 1
xR sinφ

∂

∂φ

[
λ sinφ
xR

∂u

∂φ

]
+ vf,

(4.17)

and for density

∂v

∂t
− xṘ

R

∂v

∂x
= 1
x2R2

∂

∂x

[
x2µ

∂v

∂x
− x2χv

∂u

∂x

]
+ 1
xR sinφ

∂

∂φ

[
µ sinφ
xR

∂v

∂φ
− χv sinφ

xR

∂u

∂φ

]
. (4.18)

Beginning from Equation (4.3), a derivation similar to the work in Appendix A.3 gives

2π
π∫
π
2

 1∫
0

v(t, x, φ)x2R(t)3dx

 sin(φ)dφ = B0. (4.19)

Transformed Boundary Conditions

We also transform the boundary conditions. At the interior, Equations (4.4) and (4.5)
become

∂u

∂φ
(t, x, π) = 0, (4.20)

∂v

∂φ
(t, x, π) = 0. (4.21)

At the exterior, Equations (4.7) and (4.9) become

∂u

∂x
(t, 1, φ) = hcR(t)

λ
(Ta(t)− u)

∣∣∣∣
x=1

, (4.22)

v(t, 1, φ) = ρR. (4.23)

At the roof, Equations (4.11) and (4.13) become

∂u

∂φ

(
t, x,

π

2

)
= −xR(t)hf

λ
(Ta(t)− u)

∣∣∣∣
φ=π

2

. (4.24)

∂v

∂φ

(
t, x,

π

2

)
= 0. (4.25)
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4.4.2 Discretizing the Spatial and Temporal Variables

We use N and M to respectively denote the number of grid points in x and φ. Our grid
points will lie on

• xi = i∆x, where ∆x = 1
N and i = 0, . . . , N ,

• φj = j∆φ, where ∆φ =
π
2
M and j = 0, . . . ,M .

Figure 4.3 depicts the discretized mesh. For the temporal discretization, the nth time-step
is denoted tn. In general, the discretization in time is not uniform because MATLAB uses
adaptive time-stepping.

To describe the discretization of dependent variables, suppose we have a function g(t, x, φ).
We denote its discretization as

gni,j ≈ g(tn, xi, φj). (4.26)

In general, the superscript refers to a point in time, the subscript i refers to a distance from
the origin, and the subscript j refers to a ray. At i = 0, which corresponds to the origin,
there is no j dependence, and hence for all j = 0, . . . ,M , we denote

g0 = g0,j . (4.27)

4.5 Finite Difference Approximation of Governing Equations

In this section, we discuss the finite difference approximations of our governing equations.
We will again use a modified version of MATLAB’s ode15s. The following approximations
are similar to those from Section 3.2.

4.5.1 Temperature and Density

Recall Equation (4.17)

c
∂u

∂t
− cxṘ

R

∂u

∂x
= 1
x2R2

∂

∂x

[
x2λ

∂u

∂x

]
+ 1
xR sinφ

∂

∂φ

[
λ sinφ
xR

∂u

∂φ

]
+ vf.

We first discretize non-boundary terms (so i 6= 0, N and j 6= 0,M). The mesh advection
term could be approximated with an upwinding scheme, but instead we use a cell-centred
difference scheme for simplicity (see Figure 3.2 for a brief discussion on this) and obtain(

−cxṘ
R

∂u

∂x

)
i,j

≈ −cxiṘ
R

ui+1,j − ui−1,j
2∆x . (4.28)
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The ∂
∂x

∂
∂x diffusion term becomes

( 1
x2R2

∂

∂x

[
x2λ

∂u

∂x

])
i,j
≈ 1
x2
iR

2

x2
i+ 1

2
λi+ 1

2 ,j

∆x2 (ui+1,j − ui,j)

−
x2
i− 1

2
λi− 1

2 ,j

∆x2 (ui,j − ui−1,j)

 .
(4.29)

The ∂
∂φ

∂
∂φ diffusion term becomes

( 1
xR sinφ

∂

∂φ

[
λ sinφ
xR

∂u

∂φ

])
i,j

≈ 1
xiR sinφj

(
γi,j+ 1

2
(ui,j+1 − ui,j)−

γi,j− 1
2
(ui,j − ui,j−1)

)
,

(4.30)

where
γi,j = sinφjλi,j

xiR∆φ2 . (4.31)

Finally, the source term is simply

(vf)i,j = vi,jfi,j . (4.32)

The finite difference approximation for bee density v is similar to the temperature’s approx-
imation and thus omitted here.

4.5.2 Boundary Conditions

Above we derived finite difference approximations for non-boundary terms. At the bound-
aries, the boundary conditions must be applied for certain terms. Moreover, the origin
involves a coordinate singularity which must be resolved.

