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ABSTRACT 

Design verification is an essential step in the development of any product. Also 

referred to as qualification testing, design verification ensures that the product as 

designed is the same as the product as intended. In this project, design 

verification and performance analysis of Thin Advanced Extensible Interface 

Links (T-AXI) is conducted on a Broadcom’s SoC (System on Chip). T-AXI is a 

Broadcom’s proprietary bus that interfaces all the subsystems on the System-on-

chip (SoC) to the system memory. Test cases are developed to verify the 

functionality of the T-AXI and performance verification is implemented using 

scenarios derived from real world examples. A Field Programmable Gate Array 

(FPGA) is used to emulate the SoC design and C programming is used to write 

the test cases. The test results verify the T-AXI functionality and the performance 

analysis supports the theoretical calculations. 
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1.0 Introduction 

In recent years, a smartphone is no longer a device for the road warriors; but 

rather, it has become the most personal electronic device that the consumers 

own to manage their online and offline lives. The trend to run various smartphone 

applications simultaneously, while ensuring that consumers do not have to wait 

for the “hourglass”, has triggered a cutting-edge research on reducing the round 

trip latency between memory and peripherals. The important aspect of a System-

on-Chip (SoC) not only includes which components or blocks it houses, but also 

how they interconnect. One of the de-facto on-chip bus standards is the 

Advanced Microcontroller Bus Architecture (AMBA).  

AMBA [1] is a registered trademark of ARM Limited and is an open standard, on-

chip interconnect specification for the connection and management of functional 

blocks in a SoC. An AMBA-based architecture connects on-chip memory, the 

processor and other Direct Memory Access (DMA) devices to a high-

performance system backbone bus that is able to sustain an external memory 

bandwidth. This bus provides a high-bandwidth interface between the elements 

that are involved in the majority of transfers. AMBA specification is further 

subdivided into more specific interfaces such as Advanced eXensible Interface 

(AXI), AXI Coherency Extensions (ACE), Advanced High-performance Bus 

(AHB), Advanced Peripheral Bus (APB), etc. 
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In this project, Broadcom’s Thin Interconnect Intellectual Property (IP) is 

examined and evaluated. This IP is AXI 4 compliant, which is part of AMBA 4.0 

released in 2010 [1]. The AXI interconnect facilitates transactions between 

various subsystems of the SoC and the system memory, as shown in Figure 1. 

The subsystems could be any sort of traffic generator peripheral, such as 

processor, video, LAN, graphic, modem, DMAs, etc. These peripherals send 

reads and writes to the memory using Thin AXI, which is further explained in this 

report. 

 

Figure 1: Block Diagram of System-on-Chip 

 

1.1 Objective 

The aim of this project is to understand and verify the design of Thin AXI Link 

used in Broadcom’s SoC and analyze the performance metrics. In the full cycle, 
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starting from Register-Transistor Logic (RTL) design through to marketing the 

SoC, Design Verification Testing (DVT) is an essential step. DVT ensures that 

the designed product is the same as the intended product. Typically, pre-ASIC 

(Application Specific Integrated Circuit) design verification is performed on an 

emulator such as Field Programmable Gate Array (FPGA), Cadence Palladium, 

etc. Hardware emulation imitates the behavior of SoC and is based on a 

hardware description language (e.g. Verilog) source code. Once the chip 

specifications are verified, the SoC is taped out. Then, post-ASIC design 

verification is performed on the ASIC before releasing the Chip in the market. In 

this project, pre-ASIC DVT is performed on the Thin links of the SoC. 

1.2 Document Outline 

This document is organized into six main chapters which describe the design, 

implementation and testing of the Thin AXI Link in Broadcom’s SoC. Chapter 1 

provides an introduction to the report and Chapter 2 provides the background 

information on the Thin AXI and an overview of AXI4 specifications ported into 

the Broadcom’s IP. Chapter 3 describes the design and implementation of the 

Thin AXI Link. Chapter 4 discusses the test bench set up to verify the 

functionality of the Thin AXI Link. Chapter 5 describes the test plan and presents 

the test results. Finally, Chapter 6 concludes the report by summarizing the Thin 

Links implementation and test results. 



 

 
4 

 

2.0 Background 

System-level interconnect presents a challenging design of servicing all the 

masters meticulously and avoiding traffic bottle-necks. There are two proposed 

architectures: 

 An architecture (say Arch1) that uses off-the-shelf AXI-4 fabric from ARM, 

in combination with wide source-synchronous busses.  A source-

synchronous interface is one where the clock accompanies the data on its 

journey from source to destination, and is used to clock the data into the 

receiver.  A synchronization stage is then used to transfer the received 

data back to the global clock domain. An advanced multi-ported, re-

ordering memory controller implements a Quality of Service (QoS) 

scheme based on configurable, per-master, time-to-live counters. The 

ARM, the modem and the multimedia subsystems have dedicated 

memory controller ports to minimize memory access latency. All other 

subsystems use this architecture for memory accesses. The more 

centralized QoS comes at the cost of implementation complexity and 

routing overhead, and does not fully eliminate local decision-making. 

 An architecture (say Arch2) that uses a proprietary single-address-bus 

variant of AXI-4, with wide source-synchronous busses and a simple 

“sequencer-style” memory controller. A distributed QoS scheme uses 

credit arbitration at each multiplexing point in the fabric to share bandwidth 
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between masters, with a panic signal to permit priority escalation with 

inheritance. 

Both architectures have a considerable amount of bus multiplexing prior to arrival 

at the memory controller, and therefore their QoS implementation is distributed 

with imperfect local decisions being made on the basis of local information.  

In this SoC, there are two DDR4 memory devices implemented. From the 

experience of previous Broadcom SoCs, a 128-bit master running at 250MHz is 

able to instantaneously saturate the bandwidth provided by a single 32-bit 

LPDDR2-800 device. 

Bandwidth of Master = 128bits * 250MHz = 32000 Mega bits/second (Mb/s). 

