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Abstract

Learning word alignments between parallel sentence pairs is an important task in Statistical
Machine Translation. Existing models for word alignment have assumed that word align-
ment links are untyped. In this work, we propose new machine learning models that use
linguistically informed link types to enrich word alignments. We use 11 different alignment
link types based on annotated data released by the Linguistics Data Consortium. We first
provide a solution to the sub-problem of alignment type prediction given an aligned word
pair and then propose two different models to simultaneously predict word alignment and
alignment types. Our experimental results show that we can recover alignment link types
with an F-score of 81.4%. Our joint model improves the word alignment F-score by 4.6%
over a baseline that does not use typed alignment links. We expect typed word alignments
to benefit SMT and other NLP tasks that rely on word alignments.

Keywords: Statistical Machine Translation; Word Alignment; Alignment Type; Proba-
bilistic Models
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Chapter 1

Introduction

1.1 Problem Description

Statistical Machine Translation (SMT) is the task of translating a source sentence in one
language into the target sentence in another language. A typical SMT pipeline usually starts
from learning word alignments from a parallel corpus and then use these word alignments
to establish word translation tables. For a phrase based SMT model, word translations can
be further combined into phrases and used in a log linear discriminative model over phrase
translations.

As a crucial intermediate stage of SMT, finding the word alignments between a parallel
corpus is an interesting and long-lasting research topic. The accuracy of word alignment
will directly affect the quality of the following machine translation process. Traditional
models like IBM models (Brown et al. 1993) use unsupervised algorithms to learn the
hidden word relations between parallel text. With the increasing availability of manually
word-aligned data, supervised approaches become a feasible alternative to unsupervised
approaches. These models, like the discriminative word alignment model (Taskar et al.
2005) and Berkeley Aligner (Percy et al. 2006), usually use linguistic information such as
part-of-speech tags and parse trees to yield better word alignments.

However, all previous work has assumed that word alignments are untyped, which means
there’s no difference between them. This is not really the fact if we take a close look from a
linguistic perspective since the words aligned play different roles in a sentence and the reason
to align them is different, too. In 2014, the LDC (Linguistic Data Consortium) released a
new dataset which enriches word alignment with linguistic tags. These tags represent the
types of the word alignment and cast light on building type-aware alignment models which
hopefully can find better word alignment and also alignment types. An example of the
enriched word alignment looks like Figure 1.1 below

In Figure 1.1, each tag on an alignment link is the type of this word alignment. For

example the tag SEM stands for semantic alignment, which means the two aligned words
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so you must be sure to take really good care of yourself

Figure 1.1: Example for enriched word alignment

are actually content words that carry equivalent rich lexical meaning, while the tag FUN
stands for function alignment, which means the two aligned words carry less or ambiguous
lexical meaning but instead serve to express grammatical relationships with other words in
a sentence, like word must, a, and in. Throughout this work, we may interchangeably use

the term alignment type and tag. They refer to the same thing.

With the alignment types enriched data at hand, we see the chances of finding maybe
better quality word alignment and the alignment types at the same time. Thus, in this
thesis, we also try to solve a joint problem, finding the word alignments between parallel

text and predicting the corresponding alignment types at the same time.

1.2 Motivation

Empirical results have shown that supervised models can generally achieve better align-
ments than traditional unsupervised models when proper linguistic features are in good
use. However, such linguistic features are usually part-of-speech tags, word stems and even
parse information. The alignment types for word alignment as seen in the LDC data have
not been used as a feature for finding better alignments. But it is definitely worth trying
and looks very promising to explore the possibility of using such tags as a feature. We
would expect the word alignment found in our joint task tends to be better than that found
in a pure word alignment task. And if we can prove that such alignment types are useful,
we can further include it in more complex machine translation system.

Moreover, those alignment types are by themselves very interesting. They can be used
not only for finding better alignments but also for other Natural Language Processing (NLP)
tasks that rely on word alignments such as projection of part of speech tags and dependency
trees from a resource-rich language to a resource-poor language. From this perspective, we
also want to be able to predict such alignment types while finding the alignments. Thus, we

want to propose the new task of joint prediction of word alignment and alignment types.



1.3 Word Alignment Models

1.3.1 Words and Word Alignments

In natural language, the concept of word may vary for different languages. The concept of
word is pretty clear in English because the writing system naturally separate the words with
spaces. However, for some other languages where their writing system does not incorporate
spaces, the boundary of a word can be ambiguous. The best example is Chinese, where a
word can be just one character or multiple characters. The problem of word segmentation
and the linguistic concept of word is not in the scope of this thesis so we don’t discuss
it in detail. We did all our experiments on English-Chinese parallel text, and we just use
segmented Chinese where spaces are already inserted. Here we assume word to be the token
separated by spaces, no matter how many characters it contains.

Word alignment is an important notion introduced in early statistical machine trans-
lation work (Brown et al. 1993). Given a sentence and its translation, the corresponding
word pair, for example like English word So and Chinese word A7E/ in Figure 1.2, are called
a word alignment. We usually draw a link between two words to represent that they are
aligned, as shown in the Figure below. And the same relationship can also be visualized by

the alignment matrix in Table 1.1:

FTA —7E 2 44 B 52

so you must be sure to take really good care of yourself

Figure 1.2: Example of traditional word alignment

Word alignment does not have to be one-to-one. This is fairly simple to understand
since one word in one language does not necessarily translate into only one word in another
language. It can be two, three, or even more. This is because of the lexical divergence
between languages. Typically there are four types of word alignments: one-to-one, one-to-
many, many-to-one, and many-to-many. Besides those types of word alignments, a word in
one language can also be aligned to a NULL word in another language, which means it
actually gets eliminated in another language and does not receive a specific translation.

Usually, we measure the quality of word alignments by comparing the experimental
results with the gold alignments and calculate the Alignment Error Rate(AER). The
gold alignments are produced by bilingual human experts who went through the parallel

corpus and manually aligned the words. The alignment error rate is defined as below:
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Table 1.1: Alignment Matrix Example

ANS|+|ANP
AER(S, P; A) — | yA|\+‘\5 | (1.1)

Where A stands for the experimental results, S stands for the sure alignments in the gold
alignments, and P stands for possible alignments in the gold alignments. The lower the
alignment error rate is, the better the word alignment quality is. However, in the LDC data
we used for our experiment, there is no distinction between sure and possible alignments.
And also In (Fraser and Marcu, 2007) they provide a compelling argument that F-score is
a much better evaluation measure for word alignment when compared to alignment error
rate (AER). Thus, instead we report the precision, recall and F-score on the test data to
measure the quality of our output word alignments. Precision, recall and F-score are widely
used measures in the field of information retrieval and NLP. Precision, also called positive
predictive value, is the fraction of retrieved/generated results that are relevant/correct. And
it is defined as:

. true positive
Precision =

(1.2)

true positive + false positive

Recall is the fraction of relevant/correct results that are retrieved/generated. And it is
defined as:

true positive

Recall = — y (1.3)
true positive + false negative
And F-score is the harmonic mean of precision and recall:
ision - 11
F — scope — o . Precision - reca (1.4)

precision + recall



1.3.2 IBM Model 1 Word Alignment

When talking about the models to learn word alignment, we have to mention the classic IBM
models. IBM models are a series of translation models developed by Brown et al. (1993).
They are still being used currently. The IBM models were implemented into a toolkit
called GIZA++. GIZA++ is open source and widely used for finding word alignments.
Among those models, IBM model 1 is the most basic one and acts as the baseline of our
experiments. Thus, here we offer some background knowledge of IBM model 1 including
the formal definition, how it is applied to find word alignments between parallel text and

its limitations.

Definition

Following the discussion in the widely used textbook Statistical Machine Translation (Philipp
Koehn 2010), if two parallel sentences are given, e the target sentence and f the source sen-
tence, what is the probability of translating f into e 7 It is a little bit hard to imagine this
problem directly, because the same sentence does not often appear as a whole in a text.
Instead, usually what occurs many times is just part of the sentence, which we call a word.
Thus, this problem can be broken down and largely simplified if we view it from a word
perspective.

The probability distribution of a foreign word f translates into an English word e can
be easily estimated by counting how many times they co-occur in the parallel text. For
example, if we get the statistics in Table 1.2 below after going through the text, we can

easily estimate the translation probability distribution.

