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Abstract 

In recent years, researchers have made great efforts in tackling the High-dimensional, 

Expensive (computationally), Black box (HEB) design problems. The high dimensionality 

and lack of knowledge of the problem usually demand a large number of samples for 

optimization, which is often impractical due to the total time required to compute the 

required number of expensive simulations. In this thesis, Correspondence Analysis (CA) 

is introduced to discover as much information as possible about the black box to 

minimize the number of samples. The discovered information such as the promising 

subdomains, important variables, and symmetric variables is used to assist the 

resampling in an existing optimization algorithm. While being independent from the 

optimization algorithm, the approached method is applied to the Trust Region based 

Mode Pursuing Sampling (TRMPS2), a global optimization method developed for HEB 

problems. The CA based TRMPS2 method (CA_TRMPS) is shown to yield better optima 

with higher efficiency than TRMPS2. Tests on mathematical benchmark functions and 

application to a real-world engineering problem show the promise of the proposed 

approach. 

Keywords: Computationally-expensive Black box; Large-scale; HEB; 
Correspondence Analysis; Singular Value Decomposition; Optimization; 
Visualization 
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Chapter 1. Introduction 

1.1. Overview 

Optimization [1] is the research field that studies the design of algorithms for 

finding the best solutions to problems. The global optimization [2] utilizes mathematical 

and statistical methods to find the global optimal according to certain criteria. 

Optimization is not a standalone mathematical topic, since it is always concerned with 

real cases in engineering practices. In the field of engineering, optimization is often 

referred to as design optimization [3], which means to achieve design goals with 

optimization techniques.  

1.1.1. Black-box Optimization 

The field of black-box optimization [4] is a subset of optimization, in which the 

black-box problem, or system, is only viewed in terms of its inputs and outputs, with no 

or little knowledge of the internal workings. The goal of a black box optimization problem 

is usually to find out either the mechanism inside the black box or the optimal outputs of 

the system, and to make predictions on further inputs. 

Many engineering problems can be categorized as black-box problems. Many of 

these problems in real practices can be more difficult than the textbook cases. Real 

world engineering design problems often contain many variables and a large number of 

constraints, and evaluating the output can be extremely computationally expensive. For 

example, the wing configuration design of a high-speed civil transport (HSCT) aircraft [5] 

includes 26 variables, four objectives, and four technical constraints. Running the 

simulation to evaluate the design is very time consuming. Such problems are the so-

called High-dimensional, Expensive (computationally), and Black box (HEB) problems 
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[6]. Apart from HSCT mentioned in the last paragraph, HEB problems widely exist in 

engineering design such as the ones archived in Ref. [7]-[9]. 

In HEB problem, the high dimensionality increases the size and complexity of the 

search space. This property makes modeling and searching of the space very 

challenging, so that HEB problems requires more sample points. On the other hand, the 

number of sample points cannot be too large due to the high computational cost of each 

sample point. Therefore, in this thesis, we want to find a new way to discover some 

information of the black-box problems with existed sample points, in order to help to 

narrow down the search space so that the total number of sample points will be reduced. 

In this work, we introduced Correspondence Analysis algorithm as a data analysis tool to 

reveal the structure of black-box problems. It will be discussed in detail in the following 

sections.   

1.1.2. Correspondence Analysis 

Correspondence analysis [10] is a multivariate statistical technique designed to 

explore the associations between sets of categorical variables. As an exploratory data 

analytic technique [11], it is very useful for revealing patterns within datasets, such as 

the correspondence between different categories and the associations of values within a 

category. Mathematically, it is usually done on a two-dimensional contingency table (CT) 

[12], and reveals the internal information of rows and columns. The usefulness and 

flexibility of correspondence analysis makes itself a popular method for data analysis. In 

recent years, it has been applied in various research fields, including social science, 

biological statistics, medical statistics, and criminology [13]. 

Unlike regression modeling [14] or other optimization techniques, there is no 

need to reconstruct a specific model from a large data set in correspondence analysis. 

Instead, it only requires minimal data without any prior knowledge of the underlying 

black-box function. In addition, correspondence analysis can usually work well with small 

data sets. The characteristics of correspondence analysis make itself a useful tool for 

solving HEB optimization problems. It can be used to find out the correspondence 

between input variables and outputs, and then assist the global optimization process for 



3 

a black-box function. This research will further exploit its capability of data analysis and 

apply it in optimization problems. The way of interpolating the plot of CA is also unique 

and can reveal much more related information in the optimization context.  

1.2. Scope 

The scope of the work presented is limited to data analysis and visualization [15] 

to assist engineering design optimization. The focus of this research is on mining and 

visualizing the useful information in the design space [16] and their relations to 

performance spaces [17] for optimization problems. By applying correspondence 

analysis, which is a popular data analysis technique, relationships among design space 

and between design space and performance space will be visualized at the first stage of 

optimization. Scatter plot [18] is the central representation used to illustrate this task. 

Visualization is applied to the early stage of the optimization when little 

information is known about the HEB problem. It allows much less sampling points for the 

optimization algorithm. The improved CA_TRMPS optimization algorithm, which is 

developed based on trust region based mode pursuing sampling (TRMPS2) [19] will be 

presented in this thesis as an example to show the improvement of the optimization 

algorithm after using the information discovered by CA. However, besides TRMPS2, this 

method can be applied to various optimization methods in the early stage. The focus is 

on visualizing the effect of many variables on a single objective without constraints. Thus 

multi-objective and multidisciplinary optimization is beyond the scope of this thesis. 

1.3. Research Goals 

The goal of this research is to develop a new method for HEB optimization 

problems, in support of finding out the subdomains that are most likely to produce the 

optimal values. The method will make use of correspondence analysis to help discover 

the symmetry and the importance among different dimensions of the design space, as 

well as visualize and exploit the data structure. The method will give out suggestions of 

the subdomains that are most likely to produce optimal values. The suggestions can be 



 

4 

used to modify and refine the optimization process, so that a much faster convergence 

rate can be achieved. Moreover, this research will test this method in various idealized 

and practical engineering problems, and will also compare it with current optimization 

method.  

The objectives of this new method are threefold. First, we want it to decide which 

input variables are more important, and which are less important. Second, we want to 

find out the promising subdomain for each of the variables, from which the optimal 

output is more likely to appear. Finally, we want it to discover the symmetric variables 

[20]. The definition of symmetric variables is that if a group of variables are symmetric, 

any permutation of them will result in the same function. By identifying the symmetric 

variables, the same value can be applied to all of the variables for the sampling points. 

This can reduce large number of combination of potential values for each variable. In a 

sense, it achieves similar results as the dimension reduction techniques. Therefore, it 

can save a large number of sampling points when comes to high dimension.  

1.4. Structure 

The thesis consists of six chapters. The flowchart in Figure 1.1 shows the basic 

structure of this thesis. The first chapter is the introduction chapter, providing an 

overview of the whole research. The second chapter is a literature survey. It reviews the 

current situation of HEB optimization problems, and gives an introduction to 

correspondence analysis. Next, in the third chapter, the methodology of CA technique is 

described in detail. How a modified version of CA is applied in the context of engineering 

optimization is provided with details of how to construct the contingency table and 

explain the new way to interpret the plot. In the plot, information such as promising 

subdomain, significant variables and symmetric variables can be identified intuitively. 

The proposed technique is tested on simple functions, benchmark functions, and real 

engineering problems to demonstrate its correctness. The convergence of the algorithm 

is also tested and shown in this chapter. An automatic clustering algorithm to assist the 

discovery of the symmetric variables is introduced and tested on two functions, which 

are presented in Chapter 4 examples. In the following chapter, CA is applied to an 

existed optimization algorithm to verify that the discovered information can help to 
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increase the efficiency and accelerate the convergence rate of the algorithm. By using 

the same amount of samples, the results of the improved algorithm are compared with 

the results of original algorithm to show the improvement. In Chapter 6, the proposed 

method is successfully applied to a practical engineering problem – phosphate 

production scheduling problem by revealing the properties of the problem. The last 

chapter provides the conclusion and the potential feature work that could be developed 

based on this thesis.  

Black Box

Discovered knowledge

Promising 

subdomain

Symmetric 

variables

Significant 

variables

Chapter 4: Apply hierarchical clustering

 to help identify 

Symmetric variables

CA based optimization 

technique (CA_TRMPS)

Solve real world 

engineering problems 

(HEB)

Chapter 6: Apply the CA_TRMPS

 to engineering problem

Chapter 3: Apply CA to discover 

knowledge in black box 

Chapter 5: Apply discovered 

knowledge to assist optimization

Chapter 2:Literature 

review 

Chapter 1:Introduction

 

Figure 1.1 Structure for the thesis 
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Chapter 2. Literature Survey 

This chapter provides an introduction to the current situation of HEB problems 

and the technique of correspondence analysis. The chapter generally contains three 

parts. The first part gives an overview of current methods applied in HEB optimization. 

The second part introduces correspondence analysis and reviews its history. The third 

part will discuss the possibility and the advantage of applying correspondence analysis 

in HEB optimization.  

2.1. Challenges for HEB problems  

The major challenges of HEB problems come from the large scale of dimensions 

and high computational expense for function evaluation within the black box [21][22]. On 

one hand, the high dimensionality of inputs and outputs requires sampling with 

exponential difficulty. For a simulation function with n variables, if we sample k points in 

each variable, kn total sampling points will be needed. Hence, kn total runs of simulations 

will be required. However, on the other hand, the high computational expense requires 

that the number of simulations (function calls) should be minimized, and it is usually 

expensive to perform simulation on a large data set. In most cases, HEB problems are 

expected to be solved with only small samples. Therefore, the key to HEB problems is, 

“how can we solve them with the least sampling data, though most of the current 

solutions still require a reasonably large data set?” 
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2.2. Current methods for HEB Optimization 

2.2.1. Meta-modeling 

To tackle the HEB problems, researchers try to simplify the problem from 

different aspects. Some of them try to reduce the computational cost by building a meta-

model to approximate the black-box function. Meta-models can be polynomial functions 

[23], Radial Basis Function (RBF) [24], and Kriging [25] or other functions. The samples 

generated from a meta-model are called cheap points because the function values are 

calculated much faster on the meta-model than on the actual simulation. On the 

contrary, the exploring inputs whose outputs values are obtained by the actual black box 

are called expensive points. The basic idea of meta-modeling is to approximate the 

black box function with a meta-model by iteratively improving the meta-model. Each 

time, we generate cheap points on an approximated model to find out the meta-model 

optimal point, and then re-sample the expensive points around the meta-model optimal 

point and test them on the black box. By comparing the values of cheap points and 

expensive points, we can improve the meta-model, and then repeat the previous step. In 

this way, the total number of runs for sampling expensive points is reduced.  

High Dimensional Model Representation (HDMR) [26][27] is one of the famous 

techniques used for high dimensional model. However, if the function has complicated 

variable correlations, HDMR still requires a large number of samples to obtain a 

reasonable model. To deal with the challenges from high dimensionality, several 

methods are applied, including reducing design space [28][29], screening significant 

variables [30]-[32], decomposing design problems into sub-problems[33][34], 

mapping[35][36], and visualizing the variable/design space [36]. These strategies tackle 

from different aspects of the so called “curse of dimensionality.” Some of them may 

overlap and are thus not completely independent. 

2.2.2. Dimensionality reduction 

While meta-modeling tries to handle the HEB problem by replacing the expensive 

calculations with much simpler meta-models, some other approaches seek for the 
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possibilities of reducing the dimensionality of the black box. After the dimensionality of 

the black box is reduced, the problem can be further solved with regular methods.  

One of the methods for dimensionality reduction is screening [30]-[32]. Its goal is 

to retain the important dimensions and discard the unimportant ones. Screening process 

such as Analysis of variance (ANOVA) [38], Principal component analysis (PCA) [39] 

and sensitivity analysis [40] identifies and retains important input variables and 

interaction terms, whereas removes less important ones or noises in the problems of 

interest so that the complexity or dimensionality of the problems is reduced to save 

computational cost. Screening likely pays a price of losing modeling accuracy of 

problems because of removed dimensionalities. It may as well miss the important 

regions.  

Besides screening, mapping is another method that aims at dimensionality 

reduction. Rather than directly discarding the unimportant dimensions as screening, it 

transforms a set of correlated variables into a smaller set of uncorrelated variables that 

retain most of the original information. The most popular mapping methods include PCA 

[41], Relative Distance Plane (RDP) mapping [42], and Artificial Neural Network (ANN) 

[43]. The methods preserved the inherent data “structure” in a lower-dimensional space 

even though part of the information was lost. But it seems that no one has examined the 

possibility of mapping optimization problems from an original higher-dimensional space 

to a lower-dimensional space while preserving the optimum. If this is doable, both the 

problem size and the optimization complexity can be reduced simultaneously. The 

challenge is how to ensure the optimum obtained in the lower-dimensional space is the 

true optimum for the higher-dimensional space. 

2.2.3. Space Reduction 

Apart from meta-modeling and dimensional reduction techniques, there is 

another approach named space reduction that tackles the HEB problems in a totally 

different aspect. Space reduction means shrinking a design space during the 

optimization process so that the optimization effort is reduced in the optimization 

subdomain. A common space reduction approach starts with sampling a limited number 



 

9 

of points and evaluating function values at these points. Then the design space is 

reduced based on feedback information from modeling on these sample points. The 

revised design space is again segmented using smaller increments, and the objective 

function is determined for new points. In this way, the focus of modeling can be in a 

more attractive region. The method such as adaptive response surface method (ARSM) 

[44], the fuzzy clustering based approach [45] and a rough set based method space [46] 

has been developed in the past years. The advantage of these kinds of technique is that 

it can reduce the effort on modeling and optimization, but at the same time it may miss 

the global optima or important subdomain.  

2.2.4. Visualization 

Finally, visualization is a user-interactive way to present a problem in a visual 

form, allowing users to get insight into the problems, find key trends and relationships 

among variables in a problem, and make decisions by interacting with the data. Winer 

and Bloebaum [47][48] developed a Visual Design Steering (VDS) method as an aid in 

multidisciplinary design optimization. It is very helpful when there is little knowledge 

about the data and the exploration goals are implicit since users are able to directly 

participate in the exploration processes, shift and adjust the exploration goals if 

necessary. However, VDS for high-dimensional optimization problems will be less 

intuitive due to the limited ability to represent data of the high dimensionality in a 2D or 

3D space. Hence, it can be hard to find out the relationship among the data, since a 

large amount of information is lost during the process of visualization.  

2.3. Correspondence Analysis 

2.3.1. History 

The invention of correspondence analysis dates back to the early 20th century. 

Karl Pearson is [49] generally considered as the founder of the technique, who 

developed the correlation coefficient of a two-way contingency table using linear 

regression in around 1904. However, the original algebraic derivation of correspondence 

analysis was not derived until 1935, when Hirschfeld [50] further developed the formula. 
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Due to the development of Singular Value Decomposition (SVD), CA was further 

developed by Fisher [51]. Fisher integrated dimensionality reduction technique -- SVD 

with CA and use it on the hair and eye colour dataset of children from Scotland to show 

the structure of data. CA became popular in France by the work done by Jean-Paul 

Benzecri [52]-[54], who gave a geometric form to CA and made it easier to understand. 

Before 1970s, CA was relatively unknown in English speaking countries due to the 

language problem. The popular paper by Hill [55] first coined the method’s name 

correspondence analysis and introduced it to the English speaking researchers. As he 

showed the mathematically similarity between CA and already popular methods such as 

principal components analysis, CA was quickly accepted by the researchers and widely 

spread in the world. 

2.3.2. Advantages of CA Comparing to Other Similar Data Analysis 
Techniques 

CA is similar to a number of other statistical techniques, including Factor Analysis 

(FA) [56], PCA [57], and Multidimensional Scaling (MDS) [58].  

CA is similar to FA [59] as they are both exploratory methods to decompose the 

variance into a lower dimension and both reduce the dimension by losing minimal 

information, which can use fewer dimensions to explain the most of original dataset. The 

difference between CA and FA is that FA is applied on the correlation matrix [60], which 

requires a large number of samples to obtain. FA finds the factors from the covariance 

matrix [61] by using several techniques such as PCA, Alpha factoring [62], and Image 

factoring [63], and use the linear combination of the factors to describe the variables. CA 

however employs a mathematical transformation to the original data in the contingency 

table with no assumptions about the form of the correlation matrix. Therefore, 

correspondence analysis has highly flexible data requirements. The only strict data 

requirement is a rectangular data matrix with non-negative entries.  

CA and PCA are both dimensionality reduction techniques [64]. They both create 

orthogonal components to describe the original dataset and the distances between the 

points in high dimensional space is well preserved in the low dimensional space. CA is 

similar to PCA, but it is better suited for analyzing contingency tables, which examine the 



 

11 

associations among variables, while PCA extracts which variables explain the largest 

amount of variance in the data. The second difference between the two techniques is the 

way to decompose the data matrix. CA may be defined as a special case of PCA applied 

on the rows and columns of a table. In addition, CA and PCA are used under different 

circumstances. While PCA pays more attention to the most influential variables, CA 

focuses more on the similarity of the variables, which can be used to detect and 

represent underlying structures in a data set. CA’s primary goal is to transform a table of 

numerical information into a graphical display, in which each row and each column is 

depicted as a point. The converted points can reveal the similarities and associations 

among variables, the closer two points are, the more similar those two variables are. 

However, total variance is decomposed in PCA to extract the most importance variables, 

which represents the largest amount of data.  

MDS and CA both aim to help in the understanding of particular types of data by 

displaying the data graphically [65]. The objective of MDS is to determine a set of the 

points and the number of the points in the set to give a "good" fit for the observed 

proximities. The dissimilarity between two variables is predefined in the proximity 

matrices. The MDS method aims at finding the coordination for the set of points where 

each point will represent one variable and distance between two points reflects the 

dissimilarity between two variables. The larger an observed dissimilarity between two 

variables, the further apart should the points be in the graph. The coordinate of the 

points will change according to the fitness of the model by a formula that describes how 

well the proximities and the distances in the geometrical model match. An optimization 

method is usually applied to find the best coordinates. The disadvantage of MDS is that 

the proximity matrix needs to be calculated and for different type of problem, different 

measurement should be applied. For the problem without prior knowledge, it is hard to 

determine which measurement should be used to reveal the dissimilarity. Also, the 

optimization method for finding the optimal coordinate for the points is computational 

expensive, which makes it inefficiency for the high-dimensional problem. CA however 

represents the chi-square distance and the coordinate of the points is determined after 

the dimensionality reduction without knowing any other information of the problem. The 

operation on matrix decomposition is much faster than optimization and makes CA more 

efficient to calculate. 
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2.3.3. Applying Correspondence Analysis in HEB Optimization 

The strength of applying correspondence analysis in a HEB problem is that it can 

reveal the structure of the data set without prior knowledge and represent it in low 

dimensions without losing essential information. Unlike other Data Analysis techniques, 

which require a large number of samples, CA can still generate accurate results with 

small datasets. This property is really important for the HEB problems as the 

computations are extremely expensive and the number of runs of the black box is 

expected to be minimized as much as possible. Another distinct advantage of 

correspondence analysis over other methods is that it can be used to find the 

relationship within dependent variables or within independent variables, as well as the 

inter relationship between dependent variables and independent variables. The duality of 

displaying all the relations, which is not present in other multivariate approaches, will 

facilitate analysis and detection of relationships. It provides graphic outputs that are 

easier to grasp the pattern than series of numbers. The multivariate treatment of the 

data through simultaneous considering multiple categorical variables can reveal 

relationships that would not be detected in a series of pair wise comparisons of variable. 

