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Abstract

DNA replication starts at many sites (origins) throughout eukaryotic DNA. To fully under-
stand the replication program in higher organisms, one needs to understand the behaviour
of these origins. In Saccharomyces cerevisiae (budding yeast), the spatial organization of
the origins is simple: The origins are confined to known specific sites on the genome. The
temporal behaviour of origins in budding yeast is more complex: They fire stochastically
with a broad distribution of firing times.

Several key proteins take part in the DNA replication process. The MCM2-7 hexamer in
particular forms a helicase that unwinds DNA locally, allowing access for other proteins
to replicate the separated DNA. Past analysis of the budding yeast replication program
suggested the Multiple Initiator Model (MIM), which hypothesizes that the number of
these MCMs loaded at an origin predicts the firing time of that origin. Part of the MIM
formalism assumes that the number of loaded MCMs is large; in this case the relative
fluctuations between cells will be small and are ignored. However, a recent experiment
measuring the number of loaded MCMs has revealed that the number is low, and thus, cell-
to-cell fluctuations may be larger than expected. The purpose of this thesis is to investigate
the impact of large relative fluctuations in the number of MCMs on the MIM. To measure
this effect, we built the “MIM simulator,” a modular program that simulates the replication
process. Although a naive argument suggests that the MIM should fail when the number
of MCMs is low, the impact of these fluctuations is mitigated by the contributions from
neighbouring origins. We conclude that inferences made with the MIM remain accurate in
the case that the number of MCMs is lower than first assumed.

Keywords: DNA replication kinetics; multiple initiator model; phantom nuclei; Poisson
process
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Chapter 1

Introduction

The timely and accurate replication of DNA is critical for maintaining genetic integrity
in cellular life. In simple cells (“prokaryotes”), the process used to replicate the genome
(the “replication program”) is well understood. Starting at a sequence-defined location (the
“origin”), the double-stranded DNA (dsDNA) of the prokaryotic genome separates into two
single-stranded DNA (ssDNA) segments. Complex biological machinery travels bidirection-
ally from the origin, separating the dsDNA into growing ssDNA segments, which are used
as templates for the creation of two copies of the original genome. The machinery between
separated and non-separated DNA (“forks”) continues to propagate through the genome
until it has been entirely separated and replicated. Prokaryotic organisms have such small
genomes that replication can be completed using a single origin [1]. With this replication
program an E. coli bacterium can replicate its entire genome in about 40 minutes1.

More complex organisms (“eukaryotes”) have genomes that are approximately 1000
times longer and have forks that propagate about 10 times slower than prokaryotes. For ex-
ample, compare the human genome, about 3000 Mb [3] with mean fork speed 1.5 kb/min [4],
to E. coli, about 4600 kb long with fork speed 1 kb/s [2]. The replication forks from a single
origin would take nearly 4 years to completely replicate the entire human genome. In many
human cells, DNA replicates in about 8 hours [5]. This is much less time than the four
years that would be needed if there were only a single active origin of replication. There-
fore, a single origin cannot be solely responsible for the replication of eukaryotic DNA.
Eukaryotic DNA is thus replicated using a parallel process, with many origins along [6]. A
considerable body of experimental evidence suggests that the timing (initiation) of origins
is stochastic [7, 8, 9].

Using many origins in the replication program creates several non-obvious issues that
must be addressed for the program to work effectively. One issue is the existence of separate
replicated regions during the replication process. When the forks of two neighbouring
replicated regions meet, the two coalesce into a single, larger replicated region. Another

1 Under fast-growth conditions, the time to replicate the genome, T = L
2v

= 4600 kb
2×1 kb/s = 2300 s. [2]
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issue is the need to coordinate multiple origin-activation events that are driven by stochastic
processes. The replication program describes the process by which the DNA is replicated
using many origins of replication. These origins can coordinate their stochastic initiation
times such that it is rare for any part of the DNA to be left unreplicated by the end of S
phase [6].

1.1 The Cell Cycle

The cell cycle defines the steps taken during cellular reproduction and can be divided into
four phases (see Fig. 1.1) [1, 5]: the first gap (G1) phase, the synthesis (S) phase, the second
gap (G2) phase, and the mitosis (M) phase. The G1 phase of the cell cycle contains key
processes that prepare the DNA for replication. During S phase (the second phase in the
cell cycle) the DNA is replicated. The third phase of the cell cycle (G2) primarily acts as a
buffer to ensure complete DNA replication. During the fourth phase of the cell cycle (M),
the cell physically divides into two daughter cells.

Figure 1.1: The cell cycle has four phases: Mitosis (M), when a mother cell separates
into two daughter cells; the first Gap (G1), when the daughter cell undergoes growth and
chemical preparation for DNA replication; Synthesis (S), when the DNA is replicated; and
the second Gap (G2), which acts as a buffer to ensure complete replication before the M
phase.

1.1.1 The G1 Phase

The G1 phase begins early in the life of a daughter cell, after the mother cell has divided in
the preceding M phase. During this time, the cell grows and, more important, “licensing”
is carried out to prepare for replication during S phase.
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Licensing occurs at the origin recognition complex (ORC) [10], as seen in Fig. 1.2A.
The ORC is made up of a single group of six proteins that bind to the DNA at an ori-
gin [11]. Two additional proteins (Cdc6 and Cdt1; left out of Fig. 1.2A) assist the ORC
in recruiting minichromosome maintenance (MCM) 2-7 hexamer rings onto the DNA [12].
Loaded hexamers form pairs oriented away from each other [13]. Each such pair will later be
referred to as “potential initiators,” or just “initiators.” After licensing, the resulting set of
proteins associated with the origin is called the pre-replication complex (pre-RC). Licensing
is suppressed during the S and G2 phases by cyclin-dependent kinases. This suppression
effectively limits the cell cycle to a single replication event [1].

1.1.2 S Phase

The second phase in the cell cycle is S phase. The activation of cyclin dependent kinases
(CDKs) suppresses licensing and marks the transition from the G1 phase to the S phase [1].
After licensing is completed in the G1 phase, the copying of the genome occurs during S
phase. There are three main processes that happen during S phase: initiation, elongation,
and coalescence, as shown in Fig. 1.2B.

An origin initiates (or “activates,” or “fires”) during S phase when five other proteins
bind to each in a pair of MCM2-7 rings: Cdc45 and the tetrameric GINS complex2 (only
Cdc45 is shown in Fig. 1.2A). The total system of proteins is called the CMG complex
(Cdc45, MCM2-7, GINS complex) and comprises a helicase that traverses the genome dur-
ing S phase. As an origin fires, the pre-RC disassembles and the activated pair of heli-
cases unwind, separating the double helix of the dsDNA into two complementary ssDNA
chains [15].

After an origin has been initiated, there is a small region of ssDNA bounded on either
side by the CMG complex helicases. The locations where the dsDNA is separated into two
ssDNA chains are called replication forks (or just “forks”). Elongation is the process by
which the replication forks, with the help of the biological machinery stored in the CMG
complex [16], propagate bidirectionally from the origin, separating the dsDNA. As the forks
propagate, DNA polymerases bind with the ssDNA between them. DNA polymerases use
the ssDNA as a template and backbone for synthesizing dsDNA; essentially, it adds the
missing half back onto the separated strand. DNA polymerase can only propagate in the 3′

direction. This poses a problem: Because the two strands in dsDNA are oriented in opposing
directions, the polymerase can smoothly traverse only one of the ssDNA chains (the “leading
strand”) at each fork. On the other strand (the “lagging strand”), the polymerase “stutters”:
It replicates a small region in the direction opposite to that of fork propagation until it hits
a region that has already been replicated. The DNA polymerase then leapfrogs over and
past the region it just replicated in the direction of fork propagation and repeats. These

2 GINS is an abbreviation of the Japanese go-ichi-ni-san meaning five-one-two-three, which comes from
the names of the four subunits of the complex, Sld5, Psf1, Psf2 and Psf3. [14]
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small fragments are called Okizaki fragments. On the lagging strand, the Okizaki fragments
are connected by DNA ligases [1, 5, 17].

Finally, when two forks meet, coalescence occurs: The helicases disassemble and the two
regions of dsDNA are connected by DNA ligase [1].

Figure 1.2: Simplified schematic of the G1 and S phases of the cell cycle, containing only
those parts that are necessary to understand the model presented in Ch. 3.
A. In the G1 phase, origins are located and licensed when the ORC recruits pairs of MCM2-
7 hexamers onto the dsDNA. During S phase, pairs of Mcm2-7 hexamers are activated by
the Cdc45 protein. After activation, the resulting structures become replicative forks that
traverse the DNA unwinding the dsDNA allowing the DNA to be replicated.
B. More detailed view of S phase. At the start of S phase, several origins are licensed
along the genome (top of image). As time progresses (down), origins fire independently
(initiate), and replicative forks propagate along the genome (elongation). It is common for
some origins to be passively replicated; that is, they can be replicated by the replicative
fork from a neighbouring origin before firing themselves. At the end of the S phase, two
identical and complete sets of dsDNA will be present (bottom of image).

1.2 Origins of Replication

When prokaryotic DNA is replicated, a single origin suffices for a competent (i.e., timely
and accurate) replication program. In this case, the origin is located at a sequence-specific
site, and the firing time need only be early enough for complete replication. However,
eukaryotic DNA requires many origins of replication for a competent replication program.
The number of origins in the genome varies by species, from fewer than 800 in budding
yeast [18] to about 100 000 in humans [17]. If multiple origins exist on the genome,

• What determines the locations of the origins?

• What controls the timing of origin firing?

4



1.2.1 Origin Locations

Depending on the organism, the factors determining origin locations vary considerably. In
Saccharomyces cerevisiae (budding yeast), origins are tightly bound in sequences between
11 and 17 base pairs (bp) in length and are effectively localized [19]. In Schizosaccharomyces
pombe (fission yeast), the origins are loosely associated with sequences between 100 and 200
bp long [17]. The region of potential licensing grows to about 200 kilobase pairs (kb) in
the human genome [20]. In Xenopus laevis (African clawed frog) embryos, the origins are
placed stochastically, with no sequence affinity at all [21].

1.2.2 Origin Firing Times

In favourable environments, prokaryotic organisms exhibit exponential growth, and their
replication program can be quite complex. During exponential growth, the cell cycles
overlap, and more than one S phase can be active simultaneously [22, 23]. However, this
phenomenon is outside the scope of this thesis.

In eukaryotes, the need to initiate multiple origins leads to interesting timing dynam-
ics. The origins do not all initiate simultaneously, with origin-initiation events occurring
throughout S phase [10]. The mechanism that controls the relative timing of different origin
initiation events is still a matter of some debate [19, 24, 25, 26] and is the topic of this thesis.

1.2.3 Budding Yeast

In this thesis, we focus on S. cerevisiae (budding yeast). Budding yeast is a useful model
species because, unlike the other eukaryotic examples we discussed, the origins of S. cere-
visiae are localized. In each cell cycle, origins of budding yeast may be licensed only in
very narrow regions on the genome. These regions are defined by specific sequences in the
genome, called autonomously replicating sequences (ARS elements), that have been iden-
tified and catalogued3 [18]. The mean distance between origins is ≈ 20 kb, and the mean
distance between origins is ≈ 15 kb. The difference between these two statistics is due to the
long, exponential tail in the distribution of distances between origins that can be calculated
from data in OriDB. Thus, the advantage of choosing budding yeast as the model species
is that the potential stochasticity in origin locations has conveniently been removed from
consideration.

