
Design Verification and Performance Analysis of

Serial AXI Links in Broadcom System-on-Chip

by

Simran Sarai

B.A.Sc., Simon Fraser University, 2010

Research Project Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Engineering Science

in the

School of Engineering Science

Faculty of Applied Science

 Simran Sarai 2014

SIMON FRASER UNIVERSITY

Spring 2014

ii

APPROVAL

Name: Simran Sarai

Degree: Master of Engineering Science

Title of Thesis: Design Verification and Performance Analysis of Serial
AXI Links in Broadcom System-on-Chip

Examining Committee: Defence Chair: Jie Liang
 Associate Professor

Ivan Bajic
Supervisor
Associate Professor

Trac Hoang
External Examiner
Senior Principal Engineer
Broadcom Canada Ltd.

Date Defended/Approved:
Jan 10, 2014

iii

Partial Copyright Licence

iv

ABSTRACT

Design verification is an essential step in the development of any product. Also

referred to as qualification testing, design verification ensures that the product as

designed is the same as the product as intended. In this project, design

verification and performance analysis of Thin Advanced Extensible Interface

Links (T-AXI) is conducted on a Broadcom’s SoC (System on Chip). T-AXI is a

Broadcom’s proprietary bus that interfaces all the subsystems on the System-on-

chip (SoC) to the system memory. Test cases are developed to verify the

functionality of the T-AXI and performance verification is implemented using

scenarios derived from real world examples. A Field Programmable Gate Array

(FPGA) is used to emulate the SoC design and C programming is used to write

the test cases. The test results verify the T-AXI functionality and the performance

analysis supports the theoretical calculations.

v

ACKNOWLEDGEMENTS

I would like to thank my manager, Allan Chan for supervising this project and

providing guidance and critic in each phase of this project. I would also like to

thank Dr. Ivan Bajic for co-supervising me in this project and providing valuable

suggestions.

I would also like to thank Broadcom DVT for their help and co-operation

throughout my project. Finally, I wish to thank my family and friends for their

encouragement and support.

vi

TABLE OF CONTENTS

Approval... ii

Partial Copyright Licence .. iii

Abstract... iv

Acknowledgements .. v

Table of Contents ... vi

List of figures ... viii

List of tables ... ix

Glossary ... x

1.0 Introduction ... 1

1.1 Objective ... 2
1.2 Document Outline ... 3

2.0 Background ... 4
2.1 AXI 4 Design Extracts ... 8
2.2 Master Behaviour .. 9
2.3 Slave Behaviour .. 11

3.0 Thin AXI Architecture and Implementation ... 13
3.1 Signal List.. 13
3.2 Supported AXI Signals .. 15
3.3 Flow Control .. 18
3.4 Reset and Shutdown ... 19
3.5 Power Control ... 20
3.6 Clock Control... 20
3.7 Security ... 21
3.8 Quality of Service .. 21
3.9 Interrupts ... 22

4.0 Test Bench .. 23
4.1 FPGA system .. 23
4.2 UMRbus controller .. 27
4.3 DStream JTAG and a host PC .. 27
4.4 A remote power controller ... 29

5.0 Test Cases and Results .. 30
5.1 Control and Status Registers of T-AXI Link .. 32
5.1.1 Test Case – Link Enable/Disable and Dummy Slave 35
5.1.2 Test Case – Link Shutdown .. 36
5.1.3 Test Case – Link Reset... 37
5.1.4 Test Case – Master Link Control .. 38
5.1.5 Test Case – Clock Gating ... 42

vii

5.1.6 Test Case – Status Register bits .. 42
5.2 Credit and Parameters Registers of T-AXI Link .. 45
5.2.1 Parameter Read-Only Registers ... 45
5.2.1.1 CREDIT_DWIDTH Register .. 45
5.2.1.2 RXFIFO_AWIDTH Register .. 45
5.2.1.3 TX_AWIDTH Register ... 46
5.2.1.4 RX_ARWIDTH Register .. 46
5.2.2 Credit Control Registers.. 47

6.0 Conclusion .. 56

references .. 57

viii

LIST OF FIGURES

FIGURE 1: BLOCK DIAGRAM OF SYSTEM-ON-CHIP ... 2
FIGURE 2: FAST, NARROW AND SELF-TIMED BUSSES ... 7
FIGURE 3: VISUAL PRESENTATION OF SIGNALS OF THIN AXI .. 15
FIGURE 4: BLOCK DIAGRAM OF THIN AXI LINK INTERFACE .. 18
FIGURE 5: THIN AXI ROUTING IN FPGA ... 24
FIGURE 6: CONNECTING DSTREAM TO FPGA .. 28
FIGURE 7: CONFIGURE SOC CORES USING ARM RVI .. 28
FIGURE 8: RDB OF SLVSYS SUBSYSTEM T-AXI .. 30
FIGURE 9: SCREENSHOT OF T-AXI TEST CASES WRITTEN IN C ... 31
FIGURE 10: REGISTER DUMP OF A MASTER AND SLAVE T-AXI LINK ... 32
FIGURE 11: ENABLE/DISABLE UART T-AXI LINK WITH DUMMY SLAVE .. 35
FIGURE 12: ENABLE/DISABLE OF T-AXI LINK .. 36
FIGURE 13: TEST RESULT OF LINK SHUTDOWN ... 37
FIGURE 14: TEST CASE RESULTS OF LINK RESET .. 38
FIGURE 15: TEST RESULT OF SWAP MASTER LINK .. 39
FIGURE 16: LINK STATE MACHINE .. 41
FIGURE 17: TEST RESULT OF CLOCK GATING. ... 42
FIGURE 18: TEST RESULTS OF STATUS BITS ON READS AND WRITES ... 44
FIGURE 19: ADDRESS READ CREDIT VALUES VS BANDWIDTH OBSERVED ... 49
FIGURE 20: WRITE DATA CREDIT VALUES VS BANDWIDTH OBSERVED ... 49
FIGURE 21: ADDRESS WRITE CREDIT VALUES VS BANDWIDTH OBSERVED 50
FIGURE 22: READ RESPONSE CREDIT VALUES VS BANDWIDTH OBSERVED 50
FIGURE 23: BRESP CREDIT VALUES VS BANDWIDTH OBSERVED .. 51
FIGURE 24: WRITE DATA FROM PROCESSOR TO UART VS BANDWIDTH OBSERVED 52
FIGURE 25: RR CREDIT VARYING EFFECT OF INCREASED TRAFFIC ON MEMORY PORT 52
FIGURE 26: BR CREDIT SHMOO EFFECT OF INCREASED TRAFFIC ON MEMORY PORT 53
FIGURE 27: AR CREDIT SHMOO EFFECT OF INCREASED TRAFFIC ON MEMORY PORT 53
FIGURE 28: A COMPARISON OF RR BANDWIDTH WITH ARM PROCESSOR AND DMA TRAFFIC AND

