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Abstract

As the size and complexity of modern data sets grows, more and more prediction meth-
ods are developed. Despite the growing sophistication of methods, there is not a well-
developed literature on how heteroscedasticity affects modern regression methods. We
aim to understand the impact of heteroscedasticity on the predictive ability of modern re-
gression methods. We accomplish this by reviewing the visualization and diagnosis of
heteroscedasticity, as well as developing a measure for quantifying it. These methods are
used on 42 real data sets in order to understand the prevalence and magnitude “typical” to
data. We use the knowledge from this analysis to develop a simulation study that explores
the predictive ability of nine regression methods. We vary a number of factors to deter-
mine how they influence prediction accuracy in conjunction with, and separately from, het-
eroscedasticity. These factors include data linearity, the number of explanatory variables,
the proportion of unimportant explanatory variables, and the signal-to-noise ratio. We com-
pare prediction accuracy with and without a variance-stabilizing log-transformation. The
predictive ability of each method is compared by using the mean squared error, which is a
popular measure of regression accuracy, and the median absolute standardized deviation,
a measure that accounts for the potential of heteroscedasticity.

Keywords: Heteroscedasticity; regression; regression trees; random forests; Bayesian
adaptive regression trees; artificial neural networks; multivariate adaptive regression splines
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Chapter 1

Introduction

Modern electronics and computers permit the collection of data from an ever-increasing
variety of sources. As more and more data become available in many different fields, the
size and complexity of typical data sets grows as well. With this growth comes the potential
for more precise and accurate predictions. Linear regression is a classic, commonly used
prediction tool. However, it requires data that satisfy certain conditions, including linearity,
additivity, and homoscedasticity, that may not be met in complex data sets. Modern re-
gression techniques have been developed to handle many challenges prevalent in modern
data, including non-linearity and non-additivity, but reviews of literature show that there is
sparse research on how heteroscedasticity of data impacts the predictive ability of these
methods. Our aim is to study heteroscedasticity in combination with, and separately from,
some of the other challenges typically prevalent in modern data.

This thesis expands on previous work (Payne, 2014) by evaluating the impact of het-
eroscedasticity on the predictive ability of modern regression methods. We accomplish
this by first reviewing how to recognize and diagnose heteroscedasticity, building a “men-
tal library” of how it appears in residual plots, and discussing measures for quantifying
its magnitude. We apply these measures to 42 data sets used previously by Chipman
et al. (2010) for other purposes without regard to their potential for heteroscedasticity. We
show that heteroscedasticity is widespread in data. With the knowledge gained from this
analysis, we develop a simulation study comparing the predictive ability of nine modern
regression methods under “typical” amounts of heteroscedasticity. The nine methods are:
linear regression, stepwise linear regression, the least absolute shrinkage and selection
operator (LASSO), regression trees (both full and pruned), random forests, boosted ran-
dom forests (boosting), multivariate adaptive regression splines (MARS), artificial neural
networks (ANNs), and Bayesian adaptive regression trees (BART). We generate linear and
nonlinear heteroscedastic data, varying the number of explanatory variables, the propor-
tion of unimportant explanatory variables, and the signal-to-noise ratio. We also analyze



the responses with and without a variance-stabilizing log transformation, resulting in four
distinct groups of data: linear and heteroscedastic, nonlinear and heteroscedastic, linear
and homoscedastic, and nonlinear and homoscedastic. In each simulation scenario, we
summarize the quality of the predictions using measures that focus on different aspects of
the model fit.

We have a number of hypotheses relating to how the predictive methods will perform
on each group of data. First, we expect that the methods based on a linear model (linear
regression, stepwise linear regression, and the LASSO) will perform well on the linear, ho-
moscedastic data, as these conditions satisfy the assumptions of these methods. However,
we do not expect these methods to perform well when nonlinearity is present. Additionally,
these methods rely on the unweighted sum of squares criterion, which implicitly assumes
homoscedastic errors. Homoscedasticity is required to ensure that the regression coeffi-
cient estimates from linear regression have the smallest standard errors when compared
to other linear, unbiased estimators. When heteroscedasticity is present and this condition
is violated, the standard errors are biased, leading to incorrect inferences and conclusions.
In addition, areas of high variability contribute more to minimizing the unweighted sum of
squares criterion, and are favoured when making predictions for the mean. The resulting
predictions for low-variance areas can be “off” by a relatively larger amount, even though
they contain more precise information on the mean, in favour of less meaningful predic-
tions for the higher-variance data. Therefore, we expect that these linear methods will be
adversely affected by heteroscedasticity, particularly when performance is measured by a
metric that weights errors according to the local variance.

On the other hand, the other methods we will compare (including regression trees and
their ensembles, ANNs, and MARS) do not make assumptions about linearity of the data.
Therefore we expect that they should perform better than the linear regression methods un-
der nonlinearity and homoscedasticity. These methods all use the residual sum of squares
as a loss function. Again, when there is heteroscedasticity, data with higher variability are
more influential in minimizing this function and in making predictions. This also results in
predictions that are further off in the low-variance area, even though there is more infor-
mation there. We expect that these methods will also degrade under heteroscedasticity.

The outline of this thesis is as follows. In Chapter 2, we introduce heteroscedasticity
and discuss methods for recognizing and quantifying it. We use these methods on 42 data
sets in order to develop knowledge on the prevalence and severity of heteroscedasticity in
“typical” data. In Chapter 3 we review previous work on heteroscedasticity in modern re-
gression methods and discuss its limitations in context of our previous findings. In Chapter
4, we introduce and summarize the prediction methods that will be used and compared



in the simulation study. In Chapter 5 we develop and execute a simulation study with
48 scenarios to challenge the prediction methods. The results are presented in terms of
mean squared error (MSE) and median absolute standardized deviation (MASD). Finally,
in Chapter 6 we discuss the results and limitations, and provide suggestions for future
work.



Chapter 2

Heteroscedasticity

Homoscedasticity, or constant variance in the response, is an explicit assumption made
when using linear regression and an implicit one with many other prediction tools. Het-
eroscedasticity is the violation of this assumption. In this chapter, we introduce het-
eroscedasticity, review methods for visualizing and identifying it through residual plots,
introduce a measure for quantifying it, and analyze 42 data sets from Chipman et al. (2010)
in order to assess the prevalence and magnitude of heteroscedasticity in “typical” data. We
will show that heteroscedasticity is widespread and therefore there is the need to evaluate
which prediction tools are robust against it.

2.1 Introducing Heteroscedasticity

Linear regression allows us to study the relationship between p explanatory variables,
Xi,...,X,, and a continuous response variable, Y. This model takes the form Y = X3+,
where X is an n x (p+ 1) matrix of explanatory variables, Y is an n x 1 vector of responses,
Bis a (p+ 1) x 1 vector of unknown regression coefficients, and € is an n x 1 vector of
unobservable errors with a Normal(0, o21) distribution (Cook and Weisberg, 1982). Ho-
moscedasticity is the assumption that the error variance is equal to o2 for all n observa-
tions. This assumption is used for estimating the regression coefficients 3 through ordinary
least squares (OLS), leading to the solution 3 = (X’X)~'X'Y. By the Gauss-Markov the-
orem, 3 is the linear, unbiased estimator with the smallest variance.

Heteroscedasticity is the violation of the homoscedasticity assumption. When it oc-
curs, the OLS estimates B are still unbiased, but become inefficient. The regular stan-
dard errors of these estimates are wrong, leading to incorrect inferences, although White’s
heteroscedastic corrected standard errors (White, 1980) can be used instead. When het-
eroscedasticity is present, data from highly variable areas have a larger effect on minimiz-



ing the unweighted least squares criterion in OLS and contribute more to predictions.

Consider the case with one predictor, X, where the error variance is proportional to the
mean. As we can see in the scatterplot of Y versus X in Figure 2.1, fitting the regression
line using OLS results in over-prediction in the low-variance area, on the left of the plot.
This is the part of the data that contains the most information about the local mean, and
the mean should be fit most accurately here. However, predictions are relatively far from
their apparent true means here, while relatively meaningless improvements are made to
the predictions in the high-variance area.

Figure 2.1: Scatter plot of Y versus X, when the error variance is proportional to the mean,
along with a regression line which overpredicts in the low variance area.
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Heteroscedasticity comes in many forms, including as a function of the explanatory
variables or of the mean of the data. In this thesis, we focus on the situation where the
variance increases as the mean increases. This is a common feature of many distribu-
tional models other than the normal — e.g., Poisson, gamma, exponential — so it might
be expected to occur in many regression problems where a normal distribution is incor-
rectly used to model data from another distribution. In particular, we focus on variance
that increases as a power of the mean (Carroll and Ruppert, 1988). Transformations of
the response can be used to correct for heteroscedasticity of this form. For example, if the
variance is proportional to the mean, a square root transformation of the response can cor-
rect the heteroscedasticity. When the variance is proportional to the square of the mean,
a log transformation is used to correct the heteroscedasticity (Carroll and Ruppert, 1988).
These are examples of Box and Cox (1964) power transformations, and other transforma-
tions can be used, depending on the power of the mean. While transformations of data are



possible, they are often difficult to choose and may lead to undesirable properties, such as
nonlinearity when the original relationship is linear. It is therefore useful to identify methods
that are robust against heteroscedasticity.

2.2 Identifying Heteroscedasticity

The residuals from linear regression aree = Y—Y = Y — X33, and are used a proxy for the
unobservable errors € (Cook and Weisberg, 1982). The residuals can be used to diagnose
the behaviour of the variance within a data set. Residual plots, where residuals e; are plot-
ted on the y-axis, versus the predicted responses g; on the = axis, are the most commonly
used tool (Carroll and Ruppert, 1988). When the condition of homoscedasticity is satisfied,
the residuals should be randomly and uniformly scattered around the horizontal line at 0,
as seen in Figure 2.2a. When heteroscedasticity is present, particularly when the variance
is proportional a power of the mean, there is a fan shape to the residuals, as in Figure 2.2b.

This may not be the best method for detecting heteroscedasticity, as it is “difficult to
interpret, particularly when the positive and negative residuals do not exhibit the same
general pattern” (Cook and Weisberg, 1982). Cook and Weisberg suggest plotting the
squared residuals, €2, to account for this. Then, a wedge shape bounded below by 0 would
indicate heteroscedasticity. However, as Carroll and Ruppert (1988) point out, squaring
residuals that are large in magnitude creates scaling problems, resulting in a plot where
patterns in the rest of the residuals are difficult to see, such as in Figure 2.2c. They
instead advocate for plotting the absolute residuals, as in Figure 2.2d. This way, we do
not need to identify positive and negative patterns, and do not need to worry about scaling
issues. A wedge shape of the absolute residuals also indicates heteroscedasticity where
the variance increases with the mean. This is the plotting method that we use for identifying
heteroscedasticity moving forward, and will be used later on in this Chapter.

2.3 Quantifying Heteroscedasticity

Absolute residual plots are helpful in identifying if a data set is heteroscedastic, but do not
provide a way to quantify the “amount” of heteroscedasticity in the data set. We will use
two measures, described as follows, to measure heteroscedasticity. For the first measure,
compute the average of the absolute residuals for the largest 10 percent of the predicted
responses. Next, compute the average of the absolute residuals for the smallest 10 per-
cent. Define the “Standard Deviation (SD) Ratio,” computed as the ratio of the average for
the largest 10 percent to the average for the smallest 10 percent. For homoscedastic data,



Figure 2.2: Residual plots of homoscedastic and heteroscedastic errors.
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this ratio is close to 1. For heteroscedastic data where the variance increases with the
mean, the ratio is greater than 1. When the variance decreases with the mean, the ratio is
less than 1.

The rationale for this measure is as follows. In linear regression, we make the as-
sumption that Var(e;) = o2 for all n observations. Since Var(e;) = E(¢?) — (E(e;))? and
E(e;) = 0, it follows that E(e?) = o2, and E(|;|) is proportional to o. Therefore, if it were
possible to plot the absolute values of the errors, they would be representative of the stan-
dard deviations in the data. Since the residuals e; are used as a proxy for ¢;, we can instead
plot the absolute values of the residuals, |e;|, to represent the standard deviation. The SD
Ratio therefore measures approximately the ratio of the standard deviation of Y in areas

of high variability to the standard deviation of Y in areas of low variability.