What’s more, both qualitative and quantitative variables can be analyzed using 

correspondence analysis, since the continuous data can be first discretized into discrete 

data. 

The basic idea of applying CA in HEB optimization is to split the design space 

and ranges of function values into several intervals, discover the symmetry of different 

domains of variables, and then determine the most important ones. It can also indicate 

the promising area where the optimal will most likely to appear. In addition, we also 

introduce certain visualization techniques as useful tools to uncover the data pattern. 

During optimization process, as the important variable is identified, less sampling step is 

need for other dimensions, which can reduce significant number of points when comes 

to high dimension. In addition, when the promising subdomains are identified, fewer 

sampling points are needed in other subdomains. The symmetric structure can help 

reduce the different combination of the value in each dimension. For example when x1 

and x2 have symmetric distributed among the function value, then assign x1 = a and x2 = 
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b will result the same function value as x1 = b and x2 = a. Therefore, it will save the 

computation of a large number of combinations. 

2.4. Summary 

This chapter provides a brief review of current HEB optimization technologies 

and their disadvantages. After that, a data analysis method – Correspondence Analysis - 

is introduced and compared among other methods. Based on those, we start to discuss 

the possibility of applying CA to assist solving the HEB problem. The next chapter will 

provide the methodology of applying CA to HEB optimization in details and analyze the 

results.  
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Chapter 3. Methodology 

This section first gives an introduction to the numerical optimization, space and 

regions for an optimization problem, and then provides the steps needed for revealing 

the structure of the black box problem in the optimization context. The method is 

developed based on CA, but it is different from original CA and the interpretation of the 

graph is also different. The proof of applying CA and the guideline of choosing the 

parameters are also provided. The test results of the methodology on mathematical 

functions are shown in the last part of this chapter. 

3.1. Numerical Optimization 

3.1.1. Standard Form 

Numerical optimization is usually in a standard form as Eq. (1)  

 

𝑚𝑖𝑛 𝑓(𝒙) 

𝑠. 𝑡. {𝑔(𝑥) ≤ 0, ℎ(𝑥) = 0} 

(1) 

where 𝒙 is a vector of n dimension composed by n variables and we call each variable in 

the vector as one design variable. For each 𝒙, we can also consider it as one input of the 

system. 𝒙 can be tuned to achieve different output of the model. The objective functions 

are denoted as 𝑓(𝒙), which are used to measure the performance of the inputs. The 

results of 𝑓(𝒙) are considered as the output of the system. 𝑔(𝒙) and ℎ(𝒙) is a set of 

inequality and equality constraints, respectively. These determine the model’s limitation 

and screen out infeasible inputs. If the goal is to find the maximal value of 𝑓(𝒙), we can 

easily change it to a minimization problem by simply use {min −𝑓(𝒙)} as the objective 

function. 
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The scope of this thesis is limited to the single objective optimization with no 

constraints. It means that for every input 𝒙, there is one scalar output 𝑓(𝒙). But when it 

comes to the multi-objective optimization problem, we can aggregate multiple objectives 

into an overall performance function by using the weighted sum of each objective value 

as it is shown in Eq.(2) 

𝑓(𝑥) =  ∑𝑤𝑖𝑓𝑖(𝑥)

𝑚

𝑖=1

(2) 

where m is the number of the objective functions to be aggregated and wi is the weight 

of the ith objective function on the overall objective function. 

3.1.2. Definitions of Terminologies 

Two kinds of spaces that will be constantly referred to in this paper are defined in 

the following paragraphs.  

Design space: the design space of the design variable with d dimensions is all 

possible designs that may be generated. The matrix 𝑿 is used to represent the design 

space with s number of rows and t number of columns. Each row corresponds to one 

design and denoted as 𝒙. The ith element (column) in the row, which corresponds to the 

ith design variable, is denoted as 𝒙i . The vectors lb and ub are the boundaries that user 

defined for all the design variables in a specific optimization problem. For example, the 

ith design variable is limited by the lower bound lbi and the upper bound ubi. The number 

of variables and the boundaries of each design variable collectively determine the whole 

design space.  

Performance space: the performance space represents the range of function 

values, which are generated from 𝑓(𝒙). Unlike the design space, the boundary of the 

performance space is unknown to the user. Instead, the goal of the optimization is to find 

the lower bound of the performance space and its corresponding design. The upper 

bound is usually unknown either, however, it is not interesting from the optimization 

perspective. 
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Function value bin: The points are grouped by their relative performance 

(function value). As the optimal function value is unknown to the user, it is impossible to 

tell whether a point is good or not. However, after we run the simulations and have a 

pool of tested points, we can say one point is relatively better than the other point 

according to their function values. The points can then be sorted and classified into 

different function value bins (groups) according to their function values. The relative 

ranking (represented by the percentage) is denoted as 𝑅(𝑓(𝒙)), for example, a point 𝒙1

 

ranks 23th among the 50 points, then 𝑅(𝑓(𝒙𝟏)) = 23/50 = 46%. Once lower bound rl and 

upper bound ru of the percentiles are given, a group of points for a certain function value 

bin can be determined. 

 𝐹𝐵 = {𝑥 ∈ 𝑋|𝑟𝑙 ≤ 𝑅(𝑓(𝑥)) ≤ 𝑟𝑢} (3) 

For example, the top 46% of the designs form one function value bin, then the 

points with function value smaller or equal to point 𝒙1

 

will all be selected to that function 

value bin. 

In this thesis, the number of function value bins will be indicated and we want 

every function value bins has the same amount of samples, then, the ranking’s lower 

bound and upper bound of each function value bin can be calculated. According to Eq. 

(4), the function value bins are determined as: 

 𝐹𝐵𝑖 = {𝑥 ∈ 𝑋|
𝑖 − 1

𝑛 ≤ 𝑅(𝑓(𝑥)) ≤
𝑖
𝑛} , 𝑖 ∈ [1, 𝑛] (4) 

where FBi is the ith function value bin and n is the total number of function value bin, 

𝑖−1

𝑛
 and 

𝑖

𝑛
 are the lower bound and the upper bound of percentile for the ith function value 

bin respectively. 

Dimensional bin: 

Dimensional bin is defined in design space without knowing the performance of 

the points. The points are grouped into different dimensional bin according to different 
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conditions in the design space. Here we consider the dimensional bin separately for 

each variable. The general form of the dimensional bin is shown in Eq. (5): 

 𝐷𝐵𝑑 = {𝑥 ∈ 𝑋|𝑥𝑑𝑙 ≤ 𝑥𝑑 ≤ 𝑥𝑑𝑢} (5) 

The dimensional bins for the dth variable (DBd) are classified according to the lower 

bound xdl and the upper bound xdu of the dth variable. All the points whose values of the 

dth dimensions are between the boundaries will be put into the same dimensional bin. In 

this thesis, the number of dimensional bins for each variable (n) is given and the 

dimensional bins are defined according to the Eq. (6): 

 𝐷𝐵𝑑𝑖 = {𝑥 ∈ 𝑋|
(𝑖 − 1)(𝑢𝑏𝑑 − 𝑙𝑏𝑑)

𝑛
≤ 𝑥𝑑 ≤

𝑖(𝑢𝑏𝑑 − 𝑙𝑏𝑑)
𝑛 } , 𝑖 ∈ [1, 𝑛] (6) 

For the ith dimensional bins for the dth variables (DBdi), the range of the dth variables of 

the points will always be 
(𝑢𝑏𝑑−𝑙𝑏𝑑)

𝑛
, where ubd is the upper bound of the dth variable in the 

design space and lbd is the lower bound. In other word, the design space of the dth 

variable is cut into n intervals of the same length. For a point, if the value of the dth 

variable falls into the ith interval, then the point is belong to the ith dimensional bins for 

the dth variables (DBdi). 

3.2. Theory of Correspondence Analysis 

Mathematically, CA is usually performed on a two-dimensional contingency table 

[66], and reveals the internal information of rows and columns. A contingency table is a 

table in a matrix format that displays the frequency distribution of variables. The ith row 

and jth column of the contingency table is denoted as nij. The basic contingency table, 

i.e., the two-dimensional contingency table, comes with two variables. Suppose there 

are n objects being classified according to two variables A with s values (A1 to As) and B 

with t values (B1 to Bt), each object defined by a value of A and a value of B. The two-

way contingency table will display the frequency distribution of A and B, where nij are the 

number of objects within both values Ai and Bj.  
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CA uses a scattered plot to represent the rows and columns of a contingency 

table as points in a graph. This allows it to reveal the information inside the table more 

intuitively. There are three ways of representation [67], including the row profile 

representation, column profile representation, and biplot representation. In row profile 

representation, the rows of the table are viewed as vectors of points with coordinates 

given by the columns of the table. These row profiles are constructed by dividing each 

cell value of the table by its row sum ni+, where ni+ is the total of the observed values of 

the ith row, i.e. 𝑛𝑖+ = ∑ 𝑛𝑖𝑗
𝑡
𝑗=1 . The coordinate of the ith row profile Vi+ is therefore 

[
𝑛𝑖1

𝑛𝑖+

𝑛𝑖2

𝑛𝑖+
⋯

𝑛𝑖𝑡

𝑛𝑖+
]. The standard base ej will be the coordinate of the point of the jth 

column. The column points are called vertices because their positions are all on the 

vertices of a unit cube. The row points are called the profiles as we compare the rows 

and use columns as reference. In the row profile representation, the principle coordinate 

and the standard coordinate refer to “coordinate positions of the profile” and “coordinate 

position of the vertices” respectively. Similarly, in the column profile representation, the 

comparison among columns is considered and the row points are used as references. 

Column points or profiles and masses are also similarly defined. The row profile in this 

case is in standard coordinate and the column profiles are in the principle coordinate. 

Finally, for the biplot, both row points and the column points are scaled and put in 

principle coordinates, which allows for interpreting the row-row relationship and column-

column relationship at the same time. This work uses the row profile representation for 

visualization. 

SVD [68] is employed by CA to extract the principal axes and used to find an 

optimal subspace for plotting both the row and column points, weighing them by their 

respective masses. CA provides a low-dimensional explanation for the interaction or 

dependence between the rows and columns of the CT. The basic steps of CA are shown 

below: 

Algorithm：  

1. The contingency table, N (row, column), is converted to correspondence 

matrix P by dividing matrix N with its grand total, this will normalize the 

matrix and ensure the analysis independent of the size of the matrix. 
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𝐏 =
1

𝑛++
𝐍, where 𝑛++ = ∑ ∑ 𝑛𝑖𝑗

𝑡
𝑗=1

𝑠
𝑖=1  is the table grand total 

2. Calculate the diagonal matrix of row and column masses Dr = diag(r) and 

Dc = diag(c) and (P-rcT): r is the row masses vector with 𝑟𝑖 = ∑ 𝑝𝑖𝑗
𝐽
𝑗=1  and

c is the column masses vector with 𝑐𝑖 = ∑ 𝑝𝑖𝑗
𝐼
𝑖=1 .

3. Calculate the matrix S, which represents the standardized residue for

matrix N. S = Dr
-1/2(P-rcT)Dc

-1/2

4. Calculate the SVD for matrix S=UΣVT, where UTU = VTV = I

5. The plotting coordinates for the rows, Vi+, and columns, V+j, with respect

to the principal axes are computed by:

Vi+ = Dr
-1/2UΣ and V+j = Dc

-1/2V

The SVD is the fundamental step for CA. This matrix decomposition technique 

expresses rectangular m×n matrix W in the form of W=UΣVT, where UTU = VTV = I. U is 

an m×m orthonormal matrix, Σ is an m×n rectangular diagonal matrix with non-negative 

real numbers on the diagonal, and VT is an n×n orthonormal matrix. The left most matrix 

U is composed of the m columns eigenvectors of WWT, which is also called the left-

singular vector of W. Similarly, the right most matrix V is composed of the n columns 

eigenvectors of WTW, which is called the right-singular vector of W. The diagonal values 

σ of Σ with elements σ1 > σ2 > σ3 > . . . >σk > 0 are the singular values of W, where W 

has rank k.  

Chi-square Test 

Two other important concepts in CA are Chi-square test and inertia. In order to 

understand inertia, we need to introduce the Chi-square test first. Generally, Chi-square 

test is a statistical hypothesis test, which validates the hypothesis by first assuming the 

hypothesis is valid and then measuring the differences between the expected values and 

the observed ones. If the difference between expected values and observed values is 

sufficiently small, the hypothesis cannot be rejected (or is considered valid). Otherwise, 



 

20 

the hypothesis is rejected. Here, we use it to measure the independence, variance, or 

correlation between rows and columns as well as to determine whether there is a 

significant association between two variables. For example, if we want to find out 

whether the rows are independent, we first assume that the rows are independent and 

use the Chi-square test to test this hypothesis. The value of the test-statistic is denoted 

by 𝜒2 and defined as (7): 

𝜒2 = ∑
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
= ∑ ∑

(𝑛ij − E[𝑛𝑖𝑗])
2

E[𝑛𝑖𝑗]

𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑗

𝑟𝑜𝑤𝑠

𝑖

 
(7) 

As we can see in the equation above, the observed value for each cell in the 

table is nij and the expected value is denoted as E[nij]. Chi-square test requires our 

knowledge of the expected values of rows and columns. In order to find such 

information, some concepts of the contingency table are first defined: 

1. Row profile: The row profiles Vi+ which has been introduced before is 

in the form of [
𝑛𝑖1

𝑛𝑖+

𝑛𝑖2

𝑛𝑖+
⋯

𝑛𝑖𝑡

𝑛𝑖+
]. 

2. Correspondence matrix: Correspondence matrix is defined as the 

original table (or matrix) N divided by its grand total n++. Therefore, 

𝑝𝑖𝑗 =
𝑛𝑖𝑗

𝑛++
  

3. Row sum: The row sum of the ith row is the sum of observed values in 

that row which is denoted as ni+ and 𝑛𝑖+ = ∑ 𝑛𝑖𝑗  
𝑡
𝑗=1  

4. Row mass: The row mass of the ith row (ri) is the row sum of the ith 

row divided by its grand total. It is denoted as 
𝑛𝑖+

𝑛++
. We can obverse 

that the row mass equals to the row sum of the ith row in the 

correspondence matrix. 

5. Row mass vector: The row mass vector (r) is a vector of the row 

mass of different rows in the form of [
𝑛1+

𝑛++

𝑛2+

𝑛++
⋯

𝑛𝑡+

𝑛++
]  
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6. Column mass vector: Similarly, the column mass vector (cT) is a 

vector of the column mass of different columns in the form of 

[
𝑛+1

𝑛++

𝑛+2

𝑛++
⋯

𝑛+𝑠

𝑛++
] , where n+j is the total of the jth column and 𝑛+𝑗 =

∑ 𝑛𝑖𝑗 
𝑡
𝑖=1 . 

7. Average row profile: The average row profile (𝑽𝒊+
̅̅ ̅̅̅) is the centroid of 

the row profile which equals to the weighted average of all row profiles, 

where the weight of each row profile is the row mass. Therefore 𝑽𝒊+
̅̅ ̅̅̅ =

∑ 𝒓𝒊𝑽𝒊+
𝒔
𝒊=𝟏 =

𝑛𝑖+

𝑛++
× [

𝑛𝑖1

𝑛𝑖+

𝑛𝑖2

𝑛𝑖+
⋯

𝑛𝑖𝑡

𝑛𝑖+
]  and it is in the form of 

[
𝑛+1

𝑛++

𝑛+2

𝑛++
⋯

𝑛+𝑡

𝑛++
]. It is easy to find out that average row profile is 

actually equal to the column mass vector.  

8. Average column profile: Similarly, the average column profile is the 

weighted average of all column profiles, in the form of 

[
𝑛1+

𝑛++

𝑛2+

𝑛++
⋯

𝑛𝑠+

𝑛++
] and is equal to the row mass vector. 

9. Diagonal matrix: diagonal matrix of row masses is a diagonal matrix 

whose values on the diagonal are the row masses. It is denoted as Dr, 

and Dr = diag(r). Diagonal matrix of column masses is similarly defined 

and Dc = diag(c).  

Assume that all rows are homogeneous which means that the values from each column 

follow the same distribution as those in another column. Therefore, the expected values 

of the ith row should be equal to the average row profile times the mass of the ith row and 

its grand total. The expected value of the ith row is in the form of (8) 

E[𝑛𝑖+] = 𝑽𝒊+
̅̅ ̅̅̅ × 𝒓𝑖 × 𝑛++ = [

𝑛+1

𝑛++

𝑛+2

𝑛++
⋯

𝑛+𝑡

𝑛++
] × 

𝑛𝑖+

𝑛++
× 𝑛++ 

(8) 

The expected value of the cell in the ith row and jth column then as (9) indicates: 
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E[𝑛𝑖𝑗] = 𝑽𝒊𝒋
̅̅ ̅̅ × 𝒓𝑖 × 𝑛++ =

𝑛+𝑗

𝑛++
× 

𝑛𝑖+

𝑛++
× 𝑛++ = 𝑛+𝑗 ×

𝑛𝑖+

𝑛++
 (9) 

where nij and E[nij] represent the observed value and the expected value of the cell in ith 

row and jth column respectively.  

