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ABSTRACT

Design verification is an essential step in the development of any product. Also
referred to as qualification testing, design verification ensures that the product as
designed is the same as the product as intended. In this project, design
verification and performance analysis of Thin Advanced Extensible Interface
Links (T-AXI) is conducted on a Broadcom’s SoC (System on Chip). T-AXl is a
Broadcom’s proprietary bus that interfaces all the subsystems on the System-on-
chip (SoC) to the system memory. Test cases are developed to verify the
functionality of the T-AXl and performance verification is implemented using
scenarios derived from real world examples. A Field Programmable Gate Array
(FPGA) is used to emulate the SoC design and C programming is used to write
the test cases. The test results verify the T-AXI functionality and the performance

analysis supports the theoretical calculations.
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1.0 Introduction

In recent years, a smartphone is no longer a device for the road warriors; but
rather, it has become the most personal electronic device that the consumers
own to manage their online and offline lives. The trend to run various smartphone
applications simultaneously, while ensuring that consumers do not have to wait
for the “hourglass”, has triggered a cutting-edge research on reducing the round
trip latency between memory and peripherals. The important aspect of a System-
on-Chip (SoC) not only includes which components or blocks it houses, but also
how they interconnect. One of the de-facto on-chip bus standards is the

Advanced Microcontroller Bus Architecture (AMBA).

AMBA [1] is a registered trademark of ARM Limited and is an open standard, on-
chip interconnect specification for the connection and management of functional
blocks in a SoC. An AMBA-based architecture connects on-chip memory, the
processor and other Direct Memory Access (DMA) devices to a high-
performance system backbone bus that is able to sustain an external memory
bandwidth. This bus provides a high-bandwidth interface between the elements
that are involved in the majority of transfers. AMBA specification is further
subdivided into more specific interfaces such as Advanced eXensible Interface
(AXI), AXI Coherency Extensions (ACE), Advanced High-performance Bus

(AHB), Advanced Peripheral Bus (APB), etc.



In this project, Broadcom’s Thin Interconnect Intellectual Property (IP) is
examined and evaluated. This IP is AXI 4 compliant, which is part of AMBA 4.0
released in 2010 [1]. The AXI interconnect facilitates transactions between
various subsystems of the SoC and the system memory, as shown in Figure 1.
The subsystems could be any sort of traffic generator peripheral, such as
processor, video, LAN, graphic, modem, DMAs, etc. These peripherals send

reads and writes to the memory using Thin AXI, which is further explained in this

re port.
Subsystem Subsystem Subsystem Subsystem
1 2 3 4
M S M S M S M S
Serial Serial Serial Serial
AXI AXI AXI AXI
Main Fabric

Arbitration, Reordering, Memory Management Unit

Memory Controller

Memory

M = Master stream
S = Slave stream

Figure 1: Block Diagram of System-on-Chip

1.1 Objective
The aim of this project is to understand and verify the design of Thin AXI Link

used in Broadcom’s SoC and analyze the performance metrics. In the full cycle,



starting from Register-Transistor Logic (RTL) design through to marketing the
SoC, Design Verification Testing (DVT) is an essential step. DVT ensures that
the designed product is the same as the intended product. Typically, pre-ASIC
(Application Specific Integrated Circuit) design verification is performed on an
emulator such as Field Programmable Gate Array (FPGA), Cadence Palladium,
etc. Hardware emulation imitates the behavior of SoC and is based on a
hardware description language (e.g. Verilog) source code. Once the chip
specifications are verified, the SoC is taped out. Then, post-ASIC design
verification is performed on the ASIC before releasing the Chip in the market. In

this project, pre-ASIC DVT is performed on the Thin links of the SoC.

1.2 Document Outline

This document is organized into six main chapters which describe the design,
implementation and testing of the Thin AXI Link in Broadcom’s SoC. Chapter 1
provides an introduction to the report and Chapter 2 provides the background
information on the Thin AXI and an overview of AXI4 specifications ported into
the Broadcom’s IP. Chapter 3 describes the design and implementation of the
Thin AXI Link. Chapter 4 discusses the test bench set up to verify the
functionality of the Thin AXI Link. Chapter 5 describes the test plan and presents
the test results. Finally, Chapter 6 concludes the report by summarizing the Thin

Links implementation and test results.



2.0

Background

System-level interconnect presents a challenging design of servicing all the

masters meticulously and avoiding traffic bottle-necks. There are two proposed

architectures:

An architecture (say Archl) that uses off-the-shelf AXI-4 fabric from ARM,
in combination with wide source-synchronous busses. A source-
synchronous interface is one where the clock accompanies the data on its
journey from source to destination, and is used to clock the data into the
receiver. A synchronization stage is then used to transfer the received
data back to the global clock domain. An advanced multi-ported, re-
ordering memory controller implements a Quality of Service (QoS)
scheme based on configurable, per-master, time-to-live counters. The
ARM, the modem and the multimedia subsystems have dedicated
memory controller ports to minimize memory access latency. All other
subsystems use this architecture for memory accesses. The more
centralized QoS comes at the cost of implementation complexity and

routing overhead, and does not fully eliminate local decision-making.

An architecture (say Arch2) that uses a proprietary single-address-bus
variant of AXI-4, with wide source-synchronous busses and a simple
“sequencer-style” memory controller. A distributed QoS scheme uses

credit arbitration at each multiplexing point in the fabric to share bandwidth



between masters, with a panic signal to permit priority escalation with

inheritance.

Both architectures have a considerable amount of bus multiplexing prior to arrival
at the memory controller, and therefore their QoS implementation is distributed

with imperfect local decisions being made on the basis of local information.

In this SoC, there are two DDR4 memory devices implemented. From the
experience of previous Broadcom SoCs, a 128-bit master running at 250MHz is
able to instantaneously saturate the bandwidth provided by a single 32-bit

LPDDR2-800 device.

Bandwidth of Master = 128bits * 250MHz = 32000 Mega bits/second (Mb/s).

Bandwidth of Memory = 32bits * 800MHz = 25600 Mb/s.

By extrapolation, we would require 256-bit masters at 500MHz to come “close to”

saturating the bandwidth provided by a pair of 32-bit DDR4L-2133 devices.

Bandwidth of Master = 256bits * 500MHz = 128000 Mb/s.

Bandwidth of Memory = 2 * 32bits * 2133MHz = 136512 Mb/s.



To match the available downstream SDRAM bandwidth, a multi-ported controller

is needed which:

e Accumulates write data from several slower slave ports into internal
buffers until the buffers are full and then, the contents of the buffer are

transmitted at high speed to the SDRAM devices.

e Receives read data at high speed from the SDRAM devices into internal
buffers and then the contents are forwarded at the earliest opportunity via

the appropriate slave port.

To eliminate the delays caused by distributed QoS, and to provide an adequate
supply of upstream bandwidth, this SoC interconnect uses a star-topology
network to connect each non-CPU bus master with a dedicated port on the
memory controller front-end. Each connection, and each controller port, provides

2GB/s of duplex bandwidth (equivalent to 32-bit AXI at 500MHz).

This choice of topology places a heavy burden on implementation, due to a large
number of signals which converge on a single point. Therefore, narrow, fast and
self-timed busses (as shown in Figure 2) are required to ameliorate the resulting

congestion.
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Figure 2: Fast, Narrow and Self-timed busses

In Figure 2,

e AXI transactions originating at the master are packetized into a local

Transmit (TX) buffer.

e Data is read from the TX buffer by an asynchronous transmitter and sent

over the bus.

e Data is captured by an asynchronous receiver, and copied into a Receive

(RX) buffer.

e Transactions are reconstructed and consumed by logic in the memory

controller.

e Read data and write responses return to the master by a similar

mechanism.