WITHOUT ARM PROCESSOR TRAFFIC .. 54
FIGURE 29: A COMPARISON OF BR BANDWIDTH WITH ARM PROCESSOR AND DMA TRAFFIC AND

WITHOUT ARM PROCESSOR TRAFFIC .. 54
FIGURE 30: A COMPARISON OF AR BANDWIDTH WITH ARM PROCESSOR AND DMA TRAFFIC AND

WITHOUT ARM PROCESSOR TRAFFIC .. 55

ix

LIST OF TABLES

TABLE 1: SIGNAL LIST OF THIN AXI BUS ... 14
TABLE 2: AXI4 AND THIN AXI SIGNAL MAPPING .. 16
TABLE 3: CONTROL REGISTER OF T-AXI LINK .. 33
TABLE 4: STATUS REGISTER OF T-AXI LINK ... 34

x

GLOSSARY

AXI Advanced eXtensible Interface

ASIC Application Specific Integrated Circuit

SoC System on Chip

ACE AXI Coherency Extensions

AHB Advanced High-performance Bus

APB Advanced Peripheral Bus

AMBA Advanced Microcontroller Bus Architecture

DMA Direct Memory Access

IP Intellectual Property

DVT Design Verification Testing

RTL Register-Transistor Logic

QoS Quality of Service

DDR SDRAM Double data rate synchronous dynamic random-access
memory

1

1.0 Introduction

In recent years, a smartphone is no longer a device for the road warriors; but

rather, it has become the most personal electronic device that the consumers

own to manage their online and offline lives. The trend to run various smartphone

applications simultaneously, while ensuring that consumers do not have to wait

for the “hourglass”, has triggered a cutting-edge research on reducing the round

trip latency between memory and peripherals. The important aspect of a System-

on-Chip (SoC) not only includes which components or blocks it houses, but also

how they interconnect. One of the de-facto on-chip bus standards is the

Advanced Microcontroller Bus Architecture (AMBA).

AMBA [1] is a registered trademark of ARM Limited and is an open standard, on-

chip interconnect specification for the connection and management of functional

blocks in a SoC. An AMBA-based architecture connects on-chip memory, the

processor and other Direct Memory Access (DMA) devices to a high-

performance system backbone bus that is able to sustain an external memory

bandwidth. This bus provides a high-bandwidth interface between the elements

that are involved in the majority of transfers. AMBA specification is further

subdivided into more specific interfaces such as Advanced eXensible Interface

(AXI), AXI Coherency Extensions (ACE), Advanced High-performance Bus

(AHB), Advanced Peripheral Bus (APB), etc.

2

In this project, Broadcom’s Thin Interconnect Intellectual Property (IP) is

examined and evaluated. This IP is AXI 4 compliant, which is part of AMBA 4.0

released in 2010 [1]. The AXI interconnect facilitates transactions between

various subsystems of the SoC and the system memory, as shown in Figure 1.

The subsystems could be any sort of traffic generator peripheral, such as

processor, video, LAN, graphic, modem, DMAs, etc. These peripherals send

reads and writes to the memory using Thin AXI, which is further explained in this

report.

Figure 1: Block Diagram of System-on-Chip

1.1 Objective

The aim of this project is to understand and verify the design of Thin AXI Link

used in Broadcom’s SoC and analyze the performance metrics. In the full cycle,

3

starting from Register-Transistor Logic (RTL) design through to marketing the

SoC, Design Verification Testing (DVT) is an essential step. DVT ensures that

the designed product is the same as the intended product. Typically, pre-ASIC

(Application Specific Integrated Circuit) design verification is performed on an

emulator such as Field Programmable Gate Array (FPGA), Cadence Palladium,

etc. Hardware emulation imitates the behavior of SoC and is based on a

hardware description language (e.g. Verilog) source code. Once the chip

specifications are verified, the SoC is taped out. Then, post-ASIC design

verification is performed on the ASIC before releasing the Chip in the market. In

this project, pre-ASIC DVT is performed on the Thin links of the SoC.

1.2 Document Outline

This document is organized into six main chapters which describe the design,

implementation and testing of the Thin AXI Link in Broadcom’s SoC. Chapter 1

provides an introduction to the report and Chapter 2 provides the background

information on the Thin AXI and an overview of AXI4 specifications ported into

the Broadcom’s IP. Chapter 3 describes the design and implementation of the

Thin AXI Link. Chapter 4 discusses the test bench set up to verify the

functionality of the Thin AXI Link. Chapter 5 describes the test plan and presents

the test results. Finally, Chapter 6 concludes the report by summarizing the Thin

Links implementation and test results.

4

2.0 Background

System-level interconnect presents a challenging design of servicing all the

masters meticulously and avoiding traffic bottle-necks. There are two proposed

architectures:

 An architecture (say Arch1) that uses off-the-shelf AXI-4 fabric from ARM,

in combination with wide source-synchronous busses. A source-

synchronous interface is one where the clock accompanies the data on its

journey from source to destination, and is used to clock the data into the

receiver. A synchronization stage is then used to transfer the received

data back to the global clock domain. An advanced multi-ported, re-

ordering memory controller implements a Quality of Service (QoS)

scheme based on configurable, per-master, time-to-live counters. The

ARM, the modem and the multimedia subsystems have dedicated

memory controller ports to minimize memory access latency. All other

subsystems use this architecture for memory accesses. The more

centralized QoS comes at the cost of implementation complexity and

routing overhead, and does not fully eliminate local decision-making.

 An architecture (say Arch2) that uses a proprietary single-address-bus

variant of AXI-4, with wide source-synchronous busses and a simple

“sequencer-style” memory controller. A distributed QoS scheme uses

credit arbitration at each multiplexing point in the fabric to share bandwidth

5

between masters, with a panic signal to permit priority escalation with

inheritance.

Both architectures have a considerable amount of bus multiplexing prior to arrival

at the memory controller, and therefore their QoS implementation is distributed

with imperfect local decisions being made on the basis of local information.

In this SoC, there are two DDR4 memory devices implemented. From the

experience of previous Broadcom SoCs, a 128-bit master running at 250MHz is

able to instantaneously saturate the bandwidth provided by a single 32-bit

LPDDR2-800 device.

Bandwidth of Master = 128bits * 250MHz = 32000 Mega bits/second (Mb/s).

Bandwidth of Memory = 32bits * 800MHz = 25600 Mb/s.

By extrapolation, we would require 256-bit masters at 500MHz to come “close to”

saturating the bandwidth provided by a pair of 32-bit DDR4L-2133 devices.

Bandwidth of Master = 256bits * 500MHz = 128000 Mb/s.

Bandwidth of Memory = 2 * 32bits * 2133MHz = 136512 Mb/s.

6

To match the available downstream SDRAM bandwidth, a multi-ported controller

is needed which:

 Accumulates write data from several slower slave ports into internal

buffers until the buffers are full and then, the contents of the buffer are

transmitted at high speed to the SDRAM devices.

