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Abstract

This thesis present three results.

The first is a result in structural graph theory. It demonstrates a large family of complete
graphs embedded (clique embeddings) as minors of the grid-like Chimera graph, which is an
abstract graph representing the D-Wave quantum adiabatic processor where vertices of the
Chimera graph represent qubits in the processor. These particular embeddings are uniform
in the sense that each vertex of the complete graph is represented by an equal number of
vertices in the Chimera graph, which is thought to improve performance of the D-Wave
processor. We present a polynomial-time algorithm to find a largest clique in this family
in arbitrary induced subgraphs. Then we use the output of our algorithm as a measure of
quality of a particular induced subgraph and show that the size of a largest clique embedding
grows logarithmically in the grid size when a fixed percentage of qubits have been deleted.

The second is a result in design theory and combinatorial number theory; constructing a
family of designs called Heffter arrays. A Heffter array is a (m × n) integer matrix whose
entries’ absolute values cover the interval [1,mn], where every row and column sums to
zero modulo 2mn + 1. Archdeacon [2] uses Heffter arrays to construct embeddings of the
complete graph K2mn+1 into orientable surfaces such that every edge appears in an m-cycle
and an n-cycle, provided either m or n is odd. This chapter establishes that m× n Heffter
arrays exist if and only m > 2 and n > 2.

The third is a result in combinatorial number theory and structural graph theory. For
subsets A,B of a group G define the product set AB = {ab : a ∈ A, b ∈ B}. Presented
in this chapter is a classification the sets A,B such that |AB| ≤ |A| + |B| when H < G

and B is the union of two H-cosets by reducing the problem to, and classifying, vertex-
and edge-transitive d-regular graphs with edge cuts of size at most 2d. That classification
necessitates the classification d-regular vertex- and edge-transitive graphs with girth g such
that dg ≤ 2(d + g): with a provided finite list of exceptions, each edge belongs to at most
two g-cycles.

Keywords: graph theory, structural graph theory, combinatorial number theory, quantum
computing, topological graph theory, design theory
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Dedication

This is yet another variation on the Cuckoo.
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Chapter 0

Introduction

This chapter gives a brief introduction to the problems in this thesis. Aside from this intro-
ductory chapter, this thesis consists of three chapters. Each chapter contains a standalone
result, and the results are largely disconnected. The individual chapters have their own
introductions, will discussing the notation used therein, and the history and motivation
behind the results. The central themes to the results are graph theory, and structure. First
we will give a rough description of how these results fit our title, the “structure of graphs
and numbers.”

Chapter 1 can be considered a result of structural graph theory with a significant in-
dustrial application. The chapter concerns a large family of minors in a class of graphs. It
contains a precise description of the family, which gives rise to an algorithm to optimize
over that family in a particular graph as well as a probabilistic argument to analyze the
behavior of this optimum. This chapter is joint work with Andrew King and Aidan Roy.

Chapter 2 is largely motivated by graph theory, but is best described as a result on the
structure of numbers. There, we solve a problem in design theory which generalizes magic
squares – we find rectangular matrices with integer entries, whose row sums are zero in a
particular cyclic group. This chapter is joint work with Dan Archdeacon and Jeff Dinitz.

Chapter 3 is indisputably structural graph theory. The core of the result is a classifica-
tion of edge cuts of size 2d in d-regular graphs which are vertex- and edge-transitive. The
motivation for this classification is from combinatorial number theory, so again, has to do
with the structure of numbers, if weakly. This chapter is joint work with Matt DeVos.

Next, we dig in to the definitions and give a high-level view of our main results. Below,
we briefly give enough detail to describe our results, and how we obtained them.

0.1 Native Clique Embeddings in Chimera Subgraphs

A D-Wave quantum annealing processor is a purpose-built analog computer [14] made
to solve Ising spin glass problems. These processors are represented by Chimera graphs
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Figure 1: “Triangle” clique embedding in C4,4,4, which motivated the design of the Chimera
graph. Every chain in this embedding has 5 qubits.

(defined in the next paragraph, see Figure 1 for an example Chimera graph). The first step
to solving an Ising spin glass problem on a D-Wave computer is to look at the underlying
graph of that problem and find that graph as a minor of the Chimera graph representing
the processor that one has access to. Finding these minors is difficult in practice, so we
restrict our attention to finding clique embeddings.

The Chimera graph CM,N,L is an M × N grid of complete bipartite KL,L unit cells.
Specifically, CM,N,L has vertices V = {1, · · · ,M} × {1, · · · , N} × {0, 1} × {1, · · · , L} which
we refer to as qubits and edges:

(x, y, 0, k) ∼ (x+ 1, y, 0, k), (horizontal inter-cell couplings)
(x, y, 1, k) ∼ (x, y + 1, 1, k), and (vertical inter-cell couplings)
(x, y, 0, k1) ∼ (x, y, 1, k2) for k1, k2 ∈ 1, · · · , L. (intra-cell couplings)

A particular D-Wave processor may have some defective vertices or edges, which we
delete from our graph. Where the Chimera graph was designed in part to support a partic-
ular clique embedding called the triangle embedding, shown in Figure 1, a relatively small
number of deleted qubits can conspire to invalidate large portions of an embedding.

We generalize the triangle embedding to a family of clique embeddings, called native
clique embeddings, which grows exponentially with N in CN,N,L for L fixed. We characterize
this family of embeddings with a combinatorial description, which helps us find a dynamic
programming approach to find a largest native clique embedding contained in an induced
Chimera subgraph in polynomial time. Moreover, we are able to use this description to
analyze a largest clique embedding that one can expect to find in a given induced Chimera
subgraph.

0.2 Heffter Arrays Exist

An m× n matrix H = (hij) with integer entries is a Heffter array if

1. {|hij | : 1 ≤ i ≤ n, 1 ≤ j ≤ m} = [1,mn],

2



2. Ri = ∑m
j=1 hij ≡ 0 (mod 2mn+ 1) for 1 ≤ i ≤ n, and

3. Cj = ∑n
i=1 hij ≡ 0 (mod 2mn+ 1) for 1 ≤ j ≤ m.

If the first two conditions replace ≡ 0 (mod 2mn + 1) with = 0, then H is said to be an
integer Heffter array. In Chapter 2, we show that m×n Heffter arrays exist for all plausible
m and n, and likewise for integer Heffter arrays. Here, “plausible” means that m and n

are large enough, and for the purpose of integer Heffter arrays, m and n satisfy a modular
condition.

Chapter 2 has a peculiar structure. The result itself is a collection of a large number of
constructions covering various residue classes of (m,n) modulo 4, with the cases (3, n) and
(5, n) being exceptionally tricky, with n taken modulo 8. To convince ourselves that our
constructions covered all m,n > 3, we implemented the constructions in Python. Later, we
repurposed that code to produce proofs, easily verified by human, that our constructions
are correct.

As nice as “easily verified by human” may sound, the full proof of Theorem 2.1.5 is rather
tedious. Additionally, there is beauty behind our constructions that is utterly obscured by
the computer-generated proofs. Thus, the majority of our effort is spent describing our
constructions at a high level, without focusing too much on the pesky details.

In our constructions, we use two main ideas. The first is the signed sequence x+1,−x−
2,−x− 3, x + 4, which sums to zero irrespective of the value of x. This idea proves useful
in several contexts, which we outline in Section 2.2.1.

The second idea is the use of Skolem sequences, and some generalizations thereof. A
Skolem sequence is (equivalent to) a labeling of an interval of integers of length 2n with
the integers [1, n] so that each label occurs precisely twice, and the integers ad and bd with
label d have |bd − ad| = d. For example, such a labeling of [6, 15]

5 2 4 2 3 5 4 3 1 1
6 7 8 9 10 11 12 13 14 15

gives rise to a partition [1, 15] into triples (d, ad,−bd),

1 2 3 4 5
14 7 10 8 6
−15 −9 −13 −12 −11

This gives a 3× 5 matrix with column sums zero and entries covering the interval [1, 15] in
absolute value. By permuting the entries in various columns and negating some of those
columns, one can change the row sums without affecting the column sums, hence obtain a

3



Heffter array
−1 −9 −3 8 5
15 2 −10 4 −11
−14 7 13 −12 6.

The constructions depend on generalizing Skolem sequences by omitting a subset of the
labels {1, 2}.

0.3 A Step Beyond DeVos When One Set is Two Cosets

Let G be a multiplicative group. Given two sets A,B ⊂ G, define the product set AB =
{ab : a ∈ A, b ∈ B}. In 1813, Cauchy [13] proved that |AB| ≥ |A| + |B| − 1, provided
that |G| is prime, AB 6= G and A,B 6= ∅, a result rediscovered by Davenport [17] in
1935. A similar bound was established by Kneser [32] in 1953 for abelian groups, that
|AB| ≥ |A|+ |B| − |StabG(AB)|, where StabG(U) = {g ∈ G : gU = U} for any U ⊆ G.

In addition to these inequalities, a type of inverse problem has been studied. In 1956,
Vosper [44] proved the following theorem.

Theorem 0.3.1 (Vosper). For A,B nonempty subsets of a group G of prime order p,
|AB| < |A|+ |B| if and only if

1. |A|+ |B| > p,

2. |A| = 1 or |B| = 1,

3. B = c(G \
{
a−1 : a ∈ A

}
) for some c ∈ G , or

4. A and B are geometric progressions with the same ratio.

In 1960, Kemperman [29] found a similar structural theorem for the case of abelian
groups, classifying those sets A,B for which |AB| < |A| + |B|. In 2013, DeVos [18] broke
tradition by establishing a structural theorem for arbitrary groups first, and then unwinding
that structure to find the appropriate bounding theorem. In 2009, Grynkiewicz [25] classifies
those sets A,B for which |AB| = |A|+|B|, in a paper entitled “A Step Beyond Kemperman’s
Structure Theorem.” Our goal is to make progress towards taking the analogous step beyond
DeVos’s structural theorem.

One of the more difficult cases of DeVos’s study is when the set B is a union of two
H-cosets, B = Ha ∪Hb for some H < G and a, b ∈ G. By constructing a bipartite graph
Γ with vertex set {1, 2} × G with (1, x) ∼ (2, y) if y ∈ xB, DeVos shows that the vertices
{2}×G have degree 2, so Γ is the incidence structure for the vertices and edges of a graph X.
As it turns out, X is a vertex- and edge-transitive graph (due to the action of G upon itself),
hence d-regular for some d. Furthermore, classifying those sets A for which |AB| < |A|+ |B|
is equivalent to classifying edge cuts of size less than 2d.
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Now we are ready to discuss the results in this thesis. With an identical setup to DeVos,
we are interested in d-regular graphs X which are vertex- and edge-transitive, and we
want to classify the edge cuts of size at most 2d. Our classification invokes two additional
parameters, namely girth, the length of a smallest cycle in the graph, and frequency, the
number of girth cycles that an edge belongs to. Since X is edge-transitive, frequency
is well-defined. We describe DeVos’s reduction to vertex- and edge-transitive graphs in
Section 3.2.2.

In order to classify those graphs with small edge cuts, we classify the vertex- and edge-
transitive graphs for which a minimum length cycle gives a small cut (in particular, where
dg ≤ 2(d+ g)). We take advantage of an earlier classification of cubic graphs, and observe
there are no such graphs for d ≥ 7 since they would have g ≤ 2. In particular, the 4-
regular and 6-regular graphs admit a rather rich structure. In both we find large, essentially
unclassifiable families where the frequency is 1 or 2, in addition to tilings of the torus
where k = 2. The classification of 4-regular graphs of girth 4 was split off into a separate
paper [10], in a slightly more general form (only assuming edge-transitivity and accepting
infinite graphs).

In our classifications of graphs, the frequency is our primary tool. For the most part, we
will use the fact that every edge in an edge-transitive graph is contained in the same number
of girth-cycles, but the notion is much more general. For example Lemma 3.5.9 considers the
number of times that a vertex v in a vertex-transitive graph occurs with degree 2 in induced
copies of K3,2. By looking at the frequency with which some substructure of a graph occurs
inside another, we are able to explore the neighboring vertices of that substructure. If that
graph has small diameter, we can rather quickly discover the whole graph. Otherwise, we
learn that the graph is path-like, has a unique embedding on a surface, or in one case,
belongs to a family too large to fully classify.
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Chapter 1

Native Clique Embeddings in
Induced Chimera Subgraphs

This chapter is joint work with Andrew King and Aidan Roy; it is very nearly identical
to [11]. King provided the author with the rough idea of how native clique embeddings are
structured, and both provided significant editorial input.

1.1 Introduction and Motivation

D-Wave quantum annealing processors are designed to sample low-energy spin configura-
tions in the Ising model using open-system quantum annealing [1, 9, 19, 27]. Input to the
processor consists of an Ising Hamiltonian (h, J), where h ∈ Rn is a vector of local fields
and J ∈ Rn×n is a matrix of couplings, which we assume here to be symmetric. The energy
of a spin configuration s ∈ {−1, 1}n is given as

E(s) = E(h, J, s) = sTJs+ sTh. (1.1)

The output of an anneal (i.e. a run) of the processor is a low-energy state s, which consists
of an Ising spin (either −1 or 1) for each qubit.

Nonzero terms of J are physically realized using programmable couplers. These couplers
only exist between certain pairs of physically proximate qubits. The input (h, J) is therefore
restricted such that if Ji,j 6= 0, there must be a coupler between qubit i and qubit j. We
rephrase this in graph-theoretic terms: The connectivity graph of (h, J), which we denote
by GJ , is the undirected graph on n vertices whose adjacency matrix has the same nonzero
entries as J . Likewise, each processor has a hardware graph G representing the available
qubits and couplers in the processor. For (h, J) to be input directly to the processor, GJ

must be a subgraph of G. If this is not the case, we can indirectly input (h, J) to the
hardware by embedding GJ as a graph minor of G. Implementing graph minors in the Ising
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model involves putting a strong ferromagnetic coupling Ji,j � 0 between any two adjacent
vertices i, j of G in the same vertex image. This coupling compels multiple qubits to take
the same spin, thus acting like a single logical qubit. The method is studied in greater detail
elsewhere [14, 43, 37, 30, 12].

In this paper we consider the problem of finding large clique minors in the hardware
graph. This is sufficient for minor-embedding any problem of appropriate size in a given
hardware graph, and allows the study of random, fully-connected spin glass problems, as in
recent work [43]. Klymko et al. first provided a polynomial-time algorithm for generating
large clique minors in subgraphs of hardware graphs [31]. In Section 1.4 we provide evidence
that our algorithm uses fewer physical qubits and allows the embedding of larger minors.

1.1.1 The Chimera graph and triangle embeddings

D-Wave processors currently operate using a Chimera hardware graph CM,N,L, which is an
M×N grid of complete bipartite graphs KL,L called unit cells. D-Wave Two processors use
a 512-qubit C8,8,4 hardware graph, and the most recent processors use a 1152-qubit C12,12,4

graph.
The Chimera graph was chosen, in part, because it contains a particularly nice clique

minor [15] (see Figure 1). This triangle embedding is uniform in the sense that each vertex
image (or chain) has the same number of vertices, and is near-optimal in the sense that it
gives a KLM minor in CM,M,L, whereas CM,M,L has treewidth LM and therefore contains
no KLM+2 minor1. A degree argument also shows that any uniform KLM minor requires
chains of size at least M , while the triangle embedding has chains of size M + 1.

In practice, a given processor will have a number of inoperable qubits. If there are t
inoperable qubits, up to t chains in a particular clique embedding can be rendered useless.
These inoperable qubits force us to find a clique minor in an induced subgraph of CM,N,L.
In the face of this, note that there are at least four triangle embeddings, which we can find
by simply rotating the embedding shown in Figure 1. So a first attempt at minimizing
the impact of inoperable qubits is to choose the triangle embedding for which the greatest
number of chains survive.

Triangle embeddings can be generalized further. A triangle embedding consists of over-
lapping ell-shaped (L-shaped) “bundles” of chains, and each chain in a bundle joins a
horizontal “wire” with a vertical “wire” via a matching at the corner of the bundle. First,
the structure of overlapping ell-shaped bundles can be generalized from the triangle (we
can avoid all four corner unit cells, for example). Second, the corner matchings can be
chosen arbitrarily to minimize the impact of inoperable qubits (if there are three intact ver-
tical wires and three intact horizontal wires, we can ensure that they are matched together
to make three intact chains). These generalizations result in exponential expansion of the

1Taking the triangle embedding and making an image of all the unused qubits gives a KLM+1 minor.
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(a) A maximum native clique embedding of
K24 in an induced subgraph of C8,8,4 with
26 randomly selected vertices deleted.

(b) The corresponding block clique embed-
ding, with dots indicating corners of the ell
blocks.

Figure 1.1: A maximum native clique embedding and its corresponding block clique em-
bedding.

number of clique embeddings available, but we can nevertheless optimize over them in poly-
nomial time using a dynamic programming approach. Defining and efficiently optimizing
over these clique embeddings are the main goals of this work.

In the next section we formalize the definition of native clique embeddings that generalize
triangle embeddings, and give a combinatorial characterization of the same. In Section 1.3
we give a dynamic programming technique that, given an induced subgraph of CM,N,L,
finds a maximum-sized native clique embedding in polynomial time. One desirable feature
of native clique embeddings is uniform chain length, which results in uniform, predictable
chain dynamics throughout the anneal [43]. Clique embeddings found through heuristic
methods such as the algorithm described by Cai et al. [12] generally lack this property.
In Section 1.4 we compare the results of our approach to those of the somewhat similar
approach by Klymko et al. [31]. The shorter chains and larger cliques generated by our
approach lead to improved tunneling dynamics and error insensitivity [23, 43, 47].

1.2 Native Clique Embeddings

We now formally define the structures required to construct and analyze native clique
embeddings.

Recall that Chimera CM,N,L is an M × N grid of KL,L unit cells. Specifically, CM,N,L

has vertices V = {1, · · · ,M} × {1, · · · , N} × {0, 1} × {1, · · · , L} and edges:
(x, y, 0, k) ∼ (x+ 1, y, 0, k) (horizontal inter-cell couplings),
(x, y, 1, k) ∼ (x, y + 1, 1, k) (vertical inter-cell couplings), and
(x, y, 0, k1) ∼ (x, y, 1, k2) (intra-cell couplings).
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We construct native clique embeddings using wires. For t ≥ 1, a horizontal wire of length
t is a contiguous set of vertices {(x+ i, y, 0, k) : i ∈ [0, t− 1]}, whose induced subgraph is a
path on t vertices. Likewise, a vertical wire is a set {(x, y + i, 1, k) : i ∈ [0, t− 1]}. An ell is
the union of a horizontal wire and a vertical wire where there is an edge between one end
of the horizontal wire and one end of the vertical wire. Note that these ends are necessarily
in the same unit cell, which we call the corner of the ell; for an ell ` we denote the corner
by c(`). In the embeddings we study, each chain is an ell. Our aim now is to specify an
orderly way of arranging them into a clique minor.

Looking at Figure 1.1, one may notice that chains appear in sets that intersect the same
unit cells. With this in mind, for an ell ` we define its ell block (X(`), c(`)): X(`) is the set
of unit cells intersecting `, and again c(`) is the corner of `, which we must specify for the
ell block in order to avoid ambiguity in the case of horizontal or vertical wires of length 1.
We define an ell bundle B as a (possibly empty) set of vertex-disjoint ells `1, · · · , `p with
the same ell blocks, i.e. such that |{(X(`), c(`)) | ` ∈ B}| ≤ 1.

A block clique embedding is a set X of n ell blocks {(X1, c1), · · · , (Xn, cn)} such that

• each Xi contains n unit cells (so ells have length n+ 1), and

• every distinct pair Xi, Xj in X intersects at exactly one unit cell, which is in the
horizontal component of one ell block and the vertical component of the other.

A native clique embedding respecting a block clique embedding X is a collection B of ell
bundles {Bi, · · · , Bn} such that for each i and for each ` ∈ Bi, (Xi, ci) = (X(`), c(`)), i.e.
(Xi, ci) is the ell block for each ell in Bi. From this definition and the above, we infer that

• any two ells ` and `′ in the same bundle have exactly two edges between them, both
in the unit cell c(`) = c(`′), and

• any two ells ` and `′ in different bundles have exactly one edge between them, and it
is in the unit cell X(`) ∩X(`′).

Hence a native clique embedding is a clique embedding.
We note a consequence of the requirement that every pair of ell blocks intersect at

exactly one unit cell: in a block clique embedding X = {(X1, c1), · · · , (Xn, cn)}, the corners
c1, · · · , cn form a permutation in the n× n matrix representing the unit cells of the graph
Cn,n,L. These permutations have a specific structure that is in direct correspondence with
a class of permutations representable by circular point sets studied recently by Vatter and
Waton [42].

The following theorem provides a constructive classification of block clique embeddings
and shows that, in contrast with triangle embeddings, native clique embeddings exist in
abundance.
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Theorem 1.2.1. In a Cn,n,L Chimera graph for n ≥ 2, there are 4n−1 block clique em-
beddings that contain n ell blocks. In particular, they are in natural bijection with the set
{E,W} × {NE,NW,SE,SW}n−2 × {N,S}.

To prove Theorem 1.2.1, we first show that each ell block in a block clique embedding
has a distinct shape. Define the width of an ell as the number of vertices in its horizontal
wire, and its height as the number of vertices in its vertical wire. All ells in an ell bundle
have the same width and height, so define the width and height of an ell bundle or an ell
block as the width and height of its constituent ells.

Lemma 1.2.2. Let X = {(X1, c1), · · · , (Xn, cn)} be a block clique embedding in Cn,n,L.
Then the ell blocks of X have distinct heights.

Proof. We will establish that X has a unique ell block of height i for each 1 ≤ i ≤ n. Clearly
two ells of height 1 or two ells of height n cannot intersect properly (i.e. in exactly one unit
which is horizontal for one ell block and vertical for the other). Assume for contradiction
that X contains two ells (X, c) and (X ′, c′) of height 1 < i < n. Their horizontal and vertical
components must occupy different rows and columns respectively. Up to symmetry, there
are two cases to consider where ells of the same height intersect properly, shown below. In
both cases, we name the upper ell block (X, c).

Case 1 Case 2

Since there are n ell blocks and n cells per block, every non-corner cell of every ell block
must intersect another ell block. In Case 1, we have shaded cells for which the horizontal or
vertical coordinate is unique among the two ells. Consider an ell block (Y, d) which properly
intersects (X, c) in a shaded cell. To properly intersect (X ′, c′), (Y, c) cannot intersect (X, c)
again, so must intersect (X ′, c′) in a shaded cell also. Therefore, Y must have size greater
than n, a contradiction. In Case 2, we have shaded the cell which lies directly north of a
corner. In this case, it is clear that no ell block can properly intersect (X, c) at the gray
cell and also intersect (X ′, c′) properly.

By Lemma 1.2.2 we can assign unique labels to every ell block (Xi, ci) ∈ X so that Xi

has height i and width n− i+1. Central to our proof is the notion of the working rectangle.
We partition an ell block (Xi, ci) of height i into three parts,

1. the corner ci = (xi, yi),
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2. the horizontal component, hi = {(x′, y′) ∈ Xi : y′ = yi, x
′ 6= xi}, and

3. the vertical component, vi = {(x′, y′) ∈ Xi : x′ = xi, y
′ 6= yi},

We define

Ri =

 i⋃
j=1

hj

 \
 i⋃

j=1
vj

 .
Unwinding these definitions, we find that

Ri+1 = (Ri \ (Ri ∩Xi)) ∪ (Xi \ ({ci} ∪Ri)) ,

we’ll prove that every Ri is a rectangle.

Proof of Theorem 1.2.1. We first give a mapping from the set of 4n−1 words to the set of
block clique embeddings and then provide the inverse mapping.

Let D = s1 · · · sn be a word for which s1 ∈ {E,W}, each of s2, · · · , sn−1 is a word in
{NE,NW,SE,SW}, and sn ∈ {N,S}. We construct a block clique embedding from D in such
a way that each ell block (Xi, ci) corresponds to the subword si. We denote the location of
a corner ci by its Cartesian coordinates (xi, yi) ∈ {1, · · · , n}2 and coordinates increase to
the east (for x) and north (for y).

If s1 = W we place c1 so that it is west of the remaining corners, i.e. x1 = 1. If s1 = E,
we place c1 so that it is east of the remaining corners, i.e. x1 = n. We select y1 so that
there are y1 − 1 Ss following the subword s1 in the word D. Below, we show two initial
ell block placements for words where ∗ denotes a (possibly empty) subword containing zero
occurrences of the letter S.

E ∗ S ∗ S ∗ W ∗

The placement of the first ell block results in a working rectangle R1 = h1, which is in
fact a rectangle. Now, suppose that the working rectangle after the selection of i ell blocks
is Ri = [x, x′]× [y, y′] in Cartesian coordinates, where x ≤ x′ and y ≤ y′. We choose corner
ci based on subword si as follows, noting that x′ = x+ n− i− 1 and y′ = y + i− 1:

• If si = NE or N, ci = (x′, y′ + 1).

• If si = NW, ci = (x, y′ + 1).

• If si = SE or S, ci = (x′, y − 1).

• If si = SW, ci = (x, y − 1).
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E · · · ENE · · · ENENW · · · ENENWSE · · · ENENWSES

Figure 1.2: An example of the iterative construction of a block clique embedding.

Letting ci = (xi, yi), we then choose Xi = ({xi} × [y, y′]) ∪ ([x, x′] × {yi}) and update the
working rectangle Ri+1 = ([x, x′]\{xi}) × ([y, y′] ∪ {yi}). Observe that every time that we
find a W, x increases by 1 and every time we find a E, x′ decreases by 1; every time we find
an N, y increases by 1 and every time an S, y′ decrease by 1. In particular, Ri is a rectangle
one row taller and one column thinner than Ri−1, and the corner ci is in the si-most corner
of the rectangle Ri ∪Ri−1 ∪{ci} (for example, if si = NW, ci is in the cell in the north west
corner of both its ell Xi and the aforementioned rectangle.)

Figure 1.2 shows an example of how the construction might proceed.
Note that Ri never shares a column with a corner in {cj | j ≤ i}, and the set of rows

intersected by Ri is the same set of rows intersected by {cj | j ≤ i}. It therefore follows
from the construction that {c1, · · · , cn} is a permutation. Furthermore, by the construction,
for i < j there is always a unit cell Xi ∩Xj in the working rectangle Ri – specifically, it is
(xj , yi). So X = {(X1, c1), · · · , (Xn, cn)} is indeed a block clique embedding.

Now, we invert our construction. Let X = {(X1, c1), · · · , (Xn, cn)} be a block clique
embedding in which Xi has height i; we will reconstruct our word D. We call (xn, y1) =
X1 ∩Xn the center of X , and say that a point (x, y) lies to the east or west of the center if
x > xn or x < xn respectively, and likewise north and south.

• Let s1 = E if the corner c1 lies to the east of the center, and W otherwise.

• For 1 < i < n, let si = aibi, where ai = N if ci lies to the north of the center, and S
otherwise; and bi = E if ci lies to the east of the center, and W otherwise.

• Let sn = N if the corner cn lies to the north of the center, and S otherwise.

Therefore, D = s1s2 . . . sn is in {E,W} × {NE,NW, SE, SW}n−2 × {N, S}. To see that this
construction is in fact the inverse, we observe that each ell block (Xi, ci) is associated to
the direction si in which the corner ci lies from the center. If we start with a word D, then
we see that the reverse construction reproduces that word D. Next, we’ll show that the
reverse construction is inverted by the forward construction, and hence that our sets are in
bijection.

Furthermore, the ell block Xi, having height i, must intersect each previous ell block
in precisely one cell. By construction, the vertical components vj for j < i are already
“occupied” by the horizontal components hj for j < i; ⋃j−1

i=1 vj ⊆
⋃j−1

i=1 hj , and Ri−1 is a
rectangle of height i−1 consisting of horizontal components less vertical components. Since
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X is a block clique embedding, the vertical component of Xi must overlap the horizontals
of Xj for j < i, so Xi∩Ri−1 = vi. As we argued in Lemma 1.2.2, vi must overlap either the
east-most or west-most cell of every Xj ∩Ri−1, or some pair of ell blocks will fail to overlap
or overlap inappropriately. Similarly, the horizontal component of Xi must occupy the row
one step north or south of Ri−1. Therefore, Ri is also a rectangle, one unit taller and thinner
than Ri−1, and the corner ci lies in the si-most corner of the rectangle {ci} ∪ Ri ∪ Ri−1.
Since Xi is the unique ell {ci} ∪ (Ri−1 \Ri) ∪ (Ri \Ri−1), the forward construction inverts
our reverse construction.

1.3 Finding Optimal Native Clique Embeddings in Induced
Subgraphs

In this section we describe an algorithm to find a largest native clique embedding B =
{Bi, · · · , Bn} in an induced subgraphG of CM,N,L with n ≤M,N . Our algorithm necessarily
takes as input a parameter n, which determines the size of the chains, i.e. n+ 1.

Our algorithm is inspired by the proof of Theorem 1.2.1. We use dynamic programming
to maximize the block clique embeddings with each working rectangle R, and do so in an
orderly way which results in a polynomial-time algorithm.

As a pre-processing step, for each ell block (X, c) we compute a maximum bundle and
store it as maxBundle(X, c) (it is straightforward to do this in O(nL) time per ell block).
We then use this information to construct block clique embeddings as in the proof of The-
orem 1.2.1: adding one ell block at a time, with working rectangles of increasing height.
Let (X, c) be an ell block of height i. If 1 ≤ i ≤ n− 1, there is a unique working rectangle
Rfrom(X, c) that can be in effect immediately after (X, c) is placed. If 2 ≤ i ≤ n, there is a
unique working rectangle Rto(X, c) that can be in effect immediately before (X, c) is placed.
Note that for each working rectangle R, the sets

Xfrom(R) := {(X, c) | R = Rto(X, c)}

and
Xto(R) := {(X, c) | R = Rfrom(X, c)}

each have size at most four (see Figure 1.3).
For any set of ell bundles B = {B1, · · · , Bn} where each Bi is contained in the ell block

(Xi, ci) and X = {(X1, c1), · · · , (Xn, cn)}, we define

‖X‖ :=
∣∣∣∣∣

n⋃
i=1

maxBundle(Xi, ci)
∣∣∣∣∣ ≥

∣∣∣∣∣
n⋃

i=1
Bi

∣∣∣∣∣
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R

R1 R2 R3 R4

Figure 1.3: The four rectangles Ri = Rto(Xi, ci) with (Xi, ci) ∈ Xto(R). Gray ell blocks
represent precomputed maxPartialEmbedding(Ri) as in Lemma 1.3.1.

provided that the ell blocks are all distinct. This enables us to construct maximum native
clique embeddings while only considering the ell blocks involved.

For each working rectangle R of height i (and width n − i), our algorithm computes
and stores a partial block clique embedding with that working rectangle: a set of ell blocks
Xi = {(X1, c1), · · · , (Xi, ci)} such that

• R = Rfrom(Xi, ci),

• Xj has height j for all 1 ≤ j ≤ i

• Rto(Xj , cj) = Rfrom(Xj−1, cj−1) for all 2 ≤ j ≤ i.

In particular, we compute maximum partial block clique embeddings with working rect-
angle R; those which maximize ‖Xi‖ over all partial block clique embeddings with a given
working rectangle. We denote a particular maximum partial block clique embedding for
a given working rectangle R by maxPartialEmbedding(R), though many may exist. Our
algorithm will operate by extending maximum partial block clique embeddings by ells, so
we define maxExtension(X, c) = maxPartialEmbedding(Rto(X, c)) ∪ {(X, c)} when X has
height h > 1, and maxExtension(X, c) = {(X, c)} otherwise.

The following lemma encodes the key step of the algorithm: to find a maximum partial
block clique embedding with working rectangle R, we need only consider partial block clique
embeddings that include an ell block (X, c) such that R = Rfrom(X, c).
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Lemma 1.3.1. Given a rectangle R of height i ≥ 1 and width n− i,

‖maxPartialEmbedding(R)‖ = max
(X,c)∈Xto(R)

|maxExtension(X, c)| .

Proof. We proceed by induction on i. When i = 1, our claim follows immediately from
definitions. Assume that i > 1 and that our claim holds for all working rectangles of height
i− 1.

We consider the complete set of partial block clique embeddings with working rectangle
R, S = {Xi | Rfrom(Xi, ci) = R} = {Xi | (Xi, ci) ∈ Xto(R)} where (Xi, ci) is the ell
block with height i in Xi. By definition, ‖maxPartialEmbedding(R)‖ = maxXi∈S ‖Xi‖. For
contradiction, pick some maximum Xi ∈ S and suppose that

‖Xi‖ > ‖maxPartialEmbedding(Rto(X, c)) ∪ {(X, c)}‖

for all (X, c) ∈ Xto(R). In particular, letting Xi−1 = Xi \ {(Xi, ci)},

‖Xi‖ = ||Xi−1||+ ||{(Xi, ci)}||

> ‖maxPartialEmbedding(Rto(Xi, ci))‖+ |maxBundle(Xi, ci)|,

a contradiction since Xi−1 has working rectangle Rto(Xi, ci).

We now present the algorithm, wherein we compute maxPartialEmbedding(R) for rect-
angles of increasing height, as indicated by Lemma 1.3.1. To do so we treat the set of
possible working rectangles as a digraph, where R → R′ if and only if there is an ell block
(X, c) for which R ∈ Rfrom(X, c) and R′ ∈ Rto(X, c). This means that if R → R′, the
height of R′ is one more than the height of R. The number of edges in this digraph is
equal to the number of ell blocks. To compute maxPartialEmbedding(R′), assuming that
we have computed maxPartialEmbedding(R) for all rectangles of lesser height, we simply
set maxPartialEmbedding(R′) to be a maximum partial block clique embedding in the set

{
maxExtension(X, c) | (X, c) ∈ Xto(R′)

}
.

