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Abstract 

The energy consumption by heating, ventilation, air conditioning, and 

refrigeration systems forms a large portion of the total energy usage in buildings. Vehicle 

fuel consumption and emissions are also significantly affected by air conditioning. Air 

conditioning is also a critical system for hybrid electric vehicles and electric vehicles as 

the second most energy consuming system after the electric motor. Proper design and 

efficient operation of air conditioning systems require accurate calculation of thermal 

loads as well as appropriate design and selection of the refrigeration cycle. The control 

logic applied to the system further defines the operational costs associated with the 

performance of the air conditioning or refrigeration system. 

The common practice in air conditioning engineering includes a primary 

calculation of thermal loads. Consecutively, the refrigeration system is selected to 

provide the required cooling or heating load. An alternate design approach in which the 

thermal loads are not only calculated as the initial design step but are also calculated in 

real-time is proposed in this thesis. Modern air conditioning systems are equipped with 

feedback controllers to allow the system to sustain thermal comfort. The real-time 

calculation and prediction of the room thermal loads improved by measurements is 

beneficial for energy-efficient control of air conditioning systems especially in vehicle 

applications that experience highly dynamic load variations. The calculation procedure 

can be implemented in a load-based controller to provide advanced intelligence for the 

system operation. This approach can optimize the system performance for the current as 

well as future conditions and can also be used as a tool for retrofitting existing systems. 

The objective of the present research is to establish intelligent real-time thermal 

load calculation methods that can be used to develop energy-efficient control systems in 

both stationary and mobile air conditioning and refrigeration applications. The proposed 

methodology consists of developing a variety of models for law-driven and data-driven 

calculation of thermal loads in mobile and stationary applications. The proposed models 

are applicable to heating, air conditioning, and refrigeration applications. The 

contributions of this study include design recommendations that can result in up to 50% 

increase in energy efficiency for mobile and stationary air conditioning systems. 
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Executive Summary 

Motivation 

Energy consumption by heating, ventilation, air conditioning, and refrigeration 

(HVAC-R) systems forms approximately 50% of the total energy usage in buildings and 

20% of the total national energy usage in European and American countries. Vehicle fuel 

consumption and emissions are also significantly affected by air conditioning. Air 

conditioning (AC) can increase NOx emission by up to 100% in vehicles. The AC power 

consumption of mid-sized cars is estimated to be higher than 12% of the total vehicle 

power during regular commuting. HVAC-R is also a critical system for hybrid electric 

vehicles (HEVs) and electric vehicles (EVs), as it is the second most energy consuming 

system after the electric motor of the vehicle. As such, proper design and efficient 

operation of HVAC-R systems can significantly reduce the environmental impact and 

greenhouse gas emissions. Consequently, accurate calculation of thermal loads as well 

as appropriate design and selection of HVAC-R systems are crucial. 

Common practice in HVAC-R engineering consists of a primary calculation of 

thermal loads followed by the selection of an HVAC-R system to provide the estimated 

cooling or heating load. A promising alternative design approach is one in which the 

thermal loads are not only calculated as the initial design step but are also calculated in 

real-time. Modern air conditioning systems are equipped with feedback controllers to 

allow the HVAC-R unit to sustain thermal comfort. The real-time calculation and 

prediction of thermal loads is beneficial for energy-efficient control of HVAC-R systems 

especially in mobile air conditioning (MAC) applications that experience highly dynamic 

load variations. The calculation procedure can be implemented in a load-based 

controller to provide thermal comfort with the most efficient energy consumption. This 

approach can optimize HVAC-R energy consumption while providing the required 

thermal load for current as well as future conditions. Furthermore, the proposed system 

can be readily implemented for retrofitting existing systems. 
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Objectives 

The objective of the present research is to establish energy-smart and real-time 

thermal load calculation methods that can be used to develop energy-efficient HVAC-R 

control systems in both stationary and mobile applications. 

Methodology and Contributions 

A systematic approach is incorporated to achieve the objectives of this research. 

A combination of analytical methods, experiments, and numerical computations is used 

to develop comprehensive models for energy-smart thermal load calculations. The 

mathematical approaches are kept simple yet accurate to provide them with commercial 

attractiveness in the HVAC-R market. Extensive data collection is performed on 2 

refrigerated trucks, a stationary walk-in freezer, and 2 lab-scale testbeds. 

The models are primarily developed based on fundamental heat transfer 

equations. In the next step, the results are verified and validated with experiments. 

Finally, the packaging of the models is discussed for implementation in real-world 

HVAC-R applications. The developed methodology consists of the following milestones: 

• Developed a new comprehensive heat balance method to simulate thermal 

loads in mobile applications. 

• Built two testbeds in the lab to simulate and validate thermal loads in an 

electric vehicle. The testbeds included adjustable windshield angles, heater, 

humidifier, air distribution ducts, thermocouples, control system, and a data 

acquisition (DAQ) system. 

• Collected extensive data on the thermal operation of the walk-in freezer room 

of a restaurant. The room temperature was measured at several locations. 

Refrigerant flow rate, pressure, and temperature were also measured during 

several months and the performance of the freezer room was deeply 

investigated accordingly. 

• Developed an inverse mathematical model for simultaneous calculation of 

thermal inertia and thermal loads in real-time. The collected data from the 

walk-in freezer room were used to validate the model. 



 

xxii 

• Demonstrated a resistance-capacitance (RC) lumped modeling approach to 

simulate thermal loads in both stationary and mobile applications. The model 

was verified by the data collected from the freezer room and parametric 

studies were performed on various components of the heat load to investigate 

their contributions. 

• Established a new self-adjusting algorithm to improve the thermal load 

calculations through real-time estimation of heat transfer coefficients. 

Implemented the model in the lab-scale testbed and demonstrated calculation 

improvements by experiments. 

• Established a methodology for energy-efficient selection of temperature set 

points in on/off controllers. Proposed a data-driven approach for optimized 

selection of set point hysteresis based on exponential temperature 

correlations. Implemented the model in a controller and showed energy-

efficiency improvements. 

• Collected temperature data from the refrigerated trucks of a major dairy 

transportation company and established a data-driven method for duty cycle 

identification in mobile refrigerated cabins. 
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Chapter 1. Introduction 

1.1. Research importance 

A significant portion of the energy produced worldwide is consumed by heating, 

ventilation, air conditioning, and refrigeration (HVAC-R) systems. Energy consumption 

by HVAC-R systems is 50% of the total energy usage in buildings and 20% of the total 

national energy usage in European and American countries [1]. Predictions indicate a 

further increase of 50% from the current figure during the next 15 years in the European 

Union countries [1]. HVAC-R energy consumption can exceed 50% of the total energy 

usage of a building in tropical climates [2]. Furthermore, refrigeration systems also 

consume a substantial amount of energy. Supermarket refrigeration systems, as an 

example, can account for up to 80% of the total energy consumption in a supermarket 

[3]. Implementing opportunities to reduce energy consumption in HVAC-R systems can 

propagate to a large number of systems used in various applications. As such, efficient 

design of new HVAC-R systems and devising intelligent control methods for existing 

systems can lead to large-scale reductions in total energy consumption and greenhouse 

gas emissions. 

Air conditioning (AC) is an important energy consuming unit in vehicles as well 

[4] and has a significant impact on emissions and fuel economy. AC energy usage in 

vehicles outweighs the energy dissipated due to rolling resistance, aerodynamic drag, 

and driveline losses for a typical vehicle. Studies have shown that AC systems can 

reduce the fuel economy of mid-sized vehicles by more than 20% while increasing CO 

emissions by 70% and NOx by up to 100% [5], [6]. The United States alone consumes 

an estimated 26.5 billion liters of fuel per year for the AC systems of light-duty vehicles 

[7]. The reduction of fuel consumption and tailpipe emissions are two crucial targets for 

the auto industry that can be addressed by improved AC systems.  
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AC is also a critical system for Hybrid Electric Vehicles (HEV) and Electric 

Vehicles (EV), as it is the second most energy consuming system after the electric motor 

[4]. In an electric vehicle AC power consumption can be as high as 12% of the total 

vehicle power during regular commuting [8] and the energy required to provide cabin 

cooling for thermal comfort can reduce the range of plug-in electric vehicles (PEV) by up 

to 50%, depending on outside weather conditions [4]–[6]. Thus, it is of both 

environmental and economic interest to seek new methods to improve the efficiency and 

performance of vehicle AC systems as less energy consumption by mobile air 

conditioning (MAC) systems directly results in higher mileage and better overall 

efficiency on the road. 

1.2. Motivation 

Calculating thermal loads is the primary step in designing HVAC-R systems. Any 

improvement in the calculation methods can result in a significant reduction of the total 

energy consumption and the greenhouse gas emissions. Proper design and efficient 

operation of any HVAC-R system require: i) accurate calculation of thermal loads, and ii) 

appropriate design and selection of the HVAC-R unit. Common practice in HVAC-R 

engineering is to start the design process by calculating the thermal loads in the space. 

This step consists of a careful study of the room characteristics such as wall properties, 

fenestration, openings, and air distribution. Additionally, room usage patterns, 

occupancy levels, geographical location, and ambient weather conditions need to be 

thoroughly investigated before a decision is made on the required thermal load. An 

HVAC-R unit is then selected to handle the required load. As such, detailed information 

about a number of parameters is required to properly calculate the thermal loads and 

select the HVAC-R system. 

Innovative methods to calculate the thermal loads in real-time based on a 

minimal amount of data can be promising ways to add intelligence to HVAC-R 

controllers. The additional real-time knowledge of the loads encountered in the room can 

improve the overall performance and efficiency of the HVAC-R system. As a direct 

result, reduced energy consumption and emissions can be achieved by the present 

approach. 
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1.3. Scope 

The objective of this thesis is to establish new intelligent real-time thermal load 

calculation methods. The proposed methods enhance the estimation of cooling and 

heating loads in order to improve energy efficiency and reduce emissions. These 

methods provide real-time estimations to load-based controllers in order to improve the 

control action towards increased energy efficiency. 

The primary focus of this work is on comprehensive models, based on the 

conventional heat balance method, that were developed for calculations of thermal loads 

in mobile and stationary applications. Further, an intelligent method was established to 

estimate bulk thermal inertia and heat gain in real-time. In order to incorporate more 

detailed temperature measurements, another method was developed for automatic 

calculations of wall heat transfer coefficients. The automatic estimation of coefficients 

further improves the heat balance calculations. Finally, a study was performed on the 

opportunity for increasing energy efficiency in existing on/off controllers by optimizing the 

selection of the set points. The developed methods can remarkably benefit a wide range 

of HVAC-R systems. 

1.4. Thesis Structure 

Careful investigation of the pertinent literature shows that intelligent calculation of 

thermal loads can either be done by a law-driven (forward) approach or a data-driven 

(inverse) approach. Both methodologies are followed in this study and the thesis is also 

structured accordingly. Figure  1-1 shows a roadmap of the project steps. 

 Chapter 2 covers the developed models based on the law-driven method. Due to 

a lack of a comprehensive model for dynamic calculation of thermal loads in automotive 

applications, Section  2.1 is devoted to proposing such a model. In Section  2.2, the 

experimental setup in a stationary freezer room is described. This setup is used to 

develop another law-driven model in Section  2.3 based on RC modeling. 

 Chapter 3 covers the developed models based on the data-driven method. The 

same experimental setup of Section  2.2 is used to establish an inverse model for 
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estimating the thermal inertia and heat gain. An in-house experimental testbed is built as 

described in Section  3.2. In Section  3.3, a new method is developed for real-time load 

calculations based on automatic estimation of heat transfer coefficients. Section  3.4 

proposes an optimized method for energy efficient selection of temperature set points in 

on/off controllers. 

 

Figure  1-1: Thesis structure. 

 Chapter 4 concludes the major contributions of the thesis. Suggestions for future 

studies are also described in  Chapter 4. 

Intelligent Calculation of Thermal Loads in Mobile and Stationary Heating, 
Ventilation, Air Conditioning, and Refrigeration Systems 

Law-Driven Approach 

 
• Develop comprehensive heat balance 

model for mobile thermal load calculations 
 

• Develop RC model for thermal load 
calculations and parametric studies in a 
refrigeration system 

Data-Driven Approach 

 
• Develop algorithm for inverse calculation of 

thermal inertia and heat gains 
 

• Establish method for automatic calculation 
of heat transfer coefficients 
 

• Develop methodology for energy-efficient 
selection of on/off set points 

Improvement of Energy Efficiency in HVAC-R Systems by Load-Based 
Intelligent Control 

Experimental Setup 

 
• On-site data collections 

 
• Build in-house experimental testbed 
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1.5. Literature Review 

In this section, a review of the pertinent literature is presented. The various 

aspects of thermal load calculations and the methods used are collected herein. A lack 

of research in certain areas is identified, motivating the present study. 

1.5.1. Conventional Load Calculation 

The conventional methods of thermal load estimation are highly established. 

They can be categorized into methods for stationary applications and mobile 

applications. 

Stationary Applications 

The American Society of Heating, Refrigeration, and Air Conditioning Engineers 

(ASHRAE) has established extensive methodologies for calculating heating and cooling 

loads [9]. The heat balance method (HBM) [10] is an example of such a load calculation 

method. It is a straightforward and comprehensive method that involves calculating a 

wall-to-wall heat balance of the room through consideration of conduction, convection, 

and radiation heat transfer mechanisms. The method has been extensively used in 

stationary [11] as well as mobile [12] applications. The essence of the HBM is a 

calculation of the overall heat flow through the walls of a room. For every wall, heat flow 

encounters an outside convection resistance, a conduction resistance across the wall, 

and an inside convection resistance. Some heat is also stored in the wall, depending on 

its thermal inertia and temperature. After balancing the incoming energy, the overall heat 

balance calculation is carried out for the room air. 

Among the heat transfer mechanisms involved in the heat balance method, 

calculation of convective heat transfer has a sophisticated nature and tends to be 

complicated. The convective heat transfer over a wall depends on the velocity and 

temperature of the air as well as the surface temperature. A common practice for the 

calculation of convective heat transfer is to evaluate the coefficients using analytical or 

empirical correlations. ASHRAE Standard 90.1 [13] offers comprehensive tables for the 

estimation of U-Factors. The U-Factor, or thermal transmittance, is defined as the “heat 

transmission in unit time through a unit area of a material or construction and the 
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boundary air films, induced by unit temperature difference between the environments on 

each side” [13]. However, finding the proper U-Factor requires extensive information to 

be gathered by the designer. Moreover, the estimated U-Factor may be inaccurate for 

varying air patterns and thermal conditions. 

Besides ASHRAE, other attempts have been made to provide reliable 

estimations of the convection coefficient and a broad range of experimental, 

computational, and analytical methods appear in the literature. Loveday and Taki [14] 

used an experimental arrangement to find correlations for the external convection 

coefficient as a function of wind speed for a building wall. Kurazumi et al. [15] 

experimentally found the convective heat transfer coefficients of a seated human body 

during forced convection by downward flow from the ceiling using a thermal mannequin. 

Lei et al. [16] presented an inverse modeling strategy to determine the required wall 

boundary convective heat fluxes required in computational simulations. In several 

studies by Zhai et al. [16–21], they developed a methodology to couple computational 

fluid dynamics (CFD) simulations with energy simulations (ES) to improve the accuracy 

of the latter for different air distribution patterns. They concluded that an ES module 

coupled with a CFD simulation can benefit from more accurate convection coefficients, 

which improve the overall load calculation process [20]. However, Zhai and Chen [22] 

reported that one CFD simulation may take a long time to obtain a reasonable result 

even with steady-state conditions. This high computation cost associated with CFD tools 

is a drawback that hinders their usage in many typical applications. 

Many reviews have attempted to outline the numerous formulas for convection 

coefficients. Khalifa [20,21] thoroughly reviewed available correlations for natural 

convection coefficient over flat surfaces. Sartori [25] reviewed the equations of forced 

convection coefficient for flow over flat surfaces. Palyvos [26] presented a survey of the 

correlations for wind convection coefficient to be used for energy modeling in building 

envelopes. Defraeye et al. [27] also collected the existing correlations for convection 

coefficients over exterior building surfaces and compared them with CFD simulations. 

From the above reviews, it is evident that the convection coefficient can strongly 

affect heat balance calculations and an ultimate form that covers all conditions and 

scenarios is not available. Various suggested values of convection coefficients, even 
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varying by an order of magnitude, can be found in the literature for the same problem. 

Therefore, an intelligent approach for real-time estimation of the convection coefficients 

can improve heat balance calculations significantly. 

Mobile Applications 

The calculation of thermal loads in MAC systems follows the same concepts as 

in stationary applications. Considerable studies are devoted to thermal load calculations 

in MAC systems. Fanger’s model of thermal comfort [28], which is extensively used in air 

conditioning design is, also recognized for MAC applications. 

Based on Fanger’s model, Ingersoll et al. [29] developed a human thermal 

comfort calculation model specific to automobile passenger cabins. Zheng et al. [30] 

devised a simple method to calculate vehicle thermal loads and validated it using wind 

tunnel climate control tests. Arici et al. [31] developed computer code for simulating the 

dynamic operation of a climate control system for a typical vehicle. Ding and Zito [32] 

also used a lumped model for vehicle cabins and solved the corresponding transient 

heat transfer differential equation analytically. Their analytical solution can be used as a 

benchmark for basic problems such as the cool-down test. Selow et al. [33] developed a 

virtual vehicle based on experimental correlations for each significant vehicle 

component. The virtual vehicle was divided into different modules, one of which was the 

cabin climate. Simultaneous operation of these modules could provide estimates without 

necessitating cumbersome and costly experiments. Khayyam et al. [34] collected a set 

of models to calculate the various types of thermal load encountered in a vehicle. These 

models were later used to estimate the overall cooling load, which was fed back to a 

coordinated energy management system to reduce the air conditioning energy 

consumption [35]. Wei and Dage [36] developed an intelligent cabin climate control 

system based on human-sensory response to comfort factors. 

Numerical simulations are also used to improve MAC load estimations. Methods 

put forth by ASHRAE and in other literature often assume the vehicle cabin as a lumped 

system and do not take the three-dimensional distribution of temperature and flow 

parameters into account. Finding exact solutions for distribution of airflow, temperature, 

and humidity is often complex. Therefore, numerical methods are employed for such 

simulations. Alexandrov et al. [37] used two- and three-dimensional CFD simulations to 
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investigate the effect of various parameters such as car velocity and outside temperature 

on the performance of MAC systems. They simulated the flow in a typical vehicle and 

found a maximum temperature difference of about 7°C between two points in the car 

cabin. They concluded that issues such as low air circulation zones in the cabin can be 

resolved by designing better air inlet and outlet configurations. 

 The variation of thermal loads in vehicle cabins generally occurs more rapidly 

than in stationary applications. Vehicle movement adds dynamism to the radiation and 

convection mechanisms. The small size of a vehicle cabin also causes variations in the 

thermal phenomena to occur quickly. However, although the real-time estimation of 

cooling/heating loads in mobile systems can be complicated, it is beneficial for energy-

efficient control of the MAC system. 

1.5.2. Resistance-Capacitance (RC) Modeling 

Thermal load calculations pertaining to the heat balance method are greatly 

facilitated by resistance-capacitance (RC) modeling. RC modeling allows for better 

understanding the physics of the problem and makes it possible to easily evaluate 

modeling hypotheses and sensitivity to different parameters [38]. 

RC modeling is a well-established approach based on the analogy between 

thermal systems and electric circuits [39]. In this approach, the thermal system under 

consideration is represented by an equivalent electric circuit that is mathematically 

identical to the thermal system. In this way, RC modeling helps visualize the HBM 

approach and solve the problem with better engineering insight. RC modeling is also 

widely used in other applications such as electronic cooling [40]–[44], mobile air 

conditioning [45], and phase change materials [46]. 