Bandwidth of Memory = 32bits * 800MHz = 25600 Mb/s. 

By extrapolation, we would require 256-bit masters at 500MHz to come “close to” 

saturating the bandwidth provided by a pair of 32-bit DDR4L-2133 devices.  

Bandwidth of Master = 256bits * 500MHz = 128000 Mb/s. 

Bandwidth of Memory = 2 * 32bits * 2133MHz = 136512 Mb/s. 
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To match the available downstream SDRAM bandwidth, a multi-ported controller 

is needed which: 

 Accumulates write data from several slower slave ports into internal 

buffers until the buffers are full and then, the contents of the buffer are 

transmitted at high speed to the SDRAM devices. 

 Receives read data at high speed from the SDRAM devices into internal 

buffers and then the contents are forwarded at the earliest opportunity via 

the appropriate slave port. 

To eliminate the delays caused by distributed QoS, and to provide an adequate 

supply of upstream bandwidth, this SoC interconnect uses a star-topology 

network to connect each non-CPU bus master with a dedicated port on the 

memory controller front-end. Each connection, and each controller port, provides 

2GB/s of duplex bandwidth (equivalent to 32-bit AXI at 500MHz). 

This choice of topology places a heavy burden on implementation, due to a large 

number of signals which converge on a single point. Therefore, narrow, fast and 

self-timed busses (as shown in Figure 2) are required to ameliorate the resulting 

congestion.  
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Figure 2: Fast, Narrow and Self-timed busses 

 
In Figure 2,  

 AXI transactions originating at the master are packetized into a local 

Transmit (TX) buffer. 

 Data is read from the TX buffer by an asynchronous transmitter and sent 

over the bus. 

 Data is captured by an asynchronous receiver, and copied into a Receive 

(RX) buffer. 

 Transactions are reconstructed and consumed by logic in the memory 

controller. 

 Read data and write responses return to the master by a similar 

mechanism. 
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This bus architecture is derived from AXI 4 ARM architecture which is described 

in next section. 

2.1 AXI 4 Design Extracts 

This document describes the flavour of AXI4 that is used in Broadcom SoC’s 

Thin AXI design. It outlines some of the key behaviours of the system and offers 

some design guides for the AXI components. The masters and slaves that are 

connected by the Interconnect are described in Section 2.2 and Section 2.3. 

Some of the AXI4 features that are incorporated in Broadcom’s bus architecture 

are: 

 AXI4 has dual address busses. Reads and writes are completely 

decoupled. 

 AXI4 does not have the inherent ordering.  Read/write conflicts need to be 

detected and handled by the masters. 

 AXI4 supports 256 beat bursts for INCR (unspecified length) bursts. 

 AXI4 bursts cannot cross a 4K boundary of the memory. 

 AXI4 renames Priority as QOS. 

The following AXI 4 features are not supported by the Thin Interconnect: 

 Lock signals and exclusive accesses are not supported. 

 Regions are not supported. 



 

 
9 

 

2.2 Master Behaviour 

This section discusses some of the requirements that masters/subsystems 

should abide in accordance to AXI 4 protocol. All masters should include a 

subset of the full AXI4 specification and should be suitable for use in future AXI4 

systems that have a different subset of the specifications. AXI Masters must have 

the following behaviour: 

 Must be able to limit the maximum read/write burst size and the number of 

outstanding requests.  This limit is in powers of 2 for ease of 

implementation and allows system bandwidth behaviour to be tuned. 

 Bursts > 16 beats can only be INCR which limits a maximum of 16 beats 

to reduce infrastructure storage requirements. 

 Bursts cannot cross a 4K boundary. 

 Transactions should be labeled as "NOT modifiable" ACACHE[1]=0. 

 If masters launch read requests with different IDs, they must be able to 

handle the read data coming back out-of-order. 

Masters must expect the following ordering behaviour from the AXI subsystem. 

 Transactions with the same direction and the same ID to the same slave 

will remain in order. For reads, the data will be returned in the same order.  

For writes, the responses will be returned in order. 

 There is no guarantee of order between reads and writes.  You must wait 

for a response from one transaction before starting the next. 
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 There is no guarantee of the order of transactions in the same direction 

but to different slaves. Read data (or write responses) to two different 

slaves may come back in any order even if they have the same ID.  The 

memory controller will handle the SDRAM page interleaving, making the 

SDRAM look like one slave. Peripherals will be located on a 4K boundary 

and so masters that access peripherals should treat every 4K boundary as 

a separate slave. 

In Broadcom’s SoC, all the subsystems adhere to the above stated requirements 

of AXI 4 as well as follow the custom design guidelines given below: 

 Use a different AXI ID for each transaction. Data read from memory may 

be out of order and using a different AXI ID allows the memory controller 

to re-order requests and responses and increase the SDRAM efficiency. 

System performance may be reduced if the same ID is used to different 

slaves because memory subsystem has to re-order reads that go to 

different physical SDRAM controllers. 

 Indicate any outstanding requests still in flight while the link is powering 

down. Care should be taken to ensure that any outgoing requests are 

counted from the moment that they are started, and not from when they 

are accepted. 

 Provide a fine grained QoS control of their (masters) bus behaviour to aid 

in system tuning and bandwidth limiting.  



 

 
11 

 

 Masters should behave in a fair and responsible manner. If they drive a 

high QoS value and continual back-to-back requests, then they will 

saturate the bus to the detriment of other masters in the system. It is the 

responsibility of the Master to control its bus behaviour and play fairly in a 

system. It is not the responsibility of the infrastructure or memory 

controller to throttle a greedy master.  A system can usually support one 

greedy master by making it the lowest priority master in the system, so 

that it hoovers up all the spare bandwidth. However if there are several 

greedy masters, then a method needs to be in place to allocate the spare 

bandwidth amongst them. 

