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Abstract 

 Cooperative/relay communication system is an active field of research as it promises 

extended coverage in weak reception areas, for example at cell edges. Furthermore, with 

physical-layer network coding (PNC) in a two-way relaying (TWR) setting, the 

transmission rate of the system can be restored back to unity (one packet of data per unit 

time), just like in conventional point-to-point transmission. This dissertation addresses 

the issue of signal detection in a two-phase (2P) TWR communication system that 

employs pilot-less orthogonal modulation and physical network coding operating in a 

time-selective Rayleigh fading environment. We first introduce a partial-coherent 

receiver for detecting (at the relay) the modulo-M sum symbol of the uplink pilot-less 

orthogonal modulations. Through clever exploitation of the orthogonal property of the 

modulation, this receiver is able to provide a 3 dB improvement in power efficiency over 

standard non-coherent detector even in the absence of pilot symbols. To further increase 

the receiver performance, we propose a novel decision feedback (DFB) receiver built 

upon the partial-coherent detector. The proposed DFB receiver provides another 6 dB 

improvement in power efficiency over the already impressive partial-coherent detector 

and attains a performance very close to that of the ideal coherent detector.  It exploits the 

fact that when the uplink symbols from the users are different, then the fading gains 

affecting these symbols can be separated and individually tracked at the relay. In essence, 

the proposed DFB receiver performs random channel sounding even though no actual 

pilots are transmitted. The channel estimates obtained this way can then be used 

subsequently in a coherent detector to improve the reliability of the relay’s detected data. 

To further demonstrate the usefulness of the proposed DFB receiver, we compare it 

against a similar 2P-TWR system that employs differential PSK (DPSK) in the uplink 

and decision-feedback multiple-symbol differential detection at the relay. We found that 

the proposed pilot-less orthogonal modulation system can actually attain a significantly 

lower bit-error-rate (BER) than its DPSK counterpart. For static fading and a BER of 

310 , the signal-to-noise ratio gap between the two approaches is 1 dB in the binary case, 
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Abstract 
 
Cooperative/relay communication system is an active field of research as it promises 
extended coverage in weak reception areas, for example at cell edges. Furthermore, with 
physical-layer network coding (PNC) in a two-way relaying (TWR) setting, the 
transmission rate of the system can be restored back to unity (one packet of data per unit 
time), just like in conventional point-to-point transmission. This dissertation addresses 
the issue of signal detection in a two-phase (2P) TWR communication system that employs 
pilot-less orthogonal modulation and physical network coding operating in a time-
selective Rayleigh fading environment. We first introduce a partial-coherent receiver 
for detecting (at the relay) the modulo-M sum symbol of the uplink pilot-less 
orthogonal modulations. Through clever exploitation of the orthogonal property of the 
modulation, this receiver is able to provide a 3 dB improvement in power efficiency over 
standard non-coherent detector even in the absence of pilot symbols. To further increase 
the receiver performance, we propose a novel decision feedback (DFB) receiver built 
upon the partial-coherent detector. The proposed DFB receiver provides another 6 dB 
improvement in power efficiency over the already impressive partial-coherent detector 
and attains a performance very close to that of the ideal coherent detector. It exploits the 
fact that when the uplink symbols from the users are different, then the fading gains 
affecting these symbols can be separated and individually tracked at the relay. In essence, 
the proposed DFB receiver performs random channel sounding even though no actual 
pilots are transmitted. The channel estimates obtained this way can then be used 
subsequently in a coherent detector to improve the reliability of the relay’s detected data. 
To further demonstrate the usefulness of the proposed DFB receiver, we compare it 
against a similar 2P-TWR system that employs differential PSK (DPSK) in the uplink 
and decision-feedback multiple-symbol differential detection at the relay. We found that 
the proposed pilot-less orthogonal modulation system can actually attain a significantly 
lower bit-error-rate (BER) than its DPSK counterpart. For static fading and a BER of 10�3 
, the signal-to-noise ratio gap between the two approaches is 1 dB in the binary case,and 8 
dB in the quaternary case. These gaps increase further with time-selective fading. Based on 
the result obtained from the new proposed DFB receiver, the overall decision feedback 
methodology has strong potential for applications in other similar systems, and it worth 
being studied further and refined. 
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Chapter 1.                                      

Introduction 

1.1. Literature Review  

Signal transmitted over wireless communication channels are commonly plagued by 

fading, shadowing or path loss. In recent years, cooperative communication [1]-[4] has 

been widely acknowledged by the wireless communication industry as a promising 

technology to combat these impairments, by involving one or more relays to assist in 

transmission. According to [5], relay promises extended coverage in weak reception areas, 

e.g relay provides better performance for out of coverage end user than no relay. Also, 

Comparing to conventional point-to-point transmission, using relay leads to shortening 

the transmission distance at each time, and the average power loss from the source to the 

final destination can be sufficiently reduced. In [2], it is pointed out that two common 

relaying protocols, namely, decode-and-forward (DaF) and amplify-and-forward (AaF), 

can be used to achieve cooperative diversity. They have been studied and their 

performance evaluated in [3]. In DaF, the cooperative relay detects the received data, 

remodulates, and then broadcasts the remodulated signal to the destination. In AaF, there 

is no decision made at the relay. The relay simply scales and retransmits the received 

signal in the final phase. Comparing the AaF method to DaF method, the AF relay has 

cost effective implementation complexity as the demodulation and remodulation steps 

can be bypassed; but at the same time, it also forward some disturbance, such as fading 

and noise, to the user’s terminal. In contrast, a DaF relay attempts to remove these 

disturbances when it makes decisions at the relay. 

In earlier research in cooperative communication, only one-way relay was considered. 

Given a half-duplex relay, a cooperative communication system with a single, always 

active relay requires two transmission phases to transmit one unit of data from the source 

terminal to the receiver terminal. In the other words, the transmission rate of a 



 

2 

cooperative communication system, , is half the value of conventional non-cooperative 

transmission. In order to improve the transmission efficiency, two-way relaying (TWR) 

[6] was proposed.   

TWR communication is a transmission methodology that enables two users, A and B, 

to exchange information through a relay R. TWR networks can be classified according to 

the number of transmission phases. For example, four-phase two-way relaying (4P-TWR) 

with a traditional non-network-coding approach [7] is interference-free but requires four 

orthogonal time slots to exchange two packets of data, one in each direction. The 

throughput is thus identical to one-way relaying, i.e. an  =1/2. This approach is also 

referred to as Traditional Scheme in some of the literatures [6, 8].  

Comparing to 4P-TWR, three-phase two-way relaying (3P-TWR) employing bit-level 

network coding [8]-[9] is proposed to increase the throughput. In 3P-TWR, the uplink 

signal from each user to the relay does not interfere with the other. This allows the relay 

to easily decode the data symbols (sA and sB) from the users separately. In the downlink, 

the users’ signals are mixed, for example using modulo addition of their data A Bs s
1
, 

and broadcasted back to the users. By doing so, both users A and B can recover each 

other data packets while reducing the number of transmission phases in the traditional 

approach by one. The transmission rate of this scheme is 2/3, or  =2/3. In the literature, 

this approach is sometimes referred to as straightforward network coding (SNC); see for 

example [7] [11]. 

To further improve the efficiency, physical-layer network coding (PNC) [10] [11] is 

used to further reduce the number of transmission phases down to two. In a two-phase 

two-way relaying (2P-TWR) system with PNC, both mutual interference in the uplink 

transmission and signal mixing in the downlink are allowed so that the two users can 

transmit their data to the relay simultaneously. It means that the transmission rate of 

 
1
   Denotes bit-wise mod-M addition of signal sA and sB 
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communication can be restored to 1, just as that in conventional non-cooperative 

transmission. It is a simple fact in physics that when two uplink EM wave signals come 

together within the same physical space, they add. This mixing of EM wave signals is a 

form of network coding, performed by nature [7]. The relay deduces the downlink mixed 

signal from the superimposed waveforms and broadcasts in the second transmission 

phase. The relay can adopt either AaF or DaF in a PNC setting. The former approach is 

referred to as analog network coding (ANC) [12] and PNC over an infinite field (PNCI) 

in [13].  The latter is referred to as PNC over finite field (PNCF) in [13]. 

The three types of TWR networks mentioned above are summarized in Figure 1 

below. Since 2P-TWR has the highest transmission rate, we focus on this particular 

protocol in the thesis 

 

Fig. 1.1: Transmission timing in TWR communication systems with (a) traditional 

scheme, (b) straightforward network coding, and (c) physical network coding. 

On the detection issue in 2P-TWR systems, if perfect channel state information (CSI) 

of all the links in the system is available at the users’ terminals, for example, via 

embedded pilot symbols, then the useful data in the received downlink signal can be 

detected at the user’s terminals by using self-interference cancellation followed by 

coherent detection. Similarly, if the uplinks’ CSI is available at the relay, a DaF-based 
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2P-TWR can use a coherent multi-user detector to select proper quantized symbols from 

its constellation for the broadcasting phase. The training and channel estimation issues 

associated with pilot-based coherent detectors in TWR can be found in [14]-[15].  On the 

other hand, if CSI is not available, differential detection [16]-[18] is used instead. 

Differential detection doesn’t require pilot symbol and it is relatively simple to 

implement. However, the performance of this simple detector would be much worse than 

that provided by a pilot-aided detector. Furthermore, differential detection is only 

applicable to phase-shift-keying (PSK) modulation.  A third approach is to employ blind 

or semi-blind channel estimation and detection; see example [19]-[21]. Although the 

performance of this type of detector can be substantially better than differential detection, 

it requires extra amount of processing. This could be problematic for DaF, as we would 

like to keep the relay as simple as possible. 

1.2. Motivation and Contribution of the Thesis 

There are a number of investigations of TWR communication with PNC in the 

literature already.  Most of their investigations are focus on PSK modulation [15, 17]. In 

[22]-[23], the authors undertook different modulations, specifically frequency-shift-

keying (FSK). They proposed non-coherent detections of FSK in DaF-based TWR 

networks. However, [22] is restricted to only additive white Gaussian noise channel while 

[23] designs a very complicated detector. Moreover, [23] is limited to static fading 

amplitudes, though the phase is allowed to vary randomly. 

This thesis investigates the performance of general orthogonal modulations in 2P-

TWR communication, with FSK being a special case. Intuitively, the higher 

dimensionality of orthogonal modulations seems more compatible with the multiple-

access nature of PNC than PSK, which will be explained later in the dissertation.  

Besides, as stated above, they receive much less attention in the literature than PSK 

modulations. The investigation focuses on the detection of pilot-less uplink orthogonal 

signals at the relay of a DaF-based 2P-TWR network. The reason why we choose DaF 
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over AaF is because, as stated in [9, 23], a DaF-based 2P-TWR has a higher sum rate 

than an AaF-based 2P-TWR.  On a similar note, we prefer pilot-less transmission because 

it does not require any overhead for channel estimation.  

In this thesis, we first design a much simpler detector for pilotless orthogonal 

modulations that achieves the same performance as the more complicated receiver in 

[23]. A bit-error-rate (BER) analysis of this new detector, for both binary and 4-ary 

modulations, is performed and the results indicate a 3 dB improvement in signal-to-noise 

ratio over conventional non-coherent detector, even though no pilot signal is transmitted. 

Rather than employing this new detector as a stand-alone device, we use it to kick start a 

decision feedback (DFB) receiver for the purpose of reaching an even better BER 

performance. We demonstrat that with proper decision-aided channel estimation, the 

relay DaF receiver can attain a performance that is very close to ideal coherent detection 

(i.e. perfect CSI), even with time-selective Rayleigh fading. The last contribution of this 

thesis is to demonstrate the usefulness of the proposed DFB receiver for orthogonal 

modulations against a multiple-symbol differential detector (MDSS) [16] for differential 

PSK (DPSK) modulation. Contrary to conventional point-to-point transmission where 

DPSK always outperforms non-coherent orthogonal modulation in the presence of 

Rayleigh fading and additive white Gaussian noise [24], we discover that our proposed 

orthogonal modulation system for 2P-TWR substantially outperforms DPSK with MSDD 

in a 2P-TWR setting. The gain in power efficiency is 1 dB in the binary case and 8 dB in 

the quaternary case. 

1.3. Thesis Outline 

The thesis is organized as follows.  

Chapter 2 provides the signal and system model of a 2P-TWR system with PNC and 

pilot-less orthogonal signaling. Based on the received signal model, three baseline 

receivers at the relay are considered: the non-coherent detector, the ideal full-coherent 
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detector, and the proposed partial-coherent detector. The bit-error-rate (BER) 

performance of the three detectors is analyzed using the pair-wise error event and 

characteristic function approach, for both binary and quaternary modulations. It was 

found that with minimal additional processing, the proposed partial-coherent detector 

provides a 3 dB improvement over the non-coherent detector, even no pilot is transmitted. 

However, there is still a 7 dB performance gap between the partial-coherent detector and 

the ideal coherent detector. 

The performance gap between the ideal full-coherent detector and our proposed 

partial-coherent detector leads us to introduce the decision feedback receiver in Chapter 

3. As illustrated in this chapter, the proposed decision feedback receiver performs random 

channel sampling for channel indentification and interpolation for the purpose of the 

generating channel estimates for a coherent detector. Details about the channel 

identification, tracking, and interpolation issues are provided in the chapter. 

Chapter 4 provides a proper perspective of the performance of the decision feedback 

receiver in Chapter 3 by comparing it against DPSK with MSDD. The chapter begins 

with a brief review of the modulation and the structure of a decision feedback-based 

MSDD. The BER performance of the MSDD is then evaluated via simulation under 

similar conditions as the ones employed in Chapter 3 for orthogonal modulations.  

Conclusions are then made about the relative advantages and disadvantages of pilot-less 

orthogonal modulations and DPSK.  

Finally, the last chapter provides the summary of this thesis research as well as 

suggestions for further investigation. 
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Chapter 2.                                                                                      

Proposed Partial-coherent Detector for 

Orthogonal Signaling 

This chapter provides the details of how to construct 3 types of detectors at the relay 

of a TWR system that uses PNC and M-ary orthogonal signalling. These are the standard 

non-coherent detector and full-coherent detector, and the proposed partial-coherent 

detector. Section 2.1 sets up the signal and system model of a 2P-TWR system with PNC 

and M-ary orthogonal signaling. Based on the received signal model, Section 2.2 shows 

how a non-coherent detector can be constructed if CSI is unavailable, and how coherent 

detection can be achieved without the aid of pilot symbol by alternating the polarity of 

one of the users’ signal in successive intervals. Section 2.3 lists the main disadvantage of 

alternating the signal’s polarity and then proposes a detector that is able to derive partial 

channel information without the need to alternate the polarity of any signal. Also 

included in this section is a BER analysis of this partial-coherent detector. Section 2.4 

presents numerical results for the BER performance of the 3 types of detector. 