 Receives read data at high speed from the SDRAM devices into internal

buffers and then the contents are forwarded at the earliest opportunity via

the appropriate slave port.

To eliminate the delays caused by distributed QoS, and to provide an adequate

supply of upstream bandwidth, this SoC interconnect uses a star-topology

network to connect each non-CPU bus master with a dedicated port on the

memory controller front-end. Each connection, and each controller port, provides

2GB/s of duplex bandwidth (equivalent to 32-bit AXI at 500MHz).

This choice of topology places a heavy burden on implementation, due to a large

number of signals which converge on a single point. Therefore, narrow, fast and

self-timed busses (as shown in Figure 2) are required to ameliorate the resulting

congestion.

7

Figure 2: Fast, Narrow and Self-timed busses

In Figure 2,

 AXI transactions originating at the master are packetized into a local

Transmit (TX) buffer.

 Data is read from the TX buffer by an asynchronous transmitter and sent

over the bus.

 Data is captured by an asynchronous receiver, and copied into a Receive

(RX) buffer.

 Transactions are reconstructed and consumed by logic in the memory

controller.

 Read data and write responses return to the master by a similar

mechanism.

8

This bus architecture is derived from AXI 4 ARM architecture which is described

in next section.

2.1 AXI 4 Design Extracts

This document describes the flavour of AXI4 that is used in Broadcom SoC’s

Thin AXI design. It outlines some of the key behaviours of the system and offers

some design guides for the AXI components. The masters and slaves that are

connected by the Interconnect are described in Section 2.2 and Section 2.3.

Some of the AXI4 features that are incorporated in Broadcom’s bus architecture

are:

 AXI4 has dual address busses. Reads and writes are completely

decoupled.

 AXI4 does not have the inherent ordering. Read/write conflicts need to be

detected and handled by the masters.

 AXI4 supports 256 beat bursts for INCR (unspecified length) bursts.

 AXI4 bursts cannot cross a 4K boundary of the memory.

 AXI4 renames Priority as QOS.

The following AXI 4 features are not supported by the Thin Interconnect:

 Lock signals and exclusive accesses are not supported.

 Regions are not supported.

9

2.2 Master Behaviour

This section discusses some of the requirements that masters/subsystems

should abide in accordance to AXI 4 protocol. All masters should include a

subset of the full AXI4 specification and should be suitable for use in future AXI4

systems that have a different subset of the specifications. AXI Masters must have

the following behaviour:

 Must be able to limit the maximum read/write burst size and the number of

outstanding requests. This limit is in powers of 2 for ease of

implementation and allows system bandwidth behaviour to be tuned.

 Bursts > 16 beats can only be INCR which limits a maximum of 16 beats

to reduce infrastructure storage requirements.

 Bursts cannot cross a 4K boundary.

 Transactions should be labeled as "NOT modifiable" ACACHE[1]=0.

 If masters launch read requests with different IDs, they must be able to

handle the read data coming back out-of-order.

Masters must expect the following ordering behaviour from the AXI subsystem.

 Transactions with the same direction and the same ID to the same slave

will remain in order. For reads, the data will be returned in the same order.

For writes, the responses will be returned in order.

 There is no guarantee of order between reads and writes. You must wait

for a response from one transaction before starting the next.

10

 There is no guarantee of the order of transactions in the same direction

but to different slaves. Read data (or write responses) to two different

slaves may come back in any order even if they have the same ID. The

memory controller will handle the SDRAM page interleaving, making the

SDRAM look like one slave. Peripherals will be located on a 4K boundary

and so masters that access peripherals should treat every 4K boundary as

a separate slave.

In Broadcom’s SoC, all the subsystems adhere to the above stated requirements

of AXI 4 as well as follow the custom design guidelines given below:

 Use a different AXI ID for each transaction. Data read from memory may

be out of order and using a different AXI ID allows the memory controller

to re-order requests and responses and increase the SDRAM efficiency.

System performance may be reduced if the same ID is used to different

slaves because memory subsystem has to re-order reads that go to

different physical SDRAM controllers.

 Indicate any outstanding requests still in flight while the link is powering

down. Care should be taken to ensure that any outgoing requests are

counted from the moment that they are started, and not from when they

are accepted.

 Provide a fine grained QoS control of their (masters) bus behaviour to aid

in system tuning and bandwidth limiting.

11

 Masters should behave in a fair and responsible manner. If they drive a

high QoS value and continual back-to-back requests, then they will

saturate the bus to the detriment of other masters in the system. It is the

responsibility of the Master to control its bus behaviour and play fairly in a

system. It is not the responsibility of the infrastructure or memory

controller to throttle a greedy master. A system can usually support one

greedy master by making it the lowest priority master in the system, so

that it hoovers up all the spare bandwidth. However if there are several

greedy masters, then a method needs to be in place to allocate the spare

bandwidth amongst them.

 Masters should try and access bulk data in large bursts. Caches should be

employed if necessary. DDR4 SDRAM have a minimum burst size of 256

bits, so a single beat 128 bit AXI transfer will only get 1/2 the possible

bandwidth. A 2 beat burst should be considered as an absolute bare

minimum, and a 4 beat burst is much more desirable.

 Masters should drive their priority outputs to zero when inactive.

2.3 Slave Behaviour

This section discusses some of the requirements that slaves/memory should

abide in accordance to AXI 4 protocol. In general, slaves should cope with the full

AXI4 specification and should report any unsupported behaviour with ASSERTS

and return the appropriate response to unsupported behaviour on the bus.

Slaves must have the following behaviour:

12

 Must be able to support up to 256 beat bursts. Bursts > 16 beats can only

be INCR. If a slave does not support >16 beats then it should have an

ASSERT to detect this, and it should return a bus error.

 Slaves do not have to support bursts across a 4K boundary (as this needs

32 bit address logic) but can do so if backwards compatibility with VC-AXI

is required.

 Write response (BResp) cannot be issued until both address and last data

have completed.

 Slaves must cope with all juxtaposition and combinations of address and

write data, i.e. the address and the first beat of write data are no longer

guaranteed to be in the same cycle.

 Error conditions should be returned on Bresp and Rresp when an AXI

access is invalid.

Slaves must obey the following ordering rules:

 Once a response has been given, the slave must maintain data order with

any subsequent transactions, i.e. once inside a slave, then data order

must be preserved.

 Slaves can respond to transactions with different ID's in any order.

13

3.0 Thin AXI Architecture and Implementation

Thin AXI interconnect is the main fabric that routes various thin AXI busses onto

the two SDRAM controllers. The main fabric (MFAB) has to sort out any re-

ordering issues, provide buffering to prevent slow T-AXI links from stalling the

system, enforce memory protection and also provide the system MMU

functionality required for a memory system that allocates scattered 4K pages.