Interior

In the interior (j = M) for both u and v, the mesh advection term, the x-diffusion term,
and the source term are treated like non-boundary terms. However, the φ-diffusion term
is undefined at φ = π because there is a sinφ in the denominator. For temperature u, as
demonstrated in Appendix C.2, in the limit as φ→ π we obtain

1
x2R sinφ

∂

∂φ

[
sinφλuφ

R

] ∣∣∣∣∣
φ=π

= 2
x2R2

∂

∂φ

[
λ
∂u

∂φ

] ∣∣∣∣∣
φ=π

.
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Hence aside from the origin (i = 0), we have

( 1
x2R sinφ

∂

∂φ

[
sinφλuφ

R

])
i,M

≈
4λi,M− 1

2

x2
iR

2∆φ2 (ui,M−1 − ui,M ) (4.33)

The boundary condition for density v is similar.

Exterior

For the temperature, consider i = N and any j. The mesh advection term and x-diffusion
term will involve uN+1,j , which needs to be approximated. We use the second-order ap-
proximation

uN+1,j ≈ uN−1,j + 2∆x
(
∂u

∂x

)
N,j

, (4.34)

where discretizing Equation (4.22) gives(
∂u

∂x

)
N,j
≈ hcR

λi,j
(Ta − uN,j). (4.35)

For the density, we have for any j the Dirichlet condition

vN,j = ρR. (4.36)

Roof

At the roof, a direct application of Equation (4.30) for u’s φ-diffusion term would involve
ui,−1, λi,− 1

2
, and sinφ− 1

2
, which are points outside of our coordinate system. To approximate

ui,−1, we use a second-order approximation to obtain

ui,−1 = ui,1 − 2∆φ∂u
∂φ

∣∣∣∣
i,0
, (4.37)

where discretizing Equation (4.11) gives(
∂u

∂φ

)
i,0
≈ −xiRhf

λi,0
(Ta − ui,0). (4.38)

To approximate λ, we estimate ∆λ
∣∣
i,0 = λi,1 − λi,0, giving the approximation

λi,− 1
2
≈ λi,0 −

λi,1 − λi,0
2 . (4.39)

Moreover, symmetry of the sine function across φ = π
2 yields

sinφ− 1
2

= sinφ 1
2
. (4.40)
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Similarly, the density φ-diffusion term will involve points outside our coordinate system.
However, due to the symmetrical boundary condition Equation (4.50), we have

vi,−1 = vi,1, (4.41)

vi,− 1
2

= vi, 1
2
, (4.42)

µi,− 1
2

= µi, 1
2
. (4.43)

Origin

The origin in spherical coordinates needs to be treated with much care due to the coor-
dinate singularity. We follow a method similar to the discretization of the origin in polar
coordinates presented by Strikwerda [36]. The derivation of our approximation of the origin
in spherical coordinates is presented in Appendix B.2 where we derive Equation (B.12).
Upon transformation into the mapped coordinate system (noting that the mesh advection
term is zero at the origin), this equation gives an approximation to the time-derivative at
the origin (

∂u

∂t

)
i=0
≈ 6∆φ

∆x2R2

M∑
j=1

sinφjλ 1
2 ,j

(u1,j − u0) + v0f0. (4.44)

Similarly for density, we have the approximation

(
∂v

∂t

)
i=0
≈ 6∆φ

∆x2R2

M∑
j=1

sinφj
(
µ 1

2 ,j
(v1,j − v0)− χ 1

2 ,j
v 1

2 ,j
(u1,j − u0)

)
. (4.45)

4.5.3 Swarm Radius

To approximate the radius, we directly discretize the integral equation (4.19) using trape-
zoidal rule. In Appendix C.3 we derive a discretization for swarms more general than a
hemisphere. Since the hemisphere is a special case of Equation (C.19) where R has no φ
dependence, we have

B0 = 2π∆x∆φ
N∑
i=0

cix
2
i

M∑
j=0

c̃j sin(φj)R3vi,j , (4.46)

where we have trapezoidal integration constants

ci =


1
2 , if i = 0, N,

1, if i 6= 0, N,
(4.47)

c̃j =


1
2 , if j = 0,M,

1, if j 6= 0,M.
(4.48)
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Solving for R gives the approximation

R =

 B0

2π∆x∆φ
N∑
i=0

cix2
i

M∑
j=0

c̃j sin(φj)vi,j


1
3

. (4.49)

4.6 Numerical Simulations of a Hemispherical Swarm

Before we present simulations of our hemispherical swarm model, we perform a numerical
convergence study to validate the numerical method. Since we have already undergone
numerous convergence studies with our one-dimensional numerical scheme, we will compare
the two-dimensional results with equivalent one-dimensional simulations whenever possible.
Unless otherwise stated, the parameter values are those from Table 2.1.

4.6.1 Spherically Symmetric Case

To validate the two-dimensional numerical scheme, we impose boundary conditions at the
roof that make the problem spherically symmetric. This allows us to directly compare our
two-dimensional results to the one-dimensional results. In particular, the roof boundary
conditions at the roof are taken as

∂T

∂φ
(t, r, π2 ) = 0, (4.50)

∂ρ

∂φ
(t, r, π2 ) = 0. (4.51)

Note that the density no-flux roof boundary condition (Equation (4.13)) is the same as the
symmetry condition here.