This bus architecture is derived from AX|I 4 ARM architecture which is described

in next section.

2.1 AXI 4 Design Extracts

This document describes the flavour of AXI4 that is used in Broadcom SoC'’s
Thin AXI design. It outlines some of the key behaviours of the system and offers
some design guides for the AXI components. The masters and slaves that are
connected by the Interconnect are described in Section 2.2 and Section 2.3.
Some of the AXI4 features that are incorporated in Broadcom'’s bus architecture

are:

e AXI4 has dual address busses. Reads and writes are completely
decoupled.

e AXI4 does not have the inherent ordering. Read/write conflicts need to be
detected and handled by the masters.

e AXI4 supports 256 beat bursts for INCR (unspecified length) bursts.

e AXIl4 bursts cannot cross a 4K boundary of the memory.

e AXIl4 renames Priority as QOS.

The following AXI 4 features are not supported by the Thin Interconnect:
e Lock signals and exclusive accesses are not supported.

e Regions are not supported.



2.2

Master Behaviour

This section discusses some of the requirements that masters/subsystems

should abide in accordance to AXIl 4 protocol. All masters should include a

subset of the full AXI4 specification and should be suitable for use in future AX14

systems that have a different subset of the specifications. AXI Masters must have

the following behaviour:

Must be able to limit the maximum read/write burst size and the number of
outstanding requests.  This limit is in powers of 2 for ease of
implementation and allows system bandwidth behaviour to be tuned.
Bursts > 16 beats can only be INCR which limits a maximum of 16 beats
to reduce infrastructure storage requirements.

Bursts cannot cross a 4K boundary.

Transactions should be labeled as "NOT modifiable” ACACHE[1]=0.

If masters launch read requests with different IDs, they must be able to

handle the read data coming back out-of-order.

Masters must expect the following ordering behaviour from the AXI subsystem.

Transactions with the same direction and the same ID to the same slave
will remain in order. For reads, the data will be returned in the same order.
For writes, the responses will be returned in order.

There is no guarantee of order between reads and writes. You must wait

for a response from one transaction before starting the next.



There is no guarantee of the order of transactions in the same direction
but to different slaves. Read data (or write responses) to two different
slaves may come back in any order even if they have the same ID. The
memory controller will handle the SDRAM page interleaving, making the
SDRAM look like one slave. Peripherals will be located on a 4K boundary
and so masters that access peripherals should treat every 4K boundary as

a separate slave.

In Broadcom’s SoC, all the subsystems adhere to the above stated requirements

of AXI 4 as well as follow the custom design guidelines given below:

Use a different AXI ID for each transaction. Data read from memory may
be out of order and using a different AXI ID allows the memory controller
to re-order requests and responses and increase the SDRAM efficiency.
System performance may be reduced if the same ID is used to different
slaves because memory subsystem has to re-order reads that go to
different physical SDRAM controllers.

Indicate any outstanding requests still in flight while the link is powering
down. Care should be taken to ensure that any outgoing requests are
counted from the moment that they are started, and not from when they
are accepted.

Provide a fine grained QoS control of their (masters) bus behaviour to aid

in system tuning and bandwidth limiting.

10



2.3

Masters should behave in a fair and responsible manner. If they drive a
high QoS value and continual back-to-back requests, then they will
saturate the bus to the detriment of other masters in the system. It is the
responsibility of the Master to control its bus behaviour and play fairly in a
system. It is not the responsibility of the infrastructure or memory
controller to throttle a greedy master. A system can usually support one
greedy master by making it the lowest priority master in the system, so
that it hoovers up all the spare bandwidth. However if there are several
greedy masters, then a method needs to be in place to allocate the spare
bandwidth amongst them.

Masters should try and access bulk data in large bursts. Caches should be
employed if necessary. DDR4 SDRAM have a minimum burst size of 256
bits, so a single beat 128 bit AXI transfer will only get 1/2 the possible
bandwidth. A 2 beat burst should be considered as an absolute bare
minimum, and a 4 beat burst is much more desirable.

Masters should drive their priority outputs to zero when inactive.

Slave Behaviour

This section discusses some of the requirements that slaves/memory should

abide in accordance to AXI 4 protocol. In general, slaves should cope with the full

AXI4 specification and should report any unsupported behaviour with ASSERTS

and return the appropriate response to unsupported behaviour on the bus.

Slaves must have the following behaviour:

11



e Must be able to support up to 256 beat bursts. Bursts > 16 beats can only
be INCR. If a slave does not support >16 beats then it should have an
ASSERT to detect this, and it should return a bus error.

e Slaves do not have to support bursts across a 4K boundary (as this needs
32 bit address logic) but can do so if backwards compatibility with VC-AXI
is required.

e Write response (BResp) cannot be issued until both address and last data
have completed.

e Slaves must cope with all juxtaposition and combinations of address and
write data, i.e. the address and the first beat of write data are no longer
guaranteed to be in the same cycle.

e Error conditions should be returned on Bresp and Rresp when an AXI

access is invalid.

Slaves must obey the following ordering rules:

e Once a response has been given, the slave must maintain data order with
any subsequent transactions, i.e. once inside a slave, then data order
must be preserved.

e Slaves can respond to transactions with different ID's in any order.

12



3.0 Thin AXI Architecture and Implementation

Thin AXI interconnect is the main fabric that routes various thin AXI busses onto
the two SDRAM controllers. The main fabric (MFAB) has to sort out any re-
ordering issues, provide buffering to prevent slow T-AXI links from stalling the
system, enforce memory protection and also provide the system MMU
functionality required for a memory system that allocates scattered 4K pages.
The AXI channels are carried over the high-speed T-AXI bus in a simple Time
Division Multiplexing (TDM) fashion using a synchronous T-AXI clock. In addition,
the bus supports non-AXI commands for link control and a simple address

compression scheme.

3.1 Signal List

The signal list for the T-AXI bus is given in Table 1 and the visual presentation is
provided in Figure 3. Note that the naming convention uses downstream to
indicate the channel moving data/commands away from the system memory and

upstream for the reverse direction.

13



Table 1: Signal list of Thin AXI bus

Signal Description

clk_taxi Synchronous clock covering up/downstream blocks and
repeaters.

rst_taxi_n Async reset with rising edge synchronised to clk_taxi.

Clk_taxi runs much slower during reset.

taxi_d_clkreq

Async clock request from downstream module to the
clk_taxi

taxi_u_clkreq

Async clock request from upstream module to the
clk_taxi

taxi_d_valid Data valid marker.

taxi_d_data Downstream channel carrying commands and data muxed.

taxi_d_stall Synchronous stall from receiver to the transmitter and
passing through each repeater. Causes a rippled stall up
the T-AXI link with each repeater storing data in a holding
register to cope with the stall delay per stage.

taxi_u_valid Data valid marker. Always asserted for cycles carrying AXI
data and negated for link control commands.

taxi_u_data Upstream channel carrying commands and data muxed.

taxi_u_stall Synchronous stall from receiver to the transmitter and

passing through each repeater. Causes a rippled stall up
the T-AXI link with each repeater storing data in a holding
register to cope with the stall delay per stage.

14
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Figure 3: Visual presentation of signals of Thin AXI

3.2 Supported AXI Signals

AXI4 supports a large number of signals, not all of which are essential for the
particular subset of AXI used within any particular system. By limiting the set of
AXI transfers supported, we can increase the throughput of the T-AXI links. The

mapping in Table 2 shows the AXI4 signals supported by the T-AXI link in SoC.
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Table 2: AXI4 and Thin AXI Signal mapping

AXI 4 Signal T-AXI Support | Notes

ACLK clk_d/clk_u Downstream and upstream source
synchronous clocks

ARESETN - Not supported. Resets are sent as
commands

A*ID[3:0] A*ID[9:0] Up to 10-bits of ID are supported.

