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Abstract

The prediction of future mortality rates by any existing mortality projection models is hardly to
be exact, which causes an exposure to mortality and longevity risks for life insurance companies.
Since a change in mortality rates has opposite impacts on the surpluses of life insurance and
annuity products, hedging strategies of mortality and longevity risks can be implemented by
creating an insurance portfolio of both life insurance and annuity products. In this project, we
develop a framework of implementing non-size free matching strategies to hedge against mor-
tality and longevity risks. We apply relational models to capture the mortality movements by
assuming that the simulated mortality sequence is a proportional and/or a constant change of
the expected one, and the amount of the changes varies in the length of the sequence. With
the magnitude of the proportional and/or constant changes, we determine the optimal weights
of allocating the life insurance and annuity products in a portfolio for mortality immunization
according to each of the proposed matching strategies. Comparing the hedging performance
of non-size free matching strategies with size free ones proposed by Lin and Tsai (2014), we
demonstrate that non-size free matching strategies can hedge against mortality and longevity
risks more effectively than the corresponding size free ones.

Keywords: relational model; longevity risk; mortality risk; mortality immunization; hedge
effectiveness; surplus
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Chapter 1

Introduction

In this Chapter, we highlight our motivation for doing this project and provide a brief outline
of this project. The difference between the actual mortality rates and the predicted mortality
rates could lead to financial insolvency and distress for insurance companies. Except for the
traditional strategies of transferring mortality and longevity risks through insurance and rein-
surance market or capital market, mortality immunization is an important internal strategy for
insurance companies to minimize the financial impacts due to the mortality movements.

1.1 Motivations

Although numerous studies on improving the accuracy of mortality rate modelling and fore-
casting have been done effectively, the uncertainty of future mortality movements cannot be
fully captured and reflected in the forecasted mortality rates. Due to the difference between
future actual mortality rates and the expected ones (which are used for pricing life insurance
and annuity products), the life insurers and annuity providers are exposed to mortality risk
(the actual mortality rates are higher than the predicted ones) and longevity risk (the actual
mortality rates are lower than the predicted ones), respectively. From historical mortality data
in the past decades, a huge improvement has been shown on mortality rates, which could result
in financial insolvency for annuity providers, pension programs and social security systems. In
addition, unexpected catastrophe, such as earthquakes, tsunamis and hurricanes, would lead to
financial distress for life insurers. As a result, it is important to find an effective method of
hedging the longevity and mortality risks.

Purchasing mortality-linked securities is one of the most popular strategies for hedging longevity
and mortality risks by transferring them to the capital market. Mortality-linked securities which
have been studied in academic field include longevity bonds, q-forwards, survivor swaps, annuity
futures, mortality options and survivor caps. Although purchasing proper mortality-linked secu-
rities can serve for hedging purpose, life insurers and annuity providers have to bear the hedging
costs. Natural hedging for mortality risks uses the characteristic of mortality and longevity risks
that respond reversely to future mortality movements to hedge against unexpected changes in
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future benefits. Mortality immunization provides life insurers and annuity providers with nat-
ural hedging opportunities by a proper allocation of life insurance and annuity products in a
portfolio (Lin and Tsai, 2014). Such natural hedging is an internal strategy with no extra hedg-
ing costs involved for an insurer issuing both life insurance and annuity products.

Interest rate immunization which reduces the impact of interest rate changes on the value of an
investment portfolio has been widely studied in financial field. Duration and convexity match-
ing strategies are two common approaches to hedging interest rate risks for an interest-sensitive
investment portfolio. In the same manner, mortality immunization prevents the negative impact
on the value of surplus of an insurance portfolio due to a change in mortality rates. Tsai and
Jiang (2011) defined the mortality durations of the prices of insurance and annuity products.
Lin and Tsai (2013, 2014) proposed mortality duration and convexity matching strategies by
assuming the actual mortality sequence of length k is a uniformly proportional or constant shift
of the expected mortality sequence of equal length. With the assumption that the size of the
proportional or constant shift is the same over k, the weights of an insurance portfolio of life
and annuity products for the duration and convexity matching strategies in Lin and Tsai (2013,
2014) do not depend on the uniform size of the proportional or constant shift because this size
will be cancelled out in both numerator and denominator when calculating the weights. We call
those strategies size free matching strategies in this project.

In this project, we further develop mortality hedging strategies relaxing the assumption that
the size of the proportional or constant shift has to be the same for different lengths of the
underlying mortality sequences. In addition, we also extend the matching strategies to a linear
relational model for mortality rates with both proportional and constant shifts. Since we assume
the mortality movement to be both proportional and constant and the size of the proportional
and constant shifts to be varying by different lengths of the underlying mortality sequences,
we have to determine the sizes of the proportional and constant shifts for each length. Those
strategies are called non-size free matching strategies in this project. We use the Lee-Carter
model and USA male mortality data to forecast the deterministic mortality sequence as the
expected future mortality rates for pricing, and simulate the stochastic mortality sequences as the
actual mortality experience. We also derive closed-form formulas for the non-size free mortality
matching strategies, and illustrate the procedure of modeling the surplus of an insurance portfolio
based on different matching strategies. We construct two insurance portfolios to compare the
hedging performance of non-size free and size free matching strategies, we find that the non-size
free matching strategies are more effective than the size free ones.

1.2 Outline

This project consists of 6 chapters. Chapter 2 gives a literature review on previous research on
mortality-linked securities and natural hedging for immunizing longevity and mortality risks.
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In Chapter 3, we provide some actuarial notations used in this project; then we define some rela-
tional models and corresponding durations, convexities and adjustment functions of kpx, which
are used to develop the matching strategies in Chapter 4. In addition, we review the Lee-Carter
mortality projection model, which is used to forecast the deterministic and stochastic mortality
rates for both life insurance and annuity products.

In Chapter 4, we construct a general two-product insurance portfolio of life insurance and an-
nuity products, and develop formulas for calculating the weights for each product according to
different assumptions on the adjustment function of kpx. A general procedure of modeling the
surplus of the portfolio based on the weights for different strategies is provided. We also specify
two insurance portfolios used in Chapter 5 for numerical illustrations.

In Chapter 5, we show the estimates of the parameters in relational models against the length
of mortality sequence. Then we compare the hedging performance of non-size free matching
strategies to the size free ones from the following aspects: hedge effectiveness for longevity and
mortality risks, the 5% VaR (value at risk) and CTE (conditional tail expectation) of the port-
folio surplus at time 0, and the 5% VaR of the portfolio surplus against time until portfolio
maturity for some specific ages.

Chapter 6 summarizes key results and our findings in this project, and points out the possible
topics for future research.

3



Chapter 2

Literature review

Mortality improvement is a substantial issue over the past decades, which increases the difficulty
of forecasting the future mortality rates accurately. Other than interest rate risk, mortality risk
is another key problem that life insurers and annuity providers have to face. The discussions on
hedging longevity and mortality risks in academic field have been risen in recent years. Current
research on mortality has two major directions; one is devoted to developing mortality-linked
securities and the other is focused on natural hedging strategies for mortality immunization.

Growing studies have been done in mortality-linked securities including longevity bonds, q-
forwards, survivor swaps, annuity futures, mortality options, and survivor caps. Blake and
Burrows (2001) argued that governments could contribute to reduce mortality risks directly
through improving public health systems. They presented a policy proposal for survivor (or life
annuity) bonds and suggested that such survivor (or life annuity) bonds issued by governments
can be the vehicle for bond holders to hedge aggregate mortality risks. Lin and Cox (2005)
designed and priced mortality bonds and mortality swaps for longevity risk securitization and
they also described the strategy of using mortality-based securities to manage longevity risks.
Dowd et al. (2006) discussed on the use of survivor swaps to manage mortality risk and on
how to price survivor swaps under an incomplete market setting. Menoncin (2008) provided a
framework to determine the optimal weight of longevity bond in an investment portfolio that
maximizes the investor’s wealth at the moment of his/her death. Tsai et al. (2011) proposed an
optimal allocation strategy for asset and liability management with longevity bonds under the
assumption of both interest rate and mortality rate being stochastic. Coughlan et al. (2011)
provided a framework for understanding the longevity risk, calibrating an index-based longevity
instrument and evaluating hedge effectiveness. Cairns (2013) developed hedging strategies with
an index-based longevity hedging instrument such as a q-forward or deferred longevity swap and
evaluated its robustness relative to inclusion of recalibration risk, parameter uncertainty, and
Poisson risk. Cairns et al. (2014) decomposed the correlation and hedge effectiveness into key
risk factors, and showed that longevity risk can be hedged using index longevity hedges along
with other components.
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An alternative approach to hedging mortality and longevity risks is mortality immunization: con-
structing an optimal portfolio with a proper allocation of life insurance and annuity products.
However, research regarding morality immunization is limited. Cox and Lin (2007) proposed
a natural hedging strategy by combining life insurance and annuities and suggested that im-
plementing such a hedging strategy can help insurance companies manage mortality risk and
remain competitive. Based on the study by Cox and Lin (2007), Tsai et al. (2010) intro-
duced a conditional value-at-risk minimization (CVaRM) method to determine an optimal mix
of life insurance and annuity products for mortality risk hedging. Wang et al. (2010) and Plat
(2011) adopted the concept of mortality duration, and proposed an approximation approach
with stochastic mortality rates to obtain the weights of the life insurance and annuity products
in an insurance portfolio. Wang et al. (2010) and Plat (2011) used effective mortality duration
by assuming a uniformly proportional change in µ (the force of mortality) and q (one-year death
probability), respectively. Li and Hardy (2011) and Li and Luo (2012) introduced a key measure
called q-duration, and constructed a longevity hedging portfolio of q-forward contracts with such
measure. Tsai and Jiang (2011) defined and investigated several mortality durations of the price
of a life insurance product under the linear transform of µ. Tsai and Chung (2013) applied
linear transform of µ and derived closed-form formulas for size free durations and convexities
of the prices of life insurance and annuity products with respect to each of the slope and inter-
cept parameters in the linear transform. Lin and Tsai (2013) defined mortality durations and
convexities under the linear transform of µ, q, p (=1-q) respectively, and demonstrated different
matching strategies by constructing two-product and three-product insurance portfolios. Lin
and Tsai (2014) continued on the study of mortality durations and convexities with respect to
a proportional or constant change in µ, q, p, lnµ, q/p and ln(q/p), and compared the hedging
performance of twenty four duration and convexity matching strategies under a variety of sce-
narios. Li and Haberman (2015) assessed the effectiveness of mortality immunization by natural
hedging strategies under different mortality models.
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Chapter 3

Relational models and Lee-Carter model

In this chapter, we introduce three relational models, the linear relational model, proportional
relational model and constant relational model which capture the movement of mortality rates,
and the well known Lee-Carter model. Relational models provide a framework for deriving the
non-size free matching strategies in Chapter 4. With the relational models, we further define the
adjustment functions and derive the formulas for estimating the change in kpx due to mortality
movements. We also fit the Lee-Carter model with USA male mortality data from the Human
Mortality Database and estimate the model parameters for future mortality prediction. Then
we illustrate the deterministic and stochastic mortality paths, which will be used in Chapter 5.