Comparisons and conclusions are made in Section 2.5 

2.1. Signal and System Model for TWR Network 

with PNC  

We consider a 2P-TWR network with users A and B communicating bilaterally 

through a half-duplex relay R. The modulation format adopted by both users is M-ary 

orthogonal modulation with equiprobable waveforms Φ 0 1 M -1{ (t), (t),... (t)},    

where

( 1)

*

,( ) ( )

k T

i j i j

kT

t t dt  


 , T is the symbol interval, and 
,i j is the Kronecker delta 
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function with 
,i j =1 when i=j and 

,i j =0 otherwise. The uplinks (A→R, B→R) and 

downlinks (R→A, R→B) all exhibit Rayleigh flat fading. In particular, the first 

transmission phase in the 2-P TWR network is illustrated in Fig 2.1. 

 

Fig. 2.1: The first time slot in a 2P-TWR network. 

 

The signal received at the relay is of the form of 

 ( ) ( ) ( ) ( ) ( ) ( ),A A B Br t g t s t g t s t n t          ,nT t nT T                       (2.1) 

where 
A Bs (t),s (t) are the source signals, ( )Ag t and ( )Bg t are 2(0, )gCN   random 

processes representing fading in the uplinks, and ( )n t  is the AWGN at the receiver, 

whose power spectral density (psd) is N0. The two fading processes are based on the 

Jake’s channel model with isotropic scattering and vertical polarized antenna. They have 

an identical autocorrelation function of  * 21
02

( ) ( ) ( ) (2 )  
ig i j g dR E g t g t J f     , 

,i A B , where 
0 ( )J  is the Bessel function of the first kind of order zero, and 

df  is the 

Doppler frequency.  

The relay correlates the received signal in (1) with the M orthogonal waveforms in the 

set , yielding the observations 
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*

, [ ] , [ ][ ] ( ) ( ) [ ] [ ] [ ];
A B

kT T

i j A i s k B i s k i

kT

r k r t t dt g k g k n k  


         0,1,..., 1,i M           (2.2)  

where [ ]As k and [ ]Bs k are users A’ and B’ equivalent discrete-time data symbols taken 

from the set {0,1,..., 1}S M  ; [ ]As k i  and [ ]Bs k j  if only if ( ) ( )A is t t  and 

( ) ( )B js t t  in the k
th

 interval, respectively. The terms [ ]Ag k  and [ ]Bg k  are the fading 

gains in the k
th

 interval, and both [ ]Ag k  and [ ]Bg k  have a common autocorrelation 

function of * 21
02

( ) ( [ ] [ ]) (2 )
jg j j g dR E g k g k J f T    , ,j A B . Finally, 

0[ ] (0, )in k CN N  is the noise term of the i
th

 correlator, and all the noise terms are 

independent and identically distributed (i.i.d). An interesting property of the signal 

structure in (2) is that the sum correlator output is always the sum fading process plus 

noise, i.e. 

 
-1

0

0

[ ] [ ] [ ] [ ] 0, ,
M

i A B

i

u k r k g k g k CN MN


                              (2.3) 

irrespective of the transmitted data symbols. This suggests that (2.3) can be used to 

estimate the sum complex fading gain 

[ ] [ ] [ ]A Bu k g k g k  .                                                  (2.4) 

This observation would be exploited to form the pilot-less coherent detector in Section 

2.2 as well as the proposed partial-coherent detector in Section 2.3. Finally, the symbol 

signal-to-noise ratio (SSNR) is defined as  

2

0/ ,s g N                                                        (2.5) 

and the bit signal-to-noise ratio (BSNR) is 

2/ logb s M  .                                                  (2.6) 
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The BER of different detectors will be plotted against 
b  in dB. In this dissertation, we 

aim to compare the performances of different modulation schemes in TWR 

communications, whereas is not between the relay communications versus the 

conventional point-to-point transmission. Therefore, there is no need to scale SNR further 

more.  

Upon receiving the signal ( )r t  in (2.1), the DaF-relay selects a symbol from a pre-

defined discrete constellation 
RS that best matches  0 1 -1[ ] [ ], [ ],..., [ ]

T

Mk r k r k r kr , the 

correlators’ output in (2.2). In this investigation, the relay continues to use the same M-

ary orthogonal modulation, so that, the forwarded symbol is also taken from the set 

0,1,... -1}S M . The mapping of different pairs of ( [ ]As k , [ ]Bs k ) from the Cartesian 

product S S onto the symbols [ ]c k  in S  will be done using the natural-binary (NB) 

mapping. Let [ ]kAs and [ ]k
B

s  be the NB representations of the data symbols 

[ ]As k and [ ]Bs k . Then the network-coded symbol [ ]c k  is the simply the decimal 

equivalent of [ ]= [ ] [ ]k k kA Bc s s . Tables 2.1 and 2.2 provide full details of the mappings 

in the 2M and 4M cases respectively. 

Table. 2.1: Mapping of the source symbol pair ( , )A Bs s  into the network-coded symbol c  

for 2M  systems. 
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Table. 2.2: Mapping of the source symbol pair ( , )A Bs s  into the network-coded symbol c  

for 4M  systems. 

 

As shown in the tables, the decision metric associated with each network-coded 

symbol P , 0,1,... 1P M  , is  

( , )

( [ ] | , , ( ));P

I J P

L p k I J f


  r g                                             (2.7) 
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where ( [ ] | , , ( ))p k I J fr g  is the probability density function (pdf) of the received vector 

[ ]kr  if I and J  are the transmitted symbols and when ( )f g , ( , )A Bg gg , is the 

available CSI. The sum in (5) is taken over all pairs of ( , )I J  that are mapped into the 

symbol P from the relay’s constellation SR. The decoded symbol [̂ ]c k  at the relay is the 

one that has the largest metric  

{0,1,..., -1}
[̂ ] arg max [ ]P

P M
c k L k


 .                                            (2.8)    

In the following sections, three types of detectors will be considered: standard non-

coherent detector, a pilot-less coherent detector, and the proposed pilot-less partial-

coherent detector. 

2.2. Non-Coherent and Coherent Detectors 

Two standard detectors are presented in this section to serve as performance 

benchmarks. These are the non-coherent detector and the ideal full-coherent detector. 

They correspond to extremes of CSI availability: none and full knowledge of the channel 

gains. 

2.2.1. Non-coherent Detector - No CSI Available 

When [ ]Ag k  and [ ]Bg k  are not known, ( )f g  is simply the empty set.  In the absence 

of any CSI, the non-coherent detector at the relay simply uses the data-dependent 

variances of the received vector  0 1 -1[ ] [ ], [ ],..., [ ]
T

Mk r k r k r kr  in (2.2) to identify the 

uplink data symbols I and J . Since such a detector makes symbol-by-symbol decisions, 

we can ignore the time index k in the receive vector [ ]kr . 
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In the absence of CSI and when [ ] [ ]A Bs k s k I  , then the I-th correlator output, 
Ir , 

is simply treated as a zero-mean complex Gaussian random variable with a variance of 

2

02 g N  . All the remaining ,  mr m I , have a common variance of 
0N ; refer to (2.2). 

Since the noise components in the receive vector 
1 2[ , ,..., ]T

Mr r rr are independent, its pdf 

when conditioned on the data symbols becomes 

22 -1

2 1 2
00 0 0 0

2 2 2-1

2 2 2 2
00 0 0 0

,

| || |1
exp exp ,                  ;

(2 ) (2 )( ) 2(2 ) 2

( | , )

| | | | | |1
exp exp ,      

(2 ) ( ) ( ) 2( ) 2









  
   

     
    





  

  
   







M
iI

M M
ig g
i I

M
I J i

M M
ig g
i I J

rr
I J

N N N N

p I J

r r r

N N N N

  

  

r

            .








 
   


 

 

I J

                     (2.9) 

The decision metric for this non-coherent detector is obtained by substituting (2.9) into 

(2.7). The decoded symbol ĉ  is decided based on (2.8). 

Although the above non-coherent detector is easy to implement, it does not provide 

the best BER performance, as we shall see later on in this chapter. 

2.2.2. Full Knowledge of the Fading Gains 

To achieve a better BER performance, a full-coherent detector can be considered, if 

CSI is available. Specifically, if the individual fading gains [ ]Ag k and [ ]Bg k  can be 

accurately estimated by the relay’s receiver, coherent detection can be performed. Below 

is a method to estimate these fading gains without resorting to transmit any pilot symbol. 

As mentioned in (2.3), the sum of the components in the receive vector  kr  always 

provides a noisy copy of the sum fading gain [ ]u k  in (2.4). The result suggests that, in the 

case of static fading, u  can be estimated by simply taking the average of the sums 



 

14 

1

0
[ ]

M

ii
r k



  over a number of consecutive symbol intervals. In the event of time-selective 

fading, the sums 
1

0
[ ]

M

ii
r k



  at different symbol intervals are passed to a minimum-mean-

square-error (MMSE) estimator to generate the final estimate of  [1], [2],..., [ ]
T

u u u Nu . 

Details of MMSE estimation will be provided in next chapter. Since each sum 
1

0
[ ]

M

ii
r k



   

serves as an implicit pilot symbol [25], the estimate of [ ]u k  obtained this way can be 

very accurate, even with time-selective fading, as we shall we see in the next chapter. For 

this reason, we assume, perfect estimation here. 

While knowing the sum fading gain in (2.4) is useful, it alone does not lead to a 

coherent detector. As mentioned earlier, coherent detection requires knowledge of both 

[ ]Ag k  and [ ]Bg k . To extract this information from the received signal without resorting 

to transmitting pilot symbols, we can consider alternating the polarity of user B’s signal 

from one symbol interval to the next, i.e. allowing B to adopt the constellation 

 0 1 -1, ,..., Mv v v  in the even symbol intervals and the constellation  0 1 -1, ,...,   Mv v v  in 

the odd intervals. In doing so, the signal components of the received vectors in the odd 

intervals in (2.2) can be rewritten as  

*

, [ ] , [ ][ ] ( ) ( ) [ ] [ ] [ ];          ,  0,1,..., 1.



      A B

kT T

i A i s k B i s k i

kT

r k r t j t dt g k g k n k k is odd i M      

(2.10)                      

According to (2.10), the sum correlator output in the odd intervals is always the 

difference fading process plus the noise term 

  
-1

0

0

[ ] [ ] [ ] [ ] 0, ; .  


   
M

i A B

i

v k r k g k g k CN MN             k is odd               (2.11) 

At this point, we can deduce that (in the case of static fading) the channel estimates 

requires for coherent detection can be obtained from the sum and difference of 
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 -1

0
 even

[ ]
M

ii
k

r k
  and  -1

0
 odd

[ ]
M

ii
k

r k
 , where  -1

0
 even

[ ]
M

ii
k

r k
 and   -1

0
 odd

[ ]
M

ii
k

r k
  are the 

averages of 
-1

0
[ ]

M

ii
r k

  over the even and odd intervals. In the case of time-selective 

fading, the sum fading gain  [1], [2],..., [ ]
T

u u u Nu and the difference fading gain 

 [1], [2],..., [ ]
T

v v v Nv can be estimated by passing the  -1

0
 even

[ ]
M

ii
k

r k
 and the 

 -1

0
 odd

[ ]
M

ii
k

r k
 to  interpolators designed based on the minimum mean square error 

criterion. The detail of this MMSE interpolation is presented in the next chapter. 

 Assuming perfect channel estimation is achieved through the above procedure, i.e. 

f( )=g g , we can ignore the time index k in the receive vector  

 0 1 -1[ ] [ ], [ ],..., [ ]
T

Mk r k r k r kr  in (2.2). When  and  A Bg g  are known, and when 

[ ] [ ]A Bs k s k I  , then 
Ir  has a mean of 

A Bg g  and a variance of 
0N . As for the 

remaining ,  mr m I , they all have zero mean and variance of 
0N ; refer to (2.2). On the 

other hand, when  and  A Bg g  are known but [ ]As k I  and [ ]Bs k J , then 
Ir  has a mean 

of 
Ag  and a variance of 

0N ,  
Jr  has a mean of 

Bg  and a variance of 
0N , and all the 

remaining ,  ,  mr m I m J  , have zero mean and a common variance of 
0N . Since all 

the noise terms in the receive vector 
1 2[ , ,..., ]T

Mr r rr are independent, its pdf when 

conditioned on the data symbols and the CSI is thus  

 

22 -1

00 0 0

2 2 2-1

00 0 0
,

| || |1
exp exp ,                  ;

(2 ) ( ) 2 2

| , , ( , )

| | | - | | |1
exp exp ,      .

(2 ) ( ) 2 2

M
iI A B

M M
i
i I

A B

M
I A J B i

M M
i
i I J

rr g g
I J

N N N

p I J g g

r g r g r
I J

N N N











   
    

     
    

 
  

   
     

  






r






    (2.12) 
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Similar to the non-coherent detector, the decoded symbol ĉ  is decided by substituting 

(2.12) into (2.7) and (2.8). 

2.3. Partial-coherent Detection 

The pilot-less coherent detection strategy presented in the last section is achieved by 

alternating the polarity of the constellation of one of the users from one symbol interval 

to the next. However, these polarity changes or switching will increase the transmission 

bandwidth, as the spectrum of the switched signal is the convolution of the spectrum of 

the non-switched signal and a 2sinc ( )  function. A good compromise appears to be a 

detector that simply makes use of the knowledge of the sum fading gain in (2.4) during 

detection. We call this a partial-coherent detector. Intuitively, the error performance of 

this new detector will be in-between those of the ideal full-coherent and non-coherent 

detectors. We first derive below the decoding metric of this partial-coherent detector, 

followed by a general error probability analysis that is applicable to all three detectors.  

It should be noted that the term “partial-coherent detection” is used commonly in the 

literature to refer to differential detection of differentially encoded PSK (DPSK). In this 

thesis, partial-coherent detection refers to a detector that has knowledge of the sum fading 

gain but not individual fading gains in the uplink of a TWR system. 