 Masters should try and access bulk data in large bursts. Caches should be 

employed if necessary. DDR4 SDRAM have a minimum burst size of 256 

bits, so a single beat 128 bit AXI transfer will only get 1/2 the possible 

bandwidth. A 2 beat burst should be considered as an absolute bare 

minimum, and a 4 beat burst is much more desirable. 

 Masters should drive their priority outputs to zero when inactive.  

2.3 Slave Behaviour 

This section discusses some of the requirements that slaves/memory should 

abide in accordance to AXI 4 protocol. In general, slaves should cope with the full 

AXI4 specification and should report any unsupported behaviour with ASSERTS 

and return the appropriate response to unsupported behaviour on the bus. 

Slaves must have the following behaviour: 
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 Must be able to support up to 256 beat bursts. Bursts > 16 beats can only 

be INCR. If a slave does not support >16 beats then it should have an 

ASSERT to detect this, and it should return a bus error. 

 Slaves do not have to support bursts across a 4K boundary (as this needs 

32 bit address logic) but can do so if backwards compatibility with VC-AXI 

is required. 

 Write response  (BResp) cannot be issued until both address and last data 

have completed. 

 Slaves must cope with all juxtaposition and combinations of address and 

write data, i.e. the address and the first beat of write data are no longer 

guaranteed to be in the same cycle. 

 Error conditions should be returned on Bresp and Rresp when an AXI 

access is invalid. 

Slaves must obey the following ordering rules: 

 Once a response has been given, the slave must maintain data order with 

any subsequent transactions, i.e. once inside a slave, then data order 

must be preserved. 

 Slaves can respond to transactions with different ID's in any order. 



 

 
13 

 

3.0 Thin AXI Architecture and Implementation 

Thin AXI interconnect is the main fabric that routes various thin AXI busses onto 

the two SDRAM controllers. The main fabric (MFAB) has to sort out any re-

ordering issues, provide buffering to prevent slow T-AXI links from stalling the 

system, enforce memory protection and also provide the system MMU 

functionality required for a memory system that allocates scattered 4K pages. 

The AXI channels are carried over the high-speed T-AXI bus in a simple Time 

Division Multiplexing (TDM) fashion using a synchronous T-AXI clock. In addition, 

the bus supports non-AXI commands for link control and a simple address 

compression scheme. 

3.1 Signal List 

The signal list for the T-AXI bus is given in Table 1 and the visual presentation is 

provided in Figure 3. Note that the naming convention uses downstream to 

indicate the channel moving data/commands away from the system memory and 

upstream for the reverse direction. 
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Table 1: Signal list of Thin AXI bus 

 

Signal Description 

clk_taxi Synchronous clock covering up/downstream blocks and 
repeaters. 

rst_taxi_n Async reset with rising edge synchronised to clk_taxi. 
Clk_taxi runs much slower during reset. 

taxi_d_clkreq Async clock request from downstream module to the 
clk_taxi  

taxi_u_clkreq Async clock request from upstream module to the 
clk_taxi  

taxi_d_valid Data valid marker.  

taxi_d_data Downstream channel carrying commands and data muxed. 

taxi_d_stall Synchronous stall from receiver to the transmitter and 
passing through each repeater. Causes a rippled stall up 
the T-AXI link with each repeater storing data in a holding 
register to cope with the stall delay per stage. 

taxi_u_valid Data valid marker. Always asserted for cycles carrying AXI 
data and negated for link control commands. 

taxi_u_data Upstream channel carrying commands and data muxed. 

taxi_u_stall Synchronous stall from receiver to the transmitter and 
passing through each repeater. Causes a rippled stall up 
the T-AXI link with each repeater storing data in a holding 
register to cope with the stall delay per stage. 
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Figure 3: Visual presentation of signals of Thin AXI 

3.2 Supported AXI Signals 

AXI4 supports a large number of signals, not all of which are essential for the 

particular subset of AXI used within any particular system. By limiting the set of 

AXI transfers supported, we can increase the throughput of the T-AXI links. The 

mapping in Table 2 shows the AXI4 signals supported by the T-AXI link in SoC. 
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Table 2: AXI4 and Thin AXI Signal mapping 

AXI 4 Signal T-AXI Support Notes 

ACLK clk_d/clk_u Downstream and upstream source 
synchronous clocks 

ARESETn - Not supported. Resets are sent as 
commands 

A*ID[3:0] A*ID[9:0] Up to 10-bits of ID are supported. 

A*ADDR[31:0] A*ADDR[35:0] 64GB address range is supported 

A*LEN[7:0] A*LEN[3:0] Limits burst size to 16 beats (same as AXI3) 

A*SIZE[2:0] A*SIZE[2:0] Fully supported 

A*BURST[1:0] A*BURST[1:0] Fully supported 

A*LOCK[1:0] - Not supported 

A*CACHE[3:0] - Not supported as there is no L3 cache in 
SoC. 

A*PROT[2:0] A*PROT[2:0] Only A*PROT[1] is carried over T-AXI hence 
only two levels of security can be supported. 

A*QOS[3:0] - Fully supported. Maxima of all transactions’ 
QoS levels currently held in the link is 
forwarded by T-AXI link command which 
can override the individual transaction QoS 
value as AXI transactions leave the link. 

A*VALID - Not required, indicated by T-AXI command. 

A*READY - Not required, link status managed by T-AXI 
protocol 

RID[3:0] RID[9:0] Same ID support as commands 

RDATA[n:0] RDATA[n:0] Supports 32/64/128/256-bit data over any 
link widths. 
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RRESP[1:0] - Not required, indicated by T-AXI command 

RLAST RLAST Supported 

RVALID RVALID Gate off clock for idle cycles 

RREADY - Not required, link status managed by T-AXI 
protocol 

WID[3:0] - Write interleaving dropped in AXI4  

WDATA[n:0] RDATA[n:0] Supports 32/64/128/256-bit data over any 
link widths. 

WSTRB[3:0] WSTRB[15/8:0] Only used for AWWS and AWSHRTWS 
transactions that are issued when WSTRBs 
indicate a partial write. 