Table 1.2: Example counts for different translations of the Chinese word I

Translation of ¥ Count

hit 7000
punch 1500
fight 800
strike 500
dozen 200

Table 1.2 basically tells us that among the 10000 times that the Chinese word $] appears,
it is translated into the English word hit for 7000 times. So the translation probability is



7000/10000 = 0.7 and the overall translation probability distribution can be represented as

0.7 if e= hit
0.15 if e = punch
pe(e) = €0.08 if e = fight (1.5)

0.05 if e = strike
0.02 if e = dozen

This type of estimation is also called maximum likelihood estimation since it maximizes the
likelihood of the data. And the word translation here is also called lexical translation. Now
we have gained the probability distributions for lexical translation, how can we estimate
the probability of the whole sentence translation? Let’s look at an example below, we have

a Chinese sentence ¢ and its corresponding translation e

yesterday | bought a book

Figure 1.3: A Chinese sentence and its translation

The mapping here between the Chinese words and English words is called alignment.
Mathematically, we define the alignment to be an alignment function a, which maps each

English word at position i to its source Chinese word at position j:
a:j—i (1.6)

Thus, the alignments in our example above can be represented as:
a:{1—-1,2-23—-34—4,5—5} (1.7)

Equipped with the background of lexical translation and word alignment, now we are able
to introduce IBM model 1, which is a lexical translation based model that produces a
series of translations for a sentence, each with a different probability. In IBM model 1,
the translation probability of a foreign sentence f = (fi,..., fi,) of length Iy aligned to an

English sentence e = (ey, ..., €;,) of length . with an alignment function a solely depends



on the translation probability of each word, and it is defined as follows:

le
ple,alf) = —— [[ te;lfaii) (1.8)
Ll

Iy + 1)t 5

Note that some people, including the original work of (Brown et al. 1993), use a slightly
different equation where they model p(f|e) instead of p(e|f). Both of them are equally valid
ways to model word alignment. Brown et al. use p(f|e) because they model alignment
as part of the noisy channel model for translation and write p(e|f) as p(e) * p(f|e) and
use word alignment models to learn p(f|e) and a language model for p(e). In contrast,
statistical machine translation models that use a discriminative log-linear model to directly
learn p(el|f) can simply use a word alignment model for p(e|f) as a source of feature functions
in the log-linear model.

This equation tells us that the probability of translating a whole sentence is the product
of the lexical translation probabilities. Since the mapping, i.e. alignment, between the two
sentences is not unique, we need to normalize the right hand side of the equation. We
assume that each type of alignment is equally likely, so the total number of ways to align
the words between the two sentences should be (I + 1)k. 1 is added because we include the
special NULL token. € is a constant used to make sure that p(e, a|f) is a proper distribution,
which means to make the sum of all probabilities equal to 1.

Finally, we can apply the IBM model 1 to our previous example in Figure 1.3:

K T) x t(a] =) x t(book| 15) (1.9)

p(e,alf) = 5—64 x t( Yesterday|WER) x t(1|F) x t(bought

EM for IBM Model 1

The sentence translation probability computed by IBM Model 1 relies on the lexical transla-
tion probabilities, which we assume we already have. However, in real world circumstances,
usually we do not have such statistics. What we have is just parallel text. Thus, we need a
way to learn those lexical translation probabilities from the parallel text. The unsupervised
method adopted by Brown et al. (1993) is the expectation maximization algorithm. For the
sake of brevity, we will use the commonly used abbreviation and call it the EM algorithm
in the rest of the thesis.

In statistics, the EM algorithm is an iterative method used to find the maximum likeli-
hood estimates of the parameters in statistical models. Such models often depend on latent
variables. The EM algorithm iterates between an expectation (E) step, where the expected
likelihood of the data is evaluated using the current parameters, and a maximization (M)
step, which updates the estimates for the parameters. These new estimates for parameters

are then used in the next E step.



In our case, we only have the parallel text. What we lack is the mapping between the
words in a sentence pair, i.e. the alignment. Thus, the alignment is considered to be the
latent variable in our model. If we had the word alignments marked up in our parallel text,
we could easily estimate the parameters of our translation model, i.e. the lexical translation
probabilities. On the other hand, if we had the parameters given to us, we could easily find
the most likely alignment by searching for an alignment that maximizes the product of the
lexical translation probabilities. Unfortunately, we got neither of them. Here is why EM

algorithm comes in to help solve the problem.

The EM algorithm usually works as follows:
1. The first step is model initialization. In our case, we give an initial value to each lexical
translation parameter. Most of the time people would like to choose uniform distribution
as initial values because at the beginning we assume every translation candidate is equally
likely. But this will change as EM algorithm iterates over the data.
2. Expectation step: We apply the model to the data, to calculate the value of the latent
variable, which is the most likely alignment a.
3. Maximization step: We learn the model from the data, i.e. re-estimate the lexical trans-
lation parameters.
4. Since this is an iterative method, we iterate steps 2 and 3 until it converges. In our case,
convergence usually takes 5 to 10 iterations.

A visualization of the EM algorithm looks like Figure 1.4 (Philipp Koehn 2010), where
all the alignments start to be equally likely but some of them gradually become more likely

as the algorithm iterates through the data.

For the E step, we need to calculate p(ale, f), this can be derived by the definition of
conditional probability as follows:
p(e, alf)

p(elf)

The numerator of equation 1.10 is already given before in the definition of IBM model 1,

plale, f) = (1.10)

but we still need to derive the expression of the denominator, which is p(e|f). We can derive

p(elf) as follows:



la mison ... la naison blue ... la fleur

by

the house ... the blue house ... the flower
(a) EM Iteration 1
la maison ... la naison blue ... la fleur
the house ... the blue house ... the fl ower
(b) EM TIteration 2
la maison ... la maison bleu ... la fleur
the house ... the blue house ... the flower
) EM Iteration 3
la maison ... Ia mai son bleu ... la fleur
the house ... the blue house ... the fl ower

(d) EM Iteration 4

Figure 1.4: EM Algorithm, as demonstrated in SMT textbook (Philipp Koehn 2010)

plelf) = > _ple,alf)

:Z Zpea|f

a(l) 0 a 6)—O

- Z Z l —|—1 Ht€]|f(l(] (1.11)

a(1)=0 a(le)

- i z S [Tl

=0 a(le)=0j=1

€

Ly
lf—l-l Hzt €]|fz

7=1:=0

Let’s now plug the equation 1.11 back into the equation 1.10, we can get the alignment

probability as follows:



ple, alf)
plelf)

B ariye i teil fug)

(lf+1 (Ip+1)le HJ 12@ ot(e;lfi)

plale, f) =

(1.12)

_ ll_[ l(ej‘fa(j))
j=1 2ol el fi)
For the M step, we need to update the lexical translation probabilities, which is to collect
different translation counts over all possible alignments, times their corresponding proba-

bility. Formally, this can be defined as follows:

clelf;e, f) = Zpa|ef Z&eej (f, fa(i) (1.13)

The delta function §(z,y) equals to 1 if x = y and 0 otherwise. We can further plug in

equation 1.12, which will give us the following expression:

le Ly
cle|f;ef) = ( ]f Z(S e, €j Z (fs fi) (1.14)
i) j=1 =0

After we get those counts, we can re-estimate the lexical translation probabilities by

Zef) (‘fvef)
Z Zef (|f,e7f)

Let’s say after five iterations we are done with the training process, now how can we find the

telf;e f) = (1.15)

most likely alignment with a bunch of lexical translation probabilities at hand? Eventually
the problem we were trying to solve is to find the alignment. For IBM Model 1, it is easy
to show that the most likely alignment is given by:

le
a = argmaz, H t(ejl fais)) (1.16)
j=1

Above are the fundamentals of IBM model 1 and how to learn the parameters in our case.

We will have more detailed explanation in later chapters.

Limitation

As the most basic model in the whole series of IBM models, the flaws of IBM model 1 are
obvious, and we just list some of them here:

1. Only one-to-one and one-to-many type of alignments are modelled in IBM model
1. IBM model 1 assumes that for each word in the target sentence, there is at most one

source word in the original sentence. But this is not true in real word since we often see a

10



phrase, which has several words, in the source sentence get translated into one word in the
target sentence. This type of many-to-one alignment can not be captured by IBM model 1.
And similarly, many-to-many alignment is not well modelled, either, which causes the IBM
model 1 to be naturally flawed.

2. The position of the words in the target sentence are not considered. According
to IBM model 1, two different target sentences generated with the same set of words are
equally good although the word order can be pretty different. We can easily tell this is not
true because in real world translation, word order is of great importance, which directly
decides if the translation makes sense. The tendency we often observed that a contiguous
phrase in the source language often gets translated into another contiguous phrase in the
target language is not modelled.

3. The fertility of each input words is not modelled. For each input word in the source
sentence, their ability to generate output words is different, which means for some words,
they usually get translated into two words in the target language while for others, maybe
one word is more frequently seen. Still, IBM model 1 does not provide any assumptions
about the fertility problem.

Most of the limitations for IBM model 1 have been further addressed and fixed in higher
IBM models. However, IBM model 1 provides us with a simple convex optimization proce-
dure to learn word alignments which we can augment to learn a joint model of alignment

and alignment types as we shall see later.

1.3.3 Generative Model and Discriminative Model

In the following chapters, we will propose two different models to find word alignments
and predict the corresponding alignment types. And we will frequently refer to the term
generative model and discriminative model. Thus, to make things clear, here we give a brief
explanation to these two terms.

Generative Model: As the name suggests, generative model is a model that models
the joint distribution of the observed data (the sentence pair) and the output labelling (the
hidden alignment). For example, IBM model 1 is an example of generative model. In IBM
model 1 we want to generate a target sentence from the source sentence. We achieve this
by breaking the process into smaller steps, which models the lexical translation, and then
combines the probability distributions for each aligned word pair to derive the probability
of the whole sentence pair. A generative model is a complete probabilistic model for all
variables.