Previous studies of the firing times of individual origins in budding yeast have found a
correlation between the median firing times and the width of the firing-time distributions [19,
9]. Both studies measured the average firing time and the spread in firing times for each
origin in budding yeast and discovered a correlation between them (see Fig. 2.4). Essentially,
origins that tend to fire early have narrowly defined firing times, while those that tend to
fire late have loosely defined firing times. This trend implies the existence of a mechanism

3An online database can be found at http://cerevisiae.oridb.org/
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that strongly controls the firing time of origins at the start of S phase but loses its potency
as S phase progresses.

One theory that explains this observation is the Multiple Initiator Model, which supposes
that the number of MCM2-7 hexamers loaded on an origin will affect the timing width and
median for that origin. The MIM will be discussed in detail below in Sec. 2.3.

1.3 Modelling Replication

To recap, DNA replication begins at origins which, in budding yeast, are localized spatially
but whose firing times exhibit stochasticity. Once an origin has fired, replication forks
traverse the DNA bidirectionally, enclosing a growing region of replicated DNA between
them. When two regions of replicated DNA meet, they coalesce into a single, larger region.

This process can be mapped to a crystallization process in one dimension (Fig. 1.3):
Crystallization starts when the crystal nucleates at nucleation sites, which map to origins of
replication. From nucleation sites, the crystal grows bidirectionally, and the crystal domain
is surrounded by boundaries that can be mapped to the replicative forks. Finally, when
two crystal regions meet they coalesce into a larger region, which matches the coalescence
of neighbouring regions of replicated DNA. This mapping of DNA replication to crystal
growth is a formal mathematical one, not a physical one. It means that one can easily
adapt well-developed stochastic models from crystal growth dynamics to describe DNA
replication kinetics.

Figure 1.3: Comparison between the one-dimensional KJMA crystallization model and
DNA replication. At left is the one-dimensional crystallization process, with round markers
representing nucleation sites, and arrows representing crystal boundaries (pointing in the
direction of propagation). Thick lines represent crystal regions, and thin lines liquid regions.
Right: DNA replication process, as described in Fig. 1.2.

Early in the 20th century, Kolmogorov [27], Johnson and Mehl [28], and Avrami [29,
30, 31] independently developed a stochastic model to describe crystallization growth in
three dimensions. Since its inception, the “KJMA model” has been used for many stud-
ies that range from phase transition kinetics [32] to Rényi’s car-parking problem in one
dimension [33]. In 2002, J. Herrick et al. introduced a KJMA-like model of DNA repli-
cation to analyze experiments on X. laevis embryo extracts [34]. In 2005, the KJMA-like

6



model was expanded, and a formalism which can be used to infer the replication program
of a genome given a set of parameters that describe the speed of replication forks and the
origins’ locations in time and space [35, 36].

One of the quantities that can be inferred using the KJMA formalism is the replicated
fraction, f(x, t). The replicated fraction can be interpreted as the probability that the
genome at position x has been replicated by a time t after the start of S phase. The
replicated fraction is an important quantity that will be discussed more in Sec. 2.1.

1.4 Experiments Measuring Replication

The theory describing DNA replication has been driven by experimental results. In this
section, we ask, How can DNA replication be observed experimentally? There are several
techniques to help answer this question, including flow cytometry [37], DNA combing [7],
microarray [38, 39], and sequencing experiments [9, 37]. When designing an experimental
procedure to measure DNA replication, there are two main considerations to take into
account: the temporal scope and the spatial scope of the desired measurement.

There are two experimental approaches to study the time course of replication. The
first is to synchronize the cell cycle. A common way to do this is to arrest the cell cycle [40].
Arresting usually entails using a chemical bath to stop the cells from progressing from one
phase to another (for experiments related to DNA replication, this is generally just prior
to entering the S phase). After the cell cycle has been arrested, another chemical bath
can be used to force the entire population of cells to enter the S phase synchronously.
The main drawbacks to this approach are that it is difficult to arrest many species of
eukaryotic organisms and that, although arresting will stop a cell from moving through
the cell cycle, it will not stop a cell from growing. Because arrested cells continue to grow
and acquire resources without replicating, cells that have been arrested may not remain
synchronized [40]. This loss of synchronicity may explain the observation that uncertainty in
measurements from arrested cell populations grows with time (discussed in Sec. 3.2.1). The
second approach is to forego arresting the cell cycle and pull samples from an asynchronous
population. The main drawback to this method is that it either creates time-averaged data
or it relies on multiple techniques to infer the timing information. For this research, the
first strategy was investigated.

Spatially, approaches range between two extremes: perfect resolution down to the scale
of individual base pairs and no spatial information. At one extreme, some experiments infer
quantities that are averaged over the entire genome. For example, a common flow-cytometry
technique called fluorescence-activated cell sorting (FACS) [37, 41] measures only the total
amount of DNA in the cell. Techniques such as FACS provide only limited information but
are simple and fast. At the other extreme, techniques such as DNA sequencing and DNA
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microarrays can spatially resolve windows as small as 1 kb4 [37]. Experiments with this
level of resolution are quite complex but provide tremendous insight toward understanding
DNA replication. For this research, highly resolved DNA sequencing data were investigated.

Because of their impact on the research presented in this thesis, microarray and se-
quencing experiments will be discussed in more detail. Both experiments were designed
to maximize spatial resolution, and both can use either a synchronous or an asynchronous
population.

1.4.1 Microarray Experiments

Microarray experiments are high-throughput experiments that count the genome of entire
populations of cells simultaneously [38]. They start with a microarray chip5 and a popula-
tion of cells. The population of cells is allowed to grow in an isotopically dense medium,
then arrested at G1. The cells are then transferred to an isotopically light medium and
allowed to replicate. This way, replicated DNA is lighter than DNA that has not repli-
cated. The DNA of the population is fragmented, separated by mass, and hybridized with
the chip. Then, the replicated fraction is given by the relative intensities of the two sets
of hybridization data. Depending on the temporal scope of the experiment, the measured
replicated fraction can be time-averaged, f(x), or in the case of an arrested population, it
can be the replicated fraction for a specific time, ti after the start of S phase, f(x, t = ti).

Because this technique measures entire populations, microarray experiments do not pro-
vide information about cell-to-cell variability. More importantly, microarrays suffer from
artifacts that can be challenging to overcome. For example, in 2008, McCune et al. mea-
sured replication fractions that spanned only 80% of the possible values [39]. In his PhD
thesis, Yang discusses possible sources of this artifact such as poor discrimination between
replicated DNA and unreplicated DNA [42].

1.4.2 Sequencing Experiments

A sequencing experiment determines the precise sequence of base pairs contained in the
input segment of DNA [41]. To measure the replicated fraction using sequencing, one must
start with with the fully mapped genome of the organism in question. The DNA from
a population of cells to be measured is harvested and broken into segments about 50 bp
long [9]. Each segment is sequenced and matched to the previously mapped genome. By
doing this for a number of sequences such that the total length of sequenced genome is many
times greater than the total length of the genome in question, one can be reasonably certain
that each base-pair has been measured equally. Therefore, the normalized histogram of reads
over the genome then provides the replicated fraction: Regions that have not replicated are

4 Sequencing experiments can measure at a resolution of a single base pair [41], but when measuring
DNA replication, the data are histogrammed in bins of 1 kb.

5actually, many chips.
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measured approximately once, and regions that have replicated are measured approximately
twice.

Except for the actual process of measuring how many of each segment of DNA are
present in the sample, sequencing experiments and microarray experiments are very similar.
The process of arresting cells, or not, is the same for both, as is the broad analysis of
the output. However, sequencing experiments do not require any clever data-processing to
remove artifacts such as those present in microarray experiments. Recent advances lowering
the cost of sequencing have seen a transition from microarray experiments to sequencing
experiments for measuring DNA replication [43].

1.5 Reading This Thesis

Here, we give a brief outline of the thesis.
Chapter 2 - Motivation. We summarize the mathematical details of the KJMA-

like model that describes DNA replication and describe its use to calculate the replicated
fraction from a theoretical model. We then discuss the development of the Sigmoidal Model
and the correlation between the firing time width and the firing time median of an origin
that it revealed. This correlation led to the creation of the Multiple Initiator Model (MIM),
which we describe. Finally, we introduce the recent experimental work done in N. Rhind’s
lab that measured loaded MCM. These experiments measured lower number of MCMs than
assumed by the MIM. With this chapter, we motivate our work in measuring the effect of
small numbers of MCMs on the MIM.

Chapter 3 - Methods. We discuss the MIM simulator program, which was used in
our analysis of the Multiple Initiator Model. We start by outlining the simulation process
in detail and motivate the assumptions and choices we made. Our discussion of the MIM
simulator transitions into an analysis of noise; our simulations produce data similar to
experiment, including the level of noise. We estimate the noise in current cutting-edge
sequencing data, and compare that to the noise in our simulation. Because the noise in
experiment exceeds the noise in our simulated data, we introduce two methods of increasing
the noise in our simulations: One method is based on experimental limitations, and the other
method involves adding Gaussian noise.

Chapter 4 - Results. We outline the four investigations we undertook in our explo-
ration of the effect of small numbers of MCMs on the MIM. We started with preliminary
single-origin measurements comparing the analytical MIM to simulated data as a quick
investigation. These simple measurements indicated that there is a large effect and moti-
vated the topic of this thesis. Next, we redesigned our methodology and performed more
single-origin measurements. Third, we simulated Chromosome I of budding yeast. In this
investigation, we measured how the fit from MIM changes when it is forced to have high or
low numbers of MCMs. The results from our third investigation contradicted our findings
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from the first two. To resolve the contradiction, we simulated artificial genomes containing
two, three and four origins. In these multiple-origin simulations, we observe two trends
that contribute such that inferences made with the MIM grow in accuracy as the number
of origins increases.

Chapter 5 - Conclusions. We discuss the implications of our results and suggest new
directions for this research.
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Chapter 2

Motivation

Previous work on quantitative modelling of DNA replication has investigated the timing
of origin initiation [19, 26, 9, 44, 45]. In 2010, Yang et al. developed the “Sigmoidal
Model,” which uses three parameters per origin (position, median firing time, and spread
in firing time) to describe the replication program of budding yeast [19]. After fitting these
parameters to microarray data, the authors observed a correlation between the median firing
time and spread in firing time. This result (discussed in detail in Sec. 2.2) was confirmed
by Hawkins et al., who used a similar model to analyze sequencing data in 2013 [9].

The work of Yang et al. led to the development of a second analytical model, “the
Multiple Initiator Model” (MIM) [19], which we present in Sec. 2.3. The MIM proposes a
biological hypothesis that explains the observed correlation between median firing time and
spread in firing time. The benefit of the MIM over the Sigmoidal Model is that the MIM
uses only two parameters per origin to define the replicated fraction, effectively removing
one-third of the parameters from the model.

However, recent work performed in N. Rhind’s laboratory1 [46] has shown that one part
of the scenario assumed in the MIM may not be biologically realistic (Sec. 2.4). The purpose
of this thesis is to explore the impact of these new experimental data on the MIM. This
chapter will expand on the above story.

