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Abstract 

The electrical distribution networks across the world are witnessing a steady infusion of 
smart grid technologies into every aspect of their infrastructure and operations. 
Technologies such as Energy Management Systems (EMS), Distribution Management 
Systems (DMS) and Advanced Metering Infrastructure (AMI) have partially addressed the 
needs of the distribution networks for automation, control, monitoring and optimization. 
Many utilities intend to explore the capabilities of advanced AMI systems for other 
functionalities within their grids. AMI systems produce an extensive amount of data that 
can be collected from termination points, for various optimization, control and energy 
conservation functions. Moreover, deployment of smart grid assets and smart system 
utilizations provide unprecedented opportunities for network operators and planners to 
adopt more efficient and reliable strategies for the technical/economic issues of their grids. 
Accordingly, new smart grid adaptive optimization and control techniques can be 
constituent components of future distribution grids.   

The present thesis aims to propose a novel smart grid adaptive solution for one of the 
well-known techniques typically employed for distribution network voltage and reactive 
power optimization called Volt-VAR Optimization (VVO). Proposed VVO engine enables 
capturing AMI data to solve the VVO problem through its comprehensive objective function 
in quasi real-time intervals. Furthermore, this thesis investigates the impacts of disparate 
smart grid components such as Distributed Generation (DGs), Electric Vehicles (EVs) and 
Distributed Energy Resources (DERs) on proposed smart grid adaptive VVO. Solving 
maintenance scheduling problem of Volt-VAR Control Components (VVCCs), proposing 
a new solution for VVCC number of switching per day issue, offering a quasi-real-time 
load modeling approach to enhance the accuracy of energy conservation calculations, 
presenting a predictive VVO solution and considering Conservation Voltage Reduction 
(CVR) as a part of VVO objective to save the energy consumption of loads are some of 
the novel VVO studies presented in this thesis. This thesis examines proposed VVO 
performance and applicability through a real-time co-simulation platform using advanced 
communication protocols/standards such as DNP3 and IEC 61850. The results of thesis 
studies prove that applying proposed VVO engine could considerably enhance smart 
distribution system levels of accuracy, efficiency and reliability.  

Keywords:  Advanced Metering Infrastructure; Conservation Voltage Reduction; Co-
Simulation; Distribution Network; Smart Grid; Volt-VAR Optimization  
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Chapter 1.  
 
Introduction 

1.1. Preface 

Maintaining voltage within desired level throughout the electric distribution network 

is one of the major challenges that electric power utilities have always grappled with. As 

customer electricity demand varies throughout the day, each customer forms a specific 

load profile. Hence, the power supplied by distribution network throughout a day has to 

vary to meet customer load profiles in general. This is one of the operating issues at the 

heart of modern grids that is not desirable for the system operators due to its higher 

expenditure and hard operational condition. The electric power utilities prefer to avoid the 

change in the supply through controlling the demand. In other words, they prefer a 

"generator-following approach", rather than a "load-following" approach. Thus, new 

strategies are emerging in order to control system demands and to optimize distribution 

grids. Typically, there are three main components employed inside distribution substation 

and/or along distribution feeder(s) to perform voltage regulation: On-Load Tap Changer of 

transformer (OLTC), Voltage Regulator (VR), and Capacitor Bank (CB). OLTCs and VRs 

are a type of transformer with variable turns ratios that are optimally placed in distribution 

networks to regulate voltage level of downstream nodes. CBs can control voltage by 

compensating reactive power of the grid as well. Generally, CBs are connected to the 

network with parallel configuration using specific switches. Closing these switches enables 

switchable shunt capacitors to compensate reactive power of the system to improve 

voltage drop at the Point of Connection (PoC). 

The other important issue in distribution networks is “power loss”. There are 

different sources of losses in distribution system. As long as there is a feeder in a grid, line 

loss exists. Line loss imposes costs into the system by occupying the capacity of 
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transferring active power from supplier to consumer throughout the line. Applying reactive 

power control components such as CBs can assist network operators to control reactive 

power flow of the system which can lead to distribution network loss reduction. 

Theoretically, voltage and reactive power are related to each other. When reactive power 

flows over an inductive line, that line will face with a voltage drop.  

For decades, the abovementioned components were the main tools for utilities to 

regulate voltage and reduce system loss. Most distribution networks employed these 

components which operated separately for voltage regulation and loss reduction aims. 

Further, by developments in optimization techniques, distribution utilities realized the fact 

that the efficiency of the system could be improved if voltage regulation and reactive power 

control are seen as an integrated optimization problem that can be called “Volt-VAR 

Optimization”, a.k.a. the “VVO”. Initial VVO techniques employed to statically minimize 

distribution network losses and to improve voltage profile of the system through semi-

coordinated methods using static data.  In brief, these VVO strategies present an 

integrated process of controlling voltage levels and reactive power (VAR) throughout 

distribution networks that could lead to system optimization in mid/long-term operating 

periods, e.g. monthly, seasonally and/or annually.  

In order to respond to consumer’s demand within specific time-intervals, advanced 

VVO techniques emerged to track load changes. Other important needs of electric power 

utilities such as the energy consumption reduction and peak demand reduction emerged 

new conservation methods called “Conservation Voltage Regulation” or “Conservation 

Voltage Reduction (CVR)”. Generally speaking, CVR attempts to maintain customer’s 

voltage level in the lower limits of ANSI [1] or CSA [2] standard range, in order to achieve 

energy conservation without requiring changes in customer’s behavior. This could reduce 

the energy consumption and peak demand of the distribution network. In other words, 

CVR attempts to conserve energy by lowering voltage levels of termination points.  

In recent decades, advancements in communication infrastructure, Information 

Technology (IT), optimization techniques and control technologies have made VVO 

techniques such as Volt-VAR Control systems (VVC) and Volt-VAR Management Systems 

(VVMS) more efficient. The main goals of these systems are to control and optimize 
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voltages and reactive power of distribution network in a coordinated way conforming to 

pre-determined aggregated feeder load profiles using Volt-VAR Control Components 

(VVCC), i.e. OLTCs, VRs and CBs inside distribution substations and/or along distribution 

feeder(s). Thus, VVO became a reliable tool to co-ordinately adjust voltage and reactive 

power levels of distribution network to address system needs.  

In the last two decades, the mass electrification in most developed as well as 

developing countries has exposed the already frail distribution system to a wide variety of 

unpredictable load profiles with potentially negative and even unsafe levels of impact on 

the Quality of Service (QoS) delivered to customers. To counter such impacts, electric 

power utilities strive to employ new technologies to not only guarantee a certain level of 

QoS to their customers, but also save energy, reduce distribution losses and operational 

costs more. In order to reach the abovementioned aims, dynamic decisions have to be 

adopted according to real-time operation of distribution networks. Hence, the “automation” 

concept, design and implementation became essential for utilities. The emergence of 

smart grid has brought considerable opportunities for the automation of power distribution 

systems. Moreover, smart grid provided the electric utility companies with more visibility 

and pervasive control over their assets and services [3]. As explained, the driving factors 

behind utility companies’ investments in technologies such as: Distribution Automation 

(DA), Distributed Management System (DMS), Energy Management System (EMS), 

Substation Automation (SA) and Advanced Metering Infrastructure (AMI) were to make 

distribution networks more reliable, cost effective and efficient. In addition, applying smart 

grid technologies provide electric power utilities with multiple intelligence layers over their 

current and future assets [4].   

DA provides distribution networks with flexible control that enhances reliability, 

efficiency and QoS.  Moreover, it improves system visibility, asset management, fault 

detection and correction. On the other hand, controlling system voltage through advanced 

DA systems has made CVR more reliable. DMS designed to represent live view of the 

system close to real-time to the network operators. In brief, DMS comprises of various 

applications that are employed to monitor and control distribution network parameters in 

a reliable, efficient and secure platform. Nowadays, Volt-VAR Optimization or Volt-VAR 

Control is categorized as a part of DA and/or DMS.  
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AMI systems as another famed smart grid technology are able to capitalize on a 

two-way communication system between Smart Meters (SM) and control center to modify 

customers’ service-level parameters. As AMI boosts the efficiency of utilities billing and 

revenue management systems [4], many utilities intend to explore the capabilities of 

advanced AMI systems for other functionalities within their grids. Smart meter installation 

programs at customers’ premises produce an extensive amount of consumer data that 

can be collected from termination points, (typically every 15 minutes) for various 

optimization, control and energy conservation functions. Accordingly, new AMI-based 

optimization and control techniques can be essential components of future smart 

distribution grids. In order to extend DA benefits in future, AMI end-of-line sensors, a.k.a. 

smart meters are needed [5]. Hence, integrating DA with AMI seems essential for future 

grids. On the other hand, AMI provides a convenient environment to collect time-of-use 

rates, data and load-demand management that can be used in different applications such 

as energy conservation, reduction of nontechnical losses, outage management and 

unprecedented visibility to the edge of the network [6]. 

With the advent of AMI, a dynamic approach enables such systems to capture and 

control data close to real-time. This could lead to a more accurate VVO by bringing a real-

time dynamic Volt-VAR Optimization from substation downstream to the edge of the 

feeders. Hence, it is more conceivable to upgrade the conventional static VVO and CVR 

systems into real-time, adaptive and dynamic VVO solutions via smart grid capabilities. 

The availability of smart metering technologies and their capabilities in transmitting real-

time data of customers enables VVO Engines (VVOE) operate in real-time or quasi real-

time. Therefore, one of the main targets of this work is to propose a novel smart grid-

based Volt-VAR Optimization engine using quasi real-time AMI data. 

Furthermore, the availability of dispatch-able energy sources in smart grid 

networks such as Electric Vehicles (EVs), Vehicle to Grid (V2G) systems, Community 

Energy Storage (CES) systems, smart inverter technologies and sustainable/renewable 

resources can make smart grid-based VVO more affordable and practical. In recent years, 

penetration of Distributed Energy Resources (DER) at customer's sides has changed the 

structure, operation and performance of smart distribution networks. DERs such as 

Distributed Generations (DG), Micro-Combined Heat and Power units (Micro-CHP) or 
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Photovoltaics (PV) have been employed for different operational needs in distribution 

grids. Hence, diversity in type and technology, as well as penetration of DERs could have 

considerable impacts on distribution network optimization and control. On the contrary, 

dynamic VVO approaches could speed up widespread deployment of DERs, DGs and 

other microgrid sources [7]. As such, this thesis aims to evaluate the impact of these 

technologies on proposed smart grid AMI-based VVO solution. Moreover, it tries to 

investigate if studied smart microgrid sources can assist VVO on performing its objectives 

or not as employing smart grid sources on performing VVO could lead to a more effective 

VVO solution. 

On the other hand, as the roots of power system issues are typically found in the 

distribution system, the point of departure for grid overhaul is firmly placed at the bottom 

of the chain [4].  Additionally, it is clear that all voltage and reactive power control assets 

in distribution network have to go to maintenance after a specific number of operational 

cycles to preserve lifetime and quality of service. As advanced metering infrastructure-

based Volt-VAR Optimization performs in quasi real-time, it is now important for network 

planners and/or operators to calculate the net benefit of the system for each quasi real-

time operating stage. Moreover, the availabilities of Volt-VAR control components to 

perform AMI-based Volt-VAR Optimization have recently become very important as well. 

Hence, it is now vital for network planners and/or operators to know the benefit resulted 

from loss minimization and energy conservation of loads by AMI-based Volt-VAR 

Optimization in quasi real-time. At the same time, conventional maintenance scheduling 

techniques can have negative impact on the performance of new AMI-based Volt-VAR 

Optimization solutions as they have not considered VVO benefits in their objective 

function. Therefore, the necessity of new approaches for maintenance scheduling of 

voltage and reactive power control assets according to new AMI-based VVO features is 

felt more than before. The maintenance scheduling of voltage and reactive power control 

assets has to impose minimum negative impact on the quasi real-time Volt-VAR 

Optimization efficiency. Hence, if a Volt-VAR control component goes to maintenance for 

a short period, the value of lost benefit (because of the absence of that component) has 

to be minimized within that period. This thesis provides an efficient solution (that is 

employed in proposed VVO) to solve the maintenance scheduling issue of AMI-based 

VVO solutions. 
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Another important challenge is the fact that some of the main VVCCs such as 

switchable shunt CBs, VRs and OLTCs cannot be switched on and off more than pre-

specified limits per day according to their lifetime. As real-time or quasi-real time VVO is 

capable of optimizing the network in its real/quasi-real time intervals, the number of VVCC 

switching per day could exceed the pre-determined limits. This may reduce the lifetime of 

Volt-VAR control assets which will not lead to a cost-effective VVO solution. In order to 

consider the abovementioned key factors, a predictive technique is designed that is able 

to predict distribution network day-ahead and/or time interval-ahead loads to optimize the 

network based on historical data of smart meters. Presenting such a method could solve 

the number of switching per day issue and perform an efficient VVO in advance. 

As discussed, with the expansion of AMI infrastructure throughout distribution 

networks, this thesis proposes an advanced smart grid-based solution for VVO, using AMI 

quasi real-time data. Accurate, secure and reliable data, communication, system operation 

and their flows are the key factors of a successful VVO solution. Utilizing real-time 

approaches necessitates adequate real-time monitoring, operational and control platforms 

for further implementation. Thus, providing efficient co-simulation environment benefits 

electric power utilities and allow them to test the performance and study the impacts of 

such approaches before implementation. As such, this research presents real-time co-

simulation platforms for proposed VVO engine in accordance with smart grid 

communication protocols/standards such as DNP3 and IEC 61850. 

In brief, this thesis proposes a novel smart grid adaptive VVO engine using quasi 

real-time AMI data for smart distribution networks. Moreover, it investigates the impacts 

of different types of smart microgrid sources on proposed VVO. As a paradigm shift in 

transitioning from a centralized grid to a decentralized grid applying smart grid 

technologies [8] has been started, a feeder-based approach is chosen due to the fact that 

the decentralized approaches are well-matched with Distributed Command and Control 

(DCC) topology of smart microgrids. In a key part of this research, CVR considers as a 

part of the VVO objective. In addition, a new maintenance scheduling approach is 

presented for AMI-based VVO solution. To test the accuracy, the applicability and the 

performance of proposed VVO, real-time monitoring and control co-simulation platform is 
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designed and employed. The performance of proposed VVO is checked in the presence 

of various load conditions, microgrid sources and network reconfiguration condition. 

Hence, the main advantages of proposed solution include but not limited to 

coordinated control between conventional VVCCs and new Volt-VAR control assets such 

as V2Gs, using quasi real-time AMI data that increases system visibility and efficiency, 

considering impacts of various microgrid sources in proposed VVO, providing a solution 

for maintenance scheduling of Volt-VAR control assets in the system, designing a day-

ahead as well as time interval-ahead predictive VVO engine according to AMI historical 

data, solving number of VVCC’s switching per day issue and providing a real-time co-

simulation platform for testing the effectiveness of proposed approach. 

1.2. Main Contribution and Novel Studies 

As explained, the key contribution of this work is proposing a Volt-VAR 

Optimization engine using quasi real-time AMI data. Other important novel studies 

regarding proposed smart grid adaptive Volt-VAR Optimization engine are:  

• VVO includes CVR based on quasi real-time AMI data  

• An integrated VVO algorithm adaptable to distributed command & control 
architecture of smart microgrids 

• Control strategies for VVO devices such as: OLTCs, VRs, and CBs inside 
distribution substation and along distribution feeder in quasi real-time 

• The impact of various types of microgrid sources in VVO based on smart grid 
specifications 

• The impact of load conditions on VVO design  

• The impact of EVs with different charging and penetration levels on VVO  

• Maintenance scheduling of Volt-VAR control devices and their impacts on 
proposed VVO  

• Real-time/ semi real-time predictive algorithm based on load growth, historical 
and seasonal factors 

• The impact of new VAR sources on proposed VVO 

• Real-time co-simulation platform for proposed smart grid-based VVO 

• Distribution network planning in the presence of smart grid adaptive VVO 
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The proposed approach intends to enable distribution utilities to operate/maintain 

systems with selective VVO in different operating scenarios such as increased renewable 

sources located at distribution feeders, new real-time switching schemes, system asset 

management, and electric vehicle charging infrastructure deployment. 

1.3. Research Objectives 

The main objective of this research is to design a novel Volt-VAR Optimization 

algorithm that enables distribution network to minimize power loss, optimize voltage profile 

and conserve energy in quasi real-time. The main deliverables are as follows: 

• VVO algorithm or core engine: the system has to receive data from control 
system and optimize the grid based on the actual load profile (rather than static 
load profile) in quasi real-time. 

• VVO System (core engine working with VVO assets): the algorithm should be 
integrated in terms of the core engine, VVO asset operation and other smart 
grid-based technologies located inside distribution substation and/or along 
distribution feeder(s). 

• VVO System Integrated with Distributed Energy Resources (DER): various 
distributed generation and renewable resources are employed in VVO 
algorithm. DER unit impacts on VVO are discussed and the capability of each 
DER unit in VVO participation is studied. Moreover, with a new inverter 
technology, some of DER units are able to support reactive power.  

The above objectives would have the following salient features: 

• Coordinated control: the VVO engine can be operated in a coordinated control 
where all VVO assets such as CBs, OLTCs, VRs and DGs are participating in 
VVO without task confliction. Thus, priority levels of VVO control devices should 
be determined. 

• VAR injection point allocation: the proposed VVO will be capable of finding the 
optimal size of VAR injection/absorption components. Finding the best location 
of switchable shunt CBs, and other predicted/unpredicted VAR 
injection/absorption points in the grid could help distribution network operators 
to avoid extra costs imposed by wrong or not well-optimized placements. This 
fact will be discussed in distribution network planning chapter of this research. 

• Predictive algorithm: the study built a predictive VVO algorithm with various 
proportions of historical data vis-à-vis forward-looking prediction sliding window. 
This can be a novel approach that facilitates the operation of distribution 
network. The design is based on several key factors such as: load growth, 



 

9 

historical, seasonal and calendar factors. Designing a predicative algorithm may 
decrease VVO operating time which totally improves VVO performance.   

• Studying EV effect on VVO: as electric vehicle deployment is one of the major 
concerns of distribution network operators, EV impact on proposed VVO is 
assessed. In addition, the capability of V2Gs on injecting reactive power to the 
grid is studied. 

• Maintenance scheduling sub-problem: as each VVCCs and generating sources 
in distribution network has individual maintenance schedule, it is necessary to 
set the best maintenance time for each without having any operating issue. 
Thus, the research considers the maintenance scheduling issue as a sub-
problem in VVO algorithm in order to find the best configuration of system at 
each operating time interval. 

• Real-time co-simulation platform: To check the whole VVO system, this study 
presents a real-time co-simulation platform using smart grid features and 
standards such as IEC 61850. 

1.4. Thesis Structure 

This thesis is organized into the following fifteen chapters: 

• Chapter 2 presents a comprehensive literature survey regarding Volt-VAR 
Optimization. It reviews Volt-VAR Optimization and Conservation Voltage 
Reduction histories, as well as modeling and optimization, smart grid 
functionalities, main projects of Canadian utilities, maintenance scheduling of 
Volt-VAR control components, predictive VVO, VVO with AMI, co-simulation 
platform, CVR integration with VVO previous studies 

• Chapter 3 explains VVO main topology. First, it presents distribution network 
topology. Then, it describes Centralized and Decentralized VVO approaches. It 
investigates VVO data collection, communication needs, main features and 
topology considerations of proposed VVO. 

• Chapter 4 reviews VVO main tool features. Voltage-regulating components as 
well as reactive power control components are fully investigated in this chapter. 

• Chapter 5 presents VVO objective function and constraints in order to reach to 
a comprehensive objective function for smart grid adaptive VVO. 

• Chapter 6 discusses microgrid sources in VVO problem. EVs, V2Gs, Micro-
CHP/PVs and Community Energy Storage are some of the main sources this 
chapter study. 

• Chapter 7 investigates Conservation Voltage Reduction from different aspects. 
Impact of VVO topology on CVR, CVR with AMI data, load modeling in new 
CVR solutions, VVCC switching events, CVR with smart grid technologies, 
economic factors, standards, regulations, and CVR role in short-term planning 
problems are some the topics covered in this chapter. 
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• Chapter 8 studies maintenance scheduling of VVCC problem. It proposes a new 
concept called Maintenance Scheduling Engine for solving AMI-based Volt-
VAR control component maintenance scheduling issue. 

• Chapter 9 explains the new concept of predictive VVO. It initially presents a day-
ahead predictive VVO using neural network and then specifies online predictive 
VVO engine through online sliding window concept. 

• Chapter 10 studies optimization techniques used in VVO problems of this thesis. 
First, it covers experimental and computational methodologies. Then, it explains 
Benders Decomposition, Genetic Algorithm (GA), improved GA and Particle 
Swarm Optimization (PSO) techniques. 

• Chapter 11 introduces real-time co-simulation platforms for proposed smart 
grid-based VVO. Co-simulation platform, communication test-bench, test setup 
implementation, monitoring and control platform overview, IEC 61850 standard 
and real-time co-simulation of proposed VVO are some of the topics cover by 
this chapter. 

• Chapter 12 gives studies, results and result analysis. Real-time adaptive VVO 
using Multi-Agent Systems (MAS), VVO with three levels of optimizations, 
impacts of EVs and V2Gs proposed VVO, day-ahead and live predictive VVO, 
novel approach for maintenance scheduling of VVCCs, smart grid VVO using 
PSO and Fuzzification, quasi real-time ZIP load modeling for CVR, real-time co-
simulation platform using DNP3 protocol, communication parameter impacts on 
proposed VVO, the role of CES in VVO, impacts of Micro-CHP/PV and EV 
penetrations on proposed VVO, and real-time co-simulation platform using IEC 
61850 MMS and GOOSE messaging are some of the studies this chapter 
covers. 

• Chapter 13 presents the analysis abstract of chapter 12 in order to provide an 
overall view of the study results and conclusions. 

• Chapter 14 investigates smart grid adaptive VVO roles in distribution network 
planning studies. 

• Chapter 15 presents conclusions and future works following by references and 
appendices as last sections of this thesis. 
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Chapter 2.  
 
Previous Studies 

This section reviews literatures in regard to the history, research, growth and 

development of Volt-VAR Optimization as well as Conservation Voltage Reduction 

techniques through the years. 

2.1. Volt-VAR Optimization History 

Since distribution networks were first developed in the late 1800s, dispersed efforts 

have been devoted to study the impacts of voltage drop and reactive power resources on 

distribution grid. Figure 2.1 depicts the history of Volt-VAR Optimization and its 

development trend. The primary control method introduced to network was basic local 

control. Local controls, tried to use local measurements as their inputs to find the operating 

mode of OLTCs, VRs, and switchable shunt CBs. These measurements included 

incomplete inputs. In general, these locally measured inputs were used to determine 

approximation of distribution grid reactive current flow. In local control scheme, there was 

not any accurate centralized/decentralized Volt-VAR control in the system level, and CVR 

implementation was far from the optimal condition. In addition, trips and maneuverers that 

network operators should perform periodically on shunt CBs were not cost effective. 

Mostly, the CBs were not in their optimal operating modes or they were operating with 

wrong settings. Hence, from the optimization point of view, the voltage level was 

unacceptable, and the power factor was less than the appropriate value in most times. 

Moreover, the excessive reactive current flow of the grid created by incorrect setting was 

imposed additional power loss into the system.  

In 1932, L. F. Brume [9] studied the characteristics of load ratio in local control 

circuits. It considered transformer tap and series reactor behaviors in his study. This 

research was one of the first notable studies related to Volt-VAR control concept. In 1970s, 

most studies focused on static optimization and control of reactive power sources in power 

systems [10]-[15]. Preliminary optimization of static capacitor installations in distribution 
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systems was presented in 1972 [13]. In 1980s, new centralized radio control systems were 

emerged in power systems. Centralized radio control systems were employed centralized-

based monitoring systems, with the VAR measurement at distribution feeder breaker. A 

simple communication structure was designed between feeder devices. Mostly, a one-

way communications to switchable shunt CBs were used and the only quantity under 

control was VAR flow at the feeder breaker. Thus, other backbones of distribution network 

such as customer loads and customer voltage were not considered. Moreover, if a network 

operator intended to reconfigure distribution feeders to isolate an occurred fault, or 

balance loads, such control logics were not able to track capacitor banks on feeders 

automatically. Some of the shortcomings of this control method were reliability, visibility 

and accuracy. Furthermore, the abovementioned control and optimization approach were 

made CVR inapplicable. These shortcomings were made a driving factor for electric power 

utilities to put one step forward and define Volt-VAR Optimization methods. 

 

Figure 2.1. History of Volt-VAR Optimization 

Generally speaking, the optimization and the allocation of reactive power sources 

for loss minimization [16] and the secondary Voltage-VAR control [17] are some of the 

issues that researchers were grappled with in the 80s. Valuable series articles about VVC 

in distribution systems published in 1985 by J. J. Grainger and S. Civanlar from North 

Carolina State University [18]-[19]. Initially, they studied the overall VVC problem and 

secondarily, they proposed applicable solutions for both control and design. It is quite 

possible to say that they were the first authors who used “Volt-VAR” notation for the 
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voltage and reactive power optimization and/or control issues. In 1990s, new distribution 

features such as Distribution Automation (DA) and Distribution Management Systems 

(DMS) have been developed. Roytelman and Shahidehpour were the first researchers 

who assessed the VVC issue for DMS [20]-[21]. Since 2000s, great efforts have been 

spent in designing and developing voltage and reactive power optimization solution for 

distribution networks in both academic and industrial settings [22]-[60]. The common view 

of most academic and industrial research studies is to segregate VVO and CVR [22]-[60].  

2.2. Conservation Voltage Reduction History 

Conservation Voltage Reduction concept on lowering voltage level of termination 

points has been applied in distribution networks for many years. A notable study regarding 

the impact of CVR on energy and demand was done by R. F. Preiss and V. J. Warnock in 

1978 [61]. Preiss and Warnock studied 15 different feeders in the presence of 5 percent 

voltage reduction for a four-hour period in different weekdays and achieved almost 3 

percent load reduction and less than one-half of one percent energy savings [61]. The 

second phase of that study published in 1986 showed that the average energy saving 

resulted from fixed 5 percent voltage reduction equalled to 0.71 per units during 24-hour 

CVR period in a day [62]. 

In 1987, D. M. Lauria investigated CVR at Northeast utilities that resulted in 1 

percent energy consumption saving through 1 percent voltage reduction [63]. In brief, due 

to technical limitations and high costs, most CVR plans in the 70th and 80th decades were 

not pursued regularly by the utilities. In 1987, Bonneville Power Administration (BPA) 

signed a contract with Pacific Northwest Laboratories to test CVR conservation potential 

[64]. Subsequently, American electric power utilities in Pacific Northwest tested various 

CVR scenarios to check CVR capability on energy conservation. In 1990, D. Kishner’s 

CVR implementation on Edison Commonwealth network demonstrated that CVR could 

provide about 1 percent energy saving thru 1.6 volts line voltage reduction [65]. In-line 

with disparate CVR research projects, new distribution network features such as DA and 

DMS emerged in 1990s [22]-[23], [66]. These new technologies brought great control and 

monitoring opportunities for distribution grids. Consequently, electric power utilities 
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preferred focusing more on DA, DMS and EMS development rather than investing in new 

CVR technologies.  

In 2000s, new CVR technologies appeared again as the result of a need for voltage 

regulation of control components and DMS/SCADA (Supervisory Control and Data 

Acquisition) infrastructural technologies. T. L Wilson tried to investigate some of the main 

concerns caused by CVR implementations such as under-voltage problem and the 

amount of reduced energy consumption in two electric power utilities in the Pacific 

Northwest that had applied new communication and control technologies in their network 

[67]. On the other hand, other studies such as [68] focused on presenting economic 

analysis for CVR. Furthermore, Canadian utilities such as BC Hydro and Hydro Quebec 

began to perform CVR plans in 2008 and 2010 respectively [35], [44].  In 2008, a research 

survey conducted by the Northwest Energy Efficiency Alliance (NEEA) showed that 1 

percent voltage reduction on average, will yield a drop of 0.7 to 0.8 percent in power 

consumption [69]. Moreover, this study derived that CVR could save 1 to 3 percent of total 

energy, 2 to 4 percent of kW demand, and 4 to 10 percent of kVAR demand [70]. According 

to a comprehensive research made by the Department of Energy's Pacific Northwest 

National Laboratory (PNNL) in August 2010, CVR could potentially provide peak demand 

reduction as well as annual energy reduction of approximately 0.5%-4% depending on 

feeder specifications [71]. Complete deployment of CVR on all distribution feeders would 

provide 3.04 percent reduction in annual energy consumption and if CVR was applied only 

on high value distribution feeders, the annual energy consumption could be reduced up to 

2.4 percent [71]. This study also proved the necessity of accurate load modeling for new 

CVR techniques. In addition, other reputed research institutes, such as Electric Power 

Research Institute (EPRI) worked on CVR strategies for many years.  

Study on the potential benefits of CVR by EPRI showed that by 3 percent voltage 

reduction it would be possible to typically achieve a 2.1% demand and energy reduction 

[72]. The abovementioned studies ascertained the fact that CVR could benefit distribution 

grid in a variety of different ways in full conformance with the grid specification. Today, 

CVR could be employed through conventional voltage control assets such as Load Tap 

Changer of Transformer (LTC) in distribution substation, VRs along distribution feeders, 

conventional reactive power control components such as switchable shunt CBs and new 
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VVCCs such as smart inverters, etc. Principal advantages of CVR include, but not limited 

to, demand reduction, energy consumption saving, reducing downstream substation 

and/or feeder overloading, increasing home appliance lifetimes, decreasing complaints on 

low-voltage and/or high-voltage events and lowering customer's electricity bill. Figure 2.2 

presents the history of key CVR projects. From the abovementioned studies, it can be 

concluded that most CVR projects performed “pilot” and few distribution utilities 

implemented CVR in reality. Many of electric power utilities preferred to primarily perform 

CVR pilot projects as they could further perform cost-benefit analysis and get familiar with 

CVR benefits. Another reason was due to so called "Lost-Revenue" that electric power 

utilities may face while performing CVR. As reducing Medium Voltage (MV) side of 

distribution grid leads to lost-revenue for electric power utilities (i.e. utilities may sell less 

power to their consumers) some may consider this as an obstacle for CVR implementation 

and development. 

 

Figure 2.2. History of CVR plans 

On the other hand, the electric service provider, i.e. a retail company, and 

distribution network owner are commonly different in electricity markets. Hence, 

regulations linked to CVR implementations in deregulated environments would be much 

more complicated. Even in several electricity retail markets such as New Zealand [73], 

generation companies are the owner of retail companies as well. This could raise CVR 
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regulatory issues as typically generation companies try to increase their revenue through 

selling more power to customers while duration of usage of distribution network is 

important for a retailer. Thus, the lack of comprehensive regulations for CVR is one of the 

barriers of CVR development especially in deregulated environments. 

It is known that structure and characteristics of each distribution feeder is unique. 

Hence, benefits resulted by CVR plans could be different from one feeder to another. CVR 

approach could also be determined according to the availability of VVCCs and load 

characteristics of a feeder. In general, CVR approaches are getting more sophisticated as 

new technologies and components emerge. One of the simplest CVR approaches in blind 

feeders can be done in the presence of substation LTC and feeder VR that are set by Line 

Drop Compensator (LDC) for end-of-line voltages. Another basic CVR technique that is 

on-site involves voltage regulation in one specific location of a feeder. In more 

sophisticated techniques, distribution automation control is used to determine the 

operating strategies of OLTC, VR, or in some cases CBs. This technique can operate 

without consumer feedback, or it can utilize feedback from termination points depending 

on the availability of measurement units at the end of line. Another applicable CVR 

technique is rule-based CVR that includes independent operation of VVCCs based on pre-

configured settings that could be updated frequently by control center through SCADA. 

2.3. Modeling and Optimization Studies on VVO 

Back to VVO approaches without considering CVR, studies have been done on 

various modelling approaches [22]-[27]. Table 2.1 presents a brief literature review of 

recent studies. Some research studies have focused on better problem definition and the 

optimization techniques such as Fuzzy [22]-[23], [27], Mixed Integer Linear/Nonlinear 

Programming [25] and Meta-heuristic [26].  

Table 2.1. Volt-VAR Optimization Literature Review  

Specifications References 

VVO-CVR VVO [22-26, 29, 31-33, 47, 49,74-75, 77], CVR [43, 44, 76], Voltage 
Regulation [27, 30, 36, 37, 48, 50], VVO with CVR [27, 34, 35, 46, 51, 52] 
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Objective Function Min. Loss [24-26, 47, 49, 51-52,], Min. Energy Loss [29, 47], Min. Voltage 
Deviation [23, 27, 36], Improving Voltage Profile [48], others: Max. DG active 
power [30], Max. fuzzy membership values [22] 

Optimization Technique Multi-objective Fuzzy [22, 24], Fuzzy [23, 27, 50], PSO [26, 29, 49-50], GA 
[47], SE [48], Bi-level optimization [30], Branch & Bound [52], Time-series 
[46], Benders Decomposition [25] 

Innovation in algorithm  Using Intelligent systems [27, 36, 77], Bi-section search Algorithm [30], with 
open DSS [52], others [23, 25, 29, 50]  

Smart grid adaptive Conventional DG [29-31, 34-36, 49, 50, 75-78] 

Real-time Study [27, 36, 48, 51] 

Explanatory Articles [31-34, 35, 43-44, 46] 

The predominant feature of this class of studies on improving VVO techniques is 

their focus on the algorithms and implementation techniques rather than focusing on 

initiatives smart grid features can provide. In total, aforementioned studies do not take 

advantage of the smart grid new capabilities and features.  Hence, they could not be 

considered as smart grid-based approaches.  

2.4. Smart Grid Functionalities in VVO 

Few studies have just pursued the smart grid issues on VVO [28]-[31], [33]-[34]. 

Particle swarm-based optimization technique has been applied for optimal coordination of 

DGs, and other Volt-VAR control devices such as LTC and feeder capacitors in [29]. In 

[30], two optimization-based models have been proposed. Single-level optimization is 

employed for computing the maximum penetration level of DG and a bi-level optimization 

model is designed to evaluate the power value that a distribution system can transmit to 

network end-users. A study [33] has stipulated that the recent smart grid initiatives have 

created growing interest in the deployment of more advanced VVC systems for efficiency 

improvement, demand reduction, and better overall asset utilization [33]. Possible effects 

of smart grid actual functions on load tap changers of distribution transformer discussed 

in [34]. The abovementioned papers have focused on concepts such as: advantages, 

challenges and functional requirements of VVO in smart grids which could be considered 

as the early stages of smart grid-based VVO design. Thus, such reviews could assist in 

forming the basis for the smart grid-based Volt-VAR Optimization algorithms.  
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In September 2011, IEEE standard 2030 [79] was published.  IEEE 2030 presents 

a comprehensive guide for smart grid interoperability.  As explained, some research 

papers have tried to address different aspects of smart grid and their specifications [27]-

[28], [30], [35]-[36], [43], [45]-[46], [48], [50], [80] before IEEE 2030 standard. Most such 

papers have focused on concepts, key challenges, and initial requirements of VVO in 

smart grids [3], [31]-[33], [38]-[39], [50] without considering interoperability issues.  Some 

other works such as [81]-[82] have investigated the main issues new smart grid 

technologies, such as VVO, may face in complying with IEEE 2030 standard.  From 

literature survey, it can be concluded that more theoretical work is required to explain and 

suggest new smart grid-based VVO techniques in compliance with IEEE 2030. In other 

words, there is a salient gap between conventional VVO and new innovative smart grid-

based VVO in terms of efficiency, and optimization level. 

Research into control strategies, such as [31], [36], [49], [56]-[60] have identified 

decentralized control strategies as suitable for future VVO engines, but have not 

discussed these in detail. A real-time simulation of multi-agent systems for decentralized 

secondary voltage control in distribution network is presented in [36]. It uses a real-time 

digital simulator (RT-Lab) with a Java Agent Development framework (JADE) applied to 

model distributed systems. Moreover, a decentralized architecture for optimal voltage 

regulation in smart grids has been assessed in [49]. The study strives to define a 

decentralized architecture to compute the actual value of cost functions and to propose 

distributed cooperative optimization strategies result in optimal asset of the voltage 

controllers. Given the fact that these studies [36], [49] have only considered voltage, a 

comprehensive decentralized integrated solution for VVO is needed.  

As such, recent studies have designed an integrated VVO for distribution grid [24], 

[32], [51]-[52]. One of the articles [32] discussed the challenges of an integrated voltage 

and VAR optimization with the emerging high penetration of Advanced Metering 

Infrastructure, DER, Demand Response (DR) and Plug-In Electric Vehicles (PEV) in 

power distribution systems. The paper has just pointed out the integrated VVO impact on 

the operation of other power system domains, possible objectives, benefits, controllable 

variables, and information sources of an integrated VVO respectively but it has not 

proposed any applicable solution. Another research [24] explicated an integrated 
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voltage/reactive power control of radial distribution feeders just in planning issues. 

Employing new smart grid features such as real-time AMI, DGs and EVs have not taken 

into account in this paper as well. A coordinated optimization approach for Volt-VAR 

control of large power distribution networks has proposed in [44]. The study has proposed 

a conventional centralized approach without considering smart grid new features. An 

Integrated approach for control and optimization of system has presented in [51]. The 

paper has explained an approach to integrate and localize control of Volt-VAR control 

devices. This work has not employed new smart grid intelligent features as well. In addition 

to an integrated VVO, some efforts have been devoted to review the relation between 

VVO and Energy Management Systems [48]-[49], [74] but these studies have not given 

any integrated VVO solutions regarding to all Volt-VAR control devices. 

The prospect of large penetration of dispatch-able customer side resources (co-

generation loads), such as EV’s, has also brought new challenges and opportunities to 

distribution networks. Although, system planners tend to demand new command and 

control strategies to accommodate and minimize the load impact of co-generations, others 

may regard the dispatch-able energy they provide as means to optimize the distribution 

service as a whole. Diverse research studies have reviewed the impact of EVs on 

distribution networks [83]-[84]. Some have mainly focused on G2V (Grid to Vehicle) 

loading effect on distribution network [85]-[87], while others have proposed coordinated 

EV charging strategies to optimize the grid by minimizing the active power loss of the 

network individually [88]-[90]. The foremost gap in research studies can be the 

shortcomings of studies encompassing the effects of EVs on a reliable VVO.  Furthermore, 

new studies have proven the fact that new EV inverter technologies could provide reactive 

power injection (positive or negative injection (aka absorption)) opportunity for future grids 

[91]-[96]. This may impose extensive impacts on the optimization, VAR amount and the 

number of active distribution network switchable CBs. Thus, in near future, it may be 

possible to employ a small percentage of EVs as reliable reactive power generation 

sources in a V2G (Vehicle to Grid) mode in order to reduce active and/or reactive power 

loss of the grid.  It has to be mentioned that large amounts of harmonics from EV charging 

stations may increase network line loss [97]. The result of [97] showed that for small-size 

EV charging stations, no harmonic mitigation measures are needed. However, for large 

and medium-size EV charging stations, the order of the harmonic current which may 
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exceed the standards has to be determined and then proper filters can be added to the 

EV charging station to avoid EV harmonic negative effects.  

Various studies have assessed the impact of EV penetration on distribution 

networks [98]-[102] but it seems that new studies have to be performed to evaluate the 

impact of different EV penetration levels on the proposed AMI-based VVO solutions, which 

encompass CVR as a constituent component. EV penetration throughout distribution 

feeders could affect AMI-based VVO technologies in areas such as: loss minimization, 

control components, operating conditions and CVR performance, as VVO load 

characteristics and/or models could be changed in different EV penetration scenarios. 

Hence, the necessity of studying the impact of EV penetration on AMI-based VVO 

technology is now felt more than before.  

In recent years, penetration of Distributed Energy Resources at customer's sides 

has changed the structure, operation and performance of smart distribution networks. 

DERs such as Micro-Combined Heat and Power units (Micro-CHP) or Photovoltaics (PV) 

have been employed for different operational needs at termination points. According to 

co-generation concept, Micro-CHP units are able to supply both heat and power for users. 

PV systems are also well-known for their clean power generated from sunlight. Hence, 

diversity in type and technology, as well as penetration level of the two abovementioned 

DERs could have considerable impact on distribution network optimization and control. 

Many recent studies have worked on Micro-CHP expansion in distribution networks. Some 

proposed residential microgrid scheduling based on smart meter data and Micro-CHP 

[103]. Some focused on the impact of Micro-CHP on the energy management [104] and 

demand response [105]. Studying the impacts of Micro-CHP penetrations on distribution 

network have been assessed by [106]-[108]. Regarding PV impact on distribution grid, 

several research studies [109]-[110] have focused on overvoltage issue caused by high 

penetration of PV’s. Some investigated coordinated control of PV with Battery Energy 

Storage (BES) system [111]-[112] while some others attempted to see the impact of PV 

high penetration on low and medium voltage distribution network [113]-[115]. There are a 

few studies that considered Micro-CHP and PV penetrations together as micro-generation 

to assess their impact on distribution network performance [116]-[118]. From literatures, it 

can be concluded that as penetration of Micro-CHP and PV units within distribution 
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networks may potentially affect VVO, it is necessary to evaluate the impact of these micro-

generation units on a new smart grid AMI-based VVO. 

Various noteworthy works have been performed to study the impact of smart grid 

features, smart meter infrastructure, field demonstration, and energy efficiency on VVO 

[33], [78], [81], [119]. Some have focused on presenting new frameworks for Volt-VAR 

Control approaches [120]-[122]. Some have recently studied the advanced DMS function 

to handle EVs in distribution networks [123]. Other recent works studied VVO planning 

and management in the presence of DGs [124] and proposed simple new Volt-VAR 

Control for DGs [125]. In brief, VVO approaches are going to be smarter as they tend to 

adapt and upgrade their approach based on new capabilities brought about by smart grid 

technologies.   

2.5. Canadian Utilities’ Volt-VAR Optimization Projects 

Different studies on Volt-VAR Optimization approaches have been pursued by 

some Canadian utilities such as BC Hydro [35], [127] and Hydro-Quebec [38], [43]-[44], 

[126], [128]. Reference [35], has shared BC Hydro's experience on Volt-VAR Optimization 

in distribution system. The first BC Hydro VVO project was completed in 1996 with the 

objective of minimizing the distribution substation peak load demand and relieving 

transmission capacity constraints [35]. During the five years of operation in winter periods, 

significant benefits were achieved as the winter energy was reduced by an average of 1.3 

GWh/yr [35]. In 2006, the objective was changed from demand reduction into energy 

conservation and the system was operational through the whole year [35]. In 2007, the 

installed system provided around 7 GWh of energy savings or about 1% of the total energy 

throughput [35]. BC Hydro is implementing a state-of-the-art DMS to provide a platform to 

create opportunities to implement leading advanced distribution applications, such as 

VVO, network reconfiguration, fault location isolation and restoration [35]. This DMS will 

be able to model distribution systems and perform VVO close to real-time. Moreover, BC 

Hydro smart metering program started in 2011 [127]. It is expected that VVO using AMI 

infrastructure could save about 10 percent of energy in Gwh/yr [127]. Hydro-Québec smart 

grid VVC project is being conducted providing the utility with reasons to be excited about 

the benefits of the smart grid [38]. The VVC project is expected to reduce total energy 
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consumption in Quebec by approximately 2% or 2 TWh by 2015 [38]. The primary 

objective is to provide dynamic voltage control at a lower voltage (CVR) [38]. In addition, 

reference [43] has described a methodology used to assess the effectiveness of CVR in 

the Hydro-Québec distribution network. Hydro-Québec is counting on CVR and reactive 

power control, a combined method known as “CATVAR” [126], [128].  Implementing a 

dynamic Volt-VAR control is one of the targets of the 1st phase of smart grid project in 

Hydro-One Company [129]. In this project, VVO intends to use distribution-based power 

electronics to keep voltage and VAR of the system within desired operational limits [129]. 

One of the projects Varentec Company performs for Canada ministry of energy with five 

collaborators: Hydro One Networks Inc.; London Hydro Inc.; Entegrus Inc.; Enwin Utilities 

Ltd, and GE Digital aims to design distributed dynamic VVC and monitoring of distribution 

feeders in following Ontario regions: London, Chatham, Windsor, Toronto, and Markham 

[130]. 

2.6. Studies on Maintenance Scheduling of VVO  

In recent years, different research studies have investigated maintenance 

scheduling of distribution network [131]-[147]. Some research work focused on the global 

maintenance scheduling problem [131]-[133] such that they define comprehensive 

objective functions for maintenance scheduling problem that can be used for maintenance 

scheduling of distribution networks as well. For instance, [133] proposes a comprehensive 

objective function for maintenance scheduling of generating units by defining an annual 

independent market called Maintenance Market. Moreover, some related studies 

considered electricity market impact on maintenance scheduling problem [131]-[135] and 

[138]. It has to be mentioned that many of maintenance scheduling of distribution network 

problems consider risk and/or risk management as their main approach [136]-[139]. These 

studies are vital for understanding the inherent characteristics of distribution network 

components as each of these assets has their own failure risk. Risk-based maintenance 

scheduling techniques are offering maintenance scenarios through calculating the risk of 

failure of distribution network assets.  

On the contrary, some studies have assumed that the failure rate and the 

maintenance period of grid components are constant as they may not face with system 
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changes most of the time. Therefore, several papers studied Volt-VAR control asset 

features, operation and maintenance [140]-[142]. There are reference books [143]-[144] 

that also assessed maintenance of VVCCs such as CB, VR and OLTC separately in 

different chapters. There are several novel works that investigates maintenance 

scheduling problem in presence of smart distribution networks [145], and smart grid 

features such as Distributed Generation [135] and renewable energies [146] as well. 

Generally, it can be observed from literature survey that there is a lack of a study 

on maintenance scheduling of VVCCs as a co-operating set. The reason lies in a fact that 

conventional VVO solutions statically optimized distribution networks. Hence, there was 

no need to ensure coordinated control between Volt-VAR control assets. Even when 

VVCC solutions emerged [74]-[75], [78], [81], [119], [148]-[149], the VVO core engine 

performed offline. As net benefit gained from static VVO solution has been calculated for 

large time period (e.g. annually), unavailability of a VVCC in the grid for a short period was 

not quite important in static VVO. Operation and Maintenance cost/benefits of a 

conventional VVO discussed in [150]. With the advent of new AMI-based VVO solutions, 

it is now vital for network planners and/or operators to know the benefit resulted from loss 

minimization and energy conservation of loads by AMI-based VVO in quasi real-time. 

Therefore, the necessity of new approaches for maintenance scheduling of VVCCs 

according to new AMI-based VVO solutions is felt more than before. 

2.7. Review on Predictive VVO 

The number of Volt-VAR control device switching per day is limited and could exceed 

from predetermined limit by a real-time or semi real-time approach. These VVO 

approaches could reduce the lifetime of VVCCs which practically might not be cost-

effective solutions.  In order to take the abovementioned key factors and concerns into 

account, predictive techniques can be proposed to primarily predict distribution network 

loads and then, optimize the network based on historical data of Smart Meters and global 

attributes collected from DMS/SCADA.  Different research studies have presented 

different techniques to predict loads in distribution networks.  Most of the studies aimed to 

focus on short-term/mid-term load forecasting of loads [151]-[154].  Few works have 

employed Neural Networks (NN) in optimization of distribution network [148], [155].  
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Hence, applying quasi real time data of smart meters for designing an online predictive 

VVO could be perceived as a novel approach. 

2.8. VVO Studies using AMI Data 

As explained in introduction, designing a real-time or semi real time VVO could 

optimize the network in real/semi-real time stage and could result in more accuracy in 

terms of loss reduction and voltage profile improvement. Few researches studied VVO in 

the presence of AMI data [156]-[161], while others investigate real-time solutions for VVO 

[162]-[165]. Regarding to the literatures, only few works such as [162] and [163] have been 

provided VVO system with practical real-time results. The reason lies in a fact that most 

conventional VVO approaches were performed offline. Hence, VVO approaches are going 

to be smarter as they tend to adapt and upgrade their approach based on new capabilities 

brought about by smart grid technologies. According to literatures, there is a gap between 

VVO offline design and VVO real-time implementation that can be solved by designing 

adequate real-time co-simulation platform for VVO solutions. 

2.9. VVO Co-simulation Platform Studies  

As discussed, with the expansion of AMI infrastructure throughout the distribution 

networks, it is now conceivable to propose advanced AMI-based solutions for the VVO, 

using AMI quasi real-time data. Recent studies have presented several AMI-based 

approaches for distribution network applications such as VVO [157]-[161], [166]-[167].  

Utilizing real-time approaches necessitates adequate real-time monitoring, operational 

and control platforms for further implementation. Thus, providing efficient co-simulation 

environment benefits electric power utilities and allow them to test the performance and 

study the impacts of such approaches before implementation. Significant studies have 

been done on co-simulation of distribution networks and Information and Communications 

Technology (ICT) [162], [169]-[174].  For instance, [168] presented a co-simulation 

platform using GridLAB-D for network model, and ns-3 for the communication channel. 

Microgrid co-simulation framework ensured minimal synchronization errors in [169]. A new 

method of co-simulation of Active Distribution Networks (ADN) presented in [170] based 
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on Simulink and Ptolemy II. Regarding DMS co-simulation, [172] proposed a DMS with 

state estimator to decrease harmful effects of system. Additionally, [173] presents the 

design of co-simulation for distribution network frequency and noise analysis in time 

domain. Regarding VVC, [174] explains basics needs for real-time feeder monitoring of 

advanced Volt-VAR controls and proposed meter placement technique without presenting 

a co-simulation platform. On the other hand, [162] presents a co-simulation for VVC using 

EMTP-RV and Opnet. Other works have focused more on integrating intelligence into the 

system using simulation and/or co-simulation [175]-[177]. State-of-the-art development of 

Multi Agent Simulations illustrated in [175] for smart grids. Distributed intelligence and 

wireless communication applied in [176] to control CBs. GNU-Octave used in [177] to 

assess the performance of Volt-VAR control technique in the presence of ns-3 network 

simulator without testing real-time operation of VVO. For real-time operation of the system, 

[178] performed real-time observability analysis. Moreover, ref. [179] shares valuable 

experiences on deploying real-time state estimator in BC-Hydro DMS. A hybrid co-

simulation is proposed in [180] for grids taking wide area monitoring and control, and 

standards such as IEC 61850 into account to evaluate real-time performance of wide area 

monitoring, protection and control applications. From the literatures, the necessity of 

designing a real-time co-simulation platform comprising of VVO engine, communication 

channel, and monitoring platform to provide a fully functional real-time system to check 

the performance of new AMI-based VVO solutions is felt more than before. 

Hybrid solutions, comprising AMI and VVO functions, require real-time monitoring, 

operational and control platforms, such as a co-simulation platform, for testing and 

validation. Different studies have explored co-simulation for distribution networks [162], 

[168]-[169], [174], [176]-[177], [179]-[180]. IEC 61850 is a real-time peer-peer 

communication standard, initially designed for communication between different Intelligent 

Electronic Devices (IEDs) within substation. Given the popularity of IEC-61850, there is 

interest in extending this standard out of substation to support automation functions 

outside the substation [181]. Several works have studied different IEC 61850 smart grid 

and distribution network applications such as interoperability and interchangeability [182], 

adaptive protection [183], network simulation [184], feeder IED topology [185]-[186], Multi 

Agent Systems [187] and Energy Management Systems [188].  Very few researches have 

studied voltage control of smart grid using IEC 61850 concept [189]-[190]. The necessity 
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of proposing a real-time co-simulation platform consisting of smart grid-based VVO 

engine, communication channel, and monitoring platform to provide a fully functional real-

time system is felt more than before as well. In addition, novel VVO solutions have to 

include automation system standards such as IEC 61850. The performances of these 

solutions have to be tested in different system configurations based on grid operational 

conditions and/or needs.  

2.10. Integration of CVR as a Part of VVO Objective 

Review of the existing literature that has investigated the performance of AMI-

based VVO points to the fact that inclusion of the CVR sub-system could benefit utilities 

in their choice of control and optimization strategies. As CVR control actuators such as 

LTCs and VRs could be categorized as VVCC and as CVR and VVO objectives are well-

matched, many researchers and/or utilities suggest considering CVR as a part of VVO. 

Therefore, it is conceivable to deem CVR as a major component of novel VVO solutions. 

Consequently, new VVO techniques would be able to perform energy saving and demand 

reduction besides performing loss and VVCC operating cost minimizations. Development 

of novel smart grid-based VVO solutions have become essential as electric power utilities 

and voltage regulation service companies are seeking more efficient techniques for VVO 

engine design.  

2.11. Summary of Literature Survey 

In summary, most of academic/industrial researches studied centralized VVO [22]-

[26], [29], [31]-[33], [47], [49], [52], [74]-[75] and there were few studies that assess a new 

comprehensive decentralized VVO approach [36], [45], [50], [59]-[60], [80], [174], [176]-

[177]. Centralized and decentralized VVO approaches are explained in next chapter of 

this thesis in detail. Moreover, notable gaps exist between offline VVO and smart grid-

based VVO which requires real-time integrated approaches. Nevertheless, some works 

are in preliminary phases of a real-time VVO for future smart grids. Given the fact that the 

real-time adaptive VVO techniques have salient impacts on smart microgrids, studies of 

real-time adaptive VVO have become critically important. Thus, future investigations could 



 

27 

focus more on finding the optimal approaches based on the advantages of new smart grid 

and feeder-based technologies. Notwithstanding the value and novelty of the previous 

studies, it is conceivable to declare that the smart grids enable the feasibility and 

affordability of adaptive and close to real-time VVO engines. The systems could be more 

capable of achieving higher degrees of efficiency and reliability through employing a 

relatively sophisticated distributed command and control system.  

The other gaps that have to be covered in new Volt-VAR Optimization solutions 

include but not limited to: considering dispatch-able sources such as vehicle to grid on 

Volt-VAR Optimization, availability of optimal strategies for maintenance scheduling of 

voltage and reactive power control assets in quasi real-time Volt-VAR Optimization, 

availability of predictive engine to solve voltage and reactive power control components 

number of switching per day issue, availability of Volt-VAR Optimization with 

comprehensive objective function includes conservation voltage reduction using 

advanced metering infrastructure data and the availability of a real-time co-simulation 

platform for testing the performance of smart grid-based VVO solution. 
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Chapter 3.  
 
Volt-VAR Optimization Topology 

3.1. Distribution Network Topology 

Distribution network is a key part of power system that links bulk power source, 

e.g. transmission line, and customers. Typically, distribution networks in North America 

comprised of sub-transmission system, distribution substation(s), distribution feeder(s), 

distribution transformer(s), secondary feeder(s) and/or circuit(s) and service drops. Some 

power system experts introduce distribution networks between distribution substation and 

customer termination points. Figure 3.1 depicts Single Line Diagram (SLD) of a typical 

distribution network in North America.  

 

Figure 3.1. Single line diagram of a typical distribution network  

Distribution substation that includes power transformer, station bus, switchgears, 

breakers and voltage regulating components such as tap changer and shunt capacitors, 

reduces voltage level of the system into primary feeder voltage that is normally between 

4.16 kV and 34.5 kV. This three-phase primary feeder is responsible for feeding three-

phase loads as well as single-phase laterals. Distribution transformer reduces primary 
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feeder voltage into secondary voltage called “utilization voltage”. At the end, secondary 

system components deliver power to customers through service drops.  

Regarding control topology, SCADA are commonly used as a conventional tool for 

control and monitoring of remote stations, e.g. HV/MV substations, from a master control 

center. SCADA consists of monitoring and control equipment, sensing and measurement 

systems (telemetric) as well as two-way communication platform. Figure 3.2 shows SLD 

of a primary feeder with its main components. Shunt CBs are mainly used in primary 

feeder laterals. It is clear that using shunt CBs that are commonly connected near the load 

centers improve system voltage drop, loss and power factor. The rates of these CBs have 

to be selected cautiously to avoid overvoltage issues at low-load (light-load) conditions. 

 

Figure 3.2. SLD of a typical North American primary feeder 

The most simple, low cost and common type of primary feeder is “radial” primary 

feeder shown in Figure 3.3 .As seen in Figure 3.3, radial primary feeder can branch itself 

into several laterals that can be turned into sub-laterals indeed. As the reliability level of 

service of radial primary feeders are very low, disconnecting components such as 

sectionalizers, reclosers and disconnect switches are used to isolate the fault and to 

increase primary feeder reliability. Typically, primary voltage levels used in North America 

is 2.5 kV, 5 kV, 8.66 kV, 15 kV, 25 kV and 34.5 kV. Three-phase four-wired multi-grounded 

common neutral primary feeders such as 12.47Y/7.2 kV, 24.9Y/14.4 kV and 34.5Y/19.92 

kV are widely used in North American distribution networks. 
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Figure 3.3. Typical radial primary feeder single line diagram 

As explained, voltage levels of power systems are presented by ANSI C.84.1 

“Voltage Ratings for Electric Power Systems & Equipment” [1]. According to this standard, 

voltage level for single-phase residential load is 120/240V that can be supplied by three-

wire single-phase systems in 60 Hz. 120 V is for lighting and other small appliances and 

240 V single-phase power connection is for large home appliances such as dryer, water 

heaters, etc. For commercial and high residential loads, the voltage level is 208Y/120 V 

with three-wire single-phase circuit. For industrial, super-high loads such as high-rises in 

downtown areas, and average-above commercials, 480Y/277 V systems are more 

common that are supplied from four-wire three-phase circuits.  

Similar to the primary system, secondary systems are mostly radial. Figure 3.4 

represents the single line diagram of a typical radial secondary system. On secondary 

grid, pole-mounted 3-phase or single-phase transformers, ranges from 75 kVA to 1000 

kVA, are typically employed. Three-phase transformers with voltage rating of 216Y/125 V 

in ranges of 300 kVA, 500 kVA, 750 kVA and 1000 kVA are very common in North 

American distribution networks.  
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Figure 3.4. Typical North American radial secondary system 

As most primary-secondary distribution feeders are radial, the main focus of this 

research is on radial topology in distribution systems. Grid topology and the specifications 

that each topology brings about, have considerable impact on Volt-VAR Optimization. The 

topology of each VVO approach intends to perform in a grid has to be in-line with the 

topology and control infrastructure of that grid. According to this fact, two main control 

topologies can be defined for recent VVO techniques explained in next section. 

3.2. Centralized VVO vs. Decentralized VVO 

Basically, one of the well-known VVO approaches recommended in recent years 

by different utilities and/or companies is “Centralized-VVO” (network-based) [22]-[26], 

[29], [31]-[33], [47], [49], [52], [74]-[75]. In centralized VVO, the processing system is 

placed in a central controller unit such as DMS in the so called “Utility Back-Office”. The 

DMS uses relevant measurements taken from termination points, i.e. utility subscribers, 

supplied to it from either field collectors or directly from Measuring Data Management 

System (MDMS), to determine the best possible settings for field-bound VVO assets to 

achieve the desired optimization and conservation targets. These settings are then off-

loaded to such assets through existing downstream pipes, such as SCADA network.  

