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Abstract

Declarative specification-based problem solving systems, or "model-and-solve" systems, solve
combinatorial search problems based on specifications in high-level declarative languages.
Users of these systems can solve challenging combinatorial problems by describing what
a solution is, rather than describing an algorithm for finding one. While the problem
specifications are declarative, users of existing systems must write programs to transform
problem instances into solver-specific formats, so problem solving is not fully declarative. We
describe a purely declarative method for transforming instances from native file formats to
solver-specific formats. We also describe a prototype implementation which, used together
with existing declarative solvers, provides fully declarative problem solving. The method
can also be seen as a way to produce model finders for new logics, of moderate expressive
power, purely declaratively. We illustrate application of the method to a variety of problems,
including graph problems and logical satisfiability problems.

Keywords: declarative problem solving;knowledge representation and reasoning;constraint
modelling languages;mathematical programming;answer set programming
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Chapter 1

Introduction

1.1 Background and Motivation

A declarative problem-solving system (or model-and-solve system) is a software system
where users provide a problem specification which describes a solution for an instance of a
problem in terms of the problem domain. This differs from other problem-solving methods
which require the user to describe a process, or algorithm, to find a solution for an instance.
Our interest is in declarative solvers for combinatorial search and optimization problems.
Declarative solving systems are used in mathematical modelling, constrained optimization,
software design and many other areas.

Use of this kind of system is conceptually simple, as illustrated in Figure 1.1. The user
writes a problem specification in the declarative language of the system, the solver takes
as input the problem specification and a problem instance, and outputs a solution for the
instance, if there is one, or reports there is none. For example, for the problem of Graph
Colouring, the problem specification says (in syntax of the relevant language) that, in a
proper colouring, every node of the graph must be assigned one of the available colours,
and that no pair of adjacent vertices are assigned the same colour. Such a specification can
easily be written in many of the languages used by declarative problem-solving systems.
Then, the specification and a particular graph are given as input to the system, which will
try to construct a proper colouring.

Problem Instance
�� �


?

Problem Specification
�� �
- Declarative Solver

?
Solution
�� �


Figure 1.1: Declarative Problem Solving Systems
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Implemented systems for solving combinatorial problems based on declarative specifica-
tions are growing in variety, number, and range of effective application. Examples of declar-
ative problem solving systems include systems using the following specification languages:
the Alloy software modelling language [8], algebraic modelling languages used in mathemat-
ical programming such as Zimpl [11], constraint modelling languages used in combinatorial
optimization such as MiniZinc [16], and logic-based knowledge representation languages
such as used by the IDP System [23], Enfragmo [1], and Answer Set Programming systems
such as clingo [7] and DLV [12]. We briefly describe several of these systems in Chapter 2.

The specification languages, instance (or data) file formats, and associated terminol-
ogy for these tools can differ considerably, depending on the intended application problem,
target user community, or developer community. All, however, provide users with a sim-
ilar capability, which is to solve combinatorial problems by writing high-level declarative
problem specifications rather than executable code. Because they are used without writing
executable programs, they are sometimes called “model-and-solve” systems.

These systems are currently used primarily by specialists as a more efficient way to
tackle challenging combinatorial search and optimization problems than developing new
algorithms and implementations for each problem. The declarative nature of these sys-
tems suggests they can be used by workers who are neither programmers nor experts in
combinatorial problem solving or optimization and allows them to apply high-performance
solving technology to their own problems. As the quality of these systems improve, they
become more accessible and more likely to be successfully used by such workers. Moreover,
it is reasonable to expect that, in the near future, cloud-based model-and-solve systems will
provide practical combinatorial problem solving not only to those without programming or
combinatorial expertise, but also without local computational infrastructure, and at modest
cost.

However, the above description of using such a system left out an essential step: the
problem instance must be put into the input format of the solver. The problem instances for
the various problems users might want to solve all have distinct native file formats, which can
vary considerably. To use a declarative solver a user must transform these problem instances
into the file format of the solver. For example, suppose we are using the IDP System [23]
to solve a particular application problem, and there is a collection of benchmark instances
in the format of another solver. We need to translate the instances from their original file
format into the instance file format of the IDP System. This requires writing a program in a
traditional programming language. As a consequence, the solving is not purely declarative,
and these "declarative" systems cannot be used by non-programmers.

2



1.2 Contribution

The purpose of the work reported here is to introduce a method, and a prototype system
called Instlator, that addresses this problem. While it seems logical to directly translate
instance strings to a specific solver instance format this would require a distinct translator
for each target solver. Instead we would like a method that easily supports translation
to the various solver formats without making stand-alone translators for each one. Our
method is based on the logical formalization of combinatorial problem solving, introduced
in [15], which allows us to abstract away from the particular syntax of any given solver or
instance description language. In this formalization, a problem instance is simply a finite
structure, in the sense the term “structure” is used in mathematical logic. Our method
involves two main stages. The first maps a string in an instance description language to
a structure, and the second maps the structure to an instance description in the specific
format used by a particular model-and-solve system. The system, used as a front-end for
an existing declarative solving system, allows for purely declarative problem solving, by
providing a means of declaratively mapping instance data from text files, in whatever form
they are obtained, to the instance format of the solver. The separate stages of the system
makes translating an instance string to multiple target solvers much easier.

The use of separate stages in our method results in an instance structure being produced
which is independent of any particular solver. A representation of these instance structures
can be stored and later translated to multiple target solver formats. This provides a way
to create a solver-independent database of benchmark problem instances which could be
quite valuable to the declarative problem solving communities. For example, suppose we
need to solve many challenging instances of an application problem, and want to test the
performance of various solvers. Writing a program to transform the instances for their
original file format to the instance formats of the various solvers would be tedious. With
our method, we can generate a database of the instances in generic form, and then use the
tool again to transform them to the format of each solver we wish to evaluate. Currently
there is very little comparison of tools and methods between the communities, partly due
to them using different sets of benchmark problems and having different instance formats.

As we will see, our solution to the instance format problem will allow us to do something
much more general as well. Researchers and developers frequently find that there is a use
for some logic or declarative language for which they may not have software tools, such as
model finders or theorem provers, available. This may be because they obtain expressions
in such a language from other sources, or because they devise a new language which seems
of potential use. Building a model finder can involve serious software development effort.
Using our method, one can turn a general purpose declarative solver, such as an Integer
Programming solver, into a model finder for a wide variety of logics with only a page or so
of declarations, and no executable code.

3



Instance String
�� �


?

Specification of
Instance Description Language

�
�

�
�- Instance Translator

?
Solver Instance
�� �


?

Problem Specification
�� �
- Declarative Solver

?
Solution
�� �


Figure 1.2: Instance Translation as a Front End for a General Purpose Declarative Solver.

1.3 Related Work

We are aware of no other work directly addressing the same problem we are. The problem
is one of language translation, and thus related to compiler technology. We must still
investigate whether compilation technology, such as attribute grammars, might be fruitfully
used for our task. The scheme used by our method, as described in Chapter 3, is similar
to source-to-source translation [18]. However, the semantics of our languages are quite
different from those of programming languages.

Central to our method is the representation of a syntactic object as a structure. This
has been used in the area of linguistics known as model theoretic syntax [19]. It has been
used implicitly in meta-programming schemes, such as that in the Prolog programming
language. Meta-programming is the ability to treat computer programs as data within
another program. Prolog has many predicates where Prolog terms are interpreted as Prolog
clauses and goals. These predicates give Prolog a meta-programming (or meta-logical)
facility which allow clauses and goals to be variables within a program [17].

The first use of structures representing syntactic objects we are aware of in the formaliza-
tion of model-and-solve systems is in [15], where propositional logic, constraint satisfaction
problems, and answer set programs are represented as structures.

The IDP system for knowledge representation and reasoning has a very powerful “boot-
strapping” facility [3], which operates by transforming formulas in its problem representa-
tion language into structures, and thus changing formula manipulation tasks into declarative
problem solving on structures. Like our system, it can be used to declaratively create model
finders for other logics, but only if those logics are syntactic fragments of the IDP system
language. The facility is primarily a tool for IDP system developers. Our system is intended

4



as a front-end, for users of a variety of solving systems, and, as far as we know, is more
flexible regarding input syntax.

Software such as spreadsheet and database systems have facilities for manipulating input
formats. Also, software such as document and image processors have format translation
abilities. These operate on very specific applications which are far-removed from declarative
problem solving systems and we have not investigated whether the techniques used in these
applications might be relevant to ours or not.

1.4 Organization of the Document

In Chapter 2 we give some formal preliminaries and introduce declarative problem solving
and model expansion. We explain the concept of model expansion and introduce a number
of declarative problem solving systems. We give an overview of our method and introduce
the Instlator system in Chapter 3, with further details on the two stages of our method in
Chapters 4 and 5. Chapter 4 provides details on the first stage of our method which maps
instance strings to instance structures. We describe the two steps, parsing and mapping,
of this stage and introduce the declarative descriptions used in this stage of our method.
Chapter 5 provides details on the second stage of our method which maps instance struc-
tures to solver-specific instances. We also introduce the XML representation used by the
Instlator system to store instance structures and describe the formatting step performed
in this stage of the method as well as the declarative description used in this stage. Finally,
we provide our conclusion in Chapter 6.

5



Chapter 2

Declarative Problem Solvers

Developing a method for our task with a reasonable level of generality requires a suitable
abstraction of what a problem instance is. In this section, we describe a logical formalization
of declarative specification-based problem solving that abstracts away from most system-
specific and problem-specific details, thus providing such an abstraction. While superficially
very different, all of the specification-based solvers described in Section 2.3, and many others,
can be seen to solve the same general abstract problem and thus formalized in this uniform
way. This formalization makes it possible to separate the problem of recognizing a string as
a description of a problem instance from the presentation of the instance in a solver-specific
format.

2.1 Preliminaries

We assume the reader is familiar with the basics of propositional and first-order logics.
Our propositional formulas have atoms Pi, connectives ∧, ∨, ¬ and parentheses (, ), and
are defined by the usual inductive construction. We use the standard truth-functional
semantics defined by the satisfaction relation between formulas and truth assignments to
the propositional atoms.

First order formulas have predicate symbols Pi, functions symbols fi, variable symbols
xi and quantifier symbols ∀ and ∃, as well as connectives ∧, ∨, ¬ and parentheses (, ).
Formulas are defined by the usual inductive construction. The formal semantics of first
order formulas are defined in terms of structures (or interpretations). A vocabulary is a set
of function and relation symbols, each with an associated arity. Constant symbols are zero-
ary function symbols. A structure A for vocabulary τ (a τ -structure) is a tuple consisting of
a set A, called the universe of A, a k-ary relation over A for each k-ary relation symbol of τ ,
and a k-ary function on A for each k-ary function symbol of τ . If A is a τ -structure, and P a
predicate symbol of τ , then we write PA for the relation in A corresponding to P , called the
interpretation of P by A. Formulas are defined by the usual inductive construction, with
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the standard truth-function semantics defined by the satisfaction relation between formulas
and truth assignments of the predicate and functions of a τ -structure. A good reference for
details is [5].

2.2 A Logical Formalization of Model-and-Solve Systems

The declarative solving systems we are interested in all solve essentially the same task, but
their specification languages, instance file formats, and associated terminology for declara-
tive problem-solving tools can differ considerably. Our concern here is with the syntax of
instance (or data) descriptions used by these systems. For our method to have a reasonable
degree of generality, we need an abstract notion of a problem instance that is not tied to
any particular solver syntax.

The input instance, for solvers of the sort we are considering, is always a collection of
finite functions and relations. For example, a graph consists of a unary relation (the set
of vertices) and a binary relation (the set of edges). A weighted graph has, in addition, a
weight function mapping edges to weights. The solution to be output is a related collection
of functions and relations. For example, a subset of the edges of a given graph (e.g., a
minimum-weight spanning tree or matching), or a function from vertices to colours. For
simplicity of presentation, in the remainder we often assume we have relations only, and
no functions. (A k-ary function f may be viewed as the k + 1-ary relation known as its
graph, namely Rf = {~x, y | f(~x = y)}.) The problem specification describes, in some
formal language, the relationship between the input relations, which correspond to the
problem instance, and the output relations, which correspond to the problem solution.
This specification is written using a vocabulary of symbols which include symbols denoting
the input and output relations. We may formalize this quite generally as follows.