The second measure we will use is the estimate of the slope from fitting a linear model
of the absolute residuals versus the predicted responses. A slope of 0 indicates that the
variance does not change with the mean, a slope greater than 0 indicates that the variance
increases with the mean, and a slope less than 0 indicates that the variance decreases with
the mean. We will not use this slope measure to quantify the amount of heteroscedasticity,
but rather to “test” for its presence, as White’s heteroscedasticity-corrected standard errors
can be used to formally test if the slope is 0. This test is similar to White’s test for het-
eroscedasticity (White, 1980), but uses the absolute residuals to test for heteroscedasticity
instead of the squared residuals.

2.4 Example Data Sets

The methods for identifying and quantifying heteroscedasticity discussed above are used in
this section to evaluate the prevalence and severity of heteroscedasticity in “typical” data.
We looked at a collection of 42 data sets used for a “bake-off” competition by Chipman
et al. (2010), who compared the predictive ability of Bayesian additive regression trees
(BART) to the predictive ability of other modern regression methods. These 42 data sets
are a subset of 52 data sets initially collected by Kim et al. (2007). Although the methods
used to select data sets for inclusion into the group is not given, there is no indication that
heteroscedasticity played any role in the process. We therefore consider these data sets
to be representative of “typical” data from a variety of fields. We fit an optimal random
forest (discussed in Chapter 4) to each data set to remove the mean trend, which allows
for the possibility that the mean is nonlinearly and non-additively related to the explanatory
variables. We then analyzed the absolute residuals, computing the SD Ratio and slope
measures. Table 2.1 displays this information, along with the name, sample size, and



number of explanatory variables for each data set.

The SD Ratio, slope (along with its standard error), and a visual examination of the ab-
solute residual plots were used to determine which data sets are heteroscedastic, focusing
only on data sets where the heteroscedasticity manifests as the variance increasing with
the mean. Those data sets are highlighted in Table 2.1. We detected heteroscedasticity,
where the variability increases with the mean, in 25 of the 42 data sets. None of these data
sets were selected with heteroscedasticity in mind; they were only used to compare the
predictive ability of modern regression techniques. Nonetheless, heteroscedasticity was
present in over half of the bake-off data sets, showing that heteroscedasticity is widespread
in data and that there is a need to examine which regression methods are robust to het-
eroscedasticity. Of the 25 heteroscedastic data sets, the mean SD Ratio is 6.945, with a
median of 3.079. The minimum SD Ratio is 1.142 and the maximum is 62.798.

Unfortunately, the SD Ratio measure is not robust to outliers. The SD Ratio for the Cpu
data set is 62.798. However, as the absolute residual plot in Figure 2.3a shows, this is due
to a residual that is more than two times as large as than the remaining largest residuals.
When this point is removed, the SD ratio of this data set is 41.200. However, the measure
is useful for identifying the amount of heteroscedasticity in data sets without outliers, such
as for the Diabetes data set (SD Ratio of 5.313, absolute residual plot in Figure 2.3b),
the Abalone data set (SD Ratio of 3.250, absolute residual plot in Figure 2.3c), and the
Fame data set (SD Ratio of 2.186, absolute residual plot in Figure 2.3d). This gives us an
idea of how severe heteroscedasticity typically is, and will be helpful when it comes time to
develop a simulation study.



Table 2.1: Table showing data set name, sample size, number of explanatory variables (p),
SD Ratio, and slope (with standard error) of the 42 bake-off data sets from Chipman et al.
(2010). Highlighted data sets contain significant heteroscedasticity, according to the test
described.

Data Set Sample Size p SD Ratio Slope (SE)

Abalone 4177 8 3250 0.232 (0.011)
Ais 202 12 0.906 -0.001 (0.013)
Alcohol 2462 18 0.950  0.033 (0.054)
Amenity 3044 21 1.883  0.091 (0.010)
Attend 838 9 1.698  0.129 (0.020)
Baseball 263 20 2.214  0.076 (0.015)
Baskball % 4 1.119  0.019 (0.136)
Boston 506 13 0.511 -0.073 (0.016)
Budget 1729 10 4.860  0.036 (0.003)
Cane 3775 9 1.142  0.091 (0.024)
Cardio 375 9 5.509  0.548 (0.123)
College 694 24 1.150  0.033 (0.012)
Cps 534 10 1.116  0.049 (0.048)
Cpu 209 7 62798  0.200 (0.086)
Deer 654 13 0.511 -0.047 (0.019)
Diabetes 375 15 5.313  0.388 (0.059)
Diamond 308 4 0.888 -0.029 (0.014)
Edu 1400 5 1.992  0.139 (0.025)
Enroll 258 6 1.855  0.081 (0.022)
Fame 1318 22 2.186  0.115 (0.014)
Fat 252 14 0.936 -0.003 (0.029)
Fishery 6806 14 4.014  0.379 (0.020)
Hatco 100 13 0.863 -0.038 (0.031)
Insur 2182 6 0.161 -0.133 (0.006)
Labor 1189 18 2.041  0.115(0.016)
Laheart 200 16 1.462  0.152 (0.064)
Medicare 4406 21 1.156  0.027 (0.021)
Mpg 392 7 3.079  0.084 (0.014)
Mumps 1523 3 0.606 -0.053 (0.009)
Mussels 201 4 4272 0.155 (0.029)
Ozone 330 8 5210  0.191 (0.023)
Price 159 15 6.118  0.171 (0.033)
Rate 144 9 2.192  0.300 (0.096)
Rice 171 15 0.671  0.006 (0.039)
Scenic 113 10 0.793 -0.152 (0.067)
Servo 167 4 6.581  0.196 (0.040)
Smsa 141 10  23.016  0.363 (0.200)
Strike 625 5  17.780  0.488 (0.063)
Tecator 215 10 2.002  0.045 (0.017)
Tree 100 8 0.561 -0.128 (0.069)
Triazine 186 28 0.279 -0.387 (0.083)
Wage 3380 13 1.057  0.017 (0.014)
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Figure 2.3: Absolute residual plots of four bake-off data sets from Chipman et al. (2010).

(a) Absolute residual plot for Cpu data set (SD

Ratio of 62.798).
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Chapter 3

Previous Work

In this chapter we review previous work on evaluating the impact of heteroscedasticity on
the predictive ability of modern regression methods. We outline the work done and discuss
some limitations.

We are aware of no other studies examining the effect of heteroscedasticity on modern
regression methods prior to Payne (2014). Payne (2014) explores the topic via a simulation
study, similar to the one we discuss in Chapter 5. He generates linear and nonlinear data,
and varies the number of explanatory variables, the proportion of unimportant explana-
tory variables, and the signal-to-noise ratio. The responses are analyzed with and with-
out a variance-stabilizing log transformation, for a total of 32 simulation scenarios. Each
scenario consists of 50 simulations, each with n = 1000. On each data set, the follow-
ing methods are used to make predictions: linear regression, stepwise linear regression,
ridge regression, the LASSO, regression trees, boosted regression trees, random forests,
MARS, ANNs, and BART.

There are a few limitations of the work done in Payne (2014). The first is that the data
generated do not possess all of the properties desired in order to challenge the regres-
sion methods. In particular, the data are not “heteroscedastic enough” and the nonlinear
data are not “nonlinear enough.” We compute the SD Ratio, as described in Chapter 3,
with the absolute residuals found by fitting either a random forest (in nonlinear cases) or a
linear model (in linear cases) to remove the mean trend. This is repeated on the first 10
simulated data sets for each of the eight nonlinear-and-heteroscedastic, and eight linear-
and-heteroscedastic scenarios. We look at the mean SD Ratio for each scenario.
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Figure 3.1: Scatter plot of residuals from artificial nonlinear data fitted with a linear model.
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We compare the SD Ratios of the data from Payne (2014) to the SD Ratios of the bake-
off data from Chipman et al. (2010). The SD Ratios of the data sets from Payne (2014)
range from 1.610 to 3.358, with a mean of 2.347 and a median of 2.289. Meanwhile, the
median SD Ratio of the bake-off data is 3.079, which is almost as large as the largest SD
Ratio from Payne (2014). Compared to the typical amount of heteroscedasticity we found
in the bake-off data, the data sets from Payne (2014) are not very heteroscedastic. In our
simulation study, we aim to simulate data with SD Ratios consistently around 3, the typical
amount of heteroscedasticity in the bake-off data.

The data in the nonlinear heteroscedastic case are not nonlinear “enough” to challenge
the linear-based methods (linear regression, stepwise linear regression, ridge regression,
and the LASSO). When a linear model is fit to nonlinear data, the residuals should convey
considerable nonlinearity, often identified by curvature in a residual plot. See Figure 3.1 for
an exaggerated example.

To measure the nonlinearity in a data set, consider fitting a LOESS curve with degree 2
to the residuals. This is indicated by the curved black line in Figure 3.1. Ideally, the LOESS
curve should “wobble” randomly around zero, explaining very little apparent trend in the
residuals. When it does not, this is an indication that the linear regression is a poor fit, and
that curvature may be present.
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Figure 3.2: Residual plots of nonlinear data from Payne (2014).
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We use the coefficient of determination (R?) of the LOESS curve on the residual plot as
a rough measure of curvature in our simulated nonlinear data sets. The farther from zero
R? is, the more nonlinear the data. For the residuals in Figure 3.1, the R? is 0.76, because
the original data from which the residual plot was made are quite nonlinear.

We repeat this same procedure on the nonlinear heteroscedastic data from Payne
(2014), again looking at the first ten simulated data sets from the eight nonlinear het-
eroscedastic scenarios. The LOESS R? ranges from 0.018 to 0.24. Figure 3.2 shows
two examples of residuals from this nonlinear data, specifically one where the LOESS R?
is 0.036 (Figure 3.2a) and one where it is 0.195 (Figure 3.2b). This exploratory analysis
gives us a way to quantify nonlinearity, and is useful for developing our own simulation
study. In our work, we develop simulation settings that achieve greater levels of nonlinear-
ity and therefore provide an opportunity for modern methods to provide better results than
linear methods.

Another limitation of Payne (2014) is that the methods are used at their default settings.
As we discuss in Chapter 4, the “modern” methods (such as random forests, boosting, and
ANNSs) have tuning parameters that affect their performance. While they sometimes per-
form adequately at their default settings, these methods are not always “one size fits all,”
and should be tailored to individual data sets to obtain optimal performance. This tuning
can be done through K-fold cross-validation, where the data are split randomly into K
distinct groups of roughly equal size. For kin 1,..., K, we fit a model at specific tuning
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parameter settings on all of the data except the k*" group, then make predictions for the
data in the k" group. Thus, observations do not influence their own predicted values. The
cross-validation error then summarizes the differences between the responses and their
predictions. This process can be repeated for various combinations of the tuning parame-
ters, and the combination that minimizes the cross-validation error is chosen as the best.
The resulting tuning parameter values may be quite different from the default settings, and
the resulting prediction error can be considerably smaller with the selected values.

In addition, Payne (2014) uses two measures to evaluate the performance of each
method. The first is the mean squared error (MSE), defined as M SE = 1 5™ | (1i; — §:)*.
The second measure is the median absolute deviation, M AD = median (|u; — 9:|). Be-
cause these measures treat each residual equally, they do not take into account any het-
eroscedasticity that might be present in a data set. In Chapter 5, we propose an alternative

method for quantifying model performance.

Finally, the study in Payne (2014) was only repeated on 50 simulated data sets for each
scenario. Considering the variability that may be present among data sets, this may not
be enough simulations to distinguish the relative performance of different regression meth-
ods. It would be useful to have more simulations so that we can have better precision in
our comparisons between methods.

