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Abstract

One of the main issues of wireless communication systems is to cope with random variation

of their channel conditions. In many wireless communication systems, the receiver estimates

the channel for symbol detection. It is usually assumed that channel estimation is perfect,

but in practice, channel estimation error (CEE) can become significant and can degrade the

performance of wireless communication systems. This thesis addresses the effects of channel

estimation error in two contexts: CEE in cooperative communication systems and CEE in

link layer performance.

Cooperative diversity, which has been recently presented as an effective way of mitigat-

ing the effect of deep fades in wireless channels and improving spectral and power efficiency

of the wireless networks, is considered in the first part of this dissertation. Taking into

consideration the presence of CEE, part I of this thesis analyzes a few cooperative com-

munication system models, which display different levels of practicality and represent large

classes of cooperative systems in the literature. This thesis spells out delineating aspects

of these models and rigorously compares their error probabilities. Furthermore, a novel

signal detection scheme in the presence of CEE is presented for large classes of cooperative

communication systems.

Part II of this dissertation focuses on cross layer issues between the physical and link

layers of wireless communication systems. In particular, the frame error probability (FEP)

is derived for a wireless communication system over fading channels in the presence of

CEE. Part II also explores the issue of optimizing bit transmission power for minimizing the

expected energy required to reliably deliver a frame to the destination node through an ARQ

mechanism over a fading channel. Also, an optimization algorithm is designed to minimize

the expected energy for reliable delivery of a frame for the systems under consideration.
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Chapter 1

Introduction

1.1 Background

Cooperative communication systems received much attention in the recent past due to its

ability to achieve diversity gain [1] [2] and its potential for power efficiency [3]. The main idea

behind cooperative diversity is that in a wireless environment, the signal transmitted by the

source is retransmitted by other nodes, which can be termed as “relays,” so that source and

relay nodes can effectively share their antennas in a manner that creates a “virtual antenna

array” [4] [5] (see Fig. 1.1). In comparison to the point-to-point communication system,

the cooperative system may appear to need more communication resources such as power

or bandwidth than the point-to-point communication system for the same performance

because the cooperative communication system has more transmitting nodes and the signals

transmitted from the source and the relays are often separated in time or in frequency band.

Nevertheless, studies show that the Shannon capacity of the system in fact increases due to

the cooperation diversity [6]-[10].

Cooperative communication can be applied to many wireless communication systems

to extend their coverage area [7]. In many wireless applications, the distance between the

source node and the destination node can be more than the distance that the source node

can cover, and increasing the source’s transmission power is not desired. For example, in

sensor networks, transmitters and receivers use low-power signals to communicate; if the

distance between the transmitter and receiver is more than several meters, they cannot have

a reliable communication [11]. In this example, by multiple sensors playing the role of relays

for one another, the distance between the source and destination can be extended.

1



CHAPTER 1. INTRODUCTION 2

Source
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Destination
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Destination

Time Slot I Time Slot II

Figure 1.1: Cooperative diversity

Based on the way in which the information is transmitted from the source terminal

to relay terminals and the way it is processed at the relay terminals, typical cooperative

protocols can generally be divided into two types: amplify-and-forward (AF) protocols and

decode-and-forward (DF) protocols, where DF protocols can be further categorized into

conventional DF and selective decode-and-forward (SDF) protocols [1] [2] [12] (Fig. 1.2).

In AF protocols, the relay terminal simply forwards a scaled version of the signal that

it receives from the source terminal to the destination terminal. In the conventional DF

protocol, the relay terminal detects the received signal, and regenerates signal to transmit

to the destination terminal. Error propagation from the relay to the destination is the main

drawback of this protocol, and a complex demodulation scheme is needed to achieve the full

diversity gain [12] [13]. A third option is to use a selective decode-and-forward protocol.

In the SDF protocol, the relay terminal detects the received signal and forwards it to the

destination only if the relay has high confidence that the symbol has been detected correctly,

and remains silent otherwise to avoid error propagation. In this dissertation, we focus

on the decode-and-forward relay communication systems. The scope of this dissertation’s

interest includes both the conventional DF and SDF protocols. (In fact, the conventional

DF protocol can be viewed as a special case of SDF protocol in which the relay nodes always

forward the detected signal to the destination.)

One of the simplifying assumption we often find in modelling an SDF system in the liter-

ature is that the relay node perfectly knows whether a symbol has been detected correctly or
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Figure 1.2: AF and DF cooperative protocols

not; if the detected symbol is erroneous, the relay node remains silent to avoid propagation

of errors [14] [15] [16]. However, this assumption is quite idealistic, and in reality the relay

node must make the forwarding decision with the uncertainty about the correctness of the

detected symbol [18]. In the literature, we find three major kinds of strategies for making the

forwarding decision under the uncertainty of the relay’s correctness in detecting the symbol.

In one kind, the relay node monitors the source-relay instantaneous SNR. If the received

signal SNR is above some threshold, the relay node has high confidence of correct detection

and sends the detected symbol to the destination [17] [19] [20]. In another kind, the system

employs a block error detection (e.g., cyclic redundancy check) [21] [22] [23]. If the relay

concludes that a symbol in a frame has been detected with error, the whole frame received

from the source is kept from being forwarded to the destination. Another kind of forwarding

strategy defines an erasure region for the relay, where the erasure region is a region in the

signal space in which the received signal is declared unclear (e.g., the erasure region can be

a set of signals that are sufficiently far from constellation signal points) [18]. The relay does

not forward symbols corresponding to received signals that fall into the erasure region [18].

There is yet another issue to be addressed in modelling of selective decode-and-forward

systems. In most of the existing work on the SDF protocols, it has been assumed that the

destination node perfectly knows whether the relay has forwarded a particular symbol or

not [15]-[20]. However, in reality the destination node must detect the incoming informa-

tion symbols while being uncertain about whether the received signal contains the relay
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node’s transmitted signal [30]. From the destination node’s vantage point, the forwarding

decision made by the relay can only be guessed. Traditionally, three methods can be used

to detect the presence of a signal at the destination: energy detector, matched filter, and

cyclostationary feature detection [31]. Energy detection, which is the most popular method,

is suboptimal and non-coherent and can be simply implemented [32]. Matched filter is a co-

herent detection that maximizes the signal to noise ratio. Cyclostationary feature detection

exploits the inherent periodicity of the received signal. Besides all of the methods men-

tioned above for detecting the presence of the signal, flag-based methods are also of interest

[33]. However, sending a flag signal has the drawback of consuming additional energy and

bandwidth. In [30], a novel signal detection scheme in the presence of channel estimation

error for SDF protocols has been presented.

Part I of this dissertation addresses the simplifying assumptions aforementioned (both

the assumptions on the relay and destination nodes). Chapter 2 explores system models

that relax these simplifying assumptions. In this chapter, based on the relay’s forwarding

policy and destination’s level of knowledge about the relay’s forwarding decision, we will

classify SDF communication system models and then we will rigorously compare their error

probability performances under the presence of channel estimation error. In chapter 3, we

will pursue novel signal detection schemes in the presence of channel estimation error for the

SDF communication system with the uncertainty at the destination node about the relay’s

forwarding policy. It will be shown that our signal detection schemes result in an excellent

performance.

Part II of this dissertation studies cross-layer issues between the physical layer and

the link layer in the point-to-point wireless communication systems. While the bit error

probability (BEP) and symbol error probability (SEP) are important measures for physical

layer performance, the link layer with automatic repeat request (ARQ) intends to provide

a reliable packet pipe to its upper layers. As such, the combination of throughput and

delay for reliable packet (frame) delivery has been much used as a performance measure

for the link layer in communication networks. There is an interesting body of work on the

link layer performance of wireless networks (e.g., [42]-[53]). These papers consider various

combinations of error correction, error detection, ARQ, and buffer management schemes and

analyze the link layer performance in wireless networks. Furthermore, some presentations

of such analysis show the relation between the physical-layer performance and the link-layer

performance. However, most existing works, to our knowledge, focus on the throughput
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(or goodput) and delay as the link layer performance measure. In this research, instead of

throughput or goodput, we will focus on the energy efficiency and delay for analyzing the

link layer performance in wireless networks.

Focusing on energy efficiency instead of throughput or goodput indeed changes the

design decision. For a simple example, Stop-and-Wait ARQ [59] will be preferred to Go-

Back-N ARQ scheme [59] if the energy efficiency is the primary concern, and Go-Back-N

ARQ scheme will be preferred if the throughput is the primary concern. For the purpose

of obtaining simple insight, under simple wireless channel models and ARQ model, this

dissertation will discuss the problem of optimizing the physical layer’s transmission power

to minimize the expected total transmission energy including energy for retransmissions

required for successful delivery of a link layer protocol data unit (PDU). A PDU will be

referred to as a frame or a packet interchangeably in the present dissertation.

1.2 Outline

The objectives of the first part of this dissertation are to analyze the effects of channel

estimation errors, relay’s forwarding policy and destination’s signal detection scheme in

the SDF cooperative communication system. In the second part of this dissertation, we

analyze link layer performances in the point-to-point wireless communication system. In

particular, we study the frame error probability and minimization of energy required to

successfully deliver a frame in the point-to-point wireless communication system in the

presence of channel estimation errors. In each topic, we will perform theoretical analysis

and use simulations to complement the theoretical results. The following is a summary of

the main topics and contributions in this thesis:

1.2.1 Performance of wireless communication systems under channel es-

timation errors

Most of the existing work on cooperative communications and point-to-point wireless com-

munication systems has assumed perfect knowledge of the fading channel coefficients at the

receiver side [14]-[28], [42]-[46] which is an overly optimistic assumption. Although research

results based on these assumptions provide valuable insights, in practical systems these

coefficients are estimated and then used in the detection process. Especially, in mobile ap-

plications, the assumption of perfect channel knowledge is unwarranted as randomly varying
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channel conditions are learned by the receivers imperfectly. In recent work (e.g., [29][16]),

the effects of the channel estimation error on the bit error rate (BER) performance of co-

operative communication systems have been studied with a simple model for the channel

estimation error, where the variance of the channel estimation error is assumed to be fixed

for all values of the signal-to-noise ratio (SNR).

One technique employed in practical systems to estimate the time-varying channels is

to send training (pilot) signals. The transmitter periodically inserts known symbols, from

which the receiver estimates the channel based on the received pilot symbols [24] [25]. In

this research, we consider pilot symbol-assisted modulation (PSAM) scheme with a chan-

nel estimation scheme based on minimum mean square error (MMSE) channel estimation

in two contexts: PSAM in cooperative communication systems and PSAM in link layer

performance.

1.2.2 Classifying Decode-and-Forward system models and performance

bounds

In this research, based on the relay’s forwarding policy and destination’s knowledge of

symbol forwarding decisions, we classify general DF systems into three systems. We then

compare the BEP performance of those three systems. Regardless of relay’s forwarding

policy and also the destination’s knowledge of symbol forwarding decisions, we derive a

lower bound on the BEP performance for implementable SDF and DF relay communication

systems. The derived lower bound is very computationally efficient and in some cases

results in an excellent approximation for the BEP performance of an implementable DF

communication system. We apply the lower bound expression of BEP as the performance

metric of the system, and solve a power allocation problem to allocate power optimally to

training and data sequences.

1.2.3 Signal detection schemes for SDF systems

In this research, we relax the simplifying assumption of the destination node’s knowledge

of the relay’s forwarding decision to make our SDF system model more realistic. In SDF

protocols, the relay forwards a symbol only if the relay has high confidence that the symbol

has been detected correctly, and remains silent otherwise. The destination node has to

detect data symbols with the uncertainty about the relay’s forwarding decision. However,
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one of the simplifying assumption we often find in modelling an SDF system in the literature

is that the destination node perfectly knows whether the relay has forwarded a particular

symbol or not. In chapter 2, we include system models that relax this assumption and

discuss the issue of imperfection of the destination’s knowledge of the signal presence in

the SDF relay networks. We compare the BEP performance of an SDF system in which

the destination node has perfect knowledge of the relay’s forwarding policy with a system

in which the destination node does not have such perfect knowledge. In chapter 3, we

will assume that the destination must detect the incoming information symbols with the

uncertainty about whether the received signal contains the relay nodes transmitted signal.

We then explore the issues related to optimally detecting data symbols in the SDF relay

communication system under this assumption. We design novel schemes that can be used

by the destination for detecting whether the relay has forwarded a particular symbol or not.

We then use those schemes for signal detection at the destination node.

1.2.4 Frame error probability of a point-to-point wireless link

While bit error probability (BEP) and symbol error probability (SEP) are the most com-

monly used performance criteria at the physical layer, at the link layer, the frame error

probability (FEP) is often a more relevant criterion than the BEP or SEP for the system

performance. Even in a circuit-switching networks such as the modern cellular system, a

frame structure is often imposed on the system, and the frame error probability is used for

the purpose of resources allocation and control decisions such as the transmit power control.

In a packetized network, the packet error probability, which is conceptually identical to the

frame error probability, is a factor that is more directly related to the performance of link

layer functions such as the ARQ schemes.

In recent work (e.g., [49] [50] [51]), the effects of channel estimation error on frame error

probability were studied. L. Cao et al. [49] [50] investigated effects of channel estimation

error on the FEP performance using chernoff bound. M. Wu et al. [51] assumed that the

power is allocated between pilot and data equally. Moreover, authors considered chernoff

bound and some other lower and upper bounds instead of the exact Q-function to derive the

FEP expression. In chapter 4, we will use a more accurate approximation for the Q-function

and derive a closed-form approximation for the FEP expression in the presence of channel

estimation error. We will later show that our approximation is more accurate than the

Chernoff bound. We also discuss the issue of allocating the transmit energy between pilot
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and data symbols optimally in a frame for the goal of minimizing the frame error probability

in a wireless communication system.

1.2.5 Optimizing bit transmission power for link layer energy efficiency

Every wireless communication network has a frame (packet) structure in the data link layer.

In wireless networks, the relationship between the physical layer performance and the link

layer performance becomes important from the standpoint of optimizing the application-

layer performance resulting from the composite system. In this research, we analyze the

issue of optimizing transmission power (energy per symbol) for minimizing the expected

energy required to reliably deliver a frame to the destination node in a point-to-point wire-

less link over a fading channel. We start with a simple model in chapter 5 in which the

wireless channel is perfectly known by the destination node. Next in chapter 6, we relax this

known channel assumption and consider a more complex case in which the wireless channel

coefficient must be estimated by the destination. At the end, we come up with a simple

algorithm for minimizing the expected energy required for a reliable frame transmission

for two different models: 1) Wireless channel is known by the destination, and 2) A more

complex case in which the wireless channel must be estimated by the destination node. For

the case 2, not only we optimize the bit transmission power for the purpose of minimizing

expected energy required for reliable frame delivery but also optimize the allocated power

to pilot symbols (which are required in each frame for channel estimation) and the power

which is allocated to the data symbols.

1.3 Thesis layout

This thesis has six chapters. Part I contains the introduction and two other chapters and

studies performance analysis of decode-and-forward relay communication systems under

imperfectly known fading channels. Part II contains three chapters and studies the cross

layer issues between physical layer and link layer in wireless communication systems in

the presence of CEE. Chapter 2 classifies DF relay communication systems and compares

their BEPs. Chapter 3 studies design and analysis of symbol detection schemes for SDF

relay networks. Chapter 4 studies frame error probability for a point to point wireless

communication system in the presence of CEE. Chapter 5 and 6 study optimizing the bit

transmission power for link layer energy efficiency.
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Papers 2 and 3 are the basis of chapters 3 and 5, respectively. Paper 4 is the basis of

chapter 4 and paper 5 is the basis of section 2.4 of chapter 2. Papers 1 and 6 do not have

any contribution in this thesis.
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Decode-and-Forward Relay

Systems under Imperfectly Known

Fading Channels
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Chapter 2

Lower bound on the Performance

of Decode and Forward Relaying

2.1 Objective

In this chapter, we analyze three decode-and-forward relay-assisted communication system

models. We spell out delineating aspects of the three different classes of system models and

show inequalities among their BEPs. All three system models assume imperfect knowledge

of the channel gain at the receivers. Our results also include a closed-form expression of a

lower bound on the BEP performance for a large class of decode-and-forward systems in the

presence of channel estimation error. The derived lower bound expression is computationally

efficient and can be a good approximation for the BEP. Finally, we will provide power-

allocation that optimally assigns power constraint to training and data transmission phases

to minimize the lower bound expression.

2.2 Related work and contribution

Most of the the existing work on cooperative communications assumes perfect knowledge

of the fading channel coefficients at the receiver side [14]-[28], which is an overly optimistic

assumption. Another simplifying assumption we often find in modelling an SDF system in

the literature is that the relay node perfectly knows whether a symbol has been detected

correctly or not in making the decision whether to forward a symbol or not [14] [15] [16].

Again, this assumption is quite idealistic, and in reality the relay node must make the

12
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forwarding decision with the uncertainty about the correctness of the detected symbol.

Furthermore, in most of the existing work on the SDF protocols, it is assumed that the

destination node has perfect knowledge of whether the relay has forwarded a particular

symbol or not [17]-[18]. However, in reality the destination node must detect the incoming

information symbols while being uncertain about whether the received signal contains the

relay node’s transmitted signal [30]. The present chapter’s analysis includes a model that

relaxes these simplifying assumptions.

In this chapter, based on the relay’s forwarding policy and the destination node’s level of

knowledge about the relay’s symbol forwarding decisions, we classify the general DF systems

into three systems, both under the assumption of imperfect channel information: 1) the

system in which the relay has perfect knowledge about correctness of its symbol detection,

and the destination has perfect knowledge of the relay’s forwarding decision, 2) the system

in which the relay has perfect knowledge about correctness of its symbol detection, and the

destination does not have perfect knowledge of the relay’s forwarding decision and 3) the

system in which the relay and destination do not have such perfect knowledge. We then

compare the BEP performance of these three systems. Although it is intuitively compelling

at first glance that the BEP associated with the former system model should be a lower

bound of the BEP associated with the latter systems, we need to be cautious in making such

a general statement because these system models do not specify the modulation schemes,

the relay’s forwarding policy, the destination’s symbol detection schemes, etc.

We first introduce our system model in Sec. 2.3. In Section 2.4, the lower bound

expression is derived for the systems under consideration. In Sections 2.5-2.8, we compare

the BEP performance between all the systems under consideration. Simulation results are

presented in Section 2.9, followed by summary and discussions in Section 2.10.

2.3 System Model

We consider the three-node relay network, which consists of the source, relay, and desti-

nation nodes. This relay network model is depicted in Figure 2.1. We assume BPSK1

transmission over flat fading channels. Let hsd, hsr and hrd denote the source-destination,

1Note that this assumption is imposed only for the convenience of notation. The analysis in this chapter
can also be applied, after some minor modifications, to the case wherein the source employs any binary IQ
modulation.
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source-relay, and relay-destination channel gains, respectively. Each node-to-node channel

gain is modelled by a zero-mean complex Gaussian random variable with variance σ2
hij

. The

system conveys transmitted information as a sequence of frames, and each frame accommo-

dates m symbols. Each channel is assumed to be constant during the frame transmission

and only one pilot symbol is transmitted in each frame in order to estimate the channel

gains. We assume that nodes cannot transmit and receive signals at the same time in the

same frequency band, as is the case for most simple and cost-effective nodes.

As in [1], the transmission protocol can be described as follows. Two time slots are

allocated to each symbol; in the first time slot, the source transmits data with power Ps.
The data signals received at the relay and the destination in the first time slot can be written

as:

yisr =
√
Pshsrxi + nisr, i = 1, 2, ...,m− 1, (2.1)

yisd =
√
Pshsdxi + nisd, i = 1, 2, ...,m− 1, (2.2)

where nisr and nisd represent the additive noise terms, xi represents the transmitted symbol

with unit average energy, i.e., E{|xi|2} = 1 and Ps is the source power (energy per symbol

time) for data transmission. The relay first tries to detect the symbol received from the

source using the optimal detection and decides whether to forward the detected symbol or

not. For the present chapter’s purpose, we define and name the following three systems

based on the relay’s forwarding policy and destination’s knowledge of symbol forwarding

decisions:

1)Ideal System: In this system, we assume that the relay perfectly knows whether a

particular symbol has been detected correctly or not. If the relay correctly detects the

received symbol, then the relay will forward it to the destination in the second time slot;

otherwise, the relay will remain silent [14] [15]. Also, the destination node perfectly knows

whether the relay has forwarded a particular symbol or not and uses its optimal signal

detection.

2) Relay-Agnostic System: In this system, we assume that the relay does not necessarily

know whether the symbol has been detected correctly or not and uses some policy for

making the forwarding decision. The destination node perfectly knows whether the relay has

forwarded the detected symbol or not and performs optimal signal detection. To illustrate

the meaning of the forwarding decision policy, we provide the following examples:
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Example 1: An example of the forwarding policy would be to forward all symbols–thus,

a forwarded symbol may be erroneous.

Example 2: In another example of the forwarding policy, the relay uses the source-relay

link’s SNR to evaluate the reliability of the signal received from the source. The relay

forwards a detected symbol to the destination only if the received SNR at the relay is above

some pre-assigned threshold value. Otherwise, the relay remains silent in the second time

slot to avoid propagating errors [17] [19] [20].

Example 3: As a forwarding policy, the relay may use an error detection scheme (e.g.,

cyclic redundancy check). If the relay concludes that there is a symbol that is detected

wrong in the frame, at the second time slot the relay remains silent and the whole frame is

kept from being forwarded to the destination.

3) Agnostic System: In this system, as in the Relay-Agnostic System, we assume that

the relay node does not necessarily know whether the symbol has been detected correctly

or not and uses some policy for making the forwarding decision in the second time slot.

However, the destination node does not know whether the relay has forwarded the detected

symbol or not.

Throughout this chapter, we will use superscript Id, RA and A to distinguish between

these system models; for example, we denote by P Id(e), PRA(e) and PA(e), the BEP per-

formance of the Ideal System, Relay-Agnostic System, and Agnostic System, respectively.2

In this chapter, we consider uncoded (no error correction code) systems in our analysis, and

in all three systems (Ideal, Relay-Agnostic and Agnostic Systems), the signals received by

the relay and the destination in the first time slot are modelled as (2.1) and (2.2). In the

second time slot, in the Ideal System, the data signals received by the destination is in the

following form:

yird = θi
√
Prhrdxi + nird, i = 1, 2, ...,m− 1, (2.3)

where θi can be either 0 or 1 indicating whether the relay was silent or not, nird is additive

noise term, and Pr is the relay power (energy per symbol time) for data transmission. At

the end of the second time slot, the destination will combine the desired signals from the

source and the relay, if any, and attempt to detect the symbol.

2 In addition to these three system models, one can imagine another model that may be termed as
Destination-Agnostic System: the system in which the relay perfectly knows whether its detection of a
symbol is correct or not and the destination does not know whether the relay has forwarded the symbol or
not. We defer discussion of such a system beyond the present dissertation.
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In the Agnostic and Relay-Agnostic Systems, the data signals received by the destination

in the second time slot can be expressed as:

yird = θi
′
√
Prhrdx̃i + nird, i = 1, 2, ...,m− 1, (2.4)

where θ′i can be either 0 or 1 indicating whether the relay was silent or not and x̃i can be

either xi or −xi indicating whether the relay detected the symbol without error or not.