Discriminative Model: In contrast with generative model which models the joint
distribution of input and output random variables is what we call discriminative model
which does not model the input random variables, but rather models the output variables
conditional on the input. It is also called a conditional model because it is often used to

model the dependency of an unobserved variable Y on an observed variable X. This is done

11



by modelling the conditional probability distribution p(Y|X), which can be used to predict
Y given X.

To conclude, generative models are more flexible in terms of modelling the dependencies
in observed data and are typically used in unsupervised learning while supervised learning
tasks such as classification and regression, discriminative models perform better than gen-
erative models as they can use log linear or non-linear combinations of features in the input
and they don’t need to model the data distribution but rather they can directly minimize

classification or regression loss on prediction of the output variables

1.4 Alignment Types

1.4.1 11 Different Alignment Types

Since alignment type is a new concept that requires some linguistic knowledge, we create
a section here to give a more clear explanation of the 11 alignment types we use which
are also used in the LDC Word Alignment and Tagging data. The 11 alignment types are
shown in Table 1.3 below. And we provide some examples for each of the alignment types

to give you a taste of their meanings:

Table 1.3: 11 different alignment types and their meanings

abbreviation meaning
SEM Semantic link
FUN Function link
PDE DE-possessive link
CDE DE-clause link
MDE DE-modifier link
GIF Grammatically Inferred Function link
GIS Grammatically Inferred Semantic link
COlI Context Inferred link
TIN Translated Incorrect link
NTR Not Translated link
MTA Meta word link

Semantic links

This is the link between content words/phrases of source and translation, indicating direct
equivalence. Content words are words that carry rich lexical meanings. For example, for
English, content words are usually nouns, verbs, adjectives and adverbs. Different languages
have different set of content words. For Chinese, there are more types of content words than
those in English. However, we just simply adopt the English standard. If the words on
both side of the alignment are content words, then the alignment type will be SEM. Some

12



examples may look like:

H1[E — China

Hr ) — special

Function links

This is the link between function words/phrases of source and translation, indicating func-
tion words are aligned between two languages. Function words are those that don’t have
domain specific lexical meaning but instead serve to represent the relationships with other
words in the sentence. If the word on either side of the alignment is a function word, then
the alignment type will be FUN. Note that punctuations are also covered in this type. Some

examples may look like:

1 — and
%% — among other things

o .

DE-possessive links

Alignment types PDE, CDE and MDE are designed to handle the different features of
the Chinese word fJ. The Chinese word ffJ in DE-possessive links assume the possession

function in a modifying relationship. For example:

rREEGE K2 B #4% — Professor at Chinese University of Political and Law
PR ) EE Y — Great attention from Peng Dehuai
DE-clause links

Chinese word [ in DE-clause links usually starts a modifying clause at the English side.

For example:

ST ki 4 B A K — To those who have experienced war
AR LARATT A8 2] B /2 — but what they had not expected was

DE-modifier links

Chinese word ] is frequently used in modifying relationship between words or constituents.
This word can be translated differently and flexibly. When it does not assume the possessive
or clause function during translation, it is the regarded as a DE-modifier. In this case, it is

usually translated into prepositions in English. Some examples may look like:
HBiEHAR ) EEM — The importance of numerical control technology
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Grammatically Inferred Function links

Grouping or attaching function words to their head words can show word dependency re-
lations. Links can still be of a semantic or function nature with extra words attached.
The attached words can be functional or contextual, providing grammatical or contex-
tual/semantic clues. The missing words on the other side of the link then can be inferred
grammatically or contextually. Thus, according to how missing words are inferred, we have
grammatically inferred links and contextually inferred links.

In grammatically inferred function links, stripping off extra words we get pure function

links. Some examples may look like:

e —.

T —a

Grammatically Inferred Semantic links

In grammatically inferred semantic links, stripping off extra words results in pure semantic

links. Some examples may look like:

... ¥LIK — machine tools

4%‘ }ﬁ% — success

Where the Chinese words 8 and ¥ don’t actually contribute any lexical meaning but
instead are attached for grammatical reasons, and stripping off them results in pure semantic

links.

Contextually Inferred links

In contextually inferred links, the extra words attached to one side of the alignment are
obligatory for the context. Without them, the grammatical structure might still be ac-
ceptable, but it is not semantically sensible. Such extra words are usually triggered by its
co-occurring word or collocation word. The missed words on the other side of the link will

be accordingly implied by word association or collocation. Some examples may look like:

WK E — welcome

2 WiEE) — meeting

In the examples above, when you say Welcome to our show, you actually imply Welcome
to watch our show. Thus, an extra Chinese word Y% which means watch is attached to

another side of the alignment.
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TIN, NTR and MTA

Those three link types are designed to handle the various errors occurred in the translation
process, such as incorrectly translated, not translated and meta word. TIN stands for

translated incorrectly link, and an example looks like:
I — can

In this pair of aligned words, the Chinese word actually means would better while the
English word is can, which is not a very proper translation. However the Chinese word is
still aligned to the English word because that’s the best it can get in the English sentence.
NTR stands for not translated link. A typical NTR would look like:

I —

This usually happens when some words are dropped during the process of translating a
Chinese sentence into an English sentence. This is not rare since the source Chinese sentence
can have words with redundant meaning or the target English sentence just does not have
an equivalent expression. MTA stands for meta words link. It was designed to handle some
special characters in the corpus, such like & quot and —. They usually appear in the web

context.

1.4.2 Dataset

Throughout our experiments, we used two different datasets:

The first one is the Word Alignment and Tagging corpus released by the LDC in 2014.
It is called the GALE Chinese-English Word Alignment and Tagging corpus. Specifically,
the releases we used in this series are:

1. LDC2012T16[17], GALE Chinese-English Word Alignment and Tagging Training Part 1
— Newswire and Web

2. LDC2012T20[18], GALE Chinese-English Word Alignment and Tagging Training Part 2
— Newswire

3. LDC2012T24[19], GALE Chinese-English Word Alignment and Tagging Training Part 3
— Web

4. LDC2013T05[21], GALE Chinese-English Word Alignment and Tagging Training Part 4
— Web

5. LDC2013T23[20], GALE Chinese-English Word Alignment and Tagging — Broadcast
Training Part 1

6. LDC2014T25[22], GALE Chinese-English Word Alignment and Tagging — Broadcast
Training Part 2
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There are about 22k parallel sentences in the 5 releases altogether. We held out 2k
sentences as the test set and used the remaining 20k as the training set. This dataset does
not only include the parallel sentence aligned data, but also the gold alignments as well as

the alignment types (tags) for those alignments.

The second dataset we used is the Hong Kong parliament proceedings (Hansards). We
use 1 million sentences of the HK Hansards. However, in this dataset the gold alignments

and tags are not provided. Only the sentence aligned Chinese and English text are given.

1.5 Contributions

The three main contributions of this thesis are:

1. We come up with a way to predict the alignment type given an aligned word pair and

explore different feature types that can be used to improve the accuracy of prediction.

2. We introduce a new joint task which is to simultaneously predict word alignment
and alignment types. This task has not been explored by anyone else before. We give two
models, one generative and one discriminative, to solve this joint task, and show that the
word alignments produced in this joint task are of higher accuracy than what was found in

traditional word alignment task alone.

3. We show that such alignment type information can be used as an effective feature
in generating word alignments and may be beneficial to the following machine translation

process.

1.6 Thesis outline

The rest of this thesis will present the following contents:

Chapter 2 tries to solve a sub-task of the original joint problem we proposed, which is
to predict the alignment type given a pair of aligned words.

Chapter 3 discusses two models we built to solve the original problem, one is generative
and another is discriminative. Discussion goes all the way from the birth of idea, the
definition and derivation of the formulas, down to the implementation and evaluation of the
models

Chapter 4 is the final summary of the whole thesis. In this chapter, we repeat the
key conclusions drawn from all the previous chapters and point out the possible future

directions for continuing research.

16



Chapter 2
Alignment Type Prediction

Jointly computing the word alignment and alignment type is a harder problem than the
intermediate problem of simply predicting the alignment type given a pair of aligned words.
In computer science, a very useful strategy to tackle a hard problem is called divide and
conquer, i.e. break down a large problem into smaller pieces, solve them one by one, and
then combine the results. Similarly, here instead of directly solving the original problem,
we first discuss the solution to a smaller sub-problem, which is how to predict the alignment

type given a pair of aligned words.

2.1 Problem Definition

Formally, given an aligned word pair (e, f), what is the most likely type for this word
alignment e — f7 Recall that we have 11 different kinds of alignment types in total. They
form the following set {SEM, FUN, PDE, CDE, MDE, GIS, GIF, COI, TIN, NTR, MTA}

2.2 Logistic Regression

In real life, we often need to identify which category a given object belongs to and this
type of problem is called classification. It is not hard to see our problem of alignment type
prediction is actually also a problem of classification because all 11 types of alignments are
given and the tag between a given word pair must fall into one of the 11 types.
Classification techniques are well developed in machine learning. And there are many
different ways to solve a classification problem such as SVM, Nearest Neighbours, Random
Forest, Logistic Regression, etc. However, we would like to use a method that can give
us not only the alignment type label, but also the probability of being classified as this
type. This is for the convenience of using this probability in later statistical models to solve

the original problem. Thus, among those classification techniques, in order to get the full
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probability distribution, we decide to use Logistic Regression to solve our alignment type

prediction task.

