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Abstract

Statistical Machine Translation (SMT) is the task of automatic translation between two natural

languages (source language and target language) by using bilingual corpora. To accomplish this

goal, machine learning models try to capture human translation patterns inside a bilingual cor-

pus. An open challenge for SMT is finding translations for phrases which are missing in the

training data (out-of-vocabulary phrases). We propose to use paraphrases to provide translations

for out-of-vocabulary (OOV) phrases. We compare two major approaches to automatically ex-

tract paraphrases from corpora: distributional profile (DP) and bilingual pivoting. The multilingual

Paraphrase Database (PPDB) is a freely available automatically created (using bilingual pivoting)

resource of paraphrases in multiple languages. We show that a graph propagation approach that

uses PPDB paraphrases can be used to improve overall translation quality. We provide an extensive

comparison with previous work and show that our PPDB-based method improves the BLEU score

by up to 1.79 percent points. We show that our approach improves on the state of the art in three

different settings: when faced with limited amount of parallel training data; a domain shift between

training and test data; and handling a morphologically complex source language.

Keywords: Natural Language Processing; Statistical Machine Translation; Paraphrase Database;

resource poor languages; morphologically complex languages; Graph-based semi-supervised method;

multilingual resources; PPDB; out-of-vocabulary; OOV
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Chapter 1

Introduction

1.1 Motivation

Statistical Machine Translation (SMT) is the task of translating between two languages by exploit-

ing bilingual parallel corpora using data-driven machine learning techniques. A parallel corpus

is a sequence of sentences in the source language with human provided translations in the target

language. Such parallel corpora are often available from sources such as parliament proceedings or

similar venues where multi-lingual data is created in large scale by trained human translators. These

techniques automatically capture co-occurrence relations between words in the source language and

corresponding words in the target language.These word alignments are used to extract phrase trans-

lation rules along with several probabilistic feature functions. These stochastic translation rules are

combined using a discriminative log-linear model. The weights for this log-linear model are learned

by minimizing a loss function that rewards matches against human translations.

After recent achievements in SMT, many potential applications, e.g. real time multilingual

translation in e-commerce websites, have been emerging very fast. Despite satisfactory results in

some of these applications, many of them are facing problems caused by a rudimentary assumption

in most SMT methods: availability of sufficient parallel corpora; this assumption, high dependence

of methods on existence of parallel corpora, is not true in many cases and limits the progress.

First case comes up when a limited amount of parallel data exists for resource poor languages.

With over 6,500 world natural languages, such large bilingual corpora are only available for the

official languages of the European Union (EU), Arabic, Chinese, and Russian. This problem become

worse considering language pairs instead of individual languages [50]. Lack of resources in these

languages, in the first step will increase Out-of-vocabulary (OOV) words, unseen words in bilingual

corpus, which dramatically reduce translation quality and fluency. The quality is not desirable due

to lack of translation for these new words, and also this has an adverse effect on reordering models

inside decoder resulting in reduced fluency.

Even for resource rich languages, lack of resources in certain domains (e.g. biomedical) leads

to poor quality translations (second case). Domain shift increases the number of OOVs and also

1



might cause nonsensical translations for phrases. For example, in social networks like Twitter,

several spelling variants of existing words and informal words are missing in the training set, which

requires domain adaptations methods. Even with a training data size of 10 million word tokens,

source vocabulary coverage in unseen data does not go above 90% [10]. The problem is worse with

multi-word OOV phrases.

Morphologically complex languages (e.g. Finnish, Arabic, ...) present the third case of situ-

ations, in which MT systems will not come up with words forms that have not observed. Many

of morphological variants of a phrase are missing even in high amount of parallel corpora, which

reduce the chance of finding a correct translation. For example, Arabic verbs, as in other Semitic

languages, are extremely complex; many grammatical functions like tense, person, number, mood,

voice are applied on a root made up of three consonants to build a correct verb for a sentence.

This fact exacerbates the sparsity problem for these languages; in other words, the more complex

structure a language has, the more data a machine translation system requires to capture the right

translation patterns.

Copying OOVs to the output is the most common solution. However, even noisy translations of

OOVs can improve reordering and language model scores [73]. Obtaining more parallel data is time

consuming, expensive, and requires domain experts. Although alternatives to alleviate this problem

like crowdsourcing in [58] have been suggested, achieving more parallel data is not always feasible

for machine translation. Transliteration is not a panacea for the OOV problem [28]. OOVs can be

divided into two categories: 1) named entities 2) non-named entities. Identifying named entities

like person names, organizations, dates, etc. inside a text, is another task in NLP. For the first

category, applying deterministic approaches like transliteration on top of identified named-entites in

the source side, provides good translations. Our target in this thesis is non-named entities, therefore

we find and remove the named entities, dates, etc. in the source and focus on the use of paraphrases

to help translate the remaining OOVs. In Chapter 6 we show that handling such OOVs correctly

does improve translation scores.

All of these cases illuminate the need of incorporating other types of resources including mono-

lingual corpus on the source side, paraphrase databases, dictionaries, morphological analyzers and

bridge language resources. Therefore, new robust methods that do not just rely on parallel corpora

are required to tackle these problems. For instance, [36] was one of the earliest works to find lexical

translations by using monolingual resources of the source and target language.

In this thesis, we build on the following research: Bilingual lexicon induction is the task of

learning translations of words from monolingual data from the source and target [64, 37, 24]. The

distributional profile (DP) approach uses context vectors to link words as potential paraphrases to

translation candidates [59, 37, 24, 22]. DPs have been used in SMT to assign translation candidates

to OOVs [45, 16, 29, 27]. Graph-based semi-supervised methods extend this approach and prop-

agate translation candidates across a graph with phrasal nodes connected via weighted paraphrase

relationships [60, 62]. Saluja et al. extend paraphrases for SMT from the words to phrases, which

we also do in this work [62]. Bilingual pivoting uses parallel data instead of context vectors for

2



paraphrase extraction [43, 64, 3, 10, 76, 9]. Ganitkevitch and his colleagues [20] published a large-

scale multilingual Paraphrase Database (PPDB) 1 which includes lexical, phrasal, and syntactic

paraphrases (with 170 million paraphrases for 22 languages).

PPDB is a natural resource for paraphrases. However, PPDB was not built with the specific

application to SMT in mind. Other applications such as text-to-text generation have used PPDB [21]

but SMT brings along a specific set of concerns when using paraphrases: translation candidates

should be transferred suitably across paraphrases. There are many cases, e.g. when faced with

different word senses where transfer of a translation is not appropriate. Our proposed methods of

using PPDB use graph propagation to transfer translation candidates in a way that is sensitive to the

mentioned SMT concerns.

Using PPDB has several advantages: 1) Resources such as PPDB can be built and used for

many different tasks including but not limited to SMT. 2) PPDB contains many features that are

useful to rank the strength of a paraphrase connection and with more information than distributional

profiles. 3) Paraphrases in PPDB are often better than paraphrases extracted from monolingual or

comparable corpora because a large-scale multilingual paraphrase database such as PPDB can pivot

through a large amount of data in many different languages. It is not limited to using the source

language data for finding paraphrases which distinguishes it from previous uses of paraphrases for

SMT.

Our framework has three stages: 1) a novel graph construction approach for PPDB paraphrases

linked with phrases from parallel training data. 2) Graph propagation that uses PPDB paraphrases.

3) An SMT model that incorporates new translation candidates. Chapter 4 explains these three

stages in detail.

1.2 Comparison to Related Work

There have been some attempts in using paraphrases to improve the performance of machine trans-

lation in different levels. Paraphrase pairs can be defined as lexical paraphrases, phrasal paraphrases

and sentential paraphrases.

Sentence level paraphrasing has been used to generate alternative reference translations to im-

prove discriminative training for SMT [42, 31], or augmenting the training data with sentential

paraphrases [5, 49, 47]. Using sentence level paraphrases to augment the underlying SMT model is

not scalable as there are exponentially many paraphrases if you consider each phrase in a sentence.

Another line of work, is to use lexical/phrasal paraphrases, hence human-generated version of

these resources are not available. Resnik et al (2010) use crowd-sourcing to obtain paraphrases for

source phrases corresponding to mistranslated target phrase [61]. Although using crowd-sourcing,

this approach is expensive and also is not applicable to all languages and domains. Thus, it is

essential to have accurate automatic ways to find paraphrase pairs. Many possible solution for auto-

matic paraphrase extraction has been proposed, one of the recent ones, is to use word embeddings
1http://paraphrase.org
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extracted using neural networks (i.e. the continuous representations often tend to cluster similar

words). Although these bilingual and multilingual word and phrase representation using neural net-

works have been applied to machine translation successfully [77, 46, 72], these embeddings are not

accurate for rare word or phrases [75]. Since having accurate (high precision) paraphrases espe-

cially for OOVs is a must for our problem, we decided not to use these methods. The remaining

two major ways of extracting paraphrases are: distributional profiling and bilingual pivoting which

is discussed in Chapter 3 in details. The first one uses monolingual corpora to extract paraphrases

while the second one uses bilingual resources.