A*ADDR([31:0]

A*ADDR([35:0]

64GB address range is supported

A*LEN[7:0]

A*LENI[3:0]

Limits burst size to 16 beats (same as AXI3)

A*SIZE[2:0]

A*SIZE[2:0]

Fully supported

A*BURSTI[1:0]

A*BURSTI[1:0]

Fully supported

A*LOCK][1:0]

Not supported

A*CACHE[3:0]

Not supported as there is no L3 cache in
SoC.

A*PROT[2:0]

A*PROT[2:0]

Only A*PROT(1] is carried over T-AXI hence
only two levels of security can be supported.

A*QOSJ[3:0] - Fully supported. Maxima of all transactions’
QoS levels currently held in the link is
forwarded by T-AXI link command which
can override the individual transaction QoS
value as AXI transactions leave the link.

A*VALID - Not required, indicated by T-AXI command.

A*READY - Not required, link status managed by T-AXI
protocol

RID[3:0] RID[9:0] Same ID support as commands

RDATA[N:0] RDATA[N:0] Supports 32/64/128/256-bit data over any

link widths.
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RRESP[1:0] - Not required, indicated by T-AXI command

RLAST RLAST Supported

RVALID RVALID Gate off clock for idle cycles

RREADY - Not required, link status managed by T-AXI
protocol

WIDI[3:0] - Write interleaving dropped in AXI14

WDATA[N:0] RDATA[N:0] Supports 32/64/128/256-bit data over any
link widths.

WSTRB[3:0] WSTRB[15/8:0] | Only used for AWWS and AWSHRTWS
transactions that are issued when WSTRBs
indicate a partial write.

WLAST - Not essential, so not supported

WVALID - Gate off clock for idle cycles

WREADY - Not required, link status managed by T-AXI
protocol

BID[3:0] BID[9:0] Same ID support as commands

BRESP[1:0] BRESP[1:0] Carried in T-AXI command

BVALID - Not required, link status managed by T-AXI
protocol

BREADY - Not required, link status managed by T-AXI
protocol

CSYSREQ - Low power interface signalling not
supported in T-AXI

CSYSACK -
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3.3 Flow Control

Flow control of the Thin AXI is split into two parts: AXI data flow control and link

control. Figure 4 shows the block diagram of Thin AXI link.

clk_axi domain <> clk_taxi domain
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Figure 4: Block Diagram of Thin AXI Link interface

Link control is used to prevent the common receive FIFO overflowing and is

simply a stall signal that tells the transmit-front-end to stop sending more data in

cases when T-AXI/AXI clock ratios empty the receive FIFO at a slower rate than

the rate at which they fill it. These stalls will clear quickly and not introduce head-
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of-tree blocking, as there is nothing fundamentally blocking the flow; they are just
due to data rate differences.

The AXI flow control is a credit-based mechanism that only allows the AXI
command mappers to issue new T-AXI commands if they have sufficient credit.
The mappers are given a starting credit corresponding to the amount of storage
at the receive end of each of the AXI channels and they spend credit each time
they issue a transfer that will use one of those storage words. A mapper cannot
send any further data once it has spent all its credit. This prevents a channel stall
at the receive end causing data from that channel filling the common receive
FIFO and blocking all other AXI channels on the link (a condition that can cause
a deadlock). Ensuring each channel has sufficient storage at the receive de-
mapper means that the common receive FIFO cannot block. Credits are returned
(via T-AXI link commands) each time the de-mapper clears a space in its local

storage by issuing an AXI transaction.

3.4 Reset and Shutdown

T-AX| supports the ability to independently reset and power down the
subsystems at either end of the link. For this purpose, the link provides software
control (through APB registers) to reset the link and to disable it so that the
subsystems at the two ends of the link are decoupled. Two hard reset inputs are
provided that will fully asynchronously reset the registers in the T-AXI block. One
has its rising edge synchronised to the AXI clock (rst_n) and the other to the T-

AXI clock (rst_taxi_n). Rst_n is tied to the power-on reset and the subsystem

19



reset. Rst_taxi_n is driven from the T-AXI LCPR located in the centre of the link.
Link control commands (such as LINK_CTRL) are still supported when the link is
in the shutdown state. The shutdown only refers to the AXI buses connected to

the T-AXI link.

3.5 Power Control
There is limited support required within the T-AXI link for power control. It is
essential that software uses the control and status registers in the T-AXI modules

to disable the link cleanly before powering down.

3.6 Clock Control

The clock is generated from the T-AXI LCPR that is located in the centre of the
link. This is a synchronous clock driven to both ends of the link in thick, wide
metal using a single super-buffer in each direction. This ensures a very low skew
synchronous clock available throughout the link. Each end of the link supplies an
asynchronous clock request (taxi_u/d_clkreq) that it uses to request the clock
from the T-AXI LCPR. The LCPR drives the clock to both ends of the link when
either clock request is active. The two ends of the link asserts the clock request
when they receive an AXlI command and remove the request only when they
have received the credits back for all transactions issued. The clock request can
also be activated if a link command is required to be sent due to software

intervention.
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3.7 Security

The security scheme proposed for this SoC is a superset of ARM’s trustzone
scheme. The T-AXI link carries the AXI PROT signals that are used together with
the masters’ AXI ID to determine AXI permissions within the address map. Only
two levels of security are required for the SoC; hence it was decided to carry only
one bit of APROT across the T-AXI link in order to make space for additional 1D
bits. The choice of which APROT bit is carried, can be made at the AXI

connection to the T-AXI instance but for the SoC this will be bit-1.

3.8 Quality of Service

QoS in AXIl4 is transmitted per command, however this scheme fails in a
distributed arbitration scheme when a high priority command is queued behind a
low priority command with no opportunity to overtake it. The scheme for the
infrastructure components in the SoC multimedia is for each infrastructure
component to forward the highest QoS level of all its outstanding transfers. For
the T-AXI link, it makes sense to separate the QoS communication from the AXI
transfers and transmit the information of a separate link-control command (QoS).
This allows changes in the QoS level (e.g. due to a master that requested data at
a particular QoS level entering a higher state of panic) to be forwarded
independently of the AXI transfer thus allowing downstream commands’ QoS

levels to be increased.
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3.9 Interrupts

The suggestion to carry interrupts over T-AXI was examined but rejected as the
benefit in wire saving is negligible compared to the cost due to increased
complexity and the number of signal transitions that would need to occur just to

signal an interrupt.
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4.0 Test Bench

Since this is pre-ASIC DVT, the SoC is emulated on FPGAs. The FPGA systems
are from Synopsys, configured with four Virtex-7 Xilinx FPGAs. Each FPGA box
contains four FPGAs. An FPGA station is comprised of FPGA system, UMRBus

controller, DSTREAM JTAG, PC and a remote power controller.

41 FPGA system

The simplest technique to deploy Thin AXI DDR is the use of IDDR and ODDR
cells in the FPGA 1/O pads, as shown in Figure 5. One DDR cell is required per
two signals, so a 16-bit T-AXI bus will require eight DDR cells in each direction
for the data. In addition to the data, the source-synchronous clock and a
valid/stall signal must be transferred in each direction. In total, a 16-bit T-AXI bus
can be transferred between FPGAs with 20 1/Os (2 * (8 data + 1 stall/valid + 1

clock)).
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Figure 5: Thin AXI routing in FPGA
In Figure 5,

taxi_ddr_clk module:

e Takes the global clk taxi within the FPGA and uses an ODDR cell to

prepare the clock for output on an FPGA I/O pin.
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e Receives a transferred clock from an FPGA pin and passes it through two
Xilinx clock buffers (that is, one received clock is passed through these
two separate buffers)

o BUFIO: drives a local low-skew clock network to all I/O pads in the
I/O bank and is used to drive the clock pins of all the IDDR cells in
the receiver

o BUFR: drives a regional clock network in the FPGA fabric and is

used to drive the write side of the receiver FIFO

The received clock is passed through an IDELAY element to ensure that the
inbound data stabilises before the sampling event (driven by the delayed clock)
occurs. The IDELAY element requires that an IDELAYCTRL module is

instantiated somewhere in each FPGA.