2.1 Replicated Fraction

In Secs. 1.3 and 1.4, we saw that the replicated fraction, f , can be calculated from theoreti-
cal models and inferred from experiments. The replicated fraction as a function of time and
space, f(x, t), can be interpreted two ways: as describing either a single cell or a population
of cells. In the single-cell case, f(x, t) is interpreted as the probability that the sequence at
position x in the genome has replicated by a time t after the start of S phase. For a popu-
lation of cells, f(x, t) represents the fraction of cells in the population that have replicated

1 The Rhind laboratory is at the University of Massachusetts Medical School in Worcester MA, USA.
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at position x by a time t after the start of S phase. Although the two interpretations of f
might seem equivalent, we will see in Sec. 2.3 that they are subtly different. Both definitions
lead to a function that has values ranging from zero (no replication has occurred), to one
(replication has certainly occurred).

2.1.1 Qualities of the Replicated Fraction

Before we describe in detail the KJMA-like model of DNA replication, we will build some
valuable intuition. In DNA sequencing experiments, the replicated fraction is measured
spatially in windows about 1 kb wide and temporally in steps of 5 minutes [9]. Since the
budding-yeast genome has about 600 origins of replication and is about 12 Mb long, origins
are, on average, spaced every 20 kb [18, 47]. The distribution of inter-origin distances that
can be calculated from the data in the origin database2 [18] shows that ≈ 10% of origins are
within 2 kb of each other. Thus, a spatial resolution of 1 kb is narrow enough to uniquely
identify and observe the majority of origins individually. However, there are generally no
more than ten time points measured experimentally [9, 37, 39]. (Indeed, the data analyzed
in Sec. 3.2.1 have only six.) Fortunately, this amount of temporal data is enough to infer
the important features of the replication program.

Figure 2.1 shows an example set of replicated fraction data. The data come from
measurements done on Chromosome IV of budding yeast by Hawkins et al. [9]. We will
now provide a simple explanation of the experimental processes that produced the data in
Fig. 2.1. Two populations of cells were synchronized by arresting the cells and releasing
them into S phase. FACS was applied to one population to generate the average replicated
fraction over the entire genome at six times throughout S phase. The DNA of the other
population was fragmented and sequenced, which provided a relative measure of where the
genome had been replicated (more sequences from a region means that region has replicated
in more cells within the population). Finally, the sequencing data was normalized such that
the average replicated fraction over the genome was equal to that observed with FACS. The
reader may notice a few features in the data in Fig. 2.1: there are gaps in the spatial data;
the replicated fraction ranges lower than zero and higher than one; and some regions of the
genome replicate faster than others.

The gaps in Fig. 2.1 exist because of a limitation of the sequencing experiment used
to gather this data. Sequencing experiments match short sequences of DNA to the fully
mapped genome (Sec. 1.4.2). The budding yeast genome contains repeated patterns, defined
here as sequences longer than 50 bp that appear more than once [48]. When a sequence of
DNA extracted from one of these patterns is measured, it is not counted because it cannot
be uniquely located.

2http://cerevisiae.oridb.org/
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Figure 2.1: Example graph of replicated fraction. Data from chromosome IV of budding
yeast, as measured by Hawkins et al. ([9] supplementary data). x-axis represents the spatial
organization of the genome as if it had been stretched out straight. y-axis is the replicated
fraction. Six time points.

The replicated fraction in Fig. 2.1 has a range that goes below zero and above one. This
surprising feature results from two assumptions: first, that the measured sequences were
evenly distributed spatially; and, second, that all cells have the same average replicated
fraction at the time measured, f(t = ti). In [9], Hawkins et al. extracted and measured
about 107 sequences. However, because of counting statistics and because sequences may
be unevenly distributed, there will be regions of the genome that are sequenced more and
regions that are sequenced less. Additionally, Hawkins et al. normalized the measured
replicated fraction by setting the average replicated fraction, f(t = ti), equal to the repli-
cated fraction measured using FACS on the bulk sample. This normalization assumes that
the measured cells have the same average replicated fraction as the population measured
with FACS. The error in regions that have been over-extracted or under-extracted can be
exaggerated by normalizing incorrectly, leading to values of f greater than one or less than
zero.

The most important observation is that some regions of the genome start replicating
much earlier than others. This can be seen in the peaks in Fig. 2.1; for example, at
x ≈ 910. Because replication starts at an origin and propagates outward, peaks in the
replicated fraction imply early replication and, hence, the presence of origins. Additionally,
early origins should create stronger peaks, and late origins should create weaker peaks.
Finally, neighbouring origins that initiate at similar times may not lead to distinct peaks
in f(x, t).

2.1.2 Calculating Replicated Fraction from the KJMA Formalism

The replication program is defined by the origins through their spatial and temporal organi-
zation. The speed at which the replicative forks propagate also plays a role in determining
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the replicative program. Based on the work of Jun et al. [35], here we outline estimation
of the replicated fraction from data describing the origins of replication and the replicative
forks.

We define the rate of initiation, I(x, t), to be the number of origins initiated per time
per genome length at an unreplicated position x, and time t after the start of S phase. Of
course, initiation can happen only at origins of replication. In budding yeast, origins are
localized at known locations [18], labeled xi. Therefore, we define the rate of initiation at
origin i to be Ii(x, t) = δ(x− xi)Ii(t), where δ(x) is the Dirac δ function. Finally, we define
the rate of initiation to be I(x, t) =

∑
i
Ii(x, t).

Figure 2.2: KJMA approach to calculating f(x, t). In order for the point at (x, t) to not
have been replicated, there cannot be any initiation events within the shaded triangle.

Given the function I(x, t), we can infer the replicated fraction, f(x, t), at a position x a
time, t, after the start of S phase:

f (x, t) = 1−
∏
∆

[
1− I

(
x′, t′

)
∆x′∆t′

]
, (2.1)

where the product is over intervals ∆x′∆t′ lying within the “past triangle” shown in Fig. 2.2.
In words, Eq. 2.1 says that the probability that the genome at position x has been replicated
is one minus the probability that no origin has fired long enough in the past to have a
replication fork pass over position x. In the limit ∆x→ 0 and ∆t→ 0, Eq. 2.1 becomes

f (x, t) = 1− exp

− ∫∫
∆

dx′dt′I
(
x′, t′

) . (2.2)
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Now, it is possible to define a new quantity, g(∆xp, t), that is a local measure of origin
firing:

g (∆xp, t) =
xp+1∫
xp

dx
∑

i

δ (x− xi)
t∫

o

dt′Ii
(
t′
)

(2.3)

over the region ∆xp ≡ [xp, xp+1) of a genome of length, L, discretized into M segments;

∆x = L

M
xp = p (∆x) p = 0, 1, 2, . . . ,M − 1 . (2.4)

g(∆xp, t) = 0 if there are no origins enclosed in ∆xp because initiation will only occur at an
origin. Thus, we replace the double integral in Eq. 2.2 by the function g(∆xp, t) and arrive
at

f (x, t) = 1− exp

−M−1∑
p=0

g

(
∆xp, t−

|x− xp|
v

) , (2.5)

where v is the speed of replication forks, ∆xp is the pth interval, xp is the pth position, and
|x− xp| /v is the time at the edge of the past triangle in Fig. 2.2.

Recognizing that g(∆xp, t) represents the initiation rate of budding yeast, we can con-
strain it to better describe the biological system: First, we constrain g such that replication
cannot happen before the start of S phase; g(∆xp, t < 0) = 0. Second, we constrain the
initiation rate to be non-negative. Because of the definition in Eq. 2.3, this constrains g as
well: d

dtg(∆xp, t) ≥ 0. Thus, as a consequence of the first two constraints, g(∆xp, t) ≥ 0.
Finally, we derive the cumulative initiation probability, Φ(xp, t), from g(∆xp, t) using a

calculation similar to that used for a Poisson process [49]:

Φ (xp, t) = 1− e−g(∆xp,t) . (2.6)

The cumulative initiation distribution is an important quantity that will be revisited below,
in Sec. 2.3. Note that Φ(xp, t) is a general function that can be defined throughout the
genome, but in the case of budding yeast is nonzero only for intervals [xp, xp+1) that contain
an origin.

2.2 The Sigmoidal Model

The sigmoidal model is a phenomenological approach to characterizing each origin. Devel-
oped by S. Yang as part of his PhD thesis, this model assumes that the functional form of
Ii(t) is a sigmoidal function that has a range from zero to one and that is defined by three
parameters for each origin, i, on the genome [19, 42].
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Figure 2.3 shows the preliminary observations that motivated the sigmoidal model.
First, the replicated fraction3 at an origin, f(x = xi, t), was extracted from experimental
data of the entire genome, f(x, t) (Fig. 2.3A). The figure shows the analysis of microarray
data [39]. Second, a sigmoidal curve was fit to f(x = xi, t) (Fig. 2.3B). This sigmoidal curve
is parameterized by the median replication time, trep, and by the spread of replication times,
twidth:

f(t) = 1
1 +

(
trep

t

)r , (2.7)

where twidth is defined by
twidth =

(
31/r − 3−1/r

)
trep . (2.8)

One can see in Fig. 2.3C the correlation between trep and twidth. However, this ap-
proach ignores interactions between neighbouring origins and their effects on f(x = xi, t);
these parameters may not describe intrinsic properties of the origins. Thus, the correlation
may not be due to a biological process controlling the origins, but because of coincidental
interactions due to their relative positions and firing times.

To better analyze the data, Yang developed the Sigmoidal Model, an analytical method
for quickly calculating the replicated fraction over the whole genome, f(x, t). The model
calculates f(x, t) from a set of origins defined by three parameters (xi, t(1/2)

i , and t(w)
i ). The

parameters t1/2 and tw, which define intrinsic properties of the origins, are analogous to trep
and twidth respectively. (trep and twidth are inferred directly from replicated fraction data
and do not take into account overlapping replication regions, whereas t1/2 and tw do take
into account the overlap in replicated regions. This difference can be seen by compairing
the spread of data points in Figs. 2.3C and 2.4.) Thus, t1/2 and tw are defined by Eqs. 2.7
and 2.8 as well [42]. With this, the entire set of experimental data was used to characterize
every origin simultaneously (not illustrated).

Figure 2.4 graphs the intrinsic t1/2 vs tw calculated from fitting the Sigmoidal Model
to microarray data. Notice that the strong correlation between timing width and median
observed in the crude analysis of Fig. 2.3C is present in the intrinsic parameters as well.
This correlation means that early origins have narrowly defined firing times, while late
origins have loosely defined firing times. An implication is that there is a mechanism that
controls origin firing time that is strong at the start of S phase but weakens as S phase
progresses [42]. This observation suggested the Multiple Initiator Model (MIM).

2.3 The Multiple Initiator Model

The MIM, in its simplest form, assumes that each origin has a given number of potential
initiators that may be initiated during S phase [42]. If each of these potential initiators

3 Yang used the term “replication fraction” in his thesis.
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Figure 2.3: Schematic of the initial analysis of budding yeast data that led to the creation
of the Sigmoidal Model.
A. Sample replicated fraction: smoothed data from microarray measurements of Chromo-
some I (solid lines) [39]. The black triangles indicate the locations of previously identified
origins [50]. Data from the replicated fraction at a single origin (grey region) at a time were
analyzed.
B. Equation 2.7 fitted to the extracted replicated fraction at an origin. The fit function
has parameters, trep and twidth, which are shown.
C. Scatter plot of origin parameters from fitting the replicated fraction at every origin re-
veals a correlation. The dashed line shows twidth = trep. Figure reproduced with permission
from S. Yang [42].

has equal opportunity to fire, then origins with large numbers of initiators should tend to
fire earlier than origins with few initiators. Effectively, origins with more initiators loaded
will tend to fire earlier in S phase than origins with fewer pairs. However, it is important
to note that other factors, such as chromatin structure (the three-dimensional organization
of the genome), can affect the relative firing times of origins [51]. For example, because of
chromatin structure, some regions of the genome are less accessible and the proteins that
make up the replication machine may be impeded, slowing the loading of MCMs during G1
phase and delaying their activation during S phase.
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Figure 2.4: Scatter plot of origin parameters from fitting the replicated fraction of the
entire genome with the Sigmoidal Model reveals a correlation. Solid points are specific
origins identified for discussion in Yang’s thesis. Figure reproduced with permission from
S. Yang [42].