Temperature Dirichlet Condition at the Exterior

We first use the temperature Dirichlet condition Equation (4.8) at the exterior because
it is simpler to implement than the Robin condition. We make the ambient temperature
non-oscillatory (i.e. Tamp = 0) with Tmean = 15, then simulate to steady state using the
one-dimensional ODE15S (modified to accommodate the new boundary condition), which we
have already verified is correct. Using the same parameters, we then run several experiments
using the hemispherical code for various N and M .

As expected, spherical symmetry was observed in the two-dimensional solution at steady
state, evidenced by there being no variation across different rays. Thus we chose the rays
corresponding to j = 0 to compare to the “correct” one-dimensional solution. Upon re-
finement of the mesh, the final solution profiles of the two-dimensional simulation quickly
overlap with the “correct” simulation, as seen in Figure 4.5. To demonstrate convergence in
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Figure 4.5: Final profiles, where we fix M = 16 and increase N . The roof uses reflexive
boundary conditions, while the exterior uses the Dirichlet condition for u.

time, Figure 4.6 shows how the temperature changes in time for the fixed radial locations
x = 0, 0.25, 0.5, and 0.75. The exterior x = 1 is omitted because the Dirichlet conditions for
temperature and density are implemented exactly with no discretization error. We plotted
solution profiles for successively larger values of N and found the two-dimensional simula-
tions converged to the one-dimensional result. Somewhat surprisingly, radial points near
the origin exhibited less error than near the exterior.

Error is shown as a function of both N and M in Figure 4.7. The correct solution was
taken as the solution from the one-dimensional code using N = 256. Notice that refining
∆φ does little, which is a result of the symmetry across φ. Most importantly, refinements
in ∆x lead to errors clearly tending toward zero.

Temperature Robin Condition at the Mantle

We now investigate the spherically symmetric case with the Robin mantle condition (4.7).
We revert back to comparing steady state solutions by choosing Tmean = 0 and Tamp = 15.
We again use ODE15S to compute a solution using N = 256 and take this as the “correct”
solution, then compute several solutions in two-dimensions with varying N and M .
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Figure 4.6: For fixed radial locations and various grid resolutions, we examine the tempera-
ture’s time-dependence. We use a fixedM and various N . The roof uses reflexive boundary
conditions, while the exterior uses the Dirichlet condition for u.

Figure 4.7: Error of final profiles with the `2-norm in the spherically symmetric two-
dimensional code compared to the one-dimensional solution with N = 256. In the left
we fix M = 16 and increase N , while in the right we fix N = 32 and increase M . The roof
uses reflexive boundary conditions, while the exterior uses the Dirichlet condition for u.
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Figure 4.8: For fixed radial locations and various grid resolutions, we examine the temper-
ature’s time-dependence with a fixed M and various N . The roof uses reflexive boundary
conditions, while the exterior uses the Robin condition for u.

We see in Figure 4.8 that the solutions match in time. For multiple N and fixed lo-
cations in space, notice that the time profiles with N = 128 overlap very well with the
one-dimensional solution. The error rate as a function of N is demonstrated in Figure 4.9.
We found refinements in M quickly did little due to the spherical symmetry. The error is
calculated by comparing the final solution profiles with the “correct” solution.

4.6.2 Non-Spherically Symmetric Swarms

At the roof, we now use the Robin condition for T (4.11) and the no-flux condition for
ρ (4.13). The problem is no longer spherically symmetric, and thus we cannot measure
numerical convergence rates by directly comparing the solutions to our previous results in
Chapter 3. As such, we compare our numerical simulations to recorded observations. Note
that unless otherwise specified, we use the parameters described in Table 2.1.
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Figure 4.9: For a fixed M , we examine how increasing N affects the error in the `2-norm
(left) and `∞-norm (right). The roof uses reflexive boundary conditions, while the exterior
uses the Robin condition for u.

Comparison to Heinrich [14, Figure 1]

Following the contours reported by Heinrich [14, Figure 1], we took a swarm with 16,600
bees and exposed them an ambient temperature of 9◦C; we simulated to steady state and
compared our results with his observations. The results are depicted in Figures 4.10 and
4.11. Despite assuming the swarm-shape is hemispherical, our results have some quantita-
tive and qualitative agreements with recorded observations.

In our numerical simulation, the maximum and minimum temperatures were respectively
33.6◦C and 17.3◦C, which is quite close to Heinrich’s measured 35◦C and 19◦C. There was
no density profile provided for us to compare against. However, as demonstrated in Figure
4.11, we observe the bees respond to the cold by forming a dense layer of bees around the
exterior of the swarm. This behaviour agrees with the observations reported by Seeley [29].

However, the size of our swarm is quite different. Heinrich’s contour measured 10 cm
from the origin to the upper-right most point along the roof (which we call the swarm
width), and 20 cm from the origin to the bottom along the interior (which we call the
swarm height). Using WebPlotDigitizer [26] to extract the outermost contour of Heinrich’s
sketch and by assuming rotational symmetry, we calculated the volume as 6,603 cm3 (this
was calculated by a Riemann sum with cylindrical shells). However, our final radius was
about 11.5 cm, which gives a volume of 3,185 cm3 – thus the actual volume was more than
double our simulated volume. This would mean our average density throughout the swarm
is also incorrect.