WLAST - Not essential, so not supported 

WVALID - Gate off clock for idle cycles 

WREADY - Not required, link status managed by T-AXI 
protocol 

BID[3:0] BID[9:0] Same ID support as commands 

BRESP[1:0] BRESP[1:0] Carried in T-AXI command 

BVALID - Not required, link status managed by T-AXI 
protocol 

BREADY - Not required, link status managed by T-AXI 
protocol 

CSYSREQ - Low power interface signalling not 
supported in T-AXI 

CSYSACK - 
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3.3 Flow Control 

Flow control of the Thin AXI is split into two parts: AXI data flow control and link 

control. Figure 4 shows the block diagram of Thin AXI link. 

 

Figure 4: Block Diagram of Thin AXI Link interface 

 

 Link control is used to prevent the common receive FIFO overflowing and is 

simply a stall signal that tells the transmit-front-end to stop sending more data in 

cases when T-AXI/AXI clock ratios empty the receive FIFO at a slower rate than 

the rate at which they fill it. These stalls will clear quickly and not introduce head-
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of-tree blocking, as there is nothing fundamentally blocking the flow; they are just 

due to data rate differences. 

The AXI flow control is a credit-based mechanism that only allows the AXI 

command mappers to issue new T-AXI commands if they have sufficient credit. 

The mappers are given a starting credit corresponding to the amount of storage 

at the receive end of each of the AXI channels and they spend credit each time 

they issue a transfer that will use one of those storage words. A mapper cannot 

send any further data once it has spent all its credit. This prevents a channel stall 

at the receive end causing data from that channel filling the common receive 

FIFO and blocking all other AXI channels on the link (a condition that can cause 

a deadlock). Ensuring each channel has sufficient storage at the receive de-

mapper means that the common receive FIFO cannot block. Credits are returned 

(via T-AXI link commands) each time the de-mapper clears a space in its local 

storage by issuing an AXI transaction.  

3.4 Reset and Shutdown 

T-AXI supports the ability to independently reset and power down the 

subsystems at either end of the link. For this purpose, the link provides software 

control (through APB registers) to reset the link and to disable it so that the 

subsystems at the two ends of the link are decoupled. Two hard reset inputs are 

provided that will fully asynchronously reset the registers in the T-AXI block. One 

has its rising edge synchronised to the AXI clock (rst_n) and the other to the T-

AXI clock (rst_taxi_n). Rst_n is tied to the power-on reset and the subsystem 
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reset. Rst_taxi_n is driven from the T-AXI LCPR located in the centre of the link. 

Link control commands (such as LINK_CTRL) are still supported when the link is 

in the shutdown state. The shutdown only refers to the AXI buses connected to 

the T-AXI link. 

3.5 Power Control 

There is limited support required within the T-AXI link for power control. It is 

essential that software uses the control and status registers in the T-AXI modules 

to disable the link cleanly before powering down. 

3.6 Clock Control 

The clock is generated from the T-AXI LCPR that is located in the centre of the 

link. This is a synchronous clock driven to both ends of the link in thick, wide 

metal using a single super-buffer in each direction. This ensures a very low skew 

synchronous clock available throughout the link. Each end of the link supplies an 

asynchronous clock request (taxi_u/d_clkreq) that it uses to request the clock 

from the T-AXI LCPR. The LCPR drives the clock to both ends of the link when 

either clock request is active. The two ends of the link asserts the clock request 

when they receive an AXI command and remove the request only when they 

have received the credits back for all transactions issued. The clock request can 

also be activated if a link command is required to be sent due to software 

intervention. 
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3.7 Security 

The security scheme proposed for this SoC is a superset of ARM’s trustzone 

scheme. The T-AXI link carries the AXI PROT signals that are used together with 

the masters’ AXI ID to determine AXI permissions within the address map. Only 

two levels of security are required for the SoC; hence it was decided to carry only 

one bit of APROT across the T-AXI link in order to make space for additional ID 

bits. The choice of which APROT bit is carried, can be made at the AXI 

connection to the T-AXI instance but for the SoC this will be bit-1. 

3.8 Quality of Service 

QoS in AXI4 is transmitted per command, however this scheme fails in a 

distributed arbitration scheme when a high priority command is queued behind a 

low priority command with no opportunity to overtake it. The scheme for the 

infrastructure components in the SoC multimedia is for each infrastructure 

component to forward the highest QoS level of all its outstanding transfers. For 

the T-AXI link, it makes sense to separate the QoS communication from the AXI 

transfers and transmit the information of a separate link-control command (QoS). 

This allows changes in the QoS level (e.g. due to a master that requested data at 

a particular QoS level entering a higher state of panic) to be forwarded 

independently of the AXI transfer thus allowing downstream commands’ QoS 

levels to be increased. 
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3.9 Interrupts 

The suggestion to carry interrupts over T-AXI was examined but rejected as the 

benefit in wire saving is negligible compared to the cost due to increased 

complexity and the number of signal transitions that would need to occur just to 

signal an interrupt. 
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4.0 Test Bench 

Since this is pre-ASIC DVT, the SoC is emulated on FPGAs. The FPGA systems 

are from Synopsys, configured with four Virtex-7 Xilinx FPGAs. Each FPGA box 

contains four FPGAs. An FPGA station is comprised of FPGA system, UMRBus 

controller, DSTREAM JTAG, PC and a remote power controller. 