2.3.1. The optimal partial-coherent detector 

In deriving the optimal partial-coherent detector, we assume the sum fading gain 

[ ] [ ] [ ]A Bu k g k g k   is estimated perfectly and as such, we drop the index k in the 

discussion. Practical estimation of the sum fading gain will be addressed in the next 

chapter.  
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When u  is known, and when [ ] [ ]A Bs k s k I  , then 
Ir  is complex Gaussian with a 

mean of  
A Bu g g   and a variance of 

0N . All the remaining ,  mr m I , have zero mean 

and variance of 
0N . As a result, the conditional pdf of 

1 2[ , ,..., ]T

Mr r rr  given u for this 

scenario is  

22 -1

00 0 0

| || |1
( | , ) exp exp

(2 ) ( ) 2 2

M
iI

M M
i
i I

rr u
p I J u

N N N 


 
   

      
   

 

r ,                (2.13) 

Basically, this scenario is identical to that of the ideal coherent detector.  

For the scenario of different transmitted symbols, say [ ]As k I  and [ ]Bs k J , then 

I A Ir g n  , 
J B Jr g n  , and 

m mr n , ,m I J . Knowing 
A Bu g g  will provide 

partial knowledge of the means and variances of the complex Gaussian random variables 

Ir  and  
Jr  , but none about the rest of the received samples.  Let  

,

I IA

I J

J JB

r ng

r ng

    
      

    
r ,                                                 (2.14) 

and define 

* 21
,2 I J gE u     φ r 1 ,                                                 (2.15) 

 21
, , 0 22

    
†

Φ r r II J I J gE N ,                                          (2.16) 

where [1,1]T1  and 
2I  is an identity matrix of size 2. It can be easily shown that given 

A Bu g g  , 
,I Jr  has a conditional mean of  

, 2

1

2
I J

u

u u


 
    
 

φ
m 1 ,                                            (2.17) 



 

18 

and a covariance matrix of  

 21
, 0 222

1 11

1 1

 
     

 

†
Φ Φ φ φ II J g

u

N


.                               (2.18) 

Note that the inverse of 
,I JΦ  is 

 
 1 21

, 2 0 222

0 0

1
I J g

g

N
N N




   


Φ U I ,                               (2.19) 

where 
2U  is an all-one matrix of size 2. Since u provides no information on the 

remaining received samples, this means the conditional pdf of 
1 2[ , ,..., ]T

Mr r rr given 

I J  and u is 

    21 1 1 2-1
, 2 2 0 2 , 22 2 2

2 -1 2
00 0 0 0 0

,

( | , )

| |1
  exp - exp ,   ,

(2 ) ( )( ) 2 ( ) 2


 

       
    

     


M

I J g I J i

M M
ig g
i I J

p I J u

u N u r
I J

N N N N N



  

†

r

r 1 U I r 1

                               (2.20) 

Summarizing the results of the two scenarios, the condition pdf of the correlators’ 

output is  

 

22 -1

00 0 0

1 1
, 22 2

2 -1

0 0

( | , , )

| || - |1
exp exp ,                                                                               ;

(2 ) ( ) 2 2

  

1
exp

(2 ) ( )( )






  
  

     
  









M

iI

M M
i
i I

I J

M M

g

p I J u

rr u
I J

N N N

u

N N





 

†

r

r 1   2 1 2-1
2 0 2 , 22

2
00 0 0

,

| |
exp ,   ,

2 ( ) 2









                 


M

g I J i

ig
i I J

N u r
I J

N N N

U I r 1

( 2.21) 

 Substituting (2.21) into (2.7) generates the optimal decision metric for the proposed 

partial-coherent detector. 
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2.3.2. BER Upper bounds of the three Detectors 

The decision metrics of the three detectors presented in the previous sections can all 

be expressed in terms of quadratic forms of complex Gaussian random variables. As a 

result, their error performance can be easily analyzed using the characteristic function and 

residue approach. Since CSI is either known perfectly or not at all, the time index k can 

be ignored in the analysis.   

To begin, upper bounds on the symbol error rate (SER), Ps, and the BER, Pb,, of the 

three detectors mentioned in (2.9), (2.12) and (2.21), can be derived using the pairwise 

error probability (PEP) approach. Specifically, 

                    
, ,
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and 
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log
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P d c c p s s f p s s f
M M


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where ( ,  )A Bs s  are the data symbols whose network-coded symbol is c , ( ,  )A Bs s  

represents an alternative pair with a network-coded symbol c , ( , )Hd c c  is the Hamming 

distance between c and c ,    | ,  ,  ( ) | ,  ,  ( )A B A Bp s s f p s s fr g r g  denotes a pairwise 

error event with  | ,  ,  ( )p I J fr g  being the conditional pdf given in either (2.9), (2.12) 

or (2.21), and the inner sum is over all pairs of  ( ,  )A Bs s  whose network-coded symbol c  

differs from c . The pairwise error events can be classified according to 

 ( ,  ) ( ,  )，H A B A Bd s s s s , the Hamming distance between the two-tuples ( ,  )A Bs s  and 

( ,  )A Bs s , and by whether the transmitted symbols of the two users, and those in the 

alternative, are identical or different; refer to Fig. 2.1. The classifications shown in the 
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diagram can be applied to the binary (M=2) and quaternary (M=4) cases, with types I and 

III error events specific to the binary cases. 

 

Fig 2.2: Classification of pairwise error events; 
Hd  is the Hamming distance between the 

two-tuples ( ,  ) and ( ,  )A B A Bs s s s ; the two events at the bottom level of the tree  

represented by dashed lines are NON error events according to the mappings in Tables 

2.1 and 2.2 

Since the scenario =A Bs s  and =A Bs s  does not constitute an error event (see Tables 2.1 

and 2.2), there are only six types of pairwise error events. Without loss of generality, we 

set ( ,  )A Bs s and ( ,  )A Bs s  to some convenient values to reflect the case under 

consideration. For the M=2 and M=4 cases, there are a total of six types of pairwise error 

events of the form: 

I.    | 0,  0,  ( ) | 0,  1,  ( ) ,A B A Bp s s f p s s f    r g r g  

II.    | 0,  0,  ( ) | 1,  2,  ( ) ,    r g r gA B A Bp s s f p s s f  

III.    | 0,  1,  ( ) | 0,  0,  ( ) ,    r g r gA B A Bp s s f p s s f  

IV.    | 0,  1,  ( ) | 2,  2,  ( ) ,A B A Bp s s f p s s f    r g r g  

V.    | 0,  1,  ( ) | 0,  2,  ( ) ,A B A Bp s s f p s s f    r g r g  
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VI.    | 0,  1,  ( ) | 2,  0,  ( ) ,A B A Bp s s f p s s f    r g r g  

Type I error events are those cases which both users transmit the same symbol but the 

alternative ( ,  )A Bs s  differ from ( ,  )A Bs s  in one position. Type III events are the opposite 

of the Type I events. These two types of error events are valid for both the M=2 and M=4 

cases. In the binary case, they cover all the possible error events. 

Types II to VI error events are the remaining error event types in the M=4 case. Type 

II events, are again, those cases which both users transmit identical symbols. This time 

though, the alternative ( ,  )A Bs s  differs from ( ,  )A Bs s  in both positions. Type IV events 

corresponds to those cases which the two users transmit different data symbols but the 

symbols 
As  and 

Bs  in the alternative pair are identical but different from both 
As  and 

Bs . 

Finally, Type V and VI events cover those cases which symbols in both the transmitted 

and alternative pairs are different (i.e. 
A Bs s  and 

A Bs s ), but one of ( ,  )A Bs s  equals 

one of ( ,  )A Bs s . In the case of Type V, ( ,  )A Bs s  and ( ,  )A Bs s  differs is one position, 

while in the case of Type VI, they differ in both positions. Note that with the M = 4 

mapping in Table II, it is not possible to have an error event where 
A B A Bs s s s    . 

This stems from the fact that if the source symbol pair 
1 2( , )I I  is mapped into the 

network-coded symbol c, then the pairs
2 1( , )I I ,

3 4( , )I I  and 
4 3( , )I I  are also mapped into 

the same network symbol, where 
1I  to 

4I  are the four different symbols in the set of 

{0,1,2,3}. 

Let 
iP , i= I, II... VI, denote the probabilities of the six types of pairwise error events 

for any of the three detectors. Then based on the mappings in Tables I and II, we can 

show that the upper bounds on the SER and the BER are given by the following general 

expressions 

 b I IIIP P P ,                               M=2,                          (2.24) 
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and  

3
( ) 3( ) 

2

( ) 2( ) 

s I II III IV V VI

b I II III IV V VI

P P P P P P P

P P P P P P P

     

     

,           M=4.                     (2.25) 

It is observed that in the M=4 case, the upperbound on the BER is 2/3 that of the SER. 

Furthermore, (2.25) appears to suggest that the BER upperbound for the M = 4 case is 

higher than that of its binary counterpart. This would be true if both were evaluated using 

the same symbol SNR 
s . If however, the calculation is based on the same bit SNR 

b , 

the upperbound in the M = 4 case can actually be lower than that in the M = 2 case, as we 

shall see. 

All the pair-wise error event probabilities , ,...,I II VIP P P  in the above list can be 

expressed in terms of a quadratic form  

†D  X MX                                                        (2.26)  

being less/greater than a non-negative threshold 
0T , where X  is a complex Gaussian 

vector with a covariance matrix of †1
2

E    XXΦ XX , and M  and 
0T  vary with the 

detector and error event types. The probability that 
0D T  is given by  
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0 and all  -

 

( ) ( )
Pr 1 1

( )
                 

j sT
sTD D

s LHP polesj

sT

D

LHP poles

s s e
D T e ds res

s s

s e
res

s

 

 





  
      

 

 
   

 





,                (
0 0T  )       (2.27) 

 
0

0

0 and all  

( )
Pr ,  

sT

D

s LHP poles

s e
D T res

s

 
   

 
                     (

0 0T  )        (2.28) 

where  
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is the two-sided Laplace transform or characteristic function (CF) of the pdf of the 

quadratic form D , 
1 2, ,...,p p p  its poles, and 

1 2, ,...,    the corresponding orders. The 

integral in the first equality in (2.27) above is simply the cumulative density function of 

D  evaluated at the threshold 
0T . As shown in the second equality in the same equation, 

this integral (or inverse Laplace Transform) can be expressed in terms of the sum of 

residues of 0( ) /
sT

D s e s  at 0s   and at all its negative poles, where the residue at a pole p 

of order   is   

 
-1

-1

1
( ( ) / ) ( ) ( ) /

( 1)!

n
st n st

D s p Dn

d
res s e s s p s e s

n ds
   


.                          (2.30) 

Note that when 
0 0T  , positive poles will be used to calculate the error event probability 

instead, i.e.  

 
0

0
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RHP poles

s e
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s

 
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 
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0 ( 0)T       (2.31) 

From [25, Appendix B], the poles of ( )D s  are the roots of the determinant 

( ) 2s s   xxI Φ M  ,                                                  (2.32) 

where I is an identity matrix and   denotes determinant. Eqns. (2.26)-(2.32) contain all 

the required information to calculate the pairwise error events probabilities of the three 

detectors. The poles, the threshold 
0T , and the matrices 

xx
Φ and M are provided in 

Appendix A for each of the three detectors and each of the six error event types.  
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Using the characteristic function technique, we obtain the PEPs , ,...,I II VIP P P  for each 

of the three detectors. After substituting these PEPs into (2.23)-(2.24), and with large 

SNR approximation, we finally obtain the following asymptotic BER upperbounds for 

the different M=2 and M=4 detectors:  
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b
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(partial-coherent, M=4)             (2.38) 

2.4. Analytical and simulation Results  

Fig. 2.3 shows the upperbound on the BER of the M=2 non-coherent detector (2.33) 

and the M=2 full-coherent detector (2.35). As expected, the full-coherent detector has 

better performance than the non-coherent detector, because the CSI is perfectly known in 
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the former. In Fig. 2.4, we further analyze the characteristics of the two detectors by 

providing conditional BER curves when 0c  ( )A Bs s  and when 1c  (
A Bs s ). The 

conditional BERs are given in (2.39)-(2.42) below; the detail calculation can be referred 

to Appendix A. 
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According to Fig. 2.4, the BER of the coherent detector in (2.12) conditioned on a sum 

bit of 0c   is the same as that when conditioned on 1.c   However, the same is not true 

of the non-coherent detector in (2.9). The conditional BER when 1c   is several times 

higher than that when 0c  . This is due to the difference in (2.41) and (2.42). 

Fig. 2.5 shows the simulation results of the 2M non-coherent detector and the 

2M  full-coherent detector, along with the bounds. The simulated BER of the non-

coherent receiver and the coherent receiver are only 0.5 dB away from their 

corresponding upper bounds. As such, we conclude that the upperbounds are tight. It is 
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obvious from the figure that there is a big performance gap between the coherent and the 

non-coherent detectors. For example, the coherent detector requires only 30 dB of SNR 

to attain a BER of 310 . The non-coherent detector, on the other hand, requires 40 dB.  

We study next the BER performance of the proposed partial-coherent detector and see 

if it can indeed narrow the gap between the non-coherent and the full-coherent detector.  

Fig. 2.6 provides the bounds of the three detectors and the simulation results of the 

proposed 2M  partial-coherent detector. According to the graph, the simulation results 

agree with the bound, though there is a 1 dB difference between the two. The important 

thing is, these results indicate that the partial-coherent detector can provide a very 

significant improvement over the non-coherent detector at practically no extra cost. For 

example, at a BER of 10
-3

, the proposed partial-coherent detector promises a 3 dB 

improvement in BSNR over the non-coherent detector without resorting to transmit any 

pilot symbols. Another interesting property of the partial-coherent detector is that, as 

shown in Fig. 2.7, its BER upper bounds conditioned on 0c   and 1c   coincide with 

BER upper bound of the coherent detector for 0c   and the upper bound of the non-

coherent detector for 1c  . In other words, the BER of the partial-coherent detector is the 

average of the BERs of the coherent and the non-coherent detector.  

Fig. 2.8 shows that the BERs of the three types of 4M  detectors for 2P-TWR. It is 

observed that they have similar performance to their corresponding 2M counterparts. 

Finally, Fig. 2.9 provides the simulation results of the proposed 4M  partial-coherent 

detector, along with the bounds of the three 4M detectors.  It is observed that the 

bound for the partial-coherent detector is not very tight, as there is a 2dB gap between the 

simulation BER curve and the bound. Similar to the 2M  case, the proposed 4M  

partial-coherent bound provides a 3 dB improvement in BSNR over the non-coherent 

detector. However, there is still a 7 dB gap between the partial-coherent detector and the 

full-coherent detector.  

