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Abstract 

In this paper, we price the volatility swap as an OTC derivatives aimed for direct 

trading of volatility. Our pricing method is based on a PDE approach on Heston 

stochastic volatility model. Heston model has received the most attention since it can 

give a satisfactory description of the underlying asset dynamics. We follow the PDE 

approach suggested by Broadie and Jain (2008) to price volatility swap. In addition to 

their work, we also  

 Use loss function minimization to calibrate the Heston parameters to the current data on 

S&P 500 index and construct implied volatility surface.  

 Solve the PDE using numerical computation, Crank-Nicolson finite difference method.  

 Price the volatility swap and compare our model expected volatility (fair volatility strike) 

with the realized volatility, in order to assess the accuracy of this approach. 

Our result shows that the model fair volatility strike is close to the realized volatility for 

long maturity swaps.  

 

 

Keywords:  Volatility swap; Heston stochastic volatility model, Crank-Nicolson finite difference 

method 
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1: Introduction 

The major purpose of this paper is to price volatility swap under stochastic volatility. Standard call 

and put options were traded traditionally to gain exposure to the market’s volatility. However, these 

positions also depend on the price level of the underlying asset. Investors can take views on the 

future realized volatility directly, by trading volatility derivatives. The simplest such instruments 

is volatility swap. A volatility swap is a forward contract on future realized price volatility.  

Volatility has several characteristics that make trading attractive. It is likely to grow when 

uncertainty and risk increase. As with interest rates, volatilities appear to revert to the mean: High 

volatilities will eventually decrease; low volatilities will likely rise. Finally, volatility is often 

negatively correlated with stock or index level, and tends to stay high after large downward moves 

in the market.  

Different methods have been developed for pricing volatility swap, which can be classified in two 

main groups: Replication approach and Analytical approach. The Analytical approach is mostly 

based on considering stochastic processes for stock price and volatility. Discrete stochastic model 

and pure jump model have been studied previously.  

Broadie and Jain (2008) suggested a PDE based on Heston stochastic volatility model. This PDE 

implies that the fair volatility strike is a function of three variables: time, stochastic variance and 

accumulated variance. In this paper, we follow their approach and solve the suggested PDE using 

numerical computation, Crank-Nicolson finite difference method. Since the PDE has three 

variables, we need to solve it through a three dimensional grid in the finite difference method. The 

details of solving the PDE is explained in the related section of this paper.  

We consider the bivariate system of stochastic differential equations in Heston model for stock 

price process and volatility process. In order to make our calculation more accurate we estimate the 

Heston parameters on our current datasets and use the calibrated parameters to price volatility swap 

following Braodie and Jain approach. The parameter calibration is done through loss function 

minimization, trying to minimize implied volatility mean squared error. We use Lewis (2000) 

expansion of volatility of volatility to estimate the model implied volatility. 

As an empirical evidence, we price the volatility swap on S&P 500 index and compare our model 

expected volatility to the realized volatility in different maturities. Our result shows that the model 

fair volatility strike is close to the realized volatility for long maturity swaps, which implies that 
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this method can be a useful pricing tool for long maturity swaps. However, a risk of 

misspecification and miscalibration presents in any one model. While the stochastic volatility 

model fits the longer behaviour of the asset price, to adequately describe the short-term behaviour 

of the asset price it should be augmented with return jumps.  

This paper is structured as follows: firstly, we give a brief background and literature review on 

volatility instruments. In the second part, the Heston parameters are calibrated to our datasets by 

minimizing the loss function of implied volatility, and Heston implied volatility surfaces are created 

for five data sets on S&P 500 index. And finally, we use the calculated Heston parameters to price 

volatility swap. We price the volatility swap by solving the PDE suggested by Broadie and Jain 

(2008).  

 

1.1 Background 

In order for investors and traders to manage their portfolios, they must have views on future 

volatility; otherwise, they must try to control and minimize their volatility exposure.  

Delta-hedging was practiced as the first attempts to hedge against changes in the value of the 

underlying assets. The principle of delta-hedging was understood only after the Black and Scholes 

wrote their paper on option pricing in 1973. However, delta-hedging does not eliminate the 

volatility risk. This issue arises from the assumption of constant volatility in Black-Scholes model.  

In further attempts to provide an accurate and flexible volatility hedge, the Log Contract was 

developed. The Log Contract is a futures style contract whose settlement price is equal to the 

logarithm of the price of the underlying asset. A Log Contract can be used to provide a payoff that 

depends only on the difference between the volatility expected at the time at which the contract 

was entered and the actual volatility that occurs over its duration (Neuberger, 1994). 

Over the past two decades, the volatility of an underlying stock or an index has developed as an 

asset class in its own right. Just as stock investors predict the direction of the stock market, or bond 

investors predict the probable direction of interest rates, so one might want to predict the level of 

future volatility. The market for variance and volatility swaps has since then been growing, and 

many investment banks and other financial institutions are now actively quoting volatility swaps 

on various assets: stock indexes, currencies, as well as commodities. 
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Investors can trade volatility and regard it as an underlying asset in order to price other volatility 

sensitive instruments, including volatility swaps, variance options, VIX futures, etc (Broadie and 

Jain, 2008). Volatility swaps are forward contracts on future realized stock volatility. Variance 

swaps are similar contracts on variance, the square of future volatility. Both these instruments 

provide an easy way for investors to gain exposure to the future level of volatility. 

Three applications are mentioned for trading variance and volatility swaps: Directional Trading of 

Volatility Levels- One can use these instruments to speculate on future volatility levels, Trading the 

spread between realized and implied volatility levels- By unwinding the swap before expiration, 

one can trade the spread between realized and implied volatility. Hedging Implicit Volatiltiy 

Exposure- To hedge the volatility exposure of other positions or businesses (Demeterfi, Derman, 

Kamal and Zou, 1999) The variance swap’s replicating portfolio became in 2003 the basis for how 

Chicago Board Option Exchange (CBOE) calculates the VIX index. 

The 1987 crash showed that the assumption of normal distribution for returns in equity markets is 

not correct and returns exhibit skewness and kurtosis, indicated by smiles and skews in the implied 

volatility surface. A stochastic volatility model is needed for both the variance and the volatility 

swap pricing. To overcome the shortcoming of constant volatility assumed for underlying asset in 

the Black-Scholes model, stochastic volatility (SV) models were developed. Two types of volatility 

models have been derived: continuous-time stochastic volatility models and discrete-time 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models. In the GARCH 

models, it is assumed that volatility is readily observable from the history of asset prices, however 

implied volatilities inferred from other contemporaneous options are used in continuous-time 

stochastic volatility models (Heston and Nandi, 2000). GARCH model parameters are calibrated 

from historical prices, and SV model parameters are calibrated from implied volatilities inferred 

from contemporaneous options. In these models, the volatility process is assumed time-

homogeneous, so they can explain different Black-Scholes implied volatilities, known as volatility 

smile on options with different strikes and expirations.  