3.1 Notations

The traditional forms of mortality rates are µ (the force of mortality), q (the one-year death
probability), p = 1− q (one-year survival probability) and m (the central death rate). Lee and
Carter (1992) and Dowd et al. (2006) modelled the mortality rates in the forms of ln(m) (the
natural logarithm of the central death rate m) and ln(q/p) = logit(q) (the logic function of q),
respectively. Let Ux, n = {ux, · · · , ux+n−1} be a mortality sequence of length n starting age x,
where u can be q, p = 1− q, µ, ln(µ), m, ln(m), q/p, or ln(q/p). We further denote:

• µx, n = {µx, · · · , µx+n−1}: a sequence with each element being the force of mortality;

• Px, n = {px, · · · , px+n−1}: a sequence with each element being the one-year survival prob-
ability;

• Qx, n = {qx, · · · , qx+n−1}: a sequence with each element being the one-year death proba-
bility;

• ln(µx, n) = {ln(µx), · · · , ln(µx+n−1)}: a sequence with each element being the natural
logarithm of force of mortality;

• (Q/P )x, n = {qx/px, · · · , qx+n−1/px+n−1}: a sequence with each element being the ratio of
one-year death probability to one-year survival probability;
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• ln(Q/P )x, n = {ln(qx/px), · · · , ln(qx+n−1/px+n−1)}: a sequence with each element being
the natural logarithm of the ratio of one-year death probability to one-year survival prob-
ability.

In this project, we assume µx(s) = µx(0) , µx for s ∈ [0, 1). Then px = e−
∫ 1

0 µx(s)ds = e−µx and
mx = qx/

∫ 1
0 spxds = qx/

∫ 1
0 e
−s·µxds = µx, which provide mortality data conversion between µx

(or mx) and px.

3.2 Relational models

Tsai and Yang (2015) proposed a linear relational model under which there is a linear relationship
between two mortality sequences of equal length. Consider the following simple linear model

U∗x, k = (1 + αk)× Ux, k + βk + ex,k.

That is, given two sequence of equal length n, U∗x, n and Ux, n, each subsequence U∗x, k is a propor-
tional shift αk of the corresponding subsequence Ux, k followed by a parallel movement βk plus
an error term ex,k for k = 1, ..., n. For example, α1 and β1 link the first pair of subsequences
(each of length 1), α2 and β2 link the first two pairs of subsequences (each of length 2).The
estimates α̂k and β̂k can be obtained by minimizing sum of squares of ex,ks (formulas are given
in Chapter 4); we place a subscript k on α̂ and β̂ to indicate that both also depend on k (the
length of two mortality sequences).

Figure 3.1 illustrates the sequence U2000+n
30,40 as U∗ for the fitting years 2000 + n (n = 1, 5, 10)

against U2000
30,40 for the base year 2000 and the corresponding linear trends for USA males with

different forms of U . The mortality data used for illustrations in this project is from the Human
Mortality Database (www.mortality.org). From the figure, we observe an approximately linear
relationship between U2000

30,40 and U2000+n
30,40 (n = 1, 5, 10) for U = µ, P , Q, ln(µ), Q/P and ln(Q/P ).

In addition, the changes in the slopes of linear trends for different values of n imply a mortality
improvement over the years.
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Figure 3.1: U2000+n
30,40 against U2000

30,40 for the USA male
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According to the linear relationship we observed between two cohort mortality sequences start-
ing in different year, we presume that a linear relationship between the actual future mortality
sequence and expected mortality sequence exists. We assume that the expected mortality rates
sequence Ux, n is used to price an n-year life or annuity product, which needs kpx, k = 1, . . . , n
for calculating its premium. However, the realized or actual mortality rates sequence, denoted
by U∗x, n, is different from Ux, n. We assume the change from Ux, k to U∗x, k is linear, proportional
or constant for all k = 1, . . . , n, that is, U∗x, k = (1 + αk)×Ux, k + βk, U∗x, k = (1 + αk)×Ux, k, or
U∗x, k = Ux, k + βk.

When Ux, k is shifted proportionally to U∗x, k = (1 + γk) ·Ux, k or moved by a constant to U∗x, k =
Ux, k + γk, then the expected kpx is changed to kp

∗
x = kpx · f λUx, k(γk) where f λUx, k(γk) is an

adjustment function of kpx (see Table 1 from Table A.1 in Lin and Tsai (2014)), and (λ, γk) =
(p, αk) or (c, βk) indicating a proportional or constant change in Ux, k, respectively.

Table 1. The adjustment functions f λUx, k(γk) of kpx for k ≥ 1 with f λUx, 0
(γ0) = 1

U f pUx, k(αk) f cUx, k(βk)

µ
k∏
i=1

[
(px+i−1)αk

]
= (kpx)αk

k∏
i=1

[
e−βk

]
= e−k×βk

Q
k∏
i=1

[
1− αk ×

( 1
px+i−1

− 1
)] k∏

i=1

[
1− βk

px+i−1

]

P
k∏
i=1

[
1 + αk

]
= (1 + αk) k

k∏
i=1

[
1 + βk

px+i−1

]

ln(µ)
k∏
i=1

[
(px+i−1) [− ln(px+i−1)]αk−1

] k∏
i=1

[
(px+i−1) eβk−1

]
= (kpx) eβk−1

Q

P

k∏
i=1

[ 1
αk × qx+i−1 + 1

] k∏
i=1

[ 1
βk × px+i−1 + 1

]

ln(Q
P

)
k∏
i=1

[ 1
(qx+i−1/px+i−1)αk × qx+i−1 + px+i−1

] k∏
i=1

[ 1
eβk × qx+i−1 + px+i−1

]

We expand f λUx, k(γk) with respect to γk to

f λUx, k(γk) = f λUx, k(0) +
∂f λUx, k(γk)

∂γk

∣∣∣∣
γk=0
×γk +

∂2f λUx, k(γk)
∂γ2

k

∣∣∣∣
γk=0
×γ

2
k

2 +Rf λUx, k , 3
(γk) (3.1)

with f λUx, k(0) = 1 where Rf λUx, k , 3
(γk) = O(γ3

k) is the remainder term with γk of order three or
higher. Then the change in kpx due to a proportional or constant movement in Ux, k is

4 kpx(Ux, k) , kp
∗
x − kpx = kpx

[∂f λUx, k(γk)
∂γk

∣∣∣∣
γk=0
×γk +

∂2f λUx, k(γk)
∂γ2

k

∣∣∣∣
γk=0
×γ

2
k

2 +Rf λUx, k , 3
(γk)

]
.

(3.2)
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Define the duration function as the slope of the tangent line to the f λUx, k(γk) at γk = 0m by

dλUx, k =
∂f λUx, k(γk)

∂γk

∣∣∣∣
γk=0

(3.3)

and the convexity function as the curvature of f λUx, k(γk) at γk = 0 by

cλUx, k =
∂2f λUx, k(γk)

∂γ2
k

∣∣∣∣
γk=0

. (3.4)

Then (3.2) can be expressed as

4 kpx(Ux, k) = kpx

[
dλUx, k × γk + cλUx, k ×

γ2
k

2 +Rf λUx, k , 3
(γk)

]
. (3.5)

See Tables 2 and 3, from Tables A.2 and A.3 in Lin and Tsai (2014), for the duration and
convexity functions of kpx.

Table 2. The duration functions dλUx, k of kpx for k ≥ 1 with dλUx, 0
= 0

U d pUx, k d cUx, k

µ
k∑
i=1

[
ln(px+i−1)

]
= ln(kpx), 0 ↘ − −

k∑
i=1

[
1
]
= −k, 0 ↘ −

Q −
k∑
i=1

[ 1
px+i−1

− 1
]
, 0 ↘ − −

k∑
i=1

[ 1
px+i−1

]
, 0 ↘ −

P
k∑
i=1

[
1
]
= k, 0 ↗ +

k∑
i=1

[ 1
px+i−1

]
, 0 ↗ +

ln(µ)
k∑
i=1

[
ln(px+i−1)× ln[− ln(px+i−1)]

]
, 0 ↗ +

k∑
i=1

[
ln(px+i−1)

]
= ln(kpx), 0 ↘ −

Q

P
−

k∑
i=1

[
qx+i−1

]
, 0 ↘ − −

k∑
i=1

[
px+i−1

]
, 0 ↘ −

ln(Q
P

) −
k∑
i=1

[
qx+i−1 × ln

(
qx+i−1
px+i−1

)]
, 0 ↗ + −

k∑
i=1

[
qx+i−1

]
, 0 ↘ −

0 ↗ +( 0 ↘ −) : increasing (decreasing) in k from 0 at k = 0 to positive (negative).
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Table 3. The convexity functions cλUx, k of kpx for k ≥ 1 with cλUx, 0
= 0

U c pUx, k c cUx, k

µ

[
d pµx, k

]2
, 0 ↗ +

[
d cµx, k

]2
, 0 ↗ +

Q

[
d pQx, k

]2
−

k∑
i=1

( 1
px+i−1

− 1
)2
, 0 ↗ +

[
d cQx, k

]2
−

k∑
i=1

( 1
px+i−1

)2
, 0 ↗ +

P

[
d pPx, k

]2
−
( k∑
i=1

12
)
, 0 ↗ +

[
d cPx, k

]2
−

k∑
i=1

( 1
px+i−1

)2
, 0 ↗ +

ln(µ)
[
d pln(µx, k)

]2
+
[ k∑
i=1

ln(px+i−1) {ln
[
− ln(px+i−1)

]
}2
]
,

[
d cln(µx, k)

]2
+

k∑
i=1

[
ln(px+i−1)

]
,

Q

P

[
d pQx, k
Px, k

]2
+

k∑
i=1

(
qx+i−1

)2
, 0 ↗ +

[
d cQx, k
Px, k

]2
+

k∑
i=1

(
px+i−1

)2
, 0 ↗ +

ln(Q
P

)
[
d p

ln(
Qx, k
Px, k

)

]2
−

k∑
i=1

[
qx+i−1 px+i−1

(
ln qx+i−1
px+i−1

)2] [
d c

ln(
Qx, k
Px, k

)

]2
−

k∑
i=1

qx+i−1 px+i−1

0 ↗ + : increasing in k from 0 at k = 0 to positive.