Because an instance of a problem is a collection of finite functions and relations, it can
be treated formally as a finite structure, where “structure” here is used as in mathematical
logic. Similarly, the solution is a structure. To write a specification for the problem,
we use a vocabulary consisting of function and relation symbols denoting elements of the
instance, and elements of the solution, possibly together with other symbols having standard
meanings such as those used in arithmetic expressions.

Suppose that vocabulary σ is a proper subset of vocabulary τ , A is a σ-structure, and
B is a τ -structure. If B has the same universe as A (that is, A = B), and has the same
interpretation for all relation symbols of σ (that is, for every P ∈ σ, PA = PB), then we
say that B is an expansion of A to τ , and A is the reduct of B on σ. Now, if σ is our chosen
instance vocabulary, then instances are σ structures. If γ is our chosen solution vocabulary,
let τ = σ∪γ be the combined instance and solution vocabulary. If σ-structureA is a problem
instance, then any structure B that is an expansion of A to τ , is a structure consisting of
an instance together with a “possible solution”. In this formalization, every element of the

7



solution is also an element of the instance. The formalization can be extended to the more
general setting where solutions contain elements which are not part of the instance, but
doing so adds complexity which is not needed for our purposes.

With instances and corresponding solutions viewed this way, a problem specification can
be viewed formally as a sentence, with vocabulary τ , of some quantified logic that defines
solutions to the problem by defining the class of τ -structures which consist of a problem
instance together with one of its solutions. A problem instance A has a solution if and
only if there is an expansion of A to τ that satisfies specification formula S. The task
of the solver is to find such an expansion if there is one. Suppose the specification is a
formula φ. There is an expansion of A that satisfies φ if and only if A is a model of the
(second-order) formula ∃~RS, where ~R is the tuple containing the symbols of τ . Thus, A has
a solution if it is a model of ∃~RS, and a solution for A is an expansion of A that satisfies
the formula S. Hence [15] used the term “Model Expansion” for the underlying formal task
of specification-based solvers.

Example 2.1. Consider the problem of finding a proper colouring of a graph G with
colours from a set C. An instance consists of a set of vertices, a set of edges, and a set
of colours. Let our “instance vocabulary” be σ = 〈V,E,C〉, where V and C are unary
relation symbols (they denote sets), and E is a binary relation symbol. A solution is a
function mapping colours to vertices, and satisfying certain properties. Let our “solution
vocabulary” be γ = 〈Col〉, where Col is a binary relation symbol that will map vertices to
colours. A specification for the Graph Colouring problem is a formula φ with the property
that a τ -structure satisfies φ if and only if it is a properly coloured graph. To illustrate:

A︷ ︸︸ ︷
(V,C;EA, ColB)︸ ︷︷ ︸

B

|= φ

(Here, A is the graph and set of colours, and B is the expansion with a node colouring
relation.)

The following formula φ has the required property, and thus constitutes a specification
for Graph Colouring.

∀x∃c[Col(x, c)]

∧∀x∀c[Col(x, c) ⊃¬∃k((c 6= k) ∧ Col(x, k))]

∧∀x∀y[E(x, y) ⊃∀c(¬(Col(x, c) ∧ Col(y, c)))]

The first constraint states that every vertex is assigned a colour, the second constraint
states that a vertex can be assigned at most one colour and the third constraint states that
adjacent vertices cannot be assigned the same colour.

8



Several of the specification languages we mentioned in the introduction are explicitly
described as logics, albeit with non-standard syntax and/or extensions beyond textbook-
style first order logic for practical convenience in modelling real problems. Others, while
normally not thought of or described as formulas of a logic, are in fact easy to view as
syntactic variants of first order logic again with an number of extensions, such as type
systems and built-in arithmetic. Illustrations of this can be found in [14] and [21]. So, this
formalization is indeed applicable to real systems.

2.3 Examples of Declarative Problem-Solving Systems

There is a growing number and variety of declarative problem solving systems. Here we
introduce some of these systems and show how each represents the same problem. Consider
the following graph G.

2�����
���

3����
@
@@R

1����
�

4�����

For each declarative solver described below we will show graph G represented in the solver’s
instance format. We will also write the following constraint in the specification (or mod-
elling) language of each solver.

∀x∀y[E(x, y) ⊃ ∀c(¬(Col(x, c) ∧ Col(y, c)))] (2.1)

The constraint is from the Graph Colouring problem and states that if there is an edge
between two vertices then the vertices cannot be assigned the same colour. For some of the
declarative solvers Col will be a node colouring function and for the others Col will be a
relation.

The representations shown in the following sections demonstrate how the instance file
formats of declarative solver can vary depending on the intended application problem, target
user community, or developer community.

2.3.1 Zimpl

Zimpl (Zuse Institute Mathematical Programming Language) is a declarative problem-
solving system that translates a mathematical model of a problem into a linear or nonlinear
integer mathematical program expressed in .lp or .mps file format, which can be read and
solved by many LP or MIP solvers [11].

The representation of graph G in Zimpl requires two text files. The following is the
first file which provides the set of vertices.

9



# Set V

1

2

3

4

The other file provides the set of edges, as follows.

# Set E

1 3

2 1

3 2

4 1

The following is the representation of our constraint 2.1 for Zimpl.

constraint forall <x> in V do forall <y> in V do

if ( <x,y> in E ) then col[x] ~= col[y] end;

2.3.2 MiniZinc

MiniZinc is a constraint modelling language for specifying constrained optimization and
decision problems over integers and real numbers. It uses a somewhat C-like syntax to
describe constraints involving quantification, a wide variety of arithmetic constraints, and
logical connectives [16].

The following is our graph G represented in the format for MiniZinc instances. In
addition to the set of edges, provided as an array, we must also provide the size of sets V,
E, and C, the sets of vertices, edges and colours respectively.

sizeV = 4;

sizeE = 4;

sizeC = 3;

E = [ | 1, 3 | 2, 1 | 3, 2 | 4, 1 | ];

The following is the representation of our constraint 2.1 for MiniZinc.

constraint forall ( x in V, y in V, z in 1..sizeE ) (

( E[z,1] = x /\ E[z,2] = y ) => ( Col[x] != Col[y] ) ) );

Complete details of a MiniZinc implementation of graph colouring are available from the
MiniZinc website [16].

10



2.3.3 IDP System

The IDP system is a knowledge base system using a language which is an extension of first
order logic with inductive definitions, aggregates and types, called FO(·) by the system
authors. A knowledge base system is a system that supports multiple forms of inferences
for the same knowledge base [23].

The following is our graph G in the IDP System’s instance format. In addition to the
sets of vertices and edges we must also provide the set of colours C.

structure Graph:Colouring {

V = {1..4}

C = {1..3}

E = {(1,3);(2,1);(3,2);(4,1)}

}

The following is the representation of our constraint 2.1 in the language of the IDP
System.

! x [V] y [V] : E(x,y) => Col(x) ~= Col(y)

Here ! represents the quantifier ∀.

2.3.4 Enfragmo

Enfragmo [1] is a solver explicitly based on model expansion, with a specification language
that extends first order logic with types, arithmetic and aggregates, similar to that of the
IDP system.

This is the representation of our graph G in Enfragmo’s instance format.

TYPE V [1..4]

TYPE C [1..3]

PREDICATE E

(1,3)

(2,1)

(3,2)

(4,1)

This is our constraint 2.1 represented for Enfragmo.

! x : V y : V c : C : ( E(x,y) => ( ~ ( Col(x,c) & Col(y,c) ) ) );

Complete details of the Enfragmo implementation of graph colouring are available from the
Enfragmo User Manual [20].
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2.3.5 clingo

Answer Set Programming is a declarative problem solving framework in which problem
specifications are described using logic programs with Stable Models (or Answer Set) se-
mantics. The "Potsdam Answer Set Solving Collection" (Potassco) gathers a variety of
tools for Answer Set Programming, including grounder gringo, solver clasp, and their
combination within the integrated ASP system clingo [7].

The following is our graph G represented in the instance format for clingo. The set V
is represented by predicate node and set E by predicate edge.

node(1..4).

edge(1,3). edge(2,1). edge(3,2). edge(4,1).

The following is a clingo representation of our constraint 2.1 from the solution for
Graph Colouring.

:- edge(X,Y), color(X,C), color(Y,C).

Complete details of the clingo implementation of graph colouring are available from the
Potassco User Guide [6].

2.3.6 Alloy

Alloy is a lightweight modelling language for software design. It is amenable to a fully
automatic analysis, using the Alloy Analyzer, and provides a visualizer for making sense of
solutions and counterexamples it finds. The language is a simple but expressive logic based
on relations and the syntax is designed for building models incrementally [8]. The model
finding engine used by Alloy is a constraint solver that implements model expansion for
relational first order logic.

A full implementation of the Graph Colouring problem is available from the Alloy web-
site [22]. The implementation supports three graph formats, one of which is the DIMACS
graph format [10]. The following is our graph G represented in DIMACS graph format. (In
Chapter 3 we describe the application of our method to DIMACS graph format.)

p edge 4 4

e 1 3

e 2 1

e 3 2

e 4 1

The following is the code which corresponds to our constraint 2.1 in the Graph Colouring
implementation.
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for(int i = 0; i < vcolors.length; i++) {

final int[] neighbors = graph[i];

final int max = neighbors.length;

final Relation vcolor = vcolors[i];

for(int j = 0; j < max; j++) {

formulas.add( vcolor.intersection(vcolors[neighbors[j]]).no() );

}

Complete details of the implementation of graph colouring are available from the Alloy
website [22].
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Chapter 3

Method Overview

The purpose of the method is to map a string, which describes an instance of a problem,
into the instance (or data) format for a chosen declarative problem solving tool. Given the
formalization of search problems as model expansion, described in Chapter 2, we may ac-
complish our translation of instance description strings to solver input formats in two stages,
as illustrated in Figure 3.1. The first stage maps an instance string to an abstract instance
representation. The second stage maps an abstract instance representation to a string de-
scribing that structure in the format of a particular solver. The first stage itself is carried
out in two steps. The first step parses the instance string based on the syntactic features of
the language in which the problem instances are described. Any reasonable language will
have syntactic constructs corresponding to the semantically meaningful properties of the
problem instance. The second step maps the semantically significant syntactic features to
the semantic vocabulary of an abstract instance representation. The solver-specific instance
produced by our method can be used, together with a problem specification written in terms
of the appropriate vocabulary, by the declarative solver to find a solution.

Each stage of the method, as illustrated in Figure 3.1, requires declarative descriptions
of the steps performed by the stage. These declarative descriptions are provided by the
following three items:

1. A grammar for the language in which problem instances are described, which the tool
uses to parse the input string.

2. A vocabulary map, which defines the vocabulary of the instance structure and describes
a mapping of semantically significant syntactic features to the semantic vocabulary of
the abstract instance representation.

3. A solver format description, which defines a mapping from the abstract instance rep-
resentation to a solver-specific instance format.

The first stage of our method requires a grammar and a vocabulary map to preform the
mapping from an instance string to an instance structure. The grammar is used during the
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Figure 3.1: Internal scheme of the instance translator.

first step to identify the syntactic features of the language in which the instance is described.
The vocabulary map is used during the second step to identify the semantically significant
syntactic features of the instance string and is also used to map these syntactic features to
the semantic vocabulary of the instance structure. The second stage of our method requires
a solver format description to perform the mapping from an instance structure to a solver-
specific instance file. This mapping is not dependent on the grammar or the vocabulary
map and therefore the first and second stages of the method can be used independently.
For example, given an instance of some problem, we may generate a corresponding instance
structure and store it without regard to which solver or solvers we may want to apply to it.
Later, the abstract instance structure can be used to generate instance files in the formats
of one or more solvers. This means that transformation to the formats of new solvers can be
added without needing to modify the transformation from instance strings to structures. It
also offers the possibility to store a collection of benchmark instances in a solver independent
form for later use.

