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Abstract

There is a wealth of untapped information within commonly acquired cardiovascular signals.
Electric, vibration, and pressure measurements in the cardiovascular system allow us to
obtain precise timings of events that can inform us about its ability to maintain health.
In particular, this thesis applies new data analysis methods to continuous blood pressure,
muscle sympathetic nerve activity, and seismocardiography measurements.

Three phase estimation techniques, including one of our own design, were compared in terms
of accuracy. The three techniques were based on wavelet analysis, Hilbert analysis, and a
new peak detection method. All three techniques performed with equivalent accuracy, with
the wavelet technique being computationally slower.

The new peak detection technique was applied to blood pressure and muscle sympathetic
nerve activity data on participants undergoing lower body negative pressure. A set of
six new indices returned values analogous to those obtained from traditional methods,
suggesting their validity.

A third study considered seismocardiography, which measures thoracic vibrations as they
pertain to the beating heart, and contains unique information about cardiac mechanics. At
levels of lower body negative pressure of intensity below −30 mmHg, the algorithm was 95%
accurate, and the heart rate variability indices were not statistically different from those
obtained with electrocardiography.

The mechanical processes that cause seismocardiogram fiducial points have not been identi-
fied. By modelling the viscoelastic properties of thoracic materials, a previously developed
solving algorithm was used to simulate seismocardiograms caused by a heart-like force
applied to the sternum. Both simulations contained peaks analogous to all in-vivo seismo-
cardiogram fiducial points.

Keywords: signal analysis, cardiovascular physiology, seismocardiography, 3D modelling,
phase estimation, microneurography, muscle sympathetic nerve activity, blood pressure,
lower body negative pressure, syncope, orthostatic intolerance, wavelet analysis, Hilbert
analysis
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Chapter 1

Introduction

Creation is no great feat. Anything you
make, I can unmake in a heartbeat.

Alexi, zephyr mage

1.1 Motivation

At first glance, it is surprising that the analysis of the electrical activity of the heart, together
with the analysis of blood pressure, can give us information about the central nervous
system. Even more surprising is the fact that the state-of-the-art analysis techniques that
are used to obtain this information are substantially based on mathematical manipulations
developed in the early 19th century. It is clear that the physiology and mathematics research
communities gain from communicating openly and sharing advances.

In the case of the cardiovascular system, every year brings new diagnosis, monitoring,
and treatment methods for a wide array of disorders. Concurrently, data collection and
analysis techniques are constantly being revised and upgraded.

Concealed in electric, vibration, and pressure measurements on the human body are
precise timings of cardiovascular events that can offer an abundance of information about
its ability to maintain health. The timing between rises and drops in blood pressure with
respects to nervous activity tells us how fast the brain is capable of processing and relaying
crucial information. The timing between the opening and closing of the heart’s aortic valve
tells us how fast the heart is capable of pumping blood into circulation. If these timings
are too long or too short, it can make the difference between fainting or staying conscious,
going improperly or properly through the hospital triage process, and ultimately being in
poor or good health.

There is a wealth of untapped information in the kinds of cardiovascular signals that
have been acquired by researchers for years. The potential for new discoveries in this respect
lies precisely at the convergence of the mathematical and physiological fields. The goal of

1



this thesis was to build bridges between mathematics and physiology, and use them to
explore new avenues for obtaining precise timings in existing cardiovascular signals.

1.2 The cardiovascular system

1.2.1 The heart, arteries, and veins

Blood contributes to about 7% of the average adult human’s body mass. This translates to
roughly 5 litres. The main purpose of blood is the transport of chemicals, which requires
circulation. Since liquids always flow from locations of high pressure to locations of low
pressure, these quantities are well studied within the human body. In the cardiovascular
system, the source of the most important blood pressure gradient is the heart (Fig. 1.1).

The arteries and veins are the conduits where blood is able to flow. Far from being
passive, they include a number of mechanisms that encourage proper circulation. On the
arterial side, and to a lesser extent on the venous side, the smooth muscles that line the
vessels are able to contract and relax according to need, either augmenting or reducing
resistance. Flow (Q) is related to resistance (R) and pressure gradient (∆P ), in general, by
the relation

Q = ∆P
R
. (1.1)

The venous side, which acts like a very low resistance blood capacitor, is comprised of
relatively short segments separated by one-way valves that prevent back-flow. Mainly, the
blood then pools in these segments until an outside perturbation, usually a skeletal muscle
contraction or a pressure change due to breathing, propels it to the next segment towards
the heart.

1.2.2 Autonomic control of the system

The autonomic nervous system continuously acts to maintain blood pressure homeostasis.
It reacts to internal and external stimuli, for example promoting the movement of blood to
the gut to help digestion, or to the skeletal muscles during strenuous physical activity.

Within the aortic arch and the carotid sinus, increased blood pressure distends ves-
sel walls, which in turn increases baroreceptor afferent activity. This activity inhibits the
vasoconstrictor center of the medulla and excite the vagal parasympathetic center. The
net effects in the heart are decreased heart rate and contractility. The effect on the pe-
ripheral blood vessels is general dilation. Conversely, reduced vessel wall tension decreases
baroreceptor activity and has the opposite net effect.

In the absence of external stimuli, blood pressure, heart rate, and the nervous activity
that connects them, all oscillate at a rate of approximately 0.1 Hz. These oscillations are
commonly referred to as Mayer waves in blood pressure [1], and constitute a major low-
frequency (LF) oscillation in all 3 signals. Although some evidence points to the existence

2



Figure 1.1: A simplified diagram of the cardiovascular system during standing. The venous
system is depicted in blue, and the arterial in red. The red to blue gradients represents
the capillary beds. The heart is symbolized as a pump in the center. The arterial side has
a long narrow column of fluid, and the venous side has a stout column to show that they
have low and high capacitance, respectively. The diagram omits pulmonary circulation, but
includes circulation in the head.
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of a central oscillator responsible for these waves, they are in large part due to inherent
time delays in the processes involved in the centrally mediated baroreflex [2]. Communica-
tion latency between receptor and effector organs in the baroreflex negative feedback loop
causes constant over/under-shoot and readjustment at the resonant frequency of 0.1 Hz
(Fig. 3.2). Studying the relationships between the components of LF oscillations is key to
understanding the static baroreflex.

Arterioles
dilate. Blood
pressure drops.

Baroreceptor
firing rate
decreases.

Sympathetic
outflow
increases.

Norepinephrine
is released at
the periphery.

Arterioles con-
strict. Blood
pressure rises.

Baroreceptor
firing rate
increases.

Sympathetic
outflow

decreases.

Norepinephrine
clears out.

≈1 s

>1 s

≈1 s

>1.5 s

Figure 1.2: Summary of the main pathway of the arterial baroreflex loop. The principal time
delays and communication lags are indicated [3, 4, 5]. Low frequency (0.1 Hz) oscillations
in blood pressure (Mayer waves), muscle sympathetic nerve activity, and total peripheral
resistance emerges from the interactions between these lags and delays [2]. One such loop
takes between 7 and 25 seconds, taking into account variations in the amplitude of blood
pressure variation and the periods of MSNA activity/inactivity.

1.3 General methodologies

1.3.1 Lower Body Negative Pressure

Lower body negative pressure (LBNP) was first described in 1965 by Stevens et al. [6].
It consists of placing the legs, up to the iliac crest in an air-tight box where vacuum is
applied (Fig. 1.3). The technique is used to investigate the reaction of the cardiovascular
system to stress similar to standing, hypovolemia or hemorrhage, but with minimal muscle
pump effect and no vestibular stimuli, thus isolating a purer cardiovascular response [6,
7, 8, 9, 10]. LBNP lowers blood pressure, which decreases parasympathetic and increases
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sympathetic outflow, which in turn increases heart rate, cardiac contracttility, and total
peripheral resistance (Fig. 1.4). The immediate drop in blood pressure that follows the
application of LBNP also distinguishes it from standing or tilting, where the immediate
reaction is a short rise in blood pressure [11].

Variable vacuum 

pumpAir-tight boxSealing skirt

Figure 1.3: Diagram showing a basic lower body negative pressure setup. The seal is at the
level of the iliac crest and is often an adjustable neoprene tube.
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Figure 1.4: An example of a typical systolic arterial pressure (SAP) and RR intervals
response during graded lower body negative pressure (LBNP). Visible on both time series
are low-frequency (≈ 0.1 Hz) oscillations due to the centrally mediated baroreflex, and
high-frequency (≈ 0.3 Hz) oscillations due to breathing.

Basic LBNP setups also have the ability to precisely adjust the amount of stress that
is applied to the participant. This allows researchers to study a continuous spectrum of
cardiovascular stress, bring subjects to presyncope faster than otherwise, and to end the
stress instantly. Furthermore, it allows researchers to model gravitational conditions higher
than 1G to simulate aggressive flying, or acute change in gravity such as would occur during
the launch or landing of a spacecraft [12, 13]. It has also been shown to be an effective
counter-measure to the deleterious effects of long-term microgravity by maintaining exercise
rates and hydration, as well as reducing orthostatic intolerance [14, 15, 16].
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1.3.2 Microneurography

The initial work on microneurography was conducted in Sweden in the mid nineteen-sixties
by Karl-Erik Hagbarth and Åke Vallbo. Their team experimented with various configura-
tions of needles, finally settling on 5-10 µm tungsten electrode tips. Their first publication
studied afferent nerve traffic responses to pressure applied on the leg [4]. Before their work,
recordings from single nerve fibres could only be obtained from decerebrate or anesthetized
animals, and thus never from humans.

The use of needles to measure the activity of single nerve fibres requires careful adjust-
ments of needle placement. Initially, the use of a screen to make minute adjustment was
not possible, and audio feedback was used instead. It was while listening to these outputs
that researchers first heard 0.1 Hz waves of noise, described as the sound of a calm ocean.
In the end, and after much debate, they determined that these waves were in fact due to
efferent sympathetic activity from C fibers [17]. The fact that these fibers are unmylinated
and 5-10 times smaller than the electrode tip made this discovery quite surprising. The
technique has since divided itself in three main areas of research, namely cutaneous sensa-
tion, proprioceptive control of voluntary movements, and sympathetic efferent activity [18],
the latter of which is now called muscle sympathetic nerve activity (MSNA). It is this last
component that is relevant to this thesis and will be discussed further.

Subsequent studies clarified the characteristics of MSNA. Simultaneous recordings in
different limbs on a single individual showed striking resemblance, indicating that a single
probe in a single muscle could be used as a valid indicator of overall sympathetic nerve traffic
[19]. The first systematic (and quite comprehensive) study of the relationship between blood
pressure and MSNA was performed by Sundlöf in 1977 [20]. Although lacking in modern
signal analysis tools, they laid the foundations for most of the work that is performed
today. They estimated the latency between individual heart beats and subsequent MSNA
burst, discussed the phase relationship between the two variables, and observed that MSNA
increased both in incidence and amplitude with decreasing diastolic pressure, rather than
systolic (Fig. 1.4).

0 300 600 900 1200 1500 1800 2100 2400

0

5

10
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Figure 1.5: An example of a typical muscle sympathetic nervous activity (MSNA) response
during graded lower body negative pressure (LBNP). Apparent on the figure is a clear
increase in MSNA at the onset of the −60 mmHg section of LBNP. The data was obtained
from the same subject and protocol as in Fig. 1.4
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Figure 1.6: Part of Fig. 1.5 showing muscle sympathetic activity in bursts.

There are different ways to quantify MSNA over a period of time. Arguably the most
natural, and indeed the one that the Hagbarth-Vallbo team initially used, is to compute
the area under the curve. Indeed, if voltage is an instantaneous measurement of electrical
activity in the nerve, adding up all the voltages over a time interval should return total
activity. The main problem with this technique is that MSNA is very sensitive to electrode
placement. Indeed, minuscule differences in electrode placement between subjects have large
effects on the measured voltage, rendering comparisons difficult. A second quantification
technique is then to subtract some moving average, or baseline, from the signal before
proceeding to the integration. Unfortunately, this technique is sensitive to the signal-to-
noise ratio (SNR), which is unknown, and again depends critically on the distance between
the nerve fibre and the electrode tip, as well as on other electrical activity in the muscle.

The standard contemporary MSNA quantification technique relies on the fact that the
signal exhibits activity in bursts (Fig. 1.6). It is then possible to count the number of
bursts per minute, or per 100 heart beats, and to measure their individual height. While
the height measurement technique has the same SNR problem as before, the number of
bursts has been shown to be reliable and valid for comparisons between individuals [18].

MSNA does have limitations, the principal ones being that is it very susceptible to move-
ment noise, requires hands-on apprenticeship, and trades off individual nerve (mal)function
for general sympathetic outflow.

1.3.3 Seismocardiography

Seismocardiography (SCG) is the measurement by accelerometers of low frequency (<0.25
Hz) thoracic vibrations caused by the beating of the heart. The signal was first observed
and described by Bozhenko in 1961 [21], and widely used since the sixties by Baevsky to
monitor cosmonauts [22]. Its use was negligible outside Russia until 1991, when Zanetti and
Salerno published a series of articles which characterized the signal using echocardiography
[23], presented a case study about a 52 year-old woman with episodic dyspnea and chest
tightness [24], and so on [25, 26]. It was first used on the International Space Station in
2002 [27] and continues to have an important presence there, due in part to the absence of
earthly acceleration noise.
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Figure 1.7: Example electrocardiogram (ECG) and seismocardiogram (SCG) with relevant
fiducial points.

Peaks observed in SCG have been related to significant cardiac events, the main ones
being mitral valve closing (MC), isovolumic moment (IM) and aortic valve opening (AO)
during the systolic cycle, and aortic valve closure (AC) during the diastolic cycle (Fig.
1.7). The assignment of these fiducial points was based on concurrent echocardiogram
analysis of SCG morphology [28, 29]. Precise cardiac mechanical timings that can only
be obtained from SCG are critically dependent on accurate identification of these fiducial
points [30, 31]. To this end, our team has been involved in the development of an algorithm
capable of correct identification of ten IM peaks per five minutes of recording [32].

The modern-day ubiquity of accelerometers in wearable devices and smart phones opens
the possibility of using SCG as an inexpensive source of data. Such devices have been used
to accurately obtain heartbeat intervals [33, 34, 35], and the possibility of using SCG to
obtain useful heart rate variability indices has been explored by us [36], and others [35, 37].

Research teams that use SCG are few, and to our knowledge, no general-public appli-
cation for the signal has been developed. The fact remains that SCG is very susceptible to
noise and present important variations between individuals, making the design of automatic
annotation software difficult, but interesting.

1.3.4 Signal analysis

Signal analysis involves filtering and decomposition and is almost synonymous with Fourier
analysis. The central idea is that, in the same way that any 2 dimensional vector can be
seen as a sum of an x vector and a y vector, every time series can be seen as a sum of sine
waves. This idea was first expressed by Joseph Fourier in 1822 [38].
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Fourier analysis allows for the decomposition of a physiological signal into its constituent
sine waves and enables us to see how much each frequency contributes to its make-up. There
are then various ways to remove or modulate selected frequencies and reconstruct a modified,
filtered signal.

There are a variety of ways to manipulate a signal using Fourier analysis, two of which
are of particular relevance to this thesis.

The Hilbert transform, named after David Hilbert, was developed in the first half of
the 20th century [39]. As it pertains to this thesis, the Hilbert transform obtains the time-
domain phase of the signal’s constituting sine waves, and creates a weighted average of them
according to their respective energy. This particular application will be discussed in detail
in section 2.2, particularly in equation 2.2. In essence, it creates time-domain information
from frequency-domain information in an intuitive, but brilliant way. The Hilbert transform
is then able to attach notions of overall phase and frequency to signals which aren’t periodic,
concepts which end up being quite useful.