Depending on the assumed process for volatility, different methods have been developed to price 

the volatility swap. In the literature review section, we summarize these methods.  
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Figure 1- An Example of Variance Swap Contract 
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1.2 Literature Review 

Based on the demand from volatility traders, the market in volatility and variance swaps has 

developed rapidly over the last decade and is expected to grow more in the future. Hence several 

researchers in academia and industry have been working on pricing and hedging of these 

derivatives. 

Carr and Madan (1998) reviewed three methods for trading volatility: First, static positions in 

options alone- The classic example is that of a long position in a straddle, since the value usually 

increases with a rise in volatility. Unfortunately once the underlying moves away from its initial 

level these contracts can take on significant price exposure. Second, dynamic trading in futures to 

create or hedge a volatility exposure, however they always have price exposure as well.; and finally 

they combine static positions in options with dynamic trading in futures to synthesize an over-the-

counter volatility contracts as a further alternative for trading volatility which has no exposure to 

price. They assume that an investor follows the classic replication strategy specified by the Black 

model, with the delta calculated using a constant volatility. Since the volatility is actually stochastic, 

the replication will be imperfect and the error results in either a profit or a loss realized at the 

expiration of the hedge. 

Demeterfi, Derman, Kamal and Zou (1999) showed how a hedged portfolio of standard options 

with suitably chosen strikes could theoretically replicate a variance swap, as long as stock prices 

evolve without jumps. The fair value of the variance swap is the cost of the replicating portfolio. 

They point out that volatility swaps can be replicated by dynamically trading the more 

straightforward variance swap. As a result, the value of the volatility swap depends on the volatility 

of volatility itself.  

Although interesting and model-free forecasts of subsequent realized volatility, these last two 

approaches require that a continuum of options of every strike and maturity on the underlying asset 

be traded to span volatility. Since in practice there is only a limited number of market quotes to 

imply the volatility skew per single maturity, we need to introduce an interpolation and 

extrapolation method to get market implied volatilities at certain strikes, which is crucial for 

replicating strategy. As a result, we might ultimately end up introducing model-dependence in our 

replication method. 
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Heston and Nandi (2000) developed analytical solutions for volatility derivatives such as options 

and futures on volatility as well as volatility swaps. Their analytical solutions are based on a 

discrete-time GARCH volatility process.  

Little and Pant (2001) developed a finite-difference approach for valuing variance swaps based on 

a discretely sampled variance.  They showed that the price of a variance swap could be obtained as 

a sum of solutions to a set of degenerate two-dimensional parabolic partial differential equations 

(PDE). Their method is based on decomposing the problem of valuing a variance swap into a set 

of one-dimensional PDE problems, each of which is then solved using a finite difference method. 

They obtain a numerical algorithm for pricing variance swaps. 

Javaheri, Wilmott and Haug (2002) estimated the expected variance in a discrete GARCH(1,1) 

model. They used a general and flexible PDE approach to determine the first two moments of the 

realized variance in a continuous or discrete context. Then they use this information to approximate 

the expected realized volatility via a convexity adjustment.  

Carr, German, Madan and Yor (2005) derived a closed form solution for the prices of options on 

realized variance. They employ the models, which hypothesize that returns are pure jump processes 

with independent increments.  

Carr and Lee (2009) price volatility derivatives by replication. Replicating portfolios trade the 

underlying asset and vanilla options, in quantities in terms of vanilla option prices. Their results 

are valid if volatility satisfies an independence condition, which means zero correlation between 

stock price process and variance process. 

Broadie and Jain (2008) price variance and volatility swaps when the variance process is a 

continuous diffusion given by the Heston stochastic volatility model. They compute fair volatility 

strikes and price variance options by deriving a partial differential equation that must be satisfied 

by volatility derivatives.  

Sepp (2008) developed analytical methodology for pricing and hedging options on the realized 

variance under Heston stochastic volatility model augmented with jumps in asset returns and 

variance. He employed generalized Fourier transform to obtain analytical solutions for volatility 

and variance swaps. 
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Swishchuk and Xu (2011) studied the valuation of the variance swaps under stochastic volatility 

with delay and jumps. In their model, the volatility of the underlying stock price process 

incorporates jumps and also exhibits past dependence. 

In this paper we ignore the jumps and delay in the stochastic volatility process and assume Heston 

stochastic volatility model. To get the fair volatility strike, we solve the PDE suggested by Broadie 

and Jain (2008). We use finite difference approach to solve the PDE. 
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2: Heston Model 

In an attempt to remedy the drawback of the constant volatility assumption in the Black-Scholes 

model, many models have been proposed to incorporate stochastic volatility. To describe the 

stochastic evolution of asset return variation we choose square-root diffusion, which is a central 

part of a few important financial models including CIR interest rate model (Cox, Ingersoll and Ross 

(1985)), the Heston stochastic volatility model (Heston (1993)), and the general affine model 

(Duffie-Pan-Singleton (2000)). This attractiveness of the square-root diffusion is motivated by 

several essential properties including positivity, mean-reversion, and closed-form solution for the 

transition density. Among all the stochastic volatility models in the literature, model proposed by 

Heston (1993) has received the most attention since it can give a satisfactory description of the 

underlying asset dynamics. The Heston model accommodates a volatility parameter that can 

increase with the level of kurtosis. Daniel, Joseph and Bree (2007) confirmed that the Heston model 

improve on the fit provided by the Gaussian model, particularly at higher frequency, since it is 

supposed to capture both the volatility of price fluctuations and skewness which are more 

pronounced in high frequency data. Some of the advantages of the model are as follow: 

 The parameters in Heston model are able to generate skewness and kurtosis and 

respectively produce smile or skew in the implied volatilities extracted from option prices 

generated by the model.  

 It allows for the inverse relationship between the stock price and volatility 

 A closed form solution for the European option prices is available in the Heston model, 

which makes the calibration to market prices relatively quick and efficient. 

In the Heston model, the stock price process is assumed as Black-Scholes type stochastic process. 