4.1 FPGA system 

 The simplest technique to deploy Thin AXI DDR is the use of IDDR and ODDR 

cells in the FPGA I/O pads, as shown in Figure 5 .  One DDR cell is required per 

two signals, so a 16-bit T-AXI bus will require eight DDR cells in each direction 

for the data. In addition to the data, the source-synchronous clock and a 

valid/stall signal must be transferred in each direction. In total, a 16-bit T-AXI bus 

can be transferred between FPGAs with 20 I/Os (2 * (8 data + 1 stall/valid + 1 

clock)). 
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Figure 5: Thin AXI routing in FPGA 

In Figure 5,  

taxi_ddr_clk module: 

 Takes the global clk_taxi within the FPGA and uses an ODDR cell to 

prepare the clock for output on an FPGA I/O pin. 
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 Receives a transferred clock from an FPGA pin and passes it through two 

Xilinx clock buffers (that is, one received clock is passed through these 

two separate buffers)  

o BUFIO: drives a local low-skew clock network to all I/O pads in the 

I/O bank and is used to drive the clock pins of all the IDDR cells in 

the receiver 

o BUFR: drives a regional clock network in the FPGA fabric and is 

used to drive the write side of the receiver FIFO 

The received clock is passed through an IDELAY element to ensure that the 

inbound data stabilises before the sampling event (driven by the delayed clock) 

occurs. The IDELAY element requires that an IDELAYCTRL module is 

instantiated somewhere in each FPGA. 

IDELAYCTRL module: 

Due to the use of IDELAY primitives within taxi_ddr_clk, it is necessary to have 

an IDELAYCTRL module in each FPGA that instantiates taxi_ddr_clk.  It is fed by 

a 200MHz clock.  The instance have attribute "IDELAY_GROUP" associated with 

it, set to "taxi_ddr_rx".  For Virtex 7 devices, the clock must be 200MHz ± 10MHz, 

and the RST must pulse high for a minimum of 52ns. 
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taxi_ddr_trx module: 

Parameter D_WID is the width of the T-AXI data bus (must be 16, 32 or 48). The 

taxi_ddr_trx module wraps a taxi_ddr_tx module and a taxi_ddr_rx module as a 

pair.  This ensures that the stalls travel in the appropriate direction, and also 

ensures that the stalls happen correctly. It takes three clocks: 

 clk_taxi : the system-global T-AXI clock 

 clk_io : the I/O clock received from the other end of the link by taxi_ddr_clk 

 clk_r : the regional fabric clock received from the other end of the link by 

taxi_ddr_clk 

taxi_ddr_tx module: 

This module deals with the transmit side of the link.  It organises outbound data 

into bit pairs and presents to ODDR cells for transmission.  This module uses 

only the global clock. 

taxi_ddr_rx module: 

This module deals with the receive side of the link.  Using clk_io, it receives the 

DDR data with IDDR cells.  Using clk_r, this data is passed into a FIFO.  This 

FIFO is used to manage both the domain-crossing into the global clk_taxi 

domain, and also to manage T-AXI stall cycles.  The read-side of the FIFO is in 

the clk_taxi domain. 
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4.2 UMRbus controller 

The HAPS UMRBus (Universal Multi-Resource Bus) Interface kit is a complete 

and reliable set of components that allow bi-directional data exchange (at 

runtime) between software (C/C++ or Tcl/TK applications) and hardware DUT 

(Device Under Test). 

4.3 DStream JTAG and a host PC 

ARM DStream is a debug and trace tool that facilitates powerful software debug 

and optimization on any ARM processor-based hardware target. It uses eclipse 

configured to work with DS-5 and connects the PC to the FPGA over USB 

connection. A connection is created using Realview as shown in Figure 6 and the 

cores are enabled as shown in Figure 7. 
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Figure 6: Connecting DStream to FPGA 
 

 
 

Figure 7: Configure SoC cores using ARM RVI 

 



 

 
29 

 

4.4 A remote power controller 

Each FPGA station is on its own electrical circuit and protected by a 15A breaker. 

In the event an FPGA system or PC locks-up, power must be cycled to get the 

equipment operational again. To allow for better remote access, each FPGA 

station has been equipped with a remote power controller so a user can control 

the power to a station remotely through a web interface. 
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5.0 Test Cases and Results 

The T-AXI link is implemented as two individual modules: taxi_upstream 

(subsystems to memory) and taxi_downstream (memory to subsystems). All 

blocks below these top-level structural modules are common between the two 

and are managed by parameters. There are a number of parameters at the top 

level of the T-AXI upstream and downstream modules that allow the link to be 

tuned for area, power and performance and to set its AXI connectivity 

configuration. Some of these parameters need to be consistent at both ends of 

the link whereas others are set to tune the operation of that end of the link only. A 

description of how to use each parameter is provided in Broadcom’s RDB 

(Register Data Base). As an example, one of the T-AXI module’s registers are 

given in Figure 8. This is part of the RDB and defines the memory locations, 

register names and their description.  

 

Figure 8: RDB of SLVSYS Subsystem T-AXI 

 

The test cases are written in C language and use a Broadcom’s OS-less 

(Operating-System-less) infrastructure to implement the code. Figure 9 shows a 
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list of all the test cases that were implemented to fully test and characterize a T-

AXI Link. 

 

 
Figure 9: ScreenShot of T-AXI Test Cases written in C 

 
In Figure 9, each of the commands on the left hand side can be executed as 

shown in Figure 10. Figure 10 shows the register dump of a T-AXI Link. The 

address field shows the memory location of the Link Registers, Value_Read is 

the current value in the Register (these values are explained in Table 3 and 

Table 4), Default_Value is the register value when the link is turned on or reset. 
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Figure 10: Register dump of a Master and Slave T-AXI Link 

 

5.1 Control and Status Registers of T-AXI Link 

There are a number of essential control/status register bits to use and 

understand when managing the T-AXI link. Table 3 gives a glimpse of Control 

register of T-AXI Link. Bits 09:31 are reserved and must be written with 0. Table 

4 gives an overview of Status Register bits. The bits not indicated in the table are 

reserved bits.  
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Table 3: Control Register of T-AXI Link 

Field Name Bit 
Field 

Description 

DisableTaxiClkGate 08 Disables the clock gating used on the T-AXI 
link. Will result in higher power but can reduce 
latency for the first transfers after the clock 
was gated. 