2.3.1 MIM Basics

One hypothesis for the biological mechanism that makes up a potential initiator focuses
on the MCM2-7 hexamer pairs loaded at each origin. During licensing, the ORC can load
MCM2-7 hexamers in excess [52]. A simple hypothesis (that will be discussed in Sec. 3.1.1)
is that initiators are loaded as a Poisson process: MCM2-7 hexamers are loaded at an origin
individually with some probability determined by the affinity of that origin. We define the
average number of initiators loaded at the ith origin to be ni, and, the actual number of
initiators to be Ni (thus, Ni is a random number that differs each cell cycle and ni = 〈Ni〉).
We assume that Ni is Poisson distributed, an assumption we motivate in Sec. 3.1.1.

During S phase, the initiators are activated by the addition of Cdc45 and the GINS
complex. The MIM assumes that each initiator has the same cumulative probability of
firing as time progresses through S phase, given by

Φ0(t) = 1

1 +
(

t∗
1/2
t

)r∗ , (2.9)

where t∗1/2 is the median firing-time for a single initiator and where r∗ sets the width of
the distribution. These variables are global, defining the behaviour of every initiator on the
genome. From this assumption, the cumulative probability that an origin with N loaded
initiators has fired is

Φeff(t,N) = 1− [1− Φ0(t)]N . (2.10)
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From Eq. 2.10, the replicated fraction can be inferred from a set of global parameters
(fork velocity, time, t∗1/2, r

∗, and two parameters defining the noise in the experimental
data) and two parameters per origin (its position on the genome, and the number of ini-
tiators it loads). We start by calculating the effective cumulative firing time distribution,
Φ(eff)

i (x, t,Ni) for each origin, i. Next, we invert Eq. 2.6,

ln
(
1− Φ(eff)

i (xi, t, Ni)
)

= −g(∆xp, t) , (2.11)

and sum over every origin in the genome,

∑
all origins i

[
ln
(
1− Φ(eff)

i (x, t,Ni)
)]

= −
M−1∑
p=0

g(∆xp, t) , (2.12)

to calculate the initiation rate for the entire genome. Finally, we can replace the exponent
in Eq. 2.5 with the left-hand side of Eq. 2.12. Using this process, Yang fit the parameters
listed above to microarray data as part of his PhD research [42]. (When Yang’s research
was undertaken, sequencing experiments were not yet common.)

Equation 2.10 calculates the effective cumulative probability distribution of an origin
with N loaded initiators. This is a property of a single cell, with a single value for N . In
Sec. 2.1, we mentioned that there is a subtle difference between the single-cell interpreta-
tion and the population interpretation of the replicated fraction. If the number of loaded
initiators at an origin does not change between cell cycles (i.e. N = n), then the two
interpretations are equivalent and Eq. 2.10 applies to large cell populations as effectively
as a single cell. However, if N varies among cell cycles, the two interpretations diverge.
Equation 2.10 then becomes

Φeff(t, n) = 1− 〈[1− Φ0(t)]N 〉 , (2.13)

where 〈· · · 〉 denotes the ensemble average over Pn(N).

2.3.2 Accounting for variability in N

Given the many factors that affect the ability of the ORC to load MCM2-7 initiators onto
DNA [52], it is reasonable to assume that the number of initiators will vary over cell cycles.
Thus, we need a way to evaluate Eq. 2.13 to calculate Φeff(t, n).

In this thesis, we assume that initiators are loaded as a Poisson process. This means
in a large population of cells, if a particular origin has a mean number of initiators, n, the
standard deviation of N will be

√
n [53]. Therefore, as n grows, the relative fluctuations

within the population shrinks as n−1/2. Thus, for large-enough n, we can neglect fluctuations
in n and Eq. 2.10 becomes accurate. Indeed, in his thesis, Yang assumed n was large and,
therefore, that P (Ni) = δ(Ni−ni) was accurate [42]. However, recent experimental evidence
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suggests that, typically, n ranges between one and five, which is not as large as curvefits
based on the MIM assume.

2.4 Experimental Measurement of the Number of Initiators

The MIM makes a strong hypothesis about the physical mechanism controlling origin firing
times during S phase. In particular, its predictions about the relative number of MCM
pairs at a given origin can be checked experimentally. Here, we describe recent experiments
performed by Das et al. that constitute a first attempt to estimate relative and absolute
numbers of loaded MCM pairs in budding yeast [46]. The work was unpublished at the
time the thesis was written and was kindly made available by N. Rhind.

Das et al. made several measurements to test the MIM. First, they measured the
relative number of initiators loaded at each origin; according to the MIM, origins that
fire earlier should have more initiators than those that fire later. The relative number of
initiators indicates which origins have more initiators, but cannot measure exactly how
many initiators there are (i.e., it can say that origin a has twice as many initiators as origin
b but cannot differentiate between na = 2, nb = 1 and na = 200, nb = 100). Second,
Das et al. measured the effect of reducing the number of initiators at an origin; according
to the MIM, reducing the number of loaded initiators should delay the mean firing time
of that origin. Third, they measured the average absolute number of initiators loaded on
a particular early origin; according to the MIM, an early-firing origin should have many
initiators loaded, on average.

2.4.1 Relative Number of Initiators

To measure the relative number of initiators, Das et al. used ChIP-seq in a population
of G1-arrested cells. ChIP-seq (Chromatin immunoprecipitation followed by sequencing)
is a technique that profiles genome-wide DNA-binding proteins, histone modifications or
nucleosomes [54]. Das et al. used ChIP-seq to measure the number of MCMs bound
to budding yeast DNA. In this case, Das et al. prepared the experiment such that the
output provided a measure of the relative number of MCM proteins loaded throughout the
genome. Figure 2.5A shows the relative number of MCM proteins in Chromosome X of
budding yeast. The peaks align with origins identified in OriDB [18]. Figure 2.5B shows
the relative number of MCM2-7 hexamers loaded at an origin vs. the n value predicted
from the MIM in 2010 [19]. After ignoring origins that are believed to fire late due to
their location in chromatin structure (blue origins in Fig. 2.5B) [55], Das et al. observed
a correlation between the number of initiators and the theoretical parameter n calculated
by the MIM. This measurement confirms the first prediction made by the MIM, that the
number of initiators loaded correlates with origin firing times.
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Figure 2.5: Results from ChIP-seq experiments measuring the relative number of loaded
MCMs throughout the budding yeast genome.
A. ChIP-seq measurements for Chromosome X from G1 arrested wild-type cells. Red his-
togram shows uniquely located reads, grey is multiply-located reads. Circles along x-axis
show the locations of identified origins.
B. Scatter plot of ChIP-seq data at origins over the entire genome vs their n values cal-
culated from the MIM. The firing times of blue and red origins are believed to be affected
by chromatin structure [51]; green are not. Some origins are labeled with double circles.
These labels refer to other parts of the data presented by Das et al., but not presented here.
ARS1 origin is labeled with text. Line represents the best linear fit to green dots (r = 0.56,
r2 ≈ 0.31). Figure reproduced with permission from N. Rhind [46].
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Figure 2.6: Replication profiles of various origins. Many of the origins are outside the scope
of this discussion. ARS1 and ARS1∆B2 are shown as the thick black and thick grey curves
respectively. The removal of the B2 element of ARS1 causes that origin to fire, on average,
13 minutes later in S phase. Note that, on the y-axis, f = [Relative copy number] − 1.
Figure reproduced with permission from N. Rhind [46].

2.4.2 Suppressing the Loading of Initiators

To evaluate the effect of suppressing the loading of initiators on the replication program,
Das et al. measured the replication profile of ARS1 and the ARS1-∆B2 mutant. The ARS1
origin is known to be early firing [18] and should therefore have a relatively high number
of initiators. Because the B2 element of ARS1 takes part in the recruitment of Mcm2p,
the ARS1-∆B2 mutant (which has the B2 element removed) reduces MCM2-7 loading [56].
The expectation, based on the MIM, is that the mutant ARS1-∆B2 will have a later mean
firing time because of the reduced number of initiators loaded. By measuring the replicated
fraction of cells with both wild-type and mutant ARS1 origins independently, Das et al.
saw a marked (13 minute) delay in the average replication timing of ARS1 caused by the
∆B2 mutation (Fig. 2.6).

2.4.3 Number of Initiators Loaded

Das et al. engineered several special plasmids and used them to measure the average number
of initiators loaded at an early firing origin. A plasmid is a small loop of dsDNA that is
separate from the genome and that is replicated independently [1]. On each plasmid was
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Figure 2.7: Quantization of data from a western blot experiment that measured the amounts
of MCM, ORC and Zif268 present in populations of G1 arrested plasmids and G2 arrested
plasmids. The left-most column shows that, on average, there are about 3 initiators loaded
at ARS1 during the G1 phase. Figure reproduced with permission from N. Rhind [46].

engineered one of a selection of origins (plasmids were separated into populations such that
each plasmid in a given population contained the same origin). One of the six proteins in
the ORC and one of the six proteins in the MCM2-7 hexamer were tagged, so that their
relative average numbers could be measured with western blotting. In order to calculate
the absolute average numbers of MCM2-7 hexamers and ORCs, Das et al. normalized the
measurements using a zinc-finger protein. The normalization was possible because Zif268,
the so-called “zinc-finger protein,” binds to a specific 10-bp sequence of DNA with sub-
nanomolar affinity [57]. By including a single instance of the Zif268 binding sequence in the
plasmid, Das et al. concluded that each plasmid had exactly one Zif268 protein bound to it.
From a population of G1 phase arrested cells, the engineered plasmids were extracted and
the relative number of ORCs, MCM2-7s and zinc-finger proteins measured and normalized
such that the average number of zinc-finger proteins was one.

The results of Das et al. for the ARS1 origin are particularly instructive. Figure 2.7
shows the average number of MCM2-7 hexamers (one initiator is a pair of these) loaded
on ARS1, and the average number of loaded ORCs during G1 arrest and G2 arrest. The
conclusion is that there are n ≈ 3 MCM pairs on the ARS1 origin during G1 arrest. It is
important to restate that the MIM does not report absolute n but rather gives relative n. In
other words, the value for n reported by the MIM is proportional to the number of unique
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chances an origin has to fire. Thus, the fact that the number measured by Das et al. does
not match that predicted by the MIM is not immediately troublesome. However, the small
number of initiators, means that cell-to-cell variability can be important. The question we
set out to answer with this research is, thus, How does cell-to-cell variability in the initiation
factor affect the replication program?
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Chapter 3

Methods

In this chapter, we outline the tools we used in our investigation of the impact of variability
in the initiation factor on the MIM. The primary tool that we developed for our investiga-
tion is the MIM simulator, a Monte Carlo program that simulates DNA replication. A great
deal of effort went into the details of the simulation program to ensure it efficiently produces
meaningful results: We ensured the randomly generated numbers were distributed properly.
We adopted the phantom-nuclei algorithm, an efficient way to simulate the replicated frac-
tion [35]. We rewrote key parts of our code in a low-level programming language, C++,
to increase performance. We simulated measurements consistent with current experimental
results [9].