If all rows are homogeneous, the observed (actual) values of each row are equal to its 

expected values. However, for those more generic cases, the rows are usually not 

homogeneous. Then Pearson’s Chi-square test is introduced to measure the differences 

between the expected values and the observed (actual) ones. A smaller chi-square test 

value means it is more probable that the rows in the contingency table are 

homogeneous. Otherwise, the hypothesis is rejected and the rows are not 

homogeneous. The Chi-square test for the contingency table is then calculated by (10) 

as follows: 

𝜒2 = ∑ ∑

(

 𝑛ij

1

√E[𝑛𝑖𝑗]

− E[𝑛𝑖𝑗]
1

√E[𝑛𝑖𝑗])

 

2
𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑗

𝑟𝑜𝑤𝑠

𝑖

= ∑ ∑

(

 𝑛ij

1

√
𝑛i+𝑛+j

𝑛++

−
𝑛i+𝑛+j

𝑛++

1

√
𝑛i+𝑛+j

𝑛++ )

 

2
𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑗

𝑟𝑜𝑤𝑠

𝑖

= ∑ ∑

(

 
𝑛ij

𝑛++

1

√
𝑛i+𝑛+j

𝑛++𝑛++

−
𝑛i+𝑛+j

𝑛++𝑛++

1

√
𝑛i+𝑛+j

𝑛++𝑛++)

 

2
𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑗

𝑟𝑜𝑤𝑠

𝑖

× 𝑛++ 

(10) 

For simplicity, (10) can be written as (11) only using the concept of correspondence 

matrix, column masses, row masses and grand total. 
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𝜒2 = ∑ ∑ (𝑝ij

1

√𝑟i𝑐j

− 𝑟i𝑐j

1

√𝑟i𝑐j

)

2𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑗

𝑟𝑜𝑤𝑠

𝑖

× 𝑛++ 
(11) 

Using the matrix representation, (11) can also be written as (12). As we can see (12) is 

similar to the formula in the third step of the algorithm as we presented above: 

𝜒2 = [𝐷𝑟

−
1
2(𝑃 − 𝑟𝑐𝑇)𝐷𝑐

−
1
2]2 × 𝑛++

(12) 

Chi-square distance 

For the purposes of correspondence analysis, the differences between the 

distributions of the given rows are measured by the so-called 𝜒2 distances, which are 

weighted Euclidean distances between normalized rows (calculated by dividing row 

values by their respective row sum), with weights inversely proportional to the square 

roots of the column mass. In symbols, the 𝜒2 distance between row i and row  k is given 

by the expression: 

𝑑𝑖𝑘
2 = ∑

(
𝑛𝑖𝑗

𝑛𝑖+
−

𝑛𝑘𝑗

𝑛𝑘+
)
2

𝑛+𝑗

𝑛++

𝑡

𝑗=1

(13) 

As their name suggests, 𝜒2  distances are closely related to the 𝜒2  statistic of the 

previous section. To show how they are related, consider the average row profile - 

termed the centroid of row profiles in correspondence analysis—whose values are 

simply the column mass vector: 𝒄 = [
𝑛+1

𝑛++

𝑛+2

𝑛++
⋯

𝑛+𝑡

𝑛++
] . The distance between row 

profile and the average row profile is: 
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𝑑𝑖𝑐
2 = ∑

(
𝑛𝑖𝑗

𝑛𝑖+
−

𝑛+𝑗

𝑛++
)
2

𝑛+𝑗

𝑛++

𝑡

𝑗=1

= ∑
(
𝑛𝑖𝑗

𝑛𝑖+
−

𝑛+𝑗

𝑛++
)
2

𝑛+𝑗

𝑛++

𝑡

𝑗=1

= ∑
(
𝑛++𝑛𝑖𝑗 − 𝑛𝑖+𝑛+𝑗

𝑛++𝑛𝑖+
)
2

𝑛+𝑗

𝑛++

𝑡

𝑗=1

= ∑
(
𝑛++𝑛𝑖𝑗 − 𝑛𝑖+𝑛+𝑗

𝑛++𝑛++
)
2

×
𝑛++𝑛++
𝑛𝑖+𝑛𝑖+

𝑛+𝑗

𝑛++

 

𝑡

𝑗=1

= ∑
(

𝑛ij

𝑛++
−

𝑛i+𝑛+j

𝑛++𝑛++
)
2

𝑛𝑖+
𝑛++

𝑛+𝑗

𝑛++

×
1

𝑛𝑖+
𝑛++

𝑡

𝑗=1

 

(14) 

The Equation (14) can also be written as (15) by using the row mass and column mass: 

𝑑𝑖𝑐
2 = ∑(𝑝ij

1

√𝑟i𝑐j

− 𝑟i𝑐j

1

√𝑟i𝑐j

)

2𝑡

𝑗=1

×
1

𝑟i
 

(15) 

Inertia 

Drawing an analogy with the physical concept of angular inertia, correspondence 

analysis defines the inertia of a row as the product of the row and the square of its 

distance to the centroid, 𝑟𝑖𝑑𝑖𝑐
2  . Comparing the expression for 𝑑𝑖𝑐

2  in (15) with definition of 

the 𝜒2 statistic in (11), it follows that the total inertia of all the rows in a contingency 

matrix is equal to the 𝜒2 statistic divided by n++, a quantity known as Pearson’s mean-

square contingency, denoted 𝜙2: 

𝜙2 = ∑𝑑𝑖𝑐
2

𝑠

𝑖=1

𝑟𝑖 = ∑∑(𝑝ij

1

√𝑟i𝑐j

− 𝑟i𝑐j

1

√𝑟i𝑐j

)

2𝑡

𝑗=1

𝑠

𝑖=1

=
𝜒2

𝑛++
 

(16) 

The inertia of CA, which is denoted by 𝜙2, can be easily obtained from the Chi-

square test-statistic as (17) shows. It is calculated as the Pearson’s Chi-square test 

value for the entire contingency table, and then divided by the table’s grand total. The 

inertia can reveal the same information as Chi-square test but it can be represented with 

only rows in correspondence matrix, column masses, and row masses.  
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𝜙2 =
𝜒2

𝑛++
= [𝐷𝑟

−
1
2(𝑃 − 𝑟𝑐𝑇)𝐷𝑐

−
1
2]2 

(17) 

Graphical Representation 

Correspondence analysis provides a means of representing a table of 𝜒2 

distances in a graphical form, with rows represented by points, so that the distances 

between points approximate the 𝜒2 distances between the rows they represent. This 

representation can be computed by using the standardized residuals matrix (S) of the 

contingency table. As it is shown in the second step of CA, every cell is subtracted by 

the expected value as the procedure of (P-rcT) indicates. It ensures that the average row 

profile (centroid) will always be the origin point in the plot, which also represents the 

difference between expected values and the observed values. Furthermore, every row is 

scaled by Dr
-1/2Dc

-1/2, which integrates the weights in the inertial formula to the formula of 

Euclidean distance.  

𝑠𝑖𝑗 =
𝑝ij − 𝑟i𝑐j

√𝑟i𝑐j

 (18) 

Therefore, the Euclidean distance 𝑑𝑖𝑂
′2  from all points to the origin point is actually 

indicating the inertial value as (19) shows.  

∑𝑑𝑖𝑂
′2

𝑠

𝑖=1

= ∑∑(𝑠𝑖𝑗 − 0)2

𝑡

𝑗=1

𝑠

𝑖=1

= ∑∑(
𝑝ij − 𝑟i𝑐j

√𝑟i𝑐j

)

2𝑡

𝑗=1

𝑠

𝑖=1

= 𝜙2 
(19) 

In visualization, we plot all row profiles as points in a high dimensional plane, with the 

average row profile lying at the coordinate center. The summation of Euclidean distance 

from each point to the coordinate center is the total inertial, which measures the 

homogeneity of the rows in contingency table. Similarly, the Euclidean distance of two 

points measures the homogeneity or similarity of those two rows. The rows are 

considered to be more similar if their inertial value or the distance is smaller.  
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SVD provides us a technique to represent the rows and columns of the matrix in different 

spaces while preserving the distance. The row profiles are projected onto a different 

space so the coordinates of the points presenting the rows are changed. However, the 

distance information is preserved during SVD [69], therefore, the information such as 

inertia is still preserved. The distance between the row (column) points can still review 

the homogeneity of the rows (columns) even though the coordinates change. 

Interpretation of CA: 

The coordinates of the row and column profile points are calculated from the 

above algorithm and then are plotted in the same graph. The row profile points and the 

column profile points are separated into two groups and analyzed separately according 

to the following interpretation strategy.  

1. Interpretation of the distance within points of a same group 

The distance of two points in the graph is actually equal to the 𝜒2 distances. The 

smaller 𝜒2 distances value reflects more similarity of two row profiles. Therefore, if two 

points of a same group are close to each other on the graph, they will have a similar 

profile. For example, if the ith and jth row profile points are close to each other, it means 

that the values in the corresponding row profiles are similar. 

2. Interpretation of the distance between points and the origin of the same 
group 

The sum of all distances between points and the origin is equal to the value of 

inertial which represents the homogeneity of all the rows. In this case, a larger distance 

between a point and the origin represents a more distinguishable feature.  On the 

contrary, if the distance is small, there will be less difference among the values in the 

profile.  Otherwise we can say the rows are more homogenous. 

3. Interpretation of projection between points belonging to different groups  

To analyze the correlation between a point (PA) in one group and all the points in 

the other group, one calculates the dot product between the vectors of every two points. 

For the vector VA of point PA, it starts from the origin and ends at PA. For the point (PB) in 
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the other group, the vector VB is from the origin to PB. A large dot product of VA and VB 

indicates that the feature represented by point B is more relevant to the feature 

represented by point A.  

The row profiles show the distribution among the columns. For a certain row 

profile, row A for example, it has different values across the columns. Obviously, if row A 

has the same relevance among all the columns, the values in different columns should 

be the same. Otherwise, if row A at the Bth column has a larger value, it means that row 

A is more relevant to the Bth column. Therefore, when we analyze each row in the 

correspondence matrix, a larger value at a certain column means that the row is more 

relevant to that column.  

In the graph, the coordinate of the row points and the column points is obtained 

by applying SVD on the correspondence matrix (S=UΣVT). The plotting coordinates for 

the rows are Vi+ = Dr
-1/2UΣ and the plotting coordinates for the columns are V+j = Dc

-1/2V. 

Therefore, the product of rows and columns can be represented as (20): 

𝐕i+ ∙ 𝐕+j = (𝐃r

−
1
2𝐔𝚺)(𝐃c

−
1
2𝑽)𝑻 = 𝐃r

−
1
2(𝐔𝚺𝐕𝑻)𝐃c

−
1
2 = 𝐃r

−
1
2𝐒𝐃c

−
1
2 

(20) 

In other words, the correspondence matrix can be represented as the product of rows 

and columns and times the coefficients (Dc
-1/2 and Dr

-1/2). The dot product between two 

points (for example PA and PB) from different groups is actually the product of row A and 

column B. The value of the dot product is the value sAB in the correspondence matrix, 

which can show the relevance of row and column.  

The information discovered above can reveal several properties of the data set. 

A popular plot of CA to reveal the brand associations will be used as an example. The 

original data in the matrix format are obtained from [70] and are shown in Table 3.1. We 

have modified the data by adding the last row. We can observe that the attributes of 

Coke and Pepsi are similar. So are Diet Coke and Diet Pepsi. Coke and Pepsi are older 

and more traditional while Diet Coke and Diet Pepsi are more feminine according to the 

matrix. The attribute named feminine represents the percentage of women drinking a 

certain kind of drinks. The Coke Norm has the same values for all the attributes.  
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Table 3.1 Contingency table for brand association example 

 Femini
ne 

Health-
consci

ous 

Innoce
nt 

Older New 
experie

nces 

Rebelli
ous 

Sleepy Traditio
nal 

Weight-
consci

ous 

Coke 6 2 9 65 23 26 9 92 1 

Diet 
Coke 

57 59 23 22 9 5 24 15 76 

Coke 
Zero 

22 55 13 5 52 31 9 3 65 

Pepsi 9 2 10 38 16 18 14 54 0 

Diet 
Pepsi 

61 58 43 9 16 4 30 3 76 

Pepsi 
Max 

10 31 7 6 50 45 6 4 41 

Coke 
Norm 

55 55 55 55 55 55 55 55 55 

1. From Figure 3.1, we can discover that Coke and Pepsi are similar and so 

are Diet Coke and Diet Pepsi, because the corresponding points are 

close to each other in the graph. 

2. The distance from Coke Norm to the origin point is smaller than the other 

brands. Therefore, Coke Norm doesn’t have as much distinguishable 

features as the other brands.  

3. The larger projection of points in the row profile onto a certain point in the 

column profile, the stronger the relationship is. Thus, the association 

between Coke and (being) Traditional is substantially stronger than the 

association between Pepsi and traditional, because the projection of 

Coke onto the vector of Traditional is larger than Pepsi. Coke and Pepsi 

tend to be older and more traditional, while Diet Coke and Diet Pepsi are 

more feminine. 
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Figure 3.1 Correspondence Analysis of brand association 

3.3. Generating the Contingency Table 

As is done in CA, we are going to solve the HEB problems using a two-way 

contingency table. For simplicity, we first define a black box function with input of d 

variables and output of one function value. The following steps demonstrate the details 

of constructing a two-way contingency table, which will be used in the analysis and 

visualization later: 

Step (1) Sample n sets of inputs using Latin hypercube sampling (LHS) [71], and 

calculate the corresponding function values (outputs). 

Step (2) Divide the range of function values into t bins with each bin containing 

the same number of points. These bins are denoted as function value bins. Bj represents 

the set of points that fall into the jth function value bin. 



 

30 

Step (3) For each input variable, divide the domain into s bins with equal lengths, 

named dimensional bins. Aki represents the set of points that fall into the ith dimensional 

bin of the kth variable.  

Step (4) Create an s by t matrix for each input variable. For the kth variable, the 

matrix is denoted as Mk, and akij is the number of points that lie in the ith dimensional bin 

of the kth variable and in the jth function value bin of the output.  

 𝐌𝐤 = [

𝑎𝑘11   𝑎𝑘12   ⋯   𝑎𝑘1𝑡

⋯      ⋯              ⋯
𝑎𝑘𝑠1   𝑎𝑘𝑠2   ⋯   𝑎𝑘𝑠𝑡

] (21) 

Step (5) In the last step, we have obtained d number of s × t matrices. We can 

stack these matrices vertically and get 

 𝐖 = [
𝐌𝟏

⋯
𝐌𝐝

] =

[
 
 
 
 
 
 
 
 
𝒂𝟏𝟏𝟏    𝒂𝟏𝟏𝟐    ⋯   𝒂𝟏𝟏𝒕

⋯       ⋯      ⋯     ⋯
𝒂𝟏𝒔𝟏    𝒂𝟏𝒔𝟐    ⋯   𝒂𝟏𝒔𝒕

 
⋯       ⋯      ⋯     ⋯

 
𝒂𝒅𝟏𝟏    𝒂𝒅𝟏𝟐    ⋯   𝒂𝒅𝟏𝒕

⋯       ⋯      ⋯     ⋯
𝒂𝒅𝒔𝟏    𝒂𝒅𝒔𝟐    ⋯   𝒂𝒅𝒔𝒕 ]

 
 
 
 
 
 
 
 

 (22) 

The final contingency table will be: 
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Table 3.2 Contingency table for HEB problems 

B1 … Bj … Bt Total 

A11 a111 … a11j … a11t a11+ 

… … … … … … … 

A1s a1s1 … a1sj … a1st a1s+ 

… … … … … … … 

Ad1 ad11 … ad1j … ad1t ad1+ 

… … … … … … … 

Ads ads1 … adsj … adst ads+ 

Total a+1 … a+j … a+t dn 

A small example below will help to describe how a contingency table is 

generated. Suppose that 𝐹(𝑥, 𝑦) = 𝑥 + 𝑦, (𝑥, 𝑦 ∈ [0,1]) is the internal function of a black 

box, with two variables x and y. We divide the range of function values into t = 3 function 

value bins, and divide the domain of each input variable into s = 2 dimensional bins.  

Step (1) Randomly generated n = 12 points using Latin hypercube sampling. 

Table 3.3 randomly generated points 

Points id x y F(x,y) 

1 0.6286 0.1045 0.7331 

2 0.9485 0.8204 1.7689 

3 0.1723 0.4047 0.5770 

4 0.01370 0.4495 0.4632 

5 0.5087 0.7288 1.2375 

6 0.8681 0.05630 0.9244 

7 0.4514 0.9665 1.4179 

8 0.7621 0.2995 1.0616 

9 0.1638 0.6345 0.7983 

10 0.6762 0.5325 1.2087 

11 0.2994 0.9028 1.2022 

12 0.4136 0.2343 0.6479 

Step (2) The domains of x and y are equally divided into s=2 bins (intervals) 

respectively. In this example, both x’s and y’s domains lie in the interval [0, 1], so the 

dimensional bins are [0, 0.5] and [0.5, 1] for both x and y. First, we process the data only 



 

32 

in terms of variable x: let Ax1 be a set that represents the points whose x values lie in the 

first bin of variable x ([0, 0.5]). It includes points 3, 4, 7, 9, 11, 12. Ax2 is another set in 

which the points have their x values lie in the second bin of variable x. It includes points 

1, 2, 5, 6, 8, 10. Then, we process the data again, but this time only in terms of variable 

y. Similarly, we get set Ay1 that includes points 1, 3, 4, 6, 8, 12, and set Ay2 that includes 

2, 5, 7, 9, 10, 11.  

Step (3) The range of function value (F) is divided into t=3 bins, each bin 

containing the same number of points. In this example, we can set the three bins as [0, 

0.7331], (0.7331, 1.2022] and (1.2022, 1.7689]. Points 4, 3, 12, 1 with smaller function 

values are classified into set B1, and four points 9, 6, 8, 11 are in B2, while the other 

points 10, 5, 7, 2 with larger function values are classified into B3.  

Step (4) Create a two-way contingency table W of A and B. A has four possible 

values, Ax1, Ax2, Ay1, Ay2, and B has three possible values, B1, B2 and B3. The value in 

each cell is the number of points that fall into the corresponding function value bin and 

dimensional bin. For example, Ax1 has 3, 4, 7, 9, 11, 12 and B1 has 1, 3, 4, 12, therefore, 

the cell in the first row and the first column is | Ax1∩ B1| = |3, 4, 12| = 3.  

Thus after this step, we get the contingency table W: 

Table 3.4 Contingency table of the example 

 B1 (bin 1 of F) B2 (bin 2 of F) B3 (bin 3 of F) Row mass 

Ax1 (bin 1 of x) 3 2 1 6 

Ax2 (bin 2 of x) 1 2 3 6 

Ay1 (bin 1 of y) 4 2 0 6 

Ay2 (bin 2 of y) 0 2 4 6 

Column mass 

(Average row profile) 

8 8 8 24 

The fifth row of Table 3.4 contains the column sum of the table. It reveals that 

one third of the points are in each of the function value bin according to the function 

value and because we classify the points to three bins with equally number of points, the 

element in the average row profile (fifth row) will always be the same. As the number of 

sample points that fall into each interval with the same length of the domains will be the 
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same according to the properties of LHS, we divide the range of each variable into bins 

of equal length. Therefore the total number of points in each dimensional bin will be the 

same, which leads to the same value of each element in the fourth column. The row 

profiles are used to compare the difference between the various ranges of the variables 

and their distribution of the function values. 

3.4. Process the Contingency Table 

After we get the contingency table, it is necessary to process the table for further 

analysis. The steps are shown as follows.  