In the following two chapters, we will describe the two stages in further detail. We will
illustrate the method using propositional logic as an example problem. That is, we suppose
that we want to use a general-purpose declarative solver for finding satisfying assignments
to formulas of propositional logic.
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3.1 The Instlator System

The Instlator system is an implementation of our method as illustrated in Figure 3.1.
The system consists of two tools, each of which corresponds to a stage of our method. The
first tool, an instance structure generator as depicted in Figure 3.2, implements the method
for mapping of instance strings to instance structures described in detail in Chapter 4.
The tool stores a representation of the instance structure in the form of an XML file. The
second tool, a solver instance generator as depicted in Figure 3.3, implements the method for
mapping instance structures to solver instances described in Chapter 5. This tool formats a
stored representation of an instance structure to a solver-specific instance file. A complete
description of the XML representation of instance structures is given in Chapter 5. Both
tools are Python programs which require Anaconda 2.1.0 or higher to be installed. A free
distribution of Anaconda is available from Continuum Analytics [2].

3.1.1 Instance Structure Generator

Instance String
�� �


?

Grammar
�� �
- Parsing

?
Parse Tree
�� �


?

Vocabulary Map
�� �
- Mapping

?
Instance Structure
�� �


Figure 3.2: Internal scheme of the instance structure generator.

This tool parses instance strings and maps them to instance structures as described in
Chapter 4. The instance structure generator uses the parser included in NLTK: the Natural
Language ToolKit [13], a natural language processing toolkit for Python, as the parser for
instance strings. To use the tool navigate to the directory containing the Instlator system
and run the following command.

$ py generate_instance_structure.py instance.txt grammar.txt

vocabulary_map.xml > instance_structure.xml

The command uses four files
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1. The file instance.txt contains the instance string. It is not restricted to have a
specific file extension.

2. The file grammar.txt contains the grammar used to parse the instance string.

3. The file vocabulary_map.xml contains the vocabulary map used to map the instance
string to a generic instance.

4. The file instance_structure.xml will store the instance structure generated by the
tool.

3.1.2 Solver Instance Generator

Instance Structure
�� �


?

Solver Format
�� �
- Formatting

?
Solver Instance
�� �


Figure 3.3: Internal scheme of the solver instance generator.

This tool maps instance structures to solver instances as described in Chapter 5. To use
the tool navigate to the directory containing the Instlator system and run the following
command.

$ py generate_solver_instance.py instance_structure.xml

solver_format.xml > solver_instance.txt

The command uses three files

1. The file instance_structure.xml contains the instance structure.

2. The file solver_format.xml contains the solver format description for the declarative
solver.

3. The file solver_instance.txt will store the solver instance generated by the tool
and should have the file extension require by the solver.
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Chapter 4

Mapping Strings to Structures

In this chapter we describe the mapping from instance strings to instance structures. In
Sections 4.1 and 4.2 we describe the two main steps, using a formula of propositional logic
as a simple running example. In Sections 4.3 and 4.4 we present a number of examples using
graphs and extensions of propositional logic, which illustrate a number of further details.
In Section 4.5 we show how problem instances for the same problem, but in different solver
instance formats, can all be mapped to the same abstract structure.

4.1 Parsing Instance Strings

In the first step of this stage of our method, a parse tree is constructed using a generic
parser, which takes as input the grammar and a string, and parses the string in accordance
with the grammar.

Example 4.1. Let F be the formula

((p ∨ q) ∧ (¬p))

For our example problem of propositional logic, here is a suitable grammar.

Formula → Atom|“(”And“)”|“(”Or“)”|“(”Not“)”

And → Formula“ ∧ ”Formula

Or → Formula“ ∨ ”Formula

Not → “¬”Formula

Atom → _character[lower]

The rule Formula→ Atom|“(”And“)”|“(”Or“)”|“(”Not“)” describes which strings are con-
sidered Formulas, and indicates that all Formulas (except atoms) are enclosed within
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parentheses. The rules And, Or and Not give the form of sub-formulas involving the three
connectives. The rule Atom indicates that an atom is a lower case character.

In Example 4.1, we used the notation preferred in typeset (or hand-written) work, but
the actual strings used in practice are normally ASCII versions of these. Example 4.2 gives
the ASCII version of the grammar, for the ASCII version of propositional logic formulas.

Example 4.2. The ASCII version of our formula F is

( ( p | q ) & ~ p )

and the ASCII version of our propositional logic grammar is

Formula -> Atom | "(" And ")" | "(" Or ")" | "(" Not ")"

And -> Formula "&" Formula

Or -> Formula "|" Formula

Not -> "~" Formula

Atom -> _character[lower]

Parsing the instance formula according to the grammar generates a parse tree P for the
instance. Each node in P corresponds to an application of a grammar rule, and is labelled
with the name of that rule.

Example 4.3. The parse tree P of formula F is

Atomp&%
'$

Atomq&%
'$

Atomp&%
'$

Formula&%
'$��

Formula&%
'$@@

Formula&%
'$

Or&%
'$

Not&%
'$

Formula&%
'$!!!!

Formula&%
'$aa

aa

And&%
'$
Formula&%
'$
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The parser constructs a parse tree P where each node of the tree corresponds to an
application of a grammar rule. This parse tree contains nodes which do not carry any
meaningful information about the corresponding formula. For example, the parse tree P
for formula F produced by the parser will contain nodes of type Formula which indicates
that the sub-string is a formula and is enclosed within parentheses. Nodes of this type do not
carry any meaningful information about the formula. Nodes of type And, Or, Not and Atom

already imply that a sub-string is a formula and parentheses do not have a semantic meaning
within the formulas, except to uniquely determine the intended parsing. This means that
nodes of type Formula are not semantically meaningful elements of propositional logic.

The vocabulary map identifies the nodes of the parse tree which will have corresponding
semantic objects in the instance structure we construct from the tree. Therefore, it makes
sense for the vocabulary map to also identify those nodes of the parse tree which should
be ignored. Before proceeding to map the parse tree to the structure, the system removes
these nodes. For propositional logic, our vocabulary will be

τP L = [Atom,Not,And,Or]

where Atom is a unary predicate symbol, Not a binary predicate symbol, and Or and And

are ternary predicate symbols. The relations denoted by these symbols each correspond to
nodes with the same names in the parse tree. There is no vocabulary symbol corresponding
to Formula nodes, so we will remove those.

In the vocabulary map, nodes of the parse tree which correspond to semantic objects
in the instance structure are identified by a type tag of the form <type>. The instance
structure vocabulary symbol is given by the name attribute. The grammar rules which
correspond to the vocabulary symbol are identified in the grammar tag.

Example 4.4. The following type tag is used to specify the vocabulary symbol Formula.

<type name="Formula">

<grammar>And,Or,Not,Atom</grammar>

<range>

<lower>1</lower>

</range>

</type>

The grammar rules corresponding to the vocabulary symbol Formula are the rules And,
Or, Not and Atom.

Any grammar rule which isn’t assigned to a vocabulary symbol by the vocabulary map is
ignored by the system. For convenience in constructing the abstract structure, the Instla-
tor system will remove any nodes corresponding to the ignored grammar rules by mapping
the original parse tree to a tree containing only the semantically meaningful elements.
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Example 4.5. After the nodes of type Formula are removed from the parse tree P of
formula F , the new parse tree T contains only nodes of type And, Or, Not and Atom.

Atomp��
����

Atomq��
��@@

Atomp��
��Or��

��!!!!
Not��
��aa

aa
And��
��

To view the complete syntax of grammar files see Appendix A.

4.2 Structure Construction

In the second step, we want to map parse trees to instance structures. The relations in
these structures should make the semantic content of the strings explicit.

For our problem of propositional logic, we want to map propositional formulas to struc-
tures. The relations in these structures should make the semantic content of the formula
explicit. This semantic content is (in accordance with the usual recursive definition of satis-
faction of a propositional formula), the relationship between distinct sub-formulas. We will
assign an identifier for each sub-formula, and the elements of the relations in our structure
will be these identifiers.

During the mapping of the original parse tree P to the new tree T each node representing
a semantically meaningful element is assigned an identifier. Identifiers are assigned based
on the type of the semantic element specified by the vocabulary map. The vocabulary map
provides a range for each type’s identifiers using the range tag. Each range must have a
lower bound, provided by the lower tag, which will usually be set to 1. Nodes are assigned
identifiers starting with the lower bound for the root of the parse tree T and assigned
incrementally according to an in-order traversal of the parse tree. Leaves, which correspond
to terminals in the grammar, are handled differently. The first leaf corresponding to any
particular terminal is given the next node identifier, and any subsequent leaves with the
same terminal symbol are given the same node identifier. The upper bound is determined
by the system and will be set to the number of nodes assigned to each type. An upper
bound can also set using an upper tag within the range tag, however this will override the
value set by the system. In most cases, the system upper bound setting is appropriate

Example 4.6. The nodes of parse tree T with identifiers assigned.
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3
Atomp��
���� 4

Atomq��
��@@ 3

Atomp��
��

2
Or��
��!!!! 5

Not��
��aa
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And��
��

Mapping the parse tree T to a structure amounts, essentially, to placing semantically
similar sub-trees in relations. The structure for a formula will have a relation for each of
the three connectives ∧, ∨ and ¬, and also a set (unary relation) identifying the atoms of
the formula. Each tuple in the relation ∧ represents a sub-formula which is a conjunction.

The τP L structureM corresponding to our formula F has:

M = {1, 2, 3, 4, 5}

AtomM = {(3), (4)}

AndM = {(1, 2, 5)}

OrM = {(2, 3, 4)}

NotM = {(5, 3)}

We can visualize a structure as a collection of tables, one for each relation in the structure
(and each semantically significant syntactic structure).

Example 4.7. In the structure corresponding to F = ((p ∨ q) ∧ (¬p)), the relation for ∧
will have a triple representing the fact that F consists of conjunction of two sub formulas:
〈F, F1, F2〉, where F1 and F2 are identifiers for the sub-formulas (p ∨ q) and (¬p). The
structure for formula F is:

And

1 2 5

Or

2 3 4

Not

5 3

Atom

3
4

The parse tree T is mapped to the abstract structure by mapping each node of the tree
to a row of a table based on the vocabulary map. Which table a node is mapped to is based
on the type of semantic element the node represents and is determined by the grammar

22



rule recorded by the node. The columns of a table contain the identifiers of a node and its
children.

The vocabulary map file specifies how to map the parse tree to an abstract structure.
In particular, it fixes the vocabulary of the instance structure, and identifies which kind
of nodes in the parse tree correspond to which vocabulary symbols. A predicate tag, of
the form <predicate>, is used to identify which nodes in the parse tree correspond to the
relation described by the tag. The name of the relation is given by the name attribute, and
the grammar rules which correspond to the relation are given by a grammar tag.

Example 4.8. The following predicate tag is used to describe the relation for the connective
∧ in propositional logic.

<predicate name="And">

<grammar>And</grammar>

<arity>(Formula,Formula,Formula)</arity>

<format>number_children</format>

</predicate>

The arity tag specifies the arity of the relation and the typing of its tuples’ arguments.
The vocabulary symbols used within the arity tag must be described by a type tag in the
vocabulary map. The vocabulary symbols described in the type tags assign typing to the
nodes of the parse tree. The typing assigned to the tuples by the arity tag will correspond
to the typing of a node corresponding to the relation and its child nodes. The format tag
specifies how the contents of the relation’s tuples are determined. In the example for ∧,
keyword number_children indicates that the first argument is the identifier of the node
representing the element and the remaining arguments are the identifiers of its children.

Terminal nodes are identified by the terminal tag, <terminal/>, appearing in the pred-
icate tag.

Example 4.9. The predicate tag

<predicate name="Atom">

<grammar>Atom</grammar>

<arity>(Formula)</arity>

<format>number</format>

<terminal/>

</predicate>

represents the atoms of a formula.