However, the main challenge of centralized-VVO to meet integrated real-time and 

quasi real-time VVO solutions would be the huge amount of data that should be 
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transmitted from AMI to back-office and from VVO to control components throughout 

distribution network substations and feeders. This may lead to a “Data Tsunami”, SCADA 

blockage and/or failure. Moreover, capturing and transmitting huge amount of data can 

make the AMI very expensive. Although the optimization processing time issue can be 

solved by using fast computers and servers, the control system reliability is another 

important concern of this method that has to be considered. Failure in central control 

server could shut-down VVO in all distribution network feeders and substations. Moreover, 

Centralized VVO uses Geographic Information System (GIS) and network topology as the 

basis to determine the optimization targets for each tributary. However, due to the 

abovementioned challenges about access to real-time downstream sensory inputs, such 

functions rely on statistical load profile, rather than real-time load profiles. 

On the contrary, decentralized-VVO technique employs local control to optimize 

the operation of VVO components on a feeder. That is why it is possible to call this 

approach “substation or feeder-based” approach. In this technique, VVO would be able to 

receive its required data from termination points to optimize specific distribution feeders. 

Different methods can be used for sending local data from AMI to the VVO engine that is 

discussed in next section of this chapter. Few studies have recently recommended 

decentralized VVO approach [36], [45], [50], [80], [174], [176]-[177]. This research 

proposes a “Decentralized-VVO” (feeder-based) approach based on new smart microgrid 

features such as pervasive control, Distribution Automation, real-time AMI and DMS as 

well. This Decentralized-VVO approach utilizes VVO engines which are located in the 

field, i.e. at medium voltage distribution substation, and in close-proximity to the relevant 

assets to improve voltage and conserve energy according to local attributes of the 

distribution network and global attributes from DMS/SCADA. Figure 3.5 compares 

centralized-VVO and proposed decentralized-VVO. As shown in Figure 3.5, real-time local 

measurements of AMI do not need to travel from the field to the back-office and the new 

settings for VVO assets are determined locally, rather than by a centralized controller. 
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Figure 3.5. Centralized-VVO (Purple) versus Decentralized Proposed VVO 
(Green) 

This approach may lead to less data transfer cost of AMI, better system reliability 

and faster optimization process but it can increase complexity of system as it increases 

number of local controllers that has to communicate with each other. Furthermore, this 

VVO strategy tries to apply local dispatch-able energy sources such as V2G systems, 

DERs, energy storages and smart inverter technologies which can make it more affordable 

and practical. Thus, the proposed research focuses on the feasibility of a quasi-real-time 

smart grid-based VVO engine that can readily control VVO in an integrated way through 

distributed command and control. It is expected that this technology would enable network 

operators to achieve higher levels of loss reduction, energy efficiency, energy 

conservation and reliability simultaneously. 

Given the fact that the centralized VVO (network-based VVO) highly depend on 

network topology, a new approach which acts on feeder level can be an adequate solution. 

As stated, the main reason is the availability of real-time/quasi real-time local information 

that is able to emerge new class of optimization based on system local attributes. 

Achieving a real-time coordination of VVO and CVR (as a part of VVO) based on real-time 

data analysis with features such as: integrated VVO with distributed command & control 

architecture, coordinated optimization of VVO devices such as: OLTCs, VRs CBs, EVs 

and DGs inside distribution substation and along distribution feeder, and the ability to 

evaluate the impact of different load characteristics and real-time load profile over VVO 
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could bring lots of benefits to utility companies in terms of distribution network optimal 

operation and cost savings. 

3.3. Proposed VVO Data Collection and Communication 
Needs 

As mentioned in previous section, real-time values from smart meters could be 

employed to construct real-time load profiles for VVO engines. Smart meters in new 

distribution networks provide more accurate real-time measurements of service quality 

levels at termination points. Typically, smart meters are set to send customer’s data every 

15 minutes but most of them are capable of sending data even in 5 minutes time intervals. 

To capture, analyse and exchange data points related to feeder status, a system of data 

collection such as Measurement Aggregator, Intelligent Agents (IAs), etc., and a reliable 

bidirectional communication infrastructure are required. Communication infrastructure has 

to reliably and securely connect proposed VVO engine to data collection unit, VVCCs and 

to DMS/SCADA. 

In first steps of this research, possibility of a reliable approach for constructing real-

time load-profiles that has to be sent to integrated VVO engines through an agent-based 

distributed command and control architecture is studied. Intelligent Agents are tasked with 

applying appropriate configurations for relevant assets within a microgrid or utility’s 

distribution network. Figure 3.6 depicts the primary structure of the proposed real-time 

intelligent agent-based VVO system. Two distribution feeders are paralleled with a tie-

breaker (Breaker-1) to supply residential customers. Both feeders have Volt-VAR control 

devices at the Medium Voltage (MV) side of their transformers. Each feeder includes 

residential loads and each residential termination point equipped with a smart meter which 

captures load data (and if need be, other sample value data).  Smart meters send data to 

other network nodes from the LV side to the MV side. Here, the distributed command and 

control scheme can be visualized as three Intelligent Agents controlling integrated VVO 

application. This classification is fully dependent on agent functionalities, tasks and 

location of the component within the distribution network. Thus, the required data for VVO 

is collected, analysed and processed by IAs implanted in the system. Such agents are 

tasked with processing smart metering data, determine probable events which have 
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produced that date and communicate their findings with the main VVO Intelligent Agent, 

who in turn can determine the new configuration settings for VVO components in the 

system. 

 

Figure 3.6. Intelligent Agent-based VVO topology in a distribution network 
Note. IA: Intelligent Agent, OLTC: On-load Tap Changer, DS: Disconnector, CB: Capacitor 

Bank, VR: Voltage Regulator, SM: Smart Meter. 

The ability to communicate the event, rather than the raw AMI data, will 

substantially reduce the bandwidth requirement of the communication system, and 

improves its performance. The main responsibility of VVO-IAs shown in Figure 3.6 is to 

provide an efficient adaptive VVO management in real-time. The central core of this VVO-

IA is a VVOE that runs real-time optimization and control algorithms in order to maintain 

the voltage at the PCC (Point of Common Connection) with the residential consumers 

within ANSI C 84.1 standard [1] and CAN 3-C235-83 [2] limits (which is between 0.95 to 

1.05 per units), and optimize system voltage, power loss and conserve energy 

simultaneously by applying voltage regulation and VAR injection devices within the 

substation and/or along distribution feeders in real-time.  
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After reaching the best online optimization solution for the distribution network, it 

reconfigures the network by sending control commands to VVCCs. These assets 

implement VVOE’s commands in their task zone and if required, will send a new command 

to other IAs in the system. For instance, assume VVOE sends a command to a VAR 

injector CB-A1 agent (capacitor bank in feeder A) to inject 50 kVAR into the system in a 

specified real-time interval. CB-A1 can be considered as an agent who keeps records of 

its capacitor banks. Hence, it can decide which bank units have to be on/off to cover the 

50 kVAR. This can be done based on capacitor bank positions and data. If the requested 

task could not be implemented, CB-A1 will inform the VVOE. The latter would then be 

responsible for finding an alternative solution for the network. It has to be mentioned that 

the design and implementation of required Intelligent Agents explained in this section were 

not included in targets of this research as the main focus of this research is on proposing 

a novel smart grid-based VVO engine. More details on main features, tasks and design of 

IAs for smart microgrid application such as proposed VVO can be seen in [191] and [192]. 

Regarding communication platform, this research investigates the applicability of famed 

communication protocols such as Distributed Network protocol (DNP3) as well as new 

smart grid communication protocols such as IEC 61850 on proposed VVO. The 

communication medium can be different according to system control infrastructure. In 

[193], Narrow-Band Power Line Communication (NB-PLC) studied for smart grid 

applications such as VVO.  

3.4. Proposed VVO Topology Main Features and 
Classifications 

Figure 3.7, Illustrates the main topology of proposed approach for VVO in a feeder. 

As it is typically shown, inside the substation and along distribution feeder, Volt-VAR 

control devices and DG units are located. The distribution network feeds feeder customers 

at LV side. In brief, smart meters are connected to a Master Control Unit (MCU) which 

sends smart meter data to the system data collector and/or Intelligent Agent (IA-IED). IA-

IED sends required data of VVO Engine in quasi real-time. Then, the VVO Engine solves 

the optimization problem based on its objectives, constraints and data which has been 
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sent by smart meters. The optimal solution will be sent to the Volt-VAR control devices 

(they can also be IAs) to reconfigure distribution feeder in quasi real-time.  

 

Figure 3.7. Main structure of proposed approach for VVO for a typical 
distribution feeder 

 

Three optimization strategies can be adopted for the VVO algorithm according to 

grid planner or distribution feeder needs and/or objectives:  

• VVO confined to distribution substation: First, the VVO algorithm confines VVO 
to the substation control devices such as OLTC and switchable shunt CB inside 
substation.  

• VVO using VVCCs in substation and along distribution feeder: If the optimization 
objectives still not satisfied, the VVO engine uses VVCCs within distribution 
substation and along distribution feeder.  

• VVO using other Volt-VAR control devices: In third step, the algorithm enables 
considering the role of DGs on voltage regulation and VAR injection. At each 
operating time interval, it checks the availability of DGs in microgrid in order to 
assist VVO according to DG priorities. The priorities are defined based on the 
effectiveness level of a DG in VVO application.  

In future smart distribution networks, each node would be intelligent and would be 

able to control its system locally as a pre-emptive self-healing system. Hence, the 

adaptability of the VVO algorithm with future distributed control designs seems essential. 

Likewise distributed command and control topology, the proposed VVO is operates 

decentralized. Hence, the offered algorithm would be compatible with distributed 
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command and control structure of smart grids. Regarding other microgrid components 

such as EVs and V2Gs, Figure 3.8 illustrates the proposed VVO in the presence of EVs 

in distribution feeder. As smartening up of distribution network nodes are going to develop 

rapidly, designing a Distributed Command and Control topology for VVO in quasi real-time 

is conceivable. In a DCC structure, quasi real-time data are captured and filtered from 

termination points by data collectors and/or Multi Agent Systems. Then, the VVO engine 

optimizes the system and finds out the best configuration of the system at each quasi real-

time interval. Configuration commands are being sent by VVO engine to VVCCs along 

distribution feeder. In a more complete view, this research proposes a VVO approach 

based on new smart microgrid features such as Distributed Command and Control and 

quasi real-time AMI. 

 

Figure 3.8. Topology of proposed VVO in a typical feeder with EVs 

Figure 3.9 shows simplified topology of proposed VVO. Here, it is also assumed 

that distribution circuit is fed from an MV substation (as is mostly the case). As shown in 

Figure 3.9, quasi real-time local measurements do not need to travel from the field to the 

back-office and the new settings for VVO assets are determined locally, rather than by a 

centralized controller. This approach, might lead to less AMI cost, better system reliability 

and faster optimization process. Furthermore, this VVO strategy takes advantage of local 

dispatch-able energy sources such as V2G sources. Typically, local data that proposed 

VVO receives are active power, reactive power and voltages of system nodes. The global 

attributes that VVO engine receives from control center include, but not limited to weather 

forecast, calendar data, breaker's status, and feeder configuration. Thus, the proposed 
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technique consists of a quasi-real-time smart grid-based VVO engine that can readily 

control VVO in an integrated way through a DCC structure. Here, VVO engine tries to find 

the optimal setting of the abovementioned assets through system main variables. It 

performs power flow, calculates losses and follows load/energy consumption changes. 

The algorithm is also supported by selected measurements and different load profiles. It 

has to be mentioned that the operations of the smart distribution networks with high 

penetration of DERs significantly impact the operations of the transmission (and 

sometimes the generation) system.  

 

Figure 3.9. Basic Topology of Smartgrid adaptive VVO 

Given the fact that the centralized VVO highly depends on network topology, a new 

approach which acts on feeder level could be an efficient alternative/additive solution. As 

discussed, the main differentiator between the two approaches is the availability of quasi-

real-time local data that enables new class of optimization algorithms based on system 

local attributes. The proposed solution is able to track load changes using AMI data 

collected by smart meters at each operating time interval. Load changes could be 

calculated by the consumption data captured from meters. Moreover, the VVO engine is 

initially designed for a fixed distribution feeder, however it would be conceivable for the 

advanced VVO algorithm to observe feeder topology as global attributes that can be 

received from DMS/SCADA and/or breakers within the system and then, optimize the 

network with new configuration.  



 

40 

3.5. Predictive VVO Topology Considerations 

Figure 3.10 depicts the main topology of the proposed predictive VVO in a typical 

distribution feeder from medium voltage substation down to the termination points.  Data 

flow, as well as VVO command and probable VAR injection flows are shown in Figure 

3.10. Three engines defined for proposed predictive VVO: VVO Engine, Prediction Engine 

and CVR Engine. VVO and CVR engines deal with system loss reduction and energy 

conservation respectively. The prediction engine that in here is Neural Network (NN) 

engine, aims to predict active/reactive consumptions of loads for the VVO engines.  

 

Figure 3.10. Main topology and data flows for presented predictive VVO 

As proposed VVO, predictive VVO engine receives its required downstream data 

from data aggregators. It also obtains the required global attributes from DMS/SCADA 

and saves them to its database. Historical local AMI data has to be given to the system in 

order to predict the loads. The offline prediction engine initially predicts the active and 

reactive power loads of network load for each time stage of a day ahead. Then, VVO 

performs offline in order to find the optimal solution of distribution grid for day ahead.  On 

targeted day, the VVO engine compares the result of predicted loads with real-time data 

measured by smart meters at each time interval. If the error rate is acceptable (typically, 

less than 5 percent) at specified time interval, the engine has already the optimal 

configuration of VVO assets to gain the optimal result. Hence, it sends control commands 

to VVCCs such as OLTCs, switchable CBs and VRs to optimize distribution network. If the 

error is high on that time stage, then a sliding window is going to be activated in order to 
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primarily find the optimal solution of system with new real-time data and secondarily 

update the following load prediction and VVO optimal configuration. Figure 3.11 shows 

the sliding window for predictive VVO solution. 

 

Figure 3.11. Predictive VVO solution using VVO sliding window 

As shown in Fig. 8, a VVO sliding window will be activated when the predicted load 

is not following the real-time load accurately enough. The main task of the sliding window 

is to find the optimal solution of the grid in the time stage that high error happens and 

perform a live prediction for time stages ahead in order to update the results of offline 

prediction based on new collected real-time data. VVO online engine tries to find the best 

configuration of VVO assets within targeted frame (less than 15 minutes) based on new 

collected real-time data and the results of offline VVO. Then, it sends control commands 

to Volt-VAR control devices and updates the offline VVO after. Thus, the algorithm is 

designed in a way that could optimize smart grid and/or distribution networks locally 

through a dynamic prediction engine that is trained by different local factors such as 

active/reactive power of previous loads as well as some global attributes received from 

DMS/SCADA such as temperatures and dew points. 
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Chapter 4.  
 
Volt-VAR Optimization Main Tool Features 

As explained in previous section, one of the main targets of VVO solutions is to 

minimize distribution network losses. Typically, it is possible to classify network losses into 

technical and non-technical losses. Non-technical losses refer to losses that are 

independent from technical losses in the system. Electricity thefts, metering inaccuracies, 

component breakdown due to poor components maintenance or inaccurate calculation 

are examples of non-technical losses. The technical losses occur due to dissipation of 

energy in transmission, sub-transmission and distribution networks as well as transformer 

conductors. Transformer magnetic loss is considered as technical loss as well. As such, 

technical losses directly depend on system inherent characteristics and operational 

modes. The majority of technical losses occur in distribution networks. Hence, it is 

essential to initially understand technical losses in distribution networks and then try to 

minimize them through VVO techniques. Generally, there are two types of technical losses 

in distribution networks: fixed and variable. Fixed technical losses are typically shown 

themselves as constant heat or noise in energized distribution transformers. As this type 

of loss do not vary with current changes, it can be called “fixed”. Generally speaking, about 

25 to 33 percent of technical losses are fixed [194]. Leakage current, dielectric, open-

circuit, measurement and control device losses are some of the fixed losses in the system. 

Contrariwise, variable losses create 66 to 75 percent of technical losses [195]. They are 

proportional to the current squared.   

As this type of loss is the most effective technical loss in distribution networks, this 

research main focus is on minimization of variable technical losses. Long distribution lines, 

distribution transformer placement far from load centers, low power/load factors of primary 

and secondary feeders, bad workmanships, inaccurate size selection of grid conductors 

and transformers inaccurate load balancing and phase balancing are some of the reasons 

of variable technical losses. From the abovementioned reasons, VVO techniques are 

mostly dealing with conductor, i.e. line/cable, loss as well as transformer loss directly. 

Moreover, VVO solution indirectly affects other reasons related to distribution network 

planning, such as conductor/transformer placement and size selection, fixed/switchable 
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capacitor and VR placements. Hence, this research tries to minimize distribution network 

line/transformer technical losses and investigates the impact of proposed VVO on 

planning problems of distribution networks. 

As explained in previous sections, conventional VVCCs are the main tools of any 

VVO solution for loss reduction aim. Regarding VVCCs, voltage regulating components 

are typically installed in distribution feeders and at the main distribution substation. In 

some grids, substation transformer comprised of a tap changer that can regulate voltage 

of downstream feeder according to the load level condition. Voltage regulators are 

installed along distribution feeders to adjust voltage levels of specific nodes in the system. 

Reactive power control components such as CBs can be used in distribution substation 

and/or along distribution feeders to control reactive power flow of the system. As these 

conventional VVCCs have important role in distribution network VVO, studying their main 

features is indispensable. 

4.1. Voltage Regulating Components 

In order to maintain voltage level of system nodes within desired limits and to 

conserve energy according to CVR approach, voltage regulating tools such as OLTCs and 

VRs are used. Load tap changer of transformers and VRs are the most common voltage 

regulating tools in distribution grids. Step-type voltage regulating components are typically 

auto-transformers designed to adjust line voltage from -10 to +10 percent, i.e. per units, 

in 32 steps. In other words, each step has 5/8 percent of voltage regulation. If two internal 

coils of a voltage regulating tool be in series, it can adjust voltage up to/down to -10/+10 

percent. When these coils are in parallel, the regulation range would be from -5 to +5 

percent. Typically, each step-type voltage regulating device consists of two main parts: 

tap changing part and control part. Each voltage regulating device is equipped with 

required control system. Taps can be changed automatically under load condition through 

commands that are sending by voltage regulating device controller.  

In general, controller regulates voltage levels as well as the Bandwidth (BW) 

according to the inputs that are received by potential and current transformers. This control 

system is comprised of three main settings: voltage set-point that shows desired output of 
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voltage regulating device, bandwidth that defines difference between the set voltage and 

measured voltage and Time Delay (TD) that presents the different between a time that 

voltage runs out of the bandwidth and the time that controller execute tap change. If the 

difference between measured and set voltages is more than half of the BW value, tap 

starts to change. Typically, TDs are in 10-20 seconds in conventional voltage regulating 

devices [196]. It has to be mentioned that some grids uses a type of voltage regulating 

device called “Auto-Booster” that is a kind of single-phase voltage regulating device with 

four tap steps. Each step of auto-booster has 1.5 to 2.5 percent voltage change that leads 

to 6 to 10 percent of regulation [196]. 

Voltage regulating devices such as VRs change the winding taps of their primary 

winding to regulate voltage of their secondary winding side, i.e. primary feeders. 

Distribution substation transformers can have off-load-type tap changer on the primary 

side and on-load tap changer on the secondary side to regulate voltage of downstream 

feeder(s). No-load tap changers also known as de-energized or off circuit tap changers, 

cannot be adjusted under load but Load or On-Load tap changers (LTCs/OLTCs) can 

operate without disconnection from the circuit. Hence, the availability of on-load tap 

changer for performing quasi real-time VVO is necessary. In OLTC design with high 

voltage rating, diverter switch and a tap selector design is used in general. For low voltage 

rating, selector switch mechanism is used. Voltage regulation in OLTCs with diverter 

switch and tap selector has two steps: first, a tap is pre-selected offline according to 

system voltage needs. Then, the diverter switch, changes switch OLTC to the new tap. 

Figure 4.1 shows an OLTC with diverter switch and tap selector structure. Nowadays, the 

switching time of diverter switch is between 40 and 60 milliseconds [198]. The total 

operational time of this type of OLTC is between 3 and 10 seconds [198]. Selector switch 

OLTCs, change the taps in only one step by rotating the main body of the switch. Figure 

4.2 depicts these two OLTC mechanisms based on [198].   
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Figure 4.1. OLTC with diverter switch/tap selector structure  

 

Figure 4.2. Diverter switch with tap selector OLTC (a) vs Selector Switch OLTC 
(b)  

Conventional OLTCs are mainly resistive-based or reactive-based oil-type.  

According to their tap mechanism, both resistive-based and reactive-based OLTCs can 

be selector switch OLTC or diverter switch with tap selector OLTC.  In recent years, new 
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vacuum type OLTCs that use vacuum switching technology. Nowadays, vacuum reactive 

LTCs (VRLTCs) are widely used in distribution substations.  

Different types of voltage regulators are used in different locations along 

distribution feeder(s). Typically, 32-step single-phase VRs are widely used. Figure 4.3 

represents a single-phase VR with its main parts.   

 

Figure 4.3. Single-phase VR different parts  

Recent robust VRs can be operated for 20 years with about 2 million mechanical 

operations [200].The main types of VRs include but not limited to substation VRs and pole-

mounted VRs. Three single phase VRs can be used to regulate voltage of a three phase 

system as well. Generally speaking, VRs try to maintain voltage at Regulating Point (RP) 

that is normally selected between VR and the end of the feeder. By performing CVR, VRs 

have to keep voltage of termination points within lower limits of ANSI band. Hence, the 

regulating point has to be intently selected. The automatic voltage control is typically 

obtained by adjusting resistance and reactance of VR control panel called “Line Drop 

Compensator” or “LDC”. Figure 4.4 shows the phasor diagram of control LDC of a VR 
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based on [196].  From Fig. 4 phasor, it is simply possible to find desired voltage at the load 

( ) by knowing the BW and TD values as well as knowing resistance ( ) and reactance 

( ) values of LDC that are generally calibrated on control in volts (-24 V to +24 V). 

Resistance and reactance values for LDC can be found based on distribution feeder 

configuration.  

 

Figure 4.4. Phasor diagram of Line Drop Compensator of a Voltage Regulator  

In VR without LDC, load voltage is highly affected by the load current magnitude. 

Using LDC help VR to define set-point regardless of load current magnitude. Figure 4.5 

gives the difference between VR with LDC and VR without LDC. As it is shown in Figure 

4.5, without LDC or a continuous control, voltage level of system will change to unwanted 

voltages during light-load conditions. It has to be stated that CVR tries to define load set-

point in lower limits of ANSI standard, e.g. between 114 V and 120 V, to save the energy 

consumption. As rapid load changes may occur in distribution grids in real time, especially 

systems with high penetration of DERs, it seems essential to define a safety margin for 

lowering voltage of termination points through CVR to avoid voltage drop out of ANSI lower 

band.  

4.2. Reactive Power Control Components 

It is conceivable to say that shunt capacitors are the most installed reactive power 

control component in distribution systems. For many years, shunt capacitors have been 

used in distribution networks to regulate voltage and control reactive power flows of the 

grid. Nowadays, different shunt Capacitor Bank (CB) technologies are used for different 

smart grid optimization, and control aims such as VVO. Typically, shunt capacitor unit 

sizes are from 50 to 400 kVAR. Through banking process, they would be able to normally 
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supply 300 to 1800 kVAR in distribution systems [196]. Figure 4.6 shows a structure of a 

pole-mounted CB.  

 

Figure 4.5. VR without LDC vs. VR with LDC Example 

 Capacitor Bank Types 

In general, CBs are manufactured most in a single-phase structure. For three 

phase circuits, three single-phase CBs are connected to each other typically in Wye or 

Delta connection. There are three main types of CBs according to the configuration of CB 

fuses: fuse-less CB, CB with external fuses and CB with internal fuses. In fuse-less CBs, 

capacitor banks are initially connected as strings and then those strings are connected to 

each other in parallel. Figure 4.7 illustrates a fuse-less CB with two strings based on [202]. 

In this structure, if one of internal member of string fails, e.g. due to a short circuit, small 

current rise will occur on each capacitor unit. The reason lied in a fact that capacitor units 

at each string can be seen as series units connected to each other. The faulty unit can 

remain for a long period in the system as the faulty capacitor series group can operate in 

stable operating condition. Some of the key benefits of fuse-less CBs include but not 

limited to: need less substation space, less expensive and more resistive to external 

unpredicted outages. One disadvantages of this structure is that any bushing or internal 

fault lead CB to be switched off quickly because there is no fuse in the system. Moreover, 

CB should be turned off during loss of power of control relay.  
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Figure 4.6. Pole-mounted Shunt Capacitor Bank   

In CBs with external fuses, fuses are connected externally to capacitor. These 

fuses can isolate faulty capacitor unit in a bank. As such, other units can continuously 

operate in the system. Figure 4.8 shows structure of a CB with external fuse. This type of 

CB is commonly used in pole-mounted CBs of distribution grids. In three-phase system, 

when a capacitor unit fuse of a phase fails, voltages of other phases increase. In order to 

limit this overvoltage, limits for the kVAR size of capacitor units are defined in design of 

these CBs. The range size of these CBs is from 50 to 400 kVAR. 

 

Figure 4.7. Fuse-less Capacitor Bank Structure  

In CBs with internal fuses, the CB is built with parallel-series combination (Figure 

4.8). Current limiting fuses are installed internally to isolate faulty capacitor unit. With this 

structure, the increasing voltage caused by faulty unit would be small. The main benefits 

of this CB type include but not limited to: CB and fuses are manufactured and tested 
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together, fuses are not affected by external factors, no harmful arcing in the system and 

proper working of other capacitor units when several units are short-circuited by an internal 

fault. The substantial problem of this CB type occurs when a couple of capacitor fuses fail. 

In this condition, the whole CB should be replaced. 

 

Figure 4.8. Capacitor Bank with Internal Fuse and External Fuse Structures  

 Capacitor Bank Specifications 

The main specifications of CBs are given by standard [204]. Typically, CBs have 

to operate continuously without exceeding 120 percent of their Root Mean Square (RMS) 

voltage, 110 percent of their peak voltage, 180 percent of their RMS nominal current and 

135 percent of their nameplate kVAR. Moreover, the kVAR of CB is proportional to system 

frequency. On the other hand, CBs are designed to operate continually without interruption 

in harsh environmental conditions. The acceptable 24 hours average and normal annual 

ambient temperatures are 40 and 25 degree of Celsius for metal enclosed or multiple row 

capacitors and 46 and 35 degree of Celsius for isolated or single row capacitors 

respectively. The bushing structure of single-phase CBs can typically be single or double 

bushing. Figure 4.9 shows single and double bushing structures of CBs based on [205]. 

In general single-phase CBs ranges from 20 to 1800 kVAR [196] use one or two bushing 

structures. Three-phase CBs typically have three-phase bushing design. Using shunt CBs 

in a feeder can reduce magnitude of source current which leads to improvement of voltage 

drop between source and load. Figure 4.10 gives the phasor diagram of a feeder 

with/without CB. 
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Figure 4.9. Capacitor Bank with Single and Double Bushing Structures  

 

Figure 4.10. Phasor diagrams of system without capacitor (a) and with capacitor 
(b)  

 Shunt Capacitor Bank Location/Type Considerations 

Generally, CB can be located in different part of a distribution feeder. It can 

regulate reactive power of a group of loads, a feeder branch or a local load. Hence, shunt 

CBs reduce maximum kVA demand, KVA demand, improve feeder voltage profile and 

reduce feeder loss. Pole-mounted CBs are the most applied shunt CBs in distribution 

networks. As shown in Figure 4.6, CB vacuum/oil switches, controller, and control 

transformer are the main parts of pole-mounted CBs. The voltage rating of pole-mounted 

CBs is typically from 460 V to 33 kV [196]. The available sizes are in wide range of 300-

3000 kVAR [196]. Other shunt-CBs such as substation CBs are used in HV/MV substation 

as well. Metal-enclosed CBs are normally used in small substations or industrial fields. 

This type of CB has very high lifetime and less maintenance rather than other types of 

CBs as external environmental factors cannot affect their performances. Pad-mounted 
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CBs that are in metal enclosure are also common in North America. When system needs 

reactive power compensation, portable or mobile CBs that are typically mounted on a 

mobile truck are available in single and three-phase to decrease overloaded facilities 

and/or regions of a distribution grid. 

 Shunt Capacitor Bank Configuration 

Shunt CBs have different configurations according to system design, protection 

and operation schemes. Figure 4.11 represents some of common shunt CB configurations 

such as Grounded Wye, Ungrounded Wye, Delta and Split-Wye. 

 

Figure 4.11. Shunt CB configurations 
Note. (a) Grounded Wye, (b) Ungrounded Wye, (c) Split-Wye and (d) Delta Fixed Shunt 

Capacitor Bank vs. Switchable Shunt Capacitor Bank 

Fixed shunt CBs are typically used for system base kVAR to inject certain amount 

of reactive power continuously throughout a long-term period of time. Fixed shunt CBs are 

applied in industries with constant/semi-constant loads as well. Figure 4.12 presents the 

effect of fixed CB on voltage of a distributed load feeder. It can be resulted from Figure 

4.12 that using only fixed CBs in a system may result to overvoltage issues in light-load 

conditions.  

Moreover, it would not be possible to follow reactive power needs of the system as 

load varies throughout a day. That is the reason switchable shunt CBs are used in 

distribution networks. Switchable shunt CBs can be switched on/off in different load 

conditions. As such, fixed CBs have to be used to support light-load condition while 
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switchable shunt CBs has to be used to control kVAR of the system in other operational 

times. Figure 4.13 shows an example of fixed and switchable shunt CB usage to meet 

reactive power demand. In switchable shunt CB, typical conventional control signals for 

the switch are voltage, current, kVAR demand, power factor and time [196]. 

 

Figure 4.12. The effect of fixed CB on voltage of a distributed load feeder  

Different switchable shunt CB configurations exist according to the switch, i.e. 

circuit breaker, design. Figure 4.14 represents some of the typical switchable CB 

configurations.  

 

Figure 4.13. Fixed and switchable shunt CB operating areas  

For Volt-VAR Optimization purposes, switchable shunt capacitor banks are used 

to regulate voltage and control reactive power of the system during different operating time 

intervals. Adequate control systems, i.e. controllers, have to be joined with switchable 

shunt CBs to send switching commands (opening or closing) to the banks. 
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Figure 4.14. Switchable Shunt CB configurations 
Note. (a) Simple bank, (b) bank with/without breaker, (c) bank with/without breaker by 

automatic circuit breaker (d) banks with breakers, and (e) banks with fuse, breakers and 
automatic circuit breaker  

 Switchable Shunt Capacitor Bank Controller 

Typical switchable shunt CB control parameters include but not limited to: voltage 

(for voltage regulation), current (proportional to VAR demand), kVAR control (when load 

increases, demand increases in general), switch time (switch banks in different load 

conditions), and temperature (in some loads, kVAR demand raises by increasing 

temperature).  

New automatic CB controllers have recently provided two-way communication 

structure for smart grid applications. These switchable shunt CBs can now be switched 

on/off locally and remotely. Remote control is available through SCADA where switching 

commands are sent from control center through famed communication protocols such as 

DNP3. Moreover, recent switchable shunt CBs provide extensive data logging (normally 

up-to 10000 events [207]-[208]) that can be downloaded such as temperature, voltage, 

current, power factor, kVAR, kW, neutral current and voltage, number of switching per 

cycle, time schedule. Data logging can typically be set from 1 to 60 minutes time intervals 

for 2 to 120 consecutive operating days [207]-[208]. Recent typical CB controllers are 

comprised of several important parts such as plate LCD to locally view real-time values, 

set-points and historical data, LED buttons that show live status of the CB control plan, 

USB and/or TCP/IP ports to receive and download CB memory data to an external 

computer and/or intelligent device, and memory that is the core of CB control which takes 
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responsibility of whole CB switching actions. Most recent CBs are capable of using IEC 

61850 as their communication standard [209]-[210].  

From the abovementioned studies, it is possible to define three main Volt-VAR 

control assets for performing novel smart grid-based Volt-VAR Optimization: OLTC, VR 

and switchable shunt CBs. As recent technologies of these VVCCs are able to receive 

control commands remotely from a DMS/SCADA, it would be possible to design a VVO 

engine to send control commands to these components in the system in quasi real time. 

Proper communication standard/protocol has to be defined and reliable and secure 

communication pipes have to be selected for implementing such a VVO that is operating 

with explained VVCCs.  
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Chapter 5.  
 
VVO Objective Function and Constraints 

As stated in previous section, the main objective of this research is to design an 

efficient real-time smart grid adaptive Volt-VAR Optimization algorithm to minimize 

distribution feeder losses, improve voltage profile and conserve energy intermittently. In 

order to construct a smart grid adaptive algorithm, it is necessary to study various types 

of distributed generations and renewable resources. Hence, natural and diesel gas 

engines, Flywheel Energy Storage Systems (FESS), EVs, Micro-CHPs and PVs are 

covered in different sections of this research. Moreover, other microgrid features such as 

V2G (vehicle to grid) and/or G2V (grid to vehicle) effects, data capturing from smart and/or 

revenue meters impact on VVO are taken into account. All abovementioned technologies 

consist of technical/economic constraints that may affect VVO objectives. 

 Another key factor in proposed VVO objective is to study available Volt-VAR 

control devices in distribution networks comprehensively. In order to design an integrated 

algorithm, on-load tap changer of distribution transformers, fixed and switchable shunt 

CBs, VRs and other VVO control devices studied thoroughly and their limitations 

considered as VVO problem constraints. Moreover, proposed VVO algorithm need to be 

matched with AMI data capturing time intervals. As explained before, typical smart 

metering infrastructures are set to capture data every 15 minutes although they are 

capable of sending data every 5 minutes. In this research, both AMI time intervals are 

used in different studies. 

Generally speaking, a VVO algorithm strives to minimize network power loss and 

improve voltage profile of the system. This could be the basis of any VVO objective. 

Distribution network loss consists of two main parts: active and reactive. The active power 

loss (Ohmic loss) of the system mostly related to distribution lines and cables. As the 

active power consumed by customers’ devices, most studies have focused on the active 

power loss minimization. On the contrary, the reactive power is a real concept employed 

to explain the backside energy flow in an AC system which is the production of electric 

and magnetic fields. Some of distribution system’s reactive power resources include but 
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not limited to: synchronous generators/compensators, inductive/capacitive compensators, 

overhead lines, underground cables, transformers and inductive and/or capacitive loads. 

Reactive power in the system occupies the capacity of lines and prevents transferring pure 

active power from the sources to the network consumers. Moreover, the power flow study 

is an important tool for analysing distribution systems in steady-state operation.  Power 

flow techniques try to find the optimal flow of the system and in some cases find a mode 

which gives the lowest cost per kilowatt-hour delivered to grid customers. The main goal 

of a power flow study is to obtain voltage, angle and magnitude of each bus in a power 

system in a specific power and voltage of system load and generator. Once these values 

are being found, real and reactive power flow on each branch of a feeder as well as 

generator reactive power output can be determined by power flow analytic approaches. 

Therefore, power flow study is one of the substantial parts of proposed VVO algorithm. 

Conventional three-phase power flow as well as Back-ward Forward Sweep (BFS) 

methods is used for different studies of this research. In a more comprehensive objective 

function, CVR would be a part of VVO engine. In order to build a CVR program as a part 

of VVO, it is necessary to initially characterize loads as various loads have different 

impacts on CVR performance. This research employed ZIP (Z: constant impedance, I: 

constant current, and P: constant power) load modeling in order to model different types 

of load in a distribution grid. Feeder load profiles can be derived in order to analyse feeder 

mixed load. Furthermore, CVR has to be defined in VVO objective to let the algorithm 

focus on energy consumption reduction, peak demand reduction or both.  

As cited, most of the energy loss that occurs in a distribution system is Ohmic loss 

caused by the electric current flow through grid conductors but, the other loss which is 

worthy of consideration in VVO is transformer loss. Transformer loss consists of Ohmic 

(resistive/copper) and Core (iron) losses. Typically, the core loss in a transformer is larger 

(in magnitude) than the copper loss. Losses in transformers (excluding associated 

circuitry) vary with current of the load, which called "no-load" and/or "full-load" loss. 

Winding resistance is the key generator of transformer full-load load losses and more than 

99% of the no-load loss is generated by hysteresis and eddy current losses. Moreover, 

transformer losses can be classified into two losses, one in the windings, called “copper 

loss”, and one in the magnetic circuit, called “core loss”. This research tries to consider 

transformer loss in its VVO objective in one of its studies.  More details regarding 
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transformer loss calculations can be found in the Appendix C of this thesis. The main 

constraint of VVO problem could be summarized as: power flow constraints, generation 

limits, consumption limits, standard voltage limits, VVCC limits and smart grid-related 

constraints. 

5.1. VVO Initial Objective Function 

VVO engine is responsible for optimizing voltage, active and reactive power of the 

smart grid accordingly.  Thus, the initial objective of the VVO engine can be the 

minimization of total apparent power loss ( ) of distribution networks in quasi real-time 

intervals (kVA). This initial objective function can be seen in (5-1).  ∀ ∈ : 

, , ,
.  (5-1) 

At each quasi real-time interval, total active and reactive power losses can be 

found by (5-2) and (5-3).  

, , , 	 (5-2) 

, , , 	 (5-3) 

Here, , , , and , ,  are the active and reactive power losses of feeder line-

f and time-interval-t.  In addition,  denotes the last feeder line. If loss cost ( ) take into 

account, the main objective function can be written as (5-4).  

	 	 , ,  (5-4) 
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5.2. VVO Main Constraints 

The active and the reactive power loss determination method based on power flow 

equations are given in (5-4) to (5-7). Proofs of these equations are shown in Appendix A. 

, ,
,

, , , ,

2 , , , , ,

, , , , , ,

	 (5-5) 

Here,  

, ,
,

, , , ,

2 , , , , ,

, , , , , ,

	 (5-6) 

, , , (5-7) 

, ,
, , ,

∈

, , ,

	 (5-8) 

Here,  is the bus voltage magnitude, , is the Conductance vector of feeder line-

f in per units [PU], , are neighbour buses, , is the acceleration factor, , is the phase 

angle between bus-i and j in time-t, ,  is Susceptance vector of feeder line-f in per units 

[PU], Susceptance matrix between bus-i and bus- j, ,  is Susceptance matrix between 

bus-i  and bus- j, ,  is Conductance matrix between bus-i  and bus- j, ,  is Admittance 

of feeder line-f at time-t [PU]. On the other hand, main required constraints for solving 

integrated VVO in quasi real-time intervals are as follows: 

 Bus voltage magnitude constraint 

Constraint of (5-9) explains the fact that the voltage of each node of the system 

has to be between minimum and maximum desired values. ANSI-C84.1 [1] defines 
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standard minimum of 0.95 per units and maximum of 1.05 per units for distribution 

networks.  

, , , 	
.
0.95 . , 1.05 .  (5-9) 

 Active/Reactive power output constraints 

It is known that each node has to be within active and reactive powers of its limit.  

This fact creates operational limits for the nodes of the system. As such, (5-10) and (5-11) 

shows minimum and maximum active/reactive power limits of nodes. 

(5-
10) 

(5-
11) 

Here, is the active power (kW), and is the reactive power (kVAR), The same concept 

can be used for nodes with generators (g) and DGs.  Hence, (5-12) and (5-13) give the 

active/reactive power output constraints for nodes with DG. In (5-12) and (5-13),  

denotes Distributed Generation. These constraints show that the active and reactive 

power of nodes with DGs has to be within minimum and maximum limits. 

, , ,
(5-
12) 

, , ,
(5-
13) 

 Power (thermal) limits of the feeder constraint 

The maximum kVAs that can be transferred through grid branches, i.e. lines and 

cables, have to be considered due to the thermal limitation that branch material has.  

Exceeding above this limit would damage distribution network lines and/or cables. 
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, ,
(5-
14) 

Here, ,  is feeder line-f kVA at time-t, , shows the maximum thermal limit of line-f. 

 Active/Reactive power balance constraint 

Constraint (5-15) and (5-16) show that active/reactive powers have to be balanced 

at each node of the system due to the optimal power flow equations.  In order to find the 

active ( , ) and the reactive power ( , ) of system nodes, different methods can be used 

depends on optimal power flow method. A typical power flow uses (5-17) and (5-18) to 

obtain active and reactive power of system nodes. 

, , ,
(5-
15) 

, , , , ,
(5-
16) 

, , , , , , , , , 	
(5-
17) 

, , , , , , , , , 	
(5-
18) 

Here,  is generator,  is load, , , is reactive power injection of CB-c at time-t. 

 System Power Factor (PF) constraint 

In some operational conditions, distribution network operator needs to maintain 

Power Factor of node of a system ( , ) within desired limits (between ,  and , ).  

For this reason, (5-19) can be used.  
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, , ,
(5-
19) 

 Transformer tap changer constraints 

Transformer taps are limited. Hence, power flow should consider this limit as a 

constraint.  Moreover, each transformer tap-step is able to level-up/level-down voltage in 

specific range (∆ , ). As such, (5-20) and (5-21) has to be followed in the optimal power 

flow. Hence, the variables are OLTC taps. 

, 1 ,
∆ , Turn	ratio	of	OLTC

(5-
20) 

, ∈ , , … , 1, 0, 1, … , ,
(5-
21) 

For OLTCs with 32 taps, tap-steps are equal to: ∆ , 3125%. For offline studies, 

it is possible to consider maximum number of switching of OLTC per time interval, e.g. in 

a whole day.  For this reason (5-22) can be used. 

, ,
(5-
22) 

Here, , is transformer OLTC tap unit, , is the off-nominal turns ratio of 

OLTC, , is the maximum tap of OLTC, , , is number of OLTC tap switching, 

and , is the maximum number of OLTC tap switching from time interval-t to time 

interval-T. 

 Voltage regulator constraints 

Similar to OLTC constraints, VR taps are limited as well.  Moreover, each VR tap-

step is able to increase/decrease voltage in specific range (∆ , ).  As such, (5-23) and 

(5-24) has to be followed in the power flow. Here, the variables are VR taps. 
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, 1 ,
∆ , 	Turn	ratio	of	VR

(5-
23) 

, ∈ , , … , 1, 0, 1, … , ,
(5-
24) 

For VRs with 32 taps, tap-step is equal to: ∆ , 0.3125% and for VRs with 16 

taps, this value is equal to: ∆ , %0.625.  For offline studies, considering maximum 

number of switching of VR per time interval shown in (5-25) seems necessary.   

, 	 ,
(5-
25) 

Here, , is VR tap unit, , is the off-nominal turn ratio of VR, , is the 

maximum tap of VR, , , is number of VR tap switching, and , is the maximum 

number of VR tap switching located at bus-i from time interval-t to time interval-T. 

 Capacitor bank constraints 

For Capacitor bank constraint, it is possible to consider each CB with ,  banks 

such that each bank has ∆ ,  kVAR capacity as shown in (5-26). Thus, CB total capacity 

( , ) can be obtained by (5-26). Here, , is the maximum bank of each CB.  Moreover, 

(5-27) has to be followed in order to meet the reactive power demand such that the total 

reactive power provided by CBs does not exceed the required reactive power of the 

system.  This could avoid overcompensation issue in the system, especially in light-load 

conditions. The maximum value ( , ) are typically found by distribution network 

planners while finding optimal location and size of fixed and shunt CBs in the system. 

Here, denotes last bus with CB. If there is number of switching per day limit for CB, (5-

28) can be used. In (5-28), , is switching number and is the maximum permitted 

number of switching of that CB in a day. Hence, the variables are banks of CB. 
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, , ∆ , , , 0,1,2, … , ,
(5-
26) 

, ,
(5-
27) 

,  
(5-
28) 

5.3. Moving Towards Comprehensive VVO Objective 
Function 

In order to reach to a comprehensive VVO objective function, other VVO sub-parts 

as well as constraints have to be taken into account. Each VVO study requires its own 

objective and constraints due to network topology, available components and operational 

condition. In some studies, VVO needs to minimize voltage deviation of system nodes as 

well. This could lead system to reach to operator set-points with less voltage deviation. In 

other words, by putting this sub-part in VVO objective function, it is possible to force 

VVCCs in a system to keep voltages of system nodes around desired set-point. This can 

be written as (5-29). 

	 . 	 ,
1
2

| |
(5-
29) 

Here, , is the apparent power loss of each line. In addition, denotes last line 

of the system and is voltage set-point and is the voltage of node-i. In another case, 

while capacitor operating cost is as important as loss cost, it is possible for VVO to 

minimize the operating cost of CBs in the system by putting it as a VVO sub-part shown 

in (5-30).  In V2G study, VVO can also consider the operating costs of V2Gs ( ) that 

can inject reactive power to the system in its objective function as (5-31).  In (5-31), the 

first sub-part of the objective function shows energy loss cost of the system. 
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∀ ,								 . , , 	
(5-
30) 

. , , , ∆

, ,

(5-
31) 

Here, . is the objective function of studied feeder, is the loss cost of line-l 

($/kW), is the operating cost of CB located at bus-i ($/kVAR), ∆ is the operating time 

interval, and , is the reactive power injected by V2G at bus-i.  As stated before, it is 

now conceivable to see CVR as a part of VVO objective.  For this reason, different 

objective functions can be used for the VVO engine. First, a maximization problem can be 

defined for VVO engine as presented in (5-32). This objective function maximizes loss 

cost saving and CVR values.  

. ∆
(5-
32) 

Here,  is the initial loss cost of the system without VVO ($), is the loss and 

the operating costs of CBs and ∆ is the value of saved energy by employing CVR 

method ($).  As such, system loss costs ( ) can be found using (5-33). 

	 , , 	 , , , 	
(5-
33) 

         Here, 	 , shows the active power loss of node-i at time stage-t (kW),  

, gives the loss cost of the grid ($/kW), 	 ,  is the kVAR of switchable CB (kVAR), 

,  is the operating cost of CB at time interval-t ($/kVAR) and , is the operating 

cost of CVR using OLTC or VR ($).  Moreover, i denotes node numbers (i=1:I) and t 

denotes time intervals (t=1:T).  Here, T can be equal to 96 time intervals if the study is for 
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a complete day and data capturing time intervals are set every15 minutes. Another VVO 

objective function considering CVR voltage constraint can be written as (5-34).  In (5-34), 

the VVO engine tries to minimize distribution network line losses ( , ), minimize voltage 

deviation of the system from the set-point and minimize the voltage difference between 

the last node of the system ( ) and CVR voltage set-point ( ) that typically is in 

lower limits of ANSI band.  Moreover, (5-34) can minimize transformer loss ( ) exists 

in the system.                                               

. 	 ,
1
2

| | | | 	
(5-
34) 

In order to construct a more complete objective function, and in cases where 

operators intend to have a solution with fewer VVCC number of switching,  it is possible 

to consider all VVCC operating costs in the objective function of proposed VVO.  Typically, 

OLTC and VR Loss costs depend on the value of switching at each quasi real-time interval. 

This objective function can be written as (5-35) where VVO sub-parts can be obtained by 

(5-36) to (5-39). 

	 . , , , , ,
(5-
35) 

, , ,
(5-
36) 

, , , , , ,
(5-
37) 

, , , , , ,
(5-
38) 

, , , , , , , , ,
(5-
39) 
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In time interval-t, , is the loss cost ($), , is the VR operating cost ($), 

, is the OLTC operating cost ($) and , is CB operating cost ($).Moreover, , , is 

the active power loss of line-l at time-t (kW), is the loss price ($/kW), , is the switching 

cost of VR-r at time-t ($/switch), ,  is the switching cost of OLTC-w at time-t ($/switch), 

is binary value (0: same tap, 1: new tap) in OLTC ( , , ) in VR ( , , ) and in CB 

( , , ), , is the operating cost of CB-c at time-t, , is the number of CB bank, and 

, , is the size of each of CB-c bank. In more complete approach, CVR cost minimization 

is added to the above objective function. This objective function that is shown in (5-40) 

would be able to minimize distribution network loss, VVCC operational and CVR costs 

simultaneously. The first four sub-parts can be found through (5-36) to (5-39).  The last 

VVO sub-part that is CVR cost can be found by using (5-41). 

	 . , 	 , , , , , , 	
(5-
40) 

, . ,
1

∆ ,
. ,

1

, ∆ ,

(5-
41) 

In order, . , ∆ , and ∆ are cost of saved energy by CVR, energy load 

consumption through CVR, CVR Factor and Voltage Reduction in CVR. For any CVR 

study, it is necessary to model distribution network loads precisely. Hence, ZIP load 

modeling, shown in (5-42) and (5-43), is used in this research to calculate active and 

reactive power of loads at each operating time stage.  

(5-
42) 

(5-
43) 

Here, and are initial active (kW) and reactive power (kVAR) values.  Moreover, 

	is the initial voltage and Vis the voltage of the system. ,	 	and 	are active power 

ZIP coefficients and ,	 	and 	are reactive power ZIP coefficients.  Changes in energy 
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consumption (∆ ) as well as voltage reduction (∆ ) can be found by (5-44) and (5-45). By 

dividing (5-45) and (5-45) CVR Factor ( ) is gained which presents the ratio of energy 

consumption and voltage reduction (5-46). 

∆ % 100
(5-
44) 

∆ % 100
(5-
45) 

∆
∆

(5-
46) 

Notwithstanding the abovementioned steps, it is possible to present a 

comprehensive objective function for proposed VVO engine. This comprehensive 

objective function is given in (5-40) but the method of finding each VVO sub-part can be 

defined through (5-47) to (5-51). 

, , ,
(5-
47) 

, , , , , ,
(5-
48) 

, , , , , ,
(5-
49) 

, , , , , , , , ,
(5-
50) 

, . ,
1

∆ ,

(5-
51) 
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In (5-47) to (5-51),	 , ,	 , 	&	  are VVO sub-part's weighting factors. These 

factors enable the VVO engine to weight each sub-part according to its importance level, 

i.e. effectiveness, at each operating time-interval in distribution network. It is possible to 

assume that these values are known for network operators as they need to find the value 

and effectiveness of each VVO sub-parts before any optimization. However, this research 

proposed a Fuzzification technique to compute the effectiveness of each VVO sub-part 

according to distribution network operator desired settings within VVO engine algorithm. 

Hence, VVO sub-part's weighting factors can be found through Fuzzification.  For 

instance, (5-52) explains the Fuzzification algorithm for loss cost minimization sub-part.  

:				 , , → 10

										 :				 	 , , 			&		 	 , , 				

→ 					 , ,

, , , ,
10	

		 :				 , , → 0

(5-
52) 

If the loss ( ) found by the VVO engine is less than the minimum desired value 

of loss ( , ) the weighting factor would be equal to 10 but, if the weighting factor is 

more than the maximum desired value of loss ( , ) the weighting factor would be 

equal to 0.  If the loss is between desired minimum and maximum range, the system will 

find a weighting factor between 0 and 10 according to (5-51). Minimum and maximum 

desired values for other VVO subparts such as: ,	 ,  and  have to be defined 

in the VVO engine by the operator to allow the engine finding the optimal weighting factors 

of each objective function subpart, according to system operational needs for each 

operating time interval. In other words, this VVO sub-algorithm ensures that the value of 

power loss minimization is set correctly in compliance with network operator desired 

values and/or distribution network needs. 

In brief, the comprehensive objective function subparts attempt to minimize the 

loss, VVCC operational and CVR costs of the grid according to network constraints at 

each quasi real-time interval. In BFS power flow method, current injection ( , ) of each 

node of the system at each quasi real-time interval can be found using (5-52).  
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Here,	 denotes iteration number. The relationship [B] and the bus-injection to branch-

current [BIBC] matrices can be solved by Kirchhoff’s Current Law (KCL) in Backward-

Forward Sweep (BFS) distribution load flow technique.  Furthermore, the branch-current 

to bus-voltage matrix [BCBV] can be obtained by Kirchhoff’s Voltage Law (KVL). By initial 

estimate for node voltages, BFS finds load and line currents and by calculating current, 

voltages of all nodes of system, i.e. solution of BFS load flow, can be found using (5-53) 

to (5-56) through iterative steps till convergence. Here,	0 denotes initial value.  BFS 

converges when the difference of voltages between two consecutive iterations would be 

less than epsilon (typically less than 10-3 or 10-4). The active and reactive power losses 

can be found by knowing voltages of nodes and currents of branches.  More details 

regarding BFS load flow method can be found in Appendix II. 

,
,

,

∗
, ,

,

∗
(5-
53) 

(5-
54) 

∆
(5-
55) 

∆
(5-
56) 

5.4. Other VVO Constraints 

Regarding EV studies, it has to be stated that the voltage of nodes with EV 

charging stations and EVs ( , ) have to be between minimum and maximum voltages 

( ,  and , ) according to [89]. Moreover, the active power of EV ( , ) should be 

less than maximum charging limit of EV ( , 	). In other words, the active power of EV 

cannot exceed maximum charging limit of EV due to physical constraint [179]. These 

constraints are shown in (5-57) and (5-58) respectively.   
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, , , 89
(5-
57) 

										0 , , 179
(5-
58) 

Moreover, in case of reactive power injection by EVs, (5-59) and (5-60) can be 

used. Thus, the reactive power injection to the grid, that has negative value by itself 

( , ), should be less than the capacity of maximum inverter reactive power generation 

( , ).  

0 , ,
(5-
59) 

∀ 1,… , 		 		 	 , , , , , , , , 	
(5-
60) 

For economical/operational constraints for EV studies, constraint shown in (5-61) 

limits the operating expenses of CBs to a budget ( ) defined by distribution 

network planners ($). As an operational constraint, (5-62) is used to limit the CB and EV 

charging station expenses. 

, ,
(5-
61) 

, , , , 	
(5-
62) 

As stated before in (5-12) and (5-13), active and reactive power of system nodes 

with DERs have to be between defined maximum/minimum range in DER studies, such 

as Micro-CHP/PV penetration study. Moreover, the voltage of system nodes (n) with DERs 

( , , ) have to be within pre-defined minimum ( , , ) and maximum ( , , ) range 

as shown in (5-63).  
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, , , , , ,
(5-
63) 

As mentioned before, by receiving data from AMI, the VVO engine runs its 

algorithm and performs load flow within each optimization cycle to avoid constraint 

violations. The algorithm seeks the optimal solution of Volt-VAR control assets at each 

iteration step. Other DER considerations for VVO studies are explained in the next chapter 

of this thesis. 
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Chapter 6.  
 
Microgrid Sources in Volt-VAR Optimization 

In recent years, environmental and economic concerns as well as power quality, 

and reliability issues in conventional distribution networks, have led evolutionary changes 

to generation/load interactions of distribution networks. Recent distribution grids tend to 

rely on Distributed Energy Resource (DER) generations to meet growing needs of demand 

with more emphasis on efficiency, reliability and quality of service. In general, DERs are 

small electricity and/or heat generating units that can be installed close to loads in order 

to supply a part of load electricity/heat needs. Most types of DER technologies include 

generator, energy storage and load control. In microgrids, loads and DERs are aggregated 

as a system to provide electricity and heat through a distributed command and control 

infrastructure.   

Typically, microgrids are connected to the traditional grid (Macro-grid) but they are 

able to be disconnected from traditional grid autonomously and operate in island mode to 

supply a part of grid without interruption to increase system reliability and resiliency. 

Microgrids can be comprised of various renewable resources such as solar (PV), wind, 

distributed generation (DG) such as micro-turbine, natural gas-engines, and DERs such 

as Micro-Combined Heat and Power (Micro-CHP) and energy storage systems. Figure 6.1 

shows microgrid different levels in a typical distribution network. Moreover, employing 

local energy sources to supply local loads lead to loss reduction and efficiency 

improvement in distribution grids. In brief, the availability of reliable distributed command 

and control, communication infrastructure, local generation, power electronics, energy 

manager and protection are the key factors that let microgrids to operate semi-

autonomously. Although there is still a long way to reach to a pre-emptive self-healing 

grid, as a long-term target of microgrids, advancements in microgrid component 

technologies have made new energy optimization and conservation possible.  
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Figure 6.1. Microgrid levels of operation in a typical distribution network 

VVO, as a part of smart distribution network optimization solution has to operate 

in-line with microgrid key features. As such, new VVO techniques require to be integrated 

with microgrid sources and loads. Moreover, they need to function in compliance with 

microgrid control and communication topologies using recent protocols and/or standards. 

The main aim of microgrid control is to provide control over network and ease grid with 

autonomous components. Microgrid control enables interface switch of the system to 

island microgrid during fault, power quality and other network unintentional events. By 

clearing fault and/or event, microgrid control has to re-connect microgrid to the macro-grid 

autonomously. Moreover, each DER is able to control power in different microgrid 

operating modes. For instance, DERs employ power vs. frequency droop controls to follow 

required demand during microgrid island mode of operation.  This control provides 

frequency load-shedding when there is not adequate generation in the system. In addition, 

each DER has voltage control to ensure system stability.  Microgrid voltage control aims 

to ascertain that there is no large circulating reactive power flowing between DERs, 

especially in microgrid with high penetration of DERs.  For this reason, voltages vs. 

reactive power droop controllers are employed. Voltage set-point can be defined based 

on the reactive powers generated by DERs. As kVARs become capacitive, local voltage 

set-point decreased but inductive kVARs provide voltage rise in set-point. 
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It has to be stated that microgrid components are following peer-to-peer, plug-and-

play architectures to ease system usage, increase the efficiency of the grid as well as 

increase grid power quality.  As such, DERs can be connected through a peer-to-peer 

structure to their local control systems. This distribution control topology lead system to a 

higher level of reliability compared with centralized control or master-slave topologies.  On 

the other hand, microgrid component’s plug and play structures let microgrid expansion 

without re-structuring the network. Moreover, reliability and maintenance of a grid with 

plug and play components are much higher than other grid components with rigid 

structures.  In order to smarten-up distribution networks, it is possible to control different 

microgrids that are connected to each other through real-time data of DERs and loads. 

AMI infrastructure provides the opportunity to capture required data of DERs and loads 

for control and optimization purposes. Nowadays, microgrid dispatch is no longer based 

on the number and type of DER units. In conventional control, a control center or 

dispatching center, dispatches all generating unit active and reactive power outputs to 

follow system demand. This approach may not be doable in distribution networks with high 

penetration of generating units. In a distribution system with microgrids, each microgrid 

can be seen as a unique source with known active/reactive power generation or 

consumption.  