ForceLinkCtrlState 07:05 Forces the link_state control state machine to 
a specific state. Only for use in lock-up 
scenarios. 

ForceLinkCtrl 04 Forces the link_state control state machine to 
a specific state. Only for use in lock-up 
scenarios. State forced is set by 
ForceLinkCtrlState. 

QosForwardEnable 03 Enables QoS forwarding, i.e taking the QoS 
values of all transactions in the link and 
forwarding the maximum value to both the 
awqos and arqos outputs from the receiver. 

LinkCtrlMaster 02 Enables this end of the link to be the master 
for link control, i.e. only shutdown/reset 
changes from this end of the link will be 
observed. Setting this bit at both ends of the 
link may result in lock-up. If it is desired to 
change the control from one end of the link to 
the other then this should be done when the 
link is enabled and active. 

Reset 01 Resets the link. Prevents any new AR/AW AXI 
transactions being accepted and issues a 
reset command to the other end of the link to 
tell it to do likewise. Waits for outstanding
transactions to complete then issues a 
synchronous reset to all control logic and 
forces a reload of credit starting values. Reset 
is released automatically without needing to 
re-write this register. 

Enable 00 Set to enable the T-AXI link. Resets to 
disabled to ensure low-power after start-up 
When cleared, the T-AXI link will stop taking 
any new AXI read/write commands and 
attempt 
to complete any in-flight transactions. 



 

 
34 

 

Table 4: Status Register of T-AXI Link 

Field Name Bit 
Field

Description 

RemoteStatusActive 31 When set, the remote end of the link is 
currently in the active state. Software 
checks that this bit is set prior to enabling 
traffic into the link. 

RemoteStatusShutdown 30 When set, the remote end of the link is 
currently in the shutdown state. Any AXI 
commands issued into the remote end of 
the link is swallowed by a dummy 
responder when in this state and likely 
results in instabilities in the system 

OustandingWriteCount 28:21 Number of write transactions currently 
issued but not yet completed. 

OustandingReadCount 20:13 Number of read transactions currently 
issued but not yet completed. 

DummyAccessed 08 This bit is set whenever the dummy slave is 
accessed and cleared by writing. The 
dummy slave should never be accessed in 
normal operation so if this bit has been set 
then the link has either been shut down 
prematurely or accesses started before the 
link was enabled. 

LinkState 03:01 Current state of link control state machine. 
Only included to assist with debug in a 
potential 
lock-up scenario. This state machine is 
used to safely manage the 
reset/shutdown/enable of the link. Resets 
can be issued transparently while the link is 
active. 

Idle 00 Indicates no outstanding transactions and 
that the link is ready for reset/power-down 
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5.1.1    Test Case – Link Enable/Disable and Dummy Slave 

Whenever a link is disabled, a dummy AXI slave is switched into the bus, so that 

transactions sent to the bus are completed and the bus does not lock up. Any 

transaction issued while the link is disabled is swallowed by the dummy slave. A 

write command/data is swallowed and ignored and a BRESP is issued. A read 

command/data is returned with a random dummy data. Software should take 

care that the bus is idle when enabling/disabling the link to ensure that 

transactions to not enter dummy slave. Dummy slave is tested on SoC’s UART 

(Subsystem) using the following steps: 

1. T-AXI link connecting UART to memory is enabled. Link “enable” is 

verified by reading and writing data to the memory. 

2. T-AXI link connecting UART to memory is disabled. The console gets 

stuck at this point because dummy slave turns on. Since UART constantly 

reads data/commands from the console, dummy slave supplies random 

data which causes system hang due to software not being able to handle 

garbage data (See  Figure 11) 

 

Figure 11: Enable/Disable UART T-AXI Link with dummy slave 

 
3. A proper T-AXI “disable” functionality is verified using another port. 

The port was enabled and verified as given in step 1. Then the port was 

disabled. The verification of disabled port is provided in step 2 (which is 
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dummy slave activation). Figure 12 shows the test completion screen 

shot.  

 

Figure 12: Enable/Disable of T-AXI Link 

 

5.1.2    Test Case – Link Shutdown 

Link shutdown requires more careful management by software as the dummy 

slave is switched on when the link is disabled; hence, transactions can get lost if 

the correct sequence is not followed. The logic in the T-AXI hardware can ensure 

that clean transitions are achieved between the enabled and disabled states but 

it has no way of knowing when a subsystem has finished using the link so it 

cannot wait for a specific event to tell it to switch the link off. This is the 

responsibility of software. The routine for powering down a block connected to 

the rest of the chip via T-AXI is: 

1. Instruct block to go idle. This is block-specific but generally, it tells the 

block to complete all necessary housekeeping and then stop generating 

any new AXI transactions. The block provides status information (Idle bit 
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goes high) to the host CPU when it has reached its quiescent state so that 

the host knows when it can move to step 2. 

2. Disable the T-AXI link. This puts the T-AXI link into its quiescent state and 

switch on dummy slaves at the command-receiving AXI interfaces. To 

complete transactions over the link, the AXI clock in the subsystem being 

shutdown, is kept running until the T-AXI link enters the disabled state. 

Once the link is disabled, it is clearly not possible for the host to use the 

path via T-AXI to write to a register to switch off the clocks. Disabling 

clocks is done through the clock manager, which is accessed using ARM 

JTAG. 

3. Power down the subsystem.  

4. Power down the T-AXI link. The dummy slave component lies outside of 

the T-AXI power domain and remains enabled when the T-AXI link is 

powered down. 

 

Figure 13: Test Result of Link Shutdown 

5.1.3    Test Case – Link Reset 

Link reset requires waiting for the outstanding transactions to complete before 

resetting. The sequence that Link Reset Test case follows is: 
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1. Hold off new A*READY to prevent new transactions entering the link. 

2. Wait for outstanding transactions to complete and all outstanding credits 

to be returned. Check idle status bit = 1 and  OutstandingWriteCount = 

OutstandingReadCount = 0. 