Finally, we comment on the performance of the proposed partial-coherent detector 

against the detector from [21, Eqn. (23)]. According to [22], if the fading amplitudes 
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1 and 
2  stay constant within a block of data and known perfectly to the receiver, then 

the performance of their detector is given by the blue curve labeled “DNC, known 
1 , 

2 ” in Fig. 3 of [22], which is almost identical to that of the proposed partial-coherent 

detector. However in actual implementation, the proposed partial-coherent detector has a 

lower complexity because it is much simpler to estimate the sum fading gain 
A Bu g g   

(refer to the next chapter) than to estimate 
1  and 

2 according to [21, Eqn. (35)-(39)]. 

Note also that the estimator in [22] is only valid for block fading while the one proposed 

in this thesis is applicable to time-selective fading.  
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Fig. 2.3: Upperbound on the BER for 2M  non-coherent and full-coherent detectors at 

the relay 
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Fig. 2.4: BER of the relay’s non-coherent and coherent detectors for different error 

events. 
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Fig. 2.5: Simulated BER along with bounds of the relay’s non-coherent and full-coherent 

detectors in the 2M case. 
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Fig. 2.6: Simulated BER vs. analytical bounds for 2M partial-coherent detector at the 

relay. 
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Fig 2.7: Analytical results of the 2M proposed partial-coherent detector in different 

error events. 
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Fig. 2.8: Analytical Bounds on BER for different 2M and 4M detectors at the relay. 
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Fig. 2.9: Simulated BER vs. analytical bounds for the 4M partial-coherent detectors at 

the relay. 
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2.5. Conclusion 

In this chapter, the topics of non-coherent and full-coherent detection of orthogonal 

modulations transmitted over a two-phase two-ray relay (2P-TWR) channel were 

revisited. As is well known, the non-coherent detector, while simple, does not provide 

very good BER performance. The full-coherent detector, on the other hand, provides very 

good performance, but it requires either the transmission of pilots or bandwidth 

expansion, in general, for channel estimation. Our results indicate that there is a 10 dB 

gap between the two detectors for the 2P-TWR channel, which is much wider than in the 

case of point-to-point transmission. As a compromise, a pilot-less partial-coherent 

detector is proposed to bridge the gap of non-coherent and full-coherent detection, 

without much added complexity. The partial-coherent detector is able to provide a 3 dB 

improvement in BSNR over the non-coherent detector without resorting to transmit any 

pilot symbols. However it still suffers a huge BSNR penalty of 7 dB when compared to 

the full-coherent detector. In the next Chapter, we propose a decision feedback strategy 

that enables the relay receiver to close this huge performance gap. 
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Chapter 3.                                              

A Random Channel Sounding Decision 

Feedback Receiver 

In this chapter, a decision feedback (DFB) receiver built upon the partial-coherent 

detector in Chapter 2 is proposed to improve the error performance of 2P-TWR 

communication systems that employ PNC and orthogonal modulations. Section 3.1 

outlines the structure of this decision feedback receiver, and provides details of the 

estimator for the sum fading gain that is used in the initial partial-coherent detector to 

kick start the decision feedback mechanism. The next two sections deals with the topics 

of identification and estimation of the individual uplink fading gains based on the 

decisions provided by the partial-coherent detector. Section 3.2 is concerned with static 

fading while Section 3.3 deals with the more challenging scenario of time-selective 

fading. Simulation results are presented, with the data block size, the interpolator type 

(minimum-mean-square versus least square), and the fade rate as parameters. Comparison 

with full-coherent detection will be made. Finally concluding remarks on the 

performance of  the proposed DFB receiver are provided in Section 3.4. 

3.1. A Decision Feedback Receiver built on 

Partial-coherent Detection 

Consider the correlator output in (2.2). If the transmitted symbols from the two users 

are different, i.e. [ ]As k I  and [ ]Bs k J , where  I ≠J, then 
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[ ] [ ],    ,

[ ] [ ] [ ],    ,

[ ],                ,  .

A I

j B J

j

g k n k j I

r k g k n k j J

n k j I j J

  


  
  

                                    (3.1)  

This suggests that if the relay can identify those intervals which the two users transmit 

different data symbols, then it can separate the two fading gains from the composite 

receive signal in those intervals and perform channel estimation for the entire block of 

data through interpolation. In other words, we can devise a decision feedback receiver 

that exploits the randomness in the transmitted data to perform channel sounding even 

though there are no pilot symbols. Once the fading gains in the entire block of data are 

estimated, then the data symbols can be re-detected using the coherent detector in (2.12), 

with the actual fading gains replaced by the estimated gains. The procedure of a 

completed decision feedback loop is summarized as follows: 

 Step 1: use the proposed partial-coherent detector in (2.21) to make preliminary 

decisions on a block of N consecutive network-coded symbols {c[1], c[2],… c[N]}, 

 2N  ; 

 Step 2: identify the decisions from Step 1 that correspond to [ ] [ ]A Bs k s k ; sort 

out which correlator output [ ]jr k  is associated with [ ]Ag k , and which [ ]jr k  is associated 

with [ ]Bg k ; estimate the individual fading gains in the entire block of N consecutive 

symbols via interpolation. 

 Step 3: Use the estimated CSI obtained in step 2 instead of the true fading gains 

[ ]Ag k  and [ ]Bg k  to perform coherent detection in (2.12). 

 If it is needed, multiple rounds of decision feedback can be employed by 

repeating Step 2 and Step 3.  

Since the individual fading gains required for coherent detection in the feedback stage 

are obtained through interpolation of the fading gains extracted from those intervals 

where the data symbols from the two users are detected to be different by the partial-

coherent detector, there should be sufficient number of such intervals. Otherwise, results 
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of the interpolation would not be accurate. As such, in the proposed decision feedback 

receiver, we set a threshold 
TK  such that when the number of the preliminary decisions 

corresponding to  [ ] [ ]A Bs k s k  is less than 
TK , no decision feedback will be performed 

and the receiver simply accepts the decisions of the partial-coherent detector as the final 

decisions. In this investigation, 
TK is set to a relatively small number, in the 

neighbourhood of 4. For a sufficiently large block size N, the probability that the number 

of intervals where [ ] [ ]A Bs k s k  falls below 
TK  will be small. Thus most of the time, 

DFB will be carried out. 

It is also possible to use the non-coherent detector in (2.9), in place of the partial-

coherent detector, to provide the preliminary decisions in Step 1. However, starting with 

the partial-coherent detector in (2.21) ensures faster convergence because of its superior 

performance.  

The flow chart in Fig. 3.1 summarizes the above decision feedback procedure. 

Details of those blocks used during decision feedback are provided in Sections 3.2 and 

3.3. The remainder of this section addresses the issue of estimating the sum fading gain 

required for initial partial-coherent detection. 
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Fig. 3.1: Flow chart for the proposed DFB receiver. 

3.1.1. Sum Gain Estimation - Static Fading 

In order to perform the initial partial-coherent detection in Fig. 3.1, the relay has to 

estimate the sum fading gains 

 [ ] [ ] [ ]A Bu k g k g k  ,           1,2,...,k N                    (3.2) 

and use the estimates, ˆ[ ]u k , 1,2,...,k N , in place of [ ]u k  in (2.4) during partial-coherent 

detection. These estimates can be obtained by using a MMSE estimator operating on the 

sum output of the correlators (2.3) 
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-1

0

[ ] [ ] [ ] [ ]
M

i
i

u k r k u k e k


   ,            1,2,...,k N            (3.3) 

where [ ]e k  is 0(0, )CN MN . Define 

 [1], [2],..., [ ]
T

u u u Nu  ,                                   (3.4a) 

 [1], [2],..., [ ]
T

u u u Nu  ,                                   (3.4b) 

 [1], [2],..., [ ]
T

e e e Ne .                                     (3.4c) 

The MMSE estimate of the sum fading gain in the k
th  

interval, [ ]u k , is 

1

[ ]
ˆ[ ] u ku k  u uuφ Φ u ,                                                    (3.5) 

where †1
[ ] 2

[ ]u k E u k   uφ u  is the correlation between [ ]u k  and u , and  1
2

E †

uu
Φ uu  

is the covariance matrix of u . Since the terms [ ]u k  and [ ]e k  in (3.3) are independent,  

 1
02

,NE MN    †

uu uu ee uuΦ uu Φ Φ Φ I                           (3.6) 

and  

† †1 1
[ ] 2 2

[ ] [ ] = ;    u k kE u k E u k       uφ u u φ                             (3.7) 

where  1
2

E †

uu
Φ uu is the covariance matrix of u , 0 NMNeeΦ I  is the covariance 

matrix of e , and kφ  is just the k
th

 row of uuΦ . Assuming a Jake’s fading model, then the 

(n,m)
th 

element of uuΦ  is  

2

0( , ) 2 (2 ( ) )uu g dn m J n m f T    ,                                  (3.8) 
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where df  is the Doppler frequency and T is the symbol interval. Substituting (3.6) and 

(3.7) into (3.5), the channel estimate becomes 

1

0
ˆ[ ] ( )k Mu k MN  uuφ Φ I u .                                         (3.9) 

and the corresponding MSE is  

22 2 11
0 02
[ ] [ ] [ ] 2 ( )g k M kk E u k u k MN       

 
†

uuφ Φ I φ  .                    (3.10) 

The average normalized MSE (NMSE) across a block of N symbols is simply 

 

2 2 1

0 02 2
1 1

1

02

1 1 1
[ ] 1 ( )

2 2

1
                                    1 trace ( )

2

N N

N k M k

k kg g

M

g

k MN
N N

MN
N

 
 





 



    

  

  †

uu

†

uu uu uu

φ Φ I φ

Φ Φ I Φ

 .            (3.11) 

In the special case of static fading, i.e. 0df  , then  22 g NuuΦ U  and 22k g Nφ 1 , 

where N1  and NU  are all-one vector and matrix of size N  respectively. In this case, 

2

1

0 2

0 0

21
( )

2

g

N N N

g

MN
MN N MN






 

     
uu

Φ I I U     (static fading)                 (3.12) 

As a result, the estimate ˆ[ ]u k  in (3.9) becomes 

2 2 2 1

2 2
00 0 0

1

0

2 2 2
ˆ[ ] [ ]

2 2

1
       [ ]    at large SNR

N
g g g

N N N

kg g

N

k

u k u k
MN N MN N MN

u k
N

  

 









 
      







1 I U u

              (3.13) 

which, as expected,  is approximately the time average of the sum correlator output.  The 

corresponding NMSE across a frame is 
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2 0 0

2 2

0

 at large SNR
2 2

N

g g

MN MN

N MN N


 
 


.                                 (3.14) 

As observed from (3.14), the NMSE is inversely proportional to the block size N  and the 

symbol SNR 2

0/s g N   when 0df  .  

On the implementation complexity of the decision feedback channel estimator, since 

the estimation filter 1

0( )k MMN uuφ Φ I  in (3.9) needed only to be updated once over 

many blocks, the computational complexity in estimating the sum fading gain is simply 

the number of multiply-and-adds (MAD) required. This translates into N MADs per 

symbol, or 2N  per block of N symbols. 

Figs. 3.2 and 3.3 show the NMSE, 2

N , for the  2M  partial-coherent detector at fade 

rates of 0df T   and 0.005df T  , respectively. Both analytical results (3.10) and 

simulated results are presented for different block sizes N. According to the figures, the 

analytical and simulation results for the MMSE estimator show excellent agreement in 

both static fading and time-selective fading environment. Also observed from the figures 

is that the NMSE is inversely proportional to the SNR, i.e. each NMSE curve decreases at 

a rate of 1 decade per 10 dB increase in SNR and there is no irreducible error floor. As 

expected, a larger block size N  leads to a lower NMSE. It can thus be concluded that the 

MMSE estimator indeed provides accurate estimation of the sum fading gain in both 

static fading and time-selective fading environments. As expected, time-selective fading 

leads to a larger NMSE than static fading.  

Once  ˆ ˆ ˆ ˆ[1], [2],..., [ ]
T

u u u Nu is obtained, the relay receiver can then use the 

estimated sum fading ˆ[ ]u k  in place of the actual one, u, in (2.21) to perform initial 

partial-coherent detection.  In the following sections, we switch our focus to the 

estimation of the uplink channels through the decisions fed back by the initial partial-

coherent detector. We consider two scenarios: static and time-selective fading and they 

are treated separately in Sections 3.2 and 3.3 respectively. 



 

39 

10 15 20 25 30 35 40
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

BSNR (dB)

N
o
rm

a
liz

e
d
 M

S
E

 

 

Analysis, N=16

Analysis, N=32

Analysis, N=64

Analysis, N=128

Simulation, N=16

Simulation, N=32

Simulation, N=64

Simulation, N=128

 

Fig. 3.2: Analytical and simulated NMSE for estimating the sum fading gain with 

different block sizes in a 2M system; Doppler frequency: 0df T  . 

10 15 20 25 30 35 40
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

BSNR (dB)

N
o
rm

a
liz

e
d
 M

S
E

 

 

Analysis, N=16

Analysis, N=32

Analysis, N=64

Analysis, N=128

Simulation, N=16

Simulation, N=32

Simulation, N=64

Simulation, N=128

 

Fig. 3.3: Analytical and simulated NMSE for estimating the sum fading gain with 

different block sizes in a 2M system; Doppler frequency: 0.005df T  . 
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3.2. Decision Feedback Uplink Channel 

Estimation - Static Fading 

3.2.1. Gain Sorting and MMSE Channel Estimation 

Once initial partial-coherent detection is completed, the preliminary decisions are 

divided into two groups. One group is for same detected data symbol pairs from the two 

users ( A Bs s ) and the other is for different detected symbol pairs ( A Bs s ). The decision 

feedback receiver is only interested in the second group as only these preliminary 

decisions can provide information about the individual fading gains in the uplinks. Let 

0 1 1, ,..., Lk k k   be the intervals where A Bs s  . If these decisions are corrected, then the 

correlator outputs in these intervals follow (3.1). In other words, two of the M correlator 

outputs in each of these intervals contain signals, while the others contain only noise. 

Because of the randomness in the uplink data, the two correlators which contain signals 

varies with k , 0,1,..., 1L  . This means the first step towards uplink channel 

estimation is to sort out which correlator output contains  Ag k  and which contains 

 Bg k . For a static fading channel, we propose the following sorting procedure.  