In microgrids with high penetration of sources such as PVs, intermittent generation 

may cause stability issues. Using DERs can decrease power fluctuations that might be 

created by these types of sources. Moreover, storage systems are needed for reserve 

energy when there is no solar radiation. As such, a microgrid including high penetration of 

PVs is mostly integrated with local generations and storage. The DER in microgrid with 

high penetration of PVs can control active and reactive power flows between microgrid 

and distribution grid. Moreover, it can supply power when PVs are not available. On the 

contrary, the inverter-based energy storage enables generation to be connected as quickly 

as possible to the microgrid without inverter interference as generation needs fast 

response of inverter. In microgrid island mode, high penetration of PVs may cause 

different issues. For instance, microgrid may face with power generation more than the 

amount that system requires. Energy storage integrated with PVs can help microgrid to 

store extra power generated by PVs. Another method is using power vs. frequency control 

to reduce the power output of PVs in light-load islanding operating scenarios. A proper 
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power vs. frequency controller, enables automatic generation reduction of PVs when 

frequency of the system increases in microgrid light-load island modes. Moreover, it sends 

commands to the storage to be charged to control PV outputs effectively. In brief, 

distributed command and control is widely used in microgrids to perform local control over 

system components and dispatch distribution grids according to microgrid operational 

requirements. 

Reliable and secure bi-directional communication infrastructure is another major 

feature of successful implementation of smart microgrids. Typically, three communication 

layers are used in microgrids. Wide Area Network (WAN) that can be based on 3G/4G, 

Ethernet, Fiber Optics, etc. supports transmission grids. For distribution networks, 

Neighbor Area Network (NAN) and/or Local Area Networks (LAN) are typically used. For 

customer side, i.e. termination points, Home Area Network (HAN) is used. IEC 61970 

which focuses on common information model and energy management, IEC 61968 which 

focuses on distribution management, and IEC 61850 that is for power automation are 

some of the standard of WAN networks. ANSI C12.22 and IEEE 802 are some of the well-

known standards of LAN networks and ZigBee is the most applicable protocol of HANs. 

The main standard of microgrids is IEEE 1547 that is Standard for Interconnecting 

Distributed Resources with Electric Power Systems [211].  IEEE 1547 covers standards 

of different microgrid aspects such as design, interconnection, monitoring and operation 

of microgrids in normal and island modes.  Moreover, IEEE 2030 provides a guide for 

smart grid interoperability of energy technology and information technology operation with 

the power system, and end-use applications and loads [79]. The IEC 61850 standard [181] 

is one of the famed standards for automation of substations through Ethernet LANs in 

smart grids. IEEE 802.11 [211] shows that with the recent advancement in wireless 

communication technologies through Wireless LAN (WLAN) or Ethernet LAN, it is now 

conceivable to employ IEC 61850 standard in distribution level.  IEC 61850-7-420 is a part 

of IEC 61850 standards that intends to give complete object models that are required for 

DERs [181]. It applies communication services mapped to MMS under IEC 61850-8-1 

standard [181]. 

Therefore, the compatibility of the communication standard/protocol of smart grid-

based VVO solution with communication standards/protocols of microgrid technologies 
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and components is necessary. As explained, proposed VVO topology is compatible with 

smart microgrid distributed command and control topology. Moreover, the control of 

voltage and reactive powers of smart distribution grids through conventional and new 

VVCCs can make VVO more efficient. In brief, this research tries to study the impacts of 

new smart grid-based VVO technology on smart distribution grid as well as the impacts of 

smart microgrid components on smart grid-based VVO. For this reason, different microgrid 

sources such as DG, FESS, Energy Storage, Micro-CHP/PV, EV and V2G are considered 

as grid components and the impact of them on proposed VVO engine is investigated in 

different studies.  Moreover, proposed VVO engine tries to assess if microgrid sources are 

able to increase VVO efficiency or not. 

6.1. EVs in Electrical Distribution Networks 

Generally speaking, penetration of dispatch-able resources on customer side or 

co-generation loads such as EV has brought new opportunities as well as challenges to 

distribution networks. EV as one of microgrid sources has rapid growth in North America.  

Although distribution planners intend to provide command and controls strategies to adjust 

co-generation impacts on loads but dispatch-able energy sources can be a tool for system 

service optimization. As such, new studies have shown the fact that new inverter 

technologies could provide reactive power injection/ absorption opportunity for microgrids 

[91]-[96]. Using these types of technologies such as Vehicle to Grids (V2Gs) with reactive 

power support capabilities have considerable impacts on the optimization, reactive power 

need, the size and the number of switchable shunt CBs in distribution networks as it will 

be possible to employ a percentage of EVs as reliable reactive power generating sources 

in V2G mode to reduce active and/or reactive power loss and conserve the energy 

consumption in the system.   

In general, EVs could be classified based on three main charging levels [83] as 

well as on their technology shown in Table 6.1. Large penetration of EVs at different 

consumption levels and within various locations (house, workplace, shopping centers) 

could lead to salient changes in distribution network demand and daily load profile.  
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Table 6.1. EV Charging Levels based on [216] 

AC Level 1 AC Level 2 AC Level 3  DC Level 1 DC Level 2 DC Level 3  

120V, 1.4 Kw 
(12 A) 

120V, 1.9 kW 
(16 A) 

240V, up to 
19.2 kW (80 A) 

>20 kW, 
single and 3 

phase 

200-450 V DC, 
up to 36 kW (80 

A) 

200-450 V 
DC, up to 90 

kW 
(200 A) 

200-600 V 
DC, up to 
240 kW 
(400 A) 

Many research studies have tried to evaluate the profile and the trajectory of these 

changes based on different EV penetration levels [87]-[89] which could be an expedient 

measuring factor. Generally speaking, when an EV injects reactive power into the grid, it 

may raise distribution feeder capacity. It may improve voltage profile and power loss if 

there is no overcompensation of the reactive load. It may also lead to an increase in 

voltage, which results in an increase in loads. This increase in load may be either greater, 

or smaller than the reduction of losses. Hence, the overall input of kW in the system may 

either increase, or decrease. Power flow, that is run within VVO algorithm covers these 

following points such as system overcompensation, load rise and overall input of kW. EV 

charging stations may follow different operating modes [84]-[88].  Figure 6.2 illustrates 

different operating points of AC/DC inverter of an EV. The most common EV operating 

scenario is P>0, Q = 0 (on the border between Quadrant I and IV) which shows that EV 

consumes only the active power of the grid. Another possible operating mode of EV 

inverter enables EVs to inject reactive power into the grid (Quadrant IV) while still 

consuming active power of the grid for charging [91]-[94], [96].  This leads to the rise in 

distribution feeder capacity, improvement in voltage profile and power loss reduction.  

The topology of the bidirectional charger needs minimal changes in order for it to 

be suitable for reactive support [95].  Single phase inverters have been tested for their 

ability to inject reactive power into the network in [212]-[213]. According to these research 

studies, if the voltage rate of the dc-link capacitor of the inverter increased at least 3% it 

would be possible to inject VAR.  Moreover, the current ripple rate of the dc-link capacitor 

is strong enough for inverters to operate in capacitive mode. It should be mentioned that 

the total losses of the AC/DC converter could be slightly increased by reactive power 

support in normal operation of the charger [95] but the EV battery and the input inductor 

current are not affected by capacitive operation at all [92].  
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Figure 6.2. Active and reactive power generation quadrants of an EV 

Moreover, studies have shown that the DC-link capacitor could be capable of 

supplying reactive power into the grid without engaging the EV battery [95]. Thus, VAR 

injection by EV inverters will not cause any degradation on EVs battery life [93]. This 

important study shows that EV charging stations could be one of the future candidates for 

reactive power injection into the grid even when electric car is not connected to the 

charging station. As shown in Figure 6.2, the amount of reactive power that an EV charging 

station can inject in the charging mode is confined by the charger power limit and the 

active power drawn from the grid. It is clear that if an EV is using the maximum active 

power from a charging station, this station cannot generate reactive power but as the 

charging stations are in idle mode most of the time, they could inject reactive power into 

the grid when required. Moreover, the charger can be rated at 10% to 20% higher power 

than the maximum real power drawn during charging to make the charger capable of 

injecting VAR during all operating conditions [95]. Therefore, one might need to 

acknowledge this feature as one of EV’s potential advantages. This research tries to 

assess EV reactive power generation effect on VVO and more specifically, on the VAR 

injection amount and cost of CBs in one of its studies. Additionally, the proposed VVO 

attempts to find the optimal VAR injection of CBs and EV charging stations with VAR 

injection capability.  Hence, the research ignores the economics and/or regulatory issues 

in terms of desirability or willingness of stakeholders (Grid Operators, EV Car 

Manufacturers and Drivers) to enable V2G as a mainstream technology and/or solution. 
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6.2. Micro-CHP/PV in Smart Distribution Network 

Penetration of DERs throughout smart grids and/or distribution feeders has raised 

grid complexities as well as uncertainties that affect conventional monitoring, optimization 

and control systems. Hence, electric power utilities are trying to verify the impact of DER 

penetrations on their monitoring, control and optimization systems. As mentioned before, 

DERs such as Micro-CHPs or PVs are used for different operational aims. PV modules 

supply residential buildings with clean active power while Micro-CHP units can provide 

both heat and electricity. Prior to investigating the impact of different Micro-CHP/PV 

penetration levels on different VVO sub-parts, it is necessary to initialize Micro-CHP and 

PV types and penetration levels.  

In one of the studies of this research, two different types of Micro-CHP units: Heat 

Led with electricity rejection and Electricity Led with heat rejection are considered. The 

range of Micro-CHP is considered between 1 and 3 kWe. As most Micro-CHPs are heat 

led, the ratio between heat led Micro-CHP and an electricity led Micro-CHP assumed to 

be 2.5 in Micro-CHP/PV study of this thesis in Chapter 12. Moreover, present percentages 

of PV, Electricity Led Micro-CHP and Heat Led Micro-CHP along studied distribution 

feeder assumed to be equal to 30, 20 and 50 percent respectively. Different penetration 

levels is considered to check the impact of Micro-CHP/PV units on presented smart grid-

based VVO: Normal, High and Very High. At each penetration level, VVO engine strives 

for optimizing the grid and finding the optimal response of each VVCC. The active power 

generation profile of micro-generation comprised of PVs, heat led and electricity led Micro-

CHP units in the case study for all quasi real-time intervals resulting from the AMI data. 

6.3. Community Energy Storage (CES) in Smart Grids 

Community Energy Storage (CES) is one of the recent advanced smart grid 

technologies that provide distribution grids with lots of benefits in terms of stability, 

reliability, quality and control. As it benefits both costumers and utilities, this technology 

has become a crucial element of recent microgrids. CES is typically located at the edge 

of the grid (rather than distribution substation), close to customers and DERs to smooth 

the impacts of intermittent DERs such as PVs or other smart grid components such as 
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EVs and help integration of these sources to the smart grid. The main concept of CES 

initially used in HV/MV substations equipped with a community energy storage batteries 

that can give advantages much more than conventional substation batteries. This type of 

CES could provide regional control benefits at transformer/feeder levels. New types of 

substation CES units could provide voltage regulation though their four quadrant inverters 

without need to have OLTC in substation anymore. In recent years, this concept became 

more applicable in customer side and DERs. The main tasks of CES in distribution 

networks can be summarized as peak-shaving, smooth DER’s intermittencies (output 

shifting/leveling), power quality improvements (voltage and reactive power supports), 

islanding during outages, frequency regulation and etc. Typically, a CES consists of a 

battery (mostly lithium ion in a battery box), a four-quadrant inverter (in grid inverter panel), 

and a measurement/control system (in meter and breaker panel) that includes Battery 

Management System (BMS) and inverter monitoring/control. The main difference between 

CES and DGs lies in the fact that CES has a fully dispatch-able four-quadrant inverter that 

enables it to bi-directionally exchange active and reactive powers. In other words, CES is 

able to regulate voltage, frequency and inject/absorb reactive power to/from the grid.  

Figure 6.3 present the main structure of CES inspired from [214]. 

The operation of CES is very simple. CES systems store energy in their batteries 

and supply active or reactive power due to system active/reactive demand(s). CES can 

be considered as a backup power of a certain group of residential houses as it can supply 

power for a short period while discharging. Typically, the voltage rates of CES at LV side 

is 240/120 V AC. Moreover, the rated power is typically 25 to 50 kW [215], and the rated 

energy for 25 kW is from 25 to 75 kWh and for 50 is from 50 to 150 kWh. In other words, 

the discharge time of most CES system are from one to three hours at each operating 

cycle. Typically, the discharge power is equal to the rated power but charging power has 

to be less than or equal to the rated power. By dividing rated energy and rated power, 

discharge time is obtained. Typically, the charge time has to be less than two times of the 

discharge time [214].  
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Figure 6.3. The main structure of Community Energy Storage System  

Generally, CES such as any battery energy storage systems has three modes of 

operation: discharge, standby and charge. According to the four-quadrant inverter 

capability, CES discharge can be fully active power, active/reactive (inductive) and 

active/reactive (capacitive). VVO prefers CES systems more than switchable CBs as they 

are able to supply the active power. In addition, VVO prefers CES systems more than DGs 

as well because, CES systems provide reactive power supports and other benefits to the 

grid. As one of the most important tasks of CES can be peak shaving, VVO can help CES 

to discharge during peak quasi real-time intervals. This could definitely benefit VVO as 

well. The second mode of operation of CES systems is standby mode. In this operating 

mode, the CES systems are generally disconnected from the grid but they are in standby 

and ready to be integrated to the grid while system needs them. Due to the concept of 

four-quadrant inverters explained in section 6.1, it is possible to say that these inverters 

may inject/absorb reactive power into the system while they are in standby mode (P=0, 

Q<0 or Q>0). This could create a new mode of operation for CES in future. For instance, 

VVO could send a control command to a standby CES to be connected to the grid and 

inject reactive power. This suggested mode of operation needs further technical/economic 

investigations.  

The last CES mode of operation is charge mode. Typically, CES system charge in 

very light load conditions. VVO can help CES to charge in light load quasi real-time 

intervals as well. As explained, the charge time has to be typically less than two times of 
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discharge time. From VVO power loss minimization point of view, as CES consumes 

active power in charge mode, active power loss increases slightly but as power loss level 

is very low in light load condition, the total impact of CES charge mode to the system is 

not significant. From CVR point of view, fewer active power consumption leads to more 

energy conservation. As such, one may argue that extending CES charge time very close 

to two times of discharge time and setting four-quadrant inverter to consume the fewest 

possible active power to charge batteries that comes with reactive power support can be 

more beneficial to smart grid-based VVO during light loads. Regarding this argument, one 

has to be reminded that the value of VVO objective function is at its lowest rate during 

very light load condition. Hence, this won’t be much beneficial to the whole system if 

operating cost of CES take into account as well. Moreover, the impact of time-consuming 

charge on CESS battery efficiencies has to be investigated.  

In brief, CES systems provide different intelligent layers in terms of energy 

management, feeder optimization and local control to the grids. This could definitely help 

VVO objectives. Moreover, as most of new CES communication technologies are based 

on DNP3 and IEC 61850 protocols/standards, proposed VVO engine in this research can 

be integrated with CES control system. For instance, VVO would be able to find CES 

discharging control commands for peak shaving during peak time intervals.  
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Chapter 7.  
 
Conservation Voltage Reduction (CVR) 

Nowadays, the advent and the expansion of smart grid technologies have 

facilitated the adoption of energy efficiency technologies in electric distribution networks. 

The organic growth of this well-designed layer of intelligence over utility assets enables a 

range of smart grid's fundamental applications to emerge [3]. Faced with diverse 

technological, organizational, and business issues that adversely affect the bottom line, 

electric power utilities are contemplating immediate changes and/or upgrades of their 

technologies, business processes, and organization [4]. As explained before, many 

electric power utilities have begun upgrading and improving the operation of their 

distribution grids using smart grid technologies such as EMS, DMS, SA, and AMI in recent 

years. Others intend to overhaul and/or upgrade their grids using the aforementioned 

technologies. In general, electric power utilities seem eager to continue integrating novel 

smart grid functionalities based on their priorities and road maps.  

However, applying smart grid components and technologies necessitate electric 

power utilities to seek new optimization and energy saving techniques in-line with the yet-

to-be-integrated smart grid technologies. The primary concern of electric power utilities is 

to find cost-effective solutions for optimal operation of their existing grids and then, to 

specify the best short-term and long-term plans to update and expand distribution 

networks according to their smart grid technology development plans. As explained 

before, one of the well-known energy saving techniques that has been taken into 

consideration by many utilities in the last two decades is "Conservation Voltage 

Regulation", "Conservation Voltage Reduction" or "CVR". ANSI C 84.1 standard [1] has 

defined the acceptable ranges of voltage at termination points (e.g. 114-126 V in North 

America). Based on that, CVR tries to decrease consumer's voltage level into the lower 

limits of ANSI range, i.e. 114-120 Volts, to reduce energy consumption. CVR is not a new 

concept as it had been used for many years by electric power utilities for load reduction 

purposes especially in peak times. It had been common to lower voltage of high 

consumption loads such as industrial machines to decrease aggregated load of the 

system during peak hours. Despite that fact, CVR revived in another form when utilities 
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realized that many of their distribution network feeders in United States supplied a higher 

voltage level to termination points, i.e. consumers receive 120.5 V power on average 

[217]. The main reason for that phenomenon was electric power utility’s obsession with 

supplying flawless power to their customers, as well as significant limitations in their 

monitoring technologies. Moreover, it was revealed that many other distribution utility 

feeders were working at upper levels of ANSI band, i.e. 120-126 V [218]. Hence, electric 

power utilities contemplated again the option of lowering the voltage level of consumption 

in order to achieve energy conservation as well as demand reduction. Figure 7.1 depicts 

CVR voltage reduction compared with conventional voltage regulation. 

 

Figure 7.1. Conservation Voltage Reduction (red) vs. conventional voltage 
regulation (blue) 

As future CVR techniques acknowledge CVR as an inseparable part of VVO 

technologies, it would be necessary to investigate the requirements and challenges, as 

well as pros and cons of these novel CVR approaches for future distribution networks. 

This chapter aims to assess novel smart grid-based CVR technique benefits and 

challenges from design to implementation step. 
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7.1. Impact of VVO Topology on CVR 

As part of VVO engine, new CVR techniques need to follow VVO topology. In that 

regard, it is possible to classify new VVO approaches as Centralized VVO [32], [52], [74]-

[75], [81], [119], [149] or Decentralized VVO [36], [45], [77], [80], illustrated in Figure 7.2. 

As explained before, the processing system is placed in a central controller unit such as 

DMS in centralized VVO. The DMS uses related measurements taken from utility 

subscribers supplied to it from either field collectors or directly from MDMS, to determine 

the best possible settings for VVCCs to achieve the desired optimization and conservation 

targets. These settings are then off-loaded to such assets through existing downstream 

pipes, such as SCADA network. It can be interpreted from [219] that centralized VVO 

approach is in accordance with coordinated control and monitoring of EMS/SCADA of 

distribution networks that is mostly centralized in nature. Hence, it seems that the 

infrastructure of utilizing centralized VVO is available in many distribution networks. 

 In contrast, decentralized VVO utilizes VVO engines which are located in the field 

and close to the relevant VVCCs to perform optimization based on local attributes of the 

distribution network. In this case, local measurements do not need to transfer from the 

field to the back-office, and the new settings for VVCCs are determined locally, rather than 

by a centralized controller. Moreover, utilizing intelligent systems such as Intelligent 

Agents enable such systems to avoid sending excessive data to the VVO engine [191]. 

As decentralized VVO approach follows microgrid DCC topology, some may believe that 

this approach could be developed in-line with microgrid expansion plans within distribution 

networks. Here, there is no need to transfer huge amounts of data from smart meters 

located at customer premises to the VVO engine. Thus, this approach may lead to less 

VVO-related AMI cost compared with centralized approach. In both explained VVO 

topologies, CVR tries to cover missing regulation zone that is LV secondary side of 

transformer through existing VVCCs in the MV primary side of transformer and/or probable 

VVCCs in the LV secondary employed in some new studies [220]. Algorithm-based CVR 

techniques such as model-based, or heuristics-based, could be applied for both 

centralized and decentralized VVO. 
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Figure 7.2. Centralized and Decentralized Volt-VAR Optimization approaches 

In centralized VVO, huge amounts of consumer's data are sent to VVO engine 

located in the control center. Hence, the necessity of using data filtering approaches in 

order to avoid SCADA blockage or data tsunami is felt more in centralized VVO rather 

than decentralized VVO. In general, CVR could be accomplished through both 

aforementioned topologies in two different parts of distribution network. In the first method, 

CVR uses VVCCs located at the MV side. In the second method, In-line Power Regulators 

(IPRs) are used at the LV side of transformer to reduce the voltage level of consumption. 

As this method requires IPR installations, it would be necessary to perform detailed cost-

benefit analysis and compare the benefits of this method with the first common technique 

in future. As a result, a comprehensive cost-benefit analysis is needed in order to select 

centralized or decentralized approach. However, decision has to be taken according to 

control command topology and future roadmap regarding smart grid and/or DER 

development [221]. 

7.2. AMI-based Conservation Voltage Reduction 

AMI provides electric power utilities with a two-way communication system to the 

meter, as well as the ability to modify customers’ service-level parameters [3]. The 

expansion of AMI technologies and developments of smart meter installations through 

smart metering programs provide distribution grids as well as CVR with a great opportunity 
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to capture voltage feedback of termination points. Here, one important question is how 

many measurement nodes CVR requires. Depending on grid operating condition, smart 

meter data availability & accessibility and the type of optimization algorithm, the required 

measurement points could differ from one CVR approach to another. As mentioned 

before, it is possible to use data capturing/filtering techniques to lower AMI costs related 

to VVO especially for centralized VVO. In decentralized VVO, IAs could process the 

required data of VVO engine according to their pre-defined tasks. Another advantage of 

AMI-based VVO is the possibility of monitoring termination points, i.e. the targeted location 

of voltage reduction, online or in quasi real-time. As most recent smart meters are pre-

configured to send consumer data every 15 minutes (or 5 minutes in some cases) [222], 

it would be conceivable to optimize the distribution grid through AMI-based VVO-CVR for 

each quasi real-time stage. 

Another fact on using AMI data that deserves to be mentioned here is data 

fluctuations that may occur due to load variations in quasi real-time. It is clear that there 

is a time gap between data capture and the operation time of Volt-VAR Control 

Components commanded by the VVO engine. Load variations during and after this time 

gap could cause inaccurate CVR. Speeding up the process through predictive algorithms 

for load forecasting could be a future solution. In addition, load variations impose a safety 

margin at the lowest limit of ANSI for AMI-based CVRs that has to be considered as a 

constraint in CVR problem. For instance, CVR cannot reduce consumer voltages into 115 

V or less due to safety reasons and in order to cover load variations. 

7.3. Load Modeling in New CVR Approaches 

The efficiency of a CVR plan depends on load type and mix. Hence, load modeling 

is an integral part of any CVR. Basic conventional load modeling techniques are 

regression and load composition models. In regression technique, load model is 

considered as a regression model, but in load composition technique, the CVR is being 

performed through load mix information. In the first technique, regression error could bias 

CVR and in the second technique, composition of loads for all operating time stages is not 

constant. Therefore, new methods are required to accurately model loads. One of the 

most common load modeling techniques is ZIP load modeling. In this model, load is 
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considered as a combination of three constants; constant power (P-constant), constant 

current (I-constant) and constant Impedance (Z-constant) loads. Many notable research 

studies such as [71] have used ZIP technique to model loads for CVR analysis. As long 

as load model is not fully constant power, CVR would be able to conserve energy at 

customer's premises. In order to determine the impact of each load model, it would be 

necessary to study each of them: 

• Constant Power (P): In constant-P, load demand would be constant regardless 
of voltage. Hence, if the load is fully constant power, by decreasing the voltage, 
the network loss will increase. In this scenario, CVR will not lead to energy 
conservation but rather increases the power loss of the grid, and therefore has 
negative impact on VVO engine sub-parts. Some Examples of constant-P loads 
are electric motors, heat pumps, air conditioner, etc. 

• Constant Impedance (Z): Here, the demand would be proportional to voltage 
squared. Thus, by maintaining the voltage within the lower limits of ANSI band, 
the network loss would slightly be increased by CVR sub-part, although VVO 
engine would be able to mitigate the impact and conserve energy. Some 
important Constant-Z loads are incandescent light, resistive water heater, 
stovetop, oven, etc. 

• Constant Current (I): Here, the demand would be proportional to the voltage. 
Therefore, by reducing the voltage level, CVR sub-part could conserve energy. 
Losses could even be decreased slightly. There are few constant-I devices such 
as welding units, smelting, florescent, some power electronics, etc. 

Different combination of the abovementioned loads can be observed in different 

times of a day for each and every consumer. Moreover, by dividing changes in energy 

consumption (∆ ) by changes in voltage reduction (∆ ), CVR factor ( ) is gained. 

 , that is typically between 0.5 and 1.5 [218], is one of the foremost factors to check 

CVR effectiveness according to consumer type and mix in a feeder. As mentioned before, 

load data is received in quasi real-time in AMI-based CVR. Hence, considering a fixed ZIP 

load model for all time stages of a day as well as all days of a year leads to inaccurate 

load modeling and imprecise energy saving calculation of CVR. At each quasi real-time 

stage, different appliances with different ZIP penetration percentages operate in a 

distribution feeder. Hence, load model could be unique or at least different for each quasi 

real-time stage. Load disaggregation techniques can be utilized to present a more 

accurate ZIP model of loads for each quasi real-time stage. Using load disaggregation 

techniques bring opportunity for CVRs to find ZIP of each quasi real-time stage separately 

that increase CVR load model accuracy and improve CVR energy conservation calculation 
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accuracy. Another issue on finding accurate ZIP model is the lack of sufficient research 

on reactive power model of ZIP. In other words, very few works have been done to 

evaluate accurate reactive power of CVR factor. As such, more studies have to be done 

on finding reactive power model of loads in order to perform precise quasi real-time CVR 

in near future. 

7.4. CVR Objectives as a Part of VVO Engine 

Generally, the main targets of a smart grid-based VVO can be summarized as 

minimizing distribution network losses, minimizing the operating costs of VVCCs and 

maximizing the benefits achieved by CVR through energy saving and demand reduction. 

Typically, loss minimization is fulfilled using reactive power control components such as 

switchable shunt Capacitor Banks. In plenty of operating scenarios, VAR injection by CBs 

could lead to voltage increment in distribution grid due to load mix and type. In this 

operating scenario, VVO objective is to minimize loss while trying to reduce the line voltage 

to perform CVR. If there is no compromise solution applied for these conflicting sub-parts 

of VVO, the algorithm may slow down or even diverge which may cause VVO to fail. 

Therefore, trade-off approach by weighting each VVO sub-parts of VVO objective function 

could be an appropriate solution for this operating issue. In order to detect accurate 

weighting factors of each VVO sub-parts, Fuzzification techniques can be employed. To 

make Fuzzification technique fully functioned, VVCC operating costs, VVO-CVR costs as 

well as revenue gained from energy saving and loss reduction have to be known. Then, 

the weighting factors of each sub-part will be determined according to the given cost-

values. 

7.5. Volt-VAR Control Component Switching Events 

With the advent of real-time CVR techniques, one concern is to keep the lifetime 

of CVR components such as VRs and LTCs as per normal. Using AMI gives CVR an 

opportunity to conserve energy in quasi real-time. As LTCs and VRs operate in quasi real-

time in AMI-based CVR, they could be switched on/off much more than before. Due to the 

fact that each Volt-VAR control component operates within distribution network has 
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limitation on its number of switching per day, a solution has to be made to settle this issue. 

It has to be stated that new advancement in VVCC technologies have decreased this 

concern as new maintenance free VR and/or LTCs have entered the market with 2-million 

allowable switching events over a life cycle of 20 to 25 years. In other words, allowable 

switching events could be between 219 and 274 switches per day that are quiet adequate 

switching numbers in comparison with quasi real-time stages per day of VVO (every 15 

minutes: 96; every 5 minutes: 288), but this concern still remains in grids comprised of 

older operating VRs and LTCs.  

Predictive techniques could also be used to solve this issue as well. Predictive 

techniques enables detecting the best VVCC switching times through load forecasting 

according to VVCC’s switching constraints, and the value of VVCC switching at each 

specific time stage to decrease VVCC switching events. Another solution could be giving 

high weights to VVCC switching costs in specific operating time stages in VVO objective 

function. The high costs of switching at those time stages lead to less switching events 

although accurate determination of switching numbers would be tough in this technique. 

7.6. CVR and Smart Grid Technologies 

New smart grid technologies could impact the distribution network and CVR 

efficiencies. Generally speaking, the expansion of technologies such as smart inverters in 

DGs, BES systems, CESS systems and EV charging stations are gradually changing the 

characteristics of the distribution networks and consequently the CVR solutions. From 

VVO point of view, the abovementioned technologies could be considered as new VAR 

injection sources for VVO engines to achieve higher levels of accuracy and optimization 

in the near future. Therefore, new smart grid-based VVO techniques would be able to 

request VAR from smart grid sources and/or technologies.  

Moreover, penetration of smart grid technologies such as EVs, Micro-CHPs and 

PVs could change the load model. Thus, it is necessary for future CVRs to present a more 

accurate real-time load model according to the existing smart grid components in the 

system. From CVR point of view, a good feeder is a feeder for which "flattening voltage" 

can be carried out comfortably. However, the emergence of smart grid power electronics 
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raises load variations in the distribution networks which consequently lead to excessive 

operation of VVCCs such as VRs and LTCs. On the other hand, the impact of DERs 

operation on VVCCs could produce voltages, which could be higher or lower than the 

values CVR expected. Predicting these load variations and monitoring the impact of DERs 

are key tasks of future VVO engines to precisely model loads in real-time according to the 

characteristics of load as well as smart grid DERs. Another issue can be load imbalancies 

of phases that may occur in the presence of single-phase DERs. In this operating scenario, 

the availability of single-phase VRs and/or CBs could be pivotal in proposing a CVR plan. 

In addition, when reverse power flow occurs in the presence of DERs, there is more 

possibility for voltage to run out of ANSI range. Hence, considering CVR as a sub-part of 

VVO could be more meaningful when VVO observes the mentioned impacts of DERs in 

the system.  

7.7. Economic Factors for Future CVR Plans 

In order to prepare a successful CVR plan, it is compulsory to consider economic 

factors alongside technical factors. As new CVR plans are being considered as a sub-part 

of VVO engines, VVO economic factors affect CVR plans as well. First and foremost, VVO 

implementation costs have to be compared with the value of "Negawatt" [223], e.g. the 

value of saved energy achieved by VVO. Moreover, if the Internal Rate of Return (IRR) 

matches with electric power utility targets, CVR plan could be workable. VVO 

implementation costs include but not limited to: 

• VVO AMI costs (AMI system, End-of-Line metering if not available) 

• VVO-CVR Engine cost, existing VVCC operating costs, required VVCC costs 
(replacement or new installation) 

• VVCC switching value cost 

• Feeder related costs (re-conductoring, balancing, re-configuration) 

• Communication infrastructure costs 

• Maintenance scheduling of VVCC costs and;  

• Crew costs 
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On the other hand, earned revenue as an outcome of VVO-CVR plan comprises 

of the revenue earned through loss reduction, the revenue earned through energy 

consumption saving and the value of demand reduction. Here, the main concern is still the 

value of lost-revenue that some utilities consider as part of their expenses even when 

some studies have shown that CVR costs are less than the generation cost of most 

common generating units in the system. Taking lost-revenue into account, could decrease 

the outcome value and raise the IRR of CVR plans.  

7.8. Standard and Regulations for Future CVR Plans 

By proposing new, or by expanding existing regulations and protocols, it will be 

possible to bring future CVRs to higher levels of accuracy and efficiency. As mentioned 

before, proposing CVR regulations in accordance with market rules is essential in 

deregulated distribution networks. If we assume that CVR implementation could lead to 

better electricity price offers for consumers, retailers could encourage Distribution 

Companies (DISCOs) to perform CVR. As DISCOs may not be eager to increase their 

expenses caused by CVR, retailers could provide adequate incentives for distribution 

network operator according to cost-benefit analysis.  

On the other hand, standards such as IEEE 1547-2003 [224] impose limitations on 

CVR plans in distribution networks with DERs. Hence, new procedures are required for 

CVR implementation in microgrids with DERs. Furthermore, it is essential to use reliable 

and secure communication protocols in order to perform coordinated control, and build a 

reliable two-way communication system from termination points to VVO engine and from 

VVO engine to VVCCs. DNP3 is one of the well-known applicable standards for this aim. 

Moreover, IEC 61850 [181], [225], used in substation automation and smart grid 

applications, can also be applied for CVR implementation. IEC 61850-7-420 defines 

standards for DERs in the system. IEC 61850 90-1 helps substations to communicate with 

each other. IEC 61850 90-2 supports communications between control center (that is VVO 

engine in centralized VVO) and substations. IEC 61850 90-6 provides the required 

standards for distribution feeder automation systems and IEC 61850 90-7 supports smart 

grid technologies such as storage, PV and smart inverters. As VVO engine sits in the MV 

substation in decentralized VVO, IEC 61850’s main standard could also be used. 
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7.9. CVR Impact on Short-Term Planning of Distribution 
Networks 

New CVR approaches could affect short-term planning of distribution networks in 

different manners. As the location of VVCCs, such as VRs along the distribution feeder 

highly depend on the end-of-the-line load and feeder length, VR placement is done 

according to the value of voltage drop at the end of the feeder. Emergence of new CVR 

approaches shall impact the VR placement in short-term planning, considering CVR 

benefits. It seems that in the near future, VRs could be located much closer to load 

consumption centers, i.e. end of lines in order to save more consumed energy through 

CVR. Moreover, using single-phase IRPs at the LV secondary side of the transformer 

could also be a future candidate for CVR approaches that might be taken into account by 

distribution network planners.  

According to methods determined for VVCC operations by VVO engine, 

maintenance scheduling plans of VVCCs could also be modified. Distribution network 

planners have to assess VVCC switching costs besides maintenance scheduling costs of 

VVCCs to achieve a more accurate estimation of expenses caused by CVR and to 

properly compare expenses with revenues gained from CVR energy saving in order to 

reach to a more appropriate strategy for VVCC operations. For fixed and switchable shunt 

CB placements, benefits gained by new real-time VVO have to be considered in 

distribution network’s short-term plans. For future EV charging station placements, the 

capability of EVs for injecting reactive power into the system has to be put in VVO objective 

function. In addition, reaching more accurate approximation of load amount and types 

could help both CVR and short-term planning to execute more effectively in future 

distribution networks. At the end, Figure 7.3 summarizes future CVR challenges and 

probable solutions. 
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Figure 7.3. Future CVR challenges and probable solutions 

7.10. Summary 

The growth and the expansion of smart grid technologies and/or functionalities 

could accelerate the emergence of a new generation of CVR approaches that could 

operate as a key part of Volt-VAR Optimization engines to increase the Negawatts (kW 

that can be saved through energy conservation and energy efficiency approaches) 

throughout the distribution networks. Applying AMI data could improve CVR operation by 

providing it the opportunity to save energy at each quasi real-time stage. In AMI-based 

CVR approach, quasi real-time load modeling is indispensable. Finding quasi real-time 

ZIP load models increases the accuracy of CVR operation and energy consumption saving 

calculations. Due to the load variations in quasi real-time, it would be essential to employ 

weighting factors for VVO engine objective function sub-parts such as VVCC operating 

costs, loss minimization costs and CVR benefit maximization for each real-time stage to 

find optimal VVCC strategies of each quasi real-time operating stages. Applying predictive 

algorithms in the future could lower the impact of load variations on CVR and could 

robustly solve the number of switching operation issue of VVCC.  

Developments of smart grid technologies such as PV, BESS, CESS and EV could 

bring opportunities and/or challenges to CVR. VVO could benefit from smart grid 

technologies with new reactive power control source. On the other hand, intermittent 

operation of aforementioned sources forces more variations in the distribution grids that 

lead to excessive operation of several VVCCs. As generation and load variation 
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predictions can be fully done by Artificial Intelligence techniques, it seems that using 

artificial intelligence could be one of the greatest solution candidates for solving this issue 

in future real-time CVRs. Significant economic factors such as VVO AMI costs, VVO-CVR 

Engine cost, existing VVCC operating costs, the required VVCC costs, VVCC switching 

value cost, communication facility costs, revenue earned by loss reduction, revenue 

earned through energy consumption saving and the value of demand reduction have to 

be taken into account in CVR plan cost-benefit analysis. Lost-revenue value is still a major 

concern of some electric power utilities for CVR implementation while some studies 

showed that CVR cost are typically less than the generation cost. Standards and protocols 

such as IEC 61850 could provide a reliable bi-directional communication between different 

parts of VVO.  

Ultimately, as new CVR approaches could affect different parts of the distribution 

network short-term planning such as CB, VR, DG and EV charging station placements, 

CVR energy saving in future short-term planning of distribution networks could improve 

the accuracy of short-term planning. It could reduce CVR costs that could indeed smooth 

the path of smart grid-based CVR development in the future of electrical distribution 

networks. 
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Chapter 8.  
 
Maintenance Scheduling of Volt-VAR Control 
Components 

As explained in introduction section, the roots of power system issues are typically 

found in the electrical distribution systems and the point of departure for grid overhaul is 

firmly placed at the bottom of the chain [3]. As such, maintenance scheduling of distribution 

network assets is one of the challenges of distribution network planners. Various 

distribution network assets such as transformer, capacitors and distributed resources are 

going to be inspected and/or going to maintenance annually. As quasi real-time VVO 

solutions are going to be utilized more to minimize distribution network loss and increase 

energy conservation of termination points in near future, applying a reliable Maintenance 

Scheduling Engine (explained in this chapter as MSE) in-line with recent smart grid VVO 

technologies (e.g. new AMI-based VVO solutions) as well as distribution network other 

requirements can help distribution network to be optimized more effectively. Therefore, 

maintenance scheduling of Volt-VAR Control Components has become very important. 

VVCCs of a distribution network are now able to save the energy consumption as well as 

improve system loss in quasi real-time intervals through AMI-based VVO approaches. As 

proposed smart grid-based VVO performs in quasi real-time, finding a proper maintenance 

scheduling approach to match with this VVO approach seems necessary. 

Hence, this chapter proposes a novel approach for maintenance scheduling of 

Volt-VAR control assets for new AMI-based VVO solutions through Maintenance 

Scheduling Engine (MSE) concept. MSE is responsible for solving maintenance 

scheduling of VVCC's problem in coordinated time frames with AMI-based VVO. MSE has 

to send final maintenance scheduling optimal strategies and/or results to VVO Engine 

(VVOE) in order to keep maximization of VVO operational benefits when VVCCs are 

gradually going to maintenance in different time periods. Thus, this novel approach could 

solve maintenance scheduling of Volt-VAR control asset's issue, improve AMI-based VVO 

performance without any interference or failure, and optimize distribution network 

effectively.  
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8.1. Maintenance Scheduling Engine (MSE) Concept 

This section studies maintenance scheduling problem of VVCCs in presence of the 

proposed AMI-based VVO approach. As it is mentioned in previous section, different Volt-

VAR control assets such as CBs, VRs and OLTC exist in distribution networks. According 

to VVCC principal characteristics and their specific roles in AMI-based VVO, and 

according to field investigations by contacting different utilities, required maintenance 

period and specifications for each Volt-VAR control component is found and shown in 

Table 8.1. As it is represents in Table 8.1, maintenance scheduling time period for most 

VVCCs is considered annually. Contrariwise, AMI-based VVO engine performs every 15 

minutes. Hence, there should be time coordination between maintenance scheduling 

problem and Volt-VAR Optimization problem. This study proposes a MSE demonstrated 

in Figure 8.1 to solve this issue. 

Table 8.1. Maintenance Features for Volt-VAR Control Components 

VVCC /Grid 
Component 

Maintenance 
Duration 
(hours) 

Most 
Maintenance 

Duration (hours) 

Maintenance times per 
year/Maintenance Procedures 

Switchable Shunt 
Capacitor Bank 4-8 6 

1/ Capacitance balance, capacitor 
switching device, find hot spots, loose 

connections; visual inspections, 
removal of birds' nests, etc. 

Voltage Regulator 
Single phase: 5 
Three-phase: 8-

10 
9 

1/Inspect /change contacts, oil 
level/quality, pressure gauge, driving 
mechanism, operational tests, record 

counter operations 

On-load Tap 
Changer of 
Transformer 

10-12 12 

1/1/Inspect /change contacts, oil 
level/quality, pressure gauge, driving 
mechanism, operational tests, record 

counter operations 

XMFR - - no maintenance process 
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Figure 8.1. General task flows of Maintenance Scheduling and VVO Engines 

MSE is responsible to predict the best maintenance time of each VVCC within one-

year horizon by its Artificial Neural Network (ANN) prediction engine. Basically, the horizon 

of maintenance scheduling that network planners provide is for a complete year as each 

VVCC has to be checked annually. In other words, network planners have to optimally 

determine when VVCCs have to go to maintenance in a year. Hence, network planners 

are dealing with annual load forecasting to find which days of a year are more suitable for 

the maintenance of VVCCs. Fundamental factors required by MSE to solve maintenance 

scheduling problem include but not limited to maximum maintenance period for each 

VVCC, crew costs, maintenance costs and the value of benefit gained from VVO 

operation. Therefore, the objective function of maintenance scheduling problem for AMI-

based VVO could be as (8-1).  

	 . . , , 1
1000
8760

 

(8-1) 

 and  respectively show fixed maintenance costs (for CBs: $/kVAR/year, for 

OLTC/VRs: $/switching/year) and variable maintenance costs (for CBs: $/kVARh, for 

OLTC/VRs: $/switch h). X is the Maintenance binary value (1: under maintenance & 0 

otherwise) and h is the maintenance time. Key constraints for explained maintenance 

scheduling problem are as follows: 

• One-time Maintenance: each VVCC has to go to maintenance only one time in 
horizon year 

• Maintenance Window: each VVCC should not go to maintenance early or late 

• Maintenance continuity: maintenance hours of each VVCC should respect time 
continuity 

• Maintenance Duration: maximum maintenance duration of each VVCC should 
be respected 

• Maintenance/VVO constraint: All VVCCs in a system cannot go to maintenance 
at a same time as it may cause VVO failure 
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Thus, MSE primarily commences its prediction engine regarding to specific annual 

historical data such as loads, electricity price and value of VVO sub-parts in general. Then, 

it finds hours and days of prediction year that each VVCC can optimally go to maintenance. 

At the end, it sends maintenance problem results to the VVO Engine. The main 

advantages of this approach includes but not limited to: AMI-based VVO can optimize 

distribution network online without any interruption, VVCCs are going to maintenance in 

optimal sequence and this approach keeps the well-performance of both AMI-based VVO 

and distribution network. In brief, MSE could suggest different optimal scheduling for each 

Volt-VAR control asset. It is known that loss minimization can be done through reactive 

power injections of switchable shunt CBs and through increasing voltage level of nodes 

by VRs and/or OLTC. On the other hand, CVR can be utilized by lowering voltage level of 

termination points by VRs and/or OLTC. Hence, finding trade-offs between these two parts 

of AMI-based VVO (i.e. loss minimization and CVR) in some time periods is probable.  

This could lead the optimization engine to converge to the optimal solution very 

slowly or even lead to optimization divergence. In order to solve this issue, MSE provides 

AMI-based VVO sub-parts with intelligent weighting factors that could be defined for each 

VVO operating time stage (i.e. every 15 minutes). Hence, the whole system is guaranteed 

to operate efficiently and to find optimal results for both maintenance scheduling and VVO 

problems.  

8.2. Summary 

This chapter proposed a novel approach for maintenance scheduling of Volt-VAR 

Control Components in quasi real-time AMI-based Volt-VAR Optimization of distribution 

networks by a coordinated command and control system between VVO Engine and MSE. 

Hence, MSE of this chapter has been solved according to historical data such as previous 

year's loads, weighting factors, and/or value of loss minimization to find optimal 

maintenance periods for different types of Volt-VAR control assets within distribution 

network. In next step, VVO engine received MSE optimal results. Then, VVO engine 

regulated itself according to maintenance strategies sent by MSE. Thus, quasi real-time 

AMI-based VVO performed online without any interruption or interference that could be 

caused by maintenance scheduling problem. 
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Proposed MSE approach has to find optimal maintenance periods within a horizon 

year in such a way that VVO engine would face with minimum losses during VVCC 

maintenance periods. Therefore, the best maintenance strategies according to the VVO 

engine and other main maintenance problem requirements could be found with proposed 

solution. In conclusion, this approach could be utilized as an "additive" part of existed AMI-

based VVO solutions or as a part of future quasi real-time VVO techniques to lead future 

distribution networks to higher levels of optimality, accuracy and efficiency. 
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Chapter 9.  
 
Predictive Volt-VAR Optimization 

This chapter aims to discuss the possibility of designing a predictive VVO engine 

in compliance with smart grid features.  As explained in previous chapters, the AMI data 

is collected by the measurement aggregators in the system in a time-interval manner, i.e. 

every 15 minutes. Hence, there is a time lag between data collection and VVO command 

executions. In other words, the result of VVO for time interval t is based on load data 

captured in time interval t-1.  As active/reactive load profile changes from an operating 

time interval to the next time interval is not much in most time of a day for a feeder, it is 

possible to perform VVO commands in present time interval based on data captured in 

the previous time interval with acceptable approximation, but in order to become more 

precise, VVO can employ predictive techniques to forecast data of the next time interval 

according to feeder configuration and historical data. Therefore, predictive VVO engine 

can bring great opportunity for AMI-based VVOs to become more efficient in near future. 

In order to design a prediction engine, four different prediction steps have to be followed: 

Inputs, Prediction Model, Prediction Algorithm, and system outputs. These steps are 

followed in this study in two different approaches: 

• Day-ahead predictive VVO: According to system historical data and other 
feeder attributes, VVO tries to forecast day-ahead load profile for system nodes 
for quasi real-time intervals of the next day. This approach can also be called 
Offline Predictive VVO.  The main advantage of this approach is on having a 
super-fast performance in the grid as VVO finds the optimal solution of the 
system for each quasi real-time interval in a day-before.  Hence, control 
commands will be sent to the VVCCs right after the operating time stage begins.  
As the prediction can be improved by the previous time interval data, live 
prediction could lead system to a higher level of accuracy. 

• Live Predictive VVO: In this approach, the VVO engine primarily finds the 
optimal settings of VVCCs for a day ahead. Then, at each quasi real-time 
interval, it improves its prediction using the previous time interval data. This 
improvement is done through a live prediction part of the VVO engine. This 
could help system to find active and reactive consumption/generation of 
distribution network loads/generations in a more precise method.  Moreover, in 
distribution grids with high penetration of distributed generation, renewable 
resources, power electronics and variable loads, that might have salient load-
variations, this approach can be more applicable rather than the day-ahead 
approach. 
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In recent years, many researches have worked on electric load forecasting using 

Artificial Neural Networks. The reason most literatures use ANNs lies in a fact that ANN 

has an appealing ability to model the non-linear relationship between distribution system 

loads and weather parameters. That is the reason why this technique is mostly applied for 

short-term load forecasting of distribution networks as well.  Although predicting all system 

nodes separately could be more time consuming than predicting total load of the feeder 

or distribution grid (in short-term load forecasting), it seems that ANN could be candidate 

for  live prediction as its prediction model is  also simple, efficient and cost-effective.  In 

next sections of this chapter, the inputs, prediction models, the algorithms and the outputs 

of both VVO predictive approaches are discussed. 

9.1. Neural Network Engine for Day-ahead Predictive VVO 

Generally, it is known that next day’s load correlates the loads of previous days 

and other factors such as temperature, dew points and calendar dates. Hence, Multi-Layer 

Perceptron (MLP) Neural Network is applied in order to find the abovementioned 

dependencies. As system inputs in this study were captured from substations and as 

acceptable error was about 5 percent, MLP was an appealing method. The structure of 

MLP network is similar to a nonlinear system recognition problem. Some of the exclusive 

features of MLP method such as its nonlinearity and its considerable versatility provide a 

great environment to employ specific inputs such as time stage, type of a day (working 

day, holiday), and number of days in a week in Neural Network engine. MLP tries to 

combine neurons in a way that the output be a linear combination of inputs. The relation 

between inputs and the output of a Neural Network can be shown by (9-1).  

	 (9-1) 

Here, is the output, are the inputs, are the neuron weights, θis the bias 

and ρis the activation function that could be a linear function, logistic function and/or 

hyperbolic tangent function.  The MLP used in this study consists of three layers: Input, 
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Mid-layer (hidden layer) and Output. Figure 9.1 shows three different layers of considered 

MLP-NN.  

 

Figure 9.1. Three different layers of a MLP Neural Network 

The Neural Network structure applied in this study is a Universal Function 

Approximator that proves the fact that in the existence of correct number of neurons in the 

mid-layer, the Neural Network is able to approximate a continuous function in to . In 

order to minimize the difference between predicted output and the real output of the 

system, the network has to be trained well. Each epoch gives the repetition of the training 

algorithm for all input data. The training method used in this study is Back-Propagation in 

MATLAB. In this method, the gradient of least squared errors is estimated by back-

propagation of the error and then, the weights of the system can be optimized by it. The 

inputs of the Neural Network engine for training for each smart meter are as follows: 

• Active/Reactive Load of previous day at that time stage 

• Active/Reactive Load of previous week at that time stage 

• The average of previous day active/reactive load at that time stage 

• Time stage numerator (1 to 96: each time stage=15 minutes) 

• Types of day (Binary: 1=work day, 0=holiday) 

• Week numerator (1 to 7) 

• Temperature (oC) at that time stage 

• Dew Point (oC) at that time stage 

Therefore, the Neural Network engine trains the network based on the 

abovementioned data and predicts the active and reactive power of loads for all time 

stages of a day ahead at each node of the system.  Then, the resulted data will be sent to 

the VVO engine for network optimization.  
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9.2. Predictive Engine Algorithm for Online Predictive VVO 

In order to design a predictive algorithm for VVO, offline prediction and VVO 

engines have to primarily find and save system optimal results for day-ahead based on 

system historical data. At targeted day and at each time interval, the system compares 

real data with predicted data. If the error is not acceptable, the VVO engine sliding window 

finds the optimal solution of the system for that time interval and updates previous offline 

results. This structure could lead to a more fast and accurate results.  Moreover, it can 

solve the VVO asset switching per day issue through combining offline and live VVO. 

Figure 9.2 presents the flowchart of proposed predictive VVO.  

 

Figure 9.2. Basic flowchart of proposed predictive VVO  

VVO knows the result of time intervals from a day before. Hence, at each time 

interval it compares offline prediction with real measurement. If it is satisfactory, it will send 

optimal commands to VVCCs. Otherwise, it runs live prediction in order to correct 

prediction error using a feedback from real-time measured load. It is simply known that 

VVO asset switching per day issue can be solved in offline VVO ((5-22), (5-25) and (5-

28)). It is possible to consider this issue as a constraint in VVO engine.  In proposed real-

time predictive VVO, live sliding window will find the new optimal configuration of network 

using this constraint. Moreover, it already knows how many times CBs or VRs were being 

switched on or off before that time stage. Hence, it will provide a new optimal configuration 

based on previous situation of VVO control components and predicted (updated 
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prediction) data of upcoming time stages. It has to be mentioned that the prediction ahead, 

gives the algorithm a great chance to perform faster and solve the problem within 

considered time-frame. Otherwise, only online VVO approaches may fail to find the 

optimal solution within required time-frame or may fail to provide a technique to solve VVO 

asset switching per day issue. As explained, a constraint in offline VVO considers this 

issue and online VVO decision will be based on offline VVO switching scenarios (that has 

already solved the issue) and collected real-time data that can be used for updating 

predictions for time interval ahead.  

9.3. Live Prediction Engine Design 

Basically, day-ahead load prediction highly depends on the loads of previous days 

and other factors such as temperature, dew points and calendar. Hence, Multi-Layer 

Perceptron (MLP) Neural Network is used to find the dependencies among mentioned 

factors. MLP combines neurons in a way that the output be a linear combination of inputs. 

The inputs and the output relation in a Neural Network can be presented by (9-2). 

(9-2) 

Here,	  is the output of i,  is the input of j, is the neuron weight from i to j and 

is the bias on j. There is an activation function that could be a linear function, logistic 

function and/or hyperbolic tangent function within NN engine. This study used Back-

Propagation algorithm for NN training in order to predictive loads of the system.  Figure 

9.3 shows different layers of NN engine using back-propagation technique. First, the NN 

engine initializes all biases and weights in networks. Second, it propagates the inputs 

forward. For each hidden or output layer unit j it computes the net input of unit j through 

(9-2).  Then, it computes the output of each unit j by (9-3). 
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Figure 9.3. Different layers of Neural Network Engine 

1

1
(9-3) 

Here is the output of unit j and  is the input of unit j. Then, the algorithm tries to back-

propagate the errors for each training sample. First, it computes the error for the output 

layers using (9-4) and then finds the error for hidden layers through (9-5). 

1 (9-4) 

1 (9-5) 

Here, is the real output value for unit j, is the error of k and the  is the 

weight from unit j to unit k. For each weight in the network, there is a weight increment (9-

6) and weight update (9-7). Similarly, for each bias in the network, there is a bias increment 

(9-8) and bias update (9-9).  

∆ ∝ (9-6) 

∆ (9-7) 

∆ ∝ (9-8) 
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∆ (9-9) 

Where, ∆  is the change in weight from i to j, ∆ is change in bias and∝is learning 

rate that is between zero to one. The algorithm will be trained until reaching to the 

convergence rate. Hence, the algorithm tries to reduce prediction error by updating its 

weights within learning procedure. The NN engine provided for this study is in MATLAB 

environment.  The inputs of the Neural Network engine for training for each smart meter 

are as follows: 

• Active/Reactive Load of previous day at that time stage 

• Active/Reactive Load of previous week at that time stage 

• The average of previous day active/reactive load at that time stage 

• Time stage numerator (1 to 96: each time stage=15 minutes) 

• Types of day (Binary: 1=work day, 0=holiday) 

• Week numerator (1 to 7) 

• Temperature (oC) at that time stage 

• Dew Point (oC) at that time stage 

Hence, the prediction engine trains the network based on the abovementioned 

data and predicts the active/reactive power of loads for all time stages for every node of 

the system. Then, the resulted data will be sent to the VVO engine for the optimization of 

network. 
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Chapter 10.  
 
Optimization Technique for Volt-VAR Optimization 
Problem 

10.1. Experimental/Computational Methodology 

Different optimization techniques can be used for Volt-VAR Optimization problem. 

Depending on variables, parameters and complicacy of the system, VVO problem can be 

determined as:  

• Multi Objective Optimization: VVO needs to simultaneously optimize two or 
more conflicting objectives subject to certain levels of constraints.  

• Mixed Integer Nonlinear Programming: VVO deals with non-linear systems in 
which some variables are constrained to take integer values such as capacitors 
banks (on/off), voltage regulators and tap changer steps (on/off) and some may 
have nonlinearities as system intends to minimize grid loss and conserve the 
energy consumption. Hence, the VVO objective function and constraints may 
contain nonlinearities.  

As explained, many optimization techniques could be employed for proposed VVO 

problem. As it is not possible to cover all VVO optimization methods in a research, the 

effort of the research is to find an efficient algorithm for proposed VVO with acceptable 

accuracy and reliability with short-enough convergence time.  

 Initial Choices 

As Heuristics & Meta-heuristic techniques impose few or no unreal assumptions 

on the problem, they are able to optimize distribution network precisely in most times.  

Moreover, they may have very large search space for candidate solutions. This can lead 

to precise solution but can affect computational time as well. Genetic Algorithm (GA) 

(meta-heuristic approach) is one of the techniques that are widely used in distribution 

network applications such as VVO. Moreover, Bender’s Decomposition technique 

(heuristic approach) is another interesting technique for VVO application as it is able to 

divide the large-scale optimization problem into smaller Master and Slave sub-problems.  

Technique such as Particle Swarm Optimizations (PSO), as a stochastic optimization, is 
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another convenient approach. Therefore, the techniques that are covered in this research 

are: 

• Genetic Algorithm (GA): Improved genetic algorithm can solve the optimization 
problem precisely with adequate convergence time. Crossover and mutation 
step determinations are very important in terms of the optimization accuracy.  
Local optimums should be avoided. Initial populations should be in rational 
range. Applying huge initial population leads to a time-consuming optimization. 

• Benders Decomposition: Benders technique decomposes optimization 
problems with lots of constraints into several sub-problems with fewer 
constraints. As VVO problem consists of disparate objectives and constraints, 
Benders decomposition technique could be a candidate for the optimization 
problem especially in large distribution networks.  

• Particle Swarm Optimization (PSO): As a stochastic optimization, PSO is able 
to optimize distribution networks very fast. The simplicity of the structure, 
accuracy and fastness of this optimization technique are some of the reasons 
that most researchers intend to work with PSO. 

 Matching VVO technique with Real-Time Operating (RTO) 
systems 

Real-Time Operating (RTO) systems are online tools tailored for checking the 

performance of optimization process. RTO in VVO can be a complex model-based system 

that resides in, and optimizes system operations. This research matches its final VVO 

technique with co-simulated RTOs in next chapter.   

 Initial Flowchart of VVO  

The conceptual VVO algorithm is presented in Figure 10.1. As shown in Figure 

10.1, required data of VVO is captured by measurement aggregator and/or IAs. If receiving 

data are as same as previous time-interval data, the engine imposes previous optimal 

solution to the present time interval. Otherwise, it begins to find the optimal solution of 

present time interval in three operating steps. First, the VVO engine tries to confine the 

solution into distribution substation. Then, it expands the optimization space along 

distribution feeder. In third step, it tries to check if any of the present DGs and/or DERs in 

the system are available on helping VVO with reactive power support or not. If for any 

reason, the system finds no optimal solution during specified computation time, the engine 

may try to offer closest feasible solution. Otherwise, it has to report algorithm divergence. 
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The corrective actions have to be followed by the divergence report to avoid incorrect 

settings of VVCCs in the system. 

 

Figure 10.1. Conceptual flowchart of proposed VVO  

10.2. Benders Decomposition Technique  

 Introduction 

In 1962, J. F. Benders [226] proposed a technique for solving a mixed-integer 

programming problems by partitioning these types of problems into two parts: 

• Integer Part  

• Continuous Part 

It uses the branch-and-bound method on the integer part and linear programming 

on the continuous part. Benders technique is described in many sources on large-scale 

optimization and stochastic programming. It is an approach for solving mathematical 

programming with complicated variables. It searches over values of these variables that, 

when fixed, result to a much simpler sub-problem. The search learns from past experience 

by employing “Benders Cuts”. In 1972, A. Geoffrion [227] said: “J.F. Benders devised a 
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clever approach for exploiting the structure of mathematical programming problems with 

complicating variables (variables which, when temporarily fixed, render the remaining 

optimization problem considerably more tractable).” He generalized this technique to a 

broader class of programs in which the parameterized sub-problems need no longer to be 

a linear program. Nonlinear convex duality theory applied in Geoffrion’s work to derive the 

cuts. Hence, Geofrrion’s work plays a key role in extending benders approach.  