The predicate identifying the atoms of the formula has only one argument which is the
identifier of the node representing the element that is an atom. This is indicated in the
type tag using the keyword number.
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Example 4.10. The following is the complete vocabulary map file for propositional logic

<propositional structure="Instance" vocabulary="Propositional">

<type name="Formula">

<grammar>And,Or,Not,Atom</grammar>

<range>

<lower>1</lower>

</range>

</type>

<predicate name="And">

<grammar>And</grammar>

<arity>(Formula,Formula,Formula)</arity>

<format>number_children</format>

</predicate>

<predicate name="Or">

<grammar>Or</grammar>

<arity>(Formula,Formula,Formula)</arity>

<format>number_children</format>

</predicate>

<predicate name="Not">

<grammar>Not</grammar>

<arity>(Formula,Formula)</arity>

<format>number_children</format>

</predicate>

<predicate name="Atom">

<grammar>Atom</grammar>

<arity>(Formula)</arity>

<format>number</format>

<terminal/>

</predicate>

</propositional>

To view the complete syntax of vocabulary map files see Appendix A.

4.3 Graph Problems

Our method can easily be used to translate graphs presented in many formats. In graph
applications, DIMACS formats are often used for storing graphs in files. In this section,
we describe grammars and vocabulary maps for three of the DIMACS graph formats. The
grammars and vocabulary maps, along with a corresponding problem specifications, can be
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used the solve a variety of graph problems. We will also introduce the concepts of inttypes,
invisible relations and vocabulary symbols which do not correspond to a grammar rule.

4.3.1 Graphs

Consider the following graph G as shown in Chapter 2.
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@@R

1����
�

4�����

Here is an example of graph G, as represented in the DIMACS graph format [10]. The
first line gives the numbers of edges and nodes. Each line beginning with an ‘e’ gives an
edge.

p edge 4 4

e 3 2

e 2 1

e 1 3

e 4 1

The DIMACS graph format is described by the following grammar.

Problem -> "p" "edge" Num Num Graph

Graph -> Edg | Node | Edg Graph | Node Graph

Edg -> "e" Vtx Vtx

Vtx -> _integer[1:VtxMAX]

Num -> _integer[intMIN:intMAX]

The vocabulary corresponding to graph G is

τGraph = [Edge]

and the τGraph structure G corresponding to our graph G has:

V = {1, 2, 3, 4, 5}

EdgeG = {(3, 2), (2, 1), (1, 3), (4, 1)}

In the τGraph structure G the set of vertices is our universe V , and therefore there is
no vocabulary symbol which corresponds to the grammar rule Vtx. However, we still need
to assign identifiers to the vertices, so we cannot ignore nodes which correspond to the
grammar rule Vtx. Instead we will create an invisible relation, indicated by the invisible
tag appearing in the predicate tag describing the relation Vertex.
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The following is a corresponding vocabulary map for the grammar.

<graph structure="Instance" vocabulary="Graph">

<type name="Vtx">

<grammar>Vtx</grammar>

<range>

<lower>1</lower>

</range>

</type>

<predicate name="Vertex">

<grammar>Vtx</grammar>

<arity>(Vtx)</arity>

<format>number</format>

<terminal/>

<invisible/>

</predicate>

<predicate name="Edge">

<grammar>Edg</grammar>

<arity>(Vtx,Vtx)</arity>

<format>children</format>

</predicate>

</graph>

Here we introduce a new keyword children, used in the format tag of predicate Edge. The
keyword indicates that for nodes of type Edg the arguments of its tuples are the identifiers
of the node’s children. We give an example of a graph problem which uses the grammar
and vocabulary map for DIMCAS graph format in Section 4.3.1.

Example Graph Problem: Colouring

One problem which uses the grammar and vocabulary map from Section 4.3.1 is the Graph
Colouring problem as described in Chapter 2. If the problem specification requires that
the number of colours is given in the solver instance, this may be added by the vocabulary
map, as follows.

<type name="Clr">

<grammar></grammar>

<range>

<lower>1</lower>

<upper>3</upper>

</range>
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<inttype/>

</type>

The number of colours is provided by the range of type Clr, which has an empty grammar
tag. This is a good way of including additional information required by the solver which
is not provided by the instance string. For a complete vocabulary map for the Graphs
Colouring problem see Appendix B.

4.3.2 Graphs with Weighted Nodes

Consider the graph G with weighted nodes.
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Here is an example of graph G, as represented in the DIMACS graph format with
weighed nodes [10]. Each line beginning with an ‘n’ gives a node number and its weight.

p edge 4 4

n 1 5

n 2 7

n 3 13

n 4 1

e 3 2

e 2 1

e 1 3

e 4 1

To create a grammar for these graphs, modify the graph grammar of Section 4.3.1 by
replacing the Graph grammar rule and adding the following grammar rules for nodes with
weights.

Graph -> Node | Node Graph | Edg | Edg Graph

Node -> "n" Vtx Num

The vocabulary corresponding to graph G is

τGraph = [Edge,Weight]

and the τGraph structure G corresponding to our graph G has:

V = {1, 2, 3, 4}
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EdgeG = {(3, 2), (2, 1), (1, 3), (4, 1)}

WeightG = {(1, 5), (2, 7), (3, 13), (4, 1)}

To create a corresponding vocabulary map add the following type tag and predicate tag
to the vocabulary map of Section 4.3.1.

<type name="Num">

<grammar>Num</grammar>

<range>

<lower>IntMIN</lower>

<upper>IntMAX</upper>

</range>

<inttype/>

</type>

<predicate name="Weight">

<grammar>Node</grammar>

<arity>(Vtx,Num)</arity>

<format>children</format>

</predicate>

Here we introduce the concept of an inttype, an inttype, indicated by the tag <inttype/>,
specify nodes of the parse tree which represent a numerical value. The nodes of the parse tree
which are inttypes are treated differently then other nodes. Instead of assigning identifiers
incrementally inttype nodes are assigned the value it represents as an identifier.

Consider the nodes in the parse tree for graph G which represents the weight of the
vertices, such as n 1 5. Instead of assigning the weights the identifiers 1-4, which would be
the case for a regular type, the nodes will be assigned the identifiers 5,7,13,1 respectively.

While in most cases it is best not to set an upper bound for identifiers, inttypes are an
exception. An upper bound is require for inttypes because the greatest value assigned to
the identifiers will be greater then the number of nodes of this type in almost all cases. For
a complete grammar and vocabulary map for graphs with weighted nodes see Appendix B.

Example Graph Problem: Weighted Clique

The grammar and vocabulary map from Section 4.3.2, along with a corresponding problem
specification, can be used the solve the Weighted Clique problem.

To find a clique of a weight greater than K in graph G we can use the following problem
specification.

∀x∀y[(Clique(x) ∧ Clique(y)) ⊃

((x = y) ∨ Edge(x, y) ∨ Edge(y, x))]
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∧[Sum{w : Weight(v, w)|Clique(v)} ≥ K]

4.3.3 Graphs with Weighted Edges

Consider the graph G with weighted edges.
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Here is an example of graph G, as represented in the DIMACS graph format with
weighted edges [9]. Each line beginning with an ‘e’ gives an edge (the first two numbers)
and its weight (the third number).

p edge 4 4

e 3 2 13

e 2 1 7

e 1 3 5

e 4 1 1

To create a grammar for these graph replace the grammar rule describing edges in the
grammar of Section 4.3.1 with the following grammar rule describing weighted edges.

Edg -> "e" Vtx Vtx Num

The vocabulary corresponding to graph G is

τGraph = [Edge]

and the τGraph structure G corresponding to our graph G has:

V = {1, 2, 3, 4}

EdgeG = {(3, 2, 13), (2, 1, 7), (1, 3, 5), (4, 1, 1)}

To create a corresponding vocabulary map remove the Weight predicate tag from the
vocabulary map of Section 4.3.2 and replace the Edge predicate tag with the following
predicate tag.

<predicate name="Edge">

<grammar>Edg</grammar>

<arity>(Vtx,Vtx,Num)</arity>

<format>children</format>

</predicate>
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The grammar and vocabulary map, along with a corresponding problem specification, can
be used the solve a variety of graph problems. For a complete grammar and vocabulary
map for graphs with weighted edges see Appendix B.

4.4 Logics

Our method can be applied to formulas of a variety of logics. In this section we describe
grammars and vocabulary maps for several simple logics, each demonstrating a different
sort of extension of our grammar and vocabulary map for propositional logic. We also
introduce the concepts of sub-trees as terminals and multiple relations corresponding to a
single grammar rule.

4.4.1 Integer Difference Logic

Syntactically, Difference Logic is essentially propositional logic except that atoms are arith-
metic expressions of the form x − y OP c, where x and y are (integer valued) variables, c
is an integer constant, and OP is one of =,<,>. For example, consider formula I

(((x− y < 9) ∨ (x− y = 9)) ∧ (¬((y − z > 6))))

We can produce a grammar for this logic by modifying our grammar for propositional logic,
as given in Section 4.1, replacing the Atom grammar rule with the following rules for the
more complex atoms.

Atom -> "(" LessThan ")" | "(" Equal ")" | "(" GreaterThan ")"

LessThan -> Variable "-" Variable "<" Constant

Equal -> Variable "-" Variable "=" Constant

GreaterThan -> Variable "-" Variable ‘‘>" Constant

Variable -> _character[lower]

Constant -> _integer[0:IntMAX]

The vocabulary for formulas of difference logic is

τIDL = [And,Or,Not,LessThan,Equal,GreaterThan]

and the τIDL structureM corresponding to our formula I has:

M = F ∪ V

F = {1, 2, 3, 4, 5, 6}

V = {1, 2, 3}

AndM = {(1, 2, 5)}
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OrM = {(2, 3, 4)}

NotM = {(5, 6)}

LessThanM = {(3, 1, 2, 9)}

EqualM = {(4, 1, 2, 9)}

GreaterThanM = {(6, 2, 3, 6)}

where atoms are separated into three different relations based on their operation (=,<,>).
The tuples of these three relations have four arguments. The first argument is the identifier
of the sub-formula, the second and third arguments are the identifiers of the atom’s variables
and the final argument is the value of the atom’s constant. For example, the atom (x−y < 9)
is in relation LessThan and is represented by tuple (3, 1, 2, 9).

To create a vocabulary map remove the Formula type and Atom predicate from the
vocabulary map for propositional logic and add the following tags.

<type name="Formula">

<grammar>And,Or,Not,LessThan,Equal,GreaterThan</grammar>

<range>

<lower>1</lower>

</range>

</type>

<type name="Variable">

<grammar>Variable</grammar>

<range>

<lower>1</lower>

</range>

</type>

<type name="Number">

<grammar>Constant</grammar>

<range>

<lower>0</lower>

<upper>intMAX</upper>

</range>

<inttype/>

</type>

<predicate name="LessThan">

<grammar>LessThan</grammar>

<arity>(Formula,Variable,Variable,Number)</arity>

<format>number_children</format>

<terminal/>
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</predicate>

<predicate name="Equal">

<grammar>Equal</grammar>

<arity>(Formula,Variable,Variable,Number)</arity>

<format>number_children</format>

<terminal/>

</predicate>

<predicate name="GreaterThan">

<grammar>GreaterThan</grammar>

<arity>(Formula,Variable,Variable,Number)</arity>

<format>number_children</format>

<terminal/>

</predicate>

<predicate name="Variable">

<grammar>Variable</grammar>

<arity>(Variable)</arity>

<format>number</format>

<terminal/>

<invisible/>

</predicate>

This grammar and vocabulary map, with a corresponding problem specification, can be used
to solve for integer difference logic satisfiability. For a complete grammar and vocabulary
map for integer difference logic see Appendix C.

4.4.2 Propostional Formulas in Conjunctive Normal Form

Many propositional logic formulas are written in Conjunctive Normal Form (CNF). A for-
mula in CNF consists of a conjunction of clauses where each clause is a disjunction of literals
and a literal is an atom or a negated atom.

Example 4.11. Let C be the formula

(p ∨ q ∨ ¬r) ∧ (¬p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ ¬r)

The atoms of C are p, q and r, the literals are p, q, r, ¬p, ¬q and ¬r and the clauses are
(p ∨ q ∨ ¬r), (¬p ∨ q ∨ r) and (p ∨ ¬q ∨ ¬r).