Bueno et al. [38] applied RC modeling to an urban canopy and evaluated their 

results in comparison to advanced simulation tools. They reported that the RC technique 

provides simplicity and computational efficiency, especially for studying the sensitivity of 

results to different parameters. Ogunsola et al. [47] deduced a time-series cooling load 

model from a simplified RC model to provide thermal load estimations with manageable 
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computational requirements. RC modeling is also used for studies on specific 

parameters related to HVAC-R load calculations. 

In an RC model, the thermal system is often divided into: i) the room, and i) the 

envelope, i.e., the surrounding walls of the room. Each component can be modeled by a 

number of resistors and/or capacitors. For example, a 3R2C thermal model of a wall 

means that 3 resistors and 2 capacitors are used to represent it in its identical electric 

sub-circuit. Since one RC sub-circuit represents each wall or room, the complete model 

can become complicated with a large number of electrical components. Deng et al. [48] 

described a model reduction methodology used to obtain a simpler multi-scale 

representation of the RC network. The original RC network of a building application 

consists of a large number of coupled linear differential equations. The proposed 

technique by Deng et al. [48] retains the physical intuition of the original model, but is a 

simpler RC network. However, their model reduction methodology was not compared 

with experimental data. 

RC modeling is also used for studies on specific parameters related to HVAC-R 

load calculations. Haldi and Robinson [49] developed a means for representing occupant 

presence and behavior through RC modeling. They discussed a comprehensive 

representation of occupants and their activities in buildings. They used regression 

parameters to predict the probabilities of actions such as window and blind opening by 

occupants. Implementing these types of parameters in the HVAC-R design is highly 

facilitated by using the RC modeling approach. 

Alongside residential air conditioning, RC models are also used in MAC and 

thermal energy storage (TES) applications. Mezrhab and Bouzidi [45] studied the 

thermal comfort inside a passenger car compartment according to climatic conditions 

and materials that compose the vehicle. They developed a numerical model based on 

the nodal method and solved the network using the finite difference method. Zhu et al. 

[46] used RC modeling for analyzing the application of phase change materials (PCM) 

for demand compensation of air conditioning loads. They used a 3R2C model for the 

walls in series with a 4R2C model for the PCM layer. 
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An important issue regarding the usage of RC models in HVAC-R applications is 

the estimation of parameter values. Several thermal properties of the room and the 

envelope are often necessary and need to be acquired from a comprehensive collection 

of data. In some cases, complex mathematical algorithms are incorporated to estimate 

these properties instead of directly acquiring them. Ogunsola et al. [47] used building 

construction data for envelope thermal properties, while a genetic algorithm was used to 

estimate the internal thermal mass. Wang and Xu [50] obtained the RC parameters 

using a genetic algorithm and solved the integrated model numerically using Runge-

Kutta classical methods. Oldewurtel et al. [51] performed an investigation of how model 

predictive control (MPC) and weather predictions can increase HVAC-R energy 

efficiency while maintaining occupant comfort. An RC network was constructed and 

employed for building climate control using MPC and weather forecasts. Maasoumy et 

al. [52] also used an MPC approach for energy efficient buildings. They used an RC 

representation of an office room to model the heat transfer paths and proposed a 

parameter-adaptive building model that facilitates the parameter tuning process in an 

online fashion in the MPC approach. Nevertheless, their approach adds to the 

complexity of the plain RC model. Platt et al. [53] focused on real-time HVAC-R zone 

model fitting and prediction techniques based on physical principles, as well as the use 

of genetic algorithms for optimization. They included supply air input in their model, but 

the thermal inertia of the walls was ignored. 

Table  1-1 summarizes the recent RC models used in HVAC-R applications. The 

RC sub-circuit models used for the room and its envelope are also shown. Many of the 

methods depend on experimental measurements for acquiring the model parameters. 

Nevertheless, other approaches for estimating the RC parameters, instead of 

measuring, are also listed in Table  1-1. 

Table  1-1: Summary of recent RC models in HVAC-R applications. Reprinted with 
permission [54]. 

Reference 
Envelope 

Model 
Room 
Model 

Parameters Estimation Method 

Ogunsola et al. [47] 3R2C 2R2C* Measurements and genetic algorithm 

Maasoumy et al. [52] 4R1C 1C Parameter adaptive building 

Platt et al. [53] 1R 1C Genetic algorithm 

Bueno et al. [38] 3R2C 1C Measurements 
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Oldewurtel et al. [51] 2R2C 1C Stochastic model predictive control 

Deng et al. [48] 3R2C 1C Measurements 

Mezrhab and Bouzidi [45] 2R2C 2R1C* Measurements 

Haldi and Robinson [49] 4R1C 1R1C* Measurements 

Zhu et al. [46] 3R2C** 1R1C* Measurements 

Wang and Xu [50] 3R2C 2R2C* Genetic algorithm 

* Resistance for room models is used to account for ventilation, convection, and radiation. 
** A 4R2C model is added to the wall in series to account for the layer of phase change material. 

1.5.3. Artificial Intelligence Methods 

Due to significant advances in computational power, a number of intelligent 

approaches have been proposed in recent years for enhanced calculation of thermal 

loads in both stationary and mobile AC applications. Ansari et al. [55] demonstrated that 

a great deal of mathematical complexities can be avoided in cooling load calculations 

without sacrificing accuracy. They suggested that hefty procedural details might be 

avoided with negligible loss of accuracy. Nevertheless, more complex approaches for 

thermal load estimation are also used in literature, including neural networks, genetic 

algorithms, and fuzzy logic controllers. These approaches cover a range of simplified to 

rigorous methods and have different levels of accuracy and engineering usability. Few of 

these methods are both accurate and easy-to-use. 

Kashiwagi and Tobi [56] proposed a neural network algorithm for prediction of 

thermal loads. Ben-Nakhi and Mahmoud [57] also used general regression neural 

networks and concluded that a properly designed neural network is a powerful tool for 

optimizing thermal energy storage in buildings based only on external temperature 

records. They claimed that their set of algorithms could learn over time and improve the 

prediction ability. Li et al. [58] presented four modeling techniques for hourly prediction of 

cooling loads. Yao et al. [59] used a case study to show that a combined forecasting 

model based on a combination of neural networks and a few other methods can be 

promising for predicting a building’s hourly load for the future hours. Solmaz et al. [60] 

used the same concept of neural networks to predict the hourly cooling load for vehicle 

cabins. Methods that are purely based on neural networks are inherently unaware of the 

heat transfer mechanisms. Thus, they might prove unreliable in new scenarios and 

conditions for which they are not trained. 
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Fuzzy control algorithms are also proposed as load prediction methods. Among 

many, Sousa et al. [61] developed a fuzzy controller to be incorporated as a predictor in 

a nonlinear model-based predictive controller. They developed a fuzzy controller to be 

incorporated as a predictor in a nonlinear model-based predictive controller. Khayyam et 

al. [62] used a fuzzy logic air conditioning enhanced look-ahead system that estimated 

future road slope within a distance ahead of the vehicle. They showed that 12% energy 

consumption savings could be achieved using their enhanced fuzzy system. Wei and 

Dage [36] developed an intelligent cabin climate control system based on human-

sensory response to comfort factors. They used passive remote infrared sensors to 

measure passenger skin temperatures. An intelligent climate controller then controlled 

parameters such as the blower speed to provide passenger thermal comfort. 

Genetic algorithms are another artificial intelligence approach used for thermal 

load prediction. Wang and Xu [50], [63] used genetic algorithms to estimate the lumped 

internal thermal parameters of a building thermal network model using the operation 

data collected from site monitoring. They combined an RC model of the building 

envelope with a data-driven approach where their model parameters were corrected via 

real-time measurements. 

Table  1-2 summarizes the recent literature devoted to various proposed methods 

for calculation of thermal loads. For each study, the corresponding application is 

demonstrated. Table  1-2 also reveals the method based on which each specific study 

was proposed. The disadvantage of some of these methods is their complexity of 

implementation in typical HVAC-R applications. While relying upon conventional design 

methods can cause inaccuracies in thermal load estimations, incorporation of artificial 

intelligence methods may require computational resources that are not available for 

typical systems. An accurate real-time load calculation method that is not 

computationally intensive can be beneficial for practical HVAC-R designs. 

Table  1-2: Summary of relevant literature covering methods for thermal load 
calculation. 

Authors Application Method 

Khayyam et al. [34], [62], [64] Automotive Fuzzy Logic 

Barnaby et al. [11] Residential Building Heat Balance Method 

Fayazbakhsh and Bahrami [12] Automotive Heat Balance Method 
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Fayazbakhsh et al. [65] Refrigeration Room Heat balance method 

Arici et al. [31] Automotive Analytical Energy Balance 

Li et al. [58] Office Building Artificial Neural Network 

Kashiwagi and Tobi [56] Residential Building Artificial Neural Network 

Ben-Nakhi and Mahmoud [57] Office Building Artificial Neural Network 

Yao et al. [59] Office Building Analytic Hierarchy Process 

Solmaz et al. [60] Automotive Artificial Neural Network 

Sousa et al. [61] Generic Building Fuzzy Logic 

Wang and Xu [50], [63] Office Building Genetic Algorithm 

Zhai et al. [17]–[22] Generic Building Computational Fluid Dynamics 

Pedersen et al. [10] Generic Building Heat Balance Method 

Zheng et al. [30] Automotive Heat Balance Method 

Ding and Zito [32] Automotive Analytical Energy Balance 

Selow et al. [33] Automotive Analytical Energy Balance 

Alexandrov et al. [37] Automotive Computational Fluid Dynamics 

Khayyam et al. [34] Automotive Analytical Energy Balance 

Ogunsola et al. [47] Generic Building Genetic Algorithm 

Maasoumy et al. [52] Office Building Parameter Adaptive Building 

Platt et al. [53] Office Building Genetic Algorithm 

Bueno et al. [38] Generic Building Experimental Analysis 

Oldewurtel et al [51] Generic Building Model Predictive Control 

Deng et al. [48] Generic Building Experimental Analysis 

Mezrhab and Bouzidi [45] Automotive Experimental Analysis 

Haldi and Robinson [49] Generic Building Experimental Analysis 

Zhu et al. [46] Office Building Experimental Analysis 

Wang and Xu [50] Generic Building Genetic Algorithm 

1.5.4. Law-Driven Vs. Data-Driven Methods 

A disadvantage of most existing load calculation methods is that they require a 

lot of information about the air-conditioned space to estimate the loads. For instance, the 

heat balance method requires knowledge of material properties, thickness of walls, 

geographical location, fenestration data, weather information, occupancy, appliances, 

and other detailed information. Such an approach may not rely on feedback information 

from the air-conditioned space. This type of methodology is called a “forward” approach, 

which makes the redesign and retrofit of existing HVAC-R systems a laborious and time-

consuming task. However, with the availability of on-site sensors and computational 
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resources, new methodologies can focus on the incorporation of real-time data in the 

calculation process. 

The original heat balance method is known as a “forward” or “law-driven” 

approach, i.e., it estimates the loads based on rigorous room details. Real-time feedback 

data are not incorporated in the formulations of this method. In contrast to the heat 

balance method, “inverse” or “data-driven” methods study existing HVAC-R systems and 

allow the thermal performance of the system to be inferred based on temperature 

measurements. Such approaches mathematically evaluate the loads through learning 

and testing rather than analyzing the heat transfer equations. Therefore, in an inverse 

method, the entire system, i.e., the conditioned space plus the HVAC-R unit, is 

considered as a black box that is investigated for a period of time. 

The design methodology for HVAC-R controllers can be categorized with respect 

to their reliance on real-time measurements. White-box (purely law-driven), black-box 

(purely data-driven), and gray-box (combination of the two) modeling approaches are 

among the methods proposed in the literature [66]. White-box methods are purely based 

on predetermined physical laws and are unaware of the real-time performance of the 

system. Black-box methods are learning algorithms that are often designed as generic 

tools for intelligent control systems regardless of the actual application. Gray-box 

approaches offer a mix of the two. In gray-box methods, the governing equations of the 

specific control problem is incorporated in the design to some extent, while available 

operation data are also utilized to complement the approach with a degree of real-time 

intelligence. 

1.5.5. HVAC-R Controllers 

It has been shown that intelligent control of the HVAC-R operation based on 

thermal load predictions can help maintain air quality while minimizing energy 

consumption [62], [64]. Improving load calculation methods and the ability to estimate 

and predict the loads in real-time can improve the feedback information, which in turn 

results in a significant reduction in total energy consumption and greenhouse gas 

emissions. Furthermore, in applications where the room contents may vary over time, an 
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algorithm that can estimate the thermal inertia in an unsupervised manner can aid the 

HVAC-R system to adapt to the new conditions. 

Controller design is a critical aspect of HVAC-R systems. Proper selection and 

design of the controller directly affects the overall energy consumption and thermal 

comfort. Air conditioning and refrigeration systems are often controlled by feedback 

systems that receive input signals from a temperature sensor, such as a thermocouple, 

installed inside the room. The controller compares the measured temperature to the 

desired (set point) temperature, and provides an output to the control element. The 

control element of the refrigeration system can be the compressor, the evaporator fan, or 

the condenser fan. 

A wide spectrum of controller types is available for HVAC-R applications. Classic 

controllers include: on/off, proportional, and PID controllers. Mirinejad et al. [67] 

conducted a thorough review of the newer intelligent controllers used in HVAC-R 

systems. Although more sophisticated controllers are proposed, the industry often 

delays in adopting the new methods due to the associated cost, complexity, and lack of 

incentives. It is therefore important to consider approaches that can be adopted rather 

quickly with the utmost ease and a tolerable cost. 

On/off and modulation controllers are widely used in HVAC-R systems that use 

the room temperature as the controlled variable [68]. On/off controllers are capable of 

switching the system on and off based on a comparison between the measured 

temperature and the desired set point. 

By predicting the thermal loads in real-time, controllers are enabled to not only 

provide thermal comfort in the current conditions, but also adjust the system operation to 

cope with upcoming conditions in an efficient manner. Argüello-Serrano and Vélez-

Reyes [69] stated that availability of thermal load estimations allows the HVAC-R 

controller to efficiently provide comfort regardless of the thermal loads. Afram and 

Janabi-Sharifi [70] showed that improved load estimations can lead to the design and 

testing of more advanced controllers. Zhu et al. [71] studied an optimal control strategy 

for minimizing energy consumption using variable refrigerant flow (VRF) and variable air 

volume (VAV) air conditioning systems. 
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Proportional and PID controllers are meant for systems that have the capability of 

varying the provided heating/cooling power. For instance, a PID controller not only 

switches a heater on or off, but can also control the amount of energy input to the room. 

Therefore, proportional or PID controllers are generally more desirable for variable-

capacity systems. Many existing HVAC-R devices are equipped with constant-speed 

compressors and fans. Nevertheless, Qureshi and Tassou [72] reviewed the application 

of variable-speed capacity control in refrigeration systems. They argued that in order to 

compensate for half-load usage conditions, the option of variable-speed compressor 

consumes the least percentage of the full load power compared to other methods. 

One issue with adopting a conventional PID controller is the selection of its 

coefficients, which are often determined through measurements. Wemhoff [73] proposed 

a simple calibration procedure for successive optimization of the proportional, integral, 

and derivative coefficients to reduce energy consumption. Similar optimization concepts 

are applicable to the set points in on/off controllers [74]. Due to the higher initial cost 

associated with variable-speed compressors and fans, on/off control and constant 

capacity components are more common in HVAC-R applications. 

Table  1-3 summarizes various characteristics of the available control methods for 

HVAC-R systems. These approaches cover a variety of approaches, ranging from 

classic controllers to newer intelligent methods. In Table  1-3, “Simplicity” refers to the 

ease of implementation of each method; “Computational Intensity” determines the 

relative amount of on-site computational resources required for the algorithm to perform; 

and “Cost” is an indication of the relative cost of the method in relation to how 

commercially available the method is, which also indicated by “Commercial Availability”. 

Different methods require different extents of system data such as the room thermal 

characteristics and the refrigeration cycle performance information. The extent of such 

data required by each method is shown under “System Data Requirement”. Finally, 

“Prediction and Adaptability” suggests how much each method is able to predict the 

upcoming thermal conditions and adapt the refrigeration cycle performance to the new 

scenarios. 
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Table  1-3: Summary of the characteristics of available controller types for HVAC-R 
systems. Reprinted with permission [75]. 

 
On/Off 

Controller 
PID 

Controller 
Neural 

Network 
Fuzzy 
Logic 

Genetic 
Algorithm 

Real-Time Load 
Estimation 

Sample 
Reference 

[74] [73] [58] [61] [50] [70] 

Simplicity High Medium Low Low Low Medium 

Computational 
Intensity Low Low High Medium High Medium 

Cost Low Low High High High Medium 

Commercial 
Availability 

High High Low Low Low Low 

System Data 
Requirement 

Low Medium High Medium High High 

Prediction and 
Adaptability 

Low Medium High Medium High High 

A major drawback of the intelligent approaches is that they often tend to be 

mathematically complex and their implementation can be commercially unattractive in a 

range of regular applications. The sensors and computational resources required for the 

proper implementation of intelligent methods may be unavailable for inexpensive 

systems. Furthermore, the usage of intelligent methods often presumes the availability of 

a variable-load refrigeration system that has variable-speed fans and compressor. Since 

many existing refrigeration systems are constant-load and only have on/off controllers 

installed, changing the set point values of the on/off controller, as a means of improving 

energy efficiency, can be a relatively effortless approach. 

The output of an on/off controller is either on or off, with no middle state. To 

prevent damage to contactors and valves, an on/off “hysteresis” is added to the 

controller operation [76]. This hysteresis causes the controller to wait for the temperature 

to surpass the set point by a certain amount before the output turns off or on again. As a 

result, on/off controllers practically have a pair of set points that are called the “high set 

point” and the “low set point”. Thus, the on/off controller of a cooling system keeps the 

system on until the temperature reaches the low set point. When this occurs, the system 

is switched off until the temperature rises back up to the high set point level, when it is 
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switched on again. On/off hysteresis prevents the output from making fast, continual 

switches. With on/off controllers, a precise control of temperature is not achieved. 

However, the temperature keeps cycling or “swinging” around the desired set point, 

resulting in an average temperature close to the desired set point. 
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Chapter 2. Law-Driven Methods 

The heat transfer phenomena in a room are governed by well-established energy 

conservation equations. A wide range of reliable and robust methodologies are 

developed in the literature based on these governing equations. However, the 

fundamental conservation equations are general and cannot be directly applied to every 

application. It is necessary to customize the form of these equations to match every 

specific application. In this chapter, the fundamental heat balance equation is 

customized to develop a comprehensive model for automotive thermal load calculation. 

Moreover, a proper representation of the equation is also provided using the electric 

circuit equivalent of the heat balance equation. These models which are based on the 

basic governing laws of heat transfer can be used for calculating the thermal loads in 

related applications. 

2.1. Mobile Air Conditioning Loads 

In this section, the Heat Balance Method (HBM) is used for estimating the 

heating and cooling loads encountered in a vehicle cabin. A load estimation model is 

proposed as a comprehensive stand-alone model which uses the cabin geometry and 

material properties as its inputs. The model is implemented in a computer code 

applicable to arbitrary driving conditions. Using a lumped-body approach for the cabin, 

the present model is capable of estimating the thermal loads in mobile applications. By 

using this model, the pattern of upcoming changes in the comfort level can be predicted 

in real-time in order to intelligently reduce the overall air conditioning power consumption 

while maintaining driver thermal comfort. 