Once we have computed maxPartialEmbedding(R) for all rectangles R of height n− 1 and
width 1, we pick a maximum-sized clique embedding from the set

{maxExtension(X, c) | (X, c) has height n− 1 and width 1} .

Pseudocode is given in Algorithm 1.

Theorem 1.3.2. The NativeCliqueEmbed algorithm finds a maximum-sized native clique
embedding with chain length n+ 1 in polynomial time.
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Algorithm 1 The algorithm to find a maximum-sized native clique embedding in an in-
duced subgraph of a Chimera graph.

1: function NativeCliqueEmbed(G, n)
2: for i = 1, · · · , n− 1 do
3: for each rectangle R of height i and width n− i do
4: maxPartialEmbedding(R)← ∅
5: for each ell block (X, c) of height i and width n− i+ 1 do
6: B ← maxPartialEmbedding(Rto(X, c)) ∪ {(X, c)}
7: if ‖maxPartialEmbedding(Rfrom(X, c))‖ < ‖B‖ then
8: maxPartialEmbedding(Rfrom(X, c))← B
9: Bmax ← ∅

10: for each ell block (X, c) of height n and width 1 do
11: B ← maxPartialEmbedding(Rto(X, c)) ∪ {(X, c)}
12: if ‖Bmax‖ < ‖B‖ then
13: Bmax ← B
14: return {maxBundle(X, c,G) | (X, c) ∈ Bmax}

Proof. We first prove correctness, then the bound on running time.
Note that the loop beginning on line 5 of Algorithm 1 iterates over all ell blocks of height

i and width n − i. Given a rectangle R, there are up to four ell blocks (X, c) for which
R = Xto(X, c). If we ignore all ell blocks except those incident to a particular rectangle
R, this loop implements Lemma 1.3.1 directly. Therefore, when we reach line 9, we have
computed maxPartialEmbedding(R) for all R with height n− 1 and width 1.

Let B = {B1, · · · , Bn} be a maximum native clique embedding where Bi is an ell bundle
in the ell block (Xi, ci) with height i. By Theorem 1.2.1, deleting the final ell block to obtain
Xn−1 = {(X1, c1), · · · , (Xn−1, cn−1)} gives a partial block clique embedding with working
rectangle Rto(Xn, cn). By Lemma 1.3.1,

||maxPartialEmbedding(Rto(Xn, cn))|| ≥ ||Xn−1|| ,

so we see a clique embedding of size at least ||Xn−1|| + |maxBundle(Xn, cn)| when line 11
is reached with (X, c) = (Xn, cn). Therefore, when line 14 is reached, ||Bmax|| ≥ ||B|| and a
native clique embedding of maximum size has been found.

We can compute maxBundle(X, c,G) in O(nL) time, and there are polynomially many
ell blocks and rectangles: There are at most MN possible locations of a rectangle’s lower-
left corner, and n possible shapes, thus at most nMN rectangles. Likewise there are at most
MN possible locations for an ell block’s corner, and at most 4(n− 1) ell blocks containing
n unit cells with a given corner, thus at most 4nMN ell blocks.

It follows that each line in Algorithm 1 is evaluated O(nMN) times, and the pre-
processing step of computing maxBundle(X, c,G) for each ell block (X, c) naively takes
O(n2MNL) time. Consequently, with the rough bound that each line in Algorithm 1 takes
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O(nL) time for a single evaluation, we can bound the total running time of our algorithm
by O(n2MNL).

Remark. The O(n2MNL)-time bound on Algorithm 1 is quadratic in the number of
vertices in CN,M,L, i.e. O(n2MNL) ⊆ O((MNL)2). Assume M ≤ N and L is constant.
With a little more care, we can modify Algorithm 1 to achieve a bound of O(N3) instead
of O(N4). Doing this involves (a) pre-computing all maximum horizontal and vertical line
bundles in time O(LNM2+LMN2) with a dynamic programming approach, which allows us
to compute |maxBundle(X, c,G)| in O(1) time, and (b) exploiting the fact that throughout
the algorithm, we need only keep track of the size of maximum partial embeddings and the
route used to reach it (replacing maxPartialEmbedding(R) with a mapping R 7→ (X, c) ∈
Xto(R)), rather than the embeddings themselves.

NativeCliqueEmbed gives a maximum native clique embedding for a fixed chain length.
To find a maximum native clique embedding over all chain lengths for a given graph, we
simply repeat the process for each choice of n ∈ {2, · · · ,min{M,N}}. For M ≤ N and
constant L, this gives an overall running time on a subgraph of CM,N,L of O(N5) with the
naive implementation and O(N4) with the refinement discussed above.

1.3.1 Induced and General Subgraphs

We now discuss the motivation of using induced subgraphs and how to approach more
general subgraphs.

Recall that we have restricted our attention to induced subgraphs rather than more
general subgraphs because failed couplers adjoining working qubits are relatively rare. In
an induced subgraph, we will still focus on horizontal and vertical wires, and it is easy to
find a maximum set of such wires in a line of unit cells.

A maximum ell bundle is a maximum-sized set of vertex-disjoint ells that occupy an ell
block, and the size of an ell bundle is the number of ells contained therein. It is simple
to find a maximum ell bundle in a given ell block: finding maximum sets SH and SV of
horizontal and vertical wires spanning a line of cells is trivial, and these lines may be paired
off arbitrarily since the corner is a complete bipartite graph. Here there may be difficulty in
generalizing even this relatively simple optimization problem in the face of arbitrary edge
deletion. Finding a maximum ell bundle in an arbitrary Chimera subgraph is polynomially
equivalent to finding a maximum clique in D2(L(B)) where B is a bipartite graph, L(B) is
the line graph of B, and D2(G) is the distance-2 graph with vertex set V (G) and edge set
{uv : dG(u, v) = 2}. We are unsure of the complexity of this problem, but expect that it is
NP-complete.

Note that we can easily relax the requirement of an induced subgraph when couplers
between unit cells are defective – in any case, one just computes the number of wires in a
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line of cells where all qubits and couplers are contained in the subgraph. In short, failed
inter-cell couplers don’t increase the difficulty of the problem.

If we restrict our attention to Chimera graphs CN,N,L where L = O(logN), or assume L
to be a constant, then this difficulty at the corners can be swept under the rug. At present,
this appears to be a reasonable consideration, as it is much easier from a manufacturing
and design standpoint to increase N than it is to increase L.

However, there is a further challenge introduced by intra-cell couplers. Our algorithm
intrinsically relies upon the assumption that couplers exist between any two ells whose
unit cells intersect. Missing intra-cell couplers void that assumption. The easiest remedy
for this obstruction is to consider vertex covers of the failed intra-cell couplers: Given a
graph G that is the subgraph of CM,N,L induced by vertex set W , i.e. G = CM,N,L[W ],
let U1, · · · , Us be the list of minimal vertex covers of the failed intra-cell couplers. Then,
for each 1 ≤ i ≤ s, compute a largest clique minor considering G[W ] for the purpose of
constructing ells, and G[W \ Ui] for the purpose of growing cliques. This approach gives
a fixed-parameter tractable algorithm for finding the maximum native clique embedding
in an arbitrary subgraph of Chimera in terms of the number of missing edges with both
endpoints intact – for the D-Wave Two processors installed at NASA Ames [43] and ISI [1],
this parameter was zero.

1.4 Comparison With Previous Work

Klymko, Sullivan and Humble gave a greedy embedding algorithm that quickly produces
similar embeddings to those in this paper [31]. Their algorithm produces plus-shaped chains
(having nearly twice as many qubits), and restricts its search to embeddings where the
vertical and horizontal components of pluses are only allowed to meet at the diagonal of a
fixed square. While our algorithm is slower, taking O(N4) time compared to their O(N3) for
CN,N,4, it is exhaustive, empirically embeds larger cliques, and produces chains of roughly
half the size.

Given a family of clique minors, the clique yield of a graph G over that family is the
size of the largest clique minor in the family which are subgraphs of G. In Figure 1.4, we
compare ell- and plus-shaped chains as the grid size grows for several fixed percentages of
operational qubits. In both families, a similar asymptotic behavior becomes clear: for a
fixed qubit failure rate, increasing the grid size gives diminishing returns in terms of clique
yield. However, the difference between these curves is significant, with ell-shaped chains
producing much larger clique minors.
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Figure 1.4: Comparison of clique yields for ell-shaped (red) and plus-shaped (blue) chains
for various square grids with L = 4. The solid lines denote the median, and the shaded
regions encompass the middle two quartiles.

1.5 Expected Clique Yield

In this section we consider the likelihood of a native clique embedding of a given size existing
in an induced subgraph G′ of G = CN,N,L. We assume a random model for G′ in which each
vertex of CN,N,L is independently deleted with probability 1− q.

Theorem 1.5.1. Define the clique yield t0 = t0(N,L, q) as the largest value t for which we
expect to see at least one native clique minor of size t in G′. For fixed q < 1 and fixed L,
t0(N,L, q) is O(

√
logN).

Proof. Let Xt be the number of native clique minors of size at least t in G′. We bound t0
by showing the expected value of Xt is less than 1 for sufficiently large t.

Let Kw denote the set of native clique minors in G with ells of length w + 1. For a
given clique minor K ∈ Kw and induced subgraph G′, let K ′ denote the largest subclique
of K whose ells have no vertices deleted from G′. Let |K ′| be the number of vertices in K ′.
(In other words, |K ′| is the number of ells of K that survived in G′.) Then the expected
number of induced native minors in which t or more ells survive deletion is

E[Xt] =
∑

G′⊆G

q|G
′|(1− q)|G\G′|

N∑
w=1

∑
K∈Kw

1|K′|≥t

=
N∑

w=1

∑
K∈Kw

P[|K ′| ≥ t],
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where 1 denotes the indicator function and P[|K ′| ≥ t] = ∑
G′⊆G q

|G′|(1 − q)|G\G′|1|K′|≥t

is the probability that |K ′| ≥ t by definition. As every qubit survives independently with
probability q, every ell survives with probability qw+1. Therefore every K ′ has the same
binomial size distribution:

P[|K ′| = s] =
(
Lw

s

)
(qw+1)s(1− qw+1)Lw−s,

and P[|K ′| ≥ t] = ∑Lw
s=t P[|K ′| = s]. We have also shown that there are 4N−1 block clique

embeddings in the N × N grid. Additionally, for each ell block, there are L! different
ell bundles of size L in that ell block. Therefore, the Chimera graph CN,N,L has |Kw| =
(N − w + 1)2(L!)w4w−1 clique minors with ells of length w + 1. Combining the above,

E[Xt] =
N∑

w=1
(N − w + 1)2(L!)w4w−1

Lw∑
s=t

(
Lw

s

)
(qw+1)s(1− qw+1)Lw−s

≤ N2
N∑

w=dt/Le
(L!)w4w−12Lw(qw+1)t

= 1
4q

tN2
N∑

w=dt/Le
(cqt)w,

where c = 4L!2L. To upper bound t0, it is sufficient to find some t where E[Xt] < 1. For
large t we have cqt < 1/2, and so the geometric sum is bounded:

E[Xt] ≤
1
4q

tN2
N∑

w=dt/Le
(cqt)w

≤ 1
2q

tN2(cqt)(t/L).

The last expression is less than 1 if and only if

log(1/2) + 2 log(N) + t[log(q) + log(c)/L] + t2 log(q)/L < 0;

which implies that t is O(
√

logN) for fixed q and L.

20



Chapter 2

Heffter Arrays Exist

This chapter is joint work with Dan Archdeacon and Jeff Dinitz, culminating a paper [4]
which is a brief summary of this chapter, and a technical report [5] which is essentially [4]
together with Section 2.7. Archdeacon gave the problem to the author, having resolved the
question of 4n× 4m Heffter Arrays with Dinitz (as well as a finite field construction which
we did not need in the end), and met frequently with the author to discuss the constructions
as the author found them. Unfortunately, Archdeacon died in early 2015, and Dinitz has
been working diligently to tie up loose ends, including finalizing our paper for publication
and providing editorial support for the author.

2.1 Introduction

2.1.1 A Brief History of Skolem Sequences

A Steiner triple system STS(m) is a set of 3-element subsets, called blocks, of a set S such
that every 2-element subset of S appears in exactly one of the blocks. In 1897, Lothar
Heffter [26] reduced the problem of producing a Steiner triple system STS(6n + 1) to the
following problem, known as Heffter’s first difference problem.

Problem 2.1.1. Can a set [1, 3n] be partitioned1 into n ordered triples (ai, bi, ci), such that
for each 1 ≤ i ≤ n, either ai + bi − ci ≡ 0 (mod 6n+ 1) or ai + bi + ci ≡ 0 (mod 6n+ 1)?

Heffter’s reduction was to take each triple (ai, bi, ai+bi) and make a base block (0, ai, ai+
bi). Then, for each j ∈ [0, 6n], replicate a shift of the base block (j, ai + j, ai + bi + j), so
that the Steiner triple system is

{(j, ai + j, ai + bi + j) : i ∈ [0, n], j ∈ [0, 6n]} ,
1We abuse notation a little here, as partitions are usually taken to be sets of sets. Our ordered triples,

when unordered, form a partition. This shan’t be mentioned again.
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where each entry is reduced modulo 6n + 1. For example, a solution to Heffter’s prob-
lem for n = 2 is the pair of triples {(2, 5, 6), (1, 3, 4)} corresponding to the base blocks
{(0, 2, 7), (0, 1, 4)} and Steiner triple system (half-columns are triples, separated by a line)

0 1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 0 1
7 8 9 10 11 12 0 1 2 3 4 5 6
0 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 0
4 5 6 7 8 9 10 11 12 0 1 2 3.

Heffter posed a second difference problem yielding a construction of STS(6n+ 3), which is
less relevant to us.

Rose Peltesohn [36] first solved Heffter’s difference problems in 1939, with six explicit
solutions for the various cases modulo 18. Independently, Thøger Bang [7] posed a problem
to Thoralf Skolem, similar to Heffter’s first difference problem,

Problem 2.1.2. Can a set [1, 2n] be partitioned into n ordered pairs (ai, bi), such that
bi − ai = i for every 1 ≤ i ≤ n?

Bang’s motivation was to find sufficient and necessary conditions on irrational α and
β for which the sets Nα and Nβ form a partition of the natural numbers. Thoralf Skolem
[41] found the sufficient and necessary conditions for Bang’s difference problem in 1957;
that n ≡ 0, 3 (mod 4). Skolem demonstrated sufficiency with two families of what are now
known as Skolem sequences, and necessity with the simple observation (due to Bang) that

n(n+ 1)
2 =

n∑
i=1

i =
n∑

i=1
(bi − ai) ≡

n∑
i=1

(bi + ai) =
2n∑

j=1
j = (2n)(2n+ 1)

2 (mod 2).

Since then, Skolem sequences have been well-studied, with many generalizations. One
common generalization is that of a d-near Skolem sequence: partitions of the set [1, 2n− 2]
into n− 1 ordered pairs (ai, bi), such that bi − ai = i for every 1 ≤ i ≤ n except i = d? We
further generalize near Skolem sequences in Section 2.5.

Skolem and Peltesohn both constructed what are now known as starters: partitions of
the nonzero elements of an groupG of odd order into pairs {si, ti} for 1 ≤ i ≤ |G|−1

2 such that
{±(ti − si) : 1 ≤ i ≤ (|G| − 1)/2} = G \ {0} (to obtain a starter in Z2n+1 from a Skolem se-
quence, for example, create the set of pairs {{bi,−ai} : 1 ≤ i ≤ n}∪{{ai,−bi} : 1 ≤ i ≤ n}).
Dinitz [22] has a good summary of the literature on starters. We use a slight generalization
of starters, allowing the collection of differences to be an arbitrary multiset D, and the pairs
to partition an arbitrary set S. We call such an object a partition of S into differences D.
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2.1.2 Heffter Systems and Heffter Arrays

We generalize Heffter’s problem to the following.

Problem 2.1.3. Partition the interval [1, nm] into n m-tuples
{
x

(i)
1 , · · · , x(i)

m

}
and find an

assignment of signs σ : [1,mn]→ {−1, 1} satisfying

m∑
j=1

σ(x(i)
j )x(i)

j ≡ 0 (mod 2nm+ 1)

for all 1 ≤ i ≤ n.

We will call a solution to this problem,
{{
σ(x(i)

1 )x(i)
1 , · · · , σ(x(i)

m )x(i)
m

}
: i ∈ [1, n]

}
, a

Heffter system S, and an element s ∈ S a m-set. We will refer to Heffter systems consisting
of 3-sets as Heffter triple systems and those of 5-sets as Heffter quintuple systems, or in
general, Heffter m-tuple systems. We often to refer to both ends of the interval [1,mn], and
we use m and n to denote quantities other than the array dimensions. To that end, we will
use the variable D to denote the product of the matrix dimensions.

We say that two Heffter systems S and T are orthogonal when

• ⋃
s∈S s = ⋃

t∈T t (that is, the elements of [1,D] have the same sign in both systems),
and

• |s ∩ t| = 1 for all s ∈ S and all t ∈ T .

Definition 2.1.4. An m× n matrix H = (hij) with integer entries is a Heffter array if

1. {|hij | : 1 ≤ i ≤ n, 1 ≤ j ≤ m} = [1,D],

2. Ri = ∑m
j=1 hij ≡ 0 (mod 2D + 1) for 1 ≤ i ≤ n, and

3. Cj = ∑n
i=1 hij ≡ 0 (mod 2D + 1) for 1 ≤ j ≤ m.

An orthogonal pair of Heffter systems is equivalent to a Heffter array: given an orthog-
onal pair, label the sets S = {s1, · · · , sn} and T = {t1, · · · , tm} and set hij to be the unique
element in si ∩ tj ; conversely, the rows and columns of a Heffter array form an orthogonal
pair.

We note that m and n must be greater than 2, since |h11| 6= |h12| and |h11|+ |h12| < 2D,
and we will show that this is the only obstruction to the existence of Heffter arrays. If the
rows and columns all sum to precisely the integer 0, then we say H is an integer Heffter
array. Naturally, every integer Heffter array is a Heffter array. Note that for an integer
Heffter array,

0 =
n∑

j=1
Rj =

n∑
i=1

m∑
j=1

hij ≡
(
mn+ 1

2

)
(mod 2)

so either mn or mn+ 1 is divisible by 4 – thus mn ≡ 0, 3 (mod 4).
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2.1.3 Main Theorem

In the sections to come, we present a complete solution to the existence problem for
Heffter arrays and integer Heffter arrays. Before the author was introduced to the problem,
Archdeacon and Dinitz had described the construction for 4m×4n Heffter arrays presented
in Section 2.3 as well as a finite field construction for m × n Heffter arrays when 2mn + 1
is prime.

Theorem 2.1.5. For m,n ∈ N, there exists a m × n Heffter array if and only if m > 2
and n > 2; and there exists a m× n integer Heffter array if and only if m > 2, n > 2, and
mn ≡ 0, 3 (mod 4).

But first, we will discuss an application of Heffter arrays to topological graph theory.

2.1.4 Motivation

If m > 2 and n > 2 are not both even, Archdeacon [2] describes a way to use a Heffter array
to embed the complete graph K2mn+1 into an orientable (possibly pinched) surface so that

• all faces are either m-cycles or n-cycles,

• all m-faces are surrounded by n-faces, and

• all n-faces are surrounded by m-faces.

Such an embedding is called a biembedding. The reason that one would require an odd
dimension is that the construction calls on a 1-face embedding of the complete bipartite
graph Km,n, which exists [45] if and only if at least one of m,n is odd. The other necessary
ingredients used to produce Archdeacon’s embeddings are cyclic orderings of each row and
each column. We will briefly look at two properties of these orderings.

Given a cyclic ordering (t1, t2, · · · , tm) of an m-set in an additive group, we define the
partial sum sj = ∑j

i=1 ti, and say that the ordering is simple if every partial sum is distinct,
si 6= sj for all 1 ≤ i < j ≤ m. A Heffter system is simple if every part has a simple
ordering. Further, a Heffter array is simple if both the row and column Heffter systems are
simple. In the case that the row and column orderings are both simple, then every face of
the biembedding is a cycle of K2mn+1 (that is, every vertex incident to a face is incident
to precisely two edges bounding that face). We suspect that it is always possible to find
simple orderings of our Heffter arrays; this is the subject of a conjecture of Alspach which
we will discuss shortly.

Viewing the cyclic orderings ωr and ωc as permutations of the entries of a Heffter array,
we say that ωr and ωc are compatible if ωr ◦ ωc is a cyclic permutation. If the orderings are
both simple, then the biembedding is simple. If the orderings are compatible, there are no
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pinch points, and the surface is a torus of genus

1 + 1
2

(
mn

2

)( 1
mn
− 1
m
− 1
n

+ 1
)

Theorem 2.3 of [21] says that if at least one of m and n is odd, there exists a pair of
compatible orderings, ωr and ωc.

Dinitz and Mattern [21] found simple, compatible orderings of 3 × n Heffter arrays for
all n > 2, using Heffter arrays constructed by the author which differ slightly from those in
this thesis. Their methods do not work for our constructions for 5× n arrays for arbitrary
n, though they did succeed for all 3 ≤ n ≤ 100. Our collective experience suggests that it is
relatively easy to find simple orderings for specific Heffter arrays, but generic constructions
are more elusive. In Section 2.8, we describe a different approach to constructing 5 × n
Heffter arrays for which the reordering problem may be easier.

Rather than find explicit reorderings, it may be more worthwhile to attack the prob-
lem from the combinatorial number theoretical side. Archdeacon, Dinitz, Mattern and
Stinson [3] conjecture:

Conjecture 2.1.6. Every A ⊆ Zn \ {0} has a simple ordering, i.e., A can be ordered so
that all partial sums are distinct.

Some progress has been made on this problem: Archdeacon et al. have computationally
verified the conjecture for n ≤ 25, have proved that it holds when |A| ≤ 6, along with other
useful-looking results. The author has computationally verified this conjecture for n ≤ 31
with a simple recursive strategy, adding one element to the ordering at a time, provided it
doesn’t duplicate a previously-seen partial sum. Bode and Harborth [8] have shown it is
true for |A| = n− 1, using the ordering

1, n− 2, 3, n− 4, · · · , 4, n− 3, 2, n− 1

of Zn\0 for all n. Also, they find simple orderings for |A| = n−2 if n ≡ 1 (mod 2) by taking
a cyclic rotation of the above and removing the chosen element, and for n ≡ 0 (mod 2) with
a significantly more complex construction.

To produce simple orderings of Heffter arrays, the following weaker conjecture is suffi-
cient.

Conjecture 2.1.7. Let n be an odd integer. Every A ⊆ Zn with {−a : a ∈ A} ∩A = ∅ has
a simple ordering.

Among the computational experiments we have performed, we have computed the num-
ber of simple orderings for every subset A ⊂ Zn \ {0} for 1 ≤ n ≤ 14, and we make the
following bold conjecture.
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k\` 0 1 2 3

0 § 2.3

5×4 § 2.4
5×(8n+8) § 2.7.2.2
5×(8n+12) § 2.7.2.6
(4m+9)×(4n+4) § 2.7.3.6

§ 2.3

3×4 § 2.4
3×(8n+8) § 2.7.1.2
3×(8n+12) § 2.7.1.6
(4m+7)×(4n+4) § 2.7.3.7

1

5×5 § 2.4
5×(8n+9) § 2.7.2.3
5×(8n+13) § 2.7.2.7
(4m+9)×(4n+9) § 2.7.3.4

2

5×6 § 2.4
5×(8n+10) § 2.7.2.4
5×(8n+14) § 2.7.2.8
(4m+9)×(4n+6) § 2.7.3.1

§ 2.3

3×6 § 2.4
3×(8n+10) § 2.7.1.4
3×(8n+14) § 2.7.1.8
(4m+7)×(4n+6) § 2.7.3.2

3

5×3 § 2.4
5×(8n+7) § 2.7.2.1
5×(8n+11) § 2.7.2.5
(8n+9)×3 § 2.7.1.3
(8n+13)×3 § 2.7.1.7
(4m+9)×(4n+7) § 2.7.3.5

3×3 § 2.4
3×(8n+7) § 2.7.1.1
3×(8n+11) § 2.7.1.5
(4m+7)×(4n+7) § 2.7.3.3

Table 2.1: Case outline for constructions of (4m+ k)× (4n+ `) Heffter arrays. Blank cells
are covered by symmetry.

Conjecture 2.1.8. If A ⊂ Zn \ {0}, then are at least 2|A|−1 simple orderings of A.

The problem of producing a pair of simple orderings which are compatible still seems
difficult, even armed with Dinitz and Mattern’s compatibility theorem and assuming Con-
jecture 2.1.6.

The next section gives a rough outline of the rest of this chapter.

2.1.5 Outline

Our presentation of our results is somewhat nonstandard. Our proof of Theorem 2.1.5
consists of 24 constructions, together with seven small Heffter arrays which are not covered
by the constructions. Three of the constructions are very simple, and we will prove their
viability in little more space than it takes to define them. The remaining cases are vastly
more complicated. To check examples, we implemented the constructions in easy-to-read
Python. Daunted by proving correctness of so many constructions, we automated the
process. Initially, the thought was to produce a small “certificate” that could be verified,
and included alongside the construction. The process of discovery and proof is outlined
below.

• Code generates individual Skolem-like sequences.
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• Code attempts to generalize an individual Skolem-like sequence, to produce a family of
Skolem-like sequences. On success, output code that, given m, produces a Skolem-like
sequence of order 2m+ k.

• Use code output by the previous step to automatically generate 16 families of Heffter
arrays. Output code that, given m, produces a 3× (8m+ k) or 5× (8m+ k) Heffter
array.

• Using the output by the previous step, use m as a symbolic variable to produce a
single “sporadic tile” and a single “variable tile”.

• Repurpose the code of the other 5 constructions to produce a single sporadic tile and
one or two variable tiles, along with the parameters passed into them.

• Code analyzes the tiles produced above, which computes row and column sums of the
tiles, and the support of the tiles, and then prints out LATEX code for a proof that the
construction in question produces a Heffter array.

At this point, the reader is encouraged to skip ahead a few pages, to Section 2.7 and read
the computer-written proof of one of the constructions found there. The proofs themselves
are very easy to read and verify, if a bit tedious. Due to the readability of the proofs, we
have a very high level of confidence in our results. However, discovering the constructions
involved significant insight and effort, which are obscured rather than exposed by the proofs.

In the sections between here and Section 2.7, we will describe how we found our con-
structions. By walking the reader through the discovery process, we are able to showcase
the more interesting features of the constructions. We do so at a rather high level, and do
our best to avoid an indecent amount of detail. After all, the reader with an appetite for
detail is cordially invited to gorge themselves on Section 2.7.

2.2 High-Level Description of the Constructions

The proof of our theorem is broken into several cases. At the coarsest scale, we consider
the residue classes of m and n modulo 4. When both m and n are even, our job is fairly
simple. The cases of m = 3 and m = 5 require particular attention, where we refine to
residue classes of n modulo 8. After clearing those hurdles, we produce constructions of
Heffter arrays for m,n ≥ 7 for congruence classes containing at least one odd dimension.
These constructions leave a few small holes, which are shown in Table 2.2. A summary of
the cases involved can be found in Table 2.1.

But first, we’ll emphasize the key ingredient behind all of our constructions with a
moment of levity2.

2The following section has been preserved under objection of a minority of the examination committee.
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2.2.1 The Only Good Idea Here: A Dramatic Interlude

Let’s say some deranged entity points a loaded weapon at your head, and demands you to
find an assignment of signs to the sequence[

x x+ α y y + α
]

so that it sums to zero, regardless of the values in the variables. Panic! How did you even
get to this point in life? You blank. All that you can think of is the PIN number that you
punch into ATM machines, [

1 2 3 4
]

and lucky you, that sequence has just the right form, and you quickly realize that there’s
only one way to do it, [

1 −2 −3 4
]

(and you’re wrong about that, because the opposite sequence works just fine), and fortu-
nately for you, your single example (really, you should change your PIN, and stop calling it
a PIN number) generalizes perfectly! But you were too slow! The deranged entity screams
“CLICK!” Apparently, its finger-pistol is out of ammo. You survive to read another thesis.
Barely.

Using overlines to denote negation,[
x x+ α y y + α

]
sums to zero. This peculiar style of exposition was chosen to highlight [38] the crucial
importance of this sign sequence. It will appear so many times in our constructions, some
might call it “unreasonably effective,” except that we understand the reasons quite well.

We’ll abuse notation a little here, and refer to Heffter systems with polynomial entries,
to show how we can “grow” Heffter systems. Given a Heffter m-system T = {T0, · · · , Tn−1}
whose entries’ absolute values partition [1, α] ∪ [z − β, z] ⊂ Z[z] and whose parts sum to
zero in Z[z]/(2z + 1), we can construct a Heffter (m+ 4)-system T ′ =

{
T ′0, · · · , T ′n−1

}
with

T ′i = Ti ∪
{
α+ 4i+ 1, α+ 4i+ 2, α+ 4i+ 3, α+ 4i+ 4

}
for each 0 ≤ i < n. For example, the Heffter triple system (3-sets written as rows)

6 9 4
8 7 1
5 2 3
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generalizes to a polynomial Heffter triple system with parameters α = 5 and β = 3.

z − 3 z 4
z − 1 z − 2 1

5 2 3

from which we can easily construct a polynomial Heffter septuple system,

z − 3 z 4 6 7 8 9
z − 1 z − 2 1 10 11 12 13

5 2 3 14 15 16 17

and then specialize to a proper Heffter septuple system by assigning z = 3 · 7,

18 21 4 6 7 8 9
20 19 1 10 11 12 13
5 2 3 14 15 16 17.

In the following section, we show that the outer product of this sign sequence with itself
leads us to a 4 × 4 Heffter array, which we will use to fill out almost all of the area of
almost every Heffter array. In fact, that idea can be used to produce a multidimensional
4m1 × 4m2 × · · · × 4mk integer Heffter array, but the investigation of such things is well
outside of the scope of this thesis.

The sign sequence +−−+ also plays a role in constructing 3× 8 and 5× 8 tiles, though
in those cases, not everything cancels out quite so easily and we concatenate its negative to
obtain +−−+−+ +−. Later, we will construct 7× 4 and 9× 4 tiles whose topmost row is
a signed increasing sequence (x+ 1, x+ 2, x+ 3, x+ 4), which lend to an “ell” construction
(filling the top- and left-most columns with these tiles).

2.3 Both Dimensions Even

First, we’ll show how certain even-dimensioned arrays can be used to cover a different
interval than they were discovered with. A matrix A can be shifted by x to obtain a matrix
A + x = (aij + x sgn(aij)). A Heffter array is shiftable if shifting by x preserves row and
column sums. It is clear that a Heffter array is shiftable if and only if the number of negative
entries is equal to the number of positive entries in each row and column, and therefore, the
only shiftable arrays have both dimensions even. In this section, we will show that shiftable
Heffter arrays exist for all even m,n > 2.
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As we mentioned in the previous section, the sign sequence + − −+ can be used to
produce a 4× 4 array directly,

H4×4 =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 .

Note that this is in fact an integer Heffter array and each row and column has an equal
number of pluses as minuses, hence we can shift the matrix by z

H4×4 + z =


z + 1 z + 2 z + 3 z + 4
z + 5 z + 6 z + 7 z + 8
z + 9 z + 10 z + 11 z + 12
z + 13 z + 14 z + 15 z + 16


without changing its row and column sums – we call this a 4 × 4 tile. Thus, we can make
4n× 4 Heffter arrays by repeating these tiles in a line,[

H4×4 · · · H4×4 + 16i · · · H4×4 + 16(n− 1)
]

and repeat such lines shifted to make 4n× 4m integer Heffter arrays.
Next up,

H4×6 =


1 2 3 4 11 9
7 8 12 10 5 6
13 14 18 16 23 24
19 20 21 22 17 15


is a shiftable 4 × 6 integer Heffter array, which can be used to construct shiftable 4n × 6
Heffter arrays, similar to the above. By stacking a 6×4n array atop a shifted 4(m−1)×4n
array, we can construct 4n× (4m+ 2) integer Heffter arrays for all n and m feasible.

Finally, the 6× 6 Heffter array

H6×6 =



10 35 24 13 27 29
7 26 9 32 8 2
11 34 17 16 14 30
19 36 21 1 15 20
6 31 33 25 22 23
3 28 4 5 12 18
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is shiftable, and we can construct (4n+ 2)× (4m+ 2) arrays with the construction
H6×6 H6×4 + 36 · · · H6×4 + 36 + 24(m− 1)

H4×6 + 36 + 24m
E + 36 + 24(m+ n)...

H4×6 + 36 + 24(m+ n− 1)


where E is a shiftable 4(n− 1)× 4(m− 1) Heffter array.

This concludes the story for matrices with both dimensions even. The remaining cases
are handled similarly: we will find constructions of ‘ribbons’ of odd height, some of which
may be bent into ell shapes. These ribbons and ells will be placed along the border of
an array, leaving an even-dimensioned hole which we fill with a certain shift of a shiftable
Heffter array.

2.4 Some Small Heffter Arrays

We succeeded in finding constructions of large arrays which have small base cases. In this
section, we have a very small number of Heffter arrays for those dimensions that are not
covered by our constructions. These arrays were found with computer assistance, and shown
in Table 2.2.