Except when noted, all computations were performed in IGOR Pro Version 6.3.6.4.

3.1 The MIM Simulator

The MIM simulator takes as inputs a set of parameters nearly identical to those defined
by the MIM. There are four global inputs: the elapsed time since the start of S phase
tsim, the speed of replicative forks v, the median firing time t1/2, and r, which defines the
width of the cumulative firing time distribution. There are also two local parameters per
origin: the position xi and the average number of initiators ni. This set of parameters is
not identical to those outlined in Sec. 2.3 because, as we will describe in Sec. 3.2, noise was
not treated the same way. The simulator uses these parameters to generate the replicated
fraction, f(x, t = tsim), over the entire genome. The simulation does this over several sets
of parameters for which only tsim changes by steps of 5 minutes, thereby efficiently creating
data comparable to those from sequencing experiments.

The MIM simulator has three modules (see Fig. 3.1): The preparation module sets
the randomly distributed parameters. The phantom-nuclei module uses those parameters
to calculate f(x, t = tsim). The housekeeping module tracks progress, calls the preparation
and phantom-nuclei modules, and analyzes the results. Note that while the preparation and

25



the phantom-nuclei modules both simulate only a single cell at a time, the housekeeping
module loops over many cells to find the average behaviour of a population. These three
modules will be discussed in more detail below.

MIM Simulator

User Inputs

Housekeeping Module

Done?

Preparation Module

generate {Ni}generate {ti,j}

Loop over 
population

Phantom-Nuclei Module

Pre-process

Loop over tsim

Done?

Calculate {xi
(L)} 

and {xi
(R)}

Select origins with 
ti < tsim

Coalesce

Add NoiseAnalysis

Outputs

N

N

Y Y

Figure 3.1: Flow chart illustrating the MIM simulator structure. The program contains
three modules: The housekeeping module loops over every cell in the population being
simulated, calls the preparation and phantom nuclei modules, adds noise to the results and
performs analysis. The preparation module generates two sets of random data, the number
of initiators at each origin and the firing times of each initiator. The phantom-nuclei module
pre-processes the data passed to it, and calculates the replicated fraction for each time step
using the phantom nuclei algorithm, which itself is broken into three steps.
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3.1.1 The Preparation Module

The preparation module is a Monte Carlo program, one whose output depends on random
numbers [58]. For the preparation module of the MIM simulator, we need two sets of
random numbers: First, the program requires a set of absolute numbers of initiators, {Ni},
for all origins i. Second, the program requires a set of firing times, {ti,j}, for each initiator j
loaded at each origin i. For both sets, we took care to ensure that the generated values were
properly distributed to match MIM theory (Sec. 2.3). The preparation module is analogous
to the licensing process undertaken in the G1 phase of the cell cycle (Sec. 1.1.1).

The first task of the preparation module is to randomly generate {Ni}, the set of absolute
numbers of initiators at all origins i for the cell being simulated. Thus, the first choice we
made in creating the simulator was how the values for Ni should be distributed, given their
average ni. In Sec. 2.3.1, we mentioned that a simple hypothesis is that initiators are loaded
onto an origin as a Poisson process; if this is the case, the number of initiators should be
Poisson distributed. This simple model, which assumes initiators are loaded at a constant
rate and loading events are not correlated, is easily implemented. However, we are unaware
of any experiments that have measured the distribution of the number of initiators over
different cell cycles.

In discussion with collaborators, another hypothetical distribution was considered. Sev-
eral studies have shown that histone modification1 is correlated with origin locations [59,
60, 61]; origins tend to be in open, easily accessible regions of the DNA We hypothesis that
the accessibility also affects the rate of initiator loading, and that the first initiator at an
origin may load much faster than additional initiators. One way to implement qualitatively
this idea would be to enforce a minimum probability for loading at least one MCM2-7 pair.
In an extreme case, this probability would be one.

We chose to use the Poisson distribution for setting the number of initiators at an origin
for two reasons: First, without experimental evidence to motivate the selection of a complex
model, the simple model is preferred. Second, since we are testing the efficacy of the MIM,
which assumes constant n, the Poisson distribution represents a worst-case scenario: It
includes the possibility of loading zero initiators, and having zero initiators leads to the
largest perturbation from the assumption made in the MIM. Therefore, the preparation
module selects the number of initiators at origin i from a Poisson distribution defined by
the average ni.

The second task of the preparation module is to assign a firing time to each initiator
on the genome. This is different from assigning a firing time to each origin: If there are
k origins, then the number of initiators is given by

∑k
i=0Ni = K. Therefore, K randomly

generated firing times are required. The MIM dictates the desired firing time distribution
of an initiator, which we derive from the cumulative firing time probability shown in Eq. 2.9

1 Histones are small proteins that combine to form large, octameric structures. These structures play a
role in organizing DNA into its three-dimensional structure in the cell [1].
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(and again in Eq. 3.1).
Φ0(t) = 1

1 +
(

t∗
1/2
t

)r∗ , (3.1)

where t∗1/2 and r∗ are global parameters defining, for a single initiator, the median firing
time and the spread in firing times, respectively. Recognizing that Φ0 goes from zero (when
t = 0), to one (when t → ∞), we can use inverse transform sampling [62] to randomly
generate firing times that reproduce the desired cumulative firing time probability. If we
generate u, a uniformly distributed number between zero and one we can transform that to
be distributed as desired with

F (u) =
t∗1/2(

1
u − 1

) 1
r∗

, (3.2)

where F (u) is the firing time. This will produce random numbers that exhibit a cumulative
probability distribution given by Eq. 3.1. A histogram of 105 samples from the transforma-
tion coincided satisfactorily with the cumulative fire-time distribution, implying that the
method is sound. After all K firing times are generated, the time of the first-to-fire initiator
at each origin is kept because each origin can only fire once; thus, the firing time of the
origin i is given by the firing time of the earliest initiator min{tj}i.

3.1.2 The Phantom-Nuclei module

Based on work done by S. Jun et al., the phantom-nuclei algorithm we used in the simulation
is a powerful tool for calculating replicative data from a set of parameters describing the
origins of replication in the KJMA formalism [35]. Figure 3.2 illustrates the key features of
the phantom-nuclei method. There are three major steps in our phantom nuclei module:
pre-processing the parameters, simulating replication, and compiling the replicated fraction.
In taking these three steps, the phantom nuclei module quickly calculates the regions on
the genome of a single cell which have been replicated. These steps have been separated for
the sake of clarity; however, there is some overlap between them in our implementation to
increase performance.

The strength of the phantom nuclei algorithm is that it pre-processes the origin data
it receives. To reduce the amount of work needed to fully simulate the replication process,
the program removes origins that are passively replicated (“phantom” nuclei) from the
simulation. As we mentioned above, we designed the simulator to loop through many
values of tsim. The algorithm starts by calculating the state of replication at the highest
value for tsim, t(max)

sim . We start at t(max)
sim because that is when every meaningful event

will have occurred: origins have fired or not, and every passively replicated origin can be
identified.

When pre-processing, the program calculates the positions {x(L)i } of the left forks and
{x(R)i } of the right forks originating from all origins i. Calculating these positions is done
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Figure 3.2: Schematic of the Phantom Nuclei algorithm. Only the active origins (Black
circles) are considered during simulations. Open circles correspond to passively replicated
origins (“phantom” nuclei). The algorithm outputs the replicated fraction, which is one in
replicated regions (ellipses at top) or zero in unreplicated regions (black line at top).

via simple kinematics:
x

(R
L)

i = xi ± v × (tsim − ti) , (3.3)

where the right fork is given by the sum and the left fork by the difference, and where the
bracketed term calculates the time since the origin fired. As a part of pre-processing, any
origins for which ti > t

(max)
sim are immediately removed from the simulation, as they will not

contribute to the replicated fraction. Once the algorithm calculates the set of fork locations,
the forks from each pair of neighbouring origins are analyzed to determine which origins
are passively replicated. Any phantom nuclei are removed from the simulation (open circles
in Fig. 3.2). Pre-processing is finished when only active origins (black circles in Fig. 3.2)
are left in the simulation. Pre-processing is computationally expensive, but for complex
genomes will dramatically decrease the calculations needed for the second step, and the
number of calculations needed for this process on simple genomes is small.

The second step of the phantom nuclei algorithm is taken at every time step. During
the simulation step, the algorithm performs three major calculations: First, it selects which
origins will fire by comparing their firing times to the current value of tsim; only origins with
ti < tsim will fire. Second, using Eq. 3.3, the algorithm calculates two sets of fork positions
({x(L)i } and {x

(R)
i }) from the origins selected in the first step. These two sets of fork data

are used to define replicated regions on the genome. Third, it analyzes the replicated regions
defined by the two sets of fork data, and identifies where replicated regions overlap (i.e.,
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coalescence has occurred). Any overlapping regions are combined. This step is analogous
to the S phase of the cell cycle, including initiation (selecting cells that fire before tsim),
elongation (calculating fork positions), and coalescence (combining overlapping regions), as
described in Sec. 1.1.2.

Immediately after any overlapping replicated regions are coalesced, the algorithm com-
piles the replicated fraction. Therefore, the replicated fraction is compiled at every time
step in the simulation. To compile the replicated fraction, the algorithm simply loops
through the replicated regions defined by {x(L)i } and {x

(R)
i } and sets the replicated fraction

for the cell to one inside those regions and zero outside. Although this process may sound
straightforward, we were unable to do it without nested loops, which significantly slowed
the simulation process when coded in the IGOR Pro language. For this reason, this step
was written both in IGOR and in C++. When we simulated large data sets early in our
work (Sec. 4.1.1), we called the C++ function as an external program. Using this external
function increased performance 8 fold.

3.1.3 The Housekeeping Module

The simulation described above calculates the replicated fraction on the entire genome of
a single cell. However, we are investigating sequencing data that are acquired by averaging
over a large population. Therefore, the housekeeping module is designed to loop over a
population calling the preparation and phantom nuclei modules for each cell. The resulting
data are then averaged.

A powerful feature of the housekeeping module is that it can be easily modified to an-
alyze and alter the simulated replicated fraction fsim. In Ch. 4, we discuss how we used
the housing module to alter fsim by adding noise to best recapture the noise observed in
experiment. Additionally, we discuss two different analyses of fsim: We fit the MIM param-
eters to fsim, and calculated the difference between fsim for Chromosome I and experimental
measurements of Chromosome I.

3.1.4 Qualities of the MIM Simulator

The MIM simulator is a powerful tool for generating the replicated fraction of a population
of cells with known {ni}. The Monte Carlo process used in the MIM Simulator calculates
the replicated fraction as the average of a population of cells. Therefore, the larger the
population, the better the averaging and the more confident we are in the data. It may seem
simple to use the MIM simulator instead of the analytical MIM shown in Sec. 2.3. However,
simulating the replicated fraction to the accuracy needed for a fit takes many thousands
of single-cell measurements to average over, and this is computationally expensive. By
contrast, a single calculation with the analytical MIM will produce the desired fit function.
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Figure 3.3: Example output of Chromosome IV from the MIM simulator. x-axis is the
position in the genome. y-axis is the replicated fraction.
A. Data averaged over 100 cells, no artificial noise.
B. Data averaged over 100 cells, Gaussian noise added according to the procedure outlined
in Sec. 3.2.3. Parameters for the simulation were taken from [19] supplementary data.