 Benders Decomposition Advantage 

Benders decomposition decomposes along time intervals. There exists other 

technique that decomposes along time intervals that are faster than benders 

decomposition but this approach is the learn-to-walk-before-you-can-run method in 

reaching to optimal solution of an optimization problem. That makes this technique 

valuable compared with other decomposition/relaxation techniques. 

 Brief View of Benders Decomposition Method  

• Problem is decomposed to a Master Problem (MP) and several Sub-Problems 
(SPs).  

• Generally, master problem is an integer problem and sub-problems are some 
linear / nonlinear programs.  

• Typically the lower bound solution of the master problem involves fewer 
constraints.  

• The sub-problems test the solution of the master problem to check if the solution 
satisfies the remaining constraints or not.  

• If the sub-problems are feasible, the upper bound solution of the original 
problem will be calculated while forming a new objective function for further 
optimization of the master problem solution.  

• If any of the sub-problems is infeasible, an “Infeasibility Cut” that represents the 
least satisfies constraint will be introduced to the master problem.  

• Then, a new lower bound solution of the original problem will be obtained by re-
calculating the master problem with more constraints.  

• The final solution of benders decomposition algorithm may need several 
iterations between the master problem and sub-problems.  

• When the upper bound and the lower bound are sufficiently close, the optimal 
solution of the original problem will be achieved.  
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 Benders Decomposition Applications 

Benders Decomposition Algorithm is very helpful in solving large-scale MIP 

problems. Some of successful applications of it are [228]: electrical power systems, 

operation and planning in management, electronic packaging, network & communication 

design, transportation, logistics, manufacturing, military and warfare strategies. 

 Basic Formulations of Benders Decomposition [229]-[234] 

*Problem-1 (P-1) 

Objective Function 

 (10-1)

 Subject to 

,						 ,							 0, ∈ (10-2)

→ , 					 → , 					 →  

, : 	  

, : 	 	  

→ 	 , 	 → 	  

	 	 	 	 	  

Since x is continuous & y is integer: *P-1 is a Mixed-Integer Problem & If y values 

are fixed, then * P-1 is linear in x.  

	 , 0 (10-3)

Master Problem (MP-1) 



 

114 

	 (10-4)

Subject to: 

	 ,										 , ∈ (10-5)

Sub-Problem (SP-1) 

	 (10-6)

,									 0 (10-7)

: Solution of the Master problem 

Subproblem-2 (Dual of SP-1) 

(10-8)

,								 0 (10-9)

 Benders Decomposition Algorithm 

Benders Algorithm is based on the linear duality theorem that guarantees the 

solution of the primal problem to be equal to the solution of the dual problem. The idea 

behind benders algorithm is “Learn from one’s mistakes”. It distinguishes primary variables 

from secondary variables. Then, it searches over primary variables in master problem. For 

each value of primary variables, it solves problem over secondary variables i.e. sub-

problems. If the solution is suboptimal, it will find out the reason and then, it presents a 

constraint that eliminates not only the solution but a large class of solutions that are 

suboptimal for the same reason i.e. benders cut. Finally, it adds this cut to the master 
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problem and re-solve the problem. Figure 10.2 fully describes benders decomposition 

algorithm. 

 

Figure 10.2. Benders Decomposition Algorithm  

Benders Decomposition Algorithm Steps: 

Step-1: 

Solve MP-1 → Initial	Lower	bound	solution  

If feasible → Check	Convergence	Criterion → If	yes, 	Optimal	Solution	 

→ If	no, 	add	a Benders Cut to MP-2 

If Infeasible → Infeasible for original problem (*P-1) 

If Unbounded → Let,	 ∞	for	y in S and then → go to Second Step (SP-2) 

Step-2: 

Solve SP (SP-2 or SP-1) 

For SP-2: 

(10-10)

: Optimal dual solution 
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: Upper bound solution of the original problem (*P-1) for   

For SP-1: 

(10-11) 

: Upper bound solution of the original problem (*P-1) for   

Convergence Condition 

If  

(10-12) 

Then, 

Stop 

Otherwise, 

Generate Feasibility Cut:  

	 (10-13) 

Then, 

Go to Step-3. 

If SP-2 is Unbounded (i.e. SP-1 is infeasible) → 	Generate Infeasibility Cut for 

Solving MP-2: 

0 (10-14)

It is needed to calculate 	first: 

1 (10-15)
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0, 	 0,					 (10-16)

1 : Unit Vector 

: Identity Matrix 

If SP-2 is Infeasible→ 	Original Problem (*P-1) has either no feasible solution or an 

unbounded solution.→  

Step-3: 

In order to obtain new lower bound solution (	 ) with respect to	y	 for original 

problem (*P-1) 

Solve MP-2 

In MP-2 we may employ either Feasibility Cut or Infeasibility Cut: 

			   s.t. 				  

Feasibility Cut: 

	 ,			 1,2, … , (10-17)

Infeasibility Cut: 

0,		 1,2, … , ,			 ∈ (10-18)

Then, go back to Step-2 (Solving SP again) 

If MP-2 is Unbounded→ Let	 ∞ 	  → Return	to	Step 2 

If MP-2 is Infeasible → so will be the original problem P-1 → Stop the process. 

 Alternative forms of Benders Cuts: 

Feasibility Cut: 
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→ ,				 1,2, … , 	 	 (10-19) 

 : Optimal Solution for SP-1 

: Incremental change in optimal objective  

*Decreasing the objective value of the original problem by updating 	from  to a 

new value. 

Infeasibility Cut: 

0→ 0,		 1,2, … , (10-20) 

: 	Optimal solution of the Feasibility check Sub-problem 

*Updating  to a new value to eliminate constraint violations in SP-1 based on 

given in the master problem.  

 Benders Decomposition Applications in Power Systems 

G. Cote and M Laughton [235] were pioneers in using Benders technique in power 

systems. In 1979, they published a paper (decomposition techniques in power system 

planning: the Benders partitioning method) at International Journal of Electrical Power 

Energy Systems which received great feedback from power system experts. In 1980, L. 

F. B. Baptistella and J. C. Geromel [236] presented a decomposition approach to problem 

of Unit Commitment schedule for hydrothermal systems. They were first researchers to 

employ Benders for SCUC (Security Constrained Unit Commitment) problems in power 

systems.  A. Monticelli [237], A. J. Conejo [238] and M. Shahidehpour [239], were some 

of the famous researchers who extended Benders decomposition to power system large-

scale problems.  

Nowadays, benders decomposition technique is used in various types of power 

system applications such as: SCUC of power systems, distributed networks loss 

reduction, feeder reconfiguration in distribution networks, smart grid operations, 
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generating unit planning, transmission planning, optimal generation bidding and valuation, 

optimal power flow, hydro-thermal scheduling, generation maintenance scheduling, 

transmission maintenance scheduling, long-term fuel budgeting or scheduling and long-

term generating unit scheduling and valuation [228]. 

 Benders Decomposition for Volt-VAR Optimization Problem 

For the VVO problem, benders decomposition can be comprised of two objective 

function sub-parts (  and ). The first sub-part ensures system active power loss 

minimization and Conservation Voltage Reduction. 

 (10-21)

The second sub-part of the objective function minimizes VVCC (here, OLTC, VR 

and Shunt CBs) switching operation costs.  

| | | |

| | 
(10-22) 

Hence, the main objective function can be written as follows: 

.  (10-23) 

The main constraints of this objective function are power balancing equality 

constraints as well as constraints (5-9) to (5-19) in Chapter 5 and the following VVCC 

inequalities: 

(10-24) 

(10-25) 
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(10-26) 

As it is seen, the VVO objective function is a Mixed Integer Non-Linear 

Programming problem (MINLP). As solving MINLP problems are typically complex, 

Benders’ Decomposition Technique can be used in order to break down the optimization 

problem into a Master problem that solves Mixed Integer Programming (MIP) part and a 

Slave problem that solves the Nonlinear Programming (NLP) part of the problem. 

VVO Master Problem: 

The master problem is responsible for finding optimal taps of OLTC and VR as well 

as finding optimal banks of CBs to minimize the costs of VVCC switching operations. As 

such, the integer variables are included in the master problem. 

. (10-27) 

The above formulation is subject to the (10-24) to (10-26) constraints.  The 

benders’ cut for the master problem can be written as: 

.  
(10-
28) 

Here: 1,2, … , 1. In master problem, is the under-estimation of the slave 

problem cost that has infeasibility cost. The main task of the master cut is to integrate 

master and slave problems. This cut is updated at each iteration based on slave objective 

function value. 

VVO Slave Problem 

In slave problem, all integer variables are fixed (that are found by master problem) 

as slave has to deal with system nonlinearities. In some operating cases, it is probable 
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that the master solution lead to an infeasible slave problem. In order to avoid infeasibility 

of slave due to master solution, two variables ( and ) are added to the slave problem 

objective and constraints. Therefore, the slave minimizes NLP as well as technical 

infeasibilities. 

. (10-29) 

Here W is very large positive constant,  and	  are defined variables. The 

constraints of the slave problem are constraints (5-9) to (5-19) shown in Chapter 5 as well 

as the following constraints: 

, , , 	 (10-30)

,
∈

0
(10-31)

The dual variables associated with the discrete variables ( , 	 and	 ) 

that previously determined by the master problem are shown below: 

∶ (10-32)

∶ (10-33)

∶ (10-34)

Convergence Criterion 

The benders decomposition algorithm converged to the optimal values when two 

conditions satisfy: (1) The solution of the master problem is feasible, (2) The slave problem 
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(upper bound) and lower bound variable ( ) obtained by the master problem are very close 

to each other (less than epsilon). The benders decomposition flowchart of the VVO 

problem is shown in Figure 10.3. For each iterate (w), the algorithm solves the master 

problem and finds integer variable values based on master problem solution of that step. 

In next step, the algorithm solves the slave problem in compliance with the master problem 

solution. Here, the algorithm gets the objective function of the slave problem, defined 

infeasibilities and dual variables. In last step, the algorithm checks the convergence 

criterion. If the abovementioned convergence criterion satisfied, the VVO reached to its 

optimal VVO solution. Otherwise, the algorithm will generate a new bender’s cut based on 

duality variables and begins solving master problem again. This iterative process 

continues until system reaches to the optimal solution. 

 

Figure 10.3. Flowchart of the VVO problem using Benders Decomposition 
algorithm 

10.3. Optimization method: Genetic Algorithm 

In this section, an efficient Genetic Algorithm (GA) algorithm is presented for the 

Volt-VAR Optimization problem. GA is a search heuristic optimization method based on 

natural evolution [240]. It consists of four important steps to reach to the optimized 

solution. The first step is “Initialization”. In initialization, initial population is generated 

randomly which typically represents hundreds or thousands of possible solutions in search 

space. The population size depends on problem nature. The second step is “Selection” 
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where a proportion of initial population is selected in order to form new generation. Most 

likely solutions are selected according to the fitness function of the problem. As such, the 

fitness function measures the quality of solutions. The third step is “Genetic Operator” 

section that generates the second population of solutions from selected set using two 

operators: Crossover and Mutation.  The last step is convergence criterion where GA 

generation process is repeated until convergence condition has been satisfied.  The 

convergence conditions can be different from one problem to another. Typically when 

successive iterations are not producing better results anymore, the algorithm converges 

to the optimum. The main steps of an improved GA technique used for proposed VVO are 

explained in this section of this chapter. 

 Coding 

For GA-based VVO algorithm, it is necessary to introduce switchable shunt CB, 

OLTC and VR codes primarily. It can be assumed that the size of each bank of a CB is 

“ ” kVAR. As such, each CB in GA can have integer values from 0 (no CB) to which is 

the maximum bank number of each CB. For OLTC as well as VRs, the integer values can 

be from 0 (no tap) to  or  that are last taps of VR and OLTC respectively. Table 10.1 

shows the coding for CB, OLTC and VR. In order to construct chromosome, VVCCs of the 

grid nodes has to be defined in a matrix called surface chromosome. Each generated 

surface chromosome is comprised of rows that show grid nodes and columns that show 

VVCC of the system such as CB, OLTC and VR. Table 10.2 depicts surface chromosome 

structure. 

Table 10.1. Coding table of VVCCs in GA technique 

CB-1, OLTC-1, VR-1 … CB-k, OLTC-w, VR-r … CB- , OLTC-W, VR-R 

, ,	  … , ,  … , ,  

 Initialization 

As stated, a random number between 0 andρ is generated for CBs. Random 

number from 0 to W and from 0 to R, are generated for OLTC and VRs as well for each 

gene. By repeating random production, an initial population is gained. 
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Table 10.2. Surface Chromosome structure 

 Node-1 Node-2  Node-j  Node-n 

CB   …  …  

OLTC   …  …  

VR   …  …  

 Crossover Operator 

The crossover operator is typically employed for reproduction of selected 

generation. In this research two types of crossover are proposed. 

• Crossover-1: here, two chromosomes are considered as a parent. These 
parents are then crossed-over to substitute two rows of chromosomes of same 
VVCC.  

• Crossover-2: In this crossover type, some genes are randomly selected from 
two chromosomes and the data of them is exchanged as well.  

Figure 10.4 depicts two-crossover approach of this research using both crossover-

1 and crossover-2 for the VVO. 

 Mutation Operator 

The aim of the mutation step is to diversify the solution search and prevent solution 

from falling into local optimum peaks/valleys. Two different types of mutation are used in 

this research. 

• Mutation-1: In this mutation type, a row of chromosome is selected in a random 
way initially. Then all elements of that row are changed to other solutions with 

Probability. 

• Mutation type-2: In this type of mutation, some of the genes are selected 
randomly and the values of them are changed totally with Probability. Fig. 5 
shows  

Figure 10.5 shows two-mutation approach of this research using both mutation-1 

and mutation-2 for the VVO. 
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Figure 10.4. Two crossover technique for VVO using improved GA 

 

Figure 10.5. Two mutation structure for VVO using improved GA 

 Fitness Function 

Typically the fitness function is gained from the objective function. For the VVO 

problem, the fitness function can be defined as: 

1
.

(10-35) 

 Steps of the proposed algorithm 

Based on the abovementioned steps, the VVO algorithm can be consisted of the 

following steps: 

• Data Collection: Loads/ Generation, CB, OLTC and VR data 

• Coding, Initial Population Generation and Chromosome Generation 

• Selection 

• Crossover-1/Mutation-1 

• Crossover-2/Mutation-2 
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• Load Flow to check constraints, update reactive power injections and voltage 
regulations  

• Evaluation of the objective function as well as the fitness function for each 
chromosome 

• Sort chromosomes based on fitness functions and select high quality population 

• Check convergence condition: If convergence condition is not satisfied, 
algorithm selects new population. In order to avoid local optimum, if 
convergence is gained for the first time  and  mutation probabilities are 
changed and shift the algorithm to new population selection step. 

These iterative steps are repeated until convergence. Therefore, this type of GA 

used two steps of crossover and two steps of mutation to perform faster and to avoid local 

optimum. As the AMI data of previous time interval is used for the optimization of the 

present time interval, the VVO optimization engine results might not be accurate especially 

in cases where there are load uncertainties in the system. As such, the GA can find three 

solutions for each quasi real-time interval: solution for exact given load, solution for higher 

load condition and solution for lower load condition. For instance, when total load of the 

system in present time interval is higher than system load in previous time interval, the 

VVO can find a more accurate solution for present load as it find three optimal solutions 

for each quasi real-time interval. At each quasi real-time interval, the engine considered 

upper load condition 5 percent more and lower load condition 5 percent less than normal 

load condition. Therefore, the VVO engine could have solutions for each quasi real-time 

interval conditions. Figure 10.6 gives two-crossover of surface chromosomes in this 

approach. 

10.4. Particle Swarm Optimization (PSO)  

This section elucidates Particle Swarm Optimization (PSO) as proposed VVO 

engine optimization algorithm. PSO is a meta-heuristic optimization approach inspired by 

bird flocking and swarms of social organisms [29]. In PSO, each solution is modeled as a 

particle comprised of a value and a fitness value. Each particle seeks optimal point and 

for this reason, it has movement and velocity. Moreover, PSO operates based on the 

relocation and intelligence of particles using social interaction concept.  
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Figure 10.6. Two crossover technique for surface chromosomes with three load 
levels  

Each particle, i.e. solution response, moves in search space. At each step, each 

particle saves the best position that had the best result on that position. This is called 

Pbest. In other word, Pbest is the best position of a particle compared to it. Moreover, 

particles are working together and share information about their position. Hence, the 

movement of a particle depends on three main factors: present position of that particle, 

the best position that particle has experienced till now (Pbest) and the best position that 

all particles have had till now (Gbest). Therefore, after random initial population, Pbest, 

Gbest, position and velocity of particle are being updated to lead Gbest to final optimum 

value. New position of a particle can be determined by (10-36).  

, (10-36)

Here,  specifies changes in position of particle that can be defined by (10-37). 

As shown in (10-37), velocity consists of inertia, cognitive and social component sub-parts. 

The random values ( , ) produces a random number between 0 and 1. and  are 
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acceleration constants, the summation of which are experimentally chosen to be less than 

or equal to four. 

, , . . (10-37)

Substantial advantages of PSO approach can be summarized as: PSO is a zero-

order approach without heavy complex mathematical computations such as gradient 

approaches. It has acceptable computational load and it has quite rapid convergence. It 

has to be mentioned that PSO algorithm does not have Selection approach. In other 

words, no particle can be removed, although the value of each particle can be changed in 

PSO. In addition, PSO does not use Mutation or Crossover steps like GA. PSO uses local 

and global search and the ratio of these searches can be defined by weights.  Figure 10.7 

illustrates the proposed VVO engine flowchart. As explained, the required data from AMI 

is collected.  

 

Figure 10.7. Flowchart of proposed Volt-VAR Optimization Engine using PSO 

Network and PSO parameters are set initially and then, initial random population 

is generated. Moreover, initial Pbest, Gbest and velocity are computed as well as the 

objective function and constraints for the first iteration. In next iterations, position and 



 

129 

velocity of each particle are updated till Gbest converges to the optimum value. The results 

of PSO are sent to VVCCs within distribution substation and or along distribution feeder 

to update configuration of the grid according to new VVCC's optimal values. Hence, 

proposed VVO of this research could optimize distribution grid through PSO and 

Fuzzification technique could determine weighting factors of each VVO objective sub-parts 

within PSO algorithm. 

10.5. Summary 

This chapter studied three main optimization technique used in this research for 

Volt-VAR Optimization problem. Each optimization technique has its pros and cons based 

on distribution grid topology, condition as well as level of accuracy and speed that network 

operator needs. This chapter explained benders decomposition as one of the most 

applicable optimization techniques in distribution network planning. This approach can 

solve VVO optimization problem with desirable speed and accuracy. However, generating 

weak benders cuts can affect benders decomposition performance. Moreover, the 

complicacy of this technique has made its users to apply it more for large optimization 

problems where it is more necessary to decompose the problem into master and slaves. 

That is the reason this research has not used this technique much despite studying it in 

detail. It is possible to say that Genetic Algorithm is the most applied optimization 

technique in power systems. The reason lies in several facts. First, GA concept is very 

easy to understand and it does not need much knowledge of mathematics. Second, as 

many power system applications can be described as chromosomes and as fitness 

function can be defined well, the GA performs adequately in these applications. At last but 

not least, GA can be easily transferred from one system model or simulation to another 

level of that model or simulation. GA has couple of disadvantages. There is no guarantee 

that GA could find global optimum within specified optimization time especially when the 

convergence rate is defined very high.  Moreover, GA may fall into local optimums. 

In order to boost algorithm response time and to avoid GA to fall into local optimum, this 

study assessed improved GA with two levels of crossover and mutation. As proposed VVO 

application performs in quasi real-time (typically every 15 minutes), presented improved 

GA could provide system with the optimal solution with adequate optimization time. 
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Particle Swarm Optimization is another optimization technique that is widely used in 

distribution network optimizations. The main benefits of PSO can be summarized as: easy 

concept, simple implementation, derivative-free, insensitive to scaling of design variables, 

works with very few parameters and effective global search algorithm. The main 

disadvantage of this method is its tendency to converge fast and immature in partial 

optimums. PSO also used for proposed VVO engine. The results of VVO studies show 

successful performance of these optimization techniques for proposed VVO.  

As proposed VVO performs in quasi real-time and as the VVO approach is feeder-

based with few integer variables (not a large scale problem), these optimization 

techniques performed adequately. In other words, proposed approach shows the fact that 

it does not need sophisticated optimization algorithm to perform. Another important benefit 

is that the proposed VVO can give operator a chance to choose its own optimization 

technique (among studied optimization solutions) according to system number of variables 

and operational needs such as accuracy and optimization time. Definitely, investigations 

regarding more efficient optimization solutions would be necessary if the aim is to find 

suitable optimization solutions to be very close to real-time. Approximate-based 

techniques such as Meta Modeling could be a great solution candidate for this future 

study.  
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Chapter 11.  
 
Real-time Co-Simulation Platform for Smart Grid VVO 

As explained in literature review chapter, the necessity of designing a real-time co-

simulation platform comprising of VVO engine, communication network, and monitoring 

platform to provide a fully functional real-time system to check the performance of new 

smart grid adaptive VVO solutions is felt more than before. This chapter presents different 

real-time co-simulation platforms for smart grid-based VVO applications in smart 

distribution networks. In first application, VVO is tested over a real-time co-simulation 

platform using Real Time Digital Simulator (RTDS) as system simulator, DNP3 protocol 

as reliable communication platform and OPC server as control command sender. The 

main focus of this study is to create a reliable co-simulated environment for VVO to be 

checked in quasi real-time operation through a real-time system. In next study, the 

performance of the whole system is tested by imposing delays and packet losses into the 

platform through Wide Area Network emulator (WANem). The third study investigates a 

reliable control and monitoring platform for the VVO engine. In other words, it completes 

the first study that used RTDS, DNP3 and OPC server for real-time co-simulation platform 

with more focus on the monitoring and control parts. The last study investigates a real-

time co-simulation platform using RTDS, DNP3 and IEC 61850 MMS and GOOSE 

protocols. It presents how IEC 61850 MMS and GOOSE would assist VVO engine, 

performing reliably on different grid operating scenarios such as normal, faulty and grid 

reconfiguration modes. 

11.1. Overview of the Test Platform 

The platform for testing, monitoring and control applications is built wherein the 

different components constituting the monitoring and control systems are either emulated 

or integrated in a plug and play fashion. These different components are generally the 

measurement acquisition channel, different measurement protocols, communication 

networks, measurement aggregators and monitoring and control applications. The testing 

platform is principally designed to quantify the effects introduced by these components. 
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The structure of the platform can be functionally divided into three main parts namely the 

Real Time Simulation of Power Systems, Measurement Acquisition System and the 

Software Platform that enables the development of monitoring and control applications.  

The general scheme of the structure is given in the Figure 11.1. The power system 

simulation is performed in Real time Digital Simulator (RTDS) as shown in Figure 11.1. 

The RTDS is a powerful computer designed to accurately and reliably simulate power 

system phenomena in the range of 0 to 3 kHz [241]. It is comprised of both specially 

designed hardware and software. It can simulate power systems and also provide real 

time measurements through its specialized output boards in such a way that they emulate 

real world measurement devices. In the proposed VVO application the Gigabit Transceiver 

Network (GTNET) board is used that emulates remote measuring units that can send 

measurements in Distributed Network Protocol (DNP3), that is one of Substation 

Automation well-known protocols [242], to the control center through the Ethernet 

connection. The measurement aggregator used is the OPC server that collects the DNP3 

measurements from RTDS that were sent through Ethernet network. The third part is the 

software platform wherein the measurement aggregator is realized that collects data from 

different sources and provides it to the control applications. The RTDS simulates the grid 

in real time providing the GTNET board with the real time measurements via the optic 

fiber. 

The GTNET board then encapsulates them into a specific message format, in this 

case into DNP3 format, and sends it to the measurement aggregator in our case the OPC 

server which then makes these measurements available to the VVO application developed 

in MATLAB via the OPC toolbox of MATLAB. Measurements from RTDS are received 

from RTDS into MATLAB and the control signals are sent back to RTDS via OPC server 

in DNP3 format.  DNP3 is based on a Master Slave mode of operation where GTNET 

board or the measuring devices are the Slaves and the OPC server which is the 

measurement aggregator functions as a Master that polls for slaves and asks 

measurements and writes control messages to them. Figure 11.2 depicts basic flowchart 

of the VVO engine using real-time co-simulation platform. 
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Figure 11.1. Overview of the test platform 

 

Figure 11.2. Basic flowchart of proposed VVO 

11.2. Co-Simulation Platform with Communication Test-
bench 

As explained in previous section, the platform is built in order to test and asses the 

influence of different components included in the monitoring and control systems of 

distribution networks namely the sensors, measurement units, communication 

infrastructure, time synchronization units, data concentrators and most importantly, the 
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monitoring and control applications for operation and control of distribution grids. This 

section intends to use the real-time co-simulation platform to check the robustness of the 

monitoring and control application for communication network delays. The structure of the 

platform can be functionally divided into five main parts namely; the Real Time Simulation 

of Power Systems (here distribution network), Measurement Acquisition System, 

Communication network interface, Communication test platform and Software Platform 

that enables development of monitoring and control applications. General scheme of co-

simulation platform is given in Figure 11.3.  

 

Figure 11.3. Real-time Co-simulation platform setup 

11.3. Implementation of the test setup 

Primarily, distribution network model is simulated in real-time using the RTDS.  

Then, the measurement acquisition system of this test setup is realized with specialized 

output boards, the GTNET, where they function as a smart meter that sends measurement 

data and also as an Intelligent Electronic Devices (IEDs) that receive control signals from 

control center to switch CBs, change the tap settings of OLTC and/or VRs using DNP3. 

The RTDS simulates distribution system in real-time and then, appropriate measurement 

values are sent to the GTNET board via fiber optic cables which are encapsulated in DNP3 

format and sent to the Master which in this co-simulation platform is DMS/SCADA at 

control center. Likewise, control signals are sent via DMS/SCADA to the GTNET that 
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performs as an IED receives control commands and passes them to the simulation 

environment. The software platform is responsible to aggregate measurements from 

different devices and facilitate them to the monitoring and control applications. For 

presented test platform, the Kepware OPC server is used as DMS/SCADA that 

aggregates DNP3 data.  

As mentioned before, control application of VVO is developed in MATLAB which 

interacts with the OPC server via the OPC toolbox of MATLAB to receive DNP3 

measurements from smart meters and to write control commands back (which are the 

output of the VVO optimization engine) to IEDs throughout the same OPC interface in 

DNP3 format. The communication platform between the IEDs and smart meters is 

achieved through Ethernet connections. To emulate real distribution network operating 

conditions so as to assess the influence of the communication network delays and packet 

losses on the functioning of the monitoring and control of VVO engine, a virtual Wide Area 

Network Emulator (WANem) is used [243].  WANem is a Wide Area Network Emulator, 

meant to provide a real experience of a Wide Area Network/Internet, during application 

development and/or testing over a LAN environment. Typically application developers 

provide applications on a LAN while intended purpose for the same could be clients 

accessing the same over the WAN or even the Internet [243]. Figure 11.4 illustrates the 

routing of packets if WANem is employed. Without WANem, the packets would reach to 

destination through the switch depicted as the normal packet flow and if WANem is used, 

then packets follow the emulated packet flow as shown in Figure 11.4.  

Network emulation is the act of introducing a device to a test network (typically in 

a laboratory environment) that alters packet flow in such a way as to mimic the behavior 

of a production, or live network such as a LAN or WAN. Manually network characteristics 

such as delay, jitter, packet loss and distribution characteristics of the delay could be set 

by WANem. For presented co-simulation platform in this section, communication network 

that introduces delays of normal distribution as well as packet losses are emulated by 

WANem.   
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Figure 11.4. Routing of packets with WANem 

Four different network conditions that introduce delays of 50ms, 100ms, 200ms 

and 1 second are emulated in the presence of a 10% packet loss each respectively.  The 

delay conditions of communication network are set in such a way that delay is introduced 

between the source of the measurement/control signal and the destination. Hence, the 

delay is introduced between the GTNET (smart meter) and the PC where the VVO runs, 

and between the PC and the GTNET (IED) to test the control signal.  Wireshark is run on 

the PC where control applications are run to see the Round Trip Delay (RTD) and 

throughput of the measurement/control signals (in DNP3) received and sent to the GTNET 

of RTDS respectively. Thus, when round trip delay plotted with the Wireshark it actually 

shows end to end delay. More details regarding the result of this study is presented in next 

chapter of this thesis. 

In brief, the key benefits of presented co-simulation platform includes but not 

limited to its adaptability with new smart grid based VVO solutions, its coordination with 

smart grid technologies such as DMS and AMI, its simplicity and comprehensibility using 

MATLAB programming for VVO engine design and its communication platform using real 

substation automation protocol (DNP3). 

11.4. Monitoring and Control Platform Overview 

This section explains co-simulation monitoring and control platform overview, 

design and main setup. Basically, co-simulation platforms for monitoring and control 

applications are designed utilizing various monitoring and control components that are 
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emulated or integrated in plug and play modes. These assets are mainly the measurement 

acquisition units, communication networks, measurement protocols, monitoring and 

control actuators. The general overview of the designed co-simulation platform for the 

proposed AMI-based VVO engine is presented in Figure 11.5. As illustrated in Figure 11.5, 

similar to 1st co-simulation study, distribution network assets are modeled in RTDS that is 

capable of real-time simulation of distribution grids. Moreover, it can utilize real-time 

measurements through its interface boards to emulate real measurement devices. In the 

proposed AMI-based VVO engine, two GTNET boards are used to emulate smart meters 

or measurement field collectors. RTDS GTNET cards are able to send measurements in 

DNP3 to the VVO engine placed in MATLAB via optic fiber Ethernet connection. The 

Kepware OPC server is used as measurement aggregator that collects DNP3 

measurements from RTDS model.  

Here, the software platforms, such as RSCAD run-time, provide system with 

monitoring and control among all data collected from loads, VVO engine control 

commands to VVCCs and measurements after optimal reconfiguration of the system at 

each quasi real-time operating stage. The GTNET boards change AMI data into DNP3 

format, and send data to the measurement aggregator that is the OPC server that provides 

required quasi real-time measurement values for the VVO engine in MATLAB. After finding 

the optimal solution of the grid by the VVO engine, control signals are sent back from VVO 

engine to RTDS via OPC server in DNP3 format to impose new optimal settings to 

distribution network VVCCs.  

RSCAD runtime shown in Figure 11.6 enables monitoring the status and 

values/taps of VVCCs as well as other measurements in real time. Any changes in active 

and reactive power consumptions of customers, as well as distribution network 

parameters, such as node voltages, branch currents and phase angles, can be observed 

in real-time via monitoring platform depicted in Figure 11.6. Moreover, the aforementioned 

data and parameters are saved to system database for further analysis and study 

purposes. 
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Figure 11.5. Main structure of real-time co-simulation platform for AMI-based 
VVO 

 

Figure 11.6. Monitoring platform for real-time co-simulation of AMI-based VVO 

11.5. IEC 61850 Standard in Automation Systems 

Technology improvements in electronics, communication and information 

technology have enabled unprecedented opportunities in the automation of substations. 

Devices deployed in power systems generally follow proprietary standards. It becomes a 

daunting task to design an automation system with devices from different manufacturers. 

Thus IEC 61850 was developed to make automation system components interoperable 

and interchangeable. This standard defines an object oriented hierarchical data model 

with semantics that enables data abstraction and provides information on the data to be 
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exchanged as well as the mechanisms of data exchange. The data models are application 

independent and the scope was originally within substation but the standard is extended 

to incorporate data models of distributed energy resources [181]. As the standard divides 

the domain related model for both communication services and data from the 

communication protocols, namely the OSI layers, any automation system that is based on 

IEC 61850 would achieve long term interoperability even under constant advancements 

in the communication technologies and evolving functionalities of the substation. 

Furthermore, mapping data models and services to the real communication protocols is 

standardized in IEC 61850 that ensures interoperability.  

Application functions up to the data interfaces of the primary equipment are broken 

down into the smallest possible sections that may be implemented separately in Intelligent 

Electronic Devices (IEDs). The standard defines these basic pieces of functionality as 

Logical Nodes (LNs). The data objects within a LN contain attributes which could be values 

or detailed properties of the data object [244]. This hierarchical model is depicted in Figure 

11.7. The semantics of the information exchange within the scope of IEC 61850 is 

formalized only because the LNs are standardized. The IEC 61850 provides standardized 

Abstract Communication Service Interface (ACSI) where a set of services such as: read, 

write, control, reporting, logging, get directory, file transfer, and response to those services 

are defined. These services enable IEDs to behave identically from a network behavior 

perspective [245]. These abstract services and object models need to be mapped on to 

the services and object models of real communication protocols that could be practically 

implemented, which can operate in real computing environments. IEC 61850 maps these 

models and services to the Manufacturing Message Specification (MMS) [246]. 

Theoretically the abstract models of IEC 61850 could be mapped on to any communication 

protocol but MMS was chosen as it supports complex named objects and a set of flexible 

services that enables a straight forward mapping of data models and services defined in 

IEC 61850. For the proposed work the LN “XCBR” was used to realize all the 

functionalities of a circuit breaker. The status changes of the circuit breakers are reported 

to the control center using the MMS protocol. Apart from the core ACSI services, IEC 

61850 defines services such as the Generic Object Oriented System Event (GOOSE) [49] 

and Sampled Values (SV) [247] as well. 
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Figure 11.7. Hierarchical data model proposed by IEC 61850 

GOOSE service is generally used to transmit time critical information, e.g. the 

status changes between the IEDs, when faults happen in the grid, and SV is used for 

transmitting time synchronized stream of samples of currents and voltages. An overview 

of the mapping of the services to the communication stack is provided in Figure 11.8. Apart 

from data models and the services, IEC 61850 provides performance requirements on 

communication technology as well.  

 

Figure 11.8. IEC 61850: Mapping to communication stack 

Typically, the maximum transfer time, depending on requirements of the 

automation function, that is allowed for sending and receiving of messages between the 

IEDs is also provided [248]. IEC 61850 uses Substation Configuration description 
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Language (SCL) for the configuration of substation devices [249]. Data representation as 

SCL enables different IED to exchange data in an interoperable environment. Six 

performance classes are defined, mapping typical allowable transfer times for different 

types of applications where tripping and protection applications require less than 3 

milliseconds. The standard proposes 2-bus Ethernet architecture for the substation 

presented in Figure 11.9.  

 

Figure 11.9. Ethernet bus architecture 

The Merging Unit (MU) digitizes transducer outputs and publishes them as SV into 

the Ethernet-based high speed process bus. Breaker IED/Switch IED (SIED) sends 

GOOSE messages indicating changes in the status of breakers or switches. All MUs and 

SIEDs are synchronized to a single time reference. A station bus is setup at substation 

level to provide primary communication between IEDs that are responsible for station 

monitoring, control and protection. 

The communication could be either with client server based IEC 61850 MMS 

protocol or with a publisher subscriber based GOOSE services. Typically, the local HMI, 

the station computer and the station gateway are connected to the station bus. Remote 

control center via the Wide Area Networks (WAN) can access the data from the IEDs of 

this particular substation through the network gateway using services provided by IEC 
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61850 MMS protocol. Both process bus and station bus are proposed to have two Ethernet 

buses to achieve higher redundancy and reliability. 

11.6. Co-Simulation Platform for Smart Grid-based VVO 

 Co-Simulation Platform Configuration 

In the co-simulation platform discussed here, the VVO engine runs on a PC 

representing the automation unit at a high to medium voltage substation. IEC 61850 MMS 

protocol is used to gather the status of different switching devices, e.g. circuit breakers, in 

order to be able to impose the necessary changes in grid configuration in real-time 

according to the topology of the system. The VVO receives measurements and sends 

control commands to remote VVCCs using DNP3 protocol. DNP3 is used to show a case 

that the platform supports multiple kinds of protocols along with IEC 61850 protocols. 

Moreover DNP3 is a very popular communication protocol, used by major utilities for wide 

area monitoring and control in US and Canada. In reality a complete revamp of the 

communication infrastructure would always be carried out in stages and therefore in the 

transition phases the power systems would be operated partially with the old 

communication infrastructure (including communication protocols) and partially with the 

new. In this work a possible method of introduction of IEC 61850 communication protocols 

is investigated. IEC 61850 communication services are used for automatic service 

restoration after a fault and update the VVO engine with real time changes in network 

topology. Whereas the measurement acquisition from remote measurement units and 

sending control commands to VVCCs is done through the old communication 

infrastructure through DNP3 protocol. 

 The distribution feeders are assumed to be equipped with switchgears which are 

IEC 61850 compatible. This means that each switching device is configured as a SIED 

and exchanges GOOSE messages with the other switching devices to automatically 

isolate faults and restore service by closing appropriate circuit breaker(s). Different SIEDs 

are pre-configured to take a set of actions when they receive GOOSE messages from 

other SIEDs. As grid topology is important for the VVO engine, it periodically reads the 

status of the breakers using IEC 61850 MMS protocol. This enables it to receive updated 
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data regarding any changes in the topology of the system, which may require a new batch 

of optimal set points of VVCCs to be calculated. This automation platform using IEC 61850 

enables the VVO algorithm to operate robustly for any configuration changes the system 

may assume. 

 Co-Simulation platform Realization 

The real-time co-simulation platform is functionally divided into three sections. The 

first section is real time distribution network simulation in RSCAD shown in Figure 11.10. 

The second section consists of measurement, control and monitoring systems and the 

third section includes software platform for control and monitoring. As depicted in Figure 

11.10, the distribution network is modeled using RTDS. As explained before, RTDS 

enables simulating power system dynamics up to 3 kHz [241]. Different distribution 

network scenarios, i.e. fault / normal conditions, could be emulated using RTDS. RTDS is 

equipped with specialized boards named "Gigabit Transceiver Input Output" (GTIO) that 

emulate the outputs of a real transducer. The transducer outputs from RTDS are provided 

to the measurement, control, monitoring and protection devices that constitute the second 

section. These devices are realized by Gigabit Transceiver Network boards and National 

Instruments-Compact Reconfigurable Input Output (NI-cRIO). The GTNETs support 

DNP3, as well as IEC 61850 GOOSE protocols, whereas the NI-cRIO is configured as an 

IED that supports IEC 61850 MMS protocol. This platform uses four GTNET boards, two 

of which are configured for DNP3 protocol, as DNP3 Slave, and two support IEC 61850 

GOOSE protocol. Each GTNET card is configured to emulate multiple SIEDs. One of the 

two GTNETs configured for DNP3 is responsible for sending measurements to the VVO 

engine and the other receives control command signals, i.e. the outputs of the VVO 

engine, notifying new setting of VVCCs. One of the two GTNETs supporting GOOSE 

protocol is configured as a publisher and the other as a subscriber.  
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Figure 11.10. Designed real-time co-simulation platform  

When a fault occurs in the system, the relays emulated in RTDS detect an over 

current and initiate tripping of appropriate circuit breaker(s). Subsequently, as the status 

of the switching device(s) changes, the GTNET board which is configured as a publisher 

publishes GOOSE message notifying this change in the status. Upon receiving these 

GOOSE messages by the subscribing GTNET, appropriate SIEDs emulated by this 

GTNET, takes action for service restoration. These status changes are made available to 

the NI-cRIO-based IED that supports MMS server via the analogue output boards of the 

RTDS (GTAO) in real time. RTDS runtime is employed as monitoring platform of co-

simulation where different grid variables, such as voltage, current, active/reactive power 

injections as well as VVCC online status and/or values are monitored in real-time. 

Finally, the Software Platform principally emulates the functions of a remote control 

center. Measurement of different formats are aggregated and made available to the 

control applications, and control commands are sent to the remote control units emulated 

in RTDS. The Kepware OPC server is used to emulate both as the DNP3 Master and 

MMS client. It aggregates measurements sent with DNP3 protocol and sends back control 

commands to VVCCs emulated in RTDS. The MMS client requests the status information 

of the different switching devices from the NI-cRIO based-IED. Such measurements and 

status changes, indicative of the present topology of the grid, are made available to the 

VVO engine implemented in MATLAB via the OPC tool box of MATLAB. The VVO engine 

runs in quasi real-time, and the optimal control settings it produces are sent back via OPC 
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toolbox to OPC server, which translates the control command values to DNP3 control 

messages to be sent to remote VVCCs emulated in RTDS. Figure 11.11 illustrates the co-

simulated system levels for the proposed smart grid-based VVO engine. 

 

Figure 11.11. IEC 61850 architecture for proposed smart grid-based VVO 
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Chapter 12.  
 
Studies, Results and Result Analyses 

This chapter presents different studies for proposed smart grid adaptive VVO. The 

result analysis of each study are given after each case study simulation and results. These 

studies cover the following VVO aims/topics:  

• Real-time adaptive VVO using IA and IEC 61850 protocol 

• Design VVO engine with different levels of operation as well as DGs 

• Impacts of V2G on performance of the VVO engine 

• Design a VVO engine using Vehicle to Grid Dispatch 

• Design a day-ahead predictive VVO 

• Design an online predictive VVO using VVO real-time sliding window 

• A solution for VVO maintenance scheduling issue using Maintenance 
Scheduling Engine concept 

• Smart grid adaptive VVO using Particle Swarm Optimization and Fuzzification 

• ZIP load modeling for Conservation Voltage Reduction using disaggregated 
AMI data 

• Real-time Co-simulation platform for Volt-VAR control (no CVR) 

• Real-time Co-Simulated Platform for Energy Conservation 

• Real-time Communication platform study for AMI-based VVO 

• Monitoring and Control real-time co-simulated platform for proposed VVO 
(CVR included) 

• Impacts of Micro-CHP/PV penetrations on smart grid VVO using AMI data 

• Community Energy Storage VVO Study 

• Impacts of EV penetration on proposed VVO using real-time co-simulation 
monitoring platform 

• Real-time Co-simulation platform for smart grid adaptive VVO using IEC 
61850 MMS and GOOSE 
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12.1. Real-Time Adaptive VVO Topology Using Multi Agent 
System and IEC 61850-Based Communication Protocol 

 Case Study 

In this section, modified IEEE 34 node distribution test system [250] is used for 

testing the accuracy and the applicability of proposed VVO engine. This study uses the 

network topology shown in Figure 3.6 of Chapter 3.4.The modified test system consists of 

34 residential nodes with 34 metering points (smart meters). The power is supplied from 

the HV side and transmitted by a radial distribution network. The system is modified to 

have two 50 kW microgrid DG units. In this study, active and reactive powers of the DGs 

are controllable. Hence, the power factor can be controlled within the desired range. 

Figure 12.1 presents single line diagram of the case study. A 2500 kVA transformer is 

placed inside the HV/MV substation at the first feeder. It has 34 tap steps. Each tap can 

increase/decrease the voltage by 0.3125 percent. Along distribution feeder, 34 points are 

assumed as VAR injection points. The system has two VRs between nodes 8-9 (VR-1) 

and 19-20 (VR-2) respectively. They can increase/decrease the voltage by 0.625 % in 17 

taps (from 0.95 to 1.05 per units).  

 

Figure 12.1. Modified IEEE 34-Node Test Feeder 

The system study is based on Per Units (P.U.) and the equations mentioned in 

Chapter 5. For the objective function, (5-1) to (5-3) and (5-4) to (5-8) is used. Constraints 

of this study are (5-9) to (5-27). The basic information of feeder lines such as line lengths 

and line reactance and impedances are given in [250]. The information of nodes is given 

in Table 12.1. Three types of residential consumption profiles for 34 nodes are considered 

(type-1, type-3: residential and type-2: light commercial). The reason is that the loads can 

show different characteristics in different operating conditions. In this case, the real-time 
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data acquisition intervals from smart meters are set to 15 minutes to be in line with current 

practice prevalent in AMI and distribution automation systems. The simulation is 

performed for 96 time stages (a complete day in winter). Figure 12.2 illustrates the 

detected residential loads in the 96 time stages.  

Table 12.1. General Data of Nodes (Load Curve Types, Active and Reactive 
Power) 

No. 
Load 
Type 

P kW 
Q 

kVAR 
No. 

Load 
Type 

P kW 
Q 

kVAR 

1 1 20 10 18 3 1.2 0.8 
2 2 30 15 19 2 1.2 0.5 
3 3 10 5 20 2 2 1.5 
4 1 10 5 21 2 2 1.5 
5 2 2 1 22 2 1.1 0.5 
6 1 5 2.5 23 1 17 8 
7 2 2 1 24 2 5 2.5 
8 2 5 2.5 25 1 110 55 
9 2 5 2 26 1 9 5 
10 1 34 17 27 1 25 12 
11 3 135 70 28 2 23 1 
12 3 3 1.5 29 2 3 1.5 
13 1 40 20 30 2 38 19 
14 2 1.2 0.5 31 2 11 5.5 
15 2 6 3.5 32 2 24 12 
16 2 2 1 33 2 3 1.5 
17 2 2 1 34 2 3 1.5 

 

Figure 12.2. Residential loads in 96 time stages (Red: type-1, Blue: type-2, Green: 
type-3). 

Thus, VVO engine uses quasi real-time VVO data from IAs (acquired from smart 

meters) to determine new settings for VVO assets (e.g. voltage regulators and/or VAR 

injecting components) to re-optimize the voltage, active and reactive power of the smart 

distribution network every 15 minutes. The algorithm for VVOE is an improved Genetic 
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Algorithm (GA) which works based on natural selection method. Chromosome matrix has 

candidate rows for VAR injection point values and VR tap positions. The column of this 

matrix is the candidate nodes for VAR injections. The simulation was run in the MATLAB 

environment. 

 Case Study Results and Result Analysis 

Here, different scenarios are presented and compared. The first scenario is the 

blind distribution network without any near real-time distributed command and control for 

VVO. Figure 12.3 represents the power loss curve in different scenarios and Figure 12.4  

shows the voltage curve for the end-feeder node (node-34). In Figure 12.3 and Figure 

12.4, the blue curves show the blind distribution network result. As illustrated, the blind 

feeder is faced with different problems such as voltage of the buses under the standard 

limit and large system loss. The results of this scenario are compared to the following 

scenarios: 

• OLTC effect: Transformer tap changer is added to the distribution network with 
its maximum tap by VVO engine. 

• CB’s effect: In addition to OLTC, VVO engine defines the VAR amount and 
locates the VAR injection points. The green curve in Figure 12.3 and Figure 
12.4 represents the effect of VAR injection system in the network. By 
implementing this scenario, the voltage of the buses is increased and the power 
loss is decreased. Lack of an optimal strategy for VVO is felt because the 
voltage of the network is still less than ANSI-band.  

• VR effect: In this scenario, one of the VRs (VR-2) is added to the network with 
its maximum tap. The red curve in Figure 12.3 and Figure 12.4 represents this 
scenario. As seen, the scenario improves the voltage and the active and the 
reactive power of the system but still, the system has voltage problems. 

• Implementing near real-time VVO optimization through VVO engine: In this 
scenario, the VVO engine determines the amount and the location of VAR 
injections in addition to changing the tap steps of existing VRs and OLTC in the 
distribution network. Thus, the system reconfigures itself by applying an agent-
based distributed command and control in 15 minutes intervals.  

In Figure 12.3 and Figure 12.4, the magenta curves show the impact of OLTC in 

the network. As observed, the voltage and the power loss of the system can be improved 

but the system would still have numerous problems. 
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Figure 12.3. Loss Curve in different scenarios (Blue: no VVO, Magenta: OLTC 
effect, Red: VR effect, Black: Complete VVO). 

 

Figure 12.4. Voltage Profile of Node-34 in different scenarios. 

The VVO engine runs an integrated VVO algorithm in order to find tap positions 

and system required reactive powers. The black curves in Figure 12.3 and Figure 12.4 

depicts the impact of the proposed system. Here, the optimal solution leads to fixed taps 

for OLTC (% tap = 0.953125) and VR-2 (% tap = 0.9625) and different taps in time stages 

for VR-1. The reason is that the system has limitations in changing taps.  Therefore, it is 

better for the system to decrease the number of tap changes during its operation. 

Moreover, the optimal solution suggests various VAR injection points during near real-

time intervals (15 minutes). This implies that the load of the system varies with the time 

stages and VVO engine has to adapt the system to load variations. Figure 12.5 presents 

chosen VAR injection points and Figure 12.6 gives the VR-1 tap positions which are 

obtained by VVO engine during time intervals. Furthermore, CVR task of the algorithm 

has kept the voltage of the nodes within ANSI-band. Figure 12.7 clearly shows the voltage 

of all 34 nodes which are kept within ANSI standard limit.   
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Figure 12.5. VAR injection points during time stages based VVO engine 
calculations 

 

Figure 12.6. Tap positions of VR-1 obtained by VVO engine 

 

Figure 12.7. Voltage result for all nodes based on ANSI Band. 

As a result, the voltage of the system is well-regulated by the VVO engine algorithm 

and the power loss of the system reduced significantly. In this case study, the reduction 

loss percentage from the first scenario up to the last scenario was 40.625 % and the 
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voltage drop regulation of last node (node-34) in peak is equal to 31.75 %. Additionally, 

the power factors of all nodes are well-raised at each time interval. Table 12.2 shows the 

power factor values of all 34 nodes in the peak load. In conclusion, the VVO engine can 

optimize the distribution network in a distributed command and control platform by 

applying IAs.  

Table 12.2. Power Factor of All nodes Calculated by VVO Engine 

No. PF No. PF No. PF 
1 0.9771 12 0.9997 23 0.9797 
2 0.9928 13 0.9771 24 0.9928 
3 0.9997 14 0.9928 25 0.9771 
4 0.9771 15 0.9903 26 0.972 
5 0.9928 16 0.9928 27 0.9789 
6 0.9771 17 0.9928 28 0.9999 
7 0.9928 18 0.9993 29 0.9928 
8 0.9928 19 0.9928 30 0.9928 
9 0.9954 20 0.9841 31 0.9928 

10 0.9771 21 0.9841 32 0.9928 
11 0.9997 22 0.9928 33 0.9928 

    34 0.9928 

 Conclusion 

This study proposed a quasi-real-time adaptive approach for an integrated VVO in  

smart grid applying a distributed command and control platform. The study explains 

different types of control schemes and proposes distributed command and control as the 

most adaptive scheme for the future smart grid. Moreover, as VVOE is responsible for 

distribution network reconfiguration, the algorithm objectives and constraints are given in 

the study. In addition, modified IEEE 34 node distribution network has been applied in 

order to test the effectiveness of the VVO optimization engine. The test is simulated in 

MATLAB environment. Hence, the optimal configuration of the distribution network is 

obtained for a full day and the system configuration is updated every 15 minutes. The VVO 

engine determined the amount of each VAR injection points and found the optimal tap 

positions of OLTC of the substation and existing voltage regulators for each time interval. 

The simulation results illustrated that the system can be controlled adequately in terms of 

voltage, active and reactive power regulations by the proposed integrated VVO approach.   
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As a result, this study can be the basis for future studies in smart grid adaptive 

VVO techniques. Such studies should determine the required type and frequency of the 

AMI data vis-à-vis the structural, topological and computational complexity and efficiency 

of VVO algorithms. Furthermore, such studies would produce the required benchmarks to 

determine the impact of network topology on the efficiency of VVO algorithms. At last but 

not least, the importance of building a comprehensive quasi real-time VVO-CVR is that it 

saves energy which can be gained from network loss reduction, while improving voltage 

profile and conserving energy. 

12.2. Real-Time Adaptive Optimization Engine Algorithm for 
Integrated VVO and CVR of Smart Microgrids 

 The Effects of Proposed VVO in British Columbia Institute of 
Technology (BCIT) Case Study  

In this section, a BCIT case study is fully assessed. The main topology of the VVO 

of this study is as same as Figure 3.7 of Chapter 3.4. Considered BCIT distribution network 

consists of 21 nodes, two main substations (Sub-F and Sub-E) and various types of loads. 

Moreover, the network has different distributed generation sources such as: Micro-turbine, 

Roof-top PVs and Flywheel Energy Storage System (FESS). Figure 12.8 presents the 

single line diagram of the BCIT case study. Here in this study, the objective function 

calculated based on (5-2) to (5-4) and the constraints are (5-9) to (5-19), (5-22), (5-25) 

and (5-28). As it is shown in Figure 12.8, both substations have a 2000 kVA transformer. 

Sub-E has a CB unit with 150 kVA capacity (3*50 kVA). It is assumed that both 

transformers have tap-changers with 17 tap-steps that can regulate the voltage between 

-%5 to +%5. Hence, each tap step can regulate the voltage plus or minus % 0.625.In 

addition, 1300 kW total load which is located at the MV side of Sub-E is considered in the 

simulation. The proposed VVO is performed in 15-minutes time intervals for a complete 

day (96 time stages). The captured values of active and reactive power of nodes as well 

as load types are presented in Table 12.3. At the low voltage side of Sub-F, a micro-

turbine (220 kW, 275 kVAR) is placed which operates in parallel with the network. 
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Figure 12.8. Single Line Diagram of Considered Case Study 

In addition, the feasibility of installing a 25 kW, 50 kWh FESS with 20 kVAR 

injecting power on node-10 is under study. At the LV side of Sub-E, a roof-top PV with 17 

kW total generation is placed. According to the geographical position of BCIT campus 

(Burnaby: -123.02E, 49.26 N), the operational hours of a solar PV in average is around 

3.8 hours/day/year. According to the previous records, generating capacity of the roof-top 

PV in the best insolation condition will be equal to 11.2 kW which is considered in 

simulation.  

Table 12.3. Curve Types, Active and Reactive Powers of Loads in BCIT Case 
Study 

Node Number 
Load 
Type 

P (kW) 
Q 

(kVAR) 
Node Number Load Type P (kW) 

Q 
(kVAR) 

N-2 1 Com. 0.03 0.015 N-13 3 Com. 0.065 0.032 
N-3 1 Com. 0.025 0.012 N-14 3 Com. 0.015 0.008 
N-5 1 Com. 0.08 0.040 N-17 3 Com. 0.015 0.008 
N-6 1 Com. 0.065 0.032 N-18 5 Motor Load 0.015 0.009 
N-7 2 Com. 0.015 0.007 N-19 3 Com. 0.015 0.008 
N-8 2 Com. 0.015 0.007 N-20 3 Com. 0.01 0.005 

N-11 4 Load bank 0.72 0.375 N-21 3 Com. 0.015 0.008 

The studied network consists of different load types. Figure 12.9 depicts different 

load profiles of BCIT loads which is obtained from measured data. As it is presented in 

Figure 12.9 and Table 12.3, network typical loads have three different types which are 
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mainly commercial loads (load types: 1, 2, 3). Moreover, the load curve of the existed load 

bank (load type-4) at node-11 is different with other typical loads. For the load bank, it is 

shown that it has been switched on at the beginning of working hours of laboratory (10 

A.M) and it has been switched off at 6:30 P.M. Additionally, an inductive motor load exists 

at node-8 of the system. This three phase motor has 20hp (15 kW) rated power with 

1800r.p.m. It has 0.86 Power Factor (reactive power is equal to 8.9 kVAR) at ¾ full load. 

The load curve of the motor load (load type-5) is as follows: It has been switched on at 10 

A.M and operates at 0.92 of its nominal mode and it has been switched off at 7 P.M.  

 

Figure 12.9. Load profile types of the Case Study 

The effect of proposed quasi real-time VVO algorithm is evaluated. First, the initial 

condition (dumb mode) of BCIT distribution network without VVO implementation is 

presented and then, the quasi real-time VVOVR is studied in two modes (confining to the 

substations and distributing along the feeder). The applied optimization technique for the 

VVO engine is improved GA. Figure 12.10 presents the system loss curve in three different 

scenarios: a) without VVO, b) VVO confines to the substations and c) VVO options within 

substations and along distribution feeder. As it is pointed out in previous section, VVO 

engine can optimize the network based on system operator desired settings. In the first 

case, the desired setting for loss minimization at peak is considered to be equal to 120 

kW. Hence, the algorithm is found the VVO results confined to the system substations. In 

second scenario, the desired setting for the system loss at peak is changed to 100 kW. 

Thus, the algorithm used other VAR injection candidates along BCIT feeder as well as 

substation Volt-VAR control devices. On the other hand, VVO algorithm regulates the 

voltage profile of the network. Figure 12.11 illustrates the voltage profile of all BCIT nodes 

in four cases: a) dumb system without VVO, b) VVO inside substations, c) VVO with only 

VAR injection CB candidates and d) Integrated quasi real-time VVO.  
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Figure 12.10. System Loss Curve for Different Scenarios: a) without VVO, b) VVO 
confines to the substations and c) VVO implementation within 
substations and along distribution feeder 

As it is observed in Figure 12.11, some of the voltage nodes are out of ANSI 

standard in the first case.  

 

Figure 12.11. Voltage Profile of All Nodes of the Case Study in Different Scenarios 

In case (b), this issue is solved by VVO engine. In this case, the Tap position of 

Transformer-1 is equal to 0.99375 and the capacitor bank of Sub-E is employed in full 

capacity (150 kVAR). In presence of capacitor banks along distribution feeder, system 

voltage profile improves significantly. In this step, CVR tries to reduce the voltage of some 

nodes by applying OLTCs and existed VRs in order to conserve energy. This condition is 

shown in case (d). In this case, VVO algorithm set the Transformer-1 tap position at 

1.01875 and set the Transformer-2 tap position at 1. Moreover, it recommends a VR close 
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to node-12. The tap changes of this VR are shown in Figure 12.12. Furthermore, Figure 

12.13 presents the VAR injection point candidates at each quasi real-time interval. 

 

Figure 12.12. Tap changes of the VR during a full day operation 

 

Figure 12.13. CB VAR injection point candidates at each quasi real-time interval 

 The Effect of Flywheel Energy Storage System on the 
System VVO  

In this sub-section the effect of FESS on system Volt-VAR Optimization is studied. 

It has to be mentioned that the effect of other existed DG sources such as Micro-turbine 

(as a generating unit which operates in parallel with distribution network) and roof-top PV 

are considered in the main VVO. Thus, the Flywheel role in quasi real-time VVO cycles is 

assessed. As it is noted, the system has a Flywheel Energy Storage System which is able 

to inject 25 kW active and 20 kW reactive powers to the grid every two hours (50 kWh, 40 

kVAh). After discharging and transmitting power to the grid, FESS will be back to the 



 

158 

charge mode. One of the substantial features of new flywheel energy storage technology 

is that it let operators to regulate and control the charge and discharge cycles of a FESS. 

Therefore, Figure 12.14 illustrates the effect of FESS in VVO loss reduction and assumed 

charge/discharge cycles of it. As it is shown in Figure 12.14, FESS is available for VVO in 

several time stages based on its regulated cycles and assist VVO to reduce the system 

loss considerably. Based on determined priority, VVO engine asks FESS to participate in 

VVO at each quasi real-time stage. It checks FESS availability every 15 minutes. If FESS 

is available, the VVO algorithm will choose FESS as one of the Volt-VAR control devices 

in its problem. 

