
Improving Recommender Systems with
Rich Side Information

by

Chenyi Zhang

B.Sc. Zhejiang University, 2010

Dissertation Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Science

c© Chenyi Zhang 2015

SIMON FRASER UNIVERSITY

Summer 2015

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, criticism, review and news reporting is likely to be in accordance with

the law, particularly if cited appropriately.

Approval

Name: Chenyi Zhang

Degree: Doctor of Philosophy (Computer Science)

Title: Improving Recommender Systems with Rich Side Infor-
mation

Examining Committee: Dr. Ze-Nian Li (chair)
Professor, Computing Science
Simon Fraser University

Dr. Ke Wang
Senior Supervisor
Professor, Computing Science
Simon Fraser University

Dr. Jianling Sun
Supervisor
Professor, Computer Science
Zhejiang University

Dr. Qianping Gu
Internal Examiner
Professor, Computing Science
Simon Fraser University

Dr. Huan Liu
External Examiner
Professor, Computer Science and
Engineering
Arizona State University

Date Defended: 4 Aug 2015

ii

Abstract

Recommender systems have become extremely popular in recent years since they can provide

personalized information to user from a large amount of data, which is typically noisy and

hard to exploit. Traditional approaches mainly leverage the user-item rating matrix for

recommendation. Beyond the rating matrix, however, there exists rich side information

in recommender systems, which is a good source to improve the performance of rating

prediction. In this thesis, we studied three types of side information (i.e., content, temporal,

spatial), pointed out some open issues that are unsolved by the existing models and proposed

our solutions in these areas.

We incorporate side information with some domain knowledge to improve the recommender

systems. In recommendation with content information, we proposed a feature centric model

to analyze the feature-level preferences instead of the item-level preferences, thus, make pre-

diction according to feature-level preferences. We further proposed a recommendation by

blending content and attributes in heterogeneous networks. In recommendation with tem-

poral information, we proposed temporal matrix factorization to model the user’s interest

shift over time; such changes are essential for developing accurate recommender systems. In

recommendation with spatial information, we proposed a cross-region collaborative filtering

method to deal with the POI (Point of Interest) recommendation when the user travels to

a new place; in this model, the long-term and short-term preferences are considered re-

spectively. All these models are evaluated in real life data sets with the state-of-the-art

methods.

Keywords: recommender systems, side information, latent factor model

iii

Acknowledgements

I would like to thank my senior supervisor Dr. Ke Wang for his invaluable guidance and

support. I also want to thank my supervisor Dr. Jianling Sun for his insightful commentary

and valuable input.

I would also like to express my gratefulness to all other students in our group for their kind

help and encouragement. They are Weipeng Lin, Hongwei Liang, Chao Han, Aungon Nag

Radon, Zhilin Zhang, Yue Wang, Ryan McBride, Yongmin Yan and Peng Wang.

Finally, I want to thank my family for their continuous support and forever love.

iv

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Background . 2

1.1.1 Taxonomy . 2

1.1.2 Latent Factor Model . 3

1.1.3 Topic Model . 5

1.2 Recommendation with Side Information . 5

2 Related Work: Beyond the Rating Matrix 9

2.1 Recommendation with Content Information 9

2.1.1 Similarity-based Approaches . 10

2.1.2 Latent Factor Models meet Topic Models 11

2.1.3 Latent Factor Models with Regularization 12

2.1.4 Factorization Machines . 13

2.2 Recommendation with Temporal Information 14

2.2.1 Time Partition or Decay Model . 15

2.2.2 Temporal CF with Adaptive Neighbourhoods 15

2.2.3 Latent Factor Models with Temporal Bias 16

v

2.2.4 Kalman Filtering . 17

2.2.5 Tensor Factorization . 17

2.3 Recommendation with Spatial Information 18

2.3.1 Location as Items . 18

2.3.2 Generative Models with Location . 19

2.3.3 Latent Factor Models with Location 20

3 Feature-centric Recommendation 23

3.1 Motivation . 23

3.1.1 Our Approach . 24

3.1.2 Comparison with Related Work . 25

3.2 Feature-Centric Recommendation . 26

3.2.1 Extracting User-Feature Rating Matrix 27

3.2.2 Predicting Item Ratings by Heuristic 28

3.2.3 Predicting Item Ratings through Regression 29

3.3 Experimental Evaluation . 30

3.3.1 Data Sets . 31

3.3.2 Evaluated Methods . 31

3.3.3 Evaluation Metrics . 32

3.3.4 Experimental Results . 33

3.4 Summary . 36

4 Recommendation by Blending Content and Attributes 38

4.1 Motivation . 38

4.1.1 Discussions . 40

4.1.2 Comparison with Related Work . 41

4.2 Model . 41

4.2.1 Item Information Processing . 43

4.2.2 First Cut Solutions . 43

4.2.3 Content + Attributes Model . 44

4.3 Experimental Evaluation . 46

4.3.1 Data Sets . 46

4.3.2 Evaluated Methods . 46

4.3.3 Evaluation Metrics . 47

vi

4.3.4 Experimental Results . 48

4.4 Summary . 49

5 Temporal Matrix Factorization 51

5.1 Motivation . 51

5.1.1 Contributions . 52

5.1.2 Comparison with Related Work . 53

5.2 Temporal Probabilistic Matrix Factorization 54

5.2.1 Introducing Transition Matrix . 54

5.2.2 Modeling . 55

5.2.3 Inference . 57

5.3 The Fully Bayesian Model (BTMF) . 57

5.3.1 Modeling . 58

5.3.2 Inference . 59

5.4 Experimental Evaluation . 62

5.4.1 Evaluated Methods . 62

5.4.2 Data Sets . 62

5.4.3 Evaluation Metrics . 63

5.4.4 Experimental Results . 63

5.5 Summary . 65

6 Cross-region Collaborative Filtering 70

6.1 Motivation . 71

6.1.1 Contributions . 73

6.1.2 Comparison with Related Work . 75

6.2 Methodology . 76

6.2.1 Preliminaries . 76

6.2.2 Predicting Content Preferences . 77

6.2.3 Predicting Location Preferences . 78

6.2.4 Recommending POIs . 80

6.2.5 Discussion . 80

6.3 Experimental Evaluation . 82

6.3.1 Data Sets . 82

6.3.2 Evaluated Methods . 82

vii

6.3.3 Evaluation Metrics . 84

6.3.4 Experimental Results . 85

6.3.5 “New city” Testing . 90

6.4 Summary . 91

7 Conclusion 93

Bibliography 96

viii

List of Tables

Table 3.1 Example for feature-level preferences 24

Table 3.2 Statistics of data sets . 30

Table 3.3 RMSE and MAE of four data sets 33

Table 3.4 Paired t-Test(2-tail) of FCR-a and FCR-r 35

Table 4.1 RMSE and coverage results of different methods. Lower values on

RMSE and higher values on coverage are better. 48

Table 5.1 Statistics of data sets. 62

Table 5.2 RMSE (mean±standard error) of different models. D = 20. The best

performer is in boldface and the second best performer is in italic. . 65

Table 6.1 MRR (mean ± standard error). K = 10 85

Table 6.2 Performances of CRCF for different seed sizes m 88

Table 6.3 Runtime of learning the location recommender of CRCF (min) vs K . 89

ix

List of Figures

Figure 2.1 Content information in recommender systems 10

Figure 2.2 Example from Rendle’s work [52] for representing a recommenda-

tion problem. Every row represents a feature vector xi with its

corresponding target yi . 14

Figure 3.1 The feature-centric recommendation approach 26

Figure 3.2 Construct the user-feature rating matrix (right) from the original

ratings (left) . 27

Figure 3.3 Recall@k of four data sets. Vary k (x-axis) 35

Figure 3.4 Feature selection for FCR-r on Lastfm (left) and MovieLens (right).

y-axis represents RMSE and x-axis represents the percentage of the

features with lower correlations removed 36

Figure 3.5 Representative features on Lastfm 37

Figure 4.1 Heterogeneous recommendation scenario: each item has content and

attribute information. Each user marks the likes(
√
) and dislikes(×)

for some items and the rest are unknown(?) in the rating matrix.
√

in the information table means the item has this attribute 39

Figure 4.2 Rating distributions of the data set. The left subfigure shows the

number of ratings by each user and the right subfigures shows the

number of ratings on each item (logistic scaled), all descent sorted. 46

Figure 4.3 Recall performance of different methods. The left top subfigure

shows overall performance of different methods while varying k. The

rest subfigures exhibit the individual level of performance each method

while fixing k = 200. 50

Figure 5.1 Evolution of user i’s preferences . 52

x

Figure 5.2 Graphical representations of TMF (left) and BTMF (right), with

parameters and hyperparameters of time window t and t+ 1 shown

only . 56

Figure 5.3 Recall of different models. Every two rows refer to a data set and

each column refers to a testing window. For each data set, the first

row observes the effect of varying k with fixed D = 20 while the

second row observes the effect of varying D with fixed k = 300.

Higher values are better. 67

Figure 5.4 Recall of different models (cont.). Every two rows refer to a data set

and each column refers to a testing window. For each data set, the

first row observes the effect of varying k with fixed D = 20 while

the second row observes the effect of varying D with fixed k = 300.