Back to our problem, we want to use lexical/phrasal paraphrase pairs to improve translation

quality and alleviate the problem of OOV phrases. To improve the OOV phrase coverage different

parts of SMT can be altered. Two of the promising ones are changing the decoding stage and

augmenting phrase table. There are some works on using phrasal paraphrasing in lattice decoding

as well [55, 17]. They build paraphrase lattices for the source sentences which is given to the

lattice decoder to select the best one. Alexandrescu and Kirchhoff (2009) [1] use a graph-based

semi-supervised model determine similarities between sentences, then use it to re-rank the n-best

translation hypothesis. Liu et al. (2012) [41] extend this model to derive some features to be used

during decoding. These approaches are dependent on the decoding technique and are orthogonal

to our approach. Our approach, which is in the second category, augment the phrase table and any

type of decoder can benefits from that.

Similar to our approach, in augmenting the phrase table, Irvine and her colleagues [27] generate

a large, noisy phrase table by composing unigram translations which are obtained by a supervised

method from a limited parallel data and a bilingual lexicon induced from monolingual data [26].

Comparable monolingual data is used to re-score and filter the phrase table. Zhang et al. [74] use a

large manually generated lexicon for domain adaptation.

As mentioned before, the most similar works to ours are done by Razmara et al. and Saluja

et al. [60, 62]. [60] use graph-based semi-supervised methods extend this approach and propagate

translation candidates across a graph with phrasal nodes connected via weighted paraphrase rela-

tionships. Saluja et al. (2014) [62] extend the previous work by using Structured Label Propaga-

tion [41] in two parallel graphs constructed on source and target paraphrases. Our work is different

from their work in many aspects. First, we used a different (less noisy) approach to extract para-

phrases (bilingual pivoting) than distributional profiling. Second, their work is not scalable to the

n-grams longer than trigrams and extremely expensive, but our PPDB-based approach covers any

length phrases. Finally, because of different accurate filters used for extracting PPDB paraphrases,

in experiments we showed that it has a better performance when compared to the work by Razmara

et al. [60]. We can not directly compare our results to [62] because they exploit several external

resources such as a morphological analyzer and also had different sizes of training and test. In our

experiments (Chapter 6) we obtained comparable BLEU score improvement on Arabic-English by

using bilingual pivoting only on source phrases. [62] also use methods similar to [23] that expand

the phrase table with spelling and morphological variants of OOVs in test data.
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1.3 Contributions

The primary contributions of this thesis can be summarized as follows:

• For the first time, we did a comprehensive study of the use of PPDB for statistical machine

translation model training. We showed that this resource is useful in all mentioned cases that

SMT suffers from a lack of translation for OOVs.

• We compare two major approaches of paraphrase extraction methods (PPDB versus DP) in

terms of their effectiveness in solving OOVs problem.

• We introduce a novel method for constructing a graph out of PPDB, and analyze the advan-

tageous and drawbacks of different graph construction methods. We also evaluate the impact

of constraints like graph pruning (K-nearest neighbours or e-radius) on improving our frame-

work.

1.4 An Overview of This Thesis

The chapters in this thesis are organized as follows:

Chapter 2 provides relevant background from the machine learning and machine translation liter-

ature. This chapter will covers definition and explanation of Statistical Machine Translation

approaches from different perspectives. A brief survey of semi-supervised machine learning

techniques is the last section of this chapter.

Chapter 3 introduce and compare major ways to automatically extract paraphrase pairs for a lan-

guage (DP versus PPDB). Distributional profiling (DP) uses monolingual corpora to find

paraphrases according to context, while (PPDB) uses bilingual pivoting over a parallel cor-

pus, to find paraphrases.

Chapter 4 explores possible approaches to transfer translations from seen phrases to unseen phrases.

We compare possible options and explain our framework step by step and its desirable fea-

tures.

Chapter 5 analyze our framework in terms of sensitivity to error and required consideration for

SMT. we discuss potential ways to improve the performance of our approach.

Chapter 6 compares our approach with the state-of-the-art in three different settings in SMT: 1)

when faced with limited amount of parallel training data; 2) a domain shift between training

and test data; and 3) handling a morphologically complex source language. In each case, we

show that our PPDB-based approach outperforms the distributional profile approach.

5



Chapter 7 summarizes the specific results achieved in the previous chapters on improving statis-

tical machine translations by using paraphrases. I then discuss possible avenues for future

research.
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Chapter 2

Background

This chapter covers the background material for the topics that are relevant for this thesis. We

start by defining and explaining Statistical Machine Translation approaches (Generative versus Dis-

criminative). We illustrate levels of generative models (word-base, phrase-based and hierarchical),

followed by a brief description of word-alignment, language model and automatic machine transla-

tion evaluation measures. Then, we introduce discriminative machine translation methods. Finally,

we review semi-supervised machine learning approaches and close this chapter with a discussion

on a graph-based semi-supervised methods and their importance.

2.1 Generative Machine Translation

Machine Translation (MT) is the attempt to automate the process of translating from one natural

language (F ) to another (E). Statistical machine translation (SMT) is an approach to MT charac-

terized by the use of machine learning techniques. SMT models break languages into small units,

sentences, and try to translate sentence independently, based on the assumption that each sentence

conveys sufficient information. Therefore, the input of the most of machine translation models is a

large collection of sentences in the source language and it’s corresponding human translation in the

target language (parallel corpus or bitext).

Bitext(F,E) = {(f1, e1), (f2, e2), (f3, e3), . . . | fi/ei is in source (F) / target language (E) }

Given a source sentence f (e.g. French sentence), our MT model tries to find the target sentence

e (e.g. English sentence), that is most likely translation; in other words, given f , it search for the e

that maximize the probability P (e|f). Because of the close relationship of machine translation to

decipherment this step is called decoding.

best translation = argmaxe∈EP (e|f) (2.1)

7



Searching over all sentence in language E is very time consuming and not feasible even if you

limit the length of English translations to arbitrary length. To tackle this problem, by exploiting

Bayes Rule and The Noisy Channel concept, the above formula can be rewritten as :

argmaxe∈EP (e|f) = argmaxe∈EP (e) · P (f |e)
P (f) (2.2)

Note that p(f) is a fix number inside the argmax and can be ignored.

argmaxe∈EP (e|f) = argmaxe∈EP (e) · P (f |e) (2.3)

This generative model has many benefits such as separating the score of fluency P (e) and trans-

lation score P (f |e). The first term, P (e), is the probability of sentence e in the language E and

the second one, P (f |e), is the probability translating sentence e into sentence f . But, where P (e)
and P (f |e) are coming from? The two following subsections explains how to compute these prob-

abilities, where the first one is called language model and the second one is translation model. In

decoding stage, steps of generation of the target translation e from the source sentence f is the fol-

lowing: Segment the sentence f into units of translations, find the translations of these units in a

bilingual dictionary, and finally reorder the translated phrases.

2.1.1 Language Modelling

The goal of language modelling is to compute probability of occurrence of each sentence e in the

language E; which a good measure to see how fluent a sequence of words e = w0 w1 w2 w3 . . . is

in this language [7]. To find such a probability distribution, in the simplest case we can compute the

frequency of occurrence of each word and then multiply them to find probability of sentence e.

P (e) = p(w0) · p(w1) · p(w2) . . . (2.4)

This approach seems pretty straight forward, but it ignores the context around each word. To fix this

issue, computers break sentences into smaller substrings bigger than word. An n-word substring is

called an n-gram. Computing counts for each n-gram will help to capture more information about

the context of each word. For example, after computing counts for bi-grams we can compute the

probability of sentence e by multiplying conditional probabilities of words.

P (e) = p(w0) · p(w1|w0) · p(w2|w1) . . . (2.5)

Now this question comes into mind that why not moving to bigger n-grams or why not just using

occurrence of sentences by themselves in the language. The answer is sparsity. When moving to

higher n-grams, more training data are required. Even in computing counts for tri-grams, many of

the possible trigrams are missing inside the training data. Smoothing techniques can alleviate this
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problem by saving probabilities for cases not observed before, but it can not completely solve this

problem.

2.1.2 Translation Modeling

Computing P (f |e) is more tricky than computing P (e), since monolingual resources are more

available than bilingual resources. P (f |e) is the target in this thesis, and we would like to provide

probability distribution for unseen e inside the training data.