The continuous wavelet transform in its modern form was developed by Jean Morlet
in the early 1980’s [40], although it is largely based on previous work by Dennis Gabor
published decades earlier [41]. A problem with the Fourier transform is that it loses all
time-domain information once it leaps into the frequency-domain. A first naive solution
to this problem would be to cut the original signal into regular intervals and perform a
Fourier transform on each interval. One would then regain the ability to monitor changes
over time. A second more subtle technique would be to cut the original signal in shorter
intervals for higher frequencies, and longer intervals for lower frequencies, thus reflecting
the higher frequencies’ ability to have better time resolution. Gabor’s contribution to these
solutions was to modulate, or window, these intervals by using a bell curve. Morlet then
set rules to smoothly and continuously preform this modulation over a range of frequencies.

The wavelet transform is capable of decomposing a signal into its constituent sine waves
while retaining the ability show how this decomposition changes over time. Since its initial
development, wavelet transform theorists have devised wavelets of various shapes which are
adapted to specific situations.

1.4 Summary

The relationships between the signals mentioned above are intricate and can rarely be
approached straightforwardly. The following chapters comprise a description of new ideas
and techniques aimed specifically at obtaining quantifiable information from them to yield
simple interpretations.

The first step was to establish the basis of different specific methods of signal analysis.
To do this, the ability of different techniques to obtain accurate estimates of phase in
physiological signals was examined. Phase is a property that is quite universal and can easily
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be generalised to many physiological contexts. Furthermore, the ability of a technique to
estimate phase informs us on its ability to estimate other useful quantities such as frequency
and power.

In the two subsequent chapters, signal analysis techniques previously examined were
applied to study in detail two sets of physiological data. In the first case, we use them
to quantify the relationship between MSNA and diastolic arterial pressure (DAP). This
relationship is described in terms of various timings, time delays, amplitudes, and strengths.
Our techniques attempt to investigate these values as directly as possible in order to make
interpretations simpler and clearer.

In the second case, techniques of signal analysis were used to design software capable of
annotating SCG without user input. The goal is to automatically identify fiducial points
on the signal. This process implements general techniques described in chapter 2 as well as
other methods developed specifically to solve this problem. The ability of our annotations to
return valid information was tested by comparing it to the gold standard electrocardiogram
technique.

In chapter 5, the problem of the interpretation of seismocardiograms was approached
from another angle, that of in-depth mathematical modelling. There exists various ways
of correlating SCG fiducial points to other cardiovascular phenomena, either healthy or
pathological. Our work concentrates on explaining the exact causes of these fiducial mor-
phological characteristics. In this way, SCG is enabled to be analysed in terms of cardiac
forces and movements as well as timings.

The four central chapters are written as self-contained papers and can each be read
independently. For this reason, some figures are included in more than one chapter.
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Chapter 2

Quantitative comparison of three
phase estimation techniques and a
guide to their practical use in
physiology

Victory in the pits is almost as
rewarding as the methods I use to
achieve it.

MTG, Sadistic Hypnotist

2.1 Introduction

Homeostasis in biological systems is maintained by negative feedback loops. This feedback
system contributes to the creation of oscillations in the corresponding physiological signals.
For example, oscillations exist in heart rate [1], spontaneous vasomotion of arteries [2, 3],
electrical activity of skeletal muscle [4], and circadian rhythms in hormone levels [5]. The
key variables that characterize an oscillation are its amplitude, frequency, and phase. Of
interest is phase, as it determines the progress of one oscillatory cycle at a particular time.

Phase analysis is particularly relevant to the study of the relationship between a pair of
associated signals. The detection of relationships between physiological signals can aid the
understanding of the integrated function of multiple parts of a given system. A priori to
studying these phase relationships, however, one should be able to confidently understand
and estimate the phase itself. There are multiple techniques that are routinely employed for
estimating the phase of signals. However, it is unclear whether these approaches produce
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equivalent results or whether some methods may be preferable for particular physiological
applications. So far no technique has been accepted as a gold standard.

The oscillations of physiological signals contain information about a system’s behaviour
and interactions occurring within it. If a signal sufficiently resembles a periodic function, this
information can be extracted mathematically using frequency analyses. It bears mentioning
that in such cases, as in the signals analysed in this study, the term frequency is used even
if they exhibit what can be more precisely described as pseudo-frequency, as they are never
precisely periodic.

When two parts of a physiological system interact, oscillations in the signals arising from
each part adjusts in response to changes in the other. This has been shown in networks in the
brain [6], the physiological origin of pathological human tremors [7], the relationship between
blood pressure and sway patterns in human standing [8], blood flow in adjacent nephrons
[9], and glycolytic oscillations in cells that receive a periodic nutrient supply [10]. In these
systems, phase and phase difference can be used either themselves or as a means to obtain
phase lock indices or time delays. Monitoring free-running physiological signals only allows
investigators to determine synchronicity between them. Without externally perturbing such
signals, coincidental synchrony and physical coupling cannot be distinguished [11].

The power spectrum of a signal gives information about the degree to which periodic
components are present, and at what frequency the oscillations occur. When there are
strong oscillations present in a signal, further analysis can be conducted. Analysis, such as
estimating phase, of data that does not contain oscillatory signals of sufficient power is not
valid.

The phase of a physiological signal represents certain aspects of the physical state of
the system being measured, and therefore it is interpreted differently depending on context.
For example, in the case of a blood pressure time series, phase can be used as a normalized
indicator of arterial contraction and relaxation. In the case of the position of the foot of
a pedalling cyclist, phase indicates which part of a particular pedal cycle is present at a
particular time. Each cycle (Fig. 2.1, top) increases phase by 2π radians (Fig. 2.1, middle).
Since the circumference of a unit circle is 2π, phases that differ from one another by a
multiple of 2π represent the same physiological state. In this study, the convention by
which phase is visualised by wrapping it from −π to π (Fig. 2.1, bottom) was used.

Because phase is defined on a circle, errors arise upon application of arithmetic statistics
to it. This fact is illustrated by the following example: the arithmetic mean of the angles
π/4 and 7π/4 is π. However, since 7π/4 is the same as −π/4 when plotted on a circle, the
circular mean is 0. For this reason, circular statistics are used when dealing with phase. A
good resource for circular statistics is found in [12].

The goals of this study were twofold: the first was to compare the performances of three
different techniques of phase estimation: (i) the Hilbert transform; (ii) wavelet transform;
and (iii) peak detection, in silico. The second was to apply each technique to four different
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Figure 2.1: Example cosine function and its corresponding phase. There are three cycles of
the cosine wave (top), resulting in a total increase of 6π radians of phase (middle). The
bottom panel shows the same phase wrapped from −π to π.
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types of experimentally collected in vivo data and compare the interpretations that arose
consequently.

Each technique was tested to observe whether it led to the same physiological conclu-
sions for each type of data. It is clear from past work that the Morlet wavelet and Hilbert
techniques return statistically similar results for signals that have a previously defined nar-
row frequency band [13, 14]. However, it is unclear how well these techniques compare to
the computationally simpler peak detection method. Because measurement noise and phys-
iological noise are the primary sources of interference with phase estimators, each technique
was tested for its robustness to noise. The computing time of these three techniques was
also compared.

Although it is clear that phase estimations often lead to phase difference quantifications
such as phase lock or synchrony indices, it is not within the scope of this study to discuss the
value of these indices. Rather, under the assumption that any phase difference calculation
will benefit from more accurate phase estimation, only the variables necessary to their
computation were examined.

The limits of the conditions for which the techniques are similar were determined, and
a clear “if-then” decision tree to guide users to select the best technique for their signal(s)
of interest is presented.

2.2 Methods

Each signal was filtered using a forwards-backwards 6th order Butterworth bandpass filter.
This filter design, particularly in its application in one time-direction and then the other,
was chosen to minimize its effect on phase. The band was determined case-by-case and
will be described in detail in the relevant sections. Phase slips of ±2π were removed from
phase difference time series, for clarity of presentation. All data synthesis and analysis
was performed using Matlab (r2014b, The Mathworks, Natick, MA, USA) and statistical
comparisons were performed using SPSS (v22, IBM, Armonk, NY, USA).

2.2.1 Estimating phase

This section describes the wavelet transform, Hilbert transform, and peak detection tech-
niques.

i The Morlet wavelet transform is a Gaussian-windowed Fourier transform. The Morlet
wavelet of order six, used in this study, is a cosine wave modulated by a Gaussian of
such width that 6 periods fit in 95% of its area. The wavelet transform quantifies the
degree to which a wavelet represents the given signal. It then shifts the wavelet in time
and frequency, to generate the spectral density of the signal over time.
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For example, for a cosine wave of frequency α during a certain time, it is expected that
the magnitude of its wavelet transform at that time and frequency will be relatively high.
Conversely, the wavelet transform of a random noisy signal would have a relatively low
magnitude for all times and frequencies. For a great introduction on the subject see
[15], and [16]. The software used for these analyses is freely available (http://paos.

colorado.edu/research/wavelets/software.html).

In this study, phase was determined for the the frequency αmax with the highest power
for every time point ti. Phase was computed as

φ(ti) = tan−1
im
(
sw(αmax, ti)

)
re
(
sw(αmax, ti)

) , (2.1)

where sw is the wavelet transform of the signal s.

ii The Hilbert transform uses the Fourier transform to create a 90o phase shift filter. As
it pertains to this study, it obtains phase information by using the Fourier power to
compute a weighted average of the phases in the frequency domain

φ = 1∑
α |sF (α)|

∑
α

|sF (α)| · tan−1
im
(
sF (α)

)
re
(
sF (α)

) , (2.2)

where sF is the Fourier transform of the signal s.

iii The peak detection algorithm identifies all local maxima on the filtered signal. A local
maximum is defined here as simply as possible, as any point higher than both the directly
previous point and directly successive point. at least p1 away from each other in time,
where p1 is the period associated with the upper cutoff frequency of the bandpass filter.
The rationale behind the choice of this p1 is analogous to that for the choice of f1, that
is, it is chosen to represent the smallest physiologically possible distance between two
successive peak events. If ta and tb are times of two successive peaks, then the phase φ
between these peaks is defined as

φ(t) = 2π t− ta
tb − ta

.

This phase is then wrapped to (−π, π].

The main distinction of the peak detection technique is that it is not limited by the time-
frequency uncertainty principle. When using frequency analyses such as the Hilbert or
wavelet transforms, It is impossible to reduce the time spread and frequency spread
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simultaneously. The peak detection technique extrapolates phase information from time
information under the assumption that measurable rises and drops occur in a strictly
known frequency band.

2.3 In silico analyses

The three phase-estimation techniques were compared in silico. The main goal was to
compare the accuracy of these techniques with respect to signal-to-noise (SNR) ratio, but
the computing time of each technique was also taken into account. The in silico data were
designed to resemble the in vivo physiological data presented later.

A time series was created with a frequency f that changed randomly in a normal dis-
tribution f(µ, σ) around a central frequency µ = 0.1 Hz, and standard deviation σ = 0.01
Hz. The time series were defined by parts, every part being a single-cycle cosine wave.
They were designed to change frequency every cycle, have a sample frequency of 100 sam-
ples/s, and create 7 minutes of signal (Fig. 2.2A). The 100 Hz sample frequency was chosen
to exceed the Nyquist frequency while striking a balance between maximizing temporal
resolution and minimizing computation time.

The true phase was computed to be the straight line going from 0 to 2π between each
successive peak, and then wrapped to (−π, π].

Noise was added to each simulation time series for signal-to-noise ratios SNR ∈ [−20, 5]
dB, in 1 dB increments. These signals were then passband filtered to [0.02, 0.3] Hz. At
each SNR, the phase was estimated using the three techniques and the difference between
the true phase and estimated phase was computed. This process was repeated 100 times
(Fig. 2.3; Table 2.1). Computation time was measured for each trial (Table 2.2).

Table 2.1: Difference between mean estimated phase and true phase of a synthetic sine
wave. The difference was computed at each level of SNR from -20 to 5 dB, and this was
repeated 100 times.

SNR (dB) Wavelet Hilbert Peak Det.
-20 −0.3 ± 0.1 0.01 ± 0.01 0.004 ± 0.002
-15 0.06 ± 0.05 0.03 ± 0.01 0.002 ± 0.001
-10 −0.011± 0.010 −0.002 ± 0.004 0.003 ± 0.001
-5 0.003± 0.001 0.006 ± 0.002 0.002 ± 0.001
0 −0.002± 0.001 −0.005 ± 0.063 0.0030± 0.0003
5 −0.002± 0.001 0.007 ± 0.056 0.0020± 0.0002
∞ 0.002± 0.001 0.0060± 0.0002 0.0010± 0.0001

Mean ± standard deviation (rad)
*p < 0.05 compared to Hilbert and peak detection

To determine differences in the precision of each technique, the difference between mean
and squared difference at each SNR was tested with analysis of variance (ANOVA) with
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Figure 2.2: Example signals and phase estimates, in silico. Top: Clean signal with central
frequency µ = 0.1 Hz, and standard deviation σ = 0.01 Hz. Signal-to-noise ratio (SNR)
= ∞. Middle: A noisy signal. SNR = -10 dB. Bottom: Wrapped phase estimates for
Hilbert, wavelet, and peak detection techniques at SNR = −10 dB.

Table 2.2: Mean computation time for each technique of phase estimation for each trial
with SNR ranging from -20 to 5 dB, with 100 simulations.

Method Time (s)
Wavelet 1.7288± 0.0180
Hilbert 0.0877± 0.0314*

Peak Det. 0.1364± 0.0671*
Mean ± standard deviation (rad)
*p < 0.05 compared to wavelet

Sidak post hoc tests. At SNR where the maximum absolute difference was less than 0.1
radians, this difference was not considered to be of potential physiological relevance. There-
fore these values were not included in our statistical comparison of the techniques. Squared
differences were not different between the Hilbert and peak detection techniques at any
SNR, while the wavelet technique was different from the others when SNR was less than -9
dB.
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Figure 2.3: The effect of added Gaussian white noise on the accuracy of each phase estima-
tor. At each signal-to-noise ratio (SNR), the difference between true phase and estimated
phase is shown as a solid point for each of the 100 trials. The mean difference is shown as an
open circle and error bars are 1.96 × standard deviation. *Mean wavelet phase difference
is significantly different from both other techniques’ mean (p<0.01).

Noise in physiological signals can either come from data acquisition or be intrinsic to
the system itself. While the former can be estimated using standard techniques, estimates
for the latter are usually much harder to obtain. In a blood pressure measurement, for
example, an unreported involuntary muscle contraction in a subject could create noise as
a temporary oscillation in a relevant frequency band, which would be difficult to quantify.
While an SNR of -9 dB is very low, some types of physiological data can be that noisy and
still contain relevant information [17].

2.4 In vivo analyses

The three phase estimation techniques were applied to four sets of physiological data. For
each set, the acquisition and formatting techniques are described. Results are presented
for each data set and interpreted in terms of phase estimation and physiology. The animal
experiments were conducted according to the guidelines set forth by the Canadian Council
on Animal Care and approved by the Animal Care Committee of Simon Fraser University.
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Human experiments were conducted in accordance with the Declaration of Helsinki and
with approval from the Simon Fraser University Office of Research Ethics.

2.4.1 Human systolic blood pressure and RR intervals

The phase difference between systolic blood pressure and RR intervals is used to estimate
the time delay of efferent cardiac baroreflex control. Ten healthy subjects (6 males) ages 20-
57, were tested in the supine position. Blood pressure and electrocardiogram (ECG, lead II
configuration) were recorded using the Finometer (Finapres Medical Systems, Amsterdam,
Netherlands) for five minutes at a sample frequency of 1 kHz. R waves and systolic blood
pressure (SBP) peaks were identified, RR intervals were computed, and the resulting time
series were resampled at 5 Hz. SBP and RR interval time series were filtered with a passband
of [0.04, 0.15] Hz to isolate low-frequency variability [1]. Oscillations in this band are present
in both RR intervals and SBP, correspond to each other, and are called Mayer waves in
SBP [2]. The phase of both signals was computed using the three techniques (Fig. 2.4).