And the volatility process is based on the Cox, Ingersoll, and Ross (1985) process. The bivariate 

system of stochastic differential equations in Heston model is as follow: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + √𝑣𝑡𝑑𝑊1,𝑡 

𝑑𝑣𝑡 = 𝑘(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝜎√𝑣𝑡𝑑𝑊2,𝑡 

The parameters of the model are 

𝜇 the drift of the stock price process; 

𝑘>0 the mean reversion speed for the variance; 

𝜃>0 the mean reversion level for the variance; 

𝜎>0 the volatility of the variance; 

𝑣0>0 the initial level of the variance;  

( 1.1 ) 
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ρ 𝜖 [-1,1] the correlation between the two Brownian motions the 𝑊1,𝑡 and 𝑊2,𝑡 

𝑑𝑊1,𝑡 and 𝑑𝑊2,𝑡 describe the random noise in asset and variance respectively. 

An increase in ρ  generates an asymmetry in the distribution while a change of volatility of variance 

𝜎 results in a higher kurtosis. 

2.1 Parameters Estimation  

Lewis (2000) derives a volatility of volatility series expansion for the call price and for the implied 

volatility that are valid under a general class of stochastic volatility models. The general 

parametrized model for the risk-adjusted pricing process is: 

𝑑𝑆 = (𝑟 − 𝛿)𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊1,𝑡 

𝑑𝜈 = (𝜔 − 𝜃𝜈)𝑑𝑡 +  𝜉𝜈𝜑𝑑𝑊2,𝑡 

Where 𝑑𝑊1,𝑡 and 𝑑𝑊2,𝑡 are correlated Brownian motions with correlation ρ(𝜈), r, 𝛿 and 𝜉 are 

constants and 𝑏(𝜈) and 𝜂(𝜈) are independent of 𝜉.  

According to Lewis there are two general steps in the 𝜉 – expansion. The expansion starts from the 

fundamental solution for the option price. For a call option, and taking 𝑘-plane integration along 

Im 𝑘=1/2 for simplicity, this solution representation is 

𝐶(𝑆, 𝜈, 𝜏) = 𝐴𝑒−𝛿𝜏 −
𝐾𝑒−𝑟𝜏

2𝜋
∫ exp (−𝑖𝑘𝑋)

𝐻(𝑘, 𝜈, τ)

𝑘2 − 𝑖𝑘

𝑖
2
+∞

𝑖
2
−∞

𝑑𝑘 

where 𝑋 = ln (
𝑆

𝐾
) + (𝑟 − 𝛿) 𝜏 

Lewis calculate the call option price from the equation (1.3). As it turns out, the k-plane integrals 

can all be done analytically because they reduce to derivatives of the B-S formula. Doing those 

integrals yield as result of the form 

Series I: 

𝐶(𝑆, 𝜈, 𝜏) =  𝐶(0)(𝑆, 𝜈, 𝜏) + 𝜉𝐶(1)(𝑆, 𝜈, 𝜏) + 𝜉2𝐶(2)(𝑆, 𝜈, 𝜏) + ⋯ 

Then implied volatility is calculated from 𝐶(𝑆, 𝜈, 𝜏) = 𝑐(𝑆, 𝜈𝑖𝑚𝑝, 𝜏), where 𝐶(𝑆, 𝜈, 𝜏) is th B-S 

formula. 

Alternatively, one can expand 

Series II: 

𝜈𝑖𝑚𝑝 = 𝜈𝑖𝑚𝑝
(0)

+ 𝜉𝜈𝑖𝑚𝑝
(1)

+ 𝜉2𝜈𝑖𝑚𝑝
(1)

+ ⋯ 

Then option price is calculated from 𝐶(𝑆, 𝜈, 𝜏) = 𝑐(𝑆, 𝜈𝑖𝑚𝑝, 𝜏) 

( 1.2 ) 

( 1.3 ) 
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We use the expansion for Heston model, where 𝜑 =
1

2
 . It is very fast to obtain the Heston call price 

with this method, because numerical integration is not required. The name is derived from the fact 

that both series expansions are in terms of powers of the volatility of variance parameters, 𝜉. The 

first series is based on an expansion about the Black-Scholes price evaluated at the average variance 

𝑣. 

Lewis use the B-S formula 𝑐(𝑆, 𝑣0, 𝑡) and its first derivative with respect to 𝑣. That is using 𝜏 =

𝑇 − 𝑡 

𝑐(𝑆, 𝑣0, 𝑡) = 𝑆𝑒−𝛿𝜏Φ(𝑑+) − 𝐾𝑒−𝑟𝜏Φ(𝑑−) 

Where  𝑑± =
1

√𝑣𝜏
 [𝑋 ±

1

2
𝑣𝜏],   𝑋 = ln [

𝑆𝑒−𝛿𝜏

𝐾𝑒−𝑟𝜏]  , 

And  Φ(𝑥) =
1

√2𝜋
∫ 𝑒−

𝑧2

2
𝑥

−∞
 𝑑𝑧  , 

Then, the derivative we need is  

𝑐𝑉(𝑆, 𝑣0, 𝜏) =
𝜕

𝜕𝑉
𝑐(𝑆, 𝑣0, 𝜏) = √

𝜏

8𝜋𝑣
 𝑆𝑒−𝛿𝜏exp (−

1

2
𝑑+

2  ) 

When we use these functions, they are not evaluated at the initial volatility 𝑣0. Instead𝑣0, is 

replaced by 𝑣 = 𝑣(𝑣0, 𝑇). The quantity 𝑣 denotes the average expected variance over (0,T)  

𝑣 = 𝐸[
1

𝜏
∫ 𝑣𝑡𝑑𝑡 |𝑣0] =

1

𝜏

𝜏

0

∫ 𝐸(𝑣𝑡|𝑣0)𝑑𝑡
𝜏

0

 

=
1

𝜏
∫ [𝜃 + (𝑣0 − 𝜃)𝑒−𝑘𝑡]𝑑𝑡 = (𝑣0 − 𝜃)(

1 − 𝑒−𝑘𝜏

𝑘𝜏
) + 𝜃

𝜏

0

 

The average expected variance 𝑣 is also the fair strike of a variance swap in the Heston model, as 

demonstrated by (Gatheral, 2006).  