The AXI channels are carried over the high-speed T-AXI bus in a simple Time

Division Multiplexing (TDM) fashion using a synchronous T-AXI clock. In addition,

the bus supports non-AXI commands for link control and a simple address

compression scheme.

3.1 Signal List

The signal list for the T-AXI bus is given in Table 1 and the visual presentation is

provided in Figure 3. Note that the naming convention uses downstream to

indicate the channel moving data/commands away from the system memory and

upstream for the reverse direction.

14

Table 1: Signal list of Thin AXI bus

Signal Description

clk_taxi Synchronous clock covering up/downstream blocks and
repeaters.

rst_taxi_n Async reset with rising edge synchronised to clk_taxi.
Clk_taxi runs much slower during reset.

taxi_d_clkreq Async clock request from downstream module to the
clk_taxi

taxi_u_clkreq Async clock request from upstream module to the
clk_taxi

taxi_d_valid Data valid marker.

taxi_d_data Downstream channel carrying commands and data muxed.

taxi_d_stall Synchronous stall from receiver to the transmitter and
passing through each repeater. Causes a rippled stall up
the T-AXI link with each repeater storing data in a holding
register to cope with the stall delay per stage.

taxi_u_valid Data valid marker. Always asserted for cycles carrying AXI
data and negated for link control commands.

taxi_u_data Upstream channel carrying commands and data muxed.

taxi_u_stall Synchronous stall from receiver to the transmitter and
passing through each repeater. Causes a rippled stall up
the T-AXI link with each repeater storing data in a holding
register to cope with the stall delay per stage.

15

Figure 3: Visual presentation of signals of Thin AXI

3.2 Supported AXI Signals

AXI4 supports a large number of signals, not all of which are essential for the

particular subset of AXI used within any particular system. By limiting the set of

AXI transfers supported, we can increase the throughput of the T-AXI links. The

mapping in Table 2 shows the AXI4 signals supported by the T-AXI link in SoC.

16

Table 2: AXI4 and Thin AXI Signal mapping

AXI 4 Signal T-AXI Support Notes

ACLK clk_d/clk_u Downstream and upstream source
synchronous clocks

ARESETn - Not supported. Resets are sent as
commands

A*ID[3:0] A*ID[9:0] Up to 10-bits of ID are supported.

A*ADDR[31:0] A*ADDR[35:0] 64GB address range is supported

A*LEN[7:0] A*LEN[3:0] Limits burst size to 16 beats (same as AXI3)

A*SIZE[2:0] A*SIZE[2:0] Fully supported

A*BURST[1:0] A*BURST[1:0] Fully supported

A*LOCK[1:0] - Not supported

A*CACHE[3:0] - Not supported as there is no L3 cache in
SoC.

A*PROT[2:0] A*PROT[2:0] Only A*PROT[1] is carried over T-AXI hence
only two levels of security can be supported.

A*QOS[3:0] - Fully supported. Maxima of all transactions’
QoS levels currently held in the link is
forwarded by T-AXI link command which
can override the individual transaction QoS
value as AXI transactions leave the link.

A*VALID - Not required, indicated by T-AXI command.

A*READY - Not required, link status managed by T-AXI
protocol

RID[3:0] RID[9:0] Same ID support as commands

RDATA[n:0] RDATA[n:0] Supports 32/64/128/256-bit data over any
link widths.

17

RRESP[1:0] - Not required, indicated by T-AXI command

RLAST RLAST Supported

RVALID RVALID Gate off clock for idle cycles

RREADY - Not required, link status managed by T-AXI
protocol

WID[3:0] - Write interleaving dropped in AXI4

WDATA[n:0] RDATA[n:0] Supports 32/64/128/256-bit data over any
link widths.

WSTRB[3:0] WSTRB[15/8:0] Only used for AWWS and AWSHRTWS
transactions that are issued when WSTRBs
indicate a partial write.

WLAST - Not essential, so not supported

WVALID - Gate off clock for idle cycles

WREADY - Not required, link status managed by T-AXI
protocol

BID[3:0] BID[9:0] Same ID support as commands

BRESP[1:0] BRESP[1:0] Carried in T-AXI command

BVALID - Not required, link status managed by T-AXI
protocol

BREADY - Not required, link status managed by T-AXI
protocol

CSYSREQ - Low power interface signalling not
supported in T-AXI

CSYSACK -

18

3.3 Flow Control

Flow control of the Thin AXI is split into two parts: AXI data flow control and link

control. Figure 4 shows the block diagram of Thin AXI link.

Figure 4: Block Diagram of Thin AXI Link interface

 Link control is used to prevent the common receive FIFO overflowing and is

simply a stall signal that tells the transmit-front-end to stop sending more data in

cases when T-AXI/AXI clock ratios empty the receive FIFO at a slower rate than

the rate at which they fill it. These stalls will clear quickly and not introduce head-

19

of-tree blocking, as there is nothing fundamentally blocking the flow; they are just

due to data rate differences.

The AXI flow control is a credit-based mechanism that only allows the AXI

command mappers to issue new T-AXI commands if they have sufficient credit.

The mappers are given a starting credit corresponding to the amount of storage

at the receive end of each of the AXI channels and they spend credit each time

they issue a transfer that will use one of those storage words. A mapper cannot

send any further data once it has spent all its credit. This prevents a channel stall

at the receive end causing data from that channel filling the common receive

FIFO and blocking all other AXI channels on the link (a condition that can cause

a deadlock). Ensuring each channel has sufficient storage at the receive de-

mapper means that the common receive FIFO cannot block. Credits are returned

(via T-AXI link commands) each time the de-mapper clears a space in its local

storage by issuing an AXI transaction.

3.4 Reset and Shutdown

T-AXI supports the ability to independently reset and power down the

subsystems at either end of the link. For this purpose, the link provides software

control (through APB registers) to reset the link and to disable it so that the

subsystems at the two ends of the link are decoupled. Two hard reset inputs are

provided that will fully asynchronously reset the registers in the T-AXI block. One

has its rising edge synchronised to the AXI clock (rst_n) and the other to the T-

AXI clock (rst_taxi_n). Rst_n is tied to the power-on reset and the subsystem

20

reset. Rst_taxi_n is driven from the T-AXI LCPR located in the centre of the link.

Link control commands (such as LINK_CTRL) are still supported when the link is

in the shutdown state. The shutdown only refers to the AXI buses connected to

the T-AXI link.

3.5 Power Control

There is limited support required within the T-AXI link for power control. It is

essential that software uses the control and status registers in the T-AXI modules

to disable the link cleanly before powering down.

3.6 Clock Control

The clock is generated from the T-AXI LCPR that is located in the centre of the

link. This is a synchronous clock driven to both ends of the link in thick, wide

metal using a single super-buffer in each direction. This ensures a very low skew

synchronous clock available throughout the link. Each end of the link supplies an

asynchronous clock request (taxi_u/d_clkreq) that it uses to request the clock

from the T-AXI LCPR. The LCPR drives the clock to both ends of the link when

either clock request is active. The two ends of the link asserts the clock request

when they receive an AXI command and remove the request only when they

have received the credits back for all transactions issued. The clock request can

also be activated if a link command is required to be sent due to software

intervention.