Higher values are better. 68

Figure 5.5 Recall of different models (cont.). Every two rows refer to a data set

and each column refers to a testing window. For each data set, the

first row observes the effect of varying k with fixed D = 20 while

the second row observes the effect of varying D with fixed k = 300.

Higher values are better. 69

Figure 6.1 Locations of the Yelp data partitioned into regions 72

Figure 6.2 Different matrices for 3 users (A,B,C), 3 POIs (I, II, III), 4 features

(f1,f2,f3,f4), and 2 regions (r1,r2). POI I has features f1, f2 and is

located in region r1, POI II has features f1, f3 and is located in region

r2, POI III has features f2, f4 and is located in region r1. Users may

select a subset of the features when rating a POI. 74

Figure 6.3 Combining the predicted content rating and location rating to com-

pute the top-n POIs in CRCF . 81

Figure 6.4 Recall@n vs n (the x-axis). K = 10 87

Figure 6.5 Performance vs D (the x-axis). K = 10 89

Figure 6.6 Performances for different numbers of regions K 90

Figure 6.7 Recall@n vs n (the x-axis) in “new city” testing. K = 10 91

xi

Chapter 1

Introduction

The recommender systems have attracted a lot of attentions during the past few years, espe-

cially as the social networking services emerge and large amount of data become available.

The goal of recommender systems is to predict the rating or preference that the user will

give to an item. Recommender systems are quite popular recently because they help users

to filter useful information from large amount of complex or redundant data efficiently. For

example, Amazon1 recommends interesting products to users when users purchase related

products, and Youtube2 recommends videos the users may be interested in. Other items

such as movies, musics, books and travel packages are commonly recommended due to dif-

ferent applications, and users also could be recommended to other users in social networking

services like Twitter3 and Facebook4.

Recommender systems are distinguished from search engines in that the user can get

personalized feedback without building a query and requesting the results. This is often

realized by estimating user’s preferences on items and recommending those items featuring

the maximal predicted preference. The prerequisite for determining such recommendations

is the original rating matrix, i.e., the historic activities that the user rate items, as well as

some rich side information. The side information refers to the additional information beyond

the rating matrix, e.g., the time when the user performs the rating, or the description of

the items. For example, there are thousands of movies in Youtube and it is impossible

for a user to watch all the movies or reviews to conclude the best choice. At this time, a

proper recommendation based on the user’s rating behaviors (like/dislike) and the reviews
1http://www.amazon.com/
2http://www.youtube.com/
3http://www.twitter.com/
4http://www.facebook.com/

1

http://www.amazon.com/
http://www.youtube.com/
http://www.twitter.com/
http://www.facebook.com/

(side information) reduces the time on searching and increases the user satisfaction. In this

thesis, the main research focus is on how to exploit the side information to improve the

recommendation performance.

One of the key events that energized research in recommender systems was the Netflix5

prize. From 2006 to 2009, Netflix sponsored a competition, offering a grand prize of 1

million dollars to the team that could take an offered data set of over 100 million movie

ratings and return recommendations that were 10% more accurate than those offered by the

company’s existing recommender system. This competition energized the search for new

and more accurate algorithms. Gradually, recommender system became an independent

research area from informational retrieval and data mining, with the milestone that the

ACM Conference on Recommender Systems (RecSys) was founded in 2007.

Next, we introduce the background knowledge of recommender systems and rich side

information in the following sections.

1.1 Background

The recommender systems in the simplest form have two entities: user and item, where

the item could be movie, product or music etc. Suppose there are I users and J items,

and each user i could give a rating rij to an item j, which indicates the user’s personalized

preference to the item. This forms an I × J rating matrix R and such ratings could be

explicitly presented, e.g., the rating ranges from 1 to 5, or implicitly presented, e.g., the

user purchases the item.

1.1.1 Taxonomy

Three basic approaches in recommender systems are content-based filtering, collaborative

filtering and hybrid approaches:

Content-based filtering: In this approach, keywords or features are used to describe the

items and a user profile is built using the past item ratings to summarize the types of items

this user likes. This approach follows the design principle that liking a feature in the

past leads to liking the feature in future. A drawback is that if a user A has not liked

any feature of an item x in the past, x will not be recommended to the user, even though

many users with the same profile as A like x.
5https://www.netflix.com/

2

https://www.netflix.com/

Some recommender systems leverage content-based filtering to provide movie recom-

mendations, a few such examples include Rotten Tomatoes6 and Internet Movie Database

(IMDb)7.

Collaborative filtering: This approach addresses the above problem by collaborative

learning: if a user A liked some items that were also liked by user B, A is likely to share

the same preference with B on another item. The design principle of this approach is that

liking same items (as other users) leads to liking more same items.

There are also a large number of recommender systems leveraging collaborative filtering,

e.g., Last.fm8 recommends music based on a comparison of the listening habits of similar

users. Facebook, Twitter, LinkedIn9 and other social networks use collaborative filtering to

recommend new friends, groups, and other social connections [53].

Hybrid approaches combine content-based filtering and collaborative filtering. For ex-

ample, the collaboration via content approach in Pazzani et al.’s work [50] is based on

collaborative techniques but also maintains the content-based profile for each user. These

content-based profiles, and not the commonly rated items, are then used to calculate the

similarity between two users.

Another taxonomy divides recommendation methods into memory-based and model-

based method categories:

Memory-based methods usually adopt similarity metrics to obtain the distance between

pairwise users or pairwise items according to the historic rating data, and then make rating

predictions based on such similarity metrics. The memory-based methods are typically

easy to implement but inefficient since they need to explore the entire rating data when

predicting each new rating.

Model-based methods create a model to generate the recommendations, where the model

parameters are usually learnt from the rating data and the rating prediction is made af-

terwards with the inferred parameters. The advantage of model-based methods is that

predicting a new rating is efficient since only the parameters of the model are needed.

1.1.2 Latent Factor Model

The latent factor model [47, 56] is one of the most successful model-based collaborative

filtering methods widely applied in recommender systems, which lays the foundation of our
6http://www.rottentomatoes.com/
7http://www.imdb.com/
8http://www.last.fm/
9https://www.linkedin.com/

3

http://www.rottentomatoes.com/
http://www.imdb.com/
http://www.last.fm/
https://www.linkedin.com/

proposed models in this thesis. In the general framework of latent factor model, the key

idea is to factorize the rating matrix into the latent user vectors and latent item vectors in

the low dimensional latent space. Latent user vector ui represents user i’s personal interests

while latent item vector vj expresses item j’s features. By inferring the latent vectors, the

predicted rating r∗ij is then computed by the inner product (uTi vj).

The following is the common objective function for latent factor model, that is, observed

ratings rij in the rating matrix are involved in a supervised approach to minimize the

regularized squared error loss respect to U = (ui)Ii=1 and V = (vj)Jj=1:

E = minU,V
∑
i,j

εij
2 (rij − uTi vj)2 + λu

2
∑
i

‖ui‖2 + λv
2

∑
j

‖vj‖2 (1.1)

where εij is a binary indicator that is equal to 1 if user i rated item j and equal to 0

otherwise; λ controls the extent of regularization and is determined by cross validation.

Two main learning algorithms to minimize the Eq. (1.1) are (stochastic) gradient descent

(GD) and alternating least squares (ALS). GD has the advantages on easy implementation

and fast running time while ALS is good at parallelization for massive data sets.

Let us take GD as an example for model learning. A local minimum can be achieved

by iteratively applying gradient descent method. In each iteration, first take the gradient

of E respect to variable ui, vj :

∂E

∂ui
= λuui −

∑
j

(rij − uTi vj)vj (1.2)

∂E

∂vj
= λvvj −

∑
i

(rij − uTi vj)ui (1.3)

Then update each variable by taking steps proportional to the negative of the gradient

based on recent values:

ut+1
i = uti − η

∂E

∂uti
vt+1
j = vtj − η

∂E

∂vtj
(1.4)

where η is a parameter called learning rate and uti, vtj stand for the value of ui, vj at

iteration t. The predicted rating r∗ij is computed by r∗ij = uTi vj after enough iterations until

the above equations (1.4) reach the convergence.

4

1.1.3 Topic Model

Topic models are a suite of algorithms that uncover the hidden thematic structure in docu-

ment collections. We introduce the simplest topic model, latent Dirichlet allocation (LDA)

[7] here, since it is frequently mentioned in this thesis as a tool for content analysis in

recommender systems. LDA is a generative model that allows sets of observations to be

explained by unobserved variables that explain why some parts of the data are similar. In

particular, observations are words of document collections and unobserved variables are the

per-document topic distribution and the per-topic word distribution. Each document is a

mixture of a small number of latent topics and each word’s creation is attributable to one

of the document’s topics. Let W be the size of the dictionary (i.e., vocabulary size) for

document collections. For a given number of latent topics K, θd denotes the K-dimensional

topic distribution for a document d and ϕj denotes the W -dimensional word distribution

for a topic j. The generative process of LDA is as follows:

1. choose ϕj ∼ Dir(β) where j ∈ [1, ...,K]

2. choose θd ∼ Dir(α) for each document d

3. for each word position that belongs to document d

(a) choose a topic z ∼Mul(θd)

(b) choose a word w ∼Mul(ϕz)

where β is the parameter of the Dirichlet prior on the per-topic word distribution, α is the

parameter of the Dirichlet prior on the per-document topic distributions, Dir(·) stands for

the Dirichlet distribution and Mul(·) stands for the Multinomial distribution.