With the focus of most relevant studies being on load estimations in buildings, 

the literature lacks a comprehensive model for vehicle air conditioning applications. The 
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customized model developed in this section can be adopted by the automotive industry 

for improving the control action of vehicle air conditioning systems. 

2.1.1. Model Development 

A lumped model is developed for calculation of thermal loads in vehicle cabins. 

The net load of the cabin is classified under nine different categories. The total load as 

well as each load category depend on various parameters and can either be positive 

(heating up the cabin) or negative (cooling down the cabin). The summation of all 

thermal loads forms the instantaneous cabin thermal load. The mathematical model is 

thus formulated as: 

  (2-1) 

where  is the total thermal load encountered by the cabin.  is the metabolic 

load. , , and  are the direct, diffuse, and reflected radiation loads, 

respectively.  is the ambient load.  and  are the exhaust and engine loads 

caused by the high temperature of the exhaust gases and the engine.  is the 

ventilation load, and  is the thermal load provided by the air conditioning system. 

Figure  2-1 schematically shows the various thermal load categories encountered 

in a typical vehicle cabin. Some of these loads cross the vehicle body plates while others 

are independent of the cabin surface elements. Each thermal load is calculated 

assuming a quasi-steady-state condition. Based on Eq. (2-1), load calculations can be 

performed at time steps during a simulation period. After every time step, all the load 

categories are added to update the cabin air temperature and surface element 

temperatures according to: 

  (2-2) 
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  (2-3) 

where  and  are the change in cabin and surface element temperatures at the 

current time step.  is the sum of all deep thermal masses, , the overall thermal 

inertia of all internal cabin objects other than air. These objects include the seats, the 

dash, etc. which are combined with the cabin air in the lumped model.  is the time 

step,  is the cabin air mass and  is the air specific heat.  and  are the mass 

and specific heat of each of the surface elements and  is the total heat 

gain by a surface element consisting of  the heat gain by radiation, , and the heat 

gain from ambient, . 

 

Figure  2-1: Schematic representation of thermal loads in a typical vehicle cabin. 
Reprinted with permission from SAE International [12]. 

The detailed formulations for the calculation of each load category are described 

in the following: 

Metabolic Load 

Metabolic load is the heat generated by the human body. It is calculated by: 

  (2-4) 
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where  is the passenger metabolic heat production rate. It is found from the tabulated 

values in ISO 8996 [77] based on various factors such as occupation and activity level. 

For a driver and a sitting passenger, the values can be estimated as 285W m  and 

255W m , respectively. The DuBois area DuA , which is an estimation of the body surface 

area as a function of height and weight, is calculated by [77]: 

  (2-5) 

where  and  are the passenger weight and height, respectively. 

Radiation Load 

According to ASHRAE [9], the solar radiation heat can be categorized into direct, 

diffuse, and reflected. Direct radiation is the part of the incident solar radiation which 

directly strikes a surface element. It is calculated from: 

  (2-6) 

where  is the direct radiation heat gain per unit area and  is the angle between the 

surface normal and the sun position in sky.  is the surface element transmissivity and 

 is the surface area, respectively. The direct radiation heat gain per unit area is found 

by: 

  (2-7) 

where  and  are constants tabulated in ASHRAE Handbook of Fundamentals [9] for 

every month.  is the altitude angle that is calculated based on position and time. 

Diffuse radiation is the part of solar radiation which results from indirect radiation 

of daylight on the surface. During a cloudy day, most of the solar radiation is received in 

the form of diffuse radiation. The diffuse radiation heat gain is formulated as: 
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  (2-8) 

where  is the diffuse radiation heat gain per unit area which is calculated from: 

  (2-9) 

where  is the surface tilt angle measured from the horizontal surface and the values for 

 are tabulated in ASHRAE [9]. 

Reflected radiation consists of the part of radiation heat gain that is reflected from 

the ground and strikes the vehicle surface. The reflected radiation is calculated by: 

  (2-10) 

 is the reflected radiation heat gain per unit area and is calculated from: 

  (2-11) 

where  is the ground reflectivity coefficient. Based on the absorptivity of each 

particular surface element, a percentage of the incident radiation load is absorbed by 

that surface, hence increasing its temperature. The net absorbed heat of every surface 

element due to radiation is written as: 

  (2-12) 

where  is the surface absorptivity. 

Ambient Load 

Ambient load is the part of heat transferred to the cabin air resulting from the 

temperature difference between the ambient and cabin air. External convection, 
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conduction through surface elements, and interior convection are involved in the total 

heat transfer between the ambient air and the cabin. The general form of the ambient 

load is calculated as: 

  (2-13) 

where  is the overall heat transfer coefficient of the surface element.  and  are the 

average surface temperature and average cabin temperature, respectively.  has 

different components consisting of the inside convection, conduction through the 

surface, and outside convection. The overall heat transfer coefficient is written as: 

  (2-14) 

for the internal side, and: 

  (2-15) 

for the external side.  and  are the inside and outside total thermal resistances for 

a unit surface area.  and  are the outside and inside convection coefficients,  is 

the surface thermal conductivity, and  is the thickness of the surface element. The 

convection coefficients  and  depend on the orientation of the surface and the air 

velocity. Here, the following estimation is used to estimate the convection heat transfer 

coefficients as a function of vehicle speed [34]: 

  (2-16) 

where  is the convection heat transfer coefficient and  is the vehicle velocity. 

Despite its simplicity, this correlation is applicable in many practical automotive problems 

[29]. The cabin air is assumed stationary and the ambient air velocity is considered 

equal to the vehicle velocity. 
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Similar to radiation, a portion of the ambient load is absorbed by the vehicle 

body. Thus, the net absorbed heat is written as: 

  (2-17) 

where , , and  are the ambient, cabin, and surface average temperatures, 

respectively. 

Exhaust Load 

Conventional and hybrid electric vehicles have internal combustion engines that 

create exhaust gases. The exhaust gas temperature can reach as high as  [78]. 

Because of this high temperature, some of the exhaust heat can be transferred to the 

cabin. Considering  as the area of the bottom surface in contact with the exhaust 

pipe, the exhaust heat load entering the cabin is written as: 

  (2-18) 

where  is the overall heat transfer coefficient of the surface element in contact with the 

exhaust pipe and it is calculated by Eq. (2-14).  is the surface area exposed to the 

exhaust pipe temperature and  is the exhaust gas temperature. The temperature of 

the exhaust gases in Celsius degrees is estimated by [34]: 

  (2-19) 

where  is the engine speed in revolutions per minute. 

Engine Load 

Similar to the exhaust load, the high-temperature engine of a conventional or 

hybrid vehicle can also contribute to the cabin heat gain. The following formulation is 

used for calculating the engine thermal load: 

  (2-20) 

     , 2      
s Amb o s s a o s aQ UA T T UA T T UA T T T

oT aT sT

1000 C

ExhA

  
Exh Exh Exh aQ UA T T

U

ExhA

ExhT

0.138 17 ExhT RPM

RPM

  
Eng Eng Eng aQ UA T T



 

26 

where  is the surface overall heat transfer coefficient in contact with the engine and 

 is the surface area exposed to the engine temperature. The overall heat transfer is 

calculated by Eq. (2-14).  is the engine temperature and is estimated in Celsius 

degrees using [34]: 

  (2-21) 

Ventilation Load 

Based on psychrometric calculations, the ventilation heat gain consists of both 

sensible and latent loads. To account for both these terms given a known ventilation air 

flow rate, the amount of ventilation heat gain is calculated from: 

  (2-22) 

where  is the ventilation mass flow rate and  and  are the ambient and cabin 

enthalpies, respectively. The enthalpies are calculated from [79]: 

  (2-23) 

where  is the air temperature and  is the humidity ratio. The humidity ratio is 

calculated as a function of relative humidity from: 

  (2-24) 

where  is the relative humidity,  is the air pressure, and  is the water saturation 

pressure at temperature . 

AC Load 

The Air Conditioning (AC) system compensates for the heat gains so that the 

cabin temperature remains within the acceptable comfort range. In cold weather 

conditions, positive AC load (heating) is required for the cabin. Inversely, in warm 
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weather conditions, negative AC load (cooling) is needed for maintaining the comfort 

conditions. The actual load delivered by the AC system depends on the system 

parameters and working conditions. In this work, it is assumed that an AC (or heat 

pump) cycle is providing the thermal load calculated by: 

  (2-25) 

 is the target comfort temperature as described and widely used by ASHARE 

Standard 55 [80]. It is the target cabin temperature which is considered comfortable at 

the conditions under consideration.  is the pull-down time constant. Using Eq. (2-25) 

for the AC load, the pull-down time constant is calculated from: 

  (2-26) 

where  is the initial cabin temperature and  is the target pull-down time indicating the 

time required for the cabin temperature to reach the comfort temperature. 

In practice, the actual AC load depends on the system design and operating 

conditions. For a given system, the load also changes depending on the compressor 

speed and fan speed. Equations (2-25) and (2-26) are used in this study as a guideline 

for analyzing the performance of an AC system in a typical vehicle. It shows that 

analyzing different scenarios with the AC cycle can help the efficient sizing and control of 

the air conditioning cycle. 

2.1.2. Results and Discussion 

The model is implemented in an in-house computer code in the C++ language. 

The simulation model is flexible and can be used for different cabin geometries, driving 

scenarios, and ambient conditions. An important part of thermal load estimations is the 

underlying database used for cabin geometry, materials, weather conditions, and driving 

cycles. In the present simulations, a simplified version of the cabin of eVaro, shown in 
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Fig.  2-2, is used for the dimensions. The eVaro is a hybrid electric vehicle designed and 

built by Future Vehicle Technologies [81]. The eVaro has one driver and one passenger 

seat which are positioned in tandem. Figure 4 shows the simplified geometry and 

dimensions of the cabin, as used for the simulations of this work. 

 

Figure  2-2: A picture of the eVaro hybrid electric vehicle made by Future Vehicle 
Technologies (FVT). Reprinted with permission [81]. 

Table  2-1 summarizes the properties assigned to different surfaces of the body. 

Surfaces 1 and 2 are assumed to be glass with  thickness, while the other surfaces 

are taken to be a typical vehicle body with  thickness. 10% of surface number 5 

(front) is subject to the engine temperature, while 1% of surface number 4 (bottom) is 

assumed to be subject to the exhaust temperature. 

 

Figure  2-3: Schematic of the simulated cabin geometry. Reprinted with permission 
from SAE International [12]. 

3 mm

10 mm
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There are a number of standard driving cycles used in the auto industry as the 

basis for test and analysis. Among many, the Supplemental Federal Test Procedure 

(SFTP) or the US06 driving cycle [82] is used in this study. The driving cycle lasts 593 

seconds. Therefore, it is repeated consecutively to cover longer driving ranges for the 

simulation period. Based on the gear changing according to the torque imposed on the 

wheels, the RPM values are estimated accordingly. The US06 driving cycle with the 

corresponding RPM values are provided in [12]. 

Table  2-1: Properties of the vehicle cabin body. Reprinted with permission from 
SAE International [12]. 

Property Glass Body Plate 

Thermal Conductivity,  1.05 0.2 

Density,  2500 1500 

Transmissivity,  0.5 0 

Absorptivity,  0.3 0.4 

Specific Heat,  840 1000 

Thickness,  3 10 

Two different driving conditions are simulated using the above-mentioned 

geometry and material properties. In both cases, the consecutively-repeated US06 

driving cycle is used and actual weather data are collected and used for the specific date 

and time under consideration. The sky condition is assumed as mainly clear for both 

simulations. In real-time application of the model, the actual weather conditions can be 

obtained via wireless connection and a Global Positioning System (GPS) to determine 

more accurate results. In the following, the input parameters are shown for both 

simulated driving scenarios. 

Driving Scenario 1 

The specifications of driving scenario 1 are shown in Table  2-2. It is not efficient 

to use hot ambient air for ventilation when cooling is required. Therefore, a small amount 

of ventilation flow rate is assumed to account for the minimum fresh air requirements 

based on recommendations in [83] as well as the previously-mentioned leakages 
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calculated according to [84]. It should also be noted that this is an arbitrary scenario 

considered in this study to investigate the ventilation load. Realistically, the passenger 

has the option to change the ventilation rate. 

The initial cabin temperature is selected at  in this driving condition. This is 

because the soaked interior temperatures can reach very high values for a vehicle with 

closed windows parked under solar radiation. The vehicle is assumed to be driving 

approximately towards south. Figure  2-4 shows the random direction changes of the 

vehicle during the simulation time. 

Table  2-2: Specifications for the first simulated driving condition. Reprinted with 
permission from SAE International [12]. 

Specification Value 

Date July 21, 2012 

Local Time 13:00 to 16:00 

Location Houston, Texas 

Driver Height, Weight ,  

Passenger Height, Weight ,  

Ventilation Flow Rate   

Ground Reflectivity  

Ambient Temperature  

Initial Cabin Temperature  

Ambient Relative Humidity  

Cabin Relative Humidity  

Comfort Temperature  

Pull-Down Time  

Deep Thermal Mass  

Figure  2-5 shows the variation of cabin air temperature with time. The total heat 

gain in the cabin is also plotted. Negative heat values mean heat loss from the cabin, 

while positive values mean heat gains by the cabin. Figure  2-5 shows that the cabin 

temperature decreases from a soak temperature of  to the comfort temperature 

after almost 10 minutes represented by the pull-down time. According to ASHRAE 

Standard 55 [80], the comfort level of the cabin temperature is within the range of  

to  and the comfort range of relative humidity is between 40% and 60%. Thus, the 
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comfort temperature and cabin relative humidity are assumed to be  and 50%, 

respectively. The cabin and ambient relative humidity values are assumed constant 

during the simulation period. 

 

Figure  2-4: Driving direction for the simulated driving scenario 1. The directions 
are measured counter-clockwise from north. Reprinted with 
permission from SAE International [12]. 

Without air conditioning, high cabin temperature is anticipated because of the 

small cabin volume, high metabolic heat generation, high radiation, and hot ambient 

conditions. During the pull-down period, the air conditioning system consumes more 

power and imposes a negative load on the cabin air to decrease the temperature down 

to . After the pull-down period, a steady-state situation is achieved where the loads 

are balanced and a zero net load is maintained in the cabin for the rest of the simulation 

period. 
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Figure  2-5: Total load and cabin temperature for the first half hour of driving 
scenario 1. Reprinted with permission from SAE International [12]. 

Figure  2-6 shows the contribution of each load category on the net thermal load 

gained by the cabin. The engine, exhaust, and reflected radiation loads are negligible. It 

is concluded that, when seeking guidelines for reducing cabin heat gains in this driving 

condition, the engine, exhaust, and reflected radiation loads may be neglected from 

consideration. Khayyam et al. [35] also concluded that since proper insulation is used in 

most vehicles, the heat load from the engine and exhaust can be neglected in many 

cases. In such cases, the driving cycle will have an insignificant effect on the overall load 

estimation inside the cabin. 

The direct and diffuse radiation loads, on the other hand, are important load 

categories that tend to impact the cabin temperature. It is observed that the direct 

radiation load decreases due to the decrease in the sun elevation angle for the 

simulation period, which happens after midday. Metabolic load is another positive load 

that is constant due to no change in the number of passengers. Ventilation and ambient 

loads are functions of the temperature difference between the cabin and ambient air. 
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During the first 5 minutes of simulation, the cabin temperature is higher than the 

ambient. This results in the negative starting values of these load categories. Once the 

cabin temperature reaches the steady condition, the warmer ambient air imposes almost 

constant positive ventilation and ambient loads. 

The formula for the assumed AC load, Eq. (2-25), reaches a peak absolute value 

of around 3000W  at the beginning of the scenario. After this time, the pull-down process 

of the cabin temperature finishes and the AC load reaches a balance with the rest of the 

loads. Then, the absolute AC load value gradually decreases since no more temperature 

pull-down is required and the contribution of the direct radiation load as a positive heat 

gain is decreasing as well. 

 

Figure  2-6: Simulated thermal load categories for driving scenario 1. Reprinted 
with permission from SAE International [12]. 

Stegou-Sagia et al. [85] showed that there is room for saving AC energy in 

residential areas by using carefully selected glazing material. For a vehicle cabin, a 

predictive algorithm can be implemented in the vehicle AC controller to calculate the 
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loads in real-time. When the thermal loads are being estimated, the decision to decrease 

glazing transmissivity can be made and the cabin can be cooled down intelligently by 

keeping the radiation load from entering the cabin. 

Figure  2-7 shows the advantage of using glazing transmissivity control on the 

vehicle glass within the accepted range of driving safety. The same driving condition is 

assumed, but with different glass transmissivity constants. Figure  2-7 reveals that by 

decreasing transmissivity from 0.8 to 0.5, the required AC power consumption can be 

reduced by up to 30%. This shows that, in a hot and sunny ambient condition, much of 

the AC fuel consumption can be saved by using an intelligent glazing system. In a cold 

and sunny weather condition, where the cabin should be heated up, solar radiation helps 

the AC loads. In that case, the AC controller should intelligently decide to increase 

glazing transmissivity, so the heating energy consumption is minimized by taking 

advantage of the free solar energy. 

 

Figure  2-7: The required air conditioning load for maintaining comfort in driving 
scenario 1 with different glazing transmissivity values. Reprinted 
with permission from SAE International [12]. 
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Driving Scenario 2 

Table  2-3 lists the specifications for driving scenario 2. Also in this scenario, it is 

not suitable to use cold ambient air for ventilation when heating is required. A small 

ventilation flow rate is thus assumed to supply the minimum fresh air requirement and 

leakages identified in the ventilation load model described above. 

Table  2-3: Specifications for the second simulated driving condition. Reprinted 
with permission from SAE International [12]. 

Specification Value 

Date January 8, 2012 

Local Time 4:00 to 7:00 

Location Toronto, Ontario 

Driver Height, Weight ,  

Passenger Height, Weight No Passenger 

Ventilation Flow   

Ground Reflectivity  

Ambient Temperature  

Initial Cabin Temperature  

Ambient Relative Humidity  

Cabin Relative Humidity  

Comfort Temperature  

Pull-Down Time  

Deep Thermal Mass  

In this driving scenario the vehicle is assumed to be driving approximately east. 

Figure  2-8 shows the random changes in the vehicle direction used as the simulation 

input. Figure  2-9 shows the variation of the cabin air temperature and net cabin load for 

driving scenario 2. In this driving scenario, the initial cabin temperature is below the 

comfort level of 23C . In this cold scenario, a positive net cabin load is provided to the 

cabin in order to increase its temperature up to the comfort level. After 10 minutes, the 

net heat load reaches zero, which means a balance has been reached between the AC 

load and the rest of the load categories. After that time, the cabin temperature is 

maintained at the comfort level. 

1.8 m 76 kg

30.01 m s  21.2 CFM

0.2

3.5 C

3C

85%

60%

23C
600 s

5600 J K
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Figure  2-8: Driving direction for the simulated driving scenario 2. The directions 
are measured counter-clockwise from east. Reprinted with 
permission from SAE International [12]. 

Figure  2-10 compares the contribution of each load category during the 

simulation period. Negative and positive loads are cabin heat losses and gains, 

respectively. In this driving scenario, the simulation period is before the local sunrise and 

thus, there is no contribution by the direct, diffuse, or reflected radiations. Also, the 

engine and exhaust loads are negligible as discussed in driving scenario 1. 
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Figure  2-9: Total load and cabin temperature for the first half hour of driving 
scenario 2. Reprinted with permission from SAE International [12]. 

Due to the cold ambient temperature of driving scenario 2, the ventilation and 

ambient loads have negative contributions to the cabin loads. This means that the cabin 

loses heat to the ambient air through these mechanisms. The positive metabolic load is 

not able to provide enough heat to keep the cabin temperature at the comfort level. 

Thus, a positive AC load of about  is required to maintain the comfort level. 

