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Abstract

Scene recognition is a fundamental and open problem in computer vision. It is an essential compo-

nent of a variety of real-world applications, including image search, robotics, social media analysis,

and many others.

The key to success in scene recognition is to well understand the rich semantics embedded in scenes.

For example, it is intuitive to label airport for a scene of sky, airplane, road, and building. In this

thesis, we identify two directions for exploiting scene semantics. On one hand, we advocate for the

discovery of scene parts that correspond to various semantic components in scenes, like objects and

surfaces. On the other hand, we promote the discovery of scene structures that capture the spatial

relations among scene parts, like sky-above-airplane. By leveraging scene parts and structures in

scene recognition, we are able to build strong recognition systems.

Our contributions are two-fold. First, we propose two clustering algorithms for the data-driven

discovery of semantics in visual data. In detail, we develop latent maximum-margin clustering to

model semantics as latent variables, and hierarchical maximum-margin clustering to discover tree-

structured semantic hierarchies. Our second contribution is the development of two scene recogni-

tion methods that leverage scene structure discovery and part discovery. The first method recognizes

scene by considering a scene image as a structured collage of objects. The second method discovers

scene parts that are both discriminative and representative for scene recognition.

Keywords: Scene recognition; semantics discovery; maximum-margin clustering; hierarchical

clustering; latent variable models
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Chapter 1

Introduction

Scene understanding is a fundamental and open problem in computer vision. By “scene” we mean a

view of a real-world environment that typically arranges objects and surfaces1 in a meaningful way.

A scene could either be indoor (e.g., kitchen, bedroom) or outdoor (e.g., beache, airport), depicted

in 2D images or 3D stereos – see Figure 1.1 for a few examples. There is no universal scope for

what to understand in a scene, but the central task of scene understanding is to reason about the

scene semantics and natural properties like the category and functionality of a scene. The ability to

understand scenes assists computer systems in perceiving the world around us, and it goes to the

very heart of “AI-complete” [134].

The focus of this thesis is on scene recognition, a sub-task of scene understanding. Specifically,

we study the most dominant and fundamental scene understanding problem in the current computer

vision literature – scene recognition in 2D images, which aims at classifying a scene image into a

semantic category that best describes and summarizes the scene environment. Scene recognition

is an essential component of a variety of real-world applications, including image search, robotics,

social media analysis, and many others. For the variety of scene categories, Figure 1.2 (a) shows the

set used in the SUN dataset [128, 127] – a state-of-the-art benchmark for scene recognition. Note

that we use the term “scene category” and “scene class” interchangeably hereafter in this thesis.

We have observed substantial progresses in scene recognition over the past decade, and a great

deal of features and models have been proposed to handle the task. In this thesis, we tackle scene

recognition by exploiting scene semantics. We believe that recognizing the scene category of a

given image relies heavily on how well we represent and understand the semantics in the scene.

Before diving into the detailed solutions, it always helps to identify the nature of the problem.

Thus, we describe our understanding of scene recognition in the following section.
1For simplicity, in the rest of this thesis, we consider surfaces (e.g., grass, road, etc.) as generalized objects, and use

the term “object” to represent both surfaces and objects.

1



(a) kitchen (b) beach (c) living room

Figure 1.1: Visualization of three sample scenes. (a) and (b) are 2D images from [128], and (c) is a
3D stereo from [130].

1.1 Understanding Scene Recognition

In this section, we are interested in a deep understanding of scene recognition, including the moti-

vation for recognizing scenes, the difference from object recognition, and the key characteristics to

success. We will address these three aspects by answering the three questions in the following.

1.1.1 Why Should We Care About Scene Recognition?

The goal of scene recognition is to identify the semantic scene category of a given image, and

the semantic category encapsulates valuable knowledge of the scene contents. Knowing the scene

category helps computer systems to perceive the scene, by understanding what to do with the objects

in the scene, and what functions to accomplish within the scene. As highlighted in [85], with scene

recognition, “we therefore include the perception of function as a proper – indeed, crucial – subject

for vision science”.

1.1.2 What Is the Difference From Object Recognition?

One may easily bias scene recognition as identifying representative objects in the given image.

However, the concept of scene category typically have a higher level of abstraction than objects

(e.g., airport scenes versus airplane objects). Specifically, scene recognition looks at the whole

picture, while object recognition always focuses on a sub-region of the image. In general, under-

standing objects assists in scene recognition, since the semantic category of a scene can be derived

from the objects present in the scene. Figure 1.2 (b) shows common object categories in our daily

experience – notice the correlation between scene categories (Figure 1.2 (a)) and object categories

(Figure 1.2 (b)).

1.1.3 What Drives Success in Scene Recognition?

A decade ago, the standard approach for scene recognition was to first extract visual appearance

descriptors (such as SIFT [73] and GIST [83]) and then build a classification model (like Support

2



(a) scene categories

(b) object categories

Figure 1.2: Visualization of the scene and object categories in the SUN dataset [128, 127]. There are
a total of 131,072 images spanning in 908 categories, and 326,582 manually segmented objects of
5,650 object categories. The area of each word is proportional to the frequency of that scene/object
category. The figures are from [127].

3
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Figure 1.3: A scene recognition pipeline based on semantic scene structure discovery. The left
image is a sample airport scene with object annotations such as sky, airplane, tree, road, etc. The
discovered structure for this scene image is visualized in the right side of the figure. Note that it is
intuitive to reason about the scene category, airport, from the discovered semantic scene structure.

Vector Machine, i.e., SVM [15]) on top of it. However, the bottleneck of this approach comes

with the representation power of visual appearance descriptors, which usually summarize low-level

pixel information (such as gradient and color) in a small local patch. The low-level descriptors

have problems in handling high variations and deformations of visual appearance, resulting in sub-

optimal scene recognition performance.

Over the past decade, researchers have changed the focus from learning with low-level de-

scriptors to exploiting semantics in scene images, since it is well aligned with our human’s way of

thinking. If we were given a scene image and asked to categorize it, it is likely that we would first

find out the objects in the image, and then reason about the scene category based on this collection

of objects. This intuition is further evidenced by the need of “focused attention” in natural scene

perception [26, 14]. Note that the objects provide invaluable semantic components for us to under-

stand scenes, by removing the complexity in handling the high variations and deformations of scene

appearance.

We believe that exploiting semantics is the key for computer vision to success in scene recog-

nition – recognizing the scene category relies heavily on how well we represent and understand the

semantics embedded in the scene.

1.2 Exploiting Semantics in Scenes

As emphasized in the last section, understanding semantics can be crucial for scene recognition. We

follow this line of research and identify two directions for exploiting the rich semantics in scenes:

one by discovering semantic scene structures, and one by discovering semantic scene parts. We

describe the details in the following.

4



1.2.1 Discovering Scene Structures

First, we believe that it is beneficial to organize scene semantics in structured representation. Fig-

ure 1.3 shows off our intuition.

Generally speaking, a scene image is typically composed of a number of objects spanning across

different regions of the image. The objects contribute to the scene semantics, so as do the spatial

relations among these objects. For example, the relation airplane-below-sky indicates an airport

scene, while airplane-on.top.of-sky might describe other scenes like airshow. We would like to

capture the spatial information by representing the scene semantics as a graph, where the graph

nodes correspond to objects and graph edges capture object spatial relations. The structured rep-

resentation summarizes the environment described in the scene image, and is potentially beneficial

for reasoning about the scene category.

1.2.2 Discovering Scene Parts

Second, we emphasize the importance of automatic discovery of scene parts for the composition of

scene semantics.

Let us revisit Figure 1.3 where structured representation is used to capture scene semantics. An

assumption we have made is that the object annotations are readily available on scene images. How-

ever, obtaining high-quality and noise-free object annotations is impractical in real-world scenarios

due to the following two reasons. On one hand, annotating objects is a very subjective task and

people may not agree on the annotations that should be assigned to the same scene image. On the

other hand, manually labeling objects in images is tedious and costly, especially when dealing with

the large-scale and ever-growing image collections we have in hand.

Given these constraints, we would like to remove the need for object annotation, and automati-

cally discover semantic scene parts in an unsupervised data-driven manner. A scene part is expected

to capture a semantic component of the scene, like a surface, an object, or even an object part. The

parts are likely non-subjective, as they are discovered from the image data directly. Intuitively, scene

recognition benefits from scene part discovery since the parts reveal various semantic components

embedded in scenes.

In the following section, we review closely related work in discovering both scene structures and

scene parts. Note that we also review state-of-the-art clustering techniques since they are powerful

tools for data-driven discovery of visual semantics.

1.3 Related Work

A comprehensive survey of the scene recognition and clustering literature is beyond the scope of

this thesis. Here we only review the work most related to ours.

5



1.3.1 Discovering Scene Structures

It is common to exploit object-level structures for scene understanding. A representative method,

call ObjectBank, is proposed by Li et al. [68]. Specifically, this method pre-defines a generic col-

lection of labeled objects, and trains an object detector for each object category. For a scene image,

it captures object-level structures from a multiple-level spatial pyramid pooling of object detector

responses.

Apart from spatial pyramid pooling, scene structures can also be represented by directly mod-

eling object relations, such as co-occurrences, overlaps or spatial layouts. Rabinovich et al. [94]

exploit pairwise object co-occurrences for contextual object relevance. Malisiewicz and Efros [75]

parse scene images by filtering out object pairs with large overlap. Li et al. [67] detect groups of

objects with Deformable Part Models (DPMs) as the basic elements for scene understanding. Lee

and Grauman [66] encode object spatial layout by “object-graph” descriptors. Similarly, Lan et

al. [62] retrieve images by structured object queries that specify object spatial relations. Note that

we have proposed a method following this line of research, and we build semantic structures for

scene recognition based on object spatial relations.

1.3.2 Discovering Scene Parts

There has been much work on scene part discovery in recent years. Depending on whether we have

supervision on the image-level scene categories, we can roughly divide existing methods into the

following two groups.

Part Discovery from Unsupervised Scenes

Part discovery can be performed in a purely unsupervised setting – given a bunch of unlabeled

images, the goal is to automatically discover useful parts. As a comprehensive survey, Tuytelaars et

al. [112] review the detailed literature.

Generally speaking, there are two commons techniques to handle this task. The first is cluster-

ing. For instance, Kim and Torralba [54] use link analysis to iteratively refine the regions of interest

in cluttered images. A recent development by Zhu et al. [145] employs a bottom-up, saliency-

guided multiple class learning method to perform part localization, discovery, and detector training

in an integrated framework. A second technique is latent topic models. To list an example, Rus-

sell et al. [98] build pLSA [45] and LDA [4] on top of image segmentations to discover semantic

categories.

Part Discovery from Supervised Scenes

There is also recent progress in discovering scene parts given only image-level scene categories.

Note that the semantic scene categories provide valuable information for identifying useful parts.

We group existing work based on the underlying technique used to discover parts.
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A first group of methods is inspired by the success of DPMs for part-based object detection [32].

For example, Pandey and Lazebnik [86] discover scene parts by training DPMs directly on scene

images. Li et al. [67] advocate for automatic detection of groups of parts as the basic elements for

scene understanding.

Another line of research starts by training an exemplar part model for every sampled image

patch, and then relies on heuristics to refine the final set of scene parts. For instance, Singh et

al. [108] train exemplar-SVMs [76] for patches, and then iteratively merge similar parts within a

scene category. Juneja et al. [53] learn exemplar-LDA models [40] for patches, and then select

scene parts that occur in some but not many scene categories.

There is also work on clustering patches within each individual scene category, and regarding

each cluster as a discovered scene part. Wang et al. [120] learn parts via maximum-margin multiple-

instance dictionary learning. Doersch et al. [24] modify mean-shift clustering to find scene parts

that have high density in positive images but low density in negative images. Sun and Ponce [111]

initialize parts by k-means clustering, and refined them in a scene recognition model regularized

by group sparsity. Note that our method follows this setting, and we propose to discover parts and

recognize scenes in a unified learning framework.

1.3.3 Clustering for Semantics Discovery

Clustering is a major task in machine learning that has been actively studied over decades of re-

search [50]. Clustering is typically conducted in an unsupervised manner, with the goal of grouping

data instances of similar patterns or structures together. Clustering remains a challenging and ac-

tive topic of research due to its widespread applicability in a variety of areas, including data-driven

discovery, visualization, computer vision, information retrieval, natural language processing, etc.

Popular clustering methods include k-means clustering [42, 72], k-medoids clustering [51], mixture

models [96], normalized cuts [107], spectral clustering [80] and affinity propagation [34].

In this thesis, we focus on two advanced clustering techniques that enable us to explore the rich

semantics embedded in data: maximum-margin clustering and hierarchical clustering. We describe

the details in the following.

Maximum-margin Clustering

Recent development in maximum-margin techniques has led to the invention of maximum-margin

clustering (MMC) [131, 115, 138, 139, 70, 11], which aims to learn both the separating hyper-

planes that separate clusters of data, and the label assignments of instances to the clusters. Note that

the learned cluster-specific models equip MMC with unique features over conventional clustering

methods. Conceptually, MMC is favorable for data-driven semantics discovery since it captures

semantics in the learned cluster-specific models. Empirically, MMC usually generates better per-

formance, largely due to the discriminative margin separation criterion imposed among clusters.
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MMC has also shown its success in computer vision applications. For example, Zhang et

al. [138] conduct MMC based image segmentation. Farhadi and Tabrizi [30] find different view

points of human activities via MMC. Wang and Cao [121] incorporate MMC to discover geographi-

cal clusters of beach images. Hoai and Zisserman [44] form a joint framework of maximum-margin

classification and clustering to improve sub-categorization.

Hierarchical Clustering

The clustering techniques we have mentioned above are all flat clustering methods, where the clus-

ters are obtained via one split of the data. Hierarchical clustering methods, on the other hand, are

typically built based on hierarchical tree structures of multiple splits. They employ either top-down

clustering strategies that recursively split clusters into fine-grained clusters [6, 110, 38], or bottom-

up clustering strategies that recursively group smaller clusters into larger ones [77].

Hierarchical clustering has been extensively studied for its benefits over its flat counterparts – it

is able to discover hierarchical tree structures (e.g., taxonomies) that better represent semantics in

many real-world data distributions.

1.4 Contributions

We identify our contributions in this section. In short, we first propose two data-driven clustering

algorithms for discovering semantics in visual data. We then tackle scene recognition by discovering

semantic scene structures and parts. In the following, we highlight our main contributions in detail.

1.4.1 Latent Maximum-Margin Clustering

We first present a maximum-margin framework that clusters data using latent variables. Using latent

representations enables our framework to model unobserved semantic information embedded in

data. We implement our idea by large-margin learning, and develop an alternating descent algorithm

to effectively solve the resultant non-convex optimization problem. This work has been reported

in [141].

1.4.2 Hierarchical Maximum-Margin Clustering

Second, we present a hierarchical version of maximum-margin clustering to discover semantic hier-

archical tree structures. Our method extends beyond flat maximum-margin clustering, and performs

clustering recursively in a top-down manner. We propose an effective greedy splitting criteria for

selecting which cluster to split next, and employ regularizers to capture the semantics of feature

sharing within each split and feature competition among different layers of splits. This work has

been reported in [140].
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1.4.3 Scene Recognition by Semantic Structure Discovery

Next, we work on the problem of scene recognition. We first learn a class-to-image distance function

that matches object-level scene structures. The set of objects in training images for a scene category

are treated as a structured collage to represent scene semantics. When presented with a test image,

the best matching between this collage of training image objects and those in the test image is found.

This work has been reported in [142].

1.4.4 Scene Recognition by Semantic Part Discovery

Finally, we set our goal as discovering semantic parts that are discriminative with each other and

representative for recognizing scenes. We address the problem via a joint learning of parts and

scenes. For discriminativeness, we cluster image patches using the maximum-margin clustering

technique we have introduced above. For representativeness, we build scene recognition models

on top of part-based image representation, and apply sparse regularization to select representative

parts. We optimize patch clustering, part model learning and scene recognition in a joint framework.

1.5 Thesis Organization

The organization of this thesis is as follows. We first describe latent maximum-margin cluster-

ing in Chapter 2, and hierarchical maximum-margin clustering in Chapter 3. Then we present our

scene recognition method that leverages semantic scene structure discovery in Chapter 4, followed

by Chapter 5 that proposes semantic scene part discovery for scene recognition. Finally, Chap-

ter 6 concludes this thesis, identifies limitations of the proposed methods, and discusses promising

directions for future work.
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Chapter 2

Latent Maximum-Margin Clustering

In this chapter, we present a maximum-margin framework that clusters data using latent variables.

Using latent representations enables our framework to model unobserved information embedded in

the data. We implement our idea by large-margin learning, and develop an alternating descent algo-

rithm to effectively solve the resultant non-convex optimization problem. We instantiate our latent

maximum-margin clustering framework with tag-based video clustering tasks, where each video is

represented by a latent tag model describing the presence or absence of video tags. Experimental

results obtained on three standard datasets show that the proposed method outperforms non-latent

maximum-margin clustering as well as conventional clustering approaches.

2.1 Overview

Clustering is a major task in machine learning and has been extensively studied over decades of

research [50]. Given a set of observations, clustering aims to group data instances of similar struc-

tures or patterns together. Popular clustering approaches include the k-means algorithm [42, 72],

mixture models [96], normalized cuts [107], and spectral clustering [80]. Recent progress has been

made using maximum-margin clustering (MMC) [131], which extends the supervised large mar-

gin theory (e.g., SVM) to the unsupervised scenario. MMC performs clustering by simultaneously

optimizing cluster-specific models and instance-specific labeling assignments, and often generates

better performance than conventional methods [132, 115, 138, 139, 70, 39].

Modeling data with latent variables is common in many applications. Latent variables are often

defined to have intuitive meaning, and are used to capture unobserved semantics in the data. As

compared with ordinary linear models, latent variable models feature the ability to exploit a richer

representation of the space of instances. Thus, they often achieve superior performance in practice.