The following is a general grammar file for propositional formulas in CNF:

Conj -> "(" Disj ")" | "(" Disj ")" "&" Conj

Disj -> Atom | Neg | Atom "|" Disj | Neg "|" Disj
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Neg -> "-" Atom

Atom -> _character[lower]

The vocabulary for propositional formulas in CNF is

τCNF = [Clause,Literal,Not,Atom]

and the τCNF structureM corresponding to our formula C has:

M = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

ClauseM = {(1), (6), (8)}

LiteralM = {(1, 2), (1, 3), (1, 4), (6, 7), (6, 3), (6, 5), (8, 2), (8, 9), (8, 10)}

NotM = {(4, 5), (6, 2), (9, 3), (9, 5)}

AtomM = {(2), (3), (5)}

It is possible to use the propositional logic grammar of Section 4.1 to parse propositional
formulas in CNF. However, by taking advantage of the restricted format of CNF we can
produce instance structures with much smaller universes then those produced by our method
for general formulas.

Example 4.12. The τP L structure corresponding to our formula C would have universe
M = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, where every sub-formula of C is assigned
an identifier. The τCNF structure M corresponding to our formula C only has a universe
with ten identifiers.

The corresponding vocabulary map is the following:

<cnf structure="Instance" vocabulary="CNF">

<type name="Formula">

<grammar>Disj,Neg,Atom</grammar>

<range>

<lower>1</lower>

</range>

</type>

<predicate name="Clause">

<grammar>Disj</grammar>

<arity>(Formula)</arity>

<format>number</format>

</predicate>

<predicate name="Literal">

<grammar>Disj</grammar>
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<arity>(Formula,Formula)</arity>

<format>number_child</format>

</predicate>

<predicate name="Not">

<grammar>Neg</grammar>

<arity>(Formula,Formula)</arity>

<format>number_children</format>

</predicate>

<predicate name="Atom">

<grammar>Atom</grammar>

<arity>(Formula)</arity>

<format>number</format>

<terminal/>

</predicate>

</cnf>

Here we introduce the concept of multiple relations corresponding to a single grammar
rule. Both the relation Clause and the relation Literal correspond to the grammar rule
Disj. The relation Clause indicates which sub-formulas are clauses. The relation Literal

describes the relationship between clauses and literals. It is possible to combine the two
relations into a new single relation, however, this would require a more complex problem
specification.

Example 4.13. Consider the constraint stating that all clauses must be true for the formula
to be satisfied. When using two relations the constraint is written as follows:

∀c[Clause(c) ⊃ True(c)]

The relation Literal could be used be used to indicate which sub-formulas are clauses and
to describe the relationships between clauses and literals. When using only one relation the
constraint would be the following.

∀c∀l[Literal(c, l) ⊃ True(c)]

When the first version of the constraint is ground there will be one version of the constraint
for each clause. However, when the second version of the constraint is ground there will be
one version of the constraint for each literal and thus multiple versions of the constraint for
each clause. These additional constraints increase the complexity of the specification and
can increase the runtime of the problem solver.

In order to keep problem specifications as simple as possible the two separate relations
are created instead. We also introduce a new keyword number_child within the format tag
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of predicate Literal. This keyword indicates that for nodes of type Disj a tuple is created
for each of the node’s children where the arguments of the tuple are the identifiers of the
node and its child.

The following is a specification for propositional logic satisfiability for formulas in CNF.

∀c[Clause(c) ⊃True(c)]

∧∀c[Clause(c) ⊃(True(c)↔ (∃lLiteral(c, l) ∧ True(l)))]

∧∀n∀a[Not(n, a) ⊃(True(n)↔ ¬True(a))]

The standard input format for SAT solvers is CNF formulas in DIMACS format [10].
In this format, the first line gives the number of atoms and the number of clauses and each
line following is a clause. A clause is a list of literals ending with 0, a literal is an integer
where positive integers are atoms and negative integers are negated atoms.

Example 4.14. Our formula C in DIMACS format is

p cnf 3 3

1 2 0

-1 3 0

-2 -3 0

The following grammar describes the DIMACS format for CNF formulas. This new
grammar can also be used with the vocabulary map and specification for CNF formulas
given above.

Problem -> "p" "cnf" Num Num Conj

Conj -> Disj "0" | Disj "0" Conj

Disj -> Atom | Atom Disj | Neg | Neg Disj

Atom -> _integer[1:intMAX]

Neg -> "-" Atom

Num -> _integer[0:IntMAX]

4.4.3 Ground Function-Free First Order Logic

Ground function-free first order logic is, syntactically, propositional logic where atoms are
in the form of a predicate symbol applied to a tuple of constant symbols.

Example 4.15. Let F be the formula

((Q(b) ∨Q(c)) ∧ (¬P (a, b)))

where P and Q are predicates and a, b and c are constants.
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Satisfiability of these formulas can be decided by treating each distinct ground atom
as a distinct propositional atom. As a consequence, if our goal is satisfiability checking,
we can modify the grammar for propositional logic given in Section 4.1 to deal with the
new form of atoms, and then use the same vocabulary map and specification we used for
propositional logic.

To create a grammar for ground function-free first order formulas replace the Atom

grammar rule in the grammar for Proposition logic with the following grammar rules.

Atom -> Pred "(" Cons ")"

Pred -> _character[upper]

Cons -> Con | Con "," Cons

Con -> _character[lower]

The vocabulary corresponding to formula F is

τGF O = [And,Or,Not,Atom]

and the τGF O structureM corresponding to our formula F has:

M = {1, 2, 3, 4, 5, 6}

AndM = {(1, 2, 5)}

OrM = {(2, 3, 4)}

NotM = {(5, 6)}

AtomM = {(3), (4), (6)}

Here we introduce the concept of sub-trees as terminals. In the case where the root of a
sub-tree is a semantically meaningful element of the parse tree and all the nodes below the
root are not semantically meaningful the whole sub-tree can be treated as a terminal node.
We treat each sub-tree rooted at such a node as if the whole tree is a terminal symbol, with
each distinct tree of this sort being treated as if it was a distinct terminal symbol.

Example 4.16. The sub-formula P (a, b) of formula F is represented by a node of type Atom

in the parse tree. The Atom node has child nodes of types Pred, which presents the predicate
P , and Cons, which will have two child nodes of types Con representing the constants a and
b.

When used with the vocabulary map and specification for proposition logic this grammar
can be used to determine satisfiability for ground first order formulas. For a complete
grammar and vocabulary map for ground first order formulas see Appendix C.
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4.4.4 Function-Free First Order Logic

Formulas of function-free first order logic have atoms consisting of predicate symbols applied
to a tuple of variable symbols, and the quantifiers ∀ and ∃.

Example 4.17. Let F be the formula

(∀y((∀z(Q(y) ∨Q(z))) ∧ (∃x(¬P (x, y)))))

where P and Q are predicates and x, y and z are variable symbols.

To create a grammar for first order formulas, from the grammar for ground first order
formulas, remove the grammar rules Formula, Atom, Cons and Con and add the following
grammar rules.

Formula -> Atom | "(" Not ")" | "(" Or ")" |

"(" And ")" | "(" Forall ")" | "(" Exists ")"

Forall -> "!" Var Formula

Exists -> "?" Var Formula

Atom -> Pred "(" Vars ")"

Pred -> _character[upper]

Vars -> Var | Var "," Vars

Var -> _character[lower]

The vocabulary for function-free first order formulas is

τF O = [Forall,Exists,And,Or,Not,Atom,Variable]

and the τF O structureM corresponding to our formula F has:

M = F ∪ V ∪ P ∪ L

F = {1, 2, 3, 4, 5, 6, 7, 8, 9}

V = {1, 2, 3}

P = {1, 2}

L = {1, 2, 3}

ForallM = {(1, 1, 2), (2, 3, 4)}

ExistsM = {(3, 7, 8)}

AndM = {(2, 3, 7)}

OrM = {(4, 5, 6)}

NotM = {(8, 9)}

AtomM = {(5, 1, 1), (6, 1, 2), (9, 2, 3)}
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V ariableM = {(1, 1), (2, 2), (3, 3), (3, 1)}

where atoms are represented by a ternary relation. The first argument is the identifier of
the sub-formula, the second argument is the identifier of the atom’s predicate and the third
argument is the identifier of the atom’s list of variables. The relation Variable describes the
relationship between the atoms’ list of variables and the variables themselves. The relation
has two arguments; the first argument is the identifier of an atom’s list of variables and the
second argument is the identifier of the variable which is a member of the list. For example,
the atom P (x, y) is represented by the tuples (9, 2, 3) in Atom and (3, 3), (3, 1) in Variable.

To create a vocabulary map for function-free first order formulas remove the Formula

type tag and the Atom predicate tag from the vocabulary map for propositional logic of
Section 4.1 and add the following tags.

<type name="Formula">

<grammar>Forall,Exists,And,Or,Not,Atom</grammar>

<range>

<lower>1</lower>

</range>

</type>

<type name="Var">

<grammar>Var</grammar>

<range>

<lower>1</lower>

</range>

</type>

<type name="Var_List">

<grammar>Vars</grammar>

<range>

<lower>1</lower>

</range>

</type>

<type name="Pred">

<grammar>Pred</grammar>

<range>

<lower>1</lower>

</range>

</type>

<predicate name="Forall">

<grammar>Forall</grammar>

<arity>(Formula,Var,Formula)</arity>
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<format>number_children</format>

</predicate>

<predicate name="Exists">

<grammar>Exists</grammar>

<arity>(Formula,Var,Formula)</arity>

<format>number_children</format>

</predicate>

<predicate name="Atom">

<grammar>Atom</grammar>

<arity>(Formula,Pred,Var_List)</arity>

<format>number_children</format>

<terminal/>

</predicate>

<predicate name="Variable">

<grammar>Vars</grammar>

<arity>(Var_List,Var)</arity>

<format>number_child</format>

</predicate>

<predicate name="Varble">

<grammar>Var</grammar>

<arity>(Var)</arity>

<format>number</format>

<terminal/>

<invisible/>

</predicate>

<predicate name="Predicate">

<grammar>Pred</grammar>

<arity>(Pred)</arity>

<format>number</format>

<terminal/>

<invisible/>

</predicate>

Here we have two invisible relations Varble and Predicate which are used to assign identi-
fiers to nodes of type Var and Pred respectively. The relation Variable is used to describe
the relationship between nodes of type Vars and nodes of type Var. For a complete grammar
and vocabulary map for function-free first order formulas see Appendix C.
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4.4.5 Modal Logic

Propositional modal logic extends the syntax of propositional logic the modal operators �
and ♦. Syntactically, these are similar to unary connectives. For example

(♦(¬p ∨ (�(q ∧ p)))

To create a grammar for modal logic, modify the grammar for propositional logic of
Section 4.1 by removing the grammar rules Formula and adding the following grammar
rules.

Formula -> Atom | "(" Not ")" | "(" Or ")"

| "(" And ")" | "(" Box ")" | "(" Dia ")"

Box -> "box" Formula

Dia -> "dia" Formula

The vocabulary corresponding to formula F is

τML = [Box,Dia,And,Or,Not,Atom]

and the τML structureM corresponding to our formula F has:

M = {1, 2, 3, 4, 5, 6, 7}

BoxM = {(5, 6)}

DiaM = {(1, 2)}

AndM = {(6, 7, 4)}

OrM = {(2, 3, 5)}

NotM = {(3, 4)}

AtomM = {(4), (7)}

To create a corresponding vocabulary map, remove the Formula type tag and add the
following tags.

<type name="Formula">

<grammar>And,Or,Not,Box,Dia,Atom</grammar>

<range>

<lower>1</lower>

</range>

</type>

<predicate name="Box">

<grammar>Box</grammar>
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<arity>(Formula,Formula)</arity>

<format>number_children</format>

</predicate>

<predicate name="Dia">

<grammar>Dia</grammar>

<arity>(Formula,Formula)</arity>

<format>number_children</format>

</predicate>

For a complete grammar and vocabulary map for modal logic see Appendix C.

4.5 Declarative Solver Instances

Often there will be instances for the same problem represented in different solver instance
formats. The instances can all be mapped to the same abstract structure by writing gram-
mars for each solver instance format and a single vocabulary map for the instances.

Consider the Graph Colouring problem and our graph G from Chapter 2. For each
declarative solver introduced in Chapter 2 we will show the solver instance of our graph
G and a grammar for the solver instance (except Alloy which uses the DIMACS graph
format). Every grammar shown below can be used with the vocabulary map for the Graph
Colouring problem from Section 4.3.