R

S D

hsr

hsd

hrd

Figure 2.1: Three-node relay network model

Source
Pilot

1 2 ... m-1
Relay
Pilot

1 2 ... m-1

First time slot Second time slot

Each frame has m symbols

Figure 2.2: Transmission structure in a block of m symbols

The transmission block in all systems, consists of two phases−training phase and data

transmission phase. Over these phases the source and the relay are subject to the following

power constraint [34]:

|xs,t|2 + (m− 1)Ps ≤ mP1, |xr,t|2 + (m− 1)Pr ≤ mP2, (2.5)

where xs,t, Ps, xr,t, Pr and m are the source training symbol, source power for data transmis-

sion, relay training symbol, relay power for data transmission and frame length, respectively.

Also P1 and P2 refer to the source average symbol energy and the relay average symbol en-

ergy, respectively. We consider a method in which the symbols are detected individually

(i.e., in a symbol-by-symbol fashion); the symbol-by-symbol detection requires much less

computation than the block detection.
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2.3.1 Training Phase

Each frame transmission starts with the training phase. As in [36] [37] [38], we assume that

only one pilot symbol is used to estimate the channel coefficient (It was shown in [36] [37]

that one pilot symbol can achieve the same channel estimation performance by using the

same power). At the beginning of the frame during the first time slot, the source sends

a pilot symbol, which we denote as xs,t, to the relay and destination (Figure 2.2). The

received pilot signals can be expressed as:

ytsr = hsrxs,t + nsr, y
t
sd = hsdxs,t + nsd, (2.6)

where ytsr and ytsd are the received pilot signals at the relay and at the destination, respec-

tively. Then, the relay sends pilot symbol xr,t to the destination in the second time slot

(Figure 2.2). The received pilot signal at the destination can be expressed as:

ytrd = hrdxr,t + nrd. (2.7)

The noise terms nsd, nsr in (2.6) and nrd in (2.7) are modelled as zero mean complex

Gaussian random variables with equal variance N0 (N0/2 per real dimension). We assume

that in the considered schemes, the source and the relay can allocate power to the pilot

phase and the data phase in different proportions. Accordingly, we express |xs,t|2 and

|xr,t|2 (the transmit energies for the training phase) as α mP1 (for transmission by the

source) and βmP2 (for transmission by the relay), respectively. Parameters α and β are the

fraction of pilot transmission energy of the source and the relay frame, respectively, where

0 < α, β < 1. The relay communication systems considered in the present chapter assume

that the relay and the destination both estimate the wireless channel gain from the received

pilot signal by using the MMSE channel estimation method. MMSE estimate of the channel

is obtained at the relay and destination by using ĥsr = E{hsrytsr
∗}
(
E{ytsrytsr

∗}
)−1

ytsr, ĥsd =

E{hsdytsd
∗}
(
E{ytsdytsd

∗}
)−1

ytsd and ĥrd = E{hrdytrd
∗}
(
E{ytrdytrd

∗}
)−1

ytrd [34]. Based on [37],

we can write:

hij = ĥij + eij , (2.8)
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where eij is the channel estimation error modelled as a zero mean complex Gaussian random

variable with variance σ2
eij and we have [37]:

ĥsd ∼ CN

(
0,

σ4
hsd
|xs,t|2

σ2
hsd
|xs,t|2 +N0

)
, esd ∼ CN

(
0,

σ2
hsd
N0

σ2
hsd
|xs,t|2 +N0

)
,

ĥsr ∼ CN

(
0,

σ4
hsr
|xs,t|2

σ2
hsr
|xs,t|2 +N0

)
, esr ∼ CN

(
0,

σ2
hsr
N0

σ2
hsr
|xs,t|2 +N0

)
,

ĥrd ∼ CN

(
0,

σ4
hrd
|xr,t|2

σ2
hrd
|xr,t|2 +N0

)
, erd ∼ CN

(
0,

σ2
hrd
N0

σ2
hrd
|xr,t|2 +N0

)
, (2.9)

where CN (·, ·) denotes complex Gaussian distribution. It can be easily shown that eij and

ĥij are statistically independent.

2.3.2 Data Transmission Phase

During the block of m symbols, the first symbol is allocated for channel estimation. In the

remaining duration of m − 1 symbols, data transmission takes place. In all three systems,

the source transmits m − 1 data symbols x1, x2, ..., xm−1 with power Ps during the first

time slot subject to the following power constraint:

Ps =
(1− α)mP1

(m− 1)
. (2.10)

In the second time slot, the relay transmits m− 1 data symbols xi (in the Ideal System) or

x̃i (in the Relay-Agnostic and Agnostic Systems) with power Pr to the destination subject

to the following power constraint:

Pr =
(1− β)mP2

(m− 1)
. (2.11)

2.4 Closed Form Expression of the BEP Performance of the

Ideal System

In this section, we derive a closed-form expression for the BEP performance of the Ideal

System. In accordance with (2.2), (2.3) and (2.8), the signals received at the destination in
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the Ideal System can be written as:

yisd =
√
Psĥsdxi +

√
Psesdxi + nisd︸ ︷︷ ︸

ñisd

,

yird = θi
√
Prĥrdxi + θi

√
Prerdxi + nird︸ ︷︷ ︸

ñird

, (2.12)

where i = 1, 2, ...,m−1 and θi ∈ {0, 1}. With θi known by the destination, optimal detection

rule to be used by the destination can be written as:

x̂ = arg max
x∈{−1,+1}

p(ysd, yrd | x, ĥsd, ĥrd, θ). (2.13)

Conditioned on the transmitted symbol (x), estimated channel gains (ĥsd and ĥrd) and θ, it

can be easily seen that ysd and yrd are two independent complex Gaussian random variables

with means
√
Psĥsdx, θ

√
Prĥrdx and variances Psσ2

esd
+N0, θPrσ2

erd
+N0, respectively. The

decision rule is given by:

x̂ = arg max
x∈{−1,+1}


exp

(
−|ysd−

√
Psĥsdx|2

Psσ2
esd

+N0

)
π(Psσ2

esd
+N0)

·
exp

(
−|yrd−θ

√
Prĥrdx|2

θPrσ2
erd

+N0

)
π(θPrσ2

erd
+N0)

 . (2.14)

Due to the symmetry, BEP is the same for sending 1 or −1 from the source. We can

therefore write for each symbol, omitting the subscript for simple notation:

P Id(e) = P Id(e|x = 1)

= P Id(e|x = 1, θ = 0)P (θ = 0|x = 1) + P Id(e|x = 1, θ = 1)P (θ = 1|x = 1)

= P Id(e|x = 1, θ = 0)P (θ = 0) + P Id(e|x = 1, θ = 1)P (θ = 1). (2.15)

where the last equality in (2.15) is due to the fact that the transmitted symbol (x) and θ

are independent.

If x = 1 is sent and the relay makes detection error, that symbol is not forwarded to the

destination (i.e., θ = 0) and the conditional BEP is given by:

P Id(e|x = 1, θ = 0) = P

{
exp

(
−|ñsd|

2

σ2
1

)
< exp

(
−|2
√
Psĥsd + ñsd|2

σ2
1

)}
, (2.16)

where

ñsd =
√
Psesd + nisd, σ

2
1 = Psσ2

esd
+N0. (2.17)
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If x = 1 is sent and the relay detects the symbol without error, that symbol is forwarded

to the destination (i.e., θ = 1) and the conditional BEP is given by:

P Id(e|x = 1, θ = 1) = P

{
exp

(
−|ñsd|

2

σ2
1

)
exp

(
−|ñrd|

2

σ2
2

)
<

exp

(
−|2
√
Psĥsd + ñsd|2

σ2
1

)
exp

(
−|2
√
Prĥrd + ñrd|2

σ2
2

)}
, (2.18)

where

ñrd =
√
Prerd + nird, σ

2
2 = Prσ2

erd
+N0. (2.19)

We can simplify (2.16) and (2.18) as in the following:

P Id(e|x = 1, θ = 0) = P
(
|ñsd|2 > |2

√
Psĥsd + ñsd|2

)
,

P Id(e|x = 1, θ = 1) = P

(
|ñsd|2

σ2
1

+
|ñrd|2

σ2
2

>
|2
√
Psĥsd + ñsd|2

σ2
1

+
|2
√
Prĥrd + ñrd|2

σ2
2

)
. (2.20)

From (2.20) follows that:

P Id(e|x=1, θ=0)=P
(
Ps|ĥsd|2 +

√
PsRe{ĥ∗sdñsd} < 0

)
,

P Id(e|x=1, θ=1)=P

(
Ps|ĥsd|2

σ2
1

+
Pr|ĥrd|2

σ2
2

+

√
PsRe{ĥ∗sdñsd}

σ2
1

+

√
PrRe{ĥ∗rdñrd}

σ2
2

<0

)
. (2.21)

Conditioned on ĥsd and ĥrd, we have:

√
PsRe{ĥ∗sdñsd}

σ2
1

+

√
PrRe{ĥ∗rdñrd}

σ2
2

∼ N

(
0,
Ps|ĥsd|2

σ2
1

+
Pr|ĥrd|2

σ2
2

)
, (2.22)

where N (·, ·) denotes real Gaussian distribution. We denote |ĥsd|2 and |ĥrd|2 by Z1 and Z2,

respectively. Conditioned on ĥsd, ĥrd, and θ, the conditional BEP can be written as:

P Id
(
e|x = 1, ĥsd, ĥrd, θ

)
= Q

(√
2
(
Asd|ĥsd|2 + θArd|ĥrd|2

))
= Q

(√
2 (AsdZ1 + θArdZ2)

)
, (2.23)

where

Asd =
Ps

Psσ2
esd

+N0
, Ard =

Pr
Prσ2

erd
+N0

. (2.24)



CHAPTER 2. LB ON THE PERFORMANCE OF DF RELAYING 21

In accordance with the complex Gaussian channel model, Z1 and Z2 are exponentially

distributed; we can therefore write:

fZ1(z1) = λsde
−λsdz1 , z1 ≥ 0, fZ2(z2) = λrde

−λrdz2 , z2 ≥ 0, (2.25)

where

λsd =
1

σ2
ĥsd

=
αmPsσ2

hsd
+N0

αmPsσ4
hsd

, λrd =
1

σ2
ĥrd

=
βmPrσ2

hrd
+N0

βmPrσ4
hrd

. (2.26)

Conditioned on θ, by using (2.23), (2.25), and Q(x) = 1
π

∫ π
2

0 exp
(
− x2

2 sin2 ϕ

)
dϕ [40], BEP

can be expressed as:

P Id(e|θ) =
1

π

∫ π
2

0

∫ ∞
0

∫ ∞
0

exp

(
−Asdz1 + θArdz2

sin2 ϕ

)
fZ1(z1)fZ2(z2)dz1dz2dϕ. (2.27)

By using the moment generating function approach [40], we can rewrite (2.27) as:

P Id(e|θ) =
1

π

∫ π
2

0

λsd sin2 ϕ

λsd sin2 ϕ+Asd
· λrd sin2 ϕ

λrd sin2 ϕ+Ardθ
dϕ. (2.28)

Then, by using (5A.42) of [40] we obtain:

P Id(e) =
1

4

[
1+

√
Asr

Asr+λsr

][
1+

λsdλrd
Ardλsd−Asdλrd

(
Asd
λsd

√
Asd

Asd+λsd
−Ard
λrd

√
Ard

Ard+λrd

)]

+
1

4

[
1−
√

Asr
Asr+λsr

][
1−
√

Asd
Asd+λsd

]
. (2.29)

where

Asr =
Ps

Psσ2
esr +N0

, λsr =
1

σ2
ĥsr

=
αmPsσ2

hsr
+N0

αmPsσ4
hsr

. (2.30)

Because (2.29) is the BEP of the Ideal System (the most idealized system model), it is

intuitively compelling that this should serve as a lower bound of the BEPs associated with

the other two system models. However, proving that is quite challenging, and the next

sections will prove it.

2.5 On the BEP inequalities among three systems

We assumed that in the Ideal System, the relay perfectly knows whether a symbol has been

detected correctly or not. Furthermore, we assumed that the destination node in the Ideal
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System perfectly knows whether the relay has forwarded a particular symbol or not. In

the Relay-Agnostic and Agnostic Systems, we assumed that the relay node does not know

whether a particular symbol has been detected correctly or not and uses some policy for

making the forwarding decision. Also, the destination node in the Agnostic System does

not know whether the relay has forwarded the detected symbol or not. The relay node may

use any policy for making the forwarding decisions both in Relay-Agnostic and Agnostic

Systems; these systems represent a large class of SDF systems. For the rest of the present

chapter, we study the relation among the BEPs of the “Ideal System,” the “Relay-Agnostic

System,” and the “Agnostic System.” We will compare the BEPs of these three systems

for an arbitrary forwarding policy employed by both the Relay-Agnostic and the Agnostic

Systems. We will prove that the following inequality holds:

P Id(e) ≤ PRA(e) ≤ PA(e), (2.31)

for any forwarding policy employed by the relay in the Relay-Agnostic and the Agnostic

Systems. For the rest of this section, we provide a simple proof of the second inequality in

(2.31), and we will prove the first inequality in sections 2.6 and 2.7. What is shown in this

section is that the BEP performance of the Relay-Agnostic System is a lower bound on the

BEP performance of the Agnostic System for any given forwarding policy of the relay. The

optimal symbol detection (maximum likelihood) rules at destination in the Agnostic System

and the Relay-Agnostic System are, respectively,

Optimal detection rule in Agnostic System : x̂ = arg max
x∈{−1,+1}

p(ysd, yrd|x, ĥsd, ĥrd), (2.32)

Optimal detection rule in Relay−Agnostic System : x̂ = arg max
x∈{−1,+1}

p(ysd, yrd|x, ĥsd, ĥrd, θ′)

(2.33)

Theorem 2.5.1. For any given forwarding policy employed by both Relay-Agnostic and

Agnostic Systems, optimal signal detection at the destination in (2.33) using (ĥsd, ĥrd, θ
′)

information results in no worse BEP performance than the optimal signal detection in (2.32)

using (ĥsd, ĥrd) information.

Proof. Detection rule in (2.32) can be viewed as a detection rule that does not utilize

information (θ′) in the Relay-Agnostic System. Because the maximum likelihood rule of the

Relay-Agnostic System in (2.33) is optimal, it cannot perform worse than rule (2.32).
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Theorem 2.5.1 says that the detection rule in (2.33) results in a better BEP performance

than the detection rule in (2.32). We therefore proved that the BEP performance of the

Relay-Agnostic System is a lower bound on the BEP performance of the Agnostic System,

even if the destination node in the Agnostic System uses optimal signal detection. Obviously,

if the destination node in the Agnostic System does not use the optimal detection, it results

in a poorer detection in comparison with an Agnostic System in which the destination uses

the optimal detection rule in (2.32).

2.6 Performance Comparison between the Ideal System and

the Relay-Agnostic System: a Special Case

In this section, we discuss the first inequality of (2.31). Proving this inequality for the

general case appears to be difficult. However, for a special case of P (θ = 1) ≥ P (θ′ = 1),

we can provide a simple and insightful proof. This special case represents a Relay-Agnostic

System in which the relay node has a conservative forwarding policy in comparison with the

idealized system. We present a simple proof for this special case in this section and defer

the proof for the general case to the next section.

The probability of error in the Ideal System and the Relay-Agnostic System, can be

respectively written as the following:

P Id(e) = P Id(e|θ = 0)P (θ = 0) + P Id(e|θ = 1)P (θ = 1), (2.34)

PRA(e) = PRA(e|θ′ = 0)P (θ′ = 0) + PRA(e|θ′ = 1)P (θ′ = 1). (2.35)

The signal received from the source at the destination (ysd) is the same in both Ideal and

Relay-Agnostic Systems. In accordance with (2.3) and (2.4), given that the relay transmitted

the symbol, the signals received from the relay at the destination in the Ideal System and

the Relay-Agnostic System are, respectively,

Ideal (given θ = 1) : yrd =
√
Prhrdx+ nrd, (2.36)

Relay−Agnostic (given θ′ = 1) : yrd =
√
Prhrdx̃+ nrd, (2.37)

where x is the correct symbol value and x̃ in (2.37) can be either x or −x. In the Relay-

Agnostic System, we denote the probability that the relay sends −x instead of x by δ:

δ = P (x̃ = −x|θ′ = 1). (2.38)
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Therefore, in the Relay-Agnostic System, given θ′ = 1 we have:

with probability 1− δ, yrd =
√
Prhrdx+ nrd, (2.39)

with probability δ, yrd =
√
Prhrd(−x) + nrd = −

(√
Prhrdx− nrd

)
. (2.40)

We point out that nrd in (2.40) is circular symmetric Gaussian random variable and both

nrd and −nrd are statistically indistinguishable.

detector

-1

yrd

ysd

maximum
likelihood
detector

yrd

ysd

x x

(a) Ideal System (b) Relay-Agnostic System

Module A Module B

randomizer

δ

1-δ

Figure 2.3: Signal detection at the destination in the: Ideal System conditioned on θ = 1
(a) and in the Relay-Agnostic System conditioned on θ′ = 1 (b)

In the Ideal System, given θ = 1, the destination tries to detect the transmitted symbol

(x), based on both ysd and yrd and using maximum likelihood (ML) detection. In the Relay-

Agnostic System, given θ′ = 1, the relay might send to the destination either the correct

symbol (x), the probability of which is 1− δ, or the wrong symbol (−x), the probability of

which is δ. Then the destination tries to detect the transmitted symbol based on ysd and

yrd and using ML detection. Given the event that θ = θ′ = 1, for comparing conditional

error probabilities, P Id(e|θ = 1) and PRA(e|θ′ = 1), the operations of the Ideal System and

the Relay-Agnostic System can be both viewed as a mapping from (yrd, ysd) to decision x̂,

as illustrated in Fig. 2.3 a) and b). The Relay-Agnostic System’s operation (Module B) can

be viewed as the cascade of the “randomizer” system and the “detector” system, wherein

the randomizer multiplies yrd by −1 with probability δ and leaves yrd alone with probability

1 − δ. Module B is thus a rule for detection x̂ based on (yrd, ysd). The Ideal System’s
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operation (Module A) is the maximum likelihood (optimal) rule for detection x̂ based on

(yrd, ysd). The optimal detection rule (Module A) cannot perform worse than Module B,

and thus the following Lemma has been proved.

Lemma 2.6.1. P Id(e|θ = 1) ≤ PRA(e|θ′ = 1).

The next lemma is intuitively compelling, and the proof is straightforward.

Lemma 2.6.2. P Id(e|θ = 1) ≤ P Id(e|θ = 0).

Proof. By using (2.23) we have:

P Id
(
e|x = 1, ĥsd, ĥrd, θ = 1

)
= Q

(√
2
(
Asd|ĥsd|2+Ard|ĥrd|2

))
≤Q

(√
2
(
Asd|ĥsd|2

))
= P Id

(
e|x = 1, ĥsd, ĥrd, θ = 0

)
, (2.41)

where the inequality in (2.41) is due to the fact that Q () is a monotonically decreasing

function and Ard|ĥrd|2 ≥ 0. For each realization of ĥsd, ĥrd, the inequality in (2.41) holds.

By averaging over all the realizations of ĥsd, ĥrd, we can simply conclude the following

inequality:

P Id(e|θ = 1) ≤ P Id(e|θ = 0). (2.42)

Theorem 2.6.1. Assume that P (θ = 1) ≥ P (θ′ = 1), then we have: P Id(e) ≤ PRA(e).

Proof. By using (2.35) and Lemma 2.6.1, we can write:

PRA(e) = PRA(e|θ′ = 0)P (θ′ = 0) + PRA(e|θ′ = 1)P (θ′ = 1)

≥ PRA(e|θ′ = 0)P (θ′ = 0) + P Id(e|θ = 1)P (θ′ = 1). (2.43)

We also have:

PRA(e|θ′ = 0) = P Id(e|θ = 0) (2.44)

because given θ = 0 and θ′ = 0, in both Ideal and Relay-Agnostic Systems, the symbol is

optimally detected based on the received signal in the first time slot (ysd) in (2.2), which is
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identical in both systems and result in the same performance. From (2.43) and (2.44), we

have:

PRA(e) ≥ P Id(e|θ = 0)P (θ′ = 0) + P Id(e|θ = 1)P (θ′ = 1)

= P Id(e|θ = 0)
[
1− P (θ′ = 1)

]
+ P Id(e|θ = 1)P (θ′ = 1)

= P Id(e|θ = 0) +

P Id(e|θ = 1)− P Id(e|θ = 0)︸ ︷︷ ︸
≤0 from Lemma 2.6.2

P (θ′ = 1), (2.45)

Then from (2.45) follows:

PRA(e) ≥ P Id(e|θ = 0) +
[
P Id(e|θ = 1)− P Id(e|θ = 0)

]
P (θ = 1)

= P Id(e|θ = 0)− P Id(e|θ = 0)P (θ = 1) + P Id(e|θ = 1)P (θ = 1)

= P Id(e|θ = 0)P (θ = 0) + P Id(e|θ = 1)P (θ = 1) = P Id(e), (2.46)

where the first inequality in (2.46) is due to the assumption P (θ = 1) ≥ P (θ′ = 1).

We proved that the first inequality in (2.31) holds for the special case in which we assume

that P (θ = 1) ≥ P (θ′ = 1). In the next section, we will relax this assumption and prove

that the BEP performance of the Ideal System is a lower bound on the BEP performance

of the Relay-Agnostic System for the general case.