Similarly, when Ux, k is shifted proportionally to (1 + αk) · Ux, k and moved by a constant to
U∗x, k = (1 +αk) ·Ux, k + βk, then the expected kpx is changed to kp

∗
x = kpx · gUx, k(αk, βk) where

gUx, k(αk, βk) = f pUx, k(αk) · f cUx, k(βk). We expand gUx, k(αk, βk) with respect to αk and βk to

gUx, k(αk, βk) = gUx, k(0, 0) +
∂gUx, k(αk, βk)

∂αk

∣∣∣∣
αk=βk=0

×αk +
∂gUx, k(αk, βk)

∂βk

∣∣∣∣
αk=βk=0

×βk

+
∂2gUx, k(αk, βk)

∂α2
k

∣∣∣∣
αk=βk=0

×α
2
k

2 +
∂2gUx, k(αk, βk)

∂β2
k

∣∣∣∣
αk=βk=0

×β
2
k

2

+
∂2gUx, k(αk, βk)

∂αk∂βk

∣∣∣∣
αk=βk=0

×αk · βk +RgUx, k , 3(αk, βk) (3.6)

with gUx, k(0, 0) = 1 where RgUx, k , 3(αk βk) is the remainder term with αk and βk of order three
or higher. By gUx, k(αk, βk) = f pUx, k(αk) · f cUx, k(βk), f pUx, k(0) = 1, f cUx, k(0) = 1, (3.3) and (3.4),
the change in kpx caused by a proportional shift and a constant movement in Ux, k is

4 kpx(Ux, k) , kp
∗
x − kpx = kpx

[
d pUx, k × αk + d cUx, k × βk

+ c pUx, k ×
α2
k

2 + c cUx, k ×
β2
k

2 + cp cUx, k × αkβk +RgUx, k , 3(αk, βk)
]
,

(3.7)

where cp cUx k = dpUx, kd
c
Ux, k

. Note that (3.7) reduces to (3.5) when αk or βk is set to zero.

Consider a general annuity product, the h-year deferred and m-year temporary life annuity-
due; its net single premium (NSP) of one unit issued to an insured aged x, using Px, h+m−1 =

11



{px+k−1 : k = 1, 2, · · · , h+m− 1}, is denoted as

h|äx:m| =
h+m−1∑
k=h

kpx · e−δ·k,

where δ = ln(1 + i) is the force of interest and i is the interest rate. There are four common spe-
cial cases: nEx (the NSP of the n-year pure endowment) for (h, m) = (n, 1), äx:n| (the NSP of
the n-year temporary life annuity-due) for (h, m) = (0, n), n|äx (the NSP of the n-year deferred
whole life annuity-due) for (h, m) = (n, ∞), and äx (the NSP of the whole life annuity-due) for
(h, m) = (0, ∞).

When Ux, k is shifted proportionally by an αk or/and moved constantly by a βk for k = 1, . . . , T ,
h|äx:m| becomes h|ä∗x:m| =

∑h+m−1
k=h kp

∗
x · e−δ·k, and the change in h|äx:m| is

4 h|äx:m| , h|ä∗x:m| − h|äx:m| =
h+m−1∑
k=h

4 kpx(Ux, k) · e−δ·k, (3.8)

where 4 kpx(Ux, k) is given by (3.5) or (3.7).

3.3 Lee-Carter model

The Lee-Carter model is the most popular method in literature for predicting future mortality
rates. In this project, we use the Lee-Carter model to forecast deterministic future mortality
rates sequence as the expected mortality one for pricing, and generate stochastic mortality rates
sequences as the realized ones for simulation. According to Lee and Carter (1992), the natural
logarithm of central death rates can be expressed as

ln(mx,t) = ax + bx × kt + εx,t, x = x0, ..., x0 +m− 1, t = t0, ..., t0 + n− 1, (3.9)

where

• ax is the long term average of the natural logarithm of central death rates for age x,

• kt is the index of the mortality level in specific year t,

• bx is the reaction of age specific mortality to the year specific factor kt for age x, and

• εx,t is the model error and εx,t
iid∼ N(0, σ2

εx) for all t.

There are two constrains,

•
∑
x bx = 1, and

•
∑
t kt = 0.

12



According to these two constrains, the sum of the natural logarithm of central death rates over
a given year span [t0, t0 + n− 1] can be expressed as

t0+n−1∑
t=t0

ln(mx,t) = n× ax + bx ×
t0+n−1∑
t=t0

kt = n× ax, (3.10)

and

x0+m−1∑
x=x0

[ln(mx,t)− ax] = kt ×
x0+m−1∑
x=x0

bx. (3.11)

Given a dataset ln(mx,t) with age span [x0, x0 + m − 1] and year span [t0, t0 + n − 1], the
estimates of âx, k̂t, θ̂ and b̂x can be obtained as follows:

•

âx =
∑t0+n−1
t=t0 ln(mx,t)

n
, (3.12)

where x = x0, x0 + 1, ..., x0 +m− 1;

•

k̂t =
x0+m−1∑
x=x0

[ln(mx,t)− âx], (3.13)

where t = t0, t0 + 1, ..., t0 + n− 1;

• b̂x can be obtained by regressing ln(mx,t)− âx on k̂t;

• assume that k̂t follows a random walk with drift θ, that is, k̂t = k̂t−1 + θ + εt and εt
iid∼

N(0, σ2
ε ) for all t, and then θ can be estimated as

θ̂ = 1
n− 1

t0+n−1∑
t=t0+1

(k̂t − k̂t−1) = k̂t0+n−1 − k̂t0
n− 1 . (3.14)

Figure 3.2 shows âx, the average age-specific mortality factor from age 20 to 100 (x0 = 20 and m =
81) based on the USA males mortality rates from year 1960 to year 2010 (t0 = 1960 and n = 51)
from Human Mortality Database (www.mortality.org), which data set is used throughout this
project. From Figure 3.2 we can find that the average age-specific mortality factor takes negative
value for all ages, and it stays stable from age 20 to 30 then keep increasing constantly, which
implies that the average of the natural logarithm of central death rates increases in age x.

Figure 3.3 displays b̂x, the age-specific reaction to kt from age 20 to 100 (x0 = 20 and m = 81)
based on the same mortality data set from year 1960 to year 2010 (t0 = 1960 and n = 51).
From Figure 3.3 we can see that b̂x first decreases from age 20 to 30, and then increases until it
reaches a peak at around age 62, and finally keeps decreasing until the eldest age. Furthermore,
the b̂xs generally react positively to k̂t except for the age 97 and above.
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Figure 3.2: âx, the average age-specific mortality factor
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Figure 3.3: b̂x, the age-specific reaction to k̂t

Figure 3.3 illustrates k̂t, the general mortality level in year t based on the same mortality data
set from year 1960 to year 2010 (t0 = 1960 and n = 51). From Figure 3.3 we can observe a
slight increase from 1960 to 1968, followed by a decreasing trend.
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Figure 3.4: k̂t, the general mortality level in year t

Denote m̂x,t0+n−1+τ and q̂x,t0+n−1+τ the deterministic central death rate and one-year death
probability, respectively, for age x in year t0 + n− 1 + τ ; then

ln(m̂x,t0+n−1+τ ) = âx + b̂x × (k̂t0+n−1 + τ × θ̂), (3.15)

and

q̂x,t0+n−1+τ = 1− exp[−exp(âx + b̂x × (k̂t0+n−1 + τ × θ̂))], (3.16)

τ = 1, 2, .... Similarly, denote m̃x,t0+n−1+τ and q̃x,t0+n−1+τ the stochastic central death rate and
one-year death probability, respectively, for age x in year t0 + n− 1 + τ ; then

ln(m̃x,t0+n−1+τ ) = âx+ b̂x× (k̂t0+n−1 + τ × θ̂+
t0+n−1+τ∑
t=t0+n

εt) = ln(m̂x,t0+n−1+τ )+ b̂x×
t0+n−1+τ∑
t=t0+n

εt,

(3.17)
and

q̃x,t0+n−1+τ = 1− exp[−exp(ln(m̂x,t0+n−1+τ ) + b̂x ×
t0+n−1+τ∑
t=t0+n

εt)], (3.18)

where the estimate of the variance of error terms εt is

σ̂2
ε = 1

n− 2

t0+n−1∑
t=t0+1

ε2t =
∑t0+n−1
t=t0+1 (k̂t − k̂t−1 − θ̂)2

n− 2 . (3.19)

Moreover, the estimate of the variance of the natural logarithm of the stochastic central death
rate, σ̂2(ln(m̃x,t0+n−1+τ )), is given by

σ̂2(ln(m̃x,t0+n−1+τ )) = τ × b̂2
x × σ̂2

ε . (3.20)
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A 100(1− α)% predictive interval on q̂x,t0+n−1+τ is

1− exp[−exp(ln(m̂x,t0+n−1+τ )± zα
2
× σ̂2(ln(m̃x,t0+n−1+τ )))]. (3.21)

Figure 3.5 shows the projected mortality rates and 95% predictive intervals for the selected
cohorts currently aged 20, 40 and 60, based on the USA males mortality data set from year 1960
to year 2010. According to the three graphs in Figure 3.5 , we can see that the deterministic
mortality rates have an increasing trend for cohorts. The predictive intervals are narrow at the
beginning and then the intervals get wider as age increases, but they begin to shrink when the
age is approaching to 80. Paying attention to the mortality rates, we observe that the younger
cohort has the lower mortality level when they reach the same age as the elder cohort, which
implies a mortality improvement over years.