For every symbol interval k  where    A Bs k s k , the correlators in (3.1) are sorted 

according to their magnitudes into the  vector 

0 1 1
 [ ] [ ] ... [ ]

Mi i ir k r k r k


    ,                                (3.15) 

where it is understood that 0 1 1... Mi i i    . For a static fading channel, each uplink gain 

can be treated as a constant over the duration of a block of N symbols. With a reasonably 

large SNR, the two largest correlator outputs in each of the intervals 0 1 1, ,..., Lk k k   must 

correspond to the fading processes, and the probability of a change of associations of the 
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pair of the two largest correlator outputs with the two uplink gains at time k  and that at 

time 1k   is very small.  The fading estimates are thus set to be  

0

1

[ ] [ ]

[ ] [ ]

A i

B i

g k r k

g k r k




            (static fading),                      (3.16) 

and the final MMSE estimates are given by 

1 1

1
ˆ [ ],     ,

L

i i

s

g g k i A B
L   

 


  .                                (3.17) 

where s is the average symbol SNR within the duration of a block of N symbols. The 

time index k  is ignored in the final estimate ˆ
ig  because of the assumption of static 

fading in this subsection.  

The above sorting rule introduces an ambiguity, i.e. Ag  is confused with Bg  and vice 

versa. The ambiguity has no effort on the performance of the final coherent detector with 

PNC though. This can be explained from the network coding rules in Table 2.1 and 2.2 

which show that the pair (I, J) and (J, I), I J , are always coded into the same network 

symbol. Once the uplink channels are estimated, the full-coherent detector in (2.12), with 

Ag  and Bg  replaced by their estimates in (3.17), can be used to make the final decision 

ˆ[ ]c k  in (2.8). 

3.2.2. Numerical Results 

The BER performance of the proposed DFB receiver in a static fading environment is 

evaluated via simulation. We first show in Fig. 3.4 and Fig. 3.5 how the processing block 

size N affects the BER performance of the proposed DFB detector for binary ( 2M ) 

and quaternary ( 4M ) modulations, respectively. Results for 16N , 32, 64, 128 are 
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shown. Simulated BER curves of the initial partial-coherent detector (with estimated sum 

fading gain), as well as the partial-coherent and the full-coherent BER bounds (with 

perfect CSI), are also included in these figures. As predicted, in a static fading channel, 

the performance of the initial partial-coherent detector and the DBF receiver improves 

with the block size, though with diminishing returns.  

In the 2M case, simulation results of the 16N   and 32N   partial-coherent 

detectors agree with the partial-coherent bound. In using a block size of 64N   or longer 

the partial-coherent detector can provide a 5 dB improvement in SNR over the partial-

coherent detector at a BER of 310 . This is only 2 dB away from the coherent bound.  

In the 4M case, It is observed that the bounds of the partial-coherent detector and 

the full-coherent detector are not very tight, as there exist noticeable gaps between the 

bounds and the simulation results.  The simulation results indicate that the proposed DFB 

receiver can actually attain the performance of the coherent receiver. Although not shown 

in Fig 3.5, the simulated BER curve of the 128N DFB receiver is almost 

indistinguishable from that of the 64N detector. 

Fig. 3.6 and Fig. 3.7 illustrate the effect of adding another round of feedback to the 

proposed DFB receiver in the 2M and 4M systems. A processing block size of 

32N  is chosen in these figures to ensure there are sufficient samples for estimating the 

uplink gains. According to Fig. 3.6, the 2M partial-coherent detector (using estimated 

sum fading gain, not the bound) requires 37 dB to attain a BER of 10
-3

. The SNR 

requirement is cut to 32.5 dB  with one round of feedback (red curve) and further reduces 

to 31.5 dB with an extra round of feedback (blue curve).  Similarly in the M=4 case, it is 

observed that the proposed DFB detector, with one round of feedback, already provides 

an impressive 5 dB improvement in SNR over the partial-coherent detector at a BER at 

10
-3

. The gap between the full-coherent detection and the proposed decision feedback 

receiver is now reduced to only 2dB. Another 1dB gain in SNR can be achieved through 

a second round of feedback. 
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Fig. 3.4: Simulated BER of the 2M proposed DFB receiver at 0df T   with varying 

processing block size. 

10 15 20 25 30 35 40
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

BSNR(dB)

B
E

R

 

 

Partial Coherent Upperbound

Patial Coherent Simulation, N=16

Patial Coherent Simulation, N=32

DFB, N=16

DFB, N=32

DFB, N=64

Full Coherent Upperbound

Full Coherent Simulation

 

Fig. 3.5: Simulated BER of the 4M proposed DFB receiver at 0df T   with varying 

processing block size. 
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Fig. 3.6: Simulated BER of the proposed 2M DFB receiver at 0df T  . The 

processing block size is N=32. 
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Fig. 3.7: Simulated BER of the proposed 4M DFB receiver at 0df T  . The processing 

block size is N=32. 
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3.3. Decision Feedback Uplink Channel 

Estimation - Time Selective Fading 

The decision-feedback based channel sorting and estimation strategies in (3.16) and  

(3.17) have the attribute of being simple. However, they are restricted to a static fading 

channel. In this section, more sophisticated techniques are introduced to handle time 

selective fading. As in the last section, the outputs of the correlators with the largest and 

the second largest magnitudes are denoted as 
0 1
[ ] and [ ]i ir k r k , where 0 1 1... Lk k k     

are the intervals where the uplink symbols from the users are detected to be different by 

the initial partial-coherent detector. 

3.3.1. Gain Sorting Algorithm 

For time-selective fading channels, it is possible that the fading pattern [ ]Ag k  and 

[ ]Bg k  cross each other in the complex plane within a window of N consequent symbols. 

When this occurs, there should be a change of association of  
0 1
[ ], [ ]i ir k r k  with 

 [ ], [ ]A Bg k g k  and  
0 11 1[ ], [ ]i ir k r k 

 with  1 1[ ], [ ]A Bg k g k 
. To track the associations, 

a differential approach is proposed as follows. 

First, the event of no change in associations is modeled by declaring 

0 0 1[ ] and [ ]i ir k r k 
 belong to one of the two uplink fading patterns, and 

1 1 1[ ] and [ ]i ir k r k 
 

belong to the other one. The likelihood of this event is described in terms of the joint pdf 

of  
0 00 1[ ], [ ]

T

i ir k r k a and  
1 10 1[ ], [ ]

T

i ir k r k b . With a Jakes fading model, this pdf 

is given by  

 
1 1

0 0 0 0
0 0 2

1
, exp

(2 ) 2
p



  
  

 

† †
a Ψ a b Ψ b

a b
Ψ

                          (3.18) 
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where 

 

 
0 12

0

0 1

1 2 ( ) 1 0

2 ( ) 1 0 1

d

g

d

J k k f T
N

J k k f T










   
       

Ψ               (3.19) 

is the covariance matrix of the two fading-plus-noise patterns in intervals k  and 1k  . As 

for the event of a change in associations, it is modeled by declaring  
0 1 1[ ] and [ ]i ir k r k 

 

belongs to one of the two uplink fading patterns, and 
1 0 1[ ] and [ ]i ir k r k 

 belongs to the 

other one. The likelihood of this event is measured through the joint pdf of 

 
0 11 1[ ], [ ]

T

i ir k r k a and  
1 01 1[ ], [ ]

T

i ir k r k b , which is 

 
1 1

1 1 1 1
1 1 2

1
, exp

(2 ) 2
p



  
  

 

† †
a Ψ a b Ψ b

a b
Ψ

 .                            (3.20) 

 Finally, the sorting algorithm declares that there is no change of associations if 

   0 0 1 1, ,p pa b a b ; else there is a change. After taking natural log of the two pdfs and 

eliminating common terms, the decision on whether there is a change in associations or 

not reduces to computing  

 

 
0 0 1 1

0 1 1 0

* *

0 1 1

* *

1 1 1

Re [ ] [ ] [ ] [ ] ,

Re [ ] [ ] [ ] [ ] ,

i i i i

i i i i

H r k r k r k r k

H r k r k r k r k

 

 

 

 
                            (3.21) 

and setting the change indicator bit according to  

0 1

0 1

0,     ,
[ 1]

1,     .

H H
d

H H


  


                                           (3.22) 

Assuming that in interval k , the sorter declares that the decision feedback-based channel 

estimates are 
0

[ ] [ ]A ig k r k  and 
1

[ ] [ ]B ig k r k . If the indicator bit is a “1”, a change in 
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associations is needed and the sorter updates the fading estimates in interval 1k   as 

11 1[ ] [ ]A ig k r k   and 
01 1[ ] [ ]B ig k r k  . On the other hand when the indicator bit is a 

“0”, there is no change in associations and the sorter sets 
01 1[ ] [ ]A ig k r k   and 

11 1[ ] [ ]B ig k r k  . Note that by definition, we set the decision feedback based channel 

estimates in interval 0k  to be 
00 0[ ] [ ]A ig k r k  and 

10 0[ ] [ ]B ig k r k . Fig. 3.8 further 

illustrates the role plays by the indicator bits [ ]d   in the sorting algorithm. 

 

Fig. 3.8: Example of channel sorting with indicator bits [ ]d . 

According to Fig 3.8, the indicated bits [ ]d k are found to be 1 in intervals 2k  and 4k . 

Hence, there are changes in association in
 
those intervals, as illustrated by the crossing of 

the solid and dashed paths when progressing from interval 1k  to 2k , and from 3k  to 4k . 

As observed from (3.21), the computation of the decision statistics 0H  and 1H  

requires 4 MADs each time the symbols from the users are detected to different. Given 

that this occurs on average, at a fraction of   

( 1) /Q M M    ,                                                      (3.23) 

the mean complexity is 4L  MADs per block of N symbols, where 
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( 1) /L QN M N M                                                  (3.24) 

is the average number of intervals (per block of N symbols) that the two users transmit 

different symbols.  

Once the channel estimates in all the intervals where the users’ symbols are detected 

to be different are obtained, they are organized in to column vectors 

 0 1 1[ ], [ ],..., [ ] ,     ,
T

l l l l Lg k g k g k l A B g   .                             (3.25) 

The final channel estimates will be generated by forwarding lg and the indices 

0 1 1, ,..., Lk k k   to an interpolation filter. Two types of interpolators are discussed in the 

following subsections: MMSE interpolators, and polynomial interpolators based on least 

square (LS) curve fit. 

3.3.2. MMSE Interpolation 

In order to obtain the final channel estimates 

 ˆ ˆ ˆ ˆ[1], [2],..., [ ]
T

l l l lg g g Ng ,  ,l A B                            (3.26) 

from the initial estimates lg  in (3.25), we can use an optimal interpolation filter in the 

MMSE sense. The optimal interpolation filter in this case is 

 
1 gg ggΗ Φ Φ ,                                                     (3.27) 

where  †1
2 l lEggΦ g g is the correlation matrix between the actual gain pattern 

 [1], [2],... [ ]
T

l l l lg g g Ng  and the initial estimate lg , ,l A B , in (3.25), and 

 †1
2 l lEggΦ g g  is the covariance matrix of the lg ’s. Assuming that both the preliminary 
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decisions made by the relay receiver and the channel sorter are correct, then 

     l m l m mg k g k e k   , ,l A B , where    00,me k CN N  represents the noise 

component at the output of the correlator associated with the transmitted symbol of the 

th  user in the 
th

mk  interval.  As a result, the (n,m)
th

 element of gg
Φ  is thus       

 

 

*1
2

* *1
2

2

0

( , ) [ ] [ ]

              [ ] [ ] [ ]

              2 ( ) ,             1,2,... ,  0,1,... 1 

l l m

l l m m

g m d

n m E g n g k

E g n g k e k

J n k f T n N m L



 

   

  
 

    

gg

 ,       (3.28) 

and the (p,q)
th

 element of gg
Φ is        

  

 

*

* *

2

0 0 ,

1
( , ) [ ] [ ]

2

1
              [ ] [ ] [ ] [ ]

2

              2 ( ) ,          , {0,1,..., 1} . 

l p l q

l p p l q q

g p q d p q

p q E g k g k

E g k e k g k e k

J k k f T N p q L



  

   

   
 

    

gg

             (3.29) 

Due to the randomness in the indices  0 1 1, ,..., Lk k k  , the matrices gg
Φ  and 

gg
Φ  used in 

computing the optimal interpolation filter changes from a block of data to the next. While 

these matrices can be obtained through proper pruning of the rows and columns of 

 †1
2 l lEggΦ g g  and 

o NN 
rr gg

Φ Φ I (which can be pre-computed), the complication 

arises during the inversion of 
gg

Φ . Due to the randomness of  0 1 1, ,..., Lk k k  , the matrix 

gg
Φ  is not necessarily Toeplitz and the efficient Levinson-Durbin algorithm cannot be 

used to compute its inverse to obtain the optimal interpolator in (3.27). Using a brute-

force method, the inversion of gg
Φ  has a complexity in the order of 3( )O L . Given the 

event that the two users send different data symbols follows a binomial distribution, over 

a block of N  symbols, the expected value of  3L  is 

 3 2 2 2 2 3 3 31 3 3 2 3 ,E L NQ Q NQ Q NQ N Q N Q L                                (3.30) 
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and the mean complexity for inverting gg
Φ  is thus  3O L , where L  is given by (3.24). 

Also, because the computational complexities of 1

ggΦ  multiplied by gg
Φ  and 1

gg ggΦ Φ  

multiplied by lg  are much smaller than the complexity required for inverting gg
Φ ,  3O L  

is simply used as the complexity of the MMSE interpolator. As an example, for binary 

modulations and a window size of 64N  , 3 332L   and the complexity per symbol 

required for matrix inversion is thus in the order of  3 / 512L N   MADs. Reducing the 

window size to 32N  (with 3 316L ) will cut the complexity per symbol down to 

3 / 128L N , a more manageable figure. This polynomial complexity prevents the use of 

large block sizes. 

The final channel estimates after MMSE interpolation are 

ˆ
l lg Hg ,                          ,l A B ,                    (3.31) 

and the corresponding MSE at the k
th 

symbol position is given by 

2 2 1

0 [ ] g k kk    †

ggψ Φ ψ ,                                             (3.32) 

where  kψ  is just the k
th  

row in gg
Φ . The normalized MSE across the entire block of N 

symbols  is  

 
1

2 2 1

02 2
0

1 1
[ ] 1 trace

N

N

kg g

k
N N

 
 






   †

gg gg ggΦ Φ Φ .                       (3.33) 

It should be emphasized that the NMSE in the above equation is dependent on the 

locations of those intervals where [ ] [ ]A Bs k s k , in other words, dependent on the indices 

 0 1 1, ,..., Lk k k  . The true average NMSE can only be obtained by the taking the average 

of (3.33) over all random data patterns, which is computational intensive, especially for 

large block size N.  For this reason, no attempt was made to compute numerically the 

average of (3.33).  
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As mentioned earlier, a problem with the MMSE interpolator is its  3O L complexity 

in the inversion of gg
Φ . An alternative is to use a polynomial interpolator with least 

square curve fit. 

