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Abstract 

Numerous studies have suggested the application of GARCH and its extensions to 

model volatility of stock prices and indices. However, the performance of these 

models is not well established during the period of unusually high volatility. In this 

paper, we compare three GARCH specifications namely, standard GARCH, 

EGARCH, and Realized GARCH, in their ability to model volatility during the recent 

Chinese stock market debacle. In addition, three models are applied to the quantile 

forecast of Value-at-Risk (VaR). Normal distribution, student’s t distribution as well 

as skewed student’s t distribution are used. While all specifications perform in a 

similar fashion during normal periods, we document that Realized GARCH model 

with skewed student’s t distribution outperforms the others during the high-volatility 

period from January 2015 to October 2015. 

 

Keywords: GARCH, EGARCH, Realized GARCH, High Frequency Data, 

Realized Volatility, VaR Forecast 
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Introduction 

In recent years, with the popularity of high-frequency trading, intraday financial data 

is available in a variety of markets. This paper connects high frequency data with the 

realized measure of volatility using GARCH models.  

The data used in this paper is the Shanghai Shenzhen CSI 300 index from January 

2015 to October 2015. In 2015, China’s stock market has fallen sharply， resulting in 

high volatility of stock price. In this paper, we compare GARCH, EARCH and 

Realized GARCH model in their ability to model volatility and to forecast VaR during 

this period of unusually high volatility. The conclusion is that the Realized GARCH 

model with skewed student’s t distribution performs better in volatility estimation and 

VaR forecast during this unusual period. 

This paper is organized as follows. Chapter I introduces the literature review 

pertaining to the GARCH model and its extensions. Chapter II introduces specific 

form of GARCH, EGARCH and Realized GARCH model. The leverage function and 

distributions of the standardized error term will also be discussed. Chapter III & IV 

give the empirical results for the comparison of estimation and VaR forecast with 

different models. Chapter V gives the summary and conclusion.  
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I. Literature Review 

It is essential to model the dynamics of volatility because the financial volatility 

changes over time. In reality, the volatility of financial data usually possesses the 

following characteristics:  

 Volatility cluster exists which means that large changes tend to be followed by 

large changes, and small changes tend to be followed by small changes. 

(Mandelbrot, 1963)  

 Volatility changes continuously in a fixed range over time. 

 Volatility reflects to the rise and fall of return in a different way and grows 

more when the stock price falls, which is called the ‘leverage effect’.  

 The distribution of volatility usually has a fat tail and skewness. Thus, the 

assumption of normal distribution is normally not applicable. 

The first model on the estimation of volatility was the ARCH (Autoregressive 

Conditional Heteroskedasticity), published in the seminal paper by Engle (1982). 

Later, Bollerslev (1986) introduced GARCH (Generalized ARCH) which uses daily 

asset returns to extract information about the present and future level of volatility. 

ARCH/GARCH models are rapidly applied to the empirical research because they are 

able to accurately describe the characteristics of the volatility. 

In the GARCH model, the GARCH equation describes the feature of volatility 

clustering well. In addition, compared to the ARCH model, GARCH model better 

https://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot
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reflects the distribution with fat tail. However, there are some weaknesses in the 

GARCH model. First, volatility is insensitive to the direction of the price change. In 

practice, the volatility tend to be larger in the case of decreasing price. Secondly, 

volatility is only stationary for very restricted values of the parameters. 

In order to overcome the weaknesses of GARCH model, Nelson (1991) established 

EARCH model to describe the leverage effect in the real financial data. The 

EGARCH introduces new coefficients that allow the sign and the magnitude of return 

to have different effects on the volatility. In addition, the new model uses exponential 

form to measure conditional variance, thus solving the problem of the parameter 

restriction. On the basis of above advantages, the EGARCH model is widely used in 

empirical research. 

In recent years, high-frequency financial data are available. The empirical test of 

Dacorogna (2001) has presented that intraday data is superior to daily returns. 

However, neither GARH nor EGARCH model are suited for this situation where 

volatility changes rapidly. Then, a series of paper put forth the importance of realized 

measures of volatility (Andersen& Bollerslev 1998; Barndorff-Nielsen& Shephard 

2001; Comte& Renault 1998). 