The work done by Payne (2014) serves well as a pilot study for understanding the
impact of heteroscedasticity on the predictive ability of modern regression methods. In
particular, the models used for producing nonlinear data and heteroscedastic data are
sensible and convenient. Payne (2014) varies the number of explanatory variables, the
proportion of unimportant explanatory variables, and the signal-to-noise ratio, which are all
factors that we investigate in our own study. By adding additional features, such as tuned
methods, more heteroscedastic data, and greater number of simulated data sets, we hope
to develop a simulation study that further investigates this topic.
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Chapter 4

Methods

In Chapter 5 we compare the predictive ability of nine regression methods under het-
eroscedasticity. In this chapter, we introduce each method and present hypotheses on
how they will perform on four distinct groups of data, described in further detail in Chapter
5: nonlinear heteroscedastic data, linear heteroscedastic data, nonlinear homoscedastic
data, and linear homoscedastic data.

4.1 Linear Regression

Linear regression is a method used to study the relationship between p explanatory vari-
ables Xi,...,X,, and a continuous response variable Y. The linear regression model
takes the form Y = X3 + €, where X is an n x (p+ 1) matrix of explanatory variables, Y is
an n x 1 vector of responses, 8 is a (p + 1) x 1 vector of unknown regression coefficients,
and e is an n x 1 vector of unobservable errors with a Normal(0, 02I) distribution (Cook
and Weisberg, 1982). The estimated regression coefficients are found through ordinary
least squares (OLS), by minimizing the unweighted sum of squares (Y — X3) (Y — X/),
leading to the OLS estimates 8 = (X'X)"!XY.

As explained in Chapter 2, the homoscedasticity assumption is integral to linear re-
gression. In addition, linear regression cannot model nonlinearity in data. Therefore, we
expect linear regression to do poorly on the nonlinear heteroscedastic data. When the log
transformation is used, these data become linear and homoscedastic. We expect linear
regression to do well in this case, since it is ideal for the model assumptions. On the other
hand, we expect it to do poorly on both the untransformed linear heteroscedastic data,
and on its log-transformed version, the nonlinear homoscedastic data. Each of these data
structures has properties (heteroscedasticity and nonlinearity, respectively), that challenge
linear regression.
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4.2 Stepwise Linear Regression

In our linear regression setting, we use all available variables. This means estimating a co-
efficient for each explanatory variable, regardless of whether or not the variable might be
“‘important”, resulting in p + 1 estimated coefficients. Each additional parameter estimate
adds to the variability of predictions.

It is therefore desirable to find a model that contains only the important variables, which
would potentially provide much less variable predictions. Many techniques exist that at-
tempt to identify which variables are important. Stepwise linear regression is a classic
method used to reduce the number of variables in a model.

The method is as follows. We construct a null model that includes only the intercept,
and a full model that includes all of the explanatory variables. In forward stepwise regres-
sion, we start by fitting the null model and add one explanatory variable at a time. As
discussed by Hastie et al. (2009), there are several criteria that can be used to decide
which explanatory variable is added at each step. However, they are all based on the vari-
able’s partial sum of squares, given the previous model, so they all create the same “path”
from the empty model to the full model. A popular, older method is to add the variable that
has the strongest relationship with the response, according to a Z- test. We instead use
the smallest value of the Bayesian Information Criterion (BIC, Schwarz, 1978). The BIC is
a measure that penalizes against adding too many parameters to a model and therefore
prevents overfitting. The criterion is defined as BIC = —2loglik + klog(n), where loglik
is the log likelihood for the model, given the data, and & is the total number of parameters
currently in the model. We use a form of the stepwise algorithm where one variable is
added at a time until no variable further reduces the BIC, with the BIC computed at each
step. The model that minimizes the BIC is chosen.

Analogously, in backward elimination, we begin by fitting the full model and remove the
explanatory variable that results a reduced model with the smallest value of BIC among
all possible deletions. This process is carried out one variable at a time until there are no
variables whose deletion could not further reduce the BIC. Then, the model with the lowest
BIC is chosen. The models selected by forward selection and backward elimination do not
always coincide. We therefore use a combination of both methods that involves performing
both forward stepwise regression and backward elimination, and choosing whichever final
model has smaller BIC. Performing both algorithms and selecting the better model among
the two chosen offers the potential for improvement over either direction alone.
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Since stepwise regression is a linear regression method and the final model is fit using
OLS, it implicitly involves the same assumptions as full linear regression. Therefore, our
hypotheses are similar for this method. We expect it to do well on linear homoscedastic
data, but poorly on nonlinear homoscedastic, nonlinear heteroscedastic, and linear het-
eroscedastic data. However, when the data are linear and homoscedastic and the number
of “worthless” explanatory variables is large, we expect stepwise linear regression to do
better than linear regression because it focuses on those explanatory variables with a
larger impact on the response, rather than estimating the coefficients for all variables.

4.3 Least Absolute Selection and Shrinkage Operator

The least absolute selection and shrinkage operator (LASSO) is another method used
to obtain sparse models. The estimate 3 is found by minimizing the L1-penalized least
squares criterion, (Y — X8)'(Y — XB) + A X_Y_, |B;| for a given value of A (Hastie et al.,
2009). The parameter X is a penalty which prevents the coefficient estimates from growing
to their full OLS estimates and is chosen through cross-validation. Using this criterion re-
sults in parameter estimates that are shrunk relative to the OLS solutions. Some estimates
are shrunk to 0, resulting in a sparser model. It is therefore used both as a shrinkage
estimator and as a variable selection technique (Izenman, 2013).

Since the LASSO coefficients are found by minimizing a criterion that involves the un-
weighted sum of squares, we expect the LASSO to also be adversely affected by het-
eroscedasticity and nonlinearity, similar to linear regression. Again, when the number of
unimportant explanatory variables is large, we expect the LASSO to perform better than
linear regression.

4.4 Regression Trees

Regression trees partition data into groups that are as different as possible and fit the
mean response for each group as its prediction (Hastie et al., 2009). The partitioning is
done recursively, as follows. The data are split into two subgroups, based on one explana-
tory variable. Only the splits {i : X;; > ¢}, {i : X;; < ¢} are considered for all appropriate
values of c for each explanatory variable X ;. The variable and splitting point are chosen to
reduce the residual sum of squares (RSS) as much as possible after the split as compared
to before the split. The RSS of the full data, before any splits, is RSSru = >0 (yi — §)?.
Once the data are split into two subgroups, R; and R», the mean response of the data in
Ry, 41, is fit to that data, and the mean of the data in Rs, 5, is fit to that data. The result-
ing RSS is RSSspiit = Y. y,er, (i — U1)* + X y,er, (i — 92)°. After the first split, the same
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process is repeated in each subgroup. A new split is chosen, either on the same variable
at a different splitting point, or on an entirely new variable. This process is repeated until
some stopping rule is reached, which is typically a minimum number of observations in a
final group (called a terminal node).

Regression trees that are too large overfit the data, but trees that are too small may
miss important information. Full trees can be pruned according to a cost-complexity crite-
rion, which takes into account the amount of squared error explained by each subtree plus
a penalty for the number of terminal nodes in the subtree. The penalty parameter, «, bal-
ances between tree size and overfitting. According to Hastie et al. (2009), for each « there
is a unigue subtree that minimizes the cost-complexity criterion. The subtree, T, is found
by collapsing internal nodes of the full tree one at a time, with the collapsed node being the
one that produces the smallest increase in the residual sum of squares per added node.
This sequence of trees will contain the tree T, that minimizes the cost-complexity criterion
(Hastie et al., 2009). The optimal value of « is chosen through cross-validation.

Regression trees use the residual sum of squares to decide what splits to make, so
we expect that they will do poorly under heteroscedasticity, both in the linear and nonlin-
ear case. However, regression trees do not make any assumption about the shape of the
relationship between the response and explanatory variables, so we expect them to per-
form well under nonlinearity. We use both full and pruned regression trees, and expect the
pruned trees to outperform the full trees, since they focus on important trends in the data
and do not overfit.

4.5 Random Forests

Regression trees are highly variable, and small changes in data can lead to very differ-
ent splits and results. Despite their popularity, individual regression trees are not powerful
predictors. However, they have properties that make them good candidates for combining
via ensemble methods to obtain less variable predictions. Ensemble methods combine
multiple predictors that have low bias but high variability. In doing so, the variability of the
averaged predictor is reduced (Hastie et al., 2009).

Random forests are one example of an ensemble method. They are constructed by
averaging the predictions from B trees. Each tree is based on a bootstrapped resampling
of the data, and at each split, m < p explanatory variables are randomly chosen as candi-
dates to split on. This results in lower correlation between individual trees, because they
are not all based on the same data or on the same variables (Izenman, 2013). The vari-
ance of the average of B identically distributed random variables, each with variance o2
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and pairwise correlation p is po? + 1%’02 (Hastie et al., 2009). Increasing B reduces the
variance of this average, as does reducing p. Applying this to an ensemble suggests that
averaging trees that are less correlated, but perhaps slightly more variable than a typical
pruned tree, results in lower variance of the ensemble.

Since an ensemble method reduces variability by design, pruning individual trees is
not of primary importance. However, in order to prevent excess variability that averaging
cannot fix, we set a maximum number of terminal nodes, &, that each tree can grow to.
In a random forest, the prediction for y; is made by averaging the predictions from the
trees that do not have y; as part of their sample; i.e., it is part of the “out-of-bag” sample
(Izenman, 2013). The tuning parameters B, m, and k are chosen to minimize out-of-bag
error. This process allows a way to select tuning parameters without the additional step of
cross-validation.

Since random forests are built from multiple regression trees, they also do not use
any assumption about a linear relationship between the explanatory variables and the re-
sponse, so we do not expect them to be adversely affected by nonlinearity. However, the
individual trees are constructed based on the minimization of the residual sum of squares.
We therefore expect that random forests will also be sensitive to heteroscedasticity. We do
anticipate that they will perform much better than an individual regression tree.

4.6 Boosted Regression Trees

Boosted regression trees, also known as boosting, is another ensemble method that com-
bines regression trees. It differs from random forests in a number of ways. First, the
ensemble building process is sequential. We start by taking the mean response as the
prediction for all observations. Then a regression tree is fit to the residuals from the initial
prediction. The new predictions are multiplied to by a shrinkage parameter, v, and added
to the previous predictions. This process is repeated M times, and each new regression
tree is fit to the residuals of the predictions from the weighted sum of the previous trees.
The shrinkage parameter, v, is typically small, which allows the ensemble to adapt to the
data slowly before it overfits. The number of trees M needed is therefore related inversely
to v. This process is called Gradient Boosting, with details available in Izenman (2013).

Another key difference is that the trees are typically small. The maximum depth of
variable interactions, J, is not usually greater than 4 or 5. Keeping J small ensures that
each individual tree does not explain too much, and allows the new trees in the sequence
to “catch” the patterns that the previous ones missed. According to Hastie et al. (2009),
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combining many “weak” predictors in this way results in a powerful ensemble.

Boosting can also use a bagging fraction n, which determines the proportion of data
that each tree is based on. Having each tree based on a fraction of the data reduces the
correlation between trees and improves performance over using n = 1 (Hastie et al., 2009).
A typical choice is n = 0.5. The parameters v and J are chosen through cross-validation.
Boosting is prone to overfitting if too many trees are used, so M is chosen through cross-
validation separately for each combination of v and J.

Similarly to random forests, boosting is based on multiple regression trees and no
assumptions are made about data linearity. We expect boosting to do well in both linear
and nonlinear cases. Again, each tree is built by minimizing the residual sum of squares,
so boosted regression trees may also be adversely affected by heteroscedasticity. We
anticipate that boosting will perform better than individual regression trees, given that they
are an ensemble of “weak” predictors and are therefore more powerful. They may also
perform better than random forests.