Lewis use 4 integrals, labeled 𝐽𝑖 = 𝐽𝑖(𝑣0, 𝜏), 𝑖 = 1,2,3,4. It turns out that 𝐽2 vanishes because the 

drift is linear. The non-vanishing integrals are 

𝐽1(𝜈, 𝜏) =
𝜌

𝑘
∫ (1 − 𝑒−𝑘(𝜏−𝑠)

𝜏

0

) (𝜃 + 𝑒−𝑘𝑠(𝜈 − 𝜃))𝑑𝑠 

=
𝜌

𝑘
[𝜃𝜏 + (1 − 𝑒−𝑘𝜏) (

𝜈

𝑘
−

2𝜃

𝑘
) − 𝑒−𝑘𝜏(𝜈 − 𝜃)𝜏] 

𝐽3(𝜈, 𝜏) =
1

2𝑘2
∫ (1 − 𝑒−𝑘(𝜏−𝑠))

𝜏

0

2

(𝜃 + 𝑒−𝑘𝑠(𝑣 − 𝜃)) 𝑑𝑠 

=
𝜃

2𝑘2 [𝑇 +
1

2𝑘
(1 − 𝑒−2𝑘𝜏) −

2

𝑘
(1 − 𝑒−𝑘𝜏)] 

+
(𝜈 − 𝜃)

2𝑘2 [
1

𝑘
(1 − 𝑒−2𝑘𝜏) − 2𝑇𝑒−𝑘𝜏] 

( 1.5 ) 

( 1.6 ) 

( 1.7 ) 

( 1.8 ) 

( 1.9 ) 
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𝐽4(𝜈, 𝜏) =
𝜌2

𝑘2
∫ (𝜃 + 𝑒−𝑘(𝜏−𝑠)(

𝜏

0

𝜈 − 𝜃))(
1

𝑘
(1 − 𝑒−𝑘𝑠)−𝑠𝑒−𝑘𝑠)𝑑𝑠  

=
𝜌2𝜃

𝑘3 [𝜏(1 + 𝑒−𝑘𝜏) −
2

𝑘
(1 − 𝑒−𝑘𝜏)] 

−
𝜌2

2𝑘2
𝜏2𝑒−𝑘𝜏(𝜈 − 𝜃) +

𝜌2(𝜈 − 𝜃)

𝑘3 [
1

𝑘
(1 − 𝑒−𝑘𝜏) − 𝜏𝑒−𝑘𝜏] 

Lewis also uses certain ratios of derivatives of the B-S formula, as �̃�(𝑝,𝑞): 

�̃�(1,1) = [
1

2
− 𝑊] 

�̃�(2,0) = 𝜏 [
𝑊2

2
−

1

2𝑍
−

1

8
] 

�̃�(1,2) = [𝑊2 − 𝑊 −
4 − 𝑍

4𝑍
] 

�̃�(2,2) = 𝜏 [
𝑊4

2
−

𝑊3

2
−

3𝑋2

𝑍3
+

𝑋(12 + 𝑍)

8𝑍2
+

48 − 𝑍2

32𝑍2
] 

In these ratios, Lewis (2000) defines 𝑊 =
𝑋

𝑍
, 𝑋 = log (

𝑆0

𝑘
) + (𝑟 − 𝑞)𝜏 and 𝑍 = 𝑣𝜏. 

In terms of these expressions, which are explained below, the two series are given. The first series 

expansion produces Heston call prices 𝐶𝐼(𝑆0, 𝑣0, 𝑇) directly:  

𝐶𝐼(𝑆0, 𝜈0, 𝜏) ≈ 𝑐(𝑆0, 𝑣, 𝜏) + 𝜎
𝐽1
𝜏

�̃�(1,1)𝐶𝑣(𝑆0, 𝑣, 𝜏)

+ 𝜎2𝐶𝑣(𝑆0, 𝑣, 𝜏) [
𝐽2
𝜏

+
𝐽3�̃�

(2,0)

𝜏2
+

𝐽4�̃�
(1,2)

𝜏
+

(𝐽1)
2�̃�(2,2)

2𝜏2
] + 𝑂(𝜎3) 

The second series produces an implied variance the Heston call price 𝐶𝐼𝐼(𝑆0, 𝜈0, 𝜏). 

𝑉𝑖𝑚𝑝 ≈ 𝑣 + 𝜎
𝐽1
𝜏

�̃�(1,1) + 𝜎2 [
𝐽2
𝜏

+
𝐽3�̃�

(2,0)

𝜏2
+

𝐽4�̃�
(1,2)

𝜏
+

(𝐽1)
2

2𝜏2
(�̃�(2,2) − (�̃�(1,1))

2
�̃�(2,0)] + 𝑂(𝜎3) 

The implied variance is then fed into the Black-Scholes model to produce the Heston call price 

under Series II. 

𝐶𝐼𝐼(𝑆0, 𝜈0, 𝜏) = 𝑐(𝑆0, 𝜈𝑖𝑚𝑝, 𝜏) 

In other words, we use (1.4) to obtain the call price, but we replace 𝑣 with 𝑣𝑖𝑚𝑝 from previous 

equation 

Finally, in the expressions for the call price in equations (1.14) the integrals 𝐽1, 𝐽3, 𝐽4 are all 

evaluated at the initial variance 𝑣0, so that 𝑣 is replaced by Heston parameter 𝑣0 everywhere in 

(1.7), (1.8) and (1.9). 

( 1.10 

) 

( 1.11 

) 

( 1.12 

) 

( 1.13 

) 

( 1.14 

) 

( 1.15 

) 

( 1.16 

) 
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We used the model parameters as Table 3.1 of Lewis (2000) to reproduce the implied volatility 

graph. Model parameters are ρ=0.5, 𝑣0=0.0225, 𝑘=0.04, 𝜃 =
0.09

4
, 𝜎 = 0.1. We also used 𝜏 =

0.25 years, 𝑟 = 𝛿 = 0, 𝑆 = 100. 

 

Figure 2- Reproduction of Figure 3.1 of Lewis (2000) 

 

 Strike Price 

Model 70 75 80 85 90 95 100 105 110 115 120 125 130 

CallPrice_Series I 30.000 25.000 20.007 15.056 10.303 6.116 2.984 1.137 0.324 0.067 0.010 0.001 0.000 

IV_SeriesI 0.166 0.165 0.163 0.160 0.156 0.153 0.150 0.147 0.144 0.141 0.138 0.138 0.142 

CallPrice_Series II 30.000 25.000 20.003 15.037 10.258 6.073 2.991 1.193 0.381 0.098 0.020 0.003 0.001 

IV_SeriesII 0.171 0.167 0.163 0.160 0.156 0.153 0.150 0.147 0.144 0.141 0.138 0.136 0.133 

CallPrice_BS 30.000 25.000 20.003 15.037 10.258 6.073 2.991 1.193 0.381 0.098 0.020 0.003 0.001 

IV_BS 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 

Table 1- Option Prices and Implied Volatility: Black-Scholes versus Volatility of Volatility Series 

Expansions 
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The results from the two methods are often very close. The two series differ the most from each 

other for relatively far out-of-the money options. Lewis also calculated the Heston call price and 

implied volatilities using the trapezoidal rule and called it the exact method. Numerical comparison 

with the exact result shows that Series II is usually but not always more accurate. So he recommends 

using Series II.  