Varitional Bayesian [7] and Gibbs sampling [22] are commonly used methods to infer

the latent variables ϕ and θ.

1.2 Recommendation with Side Information

Although the rating matrix provides the basis for recommender systems, we observe that

new recommendation scenarios are emerging that offer promising new information that goes

beyond the rating matrix. This rich side information includes the user-generated text, the

check-in location where the user rates an item, etc. These side information complement the

original rating matrix for personalized recommendation.

5

For example, the content information can assist to address the cold start issue in recom-

mendation, which is impossible for the collaborative filtering on the rating matrix because

there is no rating for the cold user/item. In Gantner et al.’s work [18], the authors consider

cold-start recommendation by learning a mapping function from the features of users and

items to the latent vectors of users and items, and using this function to predict the latent

vectors of new users and new items. Thus, the rating can be predicted through these latent

vectors for new users and new items.

In this thesis, we focus on making use of the side information to improve real life recom-

mender systems, where the side information is available and provides effective indicators to

better recommendations. However, such kinds of side information also lead to some research

issues:

• Compatibility. We believe that the side information and rating data are compatible

with each other in recommender systems. However, the current methods prefer to

incorporate the side information into the traditional models (e.g, as regularization

terms), in which the rating matrix still has a dominant contribution to the final

rating prediction. A sophistic model should balance the side information and the

rating matrix in recommendation.

• Complexity. The recommender system may involve different kinds of side informa-

tion, especially in heterogeneous networks. Each kind of side information is unique

and the interplay between them is complex. It is an open question to blend different

kinds of side information in heterogeneous networks.

• Dynamics. The real life recommender system is dynamic where the user preference

may change over time. Accordingly, temporal approaches should be proposed beyond

the previous static settings. However, there are few works considering the user interest

shift and it still remains difficult to find out the time when the user begins to change

her interests.

• Reachability. The recommendation is failed if the user is unavailable to adopt the

recommended items. Particularly, the recommended POIs should be reachable in

location-based recommender systems, which is often neglected by the state-of-the-art.

It is still a challenge how to recommend when the user goes to a new place.

In this thesis, we try to address these issues in terms of different types of side infor-

mation: content, temporal and spatial. We seek for novel approaches to incorporate these

6

side information with some domain knowledge to improve the recommender systems. The

general data model in this thesis is that, given I users and J items with the I × J rating

matrix R, and side information as input, the output is the predictions for unknown ratings

in the matrix for recommendation.

The rating matrix remains the same but the side information may have a different format

in each chapter. The rest of this thesis is organized as follows. First, we surveyed some

representative methods related to these side information (Chapter 2). We categorized them

and discussed their strengths and shortcomings. Then we presented our original works.

In recommendation with content information, we observed that a user likes an item

because of some specific features of the item (Chapter 3). The side information here refers

to the features for the item. Although most recommendation approaches are item-centric,

we proposed a feature-centric model to analyze the feature-level preferences instead of the

item-level preferences, thus, make prediction according to feature-level preferences. We

introduced several strategies to generate the item ratings through feature-level preferences,

and evaluated them on four data sets.

We further proposed a recommendation by blending content and attributes in academic

networks (Chapter 4). The side information here refers to the text and attributes for the

item. Academic networks are heterogeneous with the information of authorship, citation,

published venue and year. The proposed model combines the unstructured text data with

structured attributes data using topic modeling and latent factor model. Again, the ex-

perimental evaluation demonstrated the improvement of recommendation quality of the

proposed model.

In recommendation with temporal information (Chapter 5), we proposed temporal ma-

trix factorization to model the user’s interest shift over time; such changes are essential for

developing accurate recommender systems. The side information here refers to the time

when rating the item. We proposed the transition matrix to model the evolution of latent

user vector in the low-dimensional latent space. Both temporal matrix factorization and its

fully Bayesian version are evaluated on six data sets.

In recommendation with spatial information (Chapter 6), we proposed a cross-region

collaborative filtering method to deal with the POI recommendation when the user travels

to a new place. The side information here refers to POI location and user’s reviews. In this

model, the long-term and short-term preferences are learnt from content information and

location information respectively. The final recommendation considered both the long-term

7

and short-term preferences. This method was evaluated on two data sets with substantial

improvement.

Finally, Chapter 7 concluded this thesis with some directions for future work.

8

Chapter 2

Related Work: Beyond the Rating
Matrix

In this chapter, we surveyed some representative models dealing with side information in

recommender systems. Three typical side information, i.e., content information, temporal

information and spatial information, are the main focus. These side information com-

plement the original rating matrix for personalized recommendation. In general, content

information helps to recognize and explain the user interests in an explicit way; temporal

information helps to model the evolution of user interests over time; spatial information

helps to indicate the user mobility pattern and activity areas for feasible recommendation.

By appropriately involving the side information, the recommender systems achieve better

performances beyond the rating matrix.

2.1 Recommendation with Content Information

This section surveyed the recent development of recommender systems with descriptive

information. The content information could be unstructured texts or reviews, and features

or tags that describes the attributes of the item. Such content information can be found

in many rating systems on a daily basis. Figure 2.1 shows the screen shots for three types

of content information beyond the ratings in recommender systems. Part (a) shows an

interface for hotel reviews where a user can rate specific aspects of a hotel. Part (b) shows a

way of expressing preferences attaching personal tags to an item. Part (c) shows a rating for

a movie; although the user may rate only the movie, the preference on movie features can

9

(a) Reviews (b) Tags (c) Features

Figure 2.1: Content information in recommender systems

be derived from the set of features of each movie rated. The content information considered

in this thesis is typically the user generated tags or reviews for items and item’s attributes.

The content information usually manifests the user’s reasons for rating the item and is

an important source to be considered when recommending items in the future. Below, we

summarize multiple recommendation techniques utilizing content information beyond the

rating matrix.

2.1.1 Similarity-based Approaches

Recall that content-based filtering usually generates recommendations based on item profiles

and item ratings. It treats recommendation as a user-specific classification problem and

learns a classifier for the user’s likes and dislikes. Some collaborative filtering techniques

such as k nearest neighbors (kNN) also need to establish a set of similar users (or items).

In both approaches, the content information can be used to measure similarity of items or

users. We call them similarity-based approaches.

The kNN family of algorithms [1] is one of the most widely used memory-based collab-

orative filtering methods in recommender systems. The key idea behind it is to establish a

set of similar users (or items), called the nearest neighbors, whose ratings over the target

item (user) are then extrapolated in order to compute a rating prediction. Take the user-

based kNN as example, a set of k neighbors of user i is determined according to a certain

similarity measure. For example, the Pearson Correlation similarity is computed as follows:

sim(i, i′) =
∑
j∈Sii′

(rij − r̄i)(ri′j − r̄i′)√∑
j∈Sii′

(rij − r̄i)2
√∑

j∈Sii′
(ri′j − r̄i′)2

(2.1)

10

where rij = ∅means no rating is observed by user i to item j, Sii′ = {j ∈ J |rij 6= ∅∧ri′j 6= ∅}

represents the set of items co-rated by both user i and i′, and r̄i represents the average rating

of user i.

For each user i, the neighbors can be identified as k users with the largest similarity

values. Then the predicted rating is given by:

r∗ij = c+
∑

i′∈N(i)
sim(i, i′)× ri′j (2.2)

where N(i) indicates the neighborhood of user i and c is the normalization parameter.

For example, Sen et al. [58] predicted users’ ratings for items based on inferred pref-

erences for tags, where tags are used to measure the similarity between items. Several

similarity metric such as Cosine or Pearson correlation are adopted. The model in Gedikli

et al.’s works [19, 20] improves upon this by predicting tag preferences in the context of an

item. The drawback is that these methods infer the preferences for the user’s own tags; if

an unrated item is attached with tags that the user has never used before, no prediction

can be made for the item.

2.1.2 Latent Factor Models meet Topic Models

By taking advantages of the latent factor model for predicting the rating of items [55, 56],

and several recent works enjoyed the ability to analyze text information with topic models

and combined two models together for recommendation.

The collaborative topic regression (CTR) [65] studies the recommendation for scientific

articles with each article being modeled by topic modeling on the text content of the article.

In particular, recall that in the latent factor model, there is a vector vj representing the item

j in the latent space. With content information, topic modeling assigns a topic distribution

θj to each item j with a Gaussian noise εj , such that:

vj = θj + εj (2.3)

and the objective function turns to:

E = minU,V
∑
i,j

εij
2 (rij − uTi vj)2 + λu

2
∑
i

‖ui‖2 + λv
2

∑
j

‖vj − θj‖2 −
∑
j

f(θTj βw) (2.4)

11

where f is a function to penalize the topic distribution θj with the word distribution βw.

An EM-style algorithm is proposed to learn the maximum a posteriori (MAP) estimates,

where all the parameters (latent vectors u, v, topic distribution θ and word distribution β)

are learnt and updated step by step.