(3× 3)

6 8 5
9 7 2
4 1 3



(3× 4)

1 6 2 3
8 11 12 7
9 5 10 4



(3× 5)

 8 12 10 13 7
3 14 15 4 6
11 2 5 9 1



(3× 6)

 2 16 14 3 13 11
17 10 15 9 5 4
18 6 1 12 8 7



(4× 5)


7 12 2 6 1
16 15 9 5 13
10 17 18 3 8
19 20 11 14 4



(5× 5)


8 17 22 10 7
18 5 19 15 24
4 20 25 13 12
16 3 21 11 23
14 6 2 1 9



(5× 6)


20 21 5 27 26 4
24 22 14 11 10 15
6 7 23 1 9 16
30 8 19 12 28 17
29 2 13 25 3 18


Table 2.2: Small Heffter arrays
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Later, we will see that portions of some of these arrays can be shifted, so that they can
be used to construct larger arrays, often with different moduli. The arrays that result from
this partial shifting will be called seeds, and can be found in Table 2.3.

2.5 Short Heffter Arrays of Odd Height

In this section we discuss the construction of Heffter arrays with 3 or 5 rows. These con-
structions depend entirely upon a generalization of Skolem sequences. Given a set K of
integers, a K-near Skolem sequence of order n is a sequence S = x1, x2, · · · , x2(n−|K|) of
integers satisfying

1. every number 1 ≤ j ≤ n, j /∈ K appears exactly twice, and

2. for all j /∈ K, r(j)− `(j) = j, where xr(j) = x`(j) = j and r(j) > `(j).

An example of a {1, 4}-near Skolem sequence of order 7 is 6375326257, corresponding to the
pairs {(1, 7) , (2, 5) , (3, 10) , (4, 9) , (6, 8)} which is a partition of [1, 10] into the differences
{2, 3, 5, 6, 7}.

2.5.1 Constructing Heffter Systems From Near Skolem Sequences

In this section, we will find four small Heffter systems; two triple systems, and two quintuple
systems, with two purposes. The first is to provide motivation for finding K-near Skolem
sequences for each K ⊆ {1, 2}, and the second is to show how such sequences will be used
to construct Heffter systems in general. We only bother with finding Heffter systems here,
and not Heffter arrays, because it’s clearer to see what we’re up to. The particular cases
we need to solve allow us to start simple, and add one complication at a time.

Constructions forK-near Skolem sequences are discussed in detail in Appendix A. State-
ments made in this section about the existence and nonexistence of certain orders of K-near
Skolem sequences are supported in that appendix.

First up, we construct a Heffter triple system with n triples from a Skolem sequence
of order N . These exist when N ≡ 0, 1 (mod 4). For example, we use the sequence
497841156798536232 to partition [10, 27] and obtain 3-sets

{
d, ad, bd

}
for d ∈ [1, 9],

1 2 3 4 5 6 7 8 9
15 25 23 10 17 18 12 13 11
16 27 26 14 22 24 19 21 20.

These are used to produce Heffter arrays of dimension 3×4n in Sections 2.7.1.2 and 2.7.1.6,
and of dimension 3×(4n+1) in Sections 2.7.1.3 and 2.7.1.7. The 3×4n arrays we construct
are integer Heffter arrays, so can be stacked atop shiftable 4m × 4n arrays, but we’ll need
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something else for the (4m+3)×(4n+1) case, which we describe at a high level in Section 2.6
and in more detail in Section 2.7.3.5.

Next, we construct a Heffter triple system with N triples from a {2}-near Skolem se-
quence of order N . These exist when N ≡ 2, 3 (mod 4). For example, we use the sequence
746354376511 to partition [8, 19] and obtain 3-sets

{
d, ad, bd

}
for d ∈ [1, 7]\2, together with

one extra triple show in boldface, (2, 3n, 3n− 1) whose sum is 6n+ 1,

1 2 3 4 5 6 7
18 20 11 9 22 10 8
19 21 14 13 27 16 15.

These are used to produce Heffter arrays of dimension 3× (4n+ 2) in Sections 2.7.1.4 and
2.7.1.8, and of dimension 3× (4n+3) in Sections 2.7.1.1 and 2.7.1.5. The 3× (4n+2) arrays
cannot be integer Heffter arrays, so we’ll need something else for the (4m + 3) × (4n + 2)
and (4m+ 3)× (4n+ 3) cases, which we describe at a high level in Section 2.6 and in more
detail in Section 2.7.3.2 and Section 2.7.3.3, respectively.

Next, we construct a Heffter quintuple system withN quintuples from a {1}-near Skolem
sequence of order N + 1. These exist when N ≡ 0, 3 (mod 4). For example, we use the
sequence 68347364582725 to partition [8, 21] into differences [2, 8]. To make 5-sets, we
associate the pair (ad, bd) with the difference d − 1, and then patch things up with pairs
(x, x+ 1) covering [22, 35] to bring the sum back to zero:

1 2 3 4 5 6 7
18 10 11 16 8 12 9
20 13 15 21 14 19 17
22 24 26 28 30 32 34
23 25 27 29 31 33 35.

These are used to produce Heffter arrays of dimension 5×4n in Sections 2.7.2.2 and 2.7.2.6,
and of dimension 5×(4n+3) in Sections 2.7.2.1 and 2.7.2.5. The 5×4n arrays we construct
are integer Heffter arrays, so can be stacked atop shiftable 4m × 4n arrays, but we’ll need
something else for the (4m+1)×(4n+3) case, which we describe at a high level in Section 2.6
and in more detail in Section 2.7.3.5.

Finally, we construct a Heffter quintuple system with N quintuples from a {1, 2}-near
Skolem sequence of order N + 1. These exist when N ≡ 1, 2 (mod 4). For example, we use
the sequence 5673453647 to partition [7, 28] into differences [3, 7]. We make 5-sets as above,
together with one extra quintuple shown in boldface, (1, 5N − 3, 5N −2, 5N −1, 5N) whose
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sum is 10N + 1,
1 2 3 4 5 6

27 10 11 7 8 9
28 13 15 12 14 16
29 17 19 21 23 25
30 18 20 22 24 26.

These are used to produce Heffter arrays of dimension 5× (4n+ 1) in Sections 2.7.2.3 and
2.7.2.7, and of dimension 5× (4n+2) in Sections 2.7.2.4 and 2.7.2.8. The 5× (4n+2) arrays
cannot be integer Heffter arrays, so we’ll need something else for the (4m + 1) × (4n + 2)
and (4m+ 1)× (4n+ 1) cases, which we describe at a high level in Section 2.6 and in more
detail in Section 2.7.3.1 and Section 2.7.3.4, respectively.

At this point, we have demonstrated the existence of Heffter triple systems and Heffter
quintuple systems in all groups Z6n+1 and Z10n+1, respectively, though we haven’t really
slogged through all the details. Together with the method of “growing” Heffter systems
presented in Section 2.2.1, we can prove that Heffter m-systems exist in all groups Z2mn+1:
simply observe that the extra triple can be replaced with (1,D−1,D) and the extra quintuple
can be replaced with (1,D− 3,D− 2,D− 1,D).

The specific constructions of K-near Skolem sequences we use have a special form, from
which we produce a set of tiles which assemble into Heffter arrays. The next section will
discuss that special form. The constructions themselves are described, together with a
method to find them, in Appendix A.

2.5.2 Constructions of Skolem Sequences

This section provides a description of what is meant by a construction of a K-near Skolem
sequence. Methods to produce Skolem sequences and their generalizations are manifold,
which is touched upon briefly in Appendix A which also contains significantly more de-
tail about the constructions that we use. This section features a construction of Skolem
sequences of length 4n+ 5 for n ≥ 0 which appears in the second row of Table A.1.

Consider the Skolem sequence of order 9: 759242574869311368. We can use this Skolem
sequence to partition the interval [10, 27] into the differences [1, 9]. In the following figure,
we visualize the partition by drawing lines between paired integers.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

The above Skolem sequence has been chosen in part because four of its pairs can be
thickened to produce larger Skolem sequences. The lines demarking the chosen pairs have
been drawn thicker. To thicken a set of pairs
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• replace the paired elements with intervals of a fixed length m, to produce paired
intervals,

• among the paired intervals, pair the elements in one interval taken in increasing order
with the elements in the other interval taken in decreasing order, and then

• adjust the values of all endpoints so that they form and interval and their relative
ordering is the same as the original Skolem sequence.

This process is described more formally in Appendix A. It is not obvious when the final
step of this process will produce a Skolem sequence, and this must be checked rigorously.

There is a degenerate case of thickening where m = 0 and the thickened pairs are simply
deleted. As setting m = 0 results in a Skolem sequence of order 5, it is natural to use it to
partition the interval [6, 15].

6 7 8 9 10 11 12 13 14 15

6 7 8 9 10 11 12 13 14 15

pairs by replacing their endpoints with intervals of length m = 3. Here the interval to
be partitioned has been omitted from the figure, and the pairs resulting from the thickening
process are drawn as dashed lines.

Thickening by a variable amount, we obtain a description of a family of Skolem se-
quences. The constructions that appear in Appendix A are all of the form below.

• Between three and eight sporadic pairs, (x1, y1), · · · , (xk, yk),

• the pairs (a1 + r, b1 + 4m− r) for 0 ≤ r < m,

• the pairs (a2 +m+ r, b2 + 3m− r) for 0 ≤ r < m,

• the pairs (a3 + 4m+ r, b3 + 8m− r) for 0 ≤ r < m, and

• the pairs (a4 + 5m+ r, b4 + 7m− r) for 0 ≤ r < m.

In the next section, we will show how to make sets of 3 × 8 and 5 × 8 tiles from the
thickened pairs in our near Skolem sequences.
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2.5.3 Long Lines of Short Tiles

Crucial to the Heffter array constructions are 3× 8 and 5× 8 tiles whose row and column
sums are zero in Z. To make 3×8 tiles, we first construct a 3×4 tile by taking the columns
à la Section 2.5.1 corresponding to the pairs for a single value of r, and applying our favorite
sign sequence to each row,

Br =


b1 − a1 + 4m− 2r b2 − a2 + 2m− 2r b3 − a3 + 4m− 2r b4 − a4 + 2m− 2r

a1 + r a2 +m+ r a3 + 4m+ r a4 + 5m+ r

b1 + 4m− r b2 + 3m− r b3 + 8m− r b4 + 7m− r


whence the column sums are zero and row sums are the constants

b1 − a1 − b2 + a2 − b3 + a3 + b4 − a4

a1 − a2 − a3 + a4

−b1 + b2 + b3 − b4

so that the 3× 8 tile [Br|Br+1] has row sums and column sums zero.
The same trick makes 5 × 8 tiles. Here, we use the interval [x + 8r + 1, x + 8r + 8] for

the distance 1 pairs, though our constructions may differ. For each r,

Br =



b1−a1+4m−2r−1 b2−a2+2m−2r−1 b3−a3+4m−2r−1 b4−a4+2m−2r−1

a1+r a2+m+r a3+4m+r a4+5m+r

b1+4m−r b2+3m−r b3+8m−r b4+7m−r

x+8r+1 x+8r+3 x+8r+5 x+8r+7

x+8r+2 x+8r+4 x+8r+6 x+8r+8


has the same column sums as above for the first three rows, and zero for the final two, hence
the 5× 8 tile [Br|Br+1] has row sums and column sums zero.

2.5.4 The Final Short Tile

In the previous section, we described how to use almost all of the pairs in a K-near Heffter
sequence to produce a very large collection of 3 × 8 or 5 × 8 tiles whose row and column
sums are zero. Here, we’ll describe how we finish off the construction of our Heffter arrays
with a single sporadic tile.

Let q be 3 or 5. We have a pile of leftover entries from which to make this sporadic tile:

• we used pairs of q× 4 tiles [Br|Br+1] which means that the tile Bm−1 was not used if
m is odd,

• the q-sets corresponding to sporadic differences were not used, and
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• when applicable (where no integer Heffter system exists), we haven’t used the extra
q-set.

Let Q = {A1, · · · , A`} be the collection of q-sets. We can represent these q-sets in a
computer as polynomials in Z[m]. For each of sixteen cases, we found matrices H = hij

such that

• {|hij | : 1 ≤ i ≤ q, 1 ≤ j ≤ `} = {|a| : a ∈ A,A ∈ Q} (all entries are used),

• ∑q
i=1 hij = 0 (mod 2q(8m+ t) + 1) for all 1 ≤ i ≤ ` (row sums are zero), and

• ∑`
j=1 hij = 0 (mod 2q(8m+ t) + 1) for all 1 ≤ i ≤ ` (column sums are zero),

where our goal is to construct a q × (8m+ t) Heffter array.

2.6 The Last Five Cases

At this point, we have described how we found constructions of Heffter arrays for all but
the cases (4n+u)× (4m+v), where both m and n are large, u, v ∈ {1, 2, 3} and at least one
of (u, v) is odd. In this section, we describe the construction of large (4m + 3) × (4n + 1)
Heffter arrays for m ≥ 1 and n ≥ 2. This is the most complex case of the above, and the
rest are accomplished with the same approach. This has all gone on for far too long, so
we’ll omit the remaining cases and leave that to Section 2.7. As in the previous sections,
we will describe our discovery process in broad strokes. The actual construction differs by
a very small amount.

The layout of the construction follows:
A B0 · · · Bn−2

C0

E...
Cm−3


where

• A is a 9× 7 tile called a germ with row and column sums ≡ 0 (mod 2D + 1),

• the tiles Bi are 7× 4 with row and column sums zero,

• the tiles Ci are 4× 9 with row and column sums zero, and

• E is an even-dimension shiftable array.

We’ll talk about seeds, which are used to make germs, walk through the construction of a
9× 4 tile, present a 7× 4 tile, and then wave our hands about how to germinate a seed.
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In Section 2.4, we mentioned the existence of seeds: Heffter-like arrays whose entries
constitute two intervals, [1, α] and [D− β,D] in absolute value, and whose row and column
sums are all 0 or 2D+ 1. This reduces our quest from using each element in [1,D] to using
each in (α,D−β). We will chop the remaining interval (α,D−β) into subintervals of length
4 to use in k × 4 tiles. These seed we need are found in Table 2.3.

Now, we’ll describe how to construct an arbitrary number of 7 × 4 and 9 × 4 arrays.
Let’s assume that we’ve used the elements [1, α] in a seed for some α ∈ {5, 6, 7}. As we’ve
seen several times, the most convenient first step is to start with the sequence[

α+ 1 α+ 2 α+ 3 α+ 4
]
.

Next, we want to use some sort of Skolem-like sequence, but we’d like to keep things simple.
The double rainbow partition,

{(i, 2n− i+ 1) : i ∈ [1, n]} ∪ {(2n+ i, 4n− i+ 1) : i ∈ [1, n]}

= {(a2i−1, b2i−1) : i ∈ [1, n]} ∪ {(c2i−1, d2i−1) : i ∈ [1, n]} ,

n = 10

is a partition of [1, 4n] into the multiset of differences {2i− 1 : i ∈ [1, n]}∪{2i− 1 : i ∈ [1, n]}
which we shift by some amount. We can put these two ingredients together to produce a
3× 4 array, 

α+ 4r + 1 α+ 4r + 2 α+ 4r + 3 α+ 4r + 4
a4r+1 c4r+1 a4r+3 c4r+3

b4r+1 c4r+1 b4r+3 d4r+3


with row sums zero and column sums [α, α+ 1, α, α+ 1].

For example, we’ll consider the case when α = 6. We will assemble three 2 × 4 blocks,
which collectively have column sums [6, 7, 6, 7]. For x, y, z, and r arbitrary,

[
x+ 4r + 1 x+ 4r + 3 x+ 4r + 5 x+ 4r + 7
x+ 4r + 2 x+ 4r + 4 x+ 4r + 6 x+ 4r + 8

]

has row sums all 0 and column sums [1, 1, 1, 1],
[
y + 4r + 1 y + 4r + 2 y + 4r + 5 y + 4r + 6
y + 4r + 3 y + 4r + 4 y + 4r + 7 y + 4r + 8

]
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(3× 3)

D− 3 D 4
D− 1 D− 2 1

5 2 3



(5× 3)


D− 7 3 D− 4
D− 3 D− 1 2
D− 5 D 5
D− 2 4 D− 6

7 6 1



(6× 3)



2 D− 1 D
D− 2 D− 8 6
D− 4 D− 3 1

3 D− 9 D− 6
D− 5 5 D− 10
D− 7 4 D− 11



(5× 5)


D− 2 D− 7 D− 9 5 D

4 7 3 D− 4 D− 10
D− 13 D− 11 D− 14 D− 17 1
D− 5 D− 12 D− 16 6 D− 3
D− 1 D− 15 D− 8 2 D− 6



(6× 5)



D− 10 D− 6 6 D D− 1
D− 9 D− 8 D− 23 D− 22 2

5 D− 16 D− 7 D− 11 D− 17
D− 3 D− 19 1 D− 18 D− 5
D− 4 D− 20 D− 21 D− 2 3

4 D− 15 D− 14 D− 13 D− 12


Table 2.3: Five seeds to be used in creating Heffter arrays with at least one odd dimension,
and both dimensions at least 7.
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has row sums all 0 and column sums [2, 2, 2, 2], and
[
z + 4r + 1 z + 4r + 2 z + 4r + 8 z + 4r + 7
z + 4r + 4 z + 4r + 6 z + 4r + 5 z + 4r + 3

]

has row sums all 0 and column sums [3, 4, 3, 4]. Stacking the whole lot together, we have a
9× 4 tile whose row and column sums are all zero:

3 + 4r + 1 3 + 4r + 2 3 + 4r + 3 3 + 4r + 4
a4r+1 c4r+1 a4r+3 c4r+3

b4r+1 c4r+1 b4r+3 d4r+3

x+ 4r + 1 x+ 4r + 3 x+ 4r + 5 x+ 4r + 7
x+ 4r + 2 x+ 4r + 4 x+ 4r + 6 x+ 4r + 8
y + 4r + 1 y + 4r + 2 y + 4r + 5 y + 4r + 6
y + 4r + 3 y + 4r + 4 y + 4r + 7 y + 4r + 8
z + 4r + 1 z + 4r + 2 z + 4r + 8 z + 4r + 7
z + 4r + 4 z + 4r + 6 z + 4r + 5 z + 4r + 3.


Likewise, we can construct a 7× 4 tile whose row and column sums are all zero,

3 + 4r + 1 3 + 4r + 2 3 + 4r + 3 3 + 4r + 4
a4r+1 c4r+1 a4r+3 c4r+3

b4r+1 c4r+1 b4r+3 d4r+3

x+ 4r + 1 x+ 4r + 2 x+ 4r + 3 x+ 4r + 4
x+ 4r + 5 x+ 4r + 6 x+ 4r + 7 x+ 4r + 8
y + 4r + 7 y + 4r + 8 y + 4r + 2 y + 4r + 1
y + 4r + 6 y + 4r + 4 y + 4r + 3 y + 4r + 5.


In the end, we found the needed tiles of this sort with computer assistance. In Ap-

pendix B, we have listed one shiftable 2 × 4 tile for each possible column sum under the
requirement that row sums are zero, up to equivalence (permutations of column sums and
negation). Using this table, it is easy to come up with the 9× 4 and 7× 4 tiles we need for
the remaining cases.

The nice thing about all of this is that we can make 7× 4 and 9× 4 tiles whose entries
partition intervals. This was difficult when we used the Skolem approach, and even with
a solution in hand, we would have a huge number of cases to work through because of the
unwieldly 3 × 8 and 5 × 8 tiles. Finally, we would be left with a very difficult problem of
what to put in the corner (large Heffter arrays are, in practice, very difficult to find with
brute force). Fortunately, we’re now on easy street.

Finally, we mention how we find a 9× 7 germ from a 5× 3 seed, without really defining
germs (germs contain seeds, the non-seed entries span unspecified intervals, row and column
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sums are predictably nice). We have a 3× 5 seed,
D− 7 D− 3 D− 5 D− 2 7

3 D− 1 D 4 6
D− 4 2 5 1 D− 6


which we can use our double rainbow to fill in the top three rows and leftmost three columns,

D− 7 D− 3 D− 5 D− 2 7 8 9 10 11
3 D− 1 D 4 6 a1 c1 a3 c3

D− 4 2 5 1 D− 6 b1 d1 b3 d3

12 a5 b5

13 c5 d5

14 a7 b7

15 d7 d7


which we fill in with a 4 × 6 shiftable array with row sums [6, 7, 6, 7] and column sums
[0, 0, 6, 7, 6, 7]. As always, precise details can be found in Section 2.7. And again, germs are
conceptually simple because they play nicely with our 7× 4 and 9× 4 tiles.

We have, more or less, completely described the methods we used to obtain our con-
structions. Without further ado, we will present the precise constructions and prove that
they produce Heffter arrays.

2.7 Complete Description of Heffter Arrays and Proofs That
They Are Heffter Arrays: The Section That My Com-
puter Wrote

In this section, we present a full description of the Heffter arrays with at least one dimension
odd (less a few small dimension arrays, found in Section 2.4). Prior to writing this paper,
we first found the constructions, and then wrote a program in Python to construct them
for arbitrary dimensions. Later, we repurposed that code to use Sage to generate symbolic
expressions for the block constructions that it produced. With a little more work, we
enhanced that Sage code to produce the LATEX source for the subsections which follow. We
think that the output is rather nicer than one expects of a computer generated proof.

Here, we describe how the code generates this output, so that the reader may verify the
result. First, the code generates two or three small blocks, and computes their row and
column sums as polynomials in several variables (modulo 2MN+1 if and only ifMN ≡ 1, 2
(mod 4)). Most of these blocks will have row and column sums all zero. Then, it examines
the entries in each block.
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• We assume the polynomial variables have a nonnegative value (else the constructions
are invalid), and find their symbolic absolute value.

• For each entry e, we look for the entry e+ 1 in the block, and [e, e+ 1] is an interval
covered by the block. Continue this process until all entries in the block are used in
an interval, and there are as few intervals as possible.

• Certain blocks have entries which are nonconstant polynomials in a variable r. We
call these variable blocks.

• Suppose a sequence of variable blocks B0, · · · , Bf are constructed. As we did with
the individual entries, we assemble intervals [a(r), b(r)] into long intervals [a(0), b(f)]
if b(r) + 1 = a(r + 1) or [a(f), b(0)] if b(r) + 1 = a(r − 1).

– In a few cases, a few variable intervals don’t tie together nicely. We regroup
these intervals into four sequences (ai(r), ai(r) + 4, ai(r) + 8, · · · , bi(r)). These
sequences interlace to produce a whole interval [a1(0), b2(f)] together with two
sporadic entries, {a0(0)} and {b3(f)}. These are tossed onto the pile of long
intervals.

Next, we take a large Heffter array whose dimensions are both even. We know these to
be shiftable, and the entries form a known interval. We add that shifted interval to the
collection. Finally, we have some collection of intervals I0 = [a0, b0], I1 = [a1, b1], · · · , Iq =
[aq, bq]. Then, we assemble these long intervals: if bi + 1 = aj , then we write [ai, bj ] =
Ii ∪ Ij = IiIj , where adjacency denotes interval concatenation.

Since the proof is typeset by computer, we are able to retroactively relabel the intervals
such that [1,MN ] = I0I1I2 · · · If . Putting all of this together, we see that each entry in
the interval [1,MN ] is used precisely once, and since the row and column sums are zero,
we have indeed produced a Heffter array of the claimed dimensions.

2.7.1 Constructions of 3× n Heffter Arrays

2.7.1.1 3× (8n+ 7) Heffter Arrays

Let n ≥ 0, and

A =


2 24n+21 24n+20

16n+15 8n+7 8n+8
4n+3 12n+12 8n+9

10n+10 4n+4 14n+14
1 20n+17 20n+18

20n+16 12n+11 8n+5
22n+19 8n+6 14n+13

 ,
a block with row sums

[2D + 1, 0, 0, 0, 0, 0, 0]

and column sums
[0, 0, 2D + 1].
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The entries in A cover the intervals I0 = [1, 2], I2 = [4n+ 3, 4n+ 4], I4 = [8n+ 5, 8n+ 9],
I17 = {22n + 19}, I6 = {10n + 10}, I12 = {16n + 15}, I19 = [24n + 20, 24n + 21], I15 =
[20n+16, 20n+18], I8 = [12n+11, 12n+12] and I10 = [14n+13, 14n+14]. For 0 ≤ r ≤ n−1,

Ar =



8n−4r+4 8n+2r+10 16n−2r+14
8n−4r+3 16n+2r+16 24n−2r+19
4n−4r+2 18n+2r+16 22n−2r+18
4n−4r+1 10n+2r+11 14n−2r+12
8n−4r+2 8n+2r+11 16n−2r+13
8n−4r+1 16n+2r+17 24n−2r+18

4n−4r 18n+2r+17 22n−2r+17
4n−4r−1 10n+2r+12 14n−2r+11

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[8n − 4r + 1, 8n − 4r + 4], [4n − 4r − 1, 4n − 4r + 2], [8n + 2r + 10, 8n + 2r + 11], [18n +
2r + 16, 18n + 2r + 17], [24n − 2r + 18, 24n − 2r + 19], [16n − 2r + 13, 16n − 2r + 14],
[16n+2r+16, 16n+2r+17], [14n−2r+11, 14n−2r+12], [10n+2r+11, 10n+2r+12] and
[22n− 2r + 17, 22n− 2r + 18]. Considering 0 ≤ r ≤ n− 1, these blocks cover the intervals
I3 = [4n + 5, 8n + 4], I1 = [3, 4n + 2], I5 = [8n + 10, 10n + 9], I14 = [18n + 16, 20n + 15],
I18 = [22n + 20, 24n + 19], I11 = [14n + 15, 16n + 14], I13 = [16n + 16, 18n + 15], I9 =
[12n+ 13, 14n+ 12], I7 = [10n+ 11, 12n+ 10] and I16 = [20n+ 19, 22n+ 18].

Concatenating these intervals, we have covered [1, 24n + 21] = I0I1 · · · I19. Therefore,
the block construction [AT |AT

0 | · · · |AT
n−1] is a 3× (8n+ 7) Heffter array.

2.7.1.2 3× (8n+ 8) Heffter Arrays

Let n ≥ 0, and

A =



8n+9 1 8n+10
8n+8 10n+12 18n+20

12n+14 16n+18 4n+4
20n+22 8n+7 12n+15
22n+23 18n+21 4n+2
8n+5 24n+24 16n+19

14n+16 4n+3 10n+13
8n+11 8n+6 16n+17

 ,

a block with all row and column sums zero. The entries in A cover the intervals I0 = {1},
I2 = [4n+2, 4n+4], I4 = [8n+5, 8n+11], I6 = [10n+12, 10n+13], I14 = [18n+20, 18n+21],
I20 = {24n + 24}, I12 = [16n + 17, 16n + 19], I8 = [12n + 14, 12n + 15], I18 = {22n + 23},
I16 = {20n+ 22} and I10 = {14n+ 16}. For 0 ≤ r ≤ n− 1,

Ar =



4n−4r 18n+2r+22 22n−2r+22
8n−4r+3 16n+2r+20 24n−2r+23
4n−4r+1 10n+2r+14 14n−2r+15
8n−4r+4 8n+2r+12 16n−2r+16
4n−4r−2 18n+2r+23 22n−2r+21
8n−4r+1 16n+2r+21 24n−2r+22
4n−4r−1 10n+2r+15 14n−2r+14
8n−4r+2 8n+2r+13 16n−2r+15

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4n − 4r − 2, 4n − 4r + 1], [8n − 4r + 1, 8n − 4r + 4], [8n + 2r + 12, 8n + 2r + 13], [16n +
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2r + 20, 16n + 2r + 21], [22n − 2r + 21, 22n − 2r + 22], [18n + 2r + 22, 18n + 2r + 23],
[16n−2r+15, 16n−2r+16], [10n+2r+14, 10n+2r+15], [24n−2r+22, 24n−2r+23] and
[14n− 2r + 14, 14n− 2r + 15]. Considering 0 ≤ r ≤ n− 1, these blocks cover the intervals
I1 = [2, 4n + 1], I3 = [4n + 5, 8n + 4], I5 = [8n + 12, 10n + 11], I13 = [16n + 20, 18n + 19],
I17 = [20n + 23, 22n + 22], I15 = [18n + 22, 20n + 21], I11 = [14n + 17, 16n + 16], I7 =
[10n+ 14, 12n+ 13], I19 = [22n+ 24, 24n+ 23] and I9 = [12n+ 16, 14n+ 15].

Concatenating these intervals, we have covered [1, 24n + 24] = I0I1 · · · I20. Therefore,
the block construction [AT |AT

0 | · · · |AT
n−1] is a 3× (8n+ 8) Heffter array.

2.7.1.3 3× (8n+ 9) Heffter Arrays

Let n ≥ 0, and

A =



8n+7 8n+10 16n+17
18n+21 10n+12 8n+9
12n+14 16n+18 4n+4
4n+6 18n+20 22n+26

18n+22 4n+3 22n+25
8n+5 16n+16 8n+11

14n+15 4n+2 10n+13
16n+19 8n+8 24n+27
18n+23 4n+1 22n+24


,

a block with all row and column sums zero. The entries in A cover the intervals I3 = {4n+6},
I5 = {8n + 5}, I1 = [4n + 1, 4n + 4], I7 = [8n + 7, 8n + 11], I9 = [10n + 12, 10n + 13],
I20 = [22n+ 24, 22n+ 26], I22 = {24n+ 27}, I17 = [18n+ 20, 18n+ 23], I13 = {14n+ 15},
I11 = {12n+ 14} and I15 = [16n+ 16, 16n+ 19]. For 0 ≤ r ≤ n− 1,

Ar =



8n−4r+3 8n+2r+12 16n−2r+15
4n−4r 10n+2r+14 14n−2r+14

8n−4r+6 16n+2r+20 24n−2r+26
4n−4r−1 18n+2r+24 22n−2r+23
8n−4r+1 8n+2r+13 16n−2r+14
4n−4r−2 10n+2r+15 14n−2r+13
8n−4r+4 16n+2r+21 24n−2r+25
4n−4r−3 18n+2r+25 22n−2r+22

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4n−4r−3, 4n−4r], {8n−4r+1}, [8n−4r+3, 8n−4r+4], {8n−4r+6}, [8n+2r+12, 8n+
2r+13], [16n+2r+20, 16n+2r+21], [24n−2r+25, 24n−2r+26], [16n−2r+14, 16n−2r+15],
[22n−2r+22, 22n−2r+23], [10n+2r+14, 10n+2r+15], [14n−2r+13, 14n−2r+14] and
[18n+ 2r + 24, 18n+ 2r + 25]. Considering 0 ≤ r ≤ n− 1, these blocks cover the intervals
I0 = [1, 4n], I14 = [8n+ 12, 10n+ 11], I19 = [16n+ 20, 18n+ 19], I10 = [22n+ 27, 24n+ 26],
I12 = [14n + 16, 16n + 15], I18 = [20n + 24, 22n + 23], I2 = [10n + 14, 12n + 13], I4 =
[12n + 15, 14n + 14] and I6 = [18n + 24, 20n + 23]. Additionally, we split the intervals
{8n− 4r + 1}, [8n− 4r + 3, 8n− 4r + 4] and {8n− 4r + 6} into the sequences

(4n+ 5, 4n+ 9, · · · , 8n+ 1),

(4n+ 7, 4n+ 11, · · · , 8n+ 3),
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(4n+ 8, 4n+ 12, · · · , 8n+ 4),

and
(4n+ 10, 4n+ 14, · · · , 8n+ 6),

and rejoin them into the intervals I2 = {4n+ 5}, I4 = [4n+ 7, 8n+ 4] and I6 = {8n+ 6}.
Concatenating these intervals, we have covered [1, 24n + 27] = I0I1 · · · I22. Therefore,

the block construction [AT |AT
0 | · · · |AT

n−1] is a 3× (8n+ 9) Heffter array.

2.7.1.4 3× (8n+ 10) Heffter Arrays

Let n ≥ 0, and

A =



2 24n+29 24n+30
8n+10 8n+11 16n+21

1 10n+13 10n+14
8n+8 12n+16 20n+24

16n+20 20n+25 4n+5
20n+26 8n+9 12n+17
8n+7 8n+12 16n+19

10n+15 4n+3 14n+18
22n+27 18n+23 4n+4
8n+6 24n+28 16n+22


,

a block with row sums
[2D + 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

and column sums
[0, 2D + 1, 4D + 2].