4.7 Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) is a flexible regression method that pro-
duces continuous models Friedman (1991). In MARS, the response Y is related to the
explanatory variables through the model Y = f(X) + €, where ¢ has mean 0 and f(X) is
a weighted sum of M basis functions, f(X) = Bo + >0, Bmhm(X) (Hastie et al., 2009).
The m!" basis function, h,,(X), is either a spline function or the product of two or more
spline functions (Izenman, 2013). In particular, the splines that are used by most MARS
implementations are “hinge” functions that are flat for X;; < c and linear for X;; > c or vice
versa. Selecting j and ¢ uses a process similar to regression trees, in the sense that the
chosen hinge function is the one that reduces the residual sum of squares the most.

The model is built by first fitting the mean of the responses as predictions. At each step,
basis functions are added into the model, in terms of which gives the largest reduction in
the residual sum of squares (Hastie et al., 2009). The final model is too large and overfits
the data, so a backward deletion process is used to obtain a smaller model. The maximum
degree, d, of interactions allowed (i.e., the number of products in the basis functions) is
usually constrained to be small, with d = 1,2, or 3 as common choices. The value of d can
be chosen through cross-validation.

We anticipate that MARS will be an excellent predictor for the nonlinear data, since
the basis functions model nonlinearity through interactions. Given that the model is grown
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by minimizing the residual sum of squares, there is again the potential that MARS will be
adversely affected by heteroscedasticity.

4.8 Artificial Neural Nets

Artificial neural networks (ANNs) constitute a two-stage modelling process. The explana-

tory variables are combined into a layer of “hidden nodes,” and the results from the nodes

are combined to make predictions. More specifically, the M hidden nodes are formed as

a linear combination of the explanatory variables, with Z,,, = o(aom + Xau), where o(v)
1

is usually the sigmoidal function, o(v) = - (Hastie et al., 2009). In regression, the

response is then formed as a linear combination of the hidden nodes, as
Y = B0+ =1 BmZm.

The weights in ANNs consist of ag.,, 50, Bm, and all the terms in a,,, form =1,..., M,
for a total of M(p + 1) + (M + 1) parameters (Hastie et al., 2009). These are estimated
by minimizing the residual sum of squares, through an approach called back-propagation.
ANNs are prone to overfitting, so the parameters are found by minimizing a regularized
criterion, RSS + A {||B|* + ||a]|?}, where B = (Bo, i, ---,8m), and « contains all the «
parameters. The penalty term, A, is called the decay parameter. We find the optimal value
of X\ in combination with the optimal number of hidden nodes, M, through cross-validation.
ANNSs are a random process, because the back-propagation algorithm is initialized with
random weights. They should be run several times with predictions averaged as final re-
sults. The back-propagation algorithm is initialized with random weights

Artificial neural networks do not make any assumptions about the relationship between
the explanatory and response variables. We do not expect them to be adversely affected
by nonlinearity. However, the weights are estimated by minimization of the residual sum of
squares, so they may be adversely affected by heteroscedasticity.

4.9 Bayesian Additive Regression Trees

Bayesian additive regression trees (BART) are the most novel of the modern methods
we compare. Developed by Chipman et al. (2010), BART is also a tree based ensem-
ble. The relationship between the explanatory variables and the response is modelled as
Y = f(X) + €, where € ~ Normal(0,0%I), and f(X) is the sum of regression trees. This
differs from the other ensemble methods we discussed (random forests and boosting) be-
cause the errors are explicitly assumed to be homoscedastic. The model for X is the sum
of regression trees, similarly to boosting (which uses a weighted sum), but differently from
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random forests (which use an average).

Each tree is built to explain parts of the relationship that the other trees do not. As
the name implies, the model building process is Bayesian. The prior distribution on the
structure of individual trees affects their size. In particular, changing the hyperparameters
results in different probabilities on the number of terminal nodes for each tree, allowing
them to become generally larger or smaller. By default, they are set to ensure that the in-
dividual trees remain small and only capture main effects or a small number of interaction
effects.

There are two hyperparameters, k and M, that control the prior distribution of the val-
ues assigned to terminal nodes. The first, k, controls the shrinkage of these values, while
M is the total number of regression trees in the ensemble. Greater values of k£ and M
result in terminal node values that are closer to 0, ensuring the trees do not overfit too
quickly. This process is a scaled version of assigning high probability to the terminal node
values being between y,,;, and ¥4, With & resulting in shrinkage (Chipman et al., 2010).
The values of k and M are chosen through cross-validation.

The prior on ¢? is taken to be an inverse chi-square distribution, with hyperparameters
v and \. They are chosen to give a distribution of “reasonable” values of o, relative to 4,
a data-based estimate of o. This can be taken to be the sample standard deviation of the
responses or the standard deviation of the residuals from a linear model (Chipman et al.,
2010). The parameter v controls the shape of the distribution, while X is chosen such that
the ¢ quantile of the prior on ¢ is located at 4. That is, \ is chosen so that P(c < &) = q.
We choose (v, ¢) in combination, and )\ is adjusted accordingly. Again, (v, q) are chosen
through cross-validation, in combination with values of & and M.

BART uses a Bayesian backfitting MCMC algorithm to fit the trees. This is a cyclical
process, with later trees influencing the formation of earlier trees. It results in samples
that constitute the approximate posterior distribution of the true regression function f(X).
Predictions of Y are found by taking means from this distribution.

To reiterate, BART is different from other ensemble methods in that it explicitly as-
sumes homoscedasticity. Therefore, we expect it to do poorly on heteroscedastic data.
No assumptions are made about the form of the relationship between the explanatory and
response variables for the individual trees that BART is based on. We anticipate that it will
not be adversely affected by nonlinearity.

23



Chapter 5

Simulation Study

In this chapter we develop a simulation study to compare the predictive ability of the nine
regression methods outlined in Chapter 4. We examine how each method performs when
faced with heteroscedasticity in conjunction with, and separately from, other challenges
present in modern data.

5.1 Simulation Data Models

We consider two heteroscedastic models for our simulation study, each with a different
form for the relationship between the explanatory and response variables. The first case
we consider is linear heteroscedastic data, arising from the model

Y =XB+e€ €~ Normal (0,02diag ((Xﬁ)z)) ,

where here squaring a vector is done elementwise. For this model, p = E(Y) = X3 and
Var(Y) = o%diag ((XB)2). We use these properties to evaluate the performance of each
prediction method, as we discuss in Section 5.4.

We also use these data with a log transformation applied to the response. Using a
log transformation when the variance is proportional to the square of the mean stabilizes
the variance (Carroll and Ruppert, 1988). However, this transformation destroys the linear
relationship, resulting in nonlinear homoscedastic data with u = E(Y) = log (X3) (again,
with the log taken elementwise) and Var(Y) = 721
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The second case is nonlinear heteroscedastic data, generated from a log-normal model
as

Y =exp{XB+e€}, €~ Normal (O, 021) ,

where, p = E(Y) = exp {X,B + ”—22} and Var(Y) = diag (exp {2X8 + 0?}) (exp {o?} — 1).
We use the log-transformed version of these data as well. The result is linear homoscedas-
tic data with u = E(Y) = X8 and Var(Y) = o°L.

While we aim to understand how well the prediction methods work on these four dis-
tinct groups of data, our primary goal in using the log transformation is to make predictions
on the original heteroscedastic data. That is, we would like to see how transforming het-
eroscedastic data to homoscedastic data, using the methods on the homoscedastic data,
then transforming the predictions back to their original form, compares to using the meth-
ods on the original form of the data.

5.2 Simulation Factors

Based on the simulation study in Payne (2014), we vary three factors for each of the model
cases, resulting in a total of 24 simulation scenarios. The first factor is the number of ex-
planatory variables, p. We use p = 10 and p = 100 in our simulations. The median number
of explanatory variables in the bake-off data from Chipman et al. (2010) is 10, so using
p = 10 represents a typical number of explanatory variables, while p = 100 represents a
“large” number of variables. Of course, taking high-dimensional data (e.g., genetic data)
into account, p = 100 is not that large.

The second factor we vary is the sparsity, which is the proportion of unimportant ex-
planatory variables. Varying the sparsity allows us to examine how the methods’ perfor-
mances degrade when faced with uninformative noise variables. We use sparsity of 0%,
50%, and 80%. Sparsity of 0% indicates that all explanatory variables are important in
the model-building process. Sparsity of 50% indicates that the last 50% of the explanatory
variables are unimportant in the model building process, and their coefficients are zero.
Similarly, sparsity of 80% indicates that last 80% of the explanatory variables are unimpor-
tant in the model building process. In each case, we set all non-zero regression parameters
to be equal, with values for different scenarios as given in Tables 5.1 and 5.2.

Finally, we vary the signal-to-noise ratio (SNR) to be 1 and 5. The SNR measures
how strong the relationship is between the explanatory and response variables, compared
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to the amount of error noise in the data. It is the variance of the means divided by the
variance of the data around their respective means. For linear heteroscedastic data, it is

Ex|[(x'B — Ex(x'B))'(x'B — Ex(x'B))]

SNH = 2 [Ex (< B)P

For linear homoscedastic data, it is
1
SNR = QEX[(X’ﬁ - Ex(x'B))'(x'B — Ex(x'B))],6

as in Dicker (2012). The linear homoscedastic data are then exponentiated into data for
the nonlinear heteroscedastic case. In both cases, the expectations are approximated by
simulation for given values of o, 3, -0, and o, taking into consideration the number of ex-
planatory variables and sparsity in each scenario.

A SNR of 5 indicates the amount of “signal” is five than the amount of noise, while
SNR = 1 indicates that they are present in equal amounts. We anticipate that all of the
methods will degrade when the relationship is unclear and conflated with noise.

5.3 Simulation Details

We generate data for the simulation scenarios as follows. The explanatory variables,
X, are generated as standard normal random variables with AR-1 correlation such that
Corr(X;, X;,) = 0.8I=* for all I, k. We simulate 500 data sets for each scenario, each with
n = 1000 different observations. The values of the simulation parameters, 3y, 3,0, and o,
vary in combination with the simulation factors in order to obtain SNR =1 and SNR = 5.
They are also chosen to achieve data that is “heteroscedastic enough,” as discussed in
Chapter 4. We aim to generate data that contain a magnitude of heteroscedasticity equiv-
alent to the “typical” amount in the bake-off data from Chipman et al. (2010), where the
median SD Ratio is 3.079. We therefore aim for data in each scenario with an SD Ratio
around 3, computed as in Chapters 3 and 4.

We also aim to generate nonlinear data that are “more nonlinear” than the data in
Payne (2014), as described in Chapter 3. Figure 5.1 shows box plots of the LOESS R?
(computed as in Chapter 3) of our nonlinear heteroscedastic data, versus the LOESS R?
of the nonlinear heteroscedastic data in Payne (2014). Each box is based on the first ten
simulated data sets for each nonlinear heteroscedastic scenario. Our data achieve higher
LOESS R? and therefore convey more nonlinearity than the data from Payne (2014).
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Figure 5.1: Box plots of the LOESS R? of our nonlinear heteroscedastic data and the
nonlinear heteroscedastic data in Payne (2014).
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Tables 5.1 and 5.2 show the simulation scenarios, parameter settings, and SD Ratios
for the linear heteroscedastic data and nonlinear heteroscedastic data, respectively. The
simulation scenarios are named to include information on the data linearity, the sparsity,
the number of explanatory variables, and the signal-to-noise ratio. The names are format-
ted as “linearity.sparsity.p.SNR,” where linearity is NL (nonlinear) or L (linear); sparsity is
00 (0% sparsity), 50 (50%), or 80 (80%); p is 010 or 100; and SNRis 1 or 5.

Another consideration is that we require positive values of Y in the linear heteroscedas-
tic case, since we also use the log-transformed version of these data. Given randomness
in the data generation process, the parameter settings do not guarantee strictly positive
responses. In the linear heteroscedastic case, we kept only those observations with Y
greater than 0. In no case were more than 1% of observations discarded, and the SNR
and SD Ratio were unaffected.
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Table 5.1: Table showing simulation parameter settings for linear heteroscedastic data.