Agarwal et al. [4] proposed fLDA, where the rating is modeled by the regression predictor

of ui and the regression predictor of vj with the latent topic distribution of the item:

rij = aTui + bT vj + sTi z̄j (2.5)

where a, b and si are regression weights and z̄j is the average topic distribution for item j.

si is a user-dependent regression weights and Eq. (2.5) enforces all latent factors (including

content) to contribute to the rating, not only item and user factors.

The advantage of these models is that two classes of algorithms successfully benefit with

each other after the merge. But the topic model is based on discovering the co-occurrence

relationship between words and works well for the textual data such as reviews. It could

be inappropriate to apply it to other kinds of content information such as features or tags.

2.1.3 Latent Factor Models with Regularization

The content information also can be adopted to regularize the latent factor models. The

followings are the related work in this direction. Given the content information represented

by features, the regression-based latent factor model [3] incorporated features and past

interactions to regress the latent vectors. For example, if xi and xj represent the user

feature vector and the item feature vector respectively in the latent space, the latent user

vector ui and the latent item vector vj turn to:

ui = axi + εi, vj = bxj + εj (2.6)

where a, b are regression weights and ε is the noise introduced. After these latent vectors

are initialized by Eq. (2.6), the rest is similar in the basic latent factor model. In this way,

users or items with similar features tend to have similar latent vectors, so features have

indirect impact on the final ratings. Agarwal et al. [5] further extended their previous work

[3] by modeling user-generated opinionated texts.

In Zhen et al.’s work [75], the tag information acts as a new regularization term in matrix

factorization to constrain the latent vectors between users who frequently used similar tags.

12

In particular, the objective function turns to:

E = minU,V
∑
i,j

εij
2 (rij−uTi vj)2 + λu

2
∑
i

‖ui‖2 + λv
2

∑
j

‖vj‖2 + λt
2

∑
i

∑
i′

sim(i, i′)‖ui−ui′‖2

(2.7)

where the last term is the additional regularization term, sim(i, i′) is the similarity measure

using tag information. Intuitively, this term forces the latent vectors of similar users to be

close and this idea is also adopted with social network information if i and i′ are friends

[45].

One drawback of these models is that the content information as regularization only

has an indirect impact on the rating prediction, which may not be suitable since some

features or tags could be a direct indicator to user’s preferences. For example, if a user

is the superfan of Lady Gaga and is interested in any music or activities related to Lady

Gaga, at this time, the tag “Lady Gaga” is a significant indicator of the user’s preferences.

However, this is impeded by modeling the tags as regularization terms.

2.1.4 Factorization Machines

The factorization machine (FM) [52] models multidimensional variable interactions (user,

item, feature, etc.) through latent vectors. In detail, FM is a class of models that combines

the advantages of support vector machines (SVM) and factorization models. FM has a

good performance to incorporate various content information for sparse interactions typical

in recommender systems at a low computational cost. FM allows stochastic gradient descent

(SGD) and alternating least squares (ALS) optimization as well as Bayesian inference using

Markov Chain Monte Carlo (MCMC). The advantages of FM lie on both efficiency and the

ability of generalization.

In FM, the original rating matrix is transformed to a representation of regression as

shown in Figure 2.2. The ith row xi ∈ Rp describes one case with p real-valued variables

and yi is the rating (target) in this case. Alternatively, one can describe this setting as

a set of tuples (x, y), where (again) x ∈ Rp is a feature vector and y is its corresponding

target. Each column k in the feature vector is associated with a latent vector vk, k ∈ [1...p].

FM models all nested interactions up to order d between the p input variables in x. When

d = 2, the regression is defined as:

ŷ(x) := w0 +
p∑

k=1
wkxk +

p∑
k=1

p∑
k′=k+1

xkxk′(vTk vk′) (2.8)

13

Figure 2.2: Example from Rendle’s work [52] for representing a recommendation problem.
Every row represents a feature vector xi with its corresponding target yi

where w0 and wk are weighting parameters. Note that the user-item interactions can be

regarded as the inner product uTi vj in the latent factor model, but other nested interactions

have no clear explanations in rating predictions. Besides, the machine is too “general” that

does not incorporate any domain knowledge. In many cases, a domain-specific modeling

dose better jobs than a general method.

FM allows the modeling of higher-order interactions in a way different from tensor

factorization models. Besides, as discussed in Rendle’s work [52], many previous models

such as regression-based latent factor model [3] can be equivalently seen as the special case

of FM. Several works extended FM afterwards, for example, the co-factorization machine

[24] couples the learning of two FMs to study two aspects of Twitter data.

2.2 Recommendation with Temporal Information

This section surveyed the recent development of recommender systems with temporal in-

formation. Typically, static methods only learn a global model from a series of unordered

ratings and are challenged when user behaviors change over time. By incorporating the

temporal dynamics into the static models, additional improvements are observed with the

advantage of the potential of temporal information. We summarize multiple temporal rec-

ommendation techniques, that is, utilizing temporal information beyond the rating matrix.

14

2.2.1 Time Partition or Decay Model

The basic assumption of these approaches is that users change their preferences as time

goes by, so recent ratings better reflect their present tastes. For time partition model, it

simply partitions the rating data by time, learns a model using the data in each partition

and assigns different weights to each model. This approach may not work well because it

not only misses the dependence of preferences for some users across time windows, but also

accelerates the well known data sparsity problem.

Ding et al. [15] uses a time weighting scheme for a similarity based collaborative filtering

approach, which decays the similarities to previously rated items as time difference increases

at the prediction time. Such time weighting scheme w(t) is usually a time decay function

w(t) = exp(−δt), where δ is the decay rate. Then Ding et al. [15] modified the rating

prediction by kNN in Eq. (2.2):

r∗ij = c+
∑

i′∈N(i)
sim(i, i′)× w(elapse(ri′j))× ri′j (2.9)

where N(i) indicates the neighbourhood of user i the same as in Eq. (2.2), c is the normal-

ization parameter, and elapse(r) returns the elapsed time since rating r was done until the

prediction time. In this way, older ratings have less weight in rating predication.

Later on, Ding et al. [16] and Ma et al. [46] extended this idea of time weighting

scheme for better predication. Lee et al. [37] proposed a CF approach based on implicit

feedback with the launch time of the item and the purchase time. Lee et al. [38] further con-

ducted comprehensive analysis with different weighting schemes according to the temporal

information. All these models showed some promising results.

As discussed above, the time decay scheme may miss a long-term effect for some users,

since it seems to “truncate” the ratings in the very old time, thus, leading to the information

loss. Besides, the weighting scheme is also hard to be estimated.

2.2.2 Temporal CF with Adaptive Neighbourhoods

Lathia et al. [35] proposed an algorithm for dynamically updating the neighbourhood

size for each user and concluded that the neighbourhood size formed by kNN is changing

over time. Their model adopted a metric called time averaged RMSE (TA_RMSE) [34],

and outperformed the global model with static k. The adaptive neighbourhood size k is

15

computed by [35, 36]:

∀i ∈ I : ki,t+1 = max
k∈P

(ei,t − TA_RMSEi,t,k) (2.10)

where ki,t+1 is the k value for predicted ratings of user i in the time window [t, t + 1],

P is a set of potential candidate values for k (P = {0, 20, 35, 50} used in Lathia et al.’s

work [35]), ei,t indicates the TA_RMSE achieved until time t for user i and the last term

TA_RMSEi,t,k is the other possible values for this user with a different k. Clearly, Eq.

(2.10) returns the parameter k that maximized the improvement on the current error for

each user.

One drawback of this approach is not to fully consider the user’s changing preference

over time, since the computation of the adaptive neighbourhood size k is based on all the

past ratings of the user, which does not emphasize the user’s current preference and not

decline the importance of ratings in the past.

2.2.3 Latent Factor Models with Temporal Bias

Koren et al. [29] introduced the bias terms to the latent factor model. The intuition of

introducing the linear biases is that the average rating for each user is essentially different.

For example, a critical user may rate a good movie 3-star since her average rating is only

2-star, while for a common user, the rating of this movie is 5-star. If the former rating value

is explained by an interaction of the form (uTi vj), the bias part to a rating value is only

related to either user or item and independent of any interactions.

Let us denote 1-dimensional parameters αi and βj be the linear bias for user i and item

j respectively, which control the user-specific and item-specific biases. Then Eq. (1.1) turns

to the following objective function with such linear biases:

min
U,V

∑
i,j

εij(rij − αi − βj − uTi vj)2 + λ(
∑
i

‖ui‖2 +
∑
j

‖vj‖2 +
∑
i

α2
i +

∑
j

β2
j) (2.11)

Koren [30] discussed the differences between temporal recommendation and concept

drift [64] and presented the first temporal model for the matrix factorization approach by

introducing time-variant biases for each user and each item. For example, the bias terms

for user i and item j is:

bij(t) = αi(t) + βj(t) (2.12)

16

where αi(t) and βj(t) are real valued functions changing over time.

In particular, Koren’s work [30] associated a day t with an integer Bin(t) and modeled

the item bias into a stationary part and a time-variant part:

βj(t) = βj + βj,Bin(t) (2.13)

For the user bias, Koren’s work [30] considered both gradual concept drifts and sudden

drifts.

αi(t) = αi + λ · devi(t) + αi,t (2.14)

where devi(t) captures the gradual drift and αi,t denotes the day-specific variability.