The entries in A cover the intervals I0 = [1, 2], I2 = [4n+ 3, 4n+ 5], I4 = [8n+ 6, 8n+ 12],
I14 = {18n+23}, I8 = [12n+16, 12n+17], I10 = {14n+18}, I12 = [16n+19, 16n+22], I6 =
[10n+13, 10n+15], I20 = [24n+28, 24n+30], I18 = {22n+27} and I16 = [20n+24, 20n+26].
For 0 ≤ r ≤ n− 1,

Ar =



8n−4r+5 8n+2r+13 16n−2r+18
4n−4r+1 10n+2r+16 14n−2r+17
4n−4r+2 18n+2r+24 22n−2r+26
8n−4r+4 16n+2r+23 24n−2r+27
8n−4r+3 8n+2r+14 16n−2r+17
4n−4r−1 10n+2r+17 14n−2r+16

4n−4r 18n+2r+25 22n−2r+25
8n−4r+2 16n+2r+24 24n−2r+26

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4n − 4r − 1, 4n − 4r + 2], [8n − 4r + 2, 8n − 4r + 5], [8n + 2r + 13, 8n + 2r + 14], [10n +
2r + 16, 10n + 2r + 17], [18n + 2r + 24, 18n + 2r + 25], [16n − 2r + 17, 16n − 2r + 18],
[16n+2r+23, 16n+2r+24], [22n−2r+25, 22n−2r+26], [14n−2r+16, 14n−2r+17] and
[24n− 2r + 26, 24n− 2r + 27]. Considering 0 ≤ r ≤ n− 1, these blocks cover the intervals
I1 = [3, 4n + 2], I3 = [4n + 6, 8n + 5], I5 = [8n + 13, 10n + 12], I7 = [10n + 16, 12n + 15],
I15 = [18n + 24, 20n + 23], I11 = [14n + 19, 16n + 18], I13 = [16n + 23, 18n + 22], I17 =
[20n+ 27, 22n+ 26], I9 = [12n+ 18, 14n+ 17] and I19 = [22n+ 28, 24n+ 27].
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Concatenating these intervals, we have covered [1, 24n + 30] = I0I1 · · · I20. Therefore,
the block construction [AT |AT

0 | · · · |AT
n−1] is a 3× (8n+ 10) Heffter array.

2.7.1.5 3× (8n+ 11) Heffter Arrays

Let n ≥ 0, and

A =



2 24n+33 24n+32
8n+11 8n+12 16n+23
4n+5 12n+18 8n+13
4n+6 10n+15 14n+21

1 20n+27 20n+28
8n+9 12n+17 20n+26

22n+30 8n+10 14n+20
8n+8 16n+22 8n+14

16n+24 24n+31 8n+7
22n+29 4n+4 18n+25
4n+3 14n+19 10n+16


,

a block with row sums
[2D + 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

and column sums
[0, 0, 2D + 1].

The entries in A cover the intervals I0 = [1, 2], I2 = [4n+ 3, 4n+ 6], I4 = [8n+ 7, 8n+ 14],
I20 = [24n + 31, 24n + 33], I10 = [14n + 19, 14n + 21], I8 = [12n + 17, 12n + 18], I12 =
[16n+ 22, 16n+ 24], I18 = [22n+ 29, 22n+ 30], I6 = [10n+ 15, 10n+ 16], I14 = {18n+ 25}
and I16 = [20n+ 26, 20n+ 28]. For 0 ≤ r ≤ n− 1,

Ar =



8n−4r+6 8n+2r+15 16n−2r+21
8n−4r+5 16n+2r+25 24n−2r+30
4n−4r+2 18n+2r+26 22n−2r+28
4n−4r+1 10n+2r+17 14n−2r+18
8n−4r+4 8n+2r+16 16n−2r+20
8n−4r+3 16n+2r+26 24n−2r+29

4n−4r 18n+2r+27 22n−2r+27
4n−4r−1 10n+2r+18 14n−2r+17

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4n − 4r − 1, 4n − 4r + 2], [8n − 4r + 3, 8n − 4r + 6], [8n + 2r + 15, 8n + 2r + 16], [10n +
2r + 17, 10n + 2r + 18], [18n + 2r + 26, 18n + 2r + 27], [16n − 2r + 20, 16n − 2r + 21],
[24n−2r+29, 24n−2r+30], [14n−2r+17, 14n−2r+18], [16n+2r+25, 16n+2r+26] and
[22n− 2r + 27, 22n− 2r + 28]. Considering 0 ≤ r ≤ n− 1, these blocks cover the intervals
I1 = [3, 4n + 2], I3 = [4n + 7, 8n + 6], I5 = [8n + 15, 10n + 14], I7 = [10n + 17, 12n + 16],
I15 = [18n + 26, 20n + 25], I11 = [14n + 22, 16n + 21], I19 = [22n + 31, 24n + 30], I9 =
[12n+ 19, 14n+ 18], I13 = [16n+ 25, 18n+ 24] and I17 = [20n+ 29, 22n+ 28].

Concatenating these intervals, we have covered [1, 24n + 33] = I0I1 · · · I20. Therefore,
the block construction [AT |AT

0 | · · · |AT
n−1] is a 3× (8n+ 11) Heffter array.

46



2.7.1.6 3× (8n+ 12) Heffter Arrays

Let n ≥ 0, and

A =



1 8n+13 8n+14
8n+12 10n+17 18n+29
4n+6 16n+26 12n+20
8n+11 12n+21 20n+32
22n+34 18n+30 4n+4
16n+27 24n+36 8n+9
4n+5 10n+18 14n+23
8n+15 8n+10 16n+25
22n+33 4n+2 18n+31
24n+35 8n+7 16n+28
4n+3 14n+22 10n+19

16n+24 8n+8 8n+16


,

a block with all row and column sums zero. The entries in A cover the intervals I0 = {1},
I2 = [4n+2, 4n+6], I4 = [8n+7, 8n+16], I14 = [18n+29, 18n+31], I8 = [12n+20, 12n+21],
I18 = [22n+33, 22n+34], I16 = {20n+32}, I6 = [10n+17, 10n+19], I12 = [16n+24, 16n+28],
I20 = [24n+ 35, 24n+ 36] and I10 = [14n+ 22, 14n+ 23]. For 0 ≤ r ≤ n− 1,

Ar =



4n−4r 18n+2r+32 22n−2r+32
8n−4r+5 16n+2r+29 24n−2r+34
4n−4r+1 10n+2r+20 14n−2r+21
8n−4r+6 8n+2r+17 16n−2r+23
4n−4r−2 18n+2r+33 22n−2r+31
8n−4r+3 16n+2r+30 24n−2r+33
4n−4r−1 10n+2r+21 14n−2r+20
8n−4r+4 8n+2r+18 16n−2r+22

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4n − 4r − 2, 4n − 4r + 1], [8n − 4r + 3, 8n − 4r + 6], [8n + 2r + 17, 8n + 2r + 18], [18n +
2r + 32, 18n + 2r + 33], [14n − 2r + 20, 14n − 2r + 21], [10n + 2r + 20, 10n + 2r + 21],
[16n+2r+29, 16n+2r+30], [22n−2r+31, 22n−2r+32], [24n−2r+33, 24n−2r+34] and
[16n− 2r + 22, 16n− 2r + 23]. Considering 0 ≤ r ≤ n− 1, these blocks cover the intervals
I1 = [2, 4n + 1], I3 = [4n + 7, 8n + 6], I5 = [8n + 17, 10n + 16], I15 = [18n + 32, 20n + 31],
I9 = [12n + 22, 14n + 21], I7 = [10n + 20, 12n + 19], I13 = [16n + 29, 18n + 28], I17 =
[20n+ 33, 22n+ 32], I19 = [22n+ 35, 24n+ 34] and I11 = [14n+ 24, 16n+ 23].

Concatenating these intervals, we have covered [1, 24n + 36] = I0I1 · · · I20. Therefore,
the block construction [AT |AT

0 | · · · |AT
n−1] is a 3× (8n+ 12) Heffter array.
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2.7.1.7 3× (8n+ 13) Heffter Arrays

Let n ≥ 0, and

A =



8n+11 8n+14 16n+25
18n+30 8n+13 10n+17
4n+6 16n+26 12n+20
4n+8 18n+29 22n+37
4n+5 18n+31 22n+36
8n+9 16n+24 8n+15

10n+18 4n+4 14n+22
24n+39 16n+27 8n+12
4n+3 22n+35 18n+32
8n+16 8n+7 16n+23
10n+19 14n+21 4n+2
24n+38 8n+10 16n+28
22n+34 4n+1 18n+33


,

a block with all row and column sums zero. The entries in A cover the intervals I5 = {8n+7},
I3 = {4n + 8}, I1 = [4n + 1, 4n + 6], I7 = [8n + 9, 8n + 16], I22 = [24n + 38, 24n + 39],
I11 = {12n+20}, I15 = [16n+23, 16n+28], I13 = [14n+21, 14n+22], I9 = [10n+17, 10n+19],
I20 = [22n+ 34, 22n+ 37] and I17 = [18n+ 29, 18n+ 33]. For 0 ≤ r ≤ n− 1,

Ar =



8n−4r+5 8n+2r+17 16n−2r+22
4n−4r 10n+2r+20 14n−2r+20

8n−4r+8 16n+2r+29 24n−2r+37
4n−4r−1 18n+2r+34 22n−2r+33
8n−4r+3 8n+2r+18 16n−2r+21
4n−4r−2 10n+2r+21 14n−2r+19
8n−4r+6 16n+2r+30 24n−2r+36
4n−4r−3 18n+2r+35 22n−2r+32

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4n−4r−3, 4n−4r], [8n−4r+5, 8n−4r+6], {8n−4r+3}, {8n−4r+8}, [8n+2r+17, 8n+
2r+18], [24n−2r+36, 24n−2r+37], [16n−2r+21, 16n−2r+22], [10n+2r+20, 10n+2r+21],
[16n+2r+29, 16n+2r+30], [18n+2r+34, 18n+2r+35], [14n−2r+19, 14n−2r+20] and
[22n− 2r + 32, 22n− 2r + 33]. Considering 0 ≤ r ≤ n− 1, these blocks cover the intervals
I0 = [1, 4n], I10 = [8n+ 17, 10n+ 16], I16 = [22n+ 38, 24n+ 37], I18 = [14n+ 23, 16n+ 22],
I12 = [10n + 20, 12n + 19], I19 = [16n + 29, 18n + 28], I2 = [18n + 34, 20n + 33], I4 =
[12n + 21, 14n + 20] and I6 = [20n + 34, 22n + 33]. Additionally, we split the intervals
[8n− 4r + 5, 8n− 4r + 6], {8n− 4r + 3} and {8n− 4r + 8} into the sequences

(4n+ 7, 4n+ 11, · · · , 8n+ 3),

(4n+ 9, 4n+ 13, · · · , 8n+ 5),

(4n+ 10, 4n+ 14, · · · , 8n+ 6),

and
(4n+ 12, 4n+ 16, · · · , 8n+ 8),

and rejoin them into the intervals I2 = {4n+ 7}, I4 = [4n+ 9, 8n+ 6] and I6 = {8n+ 8}.
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Concatenating these intervals, we have covered [1, 24n + 39] = I0I1 · · · I22. Therefore,
the block construction [AT |AT

0 | · · · |AT
n−1] is a 3× (8n+ 13) Heffter array.

2.7.1.8 3× (8n+ 14) Heffter Arrays

Let n ≥ 0, and

A =



2 24n+41 24n+42
8n+14 8n+15 16n+29

1 10n+19 10n+18
8n+12 20n+34 12n+22
4n+7 16n+28 20n+35
8n+13 20n+36 12n+23
8n+11 8n+16 16n+27
4n+5 14n+25 10n+20

22n+38 4n+6 18n+32
24n+40 8n+10 16n+30
16n+26 8n+17 8n+9
4n+3 14n+24 10n+21

22n+37 18n+33 4n+4
8n+8 16n+31 24n+39


,

a block with row sums

[2D + 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

and column sums
[2D + 1, 2D + 1, 2D + 1].

The entries in A cover the intervals I0 = [1, 2], I2 = [4n+ 3, 4n+ 7], I4 = [8n+ 8, 8n+ 17],
I10 = [14n+24, 14n+25], I20 = [24n+39, 24n+42], I14 = [18n+32, 18n+33], I12 = [16n+
26, 16n+ 31], I6 = [10n+ 18, 10n+ 21], I8 = [12n+ 22, 12n+ 23], I18 = [22n+ 37, 22n+ 38]
and I16 = [20n+ 34, 20n+ 36]. For 0 ≤ r ≤ n− 1,

Ar =



8n−4r+7 8n+2r+18 16n−2r+25
4n−4r+1 10n+2r+22 14n−2r+23
4n−4r+2 18n+2r+34 22n−2r+36
8n−4r+6 16n+2r+32 24n−2r+38
8n−4r+5 8n+2r+19 16n−2r+24
4n−4r−1 10n+2r+23 14n−2r+22

4n−4r 18n+2r+35 22n−2r+35
8n−4r+4 16n+2r+33 24n−2r+37

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[8n − 4r + 4, 8n − 4r + 7], [4n − 4r − 1, 4n − 4r + 2], [8n + 2r + 18, 8n + 2r + 19], [16n −
2r + 24, 16n − 2r + 25], [10n + 2r + 22, 10n + 2r + 23], [24n − 2r + 37, 24n − 2r + 38],
[18n+2r+34, 18n+2r+35], [16n+2r+32, 16n+2r+33], [14n−2r+22, 14n−2r+23] and
[22n− 2r + 35, 22n− 2r + 36]. Considering 0 ≤ r ≤ n− 1, these blocks cover the intervals
I3 = [4n + 8, 8n + 7], I1 = [3, 4n + 2], I5 = [8n + 18, 10n + 17], I11 = [14n + 26, 16n + 25],
I7 = [10n + 22, 12n + 21], I19 = [22n + 39, 24n + 38], I15 = [18n + 34, 20n + 33], I13 =
[16n+ 32, 18n+ 31], I9 = [12n+ 24, 14n+ 23] and I17 = [20n+ 37, 22n+ 36].

Concatenating these intervals, we have covered [1, 24n + 42] = I0I1 · · · I20. Therefore,
the block construction [AT |AT

0 | · · · |AT
n−1] is a 3× (8n+ 14) Heffter array.
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2.7.2 Constructions of 5× n Heffter Arrays

2.7.2.1 5× (8n+ 7) Heffter Arrays

Let n ≥ 0, and

A =


8n+9 10n+11 18n+19 1 2
4n+5 16n+17 12n+13 24n+24 24n+25

24n+27 24n+26 8n+8 20n+21 12n+14
4n+3 22n+22 24n+29 18n+20 24n+28

24n+31 24n+23 8n+6 16n+18 24n+30
24n+32 24n+33 14n+15 10n+12 4n+4
24n+35 24n+34 8n+10 16n+16 8n+7

 ,

a block with all row and column sums zero. The entries in A cover the intervals I0 = [1, 2],
I2 = [4n+3, 4n+5], I4 = [8n+6, 8n+10], I8 = [12n+13, 12n+14], I20 = [24n+23, 24n+35],
I6 = [10n + 11, 10n + 12], I12 = [16n + 16, 16n + 18], I10 = {14n + 15}, I16 = {20n + 21},
I14 = [18n+ 19, 18n+ 20] and I18 = {22n+ 22}. For 0 ≤ r ≤ n− 1,

Ar =



4n−4r+1 18n+2r+21 22n−2r+21 24n+2r+36 24n+2r+37
8n−4r+4 16n+2r+19 24n−2r+22 26n+2r+36 26n+2r+37
4n−4r+2 10n+2r+13 14n−2r+14 28n+2r+36 28n+2r+37
8n−4r+5 8n+2r+11 16n−2r+15 30n+2r+36 30n+2r+37
4n−4r−1 18n+2r+22 22n−2r+20 32n+2r+36 32n+2r+37
8n−4r+2 16n+2r+20 24n−2r+21 34n+2r+36 34n+2r+37

4n−4r 10n+2r+14 14n−2r+13 36n+2r+36 36n+2r+37
8n−4r+3 8n+2r+12 16n−2r+14 38n+2r+36 38n+2r+37

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4n−4r−1, 4n−4r+2], [8n−4r+2, 8n−4r+5], [8n+2r+11, 8n+2r+12], [24n+2r+36, 24n+
2r+37], [36n+2r+36, 36n+2r+37], [16n+2r+19, 16n+2r+20], [10n+2r+13, 10n+2r+14],
[22n− 2r+ 20, 22n− 2r+ 21], [26n+ 2r+ 36, 26n+ 2r+ 37], [38n+ 2r+ 36, 38n+ 2r+ 37],
[24n− 2r+ 21, 24n− 2r+ 22], [28n+ 2r+ 36, 28n+ 2r+ 37], [30n+ 2r+ 36, 30n+ 2r+ 37],
[18n+ 2r+ 21, 18n+ 2r+ 22], [14n− 2r+ 13, 14n− 2r+ 14], [32n+ 2r+ 36, 32n+ 2r+ 37],
[16n− 2r+ 14, 16n− 2r+ 15] and [34n+ 2r+ 36, 34n+ 2r+ 37]. Considering 0 ≤ r ≤ n− 1,
these blocks cover the intervals I1 = [3, 4n+2], I3 = [4n+6, 8n+5], I5 = [8n+11, 10n+10],
I21 = [24n+ 36, 26n+ 35], I27 = [36n+ 36, 38n+ 35], I13 = [16n+ 19, 18n+ 18], I7 = [10n+
13, 12n+12], I17 = [20n+22, 22n+21], I22 = [26n+36, 28n+35], I28 = [38n+36, 40n+35],
I19 = [22n+23, 24n+22], I23 = [28n+36, 30n+35], I24 = [30n+36, 32n+35], I15 = [18n+
21, 20n+ 20], I9 = [12n+ 15, 14n+ 14], I25 = [32n+ 36, 34n+ 35], I11 = [14n+ 16, 16n+ 15]
and I26 = [34n+ 36, 36n+ 35].

Concatenating these intervals, we have covered [1, 40n + 35] = I0I1 · · · I28. Therefore,
the block construction [AT |AT

0 | · · · |AT
n−1] is a 5× (8n+ 7) Heffter array.
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2.7.2.2 5× (8n+ 8) Heffter Arrays

Let n ≥ 0, and

A =



8n+10 8n+11 1 2 16n+20
4n+5 8n+12 24n+28 12n+16 24n+27

12n+15 24n+30 8n+9 24n+29 20n+23
8n+8 24n+31 22n+25 14n+18 24n+32
8n+13 24n+33 8n+7 16n+19 24n+34
24n+35 24n+36 10n+14 4n+4 14n+17
24n+26 24n+38 16n+21 8n+6 24n+37
24n+40 24n+39 4n+3 22n+24 18n+22

 ,

a block with all row and column sums zero. The entries in A cover the intervals I0 = [1, 2],
I2 = [4n+3, 4n+5], I4 = [8n+6, 8n+13], I18 = [22n+24, 22n+25], I20 = [24n+26, 24n+40],
I16 = {20n + 23}, I12 = [16n + 19, 16n + 21], I14 = {18n + 22}, I8 = [12n + 15, 12n + 16],
I6 = {10n+ 14} and I10 = [14n+ 17, 14n+ 18]. For 0 ≤ r ≤ n− 1,

Ar =



8n−4r+5 8n+2r+14 16n−2r+18 24n+2r+41 24n+2r+42
4n−4r+2 10n+2r+15 14n−2r+16 26n+2r+41 26n+2r+42
8n−4r+4 16n+2r+22 24n−2r+25 28n+2r+41 28n+2r+42
4n−4r+1 18n+2r+23 22n−2r+23 30n+2r+41 30n+2r+42
8n−4r+3 8n+2r+15 16n−2r+17 32n+2r+41 32n+2r+42

4n−4r 10n+2r+16 14n−2r+15 34n+2r+41 34n+2r+42
8n−4r+2 16n+2r+23 24n−2r+24 36n+2r+41 36n+2r+42
4n−4r−1 18n+2r+24 22n−2r+22 38n+2r+41 38n+2r+42

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4n−4r−1, 4n−4r+2], [8n−4r+2, 8n−4r+5], [8n+2r+14, 8n+2r+15], [30n+2r+41, 30n+
2r+42], [24n−2r+24, 24n−2r+25], [16n−2r+17, 16n−2r+18], [14n−2r+15, 14n−2r+16],
[28n+ 2r+ 41, 28n+ 2r+ 42], [18n+ 2r+ 23, 18n+ 2r+ 24], [32n+ 2r+ 41, 32n+ 2r+ 42],
[34n+ 2r+ 41, 34n+ 2r+ 42], [38n+ 2r+ 41, 38n+ 2r+ 42], [26n+ 2r+ 41, 26n+ 2r+ 42],
[24n+ 2r+ 41, 24n+ 2r+ 42], [16n+ 2r+ 22, 16n+ 2r+ 23], [36n+ 2r+ 41, 36n+ 2r+ 42],
[22n− 2r+ 22, 22n− 2r+ 23] and [10n+ 2r+ 15, 10n+ 2r+ 16]. Considering 0 ≤ r ≤ n− 1,
these blocks cover the intervals I1 = [3, 4n+2], I3 = [4n+6, 8n+5], I5 = [8n+14, 10n+13],
I24 = [30n+ 41, 32n+ 40], I19 = [22n+ 26, 24n+ 25], I11 = [14n+ 19, 16n+ 18], I9 = [12n+
17, 14n+16], I23 = [28n+41, 30n+40], I15 = [18n+23, 20n+22], I25 = [32n+41, 34n+40],
I26 = [34n+41, 36n+40], I28 = [38n+41, 40n+40], I22 = [26n+41, 28n+40], I21 = [24n+
41, 26n+40], I13 = [16n+22, 18n+21], I27 = [36n+41, 38n+40], I17 = [20n+24, 22n+23]
and I7 = [10n+ 15, 12n+ 14].

Concatenating these intervals, we have covered [1, 40n + 40] = I0I1 · · · I28. Therefore,
the block construction [AT |AT

0 | · · · |AT
n−1] is a 5× (8n+ 8) Heffter array.
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2.7.2.3 5× (8n+ 9) Heffter Arrays

Let n ≥ 0, and

A =



1 2 3 40n+45 40n+44
8n+11 12n+14 24n+28 24n+29 20n+24
8n+10 10n+13 18n+22 24n+30 24n+31
24n+33 18n+20 24n+32 4n+7 22n+26
24n+34 24n+27 8n+9 16n+19 24n+35
4n+5 24n+37 18n+21 24n+36 22n+25

20n+23 24n+39 12n+16 8n+8 24n+38
24n+40 8n+12 8n+6 24n+41 16n+17
24n+43 24n+42 4n+4 12n+15 16n+18


,

a block with row sums
[2D + 1, 0, 0, 0, 0, 0, 0, 0, 0]

and column sums
[0, 0, 2D + 1, 0, 4D + 2].

The entries in A cover the intervals I0 = [1, 3], I4 = {4n + 7}, I2 = [4n + 4, 4n + 5],
I6 = {8n+6}, I8 = [8n+8, 8n+12], I19 = [20n+23, 20n+24], I15 = [16n+17, 16n+19], I17 =
[18n+ 20, 18n+ 22], I12 = [12n+ 14, 12n+ 16], I10 = {10n+ 13}, I23 = [24n+ 27, 24n+ 43],
I32 = [40n+ 44, 40n+ 45] and I21 = [22n+ 25, 22n+ 26]. For 0 ≤ r ≤ n− 1,

Ar =



8n−4r+7 16n+2r+20 24n−2r+26 24n+2r+44 24n+2r+45
4n−4r+2 18n+2r+23 22n−2r+24 26n+2r+44 26n+2r+45
4n−4r+3 10n+2r+14 14n−2r+16 28n+2r+44 28n+2r+45
8n−4r+4 8n+2r+13 16n−2r+16 30n+2r+44 30n+2r+45
8n−4r+5 16n+2r+21 24n−2r+25 32n+2r+44 32n+2r+45

4n−4r 18n+2r+24 22n−2r+23 34n+2r+44 34n+2r+45
4n−4r+1 10n+2r+15 14n−2r+15 36n+2r+44 36n+2r+45
8n−4r+2 8n+2r+14 16n−2r+15 38n+2r+44 38n+2r+45

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4n − 4r, 4n − 4r + 3], {8n − 4r + 7}, {8n − 4r + 2}, [8n − 4r + 4, 8n − 4r + 5], [8n +
2r + 13, 8n + 2r + 14], [28n + 2r + 44, 28n + 2r + 45], [22n − 2r + 23, 22n − 2r + 24],
[16n+ 2r+ 20, 16n+ 2r+ 21], [30n+ 2r+ 44, 30n+ 2r+ 45], [34n+ 2r+ 44, 34n+ 2r+ 45],
[24n− 2r+ 25, 24n− 2r+ 26], [16n− 2r+ 15, 16n− 2r+ 16], [24n+ 2r+ 44, 24n+ 2r+ 45],
[26n+ 2r+ 44, 26n+ 2r+ 45], [10n+ 2r+ 14, 10n+ 2r+ 15], [36n+ 2r+ 44, 36n+ 2r+ 45],
[32n+2r+44, 32n+2r+45], [14n−2r+15, 14n−2r+16], [38n+2r+44, 38n+2r+45] and
[18n+ 2r + 23, 18n+ 2r + 24]. Considering 0 ≤ r ≤ n− 1, these blocks cover the intervals
I1 = [4, 4n+3], I16 = [8n+13, 10n+12], I27 = [28n+44, 30n+43], I29 = [20n+25, 22n+24],
I22 = [16n + 20, 18n + 19], I14 = [30n + 44, 32n + 43], I24 = [34n + 44, 36n + 43], I25 =
[22n + 27, 24n + 26], I11 = [14n + 17, 16n + 16], I30 = [24n + 44, 26n + 43], I28 = [26n +
44, 28n+43], I13 = [10n+14, 12n+13], I31 = [36n+44, 38n+43], I18 = [32n+44, 34n+43],
I3 = [12n+17, 14n+16], I5 = [38n+44, 40n+43] and I7 = [18n+23, 20n+22]. Additionally,
we split the intervals {8n − 4r + 7}, {8n − 4r + 2} and [8n − 4r + 4, 8n − 4r + 5] into the
sequences

(4n+ 6, 4n+ 10, · · · , 8n+ 2),
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(4n+ 8, 4n+ 12, · · · , 8n+ 4),

(4n+ 9, 4n+ 13, · · · , 8n+ 5),

and
(4n+ 11, 4n+ 15, · · · , 8n+ 7),

and rejoin them into the intervals I3 = {4n+ 6}, I5 = [4n+ 8, 8n+ 5] and I7 = {8n+ 7}.
Concatenating these intervals, we have covered [1, 40n + 45] = I0I1 · · · I32. Therefore,

the block construction [AT |AT
0 | · · · |AT

n−1] is a 5× (8n+ 9) Heffter array.

2.7.2.4 5× (8n+ 10) Heffter Arrays

Let n ≥ 0, and

A =



1 2 3 40n+49 40n+50
8n+12 12n+15 24n+32 24n+31 20n+26
8n+11 14n+19 22n+29 24n+33 24n+34
12n+16 20n+25 24n+35 8n+10 24n+36
24n+38 20n+27 4n+7 24n+37 16n+21
24n+40 14n+18 4n+6 18n+23 24n+39
16n+20 24n+42 24n+41 8n+13 8n+8
8n+9 24n+43 24n+44 16n+22 24n+30
4n+4 24n+45 10n+14 24n+46 14n+17

24n+47 24n+48 4n+5 22n+28 18n+24


,

a block with row sums
[2D + 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

and column sums
[0, 0, 0, 0, 2D + 1].

The entries in A cover the intervals I0 = [1, 3], I2 = [4n+ 4, 4n+ 7], I4 = [8n+ 8, 8n+ 13],
I10 = [14n+17, 14n+19], I29 = [40n+49, 40n+50], I14 = [18n+23, 18n+24], I20 = [24n+
30, 24n+48], I16 = [20n+25, 20n+27], I8 = [12n+15, 12n+16], I12 = [16n+20, 16n+22],
I18 = [22n+ 28, 22n+ 29] and I6 = {10n+ 14}. For 0 ≤ r ≤ n− 1,

Ar =



8n−4r+6 8n+2r+14 16n−2r+19 24n+2r+49 24n+2r+50
8n−4r+7 16n+2r+23 24n−2r+29 26n+2r+49 26n+2r+50
4n−4r+2 10n+2r+15 14n−2r+16 28n+2r+49 28n+2r+50
4n−4r+3 18n+2r+25 22n−2r+27 30n+2r+49 30n+2r+50
8n−4r+4 8n+2r+15 16n−2r+18 32n+2r+49 32n+2r+50
8n−4r+5 16n+2r+24 24n−2r+28 34n+2r+49 34n+2r+50

4n−4r 10n+2r+16 14n−2r+15 36n+2r+49 36n+2r+50
4n−4r+1 18n+2r+26 22n−2r+26 38n+2r+49 38n+2r+50

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4n−4r, 4n−4r+3], [8n−4r+4, 8n−4r+7], [8n+2r+14, 8n+2r+15], [26n+2r+49, 26n+
2r+50], [18n+2r+25, 18n+2r+26], [16n−2r+18, 16n−2r+19], [34n+2r+49, 34n+2r+50],
[14n− 2r+ 15, 14n− 2r+ 16], [24n+ 2r+ 49, 24n+ 2r+ 50], [36n+ 2r+ 49, 36n+ 2r+ 50],
[30n+ 2r+ 49, 30n+ 2r+ 50], [28n+ 2r+ 49, 28n+ 2r+ 50], [22n− 2r+ 26, 22n− 2r+ 27],
[32n+ 2r+ 49, 32n+ 2r+ 50], [24n− 2r+ 28, 24n− 2r+ 29], [16n+ 2r+ 23, 16n+ 2r+ 24],
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[10n+ 2r+ 15, 10n+ 2r+ 16] and [38n+ 2r+ 49, 38n+ 2r+ 50]. Considering 0 ≤ r ≤ n− 1,
these blocks cover the intervals I1 = [4, 4n+3], I3 = [4n+8, 8n+7], I5 = [8n+14, 10n+13],
I22 = [26n+49, 28n+48], I15 = [18n+25, 20n+24], I11 = [14n+20, 16n+19], I26 = [34n+
49, 36n+48], I9 = [12n+17, 14n+16], I21 = [24n+49, 26n+48], I27 = [36n+49, 38n+48],
I24 = [30n+49, 32n+48], I23 = [28n+49, 30n+48], I17 = [20n+28, 22n+27], I25 = [32n+
49, 34n+ 48], I19 = [22n+ 30, 24n+ 29], I13 = [16n+ 23, 18n+ 22], I7 = [10n+ 15, 12n+ 14]
and I28 = [38n+ 49, 40n+ 48].

Concatenating these intervals, we have covered [1, 40n + 50] = I0I1 · · · I29. Therefore,
the block construction [AT |AT

0 | · · · |AT
n−1] is a 5× (8n+ 10) Heffter array.

2.7.2.5 5× (8n+ 11) Heffter Arrays

Let n ≥ 0, and

A =



8n+13 10n+16 18n+28 2 1
4n+7 12n+19 16n+25 24n+36 24n+37
8n+12 12n+20 24n+38 20n+31 24n+39
4n+5 22n+33 24n+40 24n+41 18n+29

16n+26 8n+10 24n+35 24n+43 24n+42
4n+6 24n+45 10n+17 24n+44 14n+22

16n+24 24n+46 24n+47 8n+14 8n+11
22n+32 24n+48 18n+30 4n+3 24n+49
24n+50 16n+27 24n+34 24n+51 8n+8
10n+18 24n+53 14n+21 24n+52 4n+4
24n+55 16n+23 8n+9 8n+15 24n+54


,

a block with all row and column sums zero. The entries in A cover the intervals I0 = [1, 2],
I2 = [4n+3, 4n+7], I4 = [8n+8, 8n+15], I18 = [22n+32, 22n+33], I6 = [10n+16, 10n+18],
I8 = [12n+19, 12n+20], I14 = [18n+28, 18n+30], I10 = [14n+21, 14n+22], I16 = {20n+31},
I12 = [16n+ 23, 16n+ 27] and I20 = [24n+ 34, 24n+ 55]. For 0 ≤ r ≤ n− 1,

Ar =



4n−4r+1 18n+2r+31 22n−2r+31 24n+2r+56 24n+2r+57
8n−4r+6 16n+2r+28 24n−2r+33 26n+2r+56 26n+2r+57
4n−4r+2 10n+2r+19 14n−2r+20 28n+2r+56 28n+2r+57
8n−4r+7 8n+2r+16 16n−2r+22 30n+2r+56 30n+2r+57
4n−4r−1 18n+2r+32 22n−2r+30 32n+2r+56 32n+2r+57
8n−4r+4 16n+2r+29 24n−2r+32 34n+2r+56 34n+2r+57

4n−4r 10n+2r+20 14n−2r+19 36n+2r+56 36n+2r+57
8n−4r+5 8n+2r+17 16n−2r+21 38n+2r+56 38n+2r+57

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[8n−4r+4, 8n−4r+7], [4n−4r−1, 4n−4r+2], [8n+2r+16, 8n+2r+17], [30n+2r+56, 30n+
2r+57], [16n+2r+28, 16n+2r+29], [24n−2r+32, 24n−2r+33], [14n−2r+19, 14n−2r+20],
[28n+ 2r+ 56, 28n+ 2r+ 57], [18n+ 2r+ 31, 18n+ 2r+ 32], [32n+ 2r+ 56, 32n+ 2r+ 57],
[16n− 2r+ 21, 16n− 2r+ 22], [26n+ 2r+ 56, 26n+ 2r+ 57], [24n+ 2r+ 56, 24n+ 2r+ 57],
[22n− 2r+ 30, 22n− 2r+ 31], [34n+ 2r+ 56, 34n+ 2r+ 57], [10n+ 2r+ 19, 10n+ 2r+ 20],
[36n+ 2r+ 56, 36n+ 2r+ 57] and [38n+ 2r+ 56, 38n+ 2r+ 57]. Considering 0 ≤ r ≤ n− 1,
these blocks cover the intervals I3 = [4n+8, 8n+7], I1 = [3, 4n+2], I5 = [8n+16, 10n+15],
I24 = [30n+ 56, 32n+ 55], I13 = [16n+ 28, 18n+ 27], I19 = [22n+ 34, 24n+ 33], I9 = [12n+
21, 14n+20], I23 = [28n+56, 30n+55], I15 = [18n+31, 20n+30], I25 = [32n+56, 34n+55],
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I11 = [14n+23, 16n+22], I22 = [26n+56, 28n+55], I21 = [24n+56, 26n+55], I17 = [20n+
32, 22n+ 31], I26 = [34n+ 56, 36n+ 55], I7 = [10n+ 19, 12n+ 18], I27 = [36n+ 56, 38n+ 55]
and I28 = [38n+ 56, 40n+ 55].