2.7 Performance Comparison between the Ideal System and

Relay-Agnostic System: General Case

2.7.1 A natural approach to the first inequality of (2.31) and its challenge

In this subsection, we will set the course of proving the first inequality of (2.31), and also

show the challenging aspects of proving it. In accordance with (2.2), (2.4) and (2.8), the

signals received by the destination in the Relay-Agnostic System can be written as:

yisd =
√
Psĥsdxi +

√
Psesdxi + nisd︸ ︷︷ ︸

ñisd

,

yird = θ′i
√
Prĥrdx̃i + θ′i

√
Prerdx̃i + nird︸ ︷︷ ︸

ñird

, (2.47)
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where i = 1, 2, ...,m− 1, θ′i ∈ {0, 1}; x̃i can be either −xi or xi, depending on whether the

relay detected the symbol with error or not. The optimal detection rule at the destination

is given by:

x̂ = arg max
x∈{−1,+1}

p(ysd, yrd|x, ĥsd, ĥrd, θ′). (2.48)

Conditioned on the transmitted symbol (x), estimated channel gains (ĥsd and ĥrd), and θ′,

it can be easily seen that ysd and yrd are statistically independent and the optimal decision

rule can be written as the following:

x̂ = arg max
x∈{−1,+1}

{
p(ysd|x, ĥsd) p(yrd|x, ĥrd, θ′)

}
. (2.49)

The probability density function (PDF) of yrd, given x, ĥrd and θ′, can be written as follows:

p(yrd|x, ĥrd, θ′) = p(yrd|x, ĥrd, θ′, x̃ = x)P (x̃ = x|x, ĥrd, θ′)

+ p(yrd|x, ĥrd, θ′, x̃ = −x)P (x̃ = −x|x, ĥrd, θ′). (2.50)

Obviously, the events x̃ = x and x̃ = −x are independent of x and ĥrd. Thus, in accordance

with (2.49) and (2.50), the decision rule can be written as:

x̂ = arg max
x∈{−1,+1}

{
p(ysd|x, ĥsd)

[
p(yrd|x, ĥrd, θ′, x̃ = x)P (x̃ = x|θ′)

+ p(yrd|x, ĥrd, θ′, x̃ = −x)P (x̃ = −x|θ′)
]}

. (2.51)

Hence, we have:

x̂ = arg max
x∈{−1,+1}

{
1

π(Psσ2
esd

+N0)
exp

(
−|ysd −

√
Psĥsdx|2

Psσ2
esd

+N0

)

×

[
1

π(θ′Prσ2
erd

+N0)
exp

(
−|yrd − θ

′√Prĥrdx|2

θ′Prσ2
erd

+N0

)
P (x̃ = x|θ′)

+
1

π(θ′Prσ2
erd

+N0)
exp

(
−|yrd + θ′

√
Prĥrdx|2

θ′Prσ2
erd

+N0

)
P (x̃ = −x|θ′)

]}
(2.52)

Due to the symmetric nature of the system, we have PRA(e|x = 1) = PRA(e|x = −1), so

we have:

PRA(e) = PRA(e|x = 1) = PRA(e|x = 1, x̃ = −1)P (x̃ = −1|x = 1)

+ PRA(e|x = 1, x̃ = 1)P (x̃ = 1|x = 1). (2.53)



CHAPTER 2. LB ON THE PERFORMANCE OF DF RELAYING 28

From (2.53) follows that:

PRA(e)=

[
PRA(e|x = 1, x̃ = −1, θ′ = 1)P (θ′ = 1|x = 1, x̃ = −1)

+PRA(e|x = 1, x̃ = −1, θ′ = 0)P (θ′ = 0|x = 1, x̃ = −1)

]
×P (x̃ = −1|x = 1)

+

[
PRA(e|x = 1, x̃ = 1, θ′ = 1)P (θ′ = 1|x = 1, x̃ = 1)

+PRA(e|x = 1, x̃ = 1, θ′ = 0)P (θ′ = 0|x = 1, x̃ = 1)

]
×P (x̃ = 1|x = 1). (2.54)

In accordance with (2.38) and (2.52), we have:

PRA(e|x = 1, x̃ = −1, θ′ = 1) (2.55)

= P

{
exp

(
−|ñsd|

2

σ2
1

)[
(1− δ) exp

(
−|2
√
Prĥrd − ñrd|2

σ2
2

)
+ δ exp

(
−|ñrd|

2

σ2
2

)]
<

exp

(
−|2
√
Psĥsd+ñsd|2

σ2
1

)[
(1−δ) exp

(
−|ñrd|

2

σ2
2

)
+δ exp

(
−|2
√
Prĥrd−ñrd|2

σ2
2

)]}
,

PRA(e|x = 1, x̃ = −1, θ′ = 0) = P

{
exp

(
−|ñsd|

2

σ2
1

)
< exp

(
−|2
√
Psĥsd + ñsd|2

σ2
1

)}
, (2.56)

PRA(e|x = 1, x̃ = 1, θ′ = 1) (2.57)

= P

{
exp

(
−|ñsd|

2

σ2
1

)[
δ exp

(
−|2
√
Prĥrd − ñrd|2

σ2
2

)
+ (1− δ) exp

(
−|ñrd|

2

σ2
2

)]
<

exp

(
−|2
√
Psĥsd + ñsd|2

σ2
1

)[
δ exp

(
−|ñrd|

2

σ2
2

)
+(1−δ) exp

(
−|2
√
Prĥrd−ñrd|2

σ2
2

)]}
,

PRA(e|x = 1, x̃ = 1, θ′ = 0) = P

{
exp

(
−|ñsd|

2

σ2
1

)
< exp

(
−|2
√
Psĥsd + ñsd|2

σ2
1

)}
, (2.58)

where ñsd, σ
2
1, ñrd, and σ2

2 are defined in (2.17) and (2.19). Analyzing (2.55) and (2.57)

indicates that a closed-form BEP of the Relay-Agnostic System will not be available. For the

purpose of comparing P Id(e) and PRA(e), we point out that P Id(e) as shown in (2.15) can

be expressed as a convex combination of (2.16) and (2.18) and PRA(e) as shown in (2.54)

can be expressed as a convex combination of (2.55)-(2.58). A natural approach to establish
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the first inequality of (2.31) would be to compare the two convex combinations individual

terms. However, comparing the individual terms of the two convex combinations does not

offer an obvious way of establishing the first inequality of (2.31). In the next subsections,

we present a clever way of comparing these individual terms to prove P Id(e) ≤ PRA(e).

2.7.2 A specially designed function

In view of equations (2.16), (2.18), and (2.55)-(2.58), for facilitating the comparison of BEP

performances of the Ideal System and Relay-Agnostic System, we define a function P+(ξ)

over ξ ∈ [0, 1] as follows:

P+(ξ)

=P

{
exp

(
−|ñsd|

2

σ2
1

)[
(1− ξ) exp

(
−|2
√
Prĥrd − ñrd|2

σ2
2

)
+ ξ exp

(
−|ñrd|

2

σ2
2

)]
<

exp

(
−|2
√
Psĥsd+ñsd|2

σ2
1

)[
(1−ξ) exp

(
−|ñrd|

2

σ2
2

)
+ξ exp

(
−|2
√
Prĥrd−ñrd|2

σ2
2

)]}
(2.59)

We note that both P Id(e) and PRA(e) can be expressed rather simply by using this function,

P+(); for example, in accordance with (2.15), (2.16) and (2.18), the BEP of the Ideal System

can be written in terms of P+(ξ) as the following:

P Id(e) = P+

(
1

2

)
P (θ = 0) + P+(1)P (θ = 1). (2.60)

Expressing both P Id(e) and PRA(e) in terms of a common monotonic function P+() is our

main strategy of proving P Id(e) ≤ PRA(e) in subsection 2.7.3. For now, we are to overcome

a major hurdle of proving function P+()’s monotonicity.

Lemma 2.7.1. P+(ξ) is a monotonically non-increasing function of ξ in [0,1].

Proof. By multiplying both sides of the inequality among random variables in (2.59) by

exp
(
|ñsd|2
σ2

1
+ |ñrd|2

σ2
2

)
, we have:

P+(ξ) = P

{
(1− ξ)X + ξ < (1− ξ)Y + ξXY

}
(2.61)

where

X=exp

(
|ñrd|2−|2

√
Prĥrd −ñrd|2

σ2
2

)
, Y =exp

(
|ñsd|2−|2

√
Psĥsd +ñsd|2

σ2
1

)
. (2.62)
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From (2.61) follows that:

P+(ξ) = P {Y > g(X, ξ)} =

∫ ∞
0

∫ ∞
g(x,ξ)

fXY (x, y)dydx, (2.63)

where

g(x, ξ) =
(1− ξ)x+ ξ

1− ξ + ξx
, (2.64)

and fXY (x, y) is the joint PDF of X and Y . We point out that ĥrd, ñrd, ĥsd and ñsd are

statistically independent; therefore, X and Y as seen in (2.62) are two positive indepen-

dent random variables and their joint pdf can be written as fXY (x, y) = fX(x)fY (y). In

accordance with (2.63) we have:

P+(ξ) =

∫ ∞
0

∫ ∞
g(x,ξ)

fX(x)fY (y)dydx

=

∫ ∞
0

fX(x)

∫ ∞
g(x,ξ)

fY (y)dydx =

∫ ∞
0

fX(x) [1− FY (g(x, ξ))] dx. (2.65)

where FY () is the cumulative distribution function (CDF) of random variable Y . Taking

the derivative, we have:

∂P+(ξ)

∂ξ
=

∂

∂ξ

∫ ∞
0

fX(x) [1− FY (g(x, ξ))] dx =

∫ ∞
0

fX(x)
∂

∂ξ
[1− FY (g(x, ξ))] dx

= −
∫ ∞

0
fX(x)fY [g(x, ξ)]D2g(x, ξ)dx. (2.66)

where

D2g(x, ξ) =
∂g(x, ξ)

∂ξ
=

1− x2

(1− ξ + ξx)2
. (2.67)

We denoted |ĥsd|2 and |ĥrd|2 by Z1 and Z2, respectively. We can write (2.66) as the following:

∂P+(ξ)

∂ξ
= −

∫ ∞
0

∫ ∞
0

∫ ∞
0
fX|Z2

(x|z2)fY |Z1
[g(x, ξ)|z1]D2g(x, ξ)fZ1(z1)fZ2(z2)dxdz1dz2(2.68)

We note that D2g(x, ξ) is non-negative if x ∈ (0, 1] and negative if x ∈ (1,∞). We then

write (2.68) as:

∂P+(ξ)

∂ξ
= −

∫ ∞
0

∫ ∞
0

∫ 1

0
fX|Z2

(x|z2)fY |Z1
[g(x, ξ)|z1]D2g(x, ξ)fZ1(z1)fZ2(z2)dxdz1dz2

−
∫ ∞

0

∫ ∞
0

∫ ∞
1
fX|Z2

(x|z2)fY |Z1
[g(x, ξ)|z1]D2g(x, ξ)fZ1(z1)fZ2(z2)dxdz1dz2 (2.69)
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By using variable τ = 1/x in the second integral in (2.69), we have:

∂P+(ξ)

∂ξ
= −

∫ ∞
0

∫ ∞
0

∫ 1

0
fX|Z2

(x|z2)fY |Z1
[g(x, ξ)|z1]D2g(x, ξ)fZ1(z1)fZ2(z2)dz1dz2 (2.70)

+

∫ ∞
0

∫ ∞
0

∫ 0

1
fX|Z2

(
1

τ

∣∣∣∣z2

)
fY |Z1

[
g

(
1

τ
, ξ

)∣∣∣∣z1

]
D2g

(
1

τ
, ξ

)
fZ1(z1)fZ2(z2)

dτ

τ2
dz1dz2

It is straightforward to show that:

g

(
1

x
, ξ

)
=

1

g(x, ξ)
. (2.71)

We also have (See Appendix for derivation):

fX|Z2

(
1

x

∣∣∣∣z2

)
= x3fX|Z2

(x|z2), fY |Z1

(
1

y

∣∣∣∣z1

)
= y3fY |Z1

(y|z1). (2.72)

In accordance with (2.70), (2.71) and (2.72) we have:

∂P+(ξ)

∂ξ
=−

∫ ∞
0

∫ ∞
0

∫ 1

0
fX|Z2

(x|z2)fY |Z1
[g(x, ξ)|z1]D2g(x, ξ)fZ1(z1)fZ2(z2)dxdz1dz2

−
∫ ∞

0

∫ ∞
0

∫ 1

0
x3fX|Z2

(x|z2) [g(x, ξ)]3 fY |Z1
[g(x, ξ)|z1]D2g

(
1

x
, ξ

)
fZ1(z1)fZ2(z2)

dx

x2
dz1dz2

=−
∫ ∞

0

∫ ∞
0

∫ 1

0
fX|Z2

(x|z2)fY |Z1
[g(x, ξ)|z1] fZ1(z1)fZ2(z2)

[
D2g(x, ξ)+x [g(x, ξ)]3D2g

(
1

x
, ξ

)]
dxdz1dz2 (2.73)

In order to simplify the notations, we define A(x, ξ) as in the following:

A(x, ξ) = D2g(x, ξ) + x [g(x, ξ)]3D2g

(
1

x
, ξ

)
. (2.74)

In accordance with (2.64), (2.67) and (2.74) we have:

A(x, ξ) =
1− x2

(1− ξ + ξx)2
+
x [(1− ξ)x+ ξ]3

(1− ξ + ξx)3
·

(
1− 1

x2

)(
1− ξ + ξ

x

)2 =
(1− ξ)

(
1− x2

)2
(1− ξ + ξx)3 . (2.75)

From (2.75) we deduce that A(x, ξ) is non-negative if ξ ∈ [0, 1] and x > 0; thus we can

conclude that:

∂P+(ξ)

∂ξ
=−

∫ ∞
0

∫ ∞
0

∫ 1

0
fX|Z2

(x|z2)︸ ︷︷ ︸
>0

fY |Z1
[g(x, ξ)|z1]︸ ︷︷ ︸
>0

fZ1(z1)︸ ︷︷ ︸
>0

fZ2(z2)︸ ︷︷ ︸
>0

A(x, ξ)︸ ︷︷ ︸
≥0

dxdz1dz2 ≤ 0,

(2.76)

and Lemma 2.7.1 is proved.
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2.7.3 Proving the first inequality of (2.31)

In this subsection, we prove the first inequality of (2.31).

Theorem 2.7.1. P Id(e) ≤ PRA(e).

Proof. As mentioned in (2.60), P Id(e) can be written in terms of P+() as the following:

P Id(e) = P+

(
1

2

)
P (θ = 0) + P+(1)P (θ = 1). (2.77)

In both Ideal and Relay-Agnostic Systems, the relay employs the same signal detection

scheme and the difference between both systems is only in their forwarding policies. There-

fore, probability that a particular symbol is detected with error at the relay is the same for

both systems; we can therefore write:

P (θ = 0) = P (x̃ 6= x) = P (x̃ = −1, x = +1) + P (x̃ = +1, x = −1)

=
1

2

[
P (x̃ = −1|x = +1) + P (x̃ = +1|x = −1)

]
= P (x̃ = −1|x = +1), (2.78)

where the last equality in (2.78) is due to the symmetric nature of the system. Thus we can

rewrite (2.54) as:

PRA(e)=

[
PRA(e|x = 1, x̃ = −1, θ′ = 1)P (θ′ = 1|x = 1, x̃ = −1)

+ PRA(e|x = 1, x̃ = −1, θ′ = 0)P (θ′ = 0|x = 1, x̃ = −1)

]
P (θ = 0)

+

[
PRA(e|x = 1, x̃ = 1, θ′ = 1)P (θ′ = 1|x = 1, x̃ = 1)

+ PRA(e|x = 1, x̃ = 1, θ′ = 0)P (θ′ = 0|x = 1, x̃ = 1)

]
P (θ = 1). (2.79)

In accordance with (2.55)-(2.58), and (2.79), the BEP of the Relay-Agnostic System can be

written in terms of P+() as the following:

PRA(e) =

[
P+(δ)P (θ′=1|x=1, x̃=−1)+P+

(
1

2

)
P (θ′=0|x=1, x̃=−1)

]
P (θ=0)

+

[
P+(1−δ)P (θ′= 1|x=1, x̃=1)+P+

(
1

2

)
P (θ′= 0|x=1, x̃=1)

]
P (θ=1)(2.80)

We consider the two following cases:
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case I: δ < 1
2 . In this case, from Lemma 2.7.1 we have: P+(δ) ≥ P+

(
1
2

)
. Since 1−δ < 1,

we also have P+(1− δ) ≥ P+(1). Thus, (2.80) can be lower bounded as:

PRA(e) =

[
P+(δ)︸ ︷︷ ︸
≥P+( 1

2)

P (θ′=1|x=1, x̃=−1)+P+

(
1

2

)
P (θ′=0|x=1, x̃=−1)

]
P (θ = 0)

+

[
P+(1− δ)︸ ︷︷ ︸
≥P+(1)

P (θ′=1|x=1, x̃=1)+P+

(
1

2

)
︸ ︷︷ ︸
≥P+(1)

P (θ′=0|x=1, x̃=1)

]
P (θ = 1)

≥ P+

(
1

2

)
P (θ = 0) + P+(1)P (θ = 1) = P Id(e). (2.81)

case II: δ ≥ 1
2 . In this case, from Lemma 2.7.1 we have: P+(δ) ≥ P+(1). Since 1−δ ≤ 1

2 ,

we also have P+(1− δ) ≥ P+
(

1
2

)
. Thus, (2.80) can be lower bounded as:

PRA(e) =

[
P+(δ)︸ ︷︷ ︸
≥P+(1)

P (θ′=1|x=1, x̃=−1)+P+

(
1

2

)
︸ ︷︷ ︸
≥P+(1)

P (θ′=0|x=1, x̃=−1)

]
P (θ=0)

+

[
P+(1−δ)︸ ︷︷ ︸
≥P+( 1

2)

P (θ′=1|x=1, x̃=1)+P+

(
1

2

)
P (θ′=0|x=1, x̃=1)

]
P (θ=1)

≥ P+(1)P (θ = 0) + P+

(
1

2

)
P (θ = 1)

= P+(1)

[
1− P (θ = 1)

]
+ P+

(
1

2

)
P (θ = 1)

= P+(1) +

[
P+

(
1

2

)
− P+(1)︸ ︷︷ ︸
≥0

]
P (θ = 1)︸ ︷︷ ︸
≥P (θ=0)

, (2.82)

From Lemma 2.7.1 we have P+
(

1
2

)
− P+(1) ≥ 0. We point out that P (θ = 0) is the

probability that the relay in the Ideal System detects the symbol with error; thus, we have

P (θ = 1) ≥ P (θ = 0) because in the case of binary signalling and using optimal symbol

detection, it is less likely that a detection error occurs. Therefore, in accordance with (2.82)

we have:

PRA(e) ≥ P+(1) +

[
P+

(
1

2

)
− P+(1)

]
P (θ = 0)

= P+

(
1

2

)
P (θ = 0) + P+(1)− P+(1)P (θ = 0)

= P+

(
1

2

)
P (θ = 0) + P+(1)P (θ = 1) = P Id(e). (2.83)
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Thus, Theorem 2.7.1 is proved.

We proved that the BEP of the Ideal System is a lower bound on the BEP of the Relay-

Agnostic System. Thus, we proved that the BEP of the Ideal System is a lower bound on

the BEP performance of the Agnostic System.

2.8 Performance Comparison for an MRC Receiver

In this section, by using a simple argument, we prove that the SEP performance of the

ideal system is a lower bound on the SEP performance of the agnostic system in which

the destination node employs MRC receiver. We assume that in both ideal and agnostic

systems, destination uses MRC as the following [35] [39]:

yId
MRC =

√
Ps

Psσ2
esd

+N0
ĥ∗sdysd +

θ
√
Pr

Prσ2
erd

+N0
ĥ∗rdyrd, (2.84)

yA
MRC =

√
Ps

Psσ2
esd

+N0
ĥ∗sdysd +

θ̂′
√
Pr

Prσ2
erd

+N0
ĥ∗rdyrd, (2.85)

where θ̂′ is the destination’s estimation of θ′ in the agnostic system.

The contribution of this section is to articulate a sufficient condition under which the

“ideal system’s” SEP is a lower bound on the “agnostic system’s” through a simple argu-

ment. We consider the following four events:

I) x̃ = x and θ′ = 0: In this event, at the second time slot, the relay in the agnostic

system remains silent and the symbol is kept from being forwarded (i.e., θ′ = 0). However, in

the ideal system the symbol is forwarded to the destination node (i.e., θ = 1) in accordance

with the ideal system’s knowledge of the correct detection and its forwarding rule. In the

agnostic system, if θ̂′ = 0, the final symbol detection at the destination is made only based

on the received signal at the first time slot. If θ̂′ = 1, the destination combines the received

signal at the first time slot from the source with noise. In both events, the conditional SEP

in the agnostic system has no less SEP than that in the ideal system. Therefore, we have

P Id
s (e|x̃ = x, θ′ = 0) ≤ PA

s (e|x̃ = x, θ′ = 0) where P Id
s (e) and PA

s (e) are SEPs of the ideal

and agnostic systems, respectively.

II) x̃ = x and θ′ = 1: In the ideal system, the symbol is forwarded to the destination

(i.e., θ = 1) because the relay correctly detects the symbol. In the agnostic system, if θ̂′ = 1,
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both systems have the same SEP performance. However, if θ̂′ = 0, the destination node in

the agnostic system uses only the received signal at the first time slot, and this results in

a poorer conditional SEP than the ideal system. We can therefore write P Id
s (e|x̃ = x, θ′ =

1) ≤ PA
s (e|x̃ = x, θ′ = 1).

III) x̃ 6= x and θ′ = 0: In this event, the destination in the ideal system detects the

symbol based only on the received signal in the first time slot. In the agnostic system, if

θ̂′ = 0, the destination detects the symbol based only on the signal received in the first time

slot and thus has the same SEP performance as the ideal system. In the agnostic system,

if θ̂′ = 1, the destination combines the received signal at the first time slot from the source

with noise which results in a poorer detection than the ideal system. Therefore, the ideal

system will have less likelihood of making a symbol error and we have P Id
s (e|x̃ 6= x, θ′ =

0) ≤ PA
s (e|x̃ 6= x, θ′ = 0).

IV) x̃ 6= x and θ′ = 1: In this event, in the ideal system, the symbol is kept from being

forwarded by the relay (i.e., θ = 0) and the destination will detect the transmitted symbol

only based on the received signal form the source during the first time slot. If θ̂′ = 0, the

agnostic system’s destination will also detect the transmitted symbol only based on the

received signal form the source during the first time slot, so we have:

PA
s (e|x̃ 6= x, θ′=1, θ̂′=0)=P Id

s (e|x̃ 6= x, θ′=1, θ̂′=0). (2.86)

We note that

P Id
s (e|x̃ 6= x, θ′ = 1, θ̂′ = 0) = P Id

s (e|x̃ 6= x), (2.87)

as the symbol error event in the ideal system is independent of the agnostic system’s decisions

θ′ and θ̂′. Thus, from (2.86) and (2.87) we have:

PA
s (e|x̃ 6= x, θ′ = 1) = P (θ̂′ = 1|x̃ 6= x, θ′ = 1)PA

s (e|x̃ 6= x, θ′ = 1, θ̂′ = 1)

+P (θ̂′ = 0|x̃ 6= x, θ′ = 1)PA
s (e|x̃ 6= x, θ′ = 1, θ̂′ = 0)

= P (θ̂′=1|x̃ 6= x, θ′=1)PA
s (e|x̃ 6= x, θ′=1, θ̂′=1)+P (θ̂′=0|x̃ 6= x, θ′=1)P Id

s (e|x̃ 6= x).(2.88)

From (2.88) we can state that if P Id
s (e|x̃ 6= x) ≤ PA

s (e|x̃ 6= x, θ′ = 1, θ̂′ = 1), then we have:

P Id
s (e|x̃ 6= x, θ′ = 1) ≤ PA

s (e|x̃ 6= x, θ′ = 1). Thus, by averaging probabilities under the

conditioning events I, II, III, and IV, the following Theorem is proved.
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Theorem 2.8.1. For any modulation scheme, any forwarding policy at the relay in the

agnostic system, and any method of deciding whether to combine the signal at the second

time slot in the agnostic system, if P Id
s (e|x̃ 6= x) ≤ PA

s (e|x̃ 6= x, θ′ = 1, θ̂′ = 1), then we have

we have P Id
s (e) ≤ PA

s (e).