Step (1) Calculate the correspondence matrix P with elements pij by dividing 

matrix W by its grand total, this will normalize the matrix and ensure the analysis is 

independent of the size of the matrix. So we get 𝐏 =
1

𝑛
𝐖. In our example in the last 

section, n is 24, and the Table 3.4 becomes 

Table 3.5 Correspondence Table for the example 

 B1 (bin 1 of F) B2 (bin 2 of F) B3 (bin 3 of F) Row Mass 

Ax1 (bin 1 of x) 1/8 1/12 1/24 1/4 

Ax2 (bin 2 of x) 1/24 1/12 1/8 1/4 

Ay1 (bin 1 of y) 1/6 1/12 0 1/4 

Ay2 (bin 2 of y) 0 1/12 1/6 1/4 

Column Mass 1/3 1/3 1/3 1 

 

Step (2) Calculate the diagonal matrix of row and column masses Dr = diag(r) 

and Dc = diag(c). Then calculate the residue matrix (P-rcT): r is the row masses vector 

with 𝑟𝑖 = ∑ 𝑝𝑖𝑗
𝐽
𝑗=1  and c is the column masses vector with 𝑐𝑖 = ∑ 𝑝𝑖𝑗

𝐼
𝑖=1 . (P-rcT) is the 

residue matrix Mr, which can measure the strength of the difference between observed 

and expected values. It can be represented as 

 𝑟𝑒sidual Mr𝑖𝑗
= observed ij – expected ij  = 𝑝𝑖𝑗 − 𝑡𝑖𝑗 (23) 
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Where  

𝑡𝑖𝑗 = 𝑟𝑜𝑤 𝑚𝑎𝑠𝑠 𝑖 × 𝑐𝑜𝑙𝑢𝑚𝑛 𝑚𝑎𝑠𝑠 𝑗 

For the previous example, (P-rcT), Dr and Dc will be: 

 𝐃𝐫 = [

0.25
0
0
0

0
0.25
0
0

0
0

0.25
0

0
0
0

0.25

]      𝐃𝐜 =

[
 
 
 
 
 
1

3
0 0

0
1

3
0

0 0
1

3]
 
 
 
 
 

 (24) 

 𝐏 − 𝐫𝐜𝐓 =

[
 
 
 
 
 
 
 
1

8

1

12

1

24
1

24

1

12

1

8
1

6
 

1

12
 0  

0  
1

12
 

1

6
  ]
 
 
 
 
 
 
 

− [

0.25
0.25
0.25
0.25

] × [
1

3

1

3

1

3
] =

[
 
 
 
 
 
 
 

1

24
0 

−1

24
−1

24
 0

1

24

 
1

12
 0

−1

12
  

 −1

12
 0

1

12 ]
 
 
 
 
 
 
 

 (25) 

Step (3) Calculate the matrix S, which represents the standardized residue for 

matrix W obtained above. S = Dr
-1/2(P-rcT)Dc

-1/2
, where Dr and Dc are the diagonal 

matrices of row and column respectively. When comparing the cells, the standardized 

residual makes it easy to see which cells are contributing the most to the value, and 

which are contributing the least. According to the example in Table 3.5, the matrix S can 

be obtained by 
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𝐒 = 𝐃𝐫
−

𝟏
𝟐(𝐏 − 𝐫𝐜𝐓)𝐃𝐜

−
𝟏
𝟐

= [

2
0
0
0

0
2
0
0

0
0
2
0

0
0
0
2

] ×

[
 
 
 
 
 
 
 

1

24
0 

−1

24
−1

24
0

1

24
1

12
0

−1

12
 −1

12
0

1

12 ]
 
 
 
 
 
 
 

× [
√3 0 0

0 √3 0

0 0 √3

]

=

[
 
 
 
 
 
 
 

1

24
× 2 × √3 0 

−1

24
× 2 × √3

−1

24
× 2 × √3 0

1

24
× 2 × √3

1

12
× 2 × √3 0

−1

12
× 2 × √3 

−1

12
× 2 × √3  0

1

12
× 2 × √3  ]

 
 
 
 
 
 
 (26) 

Step (4) Apply SVD on matrix S, S=UΣVT 

The detail of calculating SVD is explained in detail in [72] 

As Σ is a rectangular diagonal matrix, it can be simplified as a square matrix of 

size Min{m,n}×Min{m,n}. Hence, U is reduced to an m×Min{m,n} matrix, and VT is 

reduced to an Min{m,n}×n matrix. The following figure illustrates the size and the format 

of the matrix in SVD (with m > n in this example).  
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Figure 3.2 SVD format 

 𝐒 = 𝐔𝚺𝐕𝐓 =

[
 
 
 
 
 
 
 
 √10

10
0

−√10

10

2

3

√10

5

2

3

−√10

5

1

3]
 
 
 
 
 
 
 
 

× [
√15

6
0

0 0

] ×

[
 
 
 
 −√2

2

−√2

2
0 0

√2

2

−√2

2 ]
 
 
 
 
𝑇

 (27) 

Step (5) The principle coordinates of row is X = Dr
-1/2UΣ and the standard 

coordinates of the column is Y = Dc
-1/2V. 

 

 𝑿 = [

2

0
0

0

0

2
0

0

0

0
2

0

0

0
0

2

] ×

[
 
 
 
 
 
 

√10

10
0

−√10

10

2

3

√10

5

2

3

−√10

5

1

3]
 
 
 
 
 
 

× [
√15

6
0

0 0
] =

[
 
 
 
 
 
 

√6

6
0

−√6

6
0

√6

3
0

−√6

3
0]
 
 
 
 
 
 

  

𝒀 = [
√3 0 0

0 √3 0

0 0 √3

]

[
 
 
 
 −√2

2

−√2

2
0 0

√2

2

−√2

2 ]
 
 
 
 

=

[
 
 
 
 
−√6

2

−√6

2
0 0

√6

2

−√6

2 ]
 
 
 
 

 

(28) 
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 so 𝑿 =

[
 
 
 
 
 
 

√6

6
0

−√6

6
0

√6

3
0

−√6

3
0]
 
 
 
 
 
 

 and 𝒀 =

[
 
 
 
−√6

2

−√6

2

0 0
√6

2

−√6

2 ]
 
 
 
 (29) 

Step (6) According to the Eckhart and Young’s theory [73], the vector 

corresponding to the larger eigenvalue has the more information for the original data set. 

In Eq.(27), the first column of U and the first row of V corresponding to the largest 

eigenvalue 
√15

6
. If we plot it in 1D, the first column of U and the first row of V will be kept 

for row coordinates and column coordinates respectively. Similarly, if we need to plot in 

a 2D space, only the first two dimensions with the largest eigenvalue will be plotted for 

both row coordinates and column coordinates. In this case, we only have two 

dimensions, because contingency table with three dimensions can be perfectly plotted in 

two dimensions according to [74]. Therefore, we plot both two rows and two columns. 

The points representing the first to fourth rows will be (
√6

6
, 0), (

−√6

6
, 0), (

√6

3
, 0) 

and (
−√6

3
, 0)  respectively. Similarly, the points of the first to third column will be 

(
−√6

2
,
−√6

2
), (0,0), and (

√6

2
,
−√6

2
).  

Step (7) Plot the points according to their coordinates in the 2D row principle plot 
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Figure 3.3 Row principle plot of the example 

In the figure above, the label Aij
 represent the jth dimensional bin for the ith 

variable. The circle and the triangle points show the first dimensional bin and the second 

dimensional bin for all different variables respectively. The vector from the origin (0,0) to 

the point represents the ith function value bin is denoted as Bi. It serves to be the 

reference to compare the relationship among dimensional bins in the figure. The position 

of Bi is the same as the ith row of matrix Y. Therefore, B1, B2 and B3 should be (
−√6

2
,
−√6

2
), 

(0,0), and (
√6

2
,
−√6

2
)  respectively. According to the example, the first dimension is x, 

therefore, the point A11 (
−√6

6
, 0), A12 (

√6

6
, 0), A21 (

−√6

3
, 0) and A22 (

√6

3
, 0) represent the first

row profile Ax1, the second row profile Ax2, the third row profile Ay1 and the fourth row 
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profile Ay2 in Table 3.4 respectively. The detail explanation of interpreting the figure will 

be discussed in the following section. 

3.5. Proof 

There are some presumptions of the problem for which CA can be applied to. As 

violating the assumptions may lead to inaccurate conclusions. In this section, we will 

prove that the way we representing the optimization problem can satisfy the 

requirements of applying CA. The assumptions of CA are listed below: 

1. CA assumes that the data being analyzed is discrete; however,

originally continuous variables can be categorized into discrete

variables.

2. All values in the frequency table must be non-negative so that the

distances between the points on the plot are always positive.

3. The statistical properties are similar across rows and columns,

implying that there must not be any empty variables whose entries are

all zeros.

For our approach of reforming matrix of the optimization problem, the 

assumptions are addressed as below: 

1. We categorized continuous variables into discrete variables. For

example, we discrete the range of each variable of design space into

dimensional bins with equal length. And the performance space (the

range of function value) is discretized into function value bins with the

same number of points in each bin.

2. The elements in contingency table represent the number of the points

that fall into certain dimensional bin and function value bin, therefore,

the value of each element will always be non-negative.

3. As the total sample points can be divided exactly by the production of

number of rows (s) and columns (t), the Latin Sampling ensures that
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there are at least t points sampled in each dimensional bin. Therefore, 

the total sum of each row will be greater or equal to t. Also all the 

elements in each row are non-negative and their sum is larger than 

zero, so there must be at least one element greater than zero. 

Similarly, the elements in each column are non-negative and the sum 

of each column is greater than zero (equal to the number of one third 

of the sample points), the columns can’t have all zeros elements. As a 

result, we can ensure that none of the column or row has all zeros. 

The distribution of data in the proposed method may vary. But CA does not make 

any assumption on data distribution. Therefore CA can be applied directly on the 

contingency table that we designed.  

The next step we still need to justify that during the process of CA, the relative 

magnitude of each row and column remains the same. That is to say, if a row profile [a, 

b, c] with a>b>c shows the distribution across the function value, this a>b>c property 

won’t change after the process. It means promising subdomains suggested by the 

original table won’t change either after CA.  This is important for the purpose of 

optimization. As the correspondence matrix that we construct contains some unique 

properties that are not in the regular correspondence matrix, we can use these 

properties to illustrate that during the process of CA, the matrix remains meaningful in 

the context of optimization. 

For the standardization step in CA, the contingency table matrix W is transformed 

to correspondence matrix P by dividing every element by the grand total. Then P is 

standardized to matrix S, where S = Dr
-1/2(P-rcT)Dc

-1/2. The elements in column mass 

profile are always the same as we classify the points to function value bins with equal 

number of points. In addition, the properties of LHS ensure that the values in row mass 

profile are also the same because the length of the dimensional bins is the same for a 

certain variable. Therefore, every element in rcT is the same, so does the value in the 

diagonal of Dr and Dc. Every element in the contingency table will be subtracted and then 

divided by the same value, and then the magnitude relation remains the same among all 

the elements in matrix. Therefore, the information in row vector is preserved, which can 
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reveal the subdomain properties of the distribution across the function value space. In 

other word, the process of CA doesn’t change the relative magnitude of the rows and 

columns, and thus the outcomes from CA can be directly used to support optimization.  

3.6. Interpretation of the Plot in Optimization Context 

The important information we can discover from the graph is listed below: 

1. Identify promising subdomain:

Intuitively, for each variable, the subdomain containing the optimum is called its 

promising subdomain, which is more likely containing more “good points” whose function 

values are smaller among all the points. Therefore, for a promising subdomain, there 

tends to be more points falling into the first function value bin than the other two function 

value bins (classified into three function value bins in total). Then in the context of CA, if 

the ith subdomain (the ith dimensional bin) for the kth variable is promising, the 

corresponding row profile �⃗�[nki1, nki2, nki3] will tend to have larger nki1 than nki2 and nki3. 

Conversely, if a row profile �⃗�  has its nki1 larger than nki2 and nki3, its corresponding 

subdomain is more likely to be promising. In general, the larger nki1 is, the more 

promising the corresponding subdomain is. According to CA, the projection of the ith row 

profile vector of the kth variable (Aki) onto the jth reference vector (Bj) can reveal the value 

of the cell nkij in the contingency table. To ensure the first element of the row profile is 

larger than the second and the third element, we required that the projection of Aki onto 

B1 should be larger than projection onto B2 or B3. As the length of Aki is fixed, if the angle 

between Aki and B1 is larger than the angle between Aki and B2 or Aki and B3, a larger 

projection onto B1 is also ensured. The larger projection a point has onto B1, the more 

promising the subdomain is. In other words, the points with larger projection onto B1 as 

well as smaller angle between B1 are what we want. They will indicate the promising 

subdomains of the variables.  

2. Find the significant variables

If a variable is influential to the function value, a variance in its value will result in 

a significant change in the performance space (function value) and we call it significant 
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variable. As we subdivide the domain of a variable into s subdomains as its dimensional 

bins, the distribution of the function value bins of each subdomain can be used to decide 

how significant a variable is to the function value. For a given variable, if the distributions 

of function values are similar for all the three subdomains, then this variable is having a 

small impact on the function value, because the change of its value results in little 

change of the function value. If the distributions vary a lot, e.g., small function values for 

the first domain and large function values for the second domain, it means that the 

variable is influential to the function value, whereas the change of its value results in a 

significant change of the function value.  Such property in the contingency table can be 

discovered by inertia. According to CA, a smaller value of the total inertial means that 

the rows are more likely to be homogenous. In other words, the row profiles are close to 

each other, having smaller variances from the average row profile. Otherwise, the row 

profile vectors are different from the average row profile.  The row profiles for an 

influential variable have more variety than the row profiles for a non-influential variable. 

Therefore, the total inertial of row profiles for an influential variable should be larger. This 

can also be learned from the graph easily. Considering the ith variable xi, the total inertia 

𝜆𝑖 is the summation of the distances from Aij (j = 1,2…s) to the origin. If the row profile 

vectors of a variable are away from the origin, we can say it is a significant variable to 

the function. One can calculate and show the total inertial of each variable to assist 

discovering significant variables. The larger the inertial is, the more influence is that 

variable to the output function value. In other words, the more significant that variable is. 

3. Find the symmetric variables:

Assume that the black box function is represented by F = F(x1,x2,…xd), where d is 

the number of variables (dimensionalities). F is a partially symmetric function if and only 

if it is unchanged when some, but not all, of the variables are permuted. Those permuted 

variables are called symmetric variables. Suppose there is a set of symmetric variables 

within the partial symmetric function. For each subdomain, the symmetric variables will 

tend to have similar distributions across the function values. Therefore, the 

corresponding row profiles of these variables should also be similar. In the plot, the row 

profile vectors of such variables are usually clustered by subdomains. If we observe that 
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there is a group of variables, where each subdomain’s corresponding row profile vectors 

are clustered in the plot, we can say they are symmetric variables of the function. To be 

more precise, we can call them pseudo-symmetric variables, since these variables might 

not be the actual symmetric variables, based on the limited samples.  

Figure 3.4 Row principle plot for “x+y” function 

For the previous function f(x,y) = x+y, if we include more samples, choose three 

dimensional bins for each variable and three function value bins, the plot will be like 

Figure 3.4: 

1. Identify promising subdomain
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We consider the variable x as the first dimension and the variable y as the 

second dimension. The angle between the first dimensional bin vector of x (A11) and the 

first function value bin B1 are smaller comparing to the angle between B1 and other 

dimensional bins of x (A12 and A13). In addition, the A11 is closer to B1 than to the other 

function value bins (B2 and B3). So is A21, indicating the same for the y variable. It means 

that the first bin for both x and y are more likely to have the optimal than the other bins in 

their dimension. Back to the function x+y, as we are pursuing the minimal function value, 

the first dimensional bin, which indicates the smaller value, is more promising. The graph 

shows exactly that as the hypotheses. 

2. Find the significant variables

In Figure 3.4, the total distance from the row profile vectors (A11, A12 and A13) of 

variable x to the original point are denoted as Dx. Similarly, Dy is defined as the total 

distance from the row profile vectors (A21, A22 and A23) of variable y to the original point. 

In the figure, Dx is similar to Dy, which means that x and y have the same influence to the 

output function value. As the coefficient of the x and y are the same in the function, they 

will have the same influence to the function value. The assumption that x and y have the 

same influence is true in this case. 

3. Find the symmetric variables

The respective dimensional bins in x and y dimension are in the same cluster 

and close to each other. In Figure 3.4, it is obvious that, the first (second, third) 

dimensional bin A11 (A12, A13) for x variable is close to the first dimensional bin A21 (A22, 

A23) for y variable, therefore, we might assume that the dimensions x and y are 

symmetric variables. Looking back at the sample, in function x+y, if exchanging x and y, 

the function remains the same. Therefore, x and y are indeed symmetric variables in the 

function as CA predicted.  

3.7. Guidelines of choosing parameters 

Parameters n, s and t are to be specified by users. The guidelines of choosing 

the value of parameters are discussed below: 
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For the visualization purpose, the number of bins for each dimension is 

suggested to choose between three and four. More than five dimensional bins for each 

variable will make the figure hard to see, especially for problems of more than ten 

dimensions. Most importantly, as the number of dimensional bins increases, more points 

are needed to sample in each bin to achieve the statistical significance of the propose 

method. As we want to reduce the number of samples, we intend to have less 

dimensional bins.  

The proposed method can find the mapping relationship between the dimension 

bins and function values to identify the promising subdomains. However, if we only cut 

the domain of a variable into three or four bins, the mapping relationship we found is not 

accurate because the range of the design space is too large. This problem can be 

solved because the method can be applied iteratively. If we want to find more accurate 

mapping on a smaller range, we can first analyze the mapping of the large range and 

then cut the promising range into smaller pieces and analyze it again in a smaller range. 

There’s no need to cut the range into small pieces at the first stage. Once we find an 

interesting area, the smaller range of the bins can be generated for a certain subdomain. 

Therefore, cutting the domain into three or four dimensional bins is sufficient. 

The function value bin is suggested to be three. According to the proof in [13], an 

N dimensional profile can be perfectly shown in N-1 dimension without losing any 

information, therefore, a 3-D profile can be expressed in 2-D. Three bins for function 

values can ensure that the matrix has three columns and can be shown in two 

dimensions. No information will be lost during the SVD process to show it in two 

dimensional plots. This will make the visualization more accurate than cutting it into 

more than three functional bins. 

For the other parameter n in the algorithm, it should be able to be divided exactly 

by the production of s and t, where s is the number of dimensional bin and t is the 

number of function value bins.  
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3.8. Tests and Results 

After demonstrating the details of the method, we will focus on the experiments 

and results to prove the capability and practicality of this method. Generally, there will be 

two sub-sections. In the first section, we will test the method with three simple functions. 

These three simple design functions are shown as an example to demonstrate 

correctness of three properties of the proposed method. The functions are listed in Table 

3.6. 