Concatenating these intervals, we have covered [1, 40n + 55] = I0I1 · · · I28. Therefore,
the block construction [AT |AT

0 | · · · |AT
n−1] is a 5× (8n+ 11) Heffter array.

2.7.2.6 5× (8n+ 12) Heffter Arrays

Let n ≥ 0, and

A =



8n+14 8n+15 16n+28 1 2
4n+7 8n+16 12n+22 24n+39 24n+40
8n+13 12n+21 24n+41 24n+42 20n+33
8n+12 14n+25 22n+36 24n+44 24n+43
8n+17 16n+27 24n+45 8n+11 24n+46
14n+24 10n+19 24n+48 24n+47 4n+6
24n+49 24n+50 24n+38 16n+29 8n+10
24n+51 4n+5 24n+52 22n+35 18n+31
8n+9 24n+54 24n+53 8n+18 16n+26

14n+23 24n+56 24n+55 4n+4 10n+20
24n+37 24n+57 24n+58 8n+8 16n+30
24n+60 24n+59 18n+32 22n+34 4n+3


,

a block with all row and column sums zero. The entries in A cover the intervals I0 = [1, 2],
I2 = [4n+3, 4n+7], I4 = [8n+8, 8n+18], I10 = [14n+23, 14n+25], I8 = [12n+21, 12n+22],
I16 = {20n+33}, I14 = [18n+31, 18n+32], I12 = [16n+26, 16n+30], I6 = [10n+19, 10n+20],
I18 = [22n+ 34, 22n+ 36] and I20 = [24n+ 37, 24n+ 60]. For 0 ≤ r ≤ n− 1,

Ar =



8n−4r+7 8n+2r+19 16n−2r+25 24n+2r+61 24n+2r+62
4n−4r+2 10n+2r+21 14n−2r+22 26n+2r+61 26n+2r+62
8n−4r+6 16n+2r+31 24n−2r+36 28n+2r+61 28n+2r+62
4n−4r+1 18n+2r+33 22n−2r+33 30n+2r+61 30n+2r+62
8n−4r+5 8n+2r+20 16n−2r+24 32n+2r+61 32n+2r+62

4n−4r 10n+2r+22 14n−2r+21 34n+2r+61 34n+2r+62
8n−4r+4 16n+2r+32 24n−2r+35 36n+2r+61 36n+2r+62
4n−4r−1 18n+2r+34 22n−2r+32 38n+2r+61 38n+2r+62

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[8n−4r+4, 8n−4r+7], [4n−4r−1, 4n−4r+2], [8n+2r+19, 8n+2r+20], [28n+2r+61, 28n+
2r+62], [36n+2r+61, 36n+2r+62], [18n+2r+33, 18n+2r+34], [14n−2r+21, 14n−2r+22],
[16n− 2r+ 24, 16n− 2r+ 25], [30n+ 2r+ 61, 30n+ 2r+ 62], [34n+ 2r+ 61, 34n+ 2r+ 62],
[24n+ 2r+ 61, 24n+ 2r+ 62], [10n+ 2r+ 21, 10n+ 2r+ 22], [16n+ 2r+ 31, 16n+ 2r+ 32],
[26n+ 2r+ 61, 26n+ 2r+ 62], [38n+ 2r+ 61, 38n+ 2r+ 62], [22n− 2r+ 32, 22n− 2r+ 33],
[24n− 2r+ 35, 24n− 2r+ 36] and [32n+ 2r+ 61, 32n+ 2r+ 62]. Considering 0 ≤ r ≤ n− 1,
these blocks cover the intervals I3 = [4n+8, 8n+7], I1 = [3, 4n+2], I5 = [8n+19, 10n+18],
I23 = [28n+ 61, 30n+ 60], I27 = [36n+ 61, 38n+ 60], I15 = [18n+ 33, 20n+ 32], I9 = [12n+
23, 14n+22], I11 = [14n+26, 16n+25], I24 = [30n+61, 32n+60], I26 = [34n+61, 36n+60],
I21 = [24n+ 61, 26n+ 60], I7 = [10n+ 21, 12n+ 20], I13 = [16n+ 31, 18n+ 30], I22 = [26n+
61, 28n+60], I28 = [38n+61, 40n+60], I17 = [20n+34, 22n+33], I19 = [22n+37, 24n+36]
and I25 = [32n+ 61, 34n+ 60].
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Concatenating these intervals, we have covered [1, 40n + 60] = I0I1 · · · I28. Therefore,
the block construction [AT |AT

0 | · · · |AT
n−1] is a 5× (8n+ 12) Heffter array.

2.7.2.7 5× (8n+ 13) Heffter Arrays

Let n ≥ 0, and

A =



1 2 3 40n+65 40n+64
8n+15 12n+20 20n+34 24n+40 24n+41
8n+14 10n+18 18n+31 24n+42 24n+43
4n+9 18n+29 24n+44 24n+45 22n+37
8n+13 16n+27 24n+47 24n+39 24n+46
4n+7 18n+30 24n+49 24n+48 22n+36

20n+33 24n+50 8n+12 12n+22 24n+51
16n+25 24n+52 8n+16 8n+10 24n+53
24n+55 4n+6 12n+21 24n+54 16n+26
24n+57 24n+56 16n+28 8n+11 24n+38
18n+32 22n+35 24n+58 24n+59 4n+4
10n+19 24n+61 14n+23 4n+5 24n+60
24n+62 24n+63 8n+8 16n+24 8n+17


,

a block with row sums

[2D + 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

and column sums
[0, 2D + 1, 0, 0, 4D + 2].

The entries in A cover the intervals I0 = [1, 3], I6 = {8n + 8}, I2 = [4n + 4, 4n + 7],
I4 = {4n + 9}, I8 = [8n + 10, 8n + 17], I10 = [10n + 18, 10n + 19], I14 = {14n + 23},
I33 = [40n+64, 40n+65], I22 = [22n+35, 22n+37], I18 = [18n+29, 18n+32], I16 = [16n+
24, 16n+28], I20 = [20n+33, 20n+34], I24 = [24n+38, 24n+63] and I12 = [12n+20, 12n+22].
For 0 ≤ r ≤ n− 1,

Ar =



8n−4r+9 16n+2r+29 24n−2r+37 24n+2r+64 24n+2r+65
4n−4r+2 18n+2r+33 22n−2r+34 26n+2r+64 26n+2r+65
4n−4r+3 10n+2r+20 14n−2r+22 28n+2r+64 28n+2r+65
8n−4r+6 8n+2r+18 16n−2r+23 30n+2r+64 30n+2r+65
8n−4r+7 16n+2r+30 24n−2r+36 32n+2r+64 32n+2r+65

4n−4r 18n+2r+34 22n−2r+33 34n+2r+64 34n+2r+65
4n−4r+1 10n+2r+21 14n−2r+21 36n+2r+64 36n+2r+65
8n−4r+4 8n+2r+19 16n−2r+22 38n+2r+64 38n+2r+65

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4n − 4r, 4n − 4r + 3], {8n − 4r + 9}, [8n − 4r + 6, 8n − 4r + 7], {8n − 4r + 4}, [8n +
2r + 18, 8n + 2r + 19], [34n + 2r + 64, 34n + 2r + 65], [18n + 2r + 33, 18n + 2r + 34],
[32n+ 2r+ 64, 32n+ 2r+ 65], [14n− 2r+ 21, 14n− 2r+ 22], [24n− 2r+ 36, 24n− 2r+ 37],
[28n+ 2r+ 64, 28n+ 2r+ 65], [38n+ 2r+ 64, 38n+ 2r+ 65], [10n+ 2r+ 20, 10n+ 2r+ 21],
[22n− 2r+ 33, 22n− 2r+ 34], [36n+ 2r+ 64, 36n+ 2r+ 65], [16n+ 2r+ 29, 16n+ 2r+ 30],
[16n−2r+22, 16n−2r+23], [30n+2r+64, 30n+2r+65], [24n+2r+64, 24n+2r+65] and
[26n+ 2r + 64, 26n+ 2r + 65]. Considering 0 ≤ r ≤ n− 1, these blocks cover the intervals
I1 = [4, 4n+3], I29 = [8n+18, 10n+17], I13 = [34n+64, 36n+63], I23 = [18n+33, 20n+32],
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I27 = [32n + 64, 34n + 63], I32 = [12n + 23, 14n + 22], I11 = [22n + 38, 24n + 37], I21 =
[28n + 64, 30n + 63], I31 = [38n + 64, 40n + 63], I17 = [10n + 20, 12n + 19], I15 = [20n +
35, 22n+34], I28 = [36n+64, 38n+63], I25 = [16n+29, 18n+28], I26 = [14n+24, 16n+23],
I3 = [30n+64, 32n+63], I5 = [24n+64, 26n+63] and I7 = [26n+64, 28n+63]. Additionally,
we split the intervals {8n − 4r + 9}, [8n − 4r + 6, 8n − 4r + 7] and {8n − 4r + 4} into the
sequences

(4n+ 8, 4n+ 12, · · · , 8n+ 4),

(4n+ 10, 4n+ 14, · · · , 8n+ 6),

(4n+ 11, 4n+ 15, · · · , 8n+ 7),

and
(4n+ 13, 4n+ 17, · · · , 8n+ 9),

and rejoin them into the intervals I3 = {4n+ 8}, I5 = [4n+ 10, 8n+ 7] and I7 = {8n+ 9}.
Concatenating these intervals, we have covered [1, 40n + 65] = I0I1 · · · I33. Therefore,

the block construction [AT |AT
0 | · · · |AT

n−1] is a 5× (8n+ 13) Heffter array.

2.7.2.8 5× (8n+ 14) Heffter Arrays

Let n ≥ 0, and

A =



1 2 3 40n+70 40n+69
8n+16 12n+21 20n+36 24n+44 24n+43
8n+15 14n+26 22n+40 24n+45 24n+46
8n+14 12n+22 20n+35 24n+47 24n+48
4n+9 16n+29 20n+37 24n+49 24n+50
4n+8 14n+25 18n+32 24n+51 24n+52
8n+12 8n+17 16n+28 24n+53 24n+54
8n+13 16n+30 24n+56 24n+42 24n+55
4n+6 24n+57 10n+19 24n+58 14n+24
4n+7 24n+60 24n+59 18n+33 22n+39
8n+10 16n+27 24n+62 8n+18 24n+61
16n+31 24n+63 8n+11 24n+64 24n+41
24n+66 4n+4 24n+65 14n+23 10n+20
24n+67 24n+68 18n+34 4n+5 22n+38


,

a block with row sums

[2D + 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

and column sums
[2D + 1, 2D + 1, 2D + 1, 0, 4D + 2].

The entries in A cover the intervals I0 = [1, 3], I2 = [4n+ 4, 4n+ 9], I4 = [8n+ 10, 8n+ 18],
I8 = [12n+ 21, 12n+ 22], I10 = [14n+ 23, 14n+ 26], I18 = [22n+ 38, 22n+ 40], I29 = [40n+
69, 40n+70], I12 = [16n+27, 16n+31], I14 = [18n+32, 18n+34], I6 = [10n+19, 10n+20],
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I20 = [24n+ 41, 24n+ 68] and I16 = [20n+ 35, 20n+ 37]. For 0 ≤ r ≤ n− 1,

Ar =



8n−4r+8 8n+2r+19 16n−2r+26 24n+2r+69 24n+2r+70
8n−4r+9 16n+2r+32 24n−2r+40 26n+2r+69 26n+2r+70
4n−4r+2 10n+2r+21 14n−2r+22 28n+2r+69 28n+2r+70
4n−4r+3 18n+2r+35 22n−2r+37 30n+2r+69 30n+2r+70
8n−4r+6 8n+2r+20 16n−2r+25 32n+2r+69 32n+2r+70
8n−4r+7 16n+2r+33 24n−2r+39 34n+2r+69 34n+2r+70

4n−4r 10n+2r+22 14n−2r+21 36n+2r+69 36n+2r+70
4n−4r+1 18n+2r+36 22n−2r+36 38n+2r+69 38n+2r+70

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4n−4r, 4n−4r+3], [8n−4r+6, 8n−4r+9], [8n+2r+19, 8n+2r+20], [32n+2r+69, 32n+
2r+70], [14n−2r+21, 14n−2r+22], [24n+2r+69, 24n+2r+70], [16n+2r+32, 16n+2r+33],
[16n− 2r+ 25, 16n− 2r+ 26], [22n− 2r+ 36, 22n− 2r+ 37], [34n+ 2r+ 69, 34n+ 2r+ 70],
[30n+ 2r+ 69, 30n+ 2r+ 70], [24n− 2r+ 39, 24n− 2r+ 40], [36n+ 2r+ 69, 36n+ 2r+ 70],
[10n+ 2r+ 21, 10n+ 2r+ 22], [38n+ 2r+ 69, 38n+ 2r+ 70], [26n+ 2r+ 69, 26n+ 2r+ 70],
[18n+ 2r+ 35, 18n+ 2r+ 36] and [28n+ 2r+ 69, 28n+ 2r+ 70]. Considering 0 ≤ r ≤ n− 1,
these blocks cover the intervals I1 = [4, 4n+3], I3 = [4n+10, 8n+9], I5 = [8n+19, 10n+18],
I25 = [32n+ 69, 34n+ 68], I9 = [12n+ 23, 14n+ 22], I21 = [24n+ 69, 26n+ 68], I13 = [16n+
32, 18n+31], I11 = [14n+27, 16n+26], I17 = [20n+38, 22n+37], I26 = [34n+69, 36n+68],
I24 = [30n+ 69, 32n+ 68], I19 = [22n+ 41, 24n+ 40], I27 = [36n+ 69, 38n+ 68], I7 = [10n+
21, 12n+20], I28 = [38n+69, 40n+68], I22 = [26n+69, 28n+68], I15 = [18n+35, 20n+34]
and I23 = [28n+ 69, 30n+ 68].

Concatenating these intervals, we have covered [1, 40n + 70] = I0I1 · · · I29. Therefore,
the block construction [AT |AT

0 | · · · |AT
n−1] is a 5× (8n+ 14) Heffter array.

2.7.3 Constructions For m and n Large

2.7.3.1 Large (4m+ 1)× (4n+ 2) Construction

See Section 2.7.2 for the description of Heffter arrays of dimension 5 × (4n + 2). In this
section, we will describe the construction of (4m+ 1)× (4n+ 2) Heffter arrays where m ≥ 2
and n ≥ 1. Let

A =



D−10 D−9 5 D−3 D−4 4
D−6 D−8 D−16 D−19 D−20 D−15

6 D−23 D−7 1 D−21 D−14
D D−22 D−11 D−18 D−2 D−13

D−1 2 D−17 D−5 3 D−12
D−47 D−46 D−45 D−44 D−37 D−39
D−41 D−40 D−36 D−38 D−43 D−42
D−35 D−34 D−33 D−32 D−25 D−27
D−29 D−28 D−24 D−26 D−31 D−30


,

a block with row sums
[2D + 1, 0, 0, 0, 0, 0, 0, 0, 0]

and column sums
[2D + 1, 0, 0, 0, 0, 0].
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The entries in A cover the intervals I0 = [1, 6] and I8 = [16mn + 8m + 4n − 45, 16mn +
8m+ 4n+ 2]. For 0 ≤ r ≤ n− 2,

Ar =



4r+7 4r+8 4r+9 4r+10
6n−2r 10n−2r−4 6n−2r−1 10n−2r−5

6n+2r+1 10n+2r−3 6n+2r+2 10n+2r−2
12n+24r−5 12n+24r−3 12n+24r−1 12n+24r+1
12n+24r−4 12n+24r−2 12n+24r 12n+24r+2
12n+24r+3 12n+24r+4 12n+24r+7 12n+24r+8
12n+24r+5 12n+24r+6 12n+24r+9 12n+24r+10
12n+24r+11 12n+24r+12 12n+24r+18 12n+24r+17
12n+24r+14 12n+24r+16 12n+24r+15 12n+24r+13


,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4r+ 7, 4r+ 10], [6n− 2r− 1, 6n− 2r], [6n+ 2r+ 1, 6n+ 2r+ 2], [10n− 2r− 5, 10n− 2r− 4],
[10n+ 2r− 3, 10n+ 2r− 2] and [12n+ 24r− 5, 12n+ 24r+ 18]. Considering 0 ≤ r ≤ n− 2,
these blocks cover the intervals I1 = [7, 4n + 2], I2 = [4n + 3, 6n], I3 = [6n + 1, 8n − 2],
I4 = [8n − 1, 10n − 4], I5 = [10n − 3, 12n − 6] and I6 = [12n − 5, 36n − 30]. Additionally,
let E0 be a (4m − 8) × (4n + 2) shiftable Heffter array and E = E0 + 36n − 30, covering
the interval I7 = [36n−29, 8(2n+ 1)(m− 2) + 36n−30]. Concatenating these intervals, we
have covered [1, 16mn+ 8m+ 4n+ 2] = I0I1 · · · I8. Therefore, the block construction below
is a (4m+ 1)× (4n+ 2) Heffter array. A A0 · · · An−2

E


2.7.3.2 Large (4m+ 3)× (4n+ 2) Construction

See Section 2.7.1 for the description of Heffter arrays of dimension 3 × (4n + 2). In this
section, we will describe the construction of (4m+ 3)× (4n+ 2) Heffter arrays where m ≥ 1
and n ≥ 1. Let

A =


2 D−2 D−4 3 D−5 D−7

D−1 D−8 D−3 D−9 5 4
D 6 1 D−6 D−10 D−11

D−35 D−34 D−33 D−32 D−25 D−27
D−29 D−28 D−24 D−26 D−31 D−30
D−23 D−22 D−21 D−20 D−13 D−15
D−17 D−16 D−12 D−14 D−19 D−18

 ,

a block with row sums
[2D + 1, 0, 0, 0, 0, 0, 0]

and column sums
[2D + 1, 0, 0, 0, 0, 0].
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The entries in A cover the intervals I0 = [1, 6] and I8 = [16mn + 8m + 12n − 29, 16mn +
8m+ 12n+ 6]. and for 0 ≤ r ≤ n− 2,

Ar =


4r+7 4r+8 4r+9 4r+10

6n−2r 10n−2r−4 6n−2r−1 10n−2r−5
6n+2r+1 10n+2r−3 6n+2r+2 10n+2r−2

12n+16r−5 12n+16r−4 12n+16r+2 12n+16r+1
12n+16r−3 12n+16r−1 12n+16r 12n+16r−2
12n+16r+3 12n+16r+4 12n+16r+5 12n+16r+6
12n+16r+7 12n+16r+8 12n+16r+9 12n+16r+10

 ,

a variable block with all row and column sums zero. The entries in Ar cover the intervals
[4r+ 7, 4r+ 10], [6n− 2r− 1, 6n− 2r], [6n+ 2r+ 1, 6n+ 2r+ 2], [10n− 2r− 5, 10n− 2r− 4],
[10n+ 2r− 3, 10n+ 2r− 2] and [12n+ 16r− 5, 12n+ 16r+ 10]. Considering 0 ≤ r ≤ n− 2,
these blocks cover the intervals I1 = [7, 4n + 2], I2 = [4n + 3, 6n], I3 = [6n + 1, 8n − 2],
I4 = [8n − 1, 10n − 4], I5 = [10n − 3, 12n − 6] and I6 = [12n − 5, 28n − 22]. Additionally,
let E0 be a (4m − 4) × (4n + 2) shiftable Heffter array and E = E0 + 28n − 22, covering
the interval I7 = [28n−21, 8(2n+ 1)(m− 1) + 28n−22]. Concatenating these intervals, we
have covered [1, 16mn+ 8m+ 12n+ 6] = I0I1 · · · I8. Then, the block construction below is
a (4m+ 3)× (4n+ 2) Heffter array. A A0 · · · An−2

E


2.7.3.3 Large (4m+ 3)× (4n+ 3) Construction

See Section 2.7.1 for the description of Heffter arrays of dimension 3 × (4n + 3). In this
section, we will describe the construction of (4m+ 3)× (4n+ 3) Heffter arrays where m ≥ 1
and n ≥ 1. Let y = m+ n,

A =


D−3 D−1 5 6 7 8 9
D D−2 2 6y+5 10y+5 6y+4 10y+4
4 1 3 6y+6 10y+6 6y+7 10y+7
10 6y+3 6y+8 12y+14 12y+21 12y+9 12y+7
11 10y+3 10y+8 12y+16 12y+20 12y+19 12y+17
12 6y+2 6y+9 12y+15 12y+6 12y+12 12y+8
13 10y+2 10y+9 12y+18 12y+13 12y+11 12y+10

 ,

a block with row sums
[2D + 1, 0, 0, 0, 0, 0, 0]

and column sums
[2D + 1, 0, 0, 0, 0, 0, 0].

The entries in A cover the intervals I0 = [1, 13], I3 = [6m + 6n + 2, 6m + 6n + 9], I6 =
[10m+ 10n+ 2, 10m+ 10n+ 9], I8 = [12m+ 12n+ 6, 12m+ 12n+ 21] and I11 = [16mn+
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12m+ 12n+ 6, 16mn+ 12m+ 12n+ 9]. For 0 ≤ r ≤ m+ n− 3, let

Br =


4r+14 4r+15 4r+16 4r+17

6m+6n−2r+1 10m+10n−2r+1 6m+6n−2r 10m+10n−2r
6m+6n+2r+10 10m+10n+2r+10 6m+6n+2r+11 10m+10n+2r+11

12m+12n+16r+22 12m+12n+16r+23 12m+12n+16r+29 12m+12n+16r+28
12m+12n+16r+25 12m+12n+16r+27 12m+12n+16r+26 12m+12n+16r+24
12m+12n+16r+30 12m+12n+16r+31 12m+12n+16r+34 12m+12n+16r+35
12m+12n+16r+32 12m+12n+16r+33 12m+12n+16r+36 12m+12n+16r+37

 ,

a variable block with all row and column sums zero. The entries in Br cover the intervals
[4r + 14, 4r + 17], [6m+ 6n− 2r, 6m+ 6n− 2r + 1], [10m+ 10n− 2r, 10m+ 10n− 2r + 1],
[6m + 6n + 2r + 10, 6m + 6n + 2r + 11], [10m + 10n + 2r + 10, 10m + 10n + 2r + 11]
and [12m + 12n + 16r + 22, 12m + 12n + 16r + 37]. Considering 0 ≤ r ≤ m + n − 3,
these blocks cover the intervals I1 = [14, 4m + 4n + 5], I2 = [4m + 4n + 6, 6m + 6n + 1],
I5 = [8m + 8n + 6, 10m + 10n + 1], I4 = [6m + 6n + 10, 8m + 8n + 5], I7 = [10m + 10n +
10, 12m + 12n + 5] and I9 = [12m + 12n + 22, 28m + 28n − 11]. Additionally, let E0 be a
(4m−4)×(4n−4) shiftable Heffter array and E = E0+28m+28n−11, covering the interval
I10 = [28m+ 28n− 10, 16(n− 1)(m− 1) + 28m+ 28n− 11]. Concatenating these intervals,
we have covered [1, 16mn + 12m + 12n + 9] = I0I1 · · · I11. Then, the block construction
below is a (4m+ 1)× (4n+ 3) Heffter array.

A B0 · · · Bn−2

BT
n−1

E...
BT

m+n−3


2.7.3.4 Large (4m+ 1)× (4n+ 1) Construction

See Section 2.7.2 for the description of Heffter arrays of dimension 5 × (4n + 1). In this
section, we will describe the construction of (4m+ 1)× (4n+ 1) Heffter arrays where m ≥ 2
and n ≥ 2. Let y = m+ n, and

A =



D−17 D−8 D−3 D−15 7 8 9 10 11
D−7 5 D−6 D−10 D−1 6y−5 10y−13 6y−6 10y−14

4 D−5 D D−12 D−13 6y−4 10y−12 6y−3 10y−11
D−9 3 D−4 D−14 D−2 12y−16 12y−15 12y−12 12y−11
D−11 6 2 1 D−16 12y−14 12y−13 12y−10 12y−9

12 6y−7 6y−2 12y−8 12y−6 12y+8 12y+15 12y+3 12y+1
13 10y−15 10y−10 12y−7 12y−5 12y+10 12y+14 12y+13 12y+11
14 6y−8 6y−1 12y−4 12y−2 12y+9 12y 12y+6 12y+2
15 10y−16 10y−9 12y−3 12y−1 12y+12 12y+7 12y+5 12y+4


,

a block with row sums
[0, 2D + 1, 0, 0, 0, 0, 0, 0, 0]

and column sums
[0, 2D + 1, 2D + 1, 0, 2D + 1, 0, 0, 0, 0].
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The entries in A cover the intervals I0 = [1, 15], I3 = [6m + 6n − 8, 6m + 6n − 1], I6 =
[10m + 10n − 16, 10m + 10n − 9], I8 = [12m + 12n − 16, 12m + 12n + 15] and I11 =
[16mn+ 4m+ 4n− 16, 16mn+ 4m+ 4n+ 1]. For 0 ≤ r ≤ m+ n− 5, let

Br =



4r+16 4r+17 4r+18 4r+19
6m+6n−2r−9 10m+10n−2r−17 6m+6n−2r−10 10m+10n−2r−18

6m+6n+2r 10m+10n+2r−8 6m+6n+2r+1 10m+10n+2r−7
12m+12n+24r+16 12m+12n+24r+17 12m+12n+24r+20 12m+12n+24r+21
12m+12n+24r+18 12m+12n+24r+19 12m+12n+24r+22 12m+12n+24r+23
12m+12n+24r+24 12m+12n+24r+25 12m+12n+24r+28 12m+12n+24r+29
12m+12n+24r+26 12m+12n+24r+27 12m+12n+24r+30 12m+12n+24r+31
12m+12n+24r+32 12m+12n+24r+33 12m+12n+24r+39 12m+12n+24r+38
12m+12n+24r+35 12m+12n+24r+37 12m+12n+24r+36 12m+12n+24r+34


,

a variable block with all row and column sums zero. The entries in Br cover the intervals
[4r+ 16, 4r+ 19], [6m+ 6n+ 2r, 6m+ 6n+ 2r+ 1], [6m+ 6n− 2r− 10, 6m+ 6n− 2r− 9],
[10m + 10n + 2r − 8, 10m + 10n + 2r − 7], [10m + 10n − 2r − 18, 10m + 10n − 2r − 17]
and [12m + 12n + 24r + 16, 12m + 12n + 24r + 39]. Considering 0 ≤ r ≤ m + n − 5,
these blocks cover the intervals I1 = [16, 4m + 4n − 1], I4 = [6m + 6n, 8m + 8n − 9],
I2 = [4m + 4n, 6m + 6n − 9], I7 = [10m + 10n − 8, 12m + 12n − 17], I5 = [8m + 8n −
8, 10m + 10n − 17] and I9 = [12m + 12n + 16, 36m + 36n − 81]. Additionally, let E0 be a
(4m−8)×(4n−8) shiftable Heffter array and E = E0+36m+36n−81, covering the interval
I10 = [36m+ 36n− 80, 16(n− 2)(m− 2) + 36m+ 36n− 81]. Concatenating these intervals,
we have covered [1, 16mn+ 4m+ 4n+ 1] = I0I1 · · · I11. Then, the block construction below
is a (4m+ 1)× (4n+ 3) Heffter array.

A B0 · · · Bn−3

BT
n−2

E...
BT

m+n−5


2.7.3.5 Large (4m+ 3)× (4n+ 1) Construction

See Sections 2.7.1 and 2.7.2 for the description of Heffter arrays of dimension 3× (4n+ 1)
and (4m + 3) × 5 respectively. In this section, we will describe the construction of (4m +
3)× (4n+ 1) Heffter arrays where m ≥ 1 and n ≥ 2. Let y = m+ n, and

A =



D−7 3 D−4 8 9 10 11
D−3 D−1 2 6y+1 10y−3 6y 10y−4
D−5 D 5 6y+2 10y−2 6y+3 10y−1
D−2 4 D−6 12y−4 12y−3 12y 12y+1

7 6 1 12y−2 12y−1 12y+2 12y+3
12 6y−1 6y+4 12y+17 12y+4 12y+10 12y+18
13 10y−5 10y 12y+13 12y+19 12y+12 12y+14
14 6y−2 6y+5 12y+6 12y+8 12y+16 12y+7
15 10y−6 10y+1 12y+15 12y+9 12y+11 12y+5


,
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a block with all row and column sums zero. The entries in A cover the intervals I0 = [1, 15],
I5 = [6m+ 6n− 2, 6m+ 6n+ 5], I10 = [10m+ 10n− 6, 10m+ 10n+ 1], I13 = [12m+ 12n−
4, 12m+12n+19] and I17 = [16mn+12m+4n−4, 16mn+12m+4n+3]. For 0 ≤ r ≤ n−2,
let

Br =



4r+16 4r+17 4r+18 4r+19
6m+6n−2r−3 10m+10n−2r−7 6m+6n−2r−4 10m+10n−2r−8
6m+6n+2r+6 10m+10n+2r+2 6m+6n+2r+7 10m+10n+2r+3

12m+12n+24r+20 12m+12n+24r+21 12m+12n+24r+24 12m+12n+24r+25
12m+12n+24r+22 12m+12n+24r+23 12m+12n+24r+26 12m+12n+24r+27
12m+12n+24r+28 12m+12n+24r+29 12m+12n+24r+32 12m+12n+24r+33
12m+12n+24r+30 12m+12n+24r+31 12m+12n+24r+34 12m+12n+24r+35
12m+12n+24r+36 12m+12n+24r+37 12m+12n+24r+43 12m+12n+24r+42
12m+12n+24r+39 12m+12n+24r+41 12m+12n+24r+40 12m+12n+24r+38


,

a variable block with all row and column sums zero. The entries in Br cover the intervals
[4r+ 16, 4r+ 19], [6m+ 6n+ 2r+ 6, 6m+ 6n+ 2r+ 7], [6m+ 6n− 2r− 4, 6m+ 6n− 2r− 3],
[10m + 10n + 2r + 2, 10m + 10n + 2r + 3], [10m + 10n − 2r − 8, 10m + 10n − 2r − 7] and
[12m+ 12n+ 24r+ 20, 12m+ 12n+ 24r+ 43]. Considering 0 ≤ r ≤ n−2, these blocks cover
the intervals I1 = [16, 4n+11], I6 = [6m+6n+6, 6m+8n+3], I4 = [6m+4n, 6m+6n−3],
I11 = [10m + 10n + 2, 10m + 12n − 1], I9 = [10m + 8n − 4, 10m + 10n − 7] and I14 =
[12m+ 12n+ 20, 12m+ 36n− 5]. and for 0 ≤ r ≤ m− 3, let

Cr =


4n+4r+12 4n+4r+13 4n+4r+14 4n+4r+15

6m+4n−2r−1 10m+8n−2r−5 6m+4n−2r−2 10m+8n−2r−6
6m+8n+2r+4 10m+12n+2r 6m+8n+2r+5 10m+12n+2r+1

12m+36n+16r−4 12m+36n+16r−3 12m+36n+16r+3 12m+36n+16r+2
12m+36n+16r−1 12m+36n+16r+1 12m+36n+16r 12m+36n+16r−2
12m+36n+16r+4 12m+36n+16r+5 12m+36n+16r+6 12m+36n+16r+7
12m+36n+16r+8 12m+36n+16r+9 12m+36n+16r+10 12m+36n+16r+11

 ,

a variable block with all row and column sums zero. The entries in Cr cover the intervals
[4n+4r+12, 4n+4r+15], [6m+4n−2r−2, 6m+4n−2r−1], [10m+12n+2r, 10m+12n+2r+1],
[6m+8n+2r+4, 6m+8n+2r+5], [10m+8n−2r−6, 10m+8n−2r−5] and [12m+36n+
16r− 4, 12m+ 36n+ 16r+ 11]. Considering 0 ≤ r ≤ m− 3, these blocks cover the intervals
I2 = [4n+12, 4m+4n+3], I3 = [4m+4n+4, 6m+4n−1], I12 = [10m+12n, 12m+12n−5],
I7 = [6m+8n+4, 8m+8n−1], I8 = [8m+8n, 10m+8n−5] and I15 = [12m+36n−4, 28m+
36n− 37]. Finally, let D be a shiftable (4(m− 2)× 4(n− 1)) Heffter array. Additionally, let
E0 be a (4m− 8)× (4n− 4) shiftable Heffter array and E = E0 + 28m+ 36n− 37, covering
the interval I16 = [28m + 36n − 36, 16(n− 1)(m− 2) + 28m + 36n − 37]. Concatenating
these intervals, we have covered [1, 16mn + 12m + 4n + 3] = I0I1 · · · I17. Then, the block
construction below is a (4m+ 1)× (4n+ 3) Heffter array.

A B0 · · · Bn−2

CT
0

E...
CT

m−3
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2.7.3.6 (4m)× (4n+ 1) Heffter Arrays

Let m ≥ 1 and n ≥ 1. See Section 2.7.2 for the description of Heffter arrays of dimension
5× (4m), and let A be such an array. Recall that the row and column sums of A are zero
over the integers. Additionally, let B be a shiftable (4m× 4(n− 1)) Heffter array.

Then, the block construction [AT |B + 20m] is a (4m)× (4n+ 1) Heffter array.