Figure 12.14. The Effect of FESS on VVO and its Charge/Discharge Cycle 

As a result, the offered VVO approach optimized the BCIT network in a complete 

reliable and efficient way in quasi real-time. Table 12.4 gives the total and comparable 

results of the proposed VVO engine. Considering the results of Table 12.4 and the fact 

that the mean approximated energy cost for BCIT campus is equal to 6 Cents per kWh, 

VVO can save lots of costs for BCIT. If VVO is being limited to the substations, it is possible 

to save 926.8182 kW-15minutes of energy and CAD 13.90227 per day as energy 

conservation. If the VVO algorithm is being implemented along distribution feeder, the 

values will be raised (2929.465 kW-15minutes of energy and CAD 43.94197 as energy 

conservation). Finally, if the flywheel storage system effect is being considered, the 

conservation values will be 3266.567 kW-15minutes of energy and CAD 48.99851. By 

simple approximations, it can be concluded that it is possible to conserve huge amount of 

energy and save lots of costs in BCIT campus by applying proposed quasi real-time smart 

grid adaptive VVO approach. It is clear that this approach can help campus economy as 

well as utility to conserve more energy. 
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Table 12.4. Results of the VVO for the Case Study 

 Network without VVO 
VVO Confined to 

Substations 
VVO FESS 

Total daily loss (kWh) 1750.0007 1518.29625 1017.63475 816.64175 

Cost Saving (CAD) 0 13.90227 43.94197 48.99851 

 Conclusion 

This study presented a quasi-real-time smart grid adaptive VVO approach based 

on distributed command and control structure that can minimise distribution network loss 

and improve voltage profile of nodes. The offered algorithm has numerous abilities such 

as considering existed Volt-VAR control components based on operator desired settings, 

ability to determine VAR injection points along the feeder, optimizing VVO problem in 

quasi real-time, extendibility of the algorithm to be predictive and  smart grid adaptable 

structure based on the availability of distributed generation sources. BCIT distribution 

network is used to study the applicability and the accuracy of the VVO algorithm. The 

results are shown that the presented VVO is able to optimize system in different levels 

and it is completely adaptable with distributed generations in smart microgrids. Hence, at 

each quasi real-time stage, the algorithm could improve system loss as well as voltage 

profile and implemented an integrated VVO in a reliable and efficient approach.  

Given the fact that each distribution network node will be able to be smart with self-

healing structure in the future, the offered algorithm is adaptable with both now and future 

frameworks. This can help distribution networks to achieve higher degrees of energy 

conservation and voltage regulation at each quasi real-time interval through an integrated 

VVO technique. Therefore, both customer and utility can get advantageous from a quasi-

real-time VVO. Consumer can reach to a more reliable network with less expenses and 

utility can conserve more energy from implementing the explained VVO approach. 
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12.3. Impact of V2G on Real-time Adaptive VVO of 
Distribution Networks Case Study and Result Analysis 

 Case Study: IEEE-37 Bus Test Feeder 

In this section, a revised IEEE-37 node test feeder [251] is applied as the case 

study. The feeder has two DG units and a substation with a 2500 kVA transformer. The 

OLTC of the transformer has 17 tap steps which regulates the voltage from -5% to 5%. 

Different types of switchable CB (25 to 200 kVAR) are employed in the study. Figure 12.15 

and Table 12.5 depict revised IEEE-37 node test feeder single line diagram and load 

regions. Furthermore, different loads are used in the study (Figure 12.16). In this study, 

the main objective function equations are (5-1) to (5-3), (5-5) to (5-8) and the constraints 

are (5-9) to (5-28) and (5-57) to (5-60). Figure 3.8 of Chapter 3.4 shows system topology. 

Moreover, this study uses Chapter 6.1 theories. 

 VVO Implementation without EV 

So far, it is assumed that there is no VVO in the network. In the next step, VVO 

optimizes the network (still without EV) in 15 minute time intervals for a complete day (96 

time stages). The VVO optimization technique is an improved genetic algorithm (GA) with 

new two crossover and two mutation steps in order to achieve high precision.   

 

Figure 12.15. IEEE-37 node test feeder single line diagram 
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 VVO in Presence of EVs 

Table 12.6 shows the initial result of the feeder. In order to study EV effects, 

disparate users with different consumption levels are applied as shown in Figure 12.16. 

The study considered EV charging Level I, Level II and the combination of them for 

different locations (residential, workplace, commercial (shopping malls) and industrial.  

 

Figure 12.16. Different Daily Load Curves of Customers 

Table 12.5. IEEE-37 node test Feeder General Load Data 

Node No. 
Load 
Type 

P 
kW 

Q 
kVAR 

Node No. 
Load 
Type 

P 
kW 

Q 
kVAR 

2 6 0.35 0.175 22 5 0.085 0.040 

4 5 0.085 0.040 25 1 0.085 0.040 

6 3 0.085 0.040 26 2 0.042 0.021 

8 3 0.085 0.040 27 3 0.14 0.070 

10 1 0.042 0.021 28 3 0.126 0.062 

12 2 0.042 0.021 30 2 0.042 0.021 

13 4 0.14 0.070 31 6 0.5 0.250 

15 5 0.085 0.040 32 6 0.085 0.040 

16 5 0.085 0.040 33 2 0.042 0.021 

18 2 0.042 0.021 35 2 0.042 0.021 

19 2 0.042 0.021 36 1 0.085 0.040 

20 2 0.042 0.021 37 1 0.085 0.040 

21 2 0.042 0.021  
 

In addition, it assessed EV impacts on the system in two penetration levels (Normal 

and High) for different customers. For residential customers, normal penetration level 
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means 2 EV per 10 houses and high penetration means 4 EV per 10 houses. Moreover, 

normal and high penetration levels (First H and N are high and normal residential 

penetrations, second H and N are high and normal penetrations of other EV charging 

locations) for work, commercial and industrial locations are the existence of 2 and 4 

charging stations at each location respectively. 

Table 12.6. VVO Initial Results (without EV) 

Operating Scenario 
Apparent Power 

(kVA) 
Active Power (kW) 

Dumb (No-VVO) 8664.6 6414.4 

Volt/VAR Optimization 8175 6053.2 

Loss Reduction 489.6 361.2 

Figure 12.17 illustrates EV regions in the case study. Therefore, VVO optimizes 

distribution feeder in presence of EVs with different charging levels and scenarios (level I, 

level II, 50% level I and 50% level II, 30% level I and 70% level II, 70% level I and 30% 

level II) and finds the grid losses and CB switching numbers which are given in Table 12.7. 

It is foreseeable that the grid losses rise significantly because of the active power 

consumed by EVs that impose Ohmic loss to the grid. 

 

Figure 12.17. EV Load Curves for different consumers 

 VVO in Presence of EVs as Reactive Power Injectors  

Here in this study, EV charging station Level I, is capable of generating reactive 

power around 35 % of its active power [93] and the EV charging station Level II is able to 

inject VAR to the grid with a rate around 50% to its active power [94]. This study studies 
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EV effects when 10% of them are able to inject VAR to the network. Different operating 

scenario results are given in Table 12.7. The most decisive point lies in the fact that the 

engine minimizes the system apparent power loss with less capacitor bank amounts 

(kVARs). The reason is that the VAR sources of the network are increased by EVs so that 

the system has reached to a lower loss with lower switchable capacitor bank amounts. 

Table 12.7. VVO Results in Different EV Charging and Penetration Levels  

Charging/ Penetration Levels 
S (kVA) 
No VVO 

S 
No EVQ Inj. 

S 
EV QInj. 

SW# 
EV 

No Q 

SW# EV Q 
Inj. 

1.44 kW 

NH 8777.8 8302 8283.5 18 30 

NN 8770.3 8270.6 8266.8 22 16 

HH 8834.3 8348.4 8325.7 16 47 

HN 8826.8 8326.2 8319 14 30 

3.88 kW 

NH 8787.2 8280 8278.3 26 30 

NN 8779.1 8275 8274 16 20 

HH 8852 8351.4 8343.8 32 30 

HN 8843.9 8341 8338.8 20 20 

50/ 50 

NH 8782.7 8297.6 8290.3 28 22 

NN 8774.9 8287.8 8272.4 16 24 

HH 8843.4 8386.9 8350.3 18 18 

HN 8835.6 8358.6 8340.4 12 14 

30/ 70 

NH 8784.7 8297.6 8294.0 12 16 

NN 8776.8 8281.8 8274.4 32 20 

HH 8847.1 8376.9 8345.6 16 24 

HN 8839.1 8361.6 8337.9 22 30 

70/ 30 

NH 8780.7 8322.0 8285.3 16 18 

NN 8773 8290.4 8277.8 12 16 

HH 8839.8 8344.6 8333 16 24 

HN 8832.1 8327.5 8320.7 18 26 

Table 12.8 presents peak power losses and total reactive power injection of CBs 

in two simulated steps (step-1: EV with no VAR injection, step-2: EV with VAR injection). 

Although EVs increase distribution network ohmic losses but, they might be employed as 

a reactive power sources which let network operators reduce system losses. For more 
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clarification, the VVO engine calculates the operating cost of feeder switchable capacitor 

banks based on (12-1), which is presented in Table 12.8.  

	 . ∑ ∑ , , . ∆ ∑ ∑ ,     (12-

1) 

Where	 ≅ 0.3287, ≅ 1.6 and ≅ 0.0137 are cost of daily peak power loss 

($/kVA), energy loss cost ($/kVAh), and daily per kVAr cost of switchable CBs ($/kVAR-

day) respectively. is the apparent peak power loss and ,  is the VAR amount of 

capacitors (kVAR).  

Table 12.8. VVO Switchable Capacitor Bank Results (Q: Total Injected reactive 
Power in Step1 and Step 2) 

Scenarios Peak Loss-1 Peak Loss-2 Q-1 (kVA) Q-2 (kVA) Saving ($) 

1.44 kW 

NH 14204.2 14023.84 60700 52875 136.87 

NN 14191.59 14071.72 62650 58325 65.28 

HH 14295.35 14046.89 60050 49625 179.26 

HN 14282.85 14073.09 58400 52325 94.74 

3.88 kW 

NH 14218.8 14018.54 57600 53100 64.35 

NN 14205.72 14036.9 62350 54950 103.01 

HH 14323.73 14106.46 56975 51875 82.38 

HN 14310.53 14121.43 57250 53525 54.45 

50/50 

NH 14211.93 13971.97 64400 48300 232.30 

NN 14198.95 14060.82 58075 56900 40.97 

HH 14309.88 14148.64 54950 54200 69.09 

HN 14297.13 14198.47 59925 59000 42.06 

30/70 

NH 14215.01 14056.58 59050 54050 74.32 

NN 14202.02 14017.07 60250 53475 104.84 

HH 14315.75 14139.81 60600 54075 139.41 

HN 14302.82 14122.57 54050 53725 42.43 

70/30 

NH 14209.09 13963.33 50000 48250 82.84 

NN 14196.05 14024.95 55275 53625 42.69 

HH 14304.06 14106.18 57250 53100 75.51 

HN 14291.35 14087.78 55750 53200 45.84 
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It is concluded that the daily operating cost of CBs has reduced. Figure 12.18 to 

Figure 12.22 illustrate the result of the weakest node of the feeder (Node-37) in level II-

HH scenario. Figure 12.20 represents the CB configuration of Node-37 in first step of 

simulation.  

 

Figure 12.18. Voltage Profile of Node-37 in the case study (Blue: No VVO, Green: 
VVO with EV, Magenta: VVO with EV and OLTC Action, Red: VVO 
with EV capable of inject VAR 

 

Figure 12.19. Node-37 loss around peak times (Blue: No VVO, Green: VVO with 
EV, Red: VVO with EV capable of inject VAR) 

Thus, with less CB amounts, VVO has reduced network loss more. As a result, the 

proposed algorithm could optimize distribution network feeder with/without EVs in quasi 

real-time based on current and future Smartgrid prerequisites and presents EV potential 

on supplying a small portion of distribution network reactive power that give rise to a 

system with less losses and CB operating costs.    
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 Conclusion 

This study assessed the effect of EVs with different charging (I and II) and 

penetration levels (Normal and High) on quasi real-time VVO of distribution networks.            

 

Figure 12.20. Capacitor Bank Switching Strategy of Node-37 for step-1      

 

Figure 12.21. Quasi real-time VAR injection of Node-37 EVs to the grid  
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Figure 12.22. Capacitor Banks strategies for all nodes in Level II, HH Scenario 

The results have proven the possibility of supplying part of distribution network 

required reactive power from EVs by changing the operating mode of their inverters. This 

potentially bring upon a network with less reactive power compensation issue. Moreover, 

it could reduce the operation costs of switchable capacitor banks which are located along 

distribution feeder. Regardless of the economic factors that should be taken into account 

in future studies, EV reactive power injection seems to be an appealing approach 

especially in cases that EVs are close to weak points of the network and/or the locations 

where consumes more reactive powers. In order to test the accuracy of the proposed 

technique, a revised IEEE-37 node test feeder is applied with different consumption 

regions for EVs. Finally, it is concluded that EV’s role in future distribution networks cause 

new challenges and opportunities that distribution network short term/ long term planners 

have to take into account to conserve distribution network energy and costs effectively. 

12.4. A Novel VVO Engine for Smart Distribution Networks 
utilizing Vehicle to Grid Dispatch 

 Case Study Definition 

As a case study, a revised IEEE-123 node test feeder [252] is utilized in this 

section. The medium voltage substation of the feeder consists of a 5000 kVA transformer. 

The OLTC of the transformer has 17 tap steps which is able to regulate the voltage from 

-5% to 5%. Moreover, three VRs exist along distribution feeder. Based on distribution 

network operator required setting, each VR are able to regulate the voltage in 5 tap steps. 

When there is a common voltage regulation device such as OLTC and the objective is 

load reduction or energy conservation, the sum of feeder minimum Objective Function 

(OFs) is not equal to minimum OF for the common bus, which provides the same voltage 

to the heads of all connected feeders. In IEEE 123 Node Test Feeder, there is only one 

connected feeder to the MV substation. Hence, VVO problem is not dealing with this issue 

here. The network has four fixed CBs in different location of the feeder and different types 

of switchable CB (100, 150, 200, 250 and 300 kVAR) are employed by VVO engine in the 

study. Table 12.9 depicts revised IEEE-123 node test feeder main data and Figure 12.23 
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represents the single line diagram and load regions of the case study. As depicted in [252], 

some nodes do not have any active and reactive power consumption/generation. Hence, 

Table 12.9 only shows the loads of the system. As given in Table 12.9, the loads of the 

system have been classified into six different regions (1: Residential, 2: Heavy Residential, 

3: Commercial, 4: Heavy commercial, 5: Motor Load (considered as a specific industrial), 

and 6: Industrial) based on their type. Different types of loads are presented in Figure 

12.24. Furthermore, each region of the network has specific combination of loads that is 

shown in Figure 12.23. The VVO engine designed and programmed in MATLAB. Figure 

3.9 of Chapter 3.4 presents system topology of this study. Moreover, Chapter 6.1 theories 

are used in this study as well. Here in this study, the objective function calculated by (5-

30), and constraints of the problem are from (5-9) to (5-28) and from (5-57) to (5-62).  
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Figure 12.23. IEEE-123 node test feeder single line diagram 

 

Figure 12.24. Different Daily Load Curves of Customers 

 

Table 12.9. IEEE-123 node test Feeder averaged over day load data 

Node 
No. 

Load 
Type 

P 
MW 

Q 
MVAR 

Node 
No. 

Load 
Type 

P 
MW 

Q 
MVAR 

Node 
No. 

Load 
Type 

P 
MW 

Q 
MVAR 

1 3 0.04 0.020 42 1 0.02 0.010 76 6 0.105 0.080 

2 1 0.02 0.010 43 1 0.04 0.020 77 6 0.04 0.020 

4 1 0.04 0.020 45 1 0.02 0.010 79 6 0.04 0.020 

5 1 0.02 0.010 46 1 0.02 0.010 80 4 0.04 0.020 

6 1 0.04 0.020 47 2 0.035 0.025 82 4 0.04 0.020 

7 1 0.02 0.010 48 2 0.07 0.050 83 3 0.02 0.010 

9 3 0.04 0.020 49 2 0.07 0.050 84 3 0.02 0.010 

10 1 0.02 0.010 50 2 0.04 0.020 85 4 0.04 0.020 

11 3 0.04 0.020 51 1 0.02 0.010 86 5 0.02 0.010 

12 1 0.02 0.010 52 1 0.04 0.020 87 3 0.04 0.020 

16 1 0.04 0.020 53 1 0.04 0.020 88 3 0.04 0.020 

17 3 0.02 0.010 55 1 0.02 0.010 90 3 0.04 0.020 

19 3 0.04 0.020 56 1 0.02 0.010 92 3 0.04 0.020 

20 3 0.04 0.020 58 1 0.02 0.010 94 1 0.04 0.020 

22 3 0.04 0.020 59 1 0.02 0.010 95 1 0.02 0.010 

24 3 0.04 0.020 60 1 0.02 0.010 96 1 0.02 0.010 

28 3 0.04 0.020 62 4 0.04 0.020 98 3 0.04 0.020 

29 3 0.04 0.020 63 4 0.04 0.020 99 3 0.04 0.020 

30 3 0.04 0.020 64 4 0.075 0.035 100 3 0.04 0.020 



 

170 

31 3 0.02 0.010 65 4 0.07 0.050 102 1 0.02 0.010 

32 3 0.02 0.010 66 4 0.075 0.035 103 2 0.04 0.020 

33 3 0.04 0.020 68 3 0.02 0.010 104 2 0.04 0.020 

34 3 0.04 0.020 69 3 0.04 0.020 106 2 0.04 0.020 

35 2 0.04 0.020 70 3 0.02 0.010 107 2 0.04 0.020 

37 2 0.04 0.020 71 3 0.04 0.020 109 1 0.04 0.020 

38 1 0.02 0.010 73 3 0.04 0.020 111 1 0.02 0.010 

39 1 0.02 0.010 74 3 0.04 0.020 112 1 0.02 0.010 

41 1 0.02 0.010 75 3 0.04 0.020 113 1 0.04 0.020 

 114 1 0.02 0.010 

 Operating Scenarios 

In this section, six different operating scenarios are studied as follows: 

• Scenario 1: In this scenario, it is assumed that the proposed VVO engine 
operates in this grid but there is no EV in distribution network. 

• Scenario II: This scenario investigates distribution network in the presence of 
EVs. 

• Scenario III: In this scenario, a portion of EVs are considered as VAR injectors 
in the system. 

• Scenario IV: This scenario investigates VVO engine results in the presence of 
EVs. 

• Scenario V: In this scenario VVO performs in the presence of a portion of EVs 
as VAR support. 

• Scenario VI: Last scenario, seeks a new VVO approach to find the optimum 
VAR injection amount and the optimal node of injection for EV charging 
stations capable of injecting VAR into the grid. 

 Scenario 1: VVO Performance without EV 

As an initial condition, it is assumed that the network is operating using its initial 

settings without any VVO. The Initial setting of fixed CBs is shown in Table 12.10. In 

second mode, proposed VVO engine runs to optimize the network (still without any EV 

penetration) every 15-minutes for a complete day (96 time stages).  
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Table 12.10. Simulation and network general data 

Fixed Capacitor 
Bank 

Node kVAR Simulation Data 

CB01 83 200 
Optimization 
Technique 

Improved 
Genetic 

Algorithm 

2mutation/ 
2Crossover 

Steps 

CB02 88 50 Power loss cost   0.06 ($/kWh) 

CB03 90 50 
Minimum Power 

Factor Limit , ,  0.9 

CB04 92 50 
Capacitor Bank 
operating cost  

 
2 ($/kVAR) 

[253] 

OLTC/VR Mode No. of Taps 
Tap 

Position 
   

OLTC 17 0.9875 
V2G with VAR 

injection 
operating cost  

 0.8 ($/kVAR)  

VR-1, VR-2, VR-3 5, 5, 5 1, 1, 1 
Budget for 

system 
operation 

 80000 ($) 

The 15-minute interval is related to the setting of common smart meters that are 

able to capture data every 15 minutes. Hence, a 15-minute sliding window is defined for 

the VVO engine. Each sliding window includes three main steps: data capturing, 

optimization and control command dispatch. It has to be noted that previous 

comprehensive Volt-VAR solutions could not optimize network leveraging live (real-time 

or quasi real-time) smart meter data. Hence, from VVO point of view, it is quite possible 

to say that the proposed solution is quasi-real-time. Generally, the system difference at 

sliding window "t+1" changes smoothly from sliding window "t". Hence, the system is able 

to track system changes and make a better-than-before solution. It has to be stated that 

reducing sliding window size to 5 minutes might respond to system changes better that 

needs further investigations. An improved genetic algorithm (GA) with two-crossovers and 

two-mutation steps are used in order to achieve high level of precision. First, a random 

number between 0 and  (maximum capacitor) is generated for each gene. 

Repeating this process, results in GA initial population. Second, two different crossover 

operators are employed in order to reproduce generation. Hence, two chromosomes 

considered as a parent and they are crossed over with a probability called PCHR-1. Then, 

chromosome rows are substituted with each other. In addition to data substitutions of 
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rows, gene’s data are also selected randomly and displaced in second crossover step. 

Two mutation types of improved GA increase search space and prevent local optimum 

solutions of the system. A chromosome row is selected randomly in first mutation. Then, 

with a probability PMUT-1, random changes impose in several arrays of a chromosome 

by the second mutation.  

Table 12.10 presents the initial settings of Volt-VAR control components and the 

optimization parameters. It should be mentioned that the algorithm design enables users 

to run VVO in quasi-real-time but at this stage of research it was performed offline to check 

the accuracy of the results and due to AMI data rate limitation that will become available 

to proposed optimization engine in upcoming studies. Table 12.11 compares the results 

of three initial network operating modes: First, there is no VVO in the system. Second, 

VVO performs with voltage control devices such as OLTC and VRs and third, VVO 

performs completely. The results show that the system can save about US$ 304 in a day 

by performing a proper VVO. 

Table 12.11. VVO initial results (no VVO) 

No. Operating Scenario Objective Function ($) Active Power Loss (kW) 

1 Initial  (No-VVO) 9173.0 6370.1 

2 VVO (Just OLTC/VR) 8963.5 6224.6 

3 VVO (Complete) 8869.0 6159.0 

Loss Reduction: 1-3 304 211 

 Scenario II: Network in Presence of EVs 

In order to study the EV impact on distribution network, the assumption is made 

that different users own EVs with different consumption levels. For commercial and 

industrial loads, EV charging stations are considered as well. Hence, Figure 12.25 shows 

different EV load profiles (Residential, Workplace and Commercial) in both charging level-

I and Level-II. Hence, the study considered EV charging Level I, Level II and the 

combination of them for EV stations in different locations (Residential (for 

residential/heavy residential loads), Workplace (for commercial loads), Commercial (for 

heavy commercial and industrial loads)). In addition, it assessed EV impacts on the 

system in two penetration levels (Normal and High) for different customers. For residential 
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customers, normal penetration level is equal to 2 EV per 10 houses and high penetration 

means 4 EV per 10 houses. Moreover, normal and high penetration levels for work, 

commercial and industrial locations are the existence of 2 and 4 charging stations at each 

location respectively. Figure 12.23 illustrates EV regions in case study. 

 

Figure 12.25. EV Load Curves for different consumers 

Reference values for the P.U for Figure 12.24 and Figure 12.25 are calculated 

based on data received by smart meters in order to find load type Per-Unit values. For 

example, by multiplying active power of a node with a Per-Unit of its value in Figure 12.24, 

it is simply possible to find the smart meter active power amount.  Here, distribution feeder 

in the presence of EVs with different charging levels and cases (level-I, level-II, 50% level-

I and 50% level-II, 30% level-I and-70% level-II, 70% level-I and 30% level-II) is studied. 

Table 12.12 , shows the power loss cost amount obtained for scenario II. It has to be 

reminded that the grid has not been optimized by VVO yet. 

 Scenario III: Network in Presence of a portion of EVs as 
Reactive Power Injectors  

Based on literatures [93]-[94],  this study makes the following assumptions: EV 

charging station Level I, is capable of generating reactive power around 35 % of its active 

power [93] and the EV charging station Level II is able to inject VAR to the grid with a rate 

around 50% of its active power [94]. Moreover, this work studies EV effects when 20 

percent of the EVs are able to inject VAR into the grid. The result of this scenario is given 

in Table 12.12. From Table 12.12, it is concluded that the system power loss costs reduced 

by reactive power generation of a part of EVs in different charging scenarios. The VAR 
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injection contribution of each EV is obtained from VVO power flow which determines 

system VAR needs. Hence, VVO finds VAR amount needed for each node of the system 

at each time stage and checks if an EV is able to inject required VAR (or a part of it) at 

that node in that moment or not . It is important to distinguish between placement and 

sizing problem (which is a planning problem) and real time operational constraints. This 

study tries to find the optimal VAR amount of each existed switchable CBs along 

distribution network feeder. 

 Scenario IV: VVO in Presence of EVs 

In this scenario, VVO optimizes distribution feeder in the presence of EVs with 

different penetration (Normal, High), charging levels and sub-scenarios (level-I, level-II, 

50% level-I and 50% level-II, 30% level-I and 70% level-II, 70% level-I and 30% level-II). 

The VVO minimizes the objective function and finds the optimal VAR level for switchable 

Capacitor Banks during each time stage. The result of this scenario is presented in Table 

12.13. In order to compare total CB amount and the operating cost in different scenarios, 

VVO has regulated the OLTC and the VRs of the network in fixed rates shown in Table 

12.10. It is foreseeable that the grid losses rise significantly because of the active power 

consumed by EVs that impose Ohmic loss to the grid. 

Table 12.12. Scenario-II and Scenario-III comparison 

 EV Charging 
Levels (%) 

Penetration 
Level 

Scenario-2: V2G, 
No VAR injection 

($) 

Scenario-3: V2G 
with portion of 

VAR injection ($) 

Difference 
for 96 time 
steps ($) 

Level 1 -100% 
High 9890.6 9861.3 29.3 

Low 9419.5 9404.9 14.6 

Level 2 -100% 
High 11953 11828 125 

Low 10385 10322 63 

70-30 
High 10480 10422 58 

Low 9701.9 9672.9 29 

30-70 
High 11305 11208 97 

Low 10088 10040 48 

50-50 
High 10887 10809 78 

Low 9893.6 9855.0 38.6 
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 Scenario V: VVO in Presence of a portion of EVs as Reactive 
Power Supports 

Similar to Scenario III, the case study consists of EVs (20 percent) with reactive 

power injection capability. Here, VVO tries to find the optimal configuration of CBs for 

distribution network in order to minimize the objective function which includes power loss 

costs and CB operating costs of the system. The result of this scenario is shown in Table 

12.13 as well. Comparing Scenario IV and Scenario V results, one can conclude that in 

Scenario V, the VVO engine minimizes the objective function with less cost. It could also 

be derived that in some charging levels, the power loss cost increased (in Scenario V), 

while the total amount of the objective function was reduced. The reason lies in the fact 

that VAR sources of the network were increased by EVs so that the system reached a 

less objective function with less switchable CB amounts. As a result, although EVs 

increase distribution network Ohmic losses but, they might be employed as reactive power 

sources enabling network operators reduce system losses as well as expenses.  

Table 12.13. Scenario-IV and Scenario-V comparison in presence of CBs found 
by VVO  

EV Charging 
Levels (%) 

Penetration 
Level 

Scenario-
IV: No 
VAR 

injection 
Active 
Power 

Loss (kW) 

Scenario-
V: With 

VAR 
injection 

Active 
Power 

Loss (kW) 

Scenario-
IV 

Objective 
Function 

($) 

Scenario-
V: 

Objective 
Function 

($) 

Difference 
between 
objective 
functions 

for 96 time steps 
($) 

Level 1 -
100% 

High 6772.5 6742 51152.4 49508.4 1644 

Low 6388.3 6492.6 44299.1 39849.3 4449.8 

Level 2 -
100% 

High 8120.7 8189.7 109194 103593 5601 

Low 7060.7 7035.3 81667 74531 7136 

70-30 
High 7153.7 7096 60785 54618 6167 

Low 6621.5 6640 54398.2 53861.6 536.6 

30-70 
High 7821.5 7763.8 78263 75580 2683 

Low 7003.1 6892.7 71884 69725.5 2158.5 

50-50 
High 7649.3 7412.5 65226 64605 621 

Low 6711.8 6753.8 67265 62725.4 4539.6 
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 Scenario VI: VVO with New O.F for EVs  

As concluded from Scenario V, reactive power injection by EVs could benefit 

distribution networks in terms of operating expenses. Hence, scenario VI seeks a new 

VVO approach to find the optimum VAR injection amount and to find the optimal node of 

injection for EV charging stations capable of injecting VAR into the grid as well. Thus, the 

VVO objective function is modified in order to consider the VAR injection operating cost of 

these EV charging stations. Here, the VVO is able to find the optimal VAR level of CBs 

and EVs with VAR injection capability by applying (5-31). 

In summary, this scenario checks if VVO is able to find EV optimal VAR injection 

points (among available locations) and optimal values or not. The method of finding the 

optimal combination of the CB and EV charging station VAR locations are similar to the 

first Scenario. The EV optimal levels and locations are being found by GA in MATLAB 

environment. In this case study, the VAR injection amounts for EV charging stations are 

considered as 10 and 20 kVARs. According to [94] and [95], the reactive power injection 

service of V2Gs would be very cost-effective compared to other services such as 

coordinated charging, peak shaving and/or active regulations [95]. Therefore, this study 

assumes the VAR injection operating cost of EV charging station equal to 40% of CB 

operating cost. These amounts are given in Table 12.10. Table 12.14 compares Scenario 

V and Scenario VI results. Moreover, Table 12.15 compares total injected VAR amount 

into the system in Scenario V and Scenario VI. The results in Table 12.14 specify that the 

new VVO with new Objective Function led to a system with lower operating cost.  

Table 12.14. Scenario-V and Scenario-VI comparison in presence of CBs found 
by VVO  

EV 
Charging 

Levels (%) 

Penetration 
Level 

Scenario-V: 
Active Power 

Loss (kW) 

Scenario-VI: New O.F. with 
VAR injection, Active 

Power Loss (kW) 

Level 1 -
100% 

High 6742 6601 

Low 6492.6 6356 

Level 2 -
100% 

High 8189.7 8174.5 

Low 7035.3 7111.6 

70-30 
High 7096 7203.3 

Low 6640 6582.6 
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Table 12.15.

 Scenario-V and Scenario-VI CBs and EV charging stations 
found by VVO  

30-70 
High 7763.8 7727.1 

Low 6892.7 6815.3 

50-50 
High 7412.5 7303 

Low 6753.8 6698.95 

EV 
Charging 

Levels (%) 

Penetration 
Level 

Scenario-V 
Objective 

Function ($) 

Scenario-VI: 
Objective 

Function ($) 

Difference  
for 96 time 
steps ($) 

Level 1 -
100% 

High 49508.4 48317 1191.4 

Low 39849.3 39436.6 412.7 

Level 2 -
100% 

High 103593 86375 17218 

Low 74531 60093 14438 

70-30 
High 54618 53317 1301 

Low 53861.6 52694.9 1166.7 

30-70 
High 75580 68219 7361 

Low 69725.5 63830 5895.5 

50-50 
High 65005 62888 2117 

Low 62725.4 61318 1407.4 

EV 
Charging 

Levels (%) 

Penetration 
Level 

Scenario-V: Total 
VAR amount 

(kVAR) 

Scenario-VI: Total VAR 
amount: CB+EV (kVAR) 

Level 1 -
100% 

High 19900 20750 

Normal 15250 16450 

Level 2 -
100% 

High 45900 39750 

Normal 32200 26390 

70-30 
High 22200 23260 

Normal 22150 23000 

30-70 
High 32200 30850 

Normal 29900 29120 

50-50 
High 27150 28250 

Normal 26500 27850 

EV 
Charging 

Levels (%) 

Penetration 
Level 

Scenario-VI Total 
Capacitor Bank 

(kVAR) 

Scenario-VI: Total EV 
Charging Station VAR 

Injection (kVAR) 

Level 1 -
100% 

High 18510 2240 

Normal 14270 2180 

High 35670 4080 
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The result of Scenario VI shows that certain VAR amount is needed that the system 

could not supply in scenario V. Thus, by more reactive power injection into the grid in 

Scenario VI, the system leads to a less operating cost (objective function). In order to 

compare the discussed scenarios with each other, one of the EV charging/penetration 

cases (Charging scenario: Level-II, Penetration Level: Normal) is chosen and the 

results/figures related to this case are presented as follows:  

Level 2 -
100% 

Normal 
23950 2440 

70-30 
High 20280 2980 

Normal 20680 2320 

30-70 
High 27010 3840 

Normal 25600 3520 

50-50 
High 24810 3440 

Normal 24490 3360 
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The objective function active power loss convergence of VVO in Level II/Normal 

penetration case is shown in Figure 12.26. Figure 12.27 shows the Power Factor (PF) of 

all nodes in different time stages. As shown in Figure 12.27, all nodes in different time 

stages are more than minimum regulated Power Factor ( ) which is equal to 0.9. 

Moreover, it gives the weakest nodes of the system regarding PF (Node No: 47, 48, 49, 

65 and 76). Comparing Power Factors in Figure 12.27, it is concluded that last scenario 

has reached to an acceptable PF range with less VAR injection amount as well. Figure 

12.28 compares the apparent power loss spectrum in last two scenarios and Figure 12.29 

demonstrates the apparent power loss of the system in sixth scenario as an example.  

 

Figure 12.26. VVO Objective Function Loss Convergence in Level II/Normal 
Penetration Case 

(a)  (b)  

Figure 12.27. Power Factor of all nodes in different scenarios: (a) Scenario V and 
(b) Scenario VI for Level II/Normal Penetration Case. 

The spectrums range from blue to red (Figure 12.28) presents the apparent power 

loss from the lowest to the highest value. Hence, it can be observed that the power loss 

of the system is in its highest rate (red region) at the end of the feeder and during peak 

time (Time stage-62 to 73). This study chose to simulate the apparent power loss rather 

than the active or reactive power losses for Figure 12.28 and Figure 12.29, because the 

apparent power loss includes both active and reactive power losses. Hence, it provides 
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more detail about loss minimization performed by the VVO engine compared with active 

power loss which does not include reactive power loss reduction.  

(a)  (b)  

Figure 12.28. Apparent power loss histogram of all nodes at each time interval in 
different scenarios:  (a) Scenario V and (b) Scenario VI for Level 
II/Normal Penetration Case. 

 

Figure 12.29. Apparent power loss of all nodes at each time interval in Scenario VI 
for Level II/Normal Penetration Case 

Figure 12.30 represents the 3D plot of the voltage of all nodes of the system at 

each time stage for the last scenario and Figure 12.31 compares the voltage of the nodes 

of the system in discussed scenarios. It can be derived from Figure 12.31 that EVs 

increased the voltages of some nodes in scenario VI. Figure 12.32 shows the CB VAR 

amount for each node at each time stage in Scenario IV, V and VI found by VVO engine.  
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Figure 12.30. Voltage of all nodes at each time interval for Scenario VI (Level-II, 
Normal Penetration) 

(a)

 

(b)

 

Figure 12.31. Voltage of all nodes during time interval in different scenarios: (a) 
Scenario V and (b) Scenario VI for Level II/Normal Penetration Case 

(a) (b)

(c) (d)

Figure 12.32. Switchable Capacitor Bank VAR injection amounts and points for all 
nodes in all time intervals in (a) Scenario IV, (b) Scenario V, (c) 
Scenario VI and VAR injection amount and location of EV charging 
stations in Scenario VI (d) for Level II/Normal Penetration Case. 

As Figure 12.32 illustrated, Scenario IV applies more CBs available on the nodes 

of the system during a day compared with Scenario V and Scenario VI. Moreover, the 
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optimal locations of CB VAR injections have changes when VARs were injected by EVs. 

Finally, the last scenario (VI) allocates optimal CB (Figure 12.32 (c)) and EV charging 

stations VAR injection amounts and points (Figure 12.32 (d)). 

 Conclusions 

This research studied the impact of EVs with different charging (I and II) and 

penetration levels (Normal and High) on smart grid adaptive VVO of distribution networks. 

The results proved the fact that it would be possible to supply a part of distribution 

network’s required reactive power from EVs by changing the operating mode of AC/DC 

inverters without imposing any changes on the active power operating mode of the 

charger. This potentially brings upon a network with less reactive power compensation 

issue. Moreover, it could reduce the operational costs of switchable Capacitor Banks 

located within medium voltage substation and/or along distribution feeder. Hence, EVs 

capable of injecting VAR into the grid might change capacitor bank configuration of the 

network as well as the operating cost of the grid. Regardless of other economic factors 

such as investment costs and Internal Rate of Returns (IRR) that should be taken into 

account in future studies, EV reactive power injection would be an appealing approach 

especially in cases that EV charging stations are close to weak points of the network 

and/or the termination points which consume more reactive power. In the last scenario of 

this study, VVO benefited from reactive power generation of EV charging stations and 

gave the optimal VAR amounts of reactive power injection points of distribution network. 

Therefore, this study introduced a comprehensive VVO approach with the capability of 

employing EV charging stations as VAR injection sources to optimize distribution network 

loss and operating expenses at a same time.  In order to test the accuracy of the proposed 

technique, a revised IEEE-123 node test feeder applied with different load types and 

consumption regions for EVs. Different charging scenarios and penetration levels 

assessed thoroughly in order to check the impact of V2Gs on the network and on the VVO. 

Finally, it is concluded that V2Gs in future distribution networks will impose new challenges 

and opportunities on the distribution network’s short/long term planning that need to be 

taken into account in distribution network’s dispatch-able energy and costs. The structure 

and design of proposed VVO in this study could be a great solution sample for distribution 
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network planners and/or operators to optimize their grids in accordance with new smart 

grid features by employing better-than-before efficient techniques. 

12.5. Predictive Algorithm for Volt-VAR Optimization of 
Distribution Networks Using Neural Network 

 Case Study and Results 

In this section, British Columbia Institute of Technology (BCIT) north campus 

distribution network applied as a case study. Figure 12.33 depicts the schema of BCIT 

campus grid. Table 12.16 presents the general data of the BCIT case study. This study 

uses Figure 3.10 of Chapter 3.5 as system topology. All theories presented in Chapter 9.1 

are the basis of this study. This study uses (5-32) and (5-33) as objective function 

equations with constraints from (5-9) to (5-28).  

 

Figure 12.33. BCIT North Campus distribution network schema 

It employs (5-42) and (5-43) for calculating the active and reactive power based 

on ZIP model of loads. As it is shown in Figure 12.33 and Table 12.16, the BCIT case 

study consists of 13 nodes. Each node has its own smart meter that is able to feed several 

neighbor buildings and measure active and reactive power at each time stage (15-

minutes). The abovementioned nodes have switchable shunt capacitors with 10, 25 and 

50 kW capacities.  
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Table 12.16. General Data of BCIT North Campus Case Study 

Node No. Average daily kW Average daily kVAR Smart Meter  Available CB (kVAR) 

1 0 0 0 - 

2 340.902 109.528 N-N 25,50 

3 120.364 39.182 N-W 25,50 

4 16.974 5.444 N-J 10 

5 134.168 44.257 N-MT 10,25,50 

6 0 0 0 25,50 

7 58.05 19.041 N-C 10,25,50 

8 50.497 16.011 N-D 10,25,50 

9 0 0 0 0 

10 65.468 21.474 N-A 25,50 

11 29.482 9.671 N-B 10 

12 91.141 29.56 N-R 10,25,50 

13 36.473 11.859 N-G 10 

Additionally, the network includes an OLTC located at the main substation that is 

able to regulate the voltage of the feeder from -5% to +5%. The OLTC consists of 17 tap 

steps (the middle tap is tap-0). The number of CB switching per day limit for each CB is 

equal to 10 and the number of the OLTC switching per day limit is assumed to be equal 

to 12. The temperature and dew point data of BCIT campus is collected from the 

Environment Canada. The coefficients of (2) and (3) are considered as 

0.0928	
$

, 9	 $/  and 0.06	
$

. Initially, the objective was 

to predict the load for November 1st, 2013. Hence, the Neural Network engine predicted 

the active/reactive power of each node at each time stage of November 1st 2013 based 

on gathered previous data.  Table 12.17 gives a snapshot of Neural Network training 

inputs in a chosen node (node-2) in order to show a sample of data used by Neural 

Network training set. The initial settings for Neural Network engine are presented in Table 

12.18. Hence, Neural Network engine predicted the active and reactive power of the 

November 1st, 2013 loads for every 15 minutes based on the settings depicted in Table 

12.17, Table 12.18 and smart meter previous data mentioned in previous section, part-B.  

Table 12.17. Snapshot of Neural Network Training Input for Node-2 (Each Column 
here, shows a row of NN training set) 

Date/Time 31/10/2013 7:15 31/10/2013 7:30 31/10/2013 7:45 31/10/2013 8:00 
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Temperature (oC) 9 9 9 9.1 

Dew Point (oC) 8.1 8.1 8.1 8.2 

Time Stage Numerator 29 30 31 32 

Day of week 4 4 4 4 

Type of day 1 1 1 1 

Previous week kW 361.15634 400.04278 411.66867 416.73031 

Previous day kW 368.79626 403.91207 420.36389 416.54077 

Previous day average kW 343.85237 343.85237 343.85237 343.85237 

This study used MATLAB as simulation environment in order to design predictive 

VVO engine. The convergence rate of GA in the case study is considered to be equal to 

0.9999. Then, the VVO engine used the predicted load of Neural Network engine to 

optimize the network for November 1st, 2013. The capacitor switching operation 

considered in three load levels: low level (less than 70 % of the average load), mid-level 

(70% to 110% of the aver. load) and peak level (more than 110% of the aver. load). The 

load model in CVR calculation was ZIP with the following values: 0.43,

0.06. 0.6, 4.06, 6.65, 3.5. After finding the optimal configuration of 

Volt/VAR control devices by the predictive VVO engine, the results of the optimization of 

a day-ahead algorithm was used on November 1, 2013 in order to test the performance 

of the predictive VVO.  Table 12.19 compares the result of the study in five different 

scenarios: 

• Scenario-I: No VVO in the system, predicting loads by Neural Network engine 

• Scenario-II: Perform predictive VVO algorithm to optimize the system for 
targeted day 

• Scenario-III: Implement predictive VVO algorithm results obtained by scenario-
II in targeted day 

• Scenario-IV: No VVO, consider network with real measured smart meter load 
data in targeted day 

• Scenario-V: It is assumed that ideal VVO could be efficiently performed using 
real data of smart meters of targeted date in quasi real-time 

Table 12.18. Neural Network Setting for BCIT North Campus 

Node-No. 
Number of 
Neurons 

No. of training set 
rows 

Train%-Validation%-
Test % Epoch 

2 10 57888 80-15-5 121 
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3 10 57888 80-15-5 229 

4 10 67008 80-15-5 339 

5 10 70272 80-15-5 224 

7 10 70272 80-15-5 167 

8 12 67872 75-20-5 171 

10 10 70272 80-15-5 173 

11 10 70272 80-15-5 196 

12 10 57888 80-15-5 139 

13 12 67008 80-15-5 143 

Table 12.19. Case Study Results for Different Scenarios 

Scenario No. 
Loss/operation 

costs ($) 
CVR tap 

Saved  
by CVR 

Saved active 
energy % 

Objective 
Function 
Value ($) 

1 462.4746 0 - - - 

2 434.4494 7 146.3175 3.8925 36.80425 

3 443.7502 7 147.3731 3.8926 36.87129 

4 471.7791 0 - - - 

5 441.3558 7 147.3731 3.8926 39.26569 

Figure 12.34 illustrates a comparison between predicted load of a sample node 

(node-2) and real data collected in targeted day. Furthermore, Table 12.20 gives the 

accuracy of each prediction by calculating Mean Absolute Percentage Error (MAPE) and 

the number of CB and OLTC switching for each node. In addition, the convergence of 

VVO engine to optimal solution is shown in Figure 12.35. It may possible to determine 

different components of ZIP load model via NN in order to see the impact of each 

component on VVO that might be considered in further studies. Figure 12.36 compares 

total active load curves of scenario-III and scenario-V for all nodes and Figure 12.37 

depicts the voltage of all nodes at each time stage in Scenario-III. The capacitor bank 

switching operation of nodes in time stages that is found by predictive VVO is shown in 

Figure 12.38. The loss cost at each time stage resulted from scenario-III is given by Figure 

12.39. 
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Table 12.20. Results of Prediction Accuracy and Number of CB Switching in 
predicted day (ypred: Predicted Load, Y: Measured Load) 

Node-No. %  
No. of CB 

Switching in 
Scenario-III 

No. of CB Switching 
in Scenario-V 

1 - - - 

2 2.3788 2 2 

3 3.68 4 4 

4 4.74 0 0 

5 4.5187 2 2 

6 - - 0 

7 4.6269 0 2 

8 4.4278 4 0 

9 - - 0 

10 4.12 10 10 

11 4.62 0 0 

12 3.68 4 2 

13 4.4290 0 0 

  

Figure 12.34. Predicted load (ypred) versus measured load (y) for node-2 

 Result Analysis 

As observed from Figure 12.34 to Figure 12.39, the predictive VVO algorithm could 

predict the active and reactive loads of each node with an acceptable approximation (less 

than 5% error) and then, it proposed an efficient optimized configuration for Volt-VAR 

control devices of the grid. 
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Figure 12.35. Objective Function value convergence in Scenario-III 

 

Figure 12.36. Total measured active power loads versus total predicted active 
power loads by predictive VVO 

 

Figure 12.37. Scenario-III Node voltages at each time stage  

As the BCIT campus distribution grid is very strong in terms of voltage profile, the 

predictive VVO could be able to set the OLTC tap in an adequate position (base voltage 

of the tap position: 114.75 V) for all time stages of predicted day. 
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Figure 12.38. Capacitor Bank switching operations for all nodes at each time 
stage for Scenario-III 

 

Figure 12.39. Loss Cost ( ) resulted from Scenario-III 

On the other hand, comparing scenario-III with scenario-V leads to a conclusion 

that the benefit (objective function value) resulted from VVO in scenario-III (last column) 

is very close to the benefit resulted from VVO in scenario-V (last column). Moreover, the 

difference between the loss/operation costs in scenario-III is very close to scenario-V as 

well. Thus, the presented predictive VVO in this study optimized BCIT campus distribution 

network efficiently and the campus could save about $36.87 in targeted day using this 

technique. Furthermore, this approach solved the number of tap or CB switching limitation 

issue. Hence, this limitation could be simply given to the algorithm by network operators. 

It has to be stated that the accuracy of prediction highly depends on the amount and the 

types of available historical data. As in this case study, smart meter data was available 

since 2009-2010, the Neural Network prediction led to an acceptable error rate. Thus, 

more related and accessible historical data could train the Neural Network better. By 

development of smart meter installations in distribution networks, more real/semi-real time 
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data could be collected for different distribution network studies such as VVO in future. 

Thus, presented approach in this study could be a great candidate for Volt-VAR 

Optimization solution of future distribution networks. In addition, the concepts presented 

in this study could provide a basic framework for further studies regarding to design a 

novel real-time predictive algorithm able to optimize distribution network online for next 

real-time stages.  

 Conclusion 

This study investigated a new predictive VVO algorithm for smart distribution 

networks. The algorithm predicted the active and reactive power loads of the next day 

based on downstream historical data received from local AMI and upstream global 

attributes received from DMS/SCADA. Then, it minimizes network loss cost, Capacitor 

Banks and CVR operating costs as well as maximizing saved energy through CVR method 

for the next day through an improved Genetic Algorithm.  

The results of the study on BCIT campus distribution network showed that the 

proposed predictive algorithm is capable of predicting the active/reactive power loads of 

the system very close to real values through a comprehensive training set. Then, the 

predictive VVO found the optimal configuration of OLTC and CBs in the system for the 

next day. Comparing results of predictive VVO (Scenario-III) with the VVO that collected 

real data from the predicted day (Scenario-V) elucidated the fact that the predicted 

algorithm in this study could yield energy conservation and loss reduction to distribution 

networks very close to energy saving and loss reduction that can be obtained by real-time 

VVO. One of the main advantages of predictive VVO presented in this study is its ability 

to solve the issue regarding the limits that Capacitor banks and OLTCs/VRs have on their 

number of switching per day because of their lifetime. Most real/semi-real VVO strategies 

are still dealing with this issue. The reason lies in a fact that the limits on number of 

switching of CBs and/or OLTC/VR taps are defined by natural numbers in a day (not in 

real/semi-real time). Hence, presented approach in this study is able to get benefit from 

real-time data of previous days and tries to reach to a next day optimal configuration in a 

way that the number of CB or/and OLTC/VR tap switching is/are within desired range(s).  



 

191 

The existence of smart meter historical data could be one of the factors of success 

of the proposed approach in the studied network. Thus, by development and growth of 

smart meter installations in future distribution grids, the presented predictive approach in 

this study could be one of the great candidates for VVO scheme designs in future. 

Moreover, the concepts presented in this study could provide a basis for online predictive 

VVO designs that would be able to optimize the network for the next real-time stage 

through real data of previous time stage and other former data. In this design, the 

predictive VVO is able to correct and re-train itself based on received real-time data. The 

accuracy and the efficiency of this approach are going to be investigated by the authors 

of this study as their next VVO study. 

12.6. A Novel Predictive Volt-VAR Optimization Engine for 
Smart Distribution Systems 

 Case Study and Results 

As a case study for Chapter 9.2, British Columbia Institute of Technology (BCIT) 

north campus distribution network is applied in order to test the applicability and the 

accuracy of proposed predictive VVO. Figure 12.33 presents the single line diagram of 

BCIT campus grid. Table 12.21 presents the initial data of the BCIT distribution network. 

As shown in Figure 12.33 and Table 12.21, the BCIT distribution network has 13 different 

nodes. Each node has its own smart meter that is able to feed several buildings in campus 

and measure active and reactive power at each time stage (every 15-minute). Some 

nodes are equipped with switchable shunt capacitors with 10, 25 and 50 kVAR capacities. 

Moreover, the network includes an OLTC located at the main substation able to regulate 

the voltage of the feeder from -5% to +5%. The OLTC has 17 tap steps (the middle tap is 

tap-0). The number of CB switching per day limit for each CB is equal to 10 and the number 

of the OLTC switching per day limit is assumed to be equal to 12. The temperature and 

dew point data of BCIT campus is collected from the Environment Canada. The primary 

objective was to predict the load for November 1st, 2013. This study uses (9-2) to (9-9) for 

its Neural Network engine. Figure 3.11 of Chapter 3.5 presents system topology of this 

study. The objective function is (5-30), and the constraints are from (5-9) to (5-28).  
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Table 12.21. Data of BCIT North Campus Distribution Network 

Node No. Smart Meter Average Daily kW Average Daily kVAR Available CB (kVAR) 

1 - - - - 

2 N-N 340.902 109.528 25, 50 

3 N-W 120.364 39.182 10, 25, 50 

4 N-J 16.974 5.444 10 

5 N-MT 134.168 44.257 10, 25, 50 

6 - - - 25, 50 

7 N-C 58.05 19.041 10, 25, 50 

8 N-D 50.497 16.011 10, 25, 50 

9 - - - - 

10 N-A 65.468 21.474 10, 25, 50 

11 N-B 29.482 9.671 10 

12 N-R 91.141 29.560 10, 25, 50 

13 N-G 36.473 11.859 10 

Hence, the prediction engine predicted the active/reactive power of each node at 

each time stage of November 1st 2013 (every 15 minutes: 96 time stages for a whole day) 

based on previous data gathered from historical data. Table 12.22 illustrates a snapshot 

of prediction engine training inputs for one of the nodes of system (node-2) to show a 

sample of data employed by Neural Network training algorithm. The initial settings and 

final error rates for prediction engine are given in Table 12.23.  

Table 12.22. Prediction Engine Snapshot of Inputs for Node-2 (each column 
shows a row of Neural Network Training set) 

Date 
Time 

31/10/2013 
10:00 

31/10/2013 
10:15 

31/10/2013 
10:30 

31/10/2013 
10:45 

Temperature (0C) 9.4 9.6 9.6 9.6 

Dew Point (0C) 8.8 8.8 8.8 8.8 

Time Stage Numerator 40 41 42 43 

Day of week 4 4 4 4 

Type of Day 1 1 1 1 

Previous Week kW 471.3176 469.9430 465.3295 492.1121 

Previous Day kW 476.3863 478.9818 479.4061 479.2406 

Previous Day Average 
kW 

343.8524 343.8524 343.8524 343.8524 
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Table 12.23. Prediction Engine Setting and final error rate for BCIT North Campus 
grid 

Node 
No. 

Number 
of 

Neurons 

No. of 
Training 

Set Rows 
Epoch 

 

Offline Predictive VVO 

MAPE 
Proposed Online 
Predictive VVO 

2 10 57888 121 2.3788 1.97197 

3 10 57888 229 3.6800 2.96101 

4 10 67008 339 4.7400 2.73375 

5 10 70272 224 4.5187 2.87417 

7 10 70272 167 4.6269 2.65960 

8 12 67872 171 4.4278 3.03760 

10 10 70272 173 4.1200 2.72767 

11 10 70272 196 4.6200 3.03670 

12 10 57888 139 3.6800 3.05460 

13 12 67008 143 4.4290 2.60904 

Hence, the offline prediction engine predicted the loads for November 1st, 2013 

for every 15 minutes based on the settings depicted in Table 12.22, Table 12.23 and smart 

meter previous data mentioned in previous section, part-B. This study used MATLAB 

environment in order to design predictive VVO engine. The optimization technique used 

for VVO engine is Genetic Algorithm with improved mutation and crossover steps. The 

convergence rate of GA in the case study is considered to be equal to 0.999. Then, based 

on the flowchart shown by Figure 9.2, the VVO engine primarily used the predicted load 

of Neural Network engine to optimize the network for targeted date offline. The capacitor 

switching operation considered in three load levels: low level (less than 70 % of the 

average load), mid-level (70% to 110% of the aver. load) and peak level (more than 110% 

of the average load). After finding the optimal configuration of Volt-VAR control devices 

by offline predictive VVO engine, the results of the optimization of a day-ahead algorithm 

was used on November 1, 2013 in order to test the performance of the predictive VVO. 

Table 12.24 compares the result of the study in following scenarios: 

• Scenario-I: No VVO in the system (it is assumed that there is no Volt-VAR 
Optimization system exist in the grid) 

• Scenario-II: Perform just offline (day-ahead) predictive VVO algorithm to 
optimize the system for targeted day. Here, only the offline parts of explained 
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flowchart (Figure 9.2) are working. The result of offline prediction will be 
implemented in targeted date without any changes. 

• Scenario-III: Perform proposed predictive VVO algorithm to optimize system for 
targeted day: In this scenario, comprehensive proposed predictive engine 
shown in Figure 9.2 performs VVO in the system. In this proposed approach, 
the offline results have been updated with new collected data from smart 
meters.  

• Scenario-IV: Ideal Case: it is assumed that ideal VVO could be efficiently 
performed using real data of smart meters of targeted date in real-time. 

Table 12.24. BCIT North Campus Results in Different Scenarios 

Scenario Number Objective Function Value ($) CVR Tap 

Scenario-I: No VVO 474. 2441 0 

Scenario-II: Offline VVO 440.9081 7 

Scenario-III: Online Predictive VVO 438.9690 7 

Scenario-IV: Ideal Case 438.9400 7 

Figure 12.40 compares the results of load prediction for a sample node of the 

system (node-2). It compares three different scenarios: offline prediction (Scenario II), real 

measured (Scenario IV) and lives prediction (Scenario III).  

 

Figure 12.40. Offline Predicted load, real measured load and live predicted load 
for node-2 

It is concluded that live prediction approach tried to fix offline prediction method 

and decreased prediction error. Moreover, it shows that the new updated prediction from 

Scenario III is more close to the real-time data collected from smart meters. Moreover, the 

convergence of VVO engine objective function is shown in Figure 12.41.  
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Figure 12.41. Objective Function value convergence in third scenario 

Figure 12.42 compares total active power of Scenario II, Scenario-III and Scenario-

IV for all nodes and Figure 12.43 gives the voltage of all nodes at each time stage in 

Scenario-III.  

 

Figure 12.42. Total measured active power loads, total offline predicted active 
power loads and total live predicted active power load  

As Figure 12.42 depicts, live prediction approach leads to less prediction error than 

offline prediction technique. Hence, this approach will bring more accuracy to the VVO 

Engine. Figure 12.43 shows that the CVR is also considered within VVO engine. Voltages 

of all nodes of the system are within lower limits of the ANSI band. The capacitor bank 

switching operation of nodes in time stages that is found by online predictive VVO is shown 

in Figure 12.44. This Figure shows the optimal amount and the optimal location of VAR 

injections found by VVO Engine that has to be injected by CBs in order to minimize 

distribution network loss. The loss cost at each time stage resulted from scenario-III is 

presented in Figure 12.45. This Figure compares the result of loss costs of the first and 

the third scenarios. As it is shown in Figure 12.45, and Table 12.24, the live predictive 

VVO engine served distribution network with more cost saving and loss reduction. 
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Figure 12.43. Node voltages for all nodes for all time stages in Scenario III by Live 
predictive VVO Engine 

 

Figure 12.44. Capacitor Bank switching operations for all nodes for Scenario-III by 
Live Predictive VVO Engine 

 

Figure 12.45. Comparison between Loss costs ($) resulted from Scenario-III (Live 
predictive VVO) and Loss costs resulted from Scenario-I (No VVO 
engine) 

 Result Analysis 

As observed from Table 12.24, and from Figure 12.40 to Figure 12.45, the online 

predictive VVO algorithm was able to initially predict the active and reactive power loads 

of each node and then update the approach based on real-time measured data. Hence, it 

proposed an efficient optimized configuration for VVCC of distribution grid. As the BCIT 
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campus distribution grid is very strong in terms of voltage profile, the predictive VVO could 

be able to set the OLTC tap in an adequate position (base voltage of the tap position: 

114.75 V) for all time stages. Moreover, comparing scenario-III with scenario-IV in Table 

12.24 leads to a conclusion that the final results from VVO in scenario-III is very close to 

the results of an ideal case which is scenario-IV. Thus, the presented online predictive 

VVO in this study optimized BCIT campus distribution network efficiently and minimized 

distribution network loss and operating costs using this technique. Furthermore, this 

approach solved the number of tap or CB switching limitation issue by combining offline 

and online VVO engines that are working together.  