Word-based Translation Models

Translation models can be computed in several levels based on their unit of translation.The first

level is to do the translation considering words as units of translations [6, 8, 4]. To do so, the

model should compute the probability distribution over possible translations for given a word in the

source language. Word-based machine translation models exploits unsupervised machine learning

techniques (e.g Expectation Maximization(EM), Variational Bayes, . . . ) to compute mentioned

probability distribution. Fundamentally, alignment is the task of producing bisegmentation relations

inside a bitext that identifies corresponding segments between the texts. Simply put, every alignment

algorithm accepts a bilingual corpus and outputs a set of couplings. Word-level alignment accepts

bilingual sentences and find the relations between a word in the source side and a word in the target

side. Figure 2.1 shows these types of couplings by ‘X’ inside the table. For instance, it this sentence

‘schuler’ is aligned to the word ‘students’.

schuler ihre arbeit noch nicht gemacht haben .

students X

have X

not X

yet X

done X

their X

work X

. X

Figure 2.1: An example of alignments between an English sentences and a German Sentence.
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Word Alignment

Aligning words between source and target language by human is a very time consuming and tough.

Fortunately, there are some unsupervised machine learning approaches to automatically capture

these alignments. Here we explain IBM model 1 [8] method as a simple example which uses

Expectation Maximization algorithm.

Expectation maximization (EM) algorithm is the most common iterative learning method

when facing incomplete data. It initialize a model (usually with uniform distributions). After ini-

tialization, in each iteration it fills the missing part of the data with the expected values (expectation

step) and then learn the model from the data (maximization step) (i.e maximization of hallucinated

complete data). Iterations will continue until convergence. Assume we have a joint probability

distribution P (x, y) over the space of input instances (x) and their labels (y). EM’s goal is to find

the best θ̂ in a parametric model P (x, y|θ) by maximizing the incomplete log likelihood of the

instances:

L(θ) =
l∑

i=1
logP (xi, yi|θ) +

l+u∑
j=l+1

∑
yt∈Y

logP (xj , yt|θ) (2.6)

In this formulation l is the number of labeled instances and u is the number of unlabeled in-

stances. xi refers to the observed part of i-th instance and yi refer to latent label of i-th instance.

For unlabeled instance, all possible latent labels are considered.

EM tries to optimize the incomplete log likelihood of the observed data L(θ) in an iteration

manner expressed in two phases in Algorithm 1.

Algorithm 1 EM algorithm
Step 1 Initialize the model parameters
Step 2 Expectation (E) using model parameters and observed data, compute the probability distribution
for the unobserved data P (yl+1, . . . , yl+u|θt).
Step 3 Maximization (M) maximizes the log likelihood of the current complete data to find optimum
model parameters.

θt+1 = argmaxθ

l∑
i=1

logP (xi, yi|θ) +
l+u∑
j=l+1

∑
yt∈Y

EP (yt|θt)log[P (xj , yt|θ)] (2.7)

Step 4 If not converge go to step 2.

IBM models are probabilistic models to transform a sentence e in one language to its translation

f in another language [8]. IBM model 1 is the simplest one which consider alignments as the hidden

part of the data, and find these alignments using EM algorithm. IBM 1 assumes that each target word

fj is the translation of a source word ei. Alignment A(e, f), represent these connections, which has

(|e|+ 1)|f | possible choices. The probability P (f |e) is defined as follows:
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P (f |e) =
∑

a∈A(e,f)
P (f, a|e) =

∑
a∈A(e,f)

ε

(|e|+ 1)|f |
|f |∏

j=1
t(fj |eaj ) (2.8)

Where aj means the alignment for the j-th position. ε is a fixed number and t(fj |eaj ) is trans-

lation probability.

By having the optimum parameter θ̂ we can do the alignment inside our bilingual corpus. After

finding alignments inside the bilingual corpus, for each word pair (f ′, e′), P (f ′|e′) can be computed

by :

P (f ′|e′) = Count(e′, f ′)∑
f ′ Count(e′, f ′)

(2.9)

The final outcome of the model is a big table, called phrase table, containing word pairs (f ′, e′),

where f ′ is a word in language F and e′ is a word in language E with their corresponding transla-

tion probability P (f ′|e′). Note that, a wide variety of advanced alignments methods exists, which

explaining them is out of the scope of this thesis.

Phrase-based Translation Models

As expected word level modelling of translation misses the context and cannot translate properly

sentence containing multi-word phrases like idioms. The next level of models, break sentences

into collection of phrases. In this level of decomposition, translation probability is computed by

probability of translation of each phrase [51, 44, 38] . Note that a phrase is a subsequence of words,

and is not necessarily a syntactic or semantic unit; thus, every subsequence of a source sentence and

target sentence can be a potential phrase pair. However, because of huge space of all possible phrase

pairs, its not computationally practical to compute alignments using mentioned algorithm. Instead,

we can apply heuristics on top of word level alignments to extract phrases and alignments between

them. Starting from an alignment between the source and target sentences, only the consistent

phrase pairs are extracted [38]. Consistency means there is at least one alignment link between

the source phrase and target phrase and no word in source phrase should be aligned with words

outside the the target phrase. For example, according to Figure 2.1, phrase pair (‘have not yet done

their work’,‘hire albeit notch nicht gametes haven’) is a consistent and phrase pair (‘students have’,‘

scholar here’) is a non-consistent phrase pair. Now we can augment our phrase table with these

phrase pairs and their corresponding scores.

So far, we explained the training part of generative models. Figure 2.2 shows an architecture

of a generative machine translation system. Word alignment techniques and phrase pairs extraction

heuristics are applied on bilingual resources, providing a list of phrase pairs inside the phrase table

and corresponding reordering and translation model scores for them. On the other side, a language

model is constructed based on smoothed n-grams counts inside a monolingual resource. A decoder,

is responsible to find translation for input source sentence f using the explained formulation.
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Translation 
Model
P(f | e)

Language 
Model
P(e)

source 
sentence
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resources
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N-gram counting
Smoothing

target 
sentence

Reordering 
model 

Bilingual 
resources

Word 
Alignment

phrase 
extraction

Phrase table

Phrase-based Decoder

Figure 2.2: Architecture of a generative machine translation system.

Hierarchical Translation Models

Even we can move further and extract synchronous context-free grammars (SCFGs) out of word

level alignments information. SCFGs are a generalization of context-free grammars to generate

strings in two different languages. These SCFGs are the backbone of Hierarchical phrase-based

machine translation (Hiero) [12], another prominent approach for SMT. These rewrite rules can

have non-terminals inside them, which results in constructing parse tree at the time of decoding.

Hiero grammars is defined as G = (T,N,R,Rg), where T and N are the set of terminals and

non-terminals in G, respectively. R is a set of production rules of the form:

[LHS]→ < γ, α,∼>, γ, α ∈ {[LHS] ∪ T+} (2.10)

In this notation left-hand side (LHS) is the nonterminal category, which typically in Hiero are S

(start symbol) and X. γ (the source language right-hand side (RHS)) is a string of source language

terminal and non-terminal symbols. Likewise, α (The target RHS) is a sequence of target terminal

and non-terminals. The alignment of non-terminals in the source and target right hand side is de-

noted by ∼, such that the co-indexed not-terminal pair is rewrite synchronously. These production

rules are combined by a CKY-style decoder [14, 30, 71] (including Rg glue rules) to derive the start

symbol S. Glue rules for Hiero are :

S → < X1, X1 > (2.11)

S → < S1 X2, S1 X2 > (2.12)

The non-terminal indices indicate synchronous rewriting of the source and target non-terminals

having the same index. The second glue rule is additionally useful for translating longer spans

(beyond the length of production rules) by connecting smaller ones.
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For convenience, we store these rules into the phrase table with following format :

[LHS] ||| γ (source RHS) ||| α (target LHS)

Nonterminal variables are surrounded by square brackets and contain only numbers and upper-

case letters. Nonterminal alignments indicate correspondences to nonterminal symbols in the source

side.

Hiero uses some heuristics to extract SCFGs from word alignment information. For example,

based on alignments in Figure 2.1, following SCFG rewrite rule can be extracted :

[X] ||| have not yet done [X] ||| [1] notch night gametes haben

2.2 Discriminative Machine Translation

Translation Model P(f | e)

source 
sentence

Bilingual 
resources

Monolingual 
resources
on target

Word 
Alignment

N-gram counting
Smoothing

target 
sentence

translation

candidates
Decoder

SCFG / phrase 
extractor

Phrase table

scoring (linear/ log-linear model)

feature functions

Translation Model P(e | f)

Language Model P(e)

.

.

.

Figure 2.3: Architecture of a descriminative machine translation system.

All of these translation models, will compute P (f ′|e′) according to score they extracted from

alignment informations. This score can be viewed as a feature function of a phrase pair (f ′, e′).