2.2 Estimating Heston parameters for S&P 500 index 

As the most common estimation method, we try to select the parameters in a way that the quoted 

market implied volatilities are as close as possible to the model implied volatilities. This is called 

Loss Function approach. The market for S&P 500 index options is the second most active index 

options market in the United States and, in terms of open interest in options, it is the largest. We 

collected the Options data on S&P 500 index on different dates and used Lewis Series II expansion 

to estimate the Heston parameters using the loss function. The quoted (market) implied volatility 

is extracted from Bloomberg. Bloomberg uses the following method to calculate implied volatility: 

European Options:  

Value is derived using the Black-Scholes formula. 

American Options:  

Value is derived numerically using a finite-difference PDE (partial differential equation) price 

employing a constant volatility to option maturity and a term structure of interest rates.  

We represent Heston parameters as the vector Θ=( 𝑘, 𝜃, 𝜎, 𝑣0, ρ), and their corresponding 

estimate as Θ̂. We use a set of 𝑁τ maturities 𝜏 t (t=1, …,𝑁𝑇)  and a set of 𝑁𝐾 strikes kk (k=1,…, 𝑁𝐾 

). For each pair of (𝜏t,kk) , we have a market implied volatility IV(𝜏 t,kk) and a corresponding model 

implied volatility IV(τt,kk; Θ) = 𝐼𝑉𝑡𝑘
𝛩

  . The error is usually defined as the squared difference 

between the quoted and implied volatilities, or the absolute value of the difference, relative error 

can also be used.  

Mean error sum of square (MSE) loss function: 𝐼𝑉𝑀𝑆𝐸 =
1

𝑁
∑ (𝐼𝑉𝑡𝑘 − 𝐼𝑉𝑡𝑘

𝛩 )2
𝑡𝑘  

We used a constrained minimization algorithm on the error between quoted and model implied 

volatilities subject to the constraints on the parameters as:  

𝑘>0, 𝜃>0, 𝜎>0, 𝑣0>0, ρ 𝜖 [-1,1] 

We use the approximated implied volatility from Lewis’ (2000) Series II expansion and use that 

instead of 𝐼𝑉𝑡𝑘
𝛩 . As the initial parameters, for the first data set we used the Heston paramaters 

calculated by Rouah (2013) using the options collected on April 13, 2012, on the S&P500 index. 

The parameters are ρ=-0.7799, 𝑣0=0.0344, 𝑘=1.9214, 𝜃 = 0.0904, 𝜎 = 1.0193. And for the 
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other data sets we used the parameters achieved on the first data set. At each date, we calibrate the 

model to S&P500 index options with 10 different maturities and 10 different strikes, so in each 

data set we used 100 options implied volatility. 

 

Dataset IVMSE 𝝆 𝜽 𝒗𝟎 𝜿 𝝈𝒗 

30-Apr-15 7.71E-06 -0.6336 0.0463 0.0174 2.2614 0.8906 

11-Sep-15 5.22E-06 -0.5178 0.0444 0.0308 10.8046 2.4443 

01-Oct-15 7.33E-06 -0.4796 0.0453 0.0275 6.7932 1.6087 

16-Oct-15 5.76E-04 -0.353 0.0429 0.0063 11.5455 1.7743 

11-Nov-15 2.69E-05 -0.4829 0.0451 0.0276 6.7902 1.5658 

Table 2- Result of Heston Parameter Estimation for Different Data Sets 

 

Confirming Matytsin(1999) findings, among the stochastic volatility parameters, long run diffusion 

volatility √𝜃 is relatively stable. The following figures show the market and Heston implied 

volatilities on the S&P 500 index, estimated using IVMSE on different data sets. 

 

Figure 3- Volatility surface on dataset 1 
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Figure 4- Volatility surface on dataset 2

 

Figure 5- Volatility surface on dataset 3 
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Figure 6- Volatility surface on dataset 4 

 

 

Figure 7- Volatility surface on dataset 5 
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Based on the parameters estimation for the five data series, it is indicated that ρ (correlation between 

the stock price and volatility Brownian motions) and 𝜃 (the mean reversion level of the variance) 

are stable; however the other parameters vary significantly between data sets. We are going to use 

the parameters from the first data set, to calculate the volatility swap price in the next part of the 

project. 

As demonstrated in the graphs and indicated by the IVMSE, the model implied volatility based on 

the Heston parameters is very close to the market implied volatility. The major difference is in out-

of-the money and short term maturity options.  
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3: Volatility Swap 

The easy way to trade volatility is to use volatility swaps, because they provide pure exposure to 

volatility (and only to volatility). A volatility swap is an OTC contract, which similar to any swap 

contract has zero upfront premium. At the expiry date, the long side of the volatility swap pays a 

positive dollar amount, which was agreed upon at inception. In return for this fixed payment, the 

long side receives a positive dollar amount at expiry, called the realized volatility of the underlying 

index. The realized volatility, which is the floating leg of the contract, is a square root of annualized 

average of squared daily returns (Carr and Lee, 2009). In this part we calculate the fair volatility 

strike based on Heston stochastic volatility model. 

3.1 Fair volatility strike 

A stock volatility swap is a forward contract on annualized volatility. Its payoff at expiration is 

equal to  

(√𝑉𝑐(0, 𝑇) − 𝐾) × 𝑁 

where √𝑉𝑐(0, 𝑇) is the realized stock volatility (quoted in annual terms as defined below) over the 

life of the contract, 𝐾 is the volatility strike, and 𝑁 is the notional amount of the swap in dollars. 

𝑉𝑐(0, 𝑇) is the continuously sampled realized variance. However, it can be replaced with 𝑉𝑑(0, 𝑛, 𝑇) 

which is discretely sampled realized variance, 𝑛 is the number of sampling dates. 

The procedure for calculating realized volatility and variance should be specified in the derivative 

contract with respect to the several aspects: detail about the source and observation frequency of 

the price of the underlying asset, the annualization factor to be used in moving to an annualized 

volatility and the method of calculating the variance. Most traded contracts define realized variance 

to be  

𝑉𝑑(0, 𝑛, 𝑇) =
𝐴𝐹

𝑛 − 1
∑ (ln (

𝑆𝑖+1

𝑆𝑖
))

2𝑛−1

𝑖=0

 

Here 𝑆𝑖 is the price of the asset at the 𝑖𝑡ℎ observation time 𝑡𝑖 and 𝐴𝐹 is the annualization factor, 

e.g., 252 (= 𝑛/𝑇) if the maturity of the swap, 𝑇, is one year with daily sampling. In contrary to 

definition of realized variance, in the above formula, the sample average is not subtracted from 

each observation. Since the sample average is approximately zero, the realized variance is close to 

the sample variance. 