IDELAYCTRL module:

Due to the use of IDELAY primitives within taxi_ddr_clk, it is necessary to have
an IDELAYCTRL module in each FPGA that instantiates taxi_ddr_clk. Itis fed by
a 200MHz clock. The instance have attribute "IDELAY_GROUP" associated with
it, set to "taxi_ddr_rx". For Virtex 7 devices, the clock must be 200MHz + 10MHz,

and the RST must pulse high for a minimum of 52ns.
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taxi_ddr_trx module:

Parameter D_WID is the width of the T-AXI data bus (must be 16, 32 or 48). The
taxi_ddr_trx module wraps a taxi_ddr_tx module and a taxi_ddr_rx module as a
pair. This ensures that the stalls travel in the appropriate direction, and also

ensures that the stalls happen correctly. It takes three clocks:

o clk_taxi : the system-global T-AXI clock
e clk_io: the I/O clock received from the other end of the link by taxi_ddr_clk
e clk_r : the regional fabric clock received from the other end of the link by

taxi_ddr_clk

taxi_ddr_tx module:

This module deals with the transmit side of the link. It organises outbound data
into bit pairs and presents to ODDR cells for transmission. This module uses

only the global clock.

taxi_ddr_rx module:

This module deals with the receive side of the link. Using clk_io, it receives the
DDR data with IDDR cells. Using clk_r, this data is passed into a FIFO. This
FIFO is used to manage both the domain-crossing into the global clk_taxi
domain, and also to manage T-AXI stall cycles. The read-side of the FIFO is in

the clk_taxi domain.
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4.2 UMRDbus controller

The HAPS UMRBUuUSs (Universal Multi-Resource Bus) Interface kit is a complete
and reliable set of components that allow bi-directional data exchange (at
runtime) between software (C/C++ or Tcl/TK applications) and hardware DUT

(Device Under Test).

4.3 DStream JTAG and a host PC

ARM DStream is a debug and trace tool that facilitates powerful software debug
and optimization on any ARM processor-based hardware target. It uses eclipse
configured to work with DS-5 and connects the PC to the FPGA over USB
connection. A connection is created using Realview as shown in Figure 6 and the

cores are enabled as shown in Figure 7.
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Figure 6: Connecting DStream to FPGA
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4.4 A remote power controller

Each FPGA station is on its own electrical circuit and protected by a 15A breaker.
In the event an FPGA system or PC locks-up, power must be cycled to get the
equipment operational again. To allow for better remote access, each FPGA
station has been equipped with a remote power controller so a user can control

the power to a station remotely through a web interface.
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5.0 Test Cases and Results

The T-AXI link is implemented as two individual modules: taxi_upstream
(subsystems to memory) and taxi_downstream (memory to subsystems). All
blocks below these top-level structural modules are common between the two
and are managed by parameters. There are a number of parameters at the top
level of the T-AXI upstream and downstream modules that allow the link to be
tuned for area, power and performance and to set its AXI connectivity
configuration. Some of these parameters need to be consistent at both ends of
the link whereas others are set to tune the operation of that end of the link only. A
description of how to use each parameter is provided in Broadcom’s RDB
(Register Data Base). As an example, one of the T-AXI module’s registers are
given in Figure 8. This is part of the RDB and defines the memory locations,

register names and their description.

| Offset (8-bit space) | Flags | Register Name | Description

[ 0x15034000 | [SLVSYS TAXI TAXI CTRL | TAXI_control

[ 0x15034004 | [SLVSYS TAXI TAXI STATUS | TAXT_status

[ 0x1503400c | [SLVSYS TAXI TAXI AR CREDIT CTRL [TAXI_AR_CREDIT CTRL
[ 0x15034010 | [SLVSYS TAXI TAXI AW CREDIT CTRL [TAXI_AW_CREDIT CTRL
[ 0x15034014 | [SLVSYS TAXI TAXI RR CREDIT CTRL | TAXI RR_CREDIT CTRL
[ 0x15034018 | [SLVSYS TAXI TAXI BR CREDIT CTRL | TAXI_BR_CREDIT CTRL
[ 0x15034020 | [SLVSYS TAXI TAXI PARAM STATUS 0 [ TAXT_PARAM_STATUS_O
[ 0x15034024 | [SLVSYS TAXI TAXI PARAM STATUS 1 | TAXT_PARAM_STATUS_1
[ 0x15034028 | [SLVSYS TAXI TAXI PARAM STATUS 2 [TAXI PARAM STATUS 2
[ 0x1503402c | [SLVSYS TAXI TAXI PARAM STATUS 3 | TAXT PARAM_STATUS_3
[ 0x1503407c | [SLVSYS TAXI TAXI ID [TAX1 ID

Figure 8: RDB of SLVSYS Subsystem T-AXI

The test cases are written in C language and use a Broadcom’s OS-less

(Operating-System-less) infrastructure to implement the code. Figure 9 shows a
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list of all the test cases that were implemented to fully test and characterize a T-

AXI Link.

ump <port_num> Dump port registers

CCESE Bazic register access test
enDis {port_num> Test TARI Enable~sDizable

enahle {port_num> Enabhle TARI port

isable <port_num3 Dizable TARI port
et_max_credit <port_num> Sets maximum credit
pet_mstr_link <port_num> Get the Master CGontrol Link End

et_mztr_link <{port_num><{mst/fah> Set MFAB or MST az Master Control Link
tatus <port_num>

03 <port_num}

1k_gating <port_num> ...

status hits
Q08 Forvarding
Clock Gating ensDizahle

link reset

WD credit performance
RR credit performance
BR credit performance
AR credit performance changing credits
AY credit performance by changing credits
ext_bhuff {port_num> external buffer of credit cntrl

lockup <port_num> link lock up scenario

Figure 9: ScreenShot of T-AXI Test Cases written in C

reset <port_num} .
pd {port_num> ....
rr <port_num>
by <port_num>
r <port_num>
w <port_num>

changing credits
changing credits
changing credits

In Figure 9, each of the commands on the left hand side can be executed as
shown in Figure 10. Figure 10 shows the register dump of a T-AXI Link. The
address field shows the memory location of the Link Registers, Value Read is
the current value in the Register (these values are explained in Table 3 and

Table 4), Default_Value is the register value when the link is turned on or reset.
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[A:32:5:taxil> dump 12

Register dump of Master TAXRI

Address Value_Read Default_Ualue
[Bx15834008 1 BxA0000008 UxBUAEBAAE TAXI_CIRL_OFFSET
[Ax15A340041 Bx80000AA6 Bx8U0BBBABAG TAXI_STATUS _OFFSET
[Ax1583488C1 Bx000A8801 @xA0AAB481 TAXI_AR_CREDIT_CTRL_OFFSET
[Ax15834818]1 BxB0200801 @xA0188481 TAXI_AW_CREDIT_CTRL_OFFSET
[Ax15834814]1 Bx00002001 @xA08016881 TAXI_RR_CREDIT_CTRL_OFFSET
[Ax158348181 Bx00000801 @xA0AAB481 TAXI_BR_CREDIT_CTRL_OFFSET
Register dump of MFAB TAXI