Feature functions are functions that compute real-valued (possibly multi-dimensional) features of

source sentences (f), target language translations (e), and their translation derivation (selected en-

tries of the phrase table) to evaluate goodness of a certain translation hypothesis. Therefore, poten-

tially its useful to have other feature functions for scoring phrase pairs (e.g. P (e′|f ′)).

In discriminative machine translation a linear or log-linear combination of these of feature

values computed from the derivation hypothesis is used to compute the final score for each sen-

tence [53]. Each feature is associated with a real-valued weight in the linear translation model that

can be learned on a held out dev set (tuning).
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Previously we have explained the combination of generative translation model log probability

and target language model log probability for finding the best translation. In this framework these

two are also considered as features. Standard feature functions in this framework are conditional

translation probabilities p(e|f) and p(f |e), conditional lexical weights plex(e|f) and plex(f |e),

phrase penalty, word penalty, glue rule weight and language model.

An standard statistical model of SMT (Hiero) [53] uses a log linear model to score each possible

Hiero derivation in terms of different feature functions as :

P (derivation) ∝ (
k−1∏
i=1

∏
r∈Rd

Φi(r)wi)Plm(e)wk (2.13)

where k is the total number of features and wi denote the weights of the feature function Φi. The

LM feature is the k-th feature which computed for the target sentence. While other features are

computed for each rule r that is used in derivation. These feature weights can be optimized with

respect to an automatic evaluation metric.

2.3 Evaluation of MT Systems

Human quality judgment is a good measure to evaluate the output of machine translation but its

subjective, time consuming, expensive, and sometimes tough because of ambiguity. An automatic

evaluation metric for machine translation is a must; hence it is still an open challenge. The root

of difficulty of automatic evaluation is the fact that there is no gold standard translation output for

each input sentence. Even a sentence in the source language might have many correct translations

which are different in structure and words. Among many possible measures have been proposed,

some of them are more common and preferred by researchers in this line of research. These metrics

evaluate the quality of SMT-generated translation relative to one or more human-generated reference

translation.

BLEU The bilingual evaluation understudy (BLEU) score is geometric mean of n-gram precisions

that is scaled by a brevity penalty to prevent very short sentences with some matching material

from being given inappropriately high scores [57].

TER Translation Edit Rate (TER) measures the amount of editing that a human would have to

perform to change a system output so it exactly matches a reference translation [65].

METEOR is an automatic metric for machine translation evaluation that is based on a general-

ized concept of unigram matching between the machine-produced translation and human-

produced reference translations. Unigrams can be matched based on their surface forms,

stemmed forms, and meanings; furthermore, METEOR can be easily extended to include

more advanced matching strategies [2].

Linear combinations of these metrics has shown promising results recently [63].
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In this thesis, we have selected to use BLEU score [57] for automatic evaluating machine trans-

lation quality; since it is the most trusted measure and it does not require any type of external

resources like METEOR.

2.4 Semi-Supervised Learning (SSL)

Most of famous supervised machine learning methods have some mechanism to avoid overfitting;

Support Vector Machine (SVM) maximize the margin to data instances, Maximum Entropy (Max-

Ent) models try to minimize the risk of unpredictable data instances. Hence, most of these methods

relay on the availability of a good labeled slice of the whole data instances.

Another line of works that recently became a hot topic, is the usage of unlabeled data along-

side labeled data known as Semi-Supervised Learning (SSL). Collecting huge amount of unlabeled

data is cheaper, faster and sometimes more effective than labeling instances in small portion. For

instance, in case (A) of Figure 2.4, the doted line shows the decision boundary of an SVM model

trained on two labeled instances (filled cross and filled circle). In the presence of unlabeled in-

stances (not filled ones) models are able to capture the implicit structure of the data in order to have

a more accurate decision boundary (see case B). These methods potentially are useful to justify data

model for domain adaptation cases, where the testing data is a different domain than training data.

Although the best way of using these unlabeled data is still an open question.

(A) (B) (C)

Figure 2.4: Cases that unlabeled data can improve decision boundary selection.

2.4.1 Transductive versus Inductive

General speaking, SSL methods can be devided into major groups: inductive and transductive.

Simply put, transductive (data-based) methods first transfer the labels from labeled data to unlabeled

data according to a distance measure between data instances (revealed geometry of the distribution

of data) and then train a model on both originally labeled data and hallucinated labeled data. On the

other hand, inductive (classifier-based) methods prefer to train a model on originally labeled data
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and then use their model to predict the label for unlabeled data and gradually produce new training

data by injecting (noisy) labels to unlabeled data, and iteratively learn new classifier(s).

Whether to select transductive methods rather than inductive ones are an open discussion be-

tween researchers, and there are some cases that one of them fails. Case (c) in Figure 2.4 shows one

of cases that inductive methods might fail to fit properly.

2.4.2 Graph Based methods

Transferring the labels between data instances is another view for classifying these methods. One

of the most preferred methods is to use a graph structure between data instances and transfer labels

based on their distance in graph. Graph based methods have some advantageous: 1) In many cases

the unlabeled data are naturally expressed in a graph structure (e.g. social network information), 2)

they show more flexibility to be scalable, because of research going on parallelize graph processing,

3) many tools and frameworks have been developed to work with graphs [66]. Scalability is an

important concern when using semi-supervised methods, since most of them are non-parametric

(i.e. number of parameters grows with data size).

In graph-based transductive methods, a graph is constructed using a similarity measure defined

between data instances, then transferring labels occurs based on smoothness assumption. Smooth-

ness assumption implies that if two instances (nodes in the graph) are similar then the output la-

bels for them should be similar. Note that meaning of similarity is highly correlated on the task,

therefore, there is no big graph available for all machine learning techniques and creating a graph

according to each task is a critical step in these methods.

We built a graph of source language phrases and according to our task (machine translation),

we considered the relationship between nodes (phrases), to be paraphrase of each other. If two

nodes are paraphrase of each other, they should be close to each other in the graph. For each

node we have a distribution over labels. Labels in our graph are translations of a phrase (node)

in the target language. Therefore, for each source phrase inside the graph we have a distribution

of possible translations. Paraphrases are phrases which share the same meaning but expressed in

different words and structure; which is totally in harmony of our task. We would like to transfer the

translation from labeled nodes to unlabeled nodes and then train a SMT.

2.5 Summary

In this chapter, we reviewed all the background knowledge needed to follow the rest of the the-

sis, including: Phrase-based Statistical Machine Translation, Hierarchical Machine Translation and

Semi-supervised Learning.
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Chapter 3

Automatic Paraphrase Extraction
Methods

Our goal is to produce translations for OOV phrases by exploiting paraphrases from the multilingual

PPDB [20] and by using graph propagation. Since our approach relies on phrase-level paraphrases

we compare with the current state of the art approaches that use monolingual data and distributional

profiles to construct paraphrases and use graph propagation [60, 62].

3.1 Paraphrases from Distributional Profiles

A distributional profile (DP) of a word or phrase was first proposed in [59] for SMT. Given a word

f , its distributional profile is:

DP (f) = {〈A(f, wi)〉 | wi ∈ V }

V is the vocabulary and the surrounding words wi are taken from a monolingual corpus using a

fixed window size. We use a window size of 4 words based on the experiments in [60]. The counts

of words in the surrounding context can be positional or non-positional. Following [60], we use

non-positional counts to alleviate sparsity problem. DPs need an association measure A(·, ·) to

compute distances between potential paraphrases. A comparison of different association measures

appears in [45, 60, 62] and our preliminary experiments validated the choice of the same association

measure as in these papers, namely Point-wise Mutual Information [40] (PMI). For each potential

context word wi:

PMI(f, wi) = log2
P (f, wi)
P (f)P (wi)

(3.1)

Positive values of PMI shows that under standard independence assumptions, the given words co-

occur more than what we expect [40]. We refer to PMI using the notation A(·, ·). To evaluate the

similarity between two phrases we use cosine similarity. The cosine coefficient of two phrases f1
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and f2 is:

S(f1, f2) = cos(DP (f1), DP (f2)) =∑
wi∈V A(f1, wi)A(f2, wi)√∑

wi∈V A(f1, wi)2
√∑

wi∈V A(f2, wi)2

(3.2)

where V is the vocabulary. Note that in Eqn. (3.2) wi’s are the words that appear in the context of

f1 or f2, otherwise the PMI values would be zero.

Considering all possible candidate paraphrases is very expensive. Thus, we use the heuristic

applied in previous works [45, 60, 62] to reduce the search space. For each phrase we just keep

candidate paraphrases which appear in one of the surrounding context (e.g. Left Right) among all

occurrences of the phrase.