Scenario  Linearity Sparsity p  SNR o Bjl5>0 Bo SD Ratio
L.00.010.1 Linear 0% 10 1 0303 2505 61.017 3.21
L.00.010.5 Linear 0% 10 5 0135 1.120 27.288 3.21
L.00.100.1 Linear 0% 100 1 0303 0.629 61.017 247
L.00.100.5 Linear 0% 100 5 0.135 0.281 27.288 2.56
L.50.010.1 Linear 50% 10 1 0303 4.338 61.017 3.30
L.50.010.5 Linear 50% 10 5 0.135 1.940 27.288 3.32
L.50.100.1 Linear 50% 100 1 0303 0912 61.017 2.59
L.50.100.5 Linear 50% 100 5 0.135 0.408 27.288 2.59
L.80.010.1 Linear 80% 10 1 0303 9729 61.017 3.30
L.80.010.5 Linear 80% 10 5 0.135 4351 27.288 3.35
L.80.100.1 Linear 80% 100 1 0303 1.557 61.017 2.60
L.80.100.5 Linear 80% 100 5 0.135 0.697 27.288 2.73

Table 5.2: Table showing simulation parameter settings for nonlinear heteroscedastic data.

Scenario Linearity Sparsity p  SNR o Bj1i>0 Bo SD Ratio
NL.00.010.1  Nonlinear 0% 10 1 0360 0.050 0.100 3.71
NL.00.010.5 Nonlinear 0% 10 5 0.162 0.050 0.100 3.49
NL.00.100.1  Nonlinear 0% 100 1 0500 0.018 0.100 4.06
NL.00.100.5 Nonlinear 0% 100 5 0.234 0.018 0.100 3.26
NL.50.010.1  Nonlinear 50% 10 1 0370 0.090 0.100 4.15
NL.50.010.5 Nonlinear 50% 10 5 0.170 0.090 0.100 3.79
NL.50.100.1  Nonlinear 50% 100 1 0500 0.025 0.100 4.30
NL.50.100.5 Nonlinear 50% 100 5 0.225 0.025 0.100 3.35
NL.80.010.1  Nonlinear 80% 10 1 0370 0.200 0.100 3.93
NL.80.010.5 Nonlinear 80% 10 5 0.170 0.200 0.100 3.55
NL.80.100.1  Nonlinear 80% 100 1 0470 0.040 0.100 4.42
NL.80.100.5 Nonlinear 80% 100 5 0.210 0.040 0.100 3.82

5.4 Performance Measures

We use two measures to evaluate the performance of each regression method. The first
measure used is the mean squared error (MSE), defined as

1 n

MSE =3 (ui — )

n =1
It measures the average squared distance between the expected value of the response,
i, and its prediction, ¢;. The MSE is popular, but is sensitive to large prediction errors (i.e.,
large values of u; — 4;), since they are squared. It also does not account for heteroscedas-
ticity in data, since all errors are treated equally in the sum, regardless of the local variance.
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Table 5.3: Table showing R function and package used, and levels of tuning parameters,
for all methods used in the simulation study.

Method Function (Package) Tuning Parameters
Linear Regression Im (stats) —
Stepwise Linear Regression step (stats) —
LASSO cv.glmnet (glmnet) —
Regression Trees rpart (rpart) —
Random Forests randomForest (randomForest) B = 250,500,...,1500

m = (1/4,1/3,1/2) x p
k = 10,25, 40,50, 75, 100, 125, 150, 200, 300
Boosting gbm (gbm) J=1,2,3,4
v = 0.01,0.05,0.1,0.025

n=0.5
MARS earth (earth) d=1,2,3
ANNs nnet (nnet) =1,2,3,4
A =0.001,0.01,0.1
BART bart (dbarts) k=2,3,5
M = 50,200

(v,q) = (10,0.75), (3,0.90), (3,0.90)

The second measure used is the median absolute standardized deviation (MASD),
defined as
MASD = median |:|/M_yz|:| ,
o)
where o; is the standard deviation of Y at x;. The MASD measures the median number
of standard deviations, ¢;, the predictions ; are from the means, u;. The median is used

instead of the mean so that the measure is not excessively influenced by occasional large
prediction errors in low-variance data.

5.5 Computational Details

All simulations are run using R (R Core Team, 2015). Table 5.3 shows the R function and
package used, along with the levels of tuning parameters considered, for each method.

For the LASSO, the best value of the penalty parameter X is chosen separately for each
simulated data set as the value that minimizes five-fold cross-validation error.

The tuning process for random forests, boosting, ANNs, and BART is as follows. We
fit a model with each of the combinations of tuning parameters to the first three simulated
data sets for each scenario. We then choose a combination that workw “well” for all three
data sets and use that combination for all 500 simulated data sets for that scenario. This
is done because it would not be feasible, in terms of computation time, to tune these four
methods on all 24,000 simulated data sets. Given that each data set is simulated from the
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same distribution, we expect that a combination of tuning parameters that works well on
the first three should work reasonably well on the rest.

For random forests, the best combination of tuning parameters is chosen in terms of
minimizing the mean out-of-bag error. For boosting, the best combination of the tuning
parameters v and J is chosen in terms of minimizing five-fold cross-validation error. Given
this combination, the number of trees, M, is chosen for each simulated data set through
another round of five-fold cross-validation. For ANNSs, the best combination of tuning pa-
rameters is chosen in terms of minimizing mean five-fold cross-validation error, from ten
ANN: s fit each time. The average from ten neural networks is used to make the predictions
because of the randomness of this method. For BART, the best combination of tuning
parameters is chosen in terms of minimizing five-fold cross-validation error. The tuning
parameters used for each scenario are given in Tables A.1 and A.2.

We attempted the same tuning process for MARS. However, there was no consensus
best choice of d among the first three data sets for scenarios for p = 10. Therefore the
best value of the degree d is chosen from the values in Table 5.3 separately for each sim-
ulated data set, again as the value that minimizes five-fold cross-validation error. While
different values of d did not result in large differences in error, the speed of fitting MARS
for scenarios with p = 10 made it fast and plausible to choose d separately for each data
set. However, for scenarios with p = 100, degree d = 3 was consistently the best in the
first three data sets, so this value was used for all 500 simulated data sets with p = 100.

5.6 Results

Tables B.1, B.2, B.3, and B.4 show the average mean squared error and average me-
dian absolute standardized deviation, along with their standard errors, for the linear het-
eroscedastic and nonlinear heteroscedastic data, both from the data’s original form and
from the variance-stabilizing log transformation. For each scenario, the method that mini-
mizes the average error is highlighted.

5.6.1 Linear Heteroscedastic Data Results

From the average mean squared errors for the linear heteroscedastic data in Table B.1, the
linear methods (linear regression, stepwise linear regression, and the LASSO) consistently
perform best on the untransformed linear data, despite the heteroscedasticity. When the
log transformation is used, the data are nonlinear and homoscedastic. In this form, ANNs
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perform very well, though they are sometimes surpassed in performance by boosting and
BART. We generally see a degradation of the methods, in terms of average MSE, when
the data are log transformed.

These results are consistent when looking at the average MASD, in Table B.2. The
linear-regression-based methods outperform the more “modern” methods on the linear
heteroscedastic data, while ANNs, boosting, and BART do better on the log-transformed
data. Most of the methods’ overall predictive abilities degrade in terms of MASD when the

transformation is used, though the degradation is not nearly as significant as when looking
at the MSE.

Figure 5.2: Box plots showing relative average RMSE and MASD for the linear het-
eroscedastic data, in its original form and with the use of a variance-stabilizing log trans-
formation.
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Figure 5.2 shows the relative average performance of the methods, in terms of relative
average root mean squared error (RMSE) and relative average MASD, on the original and
log-transformed data. These values are found by dividing the values in each row of Tables
B.1 or B.2 by the minimum error for that scenario. Each box is therefore based on 12 points.
The results are consistent with the preliminary look at the errors in terms of which methods
perform best. The figures also provide an easier way to compare how the methods per-
form. For all cases and error measures, the performance of trees (both full and pruned) is
poor. Pruned regression trees outperform full regression trees, except when looking at the
relative average MASD on the log-transformed data. Boosting and BART seem to perform
overall similarly, slightly better than random forests, and worse than ANNSs.

The relative performances are very similar when looking at either the relative RMSE
or the relative MASD. One exception is the relative performance of MARS on the original
data. Figure 5.2c shows the relative average MASD on the original data. In this case,
MARS'’ relative performance is consistent across all scenarios. This is in contrast to its rel-
ative average RMSE in Figure 5.2a, where its performance is much more variable. Taking
heteroscedasticity into account in this case shows the stability of MARS’ predictive ability
on linear heteroscedastic data.

5.6.2 Nonlinear Heteroscedastic Data Results

Looking at the average MSE in Table B.3, ANNs are fairly consistent in terms of having
smallest MSE on the original data. When the log transformation is used, the linear mod-
els work best. In particular, linear regression has the smallest MSE for scenarios with no
sparsity, while stepwise linear regression does when there is considerable sparsity. The
use of the log transformation results in an improvement of almost all of the methods, since
it produces linear homoscedastic data. This result is not consistent for regression trees
(full or pruned) or random forests, whose performances degrade when the transformation
is used. This may be because regression tree fit constants, rather than slopes, and have
a difficult time handling linearity. We see the same patterns of best methods when looking
at the average MASD, in Table B.4. However, when the MASD is used instead of the MSE,
regression trees’ and random forests’ performances improve after the log transformation.

Figure 5.3 shows the relative average RMSE and the relative MASD for the nonlinear
heteroscedastic data. These values are found by dividing the values in each row of Tables
B.3 or B.4 by the minimum error for that scenario. For the nonlinear heteroscedastic data
in its original form, as shown in Figure 5.3a, ANNs have the best performance in terms
of average RMSE in more than half of the scenarios. In some scenarios, linear regres-
sion and stepwise linear regression do best, though for the most part their RMSEs are, at
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best, almost twice as large as ANNs’. The performance of boosting and BART are quite
close, though boosting achieves the smallest average RMSE in one scenario while BART
never does. Regression trees (both full and pruned) perform poorly. Again, we see that
pruned regression trees perform similarly to (or better than) full regression trees, except
when looking at the MASD of the log-transformed data.

Figure 5.3: Box plots showing relative average RMSE and MASD for the nonlinear het-
eroscedastic data, in its original form and with the use of a variance-stabilizing log trans-

formation.
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For the nonlinear heteroscedastic data after a log transformation, linear regression

and stepwise linear regression have the best performance in terms of average RMSE, as
shown in Figure 5.3b. This is to be expected, since the transformed data are linear and
homoscedastic, which are ideal conditions for linear methods. Interestingly, ANNs perform
almost as well as the linear regression methods. Regression trees again perform poorly,
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and boosting’s and BART’s performances are close.

The results are fairly consistent across the two measures. One exception is the LASSO
— we see considerable improvement in its performance when looking at the MASD instead
of the MSE on the log-transformed data, as in Figure 5.3d.

5.6.3 Simulation Factor Results

In our simulation study, we vary the number of explanatory variables (p), the proportion of
unimportant explanatory variables (sparsity), and the signal-to-noise ratio. We look at how
each of these factors impacts the performance of the methods.

The number of explanatory variables has a consistent effect on each method’s perfor-
mance. Increasing from p = 10 to p = 100 results in worse mean estimation with all of the
methods, regardless of sparsity and signal-to-noise ratio. This effect is consistent across
nonlinear and linear heteroscedastic data, and the use of the log transformation. It appears
when looking at either the MSE and MASD.

When the sparsity changes, linear regression performs the same. This is consistent
in both linear- and nonlinear heteroscedastic data, and when we look at the MSE or the
MASD. This is because the SNR remains the same, so linear regression has the same
potential. Stepwise linear regression and the LASSO both improve in terms of error as the
sparsity increases, especially in scenarios where p = 100. These methods are intended
to produce sparse solutions, so we expected that they would do well when faced with a
large number of unimportant variables. We see some improvement in the performance of
regression trees and MARS as the sparsity increases. Meanwhile, boosting, ANNs, and
BART are not consistently affected by changes in sparsity.