16



20 30 40 50 60 70 80
0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Cohort age 20

age

Deterministic

95% PI−L

95% PI−U

40 45 50 55 60 65 70 75 80
0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Cohort age 40

age

Deterministic

95% PI−L

95% PI−U

60 62 64 66 68 70 72 74 76 78 80
0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Cohort age 60

age

Deterministic

95% PI−L

95% PI−U

Figure 3.5: Deterministic and 95% predictive intervals on cohort mortality rates
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Chapter 4

Matching strategies for mortality
immunization

In this chapter, we introduce the matching strategies for mortality immunization for a life
insurance portfolio consisting of life insurance and annuity products. We first derive the formulas
for determining the proper weights according to different matching strategies and prove that
some of the matching strategies result in the same weight if U = µ = − lnP . Then we focus on
two portfolios, PFLTP (the m-payment and n-year term life insurance and the m-payment and
n-year pure endowment) and PFLWA (the m-payment whole life insurance and the m-payment
and n-year deferred whole life annuity), which are used in Chapter 5 for numerical illustrations.
Lastly, we summarize the procedure of modeling surpluses.

4.1 Matching strategies in general

Consider a life insurance portfolio PFLLA consisting of discrete life insurance and an annuity
with weights wL and wA = 1− wL, respectively; if the weights wL and wA are out of the range
of [0, 1], then the portfolio is infeasible. The weighted surplus at time 0 is

0S
LA
x:m,n = wL · 0S[P L

x:m,n] + (1− wL) · 0S[P A
x:m,n] = 0,

where 1 ≤ m ≤ n, 0S[P L
x:m,n] = P L

x:m,n · äx:m| − Ax, n = 0 is the surplus at time 0 for a
discrete m-payment and n-year life insurance issued to an insured aged x with the actuarial
present value of benefits, Ax, n, and the NLP (net level premium), P L

x:m,n = Ax, n/äx:m|, and
0S[P A

x:m,n] = P A
x:m,n · äx:m| − ax, n = 0 is the surplus at time 0 for an m-payment and n-year

annuity issued to an annuity recipient aged x with the actuarial present value of benefits, ax, n,
and the NLP, P A

x:m,n = ax, n/äx:m|.

When Ux, k is shifted proportionally by an αk or/and moved constantly by a βk for k = 1, . . . , n,
all äx:m|, Ax, n and ax, n change to ä∗x:m|, A

∗
x, n and a∗x, n, respectively, whereas both P L

x:m,n and
P A
x:m,n are predetermined and unchanged. The resulted surpluses are 0S[P L, ∗

x:m,n] = P L
x:m,n ·

ä∗x:m| − A
∗
x, n and 0S[P A, ∗

x:m,n] = P A
x:m,n · ä∗x:m| − a

∗
x, n. Thus, 0S

LA becomes 0S
LA, ∗
x:m,n, and the
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change in 0S
LA
x:m,n is

4 0S
LA
x:m,n , 0S

LA, ∗
x:m,n − 0S

LA
x:m,n = wL · 4 0S[P L

x:m,n] + (1− wL) · 4 0S[P A
x:m,n],

where 4 0S[P L
x:m,n] , 0S

∗[P L
x:m,n]− 0S[P L

x:m,n] and 4 0S[P A
x:m,n] , 0S

∗[P A
x:m,n]− 0S[P A

x:m,n].
The change in portfolio surplus 4 0S

LA
x:m,n is equivalent to the negative of the change in reserve.

Our goal is to find the weight ŵL such that 4 0S
LA
x:m,n = 0 (that is, the life insurance portfolio

is immunized with respect to a change in mortality rates). Then ŵL can be solved as

ŵL =
4 0S[P A

x:m,n]
4 0S[P A

x:m,n]−4 0S[P L
x:m,n] . (4.1)

Since the NSP of discrete life insurance can be expressed in terms of the NSPs of annuities
(for example, the NSPs of the discrete n-year endowment, the discrete whole life insurance
and the discrete n-year term life insurance satisfy Ax:n| = 1 − d · äx:n|, Ax = 1 − d · äx and
A1
x:n| = Ax:n|− nEx = 1−d · äx:n|− nEx, respectively, where d = i/(1 + i) is the discount rate),

0S
∗[P L

x:m,n] = P L
x:m,n · ä∗x:m|−A

∗
x, n can be rewritten as 0S

∗[P L
x:m,n] =

∑n
k=0N

L
k · kp∗x · e−δ·k for

some NL
k , k = 0, 1, . . . , n, where NL

k , the net cash flow (cash inflow less cash outflow) at time k,
can be positive, zero or negative. Similarly, 0S[P L

x:m,n] =
∑n
k=0N

L
k · kpx · e−δ·k. Therefore, the

change in 0S[P L
x:m,n] by (3.8) becomes

4 0S[P L
x:m,n] , 0S

∗[P L
x:m,n]− 0S[P L

x:m,n] =
n∑
k=0

NL
k · 4 kpx(Ux, k) · e−δ·k,

where 4 kpx(Ux, k) is given by (3.5) or (3.7). Following the same argument, the change in
0S[P A

x:m,n] can be also re-written as

4 0S[P A
x:m,n] , 0S

∗[P A
x:m,n]− 0S[P A

x:m,n] =
n∑
k=0

NA
k · 4 kpx(Ux, k) · e−δ·k,

for some NA
k , k = 0, 1, . . . , n. Thus, the weight ŵL in (4.1) depends on αk and/or βk, k =

1, 2, . . . , n. Moreover, 4 0S
LA
x:m,n can be re-written as

4 0S
LA
x:m,n =

n∑
k=0

NLA
k ·4 kpx(Ux, k)·e−δ·k =

n∑
k=0

ILAk ·4 kpx(Ux, k)·e−δ·k−
n∑
k=0

OLAk ·4 kpx(Ux, k)·e−δ·k.

where NLA
k = wL ·NL

k +(1−wL) ·NA
k , NLA

k = ILAk −OLAk , and ILAk and OLAk are the cash inflow
and cash outflow at time k in the portfolio, respectively. Therefore, 4 0S

LA
x:m,n = 0 means the

present value of the changes in cash inflows match that in cash outflows.

The 4 kpx(Ux, k) in each of 4 0S[P L
x:m,n] and 4 0S[P A

x:m,n] involves a remainder term for each k.
We may ignore these remainder terms since both αk and βk are very small (see Figure 5.1) and
the third order and higher of αk and βk are less than 10−5 and 10−11, respectively. Depending
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on what assumption we make on 4 kpx(Ux, k) in (3.7), there are several ŵLs can be obtained
from (4.1). Denote ŵL(Mγ

n ) the weight of the life insurance product in an insurance portfolio
using the matching strategy Mγ

n , where M can be D, C or DC indicating that the duration
function, the convexity function or both the duration and convexity functions are included in
4 kpx(Ux, k), respectively; γ can be p, c or pc indicating that the proportional relational model,
the constant relational model or the linear relational model is adopted, respectively; n is the
maximum length of the mortality sequences. The estimated weights are

• ŵL(Dp
n): 4 kpx(Ux, k)

.= kpx · d pUx, k · αk;

• ŵL(Dc
n): 4 kpx(Ux, k)

.= kpx · d cUx, k · βk;

• ŵL(Dpc
n ): 4 kpx(Ux, k)

.= kpx · [d pUx, k · αk + d cUx, k · βk];

• ŵL(Cpn): 4 kpx(Ux, k)
.= kpx · c pUx, k · α

2
k/2;

• ŵL(Ccn): 4 kpx(Ux, k)
.= kpx · c cUx, k · β

2
k/2;

• ŵL(Cpcn ): 4 kpx(Ux, k)
.= kpx · [c pUx, k · α

2
k/2 + c cUx, k · β

2
k/2 + cp cUx, k · αkβk];

• ŵL(DCpn): 4 kpx(Ux, k)
.= kpx · [d pUx, k · αk + c pUx, k · α

2
k/2];

• ŵL(DCcn): 4 kpx(Ux, k)
.= kpx · [d cUx, k · βk + c cUx, k · β

2
k/2]; and

• ŵL(DCcpn ): 4 kpx(Ux, k)
.= kpx · [d pUx, k ·αk+d cUx, k ·βk+ c pUx, k ·

α2
k

2 + c cUx, k ·
β2
k
2 + cp cUx, k ·αkβk].

For ŵL(Dp
n), ŵL(Dc

n), ŵL(Cpn) and ŵL(Ccn), when αk = α and βk = β for k = 1, 2, . . . , n, we can
factor out the common α and β from both 4 0S[P L

x:m,n] and 4 0S[P A
x:m,n] and then cancel out

α from ŵL(Dp
n) and ŵL(Cpn), and β from ŵL(Dc

n) and ŵL(Ccn). In this case, ŵL(Dp
n), ŵL(Dc

n),
ŵL(Cpn) and ŵL(Ccn) become independent of α and β, and are re-denoted as ŵL(Dp), ŵL(Dc),
ŵL(Cp) and ŵL(Cc), respectively, which are

ŵL(Bλ) =
∑n
k=0N

A
k · bλUx, k · kpx · e

−δ·k∑n
k=0N

A
k · bλUx, k · kpx · e

−δ·k −
∑n
k=0N

L
k · bλUx, k · kpx · e

−δ·k ,

where λ = p (proportional), c (constant) and (B, b) = (D, d) (duration), (C, c) (convexity), as
proposed in Tsai and Chung (2013) for U = µ, in Lin and Tsai (2013) for U = P , Q and µ, and
in Lin and Tsai (2014) for U = P , Q, µ, ln(µ), Q/P and ln(Q/P ).

For ŵL(Dp
n), ŵL(Cpn) and ŵL(DCpn) (ŵL(Dc

n), ŵL(Ccn) and ŵL(DCcn)) involving only αk (βk),
we use the proportional relational model U∗x, k = (1 + αk) · Ux, k + ex,k (constant relational
model U∗x, k = Ux, k + βk + ex,k) to estimate αk (βk) for k = 1, . . . , n; for ŵL(Dpc

n ), ŵL(Cpcn ) and
ŵL(DCpcn ) involving αk and βk, we use the linear relational model U∗x, k = (1+αk)·Ux, k+βk+ex,k
to estimate αk and βk for k = 1, . . . , n. The estimates of αk and βk are obtained by minimizing
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the sum of squared errors. For the proportional relational model, the estimate is

α̂k =
∑k
j=1 ux+j−1 · (u∗x+j−1 − ux+j−1)∑k

j=1 u
2
x+j−1

; (4.2)

for the constant relational model, the estimate is

β̂k = ū∗x, k − ūx, k, (4.3)

where u∗x+j−1 and ux+j−1 are the x + j − 1 element in U∗x, k and Ux, k, respectively; ū∗x, k =
(1/k)

∑k
j=1 u

∗
x+j−1 and ūx, k = (1/k)

∑k
j=1 ux+j−1; for the linear relational model, the estimates

are

(α̂k, β̂k) =
(∑k

j=1[ux+j−1 − ūx, k] · [u∗x+j−1 − ū∗x, k]∑k
j=1[ux+j−1 − ūx, k]2

− 1, ū∗x, k − [1 + α̂k] · ūx, k
)
. (4.4)

Theorem 1.. For U = µ = − lnP ,
(a) ŵL(Dp c

n ) = ŵL(Dc
n),

(b) ŵL(Cp cn ) = ŵL(Ccn), and
(c) ŵL(DCp cn ) = ŵL(DCcn).