Figure 3.1 visualize the distance between the distributional profiles of phrases “in check” and

“under control” considering “kept” and “brought” as context words. These two phrases are para-

phrase of each other since they have very similar distributional profiles. On the other hand, Fig-

ure 3.2 is a bad example of distributional profiling for extracting paraphrases; Phrase “in check”

and “together” are not paraphrase of each other but they have close distributional profiles consider-

ing the same context words. Thus, DP-based extracted paraphrases are noisy paraphrases.

A(kept, 

    in check)

A(brought,under control)

w
1 

= kept

w
2 

=brought

DP(u = in check)

DP(v = under control ) θ

A good example

Figure 3.1: A good example of distributional profiling for extracting paraphrase.
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A(kept, 

    in check)

A(brought,together)

w
1 

= kept

w
2 

=brought

DP(u = in check)

DP(v = together ) θ

in |V| dimensional space

A bad example

Figure 3.2: A bad example of distributional profiling for extracting paraphrase.

3.2 Paraphrases from Bilingual Pivoting

Bannard and Callison-Burch (2005) for the first time proposed to use bilingual pivoting to extract

paraphrases [3]. The intuition is that two strings e1 and e2 in the source language that translate to

the same foreign string f can be assumed to have the same meaning. Bilingual pivoting uses parallel

corpora between the source language, F , and a pivot language T . This pivot language can be any

language other than the target language of SMT. If two phrases, f1 and f2, in a same language are

paraphrases, then they share a translation in other languages with p(f1|f2) as a paraphrase score:

S(f1, f2) = p(f1|f2) ∝
∑

t

p(f1|t)p(t|f2) (3.3)

where t is a phrase in language T . p(f1|t) and p(t|f2) are taken from the phrase table extracted

from parallel data for languages F and T . In Fig. 6.4 from [3] we see that paraphrase pairs like (in

check, under control) can be extracted by pivoting over the German phrase unter kontrolle.

Extracting many possible paraphrase pairs by bilingual pivoting requires other scoring metrics

to filter out unrelated paraphrases. For example for English phrase “thrown into jail”’, it extracts

“arrested”, “detained”, “imprisoned”, “incarcerated”, “jailed”, “locked up”, “taken into custody”,

and “thrown into prison”, along with a set of incorrect/noisy paraphrases that are due to errors in

alignments.

Using syntactic machine translation techniques [34] on top of extracted paraphrase pairs, we

can also extract a syntactic paraphrase grammar. The paraphrase rules obtained using this method
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... the   relevant   cost    dynamic    is   completely    under control

… ist die diesbezügliche kostenentwicklung völling unter kontrolle

… steuerzahlern   schulding   die   kosten   unter  kontrolle    zu   haben 

… taxpayers    to    keep    the    costs    in check

Figure 3.3: English paraphrases extracted by pivoting over German shared translation.

are very useful for generalizations of meaning-preserving rewrites. For example, following example

can be captured :

NP → the NP1 of NNS2| the NNS2 ’s NP1

These rules can only be extracted for the languages that at least a part of speech tagger exists,

which is not the target cases of this thesis.

3.2.1 PPDB

The multilingual Paraphrase Database (PPDB) [20] is a published resource for paraphrases extracted

using bilingual pivoting and filtered by syntactic information. PPDB version one extract paraphrases

by bilingual pivoting over 106 millions sentence pairs, 22 pivot languages. PPDB is available in the

format of lexical paraphrases, phrasal paraphrases and syntactic paraphrases. Table 3.1 shows an

example for each of these categories.

LHS source target features alignments
[VBN] pruned cropped p(elf),

p(fle). . .
0-0

[X] in check under control p(elf),
p(fle). . .

0-0 1-1

[NP] the NP1 of NNS2 the NNS2 ’s NP1 p(elf),
p(fle). . .

0-0

Table 3.1: A subset of PPDB showing paraphrases in different levels

It also leverages other resources to evaluate and scores each paraphrase pair using a large set of

features. Ganitkevitch et al. (2013) suggest Synchronous Context Free Grammars (SCFGs) format
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to store paraphrase relationship in paraphrase databases.

LHS ||| source ||| target ||| (feature = value)∗ ||| alignment

For example :

[V BN ] ||| pruned ||| cropped ||| p(e|f) = 4.33, p(f |e) = 4.88 . . . ||| 0− 0

This format allows us to store additional feature scores for each paraphrase pair, since there are

various ways to estimate score S(f1, f2). These features can also contains monolingual information

like the scores from the previous technique, which we found very useful.

LHS source target features alignment
[NN] issue matter p(elf) xW1+

p(fle) xW2+
Lex(fle) xW3+
Lex(elf) xW4+
p(elf,LHS) xW5+
GoogleNgram-
Sim xW6+
. . .

0-0

= score(issue,matter)

Table 3.2: Scoring paraphrase pairs by linear combination of features inside the PPDB

These features can be used by a log linear model to score paraphrases [76]. We used a linear

combination of these features using the equation in Sec. 3 of [20] to score each paraphrase pair (see

Table 3.2). PPDB version 1 is broken into different levels of coverage. The smaller sizes contain

only better-scoring, high-precision paraphrases, while larger sizes aim for high coverage. Table 3.3

shows number of rules available inside English PPDB for each size divided into different categories.

Size lexical one-to-many phrasal syntactic
S 31K 47K 637K 585K
M 69K 94K 1.2M 1.0M
L 198K 188K 3.0M 2.2M
XL 548K 376K 6.9M 4.4M
XXL 2.1M 752K 29.2M 9.3M
XXXL 7.6M 1.5M 68.4M 16.1M

Table 3.3: English PPDB version 1 statistics (number of rules)
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3.3 Summary

We describe two major methods for automatically acquiring paraphrase pairs, then we introduce

PPDB, a multi-lingual paraphrase database, and its desirable properties. We have chosen PPDB as

a paraphrase database for the rest of this work because of the following reasons:

• DP-based paraphrases are noisy in compare to bilingual pivoted extracted paraphrases

• Computing distributional profile for n-grams higher than bigrams is computationally intractable

• PPDB provides many features for each paraphrase pair including features extracted from

monolingual resources.

In chapter 6 we examine DP-based paraphrases in compare to PPDB paraphrases in the task of

machine translation.
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Chapter 4

Methodology

4.1 Overview

Considering we have a automatic method to extract paraphrase pairs, we would like to transfer the

translations from seen phrases (available inside the phrase table) to their unseen paraphrases. Before

that let’s have a quick overview of an state of the art statistical machine translation [35] (Figure 4.1).
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Figure 4.1: An overview of an SMT system
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For translating from a source language to a target language a bilingual parallel corpus is re-

quired. According to translation patterns inside the parallel sentence a phrase table can be extracted

which later on used by a translation system. Translation system tries to search for the phrases of

any input sentence inside the phrase table. Not surprising, some of these phrases are not available

inside the phrase table (shown by red color), which we call it OOV phrases. A group of these OOV

phrases are Named-Entities, which can be translated using a transliterator [32]. Even if we remove

these Named-Entities, there still a huge collection of unseen phrases missing inside the phrase table.

We want to use a paraphrase database to transfer the translation from seen phrase to their unseen

paraphrases and augment the phrase table with these new translation. These new translations can

potentially increase the OOV coverage at the test time. The remaining question is how to transfer

these translations.

4.2 Transferring Translations

4.2.1 Naive Approach

A naive approach for transferring the translation is to use the following formulation :

P (translation|unseen phrase) =
∑

para ∈ { paraphrases }

P (translation|para) · P (para|unseen phrase)

In this formulation we pivot over paraphrases and multiple paraphrase probability and translation

probability for each translation. For example in Table 4.1 f1 is an unseen phrase which we compute

the probability of translating to e1 according to its paraphrases f2 and f3.

paraphrase database
f1 f2
f1 f3
f1 f4

phrase table
f2 e1
f2 e2
f3 e1
f4 e3

Table 4.1: Naive approach example

P (e1|f1) = P (e1|f2) · P (f2|f1) + P (e1|f3) · P (f3|f1)

In chapter 6 we have shown that this approach, because of its limitation in transferring transla-

tion in a multi-hop fashion, is not very promising, therefore we move to a more promising method:

graph propagation.

4.2.2 Graph Propagation

After paraphrase extraction we have paraphrase pairs, (f1, f2) and a score S(f1, f2) we can induce

new translation rules for OOV phrases using the steps in Algo. (2): 1) A graph of source phrases
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Algorithm 2 PPDB Graph Propagation for SMT
PhrTable = PhraseTableGeneration();
ParaDB = ParaphraseExtraction(); (Sec. 3)
InitGraph = GraphConstruct(PhrTable, ParaDB); (Sec. 4.2.2)
PropGraph = GraphPropagation(InitGraph); (Sec. 4.2.2)
for phrase ∈ {OOVs} do

newTrans = TranslationFinder(PropGraph, phrase);
Augment(PhrTable, newTrans); (Sec. 4.3)

TuneMT(PhrTable);

Size Nodes Edges Max
Neigh.