In the stochastic volatility models, continuous realized variance is given by 
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𝑉𝑐 =
1

𝑇
∫ 𝜐𝑠𝑑𝑠

𝑇

0

 

(2.1) 

The fair variance strike, 𝐾𝑣𝑎𝑟
∗  is defined as the value which makes the contract’s net present value 

equal to zero, i.e., it is the solution of  

𝐸0
𝑄[𝑒−𝑟𝜏(𝑉𝑐(0, 𝑇) − 𝐾𝑣𝑎𝑟

∗ )] = 0 

(2.2) 

where the superscript 𝑄 indicates the risk-neutral measure and the subscript 0 denotes expectation 

at time 𝑡 = 0 (Broadie and Jain, 2008). In the SV model, the fair variance strike is given by  

𝐾𝑣𝑎𝑟
∗ = 𝐸[𝑉𝑐(0, 𝑇)] = 𝐸(

1

𝑇
∫ 𝜈𝑠𝑑𝑠) = 𝜃 +

𝜈0 − 𝜃

𝜅𝑇
(1 − 𝑒−𝜅𝑇)

𝑇

0

 

(2.3) 

where the last equality follows, e.g. from Broadie and Jain (2007). The fair volatility strike is 

defined as the value, which makes the contract net present value equal to zero, i.e., it solves the 

equation 

𝐸0 [𝑒−𝑟𝑇 (√𝑉𝑐(0, 𝑇) − 𝐾𝑣𝑜𝑙
∗ )] = 0 

(2.4) 

Hence, the fair volatility strike can be expressed as  

𝐾𝑣𝑜𝑙
∗ = 𝐸 [√

1

𝑇
∫ 𝜈𝑡𝑑𝑡

𝑇

0

] = 𝐸[√𝑉𝑐(0, 𝑇)] 

(2.5) 

Broadie and Jain (2008) define 𝑌𝑡
𝑇 to be the price process of the floating leg of a volatility swap: 
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𝑌𝑡
𝑇 = 𝐸𝑡

𝑄
[√

1

𝑇
∫ 𝜈𝑠𝑑𝑠

𝑇

0

] 

This security has a payoff at time 𝑇 which depends on the variance process from time 𝑡 = 0 until 

maturity. At time 𝑇 it represents the payoff of the floating leg of the volatility swap. At time 0 it 

gives the fair volatility strike: 

𝐾𝑣𝑜𝑙
∗ = 𝑌0

𝑇 

Broadie and Jain (2008) define a state variable 𝐼𝑡 to measure the accumulated variance so far: 

𝐼𝑡 = ∫ 𝜈𝑠𝑑𝑠
𝑡

0

 

𝐼𝑡 is the variance over the life of the contract, as opposed to 𝜈 the instantaneous variance at a point 

in time. This state variable is a known quantity at time 𝑡 and satisfies the differential equation: 

𝑑𝐼𝑡 = 𝜈𝑡𝑑𝑡 

The forward price process, 𝑌𝑡
𝑇, can be expressed as  

𝑌𝑡
𝑇 = 𝐸𝑡 [√

1

𝑇
(𝐼𝑡 + ∫ 𝜈𝑠𝑑𝑠)

𝑇

𝑡

] = 𝐹(𝑡, 𝜈𝑡 , 𝐼𝑡) 

and is a function of time, the stochastic variance 𝜈𝑡 and a deterministic quantity 𝐼𝑡. Applying Ito’s 

lemma to 𝐹(. ) we get 

𝑑𝐹 =
𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝜈
𝑑𝜈 +

𝜕𝐹

𝜕𝐼
𝑑𝐼 +

1

2

𝜕2𝐹

𝜕𝜈2
𝑑𝜈2 

which is simplified using equation (1.1) to 

𝑑𝐹 = [
𝜕𝐹

𝜕𝑡
+

𝜕𝐹

𝜕𝜈
𝜅(𝜃 − 𝜈𝑡) +

𝜕𝐹

𝜕𝐼
𝜈𝑡 +

1

2

𝜕2𝐹

𝜕𝜈2
𝜈𝑡𝜎𝜈

2] 𝑑𝑡 +
𝜕𝐹

𝜕𝜈
𝜎𝜈√𝜈𝑡𝑑𝑊2,𝑡 

(2.6) 

Since 𝐹 is a forward price process, its drift under the risk-neutral measure must be zero. Hence,  

𝜕𝐹

𝜕𝑡
+

𝜕𝐹

𝜕𝜈
𝜅(𝜃 − 𝜈𝑡) +

𝜕𝐹

𝜕𝐼
𝜈𝑡 +

1

2

𝜕2𝐹

𝜕𝜈2
𝜈𝑡𝜎𝜈

2 = 0 

(2.7) 

Thus, the forward price process satisfies the partial differential equation (2.7) in the SV model 

(Broadie and Jain, 2008). We solve the partial differential equation in the region: 

 0 ≤ 𝑡 ≤ 𝑇, 𝐼𝑚𝑖𝑛 ≤ 𝐼 ≤ 𝐼𝑚𝑎𝑥, 𝜈𝑚𝑖𝑛 ≤ 𝜈 ≤ 𝜈𝑚𝑎𝑥 , with boundary condition 
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𝑌𝑇
𝑇 = 𝐹(𝑇, 𝜈𝑇 , 𝐼𝑇) =  √

𝐼𝑇
𝑇

 

(2.8) 

At other boundaries (𝐼 and 𝑉) we set the second order variation of the price process to zero (Broadie 

and Jain, 2008). In particular we use the boundary conditions: 

∂2𝐹

∂I2
|
(𝐼=𝐼𝑚𝑎𝑥,𝐼𝑚𝑖𝑛)

= 0       
∂2𝐹

∂ν2
|
(𝜈=𝜈𝑚𝑎𝑥,𝜈𝑚𝑖𝑛)

= 0  

(2.9) 

Thus by solving the partial differential equation (2.7) with boundary conditions (2.8) and (2.9) we 

can compute the fair volatility strike and get the price at all times until maturity.   

Next we present numerical results to illustrate the computation of fair volatility strike. We use 

model parameters from what we calculated in part 1 for data set 1.  

3.2 Solving the PDE 

We solve the PDE (2.7) with the conditions (2.8)  and (2.9).  Regarding the Heston parameters, We 

use the parameters from the first part of this paper by minimizing mean-squared differences 

between model and market S&P500 index implied volatilities on April 30, 2015.  Therefore we are 

calculating 𝐹𝑖−1,𝑗,𝑘 using numerical method, i.e. recurrence relation to 𝐹𝑖,𝑗,𝑘. It turns out when the 

ratio of time step to I- or V- step is bigger than 1.3% , the approximate solutions can contain 

(decaying) spurious oscillations. Therefore for example for time to maturity 125 days we used 7000 

intervals in t-direction and 40 intervals in each V- and I- directions to meet the stability condition.  