For each subject, the circular mean and standard deviation of phase difference between
SBP and RR intervals was computed. The mean phase difference over all participants was
1.38 ± 0.16 rad for the wavelet technique, −1.29 ± 0.2 rad for the Hilbert technique, and
−1.1±0.44 rad for the peak detection technique (Fig. 2.5). For the interpretation of cardiac
baroreflex phase difference, all three approaches were equivalent.

2.4.2 Human nasal temperature and RR intervals

Changes in thoracic pressure caused by respiration affect RR intervals, eliciting respiratory
sinus arrhythmia. This can be investigated by measuring the phase difference between nasal
temperature (NT) and RR intervals. Seventeen healthy participants (7 males) ages 18-51,
with no experience in meditation were tested. Participants were seated, instructed to close
their eyes, and to remain motionless and silent for 20 minutes. They were further instructed
to regulate their attention on the sensations of breathing without willfully altering its rate
or depth.

Nasal temperature and ECG (lead II configuration) were recorded using the Pneumocard
[18]. RR interval time-series were obtained from the ECG in the same manner as described
above. NT was resampled to 5 Hz and used to determine breathing rate. The phase of both
signals was computed using the three techniques (Fig. 2.6).

In this case, the two time series (NT and RR intervals) were filtered to a passband of
[0.15, 0.4] Hz to isolate high-frequency variability [1]. Heart rate variability in this high-
frequency range is caused by respiratory sinus arrhythmia and the central frequency repre-
sents the respiratory frequency [19].

For each subject, the circular mean and average standard deviation of phase difference
between NT and RR intervals was computed. The mean phase difference was −0.7 ± 0.37
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Figure 2.4: Top: Example unfiltered RR interval (red) and systolic blood pressure (SBP,
black) time series. Static oscillations in SBP create analogous oscillations in RR intervals.
Normalised units were obtained by subtracting the mean and dividing the resulting maxi-
mum amplitude. Middle:The phase of SBP and RR intervals are shown as calculated by
each technique. Bottom: Phase difference between the two time series. The results that
are returned by all three techniques show similar patterns.

rad for the wavelet technique, −0.73± 0.35 rad for the Hilbert technique, and −0.81± 0.48
rad for the peak detection technique (Fig. 2.7).

The data from this study allowed the investigation of a limitation of the three phase
estimation techniques. It is well known that respiratory sinus arrhythmia has a complex re-
lationship with both frequency of breathing and the act of consciously modulating breathing
rate and depth [20, 21]. The coupling in phase between rate of breathing and RR inter-
vals breaks down as breathing rate decreases. This is due in part to an interaction with
baroreflex mediated oscillations occurring at frequencies around 0.1 Hz. For this reason,
the standard band pass filter was used, set to exclude breathing rates slower than 0.15 Hz.

The mean rate of breathing was computed for each subject by identifying the peaks
of the NT graphs, using a technique analogous to the peak detection phase estimation
technique, and taking the inverse the difference in time from one peak to the next (Fig. 2.8).
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Figure 2.5: Top: Example circular mean (red line) ± circular standard deviation (grey) of
phase difference between RR intervals and systolic blood pressure for the three techniques of
interest in one individual. Bottom: Group values of mean (red) of circular means (n = 7)
± circular standard deviations (grey) of phase difference between RR intervals and systolic
blood pressure.

To illustrate general trend, the data was fit with an exponential using the least-squares
method, which returned absolute mean errors smaller than 0.16 rads. In all three plots,
the data shows a trend of increased standard deviation for decreased rate of breathing. For
interpretation of phase differences associated with respiratory sinus arrhythmia, all three
approaches are equivalent.

2.4.3 Human electromyograms and muscle-tendon length

Mechanical function largely depends on the timing of muscle activation relative to muscle
lengthening or shortening. The phase of muscle activation has emerged as an important
variable by which the nervous system can regulate mechanical performance of muscles during
locomotion. One male cyclist was tested on an indoor cycle ergometer (Indoor Trainer,
SRM, Julich, Germany). Limb kinematics were collected using an optical motion capture
system (Certus Optotrak, NDI, Waterloo, Canada). LED markers were placed on the
pelvis, greater trochanter, thigh segment (triad), femoral lateral epicondyle, shank (triad)
lateral malleolus, calcaneus, metatarsophalangeal joint, and the bike pedal of the left and
right limbs. Participants pedalled at a cadence of 80 revolutions per minute. Time varying
medial gastrocnemius (MG) muscle-tendon unit lengths were calculated using a subject
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Figure 2.6: Top: Example unfiltered nasal temperature (NT, red) and RR interval (black)
time series. Through various pathways, breathing creates oscillations in RR intervals. Nor-
malised units were obtained by subtracting the mean and dividing by the resulting maximum
amplitude. Middle: The phase of NT and RR intervals are shown as calculated by each
technique. Bottom: Phase difference between the two time series.

specific scaled musculoskeletal model (pre-defined muscle paths from cadaveric studies) and
experimentally collected joint kinematics in the biomechanics simulation software OpenSim
[22].

Surface EMG was recorded during the cycling conditions from the MG using bipolar
Ag/AgCl electrodes (10 mm diameter, 21 mm spacing) and Biovision amplifiers (Biovision,
Wehrheim, Germany). Electrodes were placed in the mid-region of the muscle bellies after
the hair had been removed and the skin cleaned with isopropyl alcohol solution. EMG was
sampled at 2000 Hz and recorded using a 16-bit analogue-to-digital convertor (USB-6210,
National Instruments, Austin, TX, USA). EMG signals were quantified by their intensities
during each pedal revolution. The intensity is a close approximation to the power of the
signal and was calculated across the frequency band [10, 450] Hz using an EMG-specific
wavelet analysis [23]. The LED marker positions of the left pedal was used to synchronize
the EMG intensities for each pedal revolution, with the motion capture data. All 14-second
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Figure 2.7: Top: Example circular mean (red line) ± circular standard deviation (grey) of
phase difference between nasal temperature (NT) and RR intervals for the three techniques
of interest in one individual. Bottom: Group circular mean (red) and standard deviation
(grey) of circular means (n =17) of phase difference between NT and RR intervals. All
pairs of distributions were not statistically different (p > 0.54).

time series were downsampled to 100 Hz and filtered to isolate the frequency of pedalling
using a passband of [1.0, 1.5] Hz.

An individual muscle can act as power generating motor if active while shortening, an
energy transmission element if active while isometric, or an energy absorbing brake if active
while lengthening [24]. Our results display a stable phase lag between muscle activity
(EMG intensity) and the onset of muscle-tendon unit shortening (Fig. 2.9). The mean
phase difference was −0.7 ± 0.37 rad for the wavelet technique, −0.73 ± 0.35 rad for the
Hilbert technique, and −0.81 ± 0.48 rad for the peak detection technique (Fig. 2.10).This
suggests that the MG is largely active during muscle lengthening, thus acts as a brake to
absorb energy. The MG is likely active during this period to avoid knee hyperextension and
excessive ankle dorsiflexion during pedal downstroke and allow for effective force transfer
to the pedal.

For interpretation of phase difference between muscle activity and onset of muscle short-
ening, all three approaches were equivalent.
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2.4.4 Synchrony of renal autoregulation

It has been shown previously that laser speckle perfusion imaging (LSCI) can detect phys-
iological signals including those associated with renal autoregulation [9], and that these
dynamics can be segmented into regions that are phase-synchronised [25, 9]. Autoregula-
tion is mediated in part by the classic myogenic response (MR) of smooth muscle, where
increased intraluminal pressure causes vasoconstriction, and decreased pressure causes va-
sodilation. Male Long-Evans rats (n = 7) were anesthetised with isoflurane and their left
kidney was exposed via a subcostal flank incision. Cortical perfusion was monitored for 5
minutes on approximately 1/3 of the visible surface of the kidney with LSCI using a Moor
full-field laser speckle perfusion imager (Moor Instruments, Axminster, UK). Three regions
of interest (ROI) were selected on the surface. ROI1 and ROI2 were close to each other,
separated by 140 µm while ROI3 was located approximately 1.2 mm away from ROI1. Per-
fusion time series were extracted from each ROI. Each 25 Hz time series was downsampled
to 1 Hz and band pass filtered to isolate the [0.09, 0.32] Hz frequency range associated with
MR in rats. The phase of each ROI was computed using the three techniques described per-
viously. Then, the difference in phase was calculated between ROI1 and ROI2 and between
ROI1 and ROI3. Because detecting synchrony between two signals is more dependent on
the constant temporal relationship between signals rather than the magnitude of the mean,
the circular mean as well as circular standard deviation of the phase difference between each
pair of ROI were computed.

Renal surface perfusion from three ROI in one rat is shown in Fig. 2.11. The data show
that when two ROI are close to each other, the dynamics associated with myogenic au-
toregulation are synchronous through time, and when ROI are far apart the same dynamics
are not synchronous (Table 2.3, Fig. 2.12). All three phase estimation technique provided
equivalent interpretations of myogenic renal autoregulation.
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Figure 2.9: Medial gastrocnemius electromyogram (EMG; black) intensity and medial gas-
trocnemius muscle-tendon unit (MTU; red) length in one human subject during bicycling
at a fixed crank speed of 80 revolutions per minute. Top: The EMG and MTU length
throughout a 7 second recording are shown. Both EMG intensity and MTU length oscillate
with the frequency of pedalling. Middle: The phase of MTU length and EMG intensity
are shown as calculated by each technique. Bottom: there is a stable phase difference
between EMG intensity and MTU. The results that are returned by all three techniques
show similar patterns.

Table 2.3: Difference in phase between two regions on the surface of rat kidney (n = 7),
with the regions being either close to each other (192µm) or far apart (914 µm).

Near Far p-value
Circular Mean

Wavelet 0.036± 0.083 0.083± 0.750 0.876
Hilbert 0.005± 0.110 −0.094± 0.760 0.756
Peak Det −0.059± 0.110 −0.49 ± 1.11 0.328

Circular SD
Wavelet 0.50 ± 0.39 0.92 ± 0.21 0.043
Hilbert 0.35 ± 0.12 0.87 ± 0.27 0.003
Peak Det 0.28 ± 0.31 0.95 ± 0.30 0.002

Mean ± standard deviation (rad)
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Figure 2.11: Renal surface perfusion from three separate regions of interest (ROI). Two ROI
(black, red) are 140µm apart and the third (yellow) is 1.2 mm away from them. Top: Time
series perfusion data are represented as flux, which is an index of blood flow. The nearby
ROI have similar fluctuations over time, consistent with synchrony, while the distant ROI
is independent of the first two ROI. Middle: Phase of each ROI, acquired using the three
previously described techniques. Bottom: Difference in phase between nearby (blue: ROI1
vs ROI2) and distant (red: ROI1 vs ROI3). There are clear fluctuations in phase difference
when ROI are far apart, while the phase difference is generally near zero when ROI are
close to each other.
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Figure 2.12: Circular mean of the phase difference between two ROI that are close to each
other (Near; Top) or far apart (Far; Bottom) for one rat. In each plot, the red bar
indicates the mean phase difference, and the grey area is the circular standard deviation
of the phase differences that occurred in each time series. The three techniques of phase
estimation return equivalent responses. When ROI are near to each other, phase difference
is close to zero and generally tightly distributed around zero. However, when ROI are far
apart, mean phase difference assumes a value that can be different from zero, and there is
a wide range of values for the phase difference.
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2.5 Discussion

Three techniques for estimating phase were compared in terms of accuracy and computing
time. Our in silico test signals were time-varying by design, because biological systems are
never strictly stationary, and was made to reflect the properties of the physiological signals
that were subsequently considered. The Morlet wavelet transform technique obtained phase
at each time point using the frequency of highest power. The Hilbert transform technique
obtained phase by performing a weighted average of the phase of each frequency using the
Fourier transform. The peak detection technique identified local maxima and computed
phase from them.

Upon testing these techniques in silico, their behaviours under signal-to-noise ratios
from [−20, 5] dB were distinguished. The wavelet technique was the most susceptible to
increasing levels of noise, resulting in significantly higher variance for SNR lower than -9
dB. The Hilbert transform and peak detection techniques continued to perform surprisingly
well, even with SNR below -9 dB. Under conditions of very high noise levels in the signal of
interest, therefore, the Hilbert transform or peak detection techniques should be favoured.
The reason why the wavelet technique, as designed here, was more susceptible to noise was
most likely due to its constitution as a maximum likelihood estimator, meaning it identified
a single frequency as the carrier of information, rather than use a weighted average, as
in the Hilbert transform technique. The vast majority of studies that use a wavelet-base
technique of phase estimation do so as a maximum likelihood estimator.

The ability of a single family of wavelets, the Morlet wavelet of order 6, to estimate
phase under varying conditions of noise in-silico for signals of high stationarity was tested.
A higher order wavelet, with lower time resolution but greater frequency resolution, might
have successfully averaged out the types of errors that this method of analysis created.
Furthermore, in physiological settings, wavelets that are adapted to the specific oscillating
characteristics of interest are known to more accurately estimate frequency and time domain
components [23].

The relatively small errors for all three techniques at SNR ≥ −5 suggest that the type of
forward-backward filtering that was used did not modify signal phase beyond an acceptable
range for the in-silico data. From these analyses, it was concluded that negligible phase
alteration also occurred during filtering of the in-vivo data.

The wavelet technique took the most computing time - greater than 10 times the dura-
tion of the other two. The only difference in the implementation of each phase estimation
technique was the phase estimator. If speed is an issue, with especially large data files, then
the wavelet technique should be avoided.

The Hilbert transform and peak detection techniques depend critically on a priori knowl-
edge of the relevant frequency domain. In contrast, the wavelet technique returns a time-
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frequency representation of the signal, and therefore could easily be adapted to work without
any filtering.

The peak detection technique was computationally simpler than the Hilbert transform
and wavelet techniques while it remained as accurate. Its relative simplicity allowed for
better communication and comparison of results. However, the existence of plateaux (flat
maximal regions) in the signal would have prevented clear identification of a single peak
per cycle, which would have rendered the peak detection technique inadequate.

Taken together, these results can be used to determine which phase estimation technique
is best for a particular application. The decision process is summarised in Fig. 2.13. The
criteria were elaborated based on the conditions necessary to implement the three detection
methods rather than from direct interpretations of the results of the study. They represent
sine qua non criteria, rather than loose guidelines.

The in-silico signal design incorporated many of the characteristics of the relevant in-vivo
signals. It was built by assembling individual oscillations of frequencies varying a central
value, with the addition of levels of noise, analogously to time series like blood presssure, RR
intervals, nasal temperature, and blood perfusion. The model did not, however, incorporate
non-stationarities or stochastic processes, both of which are expected to exist in varying
degrees within the signals mentioned, and was limited to testing each techniques’ resilience
under noise.

Because it is impossible to know the true phase of the in-vivo signals, because there is no
gold standard of phase estimation in physiology, and indeed because the notion of true phase
in such instances cannot be well defined, our conclusions were based upon the physiological
interpretations that could be made from the three estimations. These interpretations were
specific to the physiological situations, and required specific outcome variables.

Upon application to human systolic blood pressure and RR interval time series, the
three techniques produced the same physiological conclusion. Namely, that changes in SBP
precede changes in RR intervals in a frequency band around 0.1 Hz, which is compatible
with baroreflex control of heart rate response to spontaneous oscillations in blood pressure.
This was true individually, as well as for group statistics.