Ave
Neigh.

S 23K 31K 32 1.38
M 41K 69K 33 1.69
L 74K 199K 67 2.69
XL 103K 548K 330 5.33
XXL 122K 2073K 1231 16.968
XXXL 125K 7558K 5255 60.27

Table 4.2: Statistics of the graph constructed using the English lexical PPDB

is constructed as in [60]; containing both sides of paraphrase pairs and source side of phrase table;

2) translations are propagated as labels through the graph as explained in Fig. 4.6; and 3) new

translation rules obtained from graph-propagation are integrated with the original phrase table.

Graph Construction

We construct graph G(V,E,W ) over all source phrases in the paraphrase database and the source

language phrases from the SMT phrase table extracted from the available parallel data. V corre-

sponds to the set of vertices (source phrases), E is the set of edges between phrases andW is weight

of each using the score function S defined in Sec. 3. V has two types of nodes: seed (labeled) nodes,

Vs, from the SMT phrase table, and regular nodes, Vr (including OOVs). Fig. 4.6 shows a small

slice of the actual graph used in one of our experiments; This graph is constructed using the para-

phrase database on the right side of the figure. Filled nodes have a distribution over translations

(the possible “labels” for that node). We use only the p(e|f) feature from the SMT phrase table and

propagate this distribution to unlabeled nodes in the graph. Table 4.2 show statistics of the graph

constructed using the English lexical PPDB. Sizes in this table are standard sizes provides in the

release version 1.0 of PPDB. We have built similar graphs for French and Arabic with lexical and

phrasal nodes.
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Graph Propagation

Considering the translation candidates of known phrases in the SMT phrase table as the “labels”

we apply a soft label propagation algorithm in order to assign translation candidates to “unlabeled”

nodes in the graph, which include our OOV phrases. As described by the example in Fig. 4.6 we

wish two outcomes: 1) transfer of translations (or “labels”) to unlabeled nodes (OOV phrases) from

labeled nodes, and 2) smoothing the label distribution at each node. We use the Modified Adsorption

(MAD) algorithm [68] for graph propagation. Suppose we havem different possible labels plus one

dummy label, a soft label Ŷ ∈ ∆m+1 is a m + 1 dimension probability vector. The dummy label

is used when there is low confidence on correct labels. Based on MAD, we want to find soft label

vectors for each node by optimizing the objective function below:

v u
Wv,u

Labeled 

Phrase table

Unlabeled

f e P(e|f)
 
 

v
v
v

e1   0.45
e2   0.25
e3   0.30

Ŷv
Yv Ŷu

R
Uniform/
 Priors

1 32

Figure 4.2: Modified Adsorption objective function visualization.

min
Ŷ

µ1
∑

v∈Vs

P1,v||Yv − Ŷ ||22 + (1)

µ2
∑

v∈V,u∈N(v)
P2,vWv,u||Ŷv − Ŷu||22 + (2)

µ3
∑
v∈V

P3,v||Ŷv −Rv||22 (3)

In this objective function, µi and Pi,v are hyper-parameters (∀v : ΣiPi,v = 1). Rv ∈ ∆m+1 is

our prior belief about labeling. First component of the function tries to minimize the difference

of new distribution to the original distribution for the seed nodes. The second component insures

that nearby neighbours have similar distributions, and the final component is to make sure that the

distribution does not stray from a prior distribution. At the end of propagation, we wish to find a

label distribution for our OOV phrases.

The MAD graph propagation generalizes the approach used in [60]. The Structured Label Prop-

agation algorithm (SLP) was used in [62, 75] which uses a graph structure on the target side phrases

as well. However, we have found that in our diverse experimental settings (see Sec. 6) MAD had

two properties we needed compared to SLP: one was the use of graph random walks which allowed

us to control translation candidates and MAD also has the ability to penalize nodes with a large

number of edges (also see Sec. 5.2.2).

26



Graph propagation has some benefits over the naive approach:

• It filters unrelated translations for an unlabeled nodes using other neighbours informations

(See Fig. 4.3)

• It enables multi-hop transferring of labels (See Fig. 4.4)

• It enrich label options for fully connected nodes (See Fig. 4.5)
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Figure 4.3: Graph propagation feature 1 - filtering unrelated translations
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Figure 4.4: Graph propagation feature 2 - multi-hop translation transferring

For example, figure 4.6 shows small sample of the real graph constructed from the Arabic PPDB

for Arabic to English translation. Filled nodes (1 and 6) are phrases from the SMT phrase table
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Figure 4.5: Graph propagation feature 3 - enriching translation options for morphological variants
of a phrase

(unfilled nodes are not). Edge weights are set using a linear combination of scores from PPDB

following [20] . Phrase #6 has different senses (‘gold’ or ‘left’); and it has a paraphrase in phrase #7

for the ‘gold’ sense and a paraphrase in phrase #2 for the ‘left’ sense. After propagation, phrase #2

receives translation candidates from phrase #6 and phrase #1 reducing the probability of translation

from unrelated senses (like the ‘gold’ sense).

Phrase #8 is a misspelling of phrase #7 and is also captured as a paraphrase. Phrase #6 prop-

agates translation candidates to phrase #8 through phrase #7. Morphological variants of phrase #6

(shown in bold) also receive translation candidates through graph propagation giving translation

candidates for morphologically rich OOVs.
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Figure 4.6: A small sample of the real graph constructed from the Arabic PPDB for Arabic to
English translation
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4.3 Phrase Table Integration

After propagation, for each OOV phrase we have a list of possible translations with corresponding

probabilities. The original phrase table is now augmented with new entries providing translation

candidates for OOVs. A new feature is added to the standard SMT log-linear discriminative model

and introduced into the phrase table. This new feature following [60] is set to either 1.0 for the

phrase table entries that already existed; or `i which is the log probability (from graph propagation)

for the translation candidate i for OOVs. In case the dummy label exists with high probability

(higher than probabilities of other labels) or the label distribution is uniform, an identity rule is

added to the phrase table (copy over source to target). One can also try to use transliteration for

these words. After augmenting the phrase table, it is the time to retune the Machine Translation

system with a dev set.

f e p(f |e) p(e|f) ... pg(e|f)
f1 e1 0.7 0.8 ... 1.0
f2 e2 0.2 0.4 ... 1.0
f1f2 e2e1 0.2 0.15 ... 1.0
... ... ... ... ... ...
oov1 t1 1.0 1.0 1.0 pg(t1|oov1)
oov1 t2 1.0 1.0 1.0 pg(t2|oov1)
oov2 t1 1.0 1.0 1.0 pg(t1|oov2)

Table 4.3: Phrase table augmentation with the new phrase pairs

4.4 Summary

In this chapter, we illustrate three steps of our framework: graph construction, propagation propa-

gation, and phrase table integration in details. We explained the reasons to do graph propagation in

compare to naive approach for transferring the translations.
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Chapter 5

Analysis of the Framework

5.1 Propagation of poor translations

Automatic paraphrase extraction generates many possible paraphrase candidates and many of them

are likely to be false positives for finding translation candidates for OOVs. Distributional profiles

rely on context information which is not sufficient to derive accurate paraphrases for many phrases

and this results in many low quality paraphrase candidates. For example, fruit names apple and

orange occur in similar context, but if we translate apple to naranja in Spanish, it conveys the

wrong meaning. Thus, filtering the paraphrase database by other resources like syntactic infor-

mation can be useful. Bilingual pivoting uses word alignments which can also introduce errors

depending on the size and quality of the bilingual data used. Alignment errors also introduce poor

translations. In graph propagation, these errors may be propagated and result in poor translations

for OOVs.

We could address this issue by aggressively pruning the potential paraphrase candidates to im-

prove the precision. However, this results in a dramatic drop in coverage and many OOV phrases do

not obtain any translation candidates. We use a combination of the following three steps to augment

our graph propagation framework.

5.1.1 Graph pruning and PPDB sizes

Pruning the graph avoids error propagation by removing unreliable edges. Pruning removes edges

with an edge weight lower than a minimum threshold (e- Neighbourhood) or by limiting the number

of neighbours to the top-K edges(K-NN) [67]. Each of these methods has their own advantageous

and disadvantageous. Figure 5.1 shows cases that K-NN will result in a asymmetric graph (case

A) or an irregular graph (Case B). On the other hand, e-neighbourhood method is very sensitive to

the value of e (i.e. this method can lead to disconnected components or uncultured structure) (see

Figure 5.2)

PPDB version 1 provides different sizes with different levels of accuracy and coverage. We can

do graph pruning simply by choosing to use different sizes of PPDB. As we can see in Fig. 5.3 results
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(A) (B)

Figure 5.1: Cases that K-nearest neighbours graph pruning fails.