For easier demonstration, We change the notation of 𝐹𝑖,𝑗,𝑘 to 𝑈𝑚,𝑙
𝑛+1 and 𝐹𝑖−1,𝑗,𝑘 to 𝑈𝑚,𝑙

𝑛  , where 𝑛 ≈

𝑖 − 1,𝑚 ≈ 𝑗, 𝑙 ≈ 𝑘. 

The solution vector can be set up on a 3-dimensional grid (two dimensions in V and I and one 

dimension in time). (Lakoba, lecture notes) 
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We assume that the step size on 𝑥 and 𝑦 directions are the same and equal to ℎ. We also discretize 

the time variable with a step size 𝑘. Then the three-dimensional grid for the 2D equation consists 

of points (𝑥 = 𝑚ℎ, 𝑦 = 𝑙ℎ, 𝑡 = 𝑛𝑘). 0 ≤ 𝑚 ≤ 𝑀 =
𝑉𝑚𝑎𝑥

ℎ
, 0 ≤ 𝑙 ≤ 𝐿 =

𝐼𝑚𝑎𝑥

ℎ
  and     0 ≤

𝑛 ≤ 𝑁 =
𝑇

𝑘
. 

We denote the solution on the above grid as 

𝑈𝑚,𝑙
𝑛 = 𝑢(𝑚ℎ, 𝑙ℎ, 𝑛𝑘) ,   0 ≤ 𝑚 ≤

𝜈𝑚𝑎𝑥

ℎ
, 0 ≤ 𝑙 ≤

𝐼𝑚𝑎𝑥

ℎ
 and 0 ≤ 𝑛 ≤

𝑇

𝑘
 

We expect that any numerical scheme that we design will give some recurrence relation between 

𝑈𝑚,𝑙
𝑛+1 

and 𝑈𝑚,𝑙
𝑛 . As long as our grid are rectangular, the array of values 𝑈𝑚,𝑙

𝑛  at each given n can be 

conveniently represented as (𝑀 − 1) × (𝐿 − 1) matrix. To step from level (𝑛 + 1) to level 𝑛, we 

just apply the recurrence formula to each element of the matrix  𝑈𝑚,𝑙
𝑛+1. The first components (𝑀 −

1) of the solution vector Ū will be the values 𝑈𝑚,1
𝑛  with 𝑚 = 1,2,… ,𝑀 − 1. The next (𝑀 − 1) 

components will be 𝑈𝑚,2
𝑛  with 𝑚 = 1,2,… ,𝑀 − 1, and so on. The resulting vector is: 
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We use the Crank-Nicolson finite difference model, so for each 2D grid along the 𝑥 and 𝑦 directions 

the coefficients calculation would be as follow:  

Central difference for 𝜕𝑈/𝜕𝑡 

𝜕𝑈𝑚,𝑙

𝑛+
1
2

𝜕𝑡
=

𝑈𝑚,𝑙
𝑛+1 − 𝑈𝑚,𝑙

𝑛

𝛿𝑡
+ 𝑂(𝛿𝑡2) 

Symmetric difference for 𝜕𝑈/𝜕𝑣 

𝜕𝑈𝑚,𝑙

𝑛+
1
2

𝜕𝑣
=

1

2
[
𝜕𝑈𝑚,𝑙

𝑛

𝜕𝑣
+

𝜕𝑈𝑚,𝑙
𝑛+1

𝜕𝑣
] 

=
1

2
[
𝑈𝑚+1,𝑙

𝑛 − 𝑈𝑚−1,𝑙
𝑛

2𝛿𝑣
+

𝑈𝑚+1,𝑙
𝑛+1 − 𝑈𝑚−1,𝑙

𝑛+1

2𝛿𝑣
] + 𝑂(𝛿𝑣2) 

Symmetric difference for 𝜕𝑈/𝜕𝐼 

𝜕𝑈𝑚,𝑙

𝑛+
1
2

𝜕𝐼
=

1

2
[
𝜕𝑈𝑚,𝑙

𝑛

𝜕𝐼
+

𝜕𝑈𝑚,𝑙
𝑛+1

𝜕𝐼
] 

=
1

2
[
𝑈𝑚,𝑙+1

𝑛 − 𝑈𝑚,𝑙−1
𝑛

2𝛿𝐼
+

𝑈𝑚,𝑙+1
𝑛+1 − 𝑈𝑚,𝑙−1

𝑛+1

2𝛿𝐼
] + 𝑂(𝛿𝐼2) 

Standard 2nd derivative difference 

𝜕2𝑈𝑚,𝑙

𝑛+
1
2

𝜕𝑣2
=

1

2
[
𝜕2𝑈𝑚,𝑙

𝑛

𝜕𝑣2
+

𝜕2𝑈𝑚,𝑙
𝑛+1

𝜕𝑣2
] 

=
1

2
[
𝑈𝑚+1,𝑙

𝑛 − 2𝑈𝑚,𝑙
𝑛 + 𝑈𝑚−1,𝑙

𝑛

𝛿𝑣2
+

𝑈𝑚+1,𝑙
𝑛+1 − 2𝑈𝑚,𝑙

𝑛+1 + 𝑈𝑚−1,𝑙
𝑛+1

𝛿𝑣2
] + 𝑂(𝛿𝑣2) 

Using the above expressions in the PDE (2.7), result in: 

𝑎𝑗𝑈𝑚−1,𝑙
𝑛 − (1 + 𝑏𝑗)𝑈𝑚,𝑙

𝑛 + 𝑐𝑗𝑈𝑚+1,𝑙
𝑛 − 𝑒𝑗𝑈𝑚,𝑙−1

𝑛 + 𝑒𝑗𝑈𝑚,𝑙+1
𝑛 = 
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−𝑎𝑗𝑈𝑚−1,𝑙
𝑛+1 − (1 − 𝑏𝑗)𝑈𝑚,𝑙

𝑛+1 − 𝑐𝑗𝑈𝑚+1,𝑙
𝑛+1 + 𝑒𝑗𝑈𝑚,𝑙−1

𝑛+1 − 𝑒𝑗𝑈𝑚,𝑙+1
𝑛+1  

(2.10) 

where  𝑣𝑡 = 𝑗𝛿𝑣 , and 

𝑎𝑗 =
𝑗𝜎𝑣

2𝛿𝑡 − 𝜅(𝜃 − 𝑗𝛿𝑣)𝛿𝑡

4𝛿𝑣
 

(2.11) 

𝑏𝑗 =
𝑗𝜎𝑣

2𝛿𝑡

2𝛿𝑣
 

(2.12) 