In 2012, Hansen, Huang and Shek established Realized GARCH model. This model 

introduces measurement equation which connects the realized measure of volatility to 

the latent volatility. Besides, the model also uses leverage function to differentiate 

between the signs of the return change. The Realized GARCH model initially 
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assumes a standard normal distribution for the standardized error term. However, 

distributions like the student’s t and skewed student’s t can also be included and have 

also been discussed in this paper. In addition, the Realized GARCH model has 

another advantage that the conditional volatility used in this model is able to measure 

the return volatility completely, including both trading and non-trading time. 

All models described above initially assume a Gaussian distribution for the 

standardized error term .  However, both heavy tails and skewness should be 

considered in financial data. When analyzing data, t-distribution is considered more 

precise than normal distribution because they are more spread out and the tails 

decrease more slowly. (Bollerslev 1987) In 1994, Hansen introduced skewed student’s 

t distribution using a non-centrality parameter. Skewed student’s t distribution 

considers both the fat tail and skewness of the standardized error term.  
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II. Methodology 

2.1 Standard GARCH model 

In the standard GARCH model, the conditional variance, ℎ𝑡, is determined by ℎ𝑡−1 

and 𝑟𝑡−1
2 . The volatility specification of the GARCH (1,1) used in this paper is given 

by: 

        ℎ𝑡 =  𝜔 +  𝛽ℎ𝑡−1 +  𝛼휀𝑡−1
2  (2.1.1) 

 𝑧𝑡 ~ 𝑁(0,1) (2.1.2) 

with ht  denoting the conditional variance, ω the intercept and εt
2  the residuals 

from the conditional mean equation. 

In the standard GARCH model, in order to get positive variance and variance 

stationarity, there are some requirements on parameters: 

 0 ≤ 𝛽 ≤ 1 (2.1.3) 

 𝛽 + 𝛾 < 1 (2.1.4) 

2.2 EGARCH model 

The EGARCH (1,1) model of Nelson (1991) is defined as:  

 𝑙𝑜𝑔(ℎ𝑡) =  𝜔 + 𝛽𝑙𝑜𝑔 (ℎ𝑡−1) + [휂1𝑧𝑡−1 + 휂2(|𝑧𝑡−1| − 𝐸|𝑧𝑡−1|)] (2.2.1) 

 𝑧𝑡 ~ 𝑁(0,1) (2.2.2) 

The formulation allows the sign and the magnitude of 𝑧𝑡 to have separate effects on the 

volatility. 
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The EGARCH model shows some significant differences from the standard GARCH 

model: 

 Volatility can react asymmetrically to the good and bad news. 

 The parameter restrictions for strong and covariance-stationarity coincide. 

 The parameters are not restricted to positive values. 

2.3 Realized GARCH model 

2.3.1 Quadratic Variation Theory and Realized Volatility 

During the market debacle, stock prices often exhibit extreme jumps. Jump diffusion 

models are common for identifying these kinds of jump variations (Barndorff-Nielsen 

& Shephard 2004; Bollerslev & Diebold 2007). According to the articles, asset return 

could be expressed as: 

 𝑑𝑝(𝑡) =  𝜇(𝑡)𝑑𝑡 +  𝜎(𝑡)𝑑𝑊(𝑡) +  𝑘(𝑡)𝑑𝑞(𝑡) (2.3.1) 

where μ(t) and σ(t) are the drift and instantaneous volatility, W(t) is a standard 

Brownian motion, and q(t) is a Poisson counting process, with the corresponding 

time-varying intensity function λ(t). λ(t) is the intensity of arrival process for 

jumps, with corresponding jump size k(t) for any time t given that dq(t) = 1.  