3. When both ends are idle, issue a synchronous reset to the control logic at 

both ends of the link. 

4. Return to the active state. Verify if any data is lost during reset by reading 

system memory for any corruptions. 

 

Figure 14: Test case results of Link Reset 

 

5.1.4    Test Case – Master Link Control 

The T-AXI link has the facility for the control registers at either end of the link to 

be used for link management, however only one end of the link can be used. The 

software can select either the upstream or downstream end to be the link master 

by setting the LinkCtrlMaster bit in the TAXI_CTRL register at the desired end of 

the link. If this bit is not set then the enable/reset bits of the control is ignored.  It 

is possible to transfer the link master to be the other end of the link. The swap 

Link test case follows the sequence below: 
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1. Disable the link and wait for the status register to indicate that the link is 

fully shut down (Used Test cases 5.2 and 5.3). 

2. Clear the LinkCtrlMaster bit at the end of the link that is currently the 

assigned link master. 

3. Set the LinkCtrlMaster bit at the other end of the link. 

4. Enable the link (using the control register at the new  link master). 

The Link Master will typically be assigned to the upstream end of the link as the 

control registers at the upstream end are typically accessible to the CPU without 

needing the link to be enabled. 

 

Figure 15: Test Result of Swap Master Link 

 
Both ends of the T-AXI link contain a link control state machine that it uses to 

safely transition between link states such as active, disabled and reset. The state 

machines at the two ends of the link need to track each other to ensure safe 

transitions with the link master leading the state transitions and the other end 

following its lead. The LinkState bit from Table 4 can have the following state 

decoding: 

0x0 LINK_DISABLED - Link is shutdown, dummy slave enabled 

0x1 LINK_WAIT_DS_IDLE - Wait for dummy slave to go idle and go ready 

0x2 LINK_READY - Link is ready but not enabled. 
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0x3 LINK_ACTIVE - Link active and ready to take transfers 

0x4 LINK_WAIT_IDLE - Wait for existing transfers to clear then go to idle 

0x5 LINK_IDLE - Wait for remote to go idle then go to reset 

0x6 LINK_RESET - Reset issued, then go to reset_clear 

0x7 LINK_RESET_CLEAR - Reset cleared, go to either disabled or ready 
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Figure 16: Link State Machine 
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5.1.5    Test Case – Clock Gating 

Clock gating saves power by adding more logic to a circuit to prune the clock 

tree. Pruning the clock disables portions of the circuitry so that the flip-flops in 

them do not have to switch states. Switching states consumes power. When not 

being switched, the switching power consumption goes to zero, and only leakage 

currents are incurred. This test measures the read and write latency before and 

after disabling clock gating in T-AXI Link.  From Figure 17, before disabling clock 

gating, the number of CPU ticks required to complete read and write test is 

12624. After clock gating is disabled, the number of CPU ticks required to 

complete read and write test is 12620. This clearly shows that disabling clock 

gating can reduce latency for the first transfers after the clock was gated. 

 

Figure 17: Test result of Clock gating. 

 

5.1.6    Test Case – Status Register bits 

The functionality of status bits was tested using various read and write cases. As 

shown in Figure 18, when a T-AXI Link is activated the RemoteStatusActive bit is 

high at the subsystem side of the T-AXI as well as at the Main Fabric side of the 

T-AXI. The LinkState is 0x3 which means link is active and ready to take 
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transfers. When the write traffic is initiated, OutStandingWriteCount bits give out 

the number of outstanding writes. In Figure 18, there are eight outstanding 

writes. After the writes complete, the link comes back to the initial state. When 

the reads start, OutStandingReadCount bits give out the number of outstanding 

reads. In Figure 18, there are four outstanding reads. After the reads complete, 

the link comes back to the initial state. 
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Figure 18: Test results of Status bits on reads and writes 



 

 
45 

 

5.2 Credit and Parameters Registers of T-AXI Link 

The credit registers carry a payload that gives the number of words transferred 

from the link on each AXI channel from the available buffer space in the receiver. 

Transmit can increase its available credit by the value carried. There are various 

credit registers in the T-AXI Link and are tested in the following sections. Also, 

there are four parameter registers which carry connectivity configuration 

parameters of the T-AXI Links.  

5.2.1    Parameter Read-Only Registers 

The Parameter registers are read-only and are assigned the build values of the 

Link. These values are used to configure credit registers. 

5.2.1.1   CREDIT_DWIDTH Register 

Credit_dwidth register contains the width of the buses that are used to carry 

credit tokens across the link. Credits are accumulated in the receivers at both 

ends of the link each time the corresponding AXI channel completes a phase. 

They are passed back to the transmitter which is only able to send new 

commands/data if it has sufficient credit. This bus width is set at the minimum 

needed to avoid an overflow in the counter.  

5.2.1.2   RXFIFO_AWIDTH Register 

This register contains the address width of the receive FIFO. This FIFO is sized 

to minimize stalls on the T-AXI link while remaining area efficient. It is currently 

sized at 32 words i.e RXFIFO_AWIDTH=5. The second factor in the size of this 
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FIFO is that it is read in much larger data widths than it is written - data is read 

out on the AXI clock and is shifted in much larger data quantities in this domain 

per clock compared to the taxi data width. For example, an AXI write involves 

transferring an AW command (~60-bits of data) plus 144 bits of write data and 

strobes on a single clock, so we need to read 12 words from the FIFO for a 

3GB/s link. In addition, the receiver has the capability to read data for up to two 

channels per clock (e.g. a write command/data plus a read command) so the 

FIFO must be sized to accommodate this, which is variable with TAXI_DWIDTH. 

5.2.1.3   TX_AWIDTH Register 

This parameter sets the number of address bits needed for the transmit FIFO. 

This is a wide/shallow FIFO used to cross from the AXI clock domain to the T-

AXI clock domain, so, adding more address bits is expensive (e.g. FIFO is 244-

bits wide in downstream for a 128/32-bit memory/peripheral bus). A depth of 4 

(i.e. TX_AWIDTH=2) has been shown to produce very few unnecessary stalls so 

this register is set to a value of 2. 