Thus, the MIM simulator is not a good replacement for the analytical MIM; rather, it is a
tool to measure the efficacy of the analytical MIM in the small-n regime.

One of the strengths of our program is its modular structure: It is simple to change
the probability distribution of {Ni} (currently Poisson distributed) or {tj}i (currently dis-
tributed as described above). Additionally, doing new analysis is simply a matter of creating
a new function that the housekeeping module can call.

Figure 3.3 shows two examples of the replicated fraction of Chromosome IV generated
by the MIM Simulator.2 Both simulations were over a population of 100 cells. Figure 3.3A
shows data output from the program as described so far. Below, we describe how and why
we generated the noisy data presented in Fig. 3.3B

2 Figure 2.1 shows the replicated fraction of the same chromosome measured with DNA sequencing [9].
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3.2 Analyzing Noise in the Data

For our initial investigations, we chose to do simulations of many simple artificial cells.
However, as we discuss in Sec. 4.1.2, this was not a good choice because this method does
not scale well to complex cells. Because of this problem, we created simulations that were
limited in population size and accuracy to reflect current experimental standards. We
expected that limiting the population size would increase the noise enough to make a good
comparison with experiment. However, as we show below, the experiment has noise beyond
that due to finite sample size.

3.2.1 Estimating Experimental Noise

Here, we analyze data from a sequencing experiment investigating the replicated fraction of
budding yeast performed by Hawkins et al. in 2013 [9]. In their experiment, Hawkins et al.
used DNA sequencing to calculate the replicated fraction of two strains of budding yeast:
wild-type budding yeast and a mutant with three origins of replication removed. Figure 2.1
shows their results for Chromosome IV of the wild-type genome. Notice that the noise
in the experiment leads to replication fraction estimates that lie outside the possible range
between zero and one. Our goal was to create simulated replicated fraction data that closely
resembles data from sequencing experiments. To do this, we need to include noise in our
data commensurate with that seen experimentally and must therefore estimate experimental
noise.
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Figure 3.4: Mean point-by-point difference between wild-type and mutant replicated frac-
tions for each chromosome at each time step. Each set of axis is for a different time after
the start of S phase (labeled). y-axis shows the mean difference. x-axis is the chromosome
label. Note that no data are shown for Chromosomes VI, VII, and X, because they were
not analyzed due to their mutations. Data derived from [9] supplementary data.
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Following the process used by Yang et al. ([19], supplementary material), we analyzed the
experimental data to estimate the uncertainty in the measured replicated fraction. Ideally,
we would estimate the noise distribution for each data point by analyzing data from an
experiment that has been repeated many times. Unfortunately, Hawkins et al. did not
publish any repetitions of their data set. Therefore, we worked with two measurements we
assume to be in close agreement: the wild-type budding yeast and the mutant budding yeast
measurements reported in [9]. Since the mutation removed only three origins, we assumed
that the replication profiles between the wild-type and mutant measurements would be
the same, except on the chromosomes with missing origins (Chromosomes VI, VII, and
X). Thus, we compared the remaining 13 of the total 16 budding yeast chromosomes.
To estimate the distribution of fluctuations, we considered how the differences between
the experiments, calculated point-by-point, were distributed. Figure 3.4 shows the mean
difference for each chromosome (x-axis) at each time step (separate axis, labeled). Since the
differences vary in time, they are analyzed at each time step separately. Within each time
point the fluctuations are much more stable, except for a downward trend in Chromosome
III. Thus, in addition to the three chromosomes that were mutated, Chromosome III was
removed from our analysis.
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Figure 3.5: Histograms of the point-by-point difference between wild-type and mutant data
(∆f) and Gaussian fits. Each set of axis is for a different time after the start of S phase
(labeled). y-axis shows the normalized distribution. x-axis shows difference. Grey circles
are calculated from experiment [9]. Black lines show the best Gaussian fit. Note that data
from Chromosomes III, VI, VII, and X have been excluded (see text). Data derived from
supplementary data from [9].

After removing the data from the four chromosomes mentioned, we compiled histograms
for the six time steps measured. These histograms (shown in Fig. 3.5) estimate the prob-
ability distribution between the two noisy measurements. To properly duplicate the noise
of a single experiment, we need the distribution of a single noisy measurement. From
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elementary properties of the variance, two independent random variables A and B have
Var[A − B] = Var[A] + Var[B]. If the two measurements are equally noisy, the standard
deviation of the differences is

√
2 times larger than the standard deviation of a single mea-

surement. Our estimates of the noise are shown as open circles in Fig. 3.6.
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Figure 3.6: Scatter plot of estimated σ vs time since the start of S phase for experimental
data and simulation data. Open circles show experimental estimates. Black circles show
simulation estimates. Crosses show calculated values for σadd (Eq. 3.4) Squares show es-
timates from sequencing simulations. Dots show estimates from simulations with added
Gaussian noise.

There are three features of the histograms in Fig. 3.5 to note. First, unlike the microarray
data that Yang et al. analyzed, the histograms extracted from sequencing data are Gaussian
distributed. This implies that the data from sequencing experiments are better suited to
analysis with the MIM, since the MIM is fit to experimental data assuming Gaussian-
distributed noise [19]. Second, the standard deviation evolves as time progresses. This
is expected: Early in the replication program and late in the replication program, many
of the cells will be mostly unreplicated and mostly replicated respectively. Therefore, we
expect that the noise will be diminished at early time and late time. Third, the mean of
the Gaussian fits evolve dramatically as time progresses. We believe this is due to a global
systematic error in the data, potentially the reported time since the start of S phase, or a
possible global effect of the mutation that removes origins from Chromosomes VI, VII, and
X.

In addition to measuring the distribution of the point-by-point differences in experimen-
tal data, we measured the correlation length. Figure 3.7C shows the autocorrelation of the
differences after the mean difference had been subtracted. We observe two features in the
autocorrelation function. There is a delta function at ∆x = 0, implying that the noise is
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Figure 3.7: Autocorrelation of experimental data and data from three simulations of the full
budding yeast genome. Graphs show data from each measurement over time (total 6). No
trend over time was observed. A. Autocorrelation of simulated data of a population of 100
cells. B. Same as A, with artificial noise added as described in Sec. 3.2.3. C. Autocorrelation
of experimental data over the full genome (calculated from [9] supplementary data). D.
Autocorrelation of simulated data of a population of 1000 cells, taking only one tenth of
the genome per cell (100-fold coverage).

uncorrelated at each point. However, there is also a non-negligible tail, implying long-range
order in the experimental data. We expect some amount of long-range order due to the
mechanics of the replication process: Replication propagates through space in a predictable
way (via replication forks). Therefore, f(x, t) directly influences f(x + ∆x, t + ∆t), which
leads to long-range order.

3.2.2 Estimating Simulation Noise

Now that we have estimated noise level in current sequencing experiments, we would like to
use those data to ensure our simulated replicated fraction has noise commensurate with ex-
perimental data. Two steps were taken to make this happen: the first based on experimental
procedures, the second by artificially adding Gaussian noise.

The first step taken to make our simulated data similar to experimental data was to
limit the size of the population of simulated cells. As we mentioned above, the Monte Carlo
program operates by taking the average of many cells, which is very similar to sequencing
experimental techniques. In their experiment, Hawkins et al. extracted 10–25 million 50 bp
sequences [9]. Over the genome of 12 Mb, that is equivalent to 50-to 100-fold coverage per
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base. Therefore, we limited our simulations to a population of 100 cells to get equivalent
coverage. Because we do not know the source of the evolution of the mean difference (shown
in Fig. 3.5) and because we want to keep this program relatively simple, we did not attempt
to account for this evolution or the possible desynchronization of cells over time.
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Figure 3.8: Histograms of the point-by-point difference between two sets of simulated data
(∆fsim). Each set of axis is for a different time after the start of S phase (labeled). y-axis
shows the normalized distribution. x-axis shows difference. Grey circles are calculated from
experiment. Black line at t = 15 shows the best Laplace distribution fit. Black line at
t = 30 shows the best Gaussian fit.

We generated two simulated replicated fraction functions over the entire genome from
100-cell populations (parameters were set using results from the MIM [19]). These two
functions were used to estimate the noise in the simulation, σsim, using the same process as
outlined in Sec. 3.2.1. Figure 3.8 shows the distributions of the difference between the two
sets of simulated data at each time step. There are two noteworthy observations: First,
because we chose a simple approach that assumes perfect synchronicity and timing, the mean
difference between the two simulations is zero. Second, there is an evolution in the noise
from near-Laplace distributed at early time, to near Gaussian, and back to near-Laplace
distributed. The Laplace distribution, P (x) = 1

2b exp
(
− |x|b

)
, governs the difference between

two independent identically distributed exponential random variables [63]. Figure 3.6 shows
our estimation of the noise in simulation.

Is the noise in simulations distributed differently from the noise in experiment? To
address this concern, we qualitatively investigated a possible source of the noise. We know
that the greatest uncertainty in replicated fraction will coincide with the presence of forks of
replication: While regions that replicate early and regions that replicate late will simulate
a replicated fraction of primarily ones and primarily zero respectively, regions that are in
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the process of replicating will return both values. Therefore, we measured the average
number of replicated regions across the genome over simulation time (Fig. 3.9). Except
when a fork has hit the end of the chromosome, the number of forks is twice the number of
replicated regions. We observed a peak in the number of replicated regions, and hence forks,
at 30 minutes after the start of S phase. This time coincides with the time at which the
distribution of the simulated noise is most Gaussian (Fig. 3.8). Thus, noise in simulation
is Laplace distributed when the number of forks is small, and adding more forks makes
the distribution more Gaussian. This may be explained by the fact that the time between
initiations of early-firing origins will be exponentially distributed (because the exponential
distribution describes the time between events that are Poisson distributed [64]), leading to
differences that are Laplace distributed. However, when many origins are active, the central
limit theorem tells us that the differences will tend toward a Gaussian distribution [65].
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Figure 3.9: Histogram of the number of replicated regions per cell in the simulation. x-axis
shows tsim in minutes.

3.2.3 Adding Gaussian Noise to the MIM Simulator

We changed two features of the noise in simulation to better produce noise commensurate
with experiments. First, as shown in Fig. 3.6, the statistical noise that arises from the
random sampling of the Monte Carlo process is not large enough to match the noise we
estimated for the experiment. Second, the experimental data has noise that is uncorrelated
(shown by the peak at ∆x = 0 in Fig. 3.7C) at each point that is lacking in the simulation
over a population of 100 cells ( Fig. 3.7A). Therefore, we added extra uncorrelated noise to
the simulated data to match the levels we found in Sec. 3.2.1. To add the noise, we used
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our estimate of the uncertainty from the simulation, σsim, then calculated the amount of
Gaussian noise we had to add, σadd, such that the resulting uncertainty matched the desired
values:

σadd =
√
σt

2 − σsim2 , (3.4)

where σt is the experimental noise calculated for the simulated time t from experimental data
(Sec. 3.2.1). The resulting values of σadd were added to our simulations in the housekeeping
module, after the phantom-nuclei module was finished.
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Figure 3.10: Histograms of the point-by-point difference between two sets of simulated
data with artificially added Gaussian noise (∆fsim). Each set of axis is for a different time
after the start of S phase (labeled). y-axis shows the normalized distribution. x-axis shows
difference. Grey circles are calculated from experiment. Black lines show the best Gaussian
distribution fit.