 

Dense Area

Figure 5.2: Cases that e-neighbourhood graph pruning fails.

vary from language to language depending on the pruning used. For instance, the L size results in

the best score for French-English. We choose the best size of PPDB for each language based on

a separate held-out set and independently from each of the SMT-based tasks in our experimental

results. Our conclusion from our experiments with the different sizes of PPDB is that removing

phrases (or nodes in our graph) is not desirable. However removing unreliable edges is useful, it is

not trivial the amount of this removal. As seen in Table 4.2, increasing the size of PPDB leads to a

rapid increase in nodes followed by a larger number of edges in the very large PPDB sizes.

5.1.2 Pruning the translation candidates

Another solution to the error propagation issue is to propagate all translation candidates but when

providing translations to OOVs in the final phrase table to eliminate all but the top L translations

for each phrase (which is the usual ttable limit in phrase-based SMT [39]). Based on a development

set, separate from the test sets we used, we found that the best value of L was 10 to achieve the

highest BLEU score on a held-out dev set.
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Figure 5.4: Sensitivity issue in graph propagation for translations. “Lager” is a translation candidate
for “stock”, which is transferred to “majority” after 3 iterations.

5.1.3 External Resources for Filtering

Applying more informative filters can be also used to improve paraphrase quality. This can be done

through additional features for paraphrase pairs. For example, edit distance can be used to capture

misspelled paraphrases. We use a Named Entity Recognizer to exclude names, numbers and dates

from the paraphrase candidates. In addition, we use a list of stop words to remove nodes which have

too many connections. These two filters improve our results (more in Sec. 6).

5.2 Path sensitivity

Graph propagation has been used in many NLP tasks like POS tagging, parsing, etc. but propagating

translations in a graph as labels is much more challenging. Due to huge number of possible labels

(translations) and many low quality edges, it is very likely that many wrong translations are rapidly

propagated in few steps. Razmara and his colleagues show that unlabeled nodes inside the graph,

called bridge nodes, are useful for the transfer of translations when there is no other connection be-

tween an OOV phrase and a node with known translation candidates [60]. However, they show that

using the full graph with long paths of bridge nodes hurts performance. Thus the propagation has

to be constrained using path sensitivity. Fig. 5.4 shows this issue in a part of an English paraphrase

graph. After three iterations, German translation “Lager” reaches “majority” which is totally irrel-

evant as a translation candidate. Transfer of translation candidates should prefer close neighbours

and only with a very low probability to other nodes in the graph.
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5.2.1 Pre-structuring the graph

Razmara et al. (2013) avoid a fully connected graph structure [60]. They pre-structure the graph

into bipartite graphs (only connections between phrases with known translation and OOV phrases)

and tripartite graphs (connections can also go from a known phrasal node to a potentially OOV

phrasal node through another potential OOV node that is a paraphrase of both but does not have

translations, i.e. it is an unlabeled node). Note that in these pre-structured graphs there are no

connections between nodes of the same type (known, OOV or unlabeled). We apply this method

in our low resource setting experiments (Sec. 6.3) to compare our results to [60]. In the rest of our

experiments we use the following methods.

5.2.2 Graph random walks

Our goal is to limit the number of hops in the propagation of translation candidates preferring closely

connected and highly probable edge weights. Optimization for the Modified Adsorption (MAD) ob-

jective function in Sec. 4.2.2 can be viewed as a controlled random walk [69, 68]. This is formalized

as three actions: inject, continue and abandon with corresponding pre-defined probabilities Pinj ,

Pcont and Pabnd respectively as in [68]. A random walk through the graph will transfer labels from

one node to another node, and probabilities Pcont and Pabnd control exploration of the graph. By

reducing the values of Pcont and increasing Pabnd we can control the label propagation process to

optimize the quality of translations for OOV phrases. Again, this is done on a held-out development

set and not on the test data. The optimal values in our experiments for these probabilities are Pinj =

0.9, Pcont= 0.001, Pabnd =0.01.

5.2.3 Early stopping of propagation

In Modified Adsorption (MAD) (see Sec. 4.2.2) nodes in the graph that are closely linked will

tend to similar label distributions as the number of iterations increase (even when the path lengths

increase). In our setting, smoothing the label distribution by matching to the uniform distribution

(see the third term in the MAD objective function), helps in the first few iterations, but is harmful as

the number of iterations increases due to the factors shown in Fig. 5.4. We use early stopping which

limits the number of iterations. We varied the number of iterations from 1 to 10 on a held-out dev

set and found that 5 iterations was optimal.

5.3 Summary

In this chapter, we reviewed graph simplification techniques for obtaining better results for improv-

ing SMT. Note that these improvements are not specific to our target problem, but for all other

problems which contains noisy source of weights for the edges and also noisy label distribution for

each labeled nodes.
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Chapter 6

Evaluation

We first show the effect of OOVs on translation quality, then evaluate our approach in three different

SMT settings: low resource SMT, domain shift, and morphologically complex languages. In each

case, we compare results of using paraphrases extracted by Distributional Profile (DP) and PPDB

in an end-to-end SMT system.

Important: no subset of the test data is used in the paraphrase extraction process.

6.1 Experimental Setup

We use CDEC1 [19] as an end-to-end SMT pipeline with its standard features2. fast_align [18]

is used for word alignment, and weights are tuned by minimizing BLEU loss on the dev set using

MIRA [15]. This setup is used for most of our experiments: oracle (Sec. 6.2), domain adaptation

(Sec. 6.4) and morphologically complex languages (Sec. 6.5). But as we wish to fairly compare our

approach with Razmara et al. (2013) [60] on low resource setting, we follow their setup in Sec. 6.3:

Moses [35] as SMT pipeline, GIZA++ [54] for word alignment and MERT [52] for tuning. We add

our own feature as described in Sec. 4.3.

KenLM [25] is used to train a 5-gram language model on English Gigaword (V5: LDC2011T07).

For scalable graph propagation we use the Junto framework3. We use maximum phrase length 10

to make it computationally intractable in propagation and decoding phases.

For French, we apply a simple heuristic to detect named entities: words that are capitalized in

the original dev/test set that do not appear at the beginning of a sentence are named entities. The

reasons to use this simple heuristic is the fact that no accurate named entities recognizer is available

for many resource poor languages. Note that using a more accurate named-entity recognizer and

more removal of named-entities will improve the results even more. Based on eyeballing the results,

this works very well in our data. For Arabic, AQMAR is used to exclude named-entities [48].
1http://www.cdec-decoder.org
2EgivenFCoherent, SampleCountF, CountEF, MaxLexFgivenE, MaxLexEgivenF, IsSingletonF, IsSingletonEF
3Junto : https://github.com/parthatalukdar/junto
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Experiments OOV type OOV token
Case 1 1830 2163
Case 2: Medical 2294 4190
Case 2: Science 5272 14121
Case 3 1543 1895

Table 6.1: Statistics of OOVs for each setting in Sec. 6.

6.2 Impact of OOVs: Oracle experiment

This oracle experiment shows that translation of OOVs beyond named entities, dates, etc. is poten-

tially very useful in improving output translation. We trained a SMT system on 10K French-English

sentences from the Europarl corpus(v7) [33]. WMT 2011 and WMT 2012 are used as dev and test

data respectively. Table 6.2 shows the results in terms of BLEU on dev and test. The first row is

baseline which simply copies OOVs to output. The second and third rows show the result of aug-

menting phrase-table by adding translations for single-word OOVs and phrases containing OOVs.

The last row shows the oracle result where all the OOVs are known (the oracle cannot avoid model

and search errors). For each of the experimental settings below we show the OOV statistics in

Table 6.1.

Fr-En Dev Test
Baseline 27.896 28.084
+ Lexical OOV 28.104 28.312
+ Phrasal OOV 28.497 28.849
Fully observed 46.882 49.211

Table 6.2: The impact of translating OOVs.