Proof: If U = µ = − ln(P ), we have ū∗x, k = (1/k)
∑k
j=1[− ln(p∗x+j−1)] = −(1/k) ln( kp∗x) and

ūx, k = −(1/k) ln( kpx); moreover, d pµx, k = ln( kpx), d cµx, k = −k, c pµx, k = [ln( kpx)]2 and c cµx, k = k2

from Tables 2 and 3.

(a) For ŵL(Dc
n), β̂k = ū∗x, k − ūx, k = −[ln( kp∗x) − ln( kpx)]/k by (4.3), and 4 kpx(µx, k)

.=
kpx ·d cµx, k · β̂k = kpx · [ln( kp∗x)− ln( kpx)], k = 1, . . . , n. For ŵL(Dp c

n ), β̂k = ū∗x, k− [1+ α̂k] · ūx, k =
− ln( kp∗x)/k+(1+α̂k) · ln( kpx)/k by (4.4), and 4 kpx[µx, k]

.= kpx · [d pµx, k ·α̂k+d cµx, k · β̂k] becomes

kpx·[ln( kpx)·α̂k−k·β̂k] = kpx·[ln( kpx)·α̂k+ln( kp∗x)−[1+α̂k]·ln( kpx)] = kpx·[ln( kp∗x)−ln( kpx)],

the 4 kpx[µx, k] for ŵL(Dc
n). Thus, ŵL(Dp c

n ) = ŵL(Dc
n).

(b) For ŵL(Ccn), 4 kpx[µx, k]
.= kpx · c cµx, k · β̂

2
k/2 = kpx · [ln( kp∗x) − ln( kpx)]2/2. For ŵL(Cp cn ),

4 kpx[µx, k]
.= kpx · [c pµx, k · α̂

2
k/2 + c cµx, k · β̂

2
k/2 + d pµx, k d

c
µx, k
· α̂kβ̂k] is

kpx ·
{

[ln( kpx)]2 · α̂
2
k

2 + k2 · [− ln( kp∗x) + (1 + α̂k) · ln( kpx)]2

2 k2

+(−k) [ln( kpx)] · α̂k
− ln( kp∗x) + (1 + α̂k) · ln( kpx)

k

}
= kpx ·

[ln( kp∗x)− ln( kpx)]2

2 ,

the 4 kpx(µx, k) for ŵL(Ccn). Hence, ŵL(Cp cn ) = ŵL(Ccn).
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(c) For ŵL(DCcn), 4 kpx(µx, k)
.= kpx · [d cµx, k · β̂k + c cµx, k · β̂

2
k/2] = kpx · [ln( kp∗x)− ln( kpx)] + kpx ·

[ln( kp∗x)− ln( kpx)]2/2, the sum of 4 kpx(µx, k)s for ŵL(Dc
n) and ŵL(Ccn), which is also the sum

of 4 kpx(µx, k)s for ŵL(Dp c
n ) and ŵL(Cp cn ) by (b) and (c). Therefore, ŵL(DCp cn ) = ŵL(DCcn).

�

4.2 Two insurance portfolios

In this project, we focus on two types of insurance portfolios,

• PFLTP : the m-payment and n-year term life insurance and the m-payment and n-year
pure endowment with weights wTL and 1− wTL, respectively, and

• PFLWA: the m-payment whole life insurance and the m-payment and n-year deferred
whole life annuity with weights wWL and 1− wWL, respectively.

When the experienced force of mortality is different from the predetermined one, the change
in the surpluses of term life insurance and pure endowment, ∆ 0S[P TL

x:m,n] and ∆ 0S[P PE
x:m,n],

respectively, are

∆ 0S[P TL
x:m,n] = P TL

x:m,n∆äx:m|(Ux, n)−∆A1
x:n|(Ux, n)

= P TL
x:m,n∆äx:m|(Ux, n) + d ·∆äx:n|(Ux, n) + ∆ n|äx: 1|(Ux, n), (4.5)

and

∆ 0S[P PE
x:m,n] = P PE

x:m,n∆äx:m|(Ux, n)−∆ nEx(Ux, n)

= P PE
x:m,n∆äx:m|(Ux, n)−∆ n|äx: 1|(Ux, n), (4.6)

where P TL
x:m,n is the net level premium of the m-payment and n-year term life insurance and

P TL
x:m,n = A1

x:n|/äx:m| = (1 − däx:n| − nEx)/äx:m|; P PE
x:m,n is the net level premium of the m-

payment and n-year pure endowment and P PE
x:m,n = nEx/äx:m| = n|äx: 1|/äx:m|. Since the

net level premiums P TL
x:m,n and P PE

x:m,n are calculated using the predicted mortality rates before
the policies are issued, the premiums are not affected by the future mortality movements. In
addition, the change in the portfolio surplus is

∆ 0S
TP = wTL · ∆ 0S[P TL

x:m,n] + (1− wTL) · ∆ 0S[P PE
x:m,n]

= wTL ·
n∑
k=0

NTL
k · 4 kpx(Ux, k) · e−δ·k + (1− wTL) ·

n∑
k=0

NPE
k · 4 kpx(Ux, k) · e−δ·k,

(4.7)
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where

NTL
k = P TLx:m,n + d, k = 0, . . . ,m− 1, m ≥ 1,

NTL
k = d, k = m, . . . , n− 1, m ≤ n, and

NTL
n = 1

by (4.5), and

NPE
k = PPEx:m,n, k = 0, . . . ,m− 1, m ≥ 1,

NPE
k = 0, k = m, . . . , n− 1, m ≤ n, and

NPE
n = −1

by (4.6). Depending on the assumption we make on 4 kpx(Ux, k) in (3.7), we can obtain dif-
ferent estimates for ∆ 0S[P PE

x:m,n], ∆ 0S[P TL
x:m,n] under different strategies. Then we can further

determine the corresponding weight for each matching strategy according to (4.1).

Similarly, when the experienced force of mortality is different from the predetermined one, the
change in the surpluses of whole life insurance and deferred annuity products, ∆ 0S[P WL

x:m,n] and
∆ 0S[P DA

x:m,n], respectively, are

∆ 0S[P WL
x:m,n] = P WL

x:m,n∆äx:m|(Ux, ω−x)−∆Ax(Ux, ω−x)

= P WL
x:m,n∆äx:m|(Ux, ω−x) + d ·∆äx(Ux, ω−x), (4.8)

and

∆ 0S[P DA
x:m,n] = P DA

x:m,n∆äx:m| −∆ n|äx, (4.9)

where ω is the limiting age that no one attained, P WL
x:m,n is the net level premium of the m-

payment whole life insurance and P WL
x:m,n = Ax/äx:m| = (1− däx)/äx:m|; P DA

x:m,n is the net level
premium of the m-payment and n-year deferred whole life annuity and P DA

x:m,n = n|äx/äx:m|.
Since the net level premiums P WL

x:m,n and P DA
x:m,n are calculated using the predicted mortality rates

before the policies are issued, the premiums are not affected by the future mortality movements.
In addition, the change in the portfolio surplus is

23



∆ 0S
WA = wWL · ∆ 0S[P WL

x:m,n] + (1− wWL) · ∆ 0S[P DA
x:m,n]

= wWL ·
ω−x−1∑
k=0

NWL
k · 4 kpx(Ux, k) · e−δ·k + (1− wWL) ·

ω−x−1∑
k=0

NDA
k · 4 kpx(Ux, k) · e−δ·k,

(4.10)

where, from (4.8) and (4.9),

NWL
k = PWL

x:m,n + d, k = 0, . . . ,m− 1, m ≥ 1and

NWL
k = d, k = m, . . . , ω − x

and

NDA
k = PDAx:m,n, k = 0, . . . ,m− 1, 1 ≤ m ≤ n,

NDA
k = 0, k = m, . . . , n− 1, and

NDA
k = −1, k = n, . . . , ω − x− 1.

Depending on the assumption on 4 kpx(Ux, k) in (3.7), we can obtain different estimates for
∆ 0S[P DA

x:m,n] and ∆ 0S[P WL
x:m,n] and the corresponding estimates for weights according to (4.1).

4.3 Simulation procedure for surpluses

We calculate 4 0S[P L
x:m,n] and 4 0S[P A

x:m,n] for ŵL with the following steps:

• (S1) forecast a mortality rate sequence of length n, Ux, n = {ux+j−1 : j = 1, . . . , n}, where
{ux+j−1 is the j − th element in the diagonal of the deterministic Lee-Carter model;

• (S2) use the forecasted mortality sequence to calculate premiums P L
x:m,n and P A

x:m,n;

• (S3) simulate N mortality sequences of length n, U∗, ix, n = {u∗, ix+j−1 : j = 1, . . . , n}, i =
1, . . . , N , from the stochastic Lee-Carter model;

• (S4) fit U∗, ix, k with Ux, k to obtain α̂ik (proportional relational model) by (4.2), β̂ik (constant
relational model) by (4.3), and (α̂ik, β̂ik) (linear relational model) by (4.4) for k = 1, . . . , n
and i = 1, . . . , N , and compute ¯̂αk, ¯̂

βk and ( ¯̂αk, ¯̂
βk) where ¯̂αk = (1/N)

∑N
i=1 α̂

i
k and

¯̂
βk = (1/N)

∑N
i=1 β̂

i
k for k = 1, . . . , n;

• (S4*) fit Ū∗x, k with Ux, k to obtain ¯̂αk (proportional relational model) by (4.2), ¯̂
βk (constant

relational model) by (4.3), and ( ¯̂αk, ¯̂
βk) (linear relational model) by (4.4) where Ū∗x, k =

(1/N)
∑N
i=1 U

∗, i
x, k for k = 1, . . . , n;
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• (S5) use ¯̂αk, ¯̂
βk and ( ¯̂αk, ¯̂

βk), k = 1, . . . , n, to calculate 4 kpx(Ux, k)s based on different
assumptions, which are then plugged into (4 0S[P L

x:m,n], 4 0S[P A
x:m,n]) to obtain corre-

sponding ŵL by (4.1);

• (S6) calculate the ith weighted surplus 0S
i,LA
x:m,n = ŵL · 0S

i[P L
x:m,n] + (1− ŵL) · 0S

i[P A
x:m,n]

at time zero based on the ith mortality sequence, i = 1, . . . , N .