Address Ualue_Read Default_Ualue
[Bx1801A880]1 BxA0BABBAd OB008BBAD TAXI_CTRL_OFFSET
[Ax1801A884]1 Bx80000006 Ox83000BBA6 TAXI_STATUS_OFFSET
[Bx1801A8BC]1 BxA000BEH1 O«B0AAA401 TAXI_AR_CREDIT_CTRL_OFFSET
[Bx1801A8168]1 BxA0200801 BxB01688401 TAXI_AYW CREDIT_CTRL_OFFSET
[Bx1801A814]1 BxB00602001 OxB0AA1001 TAXI_RE_CREDIT_CTRL_OFFSET
ng%gﬂéﬂﬂiﬂllgxﬂﬂﬂﬂﬂﬂﬂi BxA0ARR481 TAXI_BR_CREDIT_CTRL_OFFSET

1325 ttaxi

Figure 10: Register dump of a Master and Slave T-AXI Link

5.1 Control and Status Registers of T-AXI Link

There are a number of essential control/status register bits to use and
understand when managing the T-AXI link. Table 3 gives a glimpse of Control
register of T-AXI Link. Bits 09:31 are reserved and must be written with 0. Table
4 gives an overview of Status Register bits. The bits not indicated in the table are

reserved bits.
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Table 3: Control Register of T-AXI Link

Field Name

Bit
Field

Description

DisableTaxiClkGate

08

Disables the clock gating used on the T-AXI
link. Will result in higher power but can reduce
latency for the first transfers after the clock
was gated.

ForceLinkCtriState

07:05

Forces the link_state control state machine to
a specific state. Only for use in lock-up
scenarios.

ForceLinkCtrl

04

Forces the link_state control state machine to
a specific state. Only for use in lock-up
scenarios. State forced is set by
ForceLinkCtrIState.

QosForwardEnable

03

Enables QoS forwarding, i.e taking the QoS
values of all transactions in the link and
forwarding the maximum value to both the
awqos and arqos outputs from the receiver.

LinkCtrIMaster

02

Enables this end of the link to be the master
for link control, i.e. only shutdown/reset
changes from this end of the link will be
observed. Setting this bit at both ends of the
link may result in lock-up. If it is desired to
change the control from one end of the link to
the other then this should be done when the
link is enabled and active.

Reset

01

Resets the link. Prevents any new AR/AW AXI
transactions being accepted and issues a
reset command to the other end of the link to
tell it to do likewise. Waits for outstanding
transactions to complete then issues a
synchronous reset to all control logic and
forces a reload of credit starting values. Reset
is released automatically without needing to
re-write this register.

Enable

00

Set to enable the T-AXI link. Resets to
disabled to ensure low-power after start-up
When cleared, the T-AXI link will stop taking
any new AXI read/write commands and
attempt

to complete any in-flight transactions.
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Table 4: Status Register of T-AXI Link

Field Name

Bit
Field

Description

RemoteStatusActive

31

When set, the remote end of the link is
currently in the active state. Software
checks that this bit is set prior to enabling
traffic into the link.

RemoteStatusShutdown

30

When set, the remote end of the link is
currently in the shutdown state. Any AXI
commands issued into the remote end of
the link is swallowed by a dummy
responder when in this state and likely
results in instabilities in the system

OustandingWriteCount

28:21

Number of write transactions currently
iIssued but not yet completed.

OustandingReadCount

20:13

Number of read transactions currently
iIssued but not yet completed.

DummyAccessed

08

This bit is set whenever the dummy slave is
accessed and cleared by writing. The
dummy slave should never be accessed in
normal operation so if this bit has been set
then the link has either been shut down
prematurely or accesses started before the
link was enabled.

LinkState

03:01

Current state of link control state machine.
Only included to assist with debug in a
potential

lock-up scenario. This state machine is
used to safely manage the
reset/shutdown/enable of the link. Resets
can be issued transparently while the link is
active.

Idle

00

Indicates no outstanding transactions and
that the link is ready for reset/power-down
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5.1.1 Test Case — Link Enable/Disable and Dummy Slave
Whenever a link is disabled, a dummy AXI slave is switched into the bus, so that
transactions sent to the bus are completed and the bus does not lock up. Any
transaction issued while the link is disabled is swallowed by the dummy slave. A
write command/data is swallowed and ignored and a BRESP is issued. A read
command/data is returned with a random dummy data. Software should take
care that the bus is idle when enabling/disabling the link to ensure that
transactions to not enter dummy slave. Dummy slave is tested on SoC’'s UART
(Subsystem) using the following steps:

1. T-AXI link connecting UART to memory is enabled. Link “enable” is
verified by reading and writing data to the memory.

2. T-AXI link connecting UART to memory is disabled. The console gets
stuck at this point because dummy slave turns on. Since UART constantly
reads data/commands from the console, dummy slave supplies random
data which causes system hang due to software not being able to handle
garbage data (See Figure 11)

[B:=32:8:taxil> enDi=s 12

TAXI port iz enabled

Figure 11: Enable/Disable UART T-AXI Link with dummy slave

3. A proper T-AXI “disable” functionality is verified using another port.
The port was enabled and verified as given in step 1. Then the port was

disabled. The verification of disabled port is provided in step 2 (which is
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dummy slave activation). Figure 12 shows the test completion screen

shot.

[@B:32:5:taxil> enDis 2

TAKI port iz enabhled

Could not verify data integrity of chatty master
TEST PASSED: [MFAB:21 - TAKI link enabled successful

TAKI port iz disahled

TAKI port iz enabhled

Could not verify data integrity of chatty master

TEST PASSED: [MFAB:21 - Dummy Slave activated on the disabled link
[A:=32:8:taxil>

Figure 12: Enable/Disable of T-AXI Link

5.1.2 Test Case — Link Shutdown

Link shutdown requires more careful management by software as the dummy

slave is switched on when the link is disabled; hence, transactions can get lost if

the correct sequence is not followed. The logic in the T-AXI hardware can ensure

that clean transitions are achieved between the enabled and disabled states but

it has no way of knowing when a subsystem has finished using the link so it

cannot wait for a specific event to tell it to switch the link off. This is the

responsibility of software. The routine for powering down a block connected to

the rest of the chip via T-AXIl is:

1. Instruct block to go idle. This is block-specific but generally, it tells the

block to complete all necessary housekeeping and then stop generating

any new AXI transactions. The block provides status information (Idle bit
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goes high) to the host CPU when it has reached its quiescent state so that
the host knows when it can move to step 2.

2. Disable the T-AXI link. This puts the T-AXI link into its quiescent state and
switch on dummy slaves at the command-receiving AXI interfaces. To
complete transactions over the link, the AXI clock in the subsystem being
shutdown, is kept running until the T-AXI link enters the disabled state.
Once the link is disabled, it is clearly not possible for the host to use the
path via T-AXI to write to a register to switch off the clocks. Disabling
clocks is done through the clock manager, which is accessed using ARM
JTAG.

3. Power down the subsystem.

4. Power down the T-AXI link. The dummy slave component lies outside of
the T-AXI power domain and remains enabled when the T-AXI link is

powered down.

[A:32:85:taxil> shutdouwn 2

Chatty Master iz idle. Idle bit = 1.
TAXI port is disabled

Could not verify data integrity of chatty mastep

TEST PASSED: [MFAB:21 — Dummy Slave activated on the disabled link

TEST PASSED: [MFAB:21 — TAXI link shutdown successful

Figure 13: Test Result of Link Shutdown

5.1.3 Test Case — Link Reset
Link reset requires waiting for the outstanding transactions to complete before

resetting. The sequence that Link Reset Test case follows is:
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1. Hold off new A*READY to prevent new transactions entering the link.

2. Wait for outstanding transactions to complete and all outstanding credits
to be returned. Check idle status bit = 1 and OutstandingWriteCount =
OutstandingReadCount = 0.