Word Aligner
(Training)
Europarl 
Fr - En

(dev) 
WMT 11

(test) 
WMT 12

Phrase 
Table

Translation 
Model

BLEU score

Baseline

27.90

28.08

phrasal 
OOVs gold 
translations

Figure 6.1: The structure of oracle experiment for baseline
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Word Aligner
(Training)
Europarl 
Fr - En

(dev) 
WMT 11

(test) 
WMT 12

Phrase 
Table

Translation 
Model

BLEU score

Adding 
translations for 
lexical OOVs

28.10

28.31

gold 
translationsWord Aligner

Figure 6.2: The structure of oracle experiment for lexical OOVs

Word Aligner
(Training)
Europarl 
Fr - En

(dev) 
WMT 11

(test) 
WMT 12

Phrase 
Table

Translation 
Model

BLEU score

Adding 
translations for 

phrases 
containing 

lexical OOVs

28.50

28.85

gold 
translationsWord Aligner

Figure 6.3: The structure of oracle experiment for phrasal OOVs

Word Aligner
(Training)
Europarl 
Fr - En

(dev) 
WMT 11

(test) 
WMT 12

Phrase 
Table

Translation 
Model

BLEU score

Cheating

46.88

49.21

phrasal 
OOVs gold 
translations

Figure 6.4: The structure of oracle experiment for complete OOVs
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6.3 Case 1: Limited Parallel Data

In this experiment we use a setup similar to [60]. We use 10K French-English parallel sentences,

randomly chosen from Europarl to train translation system. ACL/WMT 20054 is used for dev and

test data. We re-implement their paraphrase extraction method (DP) to extract paraphrases from

French side of Europarl (2M sentences). We use unigram nodes to construct graphs for both DP and

PPDB. In bipartite graphs, each node is connected to at most 20 nodes. For tripartite graphs, each

node is connected to 15 labeled nodes and 5 unlabeled nodes.

For intrinsic evaluation, we use Mean-Reciprocal-Rank (MRR) and Recall. MRR is the mean of

reciprocal rank of the candidate list compared to the gold list (Eqn. 6.1). Recall shows percentage

of gold list covered by the candidate list (Eqn. 6.2). Gold translations for OOVs are given by

concatenating the test data to training and running a word aligner.

MRR = 1
|O|

|O|∑
i=1

1
ranki

for O = {OOVs} (6.1)

Recall = |{gold list} ∩ {candidate list}|
|{gold list}|

(6.2)

Table 6.3 compares DP and PPDB in terms of BLEU, MRR and Recall. It indicates that PPDB

(large size) outperforms DP in both intrinsic and extrinsic evaluation measures. Although tripartite

graph did not improve the results for DP, it results in significantly better BLEU score for PPDB in

compare to DP (evaluated by MultEval [13]). Thus we use tripartite graph in the rest of experiments.

The last row in the table shows the result of combining DP and PPDB by multiplying the normalized

scores of both paraphrase lists.

System MRR Recall BLEU
baseline - - 28.89
DP-bipartite 5.34 11.90 29.27
DP-tripartite 5.34 11.95 29.27
PPDBfr (L)-bipartite 12.05 22.08 29.46
PPDBfr (L)-tripartite 10.22 22.87 29.52
Combined-tripartite - - 29.28

Table 6.3: Case 1: Limited Parallel Data - Results of PPDB and DP techniques

4http://www.statmt.org/wpt05/mt-shared-task/
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6.4 Case 2: Domain Adaptation

Domain adaptation is another case that suffers from massive number of OOVs. We compare our

approach with Marginal Matching [29], a state of the art approach in SMT domain adaptation (ap-

plying monolingual marginal matching). We use their setup and data and compare our results to

their reported results [29]. 250K lines of Hansard parliamentary proceeding are used for training

MT. Dev and test sets are available for two different domains: Medical and Science domains. For

medical domain random subset of EMEA corpus [70] and for the science domain a corpus of scien-

tific articles [11] has been used. Unigram paraphrases using DP are extracted from French side of

Europarl.

Table 6.4 compares the results in terms of BLEU score. In both medical and science domains,

graph-propagation approach using PPDB (large) performs significantly better than DP (p < 0.02),

and has comparable results to Marginal Matching. Marginal Matching performs better in science

domain but graph-propagation approach with PPDB outperforms it in medical domain getting a

+1.79 BLEU score improvement over the baseline.

Systems Science Medical
baseline 22.20 25.32
Naive Approach-PPDB 22.41 25.39
Graph-based-DP-tripartite 22.76 25.81
Graph-based-PPDBfr (L)-tripartite 22.97 27.11
Marginal Matching 23.62 26.97

Table 6.4: Case 2: Domain Adaptation - Results of PPDB and DP techniques

6.5 Case 3: Morphologically Rich Languages

Both Distribution Profiling and Bilingual Pivoting propose morphological variants of a word as

paraphrase pairs. Even more so in PPDB due to pivoting over English. Ganitkevitch et al. (2014)

mentioned that these paraphrase pairs might be desirable or not based on downstream task[20].

This section shows that these paraphrase pairs are helpful in improving machine translation

when having a morphologically rich language as the source language. We choose Arabic-English

task for this experiment. We train the SMT system on 1M sentence pairs (LDC2007T08 and

LDC2008T09) and use NIST OpenMT 2012 for dev and test data. Arabic side of the training

data is used to extract unigram paraphrases for DP. Table 6.5 shows that PPDB (large; with phrases)

resulted in +1.53 BLEU score improvement over DP which only slightly improved over baseline.
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Systems BLEU
baseline 29.59
Naive approach-PPDB 29.83
Graph-based-DP-tripartite 30.08
Graph-based-PPDBfr (L)-tripartite 31.12

Table 6.5: Case 3: Morphologically Rich Source Language - Results of PPDB and DP techniques
for Arabic-English.

6.6 Examples

Table 6.6 shows outputs of DP-based and PPDB-based method on some of test sentences and their

corresponding reference translation. NNs refer to nearest neighbours inside the graph for OOV

phrase. Each row corresponds to different settings in our experiments (cases 1 to 3 respectively).

In the second row, DP was not able to find a right translation for “quantique” which results in a

bad reordering too. In the third row, both methods failed to increase the BLEU scores, but PPDB

provided a better translation in compare to DP.

OOV PPDB
NNs

DP NNs Reference sentence PPDB output DP output

procédés processus méthodes
outils
matéri-
aux

... an agreement on pro-
cedures in itself is a
good thing ...

... an agreement on the
procedure is a good ...

... an agreement on
products is a good ...

quantique quantiques - ... allowed us to achieve
quantum degeneracy ...

... allowed quantum
degeneracy ...

... quantique allowed
degeneracy ...

mlzm mlzmA ADTr ... voted 97-0 last week
for a non-binding reso-
lution ...

... voted 97 last week
on not binding resolu-
tion ...

... voted 97 last week
on having resolution
...

Table 6.6: Examples comparing DP versus PPDB outputs on the test sets.

6.7 Summary

In this chapter, we have shown significant improvements to the quality of statistical machine trans-

lation in three different cases: low resource SMT, domain shift, and morphologically complex lan-

guages. We also provide experimental setup for each of these cases.
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Chapter 7

Conclusion and Future work

We presented improvements to Statistical Machine Translation system to alleviate the problem of

OOVs. In the first part of the thesis research, we focused on the task of automatic paraphrase

extraction and explained the two major method distributional profiling and bilingual pivoting. We

compared these two methods and introduced PPDB, a large-scale paraphrase database extracted

using bilingual pivoting but re-scored using monolingual resource.

Next, we highlighted the importance of the graph-based semi-supervised techniques for im-

proving SMT, followed by an analysis of these methods. In the experiments, we showed that

PPDB-based paraphrases pairs are more accurate than DP-based paraphrase, which results in better

improvements for the task of machine translation. We have shown significant improvements to the

quality of statistical machine translation in three different cases: low resource SMT, domain shift,

and morphologically complex languages. In conclusion, PPDB has been successfully used in other

NLP tasks so far, but for the first time we showed that through the use of semi-supervised graph

propagation, a large scale multilingual paraphrase database can be used to improve the quality of

statistical machine translation.

7.1 Future work

In future work, we would like to include translations for infrequent phrases which are not OOVs.

For example, in Figure 7.1 we used a very resource rich SMT trained on millions lines of English-

French parallel sentence. “early bird” is an unseen or infrequent phrase, which result in a wrong

translation.

Furthermore, we would like to explore new propagation methods that can directly use confi-

dence estimates and control propagation based on label sparsity. One of these methods Graph-Based

Transduction with Confidence (TACO) [56] which consider confidence measure for any possible la-

bels. In other words, it consider noisy seed label distributions.
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early bird registration 
deadline is August the 
23rd

début date limite 
d'inscription des 
oiseaux est le 23 
Août.

         Input Output

FrenchEnglish

early registration 
deadline of birds is 
August 23

(EMNLP website)

Figure 7.1: SMT results for infrequent phrases.

And finally we would like to explore other available resources for morphologically rich lan-

guages (e.g. Morphological analyzer) and integrate them into our system to achieve a better perfor-

mance. A morphological analyzer can be used to prune the graph or add more nodes to graph to

have a better and accurate coverage of morphological variants of a phrase.
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