In computer vision, this superiority is best exemplified by the success of deformable part models

(DPMs) [32] for object detection. DPMs enhance the representation of an object class by capturing

viewpoint and pose variations. They utilize a root template describing the entire object appearance

and several part templates. Latent variables are used to capture deformations and appearance varia-
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tions of the root template and parts. DPMs perform object detection via search for the best locations

of the root and part templates.

Latent variable models are often coupled with supervised learning to learn models incorporating

the unobserved variables. For example, DPMs are learned in a latent SVM framework [32] for object

detection; similar models have been shown to improve human action recognition [122]. A host of

other applications of latent SVMs have obtained state-of-the-art performance in computer vision.

Motivated by their success in supervised learning, we believe latent variable models can also help

in unsupervised clustering – data instances with similar latent representations should be grouped

together in one cluster.

As the latent variables are unobserved in the original data, we need a learning framework to han-

dle this latent knowledge. To implement this idea, we develop a novel clustering algorithm based on

MMC that incorporates latent variables – we call this latent maximum-margin clustering (LMMC).

The LMMC algorithm results in a non-convex optimization problem, for which we introduce an

iterative alternating descent algorithm. Each iteration involves three steps: inferring latent variables

for each sample point, optimizing cluster assignments, and updating cluster model parameters.

To evaluate the efficacy of this clustering algorithm, we instantiate LMMC for tag-based video

clustering, where each video is modeled with latent variables controlling the presence or absence

of a set of descriptive tags. We conduct experiments on three standard datasets: TRECVID MED

11 [84], KTH Actions [104] and UCF Sports [97], and show that LMMC outperforms non-latent

MMC and conventional clustering methods.

The rest of this chapter is organized as follows. Section 2.2 reviews related work. Section 2.3

formulates the LMMC framework in detail. We describe tag-based video clustering in Section 2.4,

followed by experimental results reported in Section 2.5. Finally, Section 2.6 summarizes this

chapter.

2.2 Related Work

Latent variable models: There has been much work in recent years using latent variable models.

The definition of latent variables are usually task-dependent. Here we focus on the learning part

only. Andrews et al. [1] propose multiple-instance SVM to learn latent variables in positive bags.

Felzenszwalb et al. [32] formulate latent SVM by extending binary linear SVM with latent vari-

ables. Yu and Joachims [137] handle structural outputs with latent structural SVM. This model is

also known as maximum-margin hidden conditional random fields (MMHCRF) [122]. Kumar et

al. [59] propose self-paced learning, an optimization strategy that focuses on simple models first.

Yang et al. [136] kernelize latent SVM for better performance. All of this work demonstrates the

power of maximum-margin latent variable models for supervised learning; our framework conducts

unsupervised clustering while modeling data with latent variables.

Maximum-margin clustering: MMC was first proposed by Xu et al. [131] to extend supervised

large-margin methods to unsupervised clustering. Different from the supervised case, where the
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optimization is convex, MMC results in non-convex problems. To solve the problems, many ap-

proaches are proposed in the past decade. Xu et al. [131] and Valizadegan and Rong [115] refor-

mulate the original problem as a semi-definite programming (SDP) problem. Zhang et al. [138]

employ alternating optimization – finding labels and optimizing a support vector regression (SVR).

Li et al. [70] iteratively generate the most violated labels, and combine them via multiple kernel

learning. Note that the above methods can only solve binary-cluster clustering problems. To handle

the multi-cluster case, Xu and Schuurmans [132] extend the SDP method in [131]. Zhao et al. [139]

propose a cutting-plane method which uses the constrained convex-concave procedure (CCCP) to

relax the non-convex constraint. Gopalan and Sankaranarayanan [39] examine data projections to

identify the maximum margin. Our framework deals with multi-cluster clustering, and we model

data instances with latent variables to exploit rich representations. It is also worth mentioning that

MMC leads naturally to the semi-supervised SVM framework [52] by assuming a training set of

labeled instances [131, 132]. Using the same idea, we could extend LMMC to semi-supervised

learning.

MMC has also shown its success in various computer vision applications. For example, Zhang et

al. [138] conduct MMC based image segmentation. Farhadi and Tabrizi [30] find different view

points of human activities via MMC. Wang and Cao [120] incorporate MMC to discover geographi-

cal clusters of beach images. Hoai and Zisserman [44] form a joint framework of maximum-margin

classification and clustering to improve sub-categorization.

Tag-based video analysis: Tagging videos with relevant concepts or attributes is common in video

analysis. Qi et al. [92] predict multiple correlative tags in a structural SVM framework. Yang and

Toderici [135] exploit latent sub-categories of tags in large-scale videos. The obtained tags can assist

in recognition. For example, Liu et al. [71] use semantic attributes (e.g., up-down motion, torso

motion, twist) to recognize human actions (e.g., walking, hand clapping). Izadinia and Shah [49]

model low-level event tags (e.g., people dancing, animal eating) as latent variables to recognize

complex video events (e.g., wedding ceremony, grooming animal).

Instead of supervised recognition of tags or video categories, we focus on unsupervised tag-

based video clustering. In fact, recently research collects various sources of tags for video clustering.

Schroff et al. [103] cluster videos by the capturing locations. Hsu et al. [46] build hierarchical

clustering using user-contributed comments. Our work uses latent tag models, and our LMMC

framework is general enough to handle various types of tags.

2.3 Latent Maximum-Margin Clustering

As stated above, modeling data with latent variables can be beneficial in a variety of supervised

applications. For unsupervised clustering, we believe it also helps to group data instances based on

latent representations. To implement this idea, we propose the LMMC framework.

LMMC models instances with latent variables. When fitting an instance to a cluster, we find the

optimal values for latent variables and use the corresponding latent representation of the instance.
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To best fit different clusters, an instance is allowed to flexibly take different latent variable values

when being compared to different clusters. This enables LMMC to explore a rich latent space when

forming clusters. Note that in conventional clustering algorithms, an instance is usually restricted to

have the same representation in all clusters. Furthermore, as the latent variables are unobserved in

the original data, we need a learning framework to exploit this latent knowledge. Here we develop a

large-margin learning framework based on MMC, and learn a discriminative model for each cluster.

The resultant LMMC optimization is non-convex, and we design an alternating descent algorithm

to approximate the solution. Next we will briefly introduce MMC in Section 2.3.1, followed by

detailed descriptions of the LMMC framework and optimization respectively in Sections 2.3.2 and

2.3.3.

2.3.1 Maximum-Margin Clustering

MMC [131, 138, 139] extends the maximum-margin principle popularized by supervised SVMs to

unsupervised clustering, where the input instances are unlabeled. The idea of MMC is to find a

labeling so that the margin obtained would be maximal over all possible labelings. If we suppose

there are N instances {xi}Ni=1 to be clustered into K clusters, then MMC can be formulated as

follows [132, 139]:

min
W,Y,ξ≥0

1
2

K∑
t=1
||wt||2 + C

K

N∑
i=1

K∑
r=1

ξir, (2.1)

s.t.
K∑
t=1

yitw>t xi −w>r xi ≥ 1− yir − ξir, ∀i, r

yit ∈ {0, 1}, ∀i, t
K∑
t=1

yit = 1, ∀i

whereW = {wt}Kt=1 are the linear model parameters for each cluster, ξ = {ξir} (i ∈ {1, . . . , N},
t ∈ {1, . . . ,K}) are the slack variables to allow soft margin, and C is a trade-off parameter. We

denote the labeling assignment by Y = {yit} (i ∈ {1, . . . , N}, t ∈ {1, . . . ,K}), where yit = 1
indicates that the instance xi is clustered into the t-th cluster, and yit = 0 otherwise. By convention,

we require that each instance is assigned to one and only one cluster, i.e., the last constraint in

Eq. (2.1). Moreover, the first constraint in Eq. (2.1) enforces a large-margin between clusters by

constraining that the score of xi to the assigned cluster is sufficiently larger than the score of xi to

any other clusters. Note that MMC is an unsupervised clustering method, which jointly estimates

the model parametersW and finds the best labeling Y .

Enforcing balanced clusters. Unfortunately, solving Eq. (2.1) could end up with trivial solutions

where all instances are simply assigned to the same cluster, and we obtain an unbounded margin.
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To address this problem, we add cluster balance constraints to Eq. (2.1) that require Y to satisfy

L ≤
N∑
i=1

yit ≤ U, ∀t (2.2)

where L and U are the lower and upper bounds controlling the size of a cluster. Note that we

explicitly enforce cluster balance using a hard constraint on the cluster sizes. This is different

from [139], a representative multi-cluster MMC method, where the cluster balance constraints are

implicitly imposed on the accumulated model scores (i.e.,
∑N
i=1 w>t xi). We found empirically that

explicitly enforcing balanced cluster sizes led to better results.

2.3.2 Latent Maximum-Margin Clustering

We now extend MMC to include latent variables. The latent variable of an instance is cluster-

specific. Formally, we denote h as the latent variable of an instance x associated to a cluster param-

eterized by w. Following the latent SVM formulation [32, 137, 122], scoring x w.r.t. w is to solve

an inference problem of the form:

fw(x) = max
h

w>Φ(x,h), (2.3)

where Φ(x,h) is the feature vector defined for the pair of (x,h). To simplify the notation, we

assume the latent variable h takes its value from a discrete set of labels. However, our formulation

can be easily generalized to handle more complex latent variables (e.g., graph structures [137, 122]).

To incorporate the latent variable models into clustering, we replace the linear model w>x in

Eq. (2.1) by the latent variable model fw(x). We call the resultant framework latent maximum-

margin clustering (LMMC). LMMC finds clusters via the following optimization:

min
W,Y,ξ≥0

1
2

K∑
t=1
||wt||2 + C

K

N∑
i=1

K∑
r=1

ξir. (2.4)

s.t.
K∑
t=1

yitfwt(xi)− fwr(xi) ≥ 1− yir − ξir, ∀i, r

yit ∈ {0, 1}, ∀i, t
K∑
t=1

yit = 1, ∀i L ≤
N∑
i=1

yit ≤ U, ∀t

We adopt the notation Y from the MMC formulation to denote the labeling assignment. Similar

to MMC, the first constraint in Eq. (2.4) enforces the large-margin criterion where the score of

fitting xi to the assigned cluster is marginally larger than the score of fitting xi to any other clusters.

Cluster balance is enforced by the last constraint in Eq. (2.4). Note that LMMC jointly optimizes

the model parametersW and finds the best labeling assignment Y , while inferring the optimal latent

variables.
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2.3.3 Optimization

It is easy to verify that the optimization problem described in Eq. (2.4) is non-convex due to the

optimization over the labeling assignment variables Y and the latent variables H = {hit} (i ∈
{1, . . . , N}, t ∈ {1, . . . ,K}). To solve this problem, we first eliminate the slack variables ξ, and

rewrite Eq. (2.4) equivalently as:

min
W

1
2

K∑
t=1
||wt||2 + C

K
R(W), (2.5)

where R(W) is the risk function defined by:

R(W) = min
Y

N∑
i=1

K∑
r=1

max
(
0, 1− yir + fwr(xi)−

K∑
t=1

yitfwt(xi)
)
. (2.6)

s.t. yit ∈ {0, 1}, ∀i, t
K∑
t=1

yit = 1, ∀i L ≤
N∑
i=1

yit ≤ U, ∀t

Note that Eq. (2.5) minimizes over the model parameters W , and Eq. (2.6) minimizes over the

labeling assignment variables Y while inferring the latent variables H. We develop an alternating

descent algorithm to find an approximate solution. In each iteration, we first evaluate the risk

function R(W) given the current model parametersW , and then updateW with the obtained risk

value. Next we describe each step in detail.

Risk evaluation: The first step of learning is to compute the risk function R(W) with the model

parametersW fixed. We first infer the latent variablesH and then optimize the labeling assignment

Y . According to Eq. (2.3), the latent variable hit of an instance xi associated to cluster t can be

obtained via: argmaxhit w>t Φ(xi,hit). Note that the inference problem is task-dependent. For our

latent tag model, we present an efficient inference method in Section 2.4.

After obtaining the latent variables H, we optimize the labeling assignment Y from Eq. (2.6).

Intuitively, this is to minimize the total risk of labeling all instances yet maintaining the cluster

balance constraints. We reformulate Eq. (2.6) as an integer linear programming (ILP) problem by

introducing a variable ψit to capture the risk of assigning an instance xi to a cluster t. The ILP can

be written as:

R(W) = min
Y

N∑
i=1

K∑
t=1

ψityit, (2.7)

s.t. yit ∈ {0, 1},∀i, t
K∑
t=1

yit = 1,∀i L ≤
N∑
i=1

yit ≤ U,∀t

where ψit =
∑K
r=1,r 6=t max(0, 1 + fwr(xi) − fwt(xi)). This captures the total “mis-clustering”

penalties - suppose that we regard t as the “ground truth” cluster label for an instance xi, then ψit
measures the sum of hinge losses for all incorrect predictions r (r 6= t), which is consistent with the
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Cluster: feeding animal Cluster: board trick

vi
de

o

T : board car dog food grass man snow tree · · · board car dog food grass man snow tree · · ·
h: 0 0 1 1 1 1 0 1 · · · 1 0 0 0 1 1 0 0 · · ·

Figure 2.1: Two videos represented by the latent tag model. Please refer to the text for details about
T and h. Note that the cluster labels (i.e., feeding animal and board trick) are unknown beforehand.
They are added for a better understanding of the video content and the latent tag representations.

supervised multi-class SVM at a higher level [16]. Eq. (2.7) is a standard ILP problem with N ×K
variables and N + K constraints. We use the GNU Linear Programming Kit (GLPK) to obtain an

approximate solution to this problem.

UpdatingW: The next step of learning is the optimization over the model parametersW (Eq. (2.5)).

The learning problem is non-convex and we use the the non-convex bundle optimization solver

in [23]. In a nutshell, this method builds a piecewise quadratic approximation to the objective

function of Eq. (2.5) by iteratively adding a linear cutting plane at the current optimum and updating

the optimum. Now the key issue is to compute the subgradient ∂wtfwt(xi) for a particular wt. Let

h∗it be the optimal solution to the inference problem: h∗it = argmaxhit w>t Φ(xi,hit). Then the

subgradient can be calculated as ∂wtfwt(xi) = Φ(xi,h∗it). Using the subgradient ∂wtfwt(xi), we

optimize Eq. (2.5) by the algorithm in [23].

2.4 Tag-Based Video Clustering

In this section, we introduce an application of LMMC: tag-based video clustering. Our goal is to

jointly learn video clusters and tags in a single framework. We treat tags of a video as latent variables

and capture the correlations between clusters and tags. Intuitively, videos with a similar set of tags

should be assigned to the same cluster. We assume the existence of a separate dataset consisting

of videos with ground-truth tag labels, from which we train tag detectors independently. The tag

detectors are deemed to be weak and noisy because of the high variations of video appearance.

During clustering, we are given a set of new videos without the ground-truth tag labels, and our

goal is to assign cluster labels to these videos. We run the tag detectors to generate a prediction on

how likely a tag appears in a video. Due to the weakness of tag prediction, we incorporate a binary

latent variable to indicate whether the tag presents or not in the video.

We employ a latent tag model to represent videos. We are particularly interested in tags which

describe different aspects of videos. For example, a video from the cluster feeding animal (see

Figure 2.1) may be annotated with dog, food, man, etc. Assume we collect all the tags in a set T .

For a video being assigned to a particular cluster, we know it could have a number of tags from

T describing its visual content related to the cluster. However, we do not know which tags are
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present in the video. To address this problem, we associate latent variables to the video to denote

the presence and absence of tags.

Formally, given a cluster parameterized by w, we associate a latent variable h to a video x,

where h = {ht}t∈T and ht ∈ {0, 1} is a binary variable denoting the presence/absence of each tag

t. ht = 1 means x has the tag t, while ht = 0 means x does not have the tag t. Figure 2.1 shows

the latent tag representations of two sample videos. We score the video x according to the model

in Eq. (2.3): fw(x) = maxh w>Φ(x,h), where the potential function w>Φ(x,h) is defined as

follows:

w>Φ(x,h) = 1
|T |

∑
t∈T

ht · ω>t φt(x). (2.8)

This potential function measures the compatibility between the video x and tag t associated with

the current cluster. Note that w = {ωt}t∈T are the cluster-specific model parameters, and Φ =
{ht · φt(x)}t∈T is the feature vector depending on the video x and its tags h. Here φt(x) ∈ Rd is

the feature vector extracted from the video x, and the parameter ωt is a template for tag t. In our

current implementation, instead of keeping φt(x) as a high dimensional vector of video features,

we simply represent it as a scalar score of detecting tag t on x by a pre-trained binary tag detector.

To learn biases between different clusters, we append a constant 1 to make φt(x) two-dimensional.

Now we describe how to infer the latent variable h∗ = argmaxh w>Φ(x,h). As there is no

dependency between tags, we can infer each latent variable separately. According to Eq. (2.8),

the term corresponding to tag t is ht · ω>t φt(x). Considering that ht is binary, we set ht to 1 if

ω>t φt(x) > 0; otherwise, we set ht to 0.

2.5 Experiments

We evaluate the performance of our method on three standard video datasets: TRECVID MED

11 [84], KTH Actions [104] and UCF Sports [97]. We briefly describe our experimental setup

before reporting the experimental results in Section 2.5.1.

TRECVID MED 11 dataset [84]: This dataset contains web videos collected by the Linguistic

Data Consortium from various web video hosting sites. There are 15 complex event categories

including board trick, feeding animal, landing fish, wedding ceremony, woodworking project, birth-

day party, changing tire, flash mob, getting vehicle unstuck, grooming animal, making sandwich,

parade, parkour, repairing appliance, and sewing project. TRECVID MED 11 has three data col-

lections: Event-Kit, DEV-T and DEV-O. DEV-T and DEV-O are dominated by videos of the null

category, i.e., background videos that do not contain the events of interest. Thus, we use the Event-

Kit data collection in the experiments. By removing 13 short videos that contain no visual content,

we finally have a total of 2,379 videos for clustering.