This discrepancy was probably a result of the crude semicircle assumption, and perhaps
also because our density profiles might not be correct (since density profiles determine the
radius). Moreover, it is not surprising that our swarm height was not predicted correctly
because the effects of gravity is not accounted for in our model, which would vertically
stretch the swarm and increase the volume. Also, aside from modelling the roof’s heat
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Figure 4.10: Biological experiments of Heinrich [14] (left) taken directly (but cropped)
from [14, Figure 1] with permission; placed adjacent to our simulated solution. The swarm
contained 16,600 bees and was exposed to an ambient temperature of 9◦C.

Figure 4.11: Another visualization of our simulated results from Figure 4.10, which is taken
from [14, Figure 1]. The temperature profile (left) is placed adjacent to density profile
(right). The swarm contained 16,600 bees and was exposed to an ambient temperature of
9◦C.

transfer coefficient, the cylindrical Plexiglas that Heinrich used to capture the swarm was
not accounted for in our model (which had a height of 43 cm and inner diameter of 29
cm [15]); the cylindrical vessel might have affected the swarm-shape. On the other hand,
our predicted swarm width and contact area with the roof is reasonable – along the roof,
Heinrich’s reported 10 cm is similar to our simulated 11.5 cm.

Comparison to Heinrich [15, Figure 1]

We repeat our simulations for a smaller swarm described by Heinrich [15, Figure 1]. To
match his experiment, we use 5,284 bees and a 5◦C ambient temperature. As seen in
Figures 4.12 and 4.13, our interior temperature is quantitatively similar to the recorded
data. Heinrich’s contour had a swarm width of about 5.8 cm and a swarm height of about
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Figure 4.12: Biological experiments of Heinrich (left) taken directly (but cropped) from [15,
Figure 1] with permission; placed adjacent to our simulated solution (right). The swarm
contained 5,284 bees and was exposed to an ambient temperature of 5◦C.

Figure 4.13: Another visualization of our simulated results from Figure 4.12, which is taken
from [15, Figure 1]. The temperature profile (left) is placed adjacent to density profile
(right). The swarm contained 5,284 bees and was exposed to an ambient temperature of
5◦C.

10 cm. Our simulation had a hemispherical radius of about 6.5 cm. Once again, although
we do not have the same volume or height, our computed swarm width (and thus also swarm
contact area with roof) is reasonably similar to Heinrich’s.

As seen in Figure 4.13, the smaller swarm appear to form a much thicker layer of
insulating bees than in the larger swarm (Figure 4.11). Though this might seem to be a
result of the colder ambient temperature (5◦C vs 9◦C), it is actually an artifact of the scale
of the problem and the swarm size. Both thicknesses of the insulating swarm is roughly
2 cm, so in an absolute sense, they have the same thickness. However, the smaller swarm
appears to form a thicker layer because their total radius is much smaller, so relative to the
swarm size, the thickness of the insulating bees is thicker than in the larger swarm. Thus
regardless of swarm size, a critical thickness of bees is required to trap heat in the inside.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

We recreated and updated the numerical scheme to solve Watmough-Camazine’s [40] model.
In particular, we derived a new equation for swarm radius, along with a corresponding
numerical method, which eliminated the need to rescale the density profile at every step.
We then extended their model by relaxing the assumption of spherical symmetry; this was
done by studying hemispherical swarms. In addition to the need to model the interaction
between honeybees with the roof, an updated numerical scheme was developed to solve the
equations in a two-dimensional computational domain. We produced results that at least
qualitatively agree with experimental data.

5.2 General Swarm Shapes

In Chapter 4, we relaxed the assumption of spherical symmetry by assuming the swarm is a
hemisphere. Naturally, the next step would be to allow shapes even more general than this.
In doing so, the “swarm radius” R(t) would need to be generalized to describe the shape
of the swarm. One way would be to set R = R(t, φ), so that for each given φ, R would
describe the distance between the origin and the swarm exterior. In doing so, our previous
methods of introducing the independent variable becomes

x = r

R(t, φ) , (5.1)

which would now have φ dependence, and thus would create many computational issues.
For instance, as demonstrated in Appendix C.1, this would lead to cross-derivative terms
appearing in the Laplacian, and thus the numerical scheme would need to be updated to
handle more terms. Moreover, the boundary conditions become more difficult to handle
because the outward normals at the swarm exterior would no longer be trivial to compute.
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Figure 5.1: A visualization of the σ-shifted sphere. Everything above the roof would be
truncated from the swarm.

Once the numerics have been updated, we may begin to explore swarm-shapes beyond
spheres and hemispheres. As a first step, we could generalize the hemisphere by shifting a
perfect sphere by σ and truncating it above the roof, as seen in Figure 5.1. Alternatively,
we could take swarm sketches displayed in [11, 14, 15, 25] and impose a boundary; these
results could be compared to their temperature isotherms. Afterwards, we can explore the
important question, what shape should a swarm take?