It has to be noted that the accuracy of prediction techniques highly depends on the 

amount and the types of available historical data. As in this case study, smart meter data 

was available since 2009-2010, the prediction engine led to an acceptable approach. By 

development of smart meter installations in future smart distribution networks, more real 

time data could be collected for different distribution network studies such as VVO. Thus, 

presented approach in this study could be a great candidate for Volt-VAR Optimization 

solution of future distribution grids.  

 Conclusions 

This study proposed a new real-time predictive VVO algorithm for smart 

distribution networks. The algorithm primarily predicted the active and reactive power 

loads of the next day based on downstream historical data received from local AMI and 

upstream global attributes received from DMS/SCADA. Then, it minimizes network loss 

cost and Capacitor Banks operating costs for the next day through an improved offline 

Genetic Algorithm. Then, it compared the result of predicted load with real-time data at 

each time stage. In cases that the error was not acceptable, new online VVO sliding 

window were activated in order to initially find the new optimal configuration of VVO assets 

based on VVO offline results and real-time data and then, update offline VVO results 

through an online prediction engine for time stages ahead. The results of the study on 

BCIT campus microgrid showed that the proposed predictive algorithm is capable of 

predicting the active/reactive power loads of the system very close to real values through 

a comprehensive training set and updating the prediction through sophisticated algorithm. 
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Then, the predictive VVO found the optimal configuration of CBs in the system at each 

time stage. Comparing the results of predictive VVO (Scenario-III) with an ideal case 

(Scenario-IV) elucidated the fact that proposed predicted algorithm in this study could yield 

to energy conservation and loss reduction of distribution networks very close to energy 

saving and loss reduction that can be obtained by real-time ideal VVO, even better than 

offline predictive VVO approach (Scenario II).  

One of the main benefits of real-time predictive VVO presented in this study is its 

ability to solve the issue related to the limits placed on Capacitor banks and OLTCs/VRs 

to control the number of switching per day which adversely impacts their lifetime. Most 

real VVO strategies are still dealing with this issue. The reason lies in a fact that the limits 

on number of switching of CBs and/or OLTC/VR taps are defined by natural numbers in a 

day (not in real time). Hence, presented approach in this study is able to solve this issue 

in a way that the number of CB or/and OLTC/VR tap switching is/are within desired 

range(s). The existence of smart meter historical data could be one of the factors of 

success of the proposed approach. Hence, development and growth of smart meter 

installations in future distribution grids, could help proposed predictive approach to be 

more applicable and be as one of the great candidates for VVO scheme designs in near 

future.  

12.7. A Novel Approach for Maintenance Scheduling of Volt-
VAR Control Assets in Smart Distribution Networks 

In this section, 33-node distribution network [254] is tested under different 

operating scenarios and/or conditions as a case study for Chapter 8 of this thesis. 

Moreover, the result of proposed AMI-based VVO with MSE is compared with other 

operating scenarios. 

 Case Study & Results 

A distribution network with 33 nodes shown in Figure 12.46 is considered as test 

case. This network consists of a Medium Voltage (MV) substation with 132 kV/12.5 kV 

voltage levels. Medium voltage substation has an OLTC with 16 tap steps that can regulate 
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voltage level from +5 to -5 percent Per Units. There is a Voltage Regulator between node-

13 and node-14 that is able to regulate voltage in 16 taps as well. Moreover, five different 

switchable shunt CBs are located respectively on node-7, node-14, node-25, node-30 and 

node-32. Each CB has 250 kVAR capacity and consists of five banks (each bank can 

inject 50 kVAR to the system). Here, (5-40), (5-47) to (5-51) uses for the objective function 

calculations of VVO problem and the constraints are (5-9) to (5-18) and (5-20) to (5-28). 

 

Figure 12.46. Single line diagram of 33-node distribution test feeder 

Hence, Maintenance Scheduling Engine has to send seven different VVCCs (i.e. 

one OLTC, one VR and 5 CBs) to the maintenance according to (8-1) in different times of 

horizon year. For this reason, ERCOT historical load data [255] is used for load 

forecasting. The method employed for load forecasting in this study has been explained 

in section 12.5 of this chapter by the authors of this study. The only difference between 

the load forecasting of section 12.5 of this chapter and load forecasting of this study is that 

the load forecasting of MSE here is performed annually (not daily). MSE runs to provide 

the final maintenance strategy and/or solution for AMI-based VVO engine. The 

maintenance strategy results are expressed in Table 12.25. According to the results 

inTable 12.25, it is possible to assess the whole system in five different scenarios and/or 

maintenance times. In first scenario, it is assumed that the VVO problem is being solved 

without Maintenance Scheduling Engine. This scenario provides optimal operation of 

VVCCs without considering them going to maintenance. Thus, Maintenance Scheduling 

of VVCCs is still an issue in this scenario. In next step, MSE solves the maintenance 

scheduling problem and provide VVO with optimal periods that each of mentioned seven 

VVCCs should go to maintenance.  
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Table 12.25. Maintenance Scheduling Engine strategy results  

Maintenance 
Order 

Volt-VAR Control 
Component 

Maintenance Date 
Maintenance 
times stages 

Maintenance 
Duration (hours) 

1 VR Wednesday 12/03/2014 4-39 9 

2 
CB-7, CB-14, CB-

25 Monday 07/04/2014 1-24 6 

3 OLTC Monday 14/04/2014 1-48 12 

4 CB-30, CB-32 Wednesday 14/05/2014 3-26 6 

After solving maintenance scheduling problem by MSE, scenario-II and scenario-

III investigate the impact of MSE on maintenance periods switchable shunt capacitors. 

Scenario-II looks at CB-7, CB-14 and CB-25. Scenario-III assesses CB-30 and CB-32.  In 

scenario-IV, VR maintenance time is going to be shown and the last scenario tries to 

analyze OLTC Maintenance time through MSE main objective. Figure 12.47 illustrates 33-

node distribution feeder losses for scenario-II (i.e. CB-7, CB-14 and CB-25 considered for 

maintenance) in three considered cases: (a) VVO without MSE, (b) VVO with MSE and 

(c) VVO interrupted by maintenance scheduling, i.e. VVO is totally separated from 

maintenance scheduling problem but MSE affect VVO performance. Table 12.26 

represents the values of VVO and MSE objective functions in mentioned scenarios and 

cases. Hence, VVO has to be interrupted when a VVCC is under maintenance in third 

case. Table 12.27 gives the number of CBs, VR and OLTC switching during maintenance 

times in mentioned maintenance scenarios. 

 

Figure 12.47. 33-node distribution feeder losses for scenario-II in three different 
operating cases 
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Table 12.26. VVO and Maintenance Scheduling Engine results in different 
operating scenarios 

Volt-VAR Control Component Operating Strategy Objective Function ($) 

CB-7, CB-14, CB-25 

(a) 2092.181 

(b) 2105.770 

(c) 3858.448 

CB-30, CB-32 

(a) 2303.951 

(b) 2308.317 

(c) 4042.672 

Voltage Regulator 

(a) 3760.964 

(b) 3761.473 

(c) 6487.938 

Tap Changer of Transformer 

(a) 4045.555 

(b) 4100.573 

(c) 7823.130 

Total Maintenance Results 

(a) 12202.65 

(b) 12276.13 

(c) 22212.19 

Moreover, Table 12.27 presents number of CBs, VR and OLTC Switching in 

different scenarios during maintenance times. In order to observe VR tap changes in fourth 

scenario and in order to see OLTC taps in fifth scenario, tap changes are investigated in 

abovementioned three cases shown respectively in Figure 12.48 and Figure 12.49.  

Table 12.27. Number of CBs, VR/ OLTC Switching in different scenarios during 
maintenance times 

Volt-VAR Control 
Component Operating Strategy 

Total Number of 
CB Switching 

Total Number of 
VR Switching 

Total Number of 
OLTC 

Switching 

CB-7, CB-14, CB-
25 

VVOE without MSE 55 2 6 

VVOE With MSE 26 2 6 

CB-30, CB-32 
VVOE without MSE 39 5 8 

VVOE With MSE 29 5 8 

Voltage Regulator 
VVOE without MSE 52 3 7 

VVOE With MSE 47 0 4 

Tap Changer of 
Transformer 

VVOE without MSE 132 11 14 

VVOE With MSE 120 8 0 



 

202 

Figure 12.50 presents CB-7, CB-14 and CB-25 changes and Figure 12.51 gives 

bank changes of CB-30 and CB-32 in cases (a) and (b). 

 

Figure 12.48. Voltage Regulator tap steps during maintenance time in two 
different cases 

 

Figure 12.49. On-load tap changer steps during maintenance time in two different 
cases (VVO with/without MSE) 

 Result Analysis 

The results of the study are shown in Figure 12.47 to Figure 12.51 and in Table 

12.25 to Table 12.27. It is proved that the proposed solution for maintenance scheduling 

problem of VVCCs were able to solve both VVO and maintenance scheduling problems 

through a coordinated approach and had no negative impact on the performance of 

distribution network as well. Table 12.26 is given the fact that with fewest amount of lost 

benefit, it is possible to perform VVO without any interruption. The results showed that by 

utilizing MSE integrated with VVOE it is possible to save $9936.06 and prevent VVOE 

interruption (case (c)-case (b)). For different maintenance times, only $73.48 is needed 

for VVO with MSE strategy compared with pure VVO performance (case (2)-case (1)). In 
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other words, VVO with MSE approach results are very close to pure VVO as MSE found 

best maintenance time for horizon year. 

 

Figure 12.50. CB's amount and number of switching of Scenario-II in two 
operating cases (VVO with/without MSE) 

 

Figure 12.51. CB's amount and number of switching of Scenario-III in two 
operating cases (VVO with/without MSE) 

Examining the initial results captured in Table 12.25, it can be concluded that MSE 

sent CBs to maintenance in periods of days that did not have high loads, i.e. fewest needs 
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for reactive power injection existed during those periods of days. Moreover, MSE did not 

send all CBs to maintenance in one day. This shows that there were periods of times in 

different days of the horizon year that could bring optimality. Additionally, Table 12.25, 

Figure 12.48 and Figure 12.49 are represented that the best days for OLTC/VR 

maintenances are days with less probable CVR operation (i.e. CVR value would be very 

few). These days need to have minimum tap switching numbers for VR and OLTC. Hence, 

it is necessary to predict the CVR values of the days of the horizon year through main 

MSE factors mentioned in Section 3 of this study. Table 12.27 proved the fact that VVO 

with MSE approach could minimize VVO objective function and respect VVCC optimal 

maintenance scheduling at a same time, with less number of bank and/or tap switching 

and very close to pure VVO scenario (i.e. when all VVCCs are available for VVO). 

It is possible to observe in Figure 12.48 that MSE has found best date and time for 

VR to go to maintenance. This day of horizon year has lowest level of loads, and the 

maintenance time affected just 5 time stages (13 to 17). Regarding OLTC operation shown 

in Figure 12.49, it can be concluded that MSE put its lowest load profile of horizon year 

for OLTC maintenance. As OLTC maintenance time is very long (about 12 hours non-

stop) compared with other existed VVCCs, and as OLTC is the most important voltage 

regulation asset of this feeder, it can be derived that OLTC maintenance affect VVO result 

more than other VVCCs. According to stated results, it can be concluded that the proposed 

approach of this study could solve maintenance scheduling of VVCCs in quasi real-time 

AMI-based VVOs effectively such that the performance and the efficiency of the VVO 

engine won't be affected. Moreover, it imposes minimum loss to distribution network 

operators and/or planners regarding unavailability of VVCCs when they are in 

maintenance.  

 Conclusion 

This study proposed a novel approach for maintenance scheduling of Volt-VAR 

Control Components in quasi real-time AMI-based Volt-VAR Optimization of distribution 

networks by a coordinated command and control system between VVO Engine and MSE. 

As quasi real-time VVO solutions are going to be utilized more to minimize distribution 

network loss and increase energy conservation of termination points in near future, 
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applying a reliable Maintenance Scheduling Engine (explained in this study as MSE) in-

line with recent smart grid VVO technologies (e.g. new AMI-based VVO solutions) as well 

as distribution network other requirements can help distribution network to be optimized 

more effectively. Hence, MSE of this study solved maintenance scheduling problem 

according to historical data such as previous year's loads, weighting factors, electricity 

price and/or value of loss minimization to find optimal maintenance periods for different 

types of Volt-VAR control assets within distribution network. In next step, VVO engine 

received MSE optimal results. Then, VVO engine regulated itself according to 

maintenance strategies sent by MSE. Thus, quasi real-time AMI-based VVO performed 

online without any interruption or interference caused by maintenance scheduling 

problem. 

In order to verify the proposed approach’s efficiency and accuracy, 33-node 

distribution test feeder was applied and the results were investigated in five different 

scenarios and three different operating cases (VVO without MSE, VVO with MSE, VVO 

interrupted by maintenance scheduling problem). Result analysis shown that proposed 

MSE approach could find optimal maintenance periods within a horizon year in such a 

way that VVO engine would face with minimum losses during VVCC maintenance periods. 

Therefore, the best maintenance strategies according VVO engine and other main 

maintenance problem requirements could be found with proposed solution. As VVO 

objective function weighting factors have significant impact on maintenance scheduling 

problem, and as these weighting factors can also be affected by other maintenance factors 

such as value of loss minimization or the electricity price, optimal prediction of these 

factors in quasi real-time VVOs can be one of the further studies of future maintenance 

scheduling of VVCCs. In conclusion, this approach could be utilized as an "additive" part 

of existed AMI-based VVO solutions or as a part of future quasi real-time VVO techniques 

to lead future distribution networks to higher levels of optimality, accuracy and efficiency.   
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12.8. Smart Grid Adaptive Volt-VAR Optimization Engine 
utilizing Particle Swarm Optimization and Fuzzification  

 Case Study Simulation   

In this section, 33-node distribution test feeder [254] is used for testing the 

correctness and the applicability of our proposed VVO engine. Figure 12.52 depicts single 

line diagram of the case study. The test feeder comprised of 33 nodes with 33 termination 

points (smart meters). The power was supplied from a HV/MV substation to a radial 

distribution network. Four different switchable shunt CBs located at node-1, node-7, node-

23 and node-30 of the system. Capacitor banks range from 25 to 300 kVAR. Moreover, 

an OLTC located at HV/MV substation and a VR placed at node-13 both with 32 tap steps. 

Data of the case study active/reactive power loads at a specific time stage is shown in 

Table 12.28. This study primarily uses (5-29) as VVO objective function. It uses BFS for 

power flow ((5-53) to (5-56)). Moreover, the constraints used in this study are: (5-9) to (5-

18), (5-20), (5-21), (5-23), (5-24), (5-26) and (5-27). When network operator intends to 

consider CVR and VR loss in VVO, (5-34) is used as the final VVO objective function. It is 

possible to give weighting factors to each VVO subparts. Each weighting factors can be 

found through Fuzzification technique explained in Chapter 10.4. An example of 

Fuzzification calculation can be found in (5-52). 

PSO parameters such as the sum of acceleration constants is considered to be 

equal to four and the number of iteration steps is equal to 50. The VVO engine has been 

designed and programmed in MATLAB and distribution load flow performed by BFS with 

100 sweeps. Maximum and minimum desired apparent power losses ( , , , ), 

considered 0.35 P.U and 0.1 P.U respectively by the operator. Furthermore, Maximum 

and minimum desired voltage deviations, . , . ) are equal to 10 and 0.1. For 

maximum and minimum CVR values, 0.01 and 0.001 are respectively determined and for 

VR loss, maximum and minimum settings are 0.05 and 0.005 P.U. For scenarios with 

weighting factors, loss cost are defined based on electricity price (0.12 $/kWh). Voltage 

deviation cost assumed to be eight times more than loss cost. Moreover, CVR and VR 

loss costs assumed to be ten times more than voltage deviation cost according to 

distribution network operator needs. 
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Table 12.28. 33-Node Distribution Feeder Load Data 

Node 
No. 

Active Power 
(kW) 

Reactive Power 
(kVAR) 

Node 
No. 

Active Power 
(kW) 

Reactive Power 
(kVAR) 

1 100 60 17 60 20 

2 100 60 18 90 40 

3 90 40 19 90 40 

4 120 80 20 90 40 

5 60 30 21 90 40 

6 60 20 22 90 40 

7 200 100 23 90 50 

8 200 100 24 420 200 

9 60 20 25 420 200 

10 60 20 26 60 25 

11 45 30 27 60 25 

12 60 35 28 60 20 

13 60 35 29 120 70 

14 120 80 30 200 100 

15 60 10 31 150 70 

16 60 20 32 210 100 

   33 60 40 

 Operating Scenarios 

In order to investigate the impacts of different VVO objective function sub-parts, 

six operating scenarios are presented in this sub-section: 

• Scenario-1: VVO performs without weighting factor calculations and without 
CB operating cost minimization 

• Scenario-2: VVO performs without weighting factor calculation but with CB 
operating cost minimization 

• Scenario-3: VVO performs with weighting factor calculations through 
Fuzzification but without CB operating cost minimization 

• Scenario-4: VVO performs with weighting factor calculations through 
Fuzzification and with CB operating cost minimization 

• Scenario-5: CVR and VR loss minimization added to VVO. VVO performs 
without weighting factor calculations 

• Scenario-6: CVR and VR loss minimization added to VVO. VVO performs with 
weighting factor calculations using Fuzzification. 
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 Case Study Results   

The result of the VVO engine presented in this study for all mentioned operating 

scenarios are given in Table 12.29. Furthermore, weighting factors obtained by 

Fuzzification for different scenarios are shown in Table 12.30. Distribution feeder node 

voltages for different operating scenarios (Scenario-2, 4, 5 and 6) are presented in Figure 

12.53. Figure 12.54 represents the kVAR of shunt CBs and Figure 12.55 depicts LTC and 

VR tap positions in all operating scenarios under study found by VVO engine. Figure 12.56 

illustrates apparent power loss of Scenario-6 compare with a blind system, i.e. without 

VVO. Figure 12.57 demonstrates VVO engine PSO convergence for Scenario-6 as well. 

This study uses PSO to check if stochastic optimization approaches such as PSO can 

help Volt-VAR Optimization to reach to more optimal solutions or not. 

 

Figure 12.52. 33-node distribution feeder single line diagram 

Table 12.29. Volt-VAR Optimization Results using PSO Algorithm 

VVO 
Scenario 

Apparent 
Power 
Loss 
(kVA) 

Active Power 
Loss (kW) 

Voltage 
Deviation 

(∆ ) 

Objective 
Function 

($) 

Total Saving 
for a 

Complete 
Day ($) 

No VVO 20.2265 15.6866 1.8474 - -  

Scenario-1 14.1939 13.2431 1.4476 853.4503 22.86182 

Scenario-2 14.3683 13.4299 1.5165 927.9982 29.73072 

Scenario-3 14.0207 13.0563 1.5146 211.5827 23.63392 

Scenario-4 15.4120 14.2103 1.2797 158.6865 30.57404 

Scenario-5 14.6154 13.6419 2.2060 66.7896 27.45708 

Scenario-6 15.4341 14.2822 2.2004 106.7026 31.41320 
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Table 12.30. Weighting Factors from PSO in Different VVO Scenarios 

Weighting Factor Scenario-2 Scenario-4 Scenario-6 

 0.5366 0.5366 0.3493 

 1 1 0.2363 

 - 0.1650 1 

 - - 1 

 Result Analysis 

 As seen in Table 12.29, VVO could optimize distribution networks effectively in all 

considered operating scenarios. Comparing Scenario-1 and Scenario-2, it can be 

concluded that by adding CB operating cost minimization sub-part in VVO objective 

function, VVO could produce new optimal results (which is less than previous optimal 

value) with less kVAR injected into the system to save CB operating cost.  

Figure 12.53. Node voltages of distribution feeder in different operating scenarios 
(A: Scenario-2, B: Scenario-4, C: Scenario-5 and D: Scenario-6)  
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Comparing Scenario-1 and Scenario-3, as well as comparing Scenario-2 and 

Scenario-4, shown inTable 12.29, Figure 12.53 to Figure 12.55, it can be shown that the 

operator could lead VVO algorithm to its desired operating needs through Fuzzification. 

 

Figure 12.54. Values of shunt CBs in different operating scenarios achieved by 
proposed VVO engine 

 

Figure 12.55. Tap position of LTC and VRs in different operating scenarios 
achieved by VVO engine 

 

Figure 12.56. Apparent power loss in Scenario-6 
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For instance, weighting factors obtained by Fuzzification based on operating pre-

set values in Scenario-4 (compared with Scenario-2) caused VR to be in lower tap to 

increase voltage as voltage deviation had more weight in Scenario-4. 

 

Figure 12.57. VVO engine PSO convergence in Scenario-6 

In other words, voltage deviation in Scenario-4 was more important for the operator 

than voltage deviation in Scenario-2. By comparing Scenario-5 with Scenario-6, it is 

conceivable to conclude that VVO enabled CVR had pushed the last voltages of feeder 

nodes to lower limits of ANSI range, i.e. 0.95 P.U. On the other hand, the operator could 

push the VVO engine to a more applicable optimal solution in Scenario-6 due to feeder 

needs through defining pre-set values and by Fuzzification technique performed within the 

VVO engine. It has to be stated that as pre-set and cost values for Fuzzification are defined 

by the operator, different optimal configurations might be provided by the VVO engine 

according to the system levels of operation and requirement. Therefore, the proposed 

VVO engine optimized distribution feeder effectively in all herein discussed operating 

scenarios. Moreover, it defined fuzzy factors according to system operating condition and 

operator desirable values through Fuzzification technique and sent Volt-VAR control 

commands to VVCCs to update distribution feeder configuration with new optimal settings. 

 Conclusion 

This study proposed a smart grid adaptive Volt-VAR Optimization engine using 

Particle Swarm Optimization algorithm. In order to determine weighting factor of each VVO 

objective function sub-parts, Fuzzification technique is used within the algorithm and six 
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different operating scenarios compared with each other in a sample 33-node distribution 

feeder to test the accuracy and the applicability of the proposed approach. Initial objective 

function, without CB operating cost minimization, was considered in the first operating 

scenario. Then, in the second operating scenario, CB operating cost minimization was 

added as a VVO objective function sub-part to the system that led to saving the operating 

cost of CBs through less CB kVAR injection. In the 3rd scenario, weighting factors was 

obtained by Fuzzification technique without considering the impact of CB operating cost 

minimization. Moreover, scenario-4 included this VVO objective function sub-part. CVR 

and VR loss minimization were added to the VVO objective function in the 5th operating 

scenario that made the optimization problem more complicated. Scenario-6 showed that 

by presenting pre-set values for Fuzzification technique, PSO would be able to 

appropriately optimize the distribution grid even in the presence of conflicting sub-parts in 

VVO objective.  

Therefore, the results showed that by using the proposed VVO engine using PSO 

and Fuzzification, operators could lead distribution grids to higher level of optimization with 

regard to distribution network technical/economic needs. Employing Neural Network-

Fuzzy as well as predictive-PSO approaches may assist VVO engine to be predictive and 

perform dynamically in each operating time stage. This could be one of the future works 

that might help in designing a more efficient smart grid based VVO engine for distribution 

networks. As a result, the approach presented in this study could be a great sample for 

smart grid adaptive VVO techniques which may emerge in the future that could facilitate 

the possibility of a well-matched optimization engine to be able to cover most future 

distribution network technical/economic operational needs. 

12.9. Quasi Real-Time ZIP Load Modeling for Conservation 
Voltage Reduction of Smart Distribution Networks using 
Disaggregated AMI Data 

This section investigates quasi real-time ZIP load models for CVR sub-part of new 

quasi real-time AMI-based VVO solution using historical disaggregated data. 
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 ZIP Load Model for Conservation Voltage Reduction 

As stated before, one of the most famed and most accurate techniques applied for 

load modeling in CVR studies is ZIP load model. As load model is not fully constant power, 

CVR can be performed to conserve energy at customer's premises. In order to determine 

the impact of each load model, it would be necessary to primarily study each of them: 

• Constant Power (P): In constant-P loads demand would be constant regardless 
of voltage. Hence, if the load is fully constant power, by decreasing voltage 
network loss will increase. In this scenario, CVR will not lead to energy 
conservation but rather increases the power loss of the grid, and therefore has 
negative impact on VVO engine sub-parts. Some Examples of constant-P loads 
are incandescent light, resistive water heater, stovetop, oven, etc. 

• Constant Impedance (Z): Here, the demand would be proportional to voltage 
squared. Thus, by maintaining voltage within lower limits of ANSI band, network 
loss would slightly be increased by CVR sub-part, although VVO engine would 
be able to mitigate the impact and conserve energy. Some important Constant-
Z loads are electric motors, heat pumps, air conditioner, etc. 

• Constant Current (I): Here, demand would be proportional to voltage. Therefore, 
by reducing voltage level, CVR sub-part could conserve energy. Losses could 
even be decreased slightly. There are few constant-I devices such as welding 
units, smelting, florescent, some power electronics, etc. 

This study uses (5-40), (5-47) to (5-52) as its objective function equations. The 

constraints are as same as previous study. Different combination of the abovementioned 

loads can be observed in different times of a day in a residential building. It is possible to 

obtain active and reactive consumption of loads through equations of (5-42) and (5-43).  

Moreover, changes in energy consumption (∆ ) as well as voltage reduction (∆ ) 

can be found by (5-44) and (5-45). By dividing (5-44) and (5-45) CVR Factor ( ) is 

gained which presents the ratio of energy consumption and voltage reduction (5-46). 

Typically, CVR factor is between 0.5 and 1.5 [64]. Further studies such as EPRI in 2010 

showed CVR Factor close to 0.8 [256]. Here, and are initial energy and voltage 

respectively. Then, and  are system's energy and voltage after CVR. Due to the 

fact that the type, amount and duration of consumption vary throughout different times of 

a day, it is conceivable to define specific ZIP coefficients for each quasi real-time stage 

( , ,	 , , ,  for active power and , ,	 , , ,  for reactive power) 

that could be shown by (12-1) and (12-2). 
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	 , , , , , , 	 (12-1) 

	 , , , , , , 	  (12-2) 

Here, and are active and reactive power of each quasi real-time stage. 

Moreover, 	 , ,  and 	 , , are initial active and reactive powers of each element at 

time stage-t that can be obtained as follows: 

, , ∑ , (12-3) 

, , ∑ , (12-4) 

Where, eledenotes element (i.e. appliance), is Active Power Consumption 

Ratio and is Reactive Power Consumption Ratio. In order to reach an adequate 

approximation of ZIP coefficient for each quasi real-time stage, it would be necessary to 

define type of loads, amount and style of their consumptions in detail for each appliance 

in a typical North American residential house. 

 Load Disaggregation for Quasi Real-Time ZIP Coefficients 

In order to find ZIP coefficients and model system loads accurately in quasi real-

time, the following steps are respected in this study: 

• Determining common home appliances for the study 

• Determining type of appliances  

• Approximate calculation of each appliance usage time and operating period 

• Defining the impact factor of each appliance on VVO problem according to its 
energy consumption 
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Accordingly, Table 12.31 represents typical appliance type, items and impact 

factors exerted in this study. Impact factor percentage defines as the percentage of 

consumption of an appliance item in a day compared with another appliance in same 

appliance category. Knowing the impact factor could lead to a more accurate 

approximation of ZIP of each appliance category. Hence, it is a totally different concept 

compared with CVR Factor. The impact factor percentages of Table 12.31 have been 

determined according to the consumption amount of each item within its category for a 

typical North American residential house. These impact factors are obtained based on 

consumption amount and time of usage of each item. As can be illustrated from Table 

12.31, most conventional appliances of a residential building are considered in this study. 

Assessing statistical and historical data [257]-[266], total active and reactive ZIP 

coefficients for each considered appliance shown in Table 12.31 are given in Table 12.32.  

Table 12.31. Appliance classification for quasi real-time VVO study of this study 

Appliance Name Items Included: Impact Factor (%) 

Lighting Incandescent Lights , LED Lamps, CFL Bulbs 45,10,45 

Cooking Appliances Oven and Microwave 80, 20 

Home Entertainment LCD TV, Laptop Charger, Game Console, PC 45,10,15,30 

Air Conditioner Window/Wall mounted Air Conditioner 100 

Dish Washer Conventional Standard Dish Washer 100 

Dryer Clothes Drier  (35 loads per month) 100 

Washing Machine Top Load Washing Machine 100 

Fridge Standard Refrigerator 100 

Freezer Deep Chest Freezer 100 

Water Heater Mid-Efficiency 100 

Other appliances Vacuum, Fan, Coffee Maker 35.17, 6.7,  58.12 

Now, using daily forecasted load profile and through statistical data [257]-[266], the 

time and duration of operation, as well as the active power consumption of each appliance 

is obtained. These are shown in Figure 12.58. Voltage dependency of several typical 

domestic loads has been given in [258]. Table-6 and Table-7 in [259] presented equipment 

contribution weight and active/ reactive ZIP model for different residential classes. ZIP 

model parameters of several tested appliances represented by [260]. To find ZIP load 

model entertainment section, this study extracted ZIP coefficients from [261]. To assess 

electricity home appliance consumption, [262] and [263] used in this study. Hourly load 
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profile of residential load in different operating conditions can be found in [262]. The 

percentage of usage of different types of loads within a day acquired from [265]. Load data 

analysis accomplished by [266] is the basis of the study in this study. Normalized hourly 

load profiles of different load types in a typical residential home used to categorize home 

appliances into different load types.  

Table 12.32. ZIP Coefficients of different appliances in this study [257]-[266] 

Item Number Appliance Name       

1 Lighting 0.634 -0.067 0.433 0.8125 -0.278 0.4655 

2 Cooking Appliances 0.738 0.928 0.096 13.304 -22.192 10.488 

3 Home Entertainment -0.013 0.068 0.945 0.788 -0.6095 0.8215 

4 Air Conditioner 1.17 -1.83 1.66 15.68 -27.15 12.47 

5 Dish Washer 1 0 0 1 0 0 

6 Dryer 1.02 0 -0.02 1.02 0 -0.02 

7 Washing Machine 0.5 0 0.5 0.5 0 0.5 

8 Fridge 5.03 -8.48 4.45 17.44 -28.62 12.18 

9 Freezer 5.03 -8.48 4.45 17.44 -28.62 12.18 

10 Water Heater 0.92 0.1 -0.02 0.15 0.86 -0.01 

11 Other appliances 10.98 -16.86 8.88 35.03 -56.38 24.35 

 

Figure 12.58. Active Power consumptions of different appliances every four quasi 
real-time stage. 

 

Table 12.33. Consumption factors of different appliances every four quasi real-
time stage 

Time 
Stage 

Item 
#1 

Item 
#2 

Item 
#3 

Item 
#4 

Item 
#5 

Item 
#6 

Item 
#7 

Item 
#8 

Item 
#9 

Item 
#10 

Item 
#11 
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1 0.0202 0.0542 0.101 0.1397 0.0059 0.21 0 0.0249 0.027 0.1828 0.2347 

2 0.0361 0 0.1017 0.2493 0 0 0 0.0435 0.048 0.274 0.2476 

3 0.0427 0 0.0624 0.295 0 0 0 0.0502 0.057 0.251 0.242 

4 0.052 0 0.0109 0.3593 0 0 0 0.0596 0.069 0.2165 0.2327 

5 0.1451 0 0.0051 0.3344 0 0 0 0.0526 0.066 0.166 0.231 

6 0.2667 0 0.0045 0.295 0 0 0 0.0452 0.059 0.1255 0.2038 

7 0.1426 0.2737 0.0106 0.1408 0.006 0.1123 0 0.0216 0.028 0.0998 0.1642 

8 0.0909 0.391 0.0152 0.0419 0.0043 0.1605 0 0.0154 0.02 0.0998 0.1607 

9 0.0313 0.275 0.0202 0.0327 0.1704 0.195 0.02 0.0124 0.016 0.1115 0.1154 

10 0.0172 0.1974 0.023 0.0265 0.2698 0.2082 0.033 0.0105 0.013 0.1193 0.0822 

11 0.0141 0.1615 0.0259 0.0216 0.2207 0.3314 0.034 0.0088 0.01 0.1049 0.0673 

12 0.012 0.1376 0.0281 0.0184 0.1881 0.4157 0.035 0.0079 0.008 0.0941 0.0554 

13 0.0122 0.1395 0.0291 0.0187 0.1716 0.4413 0.023 0.008 0.008 0.0938 0.0542 

14 0.0124 0.142 0.0303 0.019 0.1552 0.4654 0.012 0.0084 0.008 0.0939 0.0532 

15 0.023 0.1902 0.034 0.0204 0.1352 0.399 0.025 0.0092 0.009 0.0954 0.0592 

16 0.0146 0.2511 0.039 0.0224 0.1144 0.3292 0.042 0.0103 0.01 0.0973 0.0697 

17 0.0433 0.3658 0.0349 0.0178 0.0909 0.254 0.019 0.0084 0.008 0.0713 0.0868 

18 0.0507 0.4476 0.0326 0.015 0.0765 0.2041 0.004 0.0072 0.007 0.0561 0.0994 

19 0.074 0.3634 0.0412 0.039 0.1242 0.1416 0.004 0.0076 0.007 0.0663 0.1312 

20 0.0993 0.271 0.0533 0.0436 0.1852 0.0695 0.005 0.0083 0.008 0.0819 0.175 

21 0.1183 0.1987 0.0672 0.0511 0.1282 0.1269 0.005 0.0098 0.01 0.0924 0.1921 

22 0.1039 0.1016 0.0917 0.0653 0.05 0.2142 0.007 0.0125 0.013 0.1158 0.2256 

23 0.0688 0.0905 0.095 0.0776 0.0297 0.2477 0.004 0.0145 0.015 0.1293 0.2279 

24 0.034 0.0731 0.098 0.094 0.004 0.2917 0 0.0172 0.018 0.1467 0.2233 

This study used operating factors of [266] to find hourly consumption of each 

appliance separately. By dividing hourly consumption of each appliance from total hourly 

consumption of all appliances, hourly consumption factors of each appliance can be found 

using (12-3) and (12-4). Multiplying obtained time-stage consumption factors by ZIP 

coefficient of each appliance, ZIP of that time-stage can be found. Explained method can 

be written as (12-5). Therefore, Table 12.34 presents active and reactive power ZIP 

coefficients for each four quasi real-time stage (hourly). 

. , , , , , , , (12-5) 
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Table 12.34. Active and Reactive Power ZIP coefficients of different appliances 
every four quasi real-time stage 

Time Stage ,  ,  ,  ,  ,  ,  

1 2.2769 -3.0293 1.7523 9.8687 -15.901 7.0322 

2 2.5037 -3.5939 2.0902 11.140 -18.202 8.0622 

3 2.5588 -3.7063 2.1475 11.842 -19.432 8.5902 

4 2.6303 -3.8575 2.2271 12.784 -21.087 9.3029 

5 2.5773 -3.7645 2.1872 11.730 -19.243 8.5129 

6 2.4106 -3.458 2.0474 10.315 -16.785 7.4699 

7 1.7718 -2.0780 1.3062 9.5685 -15.433 6.8643 

8 1.6048 -1.6801 1.0753 9.1615 -14.639 6.4774 

9 1.4938 -1.3738 0.8800 4.7573 -6.8040 3.0466 

10 1.3810 -1.0929 0.7119 3.2346 -4.1066 1.8720 

11 1.3187 -0.9319 0.6132 3.0661 -3.8282 1.7621 

12 1.2629 -0.7942 0.5313 2.8909 -3.5360 1.6451 

13 1.2586 -0.7789 0.5202 3.0815 -3.8478 1.7663 

14 1.2556 -0.7669 0.5113 3.3269 -4.2501 1.9231 

15 1.2363 -0.7929 0.5565 3.5111 -4.6547 2.1435 

16 1.2384 -0.859 0.6206 3.825 -5.2854 2.4604 

17 1.2245 -0.8876 0.6631 4.8384 -7.0429 3.2045 

18 1.2212 -0.9116 0.6904 5.7595 -8.6376 3.8781 

19 1.4346 -1.3446 0.9099 5.5351 -8.2132 3.6782 

20 1.7040 -1.8727 1.1687 5.2584 -7.6875 3.4291 

21 1.8453 -2.1541 1.3088 5.9172 -8.8800 3.9628 

22 2.0919 -2.6368 1.5449 7.3052 -11.365 5.0597 

23 2.1339 -2.7121 1.5782 8.0885 -12.744 5.6551 

24 2.1633 -2.7618 1.5985 9.1788 -14.669 6.4900 

This method is used to achieve ZIP coefficients for all 96 time stages in a day (i.e. 

for every 15 minutes). It has to be mentioned that the coefficients found here cannot fully 

show the exact load model in reality as many uncertainties, such as human factors or 

approximations such as the time and duration of usage, can affect load model coefficients. 

However, it is possible to state that quasi real-time load modeling could lead to more 

accurate VVO as its ZIP coefficients are changing in-line with VVO time stages compared 

to previous fixed load modeling where ZIP coefficients were considered constant 

throughout different operating time stages. The next section studies the performance of 
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modeled ZIPs for quasi real-time stages in an AMI-based VVO using 33-node distribution 

feeder.  

 Case Study and Result Analysis 

A 33-node distribution feeder is employed to validate presented quasi real-time 

load model compared with conventional load models in this section. As seen in Figure 

12.46, 33-node distribution network consists of one feeder with one OLTC with 16 tap 

steps on its medium voltage substation, a VR located between bus-13 and bus-14 and 

five 250 kVAR switchable shunt CBs located at bus-7, bus-14, bus-25, bus-30 and bus-

32. Each CB has five 50 kVAR banks. As the aim of this study is to find quasi real-time 

ZIP models for a typical North American consumer, the case study is used typical 

residential houses for all consumers of 33-node distribution feeder.  

Here, VVO engine optimizes distribution feeder through seven different Volt-VAR 

control components according to objectives and constraints. This grid is tested for a typical 

day in summer time in 96 quasi real-time stages (every 15 minutes). For each 15 minutes, 

AMI-based VVO optimizes distribution network by data captured from local AMI and load 

model presented in this study, and sends optimal control strategies to each Volt-VAR 

control component of the system. Figure 12.59 illustrates total loads of the case study in 

different quasi real-time stages of studied day. Table 12.35 compares the result of the 

objective function and energy conservation by CVR with two other conventional operating 

scenarios:  

• Scenario-I: Offline VVO, when VVO is not performing in quasi real-time 

• Scenario-II: VVO with constant ZIP coefficient, when only one ZIP set is used 
for all VVO time stages 
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Figure 12.59. Active and reactive power load variations in different quasi real-time 
stages 

Table 12.35. Initial results of VVO engine in comparison with Scenario-I and 
Scenario-II 

VVO Engine Results  Scenario-I Scenario-II This Study 

Objective Function ($) 29857.51 28727.23 28138.57 

Time Stage Energy (kWh) 14995.22 14483.97 14227.94 

Energy Conservation (%) - 3.4095 5.1168 

Power Loss (kW) - 13103.15 12642.76 

Voltage Reduction for Peak 
(Time stage-60 to time stage-85 in %) 

- 1.3209 1.7363 

Fuzzification technique is used in order to find accurate weighting factors 

( , ,	 , 	&	 ) of each VVO objective sub-parts of this study. For instance, in order to find 

the weighting factor of VVO loss-sub-part: 

, , , ,
(12-
6) 

Here, , ,  is loss of branch-b at time stage-t (kW) and  π is the value of loss 

($/kW) which gives , ,  that is loss cost of branch-b at time stage-t ($). The 

Fuzzification loop within VVO algorithm for loss sub-part is as follows: 

If	 , , , , 1

Else	if					 , , , , 		&&	 , , , , 	

, , , ,

, , , ,
	

else							 0,				end

(12-
7) 

This loop explains that weighting factor α will be equal to 0 when loss cost is more 

than maximum cost that grid operator intends to spend. This factor is equal to one when 

it is less than minim cost determined by grid operator and it is between 0 and 1 while loss 

cost is between minimum and maximum loss costs of the grid. Respectively, other 

weighting factors obtained for other sub-parts of VVO according to operating costs of 

VVCCs, and the value of saved energy. Figure 12.60 compares loss values and Figure 
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12.61 compares the value of consumed energy found by VVO engine of this study (with 

quasi real-time load model) with Scenario-I and Scenario-II.  

 

Figure 12.60. Active power loss values for different quasi real-time stages in 
different operating scenarios 

 

Figure 12.61. Energy consumption values for different quasi real-time stages in 
different operating scenarios 

As seen from Table 12.35, Figure 12.60 and Figure 12.61, the CVR and the 

objective function results are very close to each other in this study and Scenario-II but as 

presented load modeling is more accurate, it finds better solutions and obtains deeper 

results for CVR. In other words, VVO engine performs better by quasi real-time models 

presented in this study rather than Scenario-II. It also led to better accuracy on 

computation of total conserved energy. It is possible to conclude that the approach 

presented in this study would give quasi real-time VVO engines opportunity to operate 

profoundly due to more detailed inputs that are given to the engine. The results of the 

objective function of the case study are shown in Figure 12.62. It can be observed that the 

objective function values were minimized at each and every quasi real-time stage.  
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Figure 12.62. Objective function values resulted by quasi real-time VVO engine 

Figure 12.63 represents Voltage Regulator performance and Figure 12.64 gives 

CB amount and operating strategies at each quasi real-time stage. From VR operation, it 

can be concluded that VR is participating in CVR only in peak times by increasing its taps. 

Hence, most of CVR action performed by OLTC at the beginning of the feeder. Figure 

12.65 shows that the voltages of all nodes were being kept within the ANSI band.  

 

Figure 12.63. Voltage regulator tap step results in quasi real-time stages 

Therefore, it is concluded that quasi real-time modeling of loads through ZIP 

coefficients improved new AMI-based VVO performance and increased the accuracy of 

energy conservation computations in CVR sub-part of VVO. 
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Figure 12.64. Capacitor bank values and switching operations resulted by quasi 
real-time VVO engine 

 

Figure 12.65. Voltages of all nodes of distribution system in different quasi real-
time stages 

 Conclusions 

This study presented quasi real-time ZIP load model using load disaggregation and 

statistical data for energy conservation through CVR. The study also showed the 

importance of Quasi real-time optimization techniques such as AMI-based VVO 

techniques, accurate quasi real-time load modeling throughout decomposing total 

residential consumption to its appliance consumptions, defining appliance types, 

operating duration and time of use. The main advantage of the approach presented in this 

study is its capability for improving VVO performance by using quasi real-time model of 

loads that are closer to reality compared with conventional load models. Hence, energy 

conservation is computed with more precision as well. For this reason, this study primarily 

introduced a new quasi real-time AMI-based VVO engine. Then, it explained load 

modeling concepts and ZIP coefficient calculation method for each quasi real-time stage. 
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Afterwards, the performance of the whole system was checked in 33-node distribution 

network as case study and the results were compared with conventional load modeling 

approach.  

It has to be mentioned that several factors such as type of day, calendar, weather 

condition and seasonal factors could affect load types and the amount of consumptions. 

Hence, in order to find more precise coefficients, it is possible to follow the same steps 

explained in this study and find quasi rea-time ZIP load models for other types of days 

(e.g. off-day) and/or other seasons. This point could necessitate further studies related to 

new adaptive load models quasi real-time VVO or CVR solutions. Furthermore, other 

techniques such as sensor placement can increase the accuracy of quasi real-time load 

models despite the fact that this technique could be costly. Hence, it is possible to 

categorize statistical methods used in this study as the first steps for studying quasi real-

time load modeling for novel CVR studies. New disaggregation methods could improve 

CVR (solely or as a part of VVO) performance unquestionably. In conclusion, quasi real-

time AMI-based VVO could reach higher degrees of accuracy and efficiency through more 

precise quasi real-time load modeling such as quasi real-time ZIP load modeling 

presented in this study. 

12.10. Real-Time Co-Simulated Platform for Novel Volt-
VAR Optimization of Smart Distribution Network using 
AMI Data 

 Case Study & Result Analysis 

In this section, 33 node distribution test feeder [254]-[267] shown in Figure 12.66 

employed as distribution network model. Co-simulation platform used in this study 

presented in Chapter 11.1 of this thesis. Moreover, this study uses flowchart of Figure 

11.2 for its VVO engine. This network was modeled in RSCAD with general data 

mentioned in Table 12.36. As it is shown in Table 12.36, studied network consists of 33 

nodes with 32 loads. Active/reactive power loads of each node modeled in RSCAD was 

captured by VVO engine programmed in MATLAB environment. The network has an 

OLTC at its medium voltage substation and one VR at node-14. Both OLTC and VR are 
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able to adjust voltage level of their covered nodes from -5 percent to +5 percent. Moreover, 

both have 17 tap positions. Switchable shunt capacitor banks are located in five different 

locations of the feeder and can be switchable from 50 kVAR to 250 kVAR. With developed 

test setup, VVO engine operated in real-time co-simulated platform every 5 minutes for a 

complete day (288 time stages) according to VVO engine objectives (5-35) to (5-39) and 

constraints (5-9) to (5-18), (5-20), (5-21), (5-23), (5-24), (5-26) and (5-27).  

 

Figure 12.66. node distribution test feeder single line diagram 

Flowchart shown in Chapter 11 is used for the optimization and the co-simulation 

platform uses RTDS for modeling the grid, RTDS GTNET for data aggregation and VVO 

engine designed in MATLAB. It uses DNP3 protocol to connect different parts of co-

simulation together. 

Table 12.36. General Data of 33-Node Test Feeder 

Node No. Location(s) Range  Taps/Switches 

OLTC 1 -5 to +5 16+1 

VR 14 -5 to +5 16+1 

CBs 7, 14, 25, 30, 32 50 to 250 kVAR 5 each 

Costs  $/kW $/Tap $/kVAR-year 

			  0.09 - - 

			  - 0.05 - 

 - 0.05 - 

					  - - 0.05 

Optimization  Convergence Initial Population 

Improved-GA 0.999 551 
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Then, the VVO engine found optimal solutions of each time stage and sent control 

commands to VVO control components through OPC that connects MATLAB to RTDS by 

DNP3 communication protocol. Figure 12.67 shows the power consumption of all nodes 

of system during peak time.  

Table 12.37. Initial Results of the case study 

Scenario Obj. Function Value ($) 

before VVO 40710.02 

After real-time VVO test 38170.16 

 

Figure 12.67. Active power consumption of all nodes of system from time stage 
193 to time stage 288 (Blue: Active Power, Red: Reactive Power) 

Figure 12.68 depicts VR tap positions during studied time stages. The final result 

of the study is presented in Table 12.37 and Figure 12.69.  

 

Figure 12.68. Tap positions of Voltage Regulator for 288 time stages 
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As proposed VVO was tested in quasi real-time, any voltage or tap real-time 

changes can be observed significantly through provided co-simulated environment. Figure 

12.70 provides real-time voltage results of weak nodes of system (node-18 and node-33) 

for time stage-185 based on real-time samples. 

 

Figure 12.69. Objective function results for 288 time stages  

Figure 12.71 presents Capacitor Bank switching results and finally, Figure 12.72 

shows voltages of all nodes of system for all time stages during real-time co-simulation.  

 

Figure 12.70. Real time voltages of the node-18 and node-33 for time stage-185 
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Table 12.38. Checklist of System Performance 

Item Passed (P)/Failed (F) Item Passed/Failed 

Optimization 
Convergence P 

Real-time switching no impact on 
VVO P 

Load Flow Convergence P 
Real-time switching impose no 

harmful transients P 

Data Clarity P No Optimization failure P 

Same Results for  both 
simulators 

P 
No real-time communication 

failure 
P 

Figure 12.72 proves the fact that VVO engine kept the voltages of all nodes of the 

system within ANSI standard (here: 18.1 kV-20.01 kV).  

 

Figure 12.71. Capacitor bank switching operations for 288 time stages of the 
study 

Moreover, it introduced a security margin (1.04375 Per Units) for OLTC and VR to 

avoid ANSI upper range (1.05 Per Units) violation. Table 12.38 gives a checklist regarding 

to the final optimization results.  

 

Figure 12.72. Voltage profile of all nodes of system during study time (288*5 time 
stages) 
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As a result, the performance and the applicability of proposed AMI-based VVO 

was tested through a co-simulated real-time environment with a reliable communication 

structure. Optimization engine performed well. OLTC and VR taps with CBs minimized 

distribution network loss precisely without any failure and/or error. 

 Conclusion 

This study presented a real-time co-simulated environment for proposed AMI-

based Volt-VAR Optimization engine that is able to minimize distribution network loss, 

Capacitor Bank, Tap Changer and Voltage Regulator operating costs as well as improve 

voltage profile of system nodes. The real-time co-simulation is performed by MATLAB 

OPC-Server and a Real-Time Digital Simulator (RTDS) and its modeling software RSCAD. 

DNP3 used as system communication protocol. VVO engine captured required AMI data 

every 5 minutes, minimized distribution network loss, improved voltage profile of system 

and sent control commands to VVO control components such as CBs, VR and OLTC 

modeled in RSCAD.  

The result of study on 33 node distribution test feeder showed that proposed VVO 

engine is able to operate in real-time condition that is very close to reality without any 

failure. Hence, the applicability of the approach tested successfully. The algorithm did not 

face with any convergence issue, the algorithm BFS load flow performs well without any 

convergence problem. Furthermore, this approach shows that new smart grid-based VVO 

engines such as proposed one are able to lead distribution grids to higher levels of 

accuracy and efficiency through dynamic AMI data.  As this study assumes no impact on 

the performance of the VVO engine as a result of constraints introduced by communication 

system, a related research to this study is to look into communication parameters and their 

impact on choices related to VVO engine optimization costs that are explained in section 

12 of this Chapter. 
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12.11. Real-time Co-Simulated Platform for Energy 
Conservation of Smart Distribution Network using AMI-
Based VVO Engine 

 Case Study and Results 

In order to test the accuracy and the applicability of proposed VVO engine with 

CVR sub-part, 33 node distribution feeder [254]-[267] shown in Figure 12.46 is used. Table 

12.36 shows general data of the case study. As shown in Table 12.36, the studied network 

consists of 33 nodes with 32 termination points, i.e. loads. Active/reactive power loads of 

each node modeled in RSCAD was collected by the VVO engine designed in MATLAB. 

The network has an LTC at its high to medium voltage substation and one VR at node-14. 

Both LTC and VR are able to adjust node voltage level of their coverage part from -5 

percent to +5 percent through 17 taps.  

Switchable shunt CBs are located in five different locations of the feeder and can 

be switched from 50 kVAR to 250 kVAR. VVO engine tested in explained quasi-real-time 

co-simulated platform every 15 minutes for a complete day (96 time stages). According to 

VVO engine objectives (5-40) and (5-41) that are obtained based on (5-36) to (5-39) and 

constraints (5-9) to (5-18), (5-20), (5-21), (5-23), (5-24), (5-26) and (5-27), VVO engine 

found optimal solutions of each quasi real-time stage and sent control commands to 

VVCCs through OPC that connects MATLAB to RTDS in DNP3 format. For CVR study, 

(5-42) to (5-46) equations are used.  

The real-time co-simulation platform used in this study explained in Chapter 11.1 

of this thesis. Figure 12.73 illustrates the active power consumptions of all nodes of the 

system collected by VVO engine from RTDS. The final result of the study is shown in 

Table 12.39 and Figure 12.74. As proposed VVO tested in quasi real-time, any voltage or 

tap real-time changes could also be observed clearly by provided co-simulated monitoring 

and control platform.  
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Table 12.39. Final Results of Case Study achieved by VVO engine in Co-
simulated Platform 

Scenario 
Before Quasi Real-time 

VVO After Quasi Real-time VVO 

Objective Function ($) 29839.84 16415.56 

Active Power Loss 13737.17 13103.15 

∆ % obtained by CVR - 3.044225 

∆ % by CVR - 3.36123 

CVR Factor - 0.8956 

CB# 7, 14, 25, 30, 32 switching 
number 

Fixed 
43, 49, 39, 43, 44 

LTC/VR Tap switching numbers Fixed 17, 8 
 
 

 

Figure 12.73. Active power consumption of all nodes of the system 

 

 

Figure 12.74. Objective function results for 96 operating time stages  

Figure 12.75 presents LTC and VR tap positions found by the VVO engine for 96 

operating time stages. Figure 12.76 represents quasi real-time voltage of node-18 at time 
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stage-60. Figure 12.77 shows the active power loss reduction of proposed VVO engine 

for different operating time stages and Figure 12.78 presents the percentage of saved 

consumed energy obtained by CVR sub-part of VVO engine objective function. 

 

Figure 12.75. Tap positions of LTC and VR for 96 time stages 

 

 

Figure 12.76. Real time voltages of the node-18 for time stage-60 

 

Figure 12.77. Active power loss results for 96 operating time stages 

Figure 12.79 depicts CB switching results found by VVO engine for operating time 

stages and Figure 12.80 represents quasi real-time voltages of all nodes of the system 

during real-time co-simulation. 
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Figure 12.78. Energy consumption saved by CVR performance for 96 operating 
time stages 

 

Figure 12.79. Capacitor bank optimal switching operations found by VVO for 96 
operating time stages  

  

 

Figure 12.80. Voltage profile of all nodes of system during study time 

 Result Analysis 

In conclusion, the performance and the applicability of proposed AMI-based VVO 

was tested in a co-simulated real-time platform with a reliable communication structure. 

Optimization engine performed well. LTC and VR taps with CB's VAR injections minimized 

the objective function precisely without any failure. Table 12.40, Figure 12.74 and Figure 

12.77 show that proposed VVO engine minimized the objective function as well as active 
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power loss of the system at each quasi real-time stage. Moreover, it can be derived from 

the results that VVO engine CVR sub-part saved about 3.04 percent of consumed energy 

by reducing voltage about 3.36 percent. Figure 12.78 elucidates the fact that during peak, 

VVO engine CVR sub-part had less saved energy compared with other quasi real-time 

stages within studied day. Moreover, it can be concluded from Figure 12.75 that LTC 

raised the voltage of the feeder in peak time as node voltages of the feeder could not be 

kept within the ANSI range within peak time. In other words, in order to keep the voltages 

of end nodes of the system within ANSI band during peak, LTC raised the voltage level at 

the beginning of the feeder.  

As seen in Figure 12.76, real-time voltage of node-18 of system monitored at quasi 

real-time stage-60. As VR tap raised in time stage-60, voltage of node-18 increased a bit. 

Figure 12.79 proves the fact that VAR injection during peak time helps system to reduce 

active and reactive power losses as most losses of a day occurs during peak. In addition, 

Figure 12.80 showed that VVO engine kept voltages of all nodes of the system within 

ANSI standard. Moreover, it defined security margins (1.04375, 0.95625 Per Units) for the 

LTC and VR to avoid ANSI upper-range and lower-range violations (1.05 and 0.95 Per 

Units). VVO engine’s CVR component tried to lower voltage level of system nodes to save 

quasi real-time energy consumption. As a result, the proposed real-time co-simulated 

platform led the VVO engine to optimize the distribution feeder and brought distribution 

grid to higher level of efficiency, energy consumption saving and cost minimization. 

 Conclusions 

This study presented a quasi-real-time solution for AMI-based VVO considering 

Conservation Voltage Reduction as a sub-part of VVO objective in a real-time co-

simulated environment. VVO engine was able to capture quasi real-time AMI data from 

the field, i.e. RTDS, to optimize distribution network objective function. At each quasi real-

time time stage, VVO engine minimized active power loss and the operating costs of 

VVCCs. Moreover, it performed CVR to conserve the energy consumption of loads. The 

VVO engine was set to optimize the grid every 15 minutes.  Additionally, this study came 

up with a real-time co-simulation environment comprised of reliable communication 

platform, Real-Time Digital Simulator (RTDS) and VVO engine. The co-simulation 
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environment aimed for real-time monitoring and control as well as providing a test platform 

for proposed VVO engine. DNP3 used as communication protocol between VVO engine 

and VVCCs modeled in RTDS. In order to test correctness and the applicability of 

presented VVO, 33-node distribution network modeled in explained co-simulation 

environment. The results of the study proved well-performance of proposed AMI-based 

VVO. The results showed that the VVO engine enables system to achieve higher level of 

optimization and energy conservation. VVCC's quasi real-time control commands 

minimized the objective function without any failure at each quasi real-time stage. 

Moreover, it can be concluded from the results that CVR sub-part saved about 3.04 

percent of consumed energy by reducing voltage about 3.36 percent. During peak, VVO 

engine CVR sub-part had less saved energy compared with other operating time stages. 

Real-time system values could be monitored through designed real-time co-simulation 

platform. VAR injection during peak helped system to reduce active and reactive power 

losses. VVO engine kept voltages of all nodes of the system within ANSI standard while 

VVO engine CVR sub-part attempted to lower voltage level of system nodes in order to 

save the energy consumption at each quasi real-time operating stage. 

As a result, AMI-based VVO solutions such as the proposed VVO engine in this 

study, could lead distribution networks to gain higher levels of optimization, energy 

conservation and efficiency in the near future utilizing AMI data. Furthermore, real-time 

co-simulation platform presented in this study could provide VVO engine with a reliable 

real-time test environment. This could help electric power utilities to precisely test AMI-

based VVO solution candidate performances before implementation. 

12.12. Real-Time Communication Platform for Smart Grid 
Adaptive Volt-VAR Optimization of Distribution 
Networks  

 Case Study and Results Analysis 

In this section, a 33-node distribution network [254]-[267] shown in previous sub-

section 12.11 is emulated in RTDS, and presented smart grid-based VVO engine is 

considered to run in real-time receiving measurements every 15 minute and sending 
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control commands on the basis of optimization algorithm which takes decisions in 

accordance with the measurements received. Figure 11.3 and Figure 11.4 show co-

simulation platform setup of this study. The aim of this study is to check the robustness of 

the co-simulation system explained in Chapter 11.2 and 11.3 through a communication 

emulator. Emulated distribution network consists of 32 loads, an OLTC at its medium 

voltage substation and one VR at node-14. Both OLTC and VR could adjust voltage level 

of nodes that are under their coverage from -5 percent to +5 percent. Additionally, both 

have 17 tap positions. Switchable shunt CBs are located in five different locations of the 

feeder and can be switched from 50 kVAR to 250 kVAR. At each quasi real-time stage, 

VVO engine receives measurements from AMI and optimize emulated network using 

previous study objective function and constraints. Then, it sends control signals to VVCCs 

via co-simulated platform. Here, the performance of presented VVO engine tested through 

four different communication network conditions emulated by WANem, introducing delays 

of 50ms, 100ms, 200ms and 1000ms with 10 % packet loss for each scenario. It was 

found that the VVO algorithm was robust in all conditions but with very high network delay 

(1000ms), the co-simulation platform hit its limit rendering the VVO algorithm from 

functioning properly. The network delay introduced causes delay in measurement 

acquisition as well as in sending control signal. The VVO engine is highly interactive as it 

waits for complete measurements before it takes a control action. Moreover, it waits for 

response of the system to imposed control signals in order to take further actions.  