As observed here, ventilation is causing a heat loss of more than 500W  from the 

cabin in these cold conditions. This is definitely undesirable in terms of thermal comfort, 

but may be unavoidable due to leakages, fresh air requirements, or defogging. 

600 W

Time of Day (t [h])

T
ot

al
L

oa
d

[W
]

C
ab

in
T

em
pe

ra
tu

re
(T

a
[°

C
])

4 4.1 4.2 4.3 4.4 4.5
-200

0

200

400

600

800

1000

1200

5

10

15

20

25

Cabin Temperature
Net Cabin Load



 

38 

 

Figure  2-10: Simulated thermal load categories for driving scenario 2. Reprinted 
with permission from SAE International [12]. 

2.1.3. Conclusions 

In this section, the heat balance method was applied to a vehicle cabin to model 

the various heating and cooling loads transferred to the cabin via radiation, convection, 

and conduction. Mathematical models of the heat transfer phenomena were used to 

calculate the different load categories. 

A comprehensive heat balance model was developed for usage in mobile air 

conditioning design. Mathematical load calculation models were devised and collected 

from various sources in the literature to create a comprehensive stand-alone model of 

load estimation. Quasi-steady-state and lumped-body assumptions were made and a 

constant time-stepping was performed by the computer simulation code. To perform 

case studies, specific material properties and the simplified geometry of a hybrid electric 

vehicle were considered. Two different scenarios were simulated to find the contribution 

of each load category to the overall heat gain. A standard driving cycle was applied in 
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the simulations for two different North American cities and the results were compared. 

Simulations of different driving scenarios showed that some load categories such as the 

engine, exhaust, and reflected radiation are often negligible, while others such as the 

ambient or ventilation load can play important roles in the variation of the cabin 

temperature. 

The developed algorithm for load calculations in vehicles can be implemented in 

controllers to provide accurate feedback information. The knowledge of upcoming load 

variation patterns gives the controller the ability to adapt the system to future conditions. 

This adaption can lead to considerable improvements in the system’s overall energy 

efficiency. 

2.2. Walk-In Freezer Experimental Setup 

In order to validate and implement the developed models of this thesis, an actual 

working freezer room was selected for experimental data collection. Since the selected 

setup is an actual working freezer, it was considered as a realistic testbed for validation 

and implementation of the models. 

A freezer room of a restaurant in Surrey, British Columbia, Canada was studied 

during more than 5 months of normal operation. Figure  2-11 shows an inside view of the 

walk-in freezer as well as its schematic with inside dimensions. Information about the 

room dimensions, insulation properties, and stored products were carefully gathered for 

validating the models developed in this study and are listed in Table  2-4. 
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Figure  2-11: (a) Walk-in freezer room. (b) Freezer schematic with inner room 
dimensions. The front wall, left wall, and roof are omitted for clarity. 
Reprinted with permission [54], [65]. 

The freezer temperature was measured over time using two different types of 

wireless temperature data loggers. For some measurements, high-accuracy temperature 

sensors (LOG-HC2-RC-US, Rotronic) with measurement accuracy of 0.1 C  were 

installed in the freezer. For most measurements, low-accuracy temperature sensors 

(Track-It, Monarch Instruments) with measurement accuracy of 1.0 C  were installed in 

several random locations on the freezer shelves. 

It was observed that a non-uniformity of less than 2.5 C  existed inside the 

room. Thus, either the measurements of one temperature sensor or the average of all 

sensors was assumed as the room bulk temperature. 

Table  2-4 shows the dimensional, material, and thermal properties of the freezer 

room. Convection heat transfer coefficients were estimated using correlations from 

ASHRAE [9] for turbulent natural convection on the vertical and horizontal walls of the 

room. The ASHRAE coefficient of natural convection for air over a vertical wall is 

calculated from 
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  (2-27) 

where  is the wall height,  is the air temperature, and  is the wall surface 

temperature. The coefficient of natural convection for air over a horizontal surface is 

calculated from 

  (2-28) 

where  is the gravitational constant,  is the volumetric coefficient of thermal 

expansion,  is the air density,  is the air thermal conductivity,  is the air specific 

heat,  is the wall perimeter,  is the air dynamic viscosity, and  is the wall surface 

area.  for a cold surface facing down and  for a cold surface facing up. 

Table  2-4: Dimensional, material, and thermal properties of the freezer room. Refer 
to Fig.  2-11 for wall locations. Reprinted with permission [54], [65]. 

Quantity Units 
Wall No. 

1 2 3 4 5 6 
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ft 
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Outside convection coefficient,   2.8 2.8 2.8 2.8 0.6 3.1 

Inside convection coefficient,   2.8 2.8 2.8 2.8 0.6 3.1 

Total wall thickness,   110 

Insulation material - Polyurethane foam 

Wall thermal conductivity,   0.05 

Wall density,   22 

Wall specific heat,   2.6 
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The measured freezer room temperature for a period of 7 days is shown in 

Fig.  2-12. The freezer room is controlled by an on/off controller based on a pair of 

temperature set points, a low set point and a high set point. Consequently, the system 

produces cooling until the room temperature reaches the low temperature set point. 

Once the minimum temperature is reached, the thermostat shuts the refrigeration unit 

down. At this point, the decrease of the room temperature stops and the temperature 

begins to increase as a result of heat gains. Consequently, the temperature increases 

until it reaches the high temperature set point. Once the high set point is reached, the 

thermostat triggers the refrigeration unit to switch back on. The low and high 

temperature set points are settings of the room thermostat and they can also be inferred 

from the temperature measurements. By using the measured temperature at a location 

other than the thermostat, there can be a discrepancy between the actual thermostat set 

points and the apparent set points observed from the measurements. This is due to the 

temperature non-uniformity within the freezer, and, as a result, the set points may seem 

to vary. To keep the approach general for systems with the least available information, 

the apparent set points observed in the temperature data are used herein. 

Investigating the temperature graph shown in Fig.  2-12, three patterns are 

noticeable: temperature swings, defrost cycles, and door openings. 

Temperature Swings 

Temperature oscillations or swings occur mainly due to the starts and stops of 

the refrigeration unit. The period of these oscillations in the freezer room is observed as 

approximately 20 minutes. Arrows point to regions with temperature swings in Fig.  2-12. 

Defrosts Cycles 

Rapid temperature increases are noticeable in some areas of Fig.  2-12. They are 

due to the occurrence of defrost cycles in the freezer. Defrosting is a process that melts 

the frost away from evaporator coils and is unavoidable for most systems. The defrost 

system can work either by heating the evaporator coils or turning off the system [86]. An 

automatic defrost system exists in the freezer room, which kicks in every 6 hours and 

heats up the evaporator coils to melt the frost. The defrost events, even though a 
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necessity, impose a huge amount of heat load on the freezer room, as seen by the sharp 

temperature increases in Fig.  2-12. 

Door Openings 

Also visible in the data are times when the freezer room door was open for 

significant periods of time. In Fig.  2-12, they are denoted by irregular and random-

looking variations in the room temperature. Since the temperature is mostly above the 

set points, the condensing unit is constantly on during these periods. Door openings 

depend on the freezer usage pattern and are demarcated using brackets in Fig.  2-12. It 

is observed in Fig.  2-12 that the irregularities in the temperature pattern mostly occur 

during daytimes of the first 4 days of measurements, while the next 3 days mostly show 

swinging regimes and defrost spikes. It can be concluded that door openings and 

loading/unloading of goods in the freezer room considerably contribute to changes in the 

heat gain. 
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Figure  2-12: Average temperature in the freezer room. Arrows point to regions 
with noticeable temperature swings between the low and high set 
points. Brackets show door opening instances. Circles denote 
temperature spikes due to defrosts. Reprinted with permission [65]. 

The experimental study presented above is used as the basis for validating and 

analyzing the models proposed in the following sections. 

2.3. Resistance-Capacitance (RC) Modeling 

Resistance-Capacitance (RC) modeling is a well-established concept used in 

heat transfer problems. In this section, an RC circuit representation of the freezer room 

of Section  2.2 is developed to simulate the thermal behavior of the room. Using the RC 

model, a parametric study is performed on various properties of the system. The effect 

of set points on the number of compressor starts per hour is also studied. The proposed 

technique provides an effective tool for facilitating the thermal modeling of air 

conditioned and refrigerated rooms. Using this approach, engineering calculations of 

cooling load can be performed with outstanding simplicity and accuracy. 
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2.3.1. Model Development 

A lumped thermal model is developed based on the heat balance method applied 

to the freezer room of Section  2.2. The thermal model and its equivalent RC circuit are 

described in the following. The effectiveness of the RC modeling approach for simulating 

the thermal loads is presented through this study. 

Thermal model 

Following ASHRAE [9], the general equation of heat balance for the room 

temperature is 

  (2-29) 

where M  is the room thermal inertia, aT  is the average room temperature, t  is time, cQ  

is the cooling power provided by the refrigeration system, and hQ  is the room heat gain. 

In general, the heat gain may consist of different components as follows: 

• Direct heat gain: from electric equipment, human metabolic load, etc. 

• Ambient heat gain: from heat transfer across walls 

• Ventilation heat gain: from infiltration/exfiltration of room air 

• Solar heat gain: from solar radiation on walls 

The summation of the above heat gains equals the total heat gain. The instantaneous 

cooling power  depends on various characteristics of the cooling cycle as well as the 

room. Assuming the ambient heat gain as the only available mechanism, the total heat 

gain is the summation of heat transfer across all walls: 

  (2-30) 

where  is the heat transfer rate across each wall. Applying the heat balance method, 

the heat flow across a wall crosses an outside convection resistance, a wall conduction 

resistance-capacitance, and an inside convection resistance. Thus, the following 

relationships hold: 

   a
c h

dT
Q Q M
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h w
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  (2-31) 

where  and  are the outside and inside convection coefficients, respectively.  is 

the wall surface area,  is the wall thermal conductivity,  is the wall thickness,  is 

the wall density, and  is the wall specific heat.  and  are the outside and inside 

temperatures, respectively.  and  are the temperatures on the outside and inside 

wall surfaces, respectively. 

Thermal convection and conduction resistances are defined as  and 

, respectively. Thermal inertia is defined as  where  is mass and  

is specific heat. Specifically, thermal inertia is defined as  for the walls. 

Using these conventions, Eq. (2-31) is rewritten as: 

  (2-32) 

Equation (2-29) should be solved for the heat balance analysis of the room using 

Eqs. (2-30) and (2-32) for the calculation of heat gains. The solution process is facilitated 

by considering the identical electric circuit described in the following. 

RC Model 

Simulating a thermal system using an RC model involves finding its equivalent 

electric circuit. Once the circuit is set up, the values of its components are found 

according to their corresponding thermal quantities. The temperature (T ) in a thermal 

system is equivalent to the voltage (V ) in an electric system while the heat flow rate ( Q ) 

is the equivalent of the current ( I ). The thermal resistances ( hR  and kR ) are equivalent 

to the electric resistance ( R ) and the thermal inertia ( M ) is equivalent to the electric 

capacitance ( C ). By appropriate selection of parameters, the governing equations of 

both thermal and electric systems are the same. Thus, the solution to the electric circuit 

is the same as the solution to its identical thermal problem. Using the following identities: 
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  (2-33) 

  (2-34) 

we obtain the following equation: 

  (2-35) 

Equation (2-35) is the governing equation of the circuit shown in Fig.  2-13. Thus, 

Fig.  2-13 shows the equivalent electric circuit of a wall in a thermal system. 

 

Figure  2-13: Analogous electric circuit of a wall heat balance using RC modeling. 
Reprinted with permission [54]. 

The sub-circuit shown in Fig.  2-13 is a 3R1C representation of a wall. In this 

work, a 1C model is considered for the room air. Hence, the aggregate of the room air 

and the products stored in it are assumed to have a bulk thermal inertia represented by 

an analogous capacitance. 

As demonstrated here, the methodology associated with RC modeling is general 

and can be applied to a wide range of HVAC-R applications. Once the RC network of a 

specific application is generated, it can be easily used for design, retrofit analysis, and 

parametric studies of the thermal system, with considerable ease and accuracy. In the 

following section, a case study is performed on a refrigeration application and the RC 

modeling results are compared with experimental measurements. 
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2.3.2. Results and Discussion 

The proposed RC modeling technique is demonstrated based on experiments on 

the walk-in freezer room of Section  2.2. In this study, the focus is on the temperature 

swings of the freezer and a model is developed for cooling load simulation during these 

periods. The studied freezer is indoors and there is negligible solar radiation on it. There 

is no significant source of direct heat in the room and human metabolic load is only 

imposed to the system during door openings. During temperature swings, the freezer 

door is closed and the amount of infiltration/exfiltration of air is negligible. Hence, the 

only available heat source in the studied time periods is the ambient heat gain, which is 

in compliance with the assumption made in the model development. Other heat gain 

mechanisms can later be added to the model in order to include the door opening and 

defrost loads. 

An RC model of the freezer room is prepared as demonstrated in Fig.  2-14. 

Figure  2-14 also shows the value of the circuit components according to their definitions 

and the properties presented in Table  2-4. In the main body of the circuit, 6 parallel wall 

blocks (Fig.  2-13) are considered. Each of the 6 wall branches in the circuit represents 

one of the freezer walls. In series to the 6-layer block, a capacitor  is inserted that 

represents the overall thermal inertia  of the air and products in the freezer. 

C

M



 

49 

 

Figure  2-14: RC model of the refrigeration system. 3R1C and 1C models are used 
for the walls and the room, respectively. Reprinted with permission 
[54]. 

The room air and its products have an estimated overall thermal inertia of 

. This value is calculated based on the controlled quantity of the products left 

in the freezer during the experiments pertaining to this model. By multiplying the mass of 

each product by its estimated specific heat and summing up all of the freezer contents, 

the total thermal inertia is estimated. The thermal inertia of the room envelope is not 

included in this value, since it is considered in the corresponding wall capacitors. 
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Assuming a combined mass of  for the miscellaneous objects including the 

evaporator coils and shelves, and using an average specific heat of  for the 

metallic components, the total miscellaneous thermal inertia is calculated as . 

The voltage difference between the two sides of the capacitor  represents the 

difference between the freezer and ambient temperatures. According to the 

measurements, the ambient temperature is kept at a value of  during the period 

under consideration. This value is added to the aforementioned temperature difference 

in the circuit. According to the manufacturer information and analysis of the refrigeration 

unit, it is estimated that the refrigeration cycle provides an average amount of  

cooling capacity to the room when the temperature is near the set point values. 

Because of the mostly uniform temperature inside the freezer, the temperature 

measurements of one of the sensors are assumed as the room bulk temperature. 

Therefore, the apparent low and high set points are deduced based on the 

measurements at that sensor’s location. Based on the measurements, the low set point 

is perceived as , while the high set point is found approximately equal to 

. 

Between the 6 parallel RC blocks, a current source that represents the cooling 

load provided by the refrigeration system is inserted. Since the cooling load does not 

cross any wall and is directly transferred to the room, this heat source is implemented 

parallel to the walls. The current direction is shown towards the room. Therefore, a 

negative cooling load is considered for this source. 

In this study, the ventilation load due to door openings is not considered. In a 

future study, further information on the occurrence of door openings and their duration 

can be incorporated in the model. Those data can be inserted in appropriate correlations 

to find the total ventilation heat gain imposed to the system in each door opening 

occurrence. Furthermore, the radiation loads can also be incorporated in the model as 

another mode of heat gain into the room. In that case, the ventilation and radiation heat 

gains can be simply added to the “current source” included in the middle of the RC 

model of Fig.  2-14. 
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The operational logic of the cooling cycle is implemented in the RC model shown 

on the top part of Fig.  2-14. MATLAB Simulink [87] is used to implement and solve the 

RC model. The transient solution is solved using the software and the results are 

compared to measured freezer temperatures. 

The transient solution of the RC model shown in Fig.  2-14 is compared to the 

temperature measurements inside the freezer room. Figure  2-15 shows a comparison 

between the present model and the measured temperature during 200 minutes of the 

freezer operation. During the simulated period of Fig.  2-15, the freezer door is not open 

and the temperature is already within the range of the set points. This condition covers 

most of the service period of many refrigeration rooms. 

 

Figure  2-15: RC model results compared to the measured freezer temperature 
during 200 minutes of its operation. A maximum discrepancy of less 
than  between the measurements and the RC model is observed. 
Reprinted with permission [54]. 

The uncertainty of the experimental results shown in Fig.  2-15 is less than  
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US, Rotronic). The maximum discrepancy between the measurements and the RC 

model is less than . Therefore, the RC model shows a good agreement with the 

freezer temperature measurements. 

Degradation of thermal insulation materials is a serious issue in long-term 

applications. Polyurethane insulators are prone to degradation, which decreases their 

thermal resistivity over time. The present model is used to study the effect of thermal 

degradation on the overall energy consumption of the freezer. Figure  2-16 shows the 

freezer temperature during 40 minutes of its operation. The walls thermal conductivity is 

varied from  to . As demonstrated in Fig.  2-16, an instant 

of temperature swing can be divided into a heat-gain portion when the temperature 

increases due to heat gains and a pull-down portion when the temperature decreases 

due to the cooling system’s operation. During the heat-gain period, the cooling cycle is 

off and it consumes no energy. On the other hand, during the pull-down period, the 

cooling cycle is on and provides a cooling load of  to the freezer. The ratio of 

the pull-down time to the total swing time is defined as: 

  (2-36) 

where  is the pull-down time ratio. The swing time is defined as the total time between 

two consecutive low set points in the temperature diagram, as indicated in Fig.  2-16. The 

cooling time ratio  represents the portion of time that the refrigeration cycle is on and 

produces cooling effect. By multiplying the cooling time ratio by the instantaneous 

cooling load, the net cooling effect  is calculated as: 

  (2-37) 

The net cooling effect  is the average cooling power provided by the refrigeration 

cycle during temperature swings. Since the overall power consumption of the cooling 

cycle is directly proportional to the provided net cooling effect, higher values of  

result in higher energy consumption by the entire system. 
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Figure  2-16: Effect of wall thermal conductivity ( ) degradation on temperature 
swings in the freezer room. Reprinted with permission [54]. 

Table  2-5 shows the cooling time ratio ( r ) for different wall conductivities ( k ) 

and their corresponding net cooling effects ( NetQ ). The power consumption increase in 

Table  2-5 shows the percentage of increase in the average refrigeration power due to 

insulation degradation compared to the current condition, i.e., walls with 0.05k W m C  . 

As shown in Table  2-5, a reduction of 20% in the walls’ thermal resistivity from the 

current value can increase the energy consumption rate by 14.87%. When the walls 

thermal resistivity reduces to half, a considerable power consumption increase of 

57.05% is expected. Thus, there is a tremendous opportunity in replacing the wall 

insulation regularly and the insulation cost can be paid off by the decrease in wasted 

energy during freezer operation. The RC model is beneficial for estimating the power 

loss which can be used as a criterion for the timing of insulation renewals. 
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Table  2-5: Comparison of the required net cooling effect for different freezer wall 
thermal conductivity values. Reprinted with permission [54]. 

Wall Thermal 
Conductivity 

 

Pull-Down 
Time Ratio 

 

Net Cooling 
Effect 

 

Power Consumption 
Increase 

 

0.05 0.48 457 0 

0.06 0.55 525 15 

0.07 0.61 576 26 

0.08 0.66 628 37 

0.09 0.71 674 48 

0.10 0.76 717 57 

Figure  2-17 shows the effect of different set point values on the temperature 

swing pattern of the freezer during 40 minutes of its operation. When the set points are 

narrow, i.e., the values of the high and low set points are close to each other, the 

frequency of the oscillations is high and the swing time is low. As shown in Fig.  2-17, 3 

different set point pairs are studied. All set point pairs are mirrored around the same 

average temperature, 13.35 aT C . The swing time is again defined as the total time 

between two consecutive low set points in the temperature diagram. The maximum 

temperature deviation for each set point pair is defined as the absolute difference 

between the average temperature and the high or low set point. 

 k W m C r  
NetQ W  %
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Figure  2-17: Effect of set points on temperature swings in the freezer room. 
Reprinted with permission [54]. 