The last factor we vary is the signal-to-noise ratio. For the most part, the errors are
much lower when SNR = 5 than when SNR = 1. This is to be expected, since the rela-
tionship between the explanatory and response variables is clearer in the former case. We
do not see this same effect when looking at the MASD of the nonlinear heteroscedastic
data in its original form, specifically when looking at linear regression. Linear regression
performs better on low SNR data in this case. The same pattern continues when looking
at the MASD of nonlinear data. When SN R = 1 instead of SN R = 5, the curvature in the
data is likely not as prominent. All of the other methods perform better with high signal-to-
noise ratio.
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We used a variance-stabilizing log transformation with the goal of making predictions
on the original data. When the transformation is used on linear heteroscedastic data, the
data become homoscedastic, but the linearity is destroyed. In this case, the methods
mostly performed worse on the log-transformed data. One exception is regression trees,
which are not as affected by this transformation as the other methods.

Using the log transformation on the nonlinear heteroscedastic data produces linear het-
eroscedastic data. As we expected, this improved the performance of almost all methods,
especially the methods that explicitly assume linearity. Improvements are not consistent
when looking at the MSE of regression trees or random forests, but are when the MASD is
used to quantify error.
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Chapter 6

Conclusions and Future Work

In this thesis we aimed to develop a better understanding of the impact of heteroscedastic-
ity on the predictive ability of modern regression methods. We first discussed methods for
recognizing and quantifying heteroscedasticity. We then implemented them on 42 real data
sets to develop knowledge on the “typical” prevalence and magnitude of heteroscedastic-
ity. This knowledge was used to develop a simulation study, where we varied data linearity
with heteroscedasticity in addition to other simulation factors. In this chapter, we summa-
rize conclusions from our work and discuss some limitations and opportunities for further
research.

We have a number of findings from our simulation study, some of which are consis-
tent with the hypotheses we made about each method in Chapter 4. A surprising result
is that the linear methods (linear regression, stepwise linear regression, and the LASSO)
outperformed many of “modern” methods on linear heteroscedastic data, despite the fact
that homoscedasticity is an explicit assumption in the linear methods. It is possible that
these data still do not contain “enough heteroscedasticity,” despite our best efforts. It was
a challenge to generate linear heteroscedastic data with a high SD Ratio, while ensuring
that most of the responses were positive.

Despite their popularity, regression trees performed worst for all cases and combina-
tions of simulation factors. However, they were least affected by the variance-stabilizing
log transformation, likely because no assumptions are made about the model between the
explanatory and response variables. The ensemble methods based on regression trees
had considerably better performance. In particular, boosting and BART had similar perfor-
mances.

While their performance was not always the “best,” artificial neural nets performed very
well in almost all cases, regardless of data linearity or the form of the error variance. ANNs
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make no assumptions about the data model or about heteroscedasticity, and proved to be
robust predictors.

We achieved a number of goals set forth in writing this thesis. In particular, we de-
veloped an understanding of how to identify and quantify heteroscedasticity, and we at-
tempted to simulate data that were “heteroscedastic enough” to challenge our prediction
methods. We varied a number of simulation factors to evaluate how they affected the meth-
ods. However, our findings are limited to the constraints of the models we chose, which still
have limitations in their challenges (e.g., no interactions between explanatory variables).
We also ran a large enough number of simulations to get a precise look at how the methods
performed, and tuned the more modern methods in order to optimize their performance.

For future work, we recommend a reconsideration of the data generation process. In
particular, more research needs to be done on achieving “high enough” SD Ratios in con-
junction with the other factors (signal-to-noise ratio and “enough nonlinearity,” in particular).
For the linear heteroscedastic case, our data generation process was constrained by re-
quiring almost all positive response values, which impacted the highest achievable SD
Ratio. It would be useful to consider other models for generating our data, in addition to
looking into theoretical methods for finding simulation parameter settings.
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Appendix A

Tuning Parameters

Table A.1: Table showing final tuning parameters used on linear heteroscedastic data.
Random Forests Boosting ANNSs BART
Scenario | Form B m k Average M J v n | M A kM (v,d)
L 00.010.1 Orig. | 1000 2 75 376 3 0.01 0.5 1 0.010 | 3 200 (3,0.99)
RS Log | 250 2 100 406 3 0.01 05| 1 0.010 |3 200 (3,0.90)
L 00.010.5 Orig. | 1250 2 150 875 2 0.01 05 1 0.001 | 5 50 (3,0.99)
RS Log | 1000 2 200 215 3 0.05 05| 2 0.001 |5 200 (10,0.75)
L.00.100.1 Orig. | 1250 33 300 803 4 0.01 05 1 0.100 | 3 50 (3,0.99)
RN Log | 1500 25 300 236 2 0.05 05| 1 0100 |5 200 (3,0.90)
L 00.100.5 Orig. | 1500 50 300 2801 2 0.01 0.5 1 0.100 | 5 200 (3, 0.99)
RS Log | 1250 25 300 4028 2 0.01 05| 1 0.001 | 5 200 (10,0.75)
L 50.010.1 Orig. 750 2 150 347 3 0.01 05 2 0100 | 5 200 (3, 0.90)
R Log | 500 3 50 39 3 001 05| 1 0.010 |2 200 (3, 0.90)
L 50.010.5 Orig. | 1000 3 150 478 4 0.01 0.5 1 0.000 | 5 50 (3, 0.90)
R Log | 1000 3 125 149 3 005 05| 2 0010 |2 200 (10,0.75)
L 50.100.1 Orig. | 1250 33 200 701 3 0.01 0.5 1 0.010 | 2 200 (3, 0.90)
S Log | 1000 25 300 703 3 001 05| 1 0100 |2 50 (3,0.99)
L50.1005 | Ong- | 1000 50 300 1171 2 001 05| 1 0100 [ 2 200 (3,0.90)
RS Log | 1000 50 300 1692 3 0.01 05| 1 0.001 |3 50 (10,0.75)
800101 | Ong- | 1250 3 50 122 1 005 05| 1 0100 |3 200 (3,0.90)
RS Log| 750 5 25 40 2 010 05| 1 0001 |5 50 (3, 0.90)
L80.0105 | Ong- | 1000 5 50 901 1 0.01 05| 1 0.001 |3 50 (3,0.90)
RS Log| 750 5 50 223 1 005 05| 2 0.010|3 50 (10,0.75)
801001 | Ong- | 750 25 200 883 1 001 05| 1 0.010 |3 200 (3,0.90)
RS Log | 1000 25 200 497 3 0.01 05| 1 0100 |5 200 (10,0.75)
L80.100.5 | Ong- | 1500 33 300 849 3 001 05| 1 0100 |5 200 (3,0.90)
RS Log | 1000 33 300 890 4 001 05| 1 0.001 |3 200 (10,0.75)

40




Table A.2: Table showing final tuning parameters used on nonlinear heteroscedastic data.

Random Forests Boosting ANNs BART
Scenario Form B m k Average M J v n | M A k. M (v,d)
NL.00.010.1 Orig. 500 2 50 93 2 0.05 05 1 0010 | 3 200 (3,0.90)
T Log | 1000 2 50 347 4 0.01 05 1 0010 |5 50 (3,099
NL.00.010.5 Orig. 750 2 300 560 4 0.01 05 1 0010 | 3 200 (3,0.90)
DA Log | 1250 2 200 939 2 0.01 05 1 0.000 | 3 200 (10,0.75)
NL.00.100.1 Orig. | 1500 25 200 871 3 0.01 05 1 0.001 | 3 200 (3,0.90)
DA Log | 1500 50 300 1262 2 0.01 05 1 0100 | 5 200 (3,0.99)
NL.00.100.5 Orig. | 1500 25 300 2749 4 0.01 05 1 0001 |2 50 (30.90)
R Log | 1500 33 300 4302 1 0.01 05 1 0.001 | 3 200 (10,0.75)
NL.50.010.1 Orig. 750 3 40 305 4 0.01 05 1 0010 | 5 50 (10,0.75)
T Log 750 3 50 437 2 0.01 0.5 1 0010 | 5 200 (10,0.75)
NL.50.010.5 Orig. | 1250 3 100 551 3 0.01 05 1 0010 | 3 200 (3,0.99)
D Log | 1000 3 150 98 4 005 05 1 0.000 | 5 200 (3,0.90)
NL.50.100.1 Orig. | 1500 33 300 679 3 0.01 05 1 0010 |2 50 (3,0.90)
D Log | 1000 50 300 723 3 0.01 05 1 0.100 | 3 200 (3,0.90)
NL.50.100.5 Orig. | 1250 33 300 414 2 0.05 0.5 1 0.000 | 3 200 (3,0.90)
DA Log | 1250 50 300 1445 3 0.01 05 1 0.001 | 3 200 (10,0.75)
NL.80.010.1 Orig. | 1000 3 50 58 1 010 05 1 0000 |3 50 (10,0.75)
T Log | 1250 5 25 78 2 0.05 05 1 0.001 | 3 200 (10,0.75)
NL.80.010.5 Orig. 750 5 50 432 4 0.01 05 1 0000 |5 50 (10,0.75)
DA Log | 1500 5 50 582 2 0.01 05 1 0000 |5 50 (3099
NL.80.100.1 Orig. 750 25 300 77 4 0.05 05 1 0010 | 3 50 (3,0.90)
DR Log | 1000 33 150 121 2 0.05 05 1 0100 | 3 200 (3,0.99)
NL.80.100.5 Orig. | 1250 33 200 1089 2 0.01 05 1 0.000 | 2 200 (3,0.99)
D Log | 1000 33 200 803 4 0.01 0.5 1 0.000 | 2 200 (10,0.75)
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Table B.1: Table of average mean squared error, with standard errors, for linear heteroscedastic data. Highlighted cells indicate which
method minimizes the error for each scenario.

Scenario Form Linear Reg. Stepwise LASSO Full Tree Pruned Tree RF Boosting MARS ANNs BART
L.00.010.1 Orig. 416 (1.91) 10.83 (2.81) 21.01 (8.60) 157.99 (12.53) 95.99 (10.12) 30.12 (3.04) 18.79 (3.18) 35.17 (9.25) 18.76 (8.40) 15.58 (

Log 40.09 (8.47) 46.74 (8.60) 63.15 (27.92) 173.42 (14.55) 100.78 (12.10) 37.21 (7.47) 29.73 (7.54) 39.75 (11.52) 20.86 (9.49) 35.80 (
L.00.010.5 Orig. 017 (0.08) 0.26 (0.18) 0.85 (0.34) 8.32 (0.55) 8.35 (0.56) 2.72 (0.19) 1.30 (0.19) 0.89 (0.43) 0.22 (0.10) 1.29 (

Log 6.45 (1.59) 6.61 (1.68) 4.20 (2.68) 8.41 (00.56) 8.12 (0.55) 3.39 (0.26) 1.56 (0.22) 1.45 (0.30) 0.34 (0.14) 1.37 (
L.00.100.1 Orig. 38.11 (5.40) 46.20 (5.56) 35.25 (8.66) 268.54 (14.43) 288.77 (26.77) 147.34 (7.52) 59.31 (7.25) 105.46 (11.9) 99.00 (6.68) 52.88 (5.93

Log 82.98 (11.78) 86.33 (10.43) 78.33 (25.56) 276.90 (15.23) 325.93 (26.77) 154.23 (10.23) 63.63 (8.64) 145.89 (17.83) 56.53 (16.09) 46.65 (
L.00.100.5 Orig. 1.53 (0.22) 3.01 (0.31) 1.80 (0.34) 20.85 (1.01) 33.20 (9.67) 8.28 (0.42) 413 (0.46) 6.50 (0.59) 1.77 (0.23) 2.98 (

Log 7.59 (1.58) 8.95 (1.61) 4.89 (1.56) 21.18 (1.04) 33.25 (12.74) 8.29 (0.51) 4.64 (0.75) 7.63 (0.64) 1.96 (0.66) 3.65 (
L.50.010.1 Orig. 417 (1.92) 5.39 (3.24) 19.97 (8.42) 154.96 (12.39) 72.27 (9.52) 58.65 (4.42) 16.65 (2.92) 33.23 (8.72) 10.19 (3.30) 10.57 (