Thus, anything that causes a delay in measurement acquisition will cause a delay 

in control signal generation. The delay in measurement acquisition is not only because of 

the delay in the network but also because of the way communication protocol acts and 

how the measurements are read i.e. synchronously or asynchronously. As mentioned, this 

study used DNP3 protocol for measurement acquisition. The DNP3 protocol has a 

fragmentation function built within, where the measurements are fragmented into a 

maximum of 2048 bytes packets before it's given to the TCP layer. Moreover individual 

confirmations have to be sent by the master when each fragment is received from the 

outstation. Hence, receiving a set of measurements from a single device would mean that 

multiple request and confirmation commands have to be sent and received to acquire a 

complete set of measurement. This could make system highly susceptible to network 

delays. The abovementioned DNP3 protocol limitations can be found in [268]-[269].  
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Regarding to this fact, if an application is configured to read synchronously the 

server (OPC server in this study) that aggregates DNP3 measurements, then the 

application would not receive complete measurements till all the measurements are 

received by the server. As  smart grid adaptive VVO engine requires all measurements to 

take corrective action, synchronous reading/writing function from the OPC MATLAB 

toolbox was used to read/write the measurements/control signals from/to OPC server. 

This introduced even more delay for the VVO algorithm to operate. Nevertheless with all 

delay conditions, the VVO algorithm was found to be robust and efficient. The Round Trip 

Time (RTD) and throughput of the Wireshark capture of DNP3 traffic in the network that 

introduces 100ms delay with a packet loss of 10% are shown in Figure 12.81 and Figure 

12.82. 

 

Figure 12.81. RTD of DNP3 measurements with network delay of 100ms and 10% 
packet loss 

It can be seen from Figure 12.82 that when the VVO engine sends and receives 

DNP3 measurements to/from GTNET (IED/smart meter) periodic peaks in throughput is 

observed which is in-line with the algorithms when it receives/sends DNP3 messages (e.g. 

every 60 seconds).  
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Figure 12.82. Throughput for DNP3 measurements with 100ms delay & 10% 
packet loss 

Moreover, From the RTD graph, depicted in Figure 12.81, it can be concluded that 

90% of the packets suffer a delay of 100ms which is introduced by network emulated by 

WANem and the rest of the 10% packets are actually re-transmitted packets 

corresponding to the ones being lost in the network as emulated by WANem. The re-

transmission occurs only because DNP3 protocol is on top of the TCP protocol which 

ensures that the lost packets are re-transmitted irrespective of the delay that those packets 

would sustain. Re-transmitted packet is highlighted in black according to the Wireshark 

capture represented in Figure 12.83. The control center (137.226.160.108) polls for data 

from the outstation (137.226.160.83) and the outstation answers with a response. The 

control signals/commands (output of VVO engine) are then written by the control center, 

which acts as a master, and writes on the outstation which is described as a "Direct 

Operate". 

In order to show the effect of delay, the throughput graph corresponding to the 

1000ms network delay is given in Figure 12.84. It can be seen from Figure 12.84 that the 

VVO engine waits for the measurements to be received and then sends signals back to 

DNP3 outstation. Therefore, presented real-time co-simulation platform tested smart grid-

based VVO engine performance in different communication operating scenarios. As a 

result, VVO engine was efficient and robust in most normal operating communication 

network scenarios. Due to DNP3 constraints explained in this section, the co-simulation 
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platform hits its limit rendering VVO engine from its proper functionality in very high 

network delays such as 1000ms (very high but rare communication network in reality).  

 

Figure 12.83. Wireshark capture of the DNP3 measurements 

 

Figure 12.84. Throughput graph for 1000ms and 10% packet loss 

In conclusion, using IEC 61850 MMS client server based measurement could solve 

this issue in networks with very high delays. Hence, IEC 61850 MMS and GOOSE could 
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be a great candidate for communication platform of real-time co-simulation of smart grid 

adaptive VVO.  

 Conclusions 

This study investigated impacts of different communication network conditions on 

quasi real-time  smart grid adaptive VVO using a real-time co-simulation platform. In this 

method, a co-simulated environment comprised of VVO engine in MATLAB, Volt-VAR 

control component's model in RTDS, data aggregator and communication platform with 

substation automation DNP3 protocol set to check the performance of VVO engine in the 

presence of different communication network conditions. This study primarily explained a 

quasi-real-time  smart grid VVO engine. Then, it presented topology, features and aims of 

co-simulation as VVO engine test setup. In next step, VVO engine performance checked 

by communication parameters such as throughput and packet loss. The results obtained 

from 33-node distribution network study showed satisfactory performance of VVO in terms 

of data capturing, optimization and command sending, in the presence of normal 

communication network conditions (e.g. networks with 50, 100 and 200ms delays). Due 

to the inherent limitation of DNP3 protocol, VVO engine lost its robustness for 

communication with very high delay (1 second). According to the fact that real 

communication networks with very high delays such as presented network in this study 

are not common, it is possible to come to a certain conclusion that presented  smart grid 

VVO engine is robust in presence of real communication networks. 

In order to solve communication network protocol limitation, IEC 61850 MMS client 

server measurement could be an alternative candidate for  smart grid adaptive VVO in 

presented co-simulated environment that is one of author's further studies. Moreover, in 

order to observe distribution network faults and/or reconfiguration, IEC 61850 GOOSE 

Messaging could be applied in the discussed co-simulation environment. In conclusion, 

this study showed that new quasi real-time  smart grid based VVO engine that is tested 

under a real-time co-simulated environment in presence of different communication 

network conditions could model network operating condition in a satisfactory range closer 

to reality compared with conventional approaches. This could lead distribution networks 

to achieve higher level of accuracy, optimality and efficiency. 
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12.13. Real-Time Co-Simulation Monitoring and Control 
Platform for AMI-based Volt-VAR Optimization of Smart 
Distribution Networks 

 Case Study Simulation & Operating Scenarios 

To test the correctness and the applicability of presented co-simulation platform 

(explained in Chapter 11.4) for the AMI-based VVO engine, 33-node distribution test 

feeder [254]-[267] is used in the presence of different load conditions. Figure 11.5 and 

Figure 11.6 show real-time co-simulation platform structure and monitoring platform used 

in this study. Figure 12.46 presents single line diagram and , shows general data of the 

case study. For the objective function, (5-35) and (5-47) to (5-50) are used. Moreover, for 

power flow, BFS technique with (5-53) to (5-56) is used. In order to find Fuzzification 

values, the concept of (5-52) algorithm is employed as well. Regarding system constraints, 

same constraints of previous study in sub-section 12.12 is used. The active/reactive 

consumptions of nodes are collected by the VVO engine. Here, the VVO engine tested in 

quasi-real-time, i.e. every 15 minutes for a complete day (96 time stages) and system 

performance monitored in real-time through RSCAD runtime. VVO found optimal solutions 

of each quasi real-time stage and sent control commands to VVCCs modeled in RSCAD 

through DNP3 protocol. Table 12.41, gives general VVO costs and Fuzzification values 

used in this study. To fully test the precision of AMI-based VVO in designed co-simulation 

platform, 12 different load conditions applied to the system. The aim is to ascertain the 

effective performance of VVO algorithm as well as the other parts of co-simulation 

platforms in different load conditions throughout an operating year. For this reason, 

ERCOT residential data [270] used to define 12 operating scenarios: Spring, summer, fall 

and winter load profiles. An off-day, the seasonal average and the peak-day of each 

season selected as three load profile samples. The load ratios of load conditions are 

shown in Figure 12.85. Load ratios are obtained by dividing loads at each quasi real-time 

stage by the average load of the system at that quasi real-time stage. The VVO engine 

results monitored via RSCAD runtime and the results, e.g. node voltages, branch currents, 

tap positions, CB's kVAR injections, stored in database for further studies. Hence, to check 

the precision of co-simulation platform, the platform was tested in 1152 operating quasi 
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real-time stages. To thoroughly assess co-simulation performance, five key operating 

factors were monitored and checked: 

• Data collection from AMI: co-simulation platform monitored to receive correct 
data from AMI database. 

• Algorithm-related factors: optimization convergence, BFS-load flow and 
Fuzzification have to work properly in different load conditions imposed to the 
system.  

• Communication: signals from AMI to VVO engine and command signals from 
VVO to VVCCs in RSCAD monitored to be precise and without failure. 

Synchronization: the time that load changes from one quasi real-time stage to 

another quasi real-time stage has to be the same in both RTDS and MATLAB 

environments. Control commands found by VVO engine in MATLAB have to be sent to 

the system in RTDS before next quasi real-time stage. Hence, time synchronization for 

data collection, data change and control command operation monitored in the case study.  

Switching: real-time operation of system monitored to check if there is any harmful 

transient caused by VVCC switching or not. The number of switching of each VVCC 

checked to avoid VVO inefficient operation. 

 Case Study Results   

The objective function results and the values saved for each operating day is 

presented in Table 12.42. To compare the objective function values, the objective function 

of winter load profiles presented in Figure 12.86. Figure 12.87 gives the power loss 

reduction for winter as well. For each operating conditions, it is possible to monitor the 

voltage levels of all nodes of system to see if the ANSI range is respected or not through 

the monitoring platform. Figure 12.88 represents the voltage profile of system nodes in 

winter peak-day for all quasi real-time stages that was drawn from the VVO engine results. 

As mentioned before, it is possible to assess the VVO engine results such as voltages of 

system nodes shown in Figure 12.89 that were saved in database or monitor them in real-

time by co-simulation monitoring platform. Figure 12.89 presents real-time monitoring 

examples for quasi real-time stage-95 at winter off-day load condition. The OLTC and VR 

tap positions can be monitored in real-time shown in Figure 12.89. Moreover, voltage of 

node-18 and CB positions observed by the monitoring platform in Figure 12.89.c, and 
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Figure 12.89.d. Figure 12.90 indicates CB's optimal kVAR of winter peak-day. 

Furthermore, VR voltage tap position results of winter, illustrated in Figure 12.91. Table 

12.43 summarizes CB and VR tap switching numbers. The OLTC set by the VVO engine 

on tap-16 for all mentioned scenarios as it had to keep system node voltages within ANSI 

range through specifying upper and lower level margins, i.e. 0.95625 and 1.4375 per units, 

to avoid system fluctuation impacts on voltage quality. 

Table 12.40. General Data of 33-Node Distribution Feeder 

Node No. Location(s) Per Units / kVAR Tap/kVAR 

OLTC 1 -5% to +5% P.U 16+1 

VR 14 -5% to +5% P.U 16+1 

CBs 7, 14, 25, 30, 32 50 to 250 kVAR 5 each 

Optimization Improved GA  

Convergence Rate 0.999 

Table 12.41. VVO Coefficient-Factor Setups for the Case Study 

Costs $/kW $/Tap $/kVAR-year 

 0.12 - - 

, , , , ,  - 0.09, 0.09 0.09 

Fuzzification Values   

 60 20 

, ,  0.1, 0.1,0.1 0.095,0.95,0.95 

 Result Analysis 

The precision, applicability and performance of the proposed VVO were tested in 

a real-time co-simulation environment in the presence of 12 different load conditions. From 

the monitored results shown in Table 12.42 and Figure 12.86, it can be concluded that the 

proposed VVO engine minimized the objective function at each quasi real-time stage. 

Monitoring OLTC, VR, CBs and voltage level of system nodes in all considered operating 

scenarios in Figure 12.88 and Figure 12.89 showed that the VVO engine kept all voltages 

within ANSI range completely. In low load conditions, e.g. off-days, VR tried to lower 

voltage as voltage can raise above the ANSI standard. Hence, VR changes are more than 

other scenarios as VR attempted to avoid over-voltage issues.  
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Table 12.42. AMI-Based Volt-VAR Optimization Engine Results  

Objective Function ($) Off-Day Average  Peak Day 

Spring 1460.301 1927.497 2852.86 

Summer 1553.119 2598.059 2568.388 

Fall 1737.101 1937.779 2797.116 

Winter 1127.872 1877.186 2914.782 

Saved by Obj. Function ($) Off-Day Average  Peak Day 

Spring 376.3469 545.3844 604.5752 

Summer 417.5315 432.0005 401.0212 

Fall 476.1348 533.5346 519.4314 

Winter 274.5305 513.7353 636.9723 
 

Table 12.43. Number of Bank and/or Tap Switching of VVCCs 

Total Injected kVAR, Average 
CB/VR Switch. No. 

Off-Day Average Day Peak Day 

Spring 30800, 35,18 39300, 37,16 48500, 36,10 

Summer 33400, 35,12 44300, 38,9 44000, 40,19 

Fall 35650, 41,15 37650, 34,10 47800, 41,14 

Winter 26900, 46,32 37700, 31,11 49900, 38,11 

In contrast, the VR optimal settings found by the VVO engine in peak scenarios, 

tried to put voltages on their maximum amounts as the system was facing voltage drop 

issues caused by high demand during the peak load condition. The VVO engine put fewer 

CBs with less amount of kVAR on low load scenarios, i.e. off-days, and injected more 

kVAR to the system in peak scenarios to compensate reactive power absorption and 

voltage drops. When two different CB combinations led to the same objective function 

values, the VVO engine selected the one with less VVCC operating costs. In other words, 

the VVO engine considered the values of VVCC switching properly. From Table 12.42, 

and the results shown in Figure 12.86 and Figure 12.87, it can be derived that the VVO 

engine’s main focus was on loss minimization rather than VVCC operating costs according 

to initial settings of Fuzzification values. The minimum/maximum Fuzzification values have 

to be set by the system operator prior to the VVO engine’s run time in accordance with 

system’s operational needs. It would be possible to shift VVO engine focus on other VVO 

sub-parts rather than loss minimization by giving more weight to Fuzzification values of 

that VVO sub-part.  
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Figure 12.85. The active power consumption ratio of loads for different operating 
conditions (a: Spring, b: Summer, c: Fall and d: Winter) 

 

Figure 12.86. Objective function results by AMI-based VVO engine for winter   

To check the performance of the co-simulation platform, different operational 

factors were monitored and tested in 1152 quasi real-time stages. The monitoring platform 

logged data from AMI for all operating time stages. Data received from AMI to the VVO 

engine without any fault.  
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Figure 12.87. Loss results by AMI-based VVO engine for winter 

 

Figure 12.88. Voltage of all nodes in quasi real-time for winter peak-day  

  

  

Figure 12.89. Online monitoring of OLTC, VR, node-18 and CBs in stage-95 at 
winter off-day  
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Figure 12.90. Optimal values of shunt CBs for winter peak-day  

 

Figure 12.91. VR optimal voltage tap-positions of winter scenarios 

Table 12.44. Final Monitoring Results of Co-Simulation System  

Item 
Passed/ 
Failed  

Item Passed/ Failed 

VVO operation under load 
conditions Passed 

Data Collection from local AMI to 
VVO Passed 

Optimization Convergence Passed 
Control command from VVO to 

RSCAD 
Passed 

Load Flow/ Fuzzification  Passed 
Real-time switching no. impact on 

VVO Passed 

Quasi real-time operation of 
VVO 

Passed Real-time switching transients Passed 

Data/Command 
Synchronization 

Passed No real-time communication failure Passed 

Same Results for  both 
simulators 

Passed Overall Co-simulation Operation Passed 
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Regarding the accurate operation of the VVO engine algorithm, the BFS 

converged and Fuzzification found optimal weights of each VVO sub-part in all 1152 

operating times. It was realized that the algorithm performs fast during average load 

conditions as system is not facing with over or under-voltage issues. Moreover, in peak 

scenarios the VVO engine tried to avoid voltage drop by injecting more reactive power into 

the system. Hence, the selection set of CBs lessened compared with low load operating 

scenarios. Thus, the convergence speed decreases while similar objective function 

solutions increase. Moreover, the convergence rate has to be set rationally according to 

system performance in different load conditions as high convergence rate setting would 

decrease VVO speed and/or cause divergence. Signals from AMI to VVO engine and 

command signals from VVO engine to VVCCs in RSCAD were monitored during different 

operating scenarios. There were no communication failure events in co-simulation 

platform. This ensures reliability of communication platform comprising of two GTNET 

boards and OPC connecting with each other using DNP3 protocol. The time that load 

changes from one quasi real-time stage to another quasi real-time stage, were the same 

in both RTDS and MATLAB environments. In addition, it is proven that all control 

commands in MATLAB were sent to RTDS model before the starting time of next quasi 

real-time. Hence, time synchronization for data collection, data change and control 

command operation monitored and checked completely without facing any asynchronies. 

There were no harmful transients found in system switching scenarios to lower voltage 

quality. As a result, evaluating the performance and the applicability of AMI-based VVO 

engine with a real-time co-simulation monitoring and control platform with reliable 

communication led the system to optimize the distribution feeder with more accuracy and 

efficiency. Fuzzification technique could assist distribution network operator to give 

weights to VVO engine objective function sub-parts at each quasi real-time stage 

according to grid technical/economic needs. VVO engine performed well. OLTC and VR 

optimal taps as well as CB's optimal injected kVAR, minimized distribution network loss 

precisely without any failure and/or technical error within real-time co-simulation platform. 

 Conclusion 

This study presented a real-time monitoring and control co-simulation environment 

for testing the precision and the performance of the proposed AMI-based Volt-VAR 
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Optimization engine using quasi real-time data. The real-time co-simulation platform 

monitored the AMI measurements, the VVO engine and VVCC control command 

accuracies using RTDS to model the distribution network with VVCC components, GTNET 

cards as measurement system and OPC server to connect the proposed AMI-based VVO 

engine designed in MATLAB into the rest of the system through DNP3 communication 

protocol. The monitoring platform monitored VVCC values/taps as well as other system 

parameters such as active/reactive power consumption of loads, voltage of system nodes 

and branch currents. To test the operation of the whole system, different operational 

factors were monitored in 1152 quasi real-time stages conforming to 3 different load 

conditions, i.e. off-day, average and peak-day, for four seasons of a year. The results 

proved correct performance of the proposed AMI-based VVO engine as well as the real-

time co-simulation platform. The proposed VVO engine minimized the objective function 

of the system for each quasi real-time stage without any failure and/or divergence. 

Monitoring VVCCs and voltage level of all nodes of the system showed that the VVO 

engine enabled the system to keep all node voltages within ANSI standard range. 

Fuzzification values can initially be set to determine the flow of the AMI-based VVO engine 

in accordance with network operational and economic needs at each quasi real-time 

stage. 

The co-simulation monitoring results showed that the system did not face any 

algorithm-related issues such as optimization, load flow and Fuzzification divergence 

and/or low speed. Moreover, it proved the fact that the required co-simulation operational 

factors such as data/command synchronizations between co-simulation parts, precise 

AMI data collection, reliable communication between co-simulation parts, and obtaining 

same results in MATLAB and RTDS were thoroughly respected in presented co-simulation 

platform. In conclusion, co-simulation environment presented in this study and the results 

obtained from that, can help operators and/or planners to evaluate and monitor the 

performance and the impact of new AMI-based VVO approaches on present and/or future 

distribution networks in a similar to reality environment before implementation. This could 

lead to more efficient, reliable and applicable VVO solutions for smart distribution networks 

in the near future. 
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12.14. Impact of Micro-CHP/PV Penetrations on Smart 
Grid Adaptive Volt-VAR Optimization of Distribution 
Networks using AMI data 

 Case Study Simulation   

To test the accuracy and the applicability of the proposed smart grid-based VVO 

engine, 33-node distribution test feeder [254] is used in this section. Figure 12.92 and 

Figure 12.93 depict daily generation profiles of Micro-CHP units at node-33 of the case 

study and Table 12.36, presents general data of the case study.  

 

Figure 12.92. Daily generation profiles of Micro-CHP units at node-33 of the case 
study 

 

Figure 12.93. Active power generation profiles of micro-generation units in 33-
node distribution feeder 

This study is based on Chapter 6.2 of this thesis. As depicted in Table 12.36, 

studied network comprised of 33 nodes with 32 termination points, i.e. smart meters. The 
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active/reactive power consumption of nodes is collected by the VVO engine designed in 

MATLAB. The network includes an OLTC at its high to medium voltage substation and a 

VR at node-14. Both OLTC and VR are able to adjust voltage level of their coverage nodes 

from -5 percent to +5 percent through 17 taps. Switchable shunt CBs are located in five 

different locations of the feeder range from 50 to 250 kVAR. Here, VVO engine tested in 

quasi-real-time, i.e. every 15 minutes for a complete day (96 time stages). According to 

the VVO engine objectives (5-40), that can be calculated by using (5-41) to (5-56), and 

constraints (5-9) to (5-18), (5-20), (5-21), (5-23), (5-24), (5-26) and (5-27) VVO engine 

found optimal solutions of each quasi real-time stage and sent control commands to 

VVCCs.  Table 12.45, gives VVO ZIP coefficients, different costs and Fuzzification values 

used in presented VVO engine during study. Moreover, Figure 12.94 shows the active 

power consumption of load for all quasi real-time stages collected from local AMI. 

 Operating Scenarios 

To fully assess the impacts of different Micro-CHP/PV penetration levels on 

presented smart-grid based VVO objective function sub-parts, four operating scenarios 

studied:  

• Scenario-1: VVO without Micro-CHP/PV penetration 

• Scenario-2: VVO performs in normal penetration (NP) of Micro-CHP/PVs, i.e. 
25 percent of nodes consist of Micro-CHP/PV units. 

• Scenario-3: VVO performs in high penetration (HP) of Micro-CHP/PVs, i.e. 50 
percent of nodes consist of Micro-CHP/PV units. 

• Scenario-4: VVO performs in very high penetration (VHP) of Micro-CHP/PVs, 
i.e. 75 percent of nodes consist of Micro-CHP/PV units. 

 Case Study Results   

The final result of the study is shown in Table 12.46. Figure 12.95 compares the 

objective function values for four different operating scenarios. Figure 12.96 gives the 

power loss reduction by the VVO engine. For each operating scenarios, it is possible to 

check the voltage levels of all nodes of system to be within ANSI range through monitoring 

platform. For instance, Figure 12.97 illustrates voltages of all nodes of the system in 

Scenario-4 at each quasi real-time stage. 
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Table 12.45. VVO Coefficient-Factor Setups for the Case Study 

Load ZIP Coefficients Z I P 

Active 0.418 0.135 0.447 

Reactive 0.515 0.023 0.462 

Costs $/kW $/Tap $/kVAR-year 

, . ,  0.12 - - 

, , ,  - 0.09 - 

,  - - 0.09 

Fuzzification values   

 0.35 (P.U) 0.1 (P.U) 

 7 (%) 6 (%) 

, ,  0.1 0.09 

Figure 12.96 gives the power loss reduction by the VVO engine. For each 

operating scenarios, it is possible to check the voltage levels of all nodes of system to be 

within ANSI range through monitoring platform. For instance, Figure 12.97 illustrates 

voltages of all nodes of the system in Scenario-4 at each quasi real-time stage. Figure 

12.98 presents quasi real-time voltage of all nodes of the system found by the VVO engine 

in for all four operating scenarios. Figure 12.99 gives CB's optimal kVAR and Figure 

12.100 depicts OLTC operations for all operating scenarios in quasi real-time as VVO 

control command examples. Table 12.47 summarizes the number of capacitor bank 

and/or tap switching of OLTC/VR for the studied day. Finally, Figure 12.101 represents 

the percentage of saved consumed energy obtained by CVR sub-part of VVO engine 

objective function in four explained scenarios for each quasi real-time stage. 

Table 12.46. Volt-VAR Optimization Engine Results 

Scenarios Scenario-1 NP HP VHP 

Objective Function ($) 17967.93 16525.74 15103.54 13654.36 

Power Loss (kW) 15679.72 13477.8 11558.48 9886.308 

∆ % by CVR 4.342111 4.773744 5.194733 5.581884 

∆ % by CVR 4.775398 5.228552 5.67508 6.087458 

CVR Factor 0.907936 0.912401 0.914834 0.916583 
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Figure 12.94. The active power consumptions of loads for all quasi real-time 
stages 

 

Figure 12.95. Objective function results by the smart grid-based VVO for different 
operating scenarios 

Table 12.47. Number of Bank and/or Tap Switching of VVCCs 

Scenarios Scenario-1 NP HP VHP 

CB-7 54 50 51 37 

CB-14 56 52 51 41 

CB-25 44 53 39 39 

CB-30 51 52 47 45 

CB-32 52 54 48 41 

Total No. 
Switching 

261 257 236 203 

Total kVAR 15500 15150 14200 13150 

OLTC-1 21 22 26 33 

VR 13-14 6 8 2 10 
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Figure 12.96. Active power loss results by the smart grid-based VVO for different 
operating scenarios 

 

Figure 12.97. Voltage of all nodes of the system in Scenario-4 

 Result Analysis 

 The correctness and the applicability of a smart-grid based VVO were tested in 

four different operating scenarios in the aforementioned case study. From Table 12.46 

and Figure 12.95, it can be seen that the proposed VVO engine accurately minimized the 

objective function as well as the active power loss of the system at each quasi real-time 

stage. Comparison of Scenario-1 with Scenario-4 shows that the smart grid-based VVO 

engine could minimize the objective function as well as power loss better in the last 

scenario. The reason lies in the fact that by increasing penetration of Micro-CHP/PV, 

system generation will increase as well. This can decrease power loss of the system. 

Moreover, Figure 12.96 shows that the VVO engine slightly decreased power loss at each 

scenario compared with the case that the system has the same generation without VVO 

optimization. 
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Figure 12.98. Quasi real-time voltage profile results for different operating 
scenarios (a: Scenario-1, b: Scenario-2, c: Scenario-3 and d: 
Scenario-4)  

 

Figure 12.99. Optimal Values of shunt CB in Scenario-4 achieved by AMI-based 
VVO engine 

Monitoring voltage level of all nodes of the system in all considered operating 

scenarios in Figure 12.97 and Figure 12.98 showed that the VVO engine kept all voltages 

within ANSI range and performed CVR to conserve the energy consumption. Figure 12.98 

explains that by increasing Micro-CHP/PV penetration, the generation is increased the 
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VVO engine could better lower the voltage to conserve energy in last scenario rather than 

other scenarios. 

 

Figure 12.100. OLTC optimal tap positions for different operating scenarios 

.  

Figure 12.101. Saved energy resulted by CVR in different operating 
scenarios 

Figure 12.99 illustrated that the operating cost minimization sub-part of VVO 

engine led the system to adopt less kVAR in most quasi real-time stages (e.g. 50 kVAR). 

Moreover, as seen in Table 12.47, by increasing penetration level of Micro-CHP/PVs, VVO 

can minimize distribution network loss with less total kVAR injection and fewer CB number 

of switching. Figure 12.100 gave the fact that the OLTC located in node-1 of the case 

study had more impact on VVO as it covers more nodes of the system. By more 

penetration of Micro-CHP/PV units, OLTC reduced the voltage of the system better with 

more number of tap operation. 
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Regarding the impact of Micro-CHP/PV on CVR sub-part of VVO, it is possible to 

conclude from Table 12.46 and Figure 12.101 that increasing Micro-CHP/PV penetration 

level could lead to more effective CVR. There are two main reasons for this. First, by 

increasing Micro-CHP/PV penetration level, system generation will increase as well. Thus, 

it would be easier for VVO engine to lower voltage levels of nodes to perform CVR. In 

other words, by increasing generation of the system due to Micro-CHP/PV penetration, 

voltage reduction of CVR will be increased. This fact is shown in Table 12.46. Second, 

CVR led to more energy consumption saving by increasing Micro-CHP/EV penetration as 

characteristics of load remained the same in all scenarios. Table 12.45 showed the ZIP 

coefficients of system loads. Some smart grid components such as EV could change the 

characteristics of loads which can cause changes in ZIP coefficient values and mix. The 

results showed that if the load characteristics are not fully constant power, it is possible to 

expect that increasing Micro-CHP/PV penetration would save more energy. As both 

energy consumption and voltage reduction improved by increasing Micro-CHP/EV 

penetration, CVR factor of feeder shown in Table 12.46 can be slightly improved as well. 

It can be realized from Table 12.45 that Fuzzification and cost values defined in this study 

led VVO engine to focus more on CVR sub-part rather than loss reduction sub-part. It is 

conceivable to achieve more loss reduction by giving more weight to VVO loss 

minimization sub-part rather than CVR sub-part. This could lead VVO engine to focus 

more on loss minimization by injecting more kVAR to the system while performing less 

CVR. 

As a result, the study of the impact of Micro-CHP/PV penetration led smart grid-

based VVO engine to optimize distribution feeder with more accuracy. Fuzzification 

technique could assist distribution network operator to give weights to VVO engine 

objective function sub-parts at each quasi real-time stage according to grid 

technical/economic needs. 

 Conclusion 

This study presented a smart-grid adaptive VVO engine capable of minimizing grid 

loss, Volt-VAR control assets and CVR costs using local AMI data. Moreover, in order to 

assess the performance of the VVO engine in the presence of different Micro-CHP/PV 
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penetration levels, i.e. normal, high, and very high, 33-node distribution feeder is used. 

The test results showed considerable variations in the performance of the proposed smart 

grid VVO as a result of Micro-CHP/PV penetration level.  The study shows that increasing 

Micro-CHP/PV penetration enabled the VVO engine to minimize the objective function 

better. It minimized the active power loss cost slightly better as well. VVO injected less 

reactive power to the system with fewer number of CB switching as grid generation 

elevated by increasing Micro-CHP/PV penetration level. Moreover, CVR effectiveness 

improved by increasing Micro-CHP/PV penetration due to the enhancement of local active 

power generation of the system. Hence, OLTC could reduce system voltage level more 

by increasing Micro-CHP/PV penetration. In summary, an effective weighting strategy for 

smart grid-based VVO sub-systems based on micro-generation penetration levels would 

be critically important for voltage and reactive power optimization of future distribution 

networks. Fuzzification technique used in this study, led to better performance of smart 

grid-based VVO in the presence of different Micro-CHP/PV penetration levels. The results 

showed that Fuzzification values of the VVO engine that is set by the network operator 

can define VVO key strategy and flow at each quasi real-time operating stage. Considering 

the impact of Micro-CHP/PV penetration on smart grid-based VVO could help distribution 

network planners and/or operators to adopt effective technologies according to their 

impacts on distribution grid.  

Moreover, studying the impact of Micro-CHP/PV penetration could result in more 

accurate VVO solutions as conventional VVO approaches do not take Micro-CHP/PV 

impact on CVR energy conservation into account in their calculations. Applying predictive 

algorithms to find weighting factors for each quasi real-time stage for VVO engine sub-

parts can be a novel future study that might help VVO to perform more efficient in the 

presence of different micro-generation penetration and load conditions. In conclusion, the 

result of this study can help new smart grid-based VVO solutions with CVR sub-part using 

AMI data to be more efficient and accurate in the presence of different micro-generation 

penetrations.  
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12.15. Community Energy Storage (CES) VVO Study  

This section investigates VVO performance in the presence of a Community 

Energy Storage (CES) system. As mentioned in Chapter 6.3, CES is typically used for 

different distribution grid operating purposes. One of the main tasks of CES is peak 

shaving. In peak shaving, CES tries to generate active power during peak time to lower 

the peak demand of the system. This can decrease system loss, conserve energy and 

help the main grid generation to supply energy to customers easier. Here in this study, the 

objective function and constraints are as same as Micro-CHP/PV study explained in 

previous section of this chapter. 

 Case Study Simulation  

In order to investigate the performance of proposed VVO engine in the presence 

of CES, 33-node distribution feeder [254] is employed. Other case study features such as 

33-node topology, VVCC location and VVCC features are as same as section 12.14. In 

this study, it is assumed that a 50 kW, 100 kWh CES unit is located at node-30 of the 

system. In other words, this CES is able to supply 50 kW of the active power in about 2 

hours. As one of the main tasks of CES is peak shaving, this study assumes that CES 

discharges at peak quasi real-time stages for two hours (8 quasi real-time stages). CES 

charges in lightest load conditions of quasi real-time stages of a day. In other times of a 

day, CES operates in standby mode without any impact on VVO as well as the grid. Figure 

12.102 shows the charging/discharging scenario of CES in studied day with 96 quasi real-

time stages. It is assumed that CBs are located at node-7, 14, 25, 30 and 32 in system 

without CES and node-7, 14, 25 and 32 in system with CES at node-30. Table 12.48 gives 

the general data and Table 12.49 presents main settings of the VVO study. The objective 

function and constraints used in this study is as same as section 12-14 except Micro-

CHP/PV constraints.  

 CES Discharging Results & Result Analysis 

In this sub-section, two different scenarios are compared with each other in order 

to check the performance and the VVO: 
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• Scenario-I: VVO performs without CES unit 

• Scenario-II: VVO performs in the presence of CES unit for peak shaving 

 

Figure 12.102. Charging/discharging of CES and case study consumption 
load  

Table 12.48. General Data of 33-Node Distribution Feeder 

Node No. Location(s) Voltage/kVAR 
Tap/kVAR 

Range Tap/ Switches 

OLTC 1 -5% to +5% 16+1 LTC 

VR 14 -5% to +5% 16+1 VR 

CBs 7, 14, 25, 30, 32 25 to 250 kVAR 5 each CBs 

Optimization Improved GA 

Initial Population, Conv. Rate 551, 0.999 

Table 12.49. VVO Main settings of the Case Study 

Load ZIP Coefficients Z I P 

Active 0.418 0.135 0.447 

Reactive 0.515 0.023 0.462 

Costs $/kW $/Tap $/kVAR-year 

 0.05 - - 

. ,  0.05 - - 

, , ,  - 0.09 - 

,  - - 0.09 

Fuzzification values   

,  0.35 (P.U), 7 (%) 0.1 (P.U), 6 (%) 

, ,  0.1 0.09 
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As explained before in Chapter 6.3, the best operating mode of CES inverter for 

peak shaving is when it fully generates the active power. Hence, this study assumes rated 

active power generation for CES during eight quasi real-time peak stages (from time 

stage-64 to time stagel-72). Table 12.50 compares the results of scenario-I and scenario-

II. Figure 12.103 shows the peak shaving of load by CES.  

Table 12.50. Volt-VAR Optimization Engine Results  

Scenarios Scenario-I Scenario-II 

Total Objective Function ($)for peak time stages 217.0249 211.6855 

Total Power Loss (kW) for peak time stages 1262.686 1216.145 

Final CVR factor for peak time stages 0.8837 0.8909 

 

Figure 12.103. Load active power during peak quasi real-time stages  

Assuming same generation from the high voltage source, Figure 12.104 and 

Figure 12.105 compare the active power loss and the objective function values of 

scenario-I with scenario-II respectively. From Table 12.50, Figure 12.104 and Figure 

12.105, it can be concluded that the CES could decrease distribution network loss and 

VVO objective function better than scenario-I that consist of switchable CB instead of CES 

on node-30. Moreover, from CVR point of view, the VVO could conserve more energy in 

the presence of CES unit as it generates active power to the system. Figure 12.106 shows 

OLTC and VR taps in both scenarios. This figure shows that there is no change in OLTC 

and VR tap positions in scenario-I and scenario-II. Figure 12.107 represents sizes and 

locations of CBs in two different scenarios and Figure 12.108 shows the voltage profile of 

system nodes during peak in two scenarios studied in this section. 
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Figure 12.104. Active power loss during peak quasi real-time stages  

 

Figure 12.105. Objective function values for peak quasi real-time stages 

 

Figure 12.106. OLTC and VR tap positions in both scenarios during peak 
quasi real-time stages  

Figure 12.107 shows that as in first scenario, VVO put CB on node-30, the value 

of other CBs in other locations are different compared with scenario-II. Moreover, Figure 

12.108 gives the fact that voltage profile of the system improved by employing CES in the 

system in scenario-II during peak quasi real-time intervals. In brief, the CES performed its 

peak shaving task while it improved voltage profile of the system, increased CVR energy 
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consumption and reduced power loss significantly by supplying 50 kW active power 

locally. 

a) 

 

b) 

Figure 12.107. Switchable shunt CB Sizes and locations in a) Scenario-I and 
b) Scenario-II  

a) b) 

Figure 12.108. Voltage profile of the system in a) Scenario-I and b) Scenario-
II (CES Discharging) 

Thus, from VVO point of view, CES performs better than CBs. However, a 

comparison between the installation and the operation costs of CES and CBs has to be 

taken into account by network planners in generation expansion plans of distribution 

networks. 
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 CES Charging Results & Result Analysis 

Typically, CES has to be charged during light load conditions. As explained in 

Chapter 6.3, the charging time has to be less than two times of discharge time. As such, 

this study assumed two-hours of charging time at light load conditions (from quasi real-

time 25 to quasi real-time-33). Here, two scenarios are compared with each other: 

• Scenario-I: VVO performs without CES 

• Scenario-II: VVO perform with CES in charging mode 

In second scenario, CES receives the active power from the grid to be charged. 

Table 12.51 shows the results of CES discharging compared with the first scenario.  

Table 12.51. Volt-VAR Optimization Engine Results in CES charging mode 

Scenarios Scenario-I Scenario-II 

Total Objective Function ($)for peak time stages 27.9941 28.3067 

Total Power Loss (kW) for peak time stages 207.3906 212.0636 

Final CVR factor for peak time stages 0.9035 0.9028 

Assuming no change in high voltage source generation, Figure 12.109 and Figure 

12.110 compare the active power loss and the objective function values during light load 

condition respectively.  

 

Figure 12.109. Power loss values for light load quasi real-time stages 

This comparison shows that the active power loss as well as the objective function 

value increased slightly during charge times but as the VVO objective function value is not 

very much, this slight raise in objective function value is negligible. Figure 12.111 gives 
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the OLTC and VR tap positions in both scenarios. The OLTC and VR tap positions were 

same in both scenarios. 

 

Figure 12.110. Objective function values for light load quasi real-time stages 

 

Figure 12.111. OLTC and VR tap positions in both scenarios during light 
load time stages  

Finally, Figure 12.112 represents the voltage profile of the system in both 

scenarios. It shows that the voltage profile of the system decreased a bit by CES charging. 

From CVR point of view, the saved energy consumption reduces by CES charging but as 

the whole saved energy during light load conditions is not much system can accept CES 

charging with no problem. As stated in Chapter 6.3, one may argue that charging CES 

can be performed in longer period in order to lower the negative impact of charging on 

VVO objectives by receiving fewer amount of active power from the grid and by injecting 

reactive power into the system through CES 4-quadrant inverter at a same time. This may 

improve system performance a bit but as system objective function value is very small 
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during light load condition, and as CES operating costs and battery lifetime is also 

important for the network operators, this argument may not be justifiable. 

a) 

 

b) 

 

Figure 12.112. Voltage profile of the system in a) Scenario-I and b) Scenario-
II (CES Charging) 

 Conclusion 

This study investigates VVO performance in the presence of a 50 kW/100 kWh 

Community Energy Storage system. The results showed significant improvement on VVO 

performance while CES discharging in peak quasi real-time stages. Thus, utilizing CES 

as one of the crucial components of smart microgrids could help microgrids on different 

operating aspects such as VVO as well as EV, PV and DER integrations to the grid. 

Moreover, CES systems are beneficial for both utilities and costumers by improving 

system reliability, stability and economic operation. 

The peak shaving and some other tasks of CES systems such as voltage 

regulation, reactive power support are in-line with VVO objectives. Hence, new solution 

proposed for VVO can be considered as a part of CES control in future. Furthermore, as 

recent CES unit communication are using DNP3 or IEC 61850 [271], it is possible for 

proposed VVO to be integrated to CES units using these communication protocols. It has 

to be mentioned that the VVO engine that intends to operate with CES has to work properly 

with BMS as well as other energy management systems provided for CES. A CES energy 

management system sample presents in [272]. Other CES tasks such as performing in 

island mode for outage management has to be defined for the VVO in future to avoid any 

task confliction between CES and VVO. In addition, CES integrated with renewable 
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resources such as PV has different operating features and/ modes that has to be taken 

into account while using CES as a Volt-VAR Optimization component. A sample of the 

operating modes of Toronto Hydro CES integrated with local PV has been studied in [273]. 

CES installations lead system to use less CBs in future. Moreover, employing CES in more 

than one discharging/charging cycle in a day may increase the efficiency of VVO by 

decreasing the power loss, saving more energy and decreasing VVCC number of 

switching. However, using CES in more charging/discharging cycles may increase CES 

operational costs that have to be taken into account in future. Moreover, some studies 

have recently investigated the impact of CES on distribution network planning. For 

instance, [274] assessed the impact of CES on capacitor placement planning problem. 

Further studies regarding the interaction between CES systems and short-term planning 

of distribution grids considering new smart grid-based VVO solutions could be beneficial 

in terms of distribution network reliability, quality and efficiency. 

12.16. Impact of EV Penetration on Volt-VAR Optimization 
of Distribution Networks using Real-Time Co-Simulation 
Monitoring Platform 

 Case Study Simulation   

To test the correctness and the applicability of presented AMI-based VVO engine 

in the presence of EV penetrations, 33-node distribution test feeder [254], [267] is used. 

Figure 12.113 depicts single line diagram and Table 12.52, represents general data of the 

case study. Studied network comprised of 33 nodes with 32 termination points, i.e. smart 

meters modeled in RSCAD in RTDS. The active/reactive power consumptions of nodes 

that are collected by the VVO engine, which is designed in MATLAB. Here, VVO engine 

tested in explained quasi-real-time co-simulation platform, i.e. every 15 minutes for a 

complete day (96 time stages). According to the VVO engine objectives (5-40) that is 

obtained by using (5-42) to (5-51) without Fuzzification factors and same constraints of 

Micro-CHP/PV study shown in section 12.14 of this chapter, as well as (5-57) and (5-58), 

VVO engine found optimal solutions of each quasi real-time stage and sent control 

commands to VVCCs via OPC server that connects MATLAB to RTDS via DNP3 in real-

time. Real-time co-simulation platform explained in Chapter 11.1 is used in this study. 
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Figure 12.113. 33-node distribution feeder single line diagram 

Table 12.52. General Data of 33-Node Distribution Feeder 

Node No. Location(s) 
Tap/Reactive 

Power 
Tap/kVAR 

Range 

OLTC, VR 1, 14 -5 to +5 16+1 

CBs 7, 14, 25, 30, 32 50 to 250 kVAR 5 each 

Costs $/kW $/Tap $/kVAR-year 

 0.09 - - 

, , ,  - 0.05, 0.05 0.05 

Optimization Improved GA  

Convergence Rate 0.999 

 Operating Scenarios 

To fully assess the impacts of different EV penetration levels on presented AMI-

based VVO objective function sub-parts, four operating scenarios studied: Scenario-1: 

VVO performs without EV penetration, Scenario-2: VVO performs in low penetration of 

EVs, i.e. 25 percent of nodes consist of EVs, Scenario-3: VVO performs in normal 

penetration of EVs, i.e.50 percent of nodes consist of EVs and Scenario-4: VVO performs 

in high penetration of EVs, i.e. 75 percent of nodes consist of EVs. For modeling EVs in 

charging mode, accurate modeling such as ZIP model has to be utilized. ZIP coefficient 

values of residential loads have been obtained in [259]. For EVs, [257] has evaluated ZIP 

coefficients for four different types of EVs, i.e. a Nissan LEAF, a Tesla Roadster, a Tesla 

Model S, and a Chevy Volt shown in Table-1 to Table-4 of [257]. Each EV type consists 

of different ZIP coefficient values as it has its own load characteristics. To consider the 

effects of EV different types, it is assumed that all EV types has equal share of distribution 

along feeder. In other words, each four EV model has 25% of EV market and customer's 
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usage. Moreover, the active power consumed by each residential house assumed to be 

around 4 kW. By dividing consumption of each node to this value, the number of residential 

houses at each node was found. Moreover, by normalizing EV ZIP values, and adding EV 

consumption share to the loads, new ZIP values for each operating scenarios were 

obtained shown in Table 12.53. Figure 12.114 shows the active/reactive power 

consumptions of all nodes of the system collected by the VVO engine from RTDS. 

Table 12.53. Active/Reactive ZIP Coefficients in different EV Scenarios 

ZIP Coefficients Z I P 

Active, No EV  0.418 0.135 0.447 

Reactive, No EV  0.515 0.023 0.462 

Active, EV-Normal Penetration 0.413 0.138 0.449 

Reactive, EV-Normal Penetration 0.512 0.026 0.462 

Active, EV-High Penetration 0.408 0.140 0.452 

Reactive, EV-High Penetration 0.510 0.028 0.462 

Active, EV-Very H Penetration 0.402 0.143 0.455 

Reactive, EV-Very Penetration 0.507 0.031 0.462 

 

Figure 12.114. The active/reactive power consumptions of nodes in first 
operating scenario (VVO with no EV penetration) 

 Case Study Results   

The final result of the study is shown in Table 12.54. Figure 12.115 compares the 

objective function values for four different operating scenarios. Figure 12.116 gives the 

power loss reduction by the VVO engine. For each operating scenario, it is possible to 

check the voltage levels of all nodes of system to be within ANSI range through monitoring 

platform. 
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Table 12.54. Volt-VAR Optimization Engine Results  

Scenario No EV EV-LP EV-NP EV-HP 

Saved from Objective 
Function ($) 13424.28 13917 14148.97 15154.75 

Saved Active Power Loss 
(kW) 634.0259 651.5614 663.1591 677.0941 

∆ % by CVR 3.044225 2.954183 2.887564 2.802961 

∆ % by CVR 3.36123 3.338001 3.217036 3.151273 

CVR Factor 0.90568 0.88501 0.89758 0.88947 

 

Figure 12.115. Objective function results by the AMI-based VVO for different 
operating scenarios 

 

Figure 12.116. Active power loss results by VVO for different operating 
scenarios 

 

For instance, Figure 12.117 illustrates voltages of all nodes of the system in 

Scenario-3 at each quasi real-time stage. As presented VVO tested in quasi real-time, any 
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voltage or tap real-time changes could also be observed by designed co-simulation 

monitoring and control platform. Figure 12.118 presents real-time voltage of node-18 of 

the system found by the VVO engine in quasi real-time stage-78. 

 

Figure 12.117. Voltage of all nodes of the system in Scenario-3 

 

Figure 12.118. Real-time monitoring voltage results of Node-18 for time 
stage-78   

 Figure 12.119 gives CB's optimal kVAR and Figure 12.120 depicts OLTC and VR 

operations for all quasi real-time stages in operating Scenario-3 as VVO control command 

examples. Table 12.55 summarizes the number of capacitor bank and/or tap switching of 

OLTC/VR for the studied day.  
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Table 12.55. Number of Bank and/or Tap Switching of VVCCs 

Scenarios NO-EV EV-LP EV-NP EV-HP 

CB-7 43 47 41 41 

CB-14 49 48 37 41 

CB-25 39 40 38 31 

CB-30 43 40 39 33 

CB-32 44 46 33 27 

Total kVAR 15850 15050 16400 18350 

OLTC-1 17 15 16 19 

VR-14 8 4 6 6 
 

 

Figure 12.119. Optimal Values of shunt CBs in different operating scenarios 
achieved by AMI-based VVO engine 

 

Figure 12.120. OLTC/VR optimal tap positions for operating scenario-3 

Finally, Figure 12.121 presents the percentage of saved consumed energy 

obtained by CVR sub-part of VVO engine objective function in four explained scenarios 

during peak time stages. 
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Figure 12.121. Saved energy in four operating scenarios during peak time 
stages 

 Result Analysis 

 The performance and the applicability of an AMI-based VVO were tested in a co-

simulated real-time platform in four different operating scenarios as case study. From 

Table 12.54, Figure 12.115 and Figure 12.116, it can be concluded that the proposed VVO 

engine minimized the objective function, as well as the active power loss of the system at 

each quasi real-time stage precisely. Comparing Scenario-1 to Scenario-4 shows that the 

AMI-based VVO engine could minimize the objective function as well as power loss better 

in the 1st scenario. The reason lies in the fact that system’s total load increases by adding 

EV penetration levels to the grid but, as shown in Table 12.54, saved values, i.e. the 

difference between a system without VVO and a system with VVO, raised by increasing 

EV penetration level. Table 12.55 gives the reason for this phenomenon. As the AMI-

based VVO engine injected more kVAR to the system, total saved power losses as well 

as total saved objective function values raised by increasing EV penetration level. 

Regarding the impact on EV on CVR sub-part of VVO, it is possible to conclude 

from [257], [259], Table 12.53, Table 12.5 and Figure 12.121 that increasing EV 

penetration level could lead to less effective CVR. There are two main reasons for this 

conclusion. First, by increasing EV penetration level, system load will be increased as 

well. Hence, in order to keep voltage within lower limits of ANSI range and to avoid any 

low-voltage issue, the AMI-based VVO engine tries to lower voltage level less while EV 

penetration is increased. In other words, by increasing loads of the system due to EV 
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penetration, voltage reduction of CVR will be decreased. Second, the type and the mix of 

EVs have significant impact on CVR. As Table-I to Table-IV of [257] show, different EV 

types have different ZIP models. Some have power constant characteristics such as Type-

1 and Type-4 in [257], some have current constant characteristics (such as Type-2 in 

[257]) and some have a mix characteristic such as Type-3 [257]. As explained in previous 

sub-sections, this study assumed all EV types have same share in the distribution feeder. 

Thus, Table 12.53 ZIP coefficients were gained according to this rational assumption. As 

seen in Table 12.53, increasing EV penetration, decreased impedance constant 

coefficients that have most impact on CVR energy saving improvement. As a result and 

as shown in Table 12.54, by increasing EV penetration, CVR led to less saved energy 

consumption as well as less voltage reduction. That is the reason why CVR factors in 

Scenario-2 to Scenario-4 are less than Scenario-1 in Table 12.54. In brief, this study 

showed that EV types and mix that are being used within distribution networks have 

considerable impact on CVR performance. Monitoring voltage level of all nodes of the 

system in all considered operating scenarios showed that the VVO engine kept all voltages 

within ANSI range and performed CVR to conserve the energy consumption. Figure 

12.118 presented the real-time monitoring of the system while AMI data was captured in 

quasi real-time. Figure 12.119 illustrated that the operating cost minimization sub-part of 

VVO engine led system to adopt less kVAR in most quasi real-time stages (e.g. 50 kVAR). 

Figure 12.120 gave the fact that the OLTC located in node-1 of the case study had more 

impact on VVO as it covers more nodes of the system. Operating cost minimization of 

both OLTC and VR within VVO objective function led system to have few tap switching 

numbers within studied operating steps, i.e. 96 time stages. This fact is shown in Table 

12.55 as well. 

As a result, the proposed real-time co-simulation platform led the AMI-based VVO 

engine to optimize distribution feeder with more precision. Moreover, different EV 

penetration levels affected AMI-based VVO performance in different manners. Increasing 

EV penetration level increased total saving of the system. It increased kVAR injection but 

decreased CVR performance as VVO could not reduce voltage (due to system ANSI 

constraint) and energy conservation (due to EV type and mix that raised constant power 

coefficient of total load). 
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 Conclusion 

This study presented an AMI-based VVO engine capable of minimizing grid loss, 

Volt-VAR control assets and CVR costs at each quasi real time stage. Moreover, it 

introduced a real-time co-simulation platform comprised of the VVO engine, grid model 

and monitoring platform using DNP3 protocol, in order to assess the performance of 

presented VVO in presence of different EV penetration levels, i.e. low, normal and high.  

As a case study, 33-node distribution feeder is modeled. The test results showed 

considerable changes in AMI-based VVO performance by increasing EV penetration level. 

The results of this study proved that the EV's type, mix and their usage rate have 

significant impacts on quasi real-time VVO operation. Each EV type has its own ZIP 

characteristics that can affect CVR in different fashion. EV penetration with high constant-

power charging characteristics led VVO engine to perform less CVR, i.e. energy 

conservation, but higher loss reduction as shown in this study. In contrast, penetration of 

EVs with high constant-impedance and/or constant-current charging characteristics could 

increase CVR energy conservation with less VVO engine focus on loss reduction. 

Considering the impact of EV penetration on AMI-based VVO could help 

distribution network planners to adopt effective technologies according to their impacts on 

distribution grid. Moreover, studying the impact of EV penetration could result in more 

precise AMI-based VVO approach as conventional VVO approaches do not take EV 

impact on CVR energy conservation into account in their calculations. In conclusion, the 

result of this study can help new AMI-based VVO solutions with CVR sub-part to be more 

precise in presence of different EV penetrations. Moreover, the real-time co-simulation 

platform presented in this study can be a great sample for testing real-time operation of 

AMI-based VVO before implementation. 
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12.17. Real Time Co-Simulation Platform for Smart Grid 
Volt-VAR Optimization using IEC 61850  

 Case Study Simulation  

In order to check the performance and the applicability of the VVO engine, 33-node 

distribution test feeder [254], [267] is used in this section. Figure 12.122 illustrates single 

line diagram of 33-node distribution feeder and Table 12.40, presents general data of the 

case study. As shown in Table 12.40, this feeder comprises 33 nodes with 32 termination 

points, i.e. measuring points, modeled in RTDS. The active/reactive power consumption 

and/or generation of nodes are collected by measurement aggregators for VVO engine 

designed in MATLAB. Here, the performance of the VVO engine tested in quasi-real-time 

co-simulation platform, shown in Figure 11.10 and Figure 11.11 explained in Chapter 11.5 

and 11.6, every 15 minutes for a complete day (96 time stages).  

 

Figure 12.122. 33-node distribution fEeder single line diagram 

The measurements were acquired and the control signals sent to VVCC via DNP3 

protocol. Any status changes due to automatic re-configuration of the grids were reported 

to the engine using the IEC 61850 MMS protocol. Finally the fault detection and automatic 

service restoration was done using the IEC 61850 GOOSE services. According to the 

VVO engine objectives (5-40) to (5-56) and constraints (5-9) to (5-18), (5-20), (5-21), (5-

23), (5-24), (5-26), and (5-27), the VVO engine found optimal settings of VVCCs at each 

real-time stage and sent control commands to them via OPC server.  
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 Operating Scenarios 

To fully investigate the performance and the accuracy of the VVO engine, two 

operating scenarios were considered for the studied day. In the first scenario, the VVO 

performs in normal operating condition. As the VVO engine is designed to perform reliably 

in all different operating scenarios, it should accurately react to any changes in system 

configuration due to abnormal conditions such as faults. Hence, the second operating 

scenario investigates the VVO engine performance during a fault condition. As seen in 

Figure 12.122, three normally open branches (node-25 to node-29, node-22 to node-12, 

and node-33 to node-18) specified for fault conditions to feed the system nodes from other 

paths. As mentioned before, this study assumes that IEC 61850 compatible normally 

closed breakers on the system nodes, enable the system to isolate the fault from other 

parts of the feeder in real-time. In the second scenario, the performance of the VVO engine 

was tested under a line-to-ground fault condition. Different initial setting factors for the 

VVO engine are given in Table 12.56. Figure 12.123 depicts active power load of system 

nodes in different quasi real-time operating stages. 

 

Figure 12.123. The active power of nodes in different quasi real-time stages 

 Case Study Results 

It is assumed that a line-to-ground fault occurs at node-15, starting from quasi real-

time stage-60 to quasi real-time stage-76 in the second operating scenario. Hence, node-

15 has to be isolated from other parts of the grid. When the fault occurs, the IED that 

covers node-15 and emulated in RTDS detects an over current and initiates a trip signal 
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to appropriate circuit breakers that are located on both sides of node-15. As node-15 is 

isolated from the system, the GTNET board generates a GOOSE message, notifying this 

change in the status of breakers (node-14 and node-15 breaker).  

Table 12.56. VVO Coefficient-Factor Setups for the Case Study 

Load ZIP Coefficients Z I P 

Active, Reactive 0.418, 0.515 0.135, 0.023 0.447, 0.462 

Costs $/kW $/Tap, $/kVAR-year 

 and . ,  0.1 - - 

, , ,  and ,  - 0.09, 0.09 0.09 

Fuzzification values   

,  0.45 P.U, 6.5(%) 0.25 P.U, 6 (%) 

, ,  100, 0.1, 0.1 22.5, 0.09, 0.09 

Upon reception of these GOOSE messages, appropriate SIED, that is breaker of 

node-33 in this case, acts and closes branch 33 to 18 to feed the rest of feeder nodes, i.e. 

node-18, node-17 and node-16 from another path. Thus, the system reconfigures itself 

according to the fault till the fault clears. This reconfiguration is made available on the NI-

cRIO IED that supports MMS server via the analogue output boards of the RTDS in real-

time. This IED informs VVO of the system reconfiguration, thereby enabling VVO to find 

an optimal solution for the system according to the grid configuration in different operating 

conditions, e.g. normal and fault conditions. When the fault cleared at time stage-77, the 

same process repeats itself, and the VVO settings is turned back to the initial 

configuration. Figure 12.124 shows system monitoring platform for the fault scenario. The 

push button shown in Figure 12.124 generates line-to-ground fault in real-time. The final 

result of the study is shown in Table 12.57. Figure 12.125 compares the objective function 

values for different operating cases. Figure 12.126 presents OLTC voltage tap operation 

during the 96 operating time stages. Figure 12.127 represents the consumption energy 

saved by the VVO engine’s CVR function at each quasi real-time stage in different 

operating scenarios. For all scenarios, it is possible to monitor voltage levels of all nodes 

of the system to be within ANSI range through co-simulation monitoring platform.  
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a) 

 

b) 

 

Figure 12.124. Monitoring platform in different operating scenario (a: no 
fault, b: fault on node-15) 

 

Figure 12.125. Objective function results (case-1: no VVO, no 
reconfiguration, 2: VVO, no reconfiguration, 3: no VVO with 
reconfiguration and 4: VVO with reconfiguration. 

 

Figure 12.126. OLTC optimal tap positions found by smart grid-based VVO 
engine 

For instance,  Figure 12.128 illustrates voltages of all nodes of the system in two 

different scenarios during quasi real-time stag-60 to quasi real-time stage-76. Figure 
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12.129 presents the real-time measurements for OLTC and VR tap changes as well as 

node-18 and node-33 voltage changes in quasi real-time stage-75, obtained by the 

monitoring platform. 

 

Figure 12.127. Saved energy by CVR subpart in different operating 
scenarios 

a) b)

Figure 12.128. Voltage of all nodes of the system from quasi real-time stage-
60 to 76 (a: normal condition, b: fault on node-15(system 
reconfiguration)) 

Finally, Figure 12.130 gives CB's optimal kVAR for a complete day for the second 

scenario. Table 12.58 summarizes the number of capacitor bank and tap switching of 

OLTC/VR for the day analyzed here. 