5.3 Social Force

To study this, we could generalize our model by introducing a social force that describes
how bees move throughout the entire computational domain. These equations would be
similar to the work of Topaz et al. [39], where insect velocity is described by an integro-
differential equation. Unlike our current model, this formulation would allow densities to go
to zero. Thus determining the swarm’s shape would be equivalent to tracking the interface
where densities become zero, which could be done using level set methods. In addition to
solving the swarm-shape problem, this approach would improve model flexibility (as effects
such as gravity or heat convection could be incorporated into the social force), at the trade-
off of computation sophistication. Although similar systems have been studied, such as
in locust group movement [39], this approach has not been directly applied to honeybee
thermoregulation, and thus the analysis and numerical schemes would need to be derived
anew.

5.4 Bee-Balling

A fascinating extension of our swarming thermoregulation model is a parallel study of the
bee-balling phenomenon [2]. Japanese honeybees have evolved a strange defence mechanism
against predatory wasps where intruders are killed not by bites or stings, but rather by
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Figure 5.2: Honeybee thermal defence, retrieved from https://commons.wikimedia.
org/wiki/File:Honeybee_thermal_defence01.jpg. Used under Creative Commons
Attribution-Share Alike 2.1 Japan license [38]. Two hornets engulfed and being heated
by a ball of bees.

‘baking’. Hundreds of honeybees swarm the intruder and collectively raise the temperature
to a level that is tolerable to the bees but lethal for the wasp. Here, the bees exhibit an
ability to much more rapidly change temperature and maintain levels within even tighter
limits, but this is thermoregulation nonetheless. As such, our model could be extended
to study bee-balling by determining appropriate modifications to our metabolism function
and movement assumptions. Our resulting simulations can be compared to experimental
data reported by Ken et al [19], and will shed insight how hundreds of bees can coordinate
movement to exhibit such amazing control of their collective temperature.
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Appendix A

Derivation of Equations in 1D

A.1 Deriving the Differential Equation for Swarm Radius

We show in detail the derivation of Equation (2.6) from Equation (2.5). Recall Equation
(2.5)

4π
R(t)∫
0

r2ρ(t, r)dr = B0.

Taking the time derivative of both sides gives

d
dt

R(t)∫
0

r2ρ(t, r)dr = 0.

By applying Leibniz’s rule for differentiation under the integral sign, we obtain

R(t)∫
0

r2 ∂

∂t
ρ(t, r)dr +R(t)2ρ(R(t), t)R′(t) = 0.

Applying Equation (2.3) in spherical coordinates and the fundamental theorem of calculus
gives (

r2µ(ρ)∂ρ
∂r
− r2χ(T )ρ∂T

∂r

) ∣∣∣∣∣
R(t)

0

= −R(t)2ρ(R(t), t)R′(t).

Evaluating and rearranging gives us the desired differential equation for R(t)

dR
dt =

(
−µ
ρ

∂ρ

∂r
+ χ

∂T

∂r

) ∣∣∣∣∣
r=R(t)

.
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A.2 Transforming Partial Differential Equations to Mapped
Coordinates

In this section, we demonstrate that Equation (2.2)

∂T

∂t
= 1
r2

∂

∂r

[
r2λ(ρ)∂T

∂r

]
+ ρf(T )

becomes Equation (3.4)

c
∂u

∂t
− cxR′

R

∂u

∂x
= 1
x2R2

∂

∂x

[
x2λ

∂u

∂x

]
+ vf

with the change of variables x = r
R(t) and

u(t, x) = T (t, r(t, x)).

We’ll begin with the derivation of the left-hand side. Consider d
dt [T (t, r(t, x))], which from

the chain rule is
d
dt [T (t, r(t, x))] = ∂

∂t
[T (t, r)]︸ ︷︷ ︸
(∗1)

∂t

∂t
+ ∂

∂r
[T (t, r)]∂r

∂t︸ ︷︷ ︸
(∗2)

.

The term (∗1) is exactly the time derivative term in Equation (2.2) that we wish to solve
for. In (∗2), since r = xR(t), it follows that ∂r

∂t = xR′(t), and a second application of the
chain rule yields

∂

∂x
[T (t, r(t, x))] = ∂

∂r
[T (t, r)] ∂r

∂x︸︷︷︸
=R(t)

+ ∂

∂r
[T (t, r)] ∂t

∂x︸︷︷︸
=0

=⇒ ∂

∂r
[T (t, r)] = ∂

∂x
[T (r(t, x), t)] 1

R(t) .

Note ∂
∂t [T (t, r(t, x))] = ∂u

∂t . Thus solving for (∗1) gives

∂

∂t
[T (t, r)] = ∂

∂x
[T (r(t, x), t)]− xR′(t)

R(t)
∂

∂x
[T (r(t, x), t)].

Hence, the left-hand side of Equation (2.2) becomes

c
∂u

∂t
− cxR

′(t)
R(t)

∂u

∂x
,

as required.

As for the right-hand side, since ∂t
∂x = 0 and ∂r

∂x = R(t), we have

∂

∂r
≡ R(t) ∂

∂x
,
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which then gives

1
r2

∂

∂r

[
r2λ

∂T

∂r

]
= 1

(xR(t))2 ·
1

R(t)
∂

∂x

[
(xR(t))2λ

1
R(t)

∂u

∂x

]
= 1
x2R(t)2

∂

∂x

[
x2λ

∂u

∂x

]
;

and finally
ρf = vf.