𝑐𝑗 =
𝜅(𝜃 − 𝑗𝛿𝑣)𝛿𝑡 + 𝑗𝜎𝑣

2𝛿𝑡

4𝛿𝑣
 

(2.13) 

𝑒𝑗 =
𝑗𝛿𝑣𝛿𝑡

4𝛿𝐼
 

(2.14) 

So for the first three terms in equation (2.10), we define matrix A as: 

𝐴 =

[
 
 
 
 
−𝑏1 𝑐1 0 ⋯ 0 0
𝑎2 −𝑏2 𝑐2 ⋯ 0 0
0 𝑎3 −𝑏3 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑎𝑀−1 −𝑏𝑀−1]

 
 
 
 

 

(2.15) 

And for the last two terms in equation (2.10), we define matrix 𝐸 as: 
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𝐸 = [

𝑒1 0 ⋯ 0
0 𝑒2 ⋯ 0
⋯ ⋯ ⋱ ⋮
0 0 ⋯ 𝑒𝑀−1

] 

(2.16) 

Then we build the coefficient of vector 𝑈𝑚,𝑙
𝑛+1, as a block-tridiagonal matrix with the size 

[(𝑀 − 1) × (𝐿 − 1)] × [(𝑀 − 1) × (𝐿 − 1)]. Therefore in equation 𝐶𝑈𝑚,𝑙
𝑛 = 𝐷𝑈𝑚,𝑙

𝑛+1, the 𝐶 and 𝐷 

would be as follow: 

𝐶 = (𝐼 −  𝒜) 

(2.17) 

𝐷 = (𝐼 +  𝒜) 

(2.18) 

where 

𝒜 =

[
 
 
 
 

𝐴 𝐸 𝑂  ⋯ 𝑂 𝑂
−𝐸 𝐴 𝐸 ⋯ 𝑂 𝑂
𝑂 −𝐸 𝐴 ⋯ 𝑂 𝑂
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑂 𝑂 𝑂 ⋯ −𝐸 𝐴]

 
 
 
 

 

(2.19) 

3.3 Boundary conditions 

The boundary conditions are:  

∂2𝐹

∂I2
|
(𝐼=𝐼𝑚𝑎𝑥,𝐼𝑚𝑖𝑛)

= 0       
∂2𝐹

∂ν2
|
(𝜈=𝜈𝑚𝑎𝑥,𝜈𝑚𝑖𝑛)

= 0 

This kind of condition, which is a condition on derivative of U instead of U itself, is called a 

Neumann boundary condition (LeVeque, 2006). To solve this problem numerically, we need to 

introduce one more unknown than we previously had: U(0) at the point 𝜈 = 0 or 𝐼 = 0. I used the 

one sided expression for U˝(0)=0 and U˝(end)=0 
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So for νmin and νmax the equations would be: 

𝑈˝(0) =
U2,:

n − 2U1,:
n + U0,:

n

∂ν2
= 0 

 

𝑈˝(𝑒𝑛𝑑) =
U𝑀,:

n − 2U𝑀−1,:
n + U𝑀−2,:

n

∂ν2
= 0 

This means that in equation 𝐶𝑈𝑛 = 𝐷𝑈𝑛+1 , I need to change the coefficients of U2,:
n , U1,:

n , U0,:
n , 

U𝑀,:
n , U𝑀−1,:

n  and U𝑀−2,:
n  based on the above conditions. This requires adding one row to the matrices 

𝐴 and 𝐸 for elements U0,:
n . Respectively the size of matrices 𝒜,𝐶 and 𝐷 change to (𝑀 × 𝐿) × (𝑀 ×

𝐿). 

Similarly for Imin and Imax the equations would be: 

𝑈˝(0) =
U:,2

n − 2U:,1
n + U:,0

n

∂I2
= 0 

 

𝑈˝(𝑒𝑛𝑑) =
U:,𝐿

n − 2U:,𝐿−1
n + U:,𝐿−2

n

∂I2
= 0 

We calculated the fair volatility strike based on the parameters used by Broadie and Jain (2008). 

The parameters were calibrated to the market data on November 02, 1993.  The fair volatility strike 

of 13.35% for one year maturity swap matches with the result as 13.26%  mentioned in their paper. 

We also compared fair volatility strike with the realized volatility for different maturities after 

November 02, 1993. (Indicated in figure 8 as B&J Fair volatility strike vs B&J Realized volatility) 

 

Figure 8- Fair volatility strike vs Realized volatility 

 

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 252

New Fair volatility strike 0.20140.19300.18490.17920.17440.1694

New Realized volatility 0.17200.17370.17720.17250.17000.1675

B&J Fair volatility strike 0.17600.17040.16580.16190.15530.15290.15080.14890.14470.14340.14220.14110.14000.13700.13600.13500.1335

B&J Realized volatility 0.09880.09960.10050.09970.09640.09610.09690.09530.09400.09270.09260.09300.09320.09480.09580.09580.0966
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Fair Volatility Strike vs Realized Volatility
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As demonstrated in figure 8, B&J fair volatility strike is getting closer to the realized volatility for 

longer term maturities, however there is significant difference between them.  

Furthermore using the Heston parameters as calibrated on the first dataset at April 30, 2015 in part 

1 of this paper, we calculated the fair volatility strike on S&P500 index for different maturities and 

compared it with the realized volatilities after that date. (Indicated in figure 8 as New Fair volatility 

strike vs New Realized volatility). As we can see, the fair volatility strike is close to the realized 

volatility for longer time to maturity swaps.  
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4: Conclusion 

In this paper, we priced volatility swap considering Heston stochastic volatility model. For 

calibrating Heston parameters, we minimized the loss function on implied volatility based on the 

Lewis (2000) expansion of the volatility of volatility. For pricing the volatility swap, we exploited 

the PDE introduced by Broadie and Jain (2008) based on the no-arbitrage strategy. We solved the 

three variable PDE using numerical computation by finite difference Crank-Nicolson method in a 

3D grid. In order to assess Broadie and Jain approach, we price the volatility swap on S&P 500 

index and compare our model expected volatility to the realized volatility. Our result shows that 

the model fair volatility strike is close to realized volatility for long maturity swaps.  
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5: Future works 

It would be interesting to consider contracts, which pay nonlinear functions of realized or local 

volatility. One of the drawbacks of model based pricing, is that this approach is subject to 

significant model risk since one is unlikely to guess the correct volatility process. So a risk of 

misspecification and miscalibration presents in any one model. While the stochastic volatility 

model fits the longer behaviour of the asset price, to adequately describe the short-term behaviour 

of the asset price it should be augmented with return jumps; furthermore for the realistic modeling 

of volatility skew observed in market prices of VIX options, the jumps in the variance should also 

be included. 
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