What is Logistic Regression?

Logistic Regression, contrary to what its name suggests, is a log linear model for classifica-
tion rather than regression. A Logistic Regression model takes an input of any value, and
maps it to a number between 0 and 1 and thus can be interpreted as a probability. This
kind of mapping is done by a special function called logistic function, and it can transform
any value from negative to positive infinity to some number between 0 and 1. The logistic
function is defined as below:
et 1
o) = b+l 1+et (2.1)
A graph of the logistic function is shown in Figure 2.1

0.5

+0.25

Figure 2.1: the graph for logistic function

t is a linear combination of our input variable z, ¢ can be expressed as

t=wo+wx (2.2)

We plug back the expression for ¢ into the logistic function and now the logistic function

can be written as:

1
= 1 _}_ef(woerz)

Given the input variable x we want to predict the label/category of z, denoted by Y.

(2.3)

The value of F(z) can be interpreted as the probability of z being labeled as 1. Thus if
F(xz) >= 0.5, we should predict Y = 1, otherwise Y = 0.
This also means to predict 1 whenever wy+wx >= 0 and 0 otherwise. Thus, the logistic

function gives us a linear classifier. The solution of wy + wz = 0 is actually the decision
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boundary which divides the two different categories 0 and 1. And the shape of the decision
boundary depends on the dimensionality of input variable x. If z is one dimensional, the
decision boundary is a point; If x is two dimensional, the decision boundary is a line, etc.
And the category probability depends on the distance from a certain point to the boundary.

Logistic Regression is one of the most commonly used techniques for discrete data anal-
ysis because it is simple but works surprisingly well. And it makes stronger and more
detailed predictions due to the probabilities it can provide. Because of the probabilities, we

can actually fit the logistic regression model in a different way than a normal classifier.

Model Fitting

Given the fact that Logistic Regression provides us probabilities, we can fit the model by
using maximum likelihood. The first step is to express the likelihood function. Let’s assume
we have a set of training data points x; and for each of them there is a category label y;,
that can be 0 or 1. The probability of a point x; being labeled as 1 is p(x;) and 1 — p(x;)
for being labeled as 0. Thus, the total likelihood for the set of data points is a product over

them:

n

L(wo,w) = [[ p(za)¥ (1 — p(z:))' ¥ (2.4)
=1

If we take the log of the above equation, we can get the log likelihood of the data:

Hwo,w) = > _log(p(x:)) + (1 — yi)log(1 — p(x;))
=1

- zn: log(1 —p(zi)) + iyilogﬂ
=1 i=1 p(

1-— w,)
. N (2.5)
= log(1 —p(x:) + Y yilwo + i - w)
i=1 i=1
=Y —log(1+ e ) + > " yi(wo + @4 - w)
i=1 i=1

Now, we want to find the set of parameters that will maximize the likelihood of the data.
Usually, to find the maximum likelihood estimates, we can take the derivative with respect to
the parameters, then set the derivatives to zero and solve for the parameters. For example,

let’s take the derivative respect to one parameter, w;
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=1 =1

= Z@i — p(xi; wo, w)) Ty

i=1

(2.6)

We can take the derivatives with respect to the other parameters to obtain the gradients for
those parameters. However we cannot directly set the equations to zero and solve them be-
cause the equations are transcendental and no closed-form solution exists. However, we can
still use some gradient methods to solve this type of optimization problem approximately,
such as Newton’s method or iterative re-weighted least squares (IRLS). In such methods we
start with an initial guess for the parameters and iteratively improves it. We do not discuss

the detail of the optimization algorithm (IRLS) here since it is not the focus of this thesis.

Logistic Regression for multiple categories

All the discussion above assumes that we only have two different class labels. But this is
not true in our case. We have eleven different types of linguistic alignment types, which are
eleven distinct output labels. In general we have two ways to solve the multi-class problem
for logistic regression.

One is called One-Vs-Rest, which means for every class C, build a classifier between Cj,
and all the other classes. Then combine all the binary classifiers. For an input variable z,

run it against every binary classifier and return the class that maximizes the log likelihood.

Another is the real Multiclass logistic regression, where we use a softmax function instead
of logistic sigmoid and then learn the parameters w towards the cross entropy loss. The

softmax function looks like below:

T
ewk T

p(y = klz) = <K oTa (2.7)

i=1¢"
Each class will have it own parameters and we learn a set of parameters {wi,ws, ...wx }.
When the total number of classes K equals to 2, the above equation reduces to the original

logistic function in equation 2.3.

Implementation using Scikit-learn

Instead of building up a logistic regression classifier from scratch, the widely used Python
based machine learning toolkit scikit-learn provides us with an efficient and easy-to-use im-

plementation. The implementation of logistic regression in scikit-learn can be accessed from
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class LogisticRegression. This implementation can fit a multiclass (One-Vs-Rest) logistic

regression with L2 regularization. It minimizes the following cost function:

1 = .
minw,CEwTw +C> log(e~¥i(Xiwre) 4 1) (2.8)
i=1
Scikit-learn’s implementation uses liblinear solver which cannot learn a true multinomial
(multiclass) model. Instead, the optimization problem is decomposed in a One-vs-Rest
fashion so separate binary classifiers are trained for all classes. This happens under the
hood, so LogisticRegression instances using this solver behave as multiclass classifiers. And

the parameter C' can be selected using the grid search function provided by scikit-learn.

2.3 Feature types

Now we have been armed with the basic weapon, logistic regression, to tackle the classifica-
tion task. Let’s think about what type of features x we can use to predict the alignment link
type y. Without further ado, one can come up with the most basic feature type, namely a
pair of Chinese word and English word, (cg, ¢y). However, this may not be strong enough to
give us high prediction accuracy. Besides considering the word pair itself, we can also take
the context into consideration. This is to say, besides using the current word, one can also
use another one or two words before or after it. An example would look like (c_1, ¢, €p)
which also uses the previous one word on the Chinese side. In order to make the most use
of the features and make sure the classifier will be able to generalize to unseen data, we can
also consider some more transferable feature types like Part of Speech (POS) tags. Instead
of using the word pair itself, we can also use the POS tags pair. Similarly, we can also use
only the first five letters of the English word, which acts like a stem of the original word.
This also helps to generalize the feature. Finally, we come up with a total of 22 types of
different features, shown in the Table below:

We can aggregate any number of the feature types above, hopefully to achieve even

better predication results.

2.4 Experiments and Results

We train the logistic regression classifier using the 20k LDC word alignment and tagging
data. It contains Chinese-English parallel sentences, as well as the gold alignments for the
sentence pairs and the linguistic tags for every word alignment. Some statistics about the
training dataset are shown in the Table 2.3 below. We can see that among the 396,743 word
alignments, the semantic link (SEM) makes up the largest number, followed by grammati-
cally inferred functional link (GIF), function link (FUN), grammatically inferred semantic

link (GIS), and other types of alignments.
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Number Feature Type Example
1 €0, €0 —JE, sure
2 c_1,Co, €0 FTbL, —3E, sure
3 c_o,C_1,co,e9 null, FTLL, —5E, sure
4 Cop, C1,C2,€0 QXHE7 g‘u ‘E‘ﬁﬁﬁa sure
) co,e_1,eq —JE, sure, to
6 co, €0, €1 —JE, sure, to
7 €0, €ty €1, —5%€, JJ, TO
8 co, [eo]s, et, —JE, sure, to
15 Cto» €to» €1 AD, JJ, TO
22 Ct_15Ctgs Cty1H Ctg AD, JJ, TO, JJ
Table 2.1: 22 different feature types and examples

Type of Alignment Number
SEM 159,277
GIS 81,235
FUN 97,727
GIF 12,314
PDE 1,421
COlI 3,256
CDE 1,608
TIN 1,116
MDE 4,615
NTR 34,090

MTA 84

Table 2.2: 396,743 aligned word pairs in 20k training data

In order to get the different types of features we came up with in previous section, we
follow the rules below to process the data:

1. To get the word pairs, we extract the word pairs from the parallel sentences using the
gold alignment provided.

2. To get the part of speech Tags, we first annotate the 20k data with the Stanford POS
tagger (Toutanova et al. 2000), and then extract the POS tags.