Thus putting the left- and right-hand sides together, we obtain Equation (3.4)

c
∂u

∂t
− cxR′

R

∂u

∂x
= 1
x2R2

∂

∂x

[
x2λ

∂u

∂x

]
+ vf.

For density, the transformation from Equation (2.4) to Equation (3.5) follows a similar
argument.

A.3 Transforming Swarm Radius Equations to Mapped Co-
ordinates

We show the derivation of Equation (3.6) from Equation (2.5), which is

4π
R(t)∫
0

r2ρ(t, r)dr = B0.

Fix t and use integration by substitution to transform from r to x. Denote f(r) = r2ρ(r),
and change the limits of integration from [0, R] to [0, 1], so with φ(x) = xR we obtain∫ R

0
f(r)dr =

∫ 1

0
f(φ(x))φ′(x)dx

=
∫ 1

0
x2R(t)2ρ(xR)R(t)dx.

Because xR = r and ρ(r) = v(x), the normalized Equation (2.5) becomes

4π
∫ 1

0
x2R(t)3v(t, x)dx = B0.
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Appendix B

Derivations of Equations for
Hemispherical Swarms

B.1 Outward Normal at Roof

Note all R3 vectors in this subsection correspond respectively to (x, y, z). That is,

~v = (v1, v2, v3) = v1~ex + v2~ey + v3~ez.

Clearly, the unit outward normal at the roof is

~n = (0, 0, 1) = ~ez. (B.1)

We need to express this in spherical coordinates. Recall in spherical coordinates, the unit
vectors are

~er = (cos θ sinφ, sin θ sinφ, cosφ), (B.2)
~eθ = (− sin θ, cos θ, 0), (B.3)
~eφ = (cos θ cosφ, sin θ cosφ,− sinφ). (B.4)

At the roof, we have θ = 0, φ = π
2 , and r ∈ [0, R(t)]. Notice that

~eφ = (0, 0,−1) = −~ez. (B.5)

Thus
~n = −~eφ. (B.6)

Hence, with ∇T = ∂T
∂r ~er + 1

r
∂T
∂φ~eφ, we have

∇T · ~n = −1
r

∂T

∂φ
. (B.7)
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B.2 Discretization at Origin in Hemisphere

Here, we derive a spatial discretization for T at the origin (which features a coordinate
singularity) for a hemispherical domain in spherical coordinates. We follow work similar
to Strikwerda [36, Chapter 12.6], which describes a finite difference scheme for Poisson’s
equation in polar coordinates.

Fixing t, from Equation (4.1) we have Poisson’s equation

F = 1
r2

∂

∂r

[
r2λ

∂T

∂r

]
+ 1
r sinφ

∂

∂φ

[
λ sinφ
r

∂T

∂φ

]
, (B.8)

where
F (r) = c

∂T

∂t
− ρf. (B.9)

To derive an equation, we integrate equation (B.8) over a sphere centred at the origin with
radius ε, which gives (with θ symmetry)

2π
π∫

0

ε∫
0

Fr2 sinφdrdφ

︸ ︷︷ ︸
(∗0)

= 2π
π∫

0

ε∫
0

sinφ ∂
∂r

[
r2λ

∂T

∂r

]
drdφ

︸ ︷︷ ︸
(∗1)

+ 2π
π∫

0

ε∫
0

r
∂

∂φ

[
λ sinφ
r

∂T

∂φ

]
drdφ

︸ ︷︷ ︸
(∗2)

(B.10)

We now note that everything in the region φ ∈ (0, π2 ) is ignored as it is not in the compu-
tational domain, and thus assume everything is zero in this region. Hence we switch φ’s
limits of integration to be from π

2 to π.

Firstly, consider (∗0). Since ε is small, we can approximate F in the integral using the
Taylor series

F (ξ) = F (0) +O(∆r)

and dropping the O(∆r) terms. Thus

(∗0) = 2πF (0)
π∫
π
2

ε∫
0

r2 sinφdrdφ

= 2πF (0)
π∫
π
2

r3

3

∣∣∣∣ε
0

sinφdφ

= 2πF (0)
(∆r

2 )3

3 (− cosφ)
∣∣∣∣π
π
2

= π

12F (0)∆r3.
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For (∗1), by applying the fundamental theorem of calculus we obtain

(∗1) = 2π
π∫
π
2

sinφε2
(
λ
∂T

∂r

)∣∣∣∣∣
r=ε

dφ

Note T0,0 = T0,1 = T0,2 = · · · = T0,M , so we refer to the this as T0. Notice a centred differ-
ence scheme at r = ∆r

2 gives an equation involving T0, hence we choose ε = ∆r
2 (note since

we are in a semicircle, R does not depend on φ, and hence ε has no φ-dependence). Dis-
cretizing the derivative with centre-differencing and the integral with a right-side Riemann
sum gives

(∗1) = 2π
π∫
π
2

sinφ
(∆r

2

)2
λ 1

2 ,j

T1,j − T0
∆r dφ

= π

2

M∑
j=1

sinφjλ 1
2 ,j

∆r(T1,j − T0)∆φ,

where ∆φ =
π
2
M .