We use tags that were generated in Vahdat and Mori [113] for the TRECVID MED 11 dataset.

Specifically, this dataset includes “judgment files” that contain a short one-sentence description for

each video. A sample description is: “A man and a little boy lie on the ground after the boy has
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fallen off his bike”. This sentence provides us with information about presence of objects such as

man, boy, ground and bike, which could be used as tags. In [113], text analysis tools are employed

to extract binary tags based on frequent nouns in the judgment files. Examples of the 74 most

frequent tags used in this work are: music, person, food, kitchen, bird, bike, car, street, boat, water,

etc. The complete list of tags are available on our website.

To train tag detectors, we use the DEV-T and DEV-O videos that belong to the 15 event cate-

gories. There are 1675 videos in total. We extract HOG3D descriptors [56] and form a 1,000 word

codebook. Each video is then represented by a 1,000-dimensional feature vector. We train a lin-

ear SVM for each tag, and predict the detection scores on the Event-Kit videos. To remove biases

between tag detectors, we normalize the detection scores by z-score normalization. Note that we

make no use of the ground-truth tags on the Event-Kit videos that are to be clustered.

KTH Actions dataset [104]: This dataset contains a total of 599 videos of 6 human actions: walk-

ing, jogging, running, boxing, hand waving, and hand clapping. Our experiments use all the videos

for clustering.

We use Action Bank [100] to generate tags for this dataset. Action Bank has 205 template

actions with various action semantics and viewpoints. Randomly selected examples of template

actions are: hula1, ski5, clap3, fence2, violin6, etc. In our experiments, we treat the template

actions as tags. Specifically, on each video and for each template action, we use the set of Action

Bank action detection scores collected at different spatiotemporal scales and correlation volumes.

We perform max-pooling on the scores to obtain the corresponding tag detection score. Again, for

each tag, we normalize the detection scores by z-score normalization.

UCF Sports dataset [97]: This dataset consists of 140 videos from 10 action classes: diving, golf

swinging, kicking, lifting, horse riding, running, skating, swinging (on the pommel horse), swinging

(at the high bar), and walking. We use all the videos for clustering. The tags and tag detection

scores are generated from Action Bank, in the same way as KTH Actions.

Baselines: To evaluate the efficacy of LMMC, we implement three conventional clustering methods

for comparison, including the k-means algorithm (KM) [42, 72], normalized cut (NC) [107], and

spectral clustering (SC) [80]. For NC, the implementation and parameter settings are the same

as [107], which uses a Gaussian similarity function with all the instances considered as neighbors.

For SC, we use a 5-nearest neighborhood graph and set the width of the Gaussian similarity function

as the average distance over all the 5-nearest neighbors. Note that these three methods do not use

latent variable models. Therefore, for a fair comparison with LMMC, they are directly performed

on the data where each video is represented by a vector of tag detection scores. We have also tried

KM, NC and SC on the 1,000-dimensional HOG3D features. However, the performance is worse

and is not reported here. Furthermore, to mitigate the effect of randomness, KM, NC and SC are

run 10 times with different initial seeds and the average results are recorded in the experiments.

In order to show the benefits of incorporating latent variables, we further develop a baseline

called MMC by replacing the latent variable model fw(x) in Eq. (2.4) with a linear model w>x.

This is equivalent to running an ordinary maximum-margin clustering algorithm on the video data
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Table 2.1: Clustering results (in %) on the three datasets. The figures boldfaced are the best perfor-
mance among all the compared methods.

TRECVID MED 11 KTH Actions UCF Sports
PUR NMI RI FM PUR NMI RI FM PUR NMI RI FM

LMMC 39.0 28.7 89.5 22.1 92.5 87.0 95.8 87.2 76.4 71.2 92.0 60.0
MMC 36.0 26.6 89.3 20.3 91.3 86.5 95.2 85.5 63.6 62.2 89.2 46.1

SC 28.6 23.6 87.1 20.3 61.0 60.8 75.6 58.2 69.9 70.8 90.6 58.1
KM 27.0 23.8 85.9 20.4 64.8 60.7 84.0 60.6 63.1 66.2 87.9 58.7
NC 12.9 5.7 31.6 12.7 48.0 33.9 72.9 35.1 60.7 55.8 83.4 41.8

represented by tag detection scores. For a fair comparison, we use the same solver for learning

MMC and LMMC. The trade-off parameter C in Eq. (2.4) is selected as the best from the range

{101, 102, 103}. The lower bound and upper bounds of the cluster-balance constraint (i.e., L and U

in Eq. (2.4)) are set as 0.9NK and 1.1NK respectively to enforce balanced clusters.

Performance measures: Following the convention of maximum-margin clustering [131, 132, 115,

138, 139, 70, 39], we set the number of clusters to be the ground-truth number of classes for all the

compared methods. The clustering quality is evaluated by four standard measurements including

purity (PUR) [131], normalized mutual information (NMI) [60], Rand index (RI) [95] and balanced

F-measure (FM). They are employed to assess different aspects of a given clustering: PUR mea-

sures the accuracy of the dominating class in each cluster; NMI is from the information-theoretic

perspective and calculates the mutual dependence of the predicted clustering and the ground-truth

partitions; RI evaluates true positives within clusters and true negatives between clusters; and FM

considers both precision and recall. The higher the four measures, the better the performance.

2.5.1 Results

The clustering results are listed in Table 2.1. It shows that LMMC consistently outperforms the

MMC baseline and conventional clustering methods on all three datasets. Specifically, by incor-

porating latent variables, LMMC improves the MMC baseline by 3% on TRECVID MED 11, 1%

on KTH Actions, and 13% on UCF Sports respectively, in terms of PUR. This demonstrates that

learning the latent presence and absence of tags can exploit rich representations of videos, and

boost clustering performance. Specifically, adopting the latent tag model in LMMC helps to handle

tag ambiguity and discover hidden knowledge about the tags embedded in video data. Moreover,

LMMC performs better than the three conventional methods, SC, KM and NC, showing the efficacy

of the proposed LMMC framework for unsupervised data clustering.

Note that MMC runs on the same non-latent representation as the three conventional methods,

SC, KM and NC. However, MMC outperforms them on the two largest datasets, TRECVID MED

11 and KTH Actions, and is comparable with them on UCF Sports. This provides evidence for the

effectiveness of maximum-margin clustering as well as the proposed alternating descent algorithm

for optimizing the non-convex objective.
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Table 2.2: Runtime results (in seconds) on the three datasets. Specifically, we report the processing
time for running each clustering algorithm on the pre-prepared features. The results are collected
on a machine with Intel Xeon 2.8GHz CPU and 16GB memory.

TRECVID MED 11 KTH Actions UCF Sports
LMMC 297.270 9.060 8.480
MMC 5209.510 15.820 82.010

SC 1.215 0.208 0.065
KM 0.112 0.016 0.004
NC 2.550 0.169 0.078

We also collect the clustering runtime results for all the compared methods in Table 2.2. On all

three datasets, LMMC and MMC take more time than the three conventional clustering methods.

This is because LMMC and MMC need an optimization process to learn model parameters. Besides,

it is interesting to note that LMMC costs less time than MMC. The reason we suspect is that learning

MMC involves all the tags on all the videos, but learning LMMC only deals with a sparse set of

latent tags.

Visualization: We select four clusters from TRECVID MED 11, and visualize the results in Fig-

ure 2.2. Please refer to the caption for more details.

2.6 Summary

We have presented a latent maximum-margin framework for unsupervised clustering. By repre-

senting instances with latent variables, our method features the ability to exploit the unobserved

information embedded in data. We formulate our framework by large-margin learning, and an alter-

nating descent algorithm is developed to solve the resultant non-convex objective. We instantiate our

framework with tag-based video clustering, where each video is represented by a latent tag model

with latent presence and absence of video tags. Our experiments conducted on three standard video

datasets validate the efficacy of the proposed framework. We believe our solution is general enough

to be applied in other applications with latent representations, e.g.video clustering with latent key

segments, image clustering with latent region-of-interest, etc. It would also be interesting to extend

our framework to semi-supervised learning by assuming a training set of labeled instances.
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Cluster: woodworking project Cluster: birthday party

4 4
Tags: piece, wood, machine, lady, indoors, man,
kitchen, baby

Tags: party, birthday, restaurant, couple, wedding
ceremony, wedding, ceremony, indoors

4 4
Tags: piece, man, wood, baby, hand, machine,
lady, kitchen

Tags: birthday, party, restaurant, family, child,
wedding ceremony, wedding, couple

4 4
Tags: wood, piece, baby, indoors, hand, man,
lady, bike

Tags: party, birthday, restaurant, child, family,
wedding ceremony, chicken, couple

Cluster: parade Cluster: landing fish

8 8
Tags: city, day, year, Chinese, Christmas, people,
lot, group

Tags: fish, fishing, boat, man, beach, line, water,
woman

4 4
Tags: day, street, lot, Chinese, year, line, Christ-
mas, dance

Tags: boat, beach, fish, man, men, group, water,
woman

4 4
Tags: street, day, lot, Chinese, line, year, dancing,
dance

Tags: fish, beach, boat, men, man, chicken, truck,
move

Figure 2.2: Four sample clusters from TRECVID MED 11. We label each cluster by the dominating
video class, e.g., woodworking project, parade, and visualize the top-3 scored videos. A “4” sign
indicates that the video label is consistent with the cluster label; otherwise, a “8” sign is used. The
two “mis-clustered” videos are on parkour (left) and feeding animal (right). Below each video, we
show the top eight inferred tags sorted by the potential calculated from Eq. (2.8).
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Chapter 3

Hierarchical Maximal-Margin
Clustering

In this chapter, we present a hierarchical maximum-margin clustering method for unsupervised data

analysis. Our method extends beyond flat maximum-margin clustering, and performs clustering

recursively in a top-down manner. We propose an effective greedy splitting criteria for selecting

which cluster to split next, and employ regularizers that enforce feature sharing/competition for

capturing data semantics. Experimental results obtained on four standard image datasets show that

our method outperforms flat and hierarchical clustering baselines, while forming clean and seman-

tically meaningful cluster hierarchies.

3.1 Overview

Clustering is an important topic in machine learning that, after decades of research, remains a chal-

lenging and active topic of research. Clustering aims to group instances together based on their

underlying similarity in an unsupervised manner. Clustering remains an active topic of research

due to its widespread applicability in the areas of data analysis, visualization, computer vision, in-

formation retrieval, and natural language processing. Popular clustering methods include k-means

clustering [42, 72] and spectral clustering [80].

Recent progress in maximum-margin methods has led to the development of maximum-margin

clustering (MMC) techniques [131], which aim to learn both the separating hyperplanes that sep-

arate clusters of data, and the label assignments of instances to the clusters. MMC outperforms

traditional clustering methods in many cases, largely due to the discriminative margin separation

criterion imposed among clusters.

However, MMC also has limitations. First, MMC is not particularly efficient. While efficient

MMC methods have been proposed [138, 139], even in such cases the time complexity is at least

linear or quadratic with respect to the number of samples and clusters. This scalability issue is a

significant problem when considering the scale of modern datasets. Second, MMC has difficulty
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identifying clusters with small margins, which are particularly useful for fine-grained data. Consider

clustering images of commercial vehicles. In such data the major source of dissimilarity among

samples is the viewpoint and this is what MMC is likely to focus on. The variations in the make

of the vehicle, which are semantically more meaningful, would result in more local fine-grained

differences and may be ignored by MMC’s flat-clustering criterion.

Hierarchical clustering methods, which are typically based on a tree structure, have been exten-

sively studied for their benefits over their flat clustering counterparts. These hierarchical clustering

methods can discover hierarchical structures in data that better represent many real-world data dis-

tributions. Computationally, hierarchical clustering methods are also often more efficient, because

one can reduce a single large clustering problem into a set of smaller subproblems to be recursively

solved. Since within each sub-problem the data only needs to be clustered into a small number of

clusters, and for lower levels of the hierarchy only a small subset of the data participates in each

clustering step, this procedure tends to be a lot more efficient.

To leverage such benefits, we propose a hierarchical extension to MMC that recursively per-

forms k-way clustering in a top-down manner. However, instead of naively performing MMC at

each clustering step, we further leverage the observation from human-defined taxonomies that each

grouping/splitting decision typically focuses on different features of the data.

Suppose, again, that we want to cluster different types of commercial vehicles. Assuming we

can cluster the data hierarchically, it is sensible to assume that first we should cluster the data based

on the vehicle type (e.g., truck, SUV, sedan). Once we know which sub-group each instance belongs

to, we may want to employ other criteria to separate them, e.g., according to the price range or the

make. We want to leverage a similar intuition to learn clusters that focus on maximizing the margin

along different directions at different levels in the hierarchy. Here, directions are defined by subsets

of features from the much larger feature vectors describing each instance. More specifically, we

employ regularization that allows clusters to group and compete for the features at different levels.

Such regularization has been made popular in semantic supervised learning in recent years [129, 47],

but here we apply the idea in an unsupervised hierarchical clustering framework.

We test our hierarchical maximum-margin clustering (HMMC) method on several image datasets,

and show that HMMC is able to outperform flat clustering methods like MMC. More significantly,

it is able to discover clean and semantically meaningful cluster hierarchies, outperforming other

hierarchical clustering alternatives.

Our contributions are threefold: (i) we present a novel hierarchical clustering algorithm based on

maximum-margin clustering with an effective greedy splitting criterion for selecting which cluster to

split next, (ii) we employ regularization that enforces feature sharing/competition to learn clusters

that can focus on important features during clustering, and (iii) we empirically validate that our

HMMC can learn semantically meaningful clusters without any human supervision.

The rest of this chapter is organized as follows. Section 3.2 reviews related work. Section 3.3

formulates HMMC, followed by the optimization algorithm presented in Section 3.4. We report

experimental results in Section 3.5. Finally, Section 3.6 summarizes this chapter.
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3.2 Related Work

Maximum-margin clustering: MMC was first proposed by Xu et al. [131]. It is a maximum-

margin method for clustering, analogous to support vector machines (SVMs) for supervised learn-

ing problems, that learns both the maximum-margin hyperplane for each cluster and the clustering

assignment of instances to clusters. Since this joint learning results in a non-convex formulation,

unlike SVMs, it is often solved by a semidefinite relaxation [131, 115] or alternating optimiza-

tion [138]. While most of the MMC methods focus on efficient optimization of the non-convex

problems, the MMC formulation was also extended to handle the case of multi-cluster clustering

problems [132, 139], and to include latent variables (as in Chapter 2).

Hierarchical clustering methods: Most hierarchical clustering methods employ either top-down

clustering strategies that recursively split clusters into fine-grained clusters, or bottom-up cluster-

ing strategies that recursively group the smaller clusters into larger ones [77]. Our method is a

top-down clustering method, and the canonical example of such a method is hierarchical k-means

clustering, which performs k-means recursively in a top-down manner (e.g., the bisecting k-means

method [110]). Variations on this idea include hierarchical spectral clustering (e.g., PDDP [6])

which performs the hierarchical clustering on the graph Laplacian of the similarity matrix, and

model-based hierarchical clustering [114, 8, 38] which fits probabilistic models at each split. To

the best of our knowledge, this is the first work using a maximum-margin approach for hierarchical

clustering.

Sharing/competing for features: Regularization methods that promote certain structures in the

parameter or feature spaces have been extensively studied in the context of regression, classification,

and sparse coding. The group lasso [79] employs a mixed `1,2-norm to promote sparsity among

groups of features, identifying the groups that are most important for the task. This has been applied

to classification tasks like multi-task learning and multi-class classification, where it encourages the

classifier(s) to share features across the tasks/classes. A generalization of the group lasso is the

sparse group lasso [35], that further encourages sparsity within each individual model.

However, in some cases it makes more sense to have models fit to exclusive sets of features.

The exclusive lasso [143] encourages two models to use different features, by minimizing the `2-

norm of their `1-norms. This discourages different models from having non-zero values along the

same feature dimensions, encouraging each model to use features that are exclusive to their tasks.

Orthogonal transfer [129] focuses on such exclusiveness between parent and child models in a tax-

onomy, and enforces the exclusivity through “orthogonal regularization” where we minimize the

inner product of the SVM weights for parent and child nodes. The tree of metrics approach [47]

employs similar intuition, but learns Mahalanobis metrics instead of SVM weights, and focuses

on selecting sparse and disjoint features. Tree-guided group lasso [55] employ both sharing and

exclusive regularizations, to promote sharing between the labels that belong to the same parent,

while also enforcing exclusive fitting between them, guided by a predefined taxonomy. These meth-
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ods consider supervised learning scenarios, while our method utilizes the grouping and exclusive

regularizers for unsupervised clustering.

3.3 Hierarchical Maximum-Margin Clustering

We propose a hierarchical clustering method based on the maximum-margin criterion. We aim to

find groups of data points with a large separation between them, while forming a cluster hierarchy.

The proposed method builds on the standard flat MMC clustering [131], but extends MMC in the

following two aspects: (i) we introduce regularizers to encourage the different layers of the hierar-

chy to focus on the use of different feature subsets, and (ii) we build the hierarchy iteratively from

coarse clusters to fine-grained clusters (rather than forming all clusters in one split) using a greedy

top-down algorithm with a novel splitting criterion. We first introduce the HMMC formulation in

this section, and then describe the optimization method in Section 3.4.