The time-variant biases are the differences at each time window, so the model complexity

becomes higher to infer these parameters. This approach works for prediction only if two

windows share similar biases.

2.2.4 Kalman Filtering

Lu et al. [43] proposed a spatio-temporal model for collaborative filtering, in which a linear

Kalman filtering [27] is adopted to estimate the temporal structure. Sun et al. [61] modeled

temporal effects using Kalman filtering with a transition process parameter for each user.

These parameters are time dependent. For example, the evolution of the latent user vector

ui is linear according to the transition process Ai,t:

ui,t+1 = Ai,tui,t + εi,t (2.15)

where εi,t is the noise parameter. This forms a dynamic system with rest part remaining

similar to the traditional latent factor model. The Rauch-Tung-Striebel (RTS) smoother

[51] is adopted to infer the parameters in this system.

Chua et al. [13] further extended Sun et al.’s work [61] in the scenario of temporal

adoption. One limitation of Kalman filtering is that the transition process parameter is user-

supplied. Clearly, specifying such parameters for all users at all time points is impractical.

2.2.5 Tensor Factorization

Another approach to deal with temporal information is tensor factorization. Xiong et

al. [68] proposed the user-item-time tensor factorization to model temporal effects and

17

provided a fully Bayesian treatment to automatically tune parameters and control the model

complexity.

Extending the idea of the latent factor model, the three-dimensional tensor rtij is the

user i rating on item j at time window t, and can be expressed as the inner product of three

D-dimensional latent vectors.

rtij ≈< ui, vj , st >≡
D∑
d=1

ui(d)vj(d)st(d) (2.16)

where st is the additional latent feature vector for time window t.

The tensor factorization treats time as a universal dimension shared by all users. This is

argued by Xiang et al. [67] that time dimension is a local effect. The local effect of this work

[67] argues for that each user has its own time change patterns, which is against “shared

by all users”. Xiang et al. [67] used a graph connecting users, items, and sessions to model

users’ long-term preferences and short-term preferences. The links between user and item

nodes represent that items are viewed by a user at any time (long-term preferences) and

the links between user-session and item nodes indicate items are viewed by a user during a

specific time session (short-term preferences).

2.3 Recommendation with Spatial Information

This section surveyed the recent development of recommender systems with spatial informa-

tion. We summarize multiple location-based recommendation techniques, that is, utilizing

location information beyond the rating matrix.

2.3.1 Location as Items

Early works in location-based recommender systems simply treated location as spatial items,

and traditional approaches for items can also be adopted without much modification. For

example, the works [76, 78] studied recommender systems for locations/activities using

trajectory data such as GPS data. In Zheng et al.’s work [78], the interest of location and

user experience in a location are considered mutually reinforcing each other and a HITS-

like algorithm is proposed to learn their scores. Like hub/authority scores, the interest of

location and user experiences are global, i.e., not specific to a pair of location and user.

In Zheng et al.’s work [76], a location-activity matrix is extracted from GPS data with

18

the help of activity correlation mining and location feature extraction, and a location is

recommended for a given activity, or an activity is recommended for a given location.

In Bao et al.’s work [6], the rating data is partitioned by regions and categories of

locations, and for each region and each category, “local experts” are extracted based on the

historical data in that region and category. As pointed out in Section 2.2.1 dealing with

temporal information, partitioning the rating data by regions will accelerate data sparsity

and reduces the level of collaborative filtering.

Later on, the distance is measured as additional weight. In Ye et al.’s work [71], the

geographical influence of location is modeled by a naive Bayesian method and power-law

distribution of distance, under the assumption that the distances of POI pairs visited by a

user are independent. Given a collection li of POIs visited by a user i, the likelihood of visit-

ing a POI j is modeled by the conditional probability P (j|li) computed by
∏
j′∈li P [d(j, j′)],

where the distance probability P [d(j, j′)] is assumed to follow a power-law distribution.

2.3.2 Generative Models with Location

Rather than the simple treatment to location in the above mentioned methods, generative

models assign a latent variable to location, which will have a direct impact on the proba-

bility of recommending spatial items. For example, Kurashima et al. [33] extended topic

model with geographical influence [71] in location recommendation. Geographical influence

suggests that locations that are closer to user’s visited locations tend to have a high proba-

bility to be recommended. Based on this idea, the proposed Geo topic model still has topic

distributions θi for each user i and location distributions φz for each topic z, the probability

that user i with check-in history li (li represents the set of all check-ins by user i) visits

location j is calculated by the following equation:

P (j|i, li, θ, φ) =
∑
z

P (z|i, θ)P (j|z, li, φ) (2.17)

P (j|z, li, φ) is the probability that location j is chosen form topic z, considering the geo-

graphical influence:

P (j|z, li, φ) = 1
c

exp(φz(j))
∑
k∈li

exp(−β2 d(j, k)) (2.18)

19

where d(j, k) represents the distance between location j and k, β is the weighting parameter

and c is the normalization parameter. The final recommendation are those locations j the

with high probability in Eq. (2.17).

Hu et al. [25] proposed a spatial topic model by incorporating user posts as well as user

movements into a geographical topic model where regions and topics are random latent

variables associated with each post. Their model predicts the location for a given docu-

ment based on a collection of geo-tagged posts, which tends to give high probabilities to

locations close to user’s frequently visited locations before. More specifically, the location

j is generated according to not only the geographical region r, but also the topic z learnt

from the content (posts):

j ∼ P (j|r, z, φ, µ,Σ) (2.19)

where φ is the word distribution in topic model, and µ, Σ are the priors in Gaussian

distribution.

The above mentioned generative models are all based on modeling the probability dis-

tribution of the POIs for a user based on the observed data, therefore, favor the POIs in the

user’s frequently visited region (e.g., the home city). Such methods are not suitable if the

user travels to a new region where she has not generated any post or check-in activity. For

example, if a user checked-in POIs in Beijing in the past and is currently visiting New York

City where she has not checked-in any POI, those generative models tend to recommend

the POIs in Beijing because they have the highest estimated probability.

Yin et al. [72] presents a topic model called LCA-LDA to incorporate item content

and user’s visit history. However, their focus is to make appropriate recommendations for

a user visiting a new region. By treating each POI as word, their model learns the topic

distributions for each user and each region (e.g., city), and for a user coming to a region,

the recommendation of venues is derived from the distributions learnt for that region. The

drawback of this model is not to consider the distance or location information for POIs

across regions, which could be an important factor in real life recommendation.

2.3.3 Latent Factor Models with Location

One drawback of the generative models is that the generated probability distributions can-

not be interpreted as ratings directly. This probability is usually used to rank the items for

top-k recommendation but inapplicable to the task of rating prediction. Some works based

on the latent factor model address this issue by incorporating the spatial information.

20

Cheng et al. [9] leveraged the user check-in information to build a user-location matrix

which contains each user’s check-in frequency on locations, and adopted a multi-center

Gaussian model to model the probability of a user’s check-in behavior over spatial items

and to predict those unknown frequency to the locations that the user has never been to.

In this work, Gaussian models are adopted for location distributions.

Similar to Cheng et al.’s work [9], Liu et al. [42] proposed a topic and location-aware

matrix factorization model for location recommendation. First, the interest topics of users

are learnt by mining the textual information associated with POIs. Then, the topic and the

location influence are added into the matrix factorization framework and both contribute

to the final rating prediction. More specifically, the distribution over the observed ratings

and the textual information is as follows:

P (r|U, V, TL, σ) =
I∏
i=1

J∏
j=1

[N (rij |f(uTi vj , TLij), σ2)]εij (2.20)

where TL is the topic and location influence predefined, N (·|µ, σ2) is a Gaussian distribution

with mean µ and variance σ2, and f(uTi vj , TLij) = uTi vj×TLij is a function to approximate

the rating of user i to POI j.

Liu et al. [41] proposed a geographical probabilistic factor model taking latent prefer-

ences, user mobility and item popularity into consideration. Their model assigns a user to

a latent region learnt from user’s previously visited POIs and sets the region center as the

user’s location. Each POI location lj is drawn from a region-dependent multivariate normal

distribution:

li ∼ N (µk, σk) (2.21)

where k is a region with center µk and each user is associated with a certain region as the

common activity area. Then the user-POI distance is modeled as:

d(i, j) =
√
‖µk − lj‖2 (2.22)

If uTi vj reflects the user i’s intrinsic preference to POI j, the final rating is monotonically

decreases with the distance between them:

r∗ij = uTi vj(d0 + d(i, j))−γ (2.23)

21

where (d0 + d(i, j))−γ is a power-law like parametric term to model the distance factor in

the decision making process.

The location-based recommendation also benefits from the research in social science.

For example, some interesting findings in Cho et al.’s work [12] motivates the research in

modeling human mobility or location-based recommendation. One is that the short-ranged

travel is periodic and not affected by the social network, while the long-distance travel is

more influenced by social ties. Another is that users tend to move within a small number

of regions, e.g., around the home area or work places.