Table 3.6 Design function for proposed method 

Function 

name 

Dimension 

(Number of 

variables) 

Formula Search 
domain 

Minimum 

Sphere 

function 

3, 30 
𝑚𝑖𝑛 𝑓(𝑥) = ∑𝑥𝑖

2

𝑛

𝑖=0

0 ≤ 𝑥𝑖 ≤ 1 𝑥∗

= (0,… ,0) 

𝑓(𝑥∗) = 0 

Low 
correlation 

function 

30 min𝑓(𝑥) = 𝑥1𝑥2 + 2𝑥3𝑥4 + 3𝑥5𝑥6

𝑥7 𝑡𝑜 𝑥30 𝑎𝑟𝑒 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

0 ≤ 𝑥𝑖 ≤ 1 𝑥∗

= (0,… ,0) 

𝑓(𝑥∗) = 0 

High 
correlation 

function 

30 𝑚𝑖𝑛 𝑓(𝑥) = 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6

𝑥7 𝑡𝑜 𝑥30 𝑎𝑟𝑒 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

0 ≤ 𝑥𝑖 ≤ 1 𝑥∗

= (0,… ,0) 

𝑓(𝑥∗) = 0 

In this experiment, 90 sampling points are used for three dimension problems 

and 900 points are used for thirty dimension problems. Each variable will be divided into 

three dimensional bins, bin 1 (bin 3) corresponding to the smallest (largest) value region. 

The dimensional bin vector 𝑽𝒑𝒊𝒋
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is from (0, 0) to the point 𝑷𝒊𝒋 that represents the jth

dimensional bin of the ith variable. In the graph, the triangle, square and diamond marker 

represents the first, second and third dimensional bin respectively for certain variable. 

The number i inside the marker represents the ith variable which the dimensional bins 

belong to.  Combination of markers and numbers can represent the dimensional bin 𝑷𝒊𝒋, 

for example, the first dimensional bin for the first variable P11 is represented by the 

triangle with number 1 in it. Similarly, we divided the points into three bins according to 
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the function value. The function value bin vector 𝑽𝒇𝒊
⃗⃗⃗⃗⃗⃗⃗ is from (0, 0) to the point 𝑽𝒊 that

represents the ith function value bin. In the graph, 𝑽𝒊 is represented by the number i with

parentheses around it (“(i)”) and the vectors are shown as blue lines in all figures below.  

 Sphere function

As it is shown in Figure 3.5, the first dimensional bin vector (triangle markers) for 

each variable has a smaller angle between the first function value bin vector 𝑽𝒇𝟏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  than

between the second and third function value bin vector  𝑽𝒇𝟐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and  𝑽𝒇𝟑

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . It indicates that the

first dimensional bins are the most promising subdomain, which is true because when xi 

is in region [0, 1/3], the function value is smaller. Also the coefficient for each item is the 

same, which means that all the dimensions have the same influence on the function 

value. Therefore, the variables should have the similar total inertia, which are shown in 

the graph, as the total distances from the dimensional bins to the original point for a 

certain variable are similar. The inertia is also shown have similar value in Table 3.7.  

For the formula, every two xi and xj is exchangeable, so the function is a 

symmetric function and all the variables are symmetric variables. Thus, the 

corresponding dimensional bin should be close to each other. Figure 3.5 shows all the 

triangle are close to each other and so do squares and diamonds, which represents that 

the first dimensional bins for the corresponding variables are in the first cluster, the 

second dimensional bin in the second cluster and the third dimensional bins in the third 

cluster. It is the same as predicted. Figure 3.6 obtains the same results for the sphere 

function when the dimension increases to thirty. To make the figure more clearly for a 

thirty-variable problem, the numbers, which ought to be inside the marker to indicate 

certain variable, are omitted. The inertia of each dimension is shown in Table 3.8. 
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Figure 3.5 3D sphere function 

 

Figure 3.6 30D sphere function 

Table 3.7 The total inertial for each variable in 3D sphere function 

 1st variable 2nd variable 3rd variable 

Total inertial 1.37866893644938 1.20988694009540 1.33733529986230 
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Table 3.8 The total inertial for each variable in 30D function 

30D Sphere 30D Low correlation 
function 

30D High correlation 
function 

1st variable 0.398642862097115 0.493643581226953 0.835540255491546 

2nd variable 0.484720387718703 0.498139313046960 0.927896979695465 

3rd variable 0.420543849835798 0.921118467868212 0.831809864196272 

4th variable 0.485415102617012 0.709203377429272 0.813766710869774 

5th variable 0.426955589348830 1.29523758836623 0.862299092505617 

6th variable 0.439154947306499 1.33954262346104 0.751844229877121 

7th variable 0.393949532882725 0.0684044678555329 0.110138235790603 

8th variable 0.476211967266988 0.180118822034004 0.172100481075421 

9th variable 0.370744490739038 0.184946899831907 0.137247146198704 

10th variable 0.431989621915272 0.279793526790522 0.0976103154324033 

11th variable 0.355630816839004 0.241051864992156 0.139152493789324 

12th variable 0.482509857836359 0.126451547013768 0.123115098662543 

13th variable 0.385117157641772 0.114347490499738 0.158984725425672 

14th variable 0.404031546685630 0.137776272522066 0.164386827705905 

15th variable 0.487826854466356 0.124198132249737 0.191570768262407 

16th variable 0.456250775247658 0.123434677304864 0.101330362355032 

17th variable 0.399769567190802 0.294090645813407 0.0657351284914572 

18th variable 0.430007045071294 0.101585740544497 0.154099432484326 

19th variable 0.405756470865653 0.140025530389000 0.136868664770325 

20th variable 0.508793282765993 0.200307534799441 0.142035188237546 

21st variable 0.330757664815854 0.0304720672422855 0.114457306157870 

22nd variable 0.597539281471514 0.150190896478542 0.0979795897113270 

23rd variable 0.393110034156727 0.268400820999151 0.189643729889319 

24th variable 0.485983535137494 0.108182924970725 0.0894039928977514 

25th variable 0.493640058748961 0.215552993256273 0.162777636339591 

26th variable 0.426381691609315 0.143773185810829 0.0614536408207023 

27th variable 0.362027512649674 0.286626907215220 0.0780299105633014 

28th variable 0.339287513893566 0.161262112840337 0.172224377254898 

29th variable 0.419983518659428 0.180981210511452 0.208957522256008 

30th variable 0.360594317400335 0.0979795897113269 0.145841701998184 
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 Low correlation function

The coefficients of each variable in this low correlation function are not the same, 

therefore, the variables will have different influences on the function value. In the 

formula, the 5th and 6th variables have the largest coefficient, 3rd and 4th variables have 

the second largest coefficient, and the 1st and 2nd variables have the smallest coefficient. 

The larger coefficient means a larger influence on the function value. According to the 

function, the 5th and 6th dimensions have the most influence on the function value and 

the 7th variable to 30th variable have no influence on the function value. In Figure 3.7, the 

dimensional bins for the fifth and sixth variables (𝑽𝒃𝒊𝒋
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , i = 5, 6, j = 1, 2, 3), which

represented by the marker with number 5 or 6 inside, are further apart. As it is shown in 

the second column of Table 3.8, the inertia of the fifth and sixth dimension is much larger 

than the other dimensions, which indicates the larger influence on the function value. It 

can be easily observed that besides the most significant variables (fifth and sixth 

variables), the third and fourth variables are more influential than the first and the second 

variables. The inertias of first to sixth dimensions are highlighted in bold and italic style in 

order to distinguish them from the other dimension with less influence on function value. 

The other variables (the 7th to 30th) have least inertia, which means they have least 

influence on the function value. In Figure 3.7, the points that represent the dimensional 

bins vectors 𝑽𝒃𝒊𝟏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑽𝒃𝒊𝟐

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝑽𝒃𝒊𝟑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (l=7, 8, …, 30)  for 7th to 30th variables are close to each

other, which make the numbers inside the makers unable to be seen. Therefore, in order 

to get the clear plot, none of the numbers will be plot. These dimensional bins for 7th to 

30th variables are close to the origin, which also indicates they have the least influence 

on the function. Thus, the previous prediction is correct. Vector 𝑽𝒃𝟓𝟏
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and 𝑽𝒃𝟔𝟏

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑽𝒃𝟓𝟐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and

𝑽𝒃𝟔𝟐
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗and 𝑽𝒃𝟓𝟑

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and 𝑽𝒃𝟔𝟑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ are close to each other, which indicates they have symmetric

property. We can guess according to the figure that these two variables are symmetric 

variables. Similarly, we can discover that the first and second variables are symmetric 

variables and so do the third and the fourth variables. It is correct because in the 

formula, those two variables are exchangeable. In the graph, the promising subdomain 

for each variable is still the first dimensional bin [0,1/3], which is represented by the 

triangle marker in the graph. This can be easily verified, as in the low correlation 
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function, the region with smaller variable value tends to have smaller function values. 

Thus, the first dimensional bin is more promising. 

Figure 3.7 30D low correlation function 

 High correlation function

For the high correlation function, the first dimensional bins for the 1st to 6th 

variables are shown to be the most promising subdomain. In Figure 3.8, the triangle 

markers with numbers 1 to 6 inside have large projection onto the first function value bin, 

which implies that the first dimensional bin for 1st to 6th variables is a promising 

subdomain. The 1st to 6th variables have similar influence on the function value while the 

7th to 10th dimensions have no influence on function value, same as the formula 

indicates. In the figure, the dimensional bins (Pij, i = 7, 8, …, 30, j = 1, 2, 3) for the 7th to 

30th variables that have no number inside the marker are all close to the origin. It 
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indicates that changing in the 7th to 30th dimension won’t result in much difference in 

function value. Therefore, the 7th to 30th variables are not significant variables. The 

dimensional bins for the 1st to 6th variables are separated, which suggest they have 

larger influence on the function value. The inertia in the third column of Table 3.8 also 

indicates the 7th to 30th is less influential than the 1st to 6th variables. The inertias of 1st to 

6th are also boldfaced so can be seen more clearly. The first dimensional bins for the 1st 

to 6th variables (triangles with numbers inside) are in the same cluster and so do the 

second (square with numbers inside) and third dimensional bins (diamond with numbers 

inside). We can assume that these six variables are symmetric variables, which can be 

easily proved according to the formula. 

Figure 3.8 30D high correlation function 

The proposed method has also been tested on a number of well-known 

benchmark functions and they are listed in Table 3.9 and are selected according to their 

significant physical properties and shapes. 
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Table 3.9 Benchmark test functions for proposed methods 

Function 
name 

Number of 
dimension 

Formula Search domain Minimum 

Ackley 

(Many local 
minimal) 

2,30 

𝑓(𝑥)

= −𝑎𝑒
−𝑏√1

𝑑
∑ 𝑥𝑖

2𝑛
𝑖=1

− 𝑒
1
𝑑

∑ cos(𝑐𝑥𝑖)
𝑛
𝑖=1 + 𝑎

+ 𝑒 

a=20,b=0.2 and c=2𝜋 

−32.768 ≤ 𝑥𝑗

≤ 32.768,
𝑖 = 1,2, … , 𝑛. 

𝑥∗

= (0,… ,0); 𝑓(𝑥∗)
= 0 

Rosenbrock 
function 

(Valley-
shaped) 

2,30 

𝑓(𝑥)

= ∑ [100(𝑥𝑖
2

𝑛−1

𝑖=1

− 𝑥𝑖+1)
2
+ (𝑥𝑖 − 1)2] 

−10 ≤ 𝑥𝑗 ≤ 10,

𝑖 = 1,2,… , 𝑛. 

𝑥∗

= (1,… ,1);  𝑓(𝑥∗)
= 0 

 

Griewank 
function 

(Many local 
minimal) 

2,30 

𝑓(𝑥)

= ∑
𝑥𝑖

2

4000

𝑛

𝑖=1

− ∏cos(𝑥𝑖 √𝑖⁄ )

𝑛

𝑖=1

+ 1 

−600 ≤ 𝑥𝑖

≤ 600,
𝑖 = 1,… , 𝑛. 

𝑥∗

= (0,… ,0); 𝑓(𝑥∗)
= 0 

 

In this experiment, 60 sampling points are used for two dimensional problems 

and 900 points are used for 30 dimension problems. Each dimension is divided into 

three dimensional bins, the bigger dimensional bin number corresponding to the larger 

values in design space for a certain variable. All the points are divided into three bins 

according to their function values with the same number of points in each bin. 

 Ackley function  

As shown in Figure 3.9, the Ackley function is characterized by a nearly flat outer 

region. It has many local minima and a global optimal at the center. From Figure 3.9, it is 

easy to see that x and y have similar influence on the function value. As it is shown in 

Figure 3.10, the total length of dimensional bin vectors for x variable (marked with 

number 1 inside) is similar to that of the y variable (marked with number 2 inside). In 

addition, the total inertial for x variable is 1.5881, which is similar to the total inertial for y 

variable (1.1028). Therefore, x variable and y variable have similar influence on the 
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function value, which is the same as what the figure and the formula indicate. The 

promising subdomain for the function is 𝑥 ∈ [−10.92, 10.92]  and 𝑦 ∈ [−10.92, 10.92] , 

which correspond to the second dimensional bin for both x and y variables. In Figure 

3.10, the square markers with number 1 or 2 inside have larger projection on the first 

function value bin. It implies the second dimensional bins for x and y variable are 

promising subdomains. In the formula, exchanging x and y won’t change the function, 

therefore, x and y are symmetric variables. In Figure 3.10, squares, triangles, and 

diamonds are close to each other in separate clusters, which means the corresponding 

dimensional bins for x and y variables are in the same cluster. Therefore, x and y are 

symmetric variables, which can be seen from the formula.  

In Figure 3.11, the dimensional bins are shown by markers without numbers in it 

to make the plot clear for the 30 variables problem. For the 30D Ackley function, the 

second dimensional bins are still the most promising subdomains, corresponding to the 

formula. Figure 3.11 can show this property as the second dimensional bins vectors, 

which are represented by square markers, have larger projection on the first function 

value bin vector 𝑽𝒇𝟏
⃗⃗ ⃗⃗ ⃗⃗ ⃗. All the variables can be permutated without changing the function.

Therefore, all the variables are symmetric variables and have similar influence on the 

function value. This can be shown in Figure 3.11 that the distributions for the 

corresponding dimensional bins of all the variables are similar. The total inertia for each

variable is similar according to the first column in Table 3.10. The range of the inertia is 

from 0.1 to 0.3, and there is not too much difference between them.  
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Figure 3.9 Plot of 2D Ackley function 

Figure 3.10 2D Ackley function 
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Figure 3.11 30D Ackley function 
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Table 3.10 The total inertial for each variable in 30D benchmark function 

30D Ackley 30D Rosenbrock 30D Griewank 

1st variable 0.156997488975102 0.216043015678609 0.398081568767318 

2nd variable 0.372737805959510 0.294798580763886 0.359538555375814 

3rd variable 0.265529433497009 0.198129916514252 0.368322988409546 

4th variable 0.143862799192994 0.202129728826809 0.349418379196463 

5th variable 0.291597742964840 0.266733147156827 0.382822108640321 

6th variable 0.272726605250939 0.289800216644367 0.323784588661886 

7th variable 0.196088400464651 0.280217677564368 0.374801278814388 

8th variable 0.334422323311321 0.202823176957569 0.231889278917752 

9th variable 0.232866003856331 0.174686129089212 0.428660659088698 

10th variable 0.220689530160963 0.266262389730234 0.188507563501276 

11th variable 0.245673854678211 0.247515059730517 0.383666728737046 

12th variable 0.239137240875665 0.213090663556394 0.309708076791997 

13th variable 0.243043650991654 0.218785535790416 0.315489254481124 

14th variable 0.151974033509559 0.239869024596892 0.356504070454649 

15th variable 0.273431621562437 0.234730269297719 0.363230995401263 

16th variable 0.269655200196547 0.247734198223954 0.352091993727200 

17th variable 0.116393507641377 0.212674994456928 0.323878735246277 

18th variable 0.232744460731019 0.201264426272304 0.334058089250958 

19th variable 0.132519251137372 0.231119626872281 0.311731581117503 

20th variable 0.233302015954688 0.275372222341321 0.196480307922627 

21st variable 0.321032948389495 0.219444621862407 0.299822470966603 

 22nd variable 0.196743198527225 0.245048917995712 0.367368566733102 

23rd variable 0.383993054640754 0.200708990093284 0.376716546266156 

24th variable 0.243923067661769 0.275714373219223 0.375697317151377 

25th variable 0.153815496426274 0.218165148667338 0.343528390244800 

26th variable 0.248626676993008 0.223987232598559 0.371050933608585 

27th variable 0.266805958627875 0.281072842423294 0.323360193888095 

28th variable 0.297021726360394 0.212905686321817 0.306302034448605 

29th variable 0.304453929989870 0.213295933481147 0.389919361767524 

30th variable 0.316810908077524 0.0794830110973816 0.280178748145810 
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 Rosenbrock function 

The Rosenbrock function is unimodal, and the global minimum lies in a narrow, 

parabolic valley. Even though this valley is easy to find, convergence to the minimum is 

difficult [75]. From Figure 3.12, it is easy to see that when x changes from -10 to 10, the 

function value changes more than y changes in the same region. Therefore, the first 

dimension x is more influential than the second dimension y. The prediction properties of 

CA on this function are also shown in Figure 3.13. The dimensional bins for x variable 

(marked with number 1 inside) are further apart from the original points and have larger 

inertia than the y variable. The total inertial for x is 2.2937 and larger than 0.6871 for y. 

Therefore, x is more influential than y. In Figure 3.13, the square marker with number 1 

inside, which represents the second dimensional bins for x, have larger projection on the 

first function value bin. It implies the second dimensional bin for x is a promising 

subdomain. In Figure 3.12, we can see that the optimal point is in the second 

dimensional bin for x (𝑥 ∈ [−1.5, 1.5]), which means the predicted promising subdomains 

are correct. In the formula, exchanging x and y will result in a different function, which 

means that x and y are not symmetric variables. From Figure 3.13, no symmetric 

variables can be found either.  