Table  2-6 demonstrates a comparison of the swing time for different set points. 

The maximum temperature deviation is also shown in Table  2-6. Generally, it is required 

that the product temperatures remain constant at the design level and deviations from 

the average value are not desirable. To achieve lower temperature deviations, narrower 

set point pairs can be implemented in the freezer thermostats and the products will 

experience less temperature variation as a result. A drawback of using narrow set point 

pairs is that the swing time decreases as well. This results in an increased number of 

compressor starts per hour. Compressor manufacturers normally recommend a limited 

number of starts per hour to assure proper operation during the designed lifetime of the 

compressor. Furthermore, compressors draw a high amount of energy at every start-up. 

This increased power draw also increases the overall power consumption of the 

refrigeration system. Thus, it is required to keep the number of compressor starts within 

a certain limit. 
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Table  2-6 shows that by changing the set points, the maximum temperature 

deviation can be reduced to 0.3 C , but the swing time would decrease to 2.59 minutes 

and an average of 24 compressor starts per hour would be required. Nevertheless, the 

system can be allowed to have 14 compressor starts per hour to provide a maximum 

temperature deviation of less than 1 C . The RC model can be an advantageous tool for 

predicting the temperature variation pattern for various set point pairs and helps estimate 

the trade-off between the maximum temperature deviation and the number of 

compressor starts per hour. 

Table  2-6: Comparison of swing time and temperature deviation for various set 
points. Reprinted with permission [54]. 

Low/High Temperature 
Set Points 

 

Swing Time 

 

Compressor 
Starts per Hour 

 

Maximum Temperature 
Deviation 

 

-13.5 / -13.2 2.59 23.17 0.3 

-14.3 / -12.4 13.5 4.44 0.95 

-15.3 / -11.4 27.86 2.15 1.95 

2.3.3. Conclusions 

In this section, an RC model was developed that used a representative network 

of electric resistors and capacitors to accurately simulate the thermal behavior of HVAC-

R systems in real-time. The freezer room of Section  2.2 was used as the validation 

testbed. Corresponding thermal parameters were introduced and combined to design 

the analogous RC circuit. The model was validated by actual freezer temperature 

measurements. The present RC model has the following features: 

• Real-time simulation capability 

• Unsophisticated mathematical algorithms 

• One RC circuit for an entire system 

• Validated with experimental data 

• Usable for retrofit analysis 

The proposed RC model proved to be an effective tool for facilitating thermal 

modeling as well as acquiring accurate predictions of the system behavior in real-time. 

 C  min  1 h  C
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The room heat gain was estimated using the model. A parametric study was performed 

on the effect of insulation degradation on the net power consumption by the refrigeration 

cycle. It was shown that 20% degradation of the insulation can result in around 15% of 

increase in the net power consumption by the cooling cycle. The effect of set points on 

the number of compressor starts per hour was also studied and it was shown that 

narrow set points can result in a steady temperature pattern in exchange for a high 

number of compressor starts per hour. Using the RC modeling methodology, 

engineering calculations of cooling load in HVAC-R applications can be performed with 

outstanding simplicity and accuracy. 
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Chapter 3. Data-Driven Methods 

Conventional methods of thermal load calculation and control have pushed 

engineering designs forward for the best part of the last century. However, as 

inexpensive sensors and on-site computational resources are becoming available in 

recent years, more innovative methods are being put in to practice for overcoming the 

difficulties associated with the conventional methods. An important category of such 

innovative methods is called data-driven methods. These models acquire the system’s 

operational data by various sensors and provide thermal load and comfort calculations 

accordingly. Intuitively, since real-time data are fed to such algorithms, they are able to 

provide more reliable estimations compared with law-driven calculations that are 

performed before the system’s design and installation. Using such data-driven methods, 

the overall energy efficiency of air conditioning and refrigeration systems can be 

improved while the same level of thermal comfort is provided. 

In this chapter, a method is proposed for real-time estimation of a room’s thermal 

inertia and heat gain. Furthermore, a detailed thermal analysis of the room with an 

increased number of sensors is considered and a method is proposed for automatic 

estimation of wall heat transfer coefficients. Finally, the opportunities for increasing the 

energy efficiency of conventional on/off controllers, by merely changing the high and low 

set points to optimized values, are investigated. The technologies developed in this 

chapter can be used to intelligently acquire real-time thermal load estimations and 

improve the overall energy efficiency of HVAC-R systems accordingly. 

3.1. Thermal Inertia and Heat Gain Calculation 

In this section, an inverse method is proposed for acquiring an estimation of 

thermal inertia and heat gains in air conditioned and refrigerated systems. The 

developed model is validated by measurements in a freezer room. The simplicity of the 
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model together with its small number of required sensors is a major advantage of the 

proposed method for adoption in novel air conditioning and refrigeration systems. 

3.1.1. Model Development 

A lumped thermal model of the freezer room of Section  2.2 is used to develop an 

inverse model for estimating the thermal inertia and heat gain. Following a data-driven 

approach, the freezer room is assumed to be a black box about which little information is 

available. In contrast to forward approaches, the objective in an inverse method is to 

determine the thermal characteristics of the freezer room based on available 

experimental data. A lumped or zero-dimensional thermal model can be described by 

two characteristics of the freezer enclosure: 1) total thermal inertia, and 2) total 

instantaneous heat gain. The net thermal energy transferred to the room contributes to 

its temperature variation. Therefore, the cooling load provided by the refrigeration 

system satisfies the following heat balance equation: 

  (3-1) 

where  is the instantaneous total heat gain,  is the instantaneous cooling load 

provided by the refrigeration unit,  is the overall thermal inertia of the freezer room,  

is the average room temperature, and  is time. 

If a forward method were to be adopted for calculating the thermal inertia M  and 

overall heat gain hQ , detailed information of the room and stored goods would be 

required. On the other hand, in the inverse method an estimation of these two 

parameters is made based on measurements of the room temperature and an analysis 

of the refrigeration system’s performance. Figure  3-1 summarizes the steps of the 

proposed analysis approach from data collection to the estimation of instantaneous 

thermal inertia and total heat gain. 

   a
c h

dT
Q Q M

dt


hQ 

cQ

M aT

t
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Figure  3-1: Summarized algorithm of the proposed inverse method for calculation 
of thermal inertia and heat gains. Reprinted with permission [65]. 

In the first step, the room temperature is measured. Averaging and noise in 

temperature measurements can lead to a non-smooth temperature variation pattern. To 

ensure robust computations, it is important to first smooth the temperature fluctuations. 

Many noise reduction and smoothing algorithms are available in the literature. In this 

work, weighted averaging techniques similar to the one used in smoothed particle 

hydrodynamics [88] are used. The same technique is used to calculate the time 

derivative of the average temperature. The smoothing process may create inaccuracies, 

but is necessary for future steps where calculation of time derivatives is needed. 

Figure  3-2 shows the smoothed temperature as well as its calculated time derivative for 

a sample piece of data. 
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Figure  3-2: An instance of the smoothing process applied on raw temperature 
measurements and the calculated temperature derivative. Reprinted 
with permission [65]. 

Figure  3-3 shows a zoomed view of temperature swings as described in 

Section  2.2. One of the temperature sensors (Track-It, Monarch Instruments) installed in 

the freezer is arbitrarily selected to represent the room bulk temperature. The apparent 

low and high temperature set points at the selected sensor are identified from Fig.  3-3 to 

be  and , respectively. 15.1 C 13.8 C
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Figure  3-3: Sample temperature swings between low and high set points. 
Apparent low and high temperature set points are identified as

 and , respectively. Reprinted with permission [65]. 

A numerical algorithm is developed that sweeps the data to find the time steps 

where the temperature derivative approaches zero. These time steps signify a change in 

the increasing or decreasing trend of the smoothed temperature. Once these extrema 

are found, the algorithm divides the temperature diagram into the “pieces” which fall 

between them. The temperature within each piece is either monotonically increasing or 

decreasing. Figure  3-4 shows a few of these data pieces identified by the algorithm. In 

order to present the piece-identification process more clearly, an exponential curve fit is 

provided over each of the pieces shown in Fig. 3-4. The specific period shown in Fig. 3-4 

contains 16 pieces outlined by exponential correlations. The pieces can be categorized 

into the following pull-down processes and heat-gain processes. 

Pull-Down Process 

The data pieces where the temperature is decreasing are called pull-down 

processes. During pull-down processes, cooling is provided by the refrigeration cycle to 
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compensate for the instantaneous heat gains and the thermal inertia of the freezer room. 

Therefore, the room temperature is pulled down. 

Heat-Gain Process 

The data pieces in which temperature is increasing are called heat-gain 

processes. Note that during a heat-gain period, the refrigeration cycle can be on or off 

depending on the room temperature compared to the set points. During this process, the 

heat gain surpasses the potential cooling provided by the refrigeration unit, which in turn 

results in an increase in the average room temperature. 

 

Figure  3-4: Sample temperature diagram demonstrating the pull-down and heat-
gain processes. The data are divided into pieces as demonstrated 
by piecewise correlations. The correlations are selected to have 
exponential form. Reprinted with permission [65]. 

Considering a consecutive pair of heat-gain and pull-down processes within a 

temperature swinging period, the heat balance in Eq. (3-1) for the heat-gain process can 

be simplified to: 
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  (3-2) 

In this condition, the refrigeration unit does not provide any cooling effect during the 

heat-gain period. Meanwhile, during the pull-down processes of the swinging regimes, 

cooling load is also provided to the freezer room. Therefore, the heat balance equation 

for any pull-down process takes the following form: 

  (3-3) 

where  has a negative value for cooling. Averaging over the time period of each piece, 

the time derivative  of Eq. (3-1) is replaced by  in Eqs. (3-2) and (3-3). 

Thus, a constant overall heat gain value can be calculated by simultaneously solving 

Eqs. (3-2) and (3-3).  and  are the bulk changes in temperature 

and time during the process, respectively. Based on the definition, it is evident that 

 for heat-gain processes and  for pull-down processes. 

Considering that the swings occur mostly at times when there is no change in the 

freezer room constituents (usually during nights when the door is shut and no goods are 

loaded or unloaded), it can be assumed that the thermal inertia of the system remains 

constant during the two consecutive heat-gain and pull-down processes. Since the door 

remains shut, the ventilation load is negligible during swinging regimes. The variation of 

temperature difference between the freezer room and the ambient air is also negligible, 

since both the inside and outside temperatures are almost constant. This results in a 

relatively constant heat gain due to direct and ambient heat loads. Therefore, it can be 

reasonably assumed that the heat gain is constant between every two consecutive heat-

gain and pull-down processes of a swing. Thus, knowing the cooling effect provided by 

the refrigeration system, one can solve Eqs. (3-2) and (3-3) to arrive at the following 

relationship for the lumped thermal inertia of the freezer room: 
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  (3-4) 

Once the thermal inertia is known for a specific time, it is further used to find the 

average heat gain using Eq. (3-2) for heat-gain processes and Eq. (3-3) for pull-down 

processes. 

The data required for the proposed inverse method only includes the real-time 

temperature measurements and the instantaneous cooling power provided by the 

refrigeration system. As it was discussed in the previous chapter, law-driven methods 

require much more information including wall thickness, material properties, and room 

thermal capacity. Therefore, the inverse approach is stronger for retrofit applications 

where little information may be available from the system. 

3.1.2. Results and Discussion 

The analysis approach and the temperature data shown in Fig.  2-12 are 

implemented in a computer program to calculate the thermal inertia and heat gain. The 

algorithm detects periods of temperature swings. Once these periods are identified, the 

algorithm calculates the room thermal inertia. 

In order to use Eq. (3-4), it is necessary to know the cooling load  provided by 

the evaporator. In general, the provided cooling load varies with both the evaporator and 

condenser coil temperatures. Nevertheless, Eq. (3-4) is only applied during temperature 

swings when the evaporating temperature is swinging within a narrow range between 

the set points. As a result, whenever the value of  is used in the present method, it 

merely represents the average cooling capacity of the system operating between the 

high and low set points. 

Jabardo et al. [89] and Wang et al. [90] showed that the cooling capacity varies 

by less than 5% from 1 C  of evaporating temperature increase. Both studies show the 

same behavior for the dependence of the cooling capacity on the condensing 

temperature. Thus, although the cooling capacity is a function of the evaporating and 
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condensing temperatures, the variation can be neglected for small changes in those 

temperatures. 

Based on on-site measurements, the approximate cooling capacity provided by 

the studied refrigeration cycle is  while the freezer temperature is swinging 

within the high and low set points. The negative sign shows the direction of heat transfer 

from the room to the ambient air. 

To verify the assumption of constant cooling load, further measurements are 

performed on the studied refrigeration cycle. Figure  3-5 shows the air temperature at the 

inlet and outlet of the evaporator fan as measured by T-type thermocouples (5SRTC-TT-

T-30-36, OMEGA®) during the same period of study. The thermocouples have an 

accuracy of 1 C   and are installed at the inlet and outlet of the evaporator fan. 

Figure  3-5 shows the measured evaporator temperatures for an arbitrary instance of the 

swings demonstrated in Fig. 3-3. When the cooling system is turned off, the inlet and 

outlet evaporator temperatures are almost equal and a heat-gain process occurs. During 

the pull-down processes, on the other hand, there is almost a constant gap between the 

temperatures, which hints at an almost constant cooling load. 

950 
cQ W
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Figure  3-5: Air temperatures at the inlet and outlet of the evaporator during an 
instance of temperature swing between the high and low set points. 
Reprinted with permission [65]. 

The volumetric flow rate of the evaporator fan is measured to be , which 

is equivalent to a mass flow rate of  in the corresponding temperature range 

shown in 3-5. The sensible cooling capacity is thus calculated as: 

  (3-5) 

where  is the cooling air mass flow rate,  is the cooling air specific heat,  is the 

evaporator outlet air temperature, and  is the evaporator inlet air temperature. 

Figure  3-6 shows the cooling capacity calculated based on the data shown in Fig. 

Figure  3-5 and Eq. (3-5). As observed in Fig.  3-6, the cooling capacity is negligible 

during the heat-gain processes. But during the pull-down processes, the cooling capacity 

oscillates around a constant value of about . The cooling capacity in Fig.  3-6 
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does not show a significant trend or variation during the swing regime. Accordingly, the 

excessive calculations and measurements required for the instantaneous cooling load 

can be avoided and a constant cooling capacity can be used in relevant applications of 

the proposed method without remarkable loss of accuracy. The same assumption is 

used in the rest of this study. 

 

Figure  3-6: Cooling power provided by the refrigeration system during an instance 
of temperature swing between the high and low set points. 
Reprinted with permission [65]. 

Figure  3-7 shows the calculation results for the room thermal inertia during the 

period under consideration. Since the freezer is regularly used for storing foodstuff, the 

contents of the room vary during the daytime. It can be inferred from the temperature 

variations of Fig.  3-7 that during daytime the freezer room experiences several events of 

door opening, which results in random temperature values far above the set points. 

Therefore, the swinging heat-gain and pull-down processes, occurring during night 

times, are used to estimate the thermal inertia until the next occurrence of temperature 

swing pattern. 
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Figure  3-7: Thermal inertia calculation results for the freezer room during one 
week of its operation. Reprinted with permission [65]. 

Figure  3-8 shows the estimated heat gain values. The heat gains are calculated 

for every time step based on the thermal inertia information inferred from Fig. 3-7 and 

Eqs. (3-2) and (3-3). For the sake of clarity, only results covering 12 hours of the 

system’s operation are shown in Fig. 3-8. As mentioned in Fig. 2-12, there are 3 distinct 

temperature variation regimes: temperature swings, defrost spikes, and door openings. 

The data shown in Fig. 3-8 are chosen so they contain the 3 different patterns in order to 

show the capability of the present method for handling all of them. 
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Figure  3-8: Heat gain calculation results for the freezer room during half a day of 
its operation. Reprinted with permission [65]. 

It is noticeable in Fig. 3-8 that the defrost events that occur at hours 1 and 7 

impose significant heat loads on the room. The instantaneous heat gain values jump to 

above  during defrosts which result in a quick increase of temperature in the freezer 

room. As previously mentioned, the defrost events are set to automatically occur every 6 

hours with no monitoring and sensing of ice formation on the evaporator coils. 

Nevertheless, previous studies show that there is a considerable energy-saving potential 

in using intelligent defrost units [91]. 

According to Fig. 3-8, during the temperature swings of hour 1 as well as hours 3 

to 7, the heat gain is estimated to be at almost the same level as the cooling power 

provided by the refrigeration cycle. As a result, the temperature is kept at a constant 

average level in a swinging manner. During the defrost spikes of hours 2 and 8, there 

are two distinct heat-gain and pull-down processes. In the heat-gain section of defrost 

events, there is a large  heat load imposed on the freezer from the heater-based 

defrost system. On the other hand, during the pull-down section of defrost events, there 
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is less heat gain imposed on the freezer, since the defrost heater is off. Furthermore, the 

heat gain directly depends on the temperature difference between the freezer air and 

ambient air. At the peak of a defrost spike, the difference between the inside and 

ambient air temperatures is at a minimum. As a result, the amount of heat gain in the 

pull-down section of a defrost event is even less than the steady heat gain of the 

swinging period. 

The door opening event in Fig. 3-8, covering hours 8 to 12, demonstrates 

random variations in the heat gain level. During this time period, several cases occur 

when the restaurant personnel open the freezer door and allow large heat transfers from 

the ambient air into the freezer through a convection mechanism. Nevertheless, 

whenever the door is closed, the temperature decreases and the amount of heat gain is 

also reduced to the levels governed by wall heat fluxes. 

Table  3-1 lists the daily-averaged thermal inertia and heat gain values of the 

freezer room. The present inverse method allows the identification of the usage pattern 

in the freezer room based on temperature measurements. For instance, as listed in 

Table  3-1, some goods are added to the freezer room on day 2 resulting in an increase 

of the overall room thermal inertia by  compared to the previous day. Such 

information that is inferred from temperature measurements can help retrofit existing 

systems in real-time while knowing little else about the freezer. Daily-averaged heat gain 

values are also reported in Table  3-1. It is apparent that relatively higher lumped heat 

gains are encountered during day 4. Consistent with this observation is the fact that in 

Fig. 2-12, many more door opening occurrences were observed in the first 4 days of 

measurements. 

Table  3-1: Calculated daily-averaged thermal inertia and heat gain in the freezer 
room. Reprinted with permission [65]. 

Day 
Daily-Averaged Thermal Inertia 

 

Daily-Averaged Heat Gain 

 

1 519 1872 

2 589 2113 

3 606 2034 

4 599 2041 

5 566 1711 

70 kJ C

 kJ C  W
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6 573 1751 

7 588 1753 

Average 577 1896 

A detailed list of foodstuff stored in the freezer room with their corresponding 

weight and thermal inertia was prepared based on on-site measurements. Existing 

tabulated values in ASHRAE Handbook of Fundamentals [9] are used for calculation of 

thermal inertia. The collected data are used to validate the proposed inverse modeling 

approach. Table  3-2 shows the list of foodstuff stored in the freezer room during day 4. 

The summation of all measured thermal inertia values is considered as the total thermal 

inertia of the freezer room. Due to the demand-based addition and withdrawal of foods, 

the freezer contents have slightly changed during the week of study, but they are kept in 

roughly constant amounts to ensure steady fulfilment of kitchen orders. Thus, although 

these are the values of one sample day, they are also deemed to represent an average 

of the freezer contents for the whole week. 