For (∗2), switching the order of integration and applying the fundamental theorem of cal-
culus gives

(∗2) = 2π
ε∫

0

r

(
λ sinφ
r

∂T

∂φ

)∣∣∣∣∣
π

π
2

dr

= −2π
ε∫

0

λ
∂T

∂φ

∣∣∣∣∣
π
2

dr.

If we use the reflexive boundary condition (4.50), then ∂T
∂φ is zero at φ = π

2 and thus (∗2)
is zero. However, if we use the Robin boundary condition for T (4.11), ∂T∂φ is non-zero and
must be handled separately. Denote the integrand by

G(r) = λ
∂T

∂φ

∣∣∣∣
φ=π

2

.

Using the Robin boundary condition (4.11), we have

G(r) = −r(Ta − T ). (B.11)

Since ε is small, we can approximate the integrand with a Taylor series

G(ξ) = G(0) +O(∆r)
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and dropping the O(∆r) terms. Hence

(∗2) = −2π
ε∫

0

G(r)dr

≈ −2πG(0)
ε∫

0

dr

= 0,

since G(0) = 0.

So we currently have

π

12F (0)∆r3 = π

2 ∆r∆φ
M∑
j=1

sinφjλ 1
2 ,j

(T1,j − T0),

which is equivalent to

F (0) = 6∆φ
∆r2

M∑
j=1

sinφjλ 1
2 ,j

(T1,j − T0). (B.12)

Solving for T0 gives

T0 = 6∆φ
∆r2β

M∑
j=1

sinφjλ 1
2 ,j
T1,j −

1
β
F (0), (B.13)

where β = 6∆φ
∆r2

M∑
j=1

sinφjλ 1
2 ,j

.

It is interesting to note upon making the correct assumptions, our two-dimensional and
one-dimensional discretizations of the origins are equivalent. By assuming that T and λ has
no φ dependence, upon taking M →∞, the right-hand side of Equation (B.12) becomes

6∆φ
∆r2

M∑
j=1

sinφjλ 1
2
(T1 − T0) = 6

∆r2λ 1
2
(T1 − T0)

π∫
π
2

sin(φ)dφ

= 6λ 1
2

T1 − T0
∆r2 ,

which upon transformation from r to x is equivalent to the one-dimensional discretization
of the origin (Equation (3.24)).
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Appendix C

Generalized Two-Dimensional
Swarms

C.1 Transforming Equations to Mapped Coordinates in 2D

In this section, we transform Equations (2.1) and (2.3) into a mapped coordinate system
(defined below) for a convex two-dimensional domain that is not necessarily a semicircle,
such as the one presented in Figure C.1. Suppose for every fixed time t and every fixed
φ ∈ [π2 , π], the swarm exterior is distance R(t, φ) from the origin. Hence R(t, φ) describes
the shape of the swarm at every time. We introduce the coordinate transformation

x = r

R(t, φ) (C.1)

and corresponding dependent variables

u(t, x, φ) = T (t, r(x, φ, t), φ), (C.2)
v(t, x, φ) = ρ(t, r(x, φ, t), φ). (C.3)

Figure C.1: In the future, we may consider two-dimensional computational domains that
are more general than semicircles.

67



We also introduce the notation

Ṙ(t, φ) = ∂R

∂t
, (C.4)

P (t, φ) = ∂R

∂φ
. (C.5)

Now, recall if we have g(t, r, φ) and its corresponding function g̃(t, x, φ), then the change of
partials can be expressed conveniently as the matrix-vector multiplication gt

gr
gφ

 =

 tt xt φt
tr xr φr
tφ xφ φφ


 g̃t
g̃x
g̃φ

 . (C.6)

Evaluating the partials gives gt
gr
gφ

 =

 1 −xṘ
R 0

0 1
R 0

0 −xP
R 1


 g̃x
g̃φ
g̃t

 . (C.7)

That is,

∂

∂t
≡ −xṘ

R

∂

∂x
+ ∂

∂t
, (C.8)

∂

∂r
≡ 1
R

∂

∂x
(C.9)

∂

∂φ
≡ −xP

R

∂

∂x
+ ∂

∂φ
. (C.10)

Recall Equation (2.1)
c
∂T

∂t
= ∇ · (λ∇T ) + ρf,

where T = T (t, r, φ). In spherical coordinates with symmetry about θ, this becomes

c
∂T

∂t︸ ︷︷ ︸
(∗1)

= 1
r2

∂

∂r

[
r2λ

∂T

∂r

]
︸ ︷︷ ︸

(∗2)

+ 1
r sinφ

∂

∂φ

[
λ sinφ
r

∂T

∂φ

]
︸ ︷︷ ︸

(∗3)

+ ρf︸︷︷︸
(∗4)

. (C.11)

First, transform (∗1). From Equation (C.8), we obtain

(∗1) = c
∂u

∂t
− cxṘ

R

∂u

∂x
.