21

3.7 Security

The security scheme proposed for this SoC is a superset of ARM’s trustzone

scheme. The T-AXI link carries the AXI PROT signals that are used together with

the masters’ AXI ID to determine AXI permissions within the address map. Only

two levels of security are required for the SoC; hence it was decided to carry only

one bit of APROT across the T-AXI link in order to make space for additional ID

bits. The choice of which APROT bit is carried, can be made at the AXI

connection to the T-AXI instance but for the SoC this will be bit-1.

3.8 Quality of Service

QoS in AXI4 is transmitted per command, however this scheme fails in a

distributed arbitration scheme when a high priority command is queued behind a

low priority command with no opportunity to overtake it. The scheme for the

infrastructure components in the SoC multimedia is for each infrastructure

component to forward the highest QoS level of all its outstanding transfers. For

the T-AXI link, it makes sense to separate the QoS communication from the AXI

transfers and transmit the information of a separate link-control command (QoS).

This allows changes in the QoS level (e.g. due to a master that requested data at

a particular QoS level entering a higher state of panic) to be forwarded

independently of the AXI transfer thus allowing downstream commands’ QoS

levels to be increased.

22

3.9 Interrupts

The suggestion to carry interrupts over T-AXI was examined but rejected as the

benefit in wire saving is negligible compared to the cost due to increased

complexity and the number of signal transitions that would need to occur just to

signal an interrupt.

23

4.0 Test Bench

Since this is pre-ASIC DVT, the SoC is emulated on FPGAs. The FPGA systems

are from Synopsys, configured with four Virtex-7 Xilinx FPGAs. Each FPGA box

contains four FPGAs. An FPGA station is comprised of FPGA system, UMRBus

controller, DSTREAM JTAG, PC and a remote power controller.

4.1 FPGA system

 The simplest technique to deploy Thin AXI DDR is the use of IDDR and ODDR

cells in the FPGA I/O pads, as shown in Figure 5 . One DDR cell is required per

two signals, so a 16-bit T-AXI bus will require eight DDR cells in each direction

for the data. In addition to the data, the source-synchronous clock and a

valid/stall signal must be transferred in each direction. In total, a 16-bit T-AXI bus

can be transferred between FPGAs with 20 I/Os (2 * (8 data + 1 stall/valid + 1

clock)).

24

FPGA BFPGA A

PLL BUFG taxi_ddr_clks.v

BU
FR

BUFI
O

ODDR

taxi_ddr_trx.v

taxi_ddr_tx.v

taxi_ddr_rx.v

FIFO ID
D
R

ODDR

taxi_ddr_trx.v

taxi_ddr_tx.v

taxi_ddr_rx.v

FIFO ID
D
R

ODDR

PLLBUFG

taxi_ddr_clks.v

BU
FR

BUFI
O

ODDR

taxi_ddr_trx.v

taxi_ddr_tx.v

taxi_ddr_rx.v

FIFO

ID
D
R

ODDR

taxi_ddr_trx.v

taxi_ddr_tx.v

taxi_ddr_rx.v

FIFO

ID
D
R

ODDR

External
clock

generator

T-AXI channel A

T-AXI channel B

T-AXI channel A

T-AXI channel B

Figure 5: Thin AXI routing in FPGA

In Figure 5,

taxi_ddr_clk module:

 Takes the global clk_taxi within the FPGA and uses an ODDR cell to

prepare the clock for output on an FPGA I/O pin.

25

 Receives a transferred clock from an FPGA pin and passes it through two

Xilinx clock buffers (that is, one received clock is passed through these

two separate buffers)

o BUFIO: drives a local low-skew clock network to all I/O pads in the

I/O bank and is used to drive the clock pins of all the IDDR cells in

the receiver

o BUFR: drives a regional clock network in the FPGA fabric and is

used to drive the write side of the receiver FIFO

The received clock is passed through an IDELAY element to ensure that the

inbound data stabilises before the sampling event (driven by the delayed clock)

occurs. The IDELAY element requires that an IDELAYCTRL module is

instantiated somewhere in each FPGA.

IDELAYCTRL module:

Due to the use of IDELAY primitives within taxi_ddr_clk, it is necessary to have

an IDELAYCTRL module in each FPGA that instantiates taxi_ddr_clk. It is fed by

a 200MHz clock. The instance have attribute "IDELAY_GROUP" associated with

it, set to "taxi_ddr_rx". For Virtex 7 devices, the clock must be 200MHz ± 10MHz,

and the RST must pulse high for a minimum of 52ns.

26

taxi_ddr_trx module:

Parameter D_WID is the width of the T-AXI data bus (must be 16, 32 or 48). The

taxi_ddr_trx module wraps a taxi_ddr_tx module and a taxi_ddr_rx module as a

pair. This ensures that the stalls travel in the appropriate direction, and also

ensures that the stalls happen correctly. It takes three clocks:

 clk_taxi : the system-global T-AXI clock

 clk_io : the I/O clock received from the other end of the link by taxi_ddr_clk

 clk_r : the regional fabric clock received from the other end of the link by

taxi_ddr_clk

taxi_ddr_tx module:

This module deals with the transmit side of the link. It organises outbound data

into bit pairs and presents to ODDR cells for transmission. This module uses

only the global clock.

taxi_ddr_rx module:

This module deals with the receive side of the link. Using clk_io, it receives the

DDR data with IDDR cells. Using clk_r, this data is passed into a FIFO. This

FIFO is used to manage both the domain-crossing into the global clk_taxi

domain, and also to manage T-AXI stall cycles. The read-side of the FIFO is in

the clk_taxi domain.

27

4.2 UMRbus controller

The HAPS UMRBus (Universal Multi-Resource Bus) Interface kit is a complete

and reliable set of components that allow bi-directional data exchange (at

runtime) between software (C/C++ or Tcl/TK applications) and hardware DUT

(Device Under Test).

4.3 DStream JTAG and a host PC

ARM DStream is a debug and trace tool that facilitates powerful software debug

and optimization on any ARM processor-based hardware target. It uses eclipse

configured to work with DS-5 and connects the PC to the FPGA over USB

connection. A connection is created using Realview as shown in Figure 6 and the

cores are enabled as shown in Figure 7.

28

Figure 6: Connecting DStream to FPGA

Figure 7: Configure SoC cores using ARM RVI

29

4.4 A remote power controller

Each FPGA station is on its own electrical circuit and protected by a 15A breaker.

In the event an FPGA system or PC locks-up, power must be cycled to get the

equipment operational again. To allow for better remote access, each FPGA

station has been equipped with a remote power controller so a user can control

the power to a station remotely through a web interface.