Both the mass and specific heat of the miscellaneous objects such as the 

evaporator, lights, shelves, and boxes are considerably smaller than those of the 

foodstuff. For instance, the specific heat of carbon steel, aluminum, and copper are 

, , and , respectively. These values are 

considerably smaller than the thermal inertia of white bread and corn which are 

 and , respectively. As a result, the miscellaneous thermal 

inertia can be neglected in many applications without significant loss of accuracy. 

Nonetheless, an estimation of the miscellaneous thermal inertia is calculated and added 

to the measured thermal inertia of the foodstuff in order to improve the validation. 

Assuming a combined mass of  for the miscellaneous objects including the 

evaporator coils and shelf structures, and using an average specific heat of  

for the metallic components, the total miscellaneous thermal inertia is calculated as 

. This value is added to the total freezer thermal inertia in Table  3-2. 

0.49kJ kg C 0.91kJ kg C 0.39kJ kg C

1.65kJ kg C 1.42kJ kg C

100kg

0.6kJ kg C

60kJ C
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Table  3-2: Mass and thermal inertia values of the freezer contents on day 4 of the 
experiments. Reprinted with permission [65]. 

Product 
Mass 

 

Thermal 
Inertia 

 
Product 

Mass 

 

Thermal 
Inertia 

 

Chicken cages 25.00 43.00 White bread 3.80 6.27 

Dry ribs 25.00 38.50 Pesto 3.00 5.64 

Sliced pepperoni 5.00 7.75 Corn 12.00 17.04 

Sockeye 10.00 15.70 Peas 12.00 11.04 

Shrimp 10.00 17.20 Raspberries 5.00 8.80 

Halibut 25.00 41.75 Red tortilla 0.02 0.04 

Lobster 6.00 10.32 Green tortilla 0.02 0.04 

Calamari squid 25.00 42.00 Whole wheat tortilla 0.02 0.04 

Crab meat chunky 25.00 43.00 Flour tortilla 25.00 41.25 

Albacore loin 5.00 8.80 Gluten free pizza shells 25.00 40.00 

Fries 15.00 21.15 Gluten free buns 25.00 40.00 

Spicy chorizo 5.00 7.75 Brioche buns 25.00 42.50 

Sweet potato fries 7.50 11.93 Chocolate shaving 2.50 3.18 

Hash browns 15.00 21.15 Vanilla ice cream 11.00 18.37 

Multi grain bread 2.10 3.47 Miscellaneous parts 100.00* 60.00* 

* Estimated value 
  Total 455 628 

The total measured value of the room bulk thermal inertia is , while the 

calculated average value of thermal inertia for the whole week of study is . 

Thus, there is an acceptable discrepancy of 8% between the calculated and measured 

thermal inertia. 

There is generally no direct method for measuring the heat gain in an air 

conditioning or refrigeration application. Typically, a heat balance of the room alongside 

appropriate correlations is used to estimate the amount of heat gain prior to the system 

design. The results of these thermal analyses are often estimations of the heat gain and 

provide an approximate value with acceptable accuracy for the specific application at 

hand. Following the same approach, geometrical, material, and thermal properties of the 

freezer room are measured and summarized in Table  2-4. Convection heat transfer 

coefficients are estimated using correlations from ASHRAE [9] for turbulent natural 

 kg  kJ C  kg  kJ C

628kJ C

577kJ C
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convection on vertical and horizontal flat plates. The walls are equipped with old 

polyurethane insulation which is degraded due to several years of operation, and 

therefore provides a poor thermal resistance. Degradation mechanisms can cause the 

polyurethane thermal resistance to decrease to half of its original value [92]. Based on 

the methodology of the heat balance method [9], the heat transfer across the closed 

walls of the room is estimated. The overall heat gain of the room air is thus equal to the 

summation of these wall heat fluxes: 

  (3-6) 

where  is the wall surface area,  is the ambient temperature,  is the room air 

temperature,  is the wall thickness,  is the average wall thermal conductivity, and  

and  are the outside and inside convection heat transfer coefficients, respectively. 

As observed in Fig. 3-3, the high and low set points are 13.8 C  and 15.1 C , 

respectively. In order to find an approximate temperature difference between the 

ambient and room temperature during the swings, the room temperature was assumed 

to be at the average of the set points, i.e., 14.5  T C . The restaurant temperature was 

measured at several locations near the freezer room and the average value of 

22.0 oT C  was obtained. Using the properties collected in Table  2-4, Eq. (3-6) yields a 

total ambient heat gain of 1002hQ W . During the swinging regions of Fig. 3-8, the 

calculated heat gain varies approximately between 1050W  and 1250W , with an average 

value of 1150hQ W . Thus, although the heat gain and room temperature vary with time, 

a comparison of the average calculated value with the heat gain acquired from the heat 

balance analysis of the freezer room shows a discrepancy of less than 15%. 

The calculated results shown in Figs. 3-7 and  3-8 can be used in a dynamic 

control algorithm that modifies the supplied cooling load by the refrigeration unit based 

on the real-time thermal inertia and heat gain information. Since the algorithm provides a 

real-time estimation of the instantaneous heat gain, a refrigeration unit equipped with a 

variable-speed compressor can be intelligently controlled to provide the required 
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instantaneous cooling load to the freezer room. Such control algorithms might be able to 

reduce the annual energy consumption of air conditioning and refrigeration systems. 

3.1.3. Conclusions 

In this section, a new inverse method was proposed to estimate the real-time 

thermal inertia and heat gain in air conditioning and refrigeration systems based on on-

site temperature measurements. The collected temperature data were smoothed and fed 

to a mathematical algorithm that detects periods of temperature swing between the set 

points. The pace and pattern of temperature variations during the swing regimes were 

used to calculate the thermal inertia and overall heat gain in the freezer room. Little 

information on the geometry, material, and usage pattern of the system was needed, 

which made the proposed algorithm ideal for inverse analysis and retrofit of existing 

refrigeration and air conditioning systems. 

The algorithm was validated using experimental data collected from the walk-in 

freezer experimental setup of Section  2.2 during a week of its regular operation. The 

inverse approach enables the interpretation of detailed information on the usage pattern 

of the freezer room and the calculation of the system’s thermal parameters. The method 

can be implemented in control systems of refrigeration units to reduce the overall energy 

consumption of stationary and mobile HVAC-R units. 

3.2. In-House Experimental Testbed 

In order to further test the developed models, an in-house experimental test bed 

was made. Fig. 3-9 shows the test bed built out of wood, plastic, and glass. It is 

designed as a generic chamber in which heating and air conditioning scenarios can be 

tested. Six pairs of T-type thermocouples (5SRTC-TT-T-30-36, Omega Engineering Inc., 

Laval, QC, Canada) are attached on its walls using duct tape. The thermocouples have 

a tolerance of 1.0 C   and are connected to a data acquisition system (NI 9214DAQ, 

National Instruments Canada, Vaudreuil-Dorion, QC, Canada) that logs the 

temperatures once per second. There are four openings on the front and rear walls of 
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the chamber. They can be blocked for certain experiments. However, a small amount of 

infiltration may still exist due to imperfect air sealing. 

 

Figure  3-9: The in-house experimental testbed used for model validation and 
implementation. Six thermocouple pairs are attached to the walls 
with tape. Reprinted with permission [75], [93], [94]. 

Table  3-3 shows the thermocouple locations with reference to the coordinate 

system shown in Fig. 3-9. Figure  3-10 shows a computer model of the chamber 

alongside its cross section in a cut view. Overall chamber dimensions are also shown in 

Fig. 3-10 and the names of different components are indicated. 

An electrical heater with controlled power input was placed inside the chamber 

on the bottom plate. The heater was equipped with a fan to circulate air inside the 

chamber. The fan is kept at the same location for all tests. The fan power was measured 

to be 10W  and was eventually converted to heat in the enclosed chamber due to 

damping of the air motion. Therefore, the fan power is also added to the total heating 

power in all calculations. 

Thermocouple 
locations 

 

Front 

Left 
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The heater consists of a resistor that provides Joule heating with controlled input 

power. The power provided to the heater is controlled and monitored by a programmable 

DC power supply (62000P, Chroma Systems Solutions Inc., Orange County, CA, US). 

According to uncertainty analysis based on the manufacture datasheets, the maximum 

error of the power measurements is 0.4%. Since no other heat source exists in the 

chamber, the known power input to the fan and heater can be assumed as the direct 

heat gain from internal sources. 

Table  3-3: Location of thermocouples with reference to the coordinate system 
shown in Fig.  3-9. Reprinted with permission [75], [93], [94]. 

Thermocouple Pair Name    

Front 10 38 139 

Rear 147 38 148 

Left 80 0 85 

Right 35 75 100 

Top 55 55 131 

Bottom 55 65 0 

Various amounts of direct internal heat gain can be imposed on the chamber by 

varying the DC power provided to the heater. The heater power was kept constant at 

each level until steady-state conditions were reached. The measurements were 

recorded for analysis and calculation. 

 x cm  y cm  z cm
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Figure  3-10: Computer model of the testbed showing its overall dimensions and 
components. (a) Full view. (b) Cross sectional view. Reprinted with 
permission [75], [93], [94]. 

A fully-controlled refrigeration system was connected to the in-house 

experimental setup through the inlet and outlet connections on the front and rear walls. 

Figure  3-11 shows the refrigeration cycle and its components. The power provided to the 

compressor was controlled and measured by another programmable DC power supply 

(62000P, Chroma Systems Solutions Inc., Orange County, CA, US). The power level 

provided to the evaporator and condenser fans was also controlled and measured 

through a computer interface. The combination of the chamber and the refrigeration 

cycle was used to conduct experiments for validation and implementation of the 

developed methods. 
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Figure  3-11: A picture of the fully-controlled refrigeration cycle and its 
components. Reprinted with permission [95]. 

3.3. Automatic Estimation of Heat Transfer Coefficients 

In this section, a self-adjusting method is proposed for real-time calculation of 

thermal loads by automatic calculation of wall heat transfer coefficients. In this data-

driven method, the heat balance calculations are improved by real-time temperature 

data to achieve more accurate load estimations. An iterative mathematical algorithm is 

developed to adjust the heat transfer coefficients according to live measurements. Since 

the proposed method requires little engineering information about the room, it can be 

adopted as a simplified yet accurate method for the design and retrofit of new and 

existing HVAC-R systems. 

3.3.1. Model Development: Convection Coefficients Estimation 

The heat balance equation is considered as the basis for developing an algorithm 

for automatic estimation of convection coefficients. Figure  3-12 summarizes the heat 

balance method as described in the ASHRAE Handbook of Fundamentals [9]. As 

DC power supply 

Condenser 

Compressor 

Data Acquisition System (DAQ) 

Power control unit 

Evaporator 
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indicated at the bottom of Fig.  3-12, for a heating application at the steady-state 

condition, i.e., when the heat transfer rates are constant, the heat balance equation is: 

  (3-7) 

where VQ  is the rate of ventilation and infiltration heat loss,  is the rate of total heat 

transfer across the walls, and  is the heat gain from internal sources. Equation (3-7) is 

a balance of thermal energy for the room envelope surrounded by internal wall surfaces. 

 

Figure  3-12: Schematic of the heat balance method [9] as incorporated in a data-
driven approach for estimating convection coefficients. Reprinted 
with permission [94]. 
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Thermal energy is transferred to the wall surfaces by convection and radiation. 

Convection depends on various factors, such as wall orientation, air velocity, and air 

temperature. Finding the proper convection coefficients requires correlations that may 

not hold for all conditions experienced by the room, especially in vehicle applications. 

Therefore, it is useful to find an estimation of the convection coefficients without 

excessive experiments or computations. 

Another mechanism for transferring heat to the wall surfaces is radiation. A 

portion of the incident radiation is absorbed by the surfaces and the rest is either 

reflected or transmitted through. Rather than directly increasing the air temperature, 

radiation transfers energy to the room surfaces, which is in turn transferred to the air 

through convection and conduction. The bulk of the radiation energy received at each 

surface contributes to the temperature increase on that surface. Therefore, by directly 

measuring the surface temperature, the radiation heat transfer is automatically 

considered in the model. 

The calculation of  consists of 3 steps: (1) outside face heat balance, (2) 

conduction through the wall, and (3) inside face heat balance. The total wall heat 

transfer rate  is the summation of all individual wall heat transfer rates: 

  (3-8) 

where  is the convection coefficient over the internal surface,  is the wall surface 

area,  is the air temperature adjacent to the wall,  is the temperature on the wall 

interior surface, and  is the number of walls. In Eq. (3-8), it is assumed that the wall 

temperature and air temperature are uniform. 

The heat transfer rate  consists of both the ventilation and infiltration of air. Air 

may infiltrate into the room through windows and openings and there is often no means 

of direct measurement to find the volumetric rate of infiltrated air. As such, the accurate 

rate of heat transfer due to infiltration and ventilation is also unknown in typical 

applications. Thus, we assume a constant value for the unknown ventilation heat gain, 
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and define it as one of the parameters to be calculated by the algorithm. Replacing 

 and  in Eqs. (3-7) and (3-8), we arrive at: 

  (3-9) 

The right hand side of Eq. (3-9) is a linear function,  is called the “bias weight”, and  

are called the “input weights” [24–27]. We apply a “transfer function”  to the calculation 

output, defining: 

  (3-10) 

where  is the calculation output and  is the sigmoid function [98] with the following 

general form: 

  (3-11) 

where  is a generic parameter. 

Equation (3-9) is a reformulation of Eq. (3-7) which is the basic heat balance 

equation. The convection coefficients that are included in the weight factors “ ” in Eq. 

(3-9) are unknown. However, the temperatures  and  can be measured in real-time. 

Therefore, an iterative process is proposed to guess and correct the weight factors using 

real-time temperature measurements. Since actual measurements are used to update 

the weight factors, the iterative calculations are called the “training” process. 

The final step is to update the weight factors according to the current and desired 

calculation outputs. The original convergence procedure for adjusting the weights was 

developed by Rosenblatt [99]. Graupe [100] proved that the weights can be adjusted 

according to: 
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  (3-12) 

where  denotes the training step number.  is an arbitrary constant called the 

“learning rate”, as it dictates the rate of correction for the weight factors [96]. Higher 

learning rates result in faster adjustment of jw  during the training process. However, 

large   may also cause the weights to diverge to infinity after a few steps. The value of 

  is often selected by experience. It is considered that 0.05   throughout this study. 

The training procedure is repeated until the convergence criterion is met. 

Convergence is achieved when all the weights almost remain constant, i.e., their relative 

variation between two consecutive training steps is less than a certain threshold . In 

this study, a convergence threshold of  is used. 

Once the weights have converged, the training process stops and the weights 

can be used for the rest of the system’s operation, i.e., for other situations when the 

actual heat gain  is unknown.  and  are measured on all walls and the converged 

 are plugged in Eq. (3-9) to calculate the total thermal load . 

Figure  3-13 shows a flowchart summarizing the proposed algorithm for thermal 

load calculation. At the first step, the weight factors should be initiated. If prior 

estimations are available for  and  from measurements and correlations, the weight 

factors can be initiated from . However, they can also be initiated from , 

and the iterative process adjusts them until convergence is achieved. 

After initializing the weights, the training iterations begin. At every training step, 

the air temperature , the surface temperature , and the internal heat gain  are 

measured. In order to measure , a known amount of thermal energy can be 

intentionally introduced into the room. An electrical heater with controllable power 

consumption can be used to implement the condition. According to Eq. (3-7), the total 

heat loss by ventilation, infiltration, and walls is equal to the produced internal heat gain 

at the steady state. The next step is to calculate the desired calculation output 
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 and the current calculation output  from Eq. (3-10). The procedure of 

updating the weights continues until convergence is achieved. The converged weight 

factors are further used for automatic estimation of thermal loads for the rest of the 

system’s operation. 

 

Figure  3-13: Flowchart of the algorithm for real-time thermal load calculation by 
automatic estimation of convection coefficients. Reprinted with 
permission [94]. 

The model was validated for a heating scenario and the results are presented in 

the following section. Since the general heat balance equation is used for developing the 

model, it can be readily extended to cooling scenarios and different room dimensions. 
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3.3.2. Results and Discussion: Convection Coefficients Estimation 

The model was validated by experiments conducted on the testbed of 

Section  3.2. Out of every thermocouple pair, one thermocouple is attached to the interior 

wall surface and the other is hung in the interior air adjacent to the same spot. The air-

side thermocouple is located at an approximate distance of  from the wall. 

Heat convection heavily depends on both the surface geometry and the local flow 

characteristics. For instance, the measurements of a thermocouple pair located close to 

a wall edge is not identical to one installed on a wide open wall center. There is always 

conjugate (conduction and convection) heat transfer taking place at surface edges and 

the effect is more significant when non-conductive materials are involved. Thus, 

attributing a single convection coefficient to an entire wall is an approximate yet 

accepted approach. Although temperature readings are performed at individual spots, 

the proposed model also follows the same accepted approach and assumes a single 

convection coefficient (weight factor) for each wall. 

More thermocouple pairs can definitely increase the accuracy of thermal load 

calculations. However, the locations of the limited number of thermocouple pairs used in 

this testbed are arbitrarily selected and, in turn, the self-adjusting algorithm attempts to 

iteratively adjust the coefficients using the local temperature readings. These locations 

are intentionally not symmetric, so that the generality of the self-adjusting technique for 

arbitrary configurations is showcased. Unless rigorous three-dimensional CFD 

simulations or extensive experiments are performed, the detailed heat convection from 

the surface is unknown. Thus, the weight factors  calculated for the thermocouple 

pairs are assumed as the average coefficient  at the corresponding wall. 

To validate the present model, convection coefficient correlations were applied to 

the test bed and the resulting values were compared to the converged weight factors. 

Moreover, the total thermal load was calculated using both sets of coefficients to 

showcase the effectiveness of the proposed model. Equation (3-8) was used to calculate 

the heat gain by the convection coefficient correlations. Similarly, Eq. (3-9) was used to 

calculate the thermal load by the weight factors of the present model. 

1 cm
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Table  3-4 shows the estimated convection coefficients based on Eqs. (2-27) and 

(2-28), in which the average values of the measured temperatures are used for  and 

. 

Table  3-4: Wall surface areas and convection coefficients calculated using 
ASHRAE correlations [9] shown in Eqs. (2-27) and (2-28). Refer to 
Fig. 3-10 for component names and locations. Reprinted with 
permission [94]. 

Wall Name 
Surface Area 

 

Convection Coefficient 

 
Heat Transfer Coefficient 

 

Front 0.5 1.73 0.85 

Rear 0.5 1.61 0.78 

Left 2.0 1.76 3.42 

Right 2.0 1.59 3.09 

Top 2.0 1.61 3.23 

Bottom 3.0 0.86 2.58 

Equation (3-7), which is the basis of the present model, assumes steady-state 

conditions. Therefore, it is required to ensure that the steady-state condition is reached 

for every level of the heater power in the validation experiment. The steady-state values 

of the heat transfer rates  are reached when all temperature differences ( ) 

reach relatively constant levels. Thus, the exponential decay of the temperature 

differences is of the form: 

  (3-13) 

where 2c  is negative for temperature-increasing patterns. The correlation of Eq. (3-13) 

was applied to the measurements from all thermocouple pairs with the minimum 

coefficient of determination calculated to be 2 0.95R . Figure  3-14 shows the 

exponential decay of the temperature difference a wT T  on the left wall from an initial 

steady-state. The exponential correlation fitted to the temperature difference has a time 

constant of 226 seconds, i.e., it takes less than 4 minutes for the temperature to reach 

99% of its maximum steady-state value. The same procedure is applied to all walls and 

the maximum time constant was calculated to be 335 seconds on all walls. Thus, to 
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ensure that steady-state conditions were reached, the heater power was kept constant 

for 10 minutes at every level and the final measurements were used in the calculation of 

thermal loads. 