Next, with Equation (C.9) and the fact that ∂R
∂x = 0, we get

(∗2) = 1
x2R2

∂

∂x

[
x2λ

∂u

∂x

]
.
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Applying Equation (C.10) twice gives

(∗3) = 1
xR sinφ

∂

∂φ

[
λ sinφ
xR

∂u

∂φ
− λ sinφP

R2
∂u

∂x

]
− P

R2 sinφ
∂

∂x

[
λ sinφ
xR

∂u

∂φ
− λ sinφP

R2
∂u

∂x

]
Finally,

(∗4) = vf.

Thus in spherical coordinates, our partial differential equation becomes

c
∂u

∂t
− cxṘ

R

∂u

∂x
=vf + 1

x2R2
∂

∂x

[
x2λ

∂u

∂x

]
+ 1
xR sinφ

∂

∂φ

[
λ sinφ
xR

∂u

∂φ
− λ sinφP

R2
∂u

∂x

]
− P

R2 sinφ
∂

∂x

[
λ sinφ
xR

∂u

∂φ
− λ sinφP

R2
∂u

∂x

]
.

(C.12)

Similarly, from Equation (2.3)

∂ρ

∂t
= ∇ · (µ∇ρ)−∇ · (χρ∇T ),

we obtain the new equation

∂v

∂t
− xṘ

R

∂v

∂x
= 1
x2R2

∂

∂x

[
x2µ

∂v

∂x
− x2χv

∂u

∂x

]
+ 1
xR sinφ

∂

∂φ

[
µ sinφ
xR

∂v

∂φ
− µ sinφP

R2
∂v

∂x

]
− 1
xR sinφ

∂

∂φ

[
χv sinφ
xR

∂u

∂φ
− χv sinφP

R2
∂u

∂x

]
− P

R2 sinφ
∂

∂x

[
µ sinφ
xR

∂v

∂φ
− µ sinφP

R2
∂v

∂x

]
+ P

R2 sinφ
∂

∂x

[
χv sinφ
xR

∂u

∂φ
− χv sinφP

R2
∂u

∂x

]
.

(C.13)

C.2 Resolving Coordinate Singularity at the Interior

Consider the terms involving ∂φ in Equations (4.17, 4.18). Notice there is a coordinate
singularity at φ = π due to the sin(φ) in the denominator. To resolve this we use a similar
technique to the one-dimensional coordinate singularity at r = 0.
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Consider the ∂
∂φ

∂
∂φ term in equation (4.17). Expanding with the product rule gives

1
x2R sinφ

∂

∂φ

[
sinφλuφ

R

] ∣∣∣∣∣
φ=π

= 1
x2R sinφ

(
cosφλuφ

R
+ sinφ ∂

∂φ

[
λuφ
R

])

= 1
x2R

(
cosφ

λuφ
R

sinφ + ∂

∂φ

[
λuφ
R

])
.

Since uφ = 0, a 0
0 singularity is present, so L’Hôpital’s rule, along with further simplifica-

tions, gives
1

x2R sinφ
∂

∂φ

[
sinφλuφ

R

] ∣∣∣∣∣
φ=π

= 2
x2R

∂

∂φ

[
λuφ
R

] ∣∣∣∣∣
φ=π

. (C.14)

Next, consider the ∂
∂φ

∂
∂x term in equation (4.17). Although ux 6= 0, we have P = Rφ = 0

by the rotational symmetry. Hence, a similar derivation to above gives

1
xR sinφ

∂

∂φ

[
λ sinφP
R2

∂u

∂x

] ∣∣∣∣∣
φ=π

= 2
xR

∂

∂φ

[
λPux
R2

] ∣∣∣∣∣
φ=π

(C.15)

C.3 Discretizing the Swarm Radius Integral

In this section, we discretize Equations (4.3) (4.19), the integral that counts the number of
bees in the swarm. Note that here we assume R = R(t, φ), which is more general than a
hemisphere.

Recall Equation (4.3)

2π
π∫

0

 R(t,φ)∫
0

ρ(r, φ)r2dr

 sin(φ)dφ = B0. (C.16)

So for a fixed φj ,
R(t,φ)∫

0

ρ(r, φ)r2dr = ∆rj
N∑
i=0

ciρi,jr
2
i,j ,

where ci is the trapezoidal Riemann sum coefficient for r

ci =
{1

2 , if i = 0, N,
1, if i 6= 0, N.

Discretizing the integral in φ gives

B0 = 2π∆φ
M∑
j=0

c̃j sin(φj)∆rj
N∑
i=0

ciρi,jr
2
i,j , (C.17)
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where c̃j is the trapezoidal Riemann sum coefficient for φ

c̃j =
{1

2 , if j = 0,M,

1, if j 6= 0,M.

Finally, transforming to the dimensionless coordinate system gives

B0 = 2π∆x∆φ
M∑
j=0

c̃j sin(φj)R3
j

N∑
i=0

cix
2
i vi,j . (C.18)

Switching the sums yields the alternative equation

B0 = 2π∆x∆φ
N∑
i=0

cix
2
i

M∑
j=0

c̃j sin(φj)R3
jvi,j . (C.19)
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