Note that Steps (S4*) and (S4) are equivalent in producing ¯̂αk, ¯̂
βk and ( ¯̂αk, ¯̂

βk), k = 1, . . . , n,
since by (4.2)

¯̂αk =
∑k
j=1 ux+j−1 · (ū∗x+j−1 − ux+j−1)∑k

j=1 u
2
x+j−1

=
∑k
j=1 ux+j−1 · 1

N

∑N
i=1(u∗, ix+j−1 − ux+j−1)∑k

j=1 u
2
x+j−1

= 1
N

N∑
i=1

∑k
j=1 ux+j−1(u∗, ix+j−1 − ux+j−1)∑k

j=1 u
2
x+j−1

= 1
N

N∑
i=1

α̂ik, (4.11)

by (4.3)

¯̂
βk = 1

k

k∑
j=1

(ū∗x+j−1 − ux+j−1) = 1
k

k∑
j=1

1
N

N∑
i=1

(u∗, ix+j−1 − ux+j−1)

= 1
N

N∑
i=1

1
k

k∑
j=1

(u∗, ix+j−1 − ux+j−1) = 1
N

N∑
i=1

(ū∗, ix+j−1 − ūx+j−1) = 1
N

N∑
i=1

β̂ik, (4.12)

and by (4.4)

¯̂αk =
∑k
j=1(ux+j−1 − ūx, k) · 1

N

∑N
i=1(u∗, ix+j−1 − ū

∗, i
x, k)∑k

j=1(ux+j−1 − ūx, k)2
− 1

= 1
N

N∑
i=1

[∑k
j=1(ux+j−1 − ūx, k) · (u∗, ix+j−1 − ū

∗, i
x, k)∑k

j=1(ux+j−1 − ūx, k)2
− 1

]
= 1
N

N∑
i=1

α̂ik (4.13)

and

¯̂
βk = 1

N

N∑
i=1

ū∗, ix, k − (1 + α̂k) · ūx, k = 1
N

N∑
i=1

[ū∗, ix, k − (1 + α̂ik) · ūx, k] = 1
N

N∑
i=1

β̂ik. (4.14)

Therefore, we adopt Step (S4*) because it requires less computational effort.
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Chapter 5

Numerical illustrations

In this chapter, we review the findings in Lin and Tsai (2014) and decide to set U to µ for
the numerical illustrations in this project. Then we exhibit that the coefficients α̂ks, β̂ks and
(α̂k, β̂k)s of the proportional, constant and linear relational models, respectively, with µ∗x, k and
µx, k being used as the realized and expected cohort forces of mortality are varying by k. We
also compare the hedge performances of size free and non-size free matching strategies for the
following insurance portfolios issued to the cohort aged x in 2011:

• 20PFL
TP : a portfolio of 20-payment and 20-year term life insurance and 20-payment and

20-year pure endowment;

• 65−xPFL
TP : a portfolio of (65-x)-payment and (65-x)-year term life insurance and (65-

x)-payment and (65-x)-year pure endowment;

• 20PFL
WA: a portfolio of 20-payment whole life insurance and 20-payment and 20-year

deferred whole life annuity;

• 65−xPFL
WA: a portfolio of (65-x)-payment whole life insurance and (65-x)-payment and

(65-x)-year deferred whole life annuity.

According to Theorem 1, ŵL(Dpc
n ) = ŵL(Dc

n) and ŵL(Cpcn ) = ŵL(Ccn) when U is set to the force
of mortality µ. As a result, the size free and non-size free matching strategies are paired for
comparisons as follows:

Table 4. Pairing size free and non-size free matching strategies
Size free Non-size free

Dp Dp
n

Dc Dc
n (Dpc

n )
Cp Cpn

Cc Ccn (Cpcn )

The numerical results shown in this chapter are based on the USA male mortality rates under
the Lee-Carter model described in Chapter 3. The deterministic forecasted mortality path is
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used as the pricing path µx,n, while the mean of 10,000 stochastic forecasted mortality paths is
used as the realized path µ∗x,n to obtain the estimates of αks, βks and (αk, βk)s with formulas
defined in Chapter 4. The weights of products in each insurance portfolio are determined by
the assumptions on ∆ kpx made in Chapter 4. In addition, we simulate another set of 10,000
stochastic forecasted mortality paths to find the risk quantities: variance, value at risk (VaR)
and conditional tail expectation (CTE), for illustrating hedging performances. We use 2% as
the interest rate for discounting cashflows.

5.1 A review

Lin and Tsai (2014) studied the cases that U can take µ, Q, P , Q/P , lnµ and lnQ/P , proposed
twenty-four size free matching strategies with respect to an instantaneous proportional or con-
stant change in U , and classified them into seven groups according to the weights calculated. In
each group, all members result in weights close to each other, which will lead to similar hedging
performances. Members of each group are listed below (see Lin and Tsai, 2014).

Table 5. Members of groups by the matching strategies
Duration groups Members

GD1 Dp(µx), Dp(Qx), Dc(ln(µx)), Dp(Qx/Px), Dc(ln(Qx/Px))
GD2 Dp(ln(µx)), Dp(ln(Qx/Px))
GD3 Dc(µx), Dc(Qx), Dp(Px), Dc(Px), Dc(Qx/Px)

Convexity groups Members

GC1 Cp(µx), Cp(Qx), Cp(Qx/Px)
GC2 Cc(µx), Cc(Qx), Cp(Px), Cc(Px), Cc(Qx/Px)
GC3 Cc(ln(µx)), Cc(ln(Qx/Px))
GC4 Cp(ln(µx)), Cp(ln(Qx/Px))

Lin and Tsai (2014) omited GC3 and GC4 because these two groups might result in negative
weights for PFLTP and PFLWA portfolios. In the second stage, Lin and Tsai (2014) chose
Dp(µx), Dp(ln(µx)), Dc(µx), Cp(µx) and Cc(µx) as the representatives of the groups GD1, GD2,
GD3, GC1 and GC2, respectively. According to their findings, they suggested Dp(µx), Dc(µx),
Cp(µx) and Cc(µx) as the final four candidates for further comparisons. In order to compare
the hedging performance of non-size free strategies with that of size free ones, we focus on the
case of U = µ in this project. In addition, we use the deterministic cohort mortality sequence
µx,n = {µx,t0 , . . . , µx+n−1,t0+n−1} for pricing and the simulated cohort mortality sequence µ∗x,n =
{µ∗x,t0 , . . . , µ

∗
x+n−1,t0+n−1} for realization of the surplus where t0 is 2011, the first prediction year

in our project. Then the linear relational model becomes

µ∗x, k − µx, k = αk × µx, k + βk + ex,k, k = 1, . . . , n. (5.1)
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5.2 Estimation for αk s and βk s

The estimates of the proportional and constant shift parameters, α̂k and β̂k, can be obtained
using the expected mortality rate sequence of length k for µx,k and the simulated one for µ∗x,k by
the least squares linear regression method specified in (4.11), (4.12), and (4.13) and (4.14) for the
proportional, constant and linear relational models, respectively. Figures 5.1 and 5.2 show the 10
estimated sequences of α̂ks, β̂ks and (α̂k, β̂k)s by fitting µ̄∗x,k, the average of 10,000 stochastically
simulated mortality rate sequences, with µx,k, the expected mortality rate sequence (see Step
S4* in the simulation for surpluses in Section 4.3), 10 times for the cohorts currently aged 25
and 45, respectively. Since we not only assume both proportional and constant shifts but also
proportional or constant movement only, we have four subplots in each figure accordingly. From
those figures, we can verify that α̂ks, β̂ks and (α̂k, β̂k)s vary by k, where k is the length of the
sequences µx,k and µ̄∗x,k used in fitting. Therefore, developing non-size free matching strategies
rather than size free matching strategies is reasonable. Moreover, from the figures for the two
different ages, we can conclude the following in terms of stability:

• When k = 1, the linear relational model is fitted as the constant relational model, therefore
α̂1 = 0;

• No matter which of the linear, proportional and constant relational models we apply, the
estimates (α̂k, β̂k), α̂k only, or β̂k only for the young age cohort are more stable than the
mid-age cohort;

• In general, the estimates from the proportional or constant relational model assuming
proportional or constant shift only (α̂k only or β̂k only) are more stable than those from
the linear relational model with both proportional and constant shifts (α̂k, β̂k), especially
when k is small.

From the aspect of achieving relatively high stability, we tend to use the strategies based on
either proportional or constant shift instead of those based on both proportional and constant
shifts. According to Theorem 1, the weights obtained from Dpc

n and Cpcn are the same as the
ones from Dc

n and Ccn, respectively; we hence do not consider the linear relational model in the
following illustrations.
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Figure 5.1: Estimates of αk and/or βk for age 25

(a) α̂k from the linear relational model

10 20 30 40 50 60 70
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

k
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(c) α̂k from the proportional relational model
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(d) β̂k from the constant relational model
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Figure 5.2: Estimates of αk and/or βk for age 45

(a) α̂k from the linear relational model
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(b) β̂k from the linear relational model
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(c) α̂k from the proportional relational model
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(d) β̂k from the constant relational model
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5.3 Hedging performance at time 0

In this section we compare the hedge performances of size free and non-size free strategies for
the four insurance portfolios, 20PFL

TP , 65−xPFL
TP , 20PFL

WA and 65−xPFL
WA. We first

compare hedge effectiveness for mortality and longevity risks in Subsection 5.3.1, and then
compare hedge performances using value at risk (VaR) and conditional tail expectation (CTE)
in Subsection 5.3.2.