3. We ignore the gold alignment if the Chinese side of the gold alignment is not contiguous,
which means it can’t form one Chinese word. This usually happens in the types of many-

to-one and many-to-many word alignments.
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Number Feature Type Example Accuracy 10-fold CV

1 €0, €0 —3E, sure 69.5 67.8
2 c_1,€0, €0 FITbL, — %€, sure 69.6 67.8
3 c_o,c_1,co,e9 mnull, FTLL, —35E, sure 69.7 67.8
4 co, C1, €0 — €, E, sure 69.4 67.6
7 co, €0, €1 —JE, sure, to 71.6 69.2
8 €0, €0, €t — €, sure, JJ 74.9 73.4
9 co, [eo]s —JE, sure 71.3 69.3
15 Cto. €t AD, JJ 70.6 70.5
Combo. 1+24...+415 ... 82.0 0.7
Combo.  1+42+..422 ... 87.5 81.5

Table 2.3: Different feature types, combinations and the prediction accuracy (in %)

After we get all the different types of features from the training data, we train a logistic
regression classifier using these features and their combinations. To evaluate the perfor-
mance of our classifier, we report two numbers, one is to directly test on the same training
data after training, another is to do a 10-fold cross validation on the training data. And
the results are shown in the Table 2.3 below:

The experiments show that when we combine all the 22 types of features, our logistic
regression classifier gives us the best predictions of an accuracy of 81.5%. We will use this
trained classifier for all the following experiments and models.

The last evaluation task we did is to evaluate the above logistic regression classifier we
trained with 22 different feature types on another 2k test data, which is held out from
the training data. This represents how well the classifier works on unseen data. And
the accuracy we got is 81.4%, which is comparable to the result of 10-cross validation,
indicating how well our classifier works for new data.

To give a more detailed analysis of the predicted labels, we come up with the confusion
matrix in Table 2.4, where the vertical axis represents the actual classes and horizontal axis
represents the predicted classes. In an ideal case, the numbers on the diagonal of the matrix
should be as large as possible.

From the confusion matrix we can see that our logistic regression classifier works well
for SEM, FUN, GIS, GIF, MDE, and CDE, since the numbers on diagonal are the largest
in the row. However, for PDE, it seems hard for our classifier to distinguish it with MDE.

And for COI and TIN, it’s really easy to mis-predict them as other types.
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Aze: SEM | FUN | GIS | GIF | MDE | PDE | CDE | COI | TIN | NTR | MTA
SEM | 14912 | 272 | 2896 | 28 0 0 0 18 0 0 0
FUN | 292 | 8973 | 279 56 8 1 5 3 1 0 0
GIS | 3306 | 222 | 12758 | 41 3 0 3 23 1 0 0
GIF o1 268 173 | 968 0 1 0 1 0 0 0
MDE 1 0 3 0 424 22 0 0 0 0 0
CDE 1 0 2 0 0 0 135 0 0 0 0
PDE 4 0 0 2 56 62 0 0 0 0 0
COI 238 8 293 1 0 0 0 28 0 0 0
TIN 73 18 60 8 0 0 0 0 10 0 0
NTR 0 0 0 0 0 0 0 0 0 0 0
MTA 0 0 0 0 0 0 0 0 0 0 0

Table 2.4: Confusion Matrix on test results, Actual Vs. Predicted

2.5 Summary

In this chapter, we described the problem of tag prediction given a pair of aligned words
and gave a solution to this problem using logistic regression classifier. We explored 22
different types of features and their combinations for using a logistic regression classifier
and evaluated them on our training and test data. We found out that using all the 22
feature types gives us the best result: 81.4% accuracy on unseen data and 81.5% accuracy

using 10-fold cross validation on the training data..
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Chapter 3

Joint Prediction of Word
Alignment and Alignment Types

So far, we have already shown how to predict the alignment type between a given pair
of aligned words. With this component in hand, we can start to consider solving the
original joint task. In this chapter, we will introduce two different models, one generative
and one discriminative, to solve the problem of simultaneously finding word alignments
and predicting the corresponding alignment types. Some background knowledge will be

provided wherever it is necessary.

3.1 Generative Model

3.1.1 Definition

Recall that in IBM Model 1, we break down the sentence translation probability into the
product of all the individual word translation probabilities. The translation probability of a
foreign sentence f = (f1, ..., fi,) of length s to an English sentence e = (e1, ..., e;,) of length

le with an alignment function a is defined as follows:

le

ple,alf) = (lerl)lejl_[lt(ej|f“(j)) (3.1)

€

Our new generative model is an extension of IBM Model 1. We still obey the assumption
that the sentence translation probability can be broken down as the product of word trans-
lation probabilities. However, in order to solve the joint problem, instead of modelling the
pure sentence translation probability under a certain alignment function a, p(e,alf), we
take the alignment type probability into consideration and thus model the sentence trans-
lation probability with a certain alignment function a and a tagging function A, so that the

alignment type for each alignment in a is predicted by h.
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Thus, besides the alignment function a : 7 — 4, we introduce a new tagging function h and
the value of h(ej, f;) is the corresponding alignment type for alignment j — i, i.e. one of
the 11 linguistic tags. With the tagging function h, we can refine the translation proba-
bility of translating a foreign sentence f = (f1,..., fi,) of length I to an English sentence
e = (e1,...,e;,) of length [, with an alignment function a : j — i and tagging function

h: (ej, fi) = hg, as follows:

le
€
hlf) = ||t i h(e; ; ; 3.2
p(e, a, h|f) (lf+1)le « N+l o (€5 (%,fa(]))‘fa(])) (3.2)

And for each lexical translation probability, with the help of the chain rule, we can derive
that:

t(ej, hlej, fag))fa)) = tlejlfag)) X t(h(ej, fagi))les, fai)) (3.3)

To make it simpler, we denote fo(;) as f; and the value of h(ej, fq(;)) to be some tag hy, so

the formula now becomes:

t(ej, hilfi) = t(ejlfi) x t(hilej, fi) (3.4)

This definition, like the pure IBM Model 1, is still based on the lexical translations. The
formula above basically tells us that the probability of translating a source sentence to
a target sentence with a certain alignment and a set of tags equals the product over the
probability of translating each individual source word f; into a target word e; and the tag
between this word pair is h(ej, f;). The fraction before the product is for the purpose of
normalization. There are [y + 1 source words, including the special NULL word, and each
of them can be aligned to any of the [, target words. So totally there are (I5 + 1)k kinds
of different alignments. And for each alignment there are N t! ways for tagging because
there are N different type of tags, where N equals 11 in our context. The parameter € is a
constant to make p(e, a, h|f) a proper probability distribution, which means the sum over
all alignments and tags should be 1.

To give you an example, we apply this new model to the example in Chapter 1 as shown
in Figure 3.1, And it works as follows:

Five words are translated according to the alignments and tags above, so the overall

probability should be the product over all the five lexical translation probabilities:

p(e,a, h|f) = 54><76N5 x t( Yesterday, SEM|HERX)

x t(I, SEM|3%) x t(bought, SEM|3E T) (35)
x t(a, FUN|—4) x t(book, SEM| )
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“

i3 I

SEM SEM \ SE XSEM
yesterday | bought a book

Figure 3.1: A Chinese sentence and its translation

3.1.2 EM for Generative Model

Similar to IBM Model 1, we still adopt the EM algorithm to learn the lexical translation
probabilities. The derivation process follows closely the derivation of the EM for IBM Model
1. Recall that in the EM algorithm we typically do the following four steps:

1. Initialize the model
2. E step: apply model to the data
3. M step: learn new parameters from the data

4. Tterate Until convergence

In the Expectation Step, we need to compute the probability of a certain alignment with
its set types given a sentence pair in the parallel text. That is to say, we want to compute

p(a, hle,f). Applying the chain rule gives us:

p(a,hle,f) = p(ale,f) x p(h|a,e,f) (3.6)

The p(ale,f) part is easy to get since we already derived it in EM for IBM Model 1 (see

Chapter 1). and we can just plug in the result value. It equals to:

_ ple.alt)
Pele D =" el

e i teil fag)
€ e l
arye L il tleslfi)

13 S el fi)

(3.7)
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As for the tagging probability part p(h|a,e,f), similarly, we break down the tagging prob-

ability over the whole sentence into individual words and take a product:

le
p(hla, e, f) = H s(hilej, fa@s)) (3.8)
i=1

To distinguish from the translation probability t, here we use a different letter s to denote
the tagging probability and hy to denote the type of the word alignment e;, f,(;). Thus,

when we put the above two equations together, we get:

o telfag) S
p(a,hle,f) = T —222 5 T s(hiles, facy)
j_lelf_ eyl Lol et

& t e]|fzz(] X S(hk|ej’fa(j))
o t(e;lf)

As for the Maximization Step, we perform counting collection of all the lexical translations
over various alignments as well as their tags. Those counts will be multiplied by their
respective probabilities p(a, hle,f), which we found in the above step. Formally, a count
function ¢ can be defined to reflect how we collect counts from a sentence pair (e, f) in

parallel text that a certain foreign word f gets translated into an English word e with a tag
hy :

le
C(ey hk‘f;ea f) = Zp(a,h\e f Z € 6] f’ fa ) (hkah(ejvfa(j))) (310)

Recall that the delta function d(z,y) equals to 1 if x = y and 0 otherwise. We can further

plug in equation 3.9, which will give us the following expression:

Ly
“”“X‘"}'e S s(erey) Sa(f, 0 hles £) 31
z 7j=1

The above count function ¢ simply tells us: count the number of times that the source

cle,hi|f;e f) =

word f gets translated into English word e with alignment type hg, and then multiply its
probability.
Recall that in IBM Model 1 where no alignment type information is included, the count

function is defined as:

le ly
cle,|fre,f) = ( |f N "6(e,e) Y 0(f. fi) (3.12)
i) j=1 =0
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After collecting those counts, we can update the parameters, which are the lexical transla-

tion probabilities and the tagging probabilities. We have:

t(ev hk|f) = t(€|f) X S(hk|€> f)

_ number of times f translates into e _ number of times f translates into e with tag hy,

number of times f appears number of times f translates into e
number of times f translates into e with tag hy

number of times f appears
(3.13)

Note the above formulas actually tell us that there are two ways to update (e, hg|f), one

is to directly use the final step, which is:

number of times f translates into e with tag hy

tle, h = -
(e, hu|£) number of times f appears

_ (o) (e hilfr e, 1) (3.14)
B Ze th Z(ef) C(€, hk’f7 e, f)

Alternately, we can also use the product t(e|f) x s(hgle, f) to compute:

tle, h|f) = tlelf) x s(hle, f)
_ Yes)cle | fief) y > (o) (e hilf e, f)
Ye (e clelfie ) 3, Yier cle hilfie, ) (3.15)
_ 2epcelfief) y Pe) cles hilfie,f)
Yeenclelfief) Y clelfief)

In real world implementation, we can use either of the two ways as shown in equation
3.14 and 3.15, whichever is more convenient for processing the training data and collecting

counts.

3.1.3 Pseudo Code

We provide the pseudo code for implementing the EM algorithm for our new generative
model in real practice. There are some coding details and efficient tricks. For example,
We store three count tables, one for the count of all foreign words f count(f), one for the
count of all possible word pairs (e,f) count(e, f), and another for all possible word pair and
their tags count(e, f, hy). the translation probabilities are actually not stored but instead
computed on the fly every time we need it. And for model initialization, instead of giving

every possible word pair an initial value, we initialize them only when we see them.
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Input: Parallel sentence pairs (e,f) and linguistic tags h
Output: translation probability ¢(e|f) and tag probability for an aligned word pair

s(hile, f)

1

2 Initialize t(e|f) and s(hgle, f) uniformly
3 while not converge do

4 // initialize

5 | count(e, f) =0 for all e,f

6 count(e, f,h) =0 for all e,f,h

7 | count(f) =0 for all f

8 for all sentence pairs and their tags (e,f,h) do
9 // compute normalization

10 for each word e in e do

11 total(e) =0

12 for each word fin f do

13 ‘ total(e)+ = t(e|f)

14 end

15 end

16 // collect counts

17 for each word e in e do

18 for each word f in f do

19 count(e, f)+ = tf,iilz{i)

20 count(f)+ = tZS:Z‘lJ(Z)

21 if e and f are seen aligned with a tag hi then
22 ‘ count(e, f, hy)+ = 7“6‘]?521(&’3‘6’”
23 end

24 end

25 end

26 end

27 | // re-estimate probabilities

28 for each foreign word f do

29 for each English word e do

30 telf) = e

31 for each tag type hy do

2 s le ) = Gty

33 end

34 end

35 end

36 end

Figure 3.2: Pseudo Code for EM training
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Figure 3.2 shows the pseudo code for the EM algorithm applied to our new generative
model. We first uniformly initialize the probability distribution. Then we collect count
according to equation 3.10 and 3.11. Eventually, we can re-estimate the probability distri-
butions t(e|f) and s(hgle, f), whose product equals t(e, hg|f). In terms of time complexity
and space complexity, the above algorithm is linear with the number of sentences and

quadratic in sentence length, i.e. the number of words in sentence.

3.1.4 Finding the best alignment and tags

We obtain lots of word translation probabilities after the EM training is done. We can
finally proceed to the last step of solving the original task of jointly predicting the best
alignment with the best alignment type for each alignment. The optimal alignment-type

combination is given by:

l

i, h = argmazq,, H t(es, hlfa(s)) (3.16)
j=1

This equation tells us that we have to go through all the possible alignments and types
to see which one yields the largest product over the lexical translation probabilities. Since
each single lexical translation probability is independent of each other, we search through
the possibilities that maximize the product. This is to say, for each source word f, we go
through all the target words e and alignment types hj to pick the one that makes t(e, hy|f)

largest. Because this procedure is fairly simple, we omit the pseudo code here.

3.1.5 Remarks

Up till now, we have introduced our generative model for solving the joint task we defined.
We started from the model definition, to how to train the model, and finally how to find
the best alignment and tags using the trained model. In a word, this generative model is a
modification of the original IBM Model 1. This kind of modification is natural because we
have gold alignment and alignment types data at hand which makes it possible to collect
the count of count(e, f,hy). And it makes sense to utilize the alignment type information

because it will definitely add new evidence to the model.

3.2 Discriminative Model

3.2.1 Definition

Recall that in the generative model we just introduced, sentence translation probability is
defined as:

31



€

plesahlf) = 57

I
NI 11 t(ej, hles, faii)) | faii) (3.17)
j=1

For each lexical translation probability, we have equation 3.18, where s is the tagging prob-

ability.

t(ej, hi|fi) = t(ejl fi) x s(hklej, fi) (3.18)

In the generative model, we use maximum likelihood estimation to model s(hgle;, fi)
and the value is updated during each EM iteration. But this is not the only way to do it.
One can quickly relate to the logistic regression classifier we discussed before and it is a
perfect source to provide us the tagging probabilities. And this is actually why we want to
solve the sub-problem of alignment type prediction first.

Thus, in this discriminative model, we still follow the sentence translation model, the
only difference is how we model the tagging probabilities. Instead of using maximum like-
lihood estimation, we use the pre-trained logistic regression model as a component to give
us the tagging probabilities. The EM algorithm and all the equation derivations stay the
same. But note that, in the EM algorithm for our discriminative model, we do not need
to collect the counts for alignment types or update tagging probabilities anymore. Because
this value now directly comes from the logistic regression classifier and will not change with
the EM iterations.

3.2.2 Remarks

So far, we have proposed two models to tackle the problem of joint prediction of word

alignment and alignment types.

- One is generative, which assumes sentence translation probability can be broken down
into the product of individual word translation probabilities with types, and model the
tagging probability with maximum likelihood estimation.

- Another is discriminative, which is based on the same assumption but instead use logistic

regression to predict the alignment type probability.

We use the EM algorithm to learn the parameters, i.e. lexical translation probability ¢
and alignment type probability s, filling the gap caused by incomplete data. Finally get
the optimal word alignments and alignment types by maximizing the sentence translation

probability.
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3.3 Experiments and Results

3.3.1 Overview

To evaluate the performance of our two models, and compare with the baseline IBM model
1 that does not incorporate alignment type information, we designed the following experi-

ments:

1. Train and test on the same 20k LDC data, with gold alignments and alignment types.
This experiment is designed to test how well our new models work compare to baseline IBM

model 1 when there is no OOV (out of vocabulary), i.e. all words have been seen previously.

2. Train on 20k LDC data, with gold alignments and alignment types, test on another
2k LDC data that are held out from the training data. This is to see how the models work

when there are unseen data.

3. Train on 20k LDC data, with gold alignments and tags, and 1 million Hong Kong
Hansards, without any additional annotation, test on another 2k LDC data that are held
out from the training data. In order to better handle the OOV, we expand our training
data to larger vocabularies. We first train the model on 20k LDC tagged data and then use

it as the initialization to further train on the HK hansard.

4. To verify the significance level of our experimental results, we perform a significance
test on the comparison of our model and the baseline model. The details will be described

later.

Also, for each experiment, we measure the performance of our models and the baseline

model on two different tasks:

1. One is the traditional word alignment task. We can compare our two models with
the baseline model on this task to see if the alignment type information actually helps to

find better word alignments.

2. Another is the new joint prediction task that we proposed, which is to predict both
the word alignment and alignment types. This task is obviously harder because we need
to get both of the word alignment and alignment type correct. Since the baseline model
can’t predict the alignment types, we can only do a comparison between our generative and

discriminative models.
To evaluate the results on the above tasks, we calculate precision, recall and F-score (as
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defined in Chapter 1) by comparing the experimental results to the gold alignments and
alignment types given in the 2k LDC test data.

3.3.2 Smoothing

When applying the models to test data, there must be some word pairs (¢, eg) and word
pair with alignment types (co, €g, hx) that we have never seen in the training set. We call
those OOV (out of vocabulary). However, we cannot simply return 0 for the unseen trans-
lation and alignment type probabilities because it will make the whole product 0. To solve
the problem caused by OOV, there are two ways. One is to train the model using more
data, hopefully to cover the unseen word pairs in the test data. Another is to use some
smoothing techniques to smooth the model, avoiding the appearance of 0. Here we adopt
the second approach, smoothing, because in real life we can never make sure that we have

seen all the word pairs before.