2.7.3.7 (4m)× (4n+ 3) Heffter Arrays

Let m ≥ 1 and n ≥ 0. See Section 2.7.1 for the description of Heffter arrays of dimension
3× (4m), and let A be such an array. Recall that the row and column sums of A are zero
over the integers. Additionally, let B be a shiftable (4m)× (4n) Heffter array.

Then, the block construction [AT |B + 12m] is a (4m)× (4n+ 3) Heffter array.

2.8 Future Work

The ultimate goal for these constructions was to find simple Heffter arrays for all dimensions
m,n > 2. Mattern succeeded for the 3×n arrays, and she was able to find simple orderings
of three out of five rows for the 5 × n arrays. The last two rows are made up of pairs
at distance 1, which was convenient for the purpose of finding our 5 × n constructions.
However, it is possible to construct 5× n Heffter arrays with a rather different approach.

We propose such an approach here. Consider the Skolem sequences of order 4 and 8,
41134232 and 5673853627248114. We use the Skolem sequence of order 4 to generate a
Heffter system,

1 2 3 4
2 6 4 1
3 8 7 5

and the Skolem sequence of order 8 to produce a partition of [5, 20] into differences [1, 8],

1 2 3 4 5 6 7 8
18 13 8 16 5 6 7 9
19 15 11 20 10 12 14 17.

Then, we expand the last two rows of the Heffter triple system using our Skolem partition,

1 2 3 4
13 6 16 18
15 12 20 19
8 9 7 5
11 17 14 10
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and obtain a Heffter quintuple system. Since Skolem sequences exist for all m ≡ 0 (mod 4),
this approach can be used to produce Heffter quintuple systems for Z20n+1 for all n, giving
hope that we can find alternate constructions for 5×4n Heffter arrays. The author suspects
that Mattern’s approach to finding simple orderings of these constructions will be more
fruitful.

65



Chapter 3

A Step Beyond DeVos When One
Set is Two Cosets

This chapter is joint work with Matt DeVos, who provided the general outline of the proof,
portions of the classification of 4-regular graphs with girth 4, as well as significant editorial
contributions. The contents of this chapter are being divided into three papers regarding the
classification of 4-regular edge-transitive graphs with girth 4, the 6-regular edge-transitive
graphs with girth 3, and Theorem 3.3.4 respectively.

3.1 History

In this chapter, we will be considering arbitrary, possibly nonabelian groups. Therefore,
we will use multiplicative notation througout. For every positive integer n, we let Zn

denote a cyclic group of order n. For subsets A,B of a group G, we define the product set
AB = {ab : a ∈ A, b ∈ B}.

In 1813, Cauchy [13] proved the following theorem.

Theorem 3.1.1 (Cauchy-Davenport). If p is a prime and A and B are nonempty subsets
of the cyclic group Zp, then either AB = Zp or |AB| ≥ |A|+ |B| − 1.

This result was rediscovered by Davenport [17] in 1935. Davenport [16] noted that his
result was not original in 1947, and the above is now known as the Cauchy-Davenport
theorem. Davenport’s rediscovery garnered significant interest in related problems.

In 1953, Kneser [32] proved a generalization to the Cauchy-Davenport theorem for
abelian groups. Here, Stab(X) = StabG(X) = {g ∈ G : gX = X} is the stabilizer of X.

Theorem 3.1.2 (Kneser). If A and B are nonempty finite subsets of an abelian group G,
either AB = G or |AB| ≥ |A|+ |B| − |Stab(AB)|.

Kneser’s theorem implies the Cauchy-Davenport theorem since StabG(X) is necessarily
a subgroup of G and the only subgroups of Zp are the trivial group and Zp itself.
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In 2005, Károlyi [28] noted a corollary of Kneser’s theorem, that if p(G) denotes the
smallest prime divisor of |G| then |AB| ≥ min {p(G), |A|+ |B| − 1}. He proved that the
same statement holds true in the setting of finite (possibly nonabelian) groups. In 2006,
Wheeler [46] independently proved Károlyi’s theorem, having been given the problem by
Károlyi prior to 2005.

Theorem 3.1.3 (Károlyi-Wheeler). If A and B are nonempty subsets of an finite group G
and p(G) > |A|+ |B| − 1, then |AB| ≥ |A|+ |B| − 1.

Both describe the theorem as the Cauchy-Davenport theorem for finite groups. This
seems to be a bit of a misnomer, as it is easy to construct nontrivial examples where
Károlyi’s theorem fails to capture Kneser’s.

In 2013, DeVos [18] proved what could properly be called the Cauchy-Davenport theorem
for arbitrary groups.

Theorem 3.1.4 (DeVos). Let A and B be nonempty finite subsets of a group G. Then,
there exists a subgroup H ≤ G so that |AB| ≥ |A|+ |B| − |H| and for every y ∈ AB, there
exists x ∈ G so that y(x−1Hx) ⊆ AB.

One can show that in the abelian case, there is a unique maximal subgroup H that
satisfies the above, and that H = Stab(AB), so Kneser’s theorem is a corollary of DeVos’s.

Parallel to this history is a study of inverse problems. In 1956, Vosper [44] proved that

Theorem 3.1.5 (Vosper). If p is prime and A,B ⊆ Zp are nonempty, then |AB| < |A|+|B|
if and only if

1. |A|+ |B| > p,

2. |A| = 1 or |B| = 1,

3. B = c(G \A−1) for some c ∈ G , or

4. A and B are geometric progressions with the same ratio.

In 1960, Kemperman found a similar structural theorem for the case of abelian groups,
classifying those sets A,B for which |AB| < |A|+ |B|. DeVos broke tradition by proving his
structural theorem, and then unwinding that structure to find the appropriate bounding
theorem.

We will not describe DeVos’s structural theorem, as it takes eleven pages for him to do
so, culminating in the rather terse Theorem 4.7 (all terms deliberately left undefined; see
[18] for details).

Theorem 3.1.6 (DeVos). A nontrivial trio is maximal and critical if and only if it is a
song.
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In 2009, Grynkiewicz [25] classifies those subsets A,B of an abelian group for which
|AB| = |A| + |B| in a paper entitled “A Step Beyond Kemperman’s Structure Theorem”,
and we make progress towards taking that step beyond DeVos’s structural theorem. The
ultimate goal here would be to classify those subsets A,B of an arbitary group for which
|AB| = |A|+ |B|, but this chapter addresses a more modest problem where B = xH ∪ yH
for some subgroup H < G. This special case is of particular interest since it exhibits all of
the exceptional structures in DeVos’s Theorem.

3.2 Introduction

The vast majority of this chapter is graph theoretic in nature. In the next section, we’ll
introduce the notation we’ll be using to describe graphs. Following that, we’ll provide the
motivation for studying graphs.

3.2.1 Notation for Graphs

Notation abounds in this chapter. Most of the notation is fairly standard and the reader
may refer to [20] for any undefined terms.

We define a graph X = (V,E) to have a finite number of vertices V and edges E, a set
of two-element subsets of V . That is, graphs are simple. In several proofs, we will describe
graphs by describing graphs derived from those original graphs – we can’t guarantee these
derived graphs to be simple, in fact, a few will have multiple edges. We call graphs that
have multiple edges multigraphs. We never allow loops.

We will write edges like uv ∈ E, with u ∈ V and v ∈ V , whenever possible. Otherwise,
we will use the notation {u, v}. In a directed graph, we will use the notation (u, v) to denote
the arc from u to v. A vertex v ∈ V is incident to an edge e ∈ E if v ∈ e, and two vertices
u and v are adjacent if uv ∈ E and we sometimes write u ∼ v to denote adjacency. If v is
incident to exactly d edges, then we say that v has degree deg(v) = d. If deg(u) = deg(v) = d

for all u, v ∈ V , then we say that X is d-regular. We define N(v) to be the set of neighbors
of v, N(v) = {u ∈ V : u ∼ v}. For directed graphs, we define the in-degree and out-degree
to be d+(v) = | {(u, v) ∈ E} | and d−(v) = | {(v, u) ∈ E} | respectively.

For a subset A ⊂ V , we will write X[A] to denote the induced subgraph with vertex
set A and edges {uv ∈ E : u ∈ A and v ∈ A}. When it is ambiguous which graph a vertex
belongs to, we will write degX(v) to denote the degree of v in the graph X. Most frequently,
we will be interested in the degree of v in the induced subgraph X[A], and we write degA(v)
as a shorthand for degX[A](v).

Given two graphs X = (V,E) and Y = (W,F ), we say that X and Y are isomorphic or
write X ∼= Y if there exists an isomorphism between X and Y – a bijection φ : V → W

such that φ(E) = {{φ(u), φ(v)} : uv ∈ E} = F . Given a graph X, we write Aut(X) to be
the automorphism group of X: the set of isomorphisms between X and itself.
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The orbit of G ≤ Aut(X) on a subgraph z of X is G(z) = {φ(z) : φ ∈ G}. If the family
of similar subgraphs is Z and Z = G(z), then we say that Aut(X) acts transitively on Z,
or that X is Z-transitive. For example, if uv ∈ E and G(uv) = E, then we say that X is
edge transitive.

Our main theorem concerns edge cuts. Given a graph X = (V,E) and a subset A ⊂ V

of its edges, we define the edge boundary of A to be the edges between A and V \A which
we denote ∂(A) = {uv ∈ E : u ∈ A, v /∈ A}. The set ∂(A) is an edge cut, in that there are
no edges between A and V \ A in the graph (V,E \ ∂(A)). We denote the size of an edge
cut by c(A) = |∂(A)|. Similar to the boundary, we sometimes need to refer to the edges
interior to A, denoted EA = E(X[A]). If X is a d-regular graph and |c(A)| ≤ 2d we will
call ∂(A) a small edge cut.

We call a subgraph C of X a cycle if it consists of vertices (v1, · · · , v`) and edges vivi+1

for all 1 ≤ i < ` and v`vi. We sometimes specify cycles by their vertices, or by their edges,
and ` is the length of the cycle. The girth g of a graph X is the minimum length attained
by a cycle in X, and g = ∞ in the case that X is a forest. In a graph of girth g, we say
that a cycle (v1, · · · , vg) of length g is a girth cycle. If a graph is edge transitive, every edge
belongs to the same number of girth cycles. We say that X has frequency k if every edge
belongs to exactly k girth cycles.

If a graph is both edge transitive and vertex transitive, then we say that it is double
transitive1 – the majority of this chapter is devoted to double transitive graphs. Particularly,
we classify double transitive graphs whose degree and girth are specified. To that end, we
say that X is a (d, g)-graph if it is d-regular, double transitive and has girth g. Frequency
is a useful parameter to refine the classification, and we say that X is a (d, g, k)-graph if it
is a (d, g)-graph with frequency k.

3.2.1.1 Definitions of Graphs

In this chapter, we find a large number of exceptional graphs, and a few families of graphs.
In the interest of collecting all graph notation, we list them all here.

We define three toroidal families: 1-skeletons of tilings of the torus by triangles, squares,
and hexagons. We will denote these families T3, T4, and T6 and refer to them as triangula-
tions, quadrangulations and hexangulations of the torus respectively.

We also define families of graphs constructed by gluing copies of a fixed graph together
at vertices. Let V be a graph andm ∈ N. The notation [V]m denotes the family of connected
graphs X = (V,E) for which the set of all induced subgraphs of X which are isomorphic to
V covers every v ∈ V exactly m times, and covers every e ∈ E exactly once. Three graphs ṽ

1Sadly, the term half-transitive is used in the literature to refer to those double transitive graphs which
are not arc-transitive. Some authors use symmetric to describe the graphs we call double transitive, whereas
others insist that symmetric is arc-transitive.
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appear in this paper: K3,K4 and C4 which we denote by 4, � and � respectively. Brackets
will be omitted from the notation for those families. For example, 43 := [K3]3.

Additionally, we use a fair bit of notation to compactly describe the exceptional graphs.

1. For n ∈ N, the cycle graph Cn has V = [1, n] and E = {{v, v + 1 mod n} : v ∈ V }.

2. For n ∈ N, the complete graph Kn has V = [1, n] and E = {ij : i, j ∈ [1, n], i 6= j}.
We’ll see Kn appear for n ∈ [2, 7].

3. For n1, · · · , nk ∈ N the complete multipartite graph Kn1,··· ,nk
has ∑k

i=1 ni vertices
V partitioned into sets (V1, · · · , Vk) of size |Vi| = ni for all 1 ≤ i ≤ k, and edges
{ab : a ∈ Vi, b ∈ Vj} for all i 6= j. We need K2,2,K3,3,K2,3 and some others we’ll use
special notation for.

4. Most of the complete multipartite graphs we see have n1 = · · · = nk. When this is
the case, we use the notation Kn(k) := Kn,··· ,n. The graphs of this form that we see
are K3(3), K2(3) (also known as the octahedron) and K2(4).

5. For n ∈ N and X a graph, the n-fold clone graph is X(n) with vertices [1, n]× V and
edges {{(i, u), (j, v)} : uv ∈ E(X)}. In particular, we use this for the family C(2)

m for
m ≥ 4. An unfortunate consequence of this notation is that (Kk)(m) ∼= Km,··· ,m =
Km(k), which is why we prefer the Km(k) form.

6. For n ∈ N and X a graph, we use the notation nX to denote n disjoint copies of X,
the graph with vertices {vi : v ∈ V (X), i ∈ [1, n]} and edges {uivi : i ∈ [1, n], uv ∈ E}.

7. For n ∈ N, the n-dimensional cube Qn has vertices V = {0, 1}n and edges between
vertices which differ in one coordinate. We only need Q3 and Q4.

8. For n ∈ N, we we define a graph Mn to have vertices V = {1, 2} × [1, n] and edges
{(1, i), (2, j) : i, j ∈ [1, n], i 6= j}. We only need M5, and incidentally, Q3 ∼= M4.

9. For X a graph, we denote the line graph of X by L(X), which has vertex set E(X) and
edges {uv : u ∈ E, v ∈ E, |u ∩ v| = 1} . We’ll need the line graphs of K4,K5,K3(2),
and Q3 in addition to two infinite families which we don’t consider exceptional.

10. For n,m ∈ N, we denote the generalized Petersen graph by GP(n,m) which has ver-
tices {xi, yi : i ∈ Zn} and edges {xiyi, xixi+1, yiyi+m : i ∈ Zn} . We will need GP(5, 2)
also known as Petersen’s graph or Pet, GP(8, 3) also known as the Möbius-Kantor
graph, and GP(10, 3) also known as the Desargues graph.

11. For a family S of sets whose union is P = ⋃
s∈S s, the incidence structure of S is a graph

I(S) with vertex set P ∪S and edges {ps : p ∈ s ∈ S}. We will specifically refer to the
Heawood graph Hea = I ({123, 345, 156, 147, 257, 367, 246}) , where abc denotes the set
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{a, b, c}, and the Pappus graph Pap = I ({123, 456, 789, 147, 258, 369, 158, 348, 267}) .
Additionally, we classify the graphs 43 by looking at I(T ) where T is the set of
triangles in a graph X ∈ 43. In Section 3.2.2, we discuss some more general incidence
structures, and in particular consider I(E) where E is the set of edges of a graph.

12. Similarly, given S, we define the co-incidence structure of S to be Ic(S) with vertex
set P ∪ S and edges {ps : p ∈ P \ s, s ∈ S}. Specifically, we need the co-Heawood
graph, Heac = Ic ({123, 345, 156, 147, 257, 367, 246}) . This notation is motivated by
the fact that Heac is the bipartite complement of Hea.

13. Finally, two platonic solids show up outside of the families: the dodecahedron Dod and
icosahedron Ico. The others belong to previously-defined families. The tetrahedron is
K4, the cube is Q3 and the octahedron is K2(3).

In total, the collection of exceptional graphs is K4, K5, K6, K7, K3,3, K4,4, K2(3), K3(3),
K2(4), L(K5), L(K3,3), L(Q3), Q3, Q4, M5, Pet, GP(8, 3), GP(10, 3), Hea, Pap, Heac, Dod
and Ico. In Table C.1, the reader can find alternate characterizations, nice drawings and
planar / toroidal embeddings of these graphs (with the sole exception of Heac, which does
not embed on the torus).

3.2.2 Reduction to Classifying Graphs

In this section, we’ll describe the reduction from classifying pairs A,B of nonempty subsets
of a group G for which |AB| ≤ |A|+|B|. We will define a graph called a multiplication graph,
which will encode the group multiplication. Taking quotients of these multiplication graphs,
we will obtain incidence structures of the edges of double transitive graphs. We define the
multiplication graph S = S(G,B) with vertex set {1, 2} × G and edges {(1, g), (2, gb)} for
every b ∈ B and g ∈ G. Note that left-multiplication gives us a rich set of symmetries on S:
if h ∈ G, the map (1, g) 7→ (1, hg) and (2, g) 7→ (2, hg) is an automorphism of G, so Aut(S)
acts transitively on each {1}×G and {2}×G. Furthermore, S encodes multiplication by B
in the sense that if A ⊆ G then the set of neighbors of {1}×A in S is precisely {2}× (AB).
Note the similarity to Cayley graphs: if we identify (1, g) with (2, g) and orient the edges
(g, bg), then we obtain the Cayley digraph Cay(G,B).

Now assume that B = Hx ∪Hy for some H ≤ G, x ∈ G, y ∈ G and y /∈ xH. Consider
the neighbors of (1, g) and (1, gh) for g ∈ G and h ∈ H. Since gB = ghB the vertices (1, g)
and (1, gh) have the same neighbors (are clones). Identifying these clones gives a quotient
graph. More precisely, we consider the graph obtained by replacing {1} × G with left H
cosets, G/H = {gH : g ∈ G}. Let Q = Q(G,B) be the graph with vertex set G ∪ G/H
and edges {{gH, gx} : g ∈ G} and {{gH, gy} : g ∈ G}. Again, Aut(Q) acts transitively on
both G and G/H via left-multiplication. Next, we’ll show that Q is the incidence structure
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associated with edges of a graph (possibly a multigraph) which we will call X (G,B) where
G and G/H respectively correspond to the edges and vertices of X .

By construction, every g ∈ G has degQ(g) = 2. Now, we define the graph X (G,B) to
have vertex set G/H and edges

{{
gx−1H, gy−1H

}
: g ∈ G

}
. Then, X is the graph with

vertices corresponding to cosets in G/H and edges corresponding to group elements g ∈ G,
and a vertex v ∈ X is incident to an edge uv ∈ X whenever their correspondents in Q are
adjacent. Now, we see that G acts transitively on both the vertices and edges of X , and by
double-counting edges, we see that X is 2|H|-regular. We will address the case that X is
the incidence graph for the edges of a multigraph in the next paragraph.

Now that we’ve got the graph X , we’ll rephrase the problem of finding small product
sets involving B in terms of finding small edge cuts in X . We note that X is a d-regular
graph for d = |B| = 2|H|. If A0 is a nonempty subset of G and |A0B| ≤ |A0|+ |B|, then we
note that B = HB and so A0B = A0HB, so |A0HB| ≤ |A0H|+ |B|. We can realize A0H

as a union of H cosets, A = {a1H, · · · , amH}, hence a set of vertices in X , and A0B as the
set of edges incident to A. In terms of the graph, we count the edges incident to A in two
ways to obtain

|A0H| =
d

2 |A| =
c(A)

2 + |EA| and |A0B| = c(A) + |EA|.

Therefore,
1
2c(A) = |A0B| − |A0H| ≤ |B| = d.

In the case that X is a multigraph, every edge has the same multiplicity m by edge-
transitivity. If X is the underlying simple graph (that is, the graph where the sets of
m parallel edges in X have been replaced with single edges) then X is a d′ = d/m-regular
double transitive graph, and moreover, if A ⊂ V (X ) and cX ≤ 2d, then cX(A) ≤ 2d′. In
the next section, we will present a classification theorem for the d-regular double transitive
graphs with small edge cuts.

3.3 Classification Theorem

3.3.1 Tindell’s Theorem

Before we get started classifying edge cuts of size ≤ 2d, we’ll classify those of size ≤ d. We
do this right up front because it comes in handy rather soon, and because it gives us an
opportunity to give a preview of the strategy that the proof of Theorem 3.3.4 will roughly
follow.

The question of finding small edge cuts is generally an interesting problem to graph
theorists, and insisting on a large amount of symmetry provides a certain amount of control
over a graph. One of the more fundamental results in this area is due to Mader [34].
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Theorem 3.3.1 (Mader). Let (V,E) be a connected d-regular vertex-transitive graph. If
∅ ( A ( V , then c(A) ≥ d.

In an unpublished manuscript, Tindell provides a classification theorem for the tight
case of Mader’s theorem. Lovasz and Plummer [33] independently prove a version of this
theorem.

Theorem 3.3.2 (Tindell). Let X = (V,E) be a d-regular connected vertex-transitive graph
with d > 2. If A ⊂ V satisfies |A| ≤ |V \A| and c(A) = d, then either |A| = 1 or X[A] ∼= Kd.

In the case of double transitive graphs, the theorem simplifies significantly. We state
a natural corollary of Tindell’s theorem, but we will prove it independently. We do this
both to avoid sending the user hunting for an obscure manuscript, and because it showcases
the primary tools of the proof of the main theorem. In particular, we will rely on the
submodular inequality c(A∩B) + c(A∪B) ≤ c(A) + c(B) which holds for any two subsets
A,B ⊆ V (X) in a process called uncrossing, which we develop more fully in Lemma 3.6.4.

Lemma 3.3.3. Let X = (V,E) be a d-regular connected double transitive graph with d ≥ 3.
If A ⊂ V with |A| ≤ |V \A| and c(A) = d, then |A| = 1.

Proof. Let A be a minimum size counterexample to this lemma. For a vertex v ∈ A, define
di(v) = |N(v) ∩ A| and de(v) = |N(v) ∩ A| to be the number of internal or external edges
incident to v respectively.

In the case that di(u) = di(v) = di for all u, v ∈ A, we write d as a sum d = di + de and
a product d = c(A) = |A|de. For a vertex v ∈ A, we have di neighbors of v contained in A,
so |A| ≥ di + 1, so di = (|A| − 1)de ≥ dide. If de = 0, we have a connected component of
X, a contradiction. If di = 0, then |A| = 1. Otherwise, de = 1, di = d − 1 and |A| = d, so
X[A] ∼= Kd.

In the case that X[A] ∼= Kd, we note that an edge ab ∈ ∂(A) incident to a ∈ A is
contained in a copy of Kd by edge-transitivity. Thus, b has at least d − 2 neighbors in
common with a, which must be contained in A, hence |∂(A ∪ {b})| ≤ 2. Since d ≥ 3,
Mader’s theorem implies that c(A∪{b}) = 0, so A∪{b} is a connected component of (hence
all of) X, contradicting |A| ≤ |V \A|.

Since A is a minimum size counterexample, so |A| > 1 and by the above, there are
two vertices u, v with di(u) > di(v). Were there some x ∈ A with di(x) < d/2 < de(x) =
d− di(x), we would have c(A \ {x}) = c(A)− de(x) + di(x) < c(A) = d, a contradiction to
Mader’s theorem. Hence, di(x) ≥ d/2 for all x ∈ A. In particular, di(u) > di(v) ≥ d/2.

Now, we consider the case when there are two vertices u, v ∈ A with different internal
degrees. Let φ ∈ Aut(X) such that φ(u) = v. Note that φ(A) 6= A since di(u) 6= di(v).
Furthermore, since di(u) > d/2 and di(v) ≥ d/2, there must exist x ∈ A such that ux ∈ E
and φ(x) ∈ A. Therefore, {u, x} ⊆ A∩φ(A) ⊂ A so we count cut edges to find c(A∩φ(A))+
c(A∪φ(A)) ≤ c(A) + c(φ(A)) = 2d so by Mader’s theorem, c(A∩φ(A)) = c(A∪φ(A)) = d.
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However, |A ∩ φ(A)| ≥ 2 is a smaller counterexample, and this contradiction completes the
proof.

3.3.2 The Main Theorem

In this section, we present the classification theorem for double transitive graphs with small
edge cuts and consider its ramifications in terms of classifying A,B ⊂ G with |AB| ≤
|A|+ |B| when B is the union of two H-cosets. Our theorem is presented in a very compact
manner, and we will prove it in several stages. In particular, Lemmas 3.6.1, 3.6.2 and 3.6.3
directly refer to a large number of cases covered by the theorem, as does the final proof.
For convenience, Appendix C contains the following theorem so that the reader can tear it
out for easy reference when considering these cases.

Theorem 3.3.4. Let X = (V,E) be a connected d-regular double transitive graph and
A ⊂ V . If c(A) ≤ 2d and |A| ≤ |V |/2 then X[A] is isomorphic to one of the following:

d c(A) X[A] X d c(A) X[A] X

any 2d any 4 2d L(Q3)
any 2d− 2 any 4 2d L(Q3)
any d any 4 2d L(Q3)
6 2d T3,43,�2 4 2d− 2 42,K2(3)

6 2d �2,K2(4) 3 2d any
5 2d Ico 3 2d any
5 2d Ico 3 2d T6

5 2d− 1 Ico, K6 3 2d Dod
4 2d any 3 2d Dod
4 2d Q4 3 2d Dod
4 2d T4,�2,Heac 3 2d GP(10, 3)
4 2d− 2 M5 3 2d GP(8, 3)
4 2d C

(2)
m 3 2d− 1 any

4 2d C
(2)
m 3 2d− 1 Pet,Dod

4 2d C
(2)
m 3 2d− 2 Q3

4 2d 42 2 2d any
4 2d 42 2 d any

Note that there are three large families of cuts in C(2)
m . Some of the smaller members

of those families, notably and , appear elsewhere on the table and we do not list
C

(2)
m there. Also, when an exceptional graph is known to belong to a particular family, it

is not shown alongside that family. For example, K2(4) contains but is not listed since
K2(4) ∈ T3.
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Our main theorem provides considerable information about sets A,B with B = Hx∪Hy
for which |AB| ≤ |A| + |B|. Although we will not explore all of those consequences here,
we give the following corollary to give a taste.

Corollary 3.3.5. Let A and B be nonempty subsets of a finite group G, and let H < G.
Then, if B = HB, B = 2|H|, A = AH, |A| ≤ |G|/2 and |AB| ≤ |A|+ |B| then one of the
following holds:

• |A| ≤ 6|H|,

• G has a proper normal subgroup K such that |G/K| ≤ 384

• G has a proper normal subgroup K such that G/K is cyclic or dihedral.

Proof. Let X be the simple graph underlying X (G,B) as described in Section 3.2.2, which
is double transitive by construction, and consider AH , the set of left H-cosets contained in
A, to be vertices in X. The action of G on X induces a group homomorphism G→ Aut(X),
and we let K / G denote the kernel of this homomorphism. Then G/K is isomorphic to a
subgroup H ≤ Aut(X) which acts transitively on the vertices and edges of X.

Summarizing Theorem 3.3.4, we find that

• |AH | ≤ 6,

• X is one of L(Q3), Q4, Dod, GP(8, 3) or GP(10, 3)

• X ∼= Cm or C(2)
m , m ≥ 6.

The first case captures almost all of the table, leaving us with those sets A with |A| > 6.
The remaining instances appear in a small number of exceptional graphs (we refer to this
notion as stability, which most of this chapter is devoted to), unless X ∼= Cm or C(2)

m . We
used Sage to compute the automorphism groups of these few exceptional graphs, and GAP
to identify the structure of those groups for the interested reader.

X Aut(X) |Aut(X)|
Dod Z2 ×A5 120
L(Q3) Z2 × S4 48
Q4 ((((Z2 ×D4) o Z2) o Z3) o Z2) o Z2 384
GP(8, 3) GL(2, 3) o Z2 96
GP(10, 3) Z2 × S5 240

For m ≥ 6, the automorphism group of Cm is Dm, so G/K must be cyclic or dihedral. If
X ∼= C

(2)
m then identifying clones gives an action of G on Cm and we again conclude that

G/K is cyclic or dihedral.
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We note that appears in the line graph of every double-transitive cubic graph, so
one cannot improve Corollary 3.3.5 beyond |AH | ≤ 5. To make that improvement, the
only exceptional cuts that we would pick up are in Dod and Ico, resulting in no change.
However, a 6-cycle gives a small cut forX ∈ T6, and the resulting corollary would necessitate
a more careful look at the symmetry groups of hexangulations of the torus. We opted for
succinctness, and direct the reader to Miller [35] to learn about those symmetries.

In the next section, we’ll look at the properties of graphs which are double transitive.
Primarily, we’ll be making observations that will make the process of classifying such graphs
easier.

3.4 Observations on Vertex- and Edge-Transitive Graphs

In this section, we’ll examine some basic properties of double transitive graphs. The first
lets us pass between frequency and what we might call vertex frequency. Since we study
a few frequency-like parameters only once or twice apiece, we don’t make them explicit to
avoid bombarding the reader with definitions.

Observation 3.4.1. Let X be a (d, g, k)-graph. Then every vertex belongs to dk
2 girth

cycles.

Proof. Let Cv denote the collection of girth cycles incident to v ∈ V . For each c ∈ Cv there
are two edges incident to v. On the other hand, for each u ∈ N(v) there are k cycles in Cv

containing the edge uv. Counting (edge, girth cycle) pairs (e, c) where v ∈ e ∈ E(c), we
find 2|Cv| = dk.

Next, we look at how nearly edge-transitivity comes to implying arc-transitivity.

Observation 3.4.2. If a graph X = (V,E) is edge transitive, then either X is vertex-
transitive or there is a bipartition V = A∪B for which Aut(X) acts transitively on both A
and B.

If a graph X = (V,E) is double transitive and d-regular, then either X is arc-transitive,
or there is an arc-transitive orientation Y of X. In the case that X is not arc-transitive,
then d is even and d+

Y (v) = d−Y (v) = d/2 for all v ∈ V .

Proof. Let x ∼ y, and consider the digraph Y = (V,Aut(X) · (x, y)) where E′ = Aut(X) ·
(x, y) is the orbit of the arc (x, y). Since X is edge-transitive, every edge in E is represented
by at least one arc. Furthermore, Aut(X) acts transitively on the tails x of arcs (x, y) and
likewise with heads. If X is not vertex-transitive, it follows that V (X) = (Aut(X) · x) ∪
(Aut(X) · y) and these two orbits are disjoint.

In the case that X is vertex-transitive, Y is also vertex transitive. Particularly, d+
Y (u) =

d+
Y (v) for all u, v ∈ V . Summing vertex-arc incidences, we find that d+

Y (u) = d−Y (u) for all
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u ∈ V . If X is not arc-transitive, then d+
Y (v) + d−Y (v) = d for all v ∈ V , so d+

Y (v) = d−Y (v) =
d/2 and d must be even.

In the proof of Observation 3.4.2, we constructed a digraph whose edges were the orbit
of an arc under Aut(X). In future instances, we will denote this graph ~X, an arc-transitive
orientation of X.

We can use Observations 3.4.1 and 3.4.2 to learn even a little more about the induced
graph X[N(v)] in the case where the girth is 3.

Lemma 3.4.3. Let X be a (d, 3, k)-graph and v ∈ V (X). Then, the induced graph X[N(v)]
is k-regular and has d vertices. If d is odd, then X[N(v)] is vertex-transitive, and if d is
even, X[N(v)] is either vertex transitive or has an automorphism group which partitions
N(v) into two orbits of equal size.

Proof. Note that the triangles containing a vertex v are in bijection with edges in X[N(v)].
Moreover, if u ∈ N(v) then every triangle containing the edge uv has its third vertex in
N(u) ∩ N(v), so |N(u) ∩ N(v)| = k. Our claim about the symmetry of X[N(v)] follows
from Observation 3.4.2.

In the next section, we’ll establish some stability theorems. The next observation arises
in two of them, so let’s do it once in generality and be done.

Observation 3.4.4 (Classification of Double Transitive Line Graphs). Let d > 1. A graph
Y ∈ [Kd]2 if and only if Y ∼= L(X) where X is d-regular, except in the case that d = 3 and
X has girth 3. Additionally,

1. if the girth of X is at least 4, then the induced neighborhood of every vertex v ∈ Y is
precisely two disjoint copies of Kd−1, and

2. if Y is double transitive, then X is also double transitive.

Proof. Let X be a d-regular graph. Then, the line graph Y = L(X) has vertex set E(X)
and edges {uv, uw}. Observe that the set Ev = {uv : u ∈ N(v)} of edges incident to a
vertex v ∈ V (X) form a clique Y [Ev] ∼= Kd. Any other maximal clique is a set of mutually
incident edges: a triangle, since X is a simple graph. Therefore, Y [N(uv)] ∼= 2Kd−1 if and
only if X has girth at least four. Likewise, if d = 3 then the edges of a triangle in X belong
to at least two triangles in L(X) and so L(X) /∈ 42.

Now, let Y ∈ [Kd]2. We construct a graph X with vertex set {v ⊂ V (Y ) : Y [v] ∼= Kd}
and edges u ∼ v if and only if |u ∩ v| = 1. We construct an isomorphism φ : L(X) → Y

mapping uv 7→ y, the unique element in u∩v. By definition of Y , every vertex is contained in
exactly two d-cliques, so the claimed isomorphism is bijective and X is d-regular. Finally,
we note there is a unique induced d-clique in Y containing the vertices y and z if and
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only if yz ∈ E(Y ); translating this back to X, we see that φ(uv) ∼ φ(wx) if and only if
| {u, v} ∩ {w, x} | = 1, so φ is an isomorphism.

Finally, assume that Y is double transitive and Y = L(X). It’s clear that X is edge-
transitive since Y is vertex-transitive. Moreover, if yz ∈ E(Y ), there is a unique induced
d-clique in Y containing that edge, which corresponds to a vertex in X. Since Y is edge-
transitive, Aut(Y ) acts transitively on these d-cliques, so X is vertex-transitive.