5.3.1 Hedge effectiveness

Two insurance portfolios are created to hedge against both mortality and longevity risks. We
achieve the goal of hedging with various weights of two products in the portfolios, where the
weights are determined according to different matching strategies. Denote 0S

L, 0S
A and 0S

P the
simulated surpluses at time 0 for life insurance, annuity and the portfolio, respectively. Hedge
effectiveness (HE) is the variance reduction ratio indicating the degree of the variability of the
portfolio less than the variance of the surplus of a single product in the portfolio (Li and Hardy,
2011). The closer the hedge effectiveness is to 100%, the more effective the hedging strategy
is. The hedge effectiveness for mortality risk (HEm) and longevity risk (HEl) are defined as
follows:

HEm(σ2) = σ2(0S
L)− σ2(0S

P )
σ2(0SL) = 1− σ2(0S

P )
σ2(0SL) , (5.2)

and

HEl(σ2) = σ2(0S
A)− σ2(0S

P )
σ2(0SA) = 1− σ2(0S

P )
σ2(0SA) . (5.3)

We assumed that the 20PFL
TP and 20PFL

WA portfolios are issued to insureds aged from 20
to 80, while the 65−xPFL

TP and 65−xPFL
WA portfolios are issued to insured aged from 20 to

60. For each portfolio, we first demonstrate the one-by-one comparisons of hedge effectiveness
for mortality and longevity risks against age x between size free and non-size free matching
strategies, and then select top two candidates from each of the size free and non-size free groups
of matching strategies for an overall comparison.
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5.3.1.1 20PFL portfolios

Since the hedge effectiveness for longevity risks of the 20PFL
TP and 20PFL

WA portfolios de-
crease dramatically to negative values for age beyond 70, we only show the HEs for longevity
risk up to age 70 for those two portfolios. We summarize the results from Figures 5.3 to 5.6 as
follows:

• The HE(σ2)s for mortality risk for 20PFL
TP are above 90% for all eight candidates for all

ages from 20 to 80, while the HE(σ2)s for longevity risk remain high (above 85%) for ages
from 20 to 60, and then drop dramatically. The HE(σ2)s for mortality risk for 20PFL

WA

have a left skewed hyperbolic shape; all candidates except for Dc start above 95% and
remain above 80% for ages from 20 to 40, and then they start decreasing and reach the
troughs below 50% around age 65; the HE(σ2)s fall below zero for Dc for ages from 32 to
72 and for Dp

n for ages from 64 to 69. The negative HE(σ2)s indicate that the mortality
risk becomes more intensive by creating such portfolio than the original life insurance
product. Similar to portfolio 20PFL

TP , the HE(σ2)s for longevity risk for 20PFL
WA

remain high (above 99%) for ages from 20 to 60, and then decrease dramatically.

• From (a) and (b) in Figure 5.3, the comparison between matching strategies Dp and Dp
n

for 20PFL
TP shows that Dp

n is more preferable because it improves the HEs for Dp up to
3% and 5% for mortality and longevity risks, respectively. Although the HE(σ2)s for Dp

n

strategy are lower than those for Dp strategy for some ages, the differences are less than
0.5% for mortality risk and 2% for longevity risk. For 20PFL

WA portfolio, the HE(σ2)s
for Dp

n are higher than those for Dp from age 20 to age 57 with a maximum difference
about 5%, but it goes below Dp from age 58 to age 75 with a trough below 0. From (b) in
Figure 5.4 for longevity risk, it is hard to tell whether Dp

n is more effective than Dp from
ages 20 to 60 because those two lines lie together, whereas it is obvious that the non-size
free strategy Dp

n is less effective than the Dp strategy.

• From (c) and (d) in Figures 5.3 and 5.4, we can see that the non-size free strategy Dc
n is

more effective than the size free strategy Dc for both 20PFL
TP and 20PFL

WA portfolios.
Furthermore, the non-size free strategy Dc

n for mortality risk improves HE(σ2) over 5%
and 250% at some ages for the 20PFL

TP and 20PFL
WA portfolios, respectively.

• From (e) and (f) in Figure 5.3 for the 20PFL
TP portfolio, the advantage of using non-

size free strategy Cpn is obvious for ages beyond 65; the maximum difference in HE(σ2)
between Cpn and Cp for mortality risk is around 3.5%. From (e) and (f) in Figure 5.4 for
the 20PFL

WA portfolio, the advantage of using non-size free strategy Cpn is obvious for
ages beyond 55 for mortality risk; the maximum difference in HE(σ2) between Cpn and
Cp for mortality risk is around 12%. Although we can see that Cpn lies above Cp in the
longevity graph for ages beyond 66, the difference is less than 3%.
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• From (g) and (h) in Figure 5.3 for the 20PFL
TP portfolio, the non-size free strategy Ccn

improves HE(σ2) up to 1.5% for ages from 20 to 68 for both mortality and longevity risks.
However, for ages from 69 to 76 the Ccn strategy is less effective than the Cc one. From
(g) in Figure 5.4 for the 20PFL

WA portfolio, the non-size free strategy Ccn shows a larger
improvement in hedge effectiveness for mortality risk from ages 20 to 69; the maximum
difference in HE(σ2) between Ccn and Cc is 20%. However, from (h) in Figure 5.4 it is
hard to differentiate the performance of Ccn from that of Cc for ages from 20 to 55 for
longevity risk.

• From (a) and (b) in Figure 5.5 for the 20PFL
TP portfolio, we pick Cp and Cc as top two

candidates from the size free matching strategy group. From (c) and (d) in Figure 5.5,
we pick Cpn and Ccn as top two candidates from the non-size free matching strategy group.
From the overall comparison between the top four candidates from the size free and non-
size free matching groups, we recommend the non-size free matching strategy with respect
to proportional changes, Cpn, whose performance is compatible with Cp strategy from age
20 to 65 and better than the Cp strategy for ages beyond 65. Moreover, the performance
of the non-size free matching strategy with respect to constant changes, Ccn, is also better
than the Cp strategy and very close to the Cpn strategy.

• From (a) and (b) in Figure 5.6 for the 20PFL
WA portfolio, we take Cp and Dp as top two

candidates from the size free matching strategy group. From (c) and (d) in Figure 5.6,
we take Cpn and Ccn as top two candidates from the non-size free matching strategy group.
From the overall comparison between the top four candidates from the size free and non-
size free matching groups, we also recommend the non-size free matching strategy with
respect to proportional changes, Cpn, which performs the best over all ages and incorporate
the advantage of both Cp and Dp. Furthermore, the hedge effectiveness of Cpn and Ccn

strategies are close to each other.

• The non-size free matching strategy with respect to proportional changes, Cpn, is the best
candidate among all eight size free/non-size free matching strategies. Furthermore, the
conclusion drawn from the HE(σ2)s for mortality and longevity risks agree with each
other.
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Figure 5.3: Hedge effectiveness HE(σ2) for 20PFL
TP (I)

mortality risk (left column) longevity risk (right column)
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Figure 5.4: Hedge effectiveness HE(σ2) for 20PFL
WA (I)

mortality risk (left column) longevity risk (right column)
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Figure 5.5: Hedge effectiveness HE(σ2) for 20PFL
TP (II)

mortality risk (left column) longevity risk (right column)
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Figure 5.6: Hedge effectiveness HE(σ2) for 20PFL
WA (II)

mortality risk (left column) longevity risk (right column)
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5.3.1.2 65−xPFL portfolios

A summary of theHE(σ2)s from Figures 5.7 to 5.10 for the portfolios 65−xPFL
TP and 65−xPFL

WA

are given as follows:

• Subfigures (a) and (b) in Figures 5.7 and 5.8 illustrate that the Dp
n strategy has better

performance than the Dp strategy for all ages. The improvements in hedge effectiveness
for mortality and longevity risks are diminishing along ages for both portfolios. For the
65−xPFL

TP portfolio, the differences between Dp
n and Dc are ranging from 1.1% to 3.8%

for mortality risk and from 1.8% to 6% for longevity risk. For the 65−xPFL
WA portfolio,

the differences between Dp
n and Dc are ranging from 3.5% to 21.5% for mortality risk and

from 0.001% to 0.012% for longevity risk. Because the variation of such life insurance
product is relatively small comparing to the annuity product and a significant weight is
put on life insurance product, the mortality risk is more sensitive to the weight changes
than the longevity ones. Therefore, the improvements by the non-size free strategies are
so much more on mortality risk than on longevity risk.

• Similarly, subfigures (c) and (d) in Figures 5.7 and 5.8 show that theDc
n strategy has better

performance than the Dc strategy for all ages. The improvements in hedge effectiveness
for mortality and longevity risks are also diminishing along ages for both portfolios. For
the 65−xPFL

TP portfolio, the differences between Dc
n and Dc are ranging from 1.5% to

12% for mortality risk and from 2.5% to 17% for longevity risk. For the 65−xPFL
WA

portfolio, the HE(σ2)s for Dc
n are positive for all ages from 20 to 60 for mortality risk,

while the HE(σ2)s for Dc are negative for ages from 20 to 54.

• From (e) and (f) in Figure 5.7, we can see that the HE(σ2)s for the Cpn strategy are a
little higher than the Cp ones from age 20 to 32, but the situation reverses beyond age 33.
From (e) and (f) in Figure 5.8, it is hard to differentiate Cpn from Cp because they are too
close.

• Subfigures (g) and (h) in Figures 5.7 and 5.8 demonstrate that the HE(σ2)s for the Ccn
strategy are generally higher than the Cc ones except for ages 57-60 for the 65−xPFL

TP

portfolio. The improvements in hedge effectiveness also decrease in age. Subfigures (g)
in Figures 5.7 and 5.8 show the maximum difference in HE(σ2)s between Ccn and Cc are
about 3.2% and 115% for the portfolios 65−xPFL

TP and 65−xPFL
WA, respectively.

• From (a) and (b) in Figure 5.9 for the 65−xPFL
TP portfolio, we pick Cp and Cc as top

two candidates from the size free matching strategy group. From (c) and (d) in Figure
5.9, the performances of Cpn and Ccn are close to those of Dp

n and Dc
n. For consistency

with those for the portfolio 20PFL
TP , we select Cpn and Ccn as the candidates for further

comparisons. From the overall comparisons among the top candidates from the size free
and non-size free matching strategy groups, we recommend the non-size free matching
strategy for proportional changes, Cpn, for only young ages from 20 to 32. The hedge
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effectiveness for the size free matching strategy with respect to proportional change, Cp,
is compatible with or a little higher than that for the Cpn for the ages beyond 32.