In the model, the last term captures the characteristic of jump diffusion in financial 

data. The overall variance is determined by the number of jumps and their respective 

sizes. Quadratic Variation Theory then splits the total variation into a continuous 

simple path part and a jump part. The total quadratic variation can then be represented 

as: 



 

7 

 

 𝑄𝑉𝑡 =  ∫ 𝜎2(𝑠)𝑑𝑠 +  ∑ 𝑘2(𝑠)
𝑞(𝑡)
𝑠=1 

𝑡

0
 (2.3.2) 

Realized volatility could be used as a proxy for the unobserved quadratic variation 

represented about (Andersen, Bollerslev, Diebold & Ebens 2001). If the frequency (M) 

of intra-daily sampling increases, then the quadratic variation could be written as: 

 𝑙𝑖𝑚
𝑀→∞

𝑅𝑉𝑡 =  ∫ 𝜎2(𝑠)𝑑𝑠 + ∑ 𝑘2(𝑠)
𝑞(𝑡)
𝑠=1

𝑡

0
 (2.3.3) 

Assuming that the frequency (M) is very high, the realized variance in Eq. (2.3.3) 

could be written as: 

 𝑅𝑉𝑡 =  ∑ 𝑟𝑡,𝑗
2𝑀

𝑗=1  (2.3.4) 

Where 𝑟𝑡 is intradaily return and j = 1,2,3,….,M 

In reality, market microstructure noise such as bid-ask spread influences the realized 

volatility. There are two ways to reduce this impact: 

 Realized Kernel introduced by Barndorff-Nielsen (2009) could be used. 

Compared with Realized Volatility, Realized Kernel considers the effect of 

microstructure noise. 

 The impact of microstructure noise could be minimized by choosing an 

appropriate data frequency (M). In general, realized volatility increases with 

the decline of frequency and this tendency becomes stable when 5-minute data 

is used. 

The resolution of data used will be discussed later in this paper. 
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2.3.2 The Leverage Function 

The leverage function can measure the leverage effect of the negative correlation 

between today’s return and tomorrow’s volatility. A leverage function can be 

constructed in this way: 

 𝜏(𝑧𝑡) =  𝜏1𝑎1(𝑧𝑡) + ⋯ + 𝜏𝑘𝑎𝑘(𝑧𝑡), 𝑤ℎ𝑒𝑟𝑒 𝐸(𝑎𝑘𝑧𝑘 = 0, ∀𝑘)  (2.3.5) 

In this formula, the parameters 𝜏1 and 𝜏2 give an indication of how dependent the 

volatility is upon the changes in return. 

When using hermite polynomials, the leverage function could be represented as 

follow: 

 𝜏(𝑧) =  𝜏1𝑧 +  𝜏2(𝑧2 − 1) +  𝜏3(𝑧3 − 3𝑧) + ⋯ (2.3.6) 

However, it is proved that terms after the first two are insignificant. (Hansen et al. 

2011). Hence, we consider the leverage function as a simple quadratic form: 

 𝜏(𝑧) =  𝜏1𝑧 +  𝜏2(𝑧2 − 1) (2.3.7) 

2.3.3 Structure of Realized GARCH model 

The Realized GARCH model relates the observed realized measure to the latent 

volatility via a measurement equation, which also includes the asymmetric reaction to 

shocks, making for a very flexible and rich representation. For the volatility 

specification, the model is as follows: 

 𝑙𝑜𝑔ℎ𝑡 =  𝜔 + ∑ 𝛽𝑖𝑙𝑜𝑔ℎ𝑡−𝑖
𝑝
𝑖=1 +  ∑ 𝛼𝑖𝑙𝑜𝑔𝑥𝑡−𝑖

𝑞
𝑖=1  (2.3.8) 

 𝑙𝑜𝑔𝑥𝑡 =  𝜉 +  𝛿𝑙𝑜𝑔ℎ𝑡 +  𝜏(𝑧𝑡) + 𝜇𝑡 , 𝜇𝑡 ~ 𝑁(0, 𝜎𝑢
2) (2.3.9) 
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where the log of the conditional variance (ℎ𝑡) and the log of the realized measure (𝑥𝑡) 

are used. The asymmetric reaction to shocks comes via the τ(. ) function. The 

function is based on the Hermite polynomials and could be written as a simple 

quadratic form: 

 𝜏(𝑧𝑡) =  휂1𝑧𝑡 +  휂2(𝑧𝑡
2 − 1) (2.3.10) 

While Standard GARCH models specify ℎ𝑡 as a function of the past values of ℎ𝑡 

and 𝑧𝑡, the Realized GARCH model specifies it as a function of the past values of ℎ𝑡 

and 𝑥𝑡. Equation (2.3.9), called measurement equation, relates the realized volatility 

to the true volatility.  