Log 39.87 (8.27) 41.11 (8.60) 60.96 (25.43) 171.20 (13.67) 79.06 (11.05) 38.25 (7.38) 28.99 (7.57) 35.51 (11.71) 20.44 (8.31) 45.30 (10.12
L.50.010.5 Orig. 0.17 (0.08) 0.10 (0.07) 0.80 (0.36) 7.06 (0.55) 6.53 (0.53) 2.83 (0.21) 1.19 (0.16) 1.19 (0.35) 0.26 (0.19) 1.11 (0.18

Log 6.40 (1.51) 6.33 (1.50) 3.93 (1.75) 719 (0.55) 6.08 (0.51) 2.44 (0.23) 1.26 (0.19) 0.85 (0.29) 0.37 (0.13) 213 (0.34
L.50.100.1 Orig. 38.03 (5.32) 31.00 (4.81) 32.15 (9.38) 249.78 (14.59) 220.00 (17.10) 122.86 (6.43) 40.54 (5.15) 91.65 (11.5) 95.28 (6.41) 48.35 (7.11

Log 83.19 (12.40) 70.13 (10.29) 73.43 (24.83) 260.41 (16.11) 237.46 (35.20) 150.49 (10.04) 51.78 (8.65) 128.82 (18.54) 57.28 (16.74) 57.07 (12.46
L.50.100.5 Orig. 1.53 (0.22) 1.93 (0.24) 1.48 (0.37) 17.28 (0.85) 21.68 (3.81) 7.22 (0.39) 2.96 (0.31) 4.75 (0.50) 1.76 (0.23) 4.13 (

Log 7.63 (1.69) 8.08 (1.64) 4.71 (2.11) 17.45 (0.84) 20.96 (3.43) 7.22 (0.46) 3.31 (0.44) 5.76 (0.66) 1.98 (0.71) 5.08 (
L.80.010.1 Orig. 4.15 (1.92) 1.41 (1.49) 18.96 (8.66) 153.53 (12.39) 50.10 (9.22) 25.14 (3.20) 13.31 (2.94) 30.38 (8.38) 8.92 (4.46) 16.55 (

Log 40.06 (8.07) 36.54 (7.80) 59.26 (25.95) 169.37 (14.57) 58.31 (10.61) 31.69 (7.48) 30.63 (8.82) 32.74 (12.80) 19.63 (7.87) 27.88 (
L.80.010.5 Orig. 0.17 (0.08) 0.06 (0.06) 0.75 (0.35) 6.24 (0.50) 3.86 (0.48) 1.35 (0.17) 0.80 (0.14) 1.19 (0.41) 0.21 (0.09) 1.18 (

Log 6.43 (1.55) 6.33 (1.54) 3.67 (1.52) 6.36 (0.54) 3.45 (0.40) 1.41 (0.21) 1.08 (0.34) 0.64 (0.35) 0.37 (0.13) 1.13 (0.22
L.80.100.1 Orig. 37.98 (5.34) 18.52 (4.16) 26.84 (9.24) 231.83 (14.35) 237.63 (13.41) 147.34 (12.34) 24.38 (3.42) 82.91 (12.23) 97.63 (6.64) 31.15 (

Log 82.84 (12.55) 55.32 (9.75) 68.25 (25.11) 243.93 (16.05) 155.09 (19.12) 122.29 (8.99) 43.48 (9.02) 118.99 (20.21) 57.25 (17.54) 41.20 (
L.80.100.5 Orig. 1.53 (0.22) 1.01 (0.19) 1.16 (0.38) 13.03 (0.71) 14.83 (1.35) 6.23 (0.34) 217 (0.24) 3.88 (0.48) 1.77 (0.23) 2.02 (

Log 7.60 (1.61) 7.20 (1.58) 4.21 (1.73) 13.09 (0.71) 13.98 (1.32) 6.23 (0.38) 2.34 (0.30) 4.62 (0.68) 1.93 (0.63) 3.81 (
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Table B.2: Table of average median absolute standardized error, with standard errors, for linear heteroscedastic data. Actual values
are times 10~!. Highlighted cells indicate which method minimizes the error for each scenario.

Scenario Form Linear Reg. Stepwise LASSO Full Tree Pruned Tree RF Boosting MARS ANNs BART
L.00.010.1 Orig. 0.75 (0.18) 1.22 (0.16) 1.61 (0.34) 4.74 (0.26) 3.54 (0.19) 1.79 (0.10) 1.36 (0.13) 1.57 (0.22) 1.31 (0.28) 1.35 (0.14)
Log 2.77 (0.33) 2.76 (0.30) 3.40 (0.60) 4.93 (0.25) 4.81 (1.83) 2.09 (0.17) 1.94 (0.28) 214 (0.28) 1.63 (0.36) 2.10 (0.25)
L.00.010.5 Orig. 0.75 (0.18) 0.90 (0.31) 1.63 (0.34) 5.29 (0.22) 5.30 (0.24) 2.88 (0.12) 1.90 (0.15) 1.31 (0.35) 0.81 (0.18) 2.00 (0.16)
Log 3.93 (0.45) 3.91 (0.44) 3.89 (0.88) 5.33 (0.24) 7.21 (4.32) 3.17 (0.13) 217 (0.16) 210 (0.25) 0.97 (0.20) 2.00 (0.20)
L.00.100.1 Orig. 2.31 (0.18) 253 (0.17) 214 (0.27) 6.06 (0.25) 6.12 (0.30) 4.45 (0.16) 267 (0.15) 3.56 (0.22) 3.45 (0.19) 2.69 (0.17)
Log 3.33 (0.25) 3.48 (0.24) 3.53 (0.54) 6.19 (0.25) 9.44 (2.65) 4.21 (0.16) 2.79 (0.19) 4.06 (0.23) 275 (0.35) 2.67 (0.32)
L.00.100.5 Orig. 2.32 (0.18) 3.24 (0.20) 2.45 (0.24) 8.32 (0.32) 10.38 (1.47) 5.29 (0.20) 3.62 (0.20) 4.67 (0.24) 2.45 (0.19) 3.17 (0.17)
Log 4.16 (0.39) 4.80 (0.39) 4.02 (0.68) 8.37 (0.32) 14.29 (4.67) 5.11 (0.19) 3.82 (0.30) 4.92 (0.23) 2.42 (0.33) 3.36 (0.33)
L.50.010.1 Orig. 0.75 (0.17) 0.83 (0.28) 1.56 (0.35) 478 (0.27) 3.06 (0.21) 2.51 (0.11) 1.24 (0.14) 1.19 (0.31) 1.00 (0.20) 1.08 (0.13)
Log 2.76 (0.33) 2.76 (0.31) 3.44 (0.58) 4.95 (0.27) 4.11 (0.43) 1.87 (0.24) 1.92 (0.31) 1.92 (0.32) 1.63 (0.35) 2.30 (0.23)
L.50.010.5 Orig. 0.75 (0.18) 0.57 (0.19) 1.56 (0.36) 4.88 (0.23) 4.65 (0.24) 2.89 (0.12) 1.70 (0.14) 0.96 (0.29) 0.87 (0.25) 1.81 (0.16)
Log 3.91 (0.43) 4.00 (0.43) 3.93 (0.74) 4.93 (0.21) 5.98 (0.94) 2.62 (0.13) 1.90 (0.16) 1.32 (0.23) 1.02 (0.20) 2.41 (0.18)
L.50.100.1 Orig. 2.31 (0.17) 2.08 (0.17) 2.02 (0.30) 5.89 (0.24) 5.41 (0.24) 4.00 (0.14) 2.22 (0.15) 3.08 (0.23) 3.25 (0.20) 2.52 (0.19)
Log 3.35 (0.26) 3.16 (0.26) 3.52 (0.55) 6.03 (0.25) 7.57 (1.95) 4.16 (0.16) 2.41 (0.22) 3.60 (0.28) 2.77 (0.36) 2.85 (0.33)
L.50.100.5 Orig. 2.31 (0.18) 2.59 (0.18) 2.20 (0.28) 7.61 (0.28) 8.55 (0.73) 4.93 (0.18) 3.08 (0.18) 3.77 (0.23) 2.45 (0.19) 3.67 (0.20)
Log 4.18 (0.40) 4.38 (0.39) 4.01 (0.82) 7.68 (0.29) 11.33 (4.38) 4.77 (0.18) 3.24 (0.21) 4.13 (0.25) 243 (0.35) 4.05 (0.34)
L.80.010.1 Orig. 0.75 (0.18) 0.42 (0.22) 1.50 (0.37) 4.85 (0.27) 2.49 (0.24) 1.57 (0.12) 1.07 (0.15) 0.73 (0.32) 0.97 (0.22) 1.40 (0.15)
Log 2.76 (0.32) 2.92 (0.34) 3.59 (0.56) 5.00 (0.29) 3.48 (0.73) 1.83 (0.28) 1.92 (0.31) 1.82 (0.37) 1.64 (0.35) 1.91 (0.28)
L.80.010.5 Orig. 0.75 (0.18) 0.42 (0.22) 1.50 (0.37) 4.66 (0.25) 3.45 (0.23) 1.90 (0.14) 1.27 (0.16) 0.71 (0.32) 0.80 (0.18) 1.79 (0.17)
Log 3.91 (0.43) 4.09 (0.44) 4.09 (0.71) 4.70 (0.25) 4.45 (0.94) 1.90 (0.15) 1.53 (0.16) 1.10 (0.31) 1.01 (0.20) 1.82 (0.19)
L.80.100.1 Orig. 2.31 (0.17) 1.60 (0.18) 1.83 (0.33) 5.73 (0.25) 4.43 (0.23) 3.79 (0.14) 1.66 (0.15) 2.56 (0.26) 3.32 (0.20) 2.03 (0.17)
Log 3.34 (0.27) 2.90 (0.27) 3.48 (0.56) 5.90 (0.26) 5.87 (0.65) 3.55 (0.14) 222 (0.26) 3.17 (0.33) 2.76 (0.37) 2.36 (0.31)
L.80.100.5 Orig. 2.31 (0.17) 1.87 (0.18) 1.92 (0.32) 6.64 (0.26) 7.10 (0.38) 4.53 (0.17) 254 (0.17) 2.98 (0.24) 2.44 (0.18) 2.54 (0.16)
Log 417 (0.39) 4.03 (0.38) 3.88 (0.69) 6.65 (0.25) 8.99 (1.48) 4.42 (0.17) 267 (0.17) 3.38 (0.28) 2.40 (0.31) 3.48 (0.22)
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Table B.3: Table of average mean squared error, with standard errors, for nonlinear heteroscedastic data. Actual values are times
10~2. Highlighted cells indicate which method minimizes the error for each scenario.