3.5 Some Stability Theorems

This section presents some theorems which classify graphs based on three parameters: de-
gree, girth and frequency. We will describe these as stability theorems. They all have the
form “Assume a d-regular double-transitive graph X contains a certain structure. Then,
X must be one of a small number of exceptional graphs, or belong to a known family of
graphs.” For the most part, we’ll be looking at girth cycles. Depending on the frequency
and their length, girth cycles gives us some amount of control over the neighborhood of the
graph. Together with the vertex- and edge-transitivity, we are able to translate the local
information we gain about the neighborhood into a global characterization of the graph.

When the frequency is too small, the global characterization may be fairly weak, for
example, if X is (4, 3, 1)-graph, then X is the line graph of an arc-transitive cubic graph
with girth at least 4. This may sound more profound than it truly is; we’ve just restated
the characterization of line graphs in terms of frequency. On the other hand, every arc-
transitive cubic graph is either K4 or has a frequency 1 double transitive line graph, so
there isn’t anything more to say about this family.

In total, these classification theorems can be summarized as follows.

Theorem 3.5.1. Let X be a finite d-regular double-transitive graph of girth g such that
dg ≤ 2(d+ g). Then, either

• X ∼= K6,GP(10, 3) or Heac,

• X is the 1-skeleton of a regular tiling of the sphere or torus, or

• X ∈ �2,42,�2 or 43.

3.5.1 Degree 3

The first stability theorem is a classification of cubic graphs of girth g ≤ 6. This classification
was done by Miller [35] in 1971, but we prefer to cite a 2006 result of Feng and Nedela [24]
because of the form of their classification: where they classify the cubic graphs of g ≤ 7
which we don’t need, they do approach the problem similarly, by looking at the frequency
of the cubic graphs in question (they do not define a term to communicate the frequency,
and merely say “the number of girth cycles passing through an edge”).
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Theorem 3.5.2 (Feng and Nedela, 2006). The table below lists the (3, g)-graphs with g ≤ 6
along with their frequency k.

g k Graphs
3 2 K4

4 2 Q3

4 K3,3

5 2 Dod
4 Pet

6 2 T6 \ {Pap,Hea,GP(8, 3)}
4 Pap,GP(10, 3)
6 GP(8, 3)
8 Hea

3.5.2 Degree 4

This section is devoted to some stability lemmas concerning 4-regular double transitive
graphs. We start by looking at triangles, and spend a significant amount of effort on the
classification of those 4-regular graphs of girth 4. That particular result is specialization of
joint work with DeVos [10], where we classify edge-transitive 4-regular graphs (which may
be infinite) with girth 4.

Theorem 3.5.3. The table below lists the (4, 3)-graphs along with their frequency k.

k Graphs
1 42

2 K2(3)

3 K5

Proof. By Lemma 3.4.3, we know thatX[N(v)] is a k-regular graph on 4 vertices. For k = 1,
we have X[N(v)] = 2K2 and so we have X ∈ 42. For k = 2, we have X[N(v)] ∼= C4 ∼= K2,2

and by Lemma 3.3.3, there is a vertex u 6= v with N(u) = N(v) and we see that X ∼= K2(3).
Finally, we have k = 3 for which X[N(v)] ∼= K4 is already 3-regular, so we’re already done
because X[N(v) ∪ {v}] ∼= K5 is 4-regular.

Corollary 3.5.4. If X is a (4, 3)-graph with a 4-cycle, then X is one of K5, K2(3), L(K3,3)
or L(Q3).

Proof. The girth of X is 3, so by Theorem 3.5.3 and Observation 3.4.4 X is isomorphic
to one of K5, L(K4) ∼= K2(3), or the line graph of an arc-transitive cubic graph with girth
g > 3. We consider a 4-cycle in the line graph X of a cubic graphW with girth g > 3. Since
g > 3, the 4-cycle must be induced, or the neighborhood criterion of Observation 3.4.4 is
violated. Thus, we must have four edges uv, vw,wx and xu where x 6= v and w 6= u: an
induced 4-cycle in W , so W has girth 4. By Theorem 3.5.2, W is either K3,3 or Q3.
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The remainder of this subsection will be spent proving the following classification theo-
rem, along with more precise classifications of the double transitive graphs X ∈ �2.

Theorem 3.5.5. The table below lists the (4, 4)-graphs along with their frequency k.

k Graphs
1 �2

2 T4

3 Q4, Heac

5 C
(2)
m for m ≥ 5

6 M5

9 K4,4

We’ll start by examining those graphs with frequency 1 and 2, and then attack the
remainder by considering other induced substructures.

3.5.2.1 Frequency 1

This section contains a rough description of the 4-regular double transitive graphs with girth
4 and frequency 1. Simply, they can be obtained from line graphs of double transitive 4-
regular graphs by deleting the edges of a 2-regular subgraph. Clearly, not all such deletions
will be double transitive, so we will go through some pains to find such. Particularly, we
will show that they arise from 4-regular graphs Y equipped with a subgroup G ≤ Aut(Y )
which acts vertex- and edge-transitively and has the added property that for every vertex
v, the action of StabG(v) on the pairs of subsets of ∂(v) has an orbit of size 4.

This is essentially a negative result for us, as it indicates that the family of (4, 4, 1)-
graphs is not likely to have a simple explicit description as do the (4, 4, k)-graphs for k ≥ 2.
In particular, these results demonstrate that classifying all (4, 4, 1)-graphs would require
classifying all 4-regular graphs of girth at least 5 which have certain kinds of vertex stabi-
lizers.

Let Y be a 4-regular graph for which G acts transitively on the vertices and edges of
Y , and suppose that for every vertex v, the action of StabG(v) on the 2-element subsets
of ∂(v) has an orbit Ov of size four. We define �(Y,G) to be the graph with vertex set
E(Y ) and edge set ∪v∈V (Y )Ov. We will show that every graph of the form �(Y,G) with
girth at least 4 is a 4-regular edge-transitive graph of girth 4, and that this class contains
all (4, 4, 1)-graphs.

First we will investigate how these vertex stabilizers of interest may act on their incident
edges. Let H be a group acting on a four element set {a, b, c, d}, and suppose that the
action of H on pairs of subsets of {a, b, c, d} has an orbit O of size four. It follows from the
assumption that O is an orbit that the two 2-element subsets of {a, b, c, d} not contained in
O must be disjoint. So, we may assume without loss that O = {{a, b}, {b, c}, {c, d}, {a, d}}.
Let Ĥ be the subgroup of permutations of {a, b, c, d} associated with an element in H. Since
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Ĥ must fix O as a set, we find that Ĥ is a subgroup of the dihedral group generated by
(abcd) and (ac). Since H acts transitively on O, the group Ĥ must then be one of:

• The dihedral group generated by (abcd) and (ac)

• The cyclic group generated by (abcd)

• The Klein 4-group generated by (ac) and (bd).

A quick check reveals that all three of these groups have the desired properties. So, for the
graphs Y of interest to us, the subgroups G ≤ Aut(Y ) will have vertex stabilizers acting
in one of these three manners. Next we prove that the operator � yields 4-regular double
transitive graphs of girth 4.

Observation 3.5.6. Let Y be a 4-regular graph with girth at least 4 and let G act vertex-
and edge-transitively on Y . Then, �(Y,G) is a 4-regular double transitive graph with girth
4.

Proof. By assumption, for every v ∈ V (Y ) the action of StabG(v) on the 2-element subsets
of ∂Y (v) has an orbit Ov of size four. By construction, the graph X = �(Y,G) has vertex
set E(Y ) and edge set ∪v∈V (Y )Ov. It follows from the above discussion that for every
v ∈ V (Y ) the subgraph of X with vertex set ∂Y (v) and edge set Ov is a 4-cycle. It follows
immediately from this that the graph X will be 4-regular and have girth 4. To prove that
X is edge-transitive, we will show that the action of G on X (inherited from its action on
Y ) is edge-transitive. It follows from the assumption that G acts vertex transitively on Y
that G acts transitively on {Ov | v ∈ V (Y )}. Combining that property with the assumption
that each Ov is an orbit of the action of StabG(v) demonstrates that X is edge-transitive,
as desired. By construction, G acts transitively on the edges of Y and hence the vertices of
X.

Theorem 3.5.7. If X is a (4, 4, 1)-graph, then there exists a 4-regular double transitive
graph Y and a suitable group G ≤ Aut(Y ) so that X ∼= �(Y,G).

Proof. Let S be the set of all 4-cycles in X and define a graph Y with vertex set S by
the rule that distinct vertices s, s′ ∈ S are adjacent in Y if these 4-cycles share a vertex.
Note that every vertex v of X is contained in exactly two 4-cycles s and s′ so there is a
natural correspondence between vertices of X and edges of Y (ex. here v corresponds to
{s, s′}) and hence Y is edge-transitive by the vertex-transitivity of X. Furthermore, the
group G = Aut(X) has a natural action on S by which G acts on Y .

It follows immediately from the edge-transitivity of X (and the fact that every edge of X
is in a unique 4-cycle) that G acts vertex-transitively on Y . Now consider a vertex s of Y and
let v1, v2, v3, v4 be the cyclically ordered vertices ofX corresponding to s as a 4-cycle inX. It
follows from the edge-transitivity of X that the action of the stabilizer of s on {v1, v2, v3, v4}
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must be transitive on the pairs {vi, vi+1} (working modulo 4), but cannot map any such
pair to either {v1, v3} or {v2, v4}. In short, the set {{v1, v2}, {v2, v3}, {v3, v4}, {v1, v4}} is
an orbit of the action of the stabilizer of s on the pairs of {v1, v2, v3, v4}. Now we find
X ∼= �(Y,G) as desired.

3.5.2.2 Frequency 2

In this section, we briefly discuss (4, 4, 2)-graphs. In fact, all graphs of this type arise as
quadrangulations of the torus, which we will prove momentarily. In [10], we allow infinite
graphs, namely quadrangulations of the plane and cylinder. There, we show that all (4, 4, 2)-
graphs arise as quotients of the square tiling of the plane, whose vertices correspond to points
in the lattice Z2, and classify the subgroups Λ < Z2 for which Z2/Λ yields a (4, 4, 2)-graph.

Theorem 3.5.8. Every (4, 4, 2)-graph is a quadrangulation of the torus.

Proof. Let X be a (4, 4, 2) graph. First suppose that there are two adjacent edges which are
contained in at least two common 4-cycles. In this case X must have a subgraph isomorphic
to K3,2. Consider a vertex v of degree 3 in this subgraph and let e be the edge incident with
v not in this K3,2. Now e must be contained in two 4-cycles, but this gives us at least five
4-cycles through v, which is contradictory. It follows from this that adding a face to each
4-cycle of X results in a graph embedded in a surface. Since X is 4-regular and every face
is a 4-cycle, the Euler characteristic is zero. There are two closed surfaces of characteristic
zero: the Klein bottle and the torus. Babai [6] classified the vertex transitive maps on the
Klein bottle, and a cursory examination of his paper reveals that such a quadrangulation
cannot occur. So, the surface must not be a Klein bottle and therefore X ∈ T4.

3.5.2.3 Larger Frequency

In this section, establish some stability lemmas concerning the existence of K3,2 and K4,2

subgraphs. These will ease the classification of (4, 4, k)-graphs with k ≥ 3.

Lemma 3.5.9. Let X be a (4, 4)-graph with an induced subgraph isomorphic to K3,2. If no
induced subgraph of X is isomorphic to K4,2, then X ∼= M5.

Proof. Choose v ∈ V (X) and let {a, b, c, d} be the neighbors of v. First suppose that every
3 element subset of {a, b, c, d} is contained in the neighborhood of a vertex other than v.
Since we may assume X has no subgraph isomorphic to K4,2 this gives us a subgraph as
follows:

v

a

b

c

d w

x

y

z
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By Lemma 3.3.3, there is one undiscovered vertex remaining, adjacent to {w, x, y, z} and
so X ∼= M5.

We may now assume (without loss) that {a, b, c} is contained in the neighborhood of
a vertex w 6= v but {a, c, d} is not contained in the neighborhood of any vertex but v.
In particular, this implies that X is not arc-transitive (since these assumptions forbid the
existence of an automorphism mapping the arc (v, b) to (v, d)). By Observation 3.4.2 we
can choose an orientation ~X of the graph which is preserved by Aut(X). We may assume
(by possibly reversing orientations) that (v, b) is an edge of ~X, and then (d, v) must also
be an edge. Since every orientation of K3,2 contains vertices with in-degree at least two,
and vertices with outdegree at least two, we find that ~X is 2-regular. We may now assume
that (v, b) and (d, v) are edges of ~X, and then choosing an automorphism mapping (c, v)
to (d, v) implies the existence of a vertex x ∈ V (X) which has {a, b, d} as neighbors (in the
underlying graph). This gives us the following.

v

a

b

c

d

w

x

Our present assumptions imply that there does not exist a vertex other than v whose
neighborhood contains {a, c, d} or {b, c, d}. It follows from this (and vertex-transitivity)
that whenever two distinct vertices p, q in X have three common neighbors, these three
common neighbors include both out neighbors of p and q in ~X. Applying this property to
the vertices a and b (which have v, w, x as common neighbors) implies that we have the
following orientations in ~X.

v

a

b

c

d

w

x

However, now w and v have {a, b, c} as common neighbors, but both a, b are in-neighbors
of w in ~X. This contradiction completes the proof.

Lemma 3.5.10. Let X be a (4, 4, k) graph with no subgraph isomorphic to K3,2. If k ≥ 3
then X is isomorphic to either Q4 or Heac.

Proof. We will label vertices with subsets of {1, 2, 3, 4} and will write, for example, 12 to
represent {1, 2}. Label a vertex ∅ and for each i ≥ 0, let Li = {v : dist(v, ∅) = i} be the set
of vertices at distance i from ∅. Label the vertices in L1 with (distinct) singletons 1, 2, 3,
and 4.
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Observe that every vertex in L2 is adjacent to at most two vertices in L1 (since X has
no subgraph isomorphic to K3,2), and similarly, no two vertices in L2 have two common
neighbors in L1. Now for a vertex in L2 with two neighbors in L1, say a and b, we assign
this vertex the label ab.

By the above, we know that every 2-edge path with vertex sequence a, ∅, b for 1 ≤ a, b ≤ 4
completes to at most one 4-cycle. However, the frequency assumption implies that the edge
between ∅ and a must be contained in k ≥ 3 such 4-cycles. Therefore, k = 3 and every
2-edge path of the form a, ∅, b completes to a unique 4-cycle using the vertex labelled ab.
So, L2 consists of 6 vertices, each of which is labelled by a distinct 2 element subset.

Next we observe that every 2-edge path with ∅ as the middle vertex is contained in
a unique 4-cycle. So, by vertex-transitivity, we have the completion property: every 2-
edge path in X is contained in a unique 4-cycle. Using this completion property, it is
straightforward to prove that L2 must be an independent set (an adjacency of the form
ab ∼ bc would create a 3-cycle, whereas any of type ab ∼ cd would impose a 4-cycle through
the path a, ab, cd, but N(a) ∩N(cd) = ∅).

To prepare for working with L3, consider a complete graph K4 with V (K4) = {1, 2, 3, 4}.
The edges of this K4 have the same names as the labels of vertices in L2. So, we may
associate each vertex x ∈ L3 with the subgraph Cx of K4 which has edge set N(x)∩L2 (i.e.
all neighbors of x which are in L2). Let C denote the set of subgraphs of K4 associated with
vertices in L3.

Suppose first that Cx ∈ C contains all of the edges 12, 13, and 14 from the K4 under
consideration. Then the corresponding vertex x in L3 together with the vertices 1, 12, 13, 14
form a subgraph isomorphic toK3,2, giving us a contradiction. It follows from this reasoning
that every graph in C has maximum degree at most 2.

By applying the completion property to the two paths inX given by 12, 1, 13 and 12, 1, 14
we deduce that L3 must contain a vertex x adjacent to 12 and 13 and another vertex x′

adjacent to 12 and 14. Since X is 4-regular, these are the only vertices in L3 adjacent to
12. It follows from this property that every graph in C is a cycle, and further the cycles in
C cover every edge of the K4 exactly twice.

The only possibilities are for C to consist of the three 4-cycles in K4, or the four 3-cycles
in K4. In the former case, every vertex in L3 has all of its neighbors in L2 and we find
that X is isomorphic to Heac. In the latter case, each vertex x in L3 is associated with a
3-cycle Cx in K4 and we may label each such x with V (Cx) (a 3-element subset of 1234).
Using these labels, we see that the graph induced by L0 ∪L1 ∪L2 ∪L3 is isomorphic to the
graph obtained from Q4 by removing a vertex. Now applying the completion property to
the edges between L3 and L4 implies that X ∼= Q4.

Lemma 3.5.11. Let X = (V,E) be a (4, 4)-graph with a subgraph isomorphic to K4,2. Then
X is either isomorphic to K4,4, or C(2)

m for some m ≥ 5.
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Proof. Call two vertices u, v ∈ V clones if N(u) = N(v) and note that this implies {u, v} 6∈
E. Clones give an equivalence relation on V and we let V • denote the corresponding
partition of V into equivalence classes (so every S ∈ V • is a maximal set of clones). Let
X• be the graph with vertex set V • and two sets S, T ∈ V • adjacent in X• if there is a
vertex in S adjacent to a vertex in T (in the original graph X). Note that X• will still be
connected and double transitive since these properties are inherited from X.

Since X contains a subgraph isomorphic to K4,2, we know that it has distinct vertices
which are clones. By vertex-transitivity, every vertex has another clone. It then follows
that X• has maximum degree at most 2, so X• must be isomorphic to either K2 or Cm.
In the first case X ∼= K4,4. In the second case we find that X ∼= C

(2)
m for some m ≥ 3. If

m = 3 we have a contradiction to the assumption that X has girth 4, and for m = 4 note
that C(2)

4
∼= K4,4. So in this case we must have m ≥ 5 as desired.

We are now ready to prove the classification of (4, 4)-graphs.

Proof of Theorem 3.5.5. Let X be a (4, 4, k)-graph. If X has a subgraph isomorphic to
K4,2 then by Lemma 3.5.11, it is isomorphic to K4,4, to C(2)

m for some m ≥ 5. If it has a
K3,2 subgraph but no K4,2 subgraph, then by Lemma 3.5.9 we find that X is isomorphic to
K5,5 −M . If X has no K3,2 subgraph and k ≥ 3 then by Lemma 3.5.10 it is isomorphic to
either Q4 or Heac. The only remaining possibilities are k = 1 and k = 2 which were dealt
with in Sections 3.5.2.1 and 3.5.2.2.

3.5.3 Degree 5

Theorem 3.5.12. If X is a (5, 3)-graph then either X ∼= K6 or X ∼= Ico.

Proof. First, look at the induced graph X[N(v)], which has at least one edge since X
has girth 3. Since X is arc-transitive, Stab(v) acts transitively on N(v), so X[N(v)] is a
vertex-transitive 5-vertex graph, hence X[N(v)] must be either 2- or 4-regular. If X[N(v)]
is 4-regular, then it must be K5, and X is K6.

Now we consider the case where X[N(v)] is 2-regular. Happily, the only 2-regular graph
on 5 vertices is C5, so we can draw the neighborhood of a vertex below.

v

12

3 4

5

Here, we see that every edge is contained precisely two triangles. Looking at Stab(v)
again, we see that edge-transitivity implies that Stab(v) acts transitively on the triangles
containing v. Thus we construct a graph Y whose vertex set is the triangles of X, with edges
between triangles which share an edge. Since the frequency of X is 2, Y is a cubic graph.
Triangle-transitivity implies that Y is vertex-transitive, edge-transitivity of X implies that
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Y is edge-transitive. By Theorem 3.5.2, Y is either Pet or Dod since it contains a 5-cycle.
Completing the vertex neighborhood around 5, we find that the frequency for Y is 2, so
Y ∼= Dod. Therefore, X is the planar dual of Dod, the Icosahedron.

3.5.4 Degree 6

Theorem 3.5.13. A graph X ∈ 43 if and only if there is a connected bipartite cubic graph
Z with girth g ≥ 6 and bipartition V (Z) = (A,B) such that X is obtained by taking a Y −∆
transformation of every vertex v ∈ A. Additionally, X is double transitive if and only if Z
is edge-transitive.

Proof. Let X = (V,E) ∈ 43, and let T be {S ⊂ V : X[S] ∼= K3}. Let Z = I(T ), so by
construction Z is bipartite. Since every edge in X is contained in exactly one triangle
t ∈ T , every vertex is contained in exactly three triangles, and every triangle contains three
vertices, so Z is cubic. Now, consider a cycle of length 4 in Z: (x1, t1, x2, t2) must have
{x1, x2} ⊂ t1 ∩ t2, and so the edge {x1, x2} must belong to two different triangles. Since
X ∈ (V,E) and Z is bipartite, its girth must be at least 6.

Now, assume that X is edge-transitive and consider two edges uv and xy in E(X), which
belong to the unique triangles uvw and xyz. There is an automorphism φ ∈ Aut(X) with
φ(uv) = xy and by the uniqueness of triangles containing a given edge, we find φ(w) = z. So,
consider two (vertex, triangle) incidence pairs (x1, t1) and (x2, t2), or equivalently, two edges
in E(Z). Then, t1 \ {x1} and t2 \ {t2} are edges in X, so by the above, Z is edge-transitive.

Now we’ll work on the converse. Let Z be a cubic graph with girth g > 4 and bipartition
V (Z) = (A,B). Then define X to be a graph with vertex set B and edges E(X) =
{N(a) \ {b} : a ∈ A, b ∈ N(a)}. Since Z is cubic, E(X) is a set of sets with size two, so X
is a graph, and every edge xy belongs to a triangle xyz = N(a). Since Z has girth g > 4,
there are no two vertices a1 and a2 with |N(a1) ∩ N(a2)| > 1, so every edge contains at
most one triangle. Finally, we note that because Z is cubic, each b ∈ B belongs to precisely
three triangles, one per original edge ab ∈ E(Z).

Now, assume that Z is edge-transitive and connected, and consider two edges of X,
{u, v} ⊂ NZ(a) and {x, y} ⊂ NZ(a′) for a, a′ ∈ A. If NZ(a) \ {u, v} = {w} and NZ(a′) \
{x, y} = {z}, then there is an automorphism φ ∈ Aut(Z) with φ({a,w}) = {a′, z}. More
specifically, Z is either arc-transitive, or Aut(Z) respects the bipartition (A,B) by Obser-
vation 3.4.2 and the fact that Z is connected. Therefore, we can take φ(a) = a′ without loss
of generality. Therfore, and φ(NZ(a)) = NZ(a′) and φ({u, v}) = {x, y}, and so X is edge-
transitive, and hence double transitive by Observation 3.4.2 since it contains triangles.

Theorem 3.5.14. The table below lists the (6, 3)-graphs along with their frequency k.
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k Graphs
1 43

2 T3,�2

3 K3(3),L(K5)
4 K2(4)

5 K7

Proof. We’ll begin with frequency 1. By Lemma 3.4.3, X[N(v)] is a 1-regular graph, so the
induced graph X[N(v)∪ {v}] consists of the three triangles which share the vertex v. This
is precisely the definition of 43, the family we characterize in Theorem 3.5.13.

Now, consider the frequency 2 case. Here, construct a graph Y with vertex set T =
{{u, v, w} ⊂ V : X[{u, v, w}] ∼= K3} and edges between triangles that share an edge. Then,
Y is a double transitive cubic graph, and the set of triangles Tv ⊂ T containing a vertex
v ∈ V form a 2-regular induced subgraph of Y [T (v)]. In the case that Y [Tv] is two disjoint
triangles, those triangles correspond to a pair of K4 subgraphs which intersect at v; by
Observation 3.4.4, Y is the line graph of a 4-regular double transitive graph. In the case
that Y [Tv] is a 6-cycle, the neighborhood is shown below.

Thus, the triangles give an embedding, and Y is the geometric dual. By Theorem 3.5.2, Y
is a hexangulation of the torus and therefore X ∈ T3.

In the frequency 3 case, we cite Lemma 3.4.3 to examine the induced neighborhood
X[N(v)]: a 3-regular graph on 6 vertices. There are two such graphs, which we show below.

1 2

3

45

6

1 2

3

45

6

K3,3 Prism

In the case where K[N(v)] ∼= K3,3, we redraw the neighborhood together with v in a
way that will assist further reasoning, with the yet-undiscovered vertices of X shown in
gray.
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1

3

42

4

6

u
v

w

Consider the neighbors of the vertex 1 – we already see the neighbors v, 2, 4, and 6, and
we need two more (we’ll call them u and w) that form a complete bipartite graph between
{u, v, w} and {2, 4, 6}. At this point, we have accounted for all of the neighbors of {2, 4, 6}.
When we attempt to fill out the neighborhoods of 3 and 5, we need those neighborhoods to
be disjoint from {1, 3, 5} and form a complete bipartite graph with one half being {2, 4, 6}.
The graph we’ve drawn above is the unique completion: K3(3).

In the case where X[N(v)] is the prism, we see that the vertex v is the intersection of
two copies of K4. Using Observation 3.4.4, we see that X is the line graph of a 4-regular
double transitive graph Y ; however, the additional edges {1, 4} , {2, 5} , and {3, 6} show that
Y contains triangles. By Theorem 3.5.3, Y is either K5 or the line graph of a cubic graph.
Suppose for contradiction that Y is the line graph of a cubic graph Z. Then, the local
picture around an edge {uv, vx} in Y is shown below, where we may end up identifying
some of the vertices in {t, s, y, z} ⊂ V (Z) where Y = L(Z).

tu

su

uv

wv

vx

xy

xz

The cliques of Z induced by ∂Y (uv) and ∂Y (vx) intersect at {uv, vx}, and we already see
one edge between those cliques in Z, {uv, vw} ∼ {vx, vw}. A second edge between those
cliques will mean identifying, for example, t = y. If we identify the other pair, s = y we see
three triangles through the edge uv: {w, u, x} , {t, u, x}, and {s, u, x}, so both u and x have
degree 4. Therefore, Y cannot be the line graph of a cubic graph, so we have Y ∼= K5 and
X ∼= L(K5).

In the frequency 4 case, we again cite Lemma 3.4.3. Here, the neighborhood of v is a
4-regular graph on 6 vertices, and there is only one such graph that is symmetric enough,
K2(3). Observe that N(v)∪ {v} induces a 6 edge cut in a vertex-transitive 6-regular graph.
By Tindell’s theorem, V \ (N(v) ∪ {v}) is a single vertex, so X ∼= K2(3).

Finally, we have frequency 5. The induced neighborhood is K6 by Lemma 3.4.3, so X
is the complete graph K7.
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3.6 Proof of The Main Theorem

Now we’ll start working on the main theorem proper. We first establish three lemmas
wherein most of the case analysis is done. The first rules out counterexamples to Theo-
rem 3.3.4 among the exceptional graphs. The next two are summarizing statements about
the table in Theorem 3.3.4, whose proofs are collections of mostly one-line proofs of simple
statements. A small number of these could be left to the reader but morally we cannot
omit such a large number of proofs, however short. Where these cases are considered in the
main proof, they would detract from the flow of the main argument.

Lemma 3.6.1 (Nothing Exceptional). There are no counterexamples to Theorem 3.3.4
among the exceptional graphs K4, K5, K6, K7, K3,3, K4,4, K2(3), K3(3), K2(4), L(K5),
L(K3,3), L(Q3), Q3, Q4, M5, Pet, GP(8, 3), GP(10, 3), Hea, Pap, Heac, Dod or Ico.

This lemma was verified by computer. We computed all nonisomorphic induced sub-
graphs of size up to |V |/2 for each graph and didn’t find any new cuts. Code and results
for this are in Appendix C.

Lemma 3.6.2 (Stability). For each halfrow (d, n, C, F ) of the table in Theorem 3.3.4, we
obtain a true statement, “let X = (V,E) be a d-regular double transitive graph. If A ⊂ V

with X[A] ∼= C and |A| < |V |/2 then X ∈ F”.

Proof. We’ll work up the table, first in the right column, and then the left. We skip any
entry where G can be any double transitive graph with degree d.

Theorem 3.5.2 gives us a classification of cubic graphs of girth g < 6, which is consistent
with the table after the consideration that |A| < |V |/2. The remaining graphs with g = 6
are hexangulations of the torus with k = 2. The two exceptional cuts in GP(10, 3) and
GP(8, 3) require k > 2, and so the table is correct for d = 3.

We classify the 4-regular graphs with triangles in Lemma 3.5.3, and the only ones with
at least 6 vertices are in 42. In Corollary 3.5.4, find that all 4-regular graphs which contain
both squares and triangles are exceptional. Thus, the table is correct for all listed cuts in
4-regular graphs with triangles.

For the three infinite families of cuts, the smallest nontrivial (that is, those with edges)
are C4, K3,2, and K4,2 (respectively, working upwards) – any larger member of those family
contains a K4,2. We have listed C4 and K3,2 elsewhere in the table (we’ll discuss those
in the next paragraph), so we omit those smallest cuts except K4,2 from the families. By
Lemma 3.5.11, the only 4-regular double-transitive graphs containing K4,2 are the graphs
C

(2)
m .
By Lemma 3.5.9, if a double transitive X contains K3,2 and no K4,2, then X ∼= M5.

Otherwise, if a 4-regular double transitive graph contains a 4-cycle, the girth is 3 or 4. If
X is not one of the exceptions, then it’s in T4 or �2 by Theorem 3.5.5.
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The final structure to consider in 4-regular graphs is an induced Q3. There are two
4-cycles through every edge in the X[A], and any edge in ∂(A) must also be contained in
4-cycles which implies that k ≥ 3. By Theorem 3.5.5, X is exceptional.

For d = 5, there isn’t much to say because every X[A] contains at least one triangle, so
X is exceptional by Theorem 3.5.12.

For d = 6, we first look at those double transitive graphs containing tetrahedra. Looking
at Theorem 3.5.14, the only allowable family is �2.

The double transitive graphs containing triangles, of course, is the entire list from The-
orem 3.5.14.

Lemma 3.6.3. Let X = (V,E) be a d-regular double transitive graph, and suppose X[A]
appears in the statement of Theorem 3.3.4. If v ∈ V \A and c(A∪ {v}) ≤ 2d, then A∪ {v}
satisfies Theorem 3.3.4.

Proof. By Lemma 3.6.1 and Lemma 3.6.2, we need only look at adding a vertex to each
listed cut in the eight families: T3, T4, T6,42,43,�2,�2 and C(2)

m .
Let X ∈ T3,43, or �2 and X[A] ∼= K3. Since c(A) = 12, the only way to produce a

small enough cut c(A ∪ {v}) ≤ 12 is if there is a vertex v /∈ A for which |N(V ) ∩ A| = 3,
hence N [A ∪ {v}] ∼= K4. By Lemma 3.6.2, we find that X ∈ �2, so A ∪ {v} satisfies the
theorem for all v ∈ V .

Let X ∈ �2 and X[A] ∼= K4. Since c(A) = 12, the only way to produce a small enough
cut c(A ∪ {v}) ≤ 12 is if there is a vertex v /∈ A for which |N(V ) ∩ A| ≥ 3, and we find
edges which belong to more than one induced K4 and X /∈ �2.

Let X be 4-regular and X[A] ∼= C4. Since c(A) = 8, the only way to produce a small
enough cut c(A∪ {v}) ≤ 8 is if there is a vertex v /∈ A for which |N(V )∩A| ≥ 2, and there
are two potential ways to add such a vertex:

v v

In the first we find a square and a triangle. In the second, we find an induced K3,2. In
either case, we find exceptional graphs by Theorem 3.5.5 and Lemma 3.5.9 respectively.

In the case of C(2)
m , we note that there are three large families of cuts. When we add a

vertex v with |N(v)∩A| ≥ 2, we find that A∪{v} belongs to one of the other three families.
If we add a vertex v with |N(v) ∩ A| ≤ 1, we have c(A ∪ {v}) ≥ 10. In any case, A ∪ {v}
satisfies the theorem.

Let X ∈ 42 and X[A] ∼= K3. Since every vertex v /∈ A has at most two neighbors in
A, we either find c(A ∪ {v}) = 10 if A ∩ N(v) = ∅, or c(A ∪ {v}) = 8 otherwise. In the
latter case, we find the graph K3 with one pendant vertex, which we will denote K+

3 since
it appears on the list and we’ll consider it next. As it does appear on the list, we’ve satisfied
the theorem in both cases.
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Let X ∈ 42 and X[A] ∼= K+
3 . There are three kinds of vertices v /∈ A. The first kind

is far away from A, and N(v) ∩A = ∅ so c(A ∪ {v}) = 12 and we needn’t worry. The next
is adjacent to one vertex in X[A], and c(A ∪ {v}) = 10 and again, the theorem holds. The
third kind is adjacent to two vertices in A, and so c(A∪{v}) = 8. Since X has frequency 1,
the only possible result of adding a vertex adjacent to two vertices in A is to add the last
neighbor of the vertex of degree 3, which is also adjacent to the vertex of degree 1. This
yields two copies of K3 which share a vertex, which is on the list. We’ll denote the resulting
“bowtie” graph by K3 •K3, and consider it next.