 

Figure  3-14: Exponential growth of the temperature difference ( ) to the 

steady-state condition on the left wall. The exponential correlation of 
Eq. (3-13) is fitted to the measurements. Reprinted with permission 
[94]. 

As shown in Fig.  3-13, the first part of the algorithm consists of training the 

weight factors through an experiment where the direct heat gain  is known. In order to 

find the adjusted coefficients, the testbed was allowed to reach the steady state at an 

arbitrary level  of the heater power. Then, the training algorithm was run 

until the convergence criteria 

  (3-14) 
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are met with 0.01  . At every step, the weight factors are corrected according to Eq. 

(3-12). Figure  3-15 shows the progressive adjustment of weight factors during the 

training process. All the weight factors were initialized to zero, and convergence was 

achieved within 10 steps. 

 

Figure  3-15: Progressive adjustment (training) of the weight factors at an arbitrary 
heater power of 0.334sQ kW  for automatic estimation of convection 
coefficients. Reprinted with permission [94]. 

Figure  3-16 shows the convergence of the calculated heat gain to the measured 

value during the training process. As the weight factors are updated, the calculation of 

the heat gain  becomes more accurate step-by-step until convergence to the 

measured value is achieved. 
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Figure  3-16: Progressive correction of the calculated heat gain during the training 
process at a measured heater power of 0.334sQ kW . Reprinted with 
permission [94]. 

Table  3-5 shows the converged values of the weight factors from Fig. 3-15. The 

coefficients  from Table  3-4 for each wall are also repeated in Table  3-5 for 

comparison. Since  is unknown, the converged value of its mathematical equivalent (

) is used for the ventilation term when calculating the total heat gain from analytical 

correlations. It is noted that the coefficients  (calculated from ASHRAE correlations) 

and their mathematical equivalents  (adjusted by the training algorithm) can have 

remarkably different values. In this case, the available ASHRAE correlations largely 

underestimate the rate of heat transfer across the walls. Therefore, automatic 

adjustment of coefficients is beneficial for accurate estimation of thermal loads. 

The analytical convection coefficients and the weights adjusted by the training 

algorithm of the present model are used to calculate the total heat gain. Figure  3-17 
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shows the results using both sets of coefficients at various levels of steady-state heater 

power. It is noted that analytical coefficients can result in large errors when used for 

calculating the total heat gain. In this specific case, there is a minimum of 67% error in 

the heat gain calculations using analytical coefficients. The adjusted weight factors, 

however, result in a maximum error of 9%. 

Table  3-5: Comparison of adjusted weight factors with analytical convection 
coefficients. Reprinted with permission [94]. 

Convection Coefficient Correlation Value Adjusted Value 

Ventilation and Infiltration *  

Front Wall   

Rear Wall   

Left Wall   

Right Wall   

Top Wall   

Bottom Wall   

* Estimated equal to    

The ASHRAE correlations are rigorously validated by analysis and experiment. 

But they contain certain assumptions that confine their usage. For instance, they 

assume natural convection over a flat wall and provide the average convection 

coefficient over the wall in its wide open area. They also assume uniform wall 

temperature. In practice, none of these assumptions completely hold. In the present 

experiment, the walls are surrounded by other enclosure walls, they are not completely 

flat, some forced convection may occur over them, and they have non-uniform 

temperatures. To find more accurate convection coefficients, detailed experiments or 

numerical simulations are necessary. The present algorithm is proposed as a tool for 

providing accurate thermal load calculations while avoiding extensive simulations and 

experiments. 
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Figure  3-17: Comparison of heat gain calculation results by analytical correlations 
and the adjusted weight factors in automatic estimation of 
convection coefficients. Reprinted with permission [94]. 

As a data-driven method, a disadvantage of the present model is that it requires 

training. Although the training can be performed within seconds, directly measuring the 

heat gain may be impossible in many cases. However, it is possible to artificially impose 

a known heat gain to an existing room using the same testing approach of this study, 

i.e., isolating the room from all possible thermal loads except a known source of internal 

heating or cooling. As such, this method can be used for retrofitting existing systems as 

well as designing new systems. Whenever it is impossible to directly test the room for 

the training process, conventional law-driven methods can be used to provide an 

estimation of the actual heat gain. The estimated heat gain can be fed to the algorithm 

as the training target for SQ . The algorithm can then use the adjusted coefficients to 

calculate the real-time thermal loads based on future temperature measurements. 
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3.3.3. Modeling and Results: Conduction Coefficients Estimation 

A similar approach described in Section  3.3 is followed for real-time estimation of 

thermal loads based on automatic calculation of wall conduction coefficients. The heat 

balance methodology is followed as shown in Fig. 3-18. The room air is in thermal 

balance with internal sources load, ventilation load, and walls load, as shown by Eq. 

(3-7). In the absence of a cooling system and when the steady-state condition is 

reached, i.e., when the temperature is relatively constant throughout the room, the room 

is in thermal balance and Eq. (3-7) describes the thermal balance of the room and walls. 

 

Figure  3-18: Schematic of the heat balance method [9] as incorporated in a data-
driven approach for estimating convection coefficients. Reprinted 
with permission [93]. 
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The total wall heat transfer rate is the summation of all individual wall heat 

transfer values: 

  (3-15) 

where  is the conduction heat transfer coefficient,  is the wall surface area,  is the 

wall thickness,  is the number of walls,  is the wall temperature on the inside surface, 

and  is the wall temperature on the outside surface. The same analysis described in 

Section  3.3 is applied to arrive at 

  (3-16) 

which is similar to Eq. (3-9). Similarly, , with the wall weights replaced by the 

definition . 

The same correction algorithm is proposed and the calculation output is 

calculated by 

  (3-17) 

which is similar to Eq. (3-10).  is the actual calculation output and  is the Sigmoid 

function indicated in Eq. (3-11). 

Finally, a similar training process is proposed in the form: 

  (3-18) 

which is similar to Eq. (3-18).  is the learning rate,  is the desired calculation 

output, and  denotes the step number of the training algorithm. The found set of 
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weights is eventually inserted in Eq. (3-16) to arrive at the real-time thermal load for 

future cases where the direct heat gain from internal sources is unknown. 

The thermal conductivity values of the chamber components were measured 

using a transient conductivity measurement machine. The thermal conductivity of the 

glass, wood, and plastic materials used for constructing the chamber are measured as 

1.05W m C , 0.20W m C , and 0.26W m C , respectively. Table  3-6 shows the overall 

thicknesses and dimensions of the 6 walls surrounding the chamber. The walls of the 

chamber do not consist of uniform materials. Furthermore, the wall shapes are not 

necessarily flat and their thicknesses are also non-uniform. Thus, the numbers shown in 

Table  3-6 are approximate values only. 

The model was applied to the test bed of Section  3.2 for various values of direct 

internal heat gain implemented by different heater power levels. At every level, the 

heater power was kept constant for 10 minutes in order to assure steady-state 

conditions are reached. Prior to the test, the training algorithm was applied on the weight 

factors for 20 seconds at an arbitrary heater power setting of 0.334
SQ kW . A learning 

rate of 0.05   was used for the calculations as recommended by the literature. 

Table  3-6: Dimensions and thicknesses of the 6 walls surrounding the chamber. 
Reprinted with permission [93]. 

Wall Name 
Surface Area 

 
Thickness 

 

Heat Transfer Coefficient 

 

Front 0.5 5.5 0.095 

Rear 0.5 5.5 0.095 

Left 2.0 2.0 0.260 

Right 2.0 2.0 0.260 

Top 2.0 30.0 0.013 

Bottom 3.0 30.0 0.020 

Figure  3-19 shows the progressive correction of the weight factors according to 

Eq. (3-18). The temperature measurements were performed every second and the 

correction process was applied at the same rate. The training process was initialized 

with the weight factors set to zero. 

 2A m  b mm  kA b kW C
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Figure  3-19: Progressive adjustment (training) of the weight factors at an arbitrary 
heater power of 0.334sQ kW  for automatic estimation of conduction 
coefficients. Reprinted with permission [93]. 

Figure  3-20 shows the calculated steady-state heat gain for different heater 

powers based on the corrected values of the weight factors. It is observed that the 

thermal load is calculated for various heater power levels with a maximum relative error 

of 25%. 

Step Number

W
ei

gh
tF

ac
to

r
(w

0
[W

]
,w

j
[W

/°
C

])

H
ea

tG
ai

n
[k

W
]

0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

w0
w1
w2
w3
w4
w5
w6
Calculated Power
Heater Power

w4w0 w1

w3

Heater Power

w6

w5

w2

Calculated Power



 

96 

 

Figure  3-20: Comparison of heat gain calculation results by analytical correlations 
and the adjusted weight factors of the present model in automatic 
estimation of conduction coefficients. Reprinted with permission 
[93]. 

3.3.4. Conclusions 

In this section, a method was proposed for real-time calculation of thermal loads 

by automatic estimation of heat transfer coefficients. In two similar approaches, the 

convection and conduction coefficients were estimated and adjusted using a 

mathematical algorithm and temperature measurements. The proposed method was 

validated by experimental results. It was shown in a case study that the algorithm could 

calculate the heat gain with an acceptable accuracy, whereas the unadjusted heat 

transfer coefficients calculated from analytical correlations resulted in remarkable errors. 

Since the proposed method is based on fundamental heat transfer equations, it 

can be used in a wide range of stationary and mobile applications. It provides a simple 

tool for designing new systems and retrofitting existing ones while avoiding extensive 

simulations and experiments. The self-adjusting technique proposed in this work lays the 
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foundation for the design of an intelligent controller which calculates the thermal loads in 

real-time and corrects its results as well. The calculated load can provide precious 

information to the HVAC-R system, resulting in advanced improvements in energy 

efficiency. 

3.4. On/Off Set Point Selection 

While novel controllers are being proposed in the literature, a huge number of 

commercially available HVAC-R controllers are still designed based on on/off logic. In 

this section, a new approach is proposed to optimize the selection of temperature set 

points with the intention of decreasing the overall energy consumption while maintaining 

the desired comfort level. 

Several researchers have studied the optimization of on/off controllers. 

Chinnakani et al. [101] argued that a disadvantage of fixed gain PID control is that its 

performance can be poor under varying load conditions, so they developed an 

“intelligent on/off controller” that takes into account sensor delays and room inertia. 

However, they assumed linear functionality for determining the slope of the temperature-

time curves. Although the linear assumption is acceptable, assuming exponential 

functionality can be more accurate considering the form of the governing heat transfer 

equations. Li and Alleyne [74] presented an optimal compressor on/off control algorithm 

with a relay feedback loop. They developed a generic cost function involving 

temperature variation from the set-point, power consumption, and compressor on/off 

cycling frequency for minimization. The optimal control scheme was tested on a 

refrigeration system to demonstrate the potential of the optimal on/off control for 

temperature regulation, component wear reduction, and fuel consumption savings. They 

discussed the importance of the temperature swing periods in the action of on/off 

controllers and proposed a method for optimizing the high and low set points to minimize 

the cost function. However, they assumed that the swing time periods have polynomial 

correlations with the set points, and calculated those parameters using simulation results 

rather than experiments. In the present study, it is proposed that exponential 

temperature correlations be used for the room thermal response. Moreover, the 

proposed set point optimization is based on experimental measurements without the 
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necessity of further simulations. The following section describes the model development 

and design strategy for optimizing HVAC-R on/off controllers. 

3.4.1. Model Development 

An on/off controller of an HVAC-R system keeps the temperature swinging within 

a narrow range of temperatures called the high set point HT  and the low set point LT . 

Figure  3-21 shows an example of a temperature swing in an air-conditioned system. In 

the example shown in Fig.  3-21, in order to maintain the temperature at 26C , the high 

and low set points are selected as 27.8 HT C  and 24.2 LT C , respectively. Therefore, 

starting from a low temperature, the air conditioning system is off and the room gains 

heat. This phenomenon results in the room temperature increasing, creating a 

temperature trend called an “increasing process”. When the temperature reaches HT , 

i.e., the maximum allowable temperature, the AC system is turned on and the 

temperature begins to decrease. There is some lag in the process and a temperature 

overshoot is expected due to the thermal inertia of the room. This temperature overshoot 

is visible in Fig.  3-21 at the end of the increasing process denoted by time It . 

Afterwards, the refrigeration cycle works to pull down the room temperature during a 

period called the “decreasing process” that lasts for time Dt . These processes occur 

consecutively in air conditioned and refrigerated spaces. We call every two consecutive 

processes a “temperature swing”. Useful information can be extracted from the study of 

temperature swings in any HVAC-R application [65]. 
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Figure  3-21: Demonstration of a typical temperature swing resulting from an air 
conditioning on/off control action. Reprinted with permission [75]. 

The aim of the present model is to adopt a gray-box approach that will provide 

formulas for calculating energy-efficient set point values in HVAC-R on/off controllers. To 

combine the heat transfer equations with real-time data, the heat balance equation of a 

room envelop surrounded by  walls numbered by  can be written as [28–33] 

  (3-19) 

where 

 is the homogeneous room air temperature and  is time; 

 is the rate of increase in the energy of room air of mass  and specific heat 
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 is the convective heat transfer rate from surfaces , with inside 

convection coefficients jh , and inside surface temperatures iT ; 

 is the heat transfer rate due to air mass flow rate  from outside air 

temperature  by ventilation and infiltration; 

 is the heat gain from internal sources; and 

 is the heat flow to or from the HVAC-R system. ACQ  also includes any latent heat 

transfer due to condensation or evaporation. 

Equation (3-19) can be viewed as a differential equation with respect to the 

variable . Rearranging Eq. (3-19), we arrive at 

  (3-20) 

where , , and  are positive values containing all the parameters included in Eq. 

(3-19). In general, these coefficients are also functions of .  is a function of the air 

mass, the air specific heat, and the deep thermal mass of the objects inside the room. 

 is a function of the wall convective coefficients and the ventilation flow rate.  can 

also have a complicated dependency on the heat gain, HVAC-R load, outside 

temperature, and ventilation temperature. 

The physical parameters included in , , and  are generally time-

dependent. It is often necessary to gather information about the ambient conditions, the 

material properties, and the room’s geometrical shape to estimate such parameters. 

However, when the room temperature is swinging between the set points, it has a 

relatively constant value. Therefore, most parameters such as the ambient temperature 

and ventilation rate have negligible variation and can be assumed constant. Although 

variations in the radiation load can occur in the room, these changes occur gradually 

compared to the small time span of a temperature swing. Therefore, it is reasonable to 
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assume that all the parameters in Eq. (3-20) are constant during an instance of a 

temperature swing. Any variation in the room conditions may still occur from one swing 

to the next, but as long as the swinging pattern is maintained, every parameter in Eq. 

(3-20) is assumed constant during a swing instance. Thus, the solution to the differential 

equation of Eq. (3-20) has the following exponential form: 

  (3-21) 

where , , and  are: 

  (3-22) 

  (3-23) 

  (3-24) 

and 0t  and 0aT  are the initial time and temperature of the specific process under 

consideration and alT  is the correlated room air temperature. Equation (3-21) is an 

exponential curve that is fit to the temperature variation during an increasing or 

decreasing process. The correlation of an increasing process has the following form: 

  (3-25) 

whereas the temperature correlation of a decreasing process has the following form: 

  (3-26) 
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The subscript “ ” denotes the parameters pertaining to an increasing process and “ ” 

denotes the parameters of a decreasing process. Table  3-7 shows the physical 

interpretation of the correlations parameters. 

Table  3-7: Physical interpretation of the -parameters in the temperature 
correlation formula of Eqs. (3-25) and (3-26). Reprinted with 
permission [75]. 

Parameter Unit Physical Interpretation 

  Maximum steady-state room temperature reached in the current conditions if the 
cooling system is always off. 

  Minimum steady-state room temperature reached in the current conditions if the 
cooling system is always on. 

  
Difference between  and the low temperature set point ( ).  is 
negative. 

  
Difference between  and the high temperature set point ( ).  is 
positive. 

  

Time constant of the exponential temperature correlation for an increasing process 
i.e., the time required for the room temperature to cover 63% of its total increase 
and reach  where  is negative. 

  

Time constant of the exponential temperature correlation for a decreasing process, 
i.e., the time required for the room temperature to cover 63% of its total decrease 
and reach  where  is positive. 

The values of the -parameters in Table  3-7 are unknown; they can be acquired 

through measurements. If the temperature in a room is recorded, Eqs. (3-25) and (3-26) 

can be used to fit exponential curves to the temperature values. After fitting exponential 

curves to the temperature data, the values of the -parameters are found and they can 

be further used to assist the design and improvement of the controller set points. For 

every increasing or decreasing process, an exponential correlation can be found and a 

new set of -parameters can be calculated. 
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An important aspect of the temperature swing patterns is the time span of each 

process. Rearranging Eq. (3-21) and using Eqs. (3-25) and (3-26), the time required for 

the room to reach temperature aT  through a process starting from 0t t  and 0a aT T  is: 

  (3-27) 

In ideal conditions, every increasing process starts from  and ends at , 

while every decreasing process starts from  and ends at . Therefore, for an 

increasing process, the total time is 

  (3-28) 

and for a decreasing process, we have 

  (3-29) 

where  and  are the low and high set points. 

The temperature pattern during the entire operation of the system is merely a 

repetition of the swinging pattern. Therefore, the average swing temperature is equal to 

the overall average temperature, as long as the swinging pattern is maintained. As such, 

the average swing temperature is an important design objective. The average swing 

temperature is calculated by: 

  (3-30) 

where  is the mean temperature calculated based on the temperature correlations. A 

temperature swing consists of an increasing process followed by a consecutive 

decreasing process. As such, for an entire temperature swing, using the correlations of 
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Eqs. (3-25) and (3-26) for , and the definitions of Eqs. (3-28) and (3-29) for  and , 

we arrive at: 

 (3-31) 

It is required to keep the average temperature at the desired level by proper 

selection of the set points. Therefore, given either  or , the other quantity can be 

found by implicitly solving Eq. (3-31) with  and  from Eqs. (3-28) and (3-29) so that 

the requirement for  is met. 

Another important parameter for the design of set point hysteresis is the overall 

power consumption. The compressor of the refrigeration cycle is off during increasing 

processes, and it is on during decreasing processes. When the compressor is on, the 

amount of power consumed depends on several factors such as air temperature, 

ambient temperature, and refrigerant pressure. However, within the narrow range of the 

set points, the compressor power can be assumed constant [65]. Therefore, the average 

compressor energy consumption per unit time is directly proportional to the amount of 

time that it is on. Assuming that the compressor consumes the power compE  when it is on, 

the average power consumption over a swing period is calculated as: 

  (3-32) 

where  is the average power consumption calculated based on the temperature 

correlations. Thus, proper selection of the set point levels directly affects the overall 

energy consumption through changing  and  in Eq. (3-32). 

The number of compressor starts per hour is another important parameter in the 

design of refrigeration systems. Having found the process times  and , we have: 

  (3-33) 
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where  is the estimated number of compressor starts per hour. Excessive number of 

compressor starts can reduce the lifetime of the compressor due to fatigue. It can also 

damage other components of the system including the valves and contactors. The 

increased current draw that happens at every new start also increases the total power 

consumption. A limit is often set by the manufacturers on the maximum allowable 

number of compressor starts per hour. As such, Eq. (3-33) can be used to design the set 

points subject to the constraint on the maximum allowable i . 

Equations (3-31) to (3-33) are crucial to the proposed method for selection of 

on/off set points. In the following section, a design strategy is described for using the 

present model as a tool for selecting the set points. 