30

5.0 Test Cases and Results

The T-AXI link is implemented as two individual modules: taxi_upstream

(subsystems to memory) and taxi_downstream (memory to subsystems). All

blocks below these top-level structural modules are common between the two

and are managed by parameters. There are a number of parameters at the top

level of the T-AXI upstream and downstream modules that allow the link to be

tuned for area, power and performance and to set its AXI connectivity

configuration. Some of these parameters need to be consistent at both ends of

the link whereas others are set to tune the operation of that end of the link only. A

description of how to use each parameter is provided in Broadcom’s RDB

(Register Data Base). As an example, one of the T-AXI module’s registers are

given in Figure 8. This is part of the RDB and defines the memory locations,

register names and their description.

Figure 8: RDB of SLVSYS Subsystem T-AXI

The test cases are written in C language and use a Broadcom’s OS-less

(Operating-System-less) infrastructure to implement the code. Figure 9 shows a

31

list of all the test cases that were implemented to fully test and characterize a T-

AXI Link.

Figure 9: ScreenShot of T-AXI Test Cases written in C

In Figure 9, each of the commands on the left hand side can be executed as

shown in Figure 10. Figure 10 shows the register dump of a T-AXI Link. The

address field shows the memory location of the Link Registers, Value_Read is

the current value in the Register (these values are explained in Table 3 and

Table 4), Default_Value is the register value when the link is turned on or reset.

32

Figure 10: Register dump of a Master and Slave T-AXI Link

5.1 Control and Status Registers of T-AXI Link

There are a number of essential control/status register bits to use and

understand when managing the T-AXI link. Table 3 gives a glimpse of Control

register of T-AXI Link. Bits 09:31 are reserved and must be written with 0. Table

4 gives an overview of Status Register bits. The bits not indicated in the table are

reserved bits.

33

Table 3: Control Register of T-AXI Link

Field Name Bit
Field

Description

DisableTaxiClkGate 08 Disables the clock gating used on the T-AXI
link. Will result in higher power but can reduce
latency for the first transfers after the clock
was gated.

ForceLinkCtrlState 07:05 Forces the link_state control state machine to
a specific state. Only for use in lock-up
scenarios.

ForceLinkCtrl 04 Forces the link_state control state machine to
a specific state. Only for use in lock-up
scenarios. State forced is set by
ForceLinkCtrlState.

QosForwardEnable 03 Enables QoS forwarding, i.e taking the QoS
values of all transactions in the link and
forwarding the maximum value to both the
awqos and arqos outputs from the receiver.

LinkCtrlMaster 02 Enables this end of the link to be the master
for link control, i.e. only shutdown/reset
changes from this end of the link will be
observed. Setting this bit at both ends of the
link may result in lock-up. If it is desired to
change the control from one end of the link to
the other then this should be done when the
link is enabled and active.

Reset 01 Resets the link. Prevents any new AR/AW AXI
transactions being accepted and issues a
reset command to the other end of the link to
tell it to do likewise. Waits for outstanding
transactions to complete then issues a
synchronous reset to all control logic and
forces a reload of credit starting values. Reset
is released automatically without needing to
re-write this register.

Enable 00 Set to enable the T-AXI link. Resets to
disabled to ensure low-power after start-up
When cleared, the T-AXI link will stop taking
any new AXI read/write commands and
attempt
to complete any in-flight transactions.

34

Table 4: Status Register of T-AXI Link

Field Name Bit
Field

Description

RemoteStatusActive 31 When set, the remote end of the link is
currently in the active state. Software
checks that this bit is set prior to enabling
traffic into the link.

RemoteStatusShutdown 30 When set, the remote end of the link is
currently in the shutdown state. Any AXI
commands issued into the remote end of
the link is swallowed by a dummy
responder when in this state and likely
results in instabilities in the system

OustandingWriteCount 28:21 Number of write transactions currently
issued but not yet completed.

OustandingReadCount 20:13 Number of read transactions currently
issued but not yet completed.

DummyAccessed 08 This bit is set whenever the dummy slave is
accessed and cleared by writing. The
dummy slave should never be accessed in
normal operation so if this bit has been set
then the link has either been shut down
prematurely or accesses started before the
link was enabled.

LinkState 03:01 Current state of link control state machine.
Only included to assist with debug in a
potential
lock-up scenario. This state machine is
used to safely manage the
reset/shutdown/enable of the link. Resets
can be issued transparently while the link is
active.

Idle 00 Indicates no outstanding transactions and
that the link is ready for reset/power-down

35

5.1.1 Test Case – Link Enable/Disable and Dummy Slave

Whenever a link is disabled, a dummy AXI slave is switched into the bus, so that

transactions sent to the bus are completed and the bus does not lock up. Any

transaction issued while the link is disabled is swallowed by the dummy slave. A

write command/data is swallowed and ignored and a BRESP is issued. A read

command/data is returned with a random dummy data. Software should take

care that the bus is idle when enabling/disabling the link to ensure that

transactions to not enter dummy slave. Dummy slave is tested on SoC’s UART

(Subsystem) using the following steps:

1. T-AXI link connecting UART to memory is enabled. Link “enable” is

verified by reading and writing data to the memory.

2. T-AXI link connecting UART to memory is disabled. The console gets

stuck at this point because dummy slave turns on. Since UART constantly

reads data/commands from the console, dummy slave supplies random

data which causes system hang due to software not being able to handle

garbage data (See Figure 11)

Figure 11: Enable/Disable UART T-AXI Link with dummy slave

3. A proper T-AXI “disable” functionality is verified using another port.

The port was enabled and verified as given in step 1. Then the port was

disabled. The verification of disabled port is provided in step 2 (which is

36

dummy slave activation). Figure 12 shows the test completion screen

shot.

Figure 12: Enable/Disable of T-AXI Link

5.1.2 Test Case – Link Shutdown

Link shutdown requires more careful management by software as the dummy

slave is switched on when the link is disabled; hence, transactions can get lost if

the correct sequence is not followed. The logic in the T-AXI hardware can ensure

that clean transitions are achieved between the enabled and disabled states but

it has no way of knowing when a subsystem has finished using the link so it

cannot wait for a specific event to tell it to switch the link off. This is the

responsibility of software. The routine for powering down a block connected to

the rest of the chip via T-AXI is:

1. Instruct block to go idle. This is block-specific but generally, it tells the

block to complete all necessary housekeeping and then stop generating

any new AXI transactions. The block provides status information (Idle bit

37

goes high) to the host CPU when it has reached its quiescent state so that

the host knows when it can move to step 2.

2. Disable the T-AXI link. This puts the T-AXI link into its quiescent state and

switch on dummy slaves at the command-receiving AXI interfaces. To

complete transactions over the link, the AXI clock in the subsystem being

shutdown, is kept running until the T-AXI link enters the disabled state.