3.3.3. Polynomial Interpolation - Least Square Curve Fit 

The principle behind polynomial interpolation is to represent the actual fading 

patterns  [1], [2],... [ ]
T

l l l lg g g Ng  and the initial estimate lg , ,l A B , using  P
th

 order 

polynomials ,0 ,1 ,[ ] ... P

l l l l Ph t h h t h t    , where  1,2,...,t N is the symbol index and 

[ ]lh t  is the estimate of [ ]lg t  at symbol interval t . The coefficients in the two 

polynomials are chosen to minimize the square errors when used to represent the two lg . 

Detail derivations of these polynomials are provided below.  

Using polynomial interpolation, the initial estimate [ ]lg k  provided by the channel 

sorter is replaced by  

,0 ,1 ,[ ] ... ,       0,1,..., 1.P

l l l l Ph k h h k h k L                           (3.34) 

The total square error is thus 
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l l j l l j l P j
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l j l l j l P j

j

L
P

l j l l j l P j

j

R g k h h k h k

g k x x k x k

g k y y k y k













    

    
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



.                         (3.35) 
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where ,l Px  and ,l Py  are respectively the real and imaginary parts of ,l Ph , 0,1,...,p P . 

To minimize
2

lR , the coefficients ,l ph , 0,1,...,p P , should be chosen such that the 

partial derivatives with respect to these coefficients are all zero, i.e.  

 
   

 
   

2 1

,0 ,1 ,

0,

2 1

,0 ,1 ,

0,

2 Re [ ] ... 0,        0,1,..., ;

2 Im [ ] ... 0,       0,1,..., .

L
l P P

l j l l j l P j j

jl p

L
l P P

l j l l j l P j j

jl p

R
g k x x k x k k p P

x

R
g k y y k y k k p P

y










        
 


        
 





                 

(3.36) 

 Re-introducing complex notation, these equations can be expressed in matrix form as  

1 1 1

0 0 0,0

1 1 1 12 1
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0 0 0 0

1 1 1 11 2 ,

0 0 0 0

[ ]

[ ]

[ ]

L L LP

j j l j
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L k k g kh

hk k k k g k

h
k k k k g k
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    
       

  

   

   

,                    (3.37) 

or more explicitly as 

,0 00 0

,10 1 1 0 1 1 11 1

,0 1 1 0 1 1 11 1

1 1 1 1 1 1 [ ]1

[ ]1

[ ]1

P
l l

P
lL L l

P P P P P PP
l PL L l LL L

h g kk k

hk k k k k k g kk k

hk k k k k k g kk k

 

   

        
        
        
        
        

       

.    (3.38) 

Let 

0 0

1 1

1 1

1

1

1

P

P

P

L L

k k

k k

k k 

 
 
 
 
 
 

X   ,                                             (3.39) 
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be the matrix containing the sampling times raised to different integer powers  and 

0

1

1

[ ]

[ ]

[ ]

l

l

l

l L

h k

h k

h k 

 
 
 
 
 
 

h ,                                                     (3.40) 

the vector containing the coefficients of the interpolation polynomial [ ]lh t . Then Eqn. 

(3.38) can be rewritten as as ( ) ,  , .T T

l l l A B X X h X g  As a result, the LS curve fitting 

polynomials are given by  

1( ) ,         , ,T T

l l l A B h X X X g                                (3.41) 

and the final channel estimates ,0 ,1 ,
ˆ[ ] ... [ ]P

l l l l P lh t h h t h t g t     , at 1,2,...,t N , are 

given by 

 1ˆ ( )

          

T T

l l l

l

 



g Yh Y X X X g

Fg
                 ,l A B            (3.42) 

where  

2

2

2

1 1 1 1

1 2 2 2

1 3 3 3

1

P

P

PN N N

 
 
 

  
 
 
  

Y                                         (3.43) 

is a matrix containing all the symbol times raised to various powers, and 

1( )T TF Y X X X .                                                 (3.44) 
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is the effective interpolation filter. Finally, it can be shown that the NMSE of the 

polynomial interpolator is given by  

 2

2

1
1 traceN

g N



   † † †

gg gg gg
Φ F FΦ FΦ F   .                            (3.45) 

As in the case of MMSE interpolation, the above NMSE is dependent on the locations of 

those intervals where [ ] [ ]A Bs k s k , i.e., the indices  0 1 1, ,..., Lk k k  . As explained earlier, 

there are prohibitively larger numbers of such combinations. As such, no attempt was 

made to compute numerically the average of (3.45). 

Regarding the computational complexity of the polynomial interpolator, the 

formation of the matrix X in (3.39) requires L(P-1) multiplications, while X
T
X in (3.42) 

is a ( 1) ( 1)P P   matrix and it requires another L(P+1)
2
 arithmetic operations to 

compute.  The computation of the inverse of X
T
X has a complexity of  3( 1)O P  , and 

the multiplication of  
1

T


X X  by 
T

X ,  
1

T T


X X X by lg , ,l A B , and  
1

T T

l



X X X g  by 

Y  , require  
2

1L P  ,   2 1L P , and  2 1N P  MADs respectively. As shown in the 

result section, P is typically a small value, 2 or 3P  . After taking the expected value of 

the sum of these individual complexities, the mean complexity of the proposed LS 

estimator is  

        
3 2

1 1 2 1 1 2 1         LS P NQ P N P Q NQ P ,               (4.46) 

where Q  is given by (4.23). As such, the polynomial interpolator has a much lower 

complexity than the MMSE interpolator. Another advantage of the polynomial 

interpolator over the MMSE interpolator is that it does not require knowledge of the 

signal and noise statistics.  

Table 3.1 summarizes the complexity of the different components of the proposed 

decision feedback receiver, measured in number of MAD operations per symbol, for 
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different values of modulation size M ,  processing block size N , and polynomial order 

P . 

 

Table 3.1: Per-symbol of component of the decision feedback receiver as functions of the 

modulation size M ,block size N and LS interpolator order P  (a) initial partial coherent 

detector, N ; (b) sorting algorithm, complexity, M ; (c) MMSE interpolator, 3L ;(d) 

polynomial interpolator,         
3 2

1 / 1 2 1 1 2 1       P N Q P P Q Q P . 

In the next subsection, the performance of the MMSE estimator and the LS estimator 

will be compared.  

3.3.4. Numerical Results 

In this section, simulation results on the mean-square channel estimation error and the 

BER are provided for the proposed DFB receiver operating in a time-selective fading 

environment with a fade rate of 0.005df T . This fade rate is found to be the highest that 

the proposed DFB receiver can support while maintaining a performance close to ideal 

coherent detection. Although it cannot be considered as fast fading in the context of older 

generations narrowband systems (data rate in the order of tens of kbps), an 0.005df T is 

more than sufficient to handle all realistic mobility conditions for 3G/4G-type 

transmission rates (at 1 Mbps or above) and frequencies (in the 1-2 GHz range). For each 

block of data symbols simulated, we first calculated the normalized square error (NSE) in 

the k
th 

symbol interval as 
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 2 22 1
ˆ ˆ[ ] [ ] [ ] [ ] [ ]

2
A A B B

g

k g k g k g k g k


     ,                       (3.47) 

and then took the average across the block to obtain the per-symbol NSE (PS-NSE) 

2 2

1

1
[ ]

N

N

k

k
N

 


   .                                                     (3.48)
 

These errors include not only standard interpolation errors, but also the effect of 

erroneous decision feedback. Many independent data blocks are simulated and the 

averages of these errors are logged and presented in the figures in this section. Note that 

when the channel SNR is large, most of the initial decisions are correct and the 

simulation results on the PS-NSE presented in this section will approach the averages of 

position-dependent NMSE in (3.33) and (3.45). 

We first present in Figs 3.9 and 3.10 the simulated NSE of the MMSE interpolator at 

different symbol positions within the block, for block sizes of 16N  and 32 respectively. 

According to (3.32), the vector kψ  is affected by the symbol interval index k. Therefore, 

the NSE 2[ ]k  at different symbol intervals are different. It is observed from the figures 

that the NSEs in the middle of the block are smaller than those at the two ends. The 

discrepancy is larger for larger SNRs.  It is deduced that the PS-NSE-N in (3.48) will be 

dominated by those NSEs at the edges.    

Fig. 3.11 shows the PS-NSE-N (3.48) of the MMSE interpolator in a 2M   system 

with different processing block sizes. The simulated results reveal that while the PS-NSE-

N decreases with an increase in SNR, the curves for block sizes of 64N and 

128N exhibit noticeable irreducible error behavior. On the other hand, the curve for a 

block size of 32N  provides the lowest value of 
2

N  (3.48) over a wide range of SNRs. 

It can thus be considered as the “optimal” processing block size. Note that the reason why 

a larger block size may lead to a larger value of 
2

N  is because there are now more 

chances that the two fading patterns cross each other in the complex plane, creating a 
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potential confusion in the channel tracking algorithm in (3.21)-(3.22).  This is especially 

true at large SNR where the effect of noise diminishes and the accuracy of channel 

estimation is predominantly determined by the correctness of the channel sorter.  

Fig. 3.12 shows the PS-NSE-N of LS interpolators of different orders in a 

2M  system with a block size of 32N  . As observed, the 3P   (cubic) interpolator 

has very large errors compared to the other two. Of the remaining two interpolators, the 

P=1 (linear) interpolator is better at SNR below 30 dB while the 2P  (quadratic) 

interpolator is better at higher SNR. To avoid the potential of a slower-than-inverse SNR 

(or even irreducible error floor) behavior in the BER curve, we will thus fix P to 2 for 

polynomial interpolators from hereon.  

 Fig. 3.13 shows the PS-NSE-N of the 2
nd

 order LS interpolator with different block 

sizes. As in the case of the MMSE interpolator in Fig. 3.11, a block size of 32N   

provides the best performance over a while range of SNRs.  

Fig 3.14 and Fig. 3.15 show the BER of the proposed 2M  DFB receiver with 

MMSE and second order polynomial interpolation, respectively. Processing block sizes 

of  16,  32,  64 N and 128  are considered in both cases. To put the performance of the 

proposed receiver in proper perspective, we include in the figures the BER curves (both 

bounds and simulations) of both the partial-coherent and full-coherent detectors. Note 

that the bound for the partial-coherent detector is based on perfect sum-gain estimation 

while the simulation results were obtained under actual (imperfect) estimation (3.31) 

(3.42).  Several observations are made. First, the partial-coherent detector indeed 

performs as its bound promises, as the simulation results using actual channel sum-gain 

estimates almost coincide with the bound obtained under the assumption of perfect sum-

gain estimation. The SNR requirement of the partial-coherent detector to attain a BER of 

10
-3

 is 37dB. Secondly, for both the MMSE and polynomial interpolators, the “optimal” 

block size is 32N . With this "optimal" block size, the SNR requirements for the 

proposed DFB receiver, with MMSE and second order polynomial interpolation, to attain 

a BER of a10
-3

 are cut to 31 dB and 31.5 dB respectively.  These figures correspond to 
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improvements in power efficiency over the partial-coherent detector of 6 and 5.5 dB 

respectively. Thirdly, the proposed DFB receiver with MMSE and second order 

polynomial interpolation is within 1 dB and 1.5 dB of full-coherent detection at a BER of 

310 , respectively.  These are impressive performance.  

We compare explicitly in Fig. 3.16 the BER performance of the two interpolation 

methods in the proposed 2M  DFB receiver. According to the figure, the MMSE 

interpolator is less sensitive to the change in block size. Moreover, at large SNR, the 

32N  MMSE interpolator provides a 0.5 (to 1) dB improvement in SNR over its LS 

counterpart. Thus from the performance perspective, we conclude that the MMSE 

interpolator is preferred over the LS interpolator. However, it should be emphasized that 

the latter has a lower implementation complexity and does not require knowledge of 

channel statistics.  

Finally, we consider the 4M case. Fig. 3.17 shows the simulation results of the 

initial partial-coherent detector with estimated sum fading gain, the proposed DFB 

detector with one and two rounds of feedback, simulation results of the full-coherent 

detector, and the bounds of the partial-coherent detector and the full-coherent detector, all 

at a Doppler frequency of 0.005df T  and a block size of 32N . It is observed that the 

proposed DFB detector, with one round of feedback, already provides an impressive 5.5 

dB improvement in SNR over the partial-coherent detector at a BER at 10
-3

. There is no 

significant change in SNR through imposing another round of feedback. As mentioned 

before in Fig 3.7, for the 4M case, the bound of the full-coherent detector is not tight, 

and there exists a 2dB gap between the full-coherent simulation and the bound. 
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Fig.3.9: Simulated NSE of the 2M  MMSE interpolator at different symbol intervals 

and at different SNRs. The processing block size is 16N . 
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Fig. 3.10: Simulated NSE of the 2M  MMSE interpolator at different symbol intervals 

and at different SNRs. The processing block size is 32N . 
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Fig. 3.11: Simulated PS-NSE-N of the 2M  MMSE interpolator at 0.005df T   and 

different processing block sizes 
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Fig. 3.12: Simulated PS-NSE-N of the LS curve fitting interpolator at 0.005df T   with 

different polynomial orders. The processing block size is 32N . 
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Fig. 3.13: Simulated PS-NSE-N of the 2
nd

 order LS curve fitting interpolator at 

0.005df T   and different block sizes. 
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Fig. 3.14: Simulated BER of the proposed 2M  DFB receiver at 0.005df T  with 

MMSE channel interpolation and different processing block sizes. 
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Fig. 3.15: Simulated BER of the proposed 2M  DFB receiver at 0.005df T   with 2
nd

 

order LS interpolation and different processing block sizes. 
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Fig. 3.16: Simulated BER of the proposed 2M   DFB receiver at 0.005df T  with 

different channel interpolators and different processing block sizes. 
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Fig. 3.17: Simulated BER of the proposed 4M  DFB receiver at 0.005df T   and 

MMSE channel interpolation. The processing block size is 32N . 