2.8.1 Example use of Theorem 2.8.1

In this section, we will provide an example use of Theorem 2.8.1. For the ideal and the

agnostic systems employing QPSK modulation, we will show that the antecedent of Theorem

2.8.1, P Id
s (e|x̃ 6= x) ≤ PA

s (e|x̃ 6= x, θ′ = 1, θ̂′ = 1) is true; that is, for QPSK modulation,

MRC combining a wrong symbol with the correct symbol at the destination, results in a

higher SEP than the case in which the wrong symbol is not combined at the destination

node. In light the equivalence (2.87), we will prove that

P Id
s (e|x̃ 6= x, θ′=1, θ̂′=1)≤PA

s (e|x̃ 6= x, θ′=1, θ̂′=1). (2.89)

Since QPSK modulation is considered, the transmitted symbol, x, can be represented by

one of {+1,+j,−1,−j}. Without loss of generality, we will assume x = +1 and prove that

P Id
s (e|x = 1, x̃ 6= x, θ′ = 1, θ̂′ = 1) ≤ PA

s (e|x = 1, x̃ 6= x, θ′ = 1, θ̂′ = 1). (2.90)

Then, this inequality will be also proven for x = j,−j,−1 by symmetrical arguments, and

as a result, inequality (2.89) will be proven. To this end, for the rest of this section, our

discussion will be under the condition x = 1, x̃ 6= x, θ′ = 1, and θ̂′ = 1. By definition of the

ideal system, x̃ 6= +1 implies that θ = 0, so the destination node in the ideal system detects

the transmitted symbol based on yId in (2.84) with θ = 0. In accordance with (2.12) and

(2.84) we have:

yId =
Ps

Psσ2
esd

+N0
|ĥsd|2 +

√
Ps

Psσ2
esd

+N0
ĥ∗sdñsd = SI + nIsd + jnQsd, (2.91)

where ñsd =
√
Psesd + nsd, S

I = Ps
Psσ2

esd
+N0
|ĥsd|2, and

nIsd=Re

( √
Psĥ∗sdñsd

Psσ2
esd

+N0

)
, nQsd=Im

( √
Psĥ∗sdñsd

Psσ2
esd

+N0

)
. (2.92)

Therefore in the ideal system, the received signal vector in I-Q plane can be written as

rId = [SI + nIsd , n
Q
sd].
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In the agnostic system, we will consider sub-events x̃ = j,−j,−1 and prove that

P Id
s (e|x = 1, x̃ = z, θ′ = 1, θ̂′ = 1) ≤ PA

s (e|x = 1, x̃ = z, θ′ = 1, θ̂′ = 1), (2.93)

for each case z = j,−j,−1. This will then prove (2.90).

Sub-event x̃ = j: In the agnostic system, the signal detection is made based on yA in

(2.85). If x̃ = j, by using (2.47) and (2.85) we can write

yA =
Ps

Psσ2
esd

+N0
|ĥsd|2 +

√
Ps

Psσ2
esd

+N0
ĥ∗sdñsd + j

Pr
Prσ2

erd
+N0

|ĥrd|2 +

√
Pr

Prσ2
erd

+N0
ĥ∗rdñrd

= SI + jSEr + nIsd + jnQsd + nIrd + jnQrd, (2.94)

where ñrd = j
√
Prerd + nrd, S

Er = Pr
Prσ2

erd
+N0
|ĥrd|2, and

nIrd=Re

( √
Prĥ∗rdñrd

Prσ2
erd

+N0

)
, nQrd=Im

( √
Prĥ∗rdñrd

Prσ2
erd

+N0

)
. (2.95)

Therefore, the received signal vector in I-Q plane is rA = [SI + nIsd + nIrd , S
Er + nQsd + nQrd].

In order to compare the result of signal detection in the ideal system (which is made based

on rId) and the agnostic system (which is made based on rA), we first normalize the noise

variances in both rId and rA. Obviously, signal detection based on rId and rA results in

the same performance as signal detection based on r̃Id = rId/σ1 and r̃A = rA/σ2 where

σ2
1 = Var(nIsd) = Var(nQsd) and σ2

2 = Var(nIsd + nIrd) = Var(nQsd + nQrd). The received

normalized signal vectors in the ideal and agnostic systems are respectively r̃Id = [S1+n1, n2]

and r̃A = [S′1 +n1 , S2 +n2], where n1 and n2 are normalized noise components, S1 = SI/σ1,

S′1 = SI/σ2 and S2 = SEr/σ2. The probability that the destination in the ideal system

makes the correct decision is as follows:

P Id
s (c|x = 1, x̃ = j, θ′ = 1, θ̂′ = 1) = P (−S1 − n1< n2<S1 + n1, S1 + n1>0) . (2.96)

Since n1 and n2 are zero mean, independent and identically distributed Gaussian random

variable with unit variance, conditioned on ĥsd and ĥrd, we can write (2.96) as the following:

P Id
s (c|ĥsd, ĥrd, x = 1, x̃ = j, θ′ = 1, θ̂′ = 1) =

∫ +∞

−S1

∫ ν1+S1

−ν1−S1

e−
ν2

2

2

√
2π
· e
− ν1

2

2

√
2π

dν2dν1

=

∫ +∞

−S1

e−
ν1

2

2

√
2π

[Q (−ν1 − S1)−Q (ν1 + S1)] dν1 =

∫ +∞

−S1

e−
ν1

2

2

√
2π

h (ν1, S1, 0) dν1, (2.97)



CHAPTER 2. LB ON THE PERFORMANCE OF DF RELAYING 38

where h (x, t1, t2) = Q(−x−t1−t2)−Q(x+t1−t2). In the agnostic system, the probability

that the destination makes the correct decision is given by:

PA
s (c|x = 1, x̃ = j, θ′ = 1, θ̂′ = 1)=P

(
−S′1 − n1<n2+S2<S

′
1+n1, S

′
1+n1>0

)
. (2.98)

Conditioned on ĥsd and ĥrd, (2.98) can be rewritten as the following:

PA
s (c|ĥsd, ĥrd, x = 1, x̃ = j, θ′ = 1, θ̂′ = 1) =

∫ +∞

−S′1

∫ ν1+S′1−S2

−ν1−S′1−S2

e−
ν2

2

2

√
2π
· e
− ν1

2

2

√
2π

dν2dν1

=

∫ +∞

−S′1

e−
ν1

2

2

√
2π

[
Q
(
−ν1−S′1−S2

)
−Q

(
ν1+S′1−S2

)]
dν1 =

∫ +∞

−S′1

e−
ν1

2

2

√
2π

h
(
ν1, S

′
1, S2

)
dν1. (2.99)

Partial derivatives ∂h/∂t1 and ∂h/∂t2 have simple forms as follows:

∂h

∂t1
(x, t1, t2) =

1√
2π

[
e−(x+t1+t2)2

+ e−(x+t1−t2)2
]
> 0, (2.100)

∂h

∂t2
(x, t1, t2) =

1√
2π

[
e−(x+t1+t2)2

− e−(x+t1−t2)2
]
. (2.101)

In accordance with (2.101), we have ∂h
∂t2

(x, t1, t2) ≤ 0, for all t2 ≥ 0 as long as x + t1 ≥ 0.

From σ2 > σ1 follows that S1 > S′1, and we also have S2 ≥ 0. From this and (2.100), (2.101),

the following inequality is proved for ν1 > −S′1:

h
(
ν1, S

′
1, S2

)
≤ h (ν1, S1, 0) . (2.102)

From (2.97), (2.99) and (2.102) follows that (2.93) holds for z = j.

Sub-event x̃ = −j: Due to symmetry, (2.93) can be shown to be true for z = −j in the

same manner as in the case of sub-event x̃ = j.

Sub-event x̃ = −1: From (2.47) and (2.85), we have rA = [SI−SEr +nIsd+nIrd , n
Q
sd+nQrd]

and rId = [SI + nIsd , n
Q
sd]. The signal-to-noise ratios in the first components of these I-Q

vectors obviously show that (2.93) holds in this case.

Finally, by averaging over all the channel realizations, (2.89) is proven.

2.9 Simulation Results

We assumed that a fixed total power is distributed between the source and the relay such

that P1 + P2 = P. This power constraint is imposed to guarantee a fair performance
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Figure 2.4: BEP against P/N0 for α=β=0.1, r = P1/P = 0.61 and different frame lengths

comparison with the direct transmission scenario [15] [30] [66]. We point out that the BEP

expression in (2.29) can be written as a function of α, β, m, r and P where:

P Id(e) ≡ f (α, β,m, r,P) , P = P1 + P2, r =
P1

P
. (2.103)

Figure 2.4 shows the lower bound expression (2.29) against P/N0 for m=4, 10, 20 and

40 where m is the frame length. Parameters α, β and r = P1/P are set to 0.10, 0.10 and

0.61 respectively. For this figure, all channels are assumed to have unit variance.

Figure 2.5 shows the lower bound expression (2.29) versus both α and β for m=4,

r = P1/P=0.61. Figure 2.6 shows the lower bound expression (2.29) versus r for α = β=0.30

and different frame lengths.

Figure 2.7 shows the BEP of an Agnostic System based on the Monte-Carlo simulation in

comparison with the lower bound expression (2.29) against P/N0 for α=β=0.30, r=0.81 and

m=40. Matlab was used for Monte-Carlo simulation, and 108 transmitted BPSK symbols

were generated in order to estimate the BEP. The node-to-node channels are modelled by
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Figure 2.5: BEP against α and β for r = P1/P=0.61 and m = 4

zero mean independent Gaussian random variables. For this figure, in both Ideal and Ag-

nostic Systems, variances of source-relay, source-destination and relay-destination channels

are set to 1, 1, and 0.05, respectively. As for the forwarding policy in the Agnostic System,

for this simulation we chose the policy of forwarding all symbols detected by the relay. As

for the destination’s symbol detection rule, we chose maximum ratio combining (MRC). As

this figure shows, the lower bound (2.29) is very tight for this Agnostic System. In order

to numerically compare the BEP of this Agnostic System and the BEP of the Ideal System

(2.29), we defined error percentage as the ratio 100×(BEPAgnostic−BEPIdeal)/BEPAgnostic.

The error percentage at P/N0=5 dB, 10 dB, 15 dB, 20 dB and 25 dB turns out to be 4.11,

2.87, 1.93, 1.44, and 4.26, respectively. These results indicate that there is a slight difference

between the values of the BEP of the Ideal System and the BEP of the Agnostic System.

In Table 2.1, the optimum values for α, β and r for m= 4, 10, 20, 40 and 80 under

different SNRs are tabulated. In order to optimally allocate power to training and data

transmission phases so that (2.29) is minimized, one can solve the following optimization
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Figure 2.6: BEP against r = P1/P for α=β=0.3 and different frame lengths

problem:

(αopt, βopt, ropt) = arg min
α,β,r

f (α, β,m, r,P) ,

subject to : 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ r ≤ 1. (2.104)

We evaluated the lower bound expression (2.29) for sampled values of α, β and r with

a sampling interval of 0.01 for each SNR and searched for the values of α, β and r that

minimizes the lower bound expression.

2.10 Summary and Discussions

This chapter was motivated by our desire to extend rigorous theoretical analysis of decode-

and-forward (DF) cooperative communication systems to the models that consider practical

implementability more than we typically find in the literature. We used system models that

address imperfect channel gain information at the receivers. Also, in our system modelling,
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Table 2.1: Results of optimization for m= 10, 20, 40, and 80 for different values of P/N0

m=10 m=20 m= 40 m= 80

P/N0 = 10dB

ropt 0.61 0.61 0.61 0.61
αopt 0.26 0.20 0.14 0.11
βopt 0.27 0.20 0.14 0.11
BEP 1.61× 10−2 1.33× 10−2 1.13× 10−2 9.9× 10−3

P/N0 = 15dB

ropt 0.60 0.60 0.60 0.60
αopt 0.25 0.19 0.14 0.10
βopt 0.26 0.19 0.14 0.10
BEP 2.1× 10−3 1.7× 10−3 1.4× 10−3 1.3× 10−3

P/N0 = 20dB

ropt 0.59 0.59 0.59 0.59
αopt 0.25 0.19 0.14 0.10
βopt 0.25 0.19 0.14 0.10
BEP 2.3355× 10−4 1.8860× 10−4 1.5782× 10−4 1.3711× 10−4

P/N0 = 25dB

ropt 0.59 0.59 0.59 0.59
αopt 0.25 0.19 0.14 0.10
βopt 0.25 0.19 0.14 0.10
BEP 2.4088× 10−5 1.9419× 10−5 1.6228× 10−5 1.4083× 10−5

P/N0 = 30dB

ropt 0.59 0.59 0.59 0.59
αopt 0.25 0.19 0.14 0.10
βopt 0.25 0.19 0.14 0.10
BEP 2.4327× 10−6 1.9601× 10−6 1.6373× 10−6 1.4204× 10−6
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Figure 2.7: BEP against P/N0 for α=β=0.30, r = P1/P = 0.81 and m = 40

we considered different levels of practical implementability in terms of the relay’s and desti-

nation’s knowledge of detection error and symbol forwarding decisions; we classified single-

antenna, three-node, uncoded, fixed-throughput DF cooperative communication systems

to i) Ideal, ii) Relay-Agnostic, and iii) Agnostic Systems. Then, we derived a closed-form

expression of the BEP for the “Ideal System.” We proved that this closed-form expression

serves as a lower bound on the BEP performance of all systems that are classified as the

“Relay-Agnostic System” or the “Agnostic System.” Furthermore, we showed that the BEP

performance of the “Relay-Agnostic System” is a lower bound on the BEP performance of

the “Agnostic System.”

The quantitative difference between the lower bound (2.29) and the BEP of a system in

the class of the “Relay-Agnostic System” or the “Agnostic System” depends on the destina-

tion’s detection scheme and also on the relay’s forwarding policy employed by the system.

We find that the lower bound (2.29) derived in this chapter is a good approximation for a

system that employs a reasonably good relaying policy and detection scheme. For example,
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we compared bound (2.29) and the BEP of the system introduced in [30], which employs

a sub-optimal detection scheme implementable at the destination node. We found that the

BEP-vs-SNR curve of this system is very close to that of (2.29).

The “Ideal System”, which has BEP (2.29), has a modelling assumption that the relay is

perfectly capable of diagnosing whether there has been an error in the detection of the binary

symbol transmitted by the source. Under this ideal assumption, in the case of the BPSK

system one might think of another fictitious system, in which the relay simply corrects the

wrongly detected bit by flipping it and always forwards a correct bit to the destination. It

can be easily shown that the BEP of this fictitious system is a lower bound on the BEP of

the “Ideal System” (and thus a lower bound on the BEP of the “Agnostic System”) discussed

in this chapter. We note that the “Ideal System” presented in this chapter provides a tighter

lower bound on the BEP performance of the “Agnostic System.”



Chapter 3

Design and Analysis of Symbol

Detection Schemes for SDF

Networks in the Presence of CEE

3.1 Objective

In chapter 2, we studied three system models for the SDF relay-assisted communication

system in the presence of channel estimation error. In the present chapter, we study yet

another model, which we term as Destination Agnostic System. With this fourth model, we

focus on the issue of signal detection at the destination. In particular, we present a novel

signal detection scheme in the presence of channel estimation error for the SDF protocol.

Simulation results are presented to show that the presented signal detection scheme results

in a good performance.

3.2 System model and contribution

In chapter 2, we defined Ideal, Relay-Agnostic, and Agnostic Systems. For the Ideal System

we assumed that the relay node perfectly knows whether a particular symbol has been

detected correctly or not, and the destination node knows whether the relay has forwarded

a particular symbol or not. For the Relay-Agnostic System we assumed that the relay node

does not necessarily know whether the symbol has been detected correctly or not, but the

45
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destination node perfectly knows whether the relay has forwarded the detected symbol or

not. For the Agnostic System we assumed that the relay node does not necessarily know

whether the symbol has been detected correctly or not, and the destination node does not

know whether the relay has forwarded the detected symbol or not. In this chapter, we term

another system as Destination Agnostic System, in which the relay node perfectly knows

whether a symbol has been detected correctly or not, but the destination node does not

know whether the relay has forwarded a particular symbol or not. We also assume that in

the Destination Agnostic System, if the relay correctly detects the received symbol, then

the relay will forward it to the destination in the second time slot; otherwise, the relay will

remain silent. In this chapter, we will discuss the issue of optimally detecting data symbols

at the destination in the Destination Agnostic System. For simplicity, we assume that all

the channel gains have the same variance (i.e., σ2
hsd

= σ2
hsr

= σ2
hrd

= σ2
h).

We first analyze the optimal signal detection and its complexity in section 3.3. In Sec-

tions 3.4, we introduce our suboptimal symbol detection schemes. Performance evaluation

is presented in Section 3.5, followed by conclusion and future work in Section 3.6.

3.3 Optimal Signal Detection and Complexity

3.3.1 Optimal detection of symbols in a block

In this section, for theoretical perspective we study the optimal symbol detection rule in

the presence of channel estimation error using MMSE channel estimator. It will become

apparent that the optimal symbol detection at the destination node has high computational

complexity, and we will present computationally efficient and well-performing suboptimal

detection schemes in the next section.

As mentioned in (2.12), the received signals at the destination during two time slots can

be written as:

yisd =
√
Psĥsdxi +

√
Psesdxi + nisd,

yird = θi
√
Prĥrdxi + θi

√
Prerdxi + nird, (3.1)

where i = 1, 2, ...,m− 1 and θi ∈ {0, 1}. Assuming that the transmitted symbol has equal a

priori probability, the maximum a posteriori (MAP) detection is reduced to the maximum

likelihood (ML) detection. Signals available at the destination are pilot signals received (ytsd,
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ytrd) and data signal vectors received (ysd =
[
y1
sd y

2
sd ... y

m−1
sd

]
,yrd =

[
y1
rd y

2
rd ... y

m−1
rd

]
). ML

detection of x = [x1 x2 ... xm−1] can be obtained at the receiver as:

x̂ = arg max
x

{
p(ytsd, y

t
rd,ysd,yrd|x)

}
= arg max

x

{
p(ytsd, y

t
rd|x)×p(ysd,yrd|x, ytsd, ytrd)

}
, (3.2)

where x̂ = [x̂1 x̂2 ... x̂m−1]. Since ytsd and ytrd are independent from data sequences x1, x2,

... , xm−1, 3.2 can be written as:

x̂ = arg max
x

{
p(ytsd, y

t
rd)× p(ysd,yrd|x, ytsd, ytrd)

}
= arg max

x

{
p(ysd,yrd|x, ytsd, ytrd)

}
. (3.3)

As shown in MMSE channel estimator, ĥsd and ĥrd are one-to-one functions of ytsd and ytrd,

respectively, so in (3.3), ytsd and ytrd can be replaced by ĥsd and ĥrd and we can write

x̂ = arg max
x

{
p(ysd,yrd|x, ĥsd, ĥrd)

}
. (3.4)

Probability density function of the received signals from the relay (i.e., p(yrd)) depends on

θi. We can therefore rewrite (3.4) as in the following:

x̂ = arg max
x

{ 1∑
ξ1=0

1∑
ξ2=0

...

1∑
ξm−1=0

p(ysd,yrd|x, ĥsd, ĥrd, θ1 = ξ1, θ2 = ξ2, ..., θm−1 = ξm−1)

×P (θ1 = ξ1, θ2 = ξ2, ..., θm−1 = ξm−1|x, ĥsd, ĥrd)
}

= arg max
x

{ 1∑
ξ1=0

1∑
ξ2=0

...

1∑
ξm−1=0

p(ysd,yrd|x, ĥsd, ĥrd, θ1 = ξ1, θ2 = ξ2, ..., θm−1 = ξm−1)

×P (θ1 = ξ1, θ2 = ξ2, ..., θm−1 = ξm−1)

}
. (3.5)

where the last equality in (3.5) comes from the fact that the relay node’s decision for sending

or not sending a particular symbol, does not depend on the estimated channel gains (ĥsd,

ĥrd) and also transmitted data signal vector (x). We note that detection based on (3.5) has

unmanageable computational complexity because the number of hypotheses to choose from

is 2m−1. In this chapter, we consider a simpler detection, which is discussed in the next

subsection.
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3.3.2 Symbol-by-symbol detection

We consider a method in which the symbols are detected individually (i.e., in a symbol-by-

symbol fashion); the symbol-by-symbol detection requires much less computation than the

block detection. Detection rule can be written as in the following:

x̂ = arg max
x∈{−1,+1}

{
p(ysd, yrd|x, ĥsd, ĥrd, θ = 0)P (θ = 0)

+p(ysd, yrd|x, ĥsd, ĥrd, θ = 1)P (θ = 1)

}
. (3.6)

We denote by PRe , the probability that the relay detects the symbol with error and can be

obtained as follows [35]:

PRe =
1

2

(
1−

√
A1

A1 + λsr

)
, (3.7)

where A1 = Ps
Psσ2

esr+N0
and λsr =

αP1σ2
h+N0

αP1σ4
h

. By using (3.1), conditioned on the estimated

channel gains (ĥsd and ĥrd), transmitted symbol (x) and θ, it can be easily seen that ysd

and yrd are two independent complex Gaussian random variables with means
√
Psĥsdx,

θ
√
Prĥrdx and variances Psσ2

esd
+N0, θPrσ2

erd
+N0, respectively. The decision rule becomes

as follows:

x̂ = arg max
x∈{−1,+1}

{
1

π(Psσ2
esd

+N0)
e

−|ysd−
√
Psĥsdx|

2

Psσ2
esd

+N0 · 1

πN0
e
−|yrd|

2

N0 ·PRe

+
1

π(Psσ2
esd

+N0)
e

−|ysd−
√
Psĥsdx|

2

Psσ2
esd

+N0 · 1

π(Prσ2
erd

+N0)
e

−|yrd−
√
Prĥrdx|

2

Prσ2
erd

+N0 ·[1− PRe ]

}

= arg max
x∈{−1,+1}

e

−|ysd−
√
Psĥsdx|

2

Psσ2
esd

+N0 ·

(
1

N0
e
−|yrd|

2

N0 · PRe +
1

Prσ2
erd

+N0
e

−|yrd−
√
Prĥrdx|

2

Prσ2
erd

+N0 ·[1− PRe ]

)
.

(3.8)

Signal detection based on (3.8) has high computational complexity. In the next section,

we introduce two sub-optimal signal detection schemes which have much less complexity in

comparison with the optimal signal detection scheme (Eq. 3.8).
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3.4 Computationally Efficient and Well Performing Subopti-

mal Symbol Detection

In this section, we present computationally efficient suboptimal symbol detection schemes.

We will later show that these schemes have BEP performances close to the optimal detection.

It will be shown in subsection 3.4.3 that if the destination knew without error whether the

relay is sending data or not, (i.e., spectrum sensing), the optimal signal detection at the

destination would have much less complexity than in the case in which the destination does

not know for sure whether the relay has forwarded the symbol or not. We first discuss in

subsections 3.4.1 and 3.4.2 how the destination node guesses whether the relay has forwarded

the symbol, and in subsection 3.4.3 we present the symbol detection scheme.