22

Chapter 3

Feature-centric Recommendation

We proposed our first model dealing with content information in this chapter. Typically

a user prefers an item (e.g., a movie) because she likes certain features of the item (e.g.,

director, genre, producer). This observation motivates us to consider a feature-centric

recommendation approach to item recommendation: instead of directly predicting the rating

on items, we predict the rating on the features of items, and use such ratings to derive

the rating on an item. This approach offers several advantages over the traditional item-

centric approach: it incorporates more information about why a user chooses an item, it

generalizes better due to the denser feature rating data, it explains the prediction of item

ratings through the predicted feature ratings. Another contribution is turning a principled

item-centric solution into a feature-centric solution, instead of inventing a new algorithm

that is feature-centric. We demonstrate this approach by turning the traditional item-

centric latent factor model into a feature-centric solution and demonstrate its superiority

over item-centric approaches.

3.1 Motivation

A user likes an item because of some specific features of the item. When a user likes an

item, she may like some features of the item but is not impressed with other features;

consequently, two users may like the same item for different reasons. For example, a user

may like the rate of a hotel but not its service, while another user may like the cleanliness

of the hotel but nothing else. If the above observation holds, the design principle “liking

same items (as other users) leads to liking more same items” practised by the standard

collaborative filtering may not work.

23

Table 3.1: Example for feature-level preferences

W={anti-allergy,
rose}

X={anti-allergy,
rose}

Y={anti-allergy,
orange}

Z={sun proof,
rose}

A like (due to anti-
allergy)

like (due to anti-
allergy)

? (like) ? (unknown)

B like (due to rose) like (due to rose) like (due to rose)

To explain our point, let us consider the toy example in Table 3.1 with four items

W={anti-allergy, rose}, X={anti-allergy, rose}, Y={anti-allergy, orange}, and Z={sun

proof, rose} where {} contains the features for the item. In the history, suppose that user

A loves W and X due to “anti-allergy” and user B loves W , X, and Z due to “rose”. In

traditional collaborative filtering, it will recommend Z to user A since A and B both like

W and X. On the other hand, for content-based filtering, Y has the feature “anti-allergy”

and Z has the feature “rose” as in W and X. Therefore, the score is the same, but it is

obvious that A will love Y more than Z from the view of feature level.

User’s preferences on features are available in many real life rating systems. For example,

in the hotel rating systems a user can rate specific features (cleanliness, service, etc.) of

a hotel. Other systems [58] allow users to explicitly express preferences on features by

attaching personal tags to an item. The ratings of features (e.g., director, actor) can also

be implicitly inherited from the features of items (e.g., movie). Such information manifests

the user’s reasons for rating the item, led by different preferences on features.

3.1.1 Our Approach

Our approach is motivated by the above discussion, therefore, if we can predict user’s pref-

erence on features, we are able to predict user’s preference on an item; if we can express

observed preference on features in the same format as observed preference on items, any

principled collaborative filtering algorithm for items can be applied to predict user’s pref-

erence on features. This thinking leads to a feature-centric recommendation approach in

which features of items are the “King”: given the usual user-item rating matrix as well

as the feature information, we first convert item ratings into feature ratings and obtain a

user-feature rating matrix. We directly perform collaborative filtering on the user-feature

rating matrix, which practices our design principle “liking same features (as other users)

leads to liking more same features”. The output is a model for predicting a user’s rating on

a feature.

24

To predict a user’s rating on an unrated item, we need to integrate the predicted feature

ratings to derive the rating for the item. While sum and average are obvious choices, features

are not equally representative, e.g., the feature “anti-allergy” clearly has a more significance

than the other features for user A. So we present two novel integration approaches, one

is heuristic based and one is regression based, to give different significance for feature

preferences.

The key innovation is that our approach transforms the item ratings into feature ratings

and later the modeling is fully at the feature level. To this end, our approach takes the

advantages of collaborative filtering and content-based filtering, e.g., even if items are not

shared among users, features of items may still be shared, which helps address the cold start

problem of a new item. As the final prediction on the item rating is an integration of a set of

feature ratings, our modeling actually involves no “items”, which is fundamentally different

to the modeling of the existing feature based recommendations [8, 23]. Their modelings

all have “items” (e.g., latent item vectors) which directly affect the final prediction while

features are used as a finer description to regularize the item ratings. However, we fully

rely on the feature ratings and may avoid some side effects introduced by items.

3.1.2 Comparison with Related Work

The regression-based latent factor model [3] incorporated features and past interactions to

regress the latent vectors. Items with similar features tend to have similar latent vectors, so

features have indirect impact on the final ratings. Agarwal et al. [5] further extended their

previous work [3] by modeling user-generated opinionated texts. In Gantner et al.’s work

[18], the features of users and items are used to predict the latent factors of new users and

new items; existing users and items do not benefit from the available feature information.

The collaborative topic regression (CTR) [65] studies the recommendation for scientific ar-

ticles with each article being modeled by topic modeling on the text content of the article.

The factorization machine (FM) [52] models multidimensional variable interactions (user,

item, feature, etc.) through latent vectors. The tensor factorization [28] generalizes the rat-

ing matrix with additional context information. The co-factorization machine [24] couples

the learning of two FMs to study two aspects of tweeter data. All these methods treat the

features of an item equally as side information and no preference is captured on features.

Sen et al. [58] predicted users’ ratings for items based on inferred preferences for tags,

but the preferences are global for all items, that is, a tag is either liked or disliked for all

25

Observed item
rating matrix

Observed feature
rating matrix

Model learning

Predicted feature
rating matrix

Predicted item
rating matrix

Collaborative filtering on feature ratings

transfer reconstruct

Figure 3.1: The feature-centric recommendation approach

items. The works [19, 20] improved upon this by predicting tag preferences in the context of

an item. All these methods infer the preferences for the user’s own tags; if an unrated item

is attached with tags that the user has never used before, no prediction can be made for the

item. Our method does not have this problem because it employs collaborative filtering on

feature ratings, which can predict a rating for any pair of user and feature. The tag-aware

recommendation in Tso et al.’s work [63] models a 3-way relation < user, item, tag > by

2-way relations < user, tag >, < item, tag >, and < user, item >, which cannot express

the 3-way information that a user i tags an item j using a tag t. There is a similar problem

with Zhou et al.’s model [79]. In Zhen et al.’s work [75], the tag information acts as a new

regularization term in matrix factorization to constrain the latent vectors between users

who used similar tags. Features play a more central role in our model in that we learn

latent vectors for features and predict the rating of features. If a user prefers an item

because of specific features of the item, our feature-centric approach is more sensitive to

user preferences.

3.2 Feature-Centric Recommendation

We present a feature-centric recommendation approach to utilize user’s feature preferences

to improve recommendation of items. This approach is shown in Figure 3.1 where the

dashed box encompasses a standard collaborative filtering method. We consider the latent

factor model for this box, but it could be replaced with any other collaborative filtering

methods. We discuss the key steps of extracting an observed feature rating matrix and

predicting item ratings from feature ratings in the following sections.

26

W X Y Z

A 4 4
B 5 4 4

(a) User-item rating matrix R

anti-allergy rose sun proof
A {4,4}
B {5,4,4}

(b) User-feature rating matrix R′

Figure 3.2: Construct the user-feature rating matrix (right) from the original ratings (left)

3.2.1 Extracting User-Feature Rating Matrix

We assume there are I users, J items, T features. Each item j is associated with a bag of

features, denoted by Bj . For a feature t, St denotes the set of items j such that t ∈ Bj .

The original rating data can be represented by an I×J user-item rating matrix R in which

each element rij indicates user i’s rating value to item j.

In addition, when the user i rates the item j, the user may optionally rate or select

(such as tagging) some features t of item j. If the user rates the feature t for item j, hit(j)

denotes this rating. If the user i selects the feature t but does not rate t, hit(j) = rij , which

is user i’s rating on item j. If the user i does not select any feature at all when rating the

item j, hit(j) = rij for all features t of item j as we believe that the user implicitly selects

all features. In all other cases, hit(j) is undefined.

User-feature rating matrix. For user i and feature t, {hit(j)} denotes the bag of

defined ratings hit(j) for all items j ∈ St. We extract an I × T user-feature rating matrix

denoted by R′, there is one row for each user i, one column for each feature t, and the

entry for (i, t) is equal to {hit(j)}. As the toy example in Section 3.1, if user A rates the

item W with the rating 4 and the item X with the rating 4, and selects the feature “anti-

allergy” for both, so hA,anti−allergy(W) = 4 and hA,anti−allergy(X) = 4, and the entry for

(A,“anti-allergy”) is {4, 4}, as shown in Figure 3.2.

We adopt latent factor model [56] on R′ to produce the latent user vector ui for each

user i and the latent feature vector ft for each feature t, and the objective is to minimize∑
j∈St

εijt(hit(j) − uTi ft)2 where εijt is equal to 1 if hit(j) is defined, and is equal to 0

otherwise. User i’s predicated rating on feature t is given by uTi ft. This part is the standard

method for the latent factor model except that items are substituted by features. The

interested reader please refer to Salakhutdinov et al.’s work [56] for the detailed inference.

27

3.2.2 Predicting Item Ratings by Heuristic

We present two heuristic strategies for integrating the predicted feature ratings to derive

the predicted item rating for a user in this section. One strategy is using the average of

feature ratings to predict the rating r∗ij for item j, that is,

r∗ij = 1
|Bj |

∑
t∈Bj

uTi ft (3.1)

This prediction treats all features in Bj equally because each uTi ft has the weight 1/|Bj |.