When the dimension increased to thirty, the second dimensional bins for the 1st 

to 29th variables are still the most promising subdomain, which we can see from the 

formula. In Figure 3.14, the dimensional bins for the 2nd to 29th variables are plot by 

markers only. The 1st and 30th variables’ dimensional bins have numbers inside the 

markers. Figure 3.14 shows that the second dimensional bins, represented by square 

markers, have larger projection on the first function value bin vector 𝑽𝒇𝟏
⃗⃗ ⃗⃗ ⃗⃗ ⃗.  According to 

the formula, the 30th variable only appears in the term 100(𝑥29
2 − 𝑥30)

2  while other 

variables appear in more terms. Therefore, the 30th variable has different performance 

comparing to other variables. It leads to the distribution of the dimensional bins of the 

30th variable on the graph being different from the pattern of other variables. Also the 

30th variable is less influential than the other variables, which can be shown in Figure 

3.14 that the dimensional bins for the 30th variable are closer to the origin. The total 

inertia for the 30th variable is also much less than the others according to the second 

column of Table 3.10. The inertia of the 30th variable is shown in boldface and italic style.  
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Figure 3.12 Plot of 2D Rosenbrock function 

Figure 3.13 2D Rosenbrock function 
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Figure 3.14 30D Rosenbrock function 

 Griewank function

The Griewank function has many widespread local minima, which are regularly 

distributed. The complexity is shown in the zoomed-in plots. Regardless of the different 

shapes of Griewank function and Ackley function, the properties are similar. According to 

the formula, the variables are pseudo-symmetric variables in the range of [-600, 600], 

which also means the variables have similar influence on the function value. The second 

dimensional bins, which are the center of the domain, have the optimal as Figure 3.15 

shows. The plots of the 2D Griewank function (Figure 3.16) and 30D Griewank function 

(Figure 3.17) are similar to the Ackley function and have the same interpretation as we 

discuss before. The total inertial for each variable is also alike as the third column of 

Table 3.10 shows.  
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Figure 3.15 Griewank function with different variable ranges 

Figure 3.16 2D Griewank function 
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Figure 3.17 30D Griewank function 

Overall, from the accuracy and efficiency perspectives, the proposed 

visualization method demonstrates satisfactory performance. The total time needed by 

the visualization is represented by the number of total function evaluations, which does 

not increase exponentially with the dimension.  

The following part shows the convergence test for the proposed method. As we 

increase the number of sample points, the CA plot will remain similar, which is 

considered the convergence state.  We desire to find the minimal sample points to reach 

the convergence state. The total inertial of the matrix is used to measure the relative 

distance of the dimensional bin points, which to a certain degree shows the similarity of 

the figures. When the total inertia numbers in two consecutive iterations are close to 

each other, it means that the distribution of the points in those two corresponding graphs 
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is also similar. Therefore, we use the total inertia to show the convergence of the graph 

for the proposed method. 

In the following figure, the x-axis represents the number of sample points and the 

y-axis shows the total inertia for the matrix. Six different problems are tested and 

different line colors represent different problems as the legend indicates. 

Figure 3.18 Convergence plot for six functions 

As we can see from Figure 3.18, the proposed method starts to converge when 

900 points are sampled for 30-variables problems. The suggested number of sample 

points is thus 30 times the number of variables for the problems. However, due to the 

different complexity of each problem, the “sufficient” number of sample points may also 

change. Under sampling may result in incorrect interpretation of the black box. 
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3.9. Summary 

The process of applying CA to analyze HEB problem, the guideline of choosing 

parameter for the method, and the experiment results are described in this chapter. The 

results show that the proposed method can discover the data’s properties with a limited 

number of samples. However, discovering the symmetric variables need users to identify 

the clusters. It requires human effort and sometimes inevitably causes errors. The next 

chapter will use hierarchical clustering method to find the clusters and discover the 

symmetric variables automatically.  
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Chapter 4. Computer assisted knowledge 
discovering  

Information discovering is usually interactive and requires human to identify 

patterns or relations in a data set. This chapter aims to use the hierarchical clustering 

method to automatically classify similar data and find the distinct groups. A brief 

introduction and background of hierarchical clustering is provided and the average-

linkage clustering is used for experiments in this chapter.  

4.1. Hierarchical Clustering 

The hierarchical clustering [76] is an agglomerative algorithm [77], which is called 

hierarchical because it builds the clusters from the bottom-up hierarchical approach. The 

clusters start from single point clusters and continuously combine the nearest clusters to 

form bigger clusters until the distances between the clusters are all larger than the 

predefined cut-off distance (𝜖).  

4.1.1. Basic Terminology  

Given a set of n points x1, x2,..., xn, the terminology for the hierarchical clustering 

are defined as followed: 

Dissimilarity (dij): The term dissimilarity [78] is often used to measure the 

difference between two points and usually represented by the distance between the 

points. The distance between a pair of point i and point j is denoted as dij. In addition, the 

distance is not necessarily Euclidean distance. It can be Manhattan distance [79], cosine 

distance [80] or Pearson’s distance [81], etc. 
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Cluster (G): A group of points (P) with similar properties is considered as one 

cluster. A cluster G with nG points can be expressed by a set 𝐺 = {𝑃𝑖𝑑1
, 𝑃𝑖𝑑2

, … , 𝑃𝑖𝑑𝑛𝐺
, } 

where id is the index of point.  

Linkage: The dissimilarity score between two clusters G1 and G2 is called linkage 

and denoted as d(G1,G2). There are three kinds of linkage, single linkage (i.e., nearest-

neighbour linkage) [82], complete linkage (i.e., furthest-neighbour linkage) [83], and 

average linkage [84]. Figure 4.1 illustrates the different ways of measuring the 

dissimilarity score between clusters. 

Cut-off Distance: a parameter provided by the user to indicate how large the 

distance between groups is needed for them to be considered truly distinct.  

 

Figure 4.1 Illustration of three kinds of linkages and distance measures 

Single linkage: the dissimilarity score is the smallest dissimilarity between pair of 

points with one point from cluster G1 and one point from the other cluster G2. 
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𝑑𝑠𝑖𝑛𝑔𝑙𝑒(𝐺1, 𝐺2) = min𝑑𝑖𝑗 (𝑖 ∈ 𝐺1, 𝑗 ∈ 𝐺2) (30) 

Complete linkage: the definition is similar to the single linkage except that the 

complete linkage uses the largest dissimilarity of two points in opposite clusters. 

𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒(𝐺1, 𝐺2) = max𝑑𝑖𝑗  (𝑖 ∈ 𝐺1, 𝑗 ∈ 𝐺2) (31) 

Average linkage: the dissimilarity of two clusters is equal to the average distance 

from any member of one cluster to any member of the other cluster. In the formula, 

𝑛𝐺1
and 𝑛𝐺2

are the number of points in G1 and G2 respectively.

𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐺1, 𝐺2) =
1

𝑛𝐺1
+ 𝑛𝐺2

∑ 𝑑𝑖𝑗

𝑖∈𝐺1,𝑗∈𝐺2

 
(32) 

4.1.2. Basic Step of Hierarchical Clustering 

For example, there are N points to be clustered, the basic steps of hierarchical 

algorithm are shown as following: 

1. At the first step, each cluster only contains one point (a.k.a. each point forms

its own cluster). So if there are N points, N clusters will be formed at the first

stage.

2. Calculate the dissimilarities between every two clusters.

3. Select a pair of clusters that have the smallest dissimilarity, and combine

those two clusters into one bigger cluster.

4. Recalculate the dissimilarity between the new cluster and all the old clusters.

5. Continue perform steps 2 to 4 until all the points are in a single cluster or the

distances between clusters are larger than the cut off distance.
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The simple example is shown in Figure 4.2 to illustrate the steps of the 

hierarchical clustering (use single-linkage). 

Figure 4.2 Example of single-linkage clustering 

4.2. Apply Average-linkage Clustering to CA Plot 

The average-linkage clustering method is applied to each of the dimensional 

bins.  It is a compromise between the complete-linkage clustering, which is sensitivity to 

outliers, and the single-link clustering, which has tendency of forming bigger clusters. 

Therefore, the average-linkage clustering method is chosen because it is less sensitive 

and more robust than the other two methods. Without the clustering method, users have 

to discover the different groups of variables in order to identify the importance of the 

variables. Now with the assistance of average-linkage clustering, the group is 

automatically formed and can save a lot of human effort. However, the number of 

clusters still needs to be determined by users. Therefore, the user can look at the CA 

plot first and estimate the number of clusters, then input the number of clusters for 

average-linkage clustering to group the points.  The hierarchical clustering first forms a 

dendrogram as it is shown in Figure 4.3. Then we can determine the cut-off distance 

according to the predefined number of clusters. After that, the clusters are automatically 

formed according to the cut-off distance. For example, in Figure 4.3, if we need to cluster 

the points into two groups, then the cut-off distance can be set to between 0.8 and 1.2 

as the red line shows. Then the points in different sub-tree are automatically classified 

into separated clusters. Here, points 6, 8, 1 and 5 are in one cluster and points 9, 2, 10, 

7, 3 and 4 are in the other. 
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Figure 4.3 Dendrogram of hierarchical clustering 

4.3. Experiment and result 

For the design functions in Table 3.6, the low correlation function and the high 

correlation function are tested to justify the correctness of the clustering algorithm. The 

results are shown in Figure 4.4 to Figure 4.7. 

 

Figure 4.4 Clusters of each dimensional bin for low correlation function 
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Figure 4.5 Clustering for low correlation function 

For the low correlation function, we represent the clusters for each of the 

dimensional bin in different plots in Figure 4.4, while the combination of the clustering for 

all dimension bins are shown in Figure 4.5. The first, second and third dimensional bins 

are represented by triangle, square, and diamond symbols respectively as indicated in 

the legend. The number inside the symbol represents the ith variable. Different clusters 

are separated by different colors. Inertia of three dimensional bins for a certain variable 

can represent the importance of that variable. As the inertia of second dimensional bins 

is small and similar to each other, we will focus on the first and third dimensional bins. 

Therefore, the clusters for the second dimensional bin (plot in the middle of Figure 4.4) 

can be ignored. We only need to focus on clusters in the top and the bottom plot of 

Figure 4.4. For example, the plot on the top of Figure 4.4 shows that the 6th and 5th 

variables with purple are in one cluster and the 4th and 3rd variables with blue are in other 
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cluster. So in the plot, 1st and 2nd variables, 3rd and 4th variables, 5th and 6th variables, 

and 7th to 30th variables are in separated clusters. The 5th and 6th variables are both the 

most important variables because their dimensional bins are in the same group and are 

further apart from the origin than the other variables. Similarly, the 3rd and the 4th 

variables are the second important variables and the 1st and 2nd variables are the third 

important variables. The coefficients for the 5th and 6th variable, 3rd and 4th variables, and 

1st and 2nd variables are three, two and one respectively. Therefore, the 5th and 6th 

variables, which have the largest coefficient is the most important variables, and then the 

3rd and 4th variables. The information discovered by the clustering method is correct 

according to the formula. 

Figure 4.6 Clusters for each dimensional bin for high correlation function 



 

72 

 

 

Figure 4.7 Clustering for high correlation function 

Similarly, in Figure 4.6 and Figure 4.7, the 1st to 6th variables are in one cluster 

and all the other variables are in the other cluster. The dimensional bins of 1st to 6th 

variables are further apart from the origin. Therefore, the 1st to 6th variables are the most 

important variables and all the other variables are less important. As the high correlation 

function indicates, the 1st to 6th variables have influence on the function value while the 

7th to 30th variables are redundant. Thus, the discovered information indicating that the 

1st to 6th variables are the most important variables is consisted with the formula.  
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4.4. Summary 

The hierarchical clustering method, which is used to discover the symmetric 

variables automatically, is introduced in this chapter. The average linkage clustering is 

applied to find the different clusters for each dimensional bin. Based on the clusters, 

symmetric variables can be easily discovered if they are in the same cluster among all 

the dimensional bins. In next chapter, CA is applied to the current optimization method to 

help the optimization method to find a near optimal point with fewer samples. 
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Chapter 5. Applying CA to optimization 

This chapter will apply the discovered information as described in the previous 

chapter to assist the optimization process. TRMPS2 will be used as an example to show 

how CA can be applied to assist the optimization process. We will first give a brief 

introduction to TRMPS2 and describe the improved algorithm (also called CA_TRMPS in 

this thesis) in detail. For further details on TRMPS2, please refer to [85] and [86].  

5.1. TRMPS2 Algorithm 

TRMPS2 is developed based on MPS [87], which relies primarily on the initial 

stochastic sampling [88] and meta-modeling (a.k.a. surrogate modeling) to perform 

optimization. After integrating the concept of trust regions [89]-[91] into the MPS 

(TRMPS), TRMPS2 is more efficiency for high dimensional problems than the previous 

MPS algorithm. The major steps of TRMPS2 are similar to MPS and will be explained in 

detail in the following section. 

5.1.1. Definition of Trust Region: 

In TRMPS2, Dual Hyper Cubes are defined and denoted as hyper cubes S and 

hyper cubes B, where S is initially within B. The trust region S (TRS) is enclosed in hyper 

cube S while the trust region B (TRB) occupies the area of B minus the area of S. The 

trust region of 2D is shown as an example in Figure 5.1. The area of shaded region is 

TRS and the white area is TRB. The points fall into the trust region S and trust region B 

are denoted as {xS} and {xB} respectively. The corresponding function value set will then 

be {fxs} and {fxB}. 
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Figure 5.1 2D trust region example 

5.1.2. Basic steps of TRMPS2 

The steps of the algorithm are as followed: 

1. Initial sampling  

Uniformly sample n0 random points in the design space to generate a set of 

points {x} and then evaluate the function values {fx} with the black box function. Define 

the initial trust region TRS and TRB according to the initial space determined by the user. 

2. Partition to different sets according to the region 

Two sets of points {xS} and {xB} are then generated. {xS} represents the points 

that fall into TRS and {xB} represents the points within TRB. The corresponding function 

values for {xS} and {xB} are denoted as {fxS} and {fxB}, respectively. 

3. Construct Metamodel 

The expensive points {xS} in TRS are used to construct the metamodel by fitting 

{fxS} onto an RBF. The RBF is shown in Eq.(33):  
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𝑓(𝑥) = ∑𝛼𝑖‖𝑥 − 𝑥𝑠𝑖‖

𝑚

𝑖=1

(33) 

where m is the number of points in {xS}; ai is the weight that point xsi contributes to the 

objective function value; and xsi is an expensive point in {xS} which is used to build the 

model.  

4. Select contour according to the metamodel point

Uniformly sample n1 random points {xS1} in TRS and evaluate their cheap function 

values {fxS1
} with the RBF model. As the RBF model is used to evaluate the function 

values of {xS1}, the cost of the computation and time is not expensive anymore. 

Therefore, a larger number of samples can be generated in this step. 

The discriminative sampling procedure as described in [92] is then used to select 

a subset of points {xS2} within {xS1}. The point in {xS1} with smaller function value is 

intended to have more chances to be selected according to the mechanism of 

discriminative sampling procedure. Then the expensive function (black box) is used to 

calculate the function values {fxS2
} for {xS2}. Place all the points of {xS2} in {xS}. 

5. Construct Quadratic model

When the number of points in {xS} is large enough to build the quadratic model 

[93], Eq.(35) is used to build the model. The minimal number of required points is nkk, 

which can be calculated from Eq.(34). In Eq. (34), nv is the number of variables, and np is 

set as equal to nv.  

𝑛𝑘𝑘 =
(𝑛𝑣 + 1)(𝑛𝑣 + 2)

2
+ 1 − 𝑛𝑝 (34) 

If the cardinality of {xS} (the number of members of {xS}) |{xS}| is less than nkk, 

skip the rest of the process and go to Step 8.  
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Otherwise, nkk points that are closest to the current optimal (denoted as {xSkk}) 

are used to build the quadratic model q in Eq.(35), where 𝜷 are model coefficients. 

𝑞 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑛

𝑖=1
+ ∑ 𝛽𝑖𝑖𝑥𝑖

2
𝑛

𝑖=1
+ ∑∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1
𝑖<𝑗

 (35) 

6. Evaluate the model  

R-square [94] which can be calculated using (36) is employed in this step to test 

the model accuracy. 

𝑅2 = 1 −
∑ (𝑓(𝑥𝑠𝑖) − 𝑓(𝑥𝑠𝑖))̂ 2𝑚

𝑖=1

∑ (𝑓(𝑥𝑠𝑖) − 𝑓(𝑥𝑠𝑖)̅̅ ̅̅ ̅̅ ̅̅ )2𝑚
𝑖=1

 (36) 

where m is the number of samples. 𝑓(𝑥𝑠𝑖) and 𝑓(𝑥𝑠𝑖)̂  are the black-box function value 

and approximate model function value for xsi respectively. The mean value of the black 

box function over the m samples is denoted as 𝑓(𝑥𝑠𝑖)̅̅ ̅̅ ̅̅ ̅̅ . The approximation model is more 

accurate when the value of R-square is closer to one. R-square value is used to 

calculate the overall accuracy of the model while the max difference (Diff), which defines 

the maximum relative difference between the actual and approximated function values, 

are used to judge the quality of the local approximation. Diff is calculated as: 

𝐷𝑖𝑓𝑓 = max{|𝑓(𝑥𝑠𝑖) − 𝑓(𝑥𝑠𝑖)|̂ }𝑖 ∈ [1,𝑚] (37) 

7. Local optimization: 

In this step, we first find the region R’ defined by {xSkk}, where the lower bound 

and upper bound for the ith dimension is determined by the minimal and maximal value in 

the ith dimension among all points.  

If R2 ≈ 1, sample nv/2 expensive points in R’ and add to {xSkk}. Construct a 

quadratic model using the updated {xSkk} and then recalculate R2.  
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Calculate Diff using Eq.(37) and compare the value with a pre-determined 

threshold ed. If Diff < ed, use the trust region based local optimization described in [19] 

and find the local optimal point xL. Then calculate the real function value of xL using the 

black box. If xL is within the region R’, then terminate. Otherwise, add xL to {xS}.  

8. Perform steps 3 to 7 for {xB} in TRB.

9. Update region

If a better optimum point is discovered, then TRS expands to avoid being trapped 

in the local optimal. TRB, in contrary, contracts to exploit a smaller but more promising 

region. Update two regions according to Eq.(38) and Eq.(39): 

𝑇𝑅𝑠 = 𝑇𝑅𝑠/𝑘𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

𝑇𝑅𝐵 = 𝑇𝑅𝐵. 𝑘𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

(38) 

(39) 

Otherwise, TRS contracts to search in a promising region and TRB expands to find the 

optimal in the region further away from the current optimal. This means that when the 

search result is not improved, we will explore other new region or focus more on the 

promising region. The updated equations will become: 

 𝑇𝑅𝐵 = 𝑇𝑅𝐵/𝑘𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

 𝑇𝑅𝑆 = 𝑇𝑅𝑆. 𝑘𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

(40) 

(41) 

The last step balances the exploitation and exploration properties of the algorithm to 

achieve much more intelligent searching. 

Go back to Step 2. 