Suppose there are T non-leaf nodes {nt}Tt=1 in the learned hierarchy. We use Dt to denote the

data on nt, and HMMC splits Dt into Kt clusters by learning a linear model wtk for each cluster

k. We collect the Kt cluster models in wt = {wtk}Ktk=1. We split the data Dt on node nt using

the MMC idea – finding a clustering assignment such that the resultant margin between clusters is

maximal over all possible assignments. By summing over all the non-leaf splits, our global HMMC

objective is formulated as:

minw,y
ξ≥0

T∑
t=1

(
αG(wt) + βE(wt) + 1

|Dt|Kt

∑
xi∈Dt
y 6=yti

ξ2
tiy

)
, (3.1)

s.t. w>tytixi −w>tyxi ≥ 1− ξtiy, ∀t,xi ∈ Dt, y 6= yti

yti ∈ {1, . . . ,Kt}, ∀t,xi ∈ Dt
Lt ≤

∑
xi∈Dt

∆(yti = y) ≤ Ut, ∀t, y ∈ {1, . . . ,Kt}

where w = {wt} are the cluster model parameters, yti denotes the cluster label of an instance xi
on node nt, ξ’s are slack variables to allow margin violations, G(·) and E(·) are regularizers, and

α and β are trade-off parameters. Our algorithm uses MMC for each data split, where we enforce

the maximum-margin criterion by constraining the score of fitting xi to its assigned cluster to be

sufficiently larger than to any other cluster, using the squared hinge loss (whose smoothness simpli-

fies the optimization). The last constraint enforces the clusters to be balanced, to avoid degenerate

solutions with empty clusters and infinite margins. Here ∆(·) is an indicator function, while Lt and

Ut are the lower and upper bounds controlling the size of the clusters. As suggested in Chapter 2, we

set Lt and Ut to 0.9 |Dt|Kt
and 1.1 |Dt|Kt

, respectively, to achieve roughly balanced clusters at each split.

Note that HMMC jointly optimizes the model parameters w and clustering assignments y = {yti}
over all splits.
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The two regularizers G(wt) and E(wt) promote learning of a semantically meaningful cluster

hierarchy. These regularizers encourage splitting on a sparse group of features at each node, but

encoding a preference towards using different features at different levels of the hierarchy. While the

grouping and competition among features have proved useful for encoding semantic taxonomies in

supervised learning problems [129, 47], we apply these ideas for discovering semantically mean-

ingful cluster hierarchies in an entirely unsupervised setting.

Group sparsity: In the hierarchy, we would like different splits to focus on different subsets of

features. Thus, in splitting a non-leaf node, we encourage the clustering process to only use a sparse

set of relevant features. Considering that there are Kt cluster models at node nt, we enforce group

sparsity [79] over different feature dimensions so that the Kt models are using the same subset of

features. Formally, we have the following regularizer on the split of nt:

G(wt) = 1
PKt

P∑
p=1

√√√√ Kt∑
k=1

w2
tk,p, (3.2)

where P is the feature dimension, and wtk,p is the p-th element in wtk. Mathematically, this term

encodes a mixed `1,2-norm to enforce sparsity among the feature dimensions. Thus, if a feature is

irrelevant, then it is zero-weighted in all the Kt cluster models.

Exclusive sparsity: We also want the cluster hierarchy to use different subsets of features in dif-

ferent layers, so that we consider different factors when traversing the hierarchy. In other words, a

split is expected to explore features that are different from its ancestors and descendants, and thus

the splits compete for features at different layers. We will denote a node nt’s ancestors by At,
which formally is the set of nodes on the path from the root to nt. With this notation the exclusive

regularizer for node nt is defined by [143]:

E(wt) = 1
Kt|At|P

Kt∑
k=1

∑
na∈At

P∑
p=1
|wtk,p| · |waka,p|, (3.3)

where ka indexes the child of na (na ∈ At) on the path to nt. Thus, waka is the parameter vector for

the ancestral cluster to which nt belongs. Eq. (3.3) penalizes “cooperation” (using the same features)

and encourages “competition” (using different features) between a cluster model wtk and each of

its ancestor models {waka}na∈At . The degree of competition is calculated as the element-wise

multiplication of the absolute weight values. Intuitively, this means that there is no penalty if two

models use different features, but using the same features results in a high penalty. Consequently,

minimizing the exclusive sparsity as we split nodes will encourage nodes to use features different

from those used by their ancestors and descendants. In [129, 117], it is shown that Eq. (3.3) becomes

convex when combined with a sufficiently large `2-regularizer.
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Algorithm 1 HMMC: A greedy algorithm for building hierarchy
Input: n1 and D . n1 is the root node carrying all data in D
Output: H . the cluster hierarchy including all non-leaf nodes

1: Initialize: L ← {n1}; . the current set of leaf nodes
2: while the stopping criterion is not met do
3: for nt ∈ L do
4: cluster the data on nt; . details in Section 3.4.2
5: compute the splitting score S(nt); . using Eq. (3.4)
6: n∗ ← argmaxnt∈L S(nt); . greedily find the next split
7: L ← L \ n∗;H ← H∪ n∗; . move n∗ from L toH
8: for each cluster in n∗ do
9: create a leaf node nc carrying the data in that cluster;

10: link nc as a child of n∗;
11: L ← L ∪ nc; . add nc to the current set of leaf nodes

3.4 Optimization

The objective of Eq. (3.1) is non-convex due to the unknown hierarchical structure, and because

we do not know the split on each node that jointly optimizes w and y. To solve the problem,

we propose a greedy top-down algorithm to build the hierarchy (Section 3.4.1), and an alternating

descent algorithm for splitting a node (Section 3.4.2).

3.4.1 Building the Hierarchy

We build the cluster hierarchy in a top-down manner, where the challenge is to iteratively find the

next leaf to split. Algorithm 1 gives an overview of our greedy method. We start from the root node

n1 containing all the data. Note that n1 starts as a leaf node since it has no children. Each iteration

tries to split the data on each leaf node nt (Step 4), and we define the splitting score (Step 5) as:

S(nt) =
∑

xi∈Dt w>tyixi
G(wt) + E(wt)

. (3.4)

The splitting score measures how well, and how easily, the data on node nt can be clustered. The

numerator of Eq. (3.4) summarizes the scores of fitting each instance to its assigned cluster. A high

value in the numerator indicates compact clusters where the instances are well-fit by the assigned

cluster models. The denominator of Eq. (3.4) is the regularization term indicating the complexity

of the cluster models, where a small value implies a simple model. Thus, a higher splitting score

means the node is a better candidate to be split.

The leaf node to split is chosen to greedily maximize the splitting score (Step 6). We fix the

cluster models on this node, mark it as a non-leaf node, and move it to the hierarchy (Step 7).

Moreover, since we are splitting this node, we generate its child nodes according to the clustering

result and add the child nodes to the leaf node set for the next iteration (Steps 8 to 11). We iterate

this process until the stopping criterion is satisfied, which could test whether (i) a given number of
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leaf nodes are found, (ii) whether the sizes of all leaf nodes are sufficiently small, or (iii) whether

the hierarchy reaches a height limit. To speed up this process, we cache the clustering result on each

leaf node, so that we do not have to rerun the clustering once the leaf node is selected to grow the

hierarchy.

3.4.2 Splitting A Node

The clustering on a given node nt is formulated as:

minwt,yt
ξ≥0

αG(wt) + βE(wt) + 1
|Dt|Kt

∑
xi∈Dt

∑
y 6=yti

ξ2
tiy, (3.5)

where we omit the constraints (from Eq. (3.1)) for brevity. Note that the cluster models of the ances-

tors of nt have been fixed in the greedy top-down learning process. Thus, the exclusive regularizer

E(wt) becomes a weighted `1-norm (sparsity-inducing) regularizer on wt, where the weight on

each model parameter wtk,p is set based on the ancestor nodes to
∑

na∈At
|waka,p|

Kt|At|P . Together with

the group sparsity G(wt), this yields a weighted sparse group lasso regularizer, generalizing the

sparse group lasso regularizer of Friedman et al. [35].

Eq. (3.5) is still a non-convex problem due to the joint optimization over wt and yt. We use

an alternating descent algorithm to reach a solution. In each iteration we fix the model parameters

wt and optimize yt by solving a clustering assignment problem, and then we update wt while

keeping yt fixed using a proximal quasi-Newton algorithm [65, 102]. The algorithm stops when the

objective converges to a local optimum with respect to these steps.

Clustering assignment: With wt fixed, the problem in Eq. (3.5) turns out to be an assignment prob-

lem, which minimizes the total cost for labeling all instances while maintaining balanced clusters:

min
yt

∑
xi∈Dt

∆(yti = y) ·

Ctiy︷ ︸︸ ︷∑
y′ 6=y

[1−w>tyxi + w>ty′xi]2+, (3.6)

s.t. yti ∈ {1, . . . ,Kt}, ∀xi ∈ Dt
Lt ≤

∑
xi∈Dt

∆(yti = y) ≤ Ut, ∀y ∈ {1, . . . ,Kt}

where Ctiy is the cost for assigning an instance xi into a cluster y. Following Chapter 2, we could

solve Eq. (3.6) by constructing an integer linear programming (ILP) problem with O(|Dt| · Kt)
variables and O(|Dt| + Kt) constraints. However, this ILP is time-consuming since in the worst

case the complexity of existing ILP solvers is exponential in the number of variables. To efficiently

solve this problem, we formulate it as a minimum cost flow (MCF) problem.

We re-write the clustering assignment as the problem of sending an MCF through an appropri-

ately designed network, illustrated in Figure 3.1. The flow capacity of an edge from the starting

node s to an instance node xi is set to 1 since we are assigning every instance into a cluster. This
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[0, 1], Ctiy

[Lt, Ut], 0

Figure 3.1: A sample MCF network. The edge settings are formatted as: “[lower capacity, upper
capacity], cost”. See text for details.

one unit of flow is sent from xi to a cluster node wty, to which the instance is assigned, at cost

Ctiy. Finally, each cluster node sends its receiving flows to the end node e, where we limit the

flow capacity in the range [Lt, Ut] to take the cluster balance constraints into account. It can be

shown that clustering the |Dt| instances into Kt clusters (under the cluster balance constraints) is

equivalent to sending |Dt| units of flow from s to e, and the optimal network flow corresponds to

the minimum total cost of Eq. (3.6). To find this optimal flow, we apply the capacity scaling al-

gorithm [25] implemented in the LEMON library [22], which is an efficient dual solution method

running in O
(
|Dt| ·Kt · log(|Dt|+Kt) · log(Ut · |Dt| ·Kt)

)
complexity. In practice, our MCF solver

speeds up the ILP solver in Chapter 2 by 10 to 100 times.

Updating wt: With fixed yt, we solve for wt (a convex problem) using a proximal quasi-Newton

method [65, 102]. This method is designed to efficiently minimize smooth losses with non-smooth

but simple regularizers, and on each iteration it computes a new estimate wt by solving:

min
wt

αG(wt) + βE(wt) +H(wold
t ) +H ′(wold

t )>(wt −wold
t ) + 1

2s‖wt −wold
t ‖2B, (3.7)

where s is a step-size set using a backtracking line-search, H(wold
t ) is the squared hinge-loss (i.e.,

the last term of Eq. (3.5) after using the constraints to eliminate the slack variables) estimated with

wold
t from the fixed yt, H ′(wold

t ) is the derivative of H(wold
t ) w.r.t. wold

t , and ‖z‖2B = z>Bz is a

divergence formed using the L-BFGS matrix B [7, 81].

A spectral proximal-gradient method is used to compute an approximate minimizer of this ob-

jective. This algorithm requires the proximal operator. For our weighted sparse group lasso regu-

larizer, we can show that solving this minimizing problem involves a two-step procedure. First,

we incorporate the weighted `1-norm penalty by applying the soft-threshold operator wtk,p =
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wtk,p

|wtk,p| [|wtk,p| − sβλE ]+ to each model parameter individually, where λE =
∑

na∈At
|waka,p|

Kt|At|P is

the weights coming from the ancestor models in E(wt). This operator returns 0 if wtk,p = 0.

Second, we incorporate the group sparsity using the group-wise soft-threshold operator wt:,p =
wt:,p
‖wt:,p‖2

[‖wt:,p‖2 − sαλG]+, where wt:,p = [wt1,p, . . . ,wtKt,p]> is the grouping of Kt cluster

models on a feature dimension p, and λG = 1
PKt

is the normalization term from G(wt). Note that

this operator returns 0 if wt:,p = 0.

Convergence analysis: We now show that this alternating descent algorithm converges to a local

optimum. The optimization consists of two alternating steps: updating the discrete yt and the

continuous wt. In the wt update, we fix the clustering yt and use a method that is guaranteed to

find a global optimum [65, 102]. The yt update (with wt fixed) also seeks the global optimum by

using MCF to solve the clustering assignment problem. Thus, the procedure guarantees convergence

to a local minimum with respect to updating wt and yt.

3.5 Experiments

Datasets: We evaluate the performance of HMMC on four datasets from two public image col-

lections: Animal With Attributes (AWA) [61] and ImageNet [19]. Both collections have natural

hierarchies consisting of fine-grained image classes that can be grouped into more general classes.

AWA contains 30,475 images from 50 animal classes (e.g., bat and deer). We use two datasets

following the practice of [47]. The first one, AWA-ATTR, has 85 features consisting of the outputs

of 85 linear SVMs trained to predict the presence/absence of the 85 nameable properties annotated

by [61], like red and furry. The second dataset, AWA-PCA, uses the provided features (SIFT,

rgSIFT, PHOG, SURF, LSS, RGB) after being concatenated, normalized, and PCA-reduced to 100

dimensions. The ground-truth hierarchy of AWA is shown in Figure 3.2(a).

We use two datasets collected from ImageNet: VEHICLE contains 20 vehicle classes (e.g., cab

and canoe) and 26,624 images [47], and IMAGENET consists of 28,957 images spanning 20 non-

animal, non-vehicle classes (e.g., lamp and drum) [48]. The raw image features are the provided

bag-of-words histograms obtained by SIFT [19, 18]. We also project them down to 100 dimensions

with PCA. The semantic hierarchies of VEHICLE and IMAGENET are given in Figure 3.2(b) and

Figure 3.2(c), respectively.

Baselines: We compare HMMC with four sets of baselines. The first set is the flat clustering

methods k-means (KM) [42, 72], spectral clustering (SC) [80], and an MMC approach implemented

in Chapter 2.

The second set is hierarchical bottom-up clustering (HBUC). We have tested a variety of meth-

ods including Single-Link (SL), Average-Link (AL) and Complete-Link (CL) [77]. The pairwise

dissimilarity between two images is measured by Euclidean distance.

The third set is hierarchical top-down clustering methods (HTDC). We derive variants of hi-

erarchical k-means (HKM) and hierarchical spectral clustering (HSC) directly from our HMMC

approach. HKM and HSC apply the same greedy top-down approach as HMMC, but split a given
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Figure 3.2: The semantic hierarchies of AWA, VEHICLE and IMAGENET. Note that AWA has 50
fine-grained animal classes, VEHICLE has 20 vehicle classes, and IMAGENET has 20 non-animal,
non-vehicle classes.
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node using k-means and spectral clustering, respectively. Similar to HMMC, HKM and HSC first

try splitting all the current leaf nodes, and then greedily grow the leaf with the best splitting. The

splitting score on a leaf node is defined as the average within-cluster distance – minimizing this

gives the most compact clusters. We also considered two other baselines, HKM-D and HSC-D.

Instead of growing the leaf with the most compact clusters, HKM-D and HSC-D grow the leaf with

the most scattered data, which is defined as the total distance of all instances to their center.

The fourth set of baselines are variants of HMMC. We change the regularization to derive

HMMC-G (group sparsity only), HMMC-E (exclusive sparsity only), HMMC-1 (basic `1-norm),

and HMMC-2 (squared `2-norm).

Parameters: For a fair comparison of all the hierarchical top-down clustering methods, we apply

the same stopping criterion: we test if the number of leaf nodes exceeds a fixed limit F . Empir-

ically, we set F as 1, 1.5 and 2 times the number of ground-truth classes in each dataset. The

number of splits on each node also has a great impact on the learned hierarchy. To compare dif-

ferent hierarchical clustering methods, we simply use K-nary branching for all splits in all hierar-

chies. We experiment with K set as 2, 3, 4 and 5, respectively. With a particular setting of F and

K, we can fairly compare different hierarchical clustering methods since they perform the same

number of splits and obtain the same number of leaf nodes. We use the same solver for learning

HMMC and its variants, and report the best performance with both α and β selected from the range

{10−4, 10−3, 10−2, 10−1, 100}.
For the HBUC baselines, we apply the same F parameter as above. However, all the HBUC

methods use binary branching and there is no result for K larger than 2.

For the flat clustering methods (i.e., KM, SC and MMC), we set the number of clusters to F to

fairly compare performance with hierarchical methods. For SC, we use a 5-nearest neighborhood

graph and set the width of the Gaussian similarity function as the average distance over all the

5-nearest neighbors. This also applies in HSC and HSC-D which use SC for splitting a node.

Performance measures: We evaluate all the methods by three performance measures. The first

two are semantic measures focusing on how well the learned hierarchy captures the semantics in the

ground-truth hierarchy. The motivation is that two semantically similar images should be grouped in

the same or nearby clusters in the learned hierarchy, and two semantically dissimilar images should

be split into clusters that are far away from each other.

For each pair of images, we compute their semantic similarity from the ground-truth hierarchy,

using the following two metrics. The first “shortest path” metric [41] finds the shortest path linking

the two image classes in the ground-truth hierarchy, normalizes the path distance by the maximum

distance, and subtracts the distance from 1 as the semantic similarity. The second “path sharing”

metric [33] counts the number of nodes shared by the parent branches of the two image classes,

normalized by the length of the longest of the two branches. Note that we can similarly define the

shortest path similarity and the path sharing similarity using the learned hierarchy, for any pair of

images, by checking the leaf node(s) where the two images are clustered. For flat clustering with no

hierarchy, we simply set the similarity as 1 if two images are from the same cluster, and 0 otherwise.
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To measure the goodness of the learned hierarchy in capturing semantics, we compute the mean

squared error of the learned similarity and the ground-truth semantic similarity over all pairs of

images, and subtract the mean squared error from 1 as our semantic measure. Note that we have

two semantic measures, the shortest path similarity (SP) and the path sharing similarity (PS). The

higher the values, the better the performance.