We estimate the Realized GARCH models of (1,2), (2,1) and (2,2), but the 

performance does not show large difference. Therefore, we just explain the simplest 

version of realized GARCH (1,1):  

 𝑙𝑜𝑔ℎ𝑡 =  𝜔 +  𝛽𝑙𝑜𝑔ℎ𝑡−1 +  𝛼𝑙𝑜𝑔𝑥𝑡−1 (2.3.11) 

 𝑙𝑜𝑔𝑥𝑡 =  𝜉 +  𝛿𝑙𝑜𝑔ℎ𝑡 +  휂1𝑧𝑡 +  휂2(𝑧𝑡
2 − 1) +  𝜇𝑡 , 𝜇𝑡 ~ 𝑁(0, 𝜎𝑢

2)    (2.3.12) 

If 휂1 < 0, 𝑙𝑜𝑔𝑥𝑡 will be lager when 𝑧𝑡 < 0, which will make the ℎ𝑡 larger through 

equation (2.3.12) if 𝛼 > 0. This is consistent with the fact that there is a negative 

correlation between today’s return and tomorrow’s volatility.  

Compared with GARCH and EGARCH model, the Realized GARCH model has an 

advantage that it enables us to estimate the parameters of return and volatility 

equations simultaneously. 
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2.4 Distribution 

All models described above initially assume a Gaussian distribution for 𝑧𝑡. However, 

both heavy tail and skewness should be considered in real financial data. The first 

density function we could use is the generalization of the student’s t distribution with 

normalized unit variance (Bollerslev 1987): 

 𝑔(𝑧|𝑣) =  
𝛤(

𝑣+1

2
)

√𝜋(𝑣−2)𝛤(
𝑣

2
)

(1 +  
𝑧2

(𝑣−2)
)−(𝑣+1)/2 (2.4.1) 

Compared with standard normal distribution, quantiles for the t-distributions lie 

further from zero and the tails decrease more slowly. The t-distributions are more 

spread out than the normal. 

In addition, skewed student’s t distribution might be a natural extension to the regular 

student’s t distribution. Density function of skewed student’s distribution is introduced 

as follow (Hansen, 1994): 

 𝑔(𝑧|𝑣, 𝜖) =  {
𝑏𝑐(1 +  

1

𝑣−2
(

𝑏𝑧+𝑎

1−𝜖
)2)−(𝑣+2)/2  𝑖𝑓 𝑧 < −𝑎/𝑏

𝑏𝑐(1 +
1

𝑣−2
(

𝑏𝑧+𝑎

1+𝜖
)2)−(𝑣+2)/2  𝑖𝑓 𝑧 ≥ −𝑎/𝑏

 (2.4.2) 

where 2 < v < ∞ and −1 < ϵ < 1. The constants a, b and c are given by: 

 𝑎 = 4𝜖𝑐 (
𝑣−2

𝑣−1
) , 𝑏2 = 1 + 3𝜖2 −  𝑎2, 𝑐 =  

𝛤(
𝑣+1

2
)

√𝜋(𝑣−2)𝛤(𝑣/2)
 (2.4.3) 

The skewed student’s t distribution considers not only the fat tail, but also skewness 

of financial data. 

In this paper, we will compare the result fitted by realized GARCH model under 

normal distribution, student’s t distribution as well as skewed student’s t distribution.  
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III. Empirical Result 

3.1 Data and Basic Analysis 

3.1.1 Basic Analysis 

The CSI 300 index is a capitalization-weighted stock market index designed to 

replicate the performance of 300 stocks traded in the Shanghai and Shenzhen stock 

exchanges. Thus, the performance of the index could reflect the condition of Chinese 

stock market. 