Figure 3.7B shows the autocorrelation function for the simulated data with artificial
noise. With the addition of the noise, we have acquired the delta function at x = 0 but
lost much of the long-range order. To understand the effect that creates the long-range
order in experiment, and potentially improve our simulation, we tried a second approach
to creating noise. This approach, called the “sequencing simulation,” simulates 1000 cells,
records only one tenth of the data, and does not add any artificial noise. With this method,
the simulation is closer to sequencing experiments which sample 50 bp sequences from an
effectively infinite population. Analysis of the point-by-point difference shows a similar
evolution from Laplace-distributed noise to Gaussian (figure not shown). The estimated
standard deviations, shown as black squares in Fig. 3.6, are closer to the experimental
estimates than our initial simulation but do not coincide. However, as shown in Fig. 3.7D,
the correlation length is shorter in this case than in the simulation with added noise.
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In the end, we chose to artificially add noise to a simulation of 100 cells. Adding artificial
noise has three main benefits: First, it effectively increases the uncertainty in the simulated
data to match that seen experimentally. Second, by adding artificial noise, the distribution
of differences between simulations is much closer to the distribution of differences between
experiments, with both being approximately Gaussian (compare Figs. 3.5 and 3.10). Third,
it is about 10 times faster than simulating 1000 cells and takes one tenth of the data. The
estimated standard deviations from the simulations with artificial noise (shown as dots in
Fig. 3.6) are within one percent of those estimated from experimental data.

To better include noise in simulations, the two features discussed above need to be
addressed. We believe a better understanding of the experimental procedure and its sources
of error would help with both of these. Given that the analysis above shows adding Gaussian
noise makes the simulation noise match experimental noise much more closely, we believe the
presented method is an effective first approach to incorporating noise in the MIM simulator.
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Chapter 4

Results

In this chapter, we outline our investigations into the effect of small n on the Multiple
Initiator Model. Using the MIM simulator described in Ch. 3, we performed four major
investigations.

Our preliminary investigation was a single-origin comparison between the analytical
MIM and the MIM Simulator. We defined a parameter that measures the difference be-
tween the replicated fraction from simulation and from the MIM. In Sec. 4.1.1, we use this
“difference parameter” to show that the fluctuations in absolute numbers of initiators, Ni,
due to small average numbers of initiators, ni, does create a disagreement between the an-
alytical MIM and the MIM simulator proportional to n−1. The presence of this error and
its large tail motivated further study into how small n affects the MIM.

In our second investigation, we developed a new metric for measuring the error in the
MIM at low n. The difference parameter defined in Sec. 4.1.1 does not scale to more than
one origin. Section 4.1.2 outlines the new method which consists of simulating the replicated
fraction for a single origin of fixed n, followed by using the MIM to find the value of n that
best fits the simulated data. The results of this investigation show that our first approach,
while qualitatively in agreement, may overestimate the difference between the MIM and the
simulation.

Third, we progressed to simulating and fitting the more complex Chromosome I. We
started by fitting parameters with the MIM to data from DNA sequencing [9]. We fit two
sets of parameters by fixing t1/2 as high and low, forcing the MIM to produce small and
high n respectively. Using the parameters from the fits, we then simulated the replication
of Chromosome I. By calculating the root-mean-squared difference between simulated data
and experimental data, we showed that the two simulations are effectively indistinguishable
from each other. Additionally, analysis of the fit parameters shows that the small-n values
are proportional roughly to the large-n values.

The surprising results from our third investigation motivated additional work that we
use to argue why the MIM is inaccurate for a single origin but produces good chromosome-
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wide results. We expanded our single-origin analysis to a genome with two origins and more
and show that multiple origins interact to reduce the inaccuracy in inferences made by the
MIM.

4.1 Single-Origin Investigations

Our early work consisted of single-origin simulations intended to motivate further study. In
2014, we received the results discussed in Sec. 2.4 from N. Rhind’s lab [46]. As mentioned,
these results called into question the assumption that the average number of initiators
loaded on origin i, ni, is large enough to ignore variations in the number of initiators loaded
on origin i during a particular cell cycle, N (j)

i . (Recall that when the MIM was developed, it
was assumed that, due to relatively small fluctuations, P (Ni) = δ(Ni− ni) was an effective
distribution.) Therefore, our first goal was to discover whether or not simulations of small n
agreed with the MIM predictions for small n. In this naive investigation, discussed further
below, we developed the “difference parameter,” a metric to measure the difference between
the simulated and predicted f(x, t, n) of a single origin. The investigation shows that the
difference parameter decreases as n−1 and motivated the deeper research presented in this
thesis.

The single-origin investigations that followed our preliminary work consisted of simulat-
ing f(n) and fitting the MIM parameters to the result. Thus, our metric changed from the
difference parameter to a comparison between the simulated nsim and the fitted nfit. With
these investigations, we refined the simulation program to run more efficiently and to create
data similar to that measured in sequencing experiments. We show that our new metric
reveals a qualitatively similar behaviour for the MIM; the difference between nsim and nfit
goes approximately as n−1/2. We attribute the change in the rate to the change in how the
metric is defined.

4.1.1 The Difference Parameter

When starting this project, we performed a quick investigation into the difference between
fsim(n) and fMIM(n) for a single origin. To generate fsim(n), the MIM simulator calcu-
lated the average replicated fraction from ≈ 106 sequences, producing data with very little
statistical error (in contrast to the noisy data shown in Sec 3.2). The global parameters
used for the simulation were set equal to those measured previously by fitting the MIM to
microarray measurements of budding yeast [19]. The difference parameter was then defined
to be

DP = max
x

∆P (x)
P

, (4.1)

where ∆P (x) is the difference between fsim(n) and fMIM(n) (illustrated in Fig. 4.1), and P
is the peak value of fMIM(n).
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Figure 4.1: Schematic of the difference parameter calculations. Coloured lines represent
the difference parameter for different values of n. Triangles show the parameter values in
the corresponding inset graphs. A. Replicated fraction simulation and theory curves of an
artificial genome with a single origin at [position]= 50 kb for n = 10; DP = 0.037. B. Same
as A for n = 5; DP = 0.062. C. Same as A for n = 1; DP = 0.264. Also illustrated in C
is the value ∆P (x) at the peak. Note that ∆P (x) is defined over the entire domain.

Figure 4.1 shows the analysis process of the difference parameter for a single origin.
First, fsim(n) and fMIM(n) were calculated over several time steps and n ranging from 1 to
128. Example replicated fractions are shown in the insets of Fig. 4.1. From these data, we
calculated DP (n, t), shown in the main graph of Fig. 4.1. Note the value for DP “saturates”
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Figure 4.2: Saturated difference parameter vs. n. The large uncertainty in low n arises
because the simulation time is too short to accurately measure the saturated difference
parameter. The line is proportional to n−1 ([Saturated Difference Parameter] ≈ 0.3

n ).

as t increases; we call this value the “saturated difference parameter.” Figure 4.2 shows1

our measurements of the saturated difference parameter as a function of n. The large noise
for low values of n is due to the difference parameter not saturating before the end of the
simulation. This effect can be reduced by increasing the simulation time, however we felt
the data presented was strong enough motivation to move forward with our research. For
this reason, we did not acquire more precise data for the saturated difference parameter.
This initial investigation showed the saturated difference parameter decreases as n−1.

From our initial investigation, we concluded that the difference parameter grows quickly
with decreasing n. Therefore, we suspected that the MIM will not produce accurate results
in the case that n is small. These results motivated the in-depth research into the effect of
small n on the MIM that follows.

4.1.2 Biased Fits

The definition of the difference parameter does not scale to more than one origin. The
saturated difference parameter is measurable only when the theory curve has a peak value
near one. Additionally, the difference parameter is defined to be a single value for the whole
simulated genome; therefore, we cannot infer anything about more than one origin. Thus,

1 The reader may notice a change in the n values displayed in the graphics. Fig. 4.1, the saturated
difference parameter as a function of n, is illustrative but contains old data; the data are accurate, but
were not analyzed further. After producing that graph we used a slightly different set of parameters in the
simulation and changed the range of n simulated when producing Fig. 4.2.
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Figure 4.3: Scatter plot of nsim vs. nfit for simulations of a large population. Red circles
show the data. Dashed line shows unity.

we developed a second investigation that measures the bias in parameters inferred with the
MIM from a simulation of small n.

In this investigation, we first calculated fsim(n) and then fit the parameters of the MIM
to the result. Thus, we have two parameters: nsim, the value for n input to the simulation,
and nfit, the value for n that results from the MIM fit. Initially, we performed these
measurements using simulations of large populations of sequences (about 106 and more 100
kb sequences). Figure 4.3 shows the preliminary results from this investigation on large-
population simulations. The graph is a scatter plot of nsim vs. nfit, the dashed line shows
unity. As we expected, the bias is relatively large for low nsim, but decreases as nsim grows.
However, even using a C++ module to increase performance, these simulations were slow
and were far more precise than the current experimental standard (Sec. 3.2). Therefore, we
limited our simulations as described in the previous chapter; in this way, we simulated data
comparable to those generated experimentally.

In Sec. 3.2, we outlined the process used to generate noisy data. We used the MIM
Simulator to generate fsim(nsim) with noise and used the MIM to fit the parameters to
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Figure 4.4: Scatter plot of nsim vs. nfit for noisy simulations of a single origin. Red dots
show data from 50 simulations at each value nsim. Blue circles with error bars show the
mean and standard deviation of the mean. Dashed line shows unity. Inset. Scatter plot of
the percent difference ([nsim − nfit]/nsim) vs. nsim. [Dashed line] = 0.315/√nsim.

that data. Figure 4.4 is a scatter plot of nsim vs. the resulting nfit. In this case, because
of the increased noise in the simulated data, we performed this procedure fifty times per
nsim value (red dots). The blue circles show the mean for each value of nsim. Here, we
see that the bias is largest for small nsim, and decreases as nsim grows, in agreement with
our earlier investigation. In the inset to Fig. 4.4, we show the percent difference given by
[nsim − nfit]/nsim. The dashed line shows 0.315/√nsim, but that trend is presented only for
comparison with the difference parameter.

The data shown in Fig. 4.4, which comes from fitting the MIM to artificially noisy
simulated data, shows the behaviour we expect: The MIM works poorly when n is small,
and better when n increases. With these results assuring us the program is sound, we
continued our research exploring the same process on genomes with multiple origins.

4.2 Simulations of Chromosome I

Our results from single-origin simulations indicate that the MIM does not perform well in
the small-n regime for a single origin. However, in eukaryotes, origins are not alone: as
we discussed in Ch. 1, replication in eukaryotes starts at many origins. In this section, we
investigate the replicated fraction of Chromosome I and do not observe the same reduction
in accuracy. Using the same process as our single-origin investigation, we simulated the
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Position (kb) 38.3 72.6 124.2 155.6 174 216
Small n 1.65 1.93 2.3 2.5 5.7 1.5
Large n 10.2 12 14 16 36 9

Table 4.1: High and low fitted values for n on Chromosome I. Top row shows the fixed
positions of the six fitted origins. Center row shows the values of n when t1/2 = 40. Bottom
row shows n from a fit with t1/2 = 90. Small n vs Large n is plotted in Fig. 4.7

replicated fraction of Chromosome I of budding yeast and then used the MIM to infer
nfit values at each origin. For this investigation, we used the same simulation method as
described above for the noisy single-origin analysis, except that the genome size and origin
parameters were chosen to represent Chromosome I.