The breathing rate and RR interval data highlighted an important limitation of the
three techniques. Although participants were instructed not to change their rate or depth
of breathing, those frequencies changed in time, many going well below what would be
expected for healthy adults [26]. This highlights the potential downfall of having to choose
a static filtering band. In such a case, the wavelet technique would be prescribed for the
initial exploration of the power spectrum of the signal, and could therefore be used for the
subsequent phase analyses without additional downfalls.

The MG was activated during muscle lengthening, and the resulting phase difference
was similarly detected by all three phase estimation techniques. The results were consistent
with a role for the MG as a braking muscle during pedal downstroke.
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The rat renal blood flow data distinguish themselves from the other sets of data pre-
sented because they show how phase can be used to identify strengths of interactions among
oscillating signals. Whereas the other physiological examples reveal interactions where one
system drives changes in another system, the renal data provided evidence that blood flow
dynamics mutually entrain and become synchronous. Again, all three techniques generated
equivalent interpretations.

2.6 Conclusion

Three useful techniques for estimation of the phase of oscillatory physiological signals were
highlighted. The application of each technique was demonstrated in a broad variety of
physiological systems. Generally speaking, it was found that when oscillatory physiolog-
ical signals were analysed, the wavelet transform, Hilbert transform, and peak detection
techniques each return similar results.

The peak detection technique was originally designed as a naïve alternative to the two
most widely used other techniques. Its relatively good performance was then quite surpris-
ing. This finding encourages further examination of its characteristics and performances
under different conditions.

Decision criteria were summarised in a tree to assist with technique selection (Fig.
2.13). The criteria were elaborated based on the conditions necessary to implement the
three detection methods rather than from direct interpretations of the results of the study.
They mostly represent sine qua non criteria, rather than loose guidelines.
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Figure 2.13: Decision tree for selecting the most appropriate technique of phase estimation.
The first, second and third criteria were elaborated upon the conditions necessary to im-
plement the three detection methods rather than from direct interpretations of the results
of the study. They represent sine qua non criteria, rather than loose guidelines.
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Chapter 3

New indices from
microneurography to investigate
the arterial baroreflex

Every twitching nerve and pulsing vein
carries a message, discernible with the
right tools.

MTG, Pain Seer

3.1 Introduction

Baroreflex-mediated changes in heart rate and vascular resistance in response to variations
in blood pressure are critical to maintain homeostasis. Inadequate responses resulting in
hypotension vary widely in severity, causes, and symptoms [1]. In fighter pilots and astro-
nauts, orthostatic hypotension due to severe changes in gravitational forces can cause an
interruption in cognitive function and syncope, precisely in moments of critical importance
[2, 3]. Studies that examine the reactions of highly tolerant individuals to extreme envi-
ronments have often influenced standard cardiovascular models of orthostatic intolerance
or delayed intolerance. In the the elderly, a group with high prevalence of orthostatic in-
tolerance, orthostatic hypotension has been linked to higher risks of myocardial infarction
[4], stroke [5], and may also cause syncope, a significant contributor to falls and injury [6].

Baroreceptors located in the carotid sinus, coronary arteries, and the aortic arch respond
to changes in vessel diameter. Increased blood pressure distends vessel walls, which in
turn increases baroreceptor afferent activity. This inhibits the vasoconstrictor center of
the medulla, reducing sympathetic activity, and excites the vagal parasympathetic center.
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The net effects in the heart are decreased heart rate and contractility. The effect on the
peripheral blood vessels is general dilation.

It has been shown in young adults that an impairment in the ability to increase vas-
cular responses to baroreflex stimulation when upright is associated with poor orthostatic
tolerance [7]. This has led to the hypothesis that maintenance of blood pressure during
orthostasis depends primarily on a vascular response, and secondly on a cardiac response
[8, 9]. However, despite the evidence of the relative importance of vascular responses [10],
there continues to be debate regarding the relative contribution of the cardiac and vascular
responses to orthostasis [11].

Previous work has shown that the frequency of maximal coherence between RR interval
and systolic arterial pressure time series in the low-frequency range was correlated to time-
to-presyncope in individuals with histories suggestive of unexplained syncope.[12, 13]. Due
to its minimal invasiveness, this index holds great potential to help in the clinical diagnosis
of orthostatic intolerance. The physiological interpretation of this frequency is difficult to
obtain, however, in part due to the absence of concurrent direct vascular analysis in the
cited studies.

Lower body negative pressure (LBNP) is a technique where participants’ lower body is
placed in an air-tight box at the level of the iliac crest, air removed via a vacuum pump
to reduce the internal box pressure. It is often used to investigate the reaction of the
cardiovascular system to stress similar to standing or hypovolemia, but with minimal muscle
pump effect and no vestibular stimuli [14, 15, 16]. The technique pools blood into the lower
body and lowers blood pressure, decreasing parasympathetic and increasing sympathetic
outflow, which in turn increases heart rate, myocardial contractility, and total peripheral
resistance (Fig. 3.1).

While the parasympathetic-mediated effects on heart rate are easily measured via surface
electrocardiogram, quantification of the sympathetic outflow is more difficult. Microneu-
rography, which is not used clinically and requires onerous hands-on training, has been used
since the late 1960’s to record muscle sympathetic nervous activity (MSNA) and quantify
sympathetic outflow to the arteries [17]. The technique has been recently used to study
the arterial response to changes in blood pressure and its changes during pre-syncope in
orthostatic finisher individuals [18, 19, 20].

Although these studies have contributed significantly to our understanding of the rela-
tionship between blood pressure and MSNA before and during pre-syncope, the challenge
remains to understand the differences between levels of orthostatic tolerance in both car-
diac and arterial branches of the baroreflex. The goal of this study was to examine the
relationship between blood pressure and MSNA as it pertains to orthostatic tolerance. In
particular the aim was to identify an index capable to distinguish possible mechanisms that
contribute to earlier presyncope.
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Figure 3.1: An example of typical systolic arterial pressure (SAP), RR intervals, and muscle
sympathetic nervous activity (MSNA) responses during graded lower body negative pressure
(LBNP). The participant shown here did not experience pre-syncope.

Blood pressure, heart rate, and MSNA all oscillate at a rate of approximately 0.1 Hz.
These oscillations are commonly referred to as Mayer waves in blood pressure [21], and
constitute a major low-frequency (LF) oscillation in all three signals. Although some evi-
dence points to the existence of a central oscillator responsible for these waves, they are in
large part due to inherent time delays in the processes involved in the centrally-mediated
static baroreflex [22]. Communication latency between receptor and effector organs in the
baroreflex negative feedback loop causes constant over/under-shoot and readjustment at the
resonant frequency of 0.1 Hz (Fig. 3.2). Studying the relationships between the components
of LF oscillations is key to understanding the baroreflex.

Low-frequency DAP and MSNA fluctuations, as well as the relationship between these
two variables is usually quantified by frequency analysis. Individual DAP and MSNA power
quantifies the amount of activity during a given period of time, and coherence quantifies
the degree to which their oscillations are related.

In normotensive patients at rest, diastolic arterial pressure (DAP) and MSNA power in
the LF range is relatively low, as is their coherence. Upon application of LBNP, coherence
increases, as does their respective powers in the LF range [19, 25]. This shows that a loose
healthy relationship between DAP and MSNA exists at rest which tightens when under
stress, even when that stress is minimal, such as during a sit-to-stand test or a minute of
−10 mmHg of LBNP.

The hypothesis is that while cardiac baroreflex indices cannot distinguish between levels
of high orthostatic tolerance, the relationship between MSNA and DAP is different between
these groups, and that this difference can be identified at early stages of orthostatic stress.
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Figure 3.2: Summary of the main pathway of the arterial baroreflex loop. The principal time
delays and communication lags are indicated [23, 17, 24]. Low frequency (0.1 Hz) oscillations
in blood pressure (Mayer waves), MSNA, and total peripheral resistance emerges from the
interactions between these lags and delays [22]. One such loop takes between 7 and 25
seconds, taking into account variations in the amplitude of blood pressure variation and the
periods of MSNA activity/inactivity.

3.2 Methods

Eleven healthy, normotensive participants underwent LBNP at 0, −10, −20, −40, −50,
and −60 mmHg. Each level was sustained for 5 minutes. LBNP was terminated when
participants exhibited symptoms of presyncope. Participants that did not display symptoms
of presyncope throughout the protocol were classified as finishers. Those that displayed pre-
syncope before completing the 5-minute −60 mmHg level were classified as non-finishers.
For all non-finishers, symptoms of presyncope occurred either during the −50 mmHg level,
or at the onset of the −60 mmHg level.

Continuous measurements of ECG, MSNA, and blood pressure were recorded simultane-
ously on a personal computer with analogue-to-digital conversion (Acqknowledge, Biopack
Systems, Goleta, CA, USA) for subsequent analysis. The continuous analogue electrocar-
diogram signal was then used to obtain R waves using the Pan-Tompkins algorithm [26].
RR intervals were then computed.

Continuous waveform blood pressure was provided by finger photoplethysmography (Fi-
napres, Ohmeda, Englewood, CO, USA). Diastolic and systolic arterial pressures (SAP)
were obtained as the maximum and minimum arterial pressures in each RR interval. For
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each heart cycle, to adjust for the time of propagation of the blood pressure wave from
the heart to the finger, the time difference between the R peak and diastolic timing was
subtracted from both systolic and diastolic timings.

The resulting RR interval and arterial pressure time series were resampled at 5 Hz using
a shape-preserving piecewise cubic interpolation method and forward-backward bandpass
filtered to a band of [0.04, 0.15] Hz to isolate LF oscillations. This filter design, particularly
in its application in one time-direction and then the other, was chosen to minimize its effect
on phase.

Muscle sympathetic nerve signals were obtained by microneurography. Unipolar tung-
sten microelectrodes (shaft diameter 0.1 mm and impedance 1-5 MΩ) were manually inserted
percutaneously into sympathetic fasciles in the tibial nerves. One electrode was used for
direct intraneural recordings and a second surface electrode was placed as a reference 3.0
cm away from the recording electrode. The electrodes were connected to a high impedance
amplifier and the sympathetic signal was transmitted to a [700, 2000] Hz band pass filter
and amplified by a factor of 105. The neurogram was full wave rectified and integrated with
a time constant of 0.1 s. MSNA was lowpass filtered with a cutoff frequency of 10 Hz to
remove background activity. The number of bursts per low frequency baroreflex-mediated
loop was used to quantify MSNA. Bursts were identified as points having a prominence of 3
times the inter-quartile range (3·iqr) of the MSNA signal, and no closer to each other than
0.9 times the shortest RR interval. Prominences between 2·iqr

To test whether traditional cardiac baroreflex indices were different berween finishers
and non-finishers, cross-spectral analyses on the RR intervals and SAP time series was
performed. These time series were fitted by a bivariate autoregressive model. Coherence
and transfer function gain between SAP and RRI were computed, as well as the frequency of
maximal coherence in the LF range [27, 28]. Gain and frequency values were only accepted
when coherence was above 0.5.

To study the arterial baroreflex, DAP was chosen over SAP since it has been shown that
the rhythmic relationship between blood pressure and sympathetic outflow is best observed
with DAP [29].

The foundation of this study’s new approach was to attempt to isolate single neurogenic
constriction-dilation cycles in arteries. Time-frequency analysis techniques such as the
wavelet or Hilbert transform, make 2 assumptions that render them inadequate for this
purpose. First, they assume that the signal is a summation of oscillations of different
frequencies and amplitudes. In the case of sympathetic outflow, this assumption is false
for a recording at one particular location. In the case of diastolic blood pressure, although
LF oscillations at one location may or may not constitute some addition of many related
forces, the new assumption that the measured phenomenon constitutes a single cycle local
neurogenic constriction-dilation cycle offers new avenues for interpretation.
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Figure 3.3: Filtered diastolic blood pressure (DAP) and muscle sympathetic nervous activity
(MSNA) during a single low frequency baroreflex-mediated loop (Fig. 3.2). The steepest
drop in DAP is shown as ×, and is a surrogate for the start of the blood pressure drop
stimulus. MSNA bursts are shown as red ∗, with 3·iqr shown as a dotted line to represent
the prominence threshold. Stimulus time is the time from the steepest drop in DAP to the
first MSNA burst. Response time is the time from the last MSNA burst and the end of the
loop. DAP stimulus amplitude is the magnitude of DAP change from the beginning of the
loop to its lowest point. DAP response amplitude is the magnitude of DAP change from
its lowest point to the end of the loop. DAP amplitudes are computed from the unfiltered
signal and are shown here for heuristic purposes.
Here, the number of bursts is 5, stimulus time = 1.6 s and response time = 3.2 s. DAP
stimulus amplitude = 7 mmHg, and response amplitude = 15 mmHg. The ratio of the 7
mmHg DAP stimulus to 5 MSNA bursts was used to compute the stimulus slope, and the
ratio of 5 MSNA bursts to the 15 mmHg DAP response was used to compute the response
slope.
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Figure 3.4: DAP response amplitude versus number of bursts in single low frequency
baroreflex-mediated cycles (Fig 3.3). Figure shows values for −10 and −40 mmHg of lower
body negative pressure (LBNP), for finishers and non-finishers. For each level of LBNP, ten
low frequency baroreflex-mediated cycles were chosen to maximize DAP amplitudes, area
under MSNA, and number of MSNA bursts. For each participant, represented by different
colors, those ten loops are shown. Linear regressions are shown.

The second frequency analysis assumption is that oscillations are constant within some
time window. Although both wavelet and Hilbert analyses constitute intelligent compro-
mises between frequency and time domain resolutions, their quantification of a single cycle
will always include previous and subsequent cycles. For example, in Morlet wavelet analysis
of order 6, which is most commonly used, the 0.1 Hz power of a signal at time t includes
the analysis of the signal at t− 30 and t+ 30 seconds. In the case of Hilbert analysis, time-
domain information is obtained by weighing frequency-domain variables by their respective
power, and assumes time constance.

To isolate single neurogenic constriction-dilation cycles in the LF band, peaks were
identified on the filtered and resampled DAP signal as any positive relative maximum with
a minimum of 6.67 seconds (or 1/0.15 Hz) between them. These peaks were then used
to obtain the closest relative maximum on the unfiltered DAP signal, which in turn were
used as estimates for the time of maximum constriction. These peaks were used as cutoffs
between cycles and the segments between them were then deemed single LF cycles in both
DAP and MSNA.

It is known that acute drops in DAP cause increased MSNA [29]. In every LF cycle,
the point of minimal derivative (MD) was identified to estimate the time of DAP mediated
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sympathetic activation. For each cycle, MSNA bursts occurring between MD and the end
of the cycle were identified.

Many variables affect MSNA and DAP. To locate the LF cycles where the DAP-MSNA
relationship was strongest, an estimator of strength (S) for each cycles was computed. S
was computed as the multiplication of MSNA area, number of MSNA bursts, and DAP
amplitude. The 10 cycles with the highest S were kept for further analysis.

For each identified LF cycles, six indices were computed. These included four primary
indices and two secondary indices (Table 3.1, Fig. 3.3). Indices were tested for statistical
difference between groups for each level of LBNP, and within groups with respect to −10
mmHg. The mild level of −10 mmHg was chosen instead of baseline based on observations
and previous research ([19, 25]) that indicated that the resting relationship between DAP
and MSNA is weak, and might produce invalid indices. In figures, when no statistical
difference was obtained between group within LBNP levels, values from both groups are
shown together.

Where the indices were different between groups at −10 mmHg, the receiver operating
character curve was computed to explore their predictive potential [31]. On this curve,
the percentage of of true positives (sensitivity) is plotted against the percentage of false
negatives (1-specificity) for a range of threshold index values. A good predictive index
threshold has both a high sensitivity and a high specificity.