3.4.1 Optimal detection of θ

The destination node has information ysd, yrd, ĥsd, ĥrd, and the optimal detection of θ

(whether the relay node has forwarded the symbol) is

θ̂ = arg max
θ∈{0,1}

{
p(θ|ysd, yrd, ĥsd, ĥrd)

}
= arg max

θ∈{0,1}

{
p(ysd, yrd|θ, ĥsd, ĥrd)p(θ, ĥsd, ĥrd)

}
= arg max

θ∈{0,1}

{
p(ysd, yrd|θ, ĥsd, ĥrd)p(ĥsd, ĥrd)× p(θ|ĥsd, ĥrd)

}
= arg max

θ∈{0,1}

{
p(ysd, yrd|θ, ĥsd, ĥrd)p(θ)

}
, (3.9)

where the last equality is due to the fact that θ is statistically independent from (ĥsd, ĥrd)

since the relay node’s decision to forward the symbol or not depends on ysr in (2.1) and ytsr

in (2.6), and these random variables are independent of (ĥsd, ĥrd). From (3.9) follows:

θ̂ = arg max
θ∈{0,1}

{
p(ysd, yrd|θ, ĥsd, ĥrd, x = +1)P (x = +1|θ, ĥsd, ĥrd)

+p(ysd, yrd|θ, ĥsd, ĥrd, x = −1)P (x = −1|θ, ĥsd, ĥrd)
}
p(θ). (3.10)

As for P (x = +1|θ, ĥsd, ĥrd) and P (x = −1|θ, ĥsd, ĥrd) in (3.10), the source’s data symbol x

is obviously independent of the channel gains (hsd, hrd) and the channel estimation errors

based on the pilot symbols. Also, in view of 2.12, θ is statistically independent of x.
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Therefore from (3.10) follows:

θ̂ = arg max
θ∈{0,1}

{
p(ysd, yrd|θ, ĥsd, ĥrd, x = +1)

+p(ysd, yrd|θ, ĥsd, ĥrd, x = −1)

}
p(θ). (3.11)

MAP detection of θ results in

θ̂ =

{
0 if Λ0 > Λ1

1 otherwise
(3.12)

where Λ0 and Λ1 are as follows:

Λ0 =
[
p(ysd, yrd|θ = 0, ĥsd, ĥrd, x = +1) + p(ysd, yrd|θ = 0, ĥsd, ĥrd, x = −1)

]
× P (θ = 0)

=
1

π(Psσ2
esd

+N0)

[
e

−|ysd−
√
Psĥsd|

2

Psσ2
esd

+N0 + e

−|ysd+
√
Psĥsd|

2

Psσ2
esd

+N0

]
× 1

πN0
e
−|yrd|

2

N0 · PRe , (3.13)

Λ1 =
[
p(ysd, yrd|θ = 1, ĥsd, ĥrd, x = +1) + p(ysd, yrd|θ = 1, ĥsd, ĥrd, x = −1)

]
× P (θ = 1)

=
1

π(Psσ2
esd

+N0)

1

π(Prσ2
erd

+N0)

[
e

−|ysd−
√
Psĥsd|

2

Psσ2
esd

+N0 · e
−|yrd−

√
Prĥrd|

2

Prσ2
erd

+N0

+ e

−|ysd+
√
Psĥsd|

2

Psσ2
esd

+N0 · e
−|yrd+

√
Prĥrd|

2

Prσ2
erd

+N0

]
×
(
1− PRe

)
. (3.14)

Optimal spectrum detection based on (3.12) has still high computational complexity. In the

next subsection, we present two sub-optimal detection rules for spectrum sensing.

3.4.2 Sub-optimal detection of θ

In the following, we present two sub-optimal schemes, which are computationally less bur-

densome than optimal scheme (3.12), for detecting θ. The two sub-optimal schemes to be

shortly presented do not use the whole information of (ysd, yrd, ĥsd, ĥrd). Another basic

feature of these two suboptimal schemes is to perform ternary hypothesis test on the values

of x′ = θx ∈ {−1, 0, 1} instead of binary hypothesis test on θ ∈ {0, 1}. By performing the

ternary hypothesis test, one can avoid the computation of exponential functions and their

addition in (3.13) and (3.14) at the expense of giving up optimality. By denoting θx = x′,

the received signal at the second time slot (yrd) can be rewritten as:

yrd =
√
Prx′ĥrd +

√
Prx′erd + nrd, (3.15)



CHAPTER 3. DAA OF SDS FOR SDF NETWORKS IN THE PRESENCE OF CEE 51

where x′ ∈ {−1, 0,+1} performs a ternary signal modulation.

Scheme I: In this scheme, first, a primary detection of the transmitted data symbol,

x, is performed at the destination based on the received signal in the first time slot. We

first consider the case in which ˆ̂x = +1 where ˆ̂x is the estimate of x based on ysd in (2.2).

We denote by P ′e, the probability that the destination’s detection from the signal received

at first time slot is in error (i.e., P ′e = P (ˆ̂x 6= x)). By using the results of [35], P ′e can be

obtained as in the following:

P ′e =
1

2

(
1−

√
A2

A2 + λsd

)
, (3.16)

where A2 = Ps
Psσ2

esd
+N0

and λsd =
αP1σ2

h+N0

αP1σ4
h

. Using yrd, ĥrd and ˆ̂x = +1 as the observations,

the MAP detection of x′ yields,

x̂′ = arg max
x′

{
p
(
x′|yrd, ĥrd, ˆ̂x = +1

)}
= arg max

x′

{
P
(

ˆ̂x = +1, yrd|ĥrd, x′
)
·p
(
ĥrd, x

′
)}

. (3.17)

Due the fact that x′ and ĥrd are independent, we have:

x̂′ = arg max
x′

{
P
(

ˆ̂x = +1|ĥrd, x′
)
·p
(
yrd|ĥrd, ˆ̂x = +1, x′

)
× p

(
ĥrd

)
p
(
x′
)}

. (3.18)

Since P
(

ˆ̂x = +1|ĥrd, x′
)

= P
(

ˆ̂x = +1|x′
)

, the detection rule can be simplified to

x̂′ = arg max
x′

{
P
(

ˆ̂x = +1|x′
)
·p
(
yrd|ĥrd, ˆ̂x = +1, x′

)
·p
(
x′
)}

. (3.19)

From (3.15), it can be easily seen that given x′ and ĥrd, the received signal at the second

time slot (yrd) and ˆ̂x = +1 are independent. We can therefore simplify (3.19) as:

x̂′ = arg max
x′

{
p
(
yrd|ĥrd, x′

)
·P
(

ˆ̂x = +1|x′
)
·p
(
x′
)}

. (3.20)

We define Λ′i as:

Λ′i = p
(
yrd|ĥrd, x′ = i

)
·P
(

ˆ̂x = +1|x′ = i
)
·P
(
x′ = i

)
, (3.21)

where i ∈ {−1, 0,+1}. If Λ′0 > Λ′−1 and Λ′0 > Λ′+1, x′ = 0 is chosen. Since x′ = 0 implies

that θ = 0, we formulate detection of θ as in the following:

θ̂ =

{
0 if Λ′0 > max{Λ′−1,Λ

′
+1}

1 otherwise
(3.22)
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Conditioned on the estimated relay-destination channel gain (ĥrd) and transmitted sym-

bol (x′), yrd is a complex Gaussian random variable with mean
√
Prĥrdx′ and variance

Prσ2
erd
|x′|+N0. By using the following equalities (proof in appendix B):

P
(

ˆ̂x = +1|x′ = +1
)
P
(
x′ = +1

)
=
(
1− P ′e

) (
1− PRe

)(1

2

)
, (3.23)

P
(

ˆ̂x = +1|x′ = 0
)
P
(
x′ = 0

)
=

1

2
PRe , (3.24)

and,

P
(

ˆ̂x = +1|x′ = −1
)
P
(
x′ = −1

)
= P ′e

(
1− PRe

)(1

2

)
, (3.25)

and in accordance with (3.22), θ̂ = 0 is chosen at the destination if

1

2

PRe
πσ2

0

e
− |yrd|

2

σ2
0︸ ︷︷ ︸

Λ′0

>
1

2

(
1− PRe

)
(1− P ′e)

πσ2
1

e
− |yrd−

√
Prĥrd|

2

σ2
1︸ ︷︷ ︸

Λ′+1

, (3.26)

and,

1

2

PRe
πσ2

0

e
− |yrd|

2

σ2
0︸ ︷︷ ︸

Λ′0

>
1

2

(
1− PRe

)
P ′e

πσ2
1

e
− |yrd+

√
Prĥrd|

2

σ2
1︸ ︷︷ ︸

Λ′−1

. (3.27)

where σ2
1 = Prσ2

erd
+ N0 and σ2

0 = N0. From (3.26) and (3.27), decision rule (3.22) can be

simplified as:

θ̂ =

{
0 |2

√
Pr Re{yrdĥ∗rd} − T1| < T2

1 otherwise
(3.28)

where T1 and T2 are as follows:

T1 =
1

2
σ2

1 ln

(
P ′e

1− P ′e

)
,

T2 = Pr|ĥrd|2 −
(
σ2

1 − σ2
0

σ2
0

)
|yrd|2 − σ2

1 ln

(
σ2

0

(
1− PRe

)√
(1− P ′e)P ′e

σ2
1P

R
e

)
. (3.29)

It can be simply shown that if ˆ̂x = −1, the detection of θ based on scheme I becomes

θ̂ =

{
0 |2

√
Pr Re{yrdĥ∗rd}+ T1| < T2

1 otherwise
(3.30)
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Scheme II: In this scheme, destination detects θ only based on the received signal at

the second time slot, (i.e., yrd). As in scheme I, the destination performs MAP detection

for x′ with the difference that it only considers yrd and ĥrd as the observation. The MAP

detection of x′ becomes

x̂′= arg max
x′

{
p
(
x′|yrd, ĥrd

)}
= arg max

x′

{
p
(
yrd|x′, ĥrd

)
p
(
x′
)}

.

(3.31)

As in scheme I, we define Λ′′i as:

Λ′′i = p
(
yrd|ĥrd, x′ = i

)
· P
(
x′ = i

)
, (3.32)

where i ∈ {−1, 0,+1}. If Λ′′0 > Λ′′−1 and Λ′′0 > Λ′′+1, x′ = 0 is chosen. Since x′ = 0 implies

that θ = 0, we formulate detection of θ as in the following:

θ̂ =

{
0 if Λ′′0 > max{Λ′′−1,Λ

′′
+1}

1 otherwise
(3.33)

We note that the detection based on scheme II, can be obtained by scheme I, by replacing

P ′e by 1/2. In other words, the detection based on scheme II simply becomes

θ̂ =

{
0 |2

√
Pr Re{yrdĥ∗rd}| < T ′2

1 otherwise
(3.34)

where

T ′2 = Pr|ĥrd|2 −
(
σ2

1 − σ2
0

σ2
0

)
|yrd|2 − σ2

1 ln

(
σ2

0

(
1− PRe

)
2σ2

1P
R
e

)
. (3.35)

Using the proposed spectrum sensing schemes in our symbol detection scheme at the

destination, for the purpose of detecting the symbol x, first the destination detects θ and

then treats the detected value of θ as the true θ. It should be noted as there can be an error

in θ detection, BEP performance of the system in which the destination perfectly knows θ

differs from that of the system in which the destination treats the detected value of θ as the

true value. However, our simulation results indicate that this difference, which is caused

by possible detection error, is negligibly small. In the next subsection, we will study the

symbol detection based on having the error-free value of θ at the destination. We show that

having perfect knowledge of θ at the destination results in a simple signal detection scheme.
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3.4.3 Optimal symbol-by-symbol detection conditional on θ

In this section, we assume that destination knows θ perfectly; In other words, at each time

slot, destination knows whether the relay is in transmission mode or not. Then, we derive

the optimal signal detection rule. We point out that this system model is the same as

the “Ideal System” introduced in chapter 2. With the destination knowing θ, the optimal

detection rule can be written as in the following:

x̂ = arg max
x∈{−1,+1}

{
p(ysd, yrd|x, ĥsd, ĥrd, θ)

}
. (3.36)

By using (3.1), conditioned on the estimated channel gains (ĥsd and ĥrd), transmitted

symbol (x) and θ, the decision rule becomes

x̂ = arg max
x∈{−1,+1}

(
1

π(Psσ2
esd

+N0)
e

−|ysd−
√
Psĥsdx|

2

Psσ2
esd

+N0

× 1

π(θPrσ2
erd

+N0)
e

−|yrd−θ
√
Prĥrdx|

2

θPrσ2
erd

+N0

)
. (3.37)

The decision rule can be written as:

x̂ = arg min
x∈{−1,+1}

(
|ysd −

√
Psĥsdx|2

Psσ2
esd

+N0
+
|yrd − θ

√
Prĥrdx|2

θPrσ2
erd

+N0

)

= arg min
x∈{−1,+1}

(
|ysd|2 + Ps|ĥsd|2−2Re{

√
Psysdĥ∗sdx}

Psσ2
esd

+N0

+
|yrd|2 + θPr|ĥrd|2−2Re{θ

√
Pryrdĥ∗rdx}

θPrσ2
erd

+N0

)

= arg max
x∈{−1,+1}

Re

{( √
Ps

Psσ2
esd

+N0
ĥ∗sdysd +

θ
√
Pr

Prσ2
erd

+N0
ĥ∗rdyrd

)
x

}
. (3.38)

In order to implement this decision rule, we can use maximum ratio combining (MRC)

which treats the estimated channels as true channels [39]:

yMRC =

√
Ps

Psσ2
esd

+N0
ĥ∗sdysd +

θ
√
Pr

Prσ2
erd

+N0
ĥ∗rdyrd. (3.39)

3.5 Performance Evaluation

In the following system setup, we present Monte-Carlo simulation results to corroborate the

theoretical analysis. The transmitted symbols are drawn from an BPSK constellation. The
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Figure 3.1: BEP against P/N0 for different spectrum detection scenarios

node-to-node channel is assumed to be zero mean independent Gaussian random variable

with unit variance. The variance of noise components is set to N0 = 1. We assume that a

fixed total power is distributed between the source and the relay such that P1 + P2 = P.

This power constraint is imposed to guarantee a fair performance comparison with the direct

transmission scenario [65] [66].

We considered four different schemes for signal detection: optimal signal detections (i.e.,

Eq. (3.6)), sub-optimal signal detection (schemes I and II) and the Ideal System where

destination perfectly knows θ (i.e., Eq. (3.36)). It can be shown that the following inequality

holds for the BEP performance of three different detection schemes

Psub−optimal
e ≥ Poptimal

e ≥ Pideal
e . (3.40)

Since the optimal detection scheme has better performance in comparison with sub-optimal

detection scheme, the first inequality can be easily concluded, and the second inequality is

proved in Theorem 2.5.1. As simulation results show (Fig. 3.1), performances of sub-optimal

scheme and ideal scheme are very close.

Figure 3.1 shows the BEP performances of proposed sub-optimal schemes and the ideal
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Table 3.1: BEP against P/N0 for different spectrum detection schemes

Scheme I Scheme II Ideal system

P/N0 = 20 dB 1.027× 10−2 1.096× 10−2 9.393× 10−3

P/N0 = 25 dB 8.073× 10−4 8.301× 10−4 7.688× 10−4

P/N0 = 30 dB 1.401× 10−4 1.406× 10−4 1.347× 10−4

system against P/N0 for m=8, P1/P = 0.61 and α = β = 0.30. It can be observed that the

performance of scheme I is better than scheme II. On the other hand, scheme I has higher

complexity than scheme II, whereas the enhancement in performance is not significant. This

tradeoff between complexity and performance suggests that scheme II is the best candidate

for the considered scheme.

In Table 3.1 the BEP performance under SNR = 20 dB, 25 dB and 30 dB for three

different schemes are tabulated. In order to compare the performance of schemes I, II, and

ideal scheme, we define the ratio di as di = (BEP of scheme i - BEP of ideal scheme)/BEP

of scheme i. For P/N0 = 30 dB, we have d1= 0.0387 and d2 = 0.0420 and for P/N0 = 25

dB, we have d1= 0.0477 and d2 = 0.0738 which demonstrates a slight difference between

performances of the proposed schemes (scheme I, II and ideal scheme).

3.6 Conclusion and Future Work

We have explored the issues related to optimally detecting data symbols in the SDF relay

communication system in the presence of CEE. We designed two novel schemes that can be

used by the destination for detecting whether the relay has forwarded the symbols in the

frame or not. We have shown that our signal detection schemes result in BEP performances

very close to the Ideal System presented in chapter 2. In this chapter we assumed that the

relay node perfectly knows whether in each frame any particular symbol is detected with

error or not. We are currently designing the relay’s schemes for detecting whether the frame

is error free or not. The study of these schemes is left for future research.
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Chapter 4

Frame Error Probability for

Imperfectly Known Fading

Channel Gains

4.1 Objective

In this chapter, we study the issue of optimally allocating the transmission energy between

a pilot symbol and data symbols for a point-to-point communication system over the slow

fading channel. In the system studied, our performance criterion for the optimal energy

allocation is the frame error probability (FEP). A pilot symbol-assisted modulation (PSAM)

scheme is used along with a channel estimation scheme based on the minimum mean square

error (MMSE) criterion. We derive an approximate expression for the FEP in the presence

of channel estimation error and use this expression for minimizing the FEP in allocating the

transmission energy. Numerical simulation results are presented to show that the derived

approximate FEP expression is very close to the actual FEP.

4.2 Related work and contribution

Much work has been presented on the power allocation between training and data sequences

for a wireless communication system. For instance, B. Hassibi et al. [61] optimized the

training data, power, and duration in multiple-antenna wireless links by maximizing a lower

58
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bound on the channel capacity. K. Ahmed et al. [62] investigated the effect of power alloca-

tion between pilot and data symbols on pair-wise error probability in orthogonal frequency-

division multiplexing (OFDM) system. M. Wu et al. [63] optimized power allocation be-

tween pilot and data by minimizing the instantaneous symbol error probability outage. A.

Z. Ghanavati et al. [64] optimized power allocation between pilot and data symbols in a

vehicular Ad-Hoc network. In [35], the power allocation problem between pilot and data

sequences for cooperative communication system has been studied.

In the present chapter, we consider FEP performance metric and optimally allocate

power between pilot and data symbols for minimizing the FEP expression. In section 4.3,

we model the general wireless communication system and its frame structure. In section

4.4, we will derive the FEP expression under the assumption of the receiver’s imperfect

estimation of the channel gain. As the exact FEP takes the form of complicated integrals,

we will suggest a new approximate formula for the FEP and use it for optimizing the energy

allocation between the pilot and data symbols. In section 4.5, we will present our simulation

results and discuss the quality of our approximation.

4.3 System Model and Channel Estimation

We consider a point-to-point communication system which consists of a source and a des-

tination node. We assume binary phase shift keying (BPSK) transmission over flat fading

channel and complex baseband system representation is used such that the transmitted sig-

nal, is either
√
Px or −

√
Px. We represent the channel gain by h, a zero-mean complex

Gaussian random variable with variance σ2
h. Furthermore, the channel is assumed to be

constant during the frame transmission where each frame consists of a fixed number of sym-

bols. The transmission frame consists of two phases–training phase and data transmission

phase. Over these phases the source is subject to the following power constraint [34]:

‖xt‖2 + E{‖xd‖}2 ≤ mPs. (4.1)

where xt, xd, m and Ps are the source training vector, data signal vector, the frame length

and average symbol energy, respectively.
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4.3.1 Training Phase

We assume that the communication between nodes is through single-input-single-output

(SISO) channel. As in section 2.3, we assume that only one pilot symbol is used to estimate

the channel coefficient. We assume that the source can allocate power to the pilot and data

signals in different proportions. We also assume that in the frame of m symbols, one symbol

time is used to send the pilot signal and the rest are used for data transmission (Figure 4.1).

At the beginning of the frame, the source sends a pilot symbol, which we denote as xt, to

the destination. The received pilot signal, yt can be expressed as follows:

yt = hxt + nt. (4.2)

The noise term nt is modelled as a zero mean complex Gaussian random variables with

variance N0 (N0/2 per real dimension). Also, |xt|2, the transmit energy for the training

phase is equal to αmPs, where 0 < α < 1 is the ratio of pilot energy to the total energy of

each frame. The communication system considered in the present chapter assumes that the

destination estimates the wireless channel gain from the received pilot signal using MMSE

channel estimation method. MMSE estimate of the channel at the destination is given by

[34]:

ĥ = E{hyt∗} (E{ytyt∗})−1 yt. (4.3)

In accordance with [37], we can write

h = ĥ+ e, (4.4)

where e is the channel estimation error modelled as a zero mean complex Gaussian random

variable with variance σ2
e and we have [37]:

ĥ ∼ CN
(

0,
σ4
h|xt|2

σ2
h|xt|2 +N0

)
, e ∼ CN

(
0,

σ2
hN0

σ2
h|xt|2 +N0

)
, (4.5)

where CN (·, ·) denotes complex Gaussian distribution. It can be easily shown that e and ĥ

are uncorrelated random variables and since they have jointly Gaussian distribution, they

are also independent.
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Pilot x1 x2 ... xm−1

Figure 4.1: Transmission structure in a block of m symbols

4.3.2 Data Transmission Phase

As mentioned in the previous subsection, during a block of m symbols, the first symbol is

allocated for channel training. In the remaining duration of m − 1 symbols, data trans-

mission takes place. Denoting the transmitted data signals by (m − 1) dimensional vec-

tor xd = [x1, x2, ..., xm−1], and the received data signals by (m − 1) dimensional vector

yd =
[
y1
d, y

2
d, ..., y

m−1
d

]
, we have:

yd = hxd + nd, (4.6)

where xi ∈ {
√
Px,−

√
Px}. The input vector xd is assumed to be composed of independent

random variables with equal energy and the corresponding covariance matrix is:

E{xdxdH} =
(1− α)mPs

m− 1
I = PxI, (4.7)

where I is the m− 1 dimensional identity matrix. Also the elements of noise vector nd are

assumed to be zero mean independent complex Gaussian random variables with variance

N0 (N0/2 per real dimension).

4.3.3 Optimal detection of symbols in a block

In this section, for theoretical perspective we study the optimal symbol detection rule in

the presence of channel estimation error using MMSE channel estimator. Using (4.4) and

(4.6), received signals at the destination can be written as:

yid = ĥxi + exi + nid , i = 1, 2, ...,m− 1. (4.8)

Assuming that the transmitted symbol has equal a priori probability, the maximum a pos-

teriori (MAP) detection is reduced to the maximum likelihood (ML) detection. Signals

available at the destination are pilot signal received (yt) and data signals received (y1
d, y

2
d, ...
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and ym−1
d ). ML detection of xd ≡ [x1 x2 ...xm−1]T can be obtained at the receiver as:

x̂d = arg max
x1,x2,...,xm−1

p(yt, y
1
d, y

2
d, ..., y

m−1
d |x1, x2, ..., xm−1)

= arg max
x1,x2,...,xm−1

p(yt|x1, x2, ..., xm−1)× p(y1
d, y

2
d, ..., y

m−1
d |x1, x2, ..., xm−1, yt), (4.9)

where x̂d ≡ [x̂1 x̂2 ... x̂m−1]T. Since yt is independent from data sequences x1, x2,..., xm−1,

(4.9) can be written as:

x̂d = arg max
x1,x2,...,xm−1

p(yt)× p(y1
d, y

2
d, ..., y

m−1
d |x1, x2, ..., xm−1, yt)

= arg max
x1,x2,...,xm−1

p(y1
d, y

2
d, ..., y

m−1
d |x1, x2, ..., xm−1, yt). (4.10)

As shown in the MMSE channel estimator formula (4.3), ĥ and yt have one-to-one corre-

spondence, so in (4.10), yt can be replaced by ĥ and we can write

x̂d = arg max
x1,x2,...,xm−1

p(y1
d, y

2
d, ..., y

m−1
d |x1, x2, ..., xm−1, ĥ). (4.11)

Let us assume that

wid = exi + nid , i = 1, 2, ...,m− 1. (4.12)

We can therefore rewrite (4.8) as:

yd = ĥxd + wd, (4.13)

where wd = [w1
d w

2
d ... w

m−1
d ]T. Since e, n1

d, n
2
d, ... and nm−1

d are zero mean complex jointly

Gaussian random variables, it can be easily concluded that conditioned on the transmit-

ted data symbols, w1
d, w

2
d, ... and wm−1

d are zero mean complex jointly Gaussian random

variables. Conditioned on the transmitted data symbols, we define Σwd as:

Σwd = E{wdw
H
d }, (4.14)

where Σwd is the complex covariance matrix: If i 6= j:

Σwd(i, j) = E{(exi + nid)(e
∗xj + njd

∗
)} = E{|e|2}xixj = σ2

exixj . (4.15)

If i = j:

Σwd(i, i) = E{(exi + nid)(e
∗xi + nid

∗
)} = E{|e|2}|xi|2 + E{|nid|2} = σ2

ePx +N0. (4.16)
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Conditioned on the estimated channel gain and the transmitted data symbols, y1
d, y

2
d, ...

and ym−1
d are complex jointly Gaussian random variables. We can therefore rewrite (4.11)

as:

x̂d = arg max
x1,x2,...,xm−1

{ 1

πm−1det(Σwd)
exp{−(yd − ĥxd)

HΣwd
−1(yd − ĥxd)}}.(4.17)

We note that detection based on (4.17) has unmanageable computational complexity because

the number of hypotheses to choose from is 2m−1. In this chapter, we consider a simpler

detection, which is discussed in the next subsection.