In the second half of 2015, Chinese stock market experienced a debacle. The 

Shanghai stock market had fallen 30 percent over three weeks by 9 July. In the 

meanwhile, values of Chinese stock markets continued to drop despite efforts by the 

government to reduce the fall. After three stable weeks, the Shanghai index fell again 

on the 24th of August by more than 8 percent. 

The intraday data on returns and realized volatilities of the CSI 300 stock index are 

used in this paper. The sample period is from January 2015 to October 2015. The data 

is obtained from the Bloomberg terminal.  

In order to reduce trends in volatility and mean of return, we calculate log return over 

the period: 

 𝑟𝑡 = 𝑙𝑛𝑃𝑡 −  𝑙𝑛𝑃𝑡−1 (3.1.1) 

The log return of SCI 300 from January 2013 to October 2015 is showed in chart: 

https://en.wikipedia.org/wiki/Capitalization-weighted_index
https://en.wikipedia.org/wiki/Stock_market_index
https://en.wikipedia.org/wiki/Shanghai_Stock_Exchange
https://en.wikipedia.org/wiki/Shenzhen_Stock_Exchange
https://en.wikipedia.org/wiki/Shenzhen_Stock_Exchange
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As can be seen from the chart, the log return exhibits an unusually high volatility 

during from January 2015 to October 2015. 

3.1.2 Realized Volatility 

In reality, market microstructure noise such as bid-ask spread will influence realized 

volatility. Thus, adding the squares of overnight returns may make realized volatility 

noisy. In theory, realized kernel proposed by Barndorff-Nielsen (2008) could 

eliminate this noise. In practice, however, the Realized GARCH model can adjust the 

bias of RV caused by microstructure noise correctly. (Toshiaki Watanabe 2011) 

Thus, we use the sum of intraday returns as realized volatility in this paper. The RV is 

calculated as follows: 

 𝑅𝑉𝑡 =  ∑ 𝑟𝑡,𝑗
2𝑀

𝑗=1  (3.1.2) 

The chart below shows the realized volatility of CSI 300 Index from January 2013 to 

October 2015: 
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As we can see from the chart, the realized volatility is extremely high from January 

2015 to October 2015. Actually, China stock market experienced a debacle during this 

period. 

3.2 Fitting Result 

In this paper, we compare the uses of GARCH, EGARCH, and Realized GARCH 

models to analyze the Shanghai Shenzhen CSI 300 index from January 2015 to 

October 2015. 

For the conditional mean, ARMA model is used. After trial and error, we obtain the 

optimal order ARMA (2,2). 

In Table 1, it shows the results of GARCH (1,1) with normal distribution, 

EGARCH(1,1) with normal distribution, and Realized GARCH(1,1) with 3 different 

distributions: the normal, student’s t and skewed student’s t distributions. The statistic 

used was the likelihood ratio statistic, the log-likelihood. 

From Table 1, we can find out that the β are quite close to each other in all three 
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Realized GARCH models with different distribution and smaller than EGARCH’s. 

This is because the volatility estimated in Realized GARCH model is affected by the 

latent volatility as well as the measure of realized volatility. Furthermore, a key 

feature of the realized GARCH framework is the measurement equation that relates 

the observed realized measure to latent volatility. In all three Realized GARCH 

models, the realized measure parameters, δ, are also close to each other, which are 

around 1.3. 

The leverage effect is a well-known phenomenon in stock markets of a negative 

correlation between today’s return and tomorrow’s volatility. Because 휂1 < 0 and 

𝛼 > 0, 𝑙𝑜𝑔𝑥𝑡 will be lager when 𝑧𝑡 is negative, which will make the ℎ𝑡 larger. 

This demonstrates the fact that negative return would have a bigger impact on 

volatility. 

In measurement equation, the effects from last volatility are quite similar in different 

distributions. As a result, no matter what the distributions of standardized error term 

are, the volatility, realized measure, and error term of realized measures are quite 

close to each other in all three Realized GARCH models. This explains that these 

parameters are relatively stable in different distribution assumption. 