5.2.1.4   RX_ARWIDTH Register 

This register contains the size of the storage built at the receive end of the read 

command channel and determines the number of outstanding transactions that 

the receiver can take (and not pass down the bus) before the transmitter will run 

out of credit and stall.  
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5.2.2    Credit Control Registers 

The link resets with a small starting credit assigned to each AXI channel in order 

to enable the link to function correctly, however this is typically smaller than the 

maximum the link can support. Setting the credit values to their maximum value 

will increase the performance of the link by allowing it to support more 

outstanding transactions.  

The credit values assigned to the AR/AW/RR/BR_CREDIT_CTRL registers 

should match the sizes of the corresponding receive FIFOs at the far end of the 

link so that the transmit ends of the link can issue enough outstanding 

transactions to fill these FIFOs but no more. The software determines the size of 

these FIFOs by reading the Parameter registers for the two ends of the link. 

Since the values read from parameter registers are the FIFO address widths 

rather than the actual FIFO depths, they are adjusted to match the actual FIFO 

depth to determine the maximum credit allocation, for example: 

AR_Credit (upstream) = 1 << RXAR_FIFO_AWIDTH (downstream) 

AW_Credit (upstream) = 1 << RXAW_FIFO_AWIDTH (downstream) 

WD_Credit (upstream) = 1 << RXWD_FIFO_DWIDTH (downstream) 

RR_Credit (upstream) = 1 << RXRR_FIFO_DWIDTH (downstream) 

BR_Credit (upstream) = 1 << RXBR_FIFO_DWIDTH (downstream) 

 

Once the new credit values have been programmed, the link is reset to update 

the new credit values. To test the credit registers, a DMA subsystem was used to 
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read and write to the memory using T-AXI Link. The maximum bandwidth 

supported by DMA port is 20MB/s: 

 FPGA clock was running at 10MHz, 

 DMA does 1 read and 1 write per transaction, 

 Therefore, DMA peak bandwidth = 10MHz * 2Bytes = 20MB/s. 

On the other hand, maximum bandwidth supported by memory controller is 

40MB/s: 

 FPGA clock was running at 10MHz, 

 Memory controller lane is 32bit wide, therefore supporting 4Bytes 

 So, Memory peak bandwidth = 10MHz * 4Bytes = 40MB/s. 

 

In the test, the credit control registers were varied from their minimum to 

maximum credit values and at each credit value, DMA generated traffic and 

system bandwidth was measured. Figure 19 through to Figure 23 show the 

bandwidth results. Some terminology used in the tests is: 

AR = Address Read 

AW = Address Write 

WD = Write Data 

RR = Read Return, acknowledgement to the read data 

BR = BResp, acknowledgement to the write data. 
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Figure 19: Address Read Credit values vs bandwidth observed 

 

Figure 20: Write Data Credit values vs bandwidth observed 
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Figure 21: Address Write Credit values vs bandwidth observed 

 

Figure 22: Read Response Credit values vs bandwidth observed 
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Figure 23: BResp Credit Values vs bandwidth observed 

 

From Figure 19 through to Figure 23, it can be noticed that the bandwidth did not 

get affected by the changes in the credit values of AR, AW and WD; whereas, 

the bandwidths experienced a significant change in the credit values of BR and 

RR. This is because these credit registers affect the downstream traffic (i.e. 

traffic generated towards the subsystem). Since RR and BR traffic is sent from 

memory to the subsystem, a significant change is observed. Another test was 

written where the processor writes data to the UART. Since the writes pass 

through T-AXI Link, and reach up to the UART subsystem, the bandwidth drops 

can be observed when credit values are decreased (see Figure 24). 
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Figure 24: Write Data from processor to UART vs bandwidth observed 

Another test was performed where an effort was made to congest the memory 

controller. The processors initiated reads to the memory controller as well as the 

DMA. The memory controller port had to fulfil the requests of the processors and 

the DMA at the same time. Figure 25 through to Figure 27 show the effects of 

additional traffic on the bandwidth of the system. 

 

Figure 25: RR Credit varying effect of increased traffic on Memory port 
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Figure 26: BR Credit shmoo effect of increased traffic on Memory port 

 
 

 

Figure 27: AR Credit shmoo effect of increased traffic on Memory port 
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A comparison was made between the system bandwidths before adding 

processors’ traffic to the DMA traffic, as shown in Figure 28 through to Figure 30. 

 

Figure 28: A comparison of RR bandwidth with ARM processor and DMA 
traffic and without ARM processor traffic 

 

Figure 29: A comparison of BR bandwidth with ARM processor and DMA 
traffic and without ARM processor traffic 
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Figure 30: A comparison of AR bandwidth with ARM processor and DMA 
traffic and without ARM processor traffic 

 
As seen from Figure 28 through to Figure 30, the bandwidth of the T-AXI Link 

decreased with an increase in traffic on memory port. This is due to the sharing 

of memory port by the DMA and the ARM processor to fulfill their transaction 

needs. 
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6.0 Conclusion 

Thin-AXI was developed in-house at Broadcom as a method to reduce the pain 

of routing wide AXI buses across silicon chips, by collapsing transactions on wide 

buses down to packetized transactions on a narrower but faster bus. In this 

project, design verification of a T-AXI link was performed. From the test results, it 

was verified that the T-AXI link is fully functional according to the design 

specifications. Performance analysis was conducted on the T-AXI Links. In the 

analysis, various credit registers were varied from their minimum to maximum 

values to determine its effect on the Link bandwidth. It was observed that the 

lower credit values caused fewer outstanding transactions to be stored in the 

buffers and thus caused high latency in transaction completion. Higher latency 

caused the link bandwidth to drop, which was observed from the test cases. 

Overall, the link bring-up, shutdown, reset and link states were verified to be fully 

functional. 
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