3. When both ends are idle, issue a synchronous reset to the control logic at
both ends of the link.

4. Return to the active state. Verify if any data is lost during reset by reading

system memory for any corruptions.

[A:32:85:taxil> reset 2
AXI port is enabled

Rezet complete
Data transfer complete

ould not verify data integrity of chatty masters
EST PASSED: [MFAB:21 - TAXI link reset successful

[A:32:8:taxil>
[A:32:8:taxil>

Figure 14: Test case results of Link Reset

5.1.4 Test Case — Master Link Control

The T-AXI link has the facility for the control registers at either end of the link to
be used for link management, however only one end of the link can be used. The
software can select either the upstream or downstream end to be the link master
by setting the LinkCtrIMaster bit in the TAXI_CTRL register at the desired end of
the link. If this bit is not set then the enable/reset bits of the control is ignored. It
is possible to transfer the link master to be the other end of the link. The swap

Link test case follows the sequence below:
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1. Disable the link and wait for the status register to indicate that the link is
fully shut down (Used Test cases 5.2 and 5.3).
2. Clear the LinkCtrIMaster bit at the end of the link that is currently the
assigned link master.
3. Set the LinkCtrIMaster bit at the other end of the link.
4. Enable the link (using the control register at the new link master).
The Link Master will typically be assigned to the upstream end of the link as the
control registers at the upstream end are typically accessible to the CPU without

needing the link to be enabled.

[A:32:8:taxil> get_mstr_link 2
FAB TARXI port is the Master Control Link
[B:32:8:taxil>

Sritaxil>
Britaxil>
8itaxil> set_mstr_link 2 pmste

EST PASSED: [MFAB:21 - swap Link Control Master test passed

Figure 15: Test Result of Swap Master Link

Both ends of the T-AXI link contain a link control state machine that it uses to
safely transition between link states such as active, disabled and reset. The state
machines at the two ends of the link need to track each other to ensure safe
transitions with the link master leading the state transitions and the other end
following its lead. The LinkState bit from Table 4 can have the following state
decoding:

0x0 LINK_DISABLED - Link is shutdown, dummy slave enabled

Ox1 LINK_WAIT_DS _IDLE - Wait for dummy slave to go idle and go ready

0x2 LINK_READY - Link is ready but not enabled.
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0x3 LINK_ACTIVE - Link active and ready to take transfers

0x4 LINK_WAIT_IDLE - Wait for existing transfers to clear then go to idle
0x5 LINK_IDLE - Wait for remote to go idle then go to reset

0x6 LINK_RESET - Reset issued, then go to reset_clear

0x7 LINK_RESET_CLEAR - Reset cleared, go to either disabled or ready
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Master
(LinkCtrIMaster=1)

Slave
DISABLED
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Figure 16: Link State Machine
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5.1.5 Test Case — Clock Gating

Clock gating saves power by adding more logic to a circuit to prune the clock
tree. Pruning the clock disables portions of the circuitry so that the flip-flops in
them do not have to switch states. Switching states consumes power. When not
being switched, the switching power consumption goes to zero, and only leakage
currents are incurred. This test measures the read and write latency before and
after disabling clock gating in T-AXI Link. From Figure 17, before disabling clock
gating, the number of CPU ticks required to complete read and write test is
12624. After clock gating is disabled, the number of CPU ticks required to
complete read and write test is 12620. This clearly shows that disabling clock

gating can reduce latency for the first transfers after the clock was gated.

[A=32:5:-taxil*> clk_gating 2
AXI port is enabled

Jith Clock Gating enabled, read-/write memory
ompleted in 12624 ticks

Jith Clock Gating disabled, readA/write memory
ompleted in 12628 ticks
[A-32:S:taxil>

Figure 17: Test result of Clock gating.

5.1.6 Test Case — Status Register bits

The functionality of status bits was tested using various read and write cases. As
shown in Figure 18, when a T-AXI Link is activated the RemoteStatusActive bit is
high at the subsystem side of the T-AXI as well as at the Main Fabric side of the

T-AXI. The LinkState is 0x3 which means link is active and ready to take
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transfers. When the write traffic is initiated, OutStandingWriteCount bits give out
the number of outstanding writes. In Figure 18, there are eight outstanding
writes. After the writes complete, the link comes back to the initial state. When
the reads start, OutStandingReadCount bits give out the number of outstanding
reads. In Figure 18, there are four outstanding reads. After the reads complete,

the link comes back to the initial state.
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[B:32:8:taxil> status 2
TAXI port is enabled

Before WRITE traffic starts:
Register Mame SUBSYSTEM

HemoteStatusActive:
IdleStatus:
OutstandingReadCount :
OutstandingWriteCount:
LinkState:
HemoteStatusShutdown:
lhDataMismatch:

L]

n

L]

L]

EEEFPWEEE
DRAAWEER@-

I1llegalAxiCmd:

During WRITE traffic:
Hegister Mame SUBSYSTEHM

HemoteStatusActive:
IdleStatus:
OutstandingReadCount :
OutstandinglriteCount :
LinkState:
HemoteStatusZhutdown:
lhDataMizsmatch:

L]

L]

LRI

EEEBFWEEEH
QEAEREWORE-

L]

I1legalAxiCmd:

After WRITE traffic stops:
Register Mame SUBSYSTEM

HemoteStatusActive:
IdleStatus:
OutstandingReadCount :
OutstandingWriteCount:
LinkState:
RemoteStatusShutdown:
WrDataMismatch:

LRI

n

LRI

L]

EEEEFWEEEH
DRORRWERE -

IllegalAxiCmd:

Before READ traffic starts:
SUBSYSTEM

LI

R

IEREROWERE-
L ]
IERERWERE-

During READ traffic:
egister Mame M SUBSYSTEM

[llegalRemoteState:
IllegalTa¥iCmd:

DDA -

Figure 18: Test results of Status bits on reads and writes
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5.2 Credit and Parameters Registers of T-AXI Link

The credit registers carry a payload that gives the number of words transferred
from the link on each AXI channel from the available buffer space in the receiver.
Transmit can increase its available credit by the value carried. There are various
credit registers in the T-AXI Link and are tested in the following sections. Also,
there are four parameter registers which carry connectivity configuration

parameters of the T-AXI Links.

5.2.1 Parameter Read-Only Registers
The Parameter registers are read-only and are assigned the build values of the

Link. These values are used to configure credit registers.

5.2.1.1 CREDIT_DWIDTH Register

Credit_dwidth register contains the width of the buses that are used to carry
credit tokens across the link. Credits are accumulated in the receivers at both
ends of the link each time the corresponding AXI channel completes a phase.
They are passed back to the transmitter which is only able to send new
commands/data if it has sufficient credit. This bus width is set at the minimum

needed to avoid an overflow in the counter.

5.2.1.2 RXFIFO_AWIDTH Register

This register contains the address width of the receive FIFO. This FIFO is sized
to minimize stalls on the T-AXI link while remaining area efficient. It is currently

sized at 32 words i.e RXFIFO_AWIDTH=5. The second factor in the size of this
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FIFO is that it is read in much larger data widths than it is written - data is read
out on the AXI clock and is shifted in much larger data quantities in this domain
per clock compared to the taxi data width. For example, an AXI write involves
transferring an AW command (~60-bits of data) plus 144 bits of write data and
strobes on a single clock, so we need to read 12 words from the FIFO for a
3GB/s link. In addition, the receiver has the capability to read data for up to two
channels per clock (e.g. a write command/data plus a read command) so the

FIFO must be sized to accommodate this, which is variable with TAXI_DWIDTH.