When we compare the log likelihood in different models, the analysis needs to be 

based on the same data during the same period. It is necessary that each models 

actually fits on the real distribution of the data we used. As the likelihood function in 

Realized GARCH models includes two different data sets, one is the residual of return 
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and the other is the error term of measurement equation, the log-likelihood we obtain 

for these models cannot be compared to those of the GARCH models. 

휁 and v determine the skewness and kurtosis respectively. In the Realized GARCH model 

with skewed student’s t distribution, 휁  is significantly below 1, indicating a negative 

skewness of 𝑧𝑡 . The degree of freedom of student’s t and skewed student’s t 

distribution are 7.68 and 7.21 respectively, indicating a large kurtosis. 

Even though we could compare the partial log-likelihood in Realized GARCH models 

with that of a standard GARCH or EGARCH models, the partial log-likelihood is not 

the most optimizing function. Therefore, we choose not to compare the log-likelihood 

in Realized GARCH models with standard GARCH’s and EGARCH’s. 

However, we can compare the log-likelihood in three Realized GARCH models with 

different distribution assumptions. From Table 3, it shows that the Realized GARCH 

with skewed student’s t distribution model has the largest log-likelihood. In the 

log-likelihood ratio test between student’s t distribution and skewed student’s t 

distribution in Realized GARCH model, the null hypothesis is rejected with a p value 

in 0.007. This suggests the unrestricted model, Realized GARCH with skewed 

student’s t distribution, fits the data better than the restricted model, Realized GARCH 

with student’s t distribution. Thus, we could draw the conclusion that the Realized 

GARCH model with skewed student’s t distribution would lead to a better fit than 

Realized GARCH models with student’s t distribution and normal distribution models 

for the data and period we chose. 
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          Table 1: Empirical Results in Each GARCH Specification 

Model ω β α ξ δ η1 η2 v 휁 Log L 

GARCH 

(Norm) 

0.000 0.409 0.299       
465.08 

(0.000) (0.150) (0.115)       

EGARCH 

(Norm) 

-1.617 0.786    -0.243 0.055   
468.49 

(0.145) (0.020)    (0.047) (0.089)   

RGARCH 

(Norm) 

0.215 0.543 0.287 -0.362 1.318 -0.198 0.098   
- 599.93 

(0.101) (0.067) (0.070) (0.384) (0.250) (0.047) (0.029)   

RGARCH 

(T) 

0.213 0.540 0.289 -0.357 1.322 -0.187 0.109 7.678  
- 596.18 

(0.112) (0.069) (0.074) (0.409) (0.266) (0.047) (0.030) (4.151)  

RGARCH 

(ST) 

0.212 0.539 0.304 -0.325 1.263 -0.190 0.111 7.208 0.773 
- 592.54 

(0.114) (0.069) (0.076) (0.390) (0.244) (0.048) (0.032) (4.193) (0.073) 

  * RGARCH (T) and GARCH (ST) represent the RGARCH with student’s t and skewed student’s t distribution respectively. 
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IV. VaR Forecast 

Value at Risk (VaR) is defined as the upper limit of the left tail of the assumed 

distribution. For a given portfolio, time horizon, and probability p, the p VaR is 

defined as a threshold loss value, such that the probability that the loss on the 

portfolio over the given time horizon exceeds this value is p. A violation is said to 

occur when the daily loss is larger than the VaR. In a perfectly specified model, this 

violation should occur with percent probability. The observed probability of a 

violation is called the empirical failure size.  

𝑃𝑟𝑜𝑏(∆𝑉 > 𝑉𝑎𝑅) = 1 − 𝛼 

Where ΔV means the expected loss of the portfolio. In addition, the difference in 

accumulated distribution function would result in a different value of VaR.  

In this paper, we used Shanghai Shenzhen CSI 300 index from January, 2015 to 

October, 2015 to estimate the parameters in each model. Then, we use these data sets 

to implement the VaR forecast. Each model is estimated using a sample size of 199 

observations, the estimation window. Each model is estimated 99 times each, moving 

the estimation window one step forward each time. 

The implement method we used to forecast the VaR is rolling estimation and forecasts. 