Signal analysis was performed in Matlab 2014b (Mathworks, MA, USA), and statistical
analysis in JMP 11.2 (SAS Institute Inc, NC, USA). Values reported are mean ±95%
confidence interval. Confidence interval was computed as 1.95 the standard error within
the group and LBNP level. Tukey’s range test was used to compare values across LBNP
levels together with non-finishers versus finishers (two-way ANOVA). Values of p < 0.05
were considered significant.
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Table 3.1: Four primary indices and two secondary indices quantifying the relationship
between diastolic arterial pressure (DAP) and muscle sympathetic nerve activity (MSNA).
The indices were obtained by isolating single low-frequency neurogenic constriction-dilation
cycles in DAP.

Primary indices
(Fig. 3.3)

Stimulus time Time from the steepest drop in DAP to the first burst
in a single LF cycle. This index is related to the time
delay from drops in DAP to subsequent sympathetic nerve
activity at the vascular bed. The delay between carotid
sinus nerve firing and muscle sympathetic nerve activity in
the leg varies linearly according to the height of subjects
and is approximately 2 s [23, 17].

Response time Time from the last burst in a single LF cycle to the end
of that cycle. This index is related to the time from the
last norepinephrine release in the synaptic cleft to maximal
arterial constriction. In a rat tail artery, norepinephrine
clearance takes ≥ 1.5 s [24].

DAP stimulus
amplitude The absolute difference between DAP at the beginning of

a single LF cycle and its lowest point. This index is related
to the magnitude of the acute blood pressure stimulus.

DAP response
amplitude The absolute difference between DAP at the lowest point

in a single LF baroreflex-mediated cycle and its last point.
This index is related to the magnitude of the neurogenic
arterial constriction.

Secondary indices

Stimulus slope The number of MSNA bursts within each LF cycle was
plotted versus its respective DAP stimulus amplitude. A
regression line was computed for each subject at each
LBNP level using the method of least squares. For each
subject, the stimulus slope is the slope of that line. This
index quantifies the relationship between the amplitude of
single acute blood pressure drop to the subsequent MSNA.
A large slope would mean that MSNA is not only triggered
by acute drops in DAP, but modulated by the size of that
drop.

Response slope DAP response amplitude was plotted versus the number of
MSNA bursts within each respective LF cycle (Fig. 3.4).
A regression line was computed for each subject at each
LBNP level using the method of least squares. For each
subject, the response slope is the slope of that line. This
index quantifies the relationship between MSNA and the
subsequent rise in DAP. A large slope would mean that
more intense MSNA causes larger LF increases in DAP.
Indices similar to this response slope have been used, tak-
ing total change in MSNA and DAP into account, instead
of individual LF cycles [19, 30].

DAP: diastolic arterial pressure; LF: low-frequency; MSNA: muscle sympathetic nerve activity.
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3.3 Results

Mean SAP within LBNP levels were not statistically different between groups. Groups
taken together, the means were 135.3± 4.2 mmHg, 133.2± 3.7 mmHg, 130.5± 3.5 mmHg,
and 126.5 ± 3.4 mmHg. The means at −30 and −40 mmHg of LBNP were statistically
different than the mean at −10 mmHg. The mean at −40 was statistically different than
the mean at −10 mmHg. Within the non-finisher group, the mean at −40 mmHg of LBNP
was statistically different than the means at −10 and −20 mmHg.

An expected increase in MSNA at increasing levels of LBNP was observed in both groups
(Fig. 3.5). Considering both groups together, the mean number of MSNA peaks per LF
cycle were 3.72±0.48, 4.40±0.39, 5.12±0.53, and 5.96±1.09 for increasing levels of LBNP.
The means at −30 and −40 mmHg of LBNP were larger than the mean at −10 mmHg.
The mean at −40 mmHg was also greater than the mean at −20 mmHg. Within LBNP
levels, there were no statistical differences between the two groups.

In both the finisher and non-finisher groups, the means at −30 and −40 mmHg LBNP
were greater than the mean at −10 mmHg within the group. Their respective mean at −40
mmHg were also greater than their mean at −20 mmHg.

Mean stimulus time decreased from 2.73±0.50 s at −10 mmHg to 2.03±0.28 s, 1.89±0.35
s, and 1.36 ± 0.27 s, at −20, −30, and −40 mmHg respectively (Fig. 3.6). Within LBNP
levels, there were no statistical differences between the two groups.

Mean response times in the finisher group were 3.12± 0.42 s, 2.72± 0.49 s, 2.63± 0.56
s, and 2.33± 0.35 s for increasing levels of LBNP. The time at −40 mmHg was statistically
shorter than at −10 mmHg. For non-finishers, response times were 3.31±0.46 s, 2.90±0.53
s, 2.82±0.61 s, and 2.84±0.38 s, respectively, and were not statistically different from each
other (Fig. 3.7).

Mean DAP stimulus amplitudes for finishers were 9.58±2.41 mmHg, 8.86±1.61 mmHg,
10.51± 2.30 mmHg, and 11.38± 2.40 mmHg for increasing levels of LBNP. The amplitude
at −40 mmHg of LBNP was higher than at −20 mmHg of LBNP. For non-finishers, DAP
stimulus amplitudes were 10.49 ± 1.75 mmHg, 12.03 ± 2.40 mmHg, 14.31 ± 1.85 mmHg,
and 12.79 ± 2.04 mmHg, respectively, and the mean at −40 mmHg of LBNP was higher
than that at −10 mmHg of LBNP. Within LBNP levels, there were no statistical differences
between the two groups (Fig. 3.8).

Mean DAP response amplitudes for finishers were 9.78±2.86 mmHg, 8.98±1.70 mmHg,
11.03± 2.25 mmHg, and 10.88± 2.20 mmHg for increasing levels of LBNP. Within the this
group, the means were not statistically different from each other. For non-finishers, DAP
response amplitudes were 10.72 ± 1.34 mmHg, 12.75 ± 1.68 mmHg, 14.24 ± 1.39 mmHg,
13.60 ± 1.72 mmHg, respectively, and the means at −30 and −40 mmHg of LBNP were
higher than at −10 mmHg (Fig. 3.9).
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Figure 3.5: Mean number of muscle sympathetic nerve activity (MSNA) bursts within single
low frequency baroreflex-mediated cycles for all lower body negative pressure (LBNP) levels
± confidence interval. For each level of LBNP, ten low frequency baroreflex-mediated cycles
were chosen to maximize DAP amplitudes, area under MSNA, and number of MSNA bursts.
For each subject, the mean of those ten values are shown as smaller grey dots. ∗ indicates
statistical difference between levels of LBNP within groups, and also with both groups taken
together.
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Figure 3.6: Mean stimulus times for all levels of lower body negative pressure (LBNP) ±
confidence interval. Within single low frequency baroreflex-mediated cycles, stimulus time is
the time from the steepest drop in diastolic arterial pressure to the first muscle sympathetic
nerve activity burst. ∗ indicates statistical difference between levels of LBNP.
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Figure 3.7: Mean response times for all levels of lower body negative pressure (LBNP) ±
confidence interval. Within single low frequency baroreflex-mediated cycles, response time
is the time from to last muscle sympathetic nerve activity burst to the end of the cycle.
The mean response time of finishers at −10 mmHg is statistically different from the −10
mmHg mean in its own group.

Mean stimulus slopes within groups were not statistically different between LBNP levels.
Within LBNP levels, they were not statistically different between groups. Their combined
means were 0.012 ± 0.181 n/mmHg, −0.029 ± 0.123 n/mmHg, 0.114 ± 0.126 n/mmHg,
−0.032±0.152 n/mmHg for increasing levels of LBNP. The mean stimulus slope was different
from 0 only for non-finishers at −20 mmHg.

Mean response slopes for finishers was smaller than that for the non-finisher group at
−10 mmHg of LBNP. Within the non-finisher group, the mean response slope was smaller
at −40 mmHg of LBNP than at −10 mmHg of LBNP (Fig. 3.10). In both groups, the
response slope mean was never different than 0.

Means of coherence and gain between systolic arterial pressure and RR intervals within
LBNP levels were not statistically different between groups (Tables 3.3 and 3.3). Within
groups, they were not statistically different between LBNP levels.
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Figure 3.8: Mean diastolic arterial pressure (DAP) stimulus amplitudes for all levels
lower body negative pressure (LBNP) ± confidence interval. Within single low frequency
baroreflex-mediated cycles, DAP drop amplitude is the absolute difference between the DAP
at the beginning of the cycle and the lowest DAP in the cycle. For finishers, the mean at
−40 mmHg is different than the mean at −20 mmHg. For non-finishers, the mean at −30
mmHg is different than the mean at −10 mmHg.
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Figure 3.9: Mean diastolic arterial pressure (DAP) response amplitudes for all levels
lower body negative pressure (LBNP) ± confidence interval. Within single low frequency
baroreflex-mediated cycles, DAP rise amplitude is the absolute difference between the low-
est DAP in the cycle to the DAP at the end of the cycle. Means indicated by a ∗ are
statistically different from mean at −10 mmHg in their own group.
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Figure 3.10: Mean response slope for all levels lower body negative pressure (LBNP) ±
standard error. Response slope is obtained by computing the regressions between number
of muscle sympathetic nervous activity (MSNA) bursts LF cycle and diastolic blood pressure
rise amplitudes (see Fig. 3.4). The means of finishers at−10 mmHg and non-finishers at−40
mmHg are statistically different than the mean of non-finishers at −10 mmHg (p < 0.05).
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Table 3.2: Coherence between systolic arterial pressure and RR intervals (mean± confidence
interval).

Coherence
LBNP level finishers non-finishers
(mmHg)
−10 0.77± 0.02 0.86± 0.02
−20 0.74± 0.02 0.86± 0.01
−30 0.82± 0.02 0.81± 0.02
−40 0.81± 0.02 0.85± 0.02

Within LBNP levels, values were not statistically different between groups. Within groups,
they were not statistically different between LBNP levels (p < 0.05).

Table 3.3: Gain between systolic arterial pressure and RR intervals (mean ± confidence
interval).

Gain
LBNP level finishers non-finishers
(mmHg)
−10 9.35± 73 10.52± 62
−20 7.90± 35 9.28± 58
−30 10.82± 65 8.80± 106
−40 6.75± 35 7.05± 65

Within LBNP levels, values were not statistically different between groups. Within groups,
they were not statistically different between LBNP levels (p < 0.05).

Table 3.4: Frequency of maximal coherence between systolic arterial pressure and RR in-
tervals (mean ± confidence interval).

Frequency
LBNP level finishers non-finishers
(mmHg)
−10 0.090± 0.016 0.108± 0.010
−20 0.093± 0.009 0.090± 0.009
−30 0.104± 0.011 0.096± 0.010
−40 0.103± 0.016 0.096± 0.013

Within LBNP levels, values were not statistically different between groups. Within groups,
they were not statistically different between LBNP levels (p < 0.05).
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3.4 Discussion

In this study, new signal analysis techniques were applied to isolate individual low frequency
constriction-dilation cycles in DAP and MSNA. Using these techniques, four primary in-
dices, and two secondary indices were defined. The goal was to investigate the relationship
between DAP and MSNA during LBNP, and to identify differences in this relationship
between the finishers and non-finishers.

The mean number of MSNA bursts within single LF cycles showed a positive trend
with increasing levels of LBNP, and were higher at −40 mmHg. This expected behaviour
indicated that an increase of sympathetic outflow to increase peripheral resistance was a
response to escalating levels of cardiovascular stress. Similar observations have been made in
many previous studies,and its analogue here suggests that our selection criteria and analysis
of these chosen LF cycles capture important well-known behaviours of the system.

Due to our selection of LF cycles with high DAP amplitude and high MSNA, this index
was also able to capture at least some of the information that has previously been obtained
with coherence analysis between DAP and MSNA. Indeed, if more MSNA bursts occur
in concert with large DAP drops and increases during LF oscillations, the corresponding
coherence would also be high. Increased DAP-MSNA coherence with graded LBNP has
been reported [19].

In the finishers, although the mean number of MSNA bursts within single LF cycles
rose during graded LBNP, the DAP response amplitudes did not. This result, along with
the fact that the response slope was never different than zero in all LBNP levels, suggests
that a finisher DAP-MSNA relationship could be characterized by a fixed desired DAP rise
amplitude, mediated by a variable number of MSNA bursts. In other words, the system acts
as if seeking to attain a particular rise in DAP, and provides just the necessary sympathetic
activity.

In contrast, non-finishers’ DAP rise amplitudes became larger at higher levels of LBNP.
This result, along with a decreased response slope at -40 mmHg, suggests that the DAP-
MSNA relationship of these participants was different than that of finishers. Under minimal
stress, a higher response slope indicates that more MSNA bursts tend to result in a larger
subsequent DAP rise. These results suggest that contrary to finisher group, where the
sympathetic nervous system acts to obtain a precise DAP response, the non-finisher group
modulates a variable DAP response with variable amounts of MSNA.

For non-finishers, a drop in response slope from 1.58 mmHg/n at −10 mmHg/n to −0.55
mmHg/n at −40 mmHg indicates an alteration in the DAP-MSNA relationship. Significant
changes in cardiovascular variables such as DAP-MSNA coherence, MSNA, and heart rate
have been reported during or before presyncope [30, 19, 12]. In all three, during or preceding
presyncope, the system exhibits the opposite behaviour than would be expected in response
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to cardiovascular stress. These results are analogous to our findings, wherein the nature of
the relationship between DAP and MSNA inverts before presyncope.

The response slope receiver operating character curve for −10 mmHg of LBNP (Fig.
3.11) suggests that a threshold of 0.2 mmHg/n could distinguish most finishers from non-
finishers. At that level of LBNP, all finishers had a response slope above 0.2, while only
one non-finisher also did.

Stimulus slope remained constant for both groups in all levels of LBNP, and was sta-
tistically different from zero only for non-finishers at −20 mmHg. This indicates that the
number of MSNA bursts per cycle was not related to the magnitude of the acute DAP
drops in the LF band. Previous research has shown that the onset of MSNA volleys result
from acute drops in DAP [25]. Along with our result showing decreasing SAP concurrent
to increasing MSNA bursts per cycle, these would indicate that although MSNA volleys are
caused by acute drops in DAP, their size may be modulated by a SAP moving average. It
has been previously suggested that LBNP causes increased baroreceptor sensitivity in yet
misunderstood ways [32].

Stimulus time values were within the physiological range of delay between carotid sinus
nerve firing and muscle sympathetic nerve activity in the leg (≈ 2 s, [23, 17]), although
it is clear that stimulus time does not directly measure this delay. Stimulus time became
progressively smaller for both groups as LNBP levels were increased, without differences
between groups. These results either suggest that the nervous system reacted more aggres-
sively to progressively smaller drops, and/or that reaction time became shorter. In this
sense, the stimulus time index quantifies the sensitivity of the arterial baroreflex.

Response time values were within the physiological range of norepinephrine clearance
rate in the arterial bed (≥ 1.5 s, [24]). While no change was observed in the non-finishers,
values for finishers were smaller at −40 mmHg than at −10 mmHg. These results suggest
the existence of a stress adaptation mechanism for finishers which was not the case for
non-finishers. This conclusion is supported by previous research showing norepinephrine
transporter deficiency associated with orthostatic intolerance [33, 24, 34].

Our findings support previous work showing that sympathetic activity in the baroreflex
is different in people who do not faint during intense LBNP versus people who do. Un-
der minimal stress the response slope index, which corresponds to the arterial response to
MSNA, was different between finishers and non-finishers. In settings such as the aerospace
field, response slope could be used to characterize potential candidates for extreme environ-
ment assignments.