Once the link is disabled, it is clearly not possible for the host to use the

path via T-AXI to write to a register to switch off the clocks. Disabling

clocks is done through the clock manager, which is accessed using ARM

JTAG.

3. Power down the subsystem.

4. Power down the T-AXI link. The dummy slave component lies outside of

the T-AXI power domain and remains enabled when the T-AXI link is

powered down.

Figure 13: Test Result of Link Shutdown

5.1.3 Test Case – Link Reset

Link reset requires waiting for the outstanding transactions to complete before

resetting. The sequence that Link Reset Test case follows is:

38

1. Hold off new A*READY to prevent new transactions entering the link.

2. Wait for outstanding transactions to complete and all outstanding credits

to be returned. Check idle status bit = 1 and OutstandingWriteCount =

OutstandingReadCount = 0.

3. When both ends are idle, issue a synchronous reset to the control logic at

both ends of the link.

4. Return to the active state. Verify if any data is lost during reset by reading

system memory for any corruptions.

Figure 14: Test case results of Link Reset

5.1.4 Test Case – Master Link Control

The T-AXI link has the facility for the control registers at either end of the link to

be used for link management, however only one end of the link can be used. The

software can select either the upstream or downstream end to be the link master

by setting the LinkCtrlMaster bit in the TAXI_CTRL register at the desired end of

the link. If this bit is not set then the enable/reset bits of the control is ignored. It

is possible to transfer the link master to be the other end of the link. The swap

Link test case follows the sequence below:

39

1. Disable the link and wait for the status register to indicate that the link is

fully shut down (Used Test cases 5.2 and 5.3).

2. Clear the LinkCtrlMaster bit at the end of the link that is currently the

assigned link master.

3. Set the LinkCtrlMaster bit at the other end of the link.

4. Enable the link (using the control register at the new link master).

The Link Master will typically be assigned to the upstream end of the link as the

control registers at the upstream end are typically accessible to the CPU without

needing the link to be enabled.

Figure 15: Test Result of Swap Master Link

Both ends of the T-AXI link contain a link control state machine that it uses to

safely transition between link states such as active, disabled and reset. The state

machines at the two ends of the link need to track each other to ensure safe

transitions with the link master leading the state transitions and the other end

following its lead. The LinkState bit from Table 4 can have the following state

decoding:

0x0 LINK_DISABLED - Link is shutdown, dummy slave enabled

0x1 LINK_WAIT_DS_IDLE - Wait for dummy slave to go idle and go ready

0x2 LINK_READY - Link is ready but not enabled.

40

0x3 LINK_ACTIVE - Link active and ready to take transfers

0x4 LINK_WAIT_IDLE - Wait for existing transfers to clear then go to idle

0x5 LINK_IDLE - Wait for remote to go idle then go to reset

0x6 LINK_RESET - Reset issued, then go to reset_clear

0x7 LINK_RESET_CLEAR - Reset cleared, go to either disabled or ready

41

REM
O
TE STA

TE = D
ISA

BLED

Figure 16: Link State Machine

42

5.1.5 Test Case – Clock Gating

Clock gating saves power by adding more logic to a circuit to prune the clock

tree. Pruning the clock disables portions of the circuitry so that the flip-flops in

them do not have to switch states. Switching states consumes power. When not

being switched, the switching power consumption goes to zero, and only leakage

currents are incurred. This test measures the read and write latency before and

after disabling clock gating in T-AXI Link. From Figure 17, before disabling clock

gating, the number of CPU ticks required to complete read and write test is

12624. After clock gating is disabled, the number of CPU ticks required to

complete read and write test is 12620. This clearly shows that disabling clock

gating can reduce latency for the first transfers after the clock was gated.

Figure 17: Test result of Clock gating.

5.1.6 Test Case – Status Register bits

The functionality of status bits was tested using various read and write cases. As

shown in Figure 18, when a T-AXI Link is activated the RemoteStatusActive bit is

high at the subsystem side of the T-AXI as well as at the Main Fabric side of the

T-AXI. The LinkState is 0x3 which means link is active and ready to take

43

transfers. When the write traffic is initiated, OutStandingWriteCount bits give out

the number of outstanding writes. In Figure 18, there are eight outstanding

writes. After the writes complete, the link comes back to the initial state. When

the reads start, OutStandingReadCount bits give out the number of outstanding

reads. In Figure 18, there are four outstanding reads. After the reads complete,

the link comes back to the initial state.

44

Figure 18: Test results of Status bits on reads and writes

45

5.2 Credit and Parameters Registers of T-AXI Link

The credit registers carry a payload that gives the number of words transferred

from the link on each AXI channel from the available buffer space in the receiver.

Transmit can increase its available credit by the value carried. There are various

credit registers in the T-AXI Link and are tested in the following sections. Also,

there are four parameter registers which carry connectivity configuration

parameters of the T-AXI Links.

5.2.1 Parameter Read-Only Registers

The Parameter registers are read-only and are assigned the build values of the

Link. These values are used to configure credit registers.

5.2.1.1 CREDIT_DWIDTH Register

Credit_dwidth register contains the width of the buses that are used to carry

credit tokens across the link. Credits are accumulated in the receivers at both

ends of the link each time the corresponding AXI channel completes a phase.

They are passed back to the transmitter which is only able to send new

commands/data if it has sufficient credit. This bus width is set at the minimum

needed to avoid an overflow in the counter.

5.2.1.2 RXFIFO_AWIDTH Register

This register contains the address width of the receive FIFO. This FIFO is sized

to minimize stalls on the T-AXI link while remaining area efficient. It is currently

sized at 32 words i.e RXFIFO_AWIDTH=5. The second factor in the size of this

46

FIFO is that it is read in much larger data widths than it is written - data is read

out on the AXI clock and is shifted in much larger data quantities in this domain

per clock compared to the taxi data width. For example, an AXI write involves

transferring an AW command (~60-bits of data) plus 144 bits of write data and

strobes on a single clock, so we need to read 12 words from the FIFO for a

3GB/s link. In addition, the receiver has the capability to read data for up to two

channels per clock (e.g. a write command/data plus a read command) so the

FIFO must be sized to accommodate this, which is variable with TAXI_DWIDTH.

5.2.1.3 TX_AWIDTH Register

This parameter sets the number of address bits needed for the transmit FIFO.

This is a wide/shallow FIFO used to cross from the AXI clock domain to the T-

AXI clock domain, so, adding more address bits is expensive (e.g. FIFO is 244-

bits wide in downstream for a 128/32-bit memory/peripheral bus). A depth of 4

(i.e. TX_AWIDTH=2) has been shown to produce very few unnecessary stalls so

this register is set to a value of 2.

5.2.1.4 RX_ARWIDTH Register

This register contains the size of the storage built at the receive end of the read

command channel and determines the number of outstanding transactions that

the receiver can take (and not pass down the bus) before the transmitter will run

out of credit and stall.