To smooth the translation probability ¢(e|f), we use the simple Add-a Smoothing. Orig-

inal, the translation probability ¢ equals to:

Helf) = <(f{ ) (3.19)

It is easy to see that if the word pair (e, f) is never seen before, c(e, f) will be zero. And if the

word f never appears before, we cannot even do the division. To ensure both the numerator

and denominator are not 0, we add a smoothing factor to them. In Add-a Smoothing, we do:

cle, f)+«
cf)+a-V

Where V is the vocabulary size, and « is a number smaller than 1. But what is a good

t(elf) = (3.20)

value for a? We can determine this value by experimentation, i.e. by trying out different
values and picking the one that gives us the best alignments on the held out data. Here we
use the empirical value a = 0.005.

To smooth the tagging probability s(hgle, f), we use the Back-off strategy. Originally, the
tagging probability is:

c(e, fv hk)

o(e, f) (3.21)

s(hele, f) =
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Now besides using words, we back it off to part of speech (POS) tags:

cle.f, c(testsh .
a‘%*“‘ﬂ*%@f) if c(e, f) > 0 and c(te,ty) >0
* S(hk’teat ) if C(te,t ) >0
s(hkle, f) if c(e, f) >0
le~1? otherwise

Where ¢, stands for the POS tag for English word e and Chinese word f. To get all those
counts for POS tags, we need to train a similar model on pure POS tags. We do this by
first labeling our parallel data with Stanford POS tagger and then train another model just
on those POS tags.

Now we need to set a value for . We would like to assign o and 1 — a to word based
model and POS based model respectively, according to how reliable they are. It is obvious
that we want to rely more on our word based model because it is more accurate and the

POS based one is too general. Given the fact that c(te,ts) is much larger than c(e, f), we

c(e,f)
cle,f)+c(tety)

If the word pair (e, f) was never seen before, then we use the second case in equation

seta=1-— , so that our word based model gets more weights.

3.22, which completely relies on the POS based model, and we compute it by:

estpshi) 5 (g, e hy) >0
S(hk‘te,tf) — C(te,tf) ( e bUfy k‘) (323)
P(hy) otherwise

Here P(hy) is the prior probability for alignment type hy. It is calculated according to the
Table 2.3 in Chapter 2.

0.401 if hy = SEM
0.246 if hy, = FUN
0.004 if h;, = PDE
0.004 if h;, = CDE
0.012 if hy = MDE
P(hi) = 10.205 if hy = GIS (3.24)
0.031 if hy = GIF
0.008 if hy = COI
0.003 if by, = TIN
0.086 if hy, = NTR
0.002 if hy, = MTA
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Similarly, if the tag pair c(t.,t;) was never seen before, then we use the third case in equa-

tion 3.22, which completely relies on word based models, and we compute it by:

s(hile, f) = {W Hele, f, ) >0 (3.25)
P(hy)  otherwise
For the last case, if neither (e, f) or (tc,tf) was seen before, which is very rare and unlikely,
we just return a very small number 1e=13
Thus, for the experiment results we report below, the numbers are smoothed. Of course
for experiment 1 in which we train and test on the same 20k data, we don’t use any
smoothing techniques since all the data are observed. But to better handle the experiments

on the unseen test set, we adopt the two smoothing methods discussed above.

3.3.3 Experiments

Experiment 1: Train and test on the same 20K LDC data, with gold alignments and
tags. As described in Chapter 1, we use F-score to evaluate the quality of our generated
alignments compared with the gold alignments. A Higher F-score means better alignment

quality. The results are shown in the table below:

IBM 1 | Discriminative | Generative | Gold
Precision 27.7 28.1 39.4 38.6
WA Recall 38.0 38.6 54.2 53.1
F-score 32.0 32.5 45.6 44.7
Precision 25.7 36.6
WA+Tag | Recall 35.4 50.4
F-score 29.8 42.4

Table 3.1: Train and test on the same 20k tagged LDC data, in %

In the table above, WA stands for the task of Word Alignment and WA+Tag stands
for the joint task. And please note that for baseline IBM model 1, the output will be pure
word alignments but for our generative and discriminative model, the output will be both
word alignments and their types. Thus, for task WA, we only take the word alignment part
and ignore their types, for task WA+Tag, we use them both.

In terms of finding the optimal word alignments, it’s not hard to see from the above
table that both of our generative and discriminative models perform better than the baseline
IBM model 1 that does not incorporate the alignment types. It shows that the alignment
type information actually helps to find better alignment.

As for the joint prediction task, our generative model does better than the discriminative
model. This is understandable because in this experiment the test data is the same as the

training data and the generative model memorizes all the word pairs and the alignment
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types it met before thus tend to give better predictions. but the difference is actually not
that huge, if we only take a look at the alignment type prediction task, as shown in Table
3.2

Model Num. of correct WA Num. of correct WA+Tag Accuracy%
Generative 20386 18951 93.0
Discriminative 14532 13331 91.7

Table 3.2: Alignment type prediction accuracy

Although these two accuracy numbers cannot be directly compared because the numbers
of correct word alignment retrieved are different, we can still get a rough idea on how well
the alignment prediction works.

If you notice there is a column called Gold in Table 3.1. This is the model built directly
from the given gold alignment, which means during the EM algorithm we collect counts
according to the gold alignment. The performance of this gold model is very competitive,
but still lower than our generative model. This means the training on alignment types is
not only injecting information about word alignments alone into our training procedure. It

is providing another layer of information to our models.

Experiment 2: Train on 20K LDC data, test on another 2k held-out LDC data.

To give a more objective and fair evaluation to our models, we test the models trained in
experiment 1 on another 2k unseen data. The smoothing techniques described before are
used to handle the OOV. The results are shown in Table 3.3:

Baseline | Generative | Discriminative
Precision 31.9 32.8 31.1
WA Recall 43.6 44.9 42.6
F-score 36.9 37.9 36.0
Precision 29.2 27.7
WA+Tag | Recall 39.9 37.9
F-score 33.7 32.0

Table 3.3: Train on 20k, test on 2k, in %

For the word alignment task (WA), this time although our generative model is not dra-
matically better than our baseline model, it is still considerably better than the baseline,
which is consistent with the previous experiment. However, this time our discriminative
model performs worse than the baseline. This is understandable because in the discrimina-
tive model, the alignment type probabilities are actually not involved in the EM training

process but instead are fixed values provided by the pre-trained logistic regression classifier.
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Thus, we would expect the word alignment found by the discriminative model no better
than those found by the pure baseline model when the accuracy of logistic regression is not

extremely high.

Experiment 3: Train on 20k LDC data, with gold alignments and tags, and 1 million
Hong Kong Hansards, without any additional annotation, test on another 2k held-out LDC
data.

Note that in this experiment, we are trying to enhance the model performance on un-
seen data, getting better results than experiment 2. Thus, besides the 20k LDC data, we
use another one million sentences from Hong Kong Hansards. Although the Hong Kong
Hansards is not annotated with any gold alignment or alignment types, it can still augment
our vocabulary. We call the model trained on 20k LDC data LDC model. And then use it
as the initialization for another larger model trained on HK Hansards. We call this larger
model augmented model.

However, when computing the translation probabilities ¢(e| f), this augmented model will
be negatively affected by the use of data in a different domain from the 20k training data we
used to train the alignment type models. Also, while HK Hansards are a different domain
that contains 1M sentence pairs and is much larger than 20k training set for alignment types
(LDC data is more about news, web and broadcasting). Thus, in our first experiment, which
directly uses the augmented word translation model, actually gives us slightly worse results
compared to experiment 2. So we need a proper way to use the augmented model. Since
the 2k test data is also from the LDC data, which is more similar to the LDC model, we
would like to compute ¢(e|f) using the LDC model first if the word pair (e, f) appears in the
LDC model, otherwise we will use the augmented model to compute t(e|f). This backoff

strategy can be represented as:

C(evf) 3

Helf) = ) D) if (e, f) >0 (3.26)
calef)  otherwise
ca(f)

Here C4 represents the counts collected by the augmented model. It works just as a backoff
option for the smaller LDC model. And using this backoff strategy we observed obvious

improvements when test on the 2K unseen data, as shown in Table 3.4:

For the Word Alignment task (WA), this time our generative model has a much higher
F-score than the baseline IBM model 1. Our discriminative model appears to be slightly
worse than the baseline model. But all of the three models perform better than using only
the LDC model as in experiment 2.

For the joint prediction task (WA+tag), both of our generative and discriminative mod-

els continue to be better than the baseline and gained better results than experiment 2. Our
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Baseline | Generative | Discriminative
Precision 32.2 36.2 31.7
WA Recall 44.0 49.5 43.4
F-score 37.2 41.8 36.7
Precision 32.1 28.1
WA+Tag | Recall 43.9 38.4
F-score 37.1 32.5

Table 3.4: Performance on 2k unseen data, in %, backoff using augmented model

generative model performs better than the discriminative model because generative model
gets more correct alignments and the test data are in the same domain as the training set
so that the discriminative classifier does not really outperform the generative one .