Moreover, we also report the Rand Index (RI) [95], which evaluates the percentage of true

positives within clusters and true negatives between clusters. Note that RI is a commonly-used

measure for flat clustering. For hierarchical clustering methods, we simply ignore the hierarchy and

evaluate RI on the leaf node clustering (allowing direct comparisons with flat clustering methods).

3.5.1 Results

Comparing flat and hierarchical methods: We report the clustering results with F equal to the

number of ground-truth classes and K = 2 (binary splitting) in Table 3.1. Note that we observe

similar results with other settings of F and K so we omit the numbers here. Table 3.1 shows that

HMMC achieves the best performance on AWA-PCA, VEHICLE and IMAGENET, and competitive

results on AWA-ATTR. Specifically, HMMC improves over the second best by 0.2% on AWA-

ATTR, 2% on AWA-PCA, 6% on VEHICLE and 4% on IMAGENET, respectively, in terms of

the semantic measure SP. This verifies that HMMC better captures the semantics in the clustered

hierarchies.

Moreover, HMMC outperforms other HTDC baselines in most cases, showing the effectiveness

of our greedy top-down algorithm for hierarchy building and our alternating descent algorithm for

splitting data on a given node. Note that the HBUC baselines tend to perform worse since they

typically produced extremely unbalanced clusters at the top levels (e.g., a child contains only one

sample). They also did not lead to semantically meaningful hierarchies.

Comparing the variants of HMMC: Table 3.1 shows that HMMC gets slightly better performance

over the four variants of HMMC. This is reasonable since HMMC produces sparse models that may

better capture semantics. We also compare the model sparsity (i.e., the percentage of zeros in the

learned models) in Figure 3.3. Here we omit HMMC-2 since the model is always non-sparse. For

a fair comparison, we fix the trade-off parameters to 1 in all models. Note that by combining the

grouping and exclusive regularizers, HMMC is sparser than HMMC-G and HMMC-E. HMMC-1

sometimes has slightly better sparsity than HMMC, but the performance is limited as it does not

explicitly model group and exclusive sparsity to capture data semantics.

Runtime comparison: Table 3.1 also reports the runtime results. Our implementation of HMMC

is between 1.4 to 8 times faster than MMC, showing the efficiency of the hierarchical method. Note

that HMMC is more expensive than other hierarchical and flat methods. This is reasonable since

HMMC needs to solve a more expensive optimization problem during clustering.

Using different F and K: We also vary the parameters F (i.e., the number of leaf nodes) and K

(i.e., the number of splits), and plot the SP performance in Figure 3.4 and Figure 3.5, respectively.

Here we have omitted the poor results of hierarchical bottom-up methods for better visualizations.
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Table 3.1: Clustering performance on the four datasets. SP, PS and RI are reported in percentage,
and the boldfaced numbers achieve the best performance among flat and hierarchical methods (ex-
cluding HMMC variants). The runtime (in seconds) is measured on a machine with Intel Xeon
2.8GHz CPU and 16GB memory.

AWA-ATTR AWA-PCA
Methods SP PS RI runtime SP PS RI runtime

FL
A

T KM 77.95 92.83 96.04 5.2 77.48 91.34 94.50 7.4
SC 77.90 92.54 95.71 209.2 77.16 88.72 91.21 172.2

MMC 77.08 83.67 83.71 15957.7 77.32 90.59 93.54 6077.0

H
B

U
C SL 63.97 16.24 2.65 88.3 64.00 16.24 2.69 80.9

AL 74.55 38.99 32.84 72.1 64.37 17.00 3.94 80.9
CL 92.60 87.54 93.33 81.8 68.14 22.63 34.27 47.6

H
T

D
C

HKM 71.95 40.46 30.02 1.6 85.00 76.86 79.77 3.2
HSC 81.59 69.84 67.43 247.0 79.47 47.69 57.25 873.2

HKM-D 92.59 91.01 95.97 5.8 91.43 88.24 95.02 2.4
HSC-D 94.18 90.38 95.98 293.4 79.94 48.02 57.97 873.4
HMMC 94.40 91.03 95.96 1986.9 93.69 89.66 95.65 1550.1

VA
R

IA
N

T HMMC-G 94.36 90.83 95.87 1389.6 93.77 89.59 95.56 1254.2
HMMC-E 93.81 90.74 95.45 788.2 93.11 89.39 94.79 1408.8
HMMC-1 87.77 77.49 77.84 558.1 92.01 89.69 95.49 769.9
HMMC-2 92.70 90.92 95.99 893.2 93.65 89.47 95.25 1449.1

VEHICLE IMAGENET
Methods SP PS RI runtime SP PS RI runtime

FL
A

T KM 75.44 76.76 78.08 2.9 79.66 82.03 87.14 4.0
SC 74.15 74.00 74.12 112.0 69.39 67.79 61.25 137.3

MMC 78.03 84.23 88.49 1366.6 79.98 82.74 89.24 2634.3

H
B

U
C SL 58.21 29.12 5.30 61.2 45.85 32.97 5.24 84.5

AL 58.24 29.17 5.45 47.8 45.87 33.00 5.29 49.0
CL 58.30 29.26 5.58 54.2 46.46 33.62 6.59 69.3

H
T

D
C

HKM 77.68 65.75 59.75 2.2 82.85 80.93 84.67 1.9
HSC 68.59 45.84 36.62 745.4 64.76 52.69 53.64 913.6

HKM-D 84.89 74.77 85.37 1.9 81.42 80.87 86.60 3.2
HSC-D 69.29 46.07 37.11 316.9 48.19 37.01 11.00 892.9
HMMC 90.48 85.08 90.16 994.3 86.94 84.63 90.59 1411.6

VA
R

IA
N

T HMMC-G 90.40 85.03 90.10 883.6 86.69 84.33 90.56 1016.4
HMMC-E 87.82 83.00 86.26 616.3 85.77 83.98 89.06 1658.4
HMMC-1 89.94 84.72 89.54 486.9 86.81 84.52 90.52 690.1
HMMC-2 90.05 84.71 89.68 541.3 86.13 84.08 89.94 1158.3
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Figure 3.3: HMMC model sparsity. See text for details.

HMMC consistently outperforms the other baselines on AWA-PCA, VEHICLE and IMAGENET,

and is comparable with HKM-D and HSC-D on AWA-ATTR. Note that the performance of HMMC

is stable with regard to the different settings of F and K.

Visualizations: Figure 3.6 visualizes the learned hierarchy on AWA-ATTR. Our model captures

semantically meaningful attributes in building the hierarchy – note how the attribute quadrapedal is

used to separate whales and polar bears, and how longneck is used to divide rhinos and giraffes.

3.6 Summary

We have presented a hierarchical clustering method for unsupervised construction of semantic hi-

erarchies. We develop a greedy top-down splitting criterion, and use the grouping and exclusive

regularizers for building semantically meaningful hierarchies from unsupervised data. Our method

makes use of maximum-margin learning, and we propose effective algorithms to solve the resultant

non-convex objective. We test our method on four standard image datasets, showing the efficacy of

our method in clustering, and the ability to capture semantics via the hierarchies. As future direc-

tions, it is interesting to leverage the tree structure building in a unified optimization framework.
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Figure 3.4: SP result w.r.t. different settings of F . Here we fix K = 2 on all the four datasets.
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Chapter 4

Scene Recognition by Semantic
Structure Discovery

In this chapter, we present our recognition method that leverages semantic scene structure discov-

ery. Specifically, we conduct image recognition by learning a class-to-image distance function that

matches objects. The set of objects in training images for an image class are treated as a structured

collage. When presented with a test image, the best matching between this collage of training image

objects and those in the test image is found. We validate the efficacy of the proposed model on the

PASCAL 07 and SUN 09 datasets, showing that our structured model is effective for both object

and scene recognition tasks. State-of-the-art recognition results are obtained, and qualitative results

demonstrate that objects can be accurately localized and matched.

4.1 Overview

We present a method for image recognition that matches sets of objects. We aim to recognize an

input image into classes, such as those containing a specific object (e.g., PASCAL VOC [27, 28])

or coming from a certain scene (e.g., SUN [128, 13, 127]). Our representation focuses on the set of

objects found in an image class. An image class is represented using the set of objects contained in

its image instances. We formulate a class-to-image distance for matching to an unseen image that

looks for a set of similar objects in similar spatial arrangements to those found in a set of training

images. The distance between this collage of objects and a test image is used to recognize the test

image.

Image recognition is a well-studied problem in computer vision. An important question is

choosing an appropriate representation for recognition. Standard approaches in the vision litera-

ture span a gamut of potential answers for this representation question. Purely statistical measures

based on local features are common, e.g., Lazebnik et al. [63]. Direct exemplar matching meth-

ods are also well-studied, e.g., Berg et al. [3]. Detailed reasoning about object segmentation can

also assist in image recognition [9]. Higher-level semantic reasoning about object context is another
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Figure 4.1: An example showing the object matchings between the airport class and a test image.
There are four major object categories in the training airport images: sky, airplane, road and tree.
We match the dashed objects from the training side to the objects in the test image, from which the
class-to-image distance is calculated. Spatial relations, e.g., sky-above-airplane, sky-above-road,
and tree-next.to-airplane, are also considered in measuring the distance.

important cue for image recognition, e.g., Li et al. [67]. The focus of this work is on object-level rep-

resentations, though a solution to image recognition likely requires integration of all these sources

of information.

In this chapter we develop a method that matches the object structure present in an image. We

learn a distance from an image class to a given image that examines a higher-level semantic repre-

sentation using objects. Figure 4.1 shows an example of the object matching. We are inspired by

two recent lines of work – Object Bank [68], which takes a statistical view of object presence, and

exemplar SVM [75] which considers matching individual exemplar objects. The Object Bank work

of Li et al. [68] shows that a large bank of object detectors is an effective feature for image recogni-

tion – building a feature vector that captures the statistics of object detector responses. On the other

hand, Malisiewicz and Efros [75] advocate for an exemplar matching approach – each image is its

own island of uniqueness. Our work bridges these two approaches, leveraging the strength of many

objects as a representation for images, but using a matching framework that considers structured

collages of objects across an entire training class.
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Our main contribution is the development of this image recognition method. We present a novel

latent variable distance function learning framework that considers matchings of objects between

a test image and a set of training images from one class. We develop efficient representations for

the relationships between objects in this latent variable framework. We show empirically that this

method is effective, and that reasoning about objects and their relations in images can lead to high

quality recognition performance.

The rest of this chapter is organized as follows. We first review related work in Section 4.2.

Then we describe our distance model in Section 4.3. The inference and learning algorithms are

described in Sections 4.4 and 4.5, respectively. Later we report experimental results in Section 4.6.

Finally, Section 4.7 summarizes this chapter.

4.2 Related Work

Object-level representations: Image understanding with object-level representations is common

in computer vision research. We divide the literature into three categories. First, object-level repre-

sentations supply rich information to assist detection and recognition. Malisiewicz and Efros [75]

learn per-exemplar distance functions for data association based object detection. Li et al. [68]

tackle scene recognition by representing an image as Object Bank – a feature vector that captures

the statistics of object detectors. Second, object-level representations can be combined with other

information sources. Wang and Mori [123] model object-tag correspondences in a latent variable

framework. Wang and Forsyth [122] jointly learn object categories and visual attributes in a multiple

instance learning framework. Third, groups of objects can provide useful contextual information.

Rabinovich et al. [94] exploit contextual relevance of objects by modeling object co-occurrences.

Lee and Grauman [66] encode the layout of object-level patterns by object-graph descriptors. Li et

al. [67] model groups of objects as the basic elements for scene understanding. Lan et al. [62]

retrieve images for structured object queries, and show that contextually-related objects are helpful

even if they are not present in the given queries.

Distance function learning: There has been much work in recent years learning distance functions

for image recognition. An early representative study by Frome et al. [36, 37] builds image-to-

image distance on top of local patch-based distances, where each patch is localized by a geometric

blur descriptor. Boiman et al. [5] compute nearest-neighbor based image-to-class distance based

on local SIFT descriptors [73]. Wang et al. [125] also measure image-to-class distance by learning

Mahalanobis distance metrics. Recent work by Wang et al. [124] regularizes class-to-image distance

via `1-norm. Wang et al. [119] define a class-to-bag distance for multiple instance learning. Our

method also learns class-to-image distance, but the key difference is that we focus on object-level

representations and explicitly reason about objects and their relations in images. In contrast, existing

methods always operate in the space of local descriptor features.
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4.3 The Object Matching Based Distance Model

Our goal is to learn a class-to-image distance function that jointly captures object matchings, object

pairwise interactions, as well as global image appearance. We start with an example (Figure 4.1)

that illustrates calculating the class-to-image distance from the airport class to a test image. The

airport class is represented as a collage of object sets (i.e., sky, airplane, road and tree) from training

images, arranged in certain spatial layout, such as sky-above-airplane. In essence, our distance

model matches to a test image with a set of similar objects in similar spatial arrangements from

training images.

Our structured model consists of three components: the unary object distance, the pairwise

object distance, and the global image appearance distance. The unary object distance measures the

object-level distance from an image class to a test image. In our example, we match one object

from each of the four object sets (sky, airplane, road and tree) to the test image. We calculate the

distance between the matched pair of objects. The unary object distance is a summation over the

four distances calculated from the four object matchings. The pairwise object distance measures

the distance of spatial arrangements of objects from an image class to a test image. In our example,

the matched objects in the test image meet the three popular spatial relations in the training airport

images. Thus, we further pull the test image close to the airport scene. Finally, our distance model

takes the global image features into account and calculates the global image appearance distance

accordingly.

4.3.1 Model Formulation

We first introduce the notations used in this chapter before defining our distance model. We as-

sume the ground-truth object bounding boxes are available in the training images. Note that this

assumption reasonable because object annotation is becoming more and more prevalent with the

help of online annotation tools such as LabelMe [99] and Amazon Mechanical Turk1. Our two

experimental datasets, PASCAL 07 [27] and SUN 09 [13], are both fully annotated.

For an image class C, we gather together all the objects in the training images belonging to this

class to make up the object sets O = {Oi}i∈V , where V denotes all the object categories in O, and

Oi is the set of objects annotated with category i ∈ V . We use Oui to represent the u-th object in

Oi. Given an image x, our model is a distance function Dθ(C,x) (here θ are the parameters of this

function) that measures the class-to-image distance from C to x based on object matchings. Ideally,

Dθ(C,x) will have a small value if the image x belongs to the class C, and a large value if x comes

from a class other than C.

There are two major challenges in definingDθ(C,x). First, even though the ground-truth object

bounding boxes are readily available in the training images, we do not have annotated objects on

the test image set. To resolve this problem, we assume x is associated with a set of “hypothesized”

objects. We model the location/scale configurations of the hypothesized objects as latent variables
1Available online at www.mturk.com/mturk/.
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and infer them implicitly in our model. The latent variables are denoted as H = {Hi}i∈V , where

Hi is the set of hypothesized object configurations in category i. We use Hvi to denote the v-th

configuration in Hi and the corresponding hypothesized object interchangeably. Note that H is

normally smaller than O in size because O gathers all the objects in class-C images and H only

includes the objects in the image x.

A second challenge lies in finding the optimal object matchings from O to H. If we only con-

sider the unary object distance, we can find the optimal object matching separately within each

object category by choosing the closest pair over the bipartite matchings between Oi andHi. How-

ever, we believe that the pairwise spatial relations can also deliver useful information for measuring

distance (as shown in Figure 4.1). Therefore, we need to jointly consider the unary object distance

as well as the pairwise interactions. To address the problem, we model the object matchings as a set

of latent variablesM = {(ui, vi)}i∈V , where ui and vi are both object indices, and the pair (ui, vi)
indicates that object Ouii is matched to objectHvii for category i.

Given the class C and the image x, we can find the optimal settings ofH andM by minimizing

the distance over all possible object configurations and all possible object matchings. Then the

minimum distance is treated as the class-to-image distance Dθ(C,x). Formally, we have

Dθ(C,x) = min
{H,M}

θ>Φ(O,H,M,x), (4.1)

where θ>Φ(O,H,M,x) is a linear function measuring the distance from C to x accordingly to

putative object configurationsH and putative object matchingsM. We define

θ>Φ(O,H,M,x) = α>ψ(O,H,M) + β>ρ(H,M) + γ>φ(x), (4.2)

where θ = {α, β, γ} are the model parameters, and Φ = {ψ, ρ, φ} is the feature vector defined on

(O,H,M,x). Next we describe in detail each component in Eq. (4.2).

Unary object distance α>ψ(O,H,M): This function measures the unary object distance between

O and H based on the object matchingsM. To compute the distance between a pair of matched

objects, we consider five base distance measures calculated from five local object features includ-

ing color histograms, HOG [17], LBP [82], texton [74], and location histograms (more details in

Section 4.6). The unary object distance is then calculated as a weighted summation over all base

distances. Formally, we parameterize this function as:

α>ψ(O,H,M) =
∑
i∈V

∑
t

αit · ψt(Ouii ,H
vi
i ), (4.3)

where ψt(Ouii ,H
vi
i ) is a scalar distance betweenOuii andHvii measured by the type-t features. Note

that αit is a scalar parameter that weights the t-th distance measure for all the category-i objects –

high weights indicate discriminative object categories. Similar to [36, 37, 75], we restrict αit to be

non-negative.
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Pairwise object distance β>ρ(H,M): This function captures the pairwise spatial relations among

certain object categories. Here we follow [20] to define four spatial relations including on.top.of,

above, below and next.to. Given two object categories (i, j) and the matched objects (Hvii ,H
vj
j )

in the image x, we define ρk(Hvii ,H
vj
j ) = −1 if the spatial relation between Hvii and Hvjj is

consistent with a spatial relation k, and ρk(Hvii ,H
vj
j ) = 0 otherwise. The pairwise object distance

is parameterized as:

β>ρ(H,M) =
∑
i∈V

∑
j∈V

∑
k

βijk · ρk(Hvii ,H
vj
j ), (4.4)

where βijk is a scalar parameter that weights the spatial relation k between object categories i and

j – high weights indicate discriminative spatial relations. We also require βijk to be non-negative.