This study provides useful insight into the relationship between DAP and MSNA. It
should be noted that MSNA is a technique that is all but absent in clinical settings, and
demands often prohibitively high levels of expertise in laboratory settings. Further explo-
ration of sympathogenic DAP fluctuations with these indices could provide information to
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derive new techniques to quantify processes in the arterial branch of the baroreflex, which
could be used to diagnose and monitor orthostatic hypotensive patients.
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Chapter 4

Accurate and consistent automatic
seismocardiogram annotation
without concurrent ECG

An indrik’s howl is much subtler than
its crushing foot. The sound is
mundane, but inaudible vibrations
scatter and sunder magical
contrivances.

Simic research notes

4.1 Introduction

Seismocardiography (SCG) is the measurement of thoracic vibrations recorded from ac-
celerometers placed on the sternum. The signal was originally recorded by Roman Baevsky
and used to monitor cosmonauts [1]. During the 90’s Salerno and Zanetti used the technol-
ogy for diagnosis of coronary artery disease [2]. Recent developments in MEMS accelerom-
eter technology have rekindled research interest in the technique [3, 4].

Peaks observed in SCG have been related to significant cardiac events, the main ones
being aortic valve opening (AO) and isovolumic moment (IM) during the systolic cycle, and
aortic valve closure (AC) during the diastolic cycle (Fig. 4.1). The assignment of these
fiducial points was based on concurrent echocardiogram analysis with SCG morphology
[5, 6]. Precise cardiac mechanical timings that can only be obtained from SCG are critically
dependent on accurate identification fiducial points [7, 8].

Heart rate variability (HRV) analysis is a practical and widely used noninvasive tech-
nique to study the autonomic control of the cardiovascular system [9]. The sympathetic and
parasympathetic nervous systems have complementary excitatory and inhibitory effects on
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Figure 4.1: Example electrocardiogram (ECG), seismocardiogram (SCG), and SCG profile
with relevant fiducial points. The profile is obtained from the Morlet wavelet transform
of the SCG by isolating the frequency with highest power in the [20, 60] Hz band, and
returning its power in the time domain.

the heart, respectively. The interplay between these systems cause the heart rate to exhibit
regular oscillations under normal conditions. These oscillations in the steady-state heart
rate are dominated by 2 frequencies. In the low-frequency range of [0.04, 0.15] Hz, barore-
flex mediated oscillations are centered around a frequency of ≈ 0.1 Hz. These oscillations
are largely due to time delays inherent to the processes involved in arterial constriction and
dilation [10]. Because of this, power in this band is often used to quantify sympathetic
activity [11, 12]. Likewise, oscillations in the high-frequency range of [0.15, 0.4] Hz centered
around the breathing frequency are mediated by respiratory sinus arrhythmia, and are often
used to quantify vagal parasympathetic activity [13].

The heartbeat intervals (HBi) used for HRV analysis are predominantly obtained from
electrocardiogram (ECG) R peaks, with some exceptions such as photoplethysmography
(PPG) peaks [14]. Recently, mechanical cardiac signals have provided alternatives for HBi
acquisition. SCG and Ballistocardiograms (BCG) are the primary examples of such signals.
BCG measures the recoil of the body due to aortic blood circulation and can be recorded
from weight scales and bed sensors [4]. The comparison of HRV indices obtained from
alternative and conventional methods has been used to test the consistency of the HBi
estimation.

The modern-day ubiquity of accelerometers in wearable devices and smart phones could
make SCG an inexpensive data acquisition tool. Such devices have been used to obtain
HBi [15, 16, 17], and the possibility of using SCG to obtain HRV indices has been reported

63



by us [18], and others [17, 19]. BCG has also been used to consistently measure heartbeat
intervals [20, 21, 22]. Additionally, correctly annotated BCG has been shown to return valid
HBi and HRV indices when compared to those obtained from ECG [23, 24] and PPG [25].
In all these studies, however, the identification algorithms either depended on concurrent
R peak identification, or did not report the accuracy of fiducial point identification. The
eventual use of SCG as a stand-alone application without concurrent ECG or PPG, either at
home or in the laboratory, depends on the accurate and consistent automatic identification
of fiducial points with minimal user input.

The goal of this study was to develop and test SCG fiducial point identification software
capable of returning valid HRV indices, while requiring no input from the user. A core
concept for the algorithm in question was the elaboration of a function model for systolic
vibration cycles, as well as an optimization function capable of accurately fitting this model
to the in-vivo signal.

Accuracy of fiducial point identification differs importantly from the consistency nec-
essary to obtain valid HRV indices. While HRV depends on consistent beat-to-beat iden-
tification of any one feature in systolic cycles, precise mechanical timings depend on the
accurate identification of a particular fiducial point. To this end, our team has been in-
volved in the development of an algorithm capable of correct identification of ten IM points
per five minutes of recording [26]. This study builds on these few identified points, filling
the gaps between them.

In order to test the software’s ability to correctly identify SCG fiducial points in a
variety of settings, it was applied on dataset recorded from subjects who were exposed to
lower body negative pressure (LBNP). Previous work on this dataset showed that HRV
indices could be obtained from manually identified fiducial points.

A secondary goal of this study was to investigate changes in SCG morphology due to
LBNP. Although the moments in time when some important features of SCG occur are
identified, there remains a gap in our knowledge of the forces that cause them, and how
they may be altered by variations in intra-thoracic pressures and volumes. In this regard,
the model was used to propose some standard morphology which could then be compared
to each in-vivo systolic vibration cycle.

4.2 Methods

4.2.1 Data collection and annotation

A total of 18 participants took part in this study, including three female and fifteen males,
(age: 27.6 ± 1.7 years, weight: 71.2 ± 5.4 kg and height: 174.3 ± ±3.2 cm). None of
the participants had any documented cardiac abnormality. Signals were recorded at the
Aerospace Physiology Laboratory under an ethics approval from the Simon Fraser University
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Research Ethics Board. Participants followed the informed consent procedure and signed
consent forms.

Each participant’s lower body was placed in a negative pressure chamber and sealed at
the iliac crest. Vacuum was applied to the chamber to drop the box pressure to -20 mm
Hg, -30 mm Hg, -40 mm Hg and -50 mm Hg progressively. The participants were kept at
each stage for 5 minutes and were returned to normal pressure at the end of the -50 mm
Hg stage. If a participant exhibited a sudden decrease in heart rate or blood pressure or if
they expressed any discomfort and wanted to stop, the negative pressure was immediately
terminated [7].

SCG was acquired by a high sensitivity accelerometer (Brüel Kjær model 4381, Nærum,
Denmark) placed on the xiphoid process of the sternum. The participants were in the supine
position and the signals were recorded in back-to-front direction, perpendicular to the body
surface. The ECG signal was simultaneously acquired through the NI 9205 analog input
module (National Instruments, Austin, TX).

The filter banks algorithm [27] was used to identify the QRS complexes of the ECG. On
the SCG, IM and AO points were assigned as the local minimum and maximum following
each R peak. The AC point was assigned as the local minimum in a window of radius 50
ms centred 350 ms after the Q-wave. The software annotations were imported to the HFM
Waveform Analysis software (Heart Force Medical, Vancouver, Canada) and were manually
corrected. An algorithm described in detail later in this paper (subsection 4.2.2) was then
used to identify IM points without the use of R peaks.

It has been previously shown that HBi obtained with either AO points or IM points can
be used to compute valid HRV indices. Since previous results indicated that IM identifica-
tion is slightly more consistent than AO identification [26], our algorithm was tested on its
ability to identify IM points.

HBi obtained from R peaks and IM points were computed and resampled at 5Hz using
a shape-preserving piecewise cubic interpolation method (Fig. 4.2).

For all LBNP levels and participants, the frequency spectrum of the filtered HBi time
series was computed using Welch’s method [28] (Fig. 4.2), and computed normalized
frequency-domain HRV indices. Frequency-domain indices were chosen over time-domain
indices to reflect their dominant use in research on cardiac autonomic control. Normalized
indices were chosen over absolute indices since the former are unreliable for comparisons
between individuals [9].

To quantify the accuracy of the algorithm, the time difference between hand-annotated
and automatically annotated IM points was computed. For each IM point obtained by
hand, the closest IM point obtained automatically was identified. To prevent comparisons
in heart cycles where noise prevented automatic identification of IM points, or where ECG
noise prevented identification of the R peak, the minimum heart period using IM points
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Figure 4.2: Top Example heartbeat interval time series, resampled at 5Hz, using R peaks,
automatically identified isovolumic moments, and hand-identified isovolumic moments using
ECG. Bottom Power spectra of the above time series. Through heart rate variability
indices, these spectra are used to quantify autonomic control of the heart.
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obtained by hand was computed. Only the pairs of IM points that differed in time by less
than 2/3 the minimum HBi were then kept.

Signal analysis was performed with Matlab 2014b (Mathworks, MA, USA), and sta-
tistical analysis with JMP 11.2 (SAS Institute Inc, NC, USA). Values reported are mean
±95% confidence interval. Confidence interval was computed as 1.95 times the standard
error within the LBNP level.

4.2.2 Detailed identification algorithm

All SCG signals were pre-annotated using a previously described algorithm [26] which uses
two envelopes: the first replaces the ECG R peak and the second finds the approximate
location of the IM point with respect to the first envelope peak. The output of the algorithm
returns 10-second segments of annotated SCG separated by gaps of at least 2 seconds to
avoid overlap.

The algorithm described below was developed to fill in these 2-second gaps and refine
the overall estimation (Fig. 4.3).

1. Beat-to-beat rejection

(a) Computation the SCG wavelet profile. This process created a time series used to
identify AO and AC cycles.
A Morlet wavelet transform of order 6 was performed on the filtered SCG signal.
The sum of the resulting time-frequency power over time was then obtained,

S(f) =
∑
t

|s̃(t, f)|, (4.1)

where s̃(t, f) is the wavelet transform of the signals. The frequency fp where S
attained its maximum was computed such that

S(fp) = max
(
S(f)

)
. (4.2)

The profile P was then computed as the mean power for the frequencies around fp,

P (t) =
fp+2∑
fp−2

s̃(t, f)/5. (4.3)

Five frequencies were included instead of one to mitigate mistakes caused by max-
imum likelihood estimators (see Chapter 2).

(b) Rejection of estimates using HBi. HBi was computed for each 10-second section. If
successive intervals differed by more than a threshold value T , they were rejected.
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Pre annotated
10-second sec-
tions with gaps.

1. Beat-to-beat
rejection. 2. Gap fill. 3. Estimate

revision.

IM point timings.

Figure 4.3: Summary of the isovolmic moment (IM) point identification algorithm. The
input are a few very good estimates of IM points that come from a previously described
algorithm and [26]. The first step rejects the set of initial estimates in which sufficient
confidence was not attained. The second step fills the gaps between these few very good
estimates. The last step uses the estimates, which are close to IM points, to predict the
exact location of the IM points.

If 3 or more consecutive heart beats did not deviate from each other by more than
T , they were kept.
This process assumed that heart period rarely changes by more than some threshold
T in a single beat. Here, T was set as 3 times the interquartile range of HBi including
all sections if this value was ∈ [120, 300] ms. Otherwise, it was set at either 120
or 300 ms, whichever was closest. The threshold T is purposely low to favour false
negatives over false positives.

T =


3 · iqr(HBi) if 3 · iqr(HBi) ∈ [120, 300]

300 if 3 · iqr(HBi) > 300

120 if 3 · iqr(HBi) < 120,

(4.4)
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Figure 4.4: Example SCG profile showing exclusion criterion for aortic valve closure (AC)
peaks labeled mistakenly as aortic valve opening (AO) peaks. Here, odd peaks {p1, p3, p5}
are AO, and even peaks {p2, p4, p6} are AC. Top Correctly identified AO peaks are closer
to the next AC peak than the previous AC peak. Bottom. Incorrectly identified AC peaks
are closer to the previous AO peak than the next AO peak.

where iqr is the inter-quartile range. The interquartile range was chosen for its
ability to ignore outliers.

(c) Rejection of estimates that look like diastolic cycles. The misidentification of AC
cycles as AO cycles for entire sections was a recurrent problem. Because such
systematic misidentifications did not affect HBi, and thus did not affect T , another
rejection criterion had to be designed.
For each identified profile peak pn in the section, the profile peaks directly before
(pn−1) and after it (pn+1) were identified. For the section, if pn − pn−1 < pn+1 −
pn for all initially identified peaks, the the section was rejected (Fig. 4.4). This
process assumed that AO cycles were closer to the subsequent AC cycle than to the
preceeding AC cycle.
This process was repeated after each other step.

2. Gap fill. The previously described algorithm used to obtain initial IM estimates au-
tomatically rejected sections of the signal where it was not sufficiently confident [26].
Because of this, the algorithm sometimes left large gaps in the IM identifications.

The gap filling process relied on minimizing the standard deviation of the HBi time
series, taking into account the sections immediately preceding and following the gap.

69



0 1 2 3 4 5 6 7

P
ro

fi
le

 (
n

.u
.)

Time (s)

Figure 4.5: Seismocardiogram (SCG) profile with previously identified aortic valve opening
(AO) peaks in green circles and gap-filling candidates for AO peaks in red asterisks. To
identify which candidates were correct, the heart period time series was computed using
the previously identified AO peaks and all possible candidate combinations. The correct
candidates were then identified as the combination that minimized the standard deviation
of the heart period.

For a given gap, candidate AO peaks were identified as local maxima higher than half
the median of the relevant sections (Fig. 4.5). The sections immediately preceding and
following the gap were appended with all possible combinations of the candidates. For
each combination, standard deviation of HBi was computed. The set of candidates that
minimized the standard deviation were kept for further analysis. This process relied on
the assumption that the fluctuations in HBi over a limited time are small.

If a gap between sections was longer than 10 s, the process proceeded analogously to the
manner previously described, but included only the section immediately preceding the
gap and 3 s of the beginning of the gap profile. This initial narrowing of the gap was
followed by the same technique, but including the section immediately following the gap
and 3 s of the ending of the gap profile. This gap-narrowing process was repeated until
the gap became shorter than 10 s.