 Result Analysis 

The performance of VVO engine was tested by presented real-time co-simulation 

platform. 
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Figure 12.129. Real-time monitoring of OLTC/VR tap-positions and node-18, 
node-33 voltages during fault condition (quasi real-time stage-75) 

 

Figure 12.130. Optimal Values of shunt CBs found by smart grid-based VVO 
engine in second scenario 

Table 12.57. Volt-VAR Optimization Engine Results 

Scenario Scenario-1 Scenario-2 

Saved Objective Value ($) 16256.68 16170.84 

Reduced Power Loss (kW)  756.83 712.51 

∆ % by CVR 4.332459 4.216384 

∆ % by CVR 4.767447 4.634376 

CVR Factor 0.907455 0.908525 

Table 12.58. Number of Bank and/or Tap Switching of VVCCs 

Scenarios VVO-No Reconfiguration VVO-Reconfiguration 

CB-7, 14, 25 38, 37, 38 39, 37, 38 

CB-30, 32 42, 39 41, 39 

Total kVAR 15150 15300 

OLTC-1, VR-14 21, 6 23, 6 
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The real-time performance of the VVO engine was checked online via the 

monitoring platform. Figure 12.124 depicts a part of the monitoring platform illustrating the 

breaker and GOOSE status during normal and fault conditions. The breaker configuration 

changes were also checked in MATLAB to ascertain that the VVO engine operates with 

new system configuration. From Fig. 10 and Table 12.57, it can be seen that the system 

minimizes the objective function less effectively during the fault, as the system was 

reconfigured and as one node was isolated from the system. Moreover, Figure 12.126 

shows that the OLTC voltage tap changes were in-line with the system reconfiguration 

during the fault. Figure 12.127 and Table 12.57 show that the CVR sub-system performs 

well in both fault and normal scenarios. The results show that although the energy 

consumption saved by VVO engine was reduced during the fault, the percentage of the 

voltage reduction decreased too. As such, the CVR factor remains very close to the normal 

operating scenario. The results of Table 12.58 and Figure 12.130 prove that the VVO 

engine injects more reactive power into the system during the fault because of system’s 

configuration needs. Moreover, Figure 12.128 shows that the system node voltages adjust 

accurately during the fault time stages. Real-time measurements were observed through 

the monitoring platform for quasi real-time stages. Figure 12.129 proves that the VVO 

engine performs well in real-time. It should be noted that the time of receiving breaker 

status notification by the VVO is critical. According to this study, the VVO engine can be 

in three different modes while receiving the reconfiguration notification by IEC 61850 

MMS. First, VVO has received the AMI data but it has not yet started its optimization run 

yet. Second, VVO is in the middle of its optimization calculations and third, the VVO has 

completed its task for that time stage and is waiting for the next quasi real-time stage data. 

In the first and third cases, VVO checked the status of breakers before it began its 

optimization. Thus, there was not any problem on the performance of VVO in these cases. 

In the second case, VVO finds an acceptable system solution with the previous settings. 

It checks the breaker status and realizes that it has to re-compute its solution with updated 

grid configuration. As AMI data is made available to the VVO every 15 minutes, there was 

enough time for the VVO engine to find the optimal settings with the new configuration in 

most cases. Otherwise, VVO would request new AMI data after receiving new 

configuration of the system to set new real-time frames before sending any control 

command to VVCCs. Thus, IEC 61850 enabled the VVO engine to receive accurate 

network configuration updates. 
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 Conclusion 

This study proposes a smart grid-based VVO engine capable of minimizing loss, 

Volt-VAR control assets and CVR costs using AMI data. It presents a real-time co-

simulation platform comprising of the VVO engine, grid model in RTDS and runtime 

monitoring platform using IEC 61850 MMS and GOOSE messaging. In order to test the 

performance of the proposed VVO, the system was studied in the presence of normal as 

well as fault operational conditions. The VVO engine could receive the AMI data through 

measurement aggregator and OPC server. Moreover, control commands sent to real-time 

VVCCs in grid model in RTDS through DNP3 protocol. The VVO engine could undergo 

testing with 96 quasi real-time stages of a full day.  

A line-to-ground fault imposed into the system to check the impact of network 

reconfiguration on the VVO engine performance. IEC 61850 GOOSE could generate, 

isolate fault and closed the circuit from another path to feed the remaining isolated but not 

faulty nodes. At a same time, the VVO engine could receive breaker status updates via 

IEC 61850 MMS and could find new optimal settings of VVCCs according to the new 

configuration and topology of the system. The results of the case study, i.e. 33-node 

distribution feeder, show accurate performance of the VVO engine in the operating 

scenarios considered here. Furthermore, this study demonstrates how new VVO solutions 

benefit from reliable and applicable communication protocols such as IEC 61850. VVO 

performed reliably without any failure in different operating conditions such as normal or 

faulty conditions. Hence, the realistic method this study presented for the deployment of 

AMI-based VVO engines working with IEC 61850 MMS and GOOSE can benefit future 

grids in terms of loss minimization, energy conservation and reliable operation. In 

conclusion, the result of this study can help distribution network companies and/or 

operators to achieve higher levels of optimization and control over their assets by 

investigating new smart grid-based VVO solutions with CVR function such as the 

proposed approach of this study in a closer-to-reality co-simulation environment presented 

in this study 
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Chapter 13.  
 
Analysis Abstract 

This chapter gives a brief report on the aims, key results and result analyses of 

studies discussed in Chapter 12 of this thesis. 

Study of section 12.1 investigated the basic approach for proposing a near real-

time adaptive VVO and its topology by using AMI data as well as Multi-Agent System 

concept. The objective function of this study was minimizing the apparent power loss of 

the system. Three types of residential loads considered in the case study. In first steps the 

effects of each VVCC in VVO studied separately and in last step, implementation of a near 

real-time VVO engine with 15-minute time intervals discussed. The study results showed 

optimal configuration of VVCCs to minimize the apparent power loss of the system. The 

result of this study was the basis of other studies of this thesis. 

Study of section 12.2 tried to minimize the energy loss cost as VVO objective. 

Moreover, it defined three levels of optimization for proposed VVO (substation only, 

substation and along feeder(s), all feeder(s) by using DGs). The BCIT case study with five 

different load types studied and in last part, the effect of using FESS on proposed VVO 

assessed. The results of this study showed significant cost saving by applying proposed 

VVO solution and even more saving by using FESS in the system. 

Study of section 12.3 assessed the impact of V2Gs on proposed VVO engine. The 

initial objective of the engine was minimizing the apparent power loss. In second step, CB 

operating cost minimization added to the VVO objective function. Six different load regions 

defined for IEEE 37-node distribution network case study. Each load region comprised of 

different load type and characteristics. Two penetration levels of EV, i.e. normal and high, 

studied in the presence of VVO. Next, the study assumed that 10% of EVs would be able 

to support reactive power. The initial results showed considerable amount of loss 

reduction, especially during peak, using VVO engine. The result analysis proved the fact 

that daily operation cost of CBs can be reduced by utilizing V2G dispatch-able sources as 

VAR supporters. 



 

285 

Study of section 12.4 competed the previous study. The main VVO objective of 

this study was minimizing the active power loss cost as well as the operating cost of CBs 

considering grid and EV technical constraints. In order to study EV penetration impact on 

proposed VVO better, a larger case study (IEEE 123-Node distribution grid) used with six 

different load regions as case study. Six different scenarios investigated in this study: 

system without EV penetration, system with EV penetration, system with a portion of EVs 

as VAR supporters, system with VVO and EV penetration, system with VVO and a portion 

of EVs as VAR supports, and VVO with new objective function to consider V2G reactive 

power cost in the objective of the VVO engine to find optimal locations of EV charging 

stations from VVO point of view. The result of this study explained that using a portion of 

V2Gs as VAR supporters could bring upon a grid with fewer reactive power compensation 

need and with less CB size and switching number. Moreover, the VVO benefits resulted 

by V2G VAR supporters could be considered in sizing and placement of EV charging 

station planning problems. 

Section 12.5 presented a study on a day-ahead VVO algorithm using artificial 

neural network. The VVO objective was maximizing the benefit of loss cost minimization, 

CB operating cost minimization and CVR benefit maximization. ZIP load model used for 

the CVR study. Neural Network engine predicted the next day quasi real-time interval 

loads based on its inputs. The results of this study compared with the ideal case where it 

was assumed that all loads of the next day quasi real-time intervals are known. The VVO 

engine results found in this study were very close to the ideal case. This study was the 

basis of the next study on proposing a live predictive engine for VVO.  

Study of section 12.6 proposed a predictive VVO approach using VVO engine, 

neural network engine and CVR engine working together. It proposed and explained 

sliding window concept for the VVO to operate in real-time. The objective of the VVO 

engine was minimizing active power loss and CB operating costs. This approach solved 

VVCC number of switching per day issue as well.  Moreover, the result analysis showed 

closes objective function minimization to the ideal case. 

Study of section 12.7 investigated a new approach for solving maintenance 

scheduling problem of AMI-based VVO by introducing a Maintenance Scheduling Engine 
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(MSE) concept. The objective of the VVO engine was active power loss, VVCC operating 

and CVR costs minimization. Moreover, the objective of MSE was to maximize VVO 

benefit and to minimize VVCC maintenance fixed and variable costs. The results and 

result analysis showed that proposed approach could solve maintenance scheduling of 

VVCC issue without any interruption on the operation of VVO using communication 

between VVO engine and MSE. This solution considered as an additive part of proposed 

VVO. 

In the study of section 12.8 the PSO algorithm and Fuzzification technique used 

for solving VVO problem. Here in this study, the objective was minimizing the apparent 

power loss, voltage deviation and voltage deviation from CVR target. The engine used 

Fuzzification factors to properly weight each VVO subpart the results of this study showed 

proper operation of the PSO algorithm. Moreover, it showed that how giving weighting 

factors to each VVO subpart could lead system to a better optimization results that are in 

compliance with system and operator needs more.  

Study 12.9 focused on finding a more accurate load modeling for AMI-based VVO. 

The objective of the VVO engine was minimizing of loss, VVCC operational and CVR 

costs. This study stated the fact that at each quasi real-time interval, the ZIP factor of loads 

can be different as different types of appliances are used in different times of a day. Hence, 

it provided a quasi-real-time ZIP models from disaggregated statistical data.  The result of 

this study improved proposed AMI-based VVO performance by using quasi real-time ZIP 

load coefficients. Moreover, it increased the accuracy level of saved energy consumption 

calculation in CVR part of the VVO objective function. 

Study 12.10 proposed basic design of real-time co-simulation platform for 

proposed VVO engine using RTDS simulator and DNP3 protocol. The main objective of 

this study was to minimize the active power loss cost as well as VVCC operational costs. 

This study performed for 288 time intervals of a day (5-minutes time intervals) to check 

the precision and the applicability of proposed VVO engine. The results of this study 

depicted proper performance of the engine during all quasi real-time intervals without any 

failure. 
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Study of section 12.11 improved previous study by adding CVR analysis into the 

system. Hence, the CVR minimization added to the objective function of proposed VVO 

to conserve the energy consumption. The results of this study showed about 3 percent of 

energy saving by lowering 3.36 percent of the voltage level. 

In next study (section 12.12), communication parameter impact on proposed VVO 

and real-time co-simulation platform assessed with the same objective function of section 

12.10 study. WanemPC software used to emulate different communication conditions 

such as delays and packet loss and to impose them into the system. The result of testing 

co-simulation platform showed well operation of the whole system in normal delay 

conditions. However, due to the inherent limitation of DNP3 protocol, VVO engine lost its 

robustness in high delay conditions such as 1 second.  

Further investigations regarding the performance evaluation of proposed VVO 

engine with real-time co-simulation test platform continued. Study of section 12.13 fully 

evaluated VVO performance for 12 different load profiles. The accuracy of proposed VVO 

engine checked for each season of a year under average load, off-day load and peak load 

conditions. As such, the VVO engine tested 1152 times using different quasi real-time 

intervals in a year. The VVO objective minimized the active power, VVCC operational and 

CVR costs. Fuzzification technique is used to find the accurate weights of each VVO 

objective function subparts. In addition, comprehensive monitoring platform presented in 

this study by using RTDS run-time platform. The results showed well-performance of the 

VVO engine in different load conditions that a system may face with. The result of this 

study could assist distribution network planners to achieve higher levels of accuracy and 

efficiency in their system using proposed VVO solution. 

Study of section 12-14 assessed the impact of Micro-CHP/PV penetrations on 

proposed VVO engine. Three penetration levels (low, normal, and high) considered in the 

system case study. The VVO engine aimed to minimize active power loss as well as VVCC 

operational and CVR costs. The results of this study showed that increasing penetration 

of Micro-CHP/PVs enable VVO to minimize its objective function better. VVO could inject 

less reactive power with fewer number of CB switching per day. In addition, CVR effects 
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improved by increasing Micro-CHP/PV unit’s penetration. Fuzzification technique led to 

better VVO performance in the presence of this type of DER. 

Study of section 12.15 investigated the impact of CES on  smart grid-based VVO 

proposed in this thesis. It used a 50 kW/100 kWh CES unit that was discharging during 

peak to evaluate the efficiency of the VVO. The VVO objective function was as same as 

previous section. The results of this study showed significant improvement on objective 

function minimization of the VVO, peak demand reduction and peak loss reduction by 

using CES during peak quasi real-time intervals. CES charging period had very small 

negative impact on the objective function of proposed VVO. As CES units are used for 

different operational purposes in the grid, optimal using of their four-quadrant inverter for 

VVO aims needs more investigation in future. 

Study of section 12.16 evaluated the impact of EV penetration on  smart grid-based 

VVO of this thesis using real-time con-simulation platform. This study applied the same 

VVO objective function of previous study. Three levels of EV penetration considered for 

the case study. Moreover, this study modeled EVs as ZIP loads in order to reach to a more 

accurate model of EVs. Three different ZIP coefficients for EV defined in literatures of this 

study. This study employed these coefficients to check the impact of EV penetrations on 

proposed AMI-based VVO in presented real-time co-simulation platform using DNP3 

protocol. The result analysis of this study proved that EV type, mix and usage rate have 

considerable impact on AMI-based VVO solution. Each EV type could increase or 

decrease the result values of each VVO subparts in different fashion. Furthermore, the 

results of this study could help increasing AMI-based VVO solution accuracy by proper 

modeling of dispatch-able sources such as EVs. 

The last study of Chapter 12 presented a real-time co-simulation platform for 

proposed  smart grid adaptive VVO engine by using IEC 61850 MMS and GOOSE. This 

study explained a comprehensive real-time co-simulation test platform for the VVO engine 

to operate with IEC 61850 standard commands and/or messages such as MMS and 

GOOSE. It checked the impact of fault condition and network reconfiguration condition on 

the performance of the VVO engine. For this reason, IEC 61850 GOOSE generated when 

a line-to-ground fault occurred in the system. At a same time, IEC 61850 were sent 
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network configuration changes to the VVO engine. The results of this study showed 

accurate and efficient performance of proposed VVO in normal and fault with 

reconfiguration conditions. Furthermore, it showed how proposed VVO engine can 

operate with and get benefit from advanced IEC 61850 MMS and GOOSE messaging 

communication standard. 
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Chapter 14.  
 
Smart Grid Adaptive VVO Roles in Distribution 
Network Planning Studies 

14.1. Preface 

Distribution network planning is one of the fundamental parts of distribution 

networks studies. Basically, distribution network planning aims to improve distribution 

network reliability, stability, power quality and efficiency in short-term, mid-term and long-

term horizons based on distribution system technical and economic needs. Generally, 

short-term planning studies distribution network for a short-term horizon, e.g. upcoming 

year or two years. The mid-term planning typically deals with distribution network issues 

for upcoming years and long-term planning studies distribution network for “upcoming 

decade(s)” time frame. Here, the main focus is on short and mid-term planning of 

distribution networks, i.e. near horizon time frames. Each distribution network planning 

has to follow four consecutive steps to be completed: The first step is grid topology 

investigation. This step gives distribution network planners an overview of present 

distribution network topology, infrastructure and asset features and needs. Moreover, as 

topology is the basis of the operation mode of grid assets, understating grid topology could 

assist distribution network planners to capture general approximation regarding the 

operation of the assets.  

The second step is to understand grid issues.  Each distribution network grapples 

with its own issues. Weak-points, aged assets and blind parts of distribution grids has to 

be found in this step, based on historical data, reports and grid topology. In third step, 

distribution network planner has to find a proper solution for each grid issue according to 

system technical needs by considering economical factors. The planners can welcome 

new ideas and novel approaches in order to find the best possible solutions for their grid 

issues. In last step, the planners need to perform risk assessment on solution candidates.  

Typically, the main goals of distribution network short and mid-term planning is to 

maintain, upgrade and expand distribution networks to improve system level of operation, 
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reliability, security, stability, quality of service, power quality  and efficiency with keeping 

asset’s lifetimes, less carbon footprints and less expenses. Although governmental 

policies and budget are the key factors of distribution network planning, customer needs 

can also be taken into account by the network planners. Moreover, distribution network 

planning problem has to respect Distribution System Operator (DSO) and environmental 

needs. Environmental factors can be a part of governmental policies as well. 

Measurements, monitoring, control and optimization of distribution network components 

such as loads and generation units are the main tools of planners to find short and/or mid-

term solutions of distribution networks. In other words, it is possible to consider distribution 

network planning problem, and optimization problem based on system data according to 

system economical and technical needs. The result of this optimization problem can be in 

wide range of field actions. Preventive action, corrective action, change in the 

configuration, change in the operational mode, change in maintenance, installation 

(assets and systems), renovation and modernisation are some of the actions resulted by 

the short term planning optimization problem. 

Solving planning optimization problems are crucial for the grid. For instance, 

system oversizing could increase unnecessary costs of the system. Under-sizing could 

bring lots of issues such as system overloading and asset failures into the system which 

leads to rise in system costs. Hence, it is important for network planners to have adequate 

estimation of network component present features, situations and locations in first step. 

System configuration, sources of energy supply, load profile and types, asset’s location, 

size and type, measurement tools and/or systems, monitoring and control systems, 

optimization and management systems, and standards/protocols for communication 

structure present overall condition of distribution network. Some of the main tasks of 

distribution network planning are sizing (dimensioning), allocating and type (technology) 

selection of system assets such as DGs, fixed and switchable shunt CBs, and etc. For 

each allocation and sizing problem, several costs have to be taken into account: 

• Capital Costs (includes Installation Cost): Typically, is a fixed cost that has to 
be paid for purchasing the assets and or technology. 

• Operation & Maintenance (O&M) Costs: O&M costs are generally include 
variable costs of system that are based on system operation and fixed costs 
that are apart from system operation changes. 
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Moreover, reliability indices, network policies and/or strategies that have to be 

followed by the optimization problem can be included in the optimization problem as 

objectives, constraints, or incentives/penalties. Other factors that can be considered in 

planning problem are: time and period of use, internal rate of return of using technology, 

net benefit gained by using technology, required space, and etc. 

Regarding the MV grids, it is possible to classify MV network planning problems 

into two parts. The first part is HV/MV substation. Substation upgrades, monitoring, control 

and protection are the main problems. Transformers, measurement devices, IEDs, 

switchgears as well as automation system are technologies that have to be updated in 

order to increase system level of observability, reliability and efficiency. The second types 

of problems are related to distribution feeder components. Cables, Dispersed Generation, 

loads, VVCCs, smart meters, fuses are some of the main feeder assets that are 

considered in distribution network planning problems. Moreover, DMS, AMI and demand 

response are some of the infrastructural systems that their features and needs can be 

studied in planning problems. For the energy management planning, the effects of system 

transparency, efficiency (loss minimization, benefit with less expenses), load/generation 

monitoring, market observation (electricity price) and operational management 

(generation/load and purchase forecasts, optimization) has to be taken into account. 

Finally, each approved planning problem (that is based on system policies and data) has 

to be implemented in specified time period. Moreover, a checking period has to be defined 

to evaluate the impact of implemented technology in the system through adequate 

measurement, monitoring and control data. Necessary reviews and/or modifications can 

be suggested for the planning problem based on explained assessment. Therefore, 

distribution network planners have to track the performance of each previous planning 

project in order to propose corrective and/or upgrading plans for specified planning 

horizons.  

14.2. Smart Grid role in Distribution Network Planning 

The expansion of smart grids in distribution system can be seen as a result of 

system needs to be more reliable and efficient. Demand slight growth in most countries 

worldwide, global warming, as well as growth in customer’s expectation on receiving 
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reliable energy with high quality of service can be some of the main reasons of interests 

of utilities and planners to smart grid technology development plans. Smart grid could be 

a complete solution package for utilities and planners to respond to this demand and 

enhance grid efficiency, reliability and quality. Smart grids provide IT, communication and 

power-based intelligence layers over distribution network assets to enhance system level 

of observability, availability and efficiency. Hence, distribution network planners are seen 

smart grids as a solution to their planning problems. As such, smart grid expansion, has 

recently become a part of distribution network planning problems. The smart grid 

expansion can be in asset expansion such as DGs, CES, EVs, DERs or in system 

expansion such as EMS, AMI, DMS, monitoring and control.   

Both smart grid expansion plans can be implemented in both substation and 

distribution feeder level. It has to be mentioned that most of smart grid plans have been 

formed as governmental policies which typically provide incentives for using renewable 

clean energies instead of using fossil-type generation. As cost-benefit analysis is an 

inseparable part of planning problems, these incentive policies could ease smart grid 

planning establishments in distribution networks. Basically, overall system operation (grid, 

monitoring, control and management systems) specifies system expansion specifications. 

Penetration of renewables, energy storage systems, backup generations, DGs, EV 

charging stations, locating monitoring and control are some of the factors that can change 

distribution network modes of operation as well as system expansion plans. In brief, the 

expansion of smart grids can be seen as one of the most important tasks of distribution 

network planning. Thus, planners prefer smart grid-based solutions for distribution 

networks as these types of solutions are in compliance with smart grid expansion and 

other planning strategies and policies more than other solutions. 

14.3.  Smart Grid Adaptive VVO Interactions with Distribution 
Network Planning Studies 

It is possible to investigate the impacts of proposed smart grid-based VVO engine 

in this thesis in different ways. First, the costs-benefits of this approach have to be 

compared with conventional approaches or approaches with centralized control. In brief, 

proposed VVO benefits can be summarized as: 
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1. Power loss minimization at each quasi real-time interval 

2. Energy Conservation using CVR 

3. Minimization of switchable CB, OLTC, VR operating costs 

4. Less AMI data capturing costs compared with centralized VVO approaches 

5. Provide better solution for VVCC Maintenance scheduling problem 

6. More reliable solution compared with centralized approach 

7. Topology in-line with smart grid control and expansion 

On the contrary, the main costs of utilizing this approach include but not limited to: 

1. Installation costs (cabling, PC, AMI, communication and setting measurement 
aggregator costs) 

2. Operation & Maintenance costs (VVCC operational costs, crew costs) 

The first three benefits, increases system level of efficiency and power quality more 

than conventional techniques. Regarding operation and maintenance costs, proposed 

VVO offers new maintenance strategy that solves maintenance scheduling of VVCC 

problem with no extra cost. This approach provides system with less AMI data transfer 

cost compared with centralized approach. Moreover, it is compatible with smart grid 

expansion planning. Therefore, proposed VVO engine can be an attractive solution 

candidate for VVO from distribution network planner’s point of view. The value of this 

approach became clearer when planners intend to use this approach in a system with 

decentralized control.  

 Smart Grid-based VVO from Distribution Network Planning 
Point of View 

From distribution network planning point of view, proposed VVO engine could be 

suitable for distribution network topologies with decentralized control such as microgrids. 

It increases system efficiency, reliability and quality and solves couple of distribution 

network issues such as maintenance scheduling and number of switching per day issue 

of VVCCs. This proposed solution seems to be cost effective as it has better O&M costs-

benefit result, less AMI costs and less communication setting work. Moreover, It is mostly 

in-line with smart grid expansion and other network planning policies. Regarding risk 

assessment of this approach, a pilot project need to be implemented. Without a pilot 
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project, it is hard to fully check the risk of utilizing this solution. Furthermore, the VVO 

engine proposed in this thesis has to be prepared as a real product in first step. This thesis 

tried to evaluate risk assessment though using real-time co-simulation platform. The 

results proved well-performance of the VVO engine in the presence of different load/ 

network conditions in close-to-reality co-simulation platform. The results of the study on 

proposed VVO engine that is reliably working with AMI data, as well as DNP3 and IEC 

61850 communication protocols can be considered as initial authentication of proposed 

solution. Further investigations need to be done regarding cost-benefit and risk 

assessment of proposed VVO as future studies. As stated, making proposed VVO as a 

product and performing a pilot project could help cost-benefit and risk assessment studies 

on giving more accurate estimation of solution success.  

In order to perform comprehensive risk assessment of any VVO, seven steps has 

to be followed. The first step is identifying and classifying VVO. In this step, different parts 

of VVO and its system level of performance has to be primarily identified and then 

classified. For proposed VVO solution this classification can be summarized as Volt-VAR 

control assets, optimization & control, monitoring, topology, system level of performance 

and communication. The second step is identifying technology risk control. Here, the 

technology of proposed VVO is based on AMI data and other smart grid components. 

Hence, the risk of each sub-technologies has to be defined. The third step is 

implementation of control. As mentioned in previous paragraph, pilot project would be 

necessary for risk assessment to establish a base line for the evaluation of risk this 

solution may cause. The fourth step is comparing claims with the evidences gathered from 

implementation. Here in this applicable, the claims can be optimization algorithm failure, 

communication failure or VVO negative impact on DG performance. These claims are 

checked in proposed VVO using real-time co-simulation platform. The fifth step verifies 

and measures the risk level of the system in the presence of applied VVO. The sixth step 

identifies gaps and the last step proposes risk corrective plan.  

In brief, this thesis tried to specify proposed VVO benefits compared with other 

conventional approaches. Moreover, it checked the performance and reliability of 

proposed VVO by using a real-time co-simulation platform with advanced communication 

protocols such as DNP3 and IEC 61850. To perform comprehensive risk assessment and 
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cost benefit for distribution network plan, proposed VVO engine can be tested in a pilot 

project as a real product.  

 Smart Grid-based VVO Impacts on Distribution Network 
Planning Problems 

In order to study the impacts of proposed VVO solution on distribution network 

planning problem, it is possible to classify grid components into four different groups. 

The first group is generating units. DGs, Cogeneration units, DERs, renewable 

resources such as PVs and storage system such as CES are some of the local generating 

units discussed in different studies of this thesis. One group of distribution network 

planning problems are finding optimal location, size and technology of these generating 

units in the system. The results of different studies in this thesis showed the fact that 

utilizing these units could increase system efficiency, reduce loss and increase energy 

conservation. Moreover, this thesis showed that it is possible to use smart inverters for 

DGs as well as 4-quadrant inverters of CES for reactive power support purposes. This 

could lead system to a higher level of loss reduction and energy conservation. Moreover, 

it could save VVCC lifetime by decreasing switching number of each of them. These 

benefits can be considered in distribution network planning objective function as new 

values. Considering these new benefits that can be obtained for each quasi real-time 

interval, could lead distribution network planning to more cost-effective solutions. Even 

these factors may affect optimal location and sizing of these dispersed generations. In 

brief, from VVO point of view, dispersed generation could significantly benefit VVO 

efficiency. Contrariwise, from distribution network planning point of view, dispersed 

generation expansion, allocation and sizing are some of the optimization problems that 

has to answer to system different technical and economic needs. Considering the value 

of savings resulted by proposed VVO in the objective function of the planning problem 

could lead to a better optimal solution.  

The second group are loads and dispatch-able resources such as V2Gs. Different 

load types considered in different studies of this thesis such as residential, commercial 

and industrial loads. Moreover, this thesis provide a better approach for load model based 

on quasi real-time ZIP load modeling to precisely calculate VVO benefits and to model 
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loads and dispatch-able resources such as EVs with more precision. These studied could 

definitely help distribution network planning problems on their sizing, allocation and 

technology selection problems that are depending on load type, mix and level such as 

fixed/switchable capacitor placement. Moreover, this thesis showed that in near future it 

is possible to receive reactive power supports from V2Gs and EV charging stations. 

Considering the value of loss reduction via these sources within planning objective 

function may help planning problems to reach to a better optimal solution. For instance, in 

order to solve EV charging station allocation and size, it is now conceivable to consider 

EV charging station benefit on loss reduction through reactive power support in planning 

problem. One of the thesis studies showed that EV optimal location changed and reduced 

the usage of switchable CBs in the system. In brief, considering AMI-based VVO benefits 

in planning problem seems to be a more accurate method as it shows the real values of 

each component of the system as well as their interactions with each other. 

The third group of grid components are Volt-VAR Control Components (VVCCs). 

One of the main tasks of distribution network planning is to find the optimal size, location 

and type of fixed and switchable CBs, as well location and type of OLTCs and VRs in the 

system. As explained, the size and location of CBs can be changed in planning problem 

by changing load centers due to utilizing dispersed generation (group-one) and dispatch-

able resources (group-two) and penetration of these two groups. For instance, using of 

components in these two groups, that are able to support reactive power compensation, 

could lead to a system with less need to CB. Hence, CB size and placement planning 

problem has direct relation with penetration of generation, load and dispatch-able resource 

penetrations and operational conditions. These may impose some changes into VVCC 

systems such as CB relocation, CB upgrade or change. Another important impact of VVO 

on VVCCs is related to the CVR part. As CVR tries to lower voltage level of termination 

points into lower limits of ANSI band to conserve energy, it can have considerable impact 

on the location of VRs or even CBs. Typically, VRs are located in places where the voltage 

regulation is needed. These VRs are mostly placed close to system nodes which they 

have under-voltage issues in general or during peak. In recent years, penetrations of 

dispersed generation according to smart grid expansion plans have led voltages of these 

nodes to higher values than expected. This fact was one of the key motivations of utilities 

to re-think about lowering voltage levels of termination points to conserve energy that 
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nowadays called CVR. Therefore, CVR has never been a part of VR allocation planning 

problem objective function. Considering CVR benefits (that can be obtained through using 

VRs) in VR planning problems could change the optimal locations of VRs. In brief, 

proposed VVO studies could help VVCC planning problems to be more accurate. 

The last group is the intelligence layers that different components such as 

monitoring, control and optimization tools can provide. First, it has to be reminded that 

proposed VVO uses AMI data to perform at each quasi real-time interval. Hence, it brings 

visibility from substation into the edge of the feeder. Quasi real-time optimization could be 

an applicable solution which is in compliance with control and monitoring systems. 

Predictive VVO proposed in this thesis and the AMI data could provide a great substation 

to feeder database that can be used for different planning purposes. Moreover, proposed 

VVO as one of the tasks of DMS can be integrated with other systems using recent 

communication protocols/standard such as DNP3 and IEC 61850. Moreover, the last 

study of Chapter.12 showed that proposed VVO would be able to perform in different 

system operational and configuration modes. In planning problem of these intelligence 

layer tools, AMI-based VVO benefits can be considered as well.  

In conclusion, proposed VVO engine in this thesis could help different distribution 

network planning as well as smart grid expansion problems in terms of accuracy and 

efficiency.  
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Chapter 15.  
 
Conclusions and Future Works 

This chapter primarily presents principal conclusions of this dissertation and then, 

it explains recommendations and probable future works. 

15.1.  Conclusions 

This thesis proposed a smart grid adaptive Volt-VAR Optimization approach for 

smart distribution networks using smart grid technologies such as AMI, dispersed 

generations and dispatch-able sources. Using quasi real-time data from AMI provided an 

unprecedented opportunity for distribution system to be optimized more effectively. The 

main topology as well as command and control strategy of proposed VVO primarily 

introduced. In first steps of design, three levels of performance considered for the VVO 

engine; VVO could confine its operation to distribution substation, VVO could perform 

within substation and along distribution feeder(s) and VVO could benefit from other 

available Volt-VAR control sources such as DGs, V2Gs and CES of the system. Several 

VVO studies were completed to investigate the impacts of V2Gs and CES on proposed 

VVO engine. The results of these studies showed the fact that utilizing these sources as 

active power and VAR supporters can enhance the efficiency of proposed VVO. Moreover, 

their impacts on VVO optimal results and on related distribution network planning 

problems are considerable that could hardly be ignored in recent VVO studies. 

Comprehensive objective function presented for the VVO engine which is comprised of 

Conservation Voltage Reduction as significant VVO subpart. Considering CVR as a part 

of VVO led proposed VVO to conserve energy besides completing other VVO objectives. 

In order to perform the optimization closer to real-time, predictive techniques proposed in 

this thesis. First, a day-ahead predictive algorithm presented that could predict the quasi 

real-time loads of the next day to act online. Then, a novel predictive engine proposed 

based on online sliding window concept to present a more dynamic and applicable engine 

for VVO. Predictive solutions provided in this thesis could solve VVCC allowable switching 

number of per day issue. In order to solve maintenance scheduling problem of VVCCs in 
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an AMI-based VVO approach, a Maintenance Scheduling Engine (MSE) proposed in this 

thesis. MSE is able to operate with the VVO engine taking both VVO and maintenance 

scheduling objective/constraints into account. The results of maintenance scheduling 

study showed that this approach could solve maintenance scheduling of VVCC issue 

without interference with the grid and/or VVO engine tasks. In order to complete VVO 

objective function structure and to design a VVO approach in-line with system and/or 

operator needs, weighting factors defined for each VVO engine objective function subpart. 

Fuzzification technique employed to find accurate weighting factors of each subpart based 

on distribution grid operational/economic requirements. Quasi real-time ZIP load modeling 

proposed in this thesis in order to be more precise on calculating the saved energy using 

CVR.  

In order to test the performance and the applicability of proposed VVO, a real-time 

co-simulation platform set up using RTDS, GTNET measurement aggregator, OPC-

toolbox and DNP3 communication protocol. Thus, both theoretical and experimental 

studies were performed to validate proposed VVO results from different system 

operational aspects. This real-time co-simulation platform helped checking the 

performance of the VVO in different distribution network operational conditions. Checking 

the performance and the efficiency of proposed VVO for 5-minute quasi real-time interval 

operation, checking the VVO performance in different communication conditions, and 

testing proposed VVO in 12 different load profiles of a year, i.e.1152 quasi real-time 

intervals, were some of the studies of this thesis that used mentioned real-time co-

simulation platform as a test-bench. The results of these studies proved well-performance 

of proposed VVO in different normal operating conditions of distribution networks. The 

impacts of Micro-CHP/PV and EV penetrations on proposed VVO verified using mentioned 

real-time co-simulation platform. The results of Micro-CHP/PV study demonstrated 

improvement in VVO efficiency by increasing penetration of such DERs in the system. 

Moreover, the results of EV penetration study showed that the type, mix and usage rate 

have substantial impacts on VVO efficiency that need to be taken into account in smart 

grid-based VVO studies. At last but not least, a real-time co-simulation platform provided 

for testing the precision, efficiency and applicability of proposed VVO in the presence of a 

fault condition that could change distribution network configuration. IEC 61850 

communication standard, used in co-simulation platform design to assist VVO 
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understanding grid configuration changes in order to perform reliably without any 

interruption and/or failure. The results of this study proved robust performance of proposed 

VVO using IEC 61850 MMS and GOOSE messaging.     

In conclusion, the quasi real-time smart grid adaptive VVO engine proposed in this 

dissertation could lead smart distribution networks to achieve higher levels of accuracy, 

efficiency and reliability. As control topology of proposed VVO solution in this thesis is in 

consonance with distributed command and control topology of smart grids, proposed VVO 

solution provides a robust-but-flexible approach for VVO to be updated according to 

distribution network technical/economic future needs. Therefore, distribution networks 

smartening up plans could also be mitigated using proposed VVO solution of this thesis. 

15.2.  Recommendations for Future Works 

According to comprehensive theoretical and experimental analysis executed in this 

thesis, in order to propose an efficient and applicable smart grid adaptive VVO solution, it 

is possible to recommend several future works that could benefit smart distribution grids 

in terms of accuracy, efficiency, and reliability. Regarding the study on investigating the 

impact of dispatch-able sources such as EVs, as reactive power support sources, on smart 

grid adaptive VVO, economic factors such as investment costs and Internal Rate of Return 

(IRR) can be taken into account in distribution network planning study in order to evaluate 

the cost-effectiveness of using V2Gs as reactive power supporting sources. Regarding 

the optimization technique, approximation-based techniques such as Meta modeling could 

be great candidates for having a faster prediction engine optimization for presented online 

sliding window. Regarding maintenance scheduling of VVCCs, As VVO objective function 

weighting factors have significant impact on the maintenance scheduling problem, and as 

these factors can be affected by other maintenance factors such as value of loss 

minimization, the electricity price, or market clearing price, optimal prediction of these 

factors in quasi real-time VVOs can be one of the studies for future maintenance 

scheduling of VVCCs.   

Regarding CVR studies, economic factors such as VVO AMI costs, VVO engine 

cost, existing VVCC operating/switching costs, required VVCC costs, VVCC switching 
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value cost, communication facility costs, revenue earned by loss reduction, revenue 

earned through energy consumption saving and the value of demand reduction have to 

be taken into account in CVR planning cost-benefit analysis. As lost-revenue value is still 

a major concern of some electric power utilities, further study on comprehensive cost-

benefit analysis of quasi real-time CVR could assist utilities on their CVR plan choices. 

Regarding quasi real-time ZIP modeling for CVR, It has to be stated that significant factors 

such as day type, calendar, weather, seasonal variations, environmental conditions and 

geographical factors could affect load types and consumptions. Hence, it is possible to 

track the same steps explained in this thesis to find more accurate quasi real-time ZIP 

coefficients for other types of days as well as other seasons. This  could necessitate further 

studies related to new adaptive load models of quasi real-time CVRs. Other techniques 

such as sensor placement that may increase the accuracy of quasi real-time load models 

could also be studied as future work despite the fact that these techniques could be costly. 

New disaggregation methods could also improve CVR (solely or as a part of VVO) 

performance. As such future works can be focused on more efficient disaggregation 

methods in order to find more accurate quasi real-time ZIP coefficients of loads.  

In order to solve DNP3 communication network protocol limitation in very high 

delay conditions, IEC 61850 MMS client server measurement could be an alternative 

candidate for smart grid adaptive VVO in presented co-simulated environment of this 

thesis. Applying predictive algorithms to find weighting factors for each quasi real-time 

stage for VVO engine sub-parts can be a novel future study that may help VVO to perform 

more efficient in the presence of different micro-generation penetration, dispatch -able 

resource penetration and loads. Regarding community energy storage systems, further 

studies need to be investigated on designing a management tool to coordinate different 

but related CES tasks with proposed VVO engine objective in future.  

Another important future study can be on updating proposed VVO engine to 

efficiently work in electricity markets with different pricing strategies. For this reason, the 

VVO engine possessor has to primarily defined. The VVO engine has to build a direct link 

to Distribution System Operator (DSO) to initially capture the needs of the market as well 

as the grid and then, help DSO on its operation and maintenance tasks. Hence, the role 

of smart grid based VVO solution could be an interesting topic of a future study. 
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As explained in Chapter 13, comprehensive cost-benefit analysis of proposed VVO 

necessitates realization of VVO as a product. Hence, studies on making proposed VVO 

as a product could be another future study. Proposed VVO could have a user friendly 

interface that could enable its users to benefit from different options such as accessibility 

to library of distribution grid models and various components. Moreover, they may intend 

to design their own grid in VVO platform or select VVO objective function due to their grid 

needs from VVO objective function library. These noteworthy options as well as attaching 

proposed VVO engine to real distribution network components e.g. VVCCs and control 

systems, e.g. DMS/SCADA, through advanced communication protocols could be a 

valuable practical future work. Complete cost-benefit analysis can be executed in future 

through finding the key expenses of VVO implementation besides evaluating VVO short-

term/long-term benefits for distribution grids.  

Last but not least, smart grid adaptive VVO roles in distribution network short-term, 

mid-term and long-term planning problems can be further investigated. As stated in 

Chapter 13, various distribution network planning problems are in direct relation with VVO 

problem. The performances of planning studies such as VVCC, DG, DER, EV charging 

station sizing, placement and type selections can be improved by taking proposed smart 

grid adaptive VVO considerations into account in the objective of their optimization 

problems. Changes in the results of these planning studies have significant impact on 

distribution network as well as smart grid expansion plans. 
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Appendix A.  
 
Formula Realizations 

Based on Power Triangle (Figure A. 1) which shows the characteristics of a power system, 
it is possible to derive relations between active, reactive and apparent power of a system 
as follows: 

 
Figure A. 1. Power Triangle Concept 

√ ,    (A-1) 

In order to reduce system total loss, it is possible to write the objective as minimizing total 
apparent power loss of network as follows: 

, , ,
.  (A-2) 

The above equation consists of total active and total reactive power losses. Each can be 
obtained based on loss calculation of all feeders and/or lines at every time stages: 

, , ,  (A-3) 

, , ,  (A-4) 

As stated before, it is possible to consider other objective functions based on economic 
factors. For instance, a proper objective could be minimization of network energy loss 
cost: 

	 	 $/  (A-5) 
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min	 min	 min , ,  (A-6) 

The active and the reactive power loss determination method can be obtained based on 
main power system and Kirchhoff’s laws. General model of a distribution line between 
bus-i and bus-j is shown in Figure A. 2: 

 

Figure A. 2. Typical line model of distribution networks 

Now it is possible to write voltage and current relations based on system series and shunt 
admittances: 

 (A-7) 

 (A-8) 

∗ ∗ ∗ ∗ (A-9) 

The apparent power loss of the system can be obtained by: 

∗ ∗ ∗ ∗ (A-10) 

∗ ∗ ∗ ∗ (A-11) 

∗ ∗ ∗ ∗ ∗ ∗ (A-12) 

Then, we define: 

≜ → ∗  (A-13) 
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≜ , ≜  (A-14) 

Thus, 

∗

∗ 

(A-15) 

According to complex representation: 

 (A-16) 

Thus, 

∗ ∗  (A-17) 

∗ ∗  (A-18) 

It is possible to mathematically show that: 

∗ ∗ 2| | cos  (A-19) 

Finally, 

2| | cos  (A-20) 

2| | cos  (A-21) 

Now, for transformer tap changer, it is possible to employ Unified Branch Model of 
distribution system (Figure A. 3).  
Based on Figure A. 3, current equations can be written based on KCL law as follows: 

∗ ∗ ∗  (A-22) 

∗ ∗ ∗  (A-23) 
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Figure A. 3. Transformer turn ratio between two nodes of a system 

 

- ∗  (A-24) 

- ∗  (A-25) 

∗ ∗ ∗ ∗ ∗ (A-26) 

∗ ∗ ∗ ∗ ∗ (A-27) 

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ 

(A-28) 

We know that, 

≜ → ∗  (A-29) 

≜ , ≜  (A-30) 

	 	 : ∗ , ∗  (A-31) 

Finally, total active and reactive power loss of the system can be obtained when following 
notations were also considered: 
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, ,	 , , ,  (A-32) 

, ,
,

, , , ,

2 , , , , cos ,

, , , , , ,

 (A-33) 

, ,
,

, , , ,

2 , , , , cos ,

, , , , , ,

 (A-34) 

, , ,  (A-35) 

For transformer tap changer we know that, 

- ∗  (A-36) 

- ∗  (A-37) 

∗

∗  (A-38) 

The admittance matrix basically shows that: 

		 → , ,
∗  (A-39) 

		 → , ,  (A-40) 

If we write above formulation on all 	branches at each time stage, then the following 
equation is obtained: 

, ,
, , ,

∈

, , ,

 (A-41) 

Based on ASNI Standard (C84.1-1995) voltage at each bus should be between following 
range: 
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, , , 	
.
0.95 . , 1.05 .  (A-42) 

It is known that each generating unit cannot generate power more or less than its 
capability. This fact can be obtained from “Capability Curve” of a generator which shows 
active and reactive power operating ranges. For instance a typical capability curve is 
presented in link below (Figure A. 4). Hence, the following constraints should be 
considered for each generating unit of the system. It should be mentioned that the 
minimum and maximum active or reactive power of generating units are known 
parameters inside optimization problem. 

, , ,  (A-43) 

, , ,  (A-44) 

, , ,  (A-45) 

, , ,  (A-46) 

For active and reactive power balance constraints, it is possible to derive their equations 
via power flow relations as follows: 

∗ (A-47) 

→ ∗ ∗ ∗ (A-48) 

| |∠  ,			 ≜ → ∗  (A-49) 
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Figure A. 4. Common capability curve of a generator 
 

⇒ (| |∠ 	∑ ∠ =∑ | |∠ ( ∠ (	

∑ | | ∠ )(  
(A-50) 

From Euler relation, a phasor can be expressed as: 

| |∠ | |  (A-51) 

Thus,  

∑ | | (  (A-52) 

It is also known that, 

   , , ∈  (A-53) 

Hence, the final active and reactive power equations can be obtained: 

| |  (A-54) 
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| |  (A-55) 

Therefore, for all system nodes at each time stage-t: 

, , , , , , cos , , sin ,  (A-56) 

, , , , , , sin , , cos ,  (A-57) 

For power factor constraint, it is possible to derive power factor from “Power Triangle” 
(Figure A. 1) as well: 

cos
	
	

 (A-58) 

According to system power flow, each node of the system has specific power factor. It is 
possible to define a desired range (minimum/maximum) for specific buses of network in 
order to track their efficiency with desired range: 

, , ,  (A-59) 

Each feeder branch (distribution line) has a maximum thermal (power) loading limits that 
should be considered. A line cannot transmit power more than its maximum thermal 
loading because of its physical limitation. 

, ,  (A-60) 

In order to calculate transformer tap-changer and voltage regulator constraints, it is 
possible to use following relation: 

, 1 ,
∆ ,  = Turn ratio of OLTC (A-61) 

, 1 ,
∆ ,  = Turn ratio of VR (A-62) 

Where,  
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, ∈ , , … , 1, 0, 1, … , ,  (A-63) 

, ∈ , , … , 1, 0, 1, … , ,  (A-64) 

For instance, if we have a VR with 17 taps (one tap is 0),	∆ , %0.625:		

16	Tap	steps	from	0.95	to	1.05 →
0.1
16

0.00625	or	 %0.625 

Then, as an example, for a full turn ratio: 
, 1 8 0.00625 1.05 

Moreover, maximum number of OLTC and/or VR switching can be considered through 
below formulations. These maximum values are known in optimization problem. 

, ,  (A-65) 

, 	 ,  (A-66) 

For capacitor bank constraint, it is possible to consider each CB with ,  banks such 
that each bank has ∆ ,  kVAr capacity: 

, , ∆ , , , 0,1,2, … , ,  (A-67) 

The following constraint added in order to meet the reactive power demand such that the 
total reactive power provided by capacitor banks does not exceed the required reactive 
power of the system.  

, ,  (A-68) 
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Appendix B.  
 
Benders Decomposition: Simple Mathematical Example  

In order to understand benders decomposition technique better, a simple example is 
explained here. The objective function of the first example is: 

 (B-1) 

. . 											3 4 (B-2) 

0, ∈ 8, 7, … ,7, 8  (B-3) 

1 , 	 1 , 2 , 1 , 3  (B-4) 

Here is benders decomposition solution for the abovementioned problem: 
*Iteration-1 
Master Problem-1 

	  (B-5) 

. . 																																				   			 ∈ 8, 7, … ,7, 8  (B-6) 

→ 			 8 				 8 (B-7) 

Slave Problem-1 

 (B-8) 

. . 												3 4 ,    0 (B-9) 

or Slave Probem-2 

4  (B-10) 

3 1, 						 0 (B-11) 
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8 → 12  (B-12) 

3 1, 						 0 (B-13) 

→
1
3
→ 12

1
3

4 
(B-14) 

 (B-15) 

*Iteration-2 
Master Problem-2 
Benders Cut: 

		 4
1
3

 (B-16) 

	  (B-17) 

. . 			 4 8
1
3
→ 	 4 		 	 8 			 (B-18) 

Slave Problem-1 or Slave Problem-2: 

4 											 8 → 12  (B-19) 

3 1, 						 0 (B-20) 

1
3
→ 8 4 4 (B-21) 

4 (B-22) 

Therefore, 

	 → Converged (B-23) 
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Appendix C.  
 
Review of Backward Forward Sweep Technique  

Generally speaking, Backward Forward Sweep (BFS) power flow is one of the most 
applicable power flow techniques is radial distribution networks. As in distribution 

networks, the ratio of resistance and inductance is not less than 1 ( ≮≮ 1), Newton-

Raphson technique convergence decreases in distribution networks. Thus, BFS technique 
could be a better approach than other conventional power flow techniques. The figures 
and formulations of this appendix derived from the following references: (a) R. D. 
Zimmerman, Comprehensive Distribution Power Flow: Modeling, Formulation, Solution 
Algorithms and Analysis, Cornell University, Jan. 1995. (b) A. Alsaadi, B. Gholami, An 
Effective Approach for Distribution System Power Flow Solution, World Academy of 
Science, Engineering and Technology Vol:3 2009-01-23. 
 
BFS technique can be summarizes through the following steps: 

1. K=0 (K: iteration) 

2. Initial guess for node voltages  

3. K= K+1  

4. By knowing load models and node voltages, we calculate node currents 

5. By knowing node currents, we calculate branch currents (backward) 

6. By knowing source voltage and branch currents, we calculate node voltages 
(forward) 

7. Check the convergence rate satisfied or not. If yes, done. If no, back to step-3. 
(Convergence tolerance: when the difference of node voltage in two iteration is 
less than epsilon) 

In order to assess the formulations of BFS technique, Figure C. 1 depicts a three-phase 
four-wired system. It is possible to write self and mutual impedances of this system as 
follows: 

				
				

 (C-1) 

For a balanced system, It is possible to assume the voltage of neutral wire equal to zero. 
Then, it is possible to use the following impedance matrix instead of the above impedance 
matrix: 
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 (C-2) 

 

 

Figure C. 1. Three-phase four-wired system 

In order to obtain the relations between node voltages and branch currents, the following 
equation can be written: 

 (C-3) 

In distribution network, models can be based on injected current equations. As such, it is 
possible to calculate the apparent power of node-n of the system as follows: 

1, 2, … ,  (C-4) 

In order to calculate the injected current to node-n at iteration-k, the following formulation 
can be used: 

∗ (C-5) 

Here,  is the voltage of node-n at iteration-k. Figure C. 2 presents a typical branch model 
in radial distribution networks. According to Figure C. 2, active and reactive powers of 
node-n can be simply found: 

,  (C-6) 
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Figure C. 2. Typical branch model of in radial distribution system 

Typically, distribution networks loads are modeled as constant-power, constant-current 
and constant-impedance. If the load model is constant-power or impedance-power, by 
changing the voltages of loads, the currents of them are changed as well. Hence, the load 
current can be found by load voltage. When:  

   &  (C-7) 

 
For constant-power, constant-current and constant-impedance loads with Wye grounded 
connection, the currents of node-n can be found respectively by: 

& : ∗ (C-8) 

:
∗

| |
 (C-9) 

For constant-power, constant-current and constant-impedance loads with ungrounded 
delta connection, the currents of node-n can be found respectively by: 

: ∗ (C-10) 

:  (C-11) 

Where,  

1 1 0
0 1 1
1 0 1

 (C-12) 
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:  (C-13) 

 (C-14) 

For a ZIP load model, it is possible to use the following equations in order to find the active 
and relative power of loads: 

 (C-15) 

 (C-16) 

 
For shunt CB model, it is possible to find node current though the following equations: 

When we have:  and 
| |

 

 (C-17) 

	 	 :				
0 0

0 0
0 0

 (C-18) 

	 	 :  (C-19) 

Moreover, for DG units, the following equations can be used for node current calculation: 

When we have:  
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	 	 : ∗ (C-20) 

When we have:  

	 	 :				  (C-21) 

For distribution line model with series impedance and shunt capacitances (Figure C. 3), 
the following formulations can be utilized for backward and forward voltage and current 
calculations: 

 

Figure C. 3. Distributed line model 

For backward: 

1
2

 (C-22) 

1
2

 (C-23) 

For forward: 

1
2

 (C-24) 

1
2

 (C-25) 

In order to find phase and line current calculations, the following equations can be used: 
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 (C-26) 

 (C-27) 

1 1 0
0 1 1

1
3

1 0
0 1
1 1

 (C-28) 

If a breaker and/or switch exist between lines, the following equations calculate voltages 
and currents on node-n in backward and forward steps: 
For backward: 

,  (C-29) 

For forward: 

,  (C-30) 

If there is a transformer or VR within the line, the following equations calculate the voltage 
and current of node-n: 
For backward: 

 (C-31) 

 (C-32) 

For forward: 

	  (C-33) 

 (C-34) 

As it is known, each transformer can have specific winding. Here as an example. The 
admittance matrices of a grounded Wye-Wye connection are presented: 
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	  (C-35) 

1 0 0
0 1 0
0 0 1

 (C-36) 

Here, denotes transformer primary tap and denotes transformer secondary tap. 
As explained, BFS considers node voltages equal to source voltage in order to calculate 
current of each node of the system in first step. Then, it calculated branch currents based 
on Kirchoff’s Current Law (KCL). It is possible to represent injected currents into branches 
through a matrix called BIBC (Bus Injection to Branch Current) which has only 0 and 1 
elements. Hence, the BIBC matrix would be a m*(n-1) matrix with m-branches and n-
nodes. Matrix [I] denotes node current matrix. 

 (C-37) 

Here, matrix [B] presents how feeder branches are connected to each other. Hence, it is 
possible to calculate branch currents in backward mode. Next, BFS has to calculate node 
voltages based on branch currents branch impedances. It is possible to write node 
voltages as a function of branch currents, branch impedances and voltage of the source. 
Hence, BCBV (Branch Current to Bus Voltage) matrix can be obtained.  

 (C-38) 

the BCBV matrix would be a (n-1)*m matrix with m-branches and n-nodes. Thus, the 
voltages of all nodes of the system obtain in forward mode. By putting [B] formulation 
inside the above equation we have: 

 (C-39) 

As we have:  

∗ (C-40) 

Then,  

 (C-41) 

As BFS technique does not need to calculate Jacobian and inverse admittance matrices, 
it decreases time-consuming computational calculations. Hence, BFS could be a better 
power flow solution for online applications. 
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In order to calculate transformer loss, load flow calculations has to be performed. When 
performing load flow calculation for transformer loss, an overhead line is defined using 
sequence impedance (Positive sequence: Z1 and zero sequence: Z0) based on the (C-42) 
and (C-43) formulations to convert impedances to phase domain. 

1
3

2  (C-42) 

1
3

 
(C-43) 

Then, we construct the 3x3 matrix impedance (matrix Z) for phase domain calculation. For 
copper losses, it is possible to compute the total loss through the difference between the 
power at the input and the power at the output of transformer after computing the load 
flow:  

 ̅ (C-44) 

For transformer total loss, we can use: 

.  (C-45) 

It is possible to use an equivalent shunt resistance for modeling no-load loss. Mostly, the 
no-load loss is given to the problem in kW. Hence, we need to transform this kW to an 
equivalent resistance base on nominal power of the transformer. For example, for a 
distribution center tap transformer, the no-load equivalent shunt resistant is located before 
series resistance and reactance of transformer primary side. 

Typically, losses in transformers vary with load current, and may be expressed as "no-
load" or "full-load" losses. Winding resistance creates load losses, and hysteresis and 
eddy current losses create over 99% of no-load loss. Transformer losses can be 
summarized into two losses: first loss is according to transformer windings or copper loss, 
and the other is in the magnetic circuit, called iron loss or core loss. Hence, the main 
losses in a transformer are: Dielectric loss, Hysteresis losses in the core, Eddy current 
(Foucault) losses in the core and resistive losses (copper loss) in the conductors. 
Dielectric loss occurs due to electrostatic stress of transformer insulation. It is typically 
proportional to the developed high voltage, the type and the thickness of insulation. It 
varies with frequency. Normally, it is very small in amount and is quite constant. Thus, this 
loss can be ignored in medium voltage transformers. Regarding the Hysteresis loss in the 
core, each time the magnetic field reverses (because of the AC current), a small amount 
of energy is lost due to hysteresis within the core. Hence, a considerable amount of no-
load loss is hysteresis loss. Regarding eddy current (Foucault) losses in the core, it is 
possible to state that ferromagnetic materials are good conductors and a core made from 
such a material makes a single short-circuited turn throughout its length. Therefore, eddy 
currents circulate in the core and they can cause resistive heating of the material of the 
core. Eddy current losses can be reduced by insulating the core of a stack of plates 
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electrically from each other. That is the reason almost all transformers that are operating 
in low frequencies employ laminated cores. 

Regarding resistive losses (copper loss) in transformer windings, these losses illustrate 
load dependent variable losses, that can be shown as . They vary by the square of the 
current in the windings and by D.C. resistance of winding. In turn, the resistance varies 
with the resistivity, the size of line/cable, and the temperature. In addition, these losses 
change with winding temperature. Hence, the loss can be different in different loading and 
different methods of cooling. 

At CVR point of view, transformer loss highly depends on two main factors: imposed 
voltage to the transformer and transformer magnetizing characteristics which is related to 
the transformer magnetizing current. Assume that we reduce voltage of the customers 
using some voltage control devices on the secondary side of a transformer. This does not 
mean that the imposed voltage to the core is reduced because transformer effective 
voltage has to be imposed from its primary side. Thus, from Foucault loss viewpoint, there 
is no change at the core, but when the secondary voltage reduces the load behavior would 
then be the factor that can affect transformer current. This includes hysteresis loss of the 
transformer and it highly depends on the load characteristics. If the load be as a 
constant , by reducing the secondary voltage, the current will be reduced (almost, not 
always). Therefore, the transformer loss will be reduced too. Assume that we reduce 
voltage of the customers applying voltage control devices on the primary side of a pole-
mounted transformer: ∝ 	 	. Thus, the transformer loss will be reduced. In 
conclusion, by increasing transformer voltage, the transformer loss will be increased too. 
It is possible to use the following formulation for calculating Foucault and eddy current 
losses: 

12
 (C-46) 

Where, W is Iron thickness of the core, r is resistivity of the core and S is core cross 
section. For Hysteresis loss model: 

	 .  (C-47) 

Where, Vol (fe) is the volume of the core, f is frequency,  is Hysteresis constant 
coefficient and is magnetic field. Therefore: 

 (C-48) 

For analyzing transformer core loss in more accurate way, the Frequency should be 
considered as well. If we manipulate the voltage in a way that we bring the core out of its 
linear area, the transformer will start to generate flickers and harmonics. At this time, the 
voltage frequency spectrum and the core current has to be studied. If we reduce the 
voltage, we will not have harmonic issue because, the core condition will improve but if 
we increase the voltage, then the harmonics can be generated (hysteresis has direct 
relation to the frequency). Based on the Ferranti effect, if the inductive loads of the 
network, reduce in some operating time (mostly at night) it leads to have more capacitive 
lines which increase the voltage at the end of line. In these times, the transformers operate 
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with a buzz-like sound. This sound shows that the transformer core loss becomes high in 
these operating times. Core loss profile for distribution transformers can be found in: 
http://www.powersystem.org/docs/publications/c1-triplett2010-[compatibility-mode].pdf 
As stated, copper loss is related to the resistance of the windings and the square of 
transformer current based on (C-45). This loss depends on transformer loading. An 
increase in loading, either real or reactive, will result in an increase in current flow and a 
correspondingly greater amount of loss in the transformer. Total loss of transformer can 
be found by (C-49). Core loss profile of different distribution transformer can be found in: 
http://ecmweb.com/contractor/overcoming-transformer-losses 
 

 (C-49) 
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