4.3.4 Symbol-by-symbol detection

We now consider a method in which symbols are detected individually (i.e., in a symbol-by-

symbol fashion); the symbol-by-symbol detection requires much less computation than the

block detection. Sub-optimal detection rule can be written as in the following:

x̂i = arg max
xi

p(yid|xi, ĥ), i = 1, 2, ...,m− 1. (4.18)

Conditioned on the transmitted data symbol and estimated channel gain, yid is a complex

Gaussian random variable and the decision rule becomes minimum distance rule and after

some simple manipulations we can write [67]

x̂i = arg max
xi

Re{yid ĥ∗xi}, i = 1, 2, ...,m− 1. (4.19)

4.4 FEP Analysis and Power Allocation

For the purpose of determining the FEP-minimizing power allocation, in this section we

discuss the FEP performance of BPSK modulation for the wireless communication system

model presented in section 4.3. We will present how the statistical correlation among re-

ceived signals within the frame complicates the mathematical expression of the FEP. We will

suggest an approximate expression and then apply the approximate expression of FEP as

the performance metric of the system for determining the power allocation among the pilot

and data signals. Due to symmetry, the conditional probability (conditioned on estimated

channel gain ĥ) of frame error can be expressed as:

P (FE|ĥ)=P (FE|ĥ, x1 = x2 = · · · = xm−1 = +
√
Px)

=1− P (x̂1 = x̂2 = · · ·= x̂m−1 = +
√
Px | ĥ, x1 = x2 = · · ·= xm−1 = +

√
Px). (4.20)
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Since yid = ĥxi + wid, conditioned on xi = +
√
Px, we have yid = ĥ

√
Px + wid and by using

(4.19), the ith symbol is detected correctly if and only if Re{|ĥ|2
√
Px + ĥ∗wid} ≥ 0 for

each realization of the estimated channel gain. After some modifications, we can write the

conditional frame error probability as in the following:

P (FE|ĥ) = 1− P (|ĥ|2
√
Px + Re{ĥ∗w1

d} ≥ 0, |ĥ|2
√
Px

+ Re{ĥ∗w2
d} ≥ 0, · · ·, |ĥ|2

√
Px + Re{ĥ∗wm−1

d } ≥ 0). (4.21)

Conditioned on ĥ and assuming that all the transmitted symbols are +
√
Px, the conditional

FEP can be written as:

P (FE|ĥ) = 1−
∫ ∞
−|ĥ|
√
Px

∫ ∞
−|ĥ|
√
Px
· · ·
∫ ∞
−|ĥ|
√
Px
pw̃d(w̃d) dw̃

1
d dw̃

2
d · · · dw̃m−1

d , (4.22)

where w̃d = Re{wd}. We denote |ĥ|2 by Z. In accordance with the complex Gaussian

channel model, Z is exponentially distributed ; we can write

fZ(z) = λ e−λz, z ≥ 0, (4.23)

where

λ =
1

σ2
ĥ

=
σ2
hαmPs +N0

σ4
hαmPs

. (4.24)

The unconditional frame error probability is given by:

P (FE) =1−
∫ ∞

0

∫ ∞
−
√
zPx

∫ ∞
−
√
zPx
· · ·
∫ ∞
−
√
zPx

1√
(2π)m−1det(Σw̃d)

exp

(
−1

2
w̃T
d Σw̃d

−1w̃d

)
λe−λzdw̃1

d dw̃
2
d · · · dw̃m−1

d dz.(4.25)

We could take a linear transformation of w̃d to obtain an statistically independent set

of Gaussian random variables. Although such a transform provides a product form of

joint probability density function, the lower limits of the integrals in (4.25) would have

dependency, which complicates the computation of the FEP. We experiment with ignoring

the correlation between the random variables in w̃d. In other words, we approximate (4.14)

by (σ2
ePx +N0)I, and accordingly we approximate Σw̃d by a diagonal matrix as:

Σw̃d(i, j) ≈

{
1
2(σ2

ePx +N0) i = j

0 i 6= j
(4.26)
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By substituting (4.26) in (4.25), we have:

P (FE) ≈ 1−
∫ ∞

0
λ e−λz

m−1∏
i=1

∫ ∞
−
√
zPx

1√
π(σ2

ePx +N0)
× e−

(w̃id)2

σ2
ePx+N0 dw̃id dz

= 1−
∫ ∞

0
λ e−λz

(
1−Q

(√
2Px z

σ2
ePx +N0

))m−1

dz. (4.27)

By using the bionomial expansion, the FEP expression becomes

P (FE)≈1−
∫ ∞

0
λ e−λz

m−1∑
k=0

(
m− 1

k

)
(−1)kQk(

√
2C · z)dz, (4.28)

where C = Px
σ2
ePx+N0

. By using the result of [68], we can approximate the Q-function as:

Q(x) ≈ 1√
2π

1√
1 + x2

e−
x2

2 , for x� 1, (4.29)

and frame error probability can be approximated as the following:

P (FE) ≈ 1−
∫ ∞

0
λ e−λz

m−1∑
k=0

(
m− 1

k

)
(−1)k (

1√
2π

)k
(

1√
1 + 2C · z

)k
e−k C·zdz. (4.30)

After some simple manipulations, (4.30) can be rewritten as follows:

P (FE) ≈ 1−
m−1∑
k=0

λ

(
m− 1

k

)
(−1)k (

1√
2π

)k
1

2C

∫ ∞
0

(1 + z)−
k
2 e−( k C+λ

2C )z dz. (4.31)

By using the result from [73, p. 347], which is∫ ∞
0

(1 + x)−v e−µx dx = µ
v
2
−1e

µ
2 W− v

2
, 1−v

2
(µ), (4.32)

where Wλ,µ(z) is Whittaker function. The probability of frame error can be expressed as:

P (FE) ≈ 1−
m−1∑
k=0

λ

(
m− 1

k

)
(−1)k (

1√
2π

)k
1

2C
I(k) ≡ g

(
α,
Ps
N0

)
, (4.33)

where

I(k) =

(
λ+ kC

2C

) k
4
−1

e
λ+kC

4C W− k
4
, 2−k

4
(
λ+ kC

2C
). (4.34)

To obtain the optimal values of α, an optimization problem is formulated as follows:

αopt = arg min
α
g

(
α,
Ps
N0

)
subject to : 0 ≤ α ≤ 1. (4.35)

The results of optimization are tabulated in table 4.1.



CHAPTER 4. FEP FOR IMPERFECTLY KNOWN FADING CHANNEL GAINS 66

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

P
s
/N

0
 (dB)

F
r
a

m
e

 
E

r
r
o

r
 
P

r
o

b
a

b
il
it
y

 

 

Simulation

Analytic approximation

m=32

m=64

Figure 4.2: FEP against Ps/N0 for α = 0.30

4.5 Simulation Results

In this section, Monte-Carlo simulation results are presented in order to evaluate the ac-

curacy of our approximation in (4.33). Matlab was used for Monte-Carlo simulation, and

107 transmitted symbols were drawn from the BPSK constellation in order to estimate the

FEP. The node-to-node channel is modelled by zero mean independent Gaussian random

variable with unit variance.

Figure 4.2 shows the present chapter’s FEP analysis resulting in (4.33) in comparison

with the simulation results for m = 32 and 64 where m is the frame length. Parameter α

is set to 0.30. As the figure shows, all simulation curves and the approximate analytical

expression are very close.

In Figure 4.3, the FEP is plotted against α for Ps/N0 = 10 dB. From the derived FEP

expression (4.33), it is apparent that for a fixed total power, the power allocation among

pilot and data affects the FEP performance. If we allocate too much power for pilots,

channel estimation error will be reduced but detection of the data in noise is more difficult
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Figure 4.3: FEP against α for Ps/N0 = 10 dB

because of low data SNR. On the other hand, lower power for pilots results in poor channel

estimation and thus in poor detection [64] [35]. The optimum values of α under Ps/N0 = 10

dB and m = 16, 32 and 64 turns out to be at α = 0.25, α = 0.18 and α = 0.13, respectively.

In order to numerically compare the FEP curve obtained by simulation and the FEP

curve obtained by analytical expression, for each frame length (m) we define the ratio dm

as dm = (FEPanalytical expression − FEPsimulation)/FEPanalytical expression. Figure 4.4 shows the

error percentage (i.e., 100dm) against α for Ps/N0 = 20 dB and m = 32. As it can be

seen from this figure, increasing α decreases the error percentage. This can be explained

as the following. By increasing α, more power is allocated to the pilot symbol, which

reduces channel estimation error. By decreasing the channel estimation error variance, the

correlation between error events entire a frame decreases in accordance with (4.15). Thus,

our approximation in (4.26) becomes more accurate, and finally our approximation (4.33)

becomes more accurate.

Figure 4.5 shows the FEP expression proposed in this chapter in comparison with the
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simulation results for m = 32 and two different values of α = 0.10 and α = 0.90. As figure

shows, for α = 0.90, the difference between simulation curve and our analytic expression

(Eq. 4.33) is smaller.

In table 4.1, the optimum values for α for m = 16, 32, and 64 are tabulated. These

values are obtained by solving the optimization problem in (4.35). It is noteworthy that

the optimum values of α are insensitive to per-symbol SNRs. In table 4.2, the values of

error difference (dm) for three different frame lengths are tabulated. These results indicate

that there is a slight difference between the values of FEP obtained from simulation and

analytical expression. Table 4.3 shows dm for analytic expression which is obtained by using

Chenroff bound for three different frame lengths. These results indicate that there is huge

difference between the values of FEP obtained from simulation and analytical expression

based on Chernoff bound. By comparing this table with table 4.2, the accuracy of our

approximation can be readily observed.
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m= 64 m=32 m=16

Ps/N0 = 30 dB
αopt 0.13 0.18 0.25
FEP 0.0037 0.0033 0.0029

Ps/N0 = 25 dB
αopt 0.13 0.18 0.25
FEP 0.0118 0.0104 0.0091

Ps/N0 = 20 dB
αopt 0.13 0.18 0.25
FEP 0.0367 0.0324 0.0284

Ps/N0 = 15 dB
αopt 0.13 0.18 0.25
FEP 0.1110 0.0986 0.0866

Ps/N0 = 10 dB
αopt 0.13 0.18 0.25
FEP 0.3081 0.2771 0.2455

Table 4.1: Results of optimization for m = 16, 32 and 64

m= 32 m=64 m=80
Ps/N0 = 5 dB 0.0740 0.0342 0.0307
Ps/N0 = 10 dB 0.0913 0.0463 0.0514
Ps/N0 = 15 dB 0.0937 0.0624 0.0679
Ps/N0 = 20 dB 0.0830 0.0729 0.0705
Ps/N0 = 25 dB 0.0689 0.0813 0.0477
Ps/N0 = 30 dB 0.0393 0.0617 0.0440

Table 4.2: Ratio dm for m = 32, 64 and 80 for α = 0.30 based on (4.33)

m= 32 m=64 m=80
Ps/N0 = 5 dB 0.2298 0.1615 0.1482
Ps/N0 = 10 dB 0.3232 0.2516 0.2337
Ps/N0 = 15 dB 0.3584 0.2982 0.2651
Ps/N0 = 20 dB 0.3835 0.3283 0.2619
Ps/N0 = 25 dB 0.3949 0.3403 0.2712
Ps/N0 = 30 dB 0.4193 0.3139 0.3613

Table 4.3: Ratio dm for m = 32, 64 and 80 for α = 0.30 based on Chernoff bound
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Figure 4.5: FEP against Ps/N0 for m = 32, α = 0.10 and α = 0.90

4.6 Conclusion

We have explored the issues related to optimally allocating the transmit energy between pilot

and data symbols. We have investigated the effect of power allocation between training and

data sequences on the FEP performance of a point-to-point communication system over a

slow fading channel. We have also derived an approximation for FEP performance of BPSK

modulation. We presented simulation results to show the proposed approximate analytical

expression is close to the actual FEP. The accuracy of our approximation depends on power

allocation between pilot and data symbols and also the frame length. The more power

is allocated to the pilot symbol and the larger is the frame length, the more accurate our

approximation of the FEP is. It is observed that our analytic approximation is more accurate

than the approximations based on the Chenroff bound for all power allocation and frame

lengths we tried in our numerical study.



Chapter 5

Optimizing Bit Transmission Power

for Link Layer Energy Efficiency

5.1 Objective

In this chapter, we study the issue of optimizing transmission power (energy per symbol)

for minimizing the total expected energy, including energy for retransmissions, required to

deliver a frame to the destination node in a point-to-point link employing an automatic

repeat request (ARQ) scheme over a fading channel. We derive the expected energy as a

function of the transmission power and derive a simple optimization algorithm based on the

properties of this function.

5.2 Related work and contribution

There has been much work on the link layer performance analysis of wireless networks.

However, most of the current work in this area focus on the goodput and delay as the link

layer performance metric [42]-[53]. In this chapter, we focus on the transmit energy efficiency

under delay constraint in point to point wireless communication systems. We study the issue

of optimizing transmission power for minimizing the expected energy required to successfully

deliver a frame for wireless communication systems that employ ARQ scheme over a fading

channel.

In section 5.3, we will present a simple system model. In section 5.4, we will present a

simple derivation of the expected transmission energy for link layer. In section 5.5, which

71



CHAPTER 5. OPTIMIZING BTP FOR LINK LAYER ENERGY EFFICIENCY 72

is the main contribution of this chapter, we will formulate an optimization problem for

determining the transmission power. Then, we will present a simple algorithm to determine

the optimal transmission power.

5.3 System Model and Symbol Detection

We consider a point-to-point communication system which consists of a source and a desti-

nation node. We assume binary phase shift keying (BPSK) transmission over a fast fading

channel and the complex baseband system representation is used. The transmitted signal

is either
√
Px or −

√
Px. Let h represent the channel gain which is assumed to be a zero

mean complex Gaussian random variable with variance σ2
h. For transmission of each frame,

source transmits m data symbols as:

yi = hixi + ni, i = 1, 2, ...,m. (5.1)

The noise term ni is modelled as a zero mean complex Gaussian random variables with

variance N0 (N0/2 per real dimension). Since fast fading channel is considered, h1, h2,...,

hm form a sequence of i.i.d. (independent and identically distributed) random variables.

Assuming that the transmitted symbol is a priori equally likely to be
√
Px or −

√
Px, the

maximum a posteriori (MAP) detection is reduced to the maximum likelihood (ML) detec-

tion. ML detection of xd ≡ [x1 x2 ...xm] can be obtained at the receiver as:

x̂d = arg max
x1,x2,...,xm

p(y1, y2, ..., ym|x1, x2, ..., xm, h1, h2, ..., hm), (5.2)

where x̂d ≡ [x̂1 x̂2 ... x̂m]. Conditioned on the channel gains and the transmitted data

symbols, y1, y2, ... and ym are independent complex Gaussian random variables. We can

therefore rewrite (5.2) as:

x̂d = arg max
x1,x2,...,xm

m∏
i=1

p(yi|xi, hi). (5.3)

The optimal decision rule becomes

x̂i = arg max
xi

p(yi|xi, hi) = arg max
xi

Re{yi h∗ixi}, i = 1, 2, ...,m. (5.4)
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5.4 Expected Transmission Energy for Reliable Frame Deliv-

ery

In this section, we discuss the FEP performance of BPSK modulation for the wireless

communication system model presented in section 5.3. We will then discuss the expected

frame energy needed for reliable transmission of a single frame. Due to the symmetric nature

of a complex-valued proper Gaussian noise model, the frame error probability conditioned

on the channel gains can be expressed as:

P (FE|h1, h2, ..., hm) = P (FE|h1, h2, ..., hm, x1 = x2 = · · · = xm = +
√
Px). (5.5)

By using the optimal decision rule (5.4), we can write the conditional frame error probability

as in the following:

P (FE|h1, h2, ..., hm) = 1− P
(
|h1|2

√
Px+Re{h∗1n1}≥ 0, (5.6)

|h2|2
√
Px+Re{h∗2n2}≥ 0, · · ·, |hm|2

√
Px+Re{h∗mnm}≥0

)
.

Conditioned on h1, h2, ..., hm and assuming that all the transmitted symbols are equal to

+
√
Px, the FEP can be written as:

P (FE|h1, h2, ..., hm) = 1−
∫ ∞
−|h1|

√
Px

∫ ∞
−|h2|

√
Px
· · ·
∫ ∞
−|hm|

√
Px
pñ(ñ)dñ1 dñ2 · · · dñm, (5.7)

where ñ =
[
Re{ h

∗
1
|h1|n1} Re{ h

∗
2
|h2|n2}} · · · Re{ h

∗
m
|hm|nm}}

]
. Since n1, n2, ..., nm are indepen-

dent zero mean circular symmetric complex Gaussian random variables with variance N0,

Re{n1}, Re{n2}, ..., and Re{nm} become independent zero mean real Gaussian random

variables with variance N0/2 and conditional FEP becomes

P (FE|h1, h2, ..., hm) = 1−
m∏
i=1

∫ ∞
−
√
Px|hi|

1√
πN0

× e−
(ñi)

2

N0 dñi

= 1−
m∏
i=1

1−Q

√2Px |hi|2
N0

 . (5.8)

We denote |hi|2 by Zi. In accordance with the complex Gaussian channel model, Z1, Z2,

..., Zm are i.i.d and exponentially distributed; we can write

fZi(zi) = λ e−λzi , zi ≥ 0, λ =
1

σ2
h

. (5.9)
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Unconditional frame error probability can be written as:

P (FE) = 1−
m∏
i=1

(
1−

∫ ∞
0

λe−λziQ

(√
2Px zi
N0

)
dzi

)

= 1−

(
1−

∫ ∞
0

λe−λzQ

(√
2Px z
N0

)
dz

)m
= 1− (1− J)m , (5.10)

where

J =

∫ ∞
0

λe−λzQ

(√
2Px z
N0

)
dz. (5.11)

By using the following equality for the Q-function [40]:

Q(x) =
1

π

∫ π
2

0
e−

x2

2 sin2 θ dθ, (5.12)

J can be written as:

J =

∫ ∞
0

λe−λz
1

π

∫ π
2

0
e−

Az
sin2 θ dθdz =

1

π

∫ π
2

0

∫ ∞
0

λe
−
(
λ+ A

sin2 θ

)
z
dzdθ, (5.13)

where A = Px
N0

. After some simple manipulations, J can be written as in the following:

J =
1

2
− A

π

∫ π
2

0

dθ

A+ λ sin2 θ
. (5.14)

By using the result from [73, p. 177] which is∫
dx

a+ b sin2 x
=

sign a√
a(a+ b)

tan−1

(√
a+ b

a
tanx

)
,

FEP becomes

P (FE) = 1−
(

1

2

)m(
1 +

√
A

A+ λ

)m
. (5.15)

Thus, P (FE) is a function of transmission power Px. Figure 5.1 shows P (FE) in terms of

Px/N0 for m = 5, 10, 20, 40 and 80. In our analysis, we also use a variable E ≡ mPx, which

denotes the energy consumed for transmitting a frame once. Due to the simple relation

E ≡ mPx, a function of Px can be expressed as a function of E, and vice versa. Energy

for transmitting a frame is simply energy required for transmitting a symbol times frame

length (i.e., E = mPx). From (5.15) follows

P (FE) = 1−
(

1

2

)m1 +

√√√√ E

E + mN0

σ2
h


m

. (5.16)
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Figure 5.1: FEP per Px/N0 for different frame lengths

Since the original transmission and subsequent retransmissions of a frame are indepen-

dent events, it follows that the number of transmissions needed for successful delivery of a

frame is geometrically distributed with parameter P (FE) [54] where P (FE) is the frame

error probability. Accordingly, the expected number of transmissions needed for the reli-

able transfer of one frame is 1/(1 − P (FE)). Since each reliable transfer of a frame needs

1/(1−P (FE)) attempts on average, the expected consumed energy for such reliable transfer

of each frame can be obtained as follows:

ν(E) =
E

1− P (FE)
, (5.17)

where ν(E) and E are expected energy required for reliable transfer of a frame and the

transmit energy of each frame, respectively. ν(E) can be written as:

ν(E) =
2mE

[1 + g(E)]m
, (5.18)
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Figure 5.2: ν(E) per E for different frame lengths and σ2
h/N0 = 1

where

g(E) =

√
E

E + β
, β =

mN0

σ2
h

. (5.19)

Note that energy function ν(E) of E can be expressed as a function, ν(mPx) of Px. Figure

5.2 shows ν(E) versus E for different values of m. In the next section, we discuss minimizing

these functions. From the derived expression for ν(E) = ν(mPx), it is clear that the energy

required for each frame transmission affects the expected energy required for a reliable frame

transmission. We point out that with constraint E ≥ 0 without an additional constraint,

the minimum value of ν(E) is obtained at E = 0. However, at E = 0, the expected number

of transmission needed for frame delivery may become extremely large. We assume that

the system has a constraint on the expected frame delivery time; namely, s
(

2m

[1+g(E)]m

)
≤ d

where s (·) is a monotonically increasing function, 2m

[1+g(E)]m
is the expected number of trials

required to successfully deliver a frame and d represents the delay requirement [55] [56]. This

is equivalent to constraint E ≥ ET for some ET . Thus, in the following, we try to design
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Figure 5.3: ν(E) per E for m=12 and σ2
h/N0 = 1

an algorithm for minimizing ν(E) in terms of E under the delay-constrained condition.