3. Estimate revision.

(a) Fit of a model to the participant’s median systolic cycle. This process assumed that
at least half of the profile peaks correctly identified systolic cycles, and that the
absolute maximum of the SCG during systolic cycles is consistent in time.
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For each profile peak, the absolute maximum if the SCG signal within a 200 ms
radius was identified. 400 ms segments of the SCG signal were then centered around
those maxima, and computed their median (Fig. 4.6 Top). The resulting median
was normalized by dividing it by its maximum absolute value. The normalized
median was windowed by the function exp(−(t/100)2) to isolate the relevant vibra-
tions.
The model was defined as the function

f(t, x0, p, φi) = A · sin
(

(t− x0) · 2π
p

)
·

5∑
1
φi (4.5)

where A normalized the maximum to 1, t was time, x0 was the time shift which
is constrained to [−30, 30] ms and represented the point exactly between IM and
AO, p was the period which was constrained to [20, 60] ms, and each φi was a
compactly supported gaussian modulating the mitral closure (MC), IM, AO, and
post-AO peaks, as well as a decay gaussian. The width of the gaussians was p for
i ∈ {1, 5} and p/2 for i ∈ {2, 3, 4}. The gaussians were centered at the MC, IM, AO,
post-AO, and post-post-AO peaks, respectively. The amplitudes of the gaussians
were constrained, respectively from left to right, to [0.1, 0.6], [0.3, 1], [0.9, 1], [0.1, 1],
and [0.1, 1]. The amplitude constraints were designed from repeated observation to
emulate normal signal morphology.
To determine the initial values of the parameters, the 2 SCG segment minima, and 2
SCG segment maxima that differed by at least 20 ms were identified. By comparing
the timings of these extrema it was determined if the left-most minima was a MC
point or an AO point. The initial period p was then set to be the distance between
these 2 minima, and either the MC and AO amplitudes, or the AO and post-post-
AO amplitudes to their respective SCG segment minima values. The initial IM
and post-AO amplitudes were set to their respective SCG segment maxima values.
If the minima were not both below 0.6, he initial values were set to by default to
p = 40, and amplitudes = {0.2, 0.8, 0.9, 0.5, 0.1}.
The model was fitted by a simplex search method [29], implemented in Matlab as
fminsearch, to minimize a distance function D defined as

D = d1
p
·
∑
t

w(t) · d2(t), (4.6)

where d1 is the mean distance between the 2 maxima and 2 minima of the model
and signal, respectively, d2 is the square point-wise difference between the signal
and the model, and w(t) is a weighing function that favours the beginning of the
cycle over its end. The weighing function w(t) was necessary because, while inter-
participant differences in the beginning of systolic cycles are minimal, differences
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Figure 4.6: Top Seismocardiograms (SCG) within 200 ms of all identified profile peaks of a
single participant, centered around their absolute maximums. The median of the resulting
signals is shown (black). Identifying fiducial points to local maxima or minima is a standard
technique for automatic identification [15, 16, 17, 19] and for this participant would return
at least some misidentified peaks. Bottom The median SCG obtained above (grey) with
its corresponding model (black). The model is the function in equation 4.5 with x0 = −8
ms, p = 50 ms, and the amplitudes of the gaussians = {0.2, 0.5, 0.9, 1, 0.8}, respectively.
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in their end are substantial. The weighing function w(t) was then designed as a
decaying sigmoid defined as

w(t) = 0.8 · tan−1
(
− 0.05 ·

(
t− (3.5 · p)

))
+ 1.2. (4.7)

The model resulting from this process was assumed to represent a generic systolic
cycle for the participant, for the particular LBNP level.

(b) Fit of a model to each systolic cycle. This process fitted the generic model obtained
in step 4 to all systolic cycles of the participant, for a particular level of LBNP. For
each identified profile peak, the distance function D (Equation 4.6) was minimized
with respects to x0 (Equation 4.5).
This process implicitly returned timing estimates for MC, IM, and AO points.

(c) Refinement of each estimate. While IM points are always local SCG minima, the
initial timings estimates are often a slight distance from the nearest minimum. For
each IM estimate, the SCG minimum within a window of radius p/4 was identified.
The estimate was then moved to the identified minimum and repeated these steps
until a minimum relative to the window was reached .

4.3 Results

Across LBNP levels and subjects, a median of 6% of the the automatically annotated IM
points did not have a hand-annotated IM points in the same cardiac cycle. A median of
17% of the hand-annotated IM points did not have automatically annotated IM points in
the same cardiac cycle. These points could not be tested for accuracy.

IM points identified by hand were compared to those identified automatically. For
each LBNP level and each subject, the percentage of accurately identified IM points was
computed. An identification was considered accurate when the difference between the timing
of the hand-identified IM point and the automatically identified IM point was 0. Mean
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Figure 4.7: All systolic cycles for one participant across all levels of LBNP. Each cycle was
centered at the hand-identified isovolumic moment fiducial point.
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Figure 4.8: Median systolic cycles for all participants across all levels of LBNP. Each median
cycle was centered at the hand-identified isovolumic moment fiducial point.
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Figure 4.9: Histogram of the estimation errors of the algorithm at baseline for all partici-
pants. The mean error is 0.72 ± 0.30 ms. Right A truncated version of the histogram on
the left highlighting the inaccuracies. The groups of errors centered at ≈ ±50 ms represent
errors wherein either the previous or subsequent peaks were misidentified as the isovolumic
moments. The few errors near −300 ms represent diastolic cycles mistaken for systolic
cycles.

accuracies for increasing levels of LBNP were 97.61±3.39%, 93.32±5.33%, 78.28±14.29%,
58.68± 17.58%, 63.36± 14.23%.

The HRV ratio LF/HF was computed for each level of LBNP and all subjects. Indices
obtained with IM points were compared to those obtained from RR intervals. For indices
obtained from hand annotations, the mean differences were −0.08 ± 0.34, −0.24 ± 0.50,
−0.34 ± 0.43, −0.70 ± 0.64, and −1.07 ± 0.77 for increasing levels of LBNP. For indices
obtained from automatic annotations, the mean differences were 0.16± 0.19, −0.10± 0.58,
0.89± 0.85, −1.22± 0.62, 2.30± 1.10 for increasing levels of LBNP.

For LF/HF measurements, LF-HF power balance obtained with IM points were com-
pared to those obtained from RR intervals. If both values were either above 1 or below 1, the
balance was deemed accurate. For hand annotations, the number of participants with accu-
rately identified balance was 17, 16, 18, 17, and 17 for increasing levels of LBNP (N = 18).
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Figure 4.10: Mean accuracy of isovolumic moment (IM) identification for each level of lower
body negative pressure (LBNP). For each subject, accuracy is computed as the percentage of
automatically annotated IM points that are identical to hand-annotated IM points. Values
are given as mean ± confidence interval.

For automatic identification, the number pf participants with accurately identified balance
was 17, 16, 17, 18, and 16 for increasing levels of LBNP (N = 18).

HF norm was computed for each level of LBNP and all subjects. Indices obtained with
IM points were compared to those obtained from RR intervals. For HF indices obtained
from hand annotations, the mean differences were 0.2 ± 1.9 %, 0.8 ± 3.1 %, 1.4 ± 1.8 %,
1.9± 2.0 %, and 1.7± 1.3 % for increasing levels of LBNP, whereas for HF indices obtained
from automatic annotations, the mean differences were −1.2±1.6 %, 1.0±4.3 %, −4.7±3.8
%, −6.0± 3.2 %, −9.1± 4.6 % for increasing levels of LBNP.

LF norm was computed for each level of LBNP and all subjects. Indices obtained with
IM points were compared to those obtained from RR intervals. For LF indices obtained
from hand annotations, the mean differences were −0.3± 2.0 %, −1.3± 3.4 %, −1.6± 1.8
%, −2.1 ± 2.0 %, and −1.9 ± 1.4 % for increasing levels of LBNP, whereas for LF indices
obtained from automatic annotations, the mean differences were 1.2± 1.9 %, −1.2± 4.7 %,
5.1± 3.9 %, 6.1± 3.7 %, 9.6± 4.8 % for increasing levels of LBNP.
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Figure 4.11: Mean differences between the low-frequency to high-frequency power ratio
(LF/HF) computed from heartbeat interval (HBi) time series obtained from R peaks and
isovolumic moments (IM) for all levels of lower body negative pressure (LBNP). Values
shown are mean ± confidence interval.

4.4 Discussion

A new algorithm for the identification of the IM fiducial point on SCG without the use of
ECG was tested in its accuracy and consistency across levels of LBNP.

The methodology described in this study uses new techniques, 2 of which distinguish
themselves importantly from previously described algorithms. Firstly, the systolic cycle
model was able to overcome the difficulties created by multiple extrema in the vicinity of true
fiducial points. The modelling also allows for concurrent estimation of all systolic fiducial
points, as well as a representation of participants’ general SCG morphology. Secondly,
the distance function that was minimized to fit the model took into account the square
difference, the distances between the 2 highest and 2 lowest peaks, as well as a weighing
function penalizing the earlier portion of each systolic vibration cycle. This distance function
successfully mitigated different kinds of systematic errors by counter-balancing them with
other ways to compute distance.

The accuracy of IM identification was tested by the comparison of the timings obtained
automatically to timings obtained by hand-identification. This accuracy reached above 97
and 93% when analyzed at baseline and −20 mmHg of LBNP, respectively. At baseline, 17
participants in a total of 18 had an identification accuracy of over 95%. These levels would
be largely sufficient for applications that require either the exact amplitude,frequency, or
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timing of the systolic SCG fiducial points. As such, it could provide sufficient data to track
changes in cardiac function during hemorrhage [7].

The consistency of the IM point identification was tested by comparing HRV indices as
obtained from R peaks to those obtained from hand-identified IM points and automatically
identified IM points. At baseline and −20 mmHg of LBNP, these indices were not statis-
tically different from 0. They had small mean difference, small standard error and most
importantly, 17 and 16 participants out of a total of 18 had an accurately estimated LF-HF
balance. This supports the claim that the algorithm is consistent enough to perform HRV
analysis without concurrent signals or timings.

The algorithm became much less accurate and consistent at levels of LBNP higher
than −20 mmHg. Figure 4.7 shows that higher levels of LBNP create more noise in the
signal. For this example participant, higher levels of LBNP also created vibration peaks
with amplitudes comparable to those of fiducial points throughout the cycle. Noise and
non-fiducial peaks of high amplitude are important sources of error for the algorithm. They
both modify the profile, making it vary from the norm, and create errors in model fitting.
Figure 4.8 shows that these changes are not consistent across participants, and so might
depend on individual physiology.

It is possible that the changes in intra-thoracic pressure and volume caused by LBNP
affect the mechanical properties of the heart and other constituent tissue through which
these vibrations propagate. The relation between SCG fiducial points and valve openings
was shown for subjects at rest and could potentially be altered during LBNP. Regardless of
these hypotheses, the results show that the algorithm requires sophistication to adapt itself
to situations of high cardiovascular and orthostatic stress.

In supine position at low levels of LBNP, such as is the case the algorithm was both
accurate enough to obtain precise IM timings, and consistent enough to obtain meaningful
HRV indices. The results open opportunities for stand-alone applications of SCG for home
use as well as in laboratories.
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Chapter 5

3D models of the thorax for
seismocardiography

Drafna, founder of the College of
Lat-Nam, could create a working model
from even the smallest remnants of a
newly unearthed artifact.

MTG, Drafna’s Restoration

5.1 Introduction

Seismocardiography (SCG) is the measurement of low-frequency (<0.25 Hz) sternum vi-
brations caused by the beating of the heart. The signal was originally recorded by Roman
Baevsky and used to monitor cosmonauts [1]. During the 90’s Salerno and Zanetti used
the technology for diagnosis of coronary artery disease [2]. Recent developments in MEMS
accelerometer technology have rekindled research interest in the technique [3, 4].

The modern-day ubiquity of accelerometers in wearable devices and smart phones is
quickly making SCG an inexpensive data acquisition tool. Such devices have been used to
accurately obtain heartbeat intervals [5, 6, 7], and the possibility of using SCG to obtain
useful heart rate variability indices has been explored by us [8], and others [7, 9]. One of the
main limitations of all these algorithms is the differences in the signal between individuals.
While the fiducial points are almost always identifiable in a healthy signal, their relative
amplitudes as well as the behaviour of the signal following them can be quite variable.

The timing of peaks observed in SCG have been related to significant cardiac events,
the main ones being mitral valve closing (MC), isovolumic moment (IM) and aortic valve
opening (AO) during the systolic cycle, and aortic valve closure (AC) during the diastolic
cycle (Fig. 5.1). The assignment of these fiducial points was based on the echocardiogram
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Figure 5.1: Example electrocardiogram (ECG) and seismocardiogram (SCG) with relevant
fiducial points. SCG signals exhibit important variations between individuals. Although
these four fiducial points are identifiable in all healthy signals, their relative amplitudes as
well as the behaviour of the signal following them can be quite variable.

analysis of SCG morphology [10, 11]. Precise mechanical timings of the cardiovascular sys-
tem that can only be obtained from SCG depend critically on accurately identified fiducial
points [12, 13].

Although the moments in time when some important features of SCG occur have been
identified, a gap remains in our knowledge of the forces that cause them. Indeed, in the
case of the aortic valve opening and closing fiducial points, it is implausible that the low
frequency vibration peaks are caused by the valves themselves. In the case of the isovolumic
moment fiducial point, the exact meaning of the timing is highly implicit. The definition
of this point is the absolute minimum attained by the signal during isovolumic contraction,
and isovolumic contraction itself is defined as the entire lapse of time between mitral valve
closure and aortic valve opening. So far, then, the IM point has a clear significance only on
SCG, with an imprecise physiological interpretation.

The goal of this study was to design a 3D representation of the thorax to simulate SCG
and explore the precise mechanical causes of sternum vibrations during heart beats.

Important initial work has been conducted on a SCG heart and rib model [14]. This
earlier model included practical simplifications that rendered derived results difficult to
interpret. To strengthen the physiological interpretation of the results, simulations on a
set of two models of the thoracic cage were compared. The first model was idealized with
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basic shapes and the second was life-like. Both models incorporated measured values for
the viscoelastic properties of cortical bone, cancellous bone, and costal cartilage.

To simulate the SCG measurement, a force function representing a heart beat was
applied on the zone of contact between the heart and the rib cage, and the acceleration of
a second zone in the middle of the xiphoid process was then computed.

5.2 Methods

5.2.1 Numerical considerations

To examine the mechanical propagation of thoracic vibrations due the forces from the heart,
the standard equations for damped elastic wave propagation were considered, which depend
on the viscoelastic properties the constituent materials. The formulation assumed that the
stress tensor σ depended linearly on the deformation tensor ε, that the stress at time t
depended only on the deformation at time t, and that the stresses at point x depended only
on the deformations at point x. Furthermore, small displacements and small deformations
were assumed such that at any time, the domain of the elastic body could be identified to
the initial configuration Ω, and that the equations could be linearized. A viscous damping
formulation was used, and all materials were considered isotropic.

The system then became

u(x, 0) = 0 x ∈ Ω,
∂u
∂t (x, 0) = 0 x ∈ Ω,

ρ∂
2u
∂t2 − divCε(u) + div

[
ckC

]
ε
(
∂u
∂t

)
= g(x, t) x ∈ Ω, t > 0,

Cε(u)(x, t)~n = h(x, t) x ∈ Γ, t > 0,

(5.1)

where u was displacement, t was time, ρ was density, cm was the mass-proportional damping
coefficient, ck was the stiffness-proportional damping coefficient, C was the elasticity tensor
of the given materials, ε was the deformation tensor, Γ was the surface boundary of Ω, and
~n was the outward normal to Γ.

The variable for which the system was solved was the displacement u(x, t).

5.2.2 Viscoelastic properties

The thoracic cage was considered to be comprised of three materials: cortical bone, cancel-
lous bone, and cartilage. The domain Ω was appropriately divided into three parts Ω{1,2,3},
where the material-dependent parameters ρ(x), cm(x), ck(x), and C(x) were constant.

The viscoelastic properties of the sternum, costal cartilage, ribs, and lungs were obtained
from the literature [15, 16, 17, 18, 19, 20, 21] (Table 5.1). These values in the sternum and
ribs were assumed to be more similar to those of the iliac crest than of load-bearing bones
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Table 5.1: Viscoelastic properties of the sternum, costal cartilage, and ribs.

Bone cortical/cancellous Cartilage Lungs
[15, 16, 21] [17] [18, 19, 20]

Young’s modulus (GPa) 3.8/3.0 5.2 · 10−3 1.0 · 10−4

Poisson ratio 0.3/0.3 0.3 0.4

Density (kg/m3) 2.0 · 103/2.0 · 103 1.5 · 103 280

Stiffness-proportional
damping coeff. (s)

6.7 · 10−2/6.7 · 10−2 0.13 ∼

such as the femur. The computations necessary to approximate thermoelastic damping as
viscous damping are included in the appendix.

The lung material was considered sufficiently soft (small Young’s modulus), and light
(low density) to be approximated with an unconstrained boundary condition on the bones
and cartilage.