• From (a) and (b) in Figure 5.10 for the 65−xPFL
WA portfolio, we take Cp and Dp as top

two candidates from the size free matching strategy group. From (c) and (d) in Figure 5.10,
we take the Cpn and Ccn as top two candidates from the non-size free matching strategy
group. From the overall comparisons among the top candidates from the size free and
non-size free matching strategy groups, we can hardly differentiate between the Cpn and
Cp matching strategies by the performance.

• From the overall comparisons for the 65−xPFL
TP and 65−xPFL

WA portfolios, we only
recommend the non-size free matching strategy Cpn for some young ages for the 65−xPFL

TP

portfolios; otherwise, the size free matching strategy Cp is more preferable to the non-size
free matching strategy due to its simplicity and that they have similar performances.
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Figure 5.7: Hedge effectiveness HE(σ2) for 65−xPFL
TP (I)

mortality risk (left column) longevity risk (right column)
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Figure 5.8: Hedge effectiveness HE(σ2) for 65−xPFL
WA (I)

mortality risk (left column) longevity risk (right column)
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Figure 5.9: Hedge effectiveness HE(σ2) for 65−xPFL
TP (II)

mortality risk (left column) longevity risk (right column)
(a) size free strategies
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Figure 5.10: Hedge effectiveness HE(σ2) for 65−xPFL
WA (II)

mortality risk (left column) longevity risk (right column)
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5.3.2 Other risk measures

Value at risk (VaR) and conditional tail expectation (CTE) are other important risk measure
quantities widely used in finance, which report the value of extreme losses; for our case, γ-V aR
is the negative γ-percentile of the simulated surpluses (Hull, 2012) and γ-CTE is the absolute
value of the expectation of simulated surpluses given that the surplus is below the γ-percentile
of the simulated surpluses. Because of the fact that a positive surplus value represents a gain
while a negative surplus value stands for a loss, we desire both negative risk measure quantities
γ-V aR and γ-CTE of the surplus to be as small as possible. For consistency with the four
candidates in the preceding subsection, we select Cp, Cc, Cpn and Ccn for the portfolios 20PFL

TP

and 65−xPFL
TP , and Dp, Cp, Cpn and Ccn for the portfolios 20PFL

WA and 65−xPFL
WA. A

summary of observations from Figure 5.11 are given as follows:

• Paying attention to the scale of the vertical axis, 10−3 or 10−4, we observe that the VaR
and CTE of the portfolio surpluses are very small.

• From subfigures (a), (b), (e) and (f) for the 20PFL
TP and 65−xPFL

TP portfolios, we can
see that although the Cpn matching strategy doesn’t result in the smallest VaR (CTE) for
all ages 20 to 80, its value is very close to the smallest one among the other three selected
matching strategies.

• From subfigures (c), (d), (g) and (h) for the 20PFL
WA and 65−xPFL

WA portfolios, we
can see that the Cpn matching strategy results in the smallest VaR (CTE) for all ages 20 to
60, which supports the claim that the Cpn strategy has a better performance in mortality
immunization.
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Figure 5.11: 5% VaR and 5% CTE of the portfolio surplus at time 0
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5.4 Hedging performances at time t

In this section, we compare the hedging performances of different strategies with the 5%-VaR
against time t, where t is from 0 to the end of the term. For illustrations, we select age 25
to represent the young age group and age 45 to represent the mid-age group. The same four
candidates are selected for each of the four portfolios for the performance comparisons as the
ones in Section 5.3.2. Standing at time t, we know the realized mortality rates for the past
t years; therefore, we use the retrospective method to calculate the portfolio surplus. By the
retrospective method, the expected portfolio surplus at time 0 is 0. However, in order to be
consistent with the results shown in Section 5.3.2, we use the prospective method to calculate
the portfolio surplus at time 0 with the simulated stochastic future mortality rate sequences.
We take the portfolio surplus from the Cpn matching strategy as the base; then we obtain the
ratio of the portfolio surplus from each of the other three matching strategies to the base one.
For example, if the ratio of Cp to Cpn is under (over) 100%, then the performance of the Cp (Cpn)
matching strategy is better. We summarize the results from Figure 5.12 as follows.

• From subfigures (a)-(d), we find that the ranking of the four strategies according to the
5%-VaR comparison at time 0 is different from that at time t > 0. At time 0, we would
rank the four strategies as (1) Cp > (2) Ccn > (3) Cpn > (4) Cc. For t > 0, we can easily
identify that the weights obtained from the size free strategies produce the higher 5%-VaR
than the ones obtained from the non-size free strategies for the two PFLTP portfolios.
Comparing (a) and (c) with (b) and (d), the ratios of Cp and Cc to the base Cpn for age 25
are higher than those for age 45 except for the ratio of Cc to Cpn for t = 20 for the portfolio
20PFL

TP , which implies that the advantage of adopting the non-size free strategy is more
obvious for young ages for the surpluses along time t. Although the lines produced by Cpn
and Ccn stick together, we can carefully observe that the 5%-VaR for the Cpn strategy is a
little lower than that for the Ccn strategy except for that at maturity. The ranking of the
four strategies after time 0 is (1) Cpn > (2) Ccn > (3) Cp > (4) Cc.

• From subfigures (e)-(h), we remove the big ratio value for 5%-VaR at maturity for the Dp

strategy in each subfigure for better distinctions among plots. The removed ratio values
for 5%-VaR are listed as follows:
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Table 6. Ratios for 5% VaR at maturity for the Dp strategy
age 25 age 45

20PFL
WA 2.71056 1.80052

65−xPFL
WA 3.42072 1.80052

From these four subfigures, we can first identify that the Dp strategy produces the highest
and least stable 5%-VaR of the portfolio surpluses for the two PFLWA portfolios for all
t. However, it is hard to rank the other three strategies because the corresponding 5%
VaR values are too close for age 25. For age 45, we find that the ranking of the four
strategies according to the 5%-VaR comparison at time 0 is different from that at time
t > 0, which is consistent with our findings for the PFLTP portfolios from subfigures
(a)-(d). The ranking of those four strategies at time 0 is (1) Cp > (2) Cpn > (3) Ccn > (4)
Dp. For t > 0, the ranking becomes (1) Ccn > (2) Cpn > (3) Cp > (4) Dp. The non-size
free strategies produce smaller impacts on the portfolio surpluses for t > 0 than the size
free strategies. Furthermore, we suggest Ccn rather than Cpn as the best strategy according
to the comparisons of 5%-VaR for t > 0 for the PFLWA portfolios.
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Figure 5.12: 5% VaR for portfolio surplus against time t
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Chapter 6

Conclusion

Mortality improvement occurred over the last decades threatens the financial soundness of an-
nuity providers, pension programs and social security systems. Other than interest rate risk,
longevity and mortality risks are another essential risk factors which need to be managed effec-
tively. As a result, there is a great importance to adopt an effective method of hedging longevity
and mortality risks. Although purchasing mortality-linked securities can be used for hedging
purposes, natural hedging is more preferable since there are no extra hedging costs involved.
Inspired by the literature regarding to size-free matching strategies for mortality immunization
and the relational models for building relationships between two mortality sequences, we develop
the non-size free matching strategies for mortality immunization.

In this project, we propose nine non-size free matching strategies for each of six forms of mortal-
ity rates, µ, Q, P , ln(µ), Q/P and ln(Q/P ). These nine non-size free matching strategies can be
classified into three group according to the corresponding three mortality relational models: GL
(Dpc

n , Cpcn and DCpcn from the linear relational model), GP (Dp
n, Cpn and DCpn from the propor-

tional relational model) and GC (Dc
n, Ccn and DCcn from the constant relational model). We also

prove that some strategies produce the same weights, if U = µ, specifically ŵL(Dp c
n ) = ŵL(Dc

n),
ŵL(Cp cn ) = ŵL(Ccn) and ŵL(DCp cn ) = ŵL(DCcn). Since the matching strategies based on the lin-
ear relational model result in the same weights as those based on the constant relational model,
and the estimate of the parameter, β̂k, for the constant relational model is more stable than the
estimates of the parameters, (α̂k, β̂k), for the linear relation model, we suggest that we adopt
the matching strategies based on the constant relational model instead of the linear relational
model for U = µ.

Our findings from the numerical results confirm that allocating life insurance and annuity prod-
ucts in an insurance portfolio with the proposed non-size free matching strategies can reduce
the impact on the surplus of the portfolio due to mortality movements. By comparing the hedge
effectiveness, 5%-VaR and 5%-CTE for the surplus of the portfolio at time 0 and other time
t until portfolio maturity for non-size free and size-free matching strategies, we conclude that
the non-size free matching strategies are more effective in hedging longevity and mortality risks
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than the size free ones. According to the results obtained from the four portfolios we study, the
non-size free matching strategy based on the proportional relational model, Cpn, contributes to
the highest hedging effectiveness among all size free and non-size free matching strategies.

Comparing the non-size free and size free matching strategies, the non-size free strategies gen-
erally produce better hedging performance than the size free ones; the non-size free strategies
require more computational effort than the size free ones, because the relational model param-
eters are varying by the length of the mortality sequences and those parameters cannot be
cancelled out when calculating the weights; the non-size free group yields Cpn as top candidate
consistently in four insurance portfolios we studied, while the size free group yields different
strategies as top candidates in different portfolios.

Although the non-size free matching strategies can hedge the longevity and mortality risks and
reduce the variance of the surplus of an insurance portfolio, we only study two portfolios, one
portfolio of term life insurance and pure endowment, and the other portfolio of whole life in-
surance and deferred whole life annuity. Future research can be carried out to examine the
hedge performance of the matching strategies proposed in the project with more practical insur-
ance/annuity portfolios. Moreover, we did not study the systematic model error in this project;
further study can be done in analyzing the impact of model error on the hedge performance
by using one mortality model to forecast deterministic mortality rate sequences (U) and an-
other model to simulate stochastic mortality rate sequences (U∗). In addition, life insurers and
annuity providers may find it difficult to allocate the life insurance and annuity products with
the optimal weight because of the selling pressure and market constraint. Adopting an effective
method of incorporating matching strategies and buying mortality-linked securities may assist
life insurers and annuity providers to hedge the mortality and longevity risks to a greater extent.
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