3.4. Conclusion 

Built on the promises of the (idealized) partial-coherent in Chapter 2, we propose in 

this chapter a novel decision feedback receiver for two-phase two-way relay with 

physical network coding and orthogonal signaling. The design begins with a practical 

MMSE estimator of the sum-gain in the partial-coherent detector that delivers a 

performance close to perfect estimation. Then in realizing that when the initial decisions   

from the partial-coherent detector indicate the symbols transmitted by the two users are 

different, the individual fading gains in those intervals can be separated, we propose a 

simple channel identification and two channel interpolation strategies. Of the two 

interpolators, the MMSE interpolator is more accurate while the polynomial interpolator 

has a lower complexity. The performance of the entire DFB receiver is evaluated via 

simulation using different combinations of block size N, different fade rates (static fading 
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and at 0.005df T  ) and different interpolator types. It was found that with proper 

choices of block size and interpolator type, the performance of the proposed DFB 

receiver can be brought within 1 dB of full-coherent detection, and this is achieved 

without the need to transmit any pilot symbols. Compared to non-coherent detection 

(Chapter 2), this is a 9 dB gain in power efficiency. When compared to the partial-

coherent detector, the gain is 6 dB! It is thus concluded that the proposed DFB receiver is 

novel, its performance impressive, and the overall decision feedback methodology has 

strong potentials for applications in other similar systems. 
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Chapter 4.                                                     

Performance Comparison with DPSK 

To put the performance of the proposed DFB receiver for orthogonal modulations 

into proper perspective, a reference DFB multiple symbol differential detector (MSDD) 

for DPSK modulation is introduced for comparison. Section 4.1 describes how the DFB-

MSDD operates in a 2P-TWR communication system. The BER performance of the 

DFB-MSDD at different fade rates are provided in Section 4.2 and compared with those 

of the proposed DFB receiver for pilot-less orthogonal modulations. Finally, Section 4.3 

concludes this chapter. 

4.1. DFB-MSDD 

DFB-MSDD of M-ary DPSK was first introduced in [27] for conventional point-to-

point Rayleigh flat fading channels.  Its application in 2P-TWR communication was first 

considered in [16]. In the 2P-TWR setting, the DFB-MSDD receiver works as follow.  

Let [ ]As k and [ ]Bs k  be users A’s and B’ equivalent discrete-time data symbols in the 

k
th

 symbol interval, where each symbol is randomly taken from the set {0,1,..., 1} S M  

with equal probability. The PSK symbols corresponding to [ ]As k and [ ]Bs k  are  

2 [ ]
[ ] exp

2 [ ]
[ ] exp

A
A

B
B

j s k
v k

M

j s k
v k j

M





 
  

 

 
   

 

  ;                                       (4.1) 
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where   is the phase offset between user A’s and user B’s PSK constellations. Let the 

differentially encoded symbols transmitted by Source l  at time slot k  be [ ]lx k , ,l A B .  

They are related to the complex data symbols in (4.1) according to 

             
[ 1] [ ],    0 

[ ]
1,                       0

l l

l

x k v k k
x k

k

 
 


.                                            (4.2) 

Adopting the same Rayleigh flat fading model as in previous chapters, the received 

symbol at the relay at time k is  

             [ ] [ ] [ ] [ ] [ ] [ ]A A B Br k g k x k g k x k n k   .                                (4.3)  

Different from the network coding scheme in Tables 2.1 and 2.2, the network-coded 

symbol [ ]c k  in this case is the remainder of the signals’ sum  [ ] [ ]A Bs k s k  after 

division by M. This mapping scheme is also known as physical-layer differential network 

coding in [16]. Tables 4.1 and 4.2 provide full details of the mappings in the M=2 and 

M=4 systems, respectively. 

 

Table 4.1: Mapping of the source symbol pair (sA, sB) into the network-coded symbol c  

for DBPSK 
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Table 4.2: Mapping of the source symbol pair (sA, sB) into the network-coded symbol c  

for DQPSK. 

A MSDD is based on block processing and it makes optimal block decisions using the 

the maximum likelihood principle. Let  [ 1], [ 2],... [ ]
T

r n K r n K r n    r  be K 

consecutive received samples at the relay.  By exploiting the correlation amongst the 

fading gains in different symbol intervals, the MSDD makes joint decisions on 

[ 2], [ 3],..., [ ]A A As n K s n K s n    and [ 2], [ 3],..., [ ]B B Bs n K s n K s n    , and 

consequently make joint decisions on the network-coded symbols 

[ 2], [ 3],..., [ ]c n K c n K c n     according to Tables 4.1 and 4.2. While such a detector 

has a better error performance than the conventional two-symbol ( 2)K   detector, its 

computation complexity is prohibitively large. On the other hand, if previous decisions on 

[ 2], [ 3],... [ 1]A A As n K s n K s n      and [ 2], [ 3],... [ 1]B B Bs n K s n K s n      are 

correct, then they can be used to dramatically reduce the search space of the most-likely 

sequences. This decision feedback strategy provides a good compromise between 
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complexity and performance. It also leads to a sliding-window approach, as opposed to the 

original block-wise structure. Below are the details of the DFB-MSDD.  

Let  垐[ 2],... [ 1], [ ]l l l ldiag x n K x n x n   x , ,l A B , where ˆ [ ]lx k  is the decision on 

[ ]lx k . Given these past decisions, there are only 2M  choices for 
Ax  and 

Bx . The fading 

gains affecting the transmitted symbols in these intervals are collected into the vectors 

 [ 1], [ 2],... [ ]
T

l l l lg n K g n K g n    g , ,l A B . The covariance matrix of these 

complex gains is  †1
2 l lEggΦ g g . Assuming a Jake’s fading model, then the (p, q)

th 

element of gg
Φ  is  

2

0( , ) (2 ( ) )gg g dp q J p q f T    .                                   (4.4) 

With these definitions, the DFB-MSDD can be described as follows:  

1. For each possible pair of  [ ], [ ]A Bx n x n , or equivalently, each possible pair of 
Ax  and 

Bx , the received vector  [ 1], [ 2],... [ ]r n K r n K r n    r  is complex Gaussian 

with a conditional pdf 

 
1

† † †

0

† †

0

1
( | , ) exp

2(2 )

A A B B K

A B K

A A B B K

N
p

N

   
  

    

gg gg

gg gg

r x Φ x x Φ x I r
r x x

x Φ x x Φ x I

 (4.5) 

2. Find out which pair of transmitted symbols maximizes the conditional pdf in (4.5). 

This is the decisions on  [ ], [ ]A Bx n x n , and they are denoted by  ˆ ˆ[ ], [ ]A Bx n x n .  

3. Through differential decoding, the detected data symbols can be determined and they 

are given by  



 

69 

 
 

 

*

*

ˆ ˆ ˆ[ ] arg [ 1] [ ] ,
2

ˆ ˆ ˆ[ ] arg [ 1] [ ] ,
2

A A A

B B B

M
s n j x n x n

M
s n j x n x n





   

   

                               (4.6) 

and the detected network-coded symbol ˆ[ ]c n  is determined by mappings in Table 4.1 

(for the 2M  case) and Table 4.2 (in the 4M  case.) 

It should be noted that the above method is suboptimal. The optimal model should be 

the one that maximizes the sum of the pdfs of all those symbol pairs of  [ ], [ ]A Bx n x n  

that are mapped into the same network-coded symbol. The advantage of this suboptimal 

method is that it is able to provide maximization in the log domain, which is simpler to 

implement than the optimal one. 

4.2. Simulation and Discussion 

This section details the results obtained from the simulation of the DFB-MSDD for M 

= 2 and M = 4 DPSK systems. Qualitative comparison between the DFB-MSDD for 

DPSK and the DFB receiver for orthogonal modulations is made as well.     

Results of the comparison for binary modulations at fade rates of 0df T   and 

0.005df T   are shown in Figs 4.1 and 4.2. In the DBPSK case, sliding window sizes of 

2K   (conventional), 4, and 8 are investigated. In addition to simulating actual feedback, 

we also include results for ideal feedback for the 4K   and 8K   cases. As their names 

suggest, by actual feedback, the receiver uses the detection results of the previous 1K   

symbol pairs to detect the current symbol pair as per (4.5) and (4.6), whereas ideal 

feedback assumes that the previous 1K   symbol pairs are all detected correctly. It is 

observed that the BER curves of the 4K   and 8K   DFB-MSDD receivers are better 

than that of the conventional 2 symbol detector. For example, in the static fading channel 

and at a BER of 10
-3

, increasing the length of observation interval from 2 to 8 provides a 
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3 dB improvement in power efficiency. While the results in the figures indicate that 

orthogonal modulation is worse than BPSK when full CSI is available to the relay 

detector, the opposite is true when CSI based on decision feedback is employed. At a 

BER of 10
-3

, the 8K   DFB-MSDD with actual feedback is 1 dB worse than the 

proposed DFB receiver for orthogonal modulation in the static fading environment; when 

the fade rate increases to 0.005df T  , the proposed DFB scheme for orthogonal 

modulation has an advantage over the DFB-MSDD by 4 dB. Even with ideal feedback, 

the performance of the MSDD is worse than that of the proposed DFB receiver at high 

SNR.   

The DPSK results in the previous figures were obtained under a phase offset of 0   

between the two users’ BPSK constellations. Other values of   had been tested but the 

results obtained were similar. In the 4M   case though, the BER of the DFB-MSDD 

depends strongly on the value of  , as Figs 4.3 and 4.4 indicate. According to these 

figures, there are irreducible error floors, even when fading is static. The level of the error 

floor varies with the phase offset  . Through trial and error, a 
3


   is found to be the 

best as it yields the lowest BERs. The results in Figs 4.3 and 4.4 also indicate that 

conventional differential detection (K=2) does not appear to work at all for M=4 DPSK in 

a TWR setting.    

Finally, Figs 4.5 and 4.6 show the comparison between the proposed DFB receiver 

for 4-ary orthogonal modulations and the DFB-MSDD for DQPSK with static fading 

( 0df T  ) and time-selective fading ( 0.005df T  ). In the DQPSK case, the phase offset 

between two user’s QPSK constellations is set to 
3


  , and DFB-MSDD of sizes 3K   

and 4K   with both ideal and actual feedback are considered. Compared to the 

corresponding M=2 results in Figs 4.1 and 4.2, the performance of the proposed DFB 

receiver for orthogonal modulations improves when M  increases from 2 to 4. As a 

matter of fact, the performance of the DFB receiver almost coincides with that of 

coherent QPSK. In contrast, DFB-MSDD of DPSK experiences performance degradation 
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as M  increases. Note that when the fade rate increase from 0 to 0.005, the performance 

of the DFB-MSDD for DQPSK deteriorates dramatically while the proposed orthogonal 

modulation scheme is able to maintain its performance. To elaborate, in the static fading 

case and at a BER of 310 , there is a huge 8 dB gap between DQPSK and the proposed 4-

ary orthogonal modulation system. Even with ideal feedback, 4K  DFB-MSDD is 3 dB 

worse than the proposed orthogonal modulation system. When the fade rate increases to 

0.005df T  , the BER curves of DFB-MSDD depict clear irreducible error floors and the 

performance gap between orthogonal modulation and DPSK increases further from the 

static fading case. The proposed 4M   orthogonal modulation system, on the other 

hand, is able to maintain its performance when the fade rate increases. 

10 15 20 25 30 35 40
10

-4

10
-3

10
-2

10
-1

BSNR(dB)

B
E

R

 

 

DFB-MSDD K=2(Conv. 2-Symbol Detector)

DFB-MSDD K=4 Actual Feedback

DFB-MSDD K=8 Actual Feedback

DFB-MSDD K=4 Ideal Feedback

DFB-MSDD K=8 Ideal Feedback

Orthogonal Mod  DFB , N=64

Orthogonal Mod Full Coh, Sim

BPSK Full Coh. Sim.

 

Fig. 4.1: Comparison with 2P-TWR system employing DPSK and DFB-MSDD at the 

relay; constellation size: 2M , phase offset between user A’s and B’s constellation: 

0  , Doppler frequency : 0df T  . 
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Fig. 4.2: Comparison with 2P-TWR system employing DPSK and DFB-MSDD at the 

relay; constellation size: 2M , phase offset between user A’s and B’s constellation: 

0  , Doppler frequency : 0.005df T  . 
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Fig. 4.3: Performance of DFB-MSDD at the relay with different observation intervals 

and different phase offsets. Constellation size: 4M  , Doppler frequency : 0df T  . 
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Fig. 4.4: Performance of DFB-MSDD at the relay with different observation intervals 

and different phase offsets. Constellation size: 4M  , Doppler frequency : 0.005df T  . 
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Fig. 4.5: Comparison with 2P-TWR system employing DPSK and DFB-MSDD at the 

relay; constellation size: 4M  , phase offset between user A’s and B’s constellation: 

/ 3  , Doppler frequency : 0df T  . 
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Fig. 4.6: Comparison with 2P-TWR system employing DPSK and DFB-MSDD at the 

relay; constellation size: 4M  , phase offset between user A’s and B’s constellation: 

/ 3  , Doppler frequency : 0.005df T  . 

While BER is one metric that we can use to compare orthogonal modulations and 

PSK, another important metric is the spectral efficiency. Both binary and quaternary 

orthogonal modulations have a raw efficiency of 0.5 bit of information per signal 

dimension. This is half that of BPSK and QPSK. As a result, the proposed orthogonal 

modulation systems have roughly half the raw spectral efficiency as their PSK 

counterparts. However, if we look at the two modulation approaches from a combined 

coding and modulation perspective, the story on the effective spectral efficiency can be 

quite different. Consider the M=4 case in Fig. 4.5 where we found that the proposed 4-ary 

orthogonal modulation system is 8 dB more power efficient than QPSK. One simple way 

for the QPSK system to make up for this 8 dB gap is to repeat its symbols 6 times, 

where
1010log 6 8 . This will, however, end up with a combined coding-modulation 

system with a higher transmission bandwidth than the uncoded 4FSK system. Of course 

in practice it is not wise to use a repetition code. So suppose we use a rate 1/ 2R   

convolutional code in the QPSK system so that after coding, the QPSK system has the 
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same power efficiency and more or less the same bandwidth as the uncoded 4FSK 

system. This requires the use of a code with a free Hamming distance d that 

satisfies
1010log ( ) 8R d  , or 12d  . The best rate 1/ 2R   code having a 12d   is the 

one having a constraint length of 9K   [23, Table 8.3-1]. A Viterbi decoder for this code 

has 256 states, which is lots more complicated that our uncoded system. Therefore, 

although 2/4-FSK has twice the number of signal dimensions per information bit than 

2/4-PSK, hence a higher transmission bandwidth at the modulation level, it may still end 

up having a higher spectral efficiency than PSK if we consider the throughput of a 

combined coding and modulation system. 