4.5.1 Zimpl

The representation of graph G in Zimpl requires two files but only the file describing the
edges of the graph is needed for mapping.

# Set E

1 3

2 1

3 2

4 1

The following is the grammar for graphs represented in Zimpl.

File -> "# Set E" Graph

Graph -> Edg | Edg Graph

Edg -> Vtx Vtx

Vtx -> _integer[1:IntMAX]

4.5.2 MiniZinc

The following is the representation of graph G for MiniZinc
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sizeV = 4;

sizeE = 4;

sizeC = 3;

E = [ | 1, 3 | 2, 1 | 3, 2 | 4, 1 | ];

and the grammar for graphs represented in this format.

File -> V E C Graph

V -> "sizeV =" Num ";"

E -> "sizeE =" Num ";"

C -> "sizeC =" Num ";"

Graph -> "E = [" Edges "];"

Edges -> "|" Edg "|" | "|" Edg Edges

Edg -> Vtx "," Vtx

Vtx -> _integer[1:IntMAX]

Num -> _integer[0:IntMAX]

4.5.3 IDP System

The following is the IDP System representation of graph G.

structure Graph:Colouring {

V = {1..4}

C = {1..3}

E = {(1,3);(2,1);(3,2);(4,1)}

}

The grammar for graphs represented for the IDP System is the following.

File -> "structure Graph:Colouring {" Graph "}"

Graph -> V C E

V -> "V = {" Num ".." Num "}"

C -> "C = {" Num ".." Num "}"

E -> "E = {" Edges "}"

Edges -> Edg | Edg ";" Edges

Edg -> "(" Vtx "," Vtx ")"

Vtx -> _integer[1:IntMAX]

Num -> _integer[0:IntMAX]

4.5.4 Enfragmo

The following is the representation of graph G for Enfragmo
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TYPE V [1..4]

TYPE C [1..3]

PREDICATE E

(1,3)

(2,1)

(3,2)

(4,1)

and the grammar for graphs represented in Enfragmo.

Graph -> V C E

V -> "TYPE V [" Num ".." Num "]"

C -> "TYPE C [" Num ".." Num "]"

E -> "PREDICATE E" Edges

Edges -> Edg | Edg Edges

Edg -> "(" Vtx "," Vtx ")"

Vtx -> _integer[1:IntMAX]

Num -> _integer[0:IntMAX]

4.5.5 clingo

The graph G is represented for clingo as follows

node(1..4).

edge(1,3). edge(2,1). edge(3,2). edge(4,1).

and the grammar for graphs represented in this format is the following.

Graph -> Node | Edg | Node Graph | Edg Graph

Node -> "node(" Num ".." Num ")."

Edg -> "edge(" Vtx "," Vtx ")."

Vtx -> _integer[1:IntMAX]

Num -> _integer[0:IntMAX]
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Chapter 5

Using Instance Structures

In this chapter we describe how to store and use instance structures. In Section 5.1 we
describe the representation of instance structures used by the Instlator system. Section
5.2 describes the method for mapping instance structures to solver instances. In Section
5.3 we describe how to write problem specifications for use with solver instances.

5.1 Storing Instance Structures

For storing an instance structure in a file, we use an XML representation. The XML
representation of an instance structure contains all the information necessary to generate a
solver instance and write a problem specification for a declarative solver using the instance
vocabulary.

The instance vocabulary and the instance structure are both recorded in a single XML
representation. The format for the XML representation has two main tags, one to record
the vocabulary and one to record the structure itself, with the overall representation being
of the form:

<instance>

<vocabulary .... </vocabulary>

<structure>... </structure>

</instance>

The instance vocabulary consists of a domain and relations. The domain is stored in the
domain tag which contains a type tag with a name attribute for each type in the instance
structure. The relations are stored in the relations tag which contains a relation tag for
each relation in the instance structure. Each relation tag has a name attribute and an arity
tag which gives the arity and typing of the arguments of the relation.

Example 5.1. Consider our vocabulary for propositional logic from Section 4.1.

τP L = [Atom,Not,And,Or]
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The XML representation of τP L is the following.

<vocabulary name="Propositional">

<domain>

<type name="Formula"/>

</domain>

<relations>

<relation name="And">

<arity>(Formula,Formula,Formula)</arity>

</relation>

<relation name="Or">

<arity>(Formula,Formula,Formula)</arity>

</relation>

<relation name="Not">

<arity>(Formula,Formula)</arity>

</relation>

<relation name="Atom">

<arity>(Formula)</arity>

</relation>

</relations>

</vocabulary>

The instance structure consists of types and predicates which correspond to the vocab-
ulary domain and relations. The types are stored in the types tag which contains a type
tag for each type in the structure. Each type tag has a name attribute and a lower and
upper tag which give the lower and upper bound for the type’s identifiers. The predicates
are stored in the predicates tag which contains a predicate tag for each predicate in the
structure. Each predicate tag has a name attribute, a format tag which specifies how the
content of tuples is determined and a tuples tag which contains a tuple tag for each of the
predicate’s tuples.

Example 5.2. Consider the τP L structureM for our formula F from Section 4.2.

M = {1, 2, 3, 4, 5}

AtomM = {(3), (4)}

AndM = {(1, 2, 5)}

OrM = {(2, 3, 4)}

NotM = {(5, 3)}

The XML representation of τP L structureM is the following.
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<structure name="Instance">

<types>

<type name="Formula">

<lower>1</lower>

<upper>5</upper>

</type>

</types>

<predicates>

<predicate name="And">

<format>number_children</format>

<tuples>

<tuple>(1, 2, 5)</tuple>

</tuples>

</predicate>

<predicate name="Or">

<format>number_children</format>

<tuples>

<tuple>(2, 3, 4)</tuple>

</tuples>

</predicate>

<predicate name="Not">

<format>number_children</format>

<tuples>

<tuple>(5, 3)</tuple>

</tuples>

</predicate>

<predicate name="Atom">

<format>number</format>

<tuples>

<tuple>(3,)</tuple>

<tuple>(4,)</tuple>

</tuples>

</predicate>

</predicates>

</structure>

To view the complete syntax of instance structure files see Appendix A.
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5.2 Mapping Structures to Solver Instances

The second stage of our method maps instance structures to solver instances using a solver
format description. In the Instlator system, this is done by mapping an instance structure
file to an instance file for a specific solver as determined by a solver format file. We will
illustrate this using our running example, formula F , and the IDP System introduced in
Chapter 2.

Example 5.3. Assume we have an IDP System specification describing the semantics of
propositional logic, using the vocabulary τP L. The IDP System instance file for our formula
F is:

structure Formula:Propositional {

Formula = {1..5}

And = {(1,2,5)}

Or = {(2,3,4)}

Not = {(5,3)}

Atom = {(3);(4)}

}

The line Formula = {1..5} gives the list of domain elements corresponding to sub-formulas,
and the following lines give the relations of the structure as lists of tuples. These correspond
directly to the instance structure, as described in Section 4.2.

The solver format file must specify how to generate this presentation of the structure.

Example 5.4. Here is a solver format file for the IDP System.

<idp>

<structure>

structure $structure$:$vocabulary$ {\n

$domains$$relations$}\n

</structure>

<domain>

$name$ = { $lower$..$upper$ }\n

</domain>

<relation separator=";">

$name$ = { $tuples$ }\n

</relation>

</idp>

The structure tag describes the overall format: the structure name and vocabulary
name (which come from the vocabulary map), followed by (enclosed in braces) the descrip-
tions of the domains and then the relations, as indicated by the order of $domains$ and
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$relations$. The domain tag gives the format of an IDP System domain description (of
the sort needed here), which consists of the name followed by an appropriately formatted
list of elements, in this case those in the range from $lower$ to $upper$. The relation tag
specifies the format of descriptions of relations. In this case, that is the name, followed by
an appropriately formatted list of tuples. To view the complete syntax of solver format files
see Appendix A.

5.3 Using Problem Specifications with Solver Instances

Once a solver instance has been created it is used along with a problem specification, written
in the declarative language of the solver, to find a solution to the required problem.

Example 5.5. Our grammar for propositional logic is given in Section 4.1. For a vocabulary
map that maps formulas to structures as described in Section 4.2, the following first order
formula constitutes a specification of standard propositional logic satisfiability.

∀f, f1, f2[And(f, f1, f2) ⊃

(True(f)↔(True(f1) ∧ True(f2)))]

∧∀f, f1, f2[Or(f, f1, f2) ⊃

(True(f)↔(True(f1) ∨ True(f2)))]

∧∀f, f ′[Not(f, f ′) ⊃ (True(f)↔ ¬True(f ′))]

∧True(F )

Many semantics are possible for the same set of formulas described by our grammar for
propositional logic. The semantics are given by the specification, so we can interpret the
same formulas differently by changing the specification.

Example 5.6. The following specification defines a standard V -valued propositional logic,
for any positive integer V .

∀f∃v[V alue(f, v)]

∧∀f∀v[V alue(f, v) ⊃¬(∃v′ < v(V alue(f, v′)))]

∧∀f, f1, f2[And(f, f1, f2) ⊃(∃v∀v1, v2(V alue(f, v)

∧V alue(f1, v1) ∧ V alue(f2, v2)

∧(v =Min(v1, v2))))]

∧∀f, f1, f2[Or(f, f1, f2) ⊃(∃v∀v1, v2(V alue(f, v)

∧V alue(f1, v1) ∧ V alue(f2, v2)

∧(v =Max(v1, v2))))]

∧∀f, f ′[Not(f, f ′) ⊃ (∃v∀v′(V alue(f, v)
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∧V alue(f ′, v′) ∧ (v = (V − v′)))]

∧V alue(F, V )

Many other semantics for multi-valued logics are also possible. The following is a specifica-
tion for Kleene 3-valued logic.

∀f [(True(f) ∧ ¬Unknown(f)∧¬False(f)) ∨ (¬True(f) ∧ Unknown(f) ∧ ¬False(f))

∨(¬True(f) ∧ ¬Unknown(f) ∧ False(f))]

∧∀f, f1, f2[And(f, f1, f2) ⊃((True(f)↔ (True(f1) ∧ True(f2)))

∧(Unknown(f)↔ ((True(f1) ∧ Unknown(f2))

∨ (Unknown(f1) ∧ True(f2))

∨ (Unknown(f1) ∧ Unknown(f2))))

∧(False(f)↔ (False(f1) ∨ False(f2))))]

∧∀f, f1, f2[Or(f, f1, f2) ⊃((True(f)↔ (True(f1) ∨ True(f2)))

∧(Unknown(f)↔ ((Unknown(f1) ∧ Unknown(f2))

∨ (Unknown(f1) ∧ False(f2))

∨ (False(f1) ∧ Unknown(f2))))

∧(False(f)↔ (False(f1) ∧ False(f2))))]

∧∀f, f ′[Not(f, f ′) ⊃((True(f)↔ False(f ′))

∧(Unknown(f)↔ Unknown(f ′))

∧(False(f)↔ True(f ′)))]

∧True(F )

It is possible to represent formulas in different logics using the same grammar and
vocabulary map because the grammar and vocabulary map only define which features are
semantically meaningful, not how those semantics are defined.

A problem specification can also be modified to solve new problems, as we did with
grammars and vocabulary maps in Chapter 4.

Example 5.7. Consider our example of Integer Difference Logic from Section 4.4. By mod-
ifying our problem specification for propositional logic, in a similar way to the modification
of our propositional grammar, we can write a problem specification for integer difference
logic satisfiability.