5.2.1.3 TX_AWIDTH Register

This parameter sets the number of address bits needed for the transmit FIFO.
This is a wide/shallow FIFO used to cross from the AXI clock domain to the T-
AXI clock domain, so, adding more address bits is expensive (e.g. FIFO is 244-
bits wide in downstream for a 128/32-bit memory/peripheral bus). A depth of 4
(i.,e. TX_AWIDTH=2) has been shown to produce very few unnecessary stalls so

this register is set to a value of 2.

5.2.1.4 RX_ARWIDTH Register

This register contains the size of the storage built at the receive end of the read
command channel and determines the number of outstanding transactions that
the receiver can take (and not pass down the bus) before the transmitter will run

out of credit and stall.
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5.2.2 Credit Control Registers
The link resets with a small starting credit assigned to each AXI channel in order
to enable the link to function correctly, however this is typically smaller than the
maximum the link can support. Setting the credit values to their maximum value
will increase the performance of the link by allowing it to support more
outstanding transactions.
The credit values assigned to the AR/AW/RR/BR_CREDIT_CTRL registers
should match the sizes of the corresponding receive FIFOs at the far end of the
link so that the transmit ends of the link can issue enough outstanding
transactions to fill these FIFOs but no more. The software determines the size of
these FIFOs by reading the Parameter registers for the two ends of the link.
Since the values read from parameter registers are the FIFO address widths
rather than the actual FIFO depths, they are adjusted to match the actual FIFO
depth to determine the maximum credit allocation, for example:

AR_Credit (upstream) = 1 << RXAR_FIFO_AWIDTH (downstream)

AW _Credit (upstream) = 1 << RXAW_FIFO_AWIDTH (downstream)

WD_ Credit (upstream) = 1 << RXWD_FIFO_DWIDTH (downstream)

RR_Credit (upstream) = 1 << RXRR_FIFO_DWIDTH (downstream)

BR_Credit (upstream) = 1 << RXBR_FIFO_DWIDTH (downstream)

Once the new credit values have been programmed, the link is reset to update

the new credit values. To test the credit registers, a DMA subsystem was used to

47



read and write to the memory using T-AXI Link. The maximum bandwidth
supported by DMA port is 20MB/s:

e FPGA clock was running at 10MHz,

e DMA does 1 read and 1 write per transaction,

e Therefore, DMA peak bandwidth = 10MHz * 2Bytes = 20MB/s.
On the other hand, maximum bandwidth supported by memory controller is
40MB/s:

e FPGA clock was running at 10MHz,

e Memory controller lane is 32bit wide, therefore supporting 4Bytes

e So, Memory peak bandwidth = 10MHz * 4Bytes = 40MBI/s.

In the test, the credit control registers were varied from their minimum to
maximum credit values and at each credit value, DMA generated traffic and
system bandwidth was measured. Figure 19 through to Figure 23 show the
bandwidth results. Some terminology used in the tests is:

AR = Address Read

AW = Address Write

WD = Write Data

RR = Read Return, acknowledgement to the read data

BR = BResp, acknowledgement to the write data.
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Figure 19: Address Read Credit values vs bandwidth observed
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21 — Write Data Credit performance test passed

: [MFAB:

PASSED

FEST

Figure 20: Write Data Credit values vs bandwidth observed
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[A:=32:5:taxil> aw 2

TAXI port is enabled

TAXI Credits:
TAXI WD Credits:
TAXI AW Credits:
TAXI Credits:
TAXI Credits:
MSTR Credits:
MSTR WD Credits:
MSTR AY Credits:
MSTR Credits:

AARREARAE
AA8BAAA2A
AxARBEARAE
Ax08080624
AA0B0BAAE
AxHRBEARAE
AHABERA2A
AARREARAE
AARBEAA2A
AxA0808008

Initial credits

Mew Credits
AxABAABRAS
AxABAAAR2ZA
AxABBABRAS
axBABaBae2A
AxA0BAB60A3
(6 45]5]515]5]15]5H
axABBABB2A
AxABAABRAS
AxABAAAR2ZA
axA8AABRAs

MSTR Credits:
Allcredit =
Allcredit
Allcredit
AlWcredit
AWcredit
AWcredit
AlWcredit
Allcredit

Bxl,. transfer completed in 67925 ticks
Bxi,. BWY = 14.722 HB-=
Bx2, transfer completed in 67868 ticks
Bx2,. BY = 14.734 HMB-s
Bx4, transfer completed in 6786V ticks
Ax4,. BY = 14.735% MB-/=
Bx8, transfer completed in 67864 ticks
Bx8,. BY = 14.735% HMB-=

TEST PASSED: [MFAB:21 - AW Credit performance test passed

Figure 21: Address Write Credit values vs bandwidth observed
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EST PASSED: [MFAB:21 - Read Data Credit performance test passed

Figure 22: Read Response Credit values vs bandwidth observed
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[Az32:5:taxil> br 2

TARKI port is enabled

Credits:
Credits:
Credits:
Credits:
Credits:
Credits:
Credits:
Credits:
Credits:

Cred

it

o=
-2

Initial credits

A:xAAAAARAS
AxAAAAAZA
A-ARRAAEASE
#H8B8e628
A:xAHAAAARAS
A:xAAARARAS
AxAAAAAZA
AxARAAARAS
H-ABRAAA2 A
G505 155110

Mew Credits
BxA06000008
AxA8BBRR2ZA
[0} 16161515]5]5H]
BxB8B000820
BxA06000008
BxA06000008
BxA8BB882A
[0 )q 61515151515 H]
BxA88808208
BxA8800008

BRoredit
BRcredit
BRocredit
BRcredit
BRcredit
BRcredit
BRoredit
BRcredit

TEST PASSED: [MFAB:21 — BR Credit performance test passed
PSS S oD P S0P o D3 33 -0 S S 3o 340 S 33 o 3 3

Bx1, transfer completed in 173225 ticks
Bx1,. BW = 5.773 HBs=s

Bx2,. transfer completed in 119779 ticks
Bx2,. BW = 8.335 HB-=

Bx4, transfer completed in 93351 ticks
x4, BW = 18.712 MB-s

Bx8, transfer completed in 67868 ticks
Bx8,. BW = 14_.734 MB-=

Figure 23: BResp Credit Values vs bandwidth observed

From Figure 19 through to Figure 23, it can be noticed that the bandwidth did not
get affected by the changes in the credit values of AR, AW and WD; whereas,
the bandwidths experienced a significant change in the credit values of BR and
RR. This is because these credit registers affect the downstream traffic (i.e.
traffic generated towards the subsystem). Since RR and BR traffic is sent from
memory to the subsystem, a significant change is observed. Another test was
written where the processor writes data to the UART. Since the writes pass
through T-AXI Link, and reach up to the UART subsystem, the bandwidth drops

can be observed when credit values are decreased (see Figure 24).
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[A:32:8:taxil> wd 2

ARl port is enabled

Initial credits New Credits
AR Credits: AxAARARAR1 BxABRBAARE

Credits: AxAARARA1 A BxARBRAA2 B
Credits: AxAARARAR1 BxABRBAARE
Credits: AxAARARA1 A BxARBRAA2 B
Credits: AxBARA0AA1 Ax0AAB0AAE
Credits: BxBa000a04 BxB8PaAEAe
Credits: BxBa000a1 8 Bxa0080828
Credits: BxBa000a04 BxB8PaAEAe
Credits: BxBa000a1 8 Bxa0080828
Credits: BxBa0008604 BxB8Pa0EAe

Uheredit = Bx1,. transfer completed in 173588 ticks

WDcredit Bx1. BW = 5.763 MBss

WDcredit Bx2,. transfer completed in 1192968 ticks

WDcredit Bx2,. BW = 2.336 MBrss

WDcredit transfer completed in 73356 ticks

WDcredit BYW = 18.775 MB-s

WDcredit transfer completed in 67868 ticks

Wheredit BYW = 14.734 MB-s

PASSED: [MFAB:21 - UWrite Data Credit performance test passed

Figure 24: Write Data from processor to UART vs bandwidth observed
Another test was performed where an effort was made to congest the memory

controller. The processors initiated reads to the memory controller as well as the
DMA. The memory controller port had to fulfil the requests of the processors and
the DMA at the same time. Figure 25 through to Figure 27 show the effects of

additional traffic on the bandwidth of the system.