It does not take into account, for example, whether the user occasionally selects the feature

t by chance or consistently selects the feature. Below, we present another strategy that

consider such differences.

The second strategy is to introduce a weighting scheme specific to individual users.

If a user i selects a feature t frequently, the user is more interested in t. Besides relative

frequency of selection, the absolute number of selection also matters. For example, selecting

a feature twice out of 3 ratings has the same frequency as selecting a feature 20 times out

of 30 ratings, but the latter has more statistical significance. This strategy suggests that

features are not equally representative.

We propose a single weighting scheme to account for both relative frequency and sta-

tistical significance. Suppose that a user i has rated N items, among them, the feature t

was selected s times. We can regard this as one sample where the event t was observed

s times in N trials, where p̂ = s
N is the observed proportion. We want to bound the true

proportion that the user selects the feature t. Let CI(s,N) denote the confidence interval

for user i selecting feature t. We adopt the following Wilson score [66] interval since it is

an improvement over the usual normal approximation.

CI(s,N) = [c− σ, c+ σ] (3.2)

where

c = 1
1 + 1

N z
2 (p̂+ 1

2N z2)

σ = 1
1 + 1

N z
2 z

√
1
N
p̂ (1− p̂) + 1

4N2 z
2

z is the 1 − 1
2α percentile of a standard normal distribution and α is the error percentile.

For a 95% confidence level the error α is 5%, so 1− 1
2α = 0.975 and z = 1.96.

28

A larger c and a smaller interval size σ represent a more significant selection of t.

Therefore, we use the mid-point of the lower bound c − σ and the interval center c to

measure the weight of selecting t by user i: lit = 1
2(c − σ + c) = c − 1

2σ. The predicted

rating r∗ij of item j by user i is then defined as

r∗ij = 1
Lj

∑
t∈Bj

litu
T
i ft (3.3)

where Lj =
∑
t∈Bj

lit. Note that this weighting scheme is unique to features, not items,

because only a feature can be selected by a user multiple times.

3.2.3 Predicting Item Ratings through Regression

In the previous section, the weighting schemes are computed by heuristic, which may not

capture the essential by model fitting. In this section, we propose a regression model

to automatically learn the global weighting for features. We assume that there exists a

weighting vector w, with wt ∈ w representing the importance for each feature t. The

training set contains historic ratings, where xk is the kth input data and yk is the kth

output data, in particular, if this rating is made by user i, yk = rij , xk(t) = uift if t ∈ Bj
and xk(t) = 0 otherwise. The regression model is trained by the relationship between input

and output data: yk = wTxk + bi. Following support vector regression (SVR) [60], our

goal is to find optimal weighting w and user specific bias bi that fit the model best. The

optimization problem becomes,

min
w,ξ,ξ∗

1
2‖w‖

2 + C

2
∑
k

(ξ2
k + ξ̂2

k) (3.4)

s.t. |wTxk + bi − yk| ≤ ε+ ξk; (3.5)

ξk, ξ̂k ≥ 0;∀k. (3.6)

where ξk, ξ̂k are slack variables and C is a constant.

The primal Lagrangian is,

LP = 1
2‖w‖

2 +
∑
k

αk(wTxk + bi − yk − ε− ξk)

+
∑
k

α̂k(yk −wTxk − bi − ε− ξ̂k) + C

2
∑
k

(ξ2
k + ξ̂2

k)
(3.7)

29

Table 3.2: Statistics of data sets

Delicious Lastfm DBLP Movielens
User 1867 2100 6815 1857
Item 69223 18744 78745 4721

Feature 40897 12647 81901 8288
Item ratings 104799 71064 436704 20607

Feature ratings 437593 186479 2554597 36885
Density (item) 8.1× 10−4 1.8× 10−3 8.1× 10−4 2.3× 10−3

where αk, α̂k are Lagrange multipliers. We take the derivatives with respect to w, bi, ξk, ξ̂k,

leading to the Karush-Kuhn-Tucker (KKT) conditions [32] as follows:

w =
∑
i

(αk − α̂k)xk, ξk = αk/C, ξ̂k = α̂k/C (3.8)

We skip the comprehensive inference as SVR is a principled method. More details refer

to Smola et al.’s work [60]. Once the optimal weighting vector w and the bias term bi are

found, the predicted rating for specific item j is given by:

r∗ij =
∑
t∈Bj

wtu
T
i ft + bi (3.9)

Feature selection. We conduct a 2-step feature selection that aims at the representa-

tive features. (1) we calculate the cosine similarity to quantify correlations between various

predictors (feature ratings) and the item ratings to identify the best predictors. According

to the result, we remove features with relatively low similarity by a threshold. (2) we fit the

model with the remaining features. If the model performance is close to the original one,

we believe that the removed features are less representative. This procedure is optional but

helps the prediction accuracy.

3.3 Experimental Evaluation

We report our findings on the evaluation of the proposed feature-centric recommendation

against well known baselines using real life data sets. We first introduce data sets, baseline

methods, and evaluation metrics.

30

3.3.1 Data Sets

We employed four data sets: Delicious, Lastfm, DBLP, and Movielens. The first two data

sets were recommended as benchmark data sets for studying recommender systems by the

2011 HetRec conference1. These data sets contain user’s tagging information on bookmarks

and music songs, which expresses user’s ratings or preferences on items. We treat tags as

the features of an item. Delicious contains 1867 users’ ratings on 69223 items with 40897

unique features. Lastfm contains 2100 users’ ratings on 18744 items with 12647 unique

features. The third data set DBLP contains authors, papers and citation information from

an academic network. We treated authors as users, papers as items, each publishing/citation

of a paper as user’s rating on the paper, and treated the venues and authors of a paper

as the features of the paper. After removing the users with fewer than 10 papers from the

original DBLP data set2, the final data set contains 6815 users’ ratings on 78475 items with

81858 unique features. All the above data sets have binary ratings. The fourth data set

Movielens, also recommended by the 2011 HetRec conference, was collected from a movie

review system. This data set has the ratings ranged from 1 to 5. We removed those movies

without any ratings. The resulting data set has 1857 users’ ratings on 4721 items with 8288

unique features (i.e., tags). The statistics of these data sets are found in Table 3.2. We

conducted 10-fold cross validation for all data sets.

3.3.2 Evaluated Methods

The first baseline is the probabilistic matrix factorization that ignores features of items:

Probabilistic matrix factorization (denoted PMF): This method adopts matrix

factorization on the user-item rating matrix [56]. Following Salakhutdinov et al.’s work [56],

we set the parameters λu = λv = 0.01.

The next four baselines consider features of an item. All the baselines were previously

proposed in the literature.

Collaborative topic regression (denoted CTR): This is matrix factorization with

topic modeling applied to features of items [65]. Following Wang et al.’s work [65], we set

the parameters λu = λv = 0.01, α = 50
D and β = 0.01.

Factorization machine (denoted FM): This is the factorization machine approach

in Rendle’s work [52]. FM takes selected features into consideration equally while our model
1http://www.grouplens.org/data sets/hetrec-2011/
2http://arnetminer.org/citation

31

gives more importance to representative features. We run the code of Rendle’s work [52]

with the default settings. Note that we need not compare with Chen et al.’s work [8] since

it can be modeled by FM as indicated in Rendle’s work [52].

Regression latent factor model (denoted RLFM): This is the regression based

latent factor model [3]. RLFM incorporated features as side information to regress the

latent vectors so as to improve the performance. We run the code of Agarwal et al.’s work

[3] with the default settings.

Similarity based method (denoted SIM): This is a content-based filtering approach

that uses the SVM regression [20] to predict the user’s ratings on items according to inferred

feature preferences. Note that the computation of SIM is not in the latent space.

The next method is the feature-centric approach proposed in this chapter’s work:

Feature-centric recommendation (denoted FCR): This is the feature-centric solu-

tion proposed in Section 3.2. We denote FCR-a, FCR-u and FCR-r for different integration

strategies, i.e., averaged heuristic, user-specific heuristic and regression model. FCR-a is

computed by Eq. (3.1), FCR-u is computed by Eq. (3.3), and FCR-r is computed by Eq.

(3.9).

For all methods except for SIM, we adopt the dimensionality of D = 20 for latent vectors

and the learning rate of η = 0.0001.

3.3.3 Evaluation Metrics

RMSE (root mean squared error) and MAE (mean absolute error) quantify the difference

between the rating values predicted by a recommender and the true values in the testing

set. These two metric are defined as follows: RMSE =
√

1
n

∑
i,j(rij − r∗ij)2, MAE =

1
n

∑
i,j |rij−r∗ij |, where rij is the true rating value, r∗ij is the predicted rating value, and n is

the number of ratings in the testing set. The smaller these values are, the better the result

is. As pointed out in Koren’s work [30], achievable RMSE values lie in a quite compressed

range and small improvements in RMSE terms can have a significant impact on the quality

of the top few presented recommendations.

Recall@k quantifies the fraction of rated items that are in the top-k of the ranking list

sorted by their estimated ratings from among all rated items in the test set. For each user

i: Recall@k = |N(k; i)|
|N(i)| , where | · | denotes the number of elements in a set, N(i) is the

set of items rated by i in the testing set and N(k; i) is the subset of N(i) contained in the

top-k list of all items sorted by their estimated ratings.