The general process of TRMPS2 is shown in Figure 5.2: 
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Figure 5.2 TRMPS2 Procedure 

5.2. Applied CA to TRMPS2 

The proposed method employs CA at the first stage (initial sampling stage) of the 

algorithm. As CA requires certain amount of points (usually 15*the number of variables) 
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to show the statistic properties of the data set, the initial samples should be larger than 

TRMPS2. When the number of points reach 30*the number of variables, the Figure 3.18 

shows that the inertia start to converge, but the user can start to recognize the same 

information in the figure when the parameter is larger than 10, therefore, here we chose 

a number 15 which is slightly larger than 10. As the total number required for finding the 

optimal for low dimension is small, the initial points take a large proportion of the total 

samples, which leaves fewer points for exploring the space intelligently. Therefore, the 

proposed method is more suitable for the high dimensional problem. For example, 

TRMPS2 only needs around 50 points to find the optimal for 2D Rosenbrock problem, 

then 2*15=30 initial points will cost too much. However, more than 5000 points are 

required for the 10D Rosenbrock problem, then 10*15=150 initial points will become 

reasonable. Especially when the dimensions go up to more than 50, the initial points 

only take a small portion of the total samples, and the information discovered in the early 

stage can be greatly helpful to guide the resampling. Therefore, in this thesis we focus 

on applying CA to the optimization algorithm to deal with high dimensional problems. 

To integrate CA with the resampling process of TRMPS2, a.k.a. the fourth step of 

the algorithm described in the last chapter, the information, which is found by CA in the 

initial stage, is then used to guide the resampling by altering the points in {xS2}. The 

resulting points form the set {xS3} and in the following step {xS2} will be replaced by {xS3}. 

{xS3}, which is generated from {xS2}, has the tendency of containing the points with 

smaller approximate function values, therefore, {xS3} inherited the information of meta-

model from {xS2}. Also as {xS3} combines the information from CA and the information 

from meta-model, the resampling process becomes more intelligent. The proposed 

strategy can find a better result with the same number of expensive function evaluations.  

The basic steps are similar to TRMPS2, and here, we only highlight the 

differences. The highlighted procedures of the proposed method are as follows: 

1. Initial sampling

Use Latin Hypercube Sampling to sample n1 points within the design space. The 

generated set of points is place in {x}. The initial sampling is different from TRMPS2, 
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which uses uniform sampling, and the number of initial samples in TRMPS2 is much 

smaller than n1. Besides those, others are the same in this step. 

2. Apply CA to discover information from the black box

The Correspondence Analysis for the optimization method discussed in the 

previous chapter is used in this step. The CA plot is shown and the input dialog is 

appeared. It will wait for the user to input the discovered information. We will use a 

simple example to illustrate the format of input information. 

For a ten variables mathematical function (Eq.(42)) with the redundant variables 

x5-x10, the CA plot for this problem is shown in Figure 5.3. The most important variables 

are x3 and x4 according to Figure 5.3, because the symbols with number ‘3’ and ‘4’ in 

them, which represents the third and the fourth variables, are far away from the origin. 

Similarly, the first and second variables are the second important variables. The rest of 

the variables are the least influential to the objective function. The promising regions for 

x1-x4 are the first interval of their design space. It is obvious that the triangles that 

represent the first dimensional bins have large projection onto the first dimensional bin 

vector, which represents the small function value.  

Therefore, in summary, the discovered information will be: 

(1) First dimensional bins of x1-x4 are promising subdomains 

(2) The most significant variables are x3 and x4, then x1 and x2, all the rest 
variables are less important for this problem. 

(3) x3 and x4 are symmetric variables with each other. So are x1 and x2. 

𝑓(𝑥) =  𝑥1𝑥2 + 2𝑥3𝑥4 (42) 
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Figure 5.3 CA plot of 10D example function 

The information discovered from the CA plot will be fed back to the optimization 

system in order to assist the resampling. The input should be according to the following 

format: 

(1) The importance of the variables: 

As shown in Figure 5.4, variables of similar importance will be put into one group; 

the most important variables will be put into the first line and the second most important 

variables will be put into the second line and so on. We don’t need to input all variables, 

if we consider some variables are not important, we won’t need to input the indices of 

those variables in the window. For example, the previous plot indicates the third and the 

fourth variables are the most important, so we input ‘4’ and ‘3’ in the first line. The 

number should be separated by one space. Because the variables in the same group 

have the same importance, the order of input does not matter. Therefore, input ‘3 4’ is 

the same as input ‘4 3’. The less important variables as CA plot indicates are x1 and x2, 

thus, we put them in the second line, indicating they are less important than x3 and x4.  
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Figure 5.4 Input window of the important variables 

(2) The promising subdomain: 

 

Figure 5.5 Input window of the promising subdomain of the variables 

As shown in Figure 5.5, if the first region of the ith variable is the promising 

subdomain, then number ‘i’ should be put in the first line. Similarly, variables with the 

second (third) interval as the promising subdomain will be put into the second (third) line. 

The number should be separated by a space. For the example problem, the first 
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dimensional bins of x1-x4 are the promising subdomains, ‘1 2 3 4’ will be put into the first 

line.  

3. Altering the points in {xs2} according to the discovered knowledge 

For all the points in {xs2}, we alter them according to the following strategy:  

(1) Important variables: 

The probability of changing the value of the ith variable is denoted as pi. The base 

probability of changing the variables is p0 and it becomes larger when the variable is 

more important. There will be different levels of importance and the total number of 

different levels of important variables is denoted as nL. If the ith variable is in the jth level 

of importance, pi can be calculated according to the Eq.(43): 

𝑝𝑖 =
(1 − 𝑝0)

(2𝑛𝐿 − 1)
× 2𝑛𝐿−𝑗 + 𝑝0 (43) 

The probability for the ith variable is the base probability plus the increased step. This 

strategy ensures that the increased step for the jth level of importance is half of the (j-1)th 

level of importance. Therefore, the points in first level of the importance will have the 

largest increased step in probability. For example, there are three levels and the base 

probability is 0.3. Then the based increase step is 
(1−0.3)

(23−1)
= 0.1. Therefore, the increase 

steps for the first to third level are 0.1 × 23−1 = 0.4, 0.1 × 23−2 = 0.2 and 0.1 × 23−3 =

0.1, respectively. In this way the increased step for the jth level of importance is half of 

the (j-1)th level of importance. The probabilities for the first to third level of importance are 

0.7, 0.5 and 0.4 respectively.  

(2) Promising subdomain 

The promising subdomains can be discovered in the plot and are indicated by the 

user in the input window. After we obtain the information, the points in {xs2} are altered to 

be more likely in the promising subdomains according to the certain probability defined 

in Eq.(43). For the ith variable, we first verify whether the existing value is within the 
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promising subdomain. If the value is not in the promising subdomain, we randomly 

generate a new value within the promising subdomain. However, the new value is 

accepted according to certain probability pi we calculated in the previous step. If the new 

value is not accepted, then we won’t change the value for that dimension. 

Take the previous 10D function (Eq.(42)) as an example, the promising 

subdomain for the problem is Msub where 𝑀𝑠𝑢𝑏 =

[
1 1 1 1  1  1  1  1  1  1  
4 4 4 4 10 10 10 10 10 10 

]. The ith column represents the ith variable with 

the first row indicating the lower bound and the second row indicating the upper bound. 

The original boundaries for all the variables are [1,10] and the promising subdomains for 

x1 - x4 are indicated as the first dimensional bins, therefore, the regions will be [1,4] for x1 

- x4 and unchanged ([1,10]) for other variables. In this example, the base probability p0 is 

set to 0.4. As there are two groups of important variables (nL=2), the increased step for 

the second important group (j=2) will be (1-0.4)/3=0.2 and the increase step for the first 

group of important variables will be (1-0.4)/3*2=0.4. The probability vector for all the 

variables will be [0.6, 0.6, 0.8, 0.8, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4], where pi implies the 

probability of changing the value for the ith variable. If a point PA is [-10, -10, -10, -10, -

10, -10, -10, -10, -10, -10] then the first four variables are not within the promising 

subdomain. Therefore, the first two variables have 0.6 chances to be replaced by a 

random generated number from [1,4] while the third and the fourth variables have 0.8 

chance of being replaced. 

5.3. Experiments 

Two sets of test functions are used to test the performance of TRMPS2 and 

CA_TRMPS. The first set of functions are designed functions with several correlated 

variables and different coefficients. The functions have fifty variables and some of the 

variables are redundant. The other set of functions are popular benchmark functions that 

are used by many researchers. The functions are scalable and we choose three 

versions of different dimensions (30D, 50D and 100D) of those functions. All of the 

functions are single objective and unconstrained mathematical functions. We benchmark 



 

86 

CA_TRMPS against the original TRMPS2 with a limit of 5000 function evaluations for 

each run and 10 runs of each function to reduce random variations.  

The designed functions are shown in Table 3.6. In this section, we include a 

highly correlated function, which is very difficult to be solved by the existing optimization 

algorithms and we want to show the great improvement of the algorithm after integrating 

with CA. 

Table 5.1 Design Function for Proposed Method 

Function 
name 

Dimension 

(Number of 
inputs) 

Formula 
Search 
domain 

Minimum 

Square 
function 

50 

𝑚𝑖𝑛 𝑓(𝑥) = (∑𝑥𝑖

5

𝑖=1

)2

+ 2 × (∑ 𝑥𝑖

15

𝑖=11

)2 

0 ≤ 𝑥𝑖 ≤ 10 

𝑥∗

= (0,… ,0) 

𝑓(𝑥∗) = 0 

Low correlation 
function 

50 
min𝑓(𝑥) = 2∏𝑥𝑖

4

𝑖=1

+ ∏𝑥𝑖

8

𝑖=5

 

𝑥9 𝑡𝑜 𝑥50 𝑎𝑟𝑒 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

1 ≤ 𝑥𝑖 ≤ 10 

𝑥∗

= (1,… ,1) 

𝑓(𝑥∗) = 4 

 

High 
correlation 
function 

50 𝑚𝑖𝑛 𝑓(𝑥) = ∏𝑥𝑖

50

𝑖=1

 1 ≤ 𝑥𝑖 ≤ 10 

𝑥∗

= (1,… ,1) 

𝑓(𝑥∗) = 1 

 

The CA plot of the design function is shown from Figure 5.6 to Figure 5.10. For 

the figure without clustering, the number ‘i’ within the symbol indicates the ith variable 

and different symbols represent different dimensional bins as the legend indicates. The 

clustering algorithm is then applied to each dimensional bin separately to discover 

importance of the variables. For the figure with clustering, the numbers and the shape of 

the symbol still hold the same meaning. However, the color shows different clusters 

found by the clustering method. 
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Figure 5.6 CA plot of square function without clustering 
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Figure 5.7 CA plot of square function with clustering 

The Figure 5.6 and Figure 5.7 reveal the properties of the square function. As 

Figure 5.7 shows, the 11th -15th variables are in one group, which is the furthest from the 

origin representing the most important group of variables. The 1st to 5th variables are in 

the second important group. All the rest variables form anther one group, which are the 

least important group. Also in Figure 5.6, the first dimensional bins for the 1st to 5th 

variables and the 11th to 15th variables are more promising as they have the larger 

projection onto the first function value bin. Similarly, for the low correlated function as 

shown in Figure 5.8 and Figure 5.9, the first dimensional bins are the promising 

subdomain for the variables and the 1st to 4th variables are the most important variables 

and the 5th to 8th variables are less important.  
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Figure 5.8 CA plot of low correlation function without clustering 
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Figure 5.9 CA plot of low correlation function with clustering 

For the high correlation function, it is obvious that all the variables are in the 

same group, so we don't need to apply the clustering algorithm on it. The result in Figure 

5.10 indicates that for all the variables, the first dimensional bins comprise the promising 

subdomain. 
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Figure 5.10 CA plot of high correlation function without clustering 

All the information discovered above are integrated with TRMPS2 to develop a 

new optimization algorithm CA_TRMPS. The comparison of two algorithms is shown in 

Table 5.2. In Table 5.2, fval is the abbreviation of optimal function value found by the 

algorithm. The mean fval represents the average of the optimal function values for 10 

runs and STD of fval shows the standard deviation of the optimal function values. The 

actual optimal function value of the function is also provided to compare how close the 

optimal value found by the algorithm to the analytical one. 

Table 5.2 Result for the Design Functions 

 CA_TRMPS TRMPS2 

Problem 
Optim
al fval 

Mean fval STD of fval Mean fval STD of fval 

Square 
function 

0 88.7774 8.3077 102.6829 18.0386 

Low 
correlation 
function 

4 4.8456 1.2267 36.3991 39.9867 

High 
correlation 
function 

1 5.9157e+6 1.6452e+7 2.2047e+26 6.9638e+26 
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From Table 5.2, we can easily obverse that CA_TRMPS can find a better optimal 

point within 5000 function evaluations for all the problems. For the low correlation 

function, we can see that the result of CA_TRMPS is quite close to the analytical 

optimal, while the optimal found by TRMPS2 is eight times larger than it. The 

CA_TRMPS can achieve a much better result when the problem is highly correlated. 

The order of magnitude for the result of CA_TRMPS is six while the order of the 

magnitude for the results of TRMPS2 is 26, which means the CA_TRMPS can find a 

much better result for the high correlated problems. The standard deviation of fval also 

shows that the CA_TRMPS can yield the similar result for each run. It means that 

performance of the proposed method is stable and will find the similar result, however, 

the qualities of the results found by TRMPS2 is not that predicable because it sometimes 

finds a good result and sometimes not. 

Table 5.3 Benchmark Test Functions for Proposed Methods 

Function 
name 

Number of 
dimension 

Formula Search domain Minimum 

Ackley 

(Many local 
minimal) 

30, 50, 100 

𝑓(𝑥)

= −𝑎𝑒
−𝑏√1

𝑑
∑ 𝑥𝑖

2𝑛
𝑖=1

− 𝑒
1
𝑑

∑ cos(𝑐𝑥𝑖)
𝑛
𝑖=1 + 𝑎

+ 𝑒 

a=20, b=0.2 and c=2𝜋 

−32.768 ≤ 𝑥𝑗

≤ 32.768,
𝑖 = 1,2, … , 𝑛. 

𝑥∗

= (0,… ,0); 𝑓(𝑥∗)
= 0 

Rosenbrock 
function 

(Valley-
shaped) 

30, 50, 100 

𝑓(𝑥)

= ∑ [100(𝑥𝑖
2

𝑛−1

𝑖=1

− 𝑥𝑖+1)
2
+ (𝑥𝑖 − 1)2] 

−10 ≤ 𝑥𝑗 ≤ 10,

𝑖 = 1,2,… , 𝑛. 

𝑥∗

= (1,… ,1);  𝑓(𝑥∗)
= 0 

 

 

According to Figure 3.11 and Figure 3.14, the second dimensional bins are the 

promising subdomain for all the variables in both Rosenbrock function and Ackley 

function. However only one group of important variables is shown in the figure, therefore, 

we consider all the variables are of the same importance. The information is then applied 

to the TRMPS2 by using the proposed strategy. The comparison of CA_TRMPS and 

TRMPS2 results are shown in Table 5.4. 
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Table 5.4 Result for the Benchmark Test Functions 

CA_TRMPS TRMPS2 

Problem 
Optimal 

fval 
Mean 
fval 

STD of 
fval 

Mean 
fval 

STD of 
fval 

30D_Ackley 0 8.4165 1.9025 18.1402 1.0384 

50D_Ackley 0 10.4630 0.9158 18.9940 0.3880 

100D_Ackley 0 11.4707 0.5476 18.9557 0.1947 

30D_Rosenbrock 0 27.6370 1.5146 74.8736 57.7884 

50D_Rosenbrock 0 59.9041 24.5319 129.9210 136.6731 

100D_Rosenbrock 0 306.7377 88.0860 500.0284 189.1272 

The CA_TRMPS outran TRMPS2 for all the problems. For Rosenbrock function, 

CA_TRMPS finds a much better result as the dimension increases, and exhibits less 

variation. For the 30D Rosenbrock function, CA_TRMPS is only 37.9972 less than 

TRMPS2, but when it comes to 100D, it is 129.8592 less than TRMPS2. Although the 

results for Rosenbrock problem are getting worse for both algorithms as the dimension 

increases (the results of CA_TRMPS and TRMPS2 are both further from the optimal 

value zero), CA_TRMPS can find a relatively better result within a given number of 

function evaluations. The CA_TRMPS results of Ackley function are smaller than 

TRMPS2, but the standard deviation of CA_TRMPS is slightly worse than TRMPS2. But 

the difference between the standard deviation values is less than 1, so we can say the 

variation of the performances is quite similar. 

5.4. Summary 

In this chapter, CA_TRMPS is introduced to use the information discovered by 

CA in the early stage to guide the resampling process. The results of adaptive 

CA_TRMPS method show that the proposed method can find better results with a 

certain number of samples. In next chapter, CA is applied to real engineering problem to 

show that the proposed method only requires small amount of samples and can be 

practical for solving real problems. 
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Chapter 6. Case Study  

In this chapter, Correspondence Analysis is applied to the phosphate production 

Problem. First, the background knowledge of phosphate processing is provided to give a 

general review of the problem. Second, how to formulate the problem is explained in 

detail by describing the specific optimization goal and the inputs in standard form. The 

results from a specific application are shown to illustrate that the Correspondence 

Analysis can help to discover a lot of useful information of the black box. Finally, the 

CA_TRMPS is used to solve this optimization problem. It is shown that after integrating 

the discovered knowledge, CA_TRMPS can achieve more promising results than 

original TRMPS2. 

6.1. Background  

6.1.1. Phosphate Process  

The procedure of converting phosphorous compounds into different levels of 

phosphate, also known as the phosphate process, is widely used in industry, especially 

for chemical fertilizer production. The phosphate process is usually scheduled in a 

certain way to meet the demand, since there might be delays during the transition of raw 

materials between the different sections in the process. The quality of phosphate 

production is mainly determined by how the phosphate process is scheduled. A better 

scheduling for the phosphate process can make the production much more efficient. 

We aim at solving the general process-scheduling problem without knowing any 

previous knowledge of the simulation. Once the demand (amount of output) is given, the 

method can automatically find the schedule of the input to satisfy the demands. This 

approach does not need human intervention and can work with a wide scope of 

optimization problems including scheduling, planning, and process design. The 
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challenge, however, lies with the need for a high number of simulations for large-scale 

problems. The strategy is to randomly pick some schedules, and then use an 

optimization method to iteratively search for a better schedule by running the actual 

simulations. This method therefore needs to try a large number of schedules before it 

finds the near optimal one. As each simulation takes a long time to run for the given 

schedule, the whole optimization process would be lengthy. Especially when the 

dimensionality for the model of scheduling problem is high, the normal optimization 

methods usually require running a large number of simulations and the total time would 

make the approach unpractical. Therefore, more information, which can be automatically 

discovered during sampling step, is needed to assist the resampling, or optimization, 

process. The strategy needs to provide a unique way and guideline to find the good 

quality solutions in a limited number of evaluations, or simulations. 

6.1.2. Simulation software  

CADSIM Plus [94] is a chemical engineering software tool developed by Aurel 

System Company. It allows the user to draw a process flow sheet while creating a 

process simulation model. CADSIM Plus uses a complete CAD drawing interface, on 

which the user can create a simulation model. In other words, it helps the user to build a 

computer prototype of the actual chemical engineering process, instead of actually 

building the process physically. When the process flow sheet is completed, a specific 

input can be fed into the model for software to run the simulation process in an idealized 

condition determined by the flow sheet. Results then will be given after the simulation as 

the output of the simulation model.  