This function implements the idea that we should pull the image x close to the class C if the spatial

relations between the matched objects in the image x are discriminative for the class C.

Global image appearance distance γ>φ(x): This function models the distance based on the global

image features φ(x). It is parameterized as:

γ>φ(x) =
∑
g

γg · φg(x), (4.5)

where γg is a scalar parameter that weights the g-th global feature φg(x). In fact, the choice of

φ(x) is task-dependent and any robust features can be flexibly encoded in the model. In our exper-

iments, we use the bag-of-word features [10] for object recognition on PASCAL 07, and the GIST

descriptors [83] for scene recognition on SUN 09.

4.4 Inference

During testing, we are given the model parameters θ = {α, β, γ} as well as a collection of unanno-

tated test images. For each test image x, we need to compute the class-to-image distance Dθ(C,x).

The final decision is made by recognizing images with small distances as positive, and images with

large distances as negative. Here the key computational issue is to solve the inference problem in

Eq. (4.1).

It is computationally intensive to solve the inference problem because we need to examine all

the possible configurations (i.e., locations and scales) for each object category, search over all the

possible object matchings, and find the complete configurations and object matchings that jointly

minimize the objective function. If we only consider the unary object distance, this results in in-

ferring the optimal object configuration and object matching within each object category indepen-

dently. We can try each object’s configuration in a sliding window manner, and then examine all

the possible object matchings. With our full structured model defined in Eq. (4.2), the inference

problem in Eq. (4.1) is computationally infeasible.

To speed up the inference process, we employ several approximation strategies. First, we re-

duce the search space of location/scale configurations for the objects in an object category. This is
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achieved by running an object detector [32] on all locations/scales in x in a standard sliding win-

dow manner, followed by non-maximum suppression to obtain the candidate configurations. In our

experiments, we use respectively 5 and 10 candidate configurations for each object category per

PASCAL 07 and SUN 09 image. We keep using the notationHi to denote the candidate configura-

tions of object category i. When solving the inference problem in Eq. (4.1), we restrict the selected

object for object category i to one of its corresponding candidate configurations inHi.
The second approximation strategy is for object matchings. Given the candidate configurations

Hi, there are |Oi| × |Hi| possible object matchings for the object category i. It is costly to consider

all of them, especially since we need to jointly regard all the object categories in finding the optimal

set of object matchings. Here we reduce the search space for category i by only considering |Hi|
candidate object matchings. In detail, for each candidate object configurationHvi ∈ Hi, we compute

the distance from all the objects in Oi to it. We then assign a candidate object matching by pairing

Hvi to its closest object Ou∗i in Oi. Formally, we identify the candidate ojbect matching by solving

the following optimization problem:

u∗ = argmin
u

∑
t

αit · ψt(Oui ,Hvi ). (4.6)

Note that the candidate object matchings are still latent (i.e., not observed in the original data) be-

cause they change with the model parameters α during learning. When solving the inference prob-

lem in Eq. (4.1), we require each object category to select one object matching from the candidate

set.

Provided the above approximations, it is easy to show that the inference problem in Eq. (4.1)

is now equivalent to the energy minimization problem in a Markov Random Field (MRF) with

|V| nodes [57]. Each node in the MRF corresponds to an object category. The node i has |Hi|
possible states, where the unary energy for each state is the distance calculated by Eq. (4.6) for the

corresponding candidate object matching. An edge (i, j) in the MRF corresponds to the relation

between object categories i and j.

The optimization problem in Eq. (4.1) is still hard to solve if we have to consider the relation

between all pairs of object categories, i.e., when the relation between object categories is represented

by a complete graph. To further speed up the process, we prune the graph into a tree structure by

considering only frequent spatial relations in the class-C images. In detail, we first assume that

only one spatial relation matters for a given pair of object categories, and we choose it as the most

frequent spatial relation. The selected spatial relations are then used to construct an undirected

weighted (by frequency) graph. We take the maximum spanning tree of this graph as our pruned

tree structure for class C. Putting everything together, we can now solve the inference problem in

Eq. (4.1) efficiently with Belief Propagation [89].

45



4.5 Learning

We now describe how to learn the distance function for the class C. Given a set of positive training

images {xp}Pp=1 and a set of negative images {xn}Nn=1 of class C, we would like to train the model

parameters θ = {α, β, γ} that tend to associate a small distance to a new test image x if x belongs

to class C, and a large distance otherwise. A natural way of learning the model is to adopt the latent

SVM formulation [32, 23] as follows:

min
{α,β,ξ}≥0

1
2 ||θ||

2 + c

P

∑
pn

ξpn

s.t. Dθ(C,xn)−Dθ(C,xp) ≥ 1− ξpn, ∀p, n. (4.7)

Note that each constraint in Eq. (4.7) constrains that the class-to-image distance from class C to a

negative image xn should be larger than the distance to a positive image xp by a large margin. ξpn
is a slack variable to allow soft-margin. With the constraints, the learned model can discriminate

positive and negative images for the class C.

The constrained optimization problem in Eq. (4.7) can be equivalently written as an uncon-

strained problem:

min
{α,β}≥0

1
2 ||θ||

2 + c

P

∑
pn

(1 +Dθ(C,xp)−Dθ(C,xn)). (4.8)

We use the non-convex bundle optimization (NRBM) in [23] to solve Eq. (4.8). The key issue

is to compute the subgradient ∂θDθ(C,x) for a particular θ. Let (H∗,M∗) be the optimal solution

to the inference problem we have solved in Section 4.4: min{H,M} θ>Φ(O,H,M,x). Then it can

be shown that the subgradient can be calculated as ∂θDθ(C,x) = Φ(O,H∗,M∗,x). Note that to

keep α and β non-negative, we project the negative values in α and β to zeros after each iteration

of the NRBM learning.

It is also possible to learn our distance model by using the ground-truth object bounding boxes

annotated in the training images without inferring the latent “hypothesized” configurations. How-

ever, our experiments suggest that this approach does not perform as well as the learning method

defined in Eq. (4.7). This is because the learning of Eq. (4.7) simulates the testing process when

unannotated test images are provided for distance calculation.

4.6 Experiments

We evaluate the performance of our method on two image datasets: PASCAL 07 [27] and SUN 09 [13].

We briefly describe our experimental setup before reporting the experimental results in Section 4.6.1.

PASCAL 07 dataset [27]: The PASCAL Visual Object Challenge provides a standard platform for

object recognition. We use the PASCAL 07 dataset for a comparison with previous work. This

dataset contains 9,963 annotated images, 5,011 for training and 4,052 for testing. There are 20
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image classes, each corresponds to an object category, e.g., bus, table, person, etc. The goal is to

predict the presence of an object category in a test image. A typical image has around 3 object

instances in 2 object categories. On average, an object category contains 783 object instances in the

training image set.

SUN 09 dataset [13]: This dataset consists of 12,000 annotated scene images. Similar to [13], we

use 4,367 images for training and 4,317 images for testing. There are 111 object categories each

containing at least 5 object instances. We filter out small object instances sized less than 20 by

20 pixels, and finally, we have a training set of 4,356 images and a testing set of 4,305 images. A

typical image has around 11 object instances in 5 object categories. On average, there are 417 object

instances per object category in the training image set. We perform recognition tasks on 58 scene

classes each containing at least 10 training and 10 test images2. The other small scene classes are

only considered as negative data in the experiments.

Note that, as a superset of SUN 09, the SUN dataset [128, 127] also provides a standard bench-

mark for scene recognition. However, we choose SUN 09 for two reasons. First, the number of

object instances per category in SUN 09 is significantly larger than that in SUN (417 as compared

to around 65). Second, our method requires ground-truth object bounding boxes on the training set,

but only one tenth of the SUN images are annotated.

Local object features: When we perform the experiment, we select or design several state-of-the-

art features that are potentially useful for representing object categories. We build color histograms

in RGB space. Our histograms have 11 bins in each channel. HOG descriptors [17] provide excel-

lent performance for object recognition. We resize each object instance to 80×100 pixels (which is

the average object size), and extract HOG on a regular grid at steps of 8 pixels. In order to char-

acterize image textures, we further use two powerful texture features: texton [74] and LBP [82].

We construct a 128 entry texton dictionary by clustering the responses of a filter bank with 8 ori-

entations, 2 scales, and 2 elongations. A 128-dimensional texton histogram is built for each object

instance. LBP are computed using 8 sampling points on a circle of radius 1 together with a uniform

mapping of 59 patterns. In this way, we produce a 59-dimensional LBP histogram for each object

instance. To represent an object’s absolute location in an image, we partition the image into 5×5

cells, and compute the area of the object instance in each cell. We normalize all the histograms by

`1 norm, and use the histogram intersection distance (i.e., one minus the histogram intersection) to

measure the base distance on each feature type.

Global image features: For PASCAL 07, dense SIFT with improved Fisher encoding [90] are

shown to outperform the other encoding methods in a fair comparison [10]. We use the implemen-

tation of [10] with suggested parameters to extract a 327,680-dimensional feature vector for each

image. To improve the learning efficiency, we pre-train 20 SVM classifiers for the 20 image classes

based on a kernel calculated from the high-dimensional feature vectors. For an image, the output

scores of the 20 SVM classifiers are used to construct a 20-dimensional global appearance feature
2We manually extract the scene labels for the SUN 09 images as they are not included in the original release. The

scene labels are available on our website.
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vector. For SUN 09, we simply extract the 512-dimensional GIST descriptors [83] with filters tuned

to 8 orientations at 4 different scales.

Baselines: We design five baselines by considering different components of our Full model. The

first one is the Global model using Eq. (4.5) only. The second one is our Unary model with Eq. (4.3).

The third one is the Unary+Pair model that incorporates Eqs. (4.3) and (4.4). We further develop

two unary models based on Eqs. (4.5) and (4.3): Global+Unary, where object matchings are infered

using Eq. (4.6); and Global+Unary-Latent, where object matchings are fixed by setting αit = 1 in

Eq. (4.6). The two unary models are designed to test the efficacy of latent object matchings.

For a fair comparison, we use the same solver for learning all these methods. The learning

parameter c in Eq. (4.7) is selected as the best from the range {10−2, 10−1, 100, 101, 102}. We

perform one-vs-all recognition for each image class. Following the PASCAL challenge criterion,

the recognition performance on both datasets is measured by average precision (AP) and mean

average precision over all classes (mAP).

4.6.1 Results

PASCAL 07: The recognition results on PASCAL 07 are listed in Table 4.1. We first compare Full

with several state-of-the-art approaches. Our model has significant performance gains over vari-

ous methods, including similar approaches that operate on object-level representations and explore

contextual information in groups of objects [94], a latent SVM model for region-based recogni-

tion [133], the winner of PASCAL VOC 2007 using multiple kernel learning on bag-of-word fea-

tures [78], and the “Dense SIFT + Fisher Encoding” approach which is shown to outperform the

other encoding methods [10]. Full is comparable with [43] which combines detection and recog-

nition into a unified learning framework, and [12] which is a recent top result on PASCAL 07. We

also build our own object bank representations for PASCAL 07. For an image, the representation is

a 20-dimensional feature vector, where each dimension corresponds to an object category in PAS-

CAL 07, and its value is the maximum response of an object detector. We train linear SVMs based

on the object bank features, leading to OB+SVM in Table 4.1. Our model significantly improves

over this method (by 14% mAP). These results validate the effectiveness of the proposed method.

We compare Full with Global, Unary and Unary+Pair. Table 4.1 shows that, as a simple

combination of these models, Full significantly outperforms Global, Unary and Unary+Pair by

4% mAP, 10% mAP and 10% mAP, respectively. This demonstrates that the object matchings

learned by local object models (i.e., Unary and Unary+Pair) provide complementary information

to the global image features, and our full model can effectively combine these two sources to build

stronger classifiers.

Now we consider Global+Unary-Latent, Global+Unary and Full to evaluate the efficacy of

latent object matchings. As shown in Table 4.1, the two latent models (i.e., Full and Global+Unary)

only perform slightly better than the non-latent model Global+Unary-Latent, indicating that the

latent object matching method does not contribute much to recognition, when the latent variables are

inferred by either the unary object distance or the combination of unary and pairwise object distance.
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Table 4.1: Object recognition performance (AP and mAP in %) on PASCAL 07. The figures bold-
faced are the best performance among Full and state-of-the-art methods. Paired t-tests are also
conducted on the AP values to examine Full agnist all the other methods. We list the returned p-
values in the last column, where the boldfaced figures indicate no significance between Full and the
compared methods under 5% significance level.

plane bicycle bird boat bottle bus car cat chair cow table
Rabinovich et al. [94] 63.0 22.0 18.0 28.0 43.0 46.0 62.0 32.0 37.0 19.0 30.0
Yakhnenko et al. [133] 66.9 43.3 32.4 59.5 16.0 39.2 68.9 38.0 38.5 27.7 27.6

OB+SVM 67.4 79.5 28.7 49.9 47.5 69.4 88.0 51.0 8.6 37.2 19.8
Marszalek et al. [78] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6 54.9
Chatfield et al. [10] 79.0 67.4 51.9 70.9 30.8 72.2 79.9 61.4 56.0 49.6 58.4
Harzallah et al. [43] 77.2 69.3 56.2 66.6 45.5 68.1 83.4 53.6 58.3 51.1 62.2

Chen et al. [12] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8
Full 79.2 69.9 48.9 73.2 36.0 75.6 83.7 63.8 55.4 50.0 64.7

Global 77.8 64.8 47.9 71.0 27.9 70.3 81.2 61.0 54.3 46.2 59.5
Unary 62.6 74.9 17.4 34.2 44.3 68.0 86.8 45.6 46.7 39.4 47.3

Unary+Pair 62.9 75.3 17.6 34.4 44.9 66.7 87.6 45.6 46.6 39.4 48.4
Global+Unary-Latent 78.9 69.6 48.7 73.0 35.4 75.7 83.7 63.3 55.5 48.9 64.5

Global+Unary 78.9 69.7 48.9 72.7 35.8 75.5 83.7 63.3 55.7 49.1 64.7

dog horse motor person plant sheep sofa train tv mAP t-test
Rabinovich et al. [94] 32.0 12.0 31.0 43.0 33.0 41.0 37.0 29.0 62.0 36.0 4.1E-6
Yakhnenko et al. [133] 31.7 66.7 45.8 77.0 12.5 28.8 28.5 61.1 35.0 42.3 3.2E-10

OB+SVM 8.5 78.2 70.5 41.3 33.9 42.4 45.9 75.2 63.6 50.3 2.4E-3
Marszalek et al. [78] 45.8 77.5 64.0 85.9 36.3 44.7 50.6 79.2 53.2 59.4 1.5E-3
Chatfield et al. [10] 44.8 78.8 70.8 85.0 31.7 51.0 56.4 80.2 57.5 61.7 7.1E-4
Harzallah et al. [43] 45.2 78.4 69.7 86.1 52.4 54.4 54.3 75.8 62.1 63.5 7.2E-1

Chen et al. [12] 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7 5.1E-1
Full 43.7 82.9 74.2 86.3 31.5 52.1 62.2 83.6 64.4 64.1 N/A

Global 41.9 80.3 70.1 85.4 28.3 45.0 53.5 82.1 54.8 60.2 3.7E-6
Unary 22.0 77.0 66.8 90.3 31.0 43.8 43.8 68.9 57.8 53.4 8.7E-4

Unary+Pair 22.8 77.1 68.3 90.3 30.2 40.7 44.9 68.4 59.4 53.6 9.7E-4
Global+Unary-Latent 43.3 82.9 74.2 86.2 31.6 50.4 62.3 83.7 64.7 63.8 4.1E-2

Global+Unary 43.3 82.9 74.2 86.3 31.7 50.7 62.4 83.7 64.5 63.9 5.5E-2

49



Table 4.2: Recognition results (AP and mAP in %) on SUN 09. We only report AP on the 15 largest
scene classes due to space limitations. The mAP results are averaged over all 58 classes. See the
caption of Table 4.1 for more details.

bedroom skyscraper street building snowy mtn. kitchen highway field
OB+SVM 41.6 50.6 59.1 24.5 55.3 46.1 63.2 40.7

GIST+SVM 24.9 71.9 74.7 30.1 43.5 17.8 78.0 39.3
Full 38.0 67.8 82.3 42.9 54.8 44.8 78.9 54.4

Global 26.7 71.8 76.7 29.0 46.5 23.6 73.3 43.7
Unary 30.8 12.0 51.8 23.6 43.1 28.3 66.3 40.2

Unary+Pair 31.4 15.2 53.3 30.8 46.2 34.6 64.5 50.8
Global+Unary-Latent 38.0 65.4 73.4 27.4 50.0 40.3 74.9 47.2

Global+Unary 37.0 64.6 73.6 32.1 47.7 41.1 74.5 47.3

bathroom livingroom forest coast mountain office airport mAP t-test
OB+SVM 51.7 19.7 60.0 27.6 9.7 10.0 3.8 13.9 1.4E-6

GIST+SVM 22.0 3.9 76.4 17.0 11.6 6.0 10.8 14.2 3.6E-4
Full 50.2 18.9 74.1 31.5 15.7 7.9 9.1 19.2 N/A

Global 23.1 4.1 78.4 28.7 20.4 6.5 7.6 15.3 2.9E-3
Unary 29.4 11.8 17.9 28.0 17.5 6.4 4.3 11.5 1.3E-5

Unary+Pair 34.9 15.2 20.7 31.1 17.3 6.6 4.4 13.0 2.0E-4
Global+Unary-Latent 48.0 13.7 69.1 30.6 19.6 7.0 6.6 17.1 2.7E-4

Global+Unary 46.4 19.4 70.2 32.3 22.4 7.5 8.1 17.6 3.6E-3

This experimental observation is reasonable since the goal of PASCAL 07 object recognition is to

decide the presence of an object category in a given test image. Once the object detector fires on

the test image, matching the detected object to a particular object in the class does not significantly

affect the overall recognition performance. The next dataset, SUN 09, has scenes with multiple

objects, for which this ambiguity is more important.