4.3. Conclusion 

In order to put the performance of the proposed DFB receiver for orthogonal 

modulations into proper perspective, we compare it against the DFB-MSDD for DPSK in 

the literature. This reference scheme also employs decision feedback and does not require 

the transmission of pilot symbols. The BER performance of the DFB-MSDD is simulated 

and compared against that of the proposed orthogonal modulation system for different 

combinations of modulation size M , observation interval K , and fade rate 
df T . It is 

observed that the proposed DFB receiver for orthogonal modulations perform 

substantially better than DFB-MSDD for DPSK. This is especially true in 4-ary systems 

where the proposed orthogonal modulation system enjoys a huge 8 dB advantage over 

DPSK in terms of power efficiency. While one would argue that this is achieved at the 

expenses of a higher transmission bandwidth requirement and hence a lower spectral 

efficiency, this is true only if we look at the system at the modulation level. If the 

spectrum efficiency at the combined coding and modulation level is considered instead, it 

is highly likely that the proposed orthogonal modulation and demodulation technique can 

actually lead to a more spectrally efficient system, owing to this huge 8 dB “head start”.  

We also found that DPSK is extremely sensitive to a Doppler shift, while the proposed 

orthogonal modulation technique is very robust in the presence of time-selective fading. 
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Chapter 5.                               

Conclusion and Future Works 

5.1. Conclusion 

A novel decision feedback (DFB) detector is proposed for the relay of a two-phase 

(2P) two-way relay (TWR) communication system that employs pilot-less orthogonal 

modulation in the uplink and physical-layer network coding (PNC) over finite field in the 

downlink.  Through extensive simulation, it is found that the newly proposed relay 

receiver is able to attain a performance very close to that of a full-coherent detector in the 

presence of static or time-selective Rayleigh fading and additive white Gaussian noise in 

the uplink. It also significantly outperforms its differential detection counterpart for 

differential PSK. 

The thesis research began with a literature survey on TWR with PNC. It was 

observed that the majority of the works focus on PSK systems. Few of them studied 

orthogonal modulations, such as FSK and CPFSK. From a combined modulation and 

multiple access prospective, orthogonal modulations appear to be more suitable for TWR 

with PNC.  This is the motivation behind the thesis research. We focus on pilot-less 

transmission as it is a more challenging problem than simply assuming ideal coherent 

detection.  

In observing that the sum of correlators’ output provides a noisy copy of the sum 

fading gain, irrespective of the symbols transmitted, a novel partial-coherent detector is 

proposed in Chapter 2. Upperbound on the bit-error-rate (BER) is derived for this 

detector and it is found that it can provide a 3 dB increase in power efficiency over 
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standard non-coherent detection, even when no pilot is transmitted. Simulation results 

validate the analytical approximation.  

Although the partial-coherent detector in Chapter 2 enjoys a substantial gain in 

performance over the non-coherent detector, it still suffers a 7 dB degradation in SNR 

when compared to the ideal full-coherent detector. This motivates us to propose the DFB 

in Chapter 3. This receiver performs decision-aided channel estimation by exploiting the 

property that if the uplink symbols transmitted by the two users are different, then the 

individual fading gains affecting their symbols can be separated and tracked. The fading 

estimates obtained this way can then be used in a coherent detector to improve the 

reliability of the detected data at the relay. Simulation results indicate that with as little as 

one feedback attempt, the proposed DFB receiver gain a 6dB improvement in SNR over 

the partial-coherent detector from Chapter 2, i.e. a performance that is within 1 dB of 

ideal full-coherent detection.   

Given that the motivation to study orthogonal modulations is that it seems more 

compatible with the multiple access nature of TWR with PNC, we verify this intuition by 

comparing it against differential PSK with decision-feedback (DFB) multiple-symbol 

differential detection (MSDD), in Chapter 4. Through extensive simulations, we found 

out the proposed DFB receiver for binary and quaternary orthogonal modulations are 1 

dB and 8 dB more efficient than its DBPSK and DQPSK counterparts in static fading 

channels. The performance gaps widened in the presence of time-selective fading.   

Finally, from the implementation perspective, the proposed receiver, with minimum 

mean-square error (MMSE) channel interpolation, has acceptable complexity as long as 

the processing block size is not too large. A substantial reduction in implementation 

complexity is possible through the use of polynomial interpolators instead of MMSE, at 

the expense of a modest lost in performance.  

In conclusion, the proposed DFB for pilot-less orthogonal modulations in TWR with 

PNC and fading has a lot of potential. Its performance is superior to pilot-less DPSK and 
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the implementation complexity is acceptable. While it is less spectrally efficient at the 

modulation level, when combined coding and modulation is considered, orthogonal 

modulation may actually enjoy a higher spectral efficiency, as its superior power 

efficiency mean much less coding redundancy is needed. 

 

5.2. Contributions 

This dissertation is concerned with a research topic where only limited work has been 

performed to date. The research embodies the following major contributions:  

1. We propose a partial-coherent detector for pilot-less orthogonal modulations 

in TWR with PNC that is 3 dB power efficient than non-coherent detection. 

2. We derive the BER of the partial-coherent detector, which is by no means 

trivial.    

3. We demonstrate how decision feedback should be performaned in pilot-less 

orthogonal modulation systems in order to achieve a performance close to 

ideal full-coherent detection.   

4. We present not only results for static fading channels, but also results on time-

selective fading channels. The latter scenario has largely been ignored in the 

literature.  

5. We show that in the absence of pilot, orthogonal modulations perform 

substantially better than differential PSK. The difference is 1 dB in the binary 

case, and 8 dB in the quaternary case, and the gaps increase with time-

selective fading. 
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5.3. Future works 

Because of time limitation, this research focuses on the time-selective Rayleigh 

fading environment. However, we believe that the proposed decision feedback 

methodology can also be employed in systems operating in a dense multipath 

environment, such as some variants of the ultra-wideband systems considered in [28]-

[29].  

A limitation of the proposed DFB receiver is that it is only able to maintain a 

performance close to ideal coherent detection if the Doppler frequency is no larger than 

0.5% the symbol rate. While this is sufficient for most situations, it would be interesting 

to see what modifications to the existing channel sorting/tracking techniques are required 

in order to handle faster fading. 
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Appendix A.  

 

Pair-wise Error Probability Analysis 

As mentioned in Chapter 2, there are six types of pairwise error events for each of the 

non-coherent, full-coherent, and partial-coherent detectors. Type I and Type III error 

events are valid for both the binary (M=2) and quaternary (M=4) cases, while the others 

are only valid for the quaternary case.  Also stated in in  (2.25) is that each type of pair-

wise error events of the three detectors can be expressed in terms of a quadratic form 

†D  X MX  of complex Gaussian random variables X being less/greater than a non-

negative threshold 
0T ,  where M  and  

0T  vary with the detector and error event types. 

The probabilities of different types of pair-wise error events of the proposed partial-

coherent detector will be illustrated in this section and those of the full-coherent detector 

and the non-coherent detector can be calculated in the similar way.  

In the following discussion, (
As ,

Bs ) denotes the transmitted symbol pair from the two 

users and (
As ,

Bs ) an alternative. Without loss of generality, (
As ,

Bs ) and (
As ,

Bs ) are set to 

some representative values, as all error events of the same type can be obtained from the 

representative case through a relabeling of the correlators (i.e. a permutation). 

Furthermore the vector X in the quadratic form is defined as 

0 1 2[ , , , , ]T

A Br r r g gX ,                                              (A.1) 

where 
0 1 2, ,r r r  are the the output of the first three correlators 2, and  and A Bg g  are the 

uplink gains.  

 

2
 In the binary case, there are only two correlators. As such, 

2r  is disabled by forcing the third row and 

third column of the M matrix to zero. 
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Type I error:  the same symbols are transmitted, but the alternative (
As ,

Bs ) differ 

from (
As ,

Bs ) in one position 

This case can be defined by setting 0A Bs s  , and 0,  1A Bs s  . A Type I pairwise 

error event is said to have occurred when 

   | 0,  0,  | 0,  1,  A B A Bp s s u p s s u    r r . Given that the components of the 

received vector  0 1 -1, ,...
T

Mr r rr are 
0 0r u n   and = ,  1,2,... 1i ir n i M  , where 

A Bu g g  , this event for both the binary (M=2) and quaternary (M=4) is equivalent to 

the quadratic form
1D  †

1X M X  being greater than  

0 ln(1 )sT   ,                                                         (A.2)  

where 2

0/s g N  (symbol SNR),  

0

1 1
0

4( 1) 4( 1) 2 2

1 1
0
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= 0 0 0 0 0
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1
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s s

s s

s s

s s

s s s

s s s

s s s
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 
    

 
 
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 
 
 
 

   
 
 

    

1
M ,                    (A.3) 

and  
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0

†

0

2 1 0 0

0 1 0 0 0

0 0 0 0 0 ,           2,

0 0 0

0 0 01

2 2 1 0 0

0 1 0 0 0

0 0 1 0 0 ,           4,

0 0 0

0 0 0

s s s

s s

s s

s s s

s s

s s

N M

E

N M

  
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 

  
  
  
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  
  
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  
 
 
   

XXΦ XX                         (Type I)         

(A.4) 

is the covariance matrix of the vector X in (A.1).  

According to (2.29), the characteristic function of 
1D , 

1DΦ (s) , is the root of the 

determinant  

      5 1( ) 2s s   xxI Φ M  ,                                           (A.5) 

where 
5I  is a 5x5 identity matrix. Using symbolic computation, we found that the roots of 

( ) s are 

1 1

1 21 ,      1p p        .                          (Type I)                 (A.6) 

Substituting (A.6) into (2.26) and (2.27), the probability that a Type I event occurs in 

both the binary and quaternary case is  
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where the last term is the large SNR approximation. Since the term  
1/

1
s

s






  as 

s  , this means the above error event probability approaches
1

2 s
.  

Type II error: same symbols are transmitted, but the alternative (
As ,

Bs ) differ from 

(
As ,

Bs ) in both positions 

This case can be defined by setting 0A Bs s  , 1 and  2A Bs s  . The error event 

   | 0,  0,  | 1,  2,  A B A Bp s s u p s s u    r r is equivalent to the quadratic form 

2 2 †
X M XD  being greater than the threshold 0T  in (A.2),   where                                                      
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and 
XX

Φ , the covariance matrix  of X , is the same as that in (A.4). Through symbolic 

computation, it can showed that the poles of 
2
( )D s , the CF of 

2D ,  are 

1
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1 1 4
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(A.10) 

Type III error:  different symbols are transmitted but the alternative 
As  and 

Bs  are 

the same, and (
As ,

Bs ) differ from (
As ,

Bs ) in one position 

This case can be defined by 0 and 1A Bs s  , and 0A Bs s  . When the pair 

0  and  1A Bs s   was sent (i.e. a sum bit of 1c  ), the event that 

   | 0,  1,  | 0,  0,  A B A Bp s s u p s s u    r r  is equivalent to the quadratic form 

3 3 †
X M XD  being smaller than the threshold 

0T  in (A.2), where 
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In this case, the covariance matrix of X is changed to be  

0

†

0

1 0 0 0

0 1 0 0

0 0 0 0 0 ,           2,

0 0 0

0 0 01

2 1 0 0 0

0 1 0 0

0 0 1 0 0 ,           4,

0 0 0

0 0 0

s s

s s

s s

s s

s s

s s

s s

s s

N M

E

N M

 

 

 

 

 

 

 

 

  
  

  
   
  
  
    

    
 

  
 
  
 
 
   

XXΦ XX                 (Type III)        

(A.12) 

Again, through symbolic computation, we can show that 
3
( )D s , the characteristic 

function of 
3D , has only two poles: 

1 1

1 21 1 ,    1 1s sq q        .               (Type III)           (A.13) 

As such, the structure of the probability for a Type III error event is identical to that 

shown in (2.28), except that the 'ip s  in that equation is now replaced by the 'iq s  shown 
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above. After substituting the roots into (2.27), the probability,
IIIP , for a Type III error 

event is  
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Type IV error: different symbols are transmitted, but the alternative 
As ,

Bs  are 

identical and (
As ,

Bs ) differ from (
As ,

Bs ) in both positions 

  This case can be defined by setting 0,  1A Bs s  , and 2A Bs s  . A Type IV error 

event    | 0,  1,  | 2,  2,  A B A Bp s s u p s s u    r r  is equivalent to the quadratic form 

4 4D  †
X M X  being smaller than the threshold 

0T  in (A.2), where 
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and the covariance matrix of the vector X is the same one given in (A.10). The poles of 

4DΦ (s) ,  the CF of 
4D ,  are 
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Type V error: symbols in both the transmitted and alternative pairs are different, 

but ( ,  A Bs s ) only differ from ( ,  A Bs s ) in one position 

This case can be defined by setting 0,  1A Bs s  , and 0, 2A Bs s  . The Type V 

error event     | 0,  1,  | 0,  2,  A B A Bp s s u p s s u    r r  is equivalent to the quadratic 

form 
5 5D  †

X M X  being smaller than the threshold 
0 0T   where 

5

0

0 0 0
4( 1) 4( 1)
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 
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 
 
 
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M                   (A.18) 



 

92 

and 
XX

Φ , the covariance matrix of the vector X , is identical to one in (A.10). The poles 

of 
5
( )D s , the CF of 

5D , are 

1 2

(3 4)( 2) (3 4)( 2)1 1 1 1
,    

2 2 (3 2) 2 2 (3 2)

s s s s

s s s s

p p
   

   

   
   

 
.        (Type V)         (A.19) 

Note that when the threshold is 
0 0T  , positive poles should be used to compute the 

pairwise error event possibility; refer to (2.31). Hence,     

 
55  
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                         ,       .
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
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 
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

                                 (A.20) 

Type VI error: symbols in both the transmitted and alternative pairs are different,  

( ,  A Bs s ) differ from ( ,  A Bs s ) in both positions, and one of  ( ,  A Bs s ) equals one of 

( ,  A Bs s ). 

This case can be defined by setting 0,  1A Bs s  , and 2,  and 0A Bs s  . The 

probability of a Type VI error event, i.e    | 0,  1,  | 2,  0,  A B A Bp s s u p s s u    r r , 

is identical to that of a Type V error event, because both types have identical poles and 

threshold 
0T . As a result,  

 6
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93 

Table A.1 summarizes the poles and threshold for each type of error events for each 

of the three detectors in Chapter 2. 
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Table A.1: Poles of the characteristic functions of different types of error events. 