There are two major advantages of the software. First, the design errors can be 

discovered earlier by running the simulation before actually building the process with real 

material. The cost of changing the error in the software is much less than on the actual 

chemical process. Second, as the simulation is running much faster than the real 

process, it can be used to find a better schedule for the process. The schedule can then 

be used as an input in the real process to obtain a better result.  
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6.2. Problem description  

6.2.1. OCP (Phosphorus concentration) model  

CADSIM Plus is used to build the model as it is shown in Figure 6.1. This model 

is used to produce four different grades of phosphates, which are classified by their 

ingredients. Here, four different grades of phosphates are K09, K10, K12 and K20.The 

raw materials enter the system from the inputs, be mixed and fertilized during the 

procedure to become intermediate material and finally turn into the final products, which 

are stored in the separated storage tanks (outputs).  
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Figure 6.1 OCP model 
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The OCP model contains four different input pipes (Labeled as A to D in Figure 

6.1) that can process raw materials for four different grades of phosphate and also has 

four different storage tanks (Label as I to L in Figure 6.1) to store four different grades of 

phosphate product. Each input pipe or output storage tank can only process a certain 

grade, which is shown in the first three columns in Table 6.1. In addition, different 

grades, which are determined by the percentages of BPL (Bone Phosphate of Lime) and 

the percentages of silica, are also shown in Table 6.1. The percentage of the ingredients 

will not change during the procedure unless two different grades of phosphates are 

mixed together. That is to say, if the raw materials of one grade are in the system, then 

only the same grade of product will be obtained from the output. However, two different 

grades of raw materials might result in the grades of products that are different from all 

the input grades. For example, if the raw materials of K09 and K20 are put into the 

system, the phosphate of grade K12 or K20 might be produced. The embedded logic in 

the system ensures that the products are classified into one of the four grades, which 

has the most similar percentages of ingredients to the products. For example, if a new 

product has 71% BPL, then it belongs to K20. The products are first classified according 

to the BPL and then to the silica. If its percentage of BPL is in between two grades, then 

it will be classified according to its silica. A new product is classified to K12 if it contains 

69% BPL and 2.3% silica.  

The input pipes may have different production rates and may operate at different 

time. Moreover each input pipe needs to be operated for a period of time and then shut 

down for a while for the cleaning purpose.  

Table 6.1 Formation of the grades 

Input Pipe Storage 
Tank 

Grade %BPL %Silica 

A I K09 66 3.5 

B J K10 68 3 

C K K12 68 2 

D L K20 72 2.9 
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During the process, the raw materials need to go through the intermediate tanks 

(Label as E and F), pipeline (Label as G), and separator (Label as H) before they go to 

the storage tanks. In this model, materials for Grade K09 go through the intermediate 

tank E while materials for the other three grades go through the intermediate tank F. 

Then all of them run through the same pipeline and are split apart according to their 

ingredients in the separator before they turn into the final products. After all the products 

are separated, different grades of phosphates go to their destined storage tanks. 

As the processing time for the intermediate tanks, pipeline and the separator are 

different, the production rate of the inputs needs to be scheduled to avoid overflowing 

the tanks and mixing different grades. Therefore, our objective is to produce a certain 

amount of different grades of products that meet the demand without causing overflow 

for each tank. We need to find a schedule that determines the production rate of each 

input pipes and the duration of running-time and shed-time. Running-time represents the 

period that materials are fed into the inputs and shed-time represents the period that no 

material is in the input. 

6.2.2. Constraints in the model 

The phosphate materials are viscous, so they require certain flowing rate to run 

through the pipe, otherwise, they will stick to the pipes. And at the same time, there is a 

limited max flowing rate constrained by the maximal pressure that the pipes can bear. 

Therefore, in this model the minimal flow rate for each input pipe is 250m3/h and the 

maximal flow rate is 280m3/h.  

6.2.3. Demands 

The demands are the proposed output required by users and the example of 

demands for each grade is given in Table 6.2. As one can see from Table 6.2, the 

demand for each grade of the phosphate is specified. 
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Table 6.2 Demands of different grades 

Output tanks Grade Demand 

I K09 305700m3 

J K10 62500m3 

K K12 24770m3 

L K20 4900m3 

As it is shown in Table 6.2, the third column gives the total demand of each 

phosphate and the first column indicates which tanks the phosphate should be stored.  

6.3. Optimization problem formulation 

6.3.1. Objective function 

Our objective is to maximize the net profit of the system, which is calculated by 

(total profits – total penalties). The total profit is determined by the demand and 

production output. If the produced amount is less than the demand, all the products can 

be sold. However, even if we produce more than the demand, the maximal amount we 

can sale is the demand amount. So to produce the amount of phosphate which is less 

than the demand is certainly unwanted because it doesn’t satisfy the demand. In the 

meantime, overproducing should also be avoided, as it will cost extra money for the raw 

materials and the storage. Therefore, the objective is to produce the phosphates that are 

as close to the demand as possible. 

Moreover, the overflowing of the tank will result in environmental damage and 

dealing with the pollution will cost a lot of money and great effort. So avoiding 

overflowing the tanks is another requirement. The total penalty is calculated by summing 

up the penalties of all the tanks. The penalty of a tank is determined if a tank overflows 

and the penalty-cost is the amount of the overflow. 

The overall objective function is shown in Eq.(44). 
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𝑓(𝑥) = ∑|𝑞𝑖 − 𝑑𝑖|

4

𝑖=1

+ ∑𝑜𝑗

6

𝑗=1

 (44) 

The first part of the formula is the total difference of the produced amount and the 

demand amount of phosphates, where 𝑞𝑖 is the produced amount of phosphate for the ith

grade and 𝑑𝑖 is the associated demand. The first to fourth grades corresponds to grade 

K09, K10, K12 and K20 respectively. The second part of the formula is the total 

overflows from intermediate tanks. The intermediate tanks are ordered from one to six 

from the top to bottom and then left to right in Figure 6.1. 𝑜𝑗  is the amount of the 

overflows for the jth intermediate tank.  

6.3.2. Design variables 

Our purpose is to optimize the production rate of each input grades and the 

duration of running-time and shed-time, therefore, they will be the design variables for 

the optimization. The details of how to formulate them will be discussed in this section. 

In this model, all the input pipes would have to run for 6 weeks, i.e., for 

approximately 60600 minutes. Therefore, the time horizon for the problem is 60600 

minutes and we use one of continuous time models [95][96] - time-slot representation - 

for the time representation. According to [97], the scheduling horizon is divided into a 

finite number of time intervals with the same duration, which are denoted as time slots 

[98]. In addition, the time-slot representation only allows an event (a.k.a. begin to 

produce one grade of phosphate) to happen only at the boundaries of these time slots. 

Each time-slot contains a running-time and a shed-time. As the duration of the time slot 

is fixed, when running-time is known, the shed-time is automatically determined. Thus, 

we only need to find the period of running-time. The duration of the running-time is then 

defined based on the time slot. The design variables indicate how many percentages the 

running-time takes up in each time slot.  

The time horizon is divided into six time-slots in this case. As it is shown in Figure 

6.2, the first six variables indicate the duration of the running-time, where xi represents 
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the running time in the ith time-slot. The rest of time in that time slot is shed time. The last 

six variables are the production rate with xi+6 represents the production rate in the ith 

time-slot. 

Running time Production rate 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 

Figure 6.2 design variable of the OCP model 

The grade of phosphate to be produced in each time-slot is known in this real 

practical problem. The sequence is K09, K10, K12, K20, K09 and K09. As the sequence 

of the different grades won’t change the total amount in the end, in fact, the number of 

time-slots that one grade occupies will influence the output. Therefore, K09 occupies 

three time-slots and each of the other grades occupies one time-slot, as the demand of 

K09 is much larger than all the others. Thus, we set the sequence to be K09, K10, K12, 

K20, K09 and K09. 

6.4. Results and Discussion 

In order to prove the correctness of discovered information, we turn the black box 

into white box to understand how the simulation works by analyzing the logic inside the 

simulation model. It takes human a great effort to understand the complicated logic 

circuit and the intermediate mechanism. The CA approach, however, discovers useful 

information automatically only with the sample points. 

According to the design, different grades of phosphates will only be mixed in the 

tanks, and won’t be mixed anywhere else. Moreover, the logic circuit, which is installed 

on the tanks, can control the overflowing very well. That is to say, the overflowing will not 

happen very often unless in very extreme cases. Finally, the product of running-time and 

production rate determines the total produced amount, which will not be affected by the 

sequence of producing. In other word, if the demand of a certain grade is large, longer 

running time period and larger production rate are required, otherwise, the demand can’t 

be satisfied. The demand for K09 is much larger than the other grades, therefore, a 

larger value for the design variables, which corresponding to the third dimensional bins, 

should be the promising subdomains. Conversely, if the demand is small, the running 
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time and the production rate should be small to avoid overproducing. Therefore, K20, 

which has small demand, should have smaller values for its corresponding design 

variables. The first dimensional bins of those variables should be the promising 

subdomains. As the range of the time horizon is 0 to 60600 while the production rate 

ranges from 250 to 280, the time period influences more than the production rate in the 

product of these two factors. It also indicates that the design variables of time period (x1 

to x6) are more important. In total 360 sample points are used to generate the CA plot for 

this twelve variables problem.   

In Figure 6.3, the symbols represent different dimensional bins as the legend 

indicates while labels inside indicate the different variables. As the schedule of 

producing different grades is known, the meaning of the labels is determined and is 

shown in the following Table 6.3. There are three time slots that produce K09, therefore, 

the total produced amount of grade K09 will be the summation of the products in those 

three time slots.  

Table 6.3 Meaning of the Labels 

Label Meaning Label Meaning 

1 Running time for K09 (time slot 1) 7 Production rate for K09 (time slot 1) 

2 Running time for K10 (time slot 2) 8 Production rate for K10 (time slot 2) 

3 Running time for K12 (time slot 3) 9 Production rate for K12 (time slot 3) 

4 Running time for K20 (time slot 4) 10 Production rate for K20 (time slot 4) 

5 Running time for K09 (time slot 5) 11 Production rate for K09 (time slot 5) 

6 Running time for K09 (time slot 6) 12 Production rate for K09 (time slot 6) 

As we can easily observe in Figure 6.3, the third dimensional bins for variables 1, 

2, 5 and 6 are the promising subdomains. Although the demand for K09 is much larger 

than K10, the projection of third dimensional bins for variables 1, 5 and 6 onto the first 

function value bin vector is slightly larger than the third dimensional bin for variables 2. 

This is because at all three time-slots K09 is produced, the duration and production rate 

for each time slot will be smaller than running K09 within one time slot. In addition, in 

Figure 6.3, the first dimensional bins of the corresponding variables (Labels 3 and 4) are 

the promising subdomains, which means the running time for K12 and K20 should be 

shorter. In this model, both K12 and K20 in deed have relatively small demands and 
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require shorter running time. In addition, the first dimensional bin for the fourth variable 

has larger projection on the first function value bin vector than the third variable. This is 

quite reasonable as the demand for K20 is much smaller than K12, the running time of 

K20 will undoubtedly has more tendency to be small value. 

The variables of the running time are further apart from the origin, which 

indicates that those variables are more important than the production rate. This 

information is also in compliance with the previous analysis of the black box. The third 

dimensional bins of 7, 11, and 12 variables are closer to the first function values bin 

vector, so the production rate for K09 should be relatively larger than others. As the first 

function value bin is on the left while the third function value bin is on the right. For 

convenience, we consider the dimensional bins on the left side have better function 

value. In Figure 6.3, third dimensional bins for 7, 8, 9 and 10 are from left to right while 

the first dimensional bins for those variables are from the right to left, which means that 

the seventh variable should have large value and the tenth variable should have small 

value. Therefore, it reveals that the production rate of K09 should be larger than K10 and 

then K12 and K20. This is agreed with the demands of different grades of phosphates. 
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Figure 6.3 CA results of the OCP model 

In conclusion, the proposed method can work well on both mathematical function 

and real engineering problems. It doesn’t require previous knowledge of the black box 

and can discover the useful information with limited number of sample points. 

According to the knowledge discovered above, we can conclude that the third 

dimensional bins for x1, x2, x5, x6, x7 and x11, the second dimensional bin for x8 and the 

first dimensional bins for x4 and x10 constitute promising regions. The x1, x2, x4, x5, and x6 

are obviously the important variables because they have larger inertia. The user input for 

the discovered important variables and the promising subdomain will be shown in Figure 

6.4 and Figure 6.5.   
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Figure 6.4 Input window of the important variables 

Figure 6.5 Input window of the promising subdomain of the variables 

To solve this problem, both TRMPS2 and CA_TRMPS are applied separately to 

find the optimal result and the corresponding schedule. The results found by 

CA_TRMPS are then compared with TRMPS2’s results to illustrate that after integrating 

the information into TRMPS2, better results can be found. There are 12 variables and 
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the objective function is the same as discussed in 6.3. The same settings are applied to 

both methods for a fair comparison with 900 total sample points for each method.  

Table 6.4 Comparing Results  

 TRMPS2 CA_TRMPS 

Objective value 1.730309837527980e+08 1.057506951782529e+08 

Running time for K09 (time slot 1) 104.338705992196 179.153012662911 

Running time for K10 (time slot 2)  133.228027946394 154.594731667562 

Running time for K12 (time slot 3) 87.8411800965949 60.7942797500888 

Running time for K20 (time slot 4) 170.712282645577 16.1368573288729 

Running time for K09 (time slot 5) 98.9451028103020 178.602975670858 

Running time for K09 (time slot 6) 120.128323311059 171.821803518285 

Production rate for K09 (time slot 1)  254.951640978747 275.853009573573 

Production rate for K10 (time slot 2) 267.131794841914 269.017148728942 

Production rate for K12 (time slot 3) 279.348226465635 257.850396858275 

Production rate for K20 (time slot 4) 278.749885567879 253.777864324671 

Production rate for K09 (time slot 5) 274.076148954265 257.103844175861 

Production rate for K09 (time slot 6) 270.624835261167 274.544478985383 

The objective value for CA_TRMPS is 6.7280e+07 smaller than the objective 

value for TRMPS2, which illustrates that the CA_TRMPS is better than TRMPS2 for this 

problem. The schedule obtained by CA_TRMPS is also much more reasonable. As 

much more K09 is needed, the running time and the production rate are both relatively 

larger than other grades. In addition, the demand for lower grade of the phosphates is 

larger, therefore, the running time should be relatively longer and the production rate 

should be larger. The results in CA_TRMPS agree with the analysis while the results in 

TRMPS2 are not reasonable. The running time for K20 should be the smallest, however, 

in TRMPS2, it is the largest among all the running time in different time slots.  The 

running time for K09, in contrast, is not large. The production rates also do not make 

sense since the lower grade of phosphates with larger demand have even smaller 

production rate. Therefore, the CA_TRMPS can find a better schedule within a limited 

number of sample points than TRMPS2. 
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The convergence plot for TRMPS2 and CA_TRMPS are shown in Figure 6.6, 

from which we can easily find that CA_TRMPS can obtain much better results after 

around 180 sample points. The first 180 samples are random sampling. Therefore, the 

results vary. However, after integrating the discovered information, the objective values 

drop to around 1.2*108, which also illustrate that the information is very essential to the 

optimization process. 

Figure 6.6 Convergence plot of TRMPS2 and CA_TRMPS 
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6.5. Summary 

CA is shown to be able to help to discover the information in real engineering 

problem. The information is reasonable according to intuitive understanding and 

engineering insight. The next chapter will draw a conclusion for the whole thesis and 

summarize the distinguished features of the proposed method. 
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Chapter 7. Conclusion  

7.1. Summary  

This thesis first introduces the correspondence analysis in HEB problems with 

the goal of providing more transparency about the problem. By analyzing data during 

optimization, more information can be abstracted to assist the optimization process. In 

addition, the visualization in CA provides the designer with a more intuitive way of 

understanding the high dimensional data. The method can be used to direct the search 

in a smaller but more promising subdomain, mine the symmetric variables, and identify 

the significant variables that contribute more to the function value. New features that 

were developed in this method that separate this work from others are listed as follows.  

In this work, one of emphases is placed on defining subdomains of the design 

spaces to narrow down the search, which will help to accelerate optimization progress. 

The current dimension reduction techniques, which are applied directly on the design 

space, can’t guarantee that in the lower dimension, the function value is still continuous 

as it is in the original design space. Therefore, the contribution of the proposed method 

is that it only analyzes distribution of each bin in design space in relation to function 

value, so the dimension reduction process won’t change the original design space. The 

presumption of the optimization is still valid. The significant variable and the symmetric 

variables can be identified using this method, which can significantly reduce the number 

of sampling points by reducing the number of different combinations of the samples. The 

most promising of this method is that it requires a small number of points and the further 

analysis of smaller region of the design space doesn’t require more points. In other 

words, all the sampling points can be reused to obtain more accurate information of the 

data in the smaller region. Additionally, users may use two-dimensional plot to 

understand the data structure and make informed decision.  
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Corresponding Analysis (CA) is shown to be very useful by being applied to an 

optimization process and a practical engineering problem. Applying CA to the meta-

modeling optimization method can reduce the sampling points and accelerate the 

optimization process. Fewer points are needed for the less important variables. And as 

for the symmetric variable, they can be treated as one factor of the function value and be 

assigned to a same value in the optimization process. This approach can in a sense 

reduce the dimensionality of the design space. After applying the discovered information 

to the optimization method, it shows great improvement comparing to the current 

optimization method especially for the high dimensional problems. For the HEB problem, 

the prosed method is more promising because it can reduce a large number of sampling 

points, which can save a significant amount of time for the expensive black-box 

simulation.  

An application was presented for the optimization of high dimensional scheduling 

problem. This example shows how CA may assist in providing more information for the 

problem. It identifies the significant variables and discovers promising sub-domain very 

well. Clearly, using the discovered information can reduce a large number of sampling 

points. All of these show that the CA method can be beneficial for understanding the 

black box problems, especially for the HEB problems.  

7.2. Future Work  

This work applies correspondence analysis on single objective optimization. 

Many improvements may still be made. For instance, one limitation is that the 

visualization may become incomprehensible when the number of variables is more than 

20. For a problem with 100 variables, the scatter plots become too dense to read and 

hard to analyze. To overcome this, a more scalable visualization technique is required. 

Finally, the proposed method can be integrated with optimization methods other than 

TRMPS2. Therefore, application of CA to other optimization method needs to be further 

tested. Different strategies of using the discovered information might result in different 

performance of the optimization algorithm. Therefore, strategies suitable for specific 

algorithms are to be developed.  
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