SUN 09: We summarize the recognition results on SUN 09 in Table 4.2. For comparison, we

implement two state-of-the-art scene recognition methods. The first is OB+SVM, which is the

exactly same as the one designed for PASCAL 07. The only difference is that here we employ a 111-

dimensional object bank representation, where each dimension corresponds to an object category in

SUN 09. We also extract 512-dimensional GSIT descriptors [83] and train a linear SVM for each

scene class, i.e., GIST+SVM. Our Full model significantly outperforms the two methods, and is

effective for scene recognition. It is worth noting that our Global model operates on the same GIST

features as GIST+SVM, but achieves better performance by targeting on distance function learning.

Similar to PASCAL 07, our Full model significantly outperforms Global, Unary and Unary+Pair,

by 4%, 8% and 6% respectively. This result again validates that we can build a strong Full model

by taking advantage of both global image appearance and local object matchings.

Now we evaluate the efficacy of latent object matchings. Recall that Global+Unary-Latent uses

fixed object matchings, Global+Unary uses latent object matchings based on the unary object dis-

tance, and our Full model uses latent object matchings inferred by the combination of unary and

pairwise object distance. Although we do not see a big performance leap from Global+Unary-
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Table 4.3: We list the five most discriminative object categories (i.e., highly weighed by α in
Eq. (4.3)) with respect to each local object feature on sample scene classes. We also provide the
five most discriminative spatial relations (i.e., highly weighed by β in Eq. (4.4)) among these object
categories.

airport highway
color airplane, sky, person, truck, streetlight sky, road, sign, car, tree
HOG sky, airplane, road, van, door sky, road, car, sign, tree
texton tree, door, streetlight, truck, van sign, car, tree, road, building
LBP door, truck, streetlight, window, van sign, car, building, bus, fence

location tree, truck, van, window, person sign, car, tree, sky, building
airplane-below-sky tree-on.top.of-car

spatial person-on.top.of-road car-on.top.of-building
relations truck-on.top.of-road car-on.top.of-fence

van-on.top.of-road bus-on.top.of-car
tree-on.top.of-sky sky-above-road

bedroom kitchen
color bed, wall, curtain, drawer, television cupboard, stove, cabinet, oven, microwave
HOG wall, bed, floor, curtain, table wall, stove, cupboard, floor, oven
texton bed, drawer, curtain, television, flowers stove, oven, cabinet, countertop, refrigerator
LBP drawer, bed, television, flowers, bottle stove, oven, cabinet, countertop, microwave

location bed, wall, drawer, television, microwave stove, cupboard, oven, countertop, cabinet
bottle-next.to-bed cupboard-above-floor

spatial television-on.top.of-wall stove-on.top.of-wall
relations bed-on.top.of-wall wall-above-floor

table-on.top.of-wall cabinet-on.top.of-wall
microwave-on.top.of-floor refrigerator-on.top.of-wall

Latent to Global+Unary, our Full model does perform significantly better than Global+Unary-

Latent. This shows the efficacy of our latent object matching method on scene recognition. More-

over, Full also significantly outperforms Global+Unary, by exploiting pairwise spatial relations.

As compared to object recognition on PASCAL 07, where the class label is purely determined

by one object in the image, scene recognition on SUN 09 is more complicated because we need

to consider a collection of objects and their correlations to correctly recognize a test image. To

this end, our model explores object-level representations and various contextual information among

objects, and the experimental results show that our model is highly effective.

Visualization: We select four scene classes in SUN 09, and view the learned Full model in Ta-

ble 4.3. Sample recognition results are visualized in Figure 4.2. Please refer to the captions for

more details.

4.7 Summary

We have presented a discriminative model to learn class-to-image distances for image recognition

by considering the structured object matchings between a test image and a set of training images
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Figure 4.2: Sample recognition results using our Full model. Each row corresponds to a scene class,
and we show the top four ranked positive images and the top two ranked negative images. The title
of an image includes the scene class label and a figure indicating the rank of the image according
to our learned distance: the smaller the rank, the smaller the distance. For an image, we plot up to
four discriminative objects (as listed in Table 4.3) together with the predicted locations. The color
of the bounding box shows the relative importance of the objects in distance calculation (sorted by
the unary object distance): red > blue > green > yellow.
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from one class. The model integrates three types of complementary distance including the unary ob-

ject distance, the pairwise object distance and the global image appearance distance. We formulate

a latent variable framework and have proposed efficient inference and effective learning methods.

Our experiments validates the efficacy of our model in object recognition and scene recognition

tasks. We believe our solution is general enough to be applied in other applications with elemen-

tary “object”-level representations, e.g., image retrieval with structured object matchings or video

recognition/retrieval with structured action matchings.
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Chapter 5

Scene Recognition by Semantic Part
Discovery

In this chapter, we present a method to discover parts for scenes. We set our goal as finding se-

mantically meaningful scene parts that are discriminative with each other and representative for

recognizing scenes. For discriminativeness, we cluster image patches in a discriminative large-

margin learning framework, and treat each cluster as a candidate part. For representativeness, we

build scene recognition models on top of part-based image representation, and apply sparse regular-

ization to select representative parts. We formulate patch clustering, part model learning and scene

recognition model learning in a joint framework. An alternating descent algorithm is developed to

effectively solve the resultant non-convex optimization problem. Experimental results obtained on

a standard scene recognition dataset show the efficacy of the proposed method.

5.1 Overview

In computer vision, it has been an active solution to use part-based models for recognition and de-

tection tasks. The famous pictorial structures are proposed to model body parts for human detection

and pose estimation [2]. A recent success in object detection learns object parts by deformable part

models (DPMs) [32]. Similarly, Pandey and Lazebnik [86] conduct part-based scene recognition by

running DPMs on scene images. Part-based modeling usually generates favorable recognition and

detection performance, since the parts capture semantic components of the visual concepts.

Despite of the wide usages, however, a problem with part-based modeling is that we need heuris-

tic initialization or detailed annotations to obtain parts. For example, in DPMs, object parts are

heuristically initialized to fix locations around each object bounding box. The heuristic initializa-

tion is sensitive to highly-deformable objects such as cats and dogs [88], limiting the applicability

of DPMs. On the other hand, obtaining accurate and noise-free part annotations is unlikely in any

realistic setting.
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To address this problem, we are interested in the “automatic” discovery of visual parts. We set

our task as understanding scene images in this work. Note that a scene (e.g., kitchen, bedroom)

contains various semantic components corresponding to surfaces (e.g., wall, floor), objects (e.g.,

bed, chair), or even object parts (e.g., bed frame, chair leg). Thus, the goal of part discovery is to

group image patches of the same scene component, and learn a part model to identify that scene

component.

We assume a weakly supervised setting where only the image-level scene class are available. It

is worth noting that a semantic scene class is usually characterized by a collection of visual parts

embedded in scene images, while different scene classes may also favor different part configura-

tions. Therefore, to well capture scene semantics, we would like to discover “useful” parts that are

discriminative with each other and representative for recognizing the scene of interest.

To implement the idea we have to address two key issues. The first is: how to learn discrimi-

native part models while the image patches for each part are not yet available? A straightforward

solution for this problem is to first cluster image patches (via k-means [42, 72], for example), and

then train a discriminative part model for each cluster. However, this solution is sub-optimal since

it treats patch clustering and part model learning as two separate steps. To handle this problem, we

adopt the maximum-margin clustering (MMC) [131, 138, 139] technique introduced in Chapters 2

and 3 to jointly cluster patches and learn part models.

Note that the parts learned from MMC might be useless for recognizing scenes. For example,

the part of floor is likely useless for indoor scene recognition since it appears in almost all images.

This observation rises another key issue: how shall we select representative parts? To answer this

question, we represent an image using part-based representation, where each feature dimension

captures the response of a part model on that image. We then train a scene recognition model with

sparse regularization. The learned sparse model indicates the representativeness of candidate parts:

zero weights are always assigned to useless parts.

The MMC clustering and scene recognition are mutually beneficial. On one hand, MMC gen-

erates parts for representing images, thus affecting scene recognition. On the other hand, the scene

recognition models determine the relative importance of parts – representative parts should be em-

phasized in clustering and unrepresentative parts should be discarded. To capture the mutual inter-

actions, we propose to jointly optimize MMC clustering and scene recognition.

The resultant learning objective is non-convex. Thus, we introduce an alternating descent algo-

rithm to solve the problem. Each iteration of the algorithm involves three steps: clustering patches,

updating part models, and learning scene recognition models. We evaluate the efficacy of our

method on the MIT-Indoor Scene dataset [93]. Qualitative results show that our method learns

discriminative and representative parts, and quantitative results validate the efficacy the of learned

parts for scene recognition.

The rest of this chapter is organized as follows. Section 5.2 reviews related work. Section 5.3

formulates our framework. We describe our optimization algorithm in Section 5.4, followed by

experimental results reported in Section 5.5. Finally, Section 5.6 summarizes this chapter.
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5.2 Related Work

There has been much work on part discovery in recent years. Depending on the given supervision,

we can roughly divide existing approaches into the following three categories.

Unsupervised discovery: Part discovery is typically performed in a purely unsupervised setting.

Tuytelaars et al. [112] provides a comprehensive survey. Generally speaking, there are two popular

directions to address this problem. The first relies on clustering. For instance, Kim and Torralba [54]

use link analysis to iteratively refine the regions of interest in cluttered images; Zhu et al. [145]

develop a bottom-up, saliency-guided multiple class learning method, which performs part local-

ization, discovery, and detector training in an integrated framework. The second line of research

utilizes latent topic models. For example, Russell et al. [98] build pLSA [45] and LDA [4] on top

of image segmentations to discover semantic parts.

Supervised discovery with part labels: Another set of related work assumes that part labels are

available on images, and the task is to detect and localize the parts within images. Deselaers et

al. [21] propose conditional random field that starts from generic knowledge and progressively

adapts to new parts. Siva and Xiang [109] achieve favorable performance by properly initializing

the part locations and actively detecting the model drift. Prest et al. [91] learn part detectors from

videos known only to contain frame patches of a target part.

Supervised discovery with image labels: There is also recent progress in discovering parts given

only image-level labels. Note that the image labels are not necessarily the same as the part labels.

For example, a bedroom image could contain parts like bed, window, etc. Our proposed methods

follows this setting.

Pandey and Lazebnik [86] discover common scene structures using deformable part-based mod-

els [32]. The learned parts for a scene class usually do not correspond to any semantically mean-

ingful components. Li et al. [67] advocate for automatic discovery of groups of parts as the basic

elements for scene understanding. In contrast to our method, they assume individual object in-

stances are localized and annotated for training.

Some recent work starts by training an exemplar part model for each image patch, and then relies

on heuristics to refine the obtained part models. For example, Singh et al. [108] train an exemplar-

SVM [76] for each patch, and iteratively merge similar part models in a clustering process. Juneja et

al. [53] train and refine exemplar-LDA model [40] for each patch. To select distinctive part models,

they define a heuristic “entropy-rank” measure, which prefers parts occurring in some but not many

scene classes. There is also work clustering patches to discover parts. Wang et al. [120] advocate

for maximum-margin multiple-instance dictionary learning. Doersch et al. [24] modify mean-shift

clustering to find part models that have high density in positive images but low density in negative

images. The most similar work to ours is by Sun and Ponce [111]. It initializes part models by

k-means clustering, and then refine them in a latent SVM model regularized by group sparsity. Our

method is different since we model patch clustering, part model learning, and scene recognition in

a joint framework.
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5.3 Part Discovery for Scene Recognition

In this section, we describe our joint framework for learning parts and scenes. Our goal is a unified

framework that clusters patches, learns part models, and recognizes scenes. To break down the

problem, we consider learning for each scene class independently.

Suppose we have extracted M patches {pj}Mj=1 from the images of a given scene, and we

would like to identify K part models from them. A naive approach is to cluster the M patches

into K cluster, and then learn a part model for each cluster. However, this naive method has two

major drawbacks: (i) the patch clustering and part model learning are disjoint, leading to sub-

optimal results, and (ii) due to imperfect patch sampling strategies, the M patches usually include

uninformative patches (i.e., background or noise) that damage clustering.

To address the problems, we adopt the idea of MMC to jointly cluster patches and learn part

models. In detail, we learn K cluster-specific part models w = {wt}Kt=1 by enforcing large mar-

gins among clusters. We handle uninformative patches by allowing a portion of the M patches

unclustered – the uninformative patches do not contribute to form any cluster. We use a variable

tj ∈ {0, 1, . . . ,K} to denote the assignment of patch pj , where tj = 0 if patch pj is unclustered,

and tj > 0 if patch pj is an instance of the tj-th part model. We write the cluster assignments of all

patches as t = {tj}Mj=1.

We also learn scene recognition models v with sparse regularization to select representative

parts. Let {(xi, yi)}Ni=1 be the set of training scene images, where yi = 1 indicates that the image

xi is from the scene of interest, and yi = −1 if xi belongs to any other scene classes. We represent

an image xi following the principle of ObjectBank [68]. Specifically, we use a K-dimensional

feature vector, where each dimension corresponds to a part model wt, and the feature value takes

the highest response of wt on image xi. We enforce sparsity in v to filter out unrepresentative parts

with zero weights. Note that the learned scene recognition model indicates the relative importance

of selected parts – irrelevant parts are always assigned with zeros weights. We then consider the

relative importance in patch clustering to emphasize or degrade these parts.

Putting everything together, our learning objective is formulated as follows:

min
w,t,v

ξ≥0,ζ≥0

1
2α||w||

2
2 + 1

K

M∑
j=1

K∑
t=1,t6=tj

ξjt + β||v||1 + γ
N∑
i=1

ζ2
i , (5.1)

s.t. w>tjpj −w>t pj ≥ `(v, tj)− ξjt, ∀j, tj > 0, ∀t > 0, t 6= tj

L ≤
M∑
j=1

∆(tj = t) ≤ U, ∀t > 0

M∑
j=1

∆(tj = 0) = rM,

yiv>φ(xi,w) ≥ 1− ζi, ∀i
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where α, β and γ are trade-off parameters, ξ and ζ are the slack variables respectively for patch

clustering and scene recognition, and ∆(·) is an indicator function. Note that w = {wt}Kt=1 are the

part models corresponding to each patch cluster, and v is the scene recognition model regularized

by `1 sparsity. Next we introduce each constraint in Eq. (5.1) in detaill.

The first constraint in Eq. (5.1) enforces that scoring a patch pj to its assigned cluster tj is larger

than any other cluster by a margin of `(v, tj). We define `(v, tj) to reflect the relative importance

of the tj-th part model:

`(v, tj) = K
|vtj |
||v||1

. (5.2)

The second constraint in Eq. (5.1) enforces balanced clusters where L and U are the lower and

upper bounds controlling the size of each cluster. The same constraint is used in Chapters 2 and 3

to prevent trivial solution that assigns all patches to one cluster.

The third constraint in Eq. (5.1) accounts for the unclustered patches. These patches are believed

to be uninformative background or noise. We simply ignore them when learning part models. We

use the parameter r ∈ (0, 1] to control the portion of unclustered patches: the lower the r, the more

uninformative patches.

The last constraint in Eq. (5.1) is for scene recognition. φ(xi,w) is a part-based representation

for image xi built on top of theK part models. In detail, we follow the practice of ObjectBank [68],

and run each part model densely at multiple image locations and scales. We apply max-pooling over

each part model’s responses, and concatenate them to form a vector of image features. Formally, it

is defined as:

φ(xi,w) = [max
p∈xi

w>1 p, max
p∈xi

w>2 p, . . . , max
p∈xi

w>Kp]>, (5.3)

where p ∈ xi is an image window in xi at any location or scale. Also note that we use squared

hinge loss (i.e., ζ2
i ) in the learning objective for smoothness.

5.4 Optimization

It is easy to verify that the optimization problem defined in Eq. (5.1) is non-convex due to the

joint optimization over the part model parameters w, the patch cluster assignment t, and the scene

recognition model parameters v. To optimize it, we first eliminate the slack variables ξ and ζ, and

rewrite Eq. (5.1) equivalently as:

min
w

1
2α||w||

2
2 +R(w) +A(w), (5.4)

where R(w) and A(w) are the risk functions related to the scene recognition model v and the

cluster assignments t, respectively.
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Algorithm 2 Optimization: An alternating descent algorithm
Input: patches {pj}Mj=1, scene images {xi, yi}Ni=1, # clusters K, α, β, γ, r, and ε
Output: part models w, patch cluster assignment t, and the scene recognition model v

1: Initialize: part models w = w1;
2: for τ = 1 to τmax do
3: Solve vτ in the recognition problem of Eq. (5.5) with wτ ;
4: Solve tτ in the assignment problem of Eq. (5.6) with wτ and vτ ;
5: Compute ∂R(w)

∂w
∣∣
wτ and ∂A(w)

∂w
∣∣
wτ ;

6: Compute wτ+1, wτ∗ , and gapτ by Algorithm 1 of [23];
7: if gapτ ≤ ε or τ == τmax then
8: break;
9: Return: w = wτ∗ , and t and v solved from Eqs. (5.5) and (5.6) with wτ∗ ;

In detail, R(w) is a recognition problem defined by:

min
v
β||v||1 + γ

N∑
i=1

(
max

(
0, 1− yiv>φ(xi,w)

))2
. (5.5)

A(w) is an assignment problem defined by:

min
t,v

1
K

M∑
j=1

K∑
t=1,t 6=tj

max
(
0, `(v, tj)−w>tjpj + w>t pj

)
. (5.6)

s.t. L ≤
M∑
j=1

∆(tj = t) ≤ U, ∀t > 0

M∑
j=1

∆(tj = 0) = rM

In order to solve the optimization problem in Eq. (5.4), we develop an alternating descent algo-

rithm shown in Algorithm 2. This algorithm alternates between finding the part model parameters

w and optimizing the other two sets of variables t and v. The algorithm mainly consists of three

steps performed iteratively. First, the recognition risk is computed from Eq. (5.5) with the current

part models w. Then the assignment risk is evaluated by Eq. (5.6) given w and v fixed. Finally, the

part model parameters w are updated from the estimated risk values and gradient. We explain each

step in detail in the following.