Let X ∈ 42 and X[A] ∼= K3 •K3. Here, we consider the possibility of adding a vertex
v /∈ A which is adjacent to two vertices in A. Any vertex v /∈ A must be adjacent to at
most two vertices, otherwise we’d create a triangle through an edge we already see, and the
frequency of X is 1. We note that X is the line graph of a cubic graph by Observation 3.4.4,
and if v is adjacent to two of the nonadjacent vertices in A, we produce a 4-cycle. By
Theorem 3.5.3 X must be exceptional. Therefore, a vertex v /∈ A is adjacent to at most
one vertex in A, so c(A ∪ {v}) ≥ 10 and A ∩ {v} satisfies the theorem.

We’re left with cubic graphs. The only case here to check is when X ∈ T6, X[A] ∼= C6

and the girth g of X is 6. Any vertex v /∈ A must be adjacent to at most one vertex in A,
otherwise adding it in would produce a cycle of length at most 5, contradicting the assertion
that g = 6. Therefore, c(A ∪ {v}) ≥ 7, and A ∪ {v} satisfies the theorem for all v.

Now, we’ve gotten nearly all of the hard details out of the way, and we are almost ready
to prove the theorem. We’ll be proving the theorem by contradiction, picking a minimum
counterexample in the lexicographic ordering of tuples (c(A), |A|). An important tool in
navigating this space is uncrossing. Taking a minimal counterexample A to the theorem,
if we can find an automorphism φ for which |φ(A) ∩ A| = z, we can find a cut B which
satisfies the theorem and has z ≤ |B| ≤ |V |/2.

Lemma 3.6.4 (Uncrossing). Let X = (V,E) be a graph. If |A| ≤ |V |/2, φ ∈ Aut(X) and
z = |A ∩ φ(A)| < |A|, we have one of two outcomes

1. some B ∈ {φ(A) ∪A, V \ (φ(A) ∪A)} satisfies c(A) > c(B) and |V |/2 ≥ |B| ≥ z, or

2. c(A ∩ φ(A)) ≤ c(A).

In the proof of this lemma, we use the notation EA,B = {(a, b) ∈ E : a ∈ A, b ∈ B} to
denote the edges with endpoints in both A and B.
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Proof. The principal observation is that the action of φ partitions the vertices in V into
four nonempty parts by intersecting A, φ(A) and their complements,

A V \A
φ(A) P Q

V \ φ(A) R S

P = A ∩ φ(A), Q = A \ φ(A), R = φ(A) \A, S = V \ (A ∪ φ(A)),

which in turn partitions ∂(A)

∂(A) = EP,Q ∪ EP,S ∪ ER,Q ∪ ER,S ,

and likewise ∂(φ(A))

∂(φ(A)) = EA,V \A = EP,R ∪ EP,S ∪ EQ,R ∪ EQ,S ,

into disjoint sets, some of which may be empty. Furthermore, we partition the cut edges of
A ∩ φ(A) = P and A ∪ φ(A) = P ∪Q ∪R,

∂(A ∩ φ(A)) = EP,Q ∪ EP,R ∪ EP,S

and
∂(A ∪ φ(A)) = EP,S ∪ EQ,S ∪ ER,S .

Thus,

c(A) + c(φ(A)) = (|EP,R|+ |EP,S |+ |EQ,R|+ |EQ,S |)

+ (|EP,Q|+ |EP,S |+ |ER,Q|+ |ER,S |)

≥ |EP,Q|+ |EP,R|+ |EP,S |+ |EP,S |+ |EQ,S |+ |ER,S |

= c(A ∩ φ(A)) + c(A ∪ φ(A)).

Unless c(A∩φ(A)) = c(A∪φ(A)) = c(A), we have either c(A∩φ(A)) < c(A) or c(A∪φ(A)) <
c(A). Finally, we note that

z = |A ∩ φ(A)| < |A| ≤ |A ∪ φ(A)| ≤ |A|+ |φ(A)| − |A ∩ φ(A)| ≤ |V | − z

since |A| ≤ |V |/2, so each of A ∩ φ(A), A ∪ φ(A) and V \ (A ∪ φ(A)) have at least z
elements.

The general plan is proof by contradiction, interleaving two strategies. The first strategy
is to organize the proof by degree, small to large. The second strategy is to establish a
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sequence of claims which narrow down the possibilities for what the cut X[A] may look
like. Frequently, we will use the uncrossing lemma to find a cut for which the theorem
holds, which necessitates checking a few specific cuts. As we rule out the smaller degrees,
we are able to say successively more about X[A], and we are left with fewer cuts to check
after uncrossing.

Proof of Theorem 3.3.4. Choose a counterexample such that (1) c(A) is minimum, and (2)
subject to (1), |A| is minimum. Note that there’s nothing to say about double transitive
graph with d ≤ 2.
Claim 1. Our first claim is that the minimum degree of X[A] is greater than d/2. If
v ∈ A has degree dA(v) ≤ d/2, then c(A \ {v}) ≤ c(A) and |A \ {v} | < |A| so A \ {v}
satisfies the theorem, by the minimality of the counterexample. By Lemma 3.6.3, A is not
a counterexample.
Degree 3. First, suppose that X[A] has an edge uv between two vertices of degree 3. By
Claim 1, there is an edge xy where degA(x) = 3 and degA(y) = 2. Take φ ∈ Aut(X)
mapping φ : uv 7→ xy. Then, A ∩ φ(A) contains all but one vertex in N(x) ∪N(y), so we
apply the uncrossing lemma. In outcome 1, we have a set B with |V |/2 ≥ |B| ≥ 5 and
c(B) < c(A) ≤ 6 contradicting the choice of A. In outcome 2 we have B = A ∩ φ(A),
c(B) < c(A) and |B| ≥ 5 where X[B] contains a vertex of degree 3. Again, B is a more
minimal counterexample.

Now, we know that X[A] is a connected subcubic graph with at most 6 vertices of degree
2 and has no two adjacent vertices of degree 3. So, X[A] is either a cycle or a subdivision
of a cubic graph (possibly a multigraph) with ≤ 6 edges. By Lemma 3.6.1, the girth of X
is at least 6, so X[A] is one of , , or so A satisfies the theorem.
Claim 2. Our next claim is that X /∈ 42; equivalently, X is not the line graph of a cubic
graph with girth g > 3. Let X ∼= L(Y ) and define A∗ = {x ∈ V (X) : |N(x) ∩A| ≥ 2},
so by Claim 1, A ⊂ A∗ and c(A∗) ≤ c(A). By definition of 42, the degree 3 vertices in
X[A] come in adjacent pairs which are missing the same neighbor, so |A∗ \ A| ≤ 4 and
X[A∗] is a union of triangles, and we denote their underlying vertices B ⊂ V (Y ), whence
8 ≥ c(A) ≥ c(A∗) = 2c(B). Since we’ve proved the theorem for d = 3, we see that Y [B] is
one of (a vertex, an edge, a square) or the complement thereof (by growing A to A∗, we may
be looking at the larger half of the graph). In the case where Y contains a square, we’re
looking at an exceptional graph. Additionally, Y [B] can’t be a vertex or edge, since X[A]
would have at least one vertex of degree 1. We’re left looking at B being the complement of
a vertex or an edge, at which point |A|+ 4 ≥ |A∗| ≥ |V | − 5 and |A| ≤ |V |/2, which leaves
us with the exceptionally small |V (Y )| ≤ 6.
Claim 3. Our third claim is that X 6∼= C

(2)
m . By Claim 1, we should have a vertex v of

degree 3 in X[A], so we look at its neighborhood.
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b

v
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c

d

e

f

If u /∈ A, we have c(A ∪ {u}) ≤ d + 1 and A ∪ {u} satisfies the theorem, so A ∪ {u} is
the complement of a single vertex, leaving us in the ridiculous situation that m = 2 and
X is 2-regular. So, we conclude that both u and v have degree 3 in X[A]. Without loss of
generality, suppose that c /∈ A and therefore d ∈ A. Whether d has degree 3 or 4, we find
that c(A ∪ {c}) ≤ d+ 1. Ridiculous.
Claim 4. Next, we claim that X[A] has maximum degree less than d. Suppose that v ∈ A
is a vertex of degree d in X[A], and that u ∈ A has degree dd/2e ≤ degA(u) < d. Then, find
φ ∈ Aut(X) mapping φ : v 7→ u. Then, |φ(A)∩A| ≥ 1+dd/2e ≥ 4. Uncrossing, we find a set
B with |V |/2 ≥ |B| ≥ 4 which satisfies the theorem (since A was a minimal counterexample)
and has c(B) ≤ c(A). If any c(B) < 2d then we find an immediate contradiction since
|B| ≥ 4. Otherwise, we take B = A ∩ φ(A) and c(B) ≤ 2d and X[B] contains a vertex u
with degree d/2 < du < d: looking at the list, the only such non-exceptional cut is ,
which only occurs in 42, which we took care of with Claim 2.
Degree 4. By Claims 1 and 4, we see that X[A] is 3-regular. If X contains a triangle,
then by Theorem 3.5.3, X is an exceptional graph or X ∈ 42. Therefore, X[A] is a 3-
regular graph with girth at least 4, and |A| ≤ 8 since c(A) ≤ 8. If |A| = 6 then we have
either X[A] ∼= K3,3 or Q3, whence k ≥ 3. By Theorem 3.5.5, either X ∼= C

(2)
m or X is an

exceptional graph, and we’re done in either case. Otherwise |A| = 8 and X[A] must be the
Möbius band V8 shown below, where the left and right sides are identified top edge to top
edge, bottom edge to bottom edge.

By Theorem 3.5.5, either k > 3 and we’re looking at an exceptional graph, or k = 2 and
there is a toroidal embedding of V8 where the 4-cycles displayed above are faces. That
cannot be, as traversing those four faces necessitates a change in orientation. Therefore,
the theorem is true for all 4-regular graphs.
Claim 5. Now, we claim that X[A] has maximum degree less than d − 1. Otherwise, let
v ∈ A have degree dv = d− 1 in X[A] (by Claim 4, this is the only exception to the current
claim). By Observation 3.4.2, there is an automorphism φ ∈ Stab(v) mapping an edge
vx ∈ EA to an edge vy ∈ ∂(A). Therefore, |N(v)∩A∩φ(A)| = d− 2 so |A∩φ(A)| ≥ d− 1.
Uncrossing, we find a set B with c(B) ≤ c(A) and |V |/2 ≥ |B| ≥ d− 1, which satisfies the
theorem. Therefore, either 2d < c(B) ≤ c(A) and we don’t have a counterexample after all,
or X = Ico, an exceptional case that we’ve already checked.
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Degree 5. By Claims 1 and 5, X[A] is 3-regular with |A| ≤ 5. The only possibility here is
that X[A] ∼= K4 and by Theorem 3.5.12, X ∼= K6, an exceptional graph.
Degree 6. By Claims 1 and 5, X[A] is 4-regular with |A| ≤ 6. Here, we have either
X[A] ∼= K5 or X[A] ∼= Oct, so g = 3 and k ≥ 3. By Theorem 3.5.14, X is an exceptional
graph, and we’re done.
Claim 6. Our final claim is that d is odd and X[A] is (d + 1)/2-regular. Otherwise, by
Claims 1 and 5, there is a vertex v ∈ A with degA(v) > (d + 1)/2. Pick φ ∈ Stab(v) such
that φ(NA(v)) 6= NA(v). Thus, A ∩ φ(A) contains v and at least two neighbors of v, so
|A ∩ φ(A)| ≥ 3. Uncrossing, we find a set B with c(B) ≤ c(A) and |V |/2 ≥ |B| ≥ 3, which
satisfies the theorem: c(A) ≥ c(B) > 2d, so we didn’t have a counterexample after all.
Degree d = 2e+ 1, e > 3. By Claim 6, we see that X[A] is e+ 1-regular and e|A| = c(A) ≤
4e+ 2. That is, X[A] is at least 4-regular and has at most 4 vertices: absurd.
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Appendix A

Skolem-like Sequences

In this appendix, we will review the history of Skolem sequences, demonstrate the construc-
tions of K-near Skolem sequences that we use, and briefly describe how we found them.

In his 1957 seminal paper [41] on the topic, Thoralf Skolem proved that [n]-Skolem sequences
exist if and only if n ≡ 0, 1 mod 4. The necessity result boils down to counting the number
of odd terms in a sum. To demonstrate sufficiency, Skolem defined two families of these
sequences, one for n ≡ 0 mod 4 and one for n ≡ 1 mod 4. The below is copied verbatim1

from [41], his construction for n ≡ 0 (mod 4):

1. all pairs (4m+ r, 8m− r) for r = 0, 1, 2, · · · 2m− 1,

2. the pairs (2m+ 1, 6m) and (2m, 4m− 1),

3. the pairs (r, 4m− 1− r) for r = 1, 2, · · · ,m− 1,

4. the pair (m,m+ 1),

5. the pair (m+ 2 + r, 3m− 1− r) for r = 0, 1, · · · ,m− 3.

Note that {1}-near Skolem sequences are also known as Langford sequences of defect 2
and {1, 2}-near Skolem sequences are Langford sequences of defect 3. Skolem [41] proved
that Skolem sequences exist for all positive n ≡ 0, 1 mod 4. Shalaby [39] investigated the
existence of {k}-near Skolem sequences in his PhD thesis, finding that a {k}-near Skolem
sequences of order n > k exist if and only if n ≡ 0, 1 (mod 4) when k is odd and n ≡ 2, 3
(mod 4) when k is even. Simpson [40] proved that [1, d− 1]-near Skolem sequences of order
d+m− 1 exist if and only if m ≥ 2d− 1 and m ≡ 0, 1 (mod 4) if d is odd and m ≡ 0, 3 if
d is even – that is, {1, 2}-near Skolem sequences of order n exist if and only if m ≥ 7 and
m ≡ 2, 3 (mod 4).

Many of the constructions found in the literature [40, 39] are recursive, and involve further
generalizations of Skolem sequences. For example, a “hooked” Skolem sequence is similar to
a Skolem sequence, with a single zero in the second or penultimate position of the sequence.

1less one typo
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To construct a Skolem sequence of order 12, we can assemble a hooked Skolem sequence of
order 4, 303242114, together with a hooked {1, 2, 3, 4}-near Skolem sequence of order 15,

[5, 12, 13, 14, 15, 5, 6, 7, 8, 9, 10, 11, 6, 12, 7, 13, 8, 14, 9, 15, 10, 0, 11]

to produce a Skolem sequence of order 15,

[5, 12, 13, 14, 15, 5, 6, 7, 8, 9, 10, 11, 6, 12, 7, 13, 8, 14, 9, 15, 10, 3, 11, 3, 2, 4, 2, 1, 1, 4].

Simpson’s constructions use particularly nice [1, k − 1]-near Skolem sequences of order 3k,
together with similarly nice looped and hooked sequences to recursively construct his Lang-
ford sequences of defect d.

Hoping to use the Heffter system constructions presented in the Section 2.5.1, we want di-
rect, explicit, one-shot constructions like Skolem’s. Our desire to find a nice set of tiles with
zero row- and column-sum directs us to throw away even Skolem’s original constructions.
Annoying as that sounds, we’ll be finding these constructions by computer search and it
generally takes a few seconds to produce the requisite constructions.

We can visualize Skolem partitions by drawing arcs between paired points on a number line,
as shown below.

(m = 3) (m = 10)

Prominent in these pictures are rainbow-like groups of lines. There are three such groups
in Skolem’s construction, all of different sizes. For our purposes, it is most convenient if
there are four equal-sized groups. The reasoning behind this convenience will be apparent
when we use the Skolem partitions to finally construct Heffter arrays, but it all boils down
to our favorite sum: x+ x+ a+ y + (y + a) = 0.

Should all the groups have equal size, we are able to represent a family of Skolem partitions
with a single diagram:

(m ≥ 0)

here, a group of pairs is represented as a thick line. This represents the family of partitions
defined by

1. the pairs (1, 2), (2m+ 4, 4m+ 6), (2m+ 5, 6m+ 8) and (m+ 3, 5m+ 7),

2. the pairs (r + 5m+ 8,−r + 7m+ 8) for 0 ≤ r < m,

3. the pairs (r +m+ 4,−r + 3m+ 5) for 0 ≤ r < m,
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4. the pairs (r + 4m+ 7,−r + 8m+ 8) for 0 ≤ r < m, and

5. the pairs (r + 3,−r + 4m+ 5) for 0 ≤ r < m.

We found this construction, and seven more like it, as follows:

1. Use an EXACTCOVER solver to find an explicit partition of [1, 2n0 − 2|K|] into
differences [1, n0] \K for some sufficiently large n0 = 4m0 + k.

2. Select four pairs from the partition to thicken.

3. Symbolically compute the set of differences of a thickened partition and check if that
set is a Skolem partition for all m ≥ m0. If not, pick a new K-near Skolem sequence
from the EXACTCOVER solver.

Given a partition P of I = [I0, If ] into distances D and a set T = {t1, t2, t3, t4} ⊂ D, we
will describe the family obtained by thickening the pairs (at, bt) for all t ∈ T . We define the
set E of endpoints {at : t ∈ T} ∪ {bt : t ∈ T}, and for t ∈ Z, define A(t) = {e ∈ E : e < t}
and B(t) = {e ∈ E : e ≤ t}. Then, the set of pairs

P (m) = {(ad +mA(ad), bd +mB(bd)) : d ∈ D} ∪
4⋃

i=1
{(ati +mA(ati) + r, bti +mB(bti)− r) : 0 < r < m}

is a partition of I(m) = [I0, If + 8(m− 1)] into pairs.

While it is conceivable that any set of pairs could be thickened to construct a family of K-
near Skolem sequences, we impose some additional conditions that narrow down the search
space and facilitate easy proof that we produce a partition into the desired differences (by
definition of thickening, we will always produce partitions, the difficulty is in discovering the
desired differences). We say that two pairs (ai, bi) and (aj , bj) are crossed if ai < aj < bi < bj

and nested if ai < aj < bj < bi. We require the following:

1. The pairs (at1 , bt1) and (at2 , bt2) are nested, as are (at3 , bt3) and (at4 , bt4), and there
are no other crossings or nestings among these pairs

2. bt1 − at1 = bt3 − at3 ± 1 and bt2 − at2 = bt4 − at3 ± 1, and

3. bt1 − at1 6≡ bt2 − at2 mod 2 and bt3 − at3 6≡ bt4 − at4 mod 2.

Note that a group of pairs {(at +mA(at) + r, bt +mB(bt)− r) : 0 ≤ r < m} has differences
{t+m(B(bt)−A(at))− 2r : 0 <= r < m}: a “half interval” where every other element is
skipped. The requirements above ensure that these half intervals are interleaved to make a
whole interval of size 2m.

Once we have interleaved the half intervals, we are left with a collection of “sporadic differ-
ences” coming from non-thickened pairs and two intervals of differences. To check that P (m)
is a partition of I(m) into distances D(m) = [1, 4m+ n0] \K, we construct a graph whose
vertices have three types: sporadic differences, difference interval endpoints, and “holes”
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from K. For our purposes, the sets of holes we consider are ∅, {1} , {2} and {1, 2}. We place
edges in our graph between vertices which differ by 1, and between the two endpoints of
each distance interval. If the resulting graph is a path and contains the vertex maxD(m),
then every difference in D(m) occurs precisely once as a difference from P (m). We will
duplicate this line of reasoning later, in Section 2.7, to prove that our final constructions
indeed produce Heffter arrays.

For example, let us consider the construction above. We have the sporadic differences
1, 2m+2, 4m+3, and 4m+4 coming from the pairs (1, 2), (2m+4, 4m+6), (2m+5, 6m+8),
and (m + 3, 5m + 7) respectively. We have two difference intervals, [2, 2m + 1] obtained
by interleaving the pairs (r + 5m + 8,−r + 7m + 8) and (r + m + 4,−r + 3m + 5) for
0 ≤ r < m, and likewise [2m + 3, 4m + 2] from the remaining groups of pairs. Thus, we
have the complete interval

[1, 4m+ 4] = {1} ∪ [2, 2m+ 1] ∪ {2m+ 2} ∪ [2m+ 3, 4m+ 2] ∪ {4m+ 3} ∪ {4m+ 4} ,

so this is a Skolem sequence for all m ≥ 0.
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Type Pair Families Sporadic Pairs(0 ≤ r < m)

∅-near

(r+2,4m−r+3)
(4m+r+4,8m−r+8)
(m+r+3,3m−r+3)
(5m+r+7,7m−r+6)

(1,2m+3)
(m+2,5m+5)
(5m+4,7m+8)
(5m+6,7m+7)

∅-near

(r+2,4m−r+3)
(m+r+3,3m−r+3)
(4m+r+6,8m−r+10)
(5m+r+9,7m−r+8)

(1,4m+4)
(m+2,5m+7)
(2m+3,4m+5)
(5m+6,7m+10)
(5m+8,7m+9)

{2}-near

(r+2,4m−r+5)
(m+r+4,3m−r+5)
(5m+r+8,7m−r+10)
(4m+r+8,8m−r+10)

(1,4m+7)
(m+2,m+3)
(2m+4,6m+8)
(4m+6,6m+9)
(2m+5,6m+10)

{2}-near

(r+3,4m−r+7)
(4m+r+9,8m−r+12)
(5m+r+9,7m−r+11)
(m+r+4,3m−r+5)

(1,4m+8)
(2,2m+5)
(m+3,3m+7)
(6m+10,6m+11)
(2m+4,6m+9)
(3m+6,7m+12)

{1}-near

(r+3,4m−r+5)
(m+r+3,3m−r+4)
(4m+r+7,8m−r+8)
(5m+r+7,7m−r+7)

(1,4m+6)
(2,2m+4)
(2m+3,6m+7)
(3m+5,7m+8)

{1, 2}-near

(4m+r+9,8m−r+15)
(5m+r+12,7m−r+13)
(m+r+3,3m−r+5)
(r+2,4m−r+5)

(2m+3,6m+13)
(m+2,5m+11)
(5m+9,7m+15)
(4m+8,8m+16)
(5m+10,7m+14)
(2m+5,6m+12)
(1,4m+6)
(2m+4,4m+7)

{1, 2}-near

(r+1,4m−r+4)
(4m+r+6,8m−r+10)
(m+r+1,3m−r+2)
(5m+r+7,7m−r+9)

(2m+1,6m+8)
(3m+4,7m+10)
(2m+2,6m+7)
(4m+5,6m+9)
(3m+3,5m+6)

{1}-near

(5m+r+6,7m−r+6)
(4m+r+5,8m−r+6)
(m+r+2,3m−r+3)
(r+1,4m−r+3)

(m+1,5m+5)
(2m+2,4m+4)
(2m+3,6m+6)

Table A.1: Our constructions of Skolem-like sequences
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Appendix B

Two Row Tiles

 1 2 3 4
5 6 7 8
4 4 4 4


 1 2 3 4

5 7 6 8
4 5 3 4


 1 2 3 4

6 5 8 7
5 3 5 3


 1 2 3 4

6 8 5 7
5 6 2 3


 1 2 3 4

7 8 5 6
6 6 2 2


 1 2 3 4

8 6 7 5
7 4 4 1



 1 2 3 4
8 7 6 5
7 5 3 1


 1 2 5 6

3 4 7 8
2 2 2 2


 1 2 5 6

3 7 4 8
2 5 1 2


 1 2 5 6

4 3 8 7
3 1 3 1


 1 2 5 6

4 8 3 7
3 6 2 1


 1 2 5 6

8 4 7 3
7 2 2 3



 1 2 7 8
3 5 4 6
2 3 3 2


 1 2 7 8

4 6 3 5
3 4 4 3


 1 2 7 8

5 3 6 4
4 1 1 4


 1 2 7 8

6 4 5 3
5 2 2 5


 1 3 5 7

2 4 6 8
1 1 1 1


 1 3 5 7

2 6 4 8
1 3 1 1



 1 3 5 7
4 8 2 6
3 5 3 1


 1 3 5 7

8 4 6 2
7 1 1 5


 1 3 6 8

2 5 4 7
1 2 2 1


 1 3 6 8

7 4 5 2
6 1 1 6



Table B.1: Representative shiftable 2×4 tiles whose row sums are zero. All possible column
sums (up to reordering and negation) are represented. Third row is the column sums.
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Appendix C

Additional Info for Chapter 3 and
Main Theorem Tearout

Graph Name(s) Family Plane Drawing Torus Embedding

K4 ∼= Tetrahedron

Q3 ∼= M4

L(Q3) ∼=
Medial(Q3) ∼=
Medial(Oct) ∼=

Cubeoctahedron

42, �2

Oct ∼= K2(3) ∼=
L(K4) ∼= C

(2)
3

Ico
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Graph Name(s) Family Plane Drawing Torus Embedding

Dod ∼= Ico∗

K5 T4

K6

No regular torus
embeddings by

Euler characteristic.

K7 T3

Hea ∼= K∗7 T6

Heac No 4-cycle double
cover.

M5 T4

C
(2)
m ,m ≥ 4 T4
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Graph Name(s) Family Plane Drawing Torus Embedding

L(K5) ∼= Pet �2

Every triangle
double cover makes

pinch points.

Pet = GP(5, 3) ∼=
L(K5)

Every 6-cycle
double cover makes

pinch points.

GP(10, 3) No 6-cycle double
cover.

GP(8, 3) T6

K2(4) ∼= GP(8, 3)∗ T3

K3(3) T3

Pap ∼= K∗3(3) T6

L(K3,3) ∼= K3 ×K3 42, T4
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Graph Name(s) Family Plane Drawing Torus Embedding

Q4 T4

Table C.1: Table of exceptional graphs and their familial inclusions. Note that the graph
G∗ is the 1-skeleton of the geometric dual of G as drawn in this table.

Below is the code that we used to prove Lemma 3.6.1

def UniqueLabel(X):
return X.canonical_label().graph6_string()

def SmallCuts(X):
V = set(X.vertices())
d = X.degree_sequence()[0]
cuts = {}

for k in range(3,1+len(V)/2):
for A in Subsets(V,k):

XA = X.subgraph(A)
cA = d*k - sum(XA.degree_sequence())
if cA <= 2*d:

cuts[UniqueLabel(XA)] = XA

return cuts

Fano = [(1,2,3),(3,4,5),(1,5,6),(1,4,7),(2,5,7),(3,6,7),(2,4,6)]
ExceptionalGraphs = {
’K_4’: graphs.CompleteGraph(4),
’K_5’: graphs.CompleteGraph(5),
’K_6’: graphs.CompleteGraph(6),
’K_7’: graphs.CompleteGraph(7),
’K_{2^3}’: graphs.CompleteMultipartiteGraph([2,2,2]),
’K_{2^4}’: graphs.CompleteMultipartiteGraph([2,2,2,2]),
’K_{3,3}’: graphs.CompleteMultipartiteGraph([3,3]),
’K_{3^3}’: graphs.CompleteMultipartiteGraph([3,3,3]),
’K_{4,4}’: graphs.CompleteMultipartiteGraph([4,4]),
’L(K_4)’: graphs.CompleteGraph(4).line_graph(),
’L(K_5)’: graphs.CompleteGraph(5).line_graph(),
’L(K_{3,3})’: graphs.CompleteMultipartiteGraph([3,3]).line_graph(),
’Q_3’: graphs.CubeGraph(3),
’Q_4’: graphs.CubeGraph(4),
’L(Q_3)’: graphs.CubeGraph(3).line_graph(),
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’M_5’: Graph({i:[j+5 for j in range(5) if i!=j] for i in range(5)}),
’Pet’: graphs.PetersenGraph(),
’GP(8,3)’: graphs.GeneralizedPetersenGraph(8,3),
’GP(10,3)’: graphs.GeneralizedPetersenGraph(10,3),
’Hea’: Graph({i:[s for s in Fano if i in s] for i in range(1,8)}),
’coHea’: Graph({i:[s for s in Fano if i not in s] for i in range(1,8)}),
’Pap’: graphs.PappusGraph(),
’Dod’: graphs.DodecahedralGraph(),
’Ico’: graphs.IcosahedralGraph()

}
SpecialCuts = {
’triangle’: graphs.CycleGraph(3),
’three path’: graphs.PathGraph(3),
’four path’: graphs.PathGraph(4),
’tetrahedron’: graphs.CompleteGraph(4),
’theta’: Graph({0:[1,2,3],1:[2,3]}),
’wheel5’: graphs.WheelGraph(6),
’cube’: graphs.CubeGraph(3),
’K_{2,3}’: graphs.CompleteMultipartiteGraph([2,3]),
’bowtie’: Graph({0:[1,2,3,4],1:[2],3:[4]}),
’yield’: Graph({0:[1,2,3],1:[2]}),
’house’: Graph({0:[1,2,3],1:[4],3:[2,4]}),
’cat’: Graph({0:[1,2,3,4],1:[2,5],3:[4,5]}),
’pill’: Graph({0:[1,2,3],1:[2,5],3:[4,5],4:[5]}),
’three star’: graphs.StarGraph(3),
’hexagon’: graphs.CycleGraph(6),
’pentagon’: graphs.CycleGraph(5),
’square’: graphs.CycleGraph(4),
’pentagon plus’: Graph({0:[1,2,3],3:[5],4:[1,5]}),
’bipentagon’: Graph({0:[1,2,3],1:[4,5],6:[2,4],7:[3,5]}),
’tripentagon’: Graph({0:[1,2,3],1:[4,5],3:[8,9],6:[2,5],7:[2,8],9:[4]}),
’split tetrahedron’: Graph({0:[4,5,7],1:[4,6,9],2:[7,8,9],3:[5,6,8]}),
’split triple edge’: Graph({0:[1,2,3],4:[1,7],5:[2,7],6:[3,7]}),

}
TrivialNames = {’vertex’, ’two vertices’, ’two path’,

’three path’, ’four path’, ’three star’}
SpecialCutID = {UniqueLabel(X):Name for Name,X in SpecialCuts.items()}

for d in range(3,7):
GraphsWithCuts = {Name:[] for Name in SpecialCuts}
print "Degree", d
for Name,X in ExceptionalGraphs.items():

if X.degree_sequence()[0] == d:
for cut in SmallCuts(X):

#There’s some implicit completeness checking happening here
#since SpecialCutID contains info about known cuts -- if we
#found something new, we’d get screamed at.
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CutName = SpecialCutID[cut]
GraphsWithCuts[CutName].append(Name)

for Name,Graphs in GraphsWithCuts.items():
if Name not in TrivialNames and Graphs:

print " with %s as a small cut: "%Name, ", ".join(Graphs)

Output from the above is below.

Degree 3
with square as a small cut: Q_3
with pentagon as a small cut: Pet, Dod
with split tetrahedron as a small cut: GP(10,3)
with bipentagon as a small cut: Dod
with pentagon plus as a small cut: Dod
with split triple edge as a small cut: GP(8,3)
with tripentagon as a small cut: Dod
with hexagon as a small cut: Pap, GP(10,3), Hea, GP(8,3)

Degree 4
with square as a small cut: L(K_{3,3}), M_5, coHea, Q_4, L(Q_3), K_{4,4}
with house as a small cut: L(Q_3)
with K_{2,3} as a small cut: M_5
with pill as a small cut: L(Q_3)
with cube as a small cut: Q_4
with triangle as a small cut: L(K_{3,3}), K_{2^3}, L(Q_3)
with bowtie as a small cut: L(Q_3)
with yield as a small cut: L(K_{3,3}), L(Q_3)
with cat as a small cut: L(Q_3)

Degree 5
with theta as a small cut: Ico
with wheel5 as a small cut: Ico
with triangle as a small cut: Ico, K_6

Degree 6
with tetrahedron as a small cut: K_{2^4}, L(K_5)
with triangle as a small cut: K_{2^4}, K_7, L(K_5), K_{3^3}

With so many cases to consider in the proof of our main theorem, it may be useful to tear
the next page out for a quick reference guide.
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We define two parametrized families of graphs:

• We denote the tilings of the torus where every face is a m-cycle by Tm.

• For a graph V and natural number m, we define the family [V]m to be graphs (V,E)
for which the edges E may be partitioned into induced subgraphs isomorphic to V
such that every vertex v ∈ V belongs to exactly m parts. In particular, we use the
symbols 4,� and � as shorthand for [K3], [C4] and [K4] respectively.

For a subset A ⊂ V of vertices of a graph, we define the edge cut induced by A to be the
edges between A and V \A, ∂(A) = {uv ∈ E : u ∈ A, v ∈ V \A} . We denote the size of the
edge cut c(A) = |∂(A)|.

Theorem 3.3.4. Let X = (V,E) be a connected d-regular double transitive graph and
A ⊂ V . If c(A) ≤ 2d and |A| ≤ |V |/2 then X[A] is isomorphic to one of the following:

d c(A) X[A] X d c(A) X[A] X

any 2d any 4 2d L(Q3)
any 2d− 2 any 4 2d L(Q3)
any d any 4 2d L(Q3)
6 2d T3,43,�2 4 2d− 2 42,K2(3)

6 2d �2,K2(4) 3 2d any
5 2d Ico 3 2d any
5 2d Ico 3 2d T6

5 2d− 1 Ico, K6 3 2d Dod
4 2d any 3 2d Dod
4 2d Q4 3 2d Dod
4 2d T4,�2,Heac 3 2d GP(10, 3)
4 2d− 2 M5 3 2d GP(8, 3)
4 2d C

(2)
m 3 2d− 1 any

4 2d C
(2)
m 3 2d− 1 Pet,Dod

4 2d C
(2)
m 3 2d− 2 Q3

4 2d 42 2 2d any
4 2d 42 2 d any

Note that there are three large families of cuts in C
(2)
m . Some of the smaller members of

those families, notably and , appear elsewhere on the table and we do not list
C

(2)
m there. Also, when an exceptional graph is known to belong to a particular family, it

is not shown alongside that family. For example, K2(4) contains but is not listed since
K2(4) ∈ T3.
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