∀v∃n[V alue(v, n)]

∧∀v∀n[V alue(v, n) ⊃ ¬∃n′ < n(V alue(v, n′))]

∧∀f, f1, f2[And(f, f1, f2) ⊃
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(True(f)↔(True(f1) ∧ True(f2)))]

∧∀f, f1, f2[Or(f, f1, f2) ⊃

(True(f)↔(True(f1) ∨ True(f2)))]

∧∀f, f ′[Not(f, f ′) ⊃ (True(f)↔ ¬True(f ′))]

∧∀f, v1, v2, n1, n2, c[LessThan(f, v1, v2, c) ⊃

(True(f)↔ V alue(v1, n1)∧

V alue(v2, n2) ∧ (n1 − n2 < c))]

∧∀f, v1, v2, n1, n2, c[Equal(f, v1, v2, c) ⊃

(True(f)↔ V alue(v1, n1)∧

V alue(v2, n2) ∧ (n1 − n2 = c))]

∧∀f, v1, v2, n1, n2, c[GreaterThan(f, v1, v2, c) ⊃

(True(f)↔ V alue(v1, n1)∧

V alue(v2, n2) ∧ (n1 − n2 > c))]

∧True(F )

5.3.1 Solvers that Ground to SAT

Some declarative solvers work by grounding to SAT and running a SAT solver. These solvers
transform a specification formula and instance structure into a ground formula that defines
the solutions to the instance and then transform this into a formula of propositional logic in
CNF. This CNF formula (which is normally in the DIMACS form described in Section 4.3),
is sent to a SAT solver. Satisfying assignments for the formula correspond to expansions
of the instance structure that constitute solutions. The transformation to CNF is normally
carried out by a linear-time method that introduces new atoms.

It is interesting to consider what happens in the case that we apply our method to
make such a system into a model finder for propositional logic, using the grammar and
specification presented in Sections 4.1 and 5.2.

The grounding algorithms used by these systems are often complex, and the exact CNF
formula generated by a particular system can only be determined by experiment (or study
of the implementation). Instead, we consider what happens if we use the most direct form
of grounding. In this method, we simply rewrite each sub-formula of the form ∀xψ as
∧a∈Mψ[x → a], and each sub-formula of the form ∃xψ as ∨a∈Mψ[x → a], to obtain a
ground formula, and then transform to CNF.

We may observe the following. Let φ be a formula of propositional logic, and suppose
we generate an instance structure using our grammar and vocabulary map of Chapter 4,
then ground the specification formula of Section 5.3 over that structure, and finally apply
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the transformation to CNF. We obtain the same CNF formula that we get if we simply
transform φ to CNF.

Example 5.8. Consider the τP L structure M for our formula F from Section 4.2 repre-
sented as a first-order formula.

And(1, 2, 5) ∧Or(2, 3, 4) ∧Not(5, 3)

When we ground the specification formula of Section 5.3 over structureM we get

And(1, 2, 5) ∧Or(2, 3, 4) ∧Not(5, 3)

∧And(1, 2, 5) ⊃ (True(1)↔ (True(2) ∧ True(5)))

∧Or(2, 3, 4) ⊃ (True(2)↔ (True(3) ∨ True(4)))

∧Not(5, 3) ⊃ (True(5)↔ ¬True(3))

∧ True(1)

which is also the ground first-order representation of the parse tree T from Section 4.2.
When we apply the transformation to CNF we get a formula equivalent to the following

(True(1)↔ (True(2) ∧ True(5)))

∧(True(2)↔ (True(3) ∨ True(4)))

∧(True(5)↔ ¬True(3))

∧ True(1)

which describes the relationships between the truth assignments of all sub-formulas of F .
This formula is also equivalent to the formula obtained by transforming formula F to CNF
where p ≡ True(3), q ≡ True(4) and True(1),True(2),True(5) are equivalent to the new
atoms introduced by the transformation.
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Chapter 6

Conclusion

Systems that allow users to solve combinatorial problems, including optimization problems
and problems that arise in software and hardware design and verification, are becoming
more powerful, and more practical. For the most part, users can apply these by writing
high-level declarative specifications, rather than writing executable code. We have described
here a method and a prototype system that addresses the remaining non-declarative aspect
of using these tools: mapping problem instances from their application-dependant native
format to the instance (or data) format of a particular solver.

The method we introduced is fairly general, and can handle a wide range of instance
description languages. As a result, it can be used to declaratively turn model-and-solve
systems into special purpose solvers, for example model finders for a variety of logics, in
very little time. Our method could also be used to create a solver-independent database of
benchmark problem instances by storing XML representations of instance structures.

In the future, we will need to develop a theory to determine the range of applicability of
our method. We also need to determine some measure of the generality of our languages for
describing vocabulary maps and solver format descriptions. Currently, the method for map-
ping structures to solver instances does not have the generality that might be desired. The
language for describing solver formats should be expanded to allow a wider range of solver
instances to be described, including a wider range of domain and relation formats. We will
also investigate whether compilation technology, such as attribute grammars, and source-
to-source translation [18] might be fruitfully used for our task. The language-theoretic
approach described in [4] may also be useful for our task.

The Instlator system will also require further work. The current parser, NLTK [13],
imposes inconvenient restrictions and causes major performance problems, presumably be-
cause it is intended for natural language processing and was not designed to parse the sort
of inputs we face, such as large CNF formulas or graphs. The system is intended for users
with little programming experience, so future versions should include tools which assist
users in creating grammars, vocabulary maps and solver format descriptions. Ideally, the
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system should also have a graphical user interface for each tool to further improve usability
for non-programmers.

Nonetheless, our experience in designing and building the Instlator system suggests
the approach is potentially very useful. In particular, as we move from tools for com-
binatorial problem solving being only for specialists to being usable by a wide range of
workers, and from only a few examples of web-based public access to such tools to serious
high-performance cloud-based services, a tool such as this should be a standard part of the
cloud-based service.
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Appendix A

Syntax of Declarative Descriptions

A.1 Syntax of Grammar Descriptions

The following is the complete syntax of Instlator grammar files.

<grammar_file> ::= <grammar_rule> | <grammar_rule> <grammar_file>
<grammar_rule> ::= <name> -> <description>
<name> ::= [a-zA-Z]+
<description> ::= <terminal> | <nonterminal>

| <terminal> ‘|’ <description>
| <nonterminal> ‘|’ <description>

<nonterminal> ::= <name> | "<string>" | <name> ‘|’ <nonterminal>
| "<string>" ‘|’ <nonterminal>

<terminal> ::= _character‘[’lower‘]’ | _character‘[’upper‘]’
| _number‘[’<number>‘]’ | _integer‘[’<integer>,<integer>‘]’
| "<string>"

<string> ::= [0-9a-zA-Z_]+
<number> ::= [0-9]+
<integer> ::= [-][0-9]+

A.2 Syntax of Vocabulary Map Descriptions

The following is the complete syntax of Instlator vocabulary maps.

<vocabulary_map> ::= ‘<’<string> structure="<string>"
vocabulary="<string>"‘>’ <type_tags> <predicate_tags>
‘<’/<string>‘>’

<type_tags> ::= <type_tag> | <type_tag> <type_tags>
<type_tag> ::= ‘<’type name="<string>" ‘>’ <type_description> ‘<’/type‘>’
<predicate_tags> ::= ‘<’predicate‘>’ name="<string>"‘>’

<predicate_description> ‘<’/predicate‘>’
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<type_description> ::= <grammar_tag> <range_tag>
| <grammar_tag> <range_tag> ‘<’inttype/‘>’

<predicate_description> ::= <grammar_tag> <arity_tag> <format_tag>
| <grammar_tag> <arity_tag> <format_tag>

<predicate_options>
<grammar_tag> ::= ‘<’grammar‘>’ <string> ‘<’/grammar‘>’
<range_tag> ::= ‘<’range‘>’ <lower_tag> ‘<’/range‘>’

| ‘<’range‘>’ <lower_tag> <upper_tag> ‘<’/range‘>’
<arity_tag> ::= ‘<’arity‘>’ (<string_list>) ‘<’/arity‘>’
<string_list> ::= <string> | <string>, <string_list>
<format_tag> ::= ‘<’format‘>’ <format> ‘<’/format‘>’
<format> ::= number | number_content | number_children | number_child

| number_childrencontent | number_childcontent
| content | content_children | content_child
| content_childrencontent | content_childcontent
| children | child | childrencontent | childcontent

<predicate_options> ::= ‘<’terminal/‘>’ | ‘<’invisible/‘>’
| ‘<’terminal/‘>’ ‘<’invisible/‘>’

<lower_tag> ::= ‘<’lower‘>’ <integer> ‘<’/lower‘>’
<upper_tag> ::= ‘<’upper‘>’ <integer> ‘<’/upper‘>’
<string> ::= [0-9a-zA-Z_]+
<integer> ::= [-][0-9]+

A.3 Syntax of Instance Structure Representations

The following is the complete syntax of instance structure files. All instance structure files
produced by the Instlator system use this syntax and the system will only accept instance
structure files which conform to this syntax.

<instance> ::= ‘<’instance‘>’ <vocabulary> <structure> ‘<’/instance‘>’
<vocabulary> ::= ‘<’vocabulary name="<string>"‘>’ <domain_tag>

<relations_tag> ‘<’/vocabulary‘>’
<domain_tag> ::= ‘<’domain‘>’ <domain> ‘<’/domain‘>’
<relations_tag> ::= ‘<’relations‘>’ <relations> ‘<’/relations‘>’
<domain> ::= <vocab_type> | <vocab_type> <domain>
<relations> ::= <relation> | <relation> <relations>
<vocab_type> ::= ‘<’type name="<string>"/‘>’
<relations> ::= ‘<’relation name="<string>"‘>’ <arity> ‘<’/relation‘>’
<arity> ::= (<string_list>)
<structure> ::= ‘<’structure name="<string>"‘>’ <types_tag>

<predicates_tag> ‘<’/structure‘>’
<types_tag> ::= ‘<’types‘>’ <types> ‘<’/‘types>’
<types> ::= <type> | <type> <types>
<type> ::= ‘<’type name="<string>"‘>’ <lower> <upper> ‘<’/type‘>’
<lower> ::= ‘<’lower‘>’ <integer> ‘<’/lower‘>’
<upper> ::= ‘<’upper‘>’ <integer> ‘<’/upper‘>’
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<predicates_tag> ::= ‘<’predicates‘>’ <predicates> ‘<’/predicates‘>’
<predicates> ::= <predicate> | <predicate> <predicates>
<predicate> ::= ‘<’predicate name="<string>"‘>’ <format_tag>

<tuples_tag> ‘<’/predicate‘>’
<format_tag> ::= ‘<’format‘>’ <format> ‘<’/format‘>’
<format> ::= number | number_content | number_children | number_child

| number_childrencontent | number_childcontent
| content | content_children | content_child
| content_childrencontent | content_childcontent
| children | child | childrencontent | childcontent

<tuples_tag> ::= ‘<’tuples‘>’ <tuples> ‘<’/tuples‘>’
<tuples> ::= <tuple> | <tuple> <tuples>
<tuple> ::= ‘<’tuple‘>’ (<integer_list>) ‘<’/tuple‘>’
<string_list> ::= <string> | <string>, <string_list>
<integer_list> ::= <integer> | <integer>, <integer_list>
<string> ::= [0-9a-zA-Z_]+
<integer> ::= [-][0-9]+

A.4 Syntax of Solver Format Descriptions

The following is the complete syntax of Instlator solver format files.

<solver_format> ::= ‘<’<string>‘>’ <structure_tag> <domain_tag>
<relation_tag> ‘<’/<string>‘>’

<structure_tag> ::= ‘<’structure‘>’ <structure_description>
‘<’/structure‘>’

<domain_tag> ::= ‘<’domain‘>’ <domain_description> ‘<’/domain‘>’
<relation_tag> ::= ‘<’relation separator="<string>"‘>’

<relation_description> ’<’/relation’>’
<structure_description> ::= <string> $structure$ <structure_description>

| <string> $vocabulary$ <structure_description>
| <string> $domains$ <structure_description>
| <string> $relations$ <structure_description>
| <string>

<domain_description> ::= <string> $name$ <domain_description>
| <string> $lower$ <domain_description>
| <string> $upper$ <domain_description>
| <string>

<relation_description> ::= <string> $name$ <relation_description>
| <string> $tuples$ <relation_description>
| <string>

<string> ::= [0-9a-zA-Z_ \n]+
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Appendix B

Graph Problems

As shown in Chapter 4, our method can be used for a variety of graph problems. Here we
provide complete implementations of the examples given in Chapters 4.