Recognition risk: Given w fixed, Eq. (5.5) becomes a standard recognition problem with sparse

regularization and squared hinge loss. We use LIBLINEAR [29] to optimize it. To enhance positive

data, we flip positive images and add them to training. To speed up the computation of part-based

image representation, we run part models on a set of pre-extracted salient patches and collect the

maximum response. The details of the salient patch proposal strategy is described in Section 5.5.
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Figure 5.1: A minimum cost flow (MCF) solver for the assignment problem in Eq. (5.6). We send a
flow of (1 − r)M units from the starting node s to the end node e, by passing M patch nodes and
K cluster nodes, with the assignment cost cjt defined in Eq. (5.7). The edge settings are formatted
as: “[lower capacity, upper capacity], cost”.

Assignment risk: With w and v fixed, Eq. (5.6) turns out to be an assignment problem. Note that

the assignment cost for assigning patch pj to a cluster t > 0 is computed by

cjt =
K∑

t′=1,t′ 6=t
max(0, `(v, tj)−w>t pj + w>t′ pj). (5.7)

The objective of Eq. (5.6) is to minimize the total assignment cost while maintaining the cluster

balance constraints and the constraint on the portion of unclustered patches.

Following Chapter 3, we develop a minimum cost flow (MCF) solver to solve this assignment

problem (see Figure 5.1). Please note that the cluster assignment problem in Eq. (5.6) is slightly dif-

ferent from the assignment problem in Chapter 3, as Eq. (5.6) allows the patches to be unclustered.

To adopt for this change, we bound the flow capacity from the starting node s to a patch node in the

range [0, 1]: a flow of 0 indicates an unclustered patch, while a flow of 1 means the patch is assigned

to some cluster. The rest of the MCF network is the same as that in Chapter 3. A patch node sends

its flow (if any) to a cluster node at the cost of cjt (defined in Eq. (5.7)). Then a cluster node receives

flows and sends forward to the end node e, where the edge capacity is limited in between L and U

for balanced clusters. It can be proved that the optimal solution of sending (1− r)M units of flow

in this MCF corresponds to the minimum total assignment cost in Eq. (5.6). To find this optimal

flow, we use the capacity rescaling algorithm [25] implemented in the LEMON library [22], which

is an efficient dual solution method running in O
(
MK · log(M +K) · log(UMK)

)
complexity.

Updating w: The next step of learning is to optimize the part model parameters w in Eq. (5.4). The

learning problem is non-convex and we use the the non-convex bundle optimization solver in [23].

In a nutshell, this method builds a piecewise quadratic approximation to the objective function

of Eq. (5.4) by iteratively adding a linear cutting plane at the current optimum and updating the
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optimum. Now the key issue is to compute the subgradients ∂R(w)
∂w and ∂A(w)

∂w for a particular w.

First, R(w) is a related to w in φ(xi,w). Let pt∗ be the highest responsing patch in image xi for

part model wt. Then the subgradient ∂φ(xi,w)
∂w is calculated as: [p1∗,p2∗, . . . ,pK∗]. Second, in

A(w), the terms related to w are all in the form of w>t pj , whose subgradient w.r.t. wt is pj . We

can easily assemble ∂R(w)
∂w and ∂A(w)

∂w from the above elementary subgradients. With the obtained
∂R(w)
∂w and ∂A(w)

∂w , we optimize Eq. (5.4) by the algorithm in [23].

5.5 Experiments

We evaluate the performance of our method on the MIT Indoor Scene dataset [93]. We briefly

describe our experimental setup before reporting the experimental results in Sections 5.5.1 and 5.5.2.

MIT-Indoor Scene dataset: This dataset includes 67 indoor scenes ranging from stores (e.g., deli,

florist), home (e.g., bedroom, kitchen), public spaces (e.g., church, museum), leisure (e.g., bar,

movie theater), to working place (e.g., art studio, computer room). Following the setting of [93], we

use 80 images for training and 20 images for test within each scene class. For better efficiency, we

rescale large images (sized larger than 600×450) to around 600×450 pixels. Quantitative recogni-

tion performance is measured by average recognition accuracy as in [93].

Proposal salient patches: To start with, we need to propose a pool of image patches for clustering.

A naive solution is to consider all possible image windows, but it is highly inefficient since most

image windows are uninformative background or noise. To identify a set of promising patches, we

follow the strategy of [53] to perform image over-segmentation on low-level image cues [31]. This

process selects an average of 40 patches per images, with each patch taking 64×64 pixels. We build

8×8 HOG cells for each patch and extract 1984-dimensional HOG features [17, 32].

Initialization of patch clusters: We initialize the patch clusters by affinity propagation [34]. Unlike

k-means, affinity propagation does not require specifying the desired number of clusters. Instead,

the number of clusters is automatically determined from the given data. Also, there is no need for

initializing the cluster centers in affinity propagation. The only input parameters are the similarities

between each pair of patches. We use the suggested whitened histogram of orientations (WHO)

transformation and cosine similarity for measuring patch similarities [40]. We perform affinity

propagation for each scene class, and remove small clusters containing no more than 5 patches. The

rest (182 per scene) of clusters are kept as the initial set of patches clusters.

Parameters: We fix the portion of unclustered patches as r = 0.25 for all experiments. It is

an empirical estimation of the percentage of uninformative patches in our salient patch proposal

method. The number of clusters K is set as the number of initial clusters obtained above. Further-

more, the upper and lower bounds for cluster balance constraints are computed by L = 0.5 rMK and

U = 1.5 rMK , respectively. The trade-off parameters are set as the best fromα = {10−3, 10−2, 10−1}
and β = {10−1, 100, 101}, while keeping γ = 1 for balanced recognition risk and assignment risk.

To set the best performing α and β parameters, we use 64 out of 80 training images for model
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Table 5.1: Per-class recognition accuracy (%) of the joint learning framework.

APC+SVM MMC+SVM Ours
13.53 13.68 20.60

training and the rest 16 images for validation, and select the parameters that achieve the highest

recognition accuracy [93] on validation images.

5.5.1 Evaluating the Joint Learning Framework

The proposed method jointly optimizes patch clusters, part models and scene recognition models in

a unified framework. To evaluate the benefit of the joint learning framework for scene recognition,

we design the following two baselines. The first baseline, APC+SVM, conducts patch clustering

(by affinity propagation), part model learning (by learning an SVM for each cluster) and scene

recognition (with sparse regularization) in three separate steps. The second baseline, MMC+SVM,

jointly clusters patches and learns part models as we do in the proposed method, but recognizes

scenes in a separated step with the part models fixed.

The scene recognition performance is reported in Table 5.1. It clearly shows that our method

boosts the two baselines considerably, by improving 7% in per-class recognition accuracy. This

result validates the efficacy of our joint learning framework.

5.5.2 Evaluating Part Discovery

Now we evaluate the “goodness” of the discovered parts. We first construct image features using

the learned part models, and then build scene recognition models on top of the obtained features.

This enables quantitative comparison with other state-of-the-art part discovery methods. We also

evaluate the representativeness of the selected part models, and visualize the sample parts we have

discovered in the MIT-Indoor Scene dataset.

Comparing with state-of-the-art part discovery methods: We follow the principle of Ob-

jectBank [68] to quantitatively evaluate the discovered parts. In detail, we construct part-based

representation with the learned part models, where each part model runs densely at every image lo-

cation at multiple scales (with rescaling factors of 2−
i
3 , i = 0, 1, 2, 3). We apply max-pooling over

each part model’s responses, and concatenate them together as a feature vector. We also capture

spatial information via spatial pyramid (1×1, 2×2 grids), where encodings of each spatial region

are stacked together to form the final image features. Note that the part-based image representation

we have introduced in our learning process i.e., Eq (5.3), is a simplified version of this strategy for

computational efficiency.

For quantitative comparison, we learn one-vs-all linear SVMs on the features and report the

recognition performance. Following [53], we use non-linear additive kernels to simulates kernel

SVM. It is defined by χ2 explicit feature mapping [116], and increases the feature dimension by

three times. We select the best SVM trade-off parameter in the range of {100, 101, 102, 103, 104}
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Table 5.2: Per-class recognition accuracy (%) of part discovery methods.

ROI+GIST [93] 26.05 RBoW [87] 37.93 MMDL [120] 50.51
MM-Scene [144] 28.00 D-Patches [108] 38.10 D-Parts [111] 51.40
DPM [86] 30.40 LPR [101] 44.84 IFV [53] 60.77
CENTRIST [126] 36.90 BoP [53] 46.10 DMS [24] 64.03
ObjectBank [68] 37.60 miSVM [69] 46.40 Ours 38.67

Table 5.3: Per-class recognition accuracy (%) using various sets of parts.

Top-10 Top-20 Top-30 Top-40 Top-50 Ours-82 All-182
33.60 34.24 35.70 36.46 37.06 38.67 38.30

via 4-fold cross validation. To enrich positive data, we add flipped positive images for training. We

also calibrate different one-vs-all SVM scores by fitting a sigmoid on the validation set, a similar

process as in [53].

We compare our discovered parts with state-of-the-art methods. The recognition performance

is presented in Table 5.2. Note that it is not a fair comparison since different part discovery methods

apply different strategies/parameters in extracting image patches, constructing image features and

learning scene recognition models. But the result shows that our discovered parts achieve favorable

scene recognition performance. Note that our method uses a smaller number of salient patches

than recent methods (e.g., [53, 24]), due to the high computational cost of MMC. We suspect this

is a reason for the performance loss of our method as compared to state-of-the-art algorithms in

Table 5.2.

Representativeness: We also evaluate the representativeness of the selected parts. Note that our

method keeps representative parts based on the sparse scene recognition models. On average, there

are 82 out of 182 representative parts selected per scene class.

To validate the selected set of parts, we design the following baseline sets for comparison. We

first pick up the top-ranked parts (e.g., top-10, top-20, top-30, top-40, top-50, ranked by the weights

learned in the scene recognition models). We also include a baseline set with all the available

parts (182 per scene). Similarly as above, we extract image features using each set of parts, and

quantitatively compare the scene recognition performance.

The results are reported in Table 5.3, which clearly shows that our selected part set outperforms

the other baseline sets. Specifically, compared with using all the available parts, our method achieves

better recognition performance while removing more than half of the parts. Also note that the top-

ranked parts are always representative for scene recognition, e.g., we only observe a performance

drop of 5% by reducing from 82 parts to 10 top-ranked parts. These results validate the effectiveness

of our strategy for selecting representative parts.

Visualizations: We visualize the learned parts on sample scene classes in Figure 5.2. Please refer

to the caption for detailed explanation.
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church closet movietheater

cloister laundromat prisoncell

corridor studiomusic subway

staircase winecellar inside subway

Figure 5.2: Qualitative visualization of the learned parts on 12 scenes (e.g., church, closet, movi-
etheater, etc). For each scene, we show three parts selected by our scene recognition models. Each
part accounts for one row in the visualization, where the left-most plot visualizes the part model,
and the rest shows three sample patches from the corresponding cluster. Note how discriminative
and representative the discovered parts are for the scenes.
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5.6 Summary

In this chapter, we have presented a joint learning framework for automatic part discovery in scene

images. In detail, we model patch clustering, part model learning, and scene recognition model

learning in a unified framework. Our method is able to learn discriminative and representative part

models for the scene of interest. We formulate our framework and solve the non-convex objective

using an alternating descent algorithm. Experiments conducted on the MIT-Indoor Scene dataset

validate the efficacy of our method. As a further extension to our work, it is interesting to apply

hierarchical maximum-margin clustering for exploration of hierarchical structures among parts.
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Chapter 6

Conclusions, Limitations and Future
Directions

Scene recognition is a challenging task in computer vision, and a key to success is to exploit the rich

semantics embedded in scenes. Following up this line of research, we raise two major questions in

this thesis: How to discover semantics in visual data? and How to recognize scenes by leveraging

the discovered semantics? To answer these questions, we have focused on four directions, as we

gradually proceeded from the task of semantics discovery to the task of scene recognition:

Latent maximum-margin clustering. In Chapter 2, we presented a latent maximum-margin clus-

tering (LMMC) framework that clusters data with latent variables. We explore the rich latent repre-

sentation space when forming clusters, and learn a model for each cluster to reveal and summarize

unobserved semantic information embedded in data. The method is implemented by a joint learning

of latent variables, cluster assignment, and cluster-specific models.

A major limitation of LMMC is that the learning objective is non-convex and thus the algorithm

is sensitive to model initialization. It is beneficial to develop smart initialization strategies for better

clustering results. Other than that, LMMC requires extra parameters to control cluster balance.

These parameters are task-dependent – we might need expert knowledge or cross validations to set

them properly.

Hierarchical maximum-margin clustering. In Chapter 3, we proposed a hierarchical maximum-

margin clustering (HMMC) framework for the unsupervised discovery of tree-structured hierar-

chies. Our method performs flat maximum-margin clustering recursively in a greedy top-down

manner. We also enforce sparse and exclusive regularizations to capture the semantics of feature

sharing (within each split) and feature competition (among different layers of splits).

A drawback of HMMC is that the tree growing process is not globally optimized. Instead,

we apply a greedy splitting criterion that is “optimal” at each local step. On the other hand, the

discovered tree structure depends crucially on the branching factor at each split. Other than setting

a fixed number as we did in our experiments, it is interesting to design approaches to automatically

determine the branching factor for each individual split.
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Scene recognition by semantic structure discovery. In Chapter 4, we developed a scene recogni-

tion framework by leveraging semantic scene structure discovery. We represent a scene by a struc-

tured collage of objects. When presented with a test image, the best matching between this structure

and that in the test image is found. We learn class-to-image distance from the object matchings, and

recognize the test image based on the learned distance.

The proposed method is limited by extracting only one structure per scene. However, it is

intuitive to discover multiple structures within each scene to handle intra-class variations. Also, our

model is simplified to localize one object instance per object category on an image. But in practice,

there could be multiple object instances of the same category. Thus, it is interesting to consider all

object instances in learning and inference.

Scene recognition by semantic part discovery. Finally, in Chapter 5, we designed a method that

discovers semantic scene parts for scene recognition. We set our goal as learning discriminative

parts that are representative for recognizing scenes. We adopted the maximum-margin clustering

technique introduced in Chapters 2 and 3, and proposed a generic framework for jointly learning

patch clusters, part models and scene recognition models.

Note that the performance of part discovery relies heavily on the quality of proposed salient

patches. A clean and informative set of patches assists in patch clustering and part model learning.

Moreover, our method is designed to discover parts for each scene separately. Considering that a

part can be shared by multiple scenes, it is promising to model part discovery for all scenes in a

unified framework. Furthermore, exploring structures among parts (such as the spatial relations as

we discussed in Chapter 4, or the hierarchical structures as we explored in Chapter 3) is another

interesting direction.

6.1 Future Directions

To extend the methods and results discussed in this thesis, we plan to take the following directions

as future work:

Semantics discovery with supervision: Note that the latent and hierarchical maximum-margin

clustering methods are fully unsupervised. The formed clusters might not be exactly the ones we

desire. To further refine the results, it is promising to inject supervision in the clustering process.

In the future, we plan to include human in the loop, and ask users to provide feedbacks for clus-

tering. The idea can be implemented by active learning [106] where the clustering algorithm is able

to interactively query the user to obtain supervision on certain data instances. It is also interesting to

design semi-supervised algorithms [146] if the supervision of partial data is given beforehand. The

provided supervision could be formatted in various ways – either we know the cluster assignment of

the data, or we have pairwise constraints like must links and cannot links [118], or triplet constraints

of relative comparisons [105].
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Discovering video semantics for event analysis: The results obtained in this thesis show that it is

beneficial to discover semantic structures and parts for recognizing scene images. We believe that

the same idea and solution can be directly adopted in the video domain for complex event analysis.

In detail, we are interested in analyzing the rich contents of web videos (e.g., YouTube videos),

where each video records a complex event like birthday party, fishing, wedding ceromony, etc.

To understand the video event, it is essential to discover the semantic video “parts”, including the

objects present in the videos, the actions happening in the videos, or the scenes shown in the videos.

It is also beneficial to explore the spatial-temporal “structures” among video parts in modeling the

rich semantics of video events.

Handling the big data challenge: With the advent of the big data era, numerous scene images are

collected in our daily experience. The solution presented in this thesis is being challenged in the

following two aspects. On one hand, it is computationally intensive for the semantics discovery

and scene recognition algorithms to handle the large-scale image data. Thus, designing efficient

and effective optimization methods is highly demanded. On the other hand, the hand-crafted fea-

tures for describing scene parts and structures are insufficient to model the ever-growing and high

dynamic scene collections. We plan to learn powerful features with deep learning techniques, e.g.,

convolutional neural networks [64, 58].
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