[A:32:8:taxil> rr 2
port is enabled

Initial credits New Credits
AR Credits: BxAIEBRAAS Bx00080a88
Credits: BxAREBRAZA BxB0uanaza
Credits: BxAIEBRAAS Bx00080a88
Credits: BxAREBRAZA BxB0uanaza
Credits: BxAIEBRAAS Bx00080a88
Credits: BxARARAAAS BxAANAREAE
Credits: BxARERAAZA BxBREANAZA
Credits: BxARARAAAS BxB0AARERE
Credits: BxARERAAZA BxBREANAZA
Credits: BxAIERAAAS BxB0ABRERE
RRcredit Bx1,. transfer completed in 488162 ticks
RRcredit BW = 2.883 MB-=
RRcredit transfer completed in 243792 ticks
RRcredit BW = 4.182 MB-=
RRcredit transfer completed in 133953 ticks
RRcredit BU = 7_465 MBr=
RRcredit transfer completed in 118764 ticks
RRcredit - BU = 8_428 MBr=
RRcredit - tranzfer completed in 116936 ticks
RRcredit BU = 8_552 MBr=
RRcredit - tranzfer completed in 115746 ticks
RRcredit - BU = 8._.648 HBs=

TEST PASSED: [MFAB:21 — Read Data Credit performance test passed

Figure 25: RR Credit varying effect of increased traffic on Memory port
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[B:32:5:taxil> bhr

2

port iz enahled

AR

! Credits

! Credits

Credits:
Credits

Credits
Credits
Credits
Credits

Credits

Initial credits

Ax80880688
BxAB8a0620H
AxA0B8a0EAs
AxAEERAA2A
AxA0B8a0RA8
A:x80880REAS
#xA08aa620
AxAaRRAS
BxAB8a0620H
#x808806a8

New Credits
AxABAABAASE
AxABBRRA2 A
AxABBRRAASE
AxAAAARA2A
BxABBRRAAE
AxABAAEAAS
AxABBRRA2 B
AxABAAAAASE
AxABBRRA2 A
BxABBRRAAE

Credits:
BRcredit =
BRcredit
BRcredit
BRcredit
BRcredit
BRcredit
BRcredit
BRcredit

Bx1, transfer completed in 173312 ticks
Bx1,. BY = 5.778 MB-=
Bx2, transfer completed in 128146 ticks
Bx2, BY = 8.323 MB-=
Bx4, transfer completed in 93386 ticks
Bx4,. BY = 18.788 MB-=
Bx8, transfer completed in 71191 ticks
Bx8,. BY = 14.847 MB-=

EST PASSED: [MFAB:21 — BR Credit performance test passed

Figure 26: BR Credit shmoo effect of increased traffic on Memory port

[A:=32:8:taxil> ar 2
TAXI port is enabled

Initial credits Mew Credits

TARI
TARI
TARI
TARI
TARI
METR
METR
METR
METR
METR

AR
un
Ay
RR
BR
AR
un
Ay
RR
BR

Credits
Credits
Credits
Credits
Credits
Credits
Credits
Credits

Credits:

A:xARREAAS
A:-ARANA2A
A::ABHBEAAS
A:-ARANA2A
A::ABEBEAAS
AAAANARS
A::ARRBEA2A
AAAANARS
A::ARRBEA2A
A<ARAAAS

AxA000BRARE
AA0H0RA2A
A:xA000BRARE
AA0H0RA2A
AxA000BRARE
AxA0HAARARE
AA0A0RR2A
AxA0HAARARE
AA0A0RR2A
AxA00AARAR

ARcredit
ARcredit
ARcredit
ARcredit
ARcredit
ARcredit
ARcredit
ARcredit

TEST PASSED:

transfer completed in 117728 ticks
Bx1,. BYW = 8.494 MB-/=
Bx2,. transfer completed in 117265 ticks
Bx2, BYW = 8.528 MB-=
transfer completed in 117872 ticks
BY = 8.542 MB-=
transfer completed in 116925 ticks
BY = 8.552 MB-=

[MFAB:2]1 — AR Credit performance test passed

Figure 27: AR Credit shmoo effect of increased traffic on Memory port



A comparison was made between the system bandwidths before adding

processors’ traffic to the DMA traffic, as shown in Figure 28 through to Figure 30.
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Figure 28: A comparison of RR bandwidth with ARM processor and DMA
traffic and without ARM processor traffic
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Figure 29: A comparison of BR bandwidth with ARM processor and DMA
traffic and without ARM processor traffic
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Figure 30: A comparison of AR bandwidth with ARM processor and DMA

traffic and without ARM processor traffic

As seen from Figure 28 through to Figure 30, the bandwidth of the T-AXI Link

decreased with an increase in traffic on memory port. This is due to the sharing

of memory port by the DMA and the ARM processor to fulfill their transaction

needs.
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6.0 Conclusion

Thin-AXI was developed in-house at Broadcom as a method to reduce the pain
of routing wide AXI buses across silicon chips, by collapsing transactions on wide
buses down to packetized transactions on a narrower but faster bus. In this
project, design verification of a T-AXI link was performed. From the test results, it
was verified that the T-AXI link is fully functional according to the design
specifications. Performance analysis was conducted on the T-AXI Links. In the
analysis, various credit registers were varied from their minimum to maximum
values to determine its effect on the Link bandwidth. It was observed that the
lower credit values caused fewer outstanding transactions to be stored in the
buffers and thus caused high latency in transaction completion. Higher latency
caused the link bandwidth to drop, which was observed from the test cases.
Overall, the link bring-up, shutdown, reset and link states were verified to be fully

functional.

56



REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

ARM (2013). AMBA Trademark License [online]. Available:

http://www.arm.com/files/pdf/ AMBA _trademark_license.pdf (URL)

Xilinx (2013, June 21). Virtex-6 FPGA - SelectlO Resources, User Guide,
UG361 (v1.4) [online]. Available:
http://www.xilinx.com/support/documentation/user_guides/ug361.pdf
(URL)

Broadcom (2012, Jan 13). Thin AXI Interface and Design Specifications
(Internal Document)

ARM (1997, April). AMBA Advanced Microcontroller Bus Architecture
Specification (Document Number: ARM IHI 0001D) [online]. Available:
http://larc.ee.nthu.edu.tw/~sjtsai/current_research/paper_review/Advanced
%20Microcontroller%20Bus_Architecture_Specification.pdf (URL)

Xilinx (2012). AXI4 Technical Seminar, Xilinx [online]. Available:
http://www.em.avnet.com/en-us/design/trainingandevents/Documents/X-
Tech%202012%20Presentations/XTECH_B_AXI4_Technical_Seminar.pdf
(URL)

Saad Z. Asif (2001), Next Generation Mobile Communications Ecosystem,
Technology Management for Mobile Communication, First Edition.

Pasricha S., Dutt N. (2008), Chapter 3 in On-Chip Communication
Architectures: System on Chip Interconnect, First Edition.

Coppola M., Grammatikakis M. D., Locatelli R., Maruccia G., Pieralisi L.,

(2008). Design of Cost-Efficient Interconnect Processing Units: Spidergon
STNoC, First Edition.

57