B.1 Graph Colouring

The following is a complete vocabulary map for the Graph Colouring problem as described
in Chapter 4

<graph structure="Instance" vocabulary="Colouring">
<type name="Vtx">

<grammar>Vtx</grammar>
<range>

<lower>1</lower>
</range>

</type>
<type name="Clr">

<grammar></grammar>
<range>

<lower>1</lower>
<upper>3</upper>

</range>
<inttype/>

</type>
<predicate name="Vertex">

<grammar>Vtx</grammar>
<arity>(Vtx)</arity>
<format>number</format>
<terminal/>

</predicate>
<predicate name="Edge">

<grammar>Edg</grammar>
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<arity>(Vtx,Vtx)</arity>
<format>children</format>

</predicate>
</graph>

B.2 Graphs with Weighted Nodes

As described in Chapter 4, the following is a complete grammar and vocabulary map for
DIMACS graph format with weighted nodes.

Problem -> "p" "edge" Num Num Graph
Graph -> Node | Node Graph | Edg | Edg Graph
Node -> "n" Vtx Num
Edg -> "e" Vtx Vtx Num
Vtx -> _integer[1:IntMAX]
Num -> _integer[0:IntMAX]

The following is the complete corresponding vocabulary map.

<graph structure="Instance" vocabulary="Graph">
<type name="Vtx">

<grammar>Vtx</grammar>
<range>

<lower>1</lower>
</range>

</type>
<type name="Num">

<grammar>Num</grammar>
<range>

<lower>0</lower>
<upper>IntMAX</upper>

</range>
<inttype/>

</type>
<predicate name="Vertex">

<grammar>Vtx</grammar>
<arity>(Vtx)</arity>
<format>number</format>
<terminal/>

</predicate>
<predicate name="Edge">

<grammar>Edg</grammar>
<arity>(Vtx,Vtx)</arity>
<format>children</format>

</predicate>
<predicate name="Weight">
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<grammar>Node</grammar>
<arity>(Vtx,Num)</arity>
<format>children</format>

</predicate>
</graph>

B.3 Graphs with Weighted Edges

The complete grammar for DIMACS graph format with weighted edges as described in
Chapter 4 is as follows.

Problem -> "p" "edge" Num Num Graph
Graph -> Edg | Edg Graph
Edg -> "e" Vtx Vtx Num
Vtx -> _integer[1:IntMAX]
Num -> _integer[0:IntMAX]

The complete corresponding vocabulary map is provided below.

<graph structure="Instance" vocabulary="Colouring">
<type name="Vtx">

<grammar>Vtx</grammar>
<range>

<lower>1</lower>
</range>

</type>
<type name="Num">

<grammar>Num</grammar>
<range>

<lower>0</lower>
<upper>IntMAX</upper>

</range>
<inttype/>

</type>
<predicate name="Vertex">

<grammar>Vtx</grammar>
<arity>(Vtx)</arity>
<format>number</format>
<terminal/>

</predicate>
<predicate name="Edge">

<grammar>Edg</grammar>
<arity>(Vtx,Vtx,Num)</arity>
<format>children</format>

</predicate>
</graph>
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Appendix C

Logics

As shown in Chapter 4, our method can be used for a variety of logics. Here we provide
complete implementations of the examples given in Chapters 4.

C.1 Integer Difference Logic

As described in Chapter 4, the grammar for integer difference logic is a modified version of
our propositional logic grammar. The following is the complete grammar file.

Formula -> Atom | "(" And ")" | "(" Or ")" | "(" Not ")"
And -> Formula "&" Formula
Or -> Formula "|" Formula
Not -> "~" Formula
Atom -> "(" LessThan ")" | "(" Equal ")" | "(" GreaterThan ")"
LessThan -> Variable "-" Variable "<=" Constant
Equal -> Variable "-" Variable "=" Constant
GreaterThan -> Variable "-" Variable ">=" Constant
Variable -> _character[lower]
Constant -> _integer[0:IntMAX]

The complete vocabulary map for integer difference logic is provided below.

<idl structure="Instance" vocabulary="IDL">
<type name="Formula">

<grammar>And,Or,Not,LessThan,Equal,GreaterThan</grammar>
<range>

<lower>1</lower>
</range>

</type>
<type name="Variable">

<grammar>Variable</grammar>
<range>
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<lower>1</lower>
</range>

</type>
<type name="Number">

<grammar>Constant</grammar>
<range>

<lower>0</lower>
<upper>IntMAX</upper>

</range>
<inttype/>

</type>
<predicate name="And">

<grammar>And</grammar>
<arity>(Formula,Formula,Formula)</arity>
<format>number_children</format>

</predicate>
<predicate name="Or">

<grammar>Or</grammar>
<arity>(Formula,Formula,Formula)</arity>
<format>number_children</format>

</predicate>
<predicate name="Not">

<grammar>Not</grammar>
<arity>(Formula,Formula)</arity>
<format>number_children</format>

</predicate>
<predicate name="LessThan">

<grammar>LessThan</grammar>
<arity>(Formula,Variable,Variable,Number)</arity>
<format>number_children</format>
<terminal/>

</predicate>
<predicate name="Equal">

<grammar>Equal</grammar>
<arity>(Formula,Variable,Variable,Number)</arity>
<format>number_children</format>
<terminal/>

</predicate>
<predicate name="GreaterThan">

<grammar>GreaterThan</grammar>
<arity>(Formula,Variable,Variable,Number)</arity>
<format>number_children</format>
<terminal/>

</predicate>
<predicate name="Variable">

<grammar>Variable</grammar>
<arity>(Variable)</arity>
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<format>number</format>
<terminal/>
<invisible/>

</predicate>
</idl>

C.2 Ground Function-Free First Order Logic

The following is the complete grammar for ground first order formula as described in Chap-
ter 4.

Formula -> Atom | "(" Not ")" | "(" Or ")" | "(" And ")"
Not -> "~" Formula
Or -> Formula "|" Formula
And -> Formula "&" Formula
Atom -> Pred "(" Cons ")"
Pred -> _character[upper]
Cons -> Con | Con "," Cons
Con -> _character[lower]

C.3 Function-Free First Order Logic

The following is the complete grammar for first order formula as described in Chapter 4.

Formula -> Atom | "(" Not ")" | "(" Or ")" |
"(" And ")" | "(" Forall ")" | "(" Exists ")"

Forall -> "!" Var Formula
Exists -> "?" Var Formula
Not -> "~" Formula
Or -> Formula "|" Formula
And -> Formula "&" Formula
Atom -> Pred "(" Vars ")"
Pred -> _character[upper]
Vars -> Var | Var "," Vars
Var -> _character[lower]

The following is the complete corresponding vocabulary map.

<first_order structure="Instance" vocabulary="FO">
<type name="Formula">

<grammar>Forall,Exists,And,Or,Not,Atom</grammar>
<range>

<lower>1</lower>
</range>
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</type>
<type name="Var">

<grammar>Var</grammar>
<range>

<lower>1</lower>
</range>

</type>
<type name="Var_List">

<grammar>Vars</grammar>
<range>

<lower>1</lower>
</range>

</type>
<type name="Pred">

<grammar>Pred</grammar>
<range>

<lower>1</lower>
</range>

</type>
<predicate name="Forall">

<grammar>Forall</grammar>
<arity>(Formula,Var,Formula)</arity>
<format>number_children</format>

</predicate>
<predicate name="Exists">

<grammar>Exists</grammar>
<arity>(Formula,Var,Formula)</arity>
<format>number_children</format>

</predicate>
<predicate name="And">

<grammar>And</grammar>
<arity>(Formula,Formula,Formula)</arity>
<format>number_children</format>

</predicate>
<predicate name="Or">

<grammar>Or</grammar>
<arity>(Formula,Formula,Formula)</arity>
<format>number_children</format>

</predicate>
<predicate name="Not">

<grammar>Not</grammar>
<arity>(Formula,Formula)</arity>
<format>number_children</format>

</predicate>
<predicate name="Atom">

<grammar>Atom</grammar>
<arity>(Formula,Pred,Var_List)</arity>
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<format>number_children</format>
<terminal/>

</predicate>
<predicate name="Variable">

<grammar>Vars</grammar>
<arity>(Var_List,Var)</arity>
<format>number_child</format>

</predicate>
<predicate name="Varble">

<grammar>Var</grammar>
<arity>(Var)</arity>
<format>number</format>
<terminal/>
<invisible/>

</predicate>
<predicate name="Predicate">

<grammar>Pred</grammar>
<arity>(Pred)</arity>
<format>number</format>
<terminal/>
<invisible/>

</predicate>
</first_order>

C.4 Modal Logic

As described in Chapter 4, the following is the complete grammar for modal logic.

Formula -> Atom | "(" Not ")" | "(" Or ")"
| "(" And ")" | "(" Box ")" | "(" Dia ")"

Not -> "~" Formula
Or -> Formula "v" Formula
And -> Formula "&" Formula
Box -> "box" Formula
Dia -> "dia" Formula
Atom -> _character[lower]

The following is the complete vocabulary map.

<modal structure="Instance" vocabulary="Modal">
<type name="Formula">

<grammar>And,Or,Not,Box,Dia,Atom</grammar>
<range>

<lower>1</lower>
</range>

</type>
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<predicate name="And">
<grammar>And</grammar>
<arity>(Formula,Formula,Formula)</arity>
<format>number_children</format>

</predicate>
<predicate name="Or">

<grammar>Or</grammar>
<arity>(Formula,Formula,Formula)</arity>
<format>number_children</format>

</predicate>
<predicate name="Not">

<grammar>Not</grammar>
<arity>(Formula,Formula)</arity>
<format>number_children</format>

</predicate>
<predicate name="Box">

<grammar>Box</grammar>
<arity>(Formula,Formula)</arity>
<format>number_children</format>

</predicate>
<predicate name="Dia">

<grammar>Dia</grammar>
<arity>(Formula,Formula)</arity>
<format>number_children</format>

</predicate>
<predicate name="Atom">

<grammar>Atom</grammar>
<arity>(Formula)</arity>
<format>number</format>
<terminal/>

</predicate>
</modal>

C.5 Arithmetic Expressions

To add full arithmetic expressions to any suitable logic include the following grammar rules
in the grammar of the logic.

Ex -> "(" Add ")" | "(" Sub ")" | "(" Mult ")" | "(" Div ")" |
Var | Con

Add -> Ex "+" Ex
Sub -> Ex "-" Ex
Mult -> Ex "*" Ex
Div -> Ex "/" Ex
Var -> _character[lower]
Con -> _integer[IntMIN:IntMAX]

67



The following type and predicate tags should then be added to the vocabulary map.

<type name="Expression">
<grammar>Add,Sub,Mult,Div,Var,Con</grammar>
<range>

<lower>1</lower>
</range>

</type>
<type name="Number">

<grammar></grammar>
<range>

<lower>IntMIN</lower>
<upper>IntMAX</upper>

</range>
<inttype/>

</type>
<predicate name="Add">

<grammar>Add</grammar>
<arity>(Expression,Expression,Expression)</arity>
<format>number_children</format>

</predicate>
<predicate name="Subtract">

<grammar>Sub</grammar>
<arity>(Expression,Expression,Expression)</arity>
<format>number_children</format>

</predicate>
<predicate name="Multiply">

<grammar>Mult</grammar>
<arity>(Expression,Expression,Expression)</arity>
<format>number_children</format>

</predicate>
<predicate name="Divide">

<grammar>Div</grammar>
<arity>(Expression,Expression,Expression)</arity>
<format>number_children</format>

</predicate>
<predicate name="type">

<grammar>Var</grammar>
<arity>(Expression)</arity>
<format>number</format>
<terminal/>

</predicate>
<predicate name="Constant">

<grammar>Con</grammar>
<arity>(Expression,Number)</arity>
<format>number_content</format>
<terminal/>
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</predicate>

Here we introduce a new keyword number_content within the format tag of predicate
Constant. This keyword indicates that for nodes of type Con the arguments of its tuples
are the identifier of the node and the content of the node. The content of a node is the
value the node represents, only terminal nodes have content.
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Appendix D

Supplementary Material

The accompanying zip file contains the Instlator system. The zip file includes all files
necessary to run both tools included in the Instlator system as well as instructions and
system requirements.

Filename: Instlator.zip
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