If we do a detailed analysis on separate alignment types, we can get the prediction

precision, recall and F-score for each alignment type as shown in Table 3.5:

Discriminative Generative

Type | % | Precision | Recall | F-score | Precision | Recall | F-score
SEM | 40.5 42.0 53.6 47.1 379 60.7 46.7
FUN | 24.9 30.0 56.9 39.3 47 62.9 53.8
GIS 20 2.2 3.1 2.6 3.3 5.1 4.0
GIF 3 29.5 35.6 32.3 52.3 53.3 52.7
COI | 0.8 5.9 1.0 1.7 11.7 4.6 6.6
PDE | 0.3 16.7 37.9 23.2 30.3 35.5 32.7
CDE | 04 21.3 30.9 25.2 28.5 66.2 39.8
MDE | 1.2 14.4 54.1 22.8 23.7 59.4 33.9
TIN | 0.3 5.9 1.0 1.6 5 1.8 2.6
MTA | 0.01 0 0 0 0 0 0
NTR | 8.6 0 0 0 0 0 0

Table 3.5: Precision, Recall and F-score on each alignment type

The second column is the percentage of each alignment type out of the whole test data.
However, the above calculation in Table 3.5 is actually not a fair evaluation of the alignment
type prediction task because the results are based on all the alignments produced, including
the wrong ones. For example, for alignment type SEM, We got 15520 alignments labeled as
SEM in the gold alignment, 28838 in the produced alignment, and 8972 in their intersection.
Using these numbers we can get the precision, recall and F-score in Table 3.5. However, this
seems a little bit problematic since the 28838 also contains wrong alignments, which means
the alignment is already wrong, so there’s no way to get the label right (no way to become
the intersection part), some errors actually may not be the fault of the type prediction. We
are underestimating the accuracy of alignment type prediction in this way.

So, what if we redo the computation based on the correct alignments only? if using only

the correct alignments, we got the results in Table 3.6.
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Discriminative Generative

Type | % | Precision | Recall | F-score | Precision | Recall | F-score
SEM | 40.5 95.5 53.6 68.7 95.6 60.7 74.2
FUN | 24.9 98.4 56.9 72.1 98.5 62.9 76.8
GIS 20 15.2 3.1 5.2 20.6 5.1 8.2
GIF 3 90.5 35.6 51.1 95.9 53.3 68.5
COI | 0.8 23.1 1.0 1.9 48.3 4.6 8.4
PDE | 0.3 75.8 37.9 50.5 67.7 35.5 46.6
CDE | 04 100 30.9 47.3 96.8 66.2 78.6
MDE | 1.2 87.5 54.1 66.8 87.3 59.4 70.7
TIN | 0.3 50 1.0 1.8 33.3 1.8 34
MTA | 0.01 0 0 0 0 0 0
NTR | 8.6 0 0 0 0 0 0

Table 3.6: Per type results based only on correct alignments

This time, the precision and F-score seem to be boosted a lot. But this is also problem-
atic since some incorrect alignments may be produced due to their wrong type predictions.
We are overestimating the accuracy in this way.

Although we don’t have a way to report exactly how well we did in alignment type
prediction alone since there is a correlation between the alignment and alignment types
found in the joint task. We can still see from the above two tables that we’re doing well
with alignment type SEM, FUN, GIF, PDE, CDE and MDE. And we have serious prob-
lem in recognizing alignment type GIS, COI and TIN. For MTA and NTR, we got none
of them right either because there are too little data of this type or the alignment type
itself is meaningless. We can consider removing these two types of labels. By observing
this analysis, we will design new features specific to the alignment types that our current

models are weak to capture and further improve the model performance.

Experiment 4: Significance test. Our generative model consistently works better than
the baseline model in all the previous experiments above so we want to do a significance
test between the generative model and the baseline model to make sure the improvements
are stable and reliable. We did a significance test for the previous experiment 3.

For many evaluation metrics in NLP, assessing the significance is non-trivial since stan-
dard tests usually make assumptions like data should follow a certain type of distribution,
but those assumptions are hard to meet in real experimental settings. To overcome this, we
use the assumption-free approximate randomization framework (Yeh 2000, Noreen 1989).

The main idea is that if that the difference in performance between two sets of predictions
is significant, random shuffling of the predictions will only very infrequently result in a larger
performance difference. The relative frequency of this actually happening can be interpreted

as the significance level of the difference.
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Thus, we divide our 2k test set into 10 random sample, and run our generative model
and the baseline model on those 10 samples. This gives us two sets of predictions and
each set contains 10 observations. We feed those observations into the Sigf software and it

reports the significance level. The 10 observations are shown in Table 3.7 below:

Observ. | tpl | tp2 | tp+fp | tp+in
1 1705 | 1927 | 5190 | 3839
2 1641 | 1844 | 5180 | 3806
3 1724 | 1928 | 5387 | 3938
4 1751 | 1976 | 5509 | 3977
5 1790 | 2000 | 5680 | 4117
6 1736 | 1943 | 5346 | 3922
7 1698 | 1921 | 5186 | 3773
8 1743 | 1968 | 5477 | 3990
9 1746 | 1975 | 5502 | 3969
10 1344 | 1525 | 4020 | 3046

Table 3.7: tp=true positive, fp=false positive, fn=false negative

tpl stands for the true positive got from the baseline model and tp2 is for our generative
model. tp+fp is actually the number of all generated alignments and tp+fn is actually the
total number of all gold alignments. So those two numbers are the same for both models.
And the 2-tailed p-value we got from the Sigf software, which uses 10 observations and
10,000 iterations, is 0.003. Because 0.003 is much lower than the empirical significance
level 0.05. So we can say that our improvements are significant at a significance level of
95%.

3.3.4 Remarks

In this section, we evaluate our two models from different perspectives.

Experiment 1 shows that our models using alignment types perform much better than
the baseline when test data haven been seen before. And alignment type information helps
to find better word alignments.

Experiment 2 and 3 shows the case of how unseen data are handled. In both of the ex-
periments, our generative model using alignment type information still consistently shows
superiority over the baseline model. And both of our generative and discriminative models
work well in terms of predicting the alignment types.

Experiment 4 tells us that compared to the baseline model, the improvements we gained in

our generative model are significant, consistent and reliable.
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Chapter 4

Conclusion and Future Work

In this work, we use 11 different alignment link types based on annotated data released by
the Linguistics Data Consortium to enrich word alignment. We proposed a new joint task
of simultaneously predicting word alignment and alignment types. In the first part of this
work, we focused on the sub-task of alignment type prediction given a pair of aligned words.
We explored different type of features that can be used to do the prediction and trained a
logistic regression classifier with 22 different types of features which is able to recover the
alignment types with an accuracy of 81.4%.

In the second part of this work, we proposed two models, one generative and another
discriminative, to solve the original joint prediction task. We break down the sentence
translation probability to the product of lexical translation probabilities and we learn the
model parameters using expectation maximization algorithm. For the generative model,
we model the alignment type probability using maximum likelihood estimation and for the
discriminative model, we directly use the logistic regression classifier we built before.

We compare our two models with a baseline model that is unaware of the alignment
types in different experimental settings and results clearly tell us that the alignment type

information helps to find better word alignments.

4.1 Future Work

As we mentioned before, this is actually the first time one uses typed alignment information
to find better word alignment and do the joint prediction. This purpose of this work is just
to verify the usefulness of the alignment types. Thus, there are many avenues for extension
of this work.

First, the baseline translation model we used is the most basic one, IBM model 1. It
is actually not that strong and is naturally unable to capture certain types of alignments.

This leads to the relatively lower performance of all our models. Thus, one of the major
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work we can do in the future is to replace the baseline model with more advanced models
and build our joint models on that.

Second, in terms of smoothing, the techniques we adopted are also simple. There are
other more complicated and reasonable smoothing techniques in NLP that can be used here.
And we believe those better smoothing techniques will further improve the performance of
our models.

Third, to better handle the OOV, we use more data (1 million HK hansard) to train and
hope that the knowledge we learned on the 20k LDC data can transfer to the larger data
set. The larger dataset definitely helps to inject more vocabularies but is weak in terms
of providing alignment type information because it is unlabeled. We can do transductive
learning here to fill the gap and provide better prediction for alignment types.

Fourth, we’ve done some analysis about the model performance on each alignment types
in the previous chapter. We will design new features specific to the alignment types that
our current models are weak to capture and further improve the model performance.

Last but not the least, alignment type information should also be helpful to other NLP
tasks such as projection of part of speech tags and dependency trees from a resource-rich
language to a resource-poor language. We would expect typed word alignments to pay off

in many NLP applications.

4.2 Contributions

The main contributions of this thesis work are as follows:

1. We came up with a new task of joint prediction of word alignment and alignment types.
This is the first time people use alignment type information to help find better alignment.
2. We provided a method to predict alignment types given a pair of aligned words, explored
different types of features that can be used to do the prediction.

3. We proposed two new models, one generative another discriminative, to solve the joint
prediction task. And showed that the alignment found in our joint framework is better than
those found in traditional word alignment task alone.

4. We see the hope for benefitting other NLP tasks using the alignment type information.
In conclusion, our joint model improves the word alignment quality and produces align-

ment types at the same time. We expect typed word alignments to benefit not only SMT,
but also other NLP tasks that rely on word alignments.
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