5.2.3 Boundary conditions

Three relevant boundaries Γ{a,b,c} were identified. Γa represented the area where the ribs
would attach to the vertebral column. The displacement there was fixed at 0 (Dirichlet
boundary condition).

u(x, t) = 0 x ∈ Γa, t > 0. (5.2)

The area of contact with the heart was represented by Γb, where a force F was applied
uniformly. The displacement there depended on F as

Cε(u)(x, t) = F (t) x ∈ Γb, t > 0. (5.3)

The function F represented the force that would be exerted on this zone by the heart.
This force was defined as shown in Fig. 5.2, and was composed mainly of a large sustained
relative pull, lasting 300 ms that represented systole. This pull was flanked on both sides
by smaller pushes. The first push represented atrial contraction and the second, diastolic
recoil. The transition periods between the pushes and the pull were all 10 ms.

Certain assumptions on the heart and pericardium were made for the design of the force
F . It was assumed that the heart created forces parallel to its outward normal, and that
the distance between the heart and parietal pericardium was negligible it the zone Γc where
the lungs aren’t interposed between the heart and the thoracic cage. It was further assumed
that the pericardial fluid acts as a perfect lubricant between the heart and the surrounding
media, and that F was positive when the heart either pushed or rested on the thoracic cage,
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Figure 5.2: The force input on the thoracic zone of contact with the heart. The initial push
represents a slight positive force caused by the contraction of the atria, the prolonged pull
is caused by ventricular systolic contraction, and the subsequent final push is caused by the
recoil following the closure of the aortic valve.

and was 0 otherwise. These assumptions give rise to the fact that any positive F should be
applied homogeneously on Γb in the normal direction, and therefore does not depend on x

F (x, t) = F (t) x ∈ Γb (5.4)

The boundaries not included in either the area where the ribs would attach to the
vertebral column, or the zone of contact with the heart were represented by Γc and were
unconstrained.

Γc = Γ/(Γa ∪ Γb), (5.5)

and
Cε(u)(x, t) = 0 x ∈ Γc, t > 0. (5.6)

5.2.4 Meshes

The solution algorithm was run on a set of two 3D volume meshes; the first was idealized
with basic shapes, and the second was life-like.

The life-like surface mesh was adapted from a ZygoteBody (Zygote Media Group Inc.,
American Fork, UT, USA) full-body human male mesh. The sternum, costal cartilage, and
ribs were considered (Fig. 5.3).

The different parts of the initial mesh were adjusted from quadrilaterals to triangles,
and then joined with 3-Matic (Materialise, Leuven, Belgium). The resulting surface mesh
was automatically adjusted for regularity with Yams (Inria, FRA), and used to create a 3D
tetrahedral mesh with GSH3D (Inria, FRA).

The idealized mesh was designed to represent the thoracic geometry while bypassing
meshing problems such as sharp angles, narrow volumes, and connection between parts. It
included the cortical and cancellous parts of the manubrium and sternum body, the xiphoid
process, and two sets of 6 ribs with their respective costal cartilages. Dimensions were
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Figure 5.3: The life-like sternum (green), costal cartilage (purple), and rib (red) meshes. In
the left and middle panels, the dark pink spot on the ziphoid process represents the zone
of observation corresponding to standard seismocardiography data collection methods. The
right panel shows the mesh from the back, slightly askew, with the zone of contact with
the heart in orange.

Figure 5.4: The idealized sternum (green), costal cartilage (purple), and rib (red) meshes.
In the left and middle panels, the dark pink spot on the ziphoid process represents the
zone of observation corresponding to standard seismocardiography data collection methods.
The right panel shows the mesh from the back, slightly askew, with the zone of contact
with the heart in orange.

estimated from rough averages on the life-like mesh. The thickness of all the elements was
1.2 cm, the width of the sternum body was 4 cm, the height of the entire sternum was 23
cm, the length of the costal cartilage pieces was 5 cm, and the diameter of the rib hemi-
cyclinders was 20 cm. The surface geometry was used to create a volume mesh of maximum
edge length 5 mm with Gmsh (open source by Christophe Geuzaine and Jean-François
Remacle, FRA).

On the life-like thoracic mesh, the zone of contact with the heart was identified from
a standard anatomy textbook [22] (Fig. 5.3, Right), and then estimated on the idealized
mesh.

The solution to the system was approximated by linear finite elements with a second
order centered implicit time discretization based on the Leap-Frog scheme [23].

86



0 100 200 300 400 500 600 700 800

-1

0

F
o

rc
e

 (
n

.u
.)

Time (ms)

-1

0

1

A
c
c
e

le
ra

ti
o

n
 (

n
.u

.)

Mitral valve closing analog

Isovolumic moment analog

Aortic valve opening analog

Aortic valve closing analog

Figure 5.5: Filtered simulated seismocardiogram from the life-like mesh showing four fiducial
point analogs. TopMean acceleration of the zone of observation in the middle of the xiphoid
process (Fig. 5.3 Left, Middle), in the direction of the outward normal. The signal was
input to the SCG annotation algorithm (Chap. 4), which applied a band-pass filter in the
relevant frequency band, and returned the mitral valve closing, isovolumic moment, and
aortic valve opening fiducial point analogs. The aortic valve closing fiducial point analog
was estimated by observation. Bottom The force function F , applied on the zone of contact
with the heart.

5.3 Results and discussion

The goal of this study was to reproduce an SCG-like output from a physiologically correct
in-silico 3D mechanical model of the thorax. The model included cortical and cancellous
sternal bone, costal cartilage, and ribs. A force was considered that consisted of a long
sustained pull to represent systole, flanked on both sides by short and relatively smaller
pushes to represent atrial contraction in the beginning, and a diastolic recoil at the end.
From u, the spatial mean of acceleration was computed as

ā =
∫
x∈O

∂2u

∂t2
· ~n

where O was the zone of observation in the middle of the xiphoid process shown in Figs. 5.3
and 5.4. This acceleration was considered to simulate SCG. The overall morphology of the
simulated SCG on the life-like mesh (Fig. 5.5) comprised many morphological similarities
to the set of 2 wave trains seen in in-vivo SCG (Figs. 4.7, 4.8, 5.1).

To quantify the degree to which the simulated SCG resembled in-vivo SCG, it was
formatted as an input to the automatic annotation algorithm described in Chapter 4. For
both meshes, the systolic segment of the simulated SCG included analogs to all three fiducial
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Figure 5.6: Filtered simulated seismocardiogram from the idealized mesh showing the four
fiducial point analogs. Top Mean acceleration of the zone of observation in the middle of
the xiphoid process (Fig. 5.3 Left, Middle), in the direction of the outward normal. The
signal was input to the algorithm described in Chapter 4, which applied a band-pass filter in
the relevant frequency band, and returned the mitral valve closing, isovolumic moment, and
aortic valve opening fiducial point analogs. The aortic valve closing fiducial point analog
was estimated by observation. Bottom The force function F , applied on the zone of contact
with the heart.
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Figure 5.7: Life-like thoracic mesh showing relative total acceleration on all surfaces at the
time of the isovolumic moment point analog.

min
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Figure 5.8: Idealized thoracic mesh showing relative total acceleration on all surfaces at the
time of the isovolumic moment point analog.

points, namely the MC, IM, and AO points. The validity of the AC point analog is less
clear, as it is not the absolute minimum of the diastolic segment.

Following the main peaks, the simulated SCG exhibited oscillatory behaviour at what
seems to be the first resonance frequency. Although the physiological interpretation of this
result should be approached cautiously, it encourages the notion that in-vivo fiducial points
are caused by sudden heart movements, followed by periods of regular damped oscillation.

In the life-like simulation, the MC analog occurred 2 ms after the onset of the positive
force that represented atrial contraction, and the IM analog occurred 7 ms after the onset
of isovolumic contraction. The time difference between the AO and MC peak analogs is 34
ms, which is slightly below the standard implicit lower limit of 40 ms. The interpretation
of the AO peak is tenuous, however, as the force function F did not distinguish between
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isovolumic contraction and ejection period during its sustained pulling period, and therefore
cannot pinpoint a theoretical AO.

The relative differences between the life-like and idealized simulations suggested two
conclusions. Firstly, that the overall morphology of the simulated SCG was not affected
by either the finesse or regularity of the mesh. Secondly, that the geometry of the mesh
did affect the resonant frequency. Although there remained clear fiducial point analogs in
both cases, the unfiltered oscillation frequencies were of 24.9 and 95.2 Hz for the life-like
and idealized meshes, respectively.

The model considered in some detail the ribs, costal cartilage, xiphoid process, as well
as the cortical and trabecular constituents of the manubrium and sternum body. For the
sake of simplicity of this first iteration, a number of organs and physiological processes
were omitted. One of the most important omitted process was breathing, which is known
to affect the SCG amplitude [24]. Since, however, breathing has not been shown to affect
the frequency content of SCG in the relevant range, it was assumed that the system could
adequately represented the end of expiration. The lungs were also not included under the
assumption that they should at most dampen the longitudinal propagation of the vibrations,
especially at the end of expiration, and thus minimally affect the point of observation on
the xiphoid process.

The most obvious missing organ is, of course, the heart itself. The mechanical modelling
of a beating heart, including its attachments at the level of the atria and the boundary
conditions caused by the pericardium, is quite onerous. Its inclusion will be the next step
in our modelling process. It will greatly increase the level of complexity of the model as
well as its physiological relevance.

The ultimate goal is to characterize the transfer function between the movements of the
heart and the derived simulated SCG, and therefore enable accelerometer measurements to
return information about subject-specific heart forces and movements.

The simulated SCG signals obtained from the life-like and idealized meshes included
many of the key morphological components of in-vivo signals. The initial model reacted
well and encourages further work to increase its complexity.

Appendix

Approximation of thermoelastic damping by viscous damping

Generally, the standard equations for damped elastic wave propagation include

ρ
∂2u

∂t2
− divσ = g(x, t), (5.7)

where u is displacement, t is time, and ρ is density.
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In the viscous damping formulation, the σ term incorporates the stiffness-proportional
damping coefficient ck as

σ(x, t) = Cε(u) + ckCε
(∂u
∂t

)
, (5.8)

where C is the elasticity tensor, and ε is the deformation tensor. Notice that

σ̂(x, ω) = Cε
(
û(x, ω)

)
+ iωckCε

(
û(x, ω)

)
(5.9)

=
(

1 + iωck

)
Cε
(
û(x, ω)

)
, (5.10)

where f̂ denotes the Fourier transform of f .
In the thermoelastic damping formulation, the σ term incorporates stress relaxation as

σ(x, t) = Cε(u) + c

τ

∫ t

0
e−s/τCε

(
u(x, t− s)

)
ds, (5.11)

where c is related to instantaneous stress relaxation, and τ describes this relaxation over
time. In this case

σ̂ = Cε
(
û(x, ω)

)
+ F

(
c

τ
H(t)e−t/τ

)
Cε
(
û(x, ω)

)
, (5.12)

where F is the Fourier operator, and H is the Heaviside unit step function.
The Fourier transform in the second term is well known, and the equation becomes

σ̂ = Cε
(
û(x, ω)

)
+ c

1 + iωτ
Cε
(
û(x, ω)

)
. (5.13)

Considering the frequency of maximal source energy ω0, the above equation becomes

σ̂ = Cε
(
û(x, ω)

)
+
( −c

1 + ω2
0τ

2 + iωτc

1 + ω2
0τ

2

)
Cε
(
û(x, ω)

)
(5.14)

=
(

1 + iω
c

ω2
0τ

2

)
C′ε

(
û(x, ω)

)
, (5.15)

where C′ incorporates a constant of the form 1− c/(1 + ω2
0τ

2) in its elastic moduli.
Since the energy of the the source force F is highest at ω0 = 1.3, and considering the

case in [17] where τ = 1⇒ c = 0.3, the equation

σ̂ =
(

1 + iω · 0.13
)

C′ε
(
û(x, ω)

)
. (5.16)

Comparing equations 5.9 and 5.16, the final value becomes

ck ≈ 0.13. (5.17)
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Chapter 6

Summary

A regression to ancient forms? A
glimpse of future evolutions? Or a
fleeting alteration of the present?

Vorel of the Hull Clade

The studies contained in this thesis developed and applied new methods of signal anal-
ysis to obtain cardiac event timings and thus clarify the relationships between various
cardiovascular variables.

It was first showed that the ability of a new peak detection method to return valid
frequency and phase characteristics of physiological signals. The implications of this result
extend beyond the scope of just phase and frequency, however, due to the particular charac-
teristics of this method versus those of the gold standards wavelet and Hilbert techniques.
Indeed, the peak detection technique inherently divides the analysed signal into a series
of individual cycles. In most physiological cases, these cycles can be interpreted individu-
ally in terms of amplitudes, timings, etc. This allows us to make precise measurements of
phenomena at the moment when they occur, instead of averaging over a certain period of
time. Because this peak detection method is able to obtain phase as well, or better than
the traditional techniques, it can be advanced that its divisions are valid. Some possibilities
of this use of the peak detection technique were explored in the second chapter.

The relationship between DAP and MSNA is intricate and often difficult to quantify in
a way that lends itself to simple interpretation. The peak detection method was applied
to these signals to compare its results to traditionally obtained indices, in an attempt to
complement the existing theory. Individual cycles were quantified in terms of amplitudes,
strength, and relative timings. Six new indices were computed from which changes in
the cardiovascular system caused by LBNP could be observed, as well as some differences
between subjects who fainted during the protocol and those who did not. Most notably,
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the index named stimulus slope was able to distinguish between the 2 groups at the lowest
level of LBNP.

These new indices not only offer a way of predicting LBNP induced orthostatic intoler-
ance, but also help clarify the processes involved in healthy and pathological baroreflexes.
While coherence and gain together have been used to to quantify the general strength of
the relationship between DAP and MSNA, stimulus slope provides a measurement of the
MSNA response to a particular DAP stimulus. In this sense, the interpretation that can be
made is simpler and more direct.

In some cases, peak detection is clearly not enough to properly characterise a signal.
This is the case for SCG, where peak detection has been used to segment cardiac cycles and
identify fiducial points. SCG is problematic for this approach because its important mor-
phological features vary in relative amplitude between successive cycles as well as between
individuals. To accurately and consistently identify SCG features a specialised software was
developped that required no user input. This software first identified the beginning of sys-
tole, and then fitted a model with adaptable relative amplitudes to the vibrations therein.
In this way, identification of all the peaks of the relevant segments was made at the same
time without making assumptions as to which peaks would be the highest and lowest.

The algorithm described in chapter 4, which identified fiducial points on SCG was
accurate and consistent enough to obtain amplitudes and timings in individual cycles, as
well as HRV indices. Contrary to existing algorithms, this was done without concurrent
signals, and thus open opportunities for the use of SCG in standalone applications.

Our efforts in quantifying and analysing SCG were continued in chapter 5, where a
mechanical model of the thoracic cage was described. The goal of this modelling was to
investigate the cause of thoracic vibrations caused by the heart, and thus complement the
exiting timing interpretations of this signal. A simulated SCG was computed with the
use of traditional wave propagation systems of equations, and by inputing the viscoelastic
properties of bone and cartilage into a life-like mesh. The obtained simulation comprised
all the features as identified in the algorithm described in chapter 4. The vibrations sim-
ulated by this model arose mostly from the first mode of resonance of the structure. This
generated the hypothesis that the main peaks and frequency of SCG are not caused are
caused by cardiac events inasmuch as they are started by the onset of systole but result
from characteristics of the thorax as a whole.

This last hypothesis necessitates much more modelling and testing to be validated. More
organs and processes should be included in the existing model, and in-vivo experiments
measuring the resonance frequency of the thorax should be performed. This work could be
complemented by the development of end-user applications to present relevant state-of-the-
art cardiovascular data in a way conducive to its inclusion in daily life choices.
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