5.5 Optimization of Transmission Power (Symbol Energy)

To obtain the optimum value of E, an optimization problem is formulated as follows:

Eopt = arg min
E
ν(E)

subject to : E ≥ ET . (5.20)

We point out that since the transmitted energy required for transmission of a single symbol

is Px = E/m, we do our analysis based on the frame energy (E) and the optimal value of

symbol energy can be simply obtained as Px,opt = Eopt/m. We start solving the optimization

problem with taking the derivative of ν(E) with respect to E as in the following:

∂ν(E)

∂E
=

2m

[1 + g(E)]m+1

(
1 + g(E)−mEg′(E)

)
. (5.21)
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By taking the derivative of g(E) with respect to E, we have

g′(E) =
βg3(E)

2E2
. (5.22)

we can therefore write (5.21) as:

∂ν(E)

∂E
=

2m

[1 + g(E)]m+1

(
1+g(E)− mβg3(E)

2E

)
. (5.23)

Eqn. (5.23) is equivalent to

∂ν(E)

∂E
=

2m

[1 + g(E)]m+1

1+g(E)

[
1− mβ

2 (E + β)

]
︸ ︷︷ ︸

h(E)

 . (5.24)

It can be readily shown that for each value of E ≥ β(m2 − 1), we have h(E) ≥ 0, and thus

we have ∂ν(E)
∂E > 0 for E ≥ β(m2 − 1). That is, function ν(E) is monotonically increasing in

interval [β(m2 − 1),∞). For E < β(m2 − 1), we now examine if there is a local maximum or

minimum. To this end we find the roots of ∂ν(E)
∂E in interval

[
0, β(m2 − 1)

)
. From (5.24) it

follows that ∂ν(E)
∂E is zero if

1 + g(E)

[
1− mβ

2 (E + β)

]
= 0, (5.25)

or equivalently

g(E) =
2 (E + β)

(m− 2)β − 2E
. (5.26)

For E < β(m2 −1), the right-hand side of (5.26) is positive; by substituting (5.19) into (5.26),

squaring both sides of the equation, and some simple modifications, we can show that (5.26)

is equivalent to

(m+ 1)E2 + β

(
−m

2

4
+m+ 2

)
E + β2 = 0. (5.27)

We denote
(
−m2

4 +m+ 2
)2
−4 (m+ 1) by ∆m. It can be easily shown that if ∆m > 0, Eq.

(5.27) has two positive roots:

E1 =
β

2 (m+ 1)

[
m2

4
−m− 2−

√
∆m

]
,

E2 =
β

2 (m+ 1)

[
m2

4
−m− 2 +

√
∆m

]
, (5.28)



CHAPTER 5. OPTIMIZING BTP FOR LINK LAYER ENERGY EFFICIENCY 79

and we have E1 < E2. It can be shown that for m < 8 we have ∆m < 0; for m = 8 we have

∆m = 0; for m > 8 we have ∆m > 0. Also, we note that ∂ν(E)
∂E is a continuous function and

limE→0+
∂ν(E)
∂E = 2m > 0. For m < 8 we have ∆m < 0 and therefore Eq. (5.27) does not

have any root, which implies function ν(E) being monotonically increasing. For m = 8 we

have ∆m = 0, which implies function ν(E) being monotonically nondecreasing due to the

fact that (5.27) has only one root and ∂ν(E)
∂E is positive in the positive neighbourhood of 0.

For m > 8 we can conclude that (5.27) has two different roots E1 and E2 in the interval[
0, β(m2 − 1)

)
, as Appendix C shows E2 < β(m2 − 1). In this case, ν(E) is monotonically

increasing in (0, E1) and (E2,∞) and decreasing in (E1, E2). Figure 5.3 shows ν(E) against

E for m =12 under N0/σ
2
h = 1. As it can be seen from this figure, for E < E1 and E > E2,

ν(E) increases as E increases. Also when E1 < E < E2, ν(E) decreases as E increases.

Based on the previous analysis, we suggest an algorithm for solving the optimization problem

defined in (5.20) as in the following:

For m ≤ 8, since ν(E) is monotonically nondecreasing function of E, we can easily

conclude that Eopt = ET . If the frame length is larger than 8, first, the value of ET is

compared with β
(
m
2 − 1

)
. If ET ≥ β

(
m
2 − 1

)
, we conclude that Eopt = ET ; otherwise, E1

and E2 are calculated as in (5.28) and compared with ET . If ET > E2, then Eopt = ET .

If E1 < ET < E2, then based on the figure 5.3 it is obvious that Eopt = E2. Finally, if

ET < E1, ν(ET ) is compared with ν(E2); if ν(ET ) > ν(E2), we conclude that Eopt = E2,

otherwise Eopt = ET .

5.6 Discussions

In this chapter, we discussed optimizing the transmission power (bit transmission energy)

for minimizing the expected transmission energy for successful delivery of the link layer

frame. The expected transmission energy has nice properties, which we exploited for the

optimization. The nice property of the expected energy function is somewhat attributed

to our simple model. For obtaining simple insight, we used very simple models for wireless

channels and ARQ schemes. In the physical layer, we assumed that the random channel

gains for different symbols are statistically independent. Thus, this model is suitable for fast

fading channels [57] or a for the system in which bit interleaving is employed. We assumed

that the transmitter does not know the channel gain and thus there is no adaptation at the

transmitter side. We limited the scope of our ARQ schemes to the ones in which a packet
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Algorithm 1

if m ≤ 8 then
Eopt = ET

else
if ET ≥ β

(
m
2 − 1

)
then

Eopt = ET
else

Calculate E1 and E2

if ET > E2 then
Eopt = ET

else
if E1 ≤ ET < E2 then

Eopt = E2

else
Compare ν(ET) with ν(E2)
if ν(ET ) > ν(E2) then

Eopt = E2

else
Eopt = ET

end if
end if

end if
end if

end if
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that is considered error-free by the receiver’s link layer entity will never be retransmitted by

the transmitting side. Thus, Go-Back-N ARQ will be excluded by our model, for example.

Also, we implicitly assumed that the frame is successfully delivered to the destination only

if there is no bit error at all, while in a real ARQ scheme the frame can be delivered

even though it contains some bit errors [58]. However, the probability that a bit error is

undetected in most error detection codes used by an ARQ scheme is very low. We study

the optimization problem under more complex model in the next chapter.

Because this chapter focuses on the expected transmission energy rather than through-

put, the findings of this chapter are more relevant to wireless networks in which energy

efficiency is more important that data throughput.



Chapter 6

Optimizing Bit Transmission Power

for Link Layer Energy Efficiency

under Channel Estimation Error

6.1 Objective

In chapter 5 we studied the issue of optimizing the transmission power (energy per symbol)

for minimizing the expected energy required to reliably deliver a frame to the destination

node through ARQ, assuming perfect channel estimation at the receiver. In this chapter,

we relax the assumption of perfect channel estimation and study the issue of optimizing

the transmission power for a bit-interleaved system. A pilot symbol-assisted modulation

(PSAM) scheme is used along with a channel estimation scheme based on the minimum

mean square error (MMSE) criterion. We derive a closed-form expression for the frame

error probability (FEP) in the presence of channel estimation error and use this expression

for minimizing the FEP in allocating the transmission energy. We also derive the expected

energy as a function of the transmission power and design an optimization algorithm based

on the properties of this function.

82



CHAPTER 6. OPTIMIZING BTP FOR LLEE UNDER CEE 83

6.2 Related work and contribution

Most of the existing work in the link-layer analysis assumes perfect channel information at

the receiver side and the communication system is designed for a known channel [42]-[53].

In this chapter, we analyze link-layer performance in a point-to-point wireless communica-

tion system in which channel estimation error exists. In particular, we study the issue of

transmit energy efficiency under an expected delay constraint for a bit-interleaved wireless

communication system. Furthermore, we consider the FEP performance metric and allocate

power optimally between pilot and data symbols for minimizing the FEP expression.

In section 6.3, we will derive the FEP expression under the assumption of the receiver’s

imperfect estimation of the channel gain. Section 6.4 is the main contribution of this chapter,

we will formulate an optimization problems for determining the transmission power and show

a special property the cost (the expected packet transmission energy for successful delivery).

Then, we will present an algorithm to determine the optimal transmission power. In section

6.5, we will present our simulation results, followed by discussion in section 6.6.

6.3 FEP Analysis and Power Allocation

In this section, we discuss the FEP performance of BPSK modulation for the wireless

communication system model presented in section 4.3. We will apply the expression of FEP

as the performance metric of the system for determining the power allocation among the

pilot and data signals. We will then discuss the expected frame energy needed for reliable

transmission of a single frame. For the purpose of security and privacy, we assume bit

interleaving at the transmitter. After bit interleaving, since the transmitted symbols entire

each frame experience different channel gains, by using (4.4) and (4.6), received signals at

the destination can be written as:

yid = ĥixi + eixi + nid = ĥixi + wid , i = 1, 2, ...,m− 1, (6.1)

where wid = eixi + nid. Due to the symmetric nature of a complex-valued proper Gaussian

noise model, the frame error probability conditioned on the estimated channel gains can be

expressed as [60]:

P (FE|ĥ1, ĥ2, · · ·, ĥm−1) = P (FE|ĥ1, ĥ2, · · ·, ĥm−1, x1 =x2 = · · ·=xm−1 = +
√
Px). (6.2)
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In this chapter, we just focus on receiver that does symbol-by-symbol detection for each

frame 1. Maximum likelihood (ML) detection rule applied to an individual symbol is

x̂i = arg max
xi∈{

√
Px,−

√
Px}

p(yid|xi, ĥi) = arg max
xi

Re{yid ĥ∗ixi}, i = 1, 2, ...,m− 1. (6.3)

For the optimal decision rule (6.3), in accordance with (6.2), we can write the conditional

frame error probability as:

P (FE|ĥ1, ĥ2, ..., ĥm−1) = 1− P
(√
Px|ĥ1|2+Re{ĥ∗1w1

d}≥0,√
Px|ĥ2|2+Re{ĥ∗2w2

d}≥0, · · ·,
√
Px|ĥm−1|2+Re{ĥ∗m−1w

m−1
d } ≥ 0

)
= 1−

∫ ∞
−
√
Px|ĥ1|

∫ ∞
−
√
Px|ĥ2|

· · ·
∫ ∞
−
√
Px|ĥm−1|

pw̃d(w̃d) dw̃
1
d dw̃

2
d · · · dw̃m−1

d , (6.4)

where w̃d =
[
Re{w1

d} Re{w2
d} · · · Re{wm−1

d }
]
. It can be easily shown that Re{w1

d}, Re{w2
d},

..., and Re{wm−1
d } are independent zero-mean real Gaussian random variables with variance

(Pxσ2
e +N0)/2. From (6.4) follows:

P (FE|ĥ1, ĥ2, ..., ĥm−1) = 1−
m−1∏
i=1

∫ ∞
−
√
Px|ĥi|

1√
π(σ2

ePx +N0)
× e−

(w̃id)2

σ2
ePx+N0 dw̃id

= 1−
m−1∏
i=1

1−Q

√ 2Px |ĥi|2
σ2
ePx +N0

 . (6.5)

We denote |ĥi|2 by Zi. In accordance with the complex Gaussian channel model, Z1, Z2,

..., Zm−1 are i.i.d and exponentially distributed ; we can write

fZi(zi) = λ e−λzi , zi ≥ 0, (6.6)

where

λ =
1

σ2
ĥ

=
σ2
hαmPs +N0

σ4
hαmPs

. (6.7)

1Due to the correlation among the received symbols in different frames, we can improve the performance
by applying ML detection to the whole received frames instead of individual symbols in each frame; however,
the result has unmanageable computational complexity.
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Unconditional frame error probability can be written as:

P (FE) = 1−
m−1∏
i=1

(
1−

∫ ∞
0

λe−λziQ

(√
2Px zi

σ2
ePx +N0

)
dzi

)

= 1−

(
1−

∫ ∞
0

λe−λzQ

(√
2Px z

σ2
ePx +N0

)
dz

)m−1

= 1− (1− J)m−1 , (6.8)

where

J =

∫ ∞
0

λe−λzQ

(√
2Px z

σ2
ePx +N0

)
dz. (6.9)

By using Q(x) = 1
π

∫ π
2

0 exp
(
− x2

2 sin2 θ

)
dθ [40], J can be written as:

J =

∫ ∞
0

λe−λz
1

π

∫ π
2

0
exp

(
− Az

sin2 θ

)
dθdz =

1

π

∫ π
2

0
MZ

(
− A

sin2 θ

)
dθ

=
1

π

∫ π
2

0

sin2 θ

sin2 θ +A/λ
dθ, (6.10)

where MZ() denotes the moment generating function of Z, and

Zi = |ĥi|2, A =
Px

σ2
ePx +N0

. (6.11)

Then, using (5A.9) of [40], we obtain

J =
1

2

(
1−

√
A

A+ λ

)
. (6.12)

From (6.8) and (6.12), we have the following FEP expression:

P (FE) = 1−
(

1

2

)m−1
(

1 +

√
A

A+ λ

)m−1

. (6.13)

For the purpose of determining the FEP-minimizing power allocation, we derive the FEP

expression in terms of α. Based on (4.5) and (4.7) we have:

Px =
(1− α)mPs
m− 1

, σ2
e =

σ2
hN0

ασ2
hmPs +N0

. (6.14)

By using (6.14) and (6.13), we can write FEP as the following:

P (FE) = 1−

(
1

2
+

1

2

√
α(1−α)σ4

hm
2P2

s

α(1−α)σ4
hm

2P2
s + [1−α+ α(m−1)]σ2

hN0mPs + (m−1)N2
0

)m−1

≡ f (α,m, γ̄) . (6.15)



CHAPTER 6. OPTIMIZING BTP FOR LLEE UNDER CEE 86

We point out that FEP in (6.15) is a function of α, m and γ̄ where

γ̄ = Psσ2
h/N0. (6.16)

To obtain the optimal values of α, for a given frame length and γ̄, an optimization problem

is formulated as follows:

αopt = arg min
α
f (α,m, γ̄) ,

subject to : 0 ≤ α ≤ 1. (6.17)

where f (α,m, γ̄) is defined in (6.15). The optimal value of α can be obtained as:

∂f (α,m, γ̄)

∂α
|α=αopt = 0. (6.18)

From (6.18) follows:

(2−m)α2 − 2

(
1 +

m− 1

mγ̄

)
α+ 1 +

m− 1

mγ̄
= 0. (6.19)

The optimal value of α is given by

αopt =

√
(mγ̄+m− 1)(m− 1)(mγ̄ + 1)−mγ̄ −m+ 1

mγ̄ (m− 2)
. (6.20)

The results of optimization for the unitary channel variance (i.e., σ2
h = 1) are tabulated in

table 6.1. We point out that when γ̄ is sufficiently large (i.e., γ̄ � 1), αopt can be closely

approximated as:

αopt ≈
√
m− 1− 1

m− 2
. (6.21)

6.4 Energy Consumption for Frame Delivery and Optimiza-

tion of Transmission Power (Symbol Energy)

In the previous section, we derived the frame error probability (FEP) expression (6.15). We

have shown that for a given symbol transmission power Ps (average transmission energy

per both pilot and data symbols), the FEP depends on the energy allocation α and we

have taken an interest in optimizing the value of α. In the present section, we consider

a system that exercises an Automatic Repeat Request (ARQ) and focus on the expected
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total transmission energy consumed to deliver a frame of source information to the receiver

for an arbitrary α. Then, we discuss tuning transmission power Ps to minimize the total

expected transmission energy for a successful delivery of a frame of information. Because

Ps and the energy, E, for one transmission of a frame are simply related by E = mPs for a

fixed frame size m, we will use E instead of mPs as a variable to optimize for simplicity of

mathematical expressions.

Since the original transmission and subsequent retransmissions of a frame are indepen-

dent events, it follows that the number of transmissions needed for successful delivery of a

frame is geometrically distributed with parameter P (FE) [54] where P (FE) is the frame

error probability. Accordingly, the expected number of transmissions needed for the reli-

able transfer of one frame is 1/(1 − P (FE)). Since each reliable transfer of a frame needs

1/(1−P (FE)) attempts on average, the total expected transmission energy, ν(E), consumed

for reliable transfer of each frame can be obtained as follows:

ν(E) =
E

1− P (FE)
. (6.22)

We point out that P (FE) in (6.15) can be written as a function of α, m and γ̄ where

γ̄ = σ2
hPs/N0 and for the simplicity of notations, we assume that σ2

h/N0 = 1. By using

(6.15) and (6.22), ν(E) can be written as:

ν(E) =
2m−1E

[1 + g(E)]m−1 , (6.23)

where

g(E) =

√
α(1− α)E2

α(1−α)E2+[1−α+α(m− 1)]E+(m−1)
. (6.24)

We focus on finding the value of E that minimizes ν(E).

It is noteworthy that for any practical value of frame size (for any value of m ≥ 2), we

have:

lim
E→0

ν(E) = 0. (6.25)

That is, in the absence of an energy constraint other than the obvious positivity constraint,

(6.25) leads to the conclusion that infinitesimally small transmission energy E for single

frame transmission ends up with infinitesimally small total expected energy ν(E). However,

we note that at very small value of E, the expected number of transmission needed for



CHAPTER 6. OPTIMIZING BTP FOR LLEE UNDER CEE 88

successful frame delivery may become extremely large, which results in extremely long

frame delivery time. We assume that the system has a constraint on the expected frame

delivery time; namely, s
(

2m−1

[1+g(E)]m−1

)
≤ d where s (·) is a monotonically increasing function,

2m−1

[1+g(E)]m−1 is the expected number of trials required to successfully deliver a frame and d

represents the delay requirement [55] [56]. This is equivalent to constraint E ≥ ET for some

ET . Thus, in the following, we try to design an algorithm to determine the value of E for

minimizing ν(E) under the delay-constrained condition. That is, our optimization problem

is formulated as follows:

Eopt = arg min
E
ν(E),

subject to : E ≥ ET . (6.26)

Although (6.26) seems to be a simple optimization of a single variable, we try to design a

very time efficient algorithm for solving (6.26). We will show that the function ν(E) has nice

properties, which we exploit for the optimization. In this section, we will explore the shape

of the curve ν(E) and establish some results about the shape that can be exploited to simply

obtains the solution to (6.26). We will later show that ν(E) is either monotonically non-

decreasing or has an up-down-up shape, as is illustrated in Figure 6.3. Since the derivative

of a function gives a good perspective about the shape of the function, we start this section

with taking the derivative of ν(E) with respect to E.

For the simplicity of notations, we define a = α(1 − α), b = 1 − α + α(m − 1) and

c = m− 1. We can then write g(E) in (6.24) as:

g(E) =

√
aE2

aE2 + bE + c
. (6.27)

The derivative of ν(E) with respect to E is given by

∂ν(E)

∂E
=

2c

[1 + g(E)]c+1

(
1 + g(E)− cEg′(E)

)
. (6.28)

Taking the derivative of g(E) with respect to E, we have:

g′(E) =
(bE + 2c) g3(E)

2aE3
, (6.29)

so we can write (6.28) as:

∂ν(E)

∂E
=

2c

[1 + g(E)]c+1

(
1+g(E)− c (bE+2c) g3(E)

2aE2

)
. (6.30)
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From (6.27) and (6.30) follows that:

∂ν(E)

∂E
=

2c

[1+g(E)]c+1

1+g(E)

[
1− c (bE + 2c)

2 (aE2+bE+c)

]
︸ ︷︷ ︸

h(E)

 . (6.31)

We are interested in the intervals in which ν(E) is increasing (i.e., derivative ν ′(E) is posi-

tive). Since g(E) ≥ 0, it can be concluded that we have ν ′(E) > 0 if:

h(E) , 1− c (bE + 2c)

2 (aE2+bE+c)
≥ 0. (6.32)

h(E) ≥ 0 if and only if:

2aE2 + b(2− c)E + 2c(1− c) ≥ 0. (6.33)

Since E ≥ 0, the inequality in (6.33) holds if and only if:

E ≥

√
b2 (c− 2)2 + 16ac (c− 1) + b (c− 2)

4a
≡ η > 0. (6.34)

Thus, the following Lemma is proved:

Lemma 6.4.1. ν ′(E) > 0 in [δT ,+∞); that is, ν(E) is monotonically increasing in [δT ,+∞).

Lemma 6.4.2 (monotonic increase). There exists a positive number ε < δT , such that

ν ′(E) > 0 in (0, ε].

Proof. From (6.31), it is clear that if E → 0+, then ν ′(E)→ 2c > 0. By using the continuity

of ν ′(E), we conclude that there exists a positive number ε < δT such that ν ′(E) > 0 in

(0, ε].

6.4.1 Roots of ν ′(E)

Theorem 6.4.1. For any frame length m ≥ 2, there exist no more than two distinct positive

values of E at which ν ′(E) = 0 for any allocation 0 < α < 1.

Proof. In accordance with (6.31), ν ′(E) = 0 implies 1 + g(E)h(E) = 0 or equivalently:

g(E) = −
2
(
aE2 + bE + c

)
2aE2 + b(2− c)E + 2c(1− c)

. (6.35)
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Equality (6.35) implies the following, which is obtained by squaring both sides of (6.35):

P (E) = µ5E
5+ µ4E

4+ µ3E
3+ µ2E

2+ µ1E+ µ0 = 0. (6.36)

where

µ5 = 4a2bc+ 4a2b > 0,

µ4 = 8a2c2 + 4a2c− ab2c2 + 4ab2c+ 8ab2,

µ3 = −4abc3 + 12abc2 + 16abc+ 4b3,

µ2 = −4ac4 + 8ac3 + 8ac2 + 12b2c,

µ1 = 12bc2 > 0,

µ0 = 4c3 > 0. (6.37)

Thus, the number of distinct roots of ν ′(E) can not be more than the number of distinct

positive roots of the polynomial P (E). Invoking the Descartes’ rule of signs [69], we will

prove Theorem 6.4.1 by showing that P (E) does not have more than two positive roots (the

polynomial’s multiple roots of the same value being separately counted.)

The Descartes’ rule of signs states, “If a single-variable polynomial is written from highest

to lowest power exponent, then the number of positive real roots of the polynomial is the

same or less than by an even numbers as the number of changes in the sign of the coefficients.

Multiple roots of the same value are counted separately [69].”

It can be obviously seen from (6.37) that µ5, µ1 and µ0 are positive. Also, each coef-

ficient of µ4, µ3 and µ2 can be zero, positive or negative, so we consider 27 different sign

combinations of µ4, µ3 and µ2 (considering zero as a different sign from positive and nega-

tive signs). If µ4 < 0, µ3 > 0 and µ2 < 0, in accordance with Descartes’ rule of signs, P (E)

has at most 4 positive roots. For all other cobinations, P (E) has no more than 2 positive

roots. Therefore, Theorem 6.4.1 is proven if we show that µ4 < 0, µ3 > 0 and µ2 < 0 is an

impossible combination.