Design Strategy 

The optimization problem for selecting the on/off set points is formulated as 

minimizing the overall energy consumption subject to the following constraints: 

• Minimum error between the average temperature and the desired temperature 

• Minimum temperature deviation from the desired temperature 

• Minimum number of compressor starts per hour 

The above constraints create competing trends for the selection of set points. Of 

course, there are specific obligations and preferences in every design case. For 

instance, minimizing the temperature deviation from the desired level may be critical in 

certain applications such as in refrigerated transportation of food products. In such a 

case, a higher number of compressor starts per hour may be acceptable as a sacrifice 

for selecting a narrow set point range. The present approach offers a design tool that 

can be flexibly used according to the needs of every specific engineering case. 

The procedure for solving the optimization problem in a cooling scenario is as 

follows: 

1. Find the c -parameters by fitting the correlations of Eqs. (3-25) and 
(3-26) on temperature measurements. 

2. Decide upon the maximum allowable temperature deviation from the 
desired temperature. 

l
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3. Decide upon the maximum allowable number of compressor starts per 
hour. 

4. Solve Eqs. (3-31) and (3-33) simultaneously for  and  subject to: 

o  = Desired temperature 

o  = Maximum allowable number of compressor starts per hour 

5. Solve Eqs. (3-28) and (3-29) simultaneously for the minimum allowable 
. 

6. Find the maximum allowable  based on the maximum allowable 
temperature deviation. 

7. Select the maximum suitable  within the range specified by steps 5 
and 6. 

8. Find  for the selected  by solving Eq. (3-31) using Eqs. (3-28) and 

(3-29) for  and , subject to: 

o  = Desired temperature 

9. Estimate the optimized average power consumption using Eq. (3-32). 

10. Estimate the number of compressor starts per hour using Eq. (3-33). 

In the following section, the model is validated by an experiment and the 

potentials for improving the overall energy efficiency are investigated. 

3.4.2. Results and Discussion 

The developed design strategy is validated by an experiment in the testbed of 

Section  3.2. In the experiment, the heater and its fan generate a total internal heat gain 

of . The instantaneous compressor power consumption varies between 

 and  when it is on. The on/off controller switches the compressor on or off 

at the set points. However, the evaporator and condenser fans are always on during the 

tests. Every temperature swing consists of an increasing process, during which the 

compressor is off, followed by a decreasing process, during which the compressor is on. 

As discussed in the model development section, the compressor power can be assumed 

constant when it is operating within the narrow range of the set points. Therefore, 

according to the measurements, an average value of  is considered as 

the compressor power consumption. 
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Model Validation 

In a test designed for model validation, the high and low set points are varied 

every half an hour during the regular action of the refrigeration cycle connected to the 

chamber. An arbitrary value of  is selected as the desired temperature. A 

symmetric on/off set point hysteresis is selected, and its value is varied from  to 

 with increments of  at every 30 minutes. As such, the high set point varies 

from  up to  while the low set point varies from  down 

to  during an overall period of 150 minutes. 

Figure  3-22 shows the temperature results throughout the 150 minutes (9000 

seconds) of the cooling system’s operation.  shows the air temperature as measured 

in the chamber.  and  are the high and low set points, respectively. At the bottom 

of Fig.  3-22, a zoomed-in view shows a single temperature swing with curve fits for  

using Eqs. (3-25) and (3-26). After identifying all the temperature swings, curve fits are 

applied to the increasing and decreasing processes of every swing instance separately. 

The minimum coefficient of determination for all the correlations is . 

In Fig.  3-22 it can be seen that the air temperature surpasses the high set point 

by up to  before it is pulled back down by the initiation of the cooling cycle’s 

operation. There is also an overshoot at the low set point, but it is not as dramatic 

because the heat gains quickly increase the temperature once the cooling cycle is 

turned off. The surpassing of the air temperature beyond the set points is due to the 

chamber’s thermal inertia as well as the residual cooling effect available in the 

evaporator after the compressor is turned off. As such, the set points create an 

approximate window of action for temperature control. The overshoot is less noticeable 

for larger hysteresis values, i.e., to the right of Fig.  3-22. The temperature overshoot is 

often unavoidable in typical HVAC-R systems equipped with on/off controllers. 
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Figure  3-22: Air temperature measurement results. Exponential correlations are 

applied with a minimum coefficient of determination of . 
Reprinted with permission [75]. 

In the next step, the -parameters for each temperature swing are found by 

applying the curve fits of Eqs. (3-25) and (3-26). The increasing time  and the 

decreasing time  are then calculated using Eqs. (3-28) and (3-29). The mean 

temperature and power consumption are calculated based on Eqs. (3-31) and (3-32). 

Since the average temperature and power calculated in this method are found based on 

the correlations, the subscript “ ” is added to distinguish between the measured data 

and the calculated values. 

Figure  3-23 shows a comparison between the calculated average temperature 

 and the measured average temperature . The calculated average power  is 

also compared with the measured average power  in Fig.  3-23. The measured mean 

temperature  is found by taking the average of the air temperature  over every 

swing period. The average power  is also calculated by taking the average of the 
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measured compressor power over every temperature swing. Since the -parameters 

correspond to the entire period of every temperature swing separately, the calculations 

are also performed for every swing. Therefore, , , , and  are shown as 

discreet points at every swing occurrence. The maximum relative error for the calculation 

of mean temperature is 1%. The mean power consumption is calculated with a 

maximum relative error of 16%. 

It is observed in Fig.  3-23 that, although the set points are symmetrically selected 

around the desired temperature of , the measured average power can vary from 

 up to . Therefore, it is shown in this experiment that only by 

changing the symmetric hysteresis of the set points, the energy consumption can be 

affected by up to 49%. Moreover, the measured mean temperature is below the desired 

temperature of  in large hysteresis cases. This results in increased overall energy 

consumption and is an indication of the necessity for proper selection of set points. 
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Figure  3-23: Average temperature and power as measured and calculated using 
the exponential correlations. The maximum relative errors of 
average temperature and power are 1% and 16%, respectively. 
Reprinted with permission [75]. 

As observed in Fig.  3-23, for higher values of symmetric hysteresis, the 

compressor needs to stay on during a larger portion of the temperature swings, ,  

increases more dramatically than  for higher hysteresis values. As a consequence, the 

average temperature decreases. In this test, although the desired temperature is set at 

, mean temperatures as low as  are achieved for a hysteresis of . 

This proves that with selecting an improper pair of set points, the actual value of average 

temperature can be different from the desired temperature. In such cases, excessive 

cooling or heating is provided to the system which may not be necessary. Furthermore, 

high hysteresis values result in excessive temperature deviations from the desired value 

which may not be acceptable in certain applications. 

Figure  3-23 also shows the mean compressor power. As described above, the 

overall energy consumption increases with increasing symmetric hysteresis. Thus, when 
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symmetric set points are to be selected around the desired temperature, it is preferable 

to choose narrower ones to avoid excessive temperature deviation and energy 

consumption. On the other hand, low hysteresis values result in high numbers of 

compressor starts per hour. Therefore, to avoid excessive compressor starts, the set 

points should not be too narrow. 

Figure  3-24 shows the estimated number of compressor starts per hour 

calculated by Eq. (3-33). As expected, increasing the gap between  and  results in 

decreasing  which is calculated based on the exponential temperature correlations. 

During every half-hour period when  and  are constant, the  values of different 

swing instances are almost equal to each other. But at the times when  and  

change, the value of  also changes accordingly. Figure  3-24 shows the average  

calculated over the entire half-hour period of every set point pair. 

 

Figure  3-24: Estimated number of compressor starts per hour for various set 
points. Reprinted with permission [75]. 
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The validated model can be used as a tool for set point design in any type of 

HVAC-R system equipped with an on/off controller. The proposed design strategy is 

used in the following section as a basis for energy-efficient design of set points in the 

present experiment. 

Set Point Design 

In this section, the design strategy outlined in the model development section is 

followed to select the set points for the experimental setup described above. It is 

necessary to find the -parameters of the exponential correlations (step 1). Adopting a 

gray-box approach for an existing system, the -parameters can be found by performing 

an experiment in which the room experiences a few swings. Then, the -parameters 

can be used for analysis. In this example, we arbitrarily select the parameters listed in 

Table  3-8 as they are found by piecewise correlations at  of the experiment 

shown in Fig.  3-22. Nevertheless, in an automatic system, the -parameters can be 

updated at every swing, therefore providing more accurate parameters for the upcoming 

conditions. 

Table  3-8: -parameters calculated at  of the experiment presented in 
Fig.  3-22. Reprinted with permission [75]. 

Parameter Value Parameter Value 

    

    

    

The maximum allowable temperature deviation from the desired level is assumed 

to be  (step 2). The maximum number of compressor starts per hour is assumed 

to be 16 (step 3). The next step is to find the proper  and  for keeping the mean 

temperature at the desired level and  equal to the maximum allowable number of 

compressor starts per hour (step 4). Figure  3-25 shows  versus . For every value 

of  in Fig.  3-25, the corresponding  is calculated by solving Eq. (3-31) subject to 
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 equal to the desired temperature. Therefore, for every , if  is correctly selected, 

 is equal to the desired temperature and  can be found from Fig.  3-25. The 

minimum allowable  corresponding to  is thus estimated as  (step 5). 

On the other hand, the maximum allowable  is , due to the decided maximum 

temperature deviation (step 6). 

 

Figure  3-25: Calculated number of compressor starts per hour ( ) as a function 

of . It is assumed that  is properly selected to achieve  

at every  level. Reprinted with permission [75]. 

At this stage, the window of selection for  is found, i.e., . 

Within this range, the number of compressor starts per hour and the temperature 

deviation are both less than their respective maximum allowable values. By proper 

selection of  for every , the resulting mean temperature will also be equal to its 

desired value. Hence, all the constraints of the optimization problem are satisfied. The 

last stage of the design is to select a  value that minimizes . Figure  3-26 shows 
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the plot of the average power  versus , given that  is properly selected for every 

 so that  is equal to the desired temperature of . As observed in Fig.  3-26, the 

power consumption decreases with increasing  for this experiment. Therefore, the 

most energy-efficient value of  within its allowable range is  (step 7). By 

solving Eq. (3-31), the low set point is further found to be , as also 

determined from Fig.  3-26 (step 8). The average power consumption can thus be 

calculated using Eq. (3-32) or Fig.  3-26 as  (step 9). The number of 

compressor starts per hour is also calculated using Eq. (3-33) or Fig.  3-25 as  

starts per hour (step 10). 

 

Figure  3-26: Calculated average power consumption ( ) as a function of . It is 

assumed that  is properly selected to achieve  at every 

 level. Reprinted with permission [75]. 

Figure  3-26 shows that by selecting different set point pairs, the average power 
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down to . Thus, a proper selection of asymmetric set points can save 6.6% of 

the overall energy. The slight decrease in the effective power consumption for higher 

hysteresis is because when the cycle is commanded to start at a higher  value, the 

cooling load provided to the chamber slightly increases. Hence, the higher temperature 

gradient between the chamber air and the cold air leads to a higher cooling effect for the 

same compressor power. Therefore, less overall energy is consumed by the cycle for 

the same mean temperature. 

It should be noted that symmetric selection of hysteresis, as is done in Fig.  3-23, 

yields to different results compared with the asymmetric selection of set points according 

to the present model. Figure  3-23 shows that if the set points are symmetrically selected 

around the desired temperature, larger hysteresis results in higher energy consumption. 

However, the mean temperature may not be equal to the desired value. As a result, 

more energy may be consumed to maintain an undesired average temperature. 

However, by selecting the set points using the present model, the average temperature 

is more accurately maintained at the desired level, and higher hysteresis yields to 

slightly less energy consumption. 

The proposed design strategy forms an analytical tool for proper selection of the 

set points in any HVAC-R system equipped with an on/off controller. The prerequisite to 

using this method is to know the correlation parameters, an example of which is reported 

in Table  3-8. In order to find those parameters, it is necessary to have the temperature 

data for at least one temperature swing. Thus, the proposed method is readily applicable 

to existing systems. On the other hand, for new systems where the temperature data 

may not be available, the proposed method can still be used by knowing the physical 

parameters of Eq. (3-19). Similar to white-box approaches, the designer can collect the 

physical and geometrical parameters of the governing equation. The proposed design 

strategy can then be used to reformulate the heat balance equation and utilize the 

resulting -parameters for energy-efficient selection of on/off set points. 
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3.4.3. Conclusions 

In this section, a design strategy was proposed for energy-efficient selection of 

high and low temperature set points. The objective was to select the set points for 

minimizing the overall energy consumption subject to the following constraints: 

• Minimum error between the average temperature and the desired temperature 

• Minimum temperature deviation from the desired temperature 

• Minimum number of compressor starts per hour 

Following a gray-box approach, exponential correlations were fitted to raw 

temperature measurements. Based on the heat balance equation, the design strategy 

was formulated to provide analytical estimations of all the corresponding quantities. The 

model was validated by estimating the mean temperature and the average power 

consumption with acceptable accuracies. It was experimentally shown that the set points 

could affect the overall energy consumption by as much as 49%, if they were 

symmetrically selected around the desired temperature. It was further shown that while 

maintaining the exact desired temperature, there was an opportunity to further increase 

the energy efficiency by 6.6% using different high and low hysteresis values. 
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Chapter 4. Summary and Future Work 

4.1. Summary 

In this thesis, several novel methods are proposed for improving thermal load 

calculations in HVAC-R systems. Improved thermal load estimations provide the 

possibility of reducing the overall energy consumption of the system. 

Both stationary and mobile applications are investigated to make a rigorous contribution 

to the field. It is noted that while the literature’s focus has mostly been on building air 

conditioning systems, the literature lacks a comprehensive approach for load calculation 

in mobile systems. Therefore, a model is developed in this thesis for mobile load 

calculations. New methods for estimation of thermal loads and thermal inertia of a room 

are also developed and applied to stationary applications. Such methods are established 

based on general heat transfer equations and are theoretically applicable to both 

stationary and mobile applications. 

In this thesis, refrigeration is studied alongside heating and air conditioning problems. An 

actual freezer room of a restaurant is used for refrigeration experiments, while an in-

house testbed is developed in the lab for heating and air-conditioning experiments. 

Remarkable opportunities for reduction of energy consumption and emissions were 

identified and reported through the study of each proposed method. 

The proposed methods of this thesis are categorized into law-driven and data-driven 

approaches. Conventional methods that are mostly based on the governing laws of heat 

transfer are studied. Nevertheless, data-driven approaches are used for the larger part 

of this thesis to develop novel methods relying on sensor measurements. 

The palette of methods developed in this thesis is ready to be implemented in HVAC-R 

controllers for intelligent control of refrigeration and air conditioning systems. The load-
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based control of the HVAC-R systems can lead to considerable reductions in energy 

consumption. 

4.2. Future Work 

The following future work is suggested to further improve the model presented in this 

thesis: 

• Combining the proposed load estimation models with an optimization 
algorithm for real-time selection of compressor and fans speeds in the air 
conditioning cycle. 

• Improving the models by incorporation of higher numbers of sensors. 

• Coupling the developed lumped-body approaches with 3D CFD simulations for 
improving the accuracy of the results. 

• Developing algorithms for optimized control of the refrigeration cycle 
components based on the acquired load estimations. 
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Appendix A. Duty Cycle Identification for Refrigerated 
Trucks 

Refrigerated trucks are major consumers of energy that is spent on keeping their 

products refrigerated. Since the materials transported by such trucks are mostly food 

products, failure to provide the required cooling load may result in corruption of the 

stored products. Certain food types may also need specific temperature or humidity 

levels. Therefore, product safety is an important factor in the design of control systems 

for refrigerated trucks. 

While the thermal safety of the food products is maintained, it is desirable to fulfill 

this objective with less energy consumption. The task of the refrigeration system’s 

controller is to react to the thermal load variations and control the device accordingly. In 

conventional applications, no knowledge of the upcoming patterns is provided to the 

controller. However, if the duty cycle of the system is known, the load variations will be 

predictable. Energy-smart applications can therefore be designed to use this knowledge 

for efficient control of the refrigeration system. 

As a part of this project, the temperatures inside the refrigerated cabin of a truck 

are measured at several locations. Wireless data loggers are utilized to store the 

temperature value every 10 seconds during a time span of one week. The truck has 

provided the regular service of transporting dairy products during the week of study. The 

aim of this study is to identify the duty cycle of the refrigerated truck for establishing 

proper guidelines on the control and operation of the refrigerated system. Incorporating 

the knowledge of the duty cycle pattern can improve the automatic functionality of the 

controller. 

Figure A-1 shows the measurement instruments used for recording temperature 

variations in the refrigerated truck. Rotronic temperature and humidity data loggers are 

used for high-accuracy measurement of temperature and relative humidity at the 

evaporator inlet and outlet. The Track-It temperature data loggers record the air 

temperature at several locations of the refrigerated cabin. The 4-channel data logger 

thermometer is used for collecting the temperature values from thermocouples attached 

to the piping system of the refrigeration system. The portable anemometer is used to 
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measure the air velocity at the outlet of the evaporator and condenser. The lux meter is 

also attached on the roof of the truck for acquiring accurate measurements of the solar 

radiation. Refer to Section  2.2 for detailed information on the sensors and their 

accuracies. 

 

Figure A-1: Measurement instruments used for recording temperature variations 
in the refrigerated truck. 

Figure A-2 shows a plot of the recorded cabin temperature during one week of 

the truck’s regular operation. The data shows the average cabin temperature starting 

and ending at Thursday noon. As discussed in the previous chapters, distinct regimes of 

temperature variation are also observed in this data set. 

Since the refrigerated trucks are also on/off controlled, swinging regimes occur 

when the refrigeration system is on. Such swinging patterns are visible in Fig. A-2. As 
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observed in Fig. A-2, whenever the temperature swings between 2C  and 5C , it is a 

sign of the refrigeration system being on and the cabin door being closed. Nevertheless, 

there are periods of time when the temperature increases to the ambient temperature 

level, i.e., above 20C . During such periods of time, the refrigeration system is turned 

off and the temperature needs to be pulled down whenever the cooling system is turned 

back on. The third visible temperature pattern consists of time periods when the 

temperature shows irregularities that resemble neither a regular swinging nor a sharp 

increase in temperature. Such periods are candidates for identification of loading and 

unloading of products while the refrigerator is on. In such patterns, door openings occur 

while the refrigerator succeeds in keeping the average temperature low. However, the 

temperature does not swing as regularly as the case with no door opening. 

 

Figure A-2: Temperature variation pattern of the refrigerated truck during one 
week of its regular operation starting from Thursday noon. 

The duty cycle of the truck’s refrigeration system can be deduced from the 

observations made on Fig. A-2. The discussed identification process is verified with the 

data acquired from the user company’s schedule. Figures A-3 to A-5 show the results of 
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the identification procedure as observed in Fig. A-2 and verified by the company’s 

schedule. 

 

Figure A-3: Duty cycle of the refrigerated truck from Thursday to Saturday. 
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Figure A-4: Duty cycle of the refrigerated truck from Saturday to Monday. 

 

 

Figure A-5: Duty cycle of the refrigerated truck from Monday to Thursday. 
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As shown in the above figures, the loading and delivery times of the dairy 

products vary during different days of the week. The schedule of the weekends is also 

significantly different than the other days. These trends are obviously visible in the 

temperature pattern of Fig. A-2. For instance, the data of the third day clearly shows that 

the refrigeration system is turned off during the entire period of the day. 

The identification of the duty cycle based on the measured temperature is 

beneficial for energy-efficient control of the refrigeration system. The method used in this 

section can be implemented in feedback controllers for improved operation of such 

systems both in automotive and stationary applications. 