47

5.2.2 Credit Control Registers

The link resets with a small starting credit assigned to each AXI channel in order

to enable the link to function correctly, however this is typically smaller than the

maximum the link can support. Setting the credit values to their maximum value

will increase the performance of the link by allowing it to support more

outstanding transactions.

The credit values assigned to the AR/AW/RR/BR_CREDIT_CTRL registers

should match the sizes of the corresponding receive FIFOs at the far end of the

link so that the transmit ends of the link can issue enough outstanding

transactions to fill these FIFOs but no more. The software determines the size of

these FIFOs by reading the Parameter registers for the two ends of the link.

Since the values read from parameter registers are the FIFO address widths

rather than the actual FIFO depths, they are adjusted to match the actual FIFO

depth to determine the maximum credit allocation, for example:

AR_Credit (upstream) = 1 << RXAR_FIFO_AWIDTH (downstream)

AW_Credit (upstream) = 1 << RXAW_FIFO_AWIDTH (downstream)

WD_Credit (upstream) = 1 << RXWD_FIFO_DWIDTH (downstream)

RR_Credit (upstream) = 1 << RXRR_FIFO_DWIDTH (downstream)

BR_Credit (upstream) = 1 << RXBR_FIFO_DWIDTH (downstream)

Once the new credit values have been programmed, the link is reset to update

the new credit values. To test the credit registers, a DMA subsystem was used to

48

read and write to the memory using T-AXI Link. The maximum bandwidth

supported by DMA port is 20MB/s:

 FPGA clock was running at 10MHz,

 DMA does 1 read and 1 write per transaction,

 Therefore, DMA peak bandwidth = 10MHz * 2Bytes = 20MB/s.

On the other hand, maximum bandwidth supported by memory controller is

40MB/s:

 FPGA clock was running at 10MHz,

 Memory controller lane is 32bit wide, therefore supporting 4Bytes

 So, Memory peak bandwidth = 10MHz * 4Bytes = 40MB/s.

In the test, the credit control registers were varied from their minimum to

maximum credit values and at each credit value, DMA generated traffic and

system bandwidth was measured. Figure 19 through to Figure 23 show the

bandwidth results. Some terminology used in the tests is:

AR = Address Read

AW = Address Write

WD = Write Data

RR = Read Return, acknowledgement to the read data

BR = BResp, acknowledgement to the write data.

49

Figure 19: Address Read Credit values vs bandwidth observed

Figure 20: Write Data Credit values vs bandwidth observed

50

Figure 21: Address Write Credit values vs bandwidth observed

Figure 22: Read Response Credit values vs bandwidth observed

51

Figure 23: BResp Credit Values vs bandwidth observed

From Figure 19 through to Figure 23, it can be noticed that the bandwidth did not

get affected by the changes in the credit values of AR, AW and WD; whereas,

the bandwidths experienced a significant change in the credit values of BR and

RR. This is because these credit registers affect the downstream traffic (i.e.

traffic generated towards the subsystem). Since RR and BR traffic is sent from

memory to the subsystem, a significant change is observed. Another test was

written where the processor writes data to the UART. Since the writes pass

through T-AXI Link, and reach up to the UART subsystem, the bandwidth drops

can be observed when credit values are decreased (see Figure 24).

52

Figure 24: Write Data from processor to UART vs bandwidth observed

Another test was performed where an effort was made to congest the memory

controller. The processors initiated reads to the memory controller as well as the

DMA. The memory controller port had to fulfil the requests of the processors and

the DMA at the same time. Figure 25 through to Figure 27 show the effects of

additional traffic on the bandwidth of the system.

Figure 25: RR Credit varying effect of increased traffic on Memory port

53

Figure 26: BR Credit shmoo effect of increased traffic on Memory port

Figure 27: AR Credit shmoo effect of increased traffic on Memory port

54

A comparison was made between the system bandwidths before adding

processors’ traffic to the DMA traffic, as shown in Figure 28 through to Figure 30.

Figure 28: A comparison of RR bandwidth with ARM processor and DMA
traffic and without ARM processor traffic

Figure 29: A comparison of BR bandwidth with ARM processor and DMA
traffic and without ARM processor traffic

55

Figure 30: A comparison of AR bandwidth with ARM processor and DMA
traffic and without ARM processor traffic

As seen from Figure 28 through to Figure 30, the bandwidth of the T-AXI Link

decreased with an increase in traffic on memory port. This is due to the sharing

of memory port by the DMA and the ARM processor to fulfill their transaction

needs.

56

6.0 Conclusion

Thin-AXI was developed in-house at Broadcom as a method to reduce the pain

of routing wide AXI buses across silicon chips, by collapsing transactions on wide

buses down to packetized transactions on a narrower but faster bus. In this

project, design verification of a T-AXI link was performed. From the test results, it

was verified that the T-AXI link is fully functional according to the design

specifications. Performance analysis was conducted on the T-AXI Links. In the

analysis, various credit registers were varied from their minimum to maximum

values to determine its effect on the Link bandwidth. It was observed that the

lower credit values caused fewer outstanding transactions to be stored in the

buffers and thus caused high latency in transaction completion. Higher latency

caused the link bandwidth to drop, which was observed from the test cases.

Overall, the link bring-up, shutdown, reset and link states were verified to be fully

functional.

57

REFERENCES

[1] ARM (2013). AMBA Trademark License [online]. Available:
http://www.arm.com/files/pdf/ AMBA_trademark_license.pdf (URL)

[2] Xilinx (2013, June 21). Virtex-6 FPGA - SelectIO Resources, User Guide,
UG361 (v1.4) [online]. Available:
http://www.xilinx.com/support/documentation/user_guides/ug361.pdf
(URL)

[3] Broadcom (2012, Jan 13). Thin AXI Interface and Design Specifications
(Internal Document)

[4] ARM (1997, April). AMBA Advanced Microcontroller Bus Architecture
Specification (Document Number: ARM IHI 0001D) [online]. Available:
http://larc.ee.nthu.edu.tw/~sjtsai/current_research/paper_review/Advanced
%20Microcontroller%20Bus_Architecture_Specification.pdf (URL)

[5] Xilinx (2012). AXI4 Technical Seminar, Xilinx [online]. Available:
http://www.em.avnet.com/en-us/design/trainingandevents/Documents/X-
Tech%202012%20Presentations/XTECH_B_AXI4_Technical_Seminar.pdf
(URL)

[6] Saad Z. Asif (2001), Next Generation Mobile Communications Ecosystem,
Technology Management for Mobile Communication, First Edition.

[7] Pasricha S., Dutt N. (2008), Chapter 3 in On-Chip Communication
Architectures: System on Chip Interconnect, First Edition.

[8] Coppola M., Grammatikakis M. D., Locatelli R., Maruccia G., Pieralisi L.,
(2008). Design of Cost-Efficient Interconnect Processing Units: Spidergon
STNoC, First Edition.