The origin parameters were fit with the MIM to the replicated fraction for wild-type
budding yeast reported by Hawkins et al. [9]. To test the effect of small n, the fitted
parameter t1/2 was fixed at a high value (90 minutes) to produce high values for n and
at a low value (40 minutes) to produce low values for n. To be sure that any effects we
observed were due only to the fitted values of n, the origin positions were fitted once then
held constant for the second fit. The resulting values for n at each origin can be seen in
Tab. 4.1.

We simulated the two sets of parameters that resulted from the high-n and low-n fits.
The resulting replicated fractions are shown in Fig. 4.5. To quantify the quality of the two
fits, we calculated the root mean squared difference ∆frms between each replicated fraction
and the experimental data. We simulated each set of parameters fifty times and averaged
∆frms at each time step over the fifty simulations. Figures 4.6A and B show ∆frms(x, t)
for high and low n respectively and Fig. 4.6C shows the average value for each time step,
∆frms(t). Surprisingly, and in contrast to the results presented so far, these data imply that
the quality of the MIM fits is nearly identical2 for large and small n.

Further, we were interested in the relationship between the large-n values from the
fit and the small-n values from the fit. The MIM does not claim that n is the absolute
number of initiators on an origin; rather, the fitted parameter should be proportional to
the absolute number of initiators. If this is true, the values for low-n and high-n should
be linearly related. Our suspicion, based on the results of our single-origin investigation,
was that the relationship would not be linear but go approximately as n−1/2. However, our
results from fitting to Chromosome I seem to contradict this suspicion. Indeed, Fig. 4.7A
shows that the relationship is linear: nsmall ∝ nlarge.

Using the same technique as outlined in Sec.4.1.2, we used the MIM to calculate nfit
values for each origin that we simulated on Chromosome I. For the six origins we simulated,

2 We observe a trend for high-n simulation to be slightly more accurate than low-n simulations; however,
the error bars show the standard deviation of the mean of 50 simulations. Thus, the trend is well within the
noise of a single measurement.
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Figure 4.5: The replicated fraction of Chromosome I from experimental data ([9] supple-
mentary data), and simulations with high n and low n.

we calculated the percent difference between nfit and nsim (shown in Figs. 4.8 B and D).
The trend we observe in the single origin case of decreasing percentage difference with
increasing n is no longer present. Our measurements of Chromosome I indicate that the
MIM is approximately equally effective for both high-n and low-n.

We suspected that the spatial organization of the origins in Chromosome I played a role
in the observed equality in the fit. Therefore, Fig. 4.7B shows the percentage difference as
a function of location within the genome. We do not observe any meaningful pattern in
this plot.

4.3 Neighbouring Origins Reduce the effect of Small n

The results shown in Sec. 4.2 appear to contradict the results from the previous, single-origin
investigations. What is different between the single-origin simulations and the simulations
of Chromosome I? The immediate answer is that the number of origins has changed from
one to six. Perhaps then, contributions from multiple origins combine to reduce the effect
of fluctuations. Here, we show our investigations of genomes with more than one origin.
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Figure 4.6: Analysis of ∆frms. A. Plot of ∆frms(x) for six time-steps between high n
simulations and experimental data. The gradient goes from light grey (15 min) to black (40
min). Triangles show the positions of origins. B. Same as A between low n simulations and
experimental data. C. ∆frms averaged over the genome vs time since the start of S phase.
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Figure 4.7: A. Scatter plot of Low-n fit values vs. high-n fit values. The line shows the
best linear fit, nlow ≈ 0.16 × nhigh. B. Scatter plot of the percentage difference shown in
Figs. 4.8B and D vs the positions of the origins. Labels show nsim.

4.3.1 Two-Origin Investigation

To test our hypothesis that contributions from multiple origins combine to reduce the
effect of fluctuations on the MIM in the small-n regime, we expanded our single-origin
investigation to a genome with two origins. With the addition of a second origin, there is
a new consideration: By what distance should the two origins be separated? The obvious
maximum distance the origins should be separated is 2vt(max)

sim (v is the speed of propagation
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Figure 4.8: nfit vs. nsim and percentage difference for high n and low n simulations of
Chromosome I. A. Scatter plot of nfit vs. nsim for high n. Dashed line is unity. B. Scatter
plot of the percentage difference between nfit and nsim vs. nsim for high n. Dashed line is
zero. C - D. Same as A and B respectively for low n.

of replication forks) because if they are any further apart, their replicated regions will never
overlap. For our simulations, that is 180 kb. However, it is very rare for an origin to fire
at the start of S phase, so placing the two origins 180 kb apart is too far. We looked to
the fitted locations of origins on Chromosome I shown in Tab. 4.1 acquired by fitting the
parameters of the MIM to sequencing data [9] as a guide. Here, we see the two closest
origins are 18.4 kb separated, and the two farthest origins are 54.2 kb separated. Therefore,
we simulated two origins with equal nsim spaced both 18.4 kb apart and 52.4 kb apart.

Figure 4.9 shows the percent difference between nsim and nfit resulting from these sim-
ulations for n ranging from 2 to 64 compared to single-origins simulations. Contrary to our
hypothesis, these results show that two origins are fitted less accurately than single origins.
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Figure 4.10: Sketch of sub-sequences of Chromosome I used in simulations. Vertical lines
denote chosen edge points for sub-sequences. Circles represent origins. Horizontal lines
represent sub-sequences (number of origins labeled and the full chromosome (labeled). Star
indicates the sub-sequence highlighted in Fig. 4.11.

4.3.2 Multiple-Origin Investigation

The results so far have been surprisingly contradictory: In the single-origin case, the MIM
fits get progressively worse as n decreases. In the many-origin case of Chromosome I, the
MIM fits are equally accurate for both high n and low n. In the two-origin case, the MIM
fits are less accurate than the single-origin case for low n.

To explore the transition from the inaccurate 2-origin system to the accurate 6-origin
case, we simulated sub-sequences of Chromosome I containing 2 origins, 3 origins, and 4
origins. Figure 4.10 illustrates how the sub-sequences were selected with divisions occurring
directly in the middle3 of neighbouring origins. There may be better selection criteria for
where the endpoints of sub-sequences should fall; for example, the fifth origin has higher n
than both of its neighbours; therefore, it will have a larger region of influence than they.
However, as the results will show, in addition to its simplicity, this method is effective.

3 Because of a calculation error, the second division was 4 kb off the midpoint. This should not have a
strong impact on the results.
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Figure 4.11: Scatter Plots of nfit vs. nsim for two, three and four origins for high n and low
n. Open circles show low-n data. Black circles show high-n data. Dotted lines in right-most
graphs show a single sub-sequence of four origins. Dashed lines show unity.

We simulated the sub-sequences of Chromosome I using the n values shown in Tab. 4.1.
Figure 4.11 shows a scatter plot of nfit vs. nsim for two-origin (left), three-origin (middle),
and four-origin (right) sub-sequences (shown in Fig. 4.10) of Chromosome I in the high-n
(black circles) and low-n (open circles) regimes. The two dotted lines show the four origins
on a single sub-sequence labeled with a star in Fig. 4.10. In this data, we observe two
trends: First, as the number of origins in the sequence increases, inferences made with the
MIM grow in accuracy. While between high n and low n, the accuracy is still better in the
high-n regime, we suspect that as n grows the difference will become negligible. Second,
as illustrated by the dotted lines in Fig. 4.11, we observe that origins in the center of the
sequence (surrounded by other origins) are inferred more accurately than origins on the
edges that have a single neighbour only. These two trends together make inferences made
with the MIM accurate for all values of n on chromosomes with many origins.
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Chapter 5

Conclusions

In this thesis, we developed and used the MIM simulator to explore the effect of variation in
initiation factors on the accuracy of the analytical MIM. We presented several investigations
ranging in complexity from simulations of a single origin to simulations of Chromosome I
of budding yeast. From our investigations, we concluded that the inferences made with the
MIM remain accurate even when the number of initiators is low.

Our research was motivated by a recent experiment measuring low numbers of loaded
initiators which contradicts the assumption made in the analytical MIM. Naive interpreta-
tions of the MIM suggest that the MIM should fail when the number of initiators is low. We
started our investigations by analyzing simple single-origin genomes. The results of these
single-origin studies confirmed our suspicions: Inferences made with the MIM become less
accurate as the number of initiators decreases. In contrast, simulations of Chromosome I
of budding yeast showed that these inferences are accurate when the number of initiators is
low. To understand this contradiction, we simulated sequences with multiple origins. From
these simulations, we observed two trends that explain the transition from inaccuracy for
single origins to accuracy for several origins. First, the overall accuracy of MIM inferences
increases with the number of origins. Second, the accuracy is greater for origins in the
middle of a cluster of origins than origins at the edges (i.e., origins with two neighbours are
handled better than origins with only one). Combined, these two observations mean that
inferences made with the MIM on genomes with many origins are equally accurate for any
number of initiators.

We conclude that inferences made with the MIM are accurate for small numbers of
initiators as long as there are many origins. We have provided a qualitative analysis of
multiple-origin simulations that shows that as the number of origins increases, so too does
the accuracy. The positive outcome of this research is that we now have increased confidence
in the MIM approach to analyzing DNA replication data from experiments.
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5.1 Future Considerations

5.1.1 Quantitative Analysis

It is apparent that the next step in this research is to perform a quantitative analysis of how
the contribution of multiple origins acts to mitigate the inaccuracy in inferences made by
the MIM due to fluctuations in initiation factors. Such research could explore two features
of our results: first, a quantification of the accuracy as a function of number of origins and
number of initiators; second, an exploration of how origin spacing and relative initiation
factors between origins in a sequence affect inferences made by the MIM. A successful
investigation along these lines would help future researchers quantify the accuracy of their
measurements made with the MIM for a given genome.

5.1.2 Analysis of Other Organisms

The research presented here was based on the model organism S. cerevisiae. This was a
deliberate choice: because the origins of replication in S. cerevisiae are confined to known
locations, the complexity of the replication process is significantly reduced. However, as we
discussed in Ch. 1, S. cerevisiae is a special case, and it is far more common for origins
to be located diffusely in a region. Therefore, research expanding the MIM to address
stochastically located origins would dramatically increase the number of organisms it can
analyze.

5.1.3 Toward a Biological Research Tool

We believe that in the long-term the culmination of this research will be the development
of a tool for biological research. If the studies described above of multiple origins and
stochastically located origins are successful, the MIM could form the basis of a research
tool for DNA replication. This tool would be used by researchers performing studies of
DNA replication to quickly make inferences about the number of initiators loaded on the
DNA.

5.1.4 Comments About the Simulator

In our investigations, we created a modular program that simulates DNA replication. This
simulation makes use of the KJMA framework discussed in Sec. 2.1.2. As we mentioned
in our discussion of the KJMA, it is a mathematical framework that has a broad range of
applications. Thus, the MIM simulator can address problems described by the KJMA in
one dimension with the addition or replacement of modules within the program. Therefore,
there are many new and peripherally related avenues of research that can be investigated
using our MIM simulator.
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