The ‘rugarch’ package in RStudio allows for the generation of 1step ahead rolling 

forecasts and periodic re-estimation of the model. The resulting object contains the 

forecast conditional density, namely the conditional mean, sigma, skew, shape, and 

the realized data for the period under consideration. The violations, empirical failure 
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rate, are summarized, and the Kupiec score (likelihood ratio) is calculated to compare 

the different models. 

The forecasts are evaluated using the Kupiec test with a 5% significance level. VaR is 

evaluated using a likelihood ratio test developed by Kupiec (1995). Because of the 

usage of 5% significance level in this paper, if the Kupiec score (Likelihood Ratio) is 

larger than 3.84, the null hypothesis will be rejected. If the null hypothesis is rejected, 

this mean the specific model is not a suitable specification to estimate the VaR. 

However, there are some flaws in the Kupiec test. Firstly, the test does not take the 

sequence of violations into account. Secondly, the Kupiec score is not affected by how 

large the violation is. This means that a 1% violation or a 3% violation will have the 

same weight (Lehar et al., 2002). 
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Table 2: Empirical Failure Rate (EFR) 

α 10% 5% 1% 

RG (ST) 5.050 2.020 1.010 

RG (T) 7.070 4.040 1.010 

RG (Norm) 10.101 9.090 2.020 

EG (Norm) 18.182 13.131 7.070 

SG (Norm) 17.172 12.121 6.060 

 

Table 3: Likelihood Ratio (LR) 

α 10% 5% 1% 

RG (ST) 3.230 2.370 0.000 

RG (T) 1.040 0.205 0.000 

RG (Norm) 0.001 2.840 0.803 

EG (Norm) 6.080* 9.710* 15.700* 

SG (Norm) 4.760* 7.690* 11.900* 

H0 is rejected at a 5% significance level if the Kupiec score is larger than 3.84 

 

Table 4: p-value from LR test 

α 10% 5% 1% 

RG (ST) 0.072 0.124 0.992 

RG (T) 0.308 0.651 0.992 

RG (Norm) 0.973 0.092 0.370 

EG (Norm) 0.014* 0.002* 7.27e-05* 

SG (Norm) 0.029* 0.006* 0.001* 

The numbers in the table above are p-values from the LR test.  

 

* indicates that the null hypothesis is rejected at a 5% significance level. 

* RG (T) and RG (ST) represent the RGARCH with student’s t and skewed student’s t distribution 

respectively.  
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Tables above show the EFR, LR and the p-value for the Kurpiec LR test for α = 1%, 5% 

and 10%. As we can see from Table 3, the null hypothesis is rejected for each 

Standard GARCH and EGARCH models with different level of α. Thus, we could 

conclude that compared to Realized GARCH model, Standard GARCH and 

EGARCH are not suitable to estimate the VaR for Shanghai Shenzhen CSI 300 index. 

However, we could not conclude which distribution is better in Realized GARCH 

model because the null hypothesis is not rejected for all three different distributions. 
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V. Conclusion 

In this article we described the use of Realized GARCH model to analyze the CSI 300 

index during a high volatility period using high frequency data. We also applied 

GARCH models to forecast VaR to compare GARCH, EGARCH and Realized 

GARCH models.  

From the empirical result of log likelihood, we conclude that the Realized GARCH 

model with skewed student’s t distribution is better than other distribution 

assumptions to model volatility during a high volatility period. In addition, Realized 

GARCH model performs better in the forecast of VaR where GARCH and EGARCH 

with normal distribution are suggested not suitable model specifications for this given 

period. The results suggest that use of high frequency data improve the modeling of 

conditional volatility and the realized measures incorporate more relevant information 

during the given period for Shanghai Shenzhen CSI 300 index. Further analysis is 

needed to support this conclusion in different market during other time period. 

Several extensions are possible. First, it is worthwhile using other distributions that 

have recently been applied to financial returns, like the normal inverse Gaussian (NIG) 

and generalized hyperbolic (GN) skew student’s t distribution. However, it is difficult 

to estimate the parameters by the maximum likelihood method. Second, other realized 

measures of volatility such as the realized rage (Christensen and Podolskij, 2007) 

could be used to improve the model.  
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