Scenario Form Linear Reg Stepwise LASSO Full Tree Pruned Tree RF boosting MARS ANNs BART
NL.00.010.1 Orig. 1.79 (0.27) 224 (0.30) 3.94 (1.15) 10.21 (1.11) 7.28 (1.06) 2.18 (0.40) 1.66 (0.39) 3.65 (1.19) 0.61 (0.42) 1.83 (0.80)
Log 0.93 (0.32) 1.39 (0.37) 2.95 (0.85) 9.62 (0.91) 6.55 (0.75) 2.58 (0.52) 2.10 (0.49) 2.34 (0.79) 1.06 (0.36) 1.79 (0.43)
NL.00.010.5 Orig. 1.41 (0.20) 1.47 (0.22) 1.83 (0.33) 2.67 (0.27) 2.69 (0.27) 1.11 (0.09) 0.55 (0.10) 0.63 (0.17) 0.12 (0.05) 0.61 (0.15)
Log 0.08 (0.03) 0.09 (0.05) 0.39 (0.14) 2.62 (0.24) 2.62 (0.24) 1.09 (0.10) 0.43 (0.09) 0.26 (0.09) 0.09 (0.04) 0.41 (0.07)
NL.00.100.1 Orig. 16.08 (2.60) 17.45 (2.48) 23.73 (8.66) 51.82 (5.87) 64.53 (6.96) 29.64 (3.77) 19.18 (4.06) 45.97 (12.29) 25.79 (3.40) 19.00 (10.72)
Log 8.80 (1.33) 11.45 (1.66) 14.81 (3.06) 46.51 (4.31) 61.10 (8.49) 27.41 (2.22) 11.34 (1.63) 28.77 (6.60) 10.11 (1.87) 11.68 (2.01)
NL.00.100.5 Orig. 7.85 (1.42) 9.29 (1.58) 9.73 (2.42) 19.20 (2.24) 31.50 (12.63) 7.47 (0.75) 6.80 (1.26) 9.29 (1.23) 3.47 (1.04) 5.05 (0.78)
Log 1.35 (0.22) 2.64 (0.33) 2.29 (0.54) 18.46 (2.19) 28.77 (8.61) 8.76 (1.02) 2.84 (0.34) 6.60 (0.99) 1.45 (0.27) 3.50 (0.40)
NL.50.010.1 Orig. 211 (0.33) 2.25 (0.38) 4.47 (1.34) 10.97 (1.20) 6.44 (1.06) 2.24 (0.48) 1.70 (0.36) 3.96 (1.31) 0.70 (0.46) 1.57 (0.66)
Log 1.05 (0.35) 1.12 (0.41) 3.31 (0.95) 10.27 (1.06) 5.74 (0.82) 2.69 (0.46) 2.20 (0.55) 2.43 (0.96) 1.21 (0.42) 1.98 (0.52)
NL.50.010.5 Orig. 1.67 (0.26) 1.65 (0.26) 218 (0.43) 2.52 (0.29) 2.42 (0.30) 0.86 (0.10) 0.53 (0.12) 0.62 (0.17) 0.14 (0.06) 0.67 (0.17)
Log 0.09 (0.04) 0.07 (0.04) 0.45 (0.17) 2.48 (0.28) 2.30 (0.27) 1.05 (0.11) 0.60 (0.17) 0.34 (0.18) 0.11 (0.05) 0.42 (0.10)
NL.50.100.1 Orig. 1417 (2.07) 12.73 (1.96) 20.16 (7.37) 44.82 (4.94) 48.03 (7.13) 28.45 (3.23) 12.76 (2.52) 39.63 (9.20) 22.25 (2.92) 20.13 (7.67)
Log 8.47 (1. 27) 8.51 (1.49) 14.15 (3.19) 40.30 (3.74) 40.63 (5.29) 24.74 (1.96) 10.28 (1.72) 25.49 (5.97) 9.58 (1.79) 9.85 (1.59)
NL.50.100.5 Orig. 6.49 (1.16) 7.14 (1.28) 8.18 (2.07) 13.87 (1.52) 15.79 (2.91) 5.68 (0.59) 3.65 (0.55) 6.53 (0.89) 2.83 (0.73) 4.41 (0.83)
Log 1.19 (0.19) 1.53 (0.23) 1.91 (0.53) 13.59 (1.45) 12.24 (0.97) 6.25 (0.74) 2.53 (0.38) 4.87 (0.76) 1.27 (0.25) 2.68 (0.36)
NL.80.010.1 Orig. 2.04 (0.33) 1.85 (0.31) 4.31 (1.28) 10.70 (1.14) 4.69 (1.08) 2.78 (0.52) 1.48 (0.42) 3.83 (1.28) 0.72 (0.50) 2.10 (0.94)
Log 1.04 (0.35) 0.89 (0.35) 3.26 (0.94) 10.04 (0.98) 4.22 (0.77) 2.35 (0.51) 2.30 (0.61) 2.25 (0.94) 1.15 (0.40) 2.16 (0.48)
NL.80.010.5 Orig. 1.61 (0.25) 1.58 (0.25) 2.08 (0.40) 215 (0.25) 1.51 (0.25) 0.61 (0.10) 0.50 (0.15) 0.64 (0.17) 0.12 (0.06) 0.47 (0.12)
Log 0.09 (0.04) 0.05 (0.04) 0.44 (0.17) 212 (0.26) 1.40 (0.23) 0.63 (0.13) 0.52 (0.19) 0.27 (0.18) 0.11 (0.05) 0.47 (0.13)
NL.80.100.1 Orig. 10.77 (1.62) 7.89 (1.29) 14.32 (5.05) 33.46 (3.93) 27.49 (4.23) 22.01 (2.60) 7.72 (1.39) 29.07 (7.64) 18.14 (2.35) 10.26 (5.89)
Log 6.72 (0.99) 5.02 (1.07)  10.09  (2.34)  30.81 (2.90) 2254 (2.64) 1522  (1.45) 7.84 (1.61)  18.93 (5.15) 7.44 (1.28) 7.52 (1.28)
NL.80.100.5 Orig. 4.84 (0.81) 4.90 (0.89) 5.93 (1.41) 8.46 (0.87) 9.41 (1.26) 3.68 (0.39) 1.80 (0.33) 453 (0.76) 213 (0.62) 3.46 (0.69)
Log 0.96 (0.15) 0.71 (0.16) 1.26 (0.42) 8.25 (0.82) 9.32 (1.20) 3.78 (0.44) 1.71 (0.33) 3.30 (0.64) 1.00 (0.17) 225 (0.32)
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Table B.4: Table of average median absolute standardized error, with standard errors, for nonlinear heteroscedastic data. Actual values
are times 10~!. Highlighted cells indicate which method minimizes the error for each scenario.

Scenario Form Linear Reg Stepwise LASSO Full Tree Pruned Tree RF Boosting MARS ANNs BART
NL.00.010.1 Orig. 2.23 (0.22) 2.59 (0.20) 3.24 (0.54) 5.85 (0.25) 4.80 (0.28) 2.25 (0.12) 222 (0.20) 2.70 (0.30) 1.31 (0.34) 223 (0.30)
Log 1.57 (0.29) 1.64 (0.23) 1.75  (0.25) 421 (0.20) 458  (0.21) 1.82  (0.19) 1.71 (0.22) 179  (0.24) 1.57 (0.29) 1.65  (0.23)
NL.00.010.5 Orig. 4.66 (0.31) 4.80 (0.33) 5.01 (0.37) 6.96 (0.25) 7.01 (0.26) 4.42 (0.14) 2.92 (0.18) 3.17 (0.35) 1.40 (0.28) 3.10 (0.28)
Log 0.87 (0.21) 0.93 (0.25) 1.38 (0.25) 4.79 (0.19) 6.92 (0.25) 3.03 (0.12) 1.73 (0.13) 1.24 (0.24) 0.89 (0.21) 1.79 (0.14)
NL.00.100.1 Orig. 5.11 (0.44) 5.27 (0.37) 5.51 (1.08) 8.58 (0.31) 10.11 (0.51) 6.06 (0.21) 4.64 (0.33) 6.96 (0.38) 6.30 (0.33) 4.82 (0.62)
Log 2.31 (0.16) 2.47 (0.16) 2.21 (0.19) 5.02 (0.18) 9.15 (0.52) 3.78 (0.13) 2.37 (0.15) 3.38 (0.17) 2.35 (0.16) 217 (0.18)
NL.00.100.5 Orig. 8.17 (0.56) 9.06 (0.58) 8.18 (0.74) 12.81 (0.46) 17.01 (3.72) 8.03 (0.26) 7.09 (0.56) 9.08 (0.44) 5.22 (0.52) 6.63 (0.36)
Log 2.06 (0.16) 2.82 (0.16) 2.08 (0.17) 7.29 (0.28) 15.56 (2.26) 4.51 (0.16) 2.87 (0.15) 4.1 (0.20) 2.08 (0.16) 3.17 (0.16)
NL.50.010.1 Orig. 2.34 (0.22) 2.44 (0.24) 3.32 (0.56) 5.91 (0.27) 4.33 (0.32) 2.16 (0.14) 2.06 (0.17) 2.46 (0.34) 1.36 (0.34) 1.96 (0.24)
Log 1.61 (0.29) 1.63 (0.29) 1.75 (0.25) 4.23 (0.21) 4.09 (0.23) 1.87 (0.20) 1.67 (0.25) 1.73 (0.28) 1.60 (0.29) 1.64 (0.25)
NL.50.010.5 Orig. 4.83 (0.33) 4.80 (0.33) 5.18 (0.39) 6.43 (0.27) 6.30 (0.32) 3.51 (0.15) 2.64 (0.18) 2.40 (0.31) 1.45 (0.29) 3.10 (0.28)
Log 0.89 (0.21) 0.83 (0.25) 1.32 (0.25) 4.41 (0.20) 6.07 (0.27) 2.72 (0.12) 1.73 (0.14) 1.12 (0.28) 0.91 (0.21) 1.53 (0.14)
NL.50.100.1 Orig. 4.78 (0.36) 4.38 (0.33) 5.03 (0.96) 7.98 (0.30) 8.62 (0.71) 6.03 (0.20) 3.91 (0.28) 6.11 (0.38) 5.79 (0.30) 4.72 (0.37)
Log 2.32 (0.16) 2.23 (0.17) 2.18 (0.21) 4.84 (0.18) 7.54 (0.36) 3.75 (0.14) 2.27 (0.17) 3.15 (0.20) 2.36 (0.16) 2.27 (0.17)
NL.50.100.5 Orig. 7.70 (0.51) 8.03 (0.52) 7.66 (0.67) 11.35 (0.38) 12.46 (1.29) 7.24 (0.23) 5.78 (0.31) 7.51 (0.36) 4.90 (0.46) 6.38 (0.40)
Log 2.06 (0.15) 2.30 (0.15) 1.87 (0.19) 6.71 (0.25) 12.63 (2.92) 4.26 (0.16) 2.82 (0.17) 3.62 (0.20) 2.08 (0.15) 2.95 (0.16)
NL.80.010.1 Orig. 2.30 (0.22) 2.15 (0.23) 3.25 (0.54) 5.90 (0.24) 3.62 (0.38) 2.40 (0.15) 1.92 (0.23) 2.04 (0.31) 1.34 (0.36) 2.15 (0.28)
Log 1.61 (0.29) 1.67 (0.31) 1.74 (0.25) 4.31 (0.22) 3.43 (0.25) 1.73 (0.23) 1.65 (0.26) 1.70 (0.32) 1.60 (0.29) 1.75 (0.21)
NL.80.010.5 Orig. 4.73 (0.33) 4.68 (0.33) 5.03 (0.37) 6.06 (0.26) 4.84 (0.30) 2.82 (0.16) 2.32 (0.18) 1.99 (0.35) 1.31 (0.29) 2.53 (0.24)
Log 0.89 (0.21) 0.81 (0.29) 1.27 (0.26) 4.27 (0.22) 4.49 (0.25) 1.83 (0.13) 1.30 (0.16) 0.98 (0.32) 0.91 (0.21) 1.55 (0.15)
NL.80.100.1 Orig. 4.49 (0.36) 3.61 (0.30) 4.54 (0.86) 7.52 (0.29) 6.80 (0.53) 5.77 (0.19) 3.45 (0.22) 5.30 (0.39) 5.68 (0.32) 3.87 (0.50)
Log 2.31 (0.16) 2.01 (0.20) 2.08 (0.22) 4.80 (0.19) 6.05 (0.53) 3.16 (0.13) 2.09 (0.19) 2.93 (0.22) 2.35 (0.16) 2.20 (0.17)
NL.80.100.5 Orig. 7.1 (0.47) 6.91 (0.47) 6.93 (0.60) 9.50 (0.33) 10.32 (0.71) 6.16 (0.20) 4.29 (0.25) 6.13 (0.36) 4.59 (0.44) 5.91 (0.35)
Log 2.06 (0.16) 1.74 (0.17) 1.60 (0.23) 5.85 (0.22) 9.94 (0.51) 3.76 (0.14) 2.40 (0.17) 3.08 (0.23) 2.08 (0.16) 3.01 (0.18)
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