We can write µ2 and µ3 in (6.37) as µ2 = 4c · µ̃2 and µ3 = 4b · µ̃3 where

µ̃3 = −ac3 + 3ac2 + 4ac+ b2,

µ̃2 = −ac3 + 2ac2 + 2ac+ 3b2. (6.38)

Since b > 0 and c > 0, we have : sign(µ2)=sign(µ̃2) and also sign(µ3)=sign(µ̃3). In order

to prove Theorem 6.4.1, we just need to show that µ̃3 > 0 and µ̃2 < 0 is an impossible

combination.
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Figure 6.1: µ̃2(m,α) and µ̃3(m,α) against α for m = 6

By substituting a = (1− α)α, b = 1 − α + (m− 1)α and c = m − 1, we can write µ̃2

and µ̃3 in terms of α and m as:

µ̃3 =
(
m3 − 5m2 +m+ 4

)
α2+

(
−m3 + 6m2 − 3m− 4

)
α+1 , a3(m)α2 + b3(m)α+1,

µ̃2 =
(
m3− 2m2− 7m+11

)
α2+

(
−m3+ 5m2+m− 11

)
α+3 , a2(m)α2+b2(m)α+3, (6.39)

where

a3(m) = m3 − 5m2 +m+ 4, b3(m) = −m3 + 6m2 − 3m− 4,

a2(m) = m3 − 2m2 − 7m+ 11, b2(m) = −m3 + 5m2 +m− 11. (6.40)

For m ≥ 6, both µ̃3 and µ̃2 are quadratic functions of α with positive coefficients of quadratic

terms. The key idea of the proof of Theorem 6.4.1 from the cases of m ≥ 6 is to show that

the roots of µ̃2(m,α) = 0 are surrounded by the roots of µ̃3(m,α) = 0, as illustrated in

Figure 6.1 and elaborated later. For each value of m between 2 and 5, inclusive, µ̃2 in (6.39)

as a quadratic function of α has coefficients that make µ̃2 non-negative for each value of α

between 0 and 1. Thus, Theorem 6.4.1 is proved for the cases of 2 ≤ m ≤ 5.
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For the rest of the proof, we consider the case of m ≥ 6 and we will show that µ2 < 0

and µ3 < 0 are an impossible combination.

We denote by α
(2)
1 (m) and α

(2)
2 (m), the roots of µ̃2(m,α) = 0 and α

(3)
1 (m) and α

(3)
2 (m),

the roots of µ̃3 = 0(m,α) :

α
(2)
1 (m) =

−b2(m)−
√

∆2(m)

2a2(m)
, α

(2)
2 (m) =

−b2(m) +
√

∆2(m)

2a2(m)
,

α
(3)
1 (m) =

−b3(m)−
√

∆3(m)

2a3(m)
, α

(3)
2 (m) =

−b3(m) +
√

∆3(m)

2a3(m)
, (6.41)

where

∆3(m) = b3
2(m)− 4a3(m) = m6 − 12m5 + 42m4 − 32m3 − 19m2 + 20m,

∆2(m) = b2
2(m)− 12a2(m) = m6 − 10m5 + 23m4 + 20m3 − 85m2 + 62m− 11. (6.42)

For m ≥ 6 we have:

a2(m) > 0, a3(m) > 0, b2(m) < 0, b3(m) < 0, ∆2(m) > 0, ∆3(m) > 0. (6.43)

It turns out that the following inequality holds (Proof in the next subsection):

α
(3)
1 (m) < α

(2)
1 (m) < α

(2)
2 (m) < α

(3)
2 (m). (6.44)

For each frame length (m ≥ 6) we have: µ̃2(m,α) < 0 if and only if α is in set {α|α(2)
1 (m) <

α < α
(2)
2 (m)}, and µ̃3(m,α) > 0 if and only if α is in set {α|α < α

(3)
1 (m) or α > α

(3)
2 (m)}

(Figure 6.1). In accordance with (6.44), these two sets are non-overlapping, so for any value

of α, µ2 < 0 and µ3 > 0 are an impossible combination.

6.4.2 Proof of (6.44)

In this subsection, we prove (6.44). The key idea of the proof is to first find a lower bound

on α
(2)
1 (m). We then show that this lower bound, is an upper bound on the α

(3)
1 (m) which

results in the first inequality in (6.44). It turns out that the following inequality holds (proof

in the following two Lemmas):

α
(2)
1 (m) > α′1(m) > α

(3)
1 (m), (6.45)

where

α′1(m) =
−b2(m)−

√
b22(m)− 12a3(m)

2a3(m)
. (6.46)
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We point out that b22(m) − 12a3(m) > 0 because from (6.43) we have: ∆2(m) = b22(m) −
12a2(m) > 0. On the other hand, we have a2(m) > a3(m) (proof in Appendix D, D.4),

which follows that b22(m)− 12a3(m) > 0.

Lemma 6.4.3. For m ≥ 6 we have: α
(2)
1 (m) > α′1(m).

proof: See Appendix D.

Lemma 6.4.4. For m ≥ 6 we have: α′1(m) > α
(3)
1 (m).

proof: See Appendix E.

By using Lemma 6.4.3 and Lemma 6.4.4, we can therefore conclude that α
(3)
1 (m) <

α
(2)
1 (m) and first inequality in (6.44) is proved.

Lemma 6.4.5. For m ≥ 6 we have: α
(2)
2 (m) < α

(3)
2 (m).

proof: See Appendix F.

By using the Lemma 6.4.5, the last inequality in (6.44) is proved.

6.4.3 Shape of ν(E)

Theorem 6.4.2. The function ν(E) is either monotonically non-decreasing in the interval

(0,+∞), or there exist two positive numbers ξ1 < ξ2 such that ν(E) is monotonically non-

decreasing over (0, ξ1], monotonically non-increasing over (ξ1, ξ2), and monotonically non-

decreasing over [ξ2,+∞).

Proof. In accordance with Lemma 6.4.1 and Lemma 6.4.2, there exist positive numbers

ε < η such that ν ′(E) > 0 in [η,+∞) and (0, ε]. If ν ′(E) ≥ 0 in (ε, η), then we have

ν ′(E) ≥ 0 in (0,∞), so ν(E) is monotonically nondecreasing in (0,∞). Now we consider

the case in which there exists a value E∗ ∈ (ε, η) such that ν ′(E∗) is negative. Then there

exists ξ1 ∈ (ε, E∗) such that ν ′(ξ1) = 0 and there exists ξ2 ∈ (E∗, η) such that ν ′(ξ2) = 0

because ν ′(E) is a continuous function on (0,∞) (the intermediate value theorem [70]). In

accordance with Theorem 6.4.1, there are no other positive roots of ν ′(E) than ξ1 and ξ2.

This together with the continuity of ν ′(E) implies that ν ′(E) ≥ 0 in [ε, ξ1] and ν ′(E) ≤ 0 in

[ξ1, ξ2] and ν ′(E) ≥ 0 in [ξ2, η].
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6.4.4 Exploiting the shape of ν(E) for optimization

In the previous subsection, we discussed the different possible shapes of ν(E) and we showed

that ν(E) is either monotonically non-decreasing in (0,∞) or has an “up-down-up” shape.

In this subsection, we use this property of ν(E) and suggest an algorithm for solving the

optimization problem defined in (6.26).

Whichever kind of shape ν(E) has, it is clear that if ET > η, ET is optimal because

ν(E) in [η,+∞) is monotonically increasing (Lemma 6.4.1).

For the case in which ν(E) is monotonically non-decreasing function of E in (0,∞),

we can easily conclude that ET is optimal because ν(E) is monotonically non-decreasing

function of E in [ET ,∞).

For the case in which ν(E) has an “up-down-up” shape, ν(E) is monotonically non-

decreasing over (0, E1] and [E2,+∞), and monotonically non-increasing over [E1, E2] (The-

orem 6.4.2) where E1 and E2 are two roots of ν ′(E) = 0. If ET > E2, then ET is optimal

because ν(E) is monotonically non-decreasing in [ET ,+∞). If E1 < ET < E2, then it can

be seen that Eopt = E2 as illustrated in Figure 6.2.

Finally, if ET < E1, ν(ET ) is compared with ν(E2); if ν(ET ) > ν(E2), we conclude that

Eopt = E2, otherwise Eopt = ET .

We have shown that for solving (6.26), the value of E2 is needed. It was also shown in

subsection 6.4.1 that if E < η, then the roots of ν ′(E) and the roots of P (E) = 0 in (6.36) are

equal. In the following, we present a method for finding E2. From (6.35) and (6.36) follows

that E2 is the largest root of P (E) = 0. We can therefore use P (E) for finding E2. By

using Sturm’s theorem [72], we can find NP , the number of roots of P (E) = 0. If NP < 2, it

means that ν(E) has at most one root and therefore it is monotonically non-increasing and

we have Eopt = ET . If NP = 2, we first find the largest root (E2). Since ν(E) in [η,+∞)

is monotonically increasing (Lemma 6.4.1), it can be readily concluded that if E2 > η, E2

can not be a root of ν ′(E) = 0. In this case, ν ′(E) has at most one root. In other words, if

E2 > η, ν(E) is monotonically non-decreasing and ET is optimal.

We point out that one of the methods that can be used to find E2, is Newton’s algorithm

[71]. It can be shown that P (E) is convex in [E2,+∞). If we set a proper point as the

initial point of Newton’s algorithm, the algorithm converges to E2. Our suggestion is to use

Cauchy’s upper bound [72] on the largest root as the initial point.
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Algorithm 2

Find NP , the number of roots of P (E) = 0
if NP < 2 then

Eopt = ET
else
Find E2, the largest root of P (E) = 0

if E2 ≥ δT then
Eopt = ET

else
if E2 < ET then

Eopt = ET
else

Compare ν(ET) with ν(E2)
if ν(ET ) > ν(E2) then

Eopt = E2

else
Eopt = ET

end if
end if

end if
end if
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Figure 6.2: ν(E) against E, α=0.30, m=12

6.5 SIMULATION RESULTS

In the following system setup, we present Monte-Carlo simulation results to corroborate

the theoretical analysis. Matlab was used for Monte-Carlo simulation, and 107 transmitted

symbols were drawn from the BPSK constellation in order to estimate the FEP. The node-

to-node channel is modelled by zero mean independent Gaussian random variable with unit

variance. The variance of noise components is set to N0=1.

Figure 6.3 shows the ν(E) against frame energy (E) for m=5, 10, 15 and 20 and α=0.30.

As the figure shows, in the case of m=5, expected frame energy required for a reliable trans-

mission of a frame (ν(E)) is monotonically increasing with respect to E. Figure 6.4 shows

the present chapter’s FEP analysis resulting in (6.15) in comparison with the simulation

results for m=5, 10, 20, 40 and 80 where m is the frame length. Parameter α is set to 0.30.

In Figure 6.5, the FEP is plotted against α for Ps/N0=15 dB. From the derived FEP

expression (6.15), it is apparent that for a fixed total power, the power allocation among

pilot and data affects the FEP performance. If we allocate too much power for pilots,
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Figure 6.3: ν(E) against E, α=0.30

channel estimation error will be reduced but detection of the data in noise is more difficult

because of low data SNR. On the other hand, lower power for pilots results in poor channel

estimation and thus in poor detection [64] [35]. The optimum value of α under Ps/N0=15

dB and m=10, 20, 40 and 80 turns out to be at α = 0.25, α = 0.19, α = 0.14 and α = 0.10,

respectively.

Figure 6.6 shows the ν(E) against α for m=10, 15 and 20 under Ps/N0=10 dB. In

table 6.1, the optimum values for α for m= 16, 32, and 64 are tabulated. These values are

obtained by using (6.20). It is noteworthy that the optimum values of α are insensitive to

per-symbol SNRs.

6.6 Discussions

In this chapter, we discussed optimizing the transmission power (bit transmission energy)

for minimizing the expected transmission energy for successful delivery of the link-layer
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frame under imperfect channel estimation. The expected transmission energy, as a function

of energy of each frame, has nice properties, and we exploited them for the optimization. We

presented an efficient algorithm for minimizing the transmit energy under delay constraint

in a bit-interleaved point-to-point wireless system.

We have derived a closed-form expression for the FEP performance for a point-to-point

wireless communication system in which BPSK modulation and bit interleaving are em-

ployed. We have also investigated the issue of optimally allocating the transmit energy

between pilot and data symbols to minimize the derived FEP expression.
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m= 64 m=32 m=16

Ps
N0

= 30dB
αopt 0.11 0.15 0.21
FEP 0.0196 0.0104 0.0055

Ps
N0

= 25dB
αopt 0.11 0.15 0.21
FEP 0.0601 0.0324 0.0174

Ps
N0

= 20dB
αopt 0.11 0.15 0.21
FEP 0.1774 0.0986 0.0538

Ps
N0

= 15dB
αopt 0.11 0.15 0.21
FEP 0.4561 0.2764 0.1583

Ps
N0

= 10dB
αopt 0.12 0.16 0.21
FEP 0.8421 0.6246 0.4062

Table 6.1: Results of optimization for m=16, 32 and 64
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Appendix A

Proof of 2.72

From (2.62) follows that:

X=exp

(
−4Pr|ĥrd|2+4

√
PrRe{ĥ∗rdñrd}

σ2
2

)
, Y =exp

(
−4Ps|ĥsd|2−4

√
PsRe{ĥ∗sdñsd}

σ2
1

)
(A.1)

We define random variable W as:

W =
−4Pr|ĥrd|2 + 4

√
PrRe{ĥ∗rdñrd}

σ2
2

. (A.2)

Since ñrd is a zero mean complex Gaussian random variable with variance σ2
2 , conditioned on ĥrd, Re{ĥ∗rdñrd}

is a zero mean real Gaussian random variable with variance |ĥrd|2σ2
2/2; accordingly W is a real Gaussian

random variable as follows:

W |ĥrd ∼ N

(
−4Pr|ĥrd|2

σ2
2

,
8Pr|ĥrd|2

σ2
2

)
. (A.3)

The conditional PDF of W is given by:

fW |ĥrd
(w|ĥrd) =

1√
2πσ2

W |ĥrd

exp

−
(
w − µW |ĥrd

)2

2σ2
W |ĥrd

 , (A.4)

where

µW |ĥrd
= −4Pr|ĥrd|2

σ2
2

, σ2
W |ĥrd

=
8Pr|ĥrd|2

σ2
2

. (A.5)

We denote |ĥrd|2 and ∠ĥrd by Z2 and Φ2, respectively. Conditional PDF of W can be also written as:

fW |ĥrd
(w|ĥrd) = fW |Z2,Φ2

(w|z2, φ2). (A.6)

We can derive fW |Z2
(w|z2) as in the following:

fW |Z2
(w|z2) = EΦ2

{
fW |Z2,Φ2

(w|z2, φ2)

}
= EΦ2

{
fW |ĥrd(w|ĥrd)

}

=
1

2π

∫ 2π

0

exp

[
−

(
w−µ

W |ĥrd

)2

2σ2
W |ĥrd

]
√

2πσ2
W |ĥrd

dφ2 =

exp

[
−

(
w−µ

W |ĥrd

)2

2σ2
W |ĥrd

]
√

2πσ2
W |ĥrd

. (A.7)
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In accordance with (A.1) and (A.2) we have X = exp (W ). The conditional PDF of X can be obtained using

[41]:

fX|Z2
(x|z2) =

fW |Z2
(lnx|z2)

x
. (A.8)

We also have:

fX|Z2
(x|z2)

fX|Z2

(
1
x

∣∣∣∣z2

) =
fW |Z2

(lnx|z2)

x2fW |Z2

(
ln 1

x

∣∣∣∣z2

) =
fW |Z2

(lnx|z2)

x2fW |Z2
(− lnx|z2)

. (A.9)

From (A.7) and (A.9) follows that:

fX|Z2
(x|z2)

fX|Z2

(
1
x

∣∣∣∣z2

) =
1

x2
exp


(
− lnx− µW |ĥrd

)2

2σ2
W |ĥrd

−

(
lnx− µW |ĥrd

)2

2σ2
W |ĥrd


=

1

x2
exp

[
2µW |ĥrd

lnx

σ2
W |ĥrd

]
. (A.10)

Finally, after substituting µW |ĥrd
and σ2

W |ĥrd
in (A.10), we obtain:

fX|Z2

(
1

x

∣∣∣∣z2

)
= x3fX|Z2

(x|z2). (A.11)

In the same manner, it can be shown that fY |Z1

(
1
y

∣∣∣∣z1

)
= y3fY |Z1

(y|z1) .



Appendix B

Proof of 6.2, 3.24 and 3.25

P
(

ˆ̂x = +1|x′ = +1
)
P
(
x′ = +1

)
= P

(
ˆ̂x = +1|θx = +1

)
P (θx = +1)

= P
(

ˆ̂x = +1|x = +1
)
P (θ = 1)P (x = +1) =

(
1− P ′e

) (
1− PRe

)(1

2

)
, (B.1)

where the third equality in (B.1) is due to the fact that x′ = 1 implies that θ = 1 and x = 1. Also given

that the transmitted symbol is x = +1, probability that ˆ̂x = +1 and θ = 1 are independent. In other words,

P
(

ˆ̂x = +1|θ = 1, x = +1
)

= P
(

ˆ̂x = +1|x = +1
)

. Since the transmitted signal and θ are independent, we

also have P (θ = 1, x = +1) = P (θ = 1)P (x = +1). As in (B.1), we obtain

P
(

ˆ̂x = +1|x′ = 0
)
P
(
x′ = 0

)
= P

(
ˆ̂x = +1|θx = 0

)
P (θx = 0)

= P
(

ˆ̂x = +1|θ = 0
)
P (θ = 0) =

1

2
PRe , (B.2)

and,

P
(

ˆ̂x = +1|x′ = −1
)
P
(
x′ = −1

)
= P

(
ˆ̂x = +1|θx = −1

)
P (θx = −1)

= P
(

ˆ̂x = +1|x = −1
)
P (θ = 1)P (x = −1) = P ′e

(
1− PRe

)(1

2

)
. (B.3)
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Appendix C

Proof of E2 < β(m2 − 1)

Based on (5.28), E2 < β
(
m
2
− 1
)

if and only if:

β

2 (m+ 1)

[
m2

4
−m− 2 +

√
∆m

]
< β

(m
2
− 1
)
. (C.1)

Multiplying both sides of (C.1) by 2(m+ 1)/β, we see that (C.1) holds if and only if:

m2

4
−m− 2 +

√
∆m < 2 (m+ 1)

(m
2
− 1
)
. (C.2)

Eq. (C.2) holds if and only if:

m2

4
−m− 2 +

√
∆m < m2 −m− 2. (C.3)

Eq. (C.3) holds if and only if 4
√

∆m < 3m2, or equivalently 16∆m < 9m4. By using the following inequalities

for m > 8: (
m2

4
−m− 2

)2

− 4 (m+ 1)︸ ︷︷ ︸
∆m

<

(
m2

4
−m− 2

)2

<

(
m2

4

)2

=
m4

16
, (C.4)

we have 16∆m < m4 < 9m4 which results in E2 < β
(
m
2
− 1
)
.
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Appendix D

Proof of Lemma 6.4.3

α
(2)
1 (m) > α′1(m) if and only if:

−b2(m)−
√
b22(m)− 12a2(m)

2a2(m)
>
−b2(m)−

√
b22(m)− 12a3(m)

2a3(m)
. (D.1)

Eq. (D.1) holds if and only if:

b2(m) +
√
b22(m)− 12a3(m)

2a3(m)
>
b2(m) +

√
b22(m)− 12a2(m)

2a2(m)
. (D.2)

Eq. (D.2) holds if and only if:

a2(m)
√
b22(m)− 12a3(m)− a3(m)

√
b22(m)− 12a2(m) > [a3(m)− a2(m)] b2(m). (D.3)

From (6.40) we have:

a2(m)− a3(m) = 3m2 − 8m+ 7 = 3

[(
m− 4

3

)2

+
5

9

]
> 0. (D.4)

From (D.4) and the fact that b2(m) < 0, we can assume that both sides of inequality in (D.3) are positive,

and (D.3) is equivalent to:

2b22(m)− 12a2(m)− 12a3(m)− 2
√
b22(m)− 12a2(m)

√
b22(m)− 12a3(m) > 0, (D.5)

which results from squaring both sides of (D.3). Inequality (D.5) holds since(√
b22(m)− 12a2(m)−

√
b22(m)− 12a3(m)

)2

> 0. (D.6)
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Appendix E

Proof of Lemma 6.4.4

For m ≥ 6, α′1(m) > α
(3)
1 (m) if and only if:

−b2(m)−
√
b2

2(m)− 12a3(m)

2a3(m)
>
−b3(m)−

√
b3

2(m)− 4a3(m)

2a3(m)
. (E.1)

Eq. (E.1) holds if and only if:

b3(m)− b2(m) >

√
b2

2(m)− 12a3(m)−
√
b3

2(m)− 4a3(m). (E.2)

From (6.40) we have

b3(m)− b2(m) = m2 − 4m+ 7 = (m− 2)2 + 3 > 0. (E.3)

From (E.3) follows that the left hand side (LHS) of (E.2) is positive; therefore, if the right hand side (RHS)

of (E.2) is non positive, then inequality in (E.2) obviously holds. If RHS of (E.2) is non negative, (E.2) holds

if and only if:

[b3(m)− b2(m)]2 >

(√
b2

2(m)− 12a3(m)−
√
b3

2(m)− 4a3(m)

)2

, (E.4)

which is equivalent to:√
b2

2(m)− 12a3(m) ·
√
b3

2(m)− 4a3(m) > b2(m)b3(m)− 8a3(m). (E.5)

If the RHS of (E.5) is non positive, then inequality in (E.5) obviously holds. For the values of m for which

the RHS of (E.5) is positive, (E.5) is equivalent to:

4b2(m)b3(m)− b22(m)− 3b3
2(m)− 4a3(m) > 0, (E.6)

which results from squaring both sides of (E.5). From (6.40) follows that (E.6) is equivalent to:

2m5 − 21m4 + 72m3 − 110m2 + 62m− 9 > 0. (E.7)

Thus, it remains to be shown that (E.7) holds for each values of m ≥ 6 for which the RHS of (E.5) is non

negative. It turns out that for m ≥ 6 (E.7) holds. For 6 ≤ m ≤ 10 the inequality holds and for m ≥ 11,

(E.7) can be written as

(2m− 21)m4 + (72m− 110)m2 + 62m− 9 > 0. (E.8)
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Since 2m − 21, 72m − 110 and 62m − 9 are positive for m ≥ 11, we proved that for m ≥ 6 the inequality

(E.1) holds.



Appendix F

Proof of Lemma 6.4.5

For m ≥ 6, α
(2)
2 (m) < α

(3)
2 (m) if and only if:

−b2(m) +
√
b2

2(m)− 12a2(m)

2a2(m)
<
−b3(m) +

√
b3

2(m)− 4a3(m)

2a3(m)
. (F.1)

From Lemma 6.4.3 and Lemma 6.4.4, we have proven that α
(3)
1 (m) < α

(2)
1 (m); therefore we can write:

−b3(m)−
√
b3

2(m)− 4a3(m)

2a3(m)
<
−b2(m)−

√
b2

2(m)− 12a2(m)

2a2(m)
. (F.2)

From (F.2) follows that

b2(m) +
√
b2

2(m)− 12a2(m)

2a2(m)
<
b3(m) +

√
b3

2(m)− 4a3(m)

2a3(m)
. (F.3)

We define L(m) as:

L(m) = a3(m)b2(m)− a2(m)b3(m) = 2m5 − 17m4 + 36m3 − 19m2 − 2m. (F.4)

It can be easily seen that L(6) = 600, L(7) = 4200 and L(8) = 13104 are positive. Also for m ≥ 9 we have:

L(m) = 2m5 − 17m4 + 36m3 − 19m2 − 2m > 2m5 − 17m4 + 36m3 − 21m2

= (2m− 17)m4 + (36m− 21)m2 > 0. (F.5)

Since L(m) for m ≥ 6 is positive, we have L(m)/a2(m)a3(m) > 0 and we can therefore write:

b2(m)

a2(m)
>
b3(m)

a3(m)
, (F.6)

or equivalently:

− b2(m)

a2(m)
< − b3(m)

a3(m)
. (F.7)

Thus, from (F.3) and (F.7) follows that the addition of left (right) hand sides of (F.3) and (F.7) is the left

(right) hand sides of (F.1).
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