32

Table 3.3: RMSE and MAE of four data sets

Delicious Lastfm
Methods RMSE MAE RMSE MAE

Baselines
PMF 0.8907± 0.0046 0.8081± 0.0048 0.4449± 0.0040 0.3179± 0.0022
CTR 0.7844± 0.0004 0.7431± 0.0005 0.5078± 0.0025 0.4084± 0.0025
FM 0.3551± 0.0017 0.2906± 0.0020 0.3239± 0.0022 0.2534± 0.0030

RLFM 0.4182± 0.0010 0.3978± 0.0010 0.3208± 0.0014 0.2235± 0.0015
SIM 0.4001± 0.0008 0.3872± 0.0011 0.3269± 0.0013 0.2941± 0.0013

Proposed Methods
FCR-a 0.3169± 0.0020 0.2396± 0.0016 0.3790± 0.0023 0.3062± 0.0022
FCR-u 0.2572± 0.0023 0.1645± 0.0014 0.2455± 0.0032 0.1468± 0.0020
FCR-r 0.2176± 0.0011 0.1513± 0.0009 0.1868± 0.0020 0.1066± 0.0016

DBLP Movielens
Methods RMSE MAE RMSE MAE

Baselines
PMF 0.5060± 0.0021 0.3800± 0.0020 1.1271± 0.0247 0.8622± 0.0197
CTR 0.4943± 0.0021 0.3653± 0.0018 1.0880± 0.0191 0.8315± 0.0156
FM 0.1821± 0.0023 0.1167± 0.0020 1.2049± 0.0229 0.9467± 0.0194

RLFM 0.2297± 0.0007 0.1930± 0.0007 1.0662± 0.0215 0.8056± 0.0145
SIM 0.3064± 0.0003 0.3032± 0.0003 1.0137± 0.0190 0.7616± 0.0123

Proposed Methods
FCR-a 0.2043± 0.0016 0.1393± 0.0017 0.9966± 0.0148 0.7770± 0.0105
FCR-u 0.1204± 0.0010 0.0739± 0.0006 0.9515± 0.0150 0.7306± 0.0092
FCR-r 0.1064± 0.0004 0.0841± 0.0003 0.9724± 0.0201 0.7208± 0.0125

3.3.4 Experimental Results

RMSE and MAE. Table 3.3 shows RMSE and MAE with standard errors for different

methods. Among them, FM and RLFM are recent developed models which can incorporate

features for better predications. The best performers for each data set are highlighted in

bold face. All reported RMSE and MAE are the average of the 10 runs in the 10-fold

cross-validation.

First, PMF performs poorly on all data sets since it only considers the item ratings

and ignores the feature information. When this matrix is sparse, the ratings as only the

similarity information among users are hardly enough to make accurate recommendation.

CTR slightly improve the performance over PMF by using features as the side information to

regularize the original matrix. The improvement is not significant since the role of features

is limited to regularization; there is no direct participation in rating prediction. On Lastfm,

their performances are even worse than PMF. The next three baselines, FM, RLFM, SIM,

further improves the performance with similar improvement.

FCR-a is our proposed feature-centric method with averaged heuristic and performs

close to FM because these methods involve features in matrix factorization and infer latent

33

feature vectors for prediction. However, FM involves the pairwise interactions between

latent item vectors and latent feature vectors, which may be complex and improper in real

life applications; on the contrary, our model provides a simple and clean solution.

By incorporating the user-specific heuristic, FCR-u achieves significant improvements

over FCR-a. This weighting scheme gives more trust to features that are more frequently

selected by users. Through a regression model, FCR-r finds proper weighting for features

and achieves better results compared to FCR-u.

Overall, FCR is the best performing method for all data sets, which verifies the effec-

tiveness of the proposed feature-centric approach. Among the three integration strategies,

FCR-r performs the best on Delicious and Lastfm, which suggests that the regression model

yields better weighting for features. For example, the rating density is very sparse for DBLP

and Delicious and matrix factorization on traditional user-item rating matrix works poorly.

In the feature-centric FCR, this problem does not occur because the features of items act as

a media for collaborative learning between users. For the DBLP data set, the users working

in AI areas may focus on AAAI, IJCAI, ICML conferences (which are features of papers), so

even the citation/publishing data is sparse, the interests of users are closely related through

similar publishing venues. For the Movielens data set, the improvement is least mainly

because user’s interests are more diverse on movies, leading to less collaborative learning

effect through features.

Recall. Figure 3.3 shows the recall@k performance of different methods. Since the codes

of FM, RLFM and SIM output only RMSE/MAE, the required data are inaccessible to us

for calculating recall, so we have to skip these methods in this study. PMF performs worst

on all data sets. CTR learns the topic distribution from item’s features, which indirectly

groups the items with similar features. The improvement is obvious compared to PMF,

except on DBLP. For DBLP, the topics learnt from features may be less meaningful since

an author may have more diverse interests. For example, a music of Lady Gaga is always

tagged with “Pop” or “Dance”, but a researcher could publish papers in different conferences

like SIGKDD, SIGMOD and ICML.

Except for Lastfm, FCR always performs best. A cross-examination with Table 3.3

suggests that the small RMSE/MAE on Lastfm does not yield a high recall. This is not

surprising because RMSE considers only rated items in the testing set whereas recall ranks

all items including unrated items. If many unrated items receive a high rating, which

does not affect RMSE, rated items in the testing set will be pushed down in the ranking

list, resulting in a low recall. This problem with recall was also noted in Cremonesi et

34

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 5 10 15 20 25 30 35 40 45 50

PMF
CTR

FCR-a
FCR-u
FCR-r

(a) Delicious

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 5 10 15 20 25 30 35 40 45 50

(b) Lastfm

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 5 10 15 20 25 30 35 40 45 50

(c) DBLP

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 5 10 15 20 25 30 35 40 45 50

(d) Movielens

Figure 3.3: Recall@k of four data sets. Vary k (x-axis)

al.’s work [14]. Among the three variations of FCR, FCR-u and FCR-r achieve the better

performances than FCR-a. This suggests that assigning different weights to features boosts

the items with user preferred features in the ranking list.

t-Test. To further verify the statistical significance of the improvement introduced by

the regression model, we conducted the paired t-Test (2-tail) on FCR-a and FCR-r over 10

folds. As shown in Table 3.4, the t-Test results (p-values) are less than 0.01, which suggests

that the improvement of FCR-r over FCR-a is statistically significant.

Table 3.4: Paired t-Test(2-tail) of FCR-a and FCR-r

t-Test Delicious Lastfm DBLP Movielens
RMSE 2.4× 10−15 1.5× 10−16 5.1× 10−16 1.4× 10−4

MAE 2.2× 10−15 1.6× 10−17 8.1× 10−15 1.3× 10−7

Representative features. We perform the 2-step feature selection for FCR-r and

study the representative features. Figure 3.4 presents the RMSE results on Lastfm and

35

0% 1% 5% 10% 20% 40% 60% 80%
0.1867

0.1868

0.1869

0.187

0.1871

0.1872

0.1873

threshold

R
M

S
E

0% 1% 5% 10% 20% 40% 60% 80%
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

threshold

R
M

S
E

Figure 3.4: Feature selection for FCR-r on Lastfm (left) and MovieLens (right). y-axis
represents RMSE and x-axis represents the percentage of the features with lower correlations
removed

MovieLens when removing those features with lower correlations. We observe that the

lowest 1% features have no contributions to the model since the RMSE is slightly improved

without them. With more features removed, the RMSE is steady at first, indicating those

features are less representative, i.e., lowest 5% on Lastfm and lowest 20% on Movielens.

Then the RMSE goes up steeply when removing those features with higher correlations.

Note that the results are still better than most baselines even if the lowest 80% of the

features are removed. This also coincides with our thinking that the features with higher

correlations are more representative. Figure 3.5 demonstrates the representative features

on Lastfm with visualization tools.

3.4 Summary

In summary, the proposed feature-centric approach demonstrates superiority over item-

centric approaches. This superiority is especially obvious for a sparse rating matrix in which

case collaborative filtering on features is a much better option than collaborative filtering

on items because feature ratings are denser than item ratings. Content-based filtering,

i.e., SIM, extends items with content/features, and more recently, several works extend

collaborative filtering (i.e., the latent factor model) to items with content and features,

i.e., CTR and RLFM. The improvement is limited because features are used as auxiliary

information such as a new regularization term in matrix factorization. Our feature-centric

approach acknowledges the upmost importance of features in item preferences by allowing

the features to play a central role from rating capturing to model building to rating pre-

36

Figure 3.5: Representative features on Lastfm

diction, which yields significant improvements. The studies also suggested that a model

based regression is a viable weighting strategy for integrating feature ratings and finding

representative features. Those representative features should be highly considered in real

life recommendations.

37

Chapter 4

Recommendation by Blending
Content and Attributes

This chapter focuses on the recommendation with heterogeneous information, in particular,

the precise recommendation of scientific papers in academic networks where both items’ con-

tent and attributes exist and have to be profoundly exploited. Different from conventional

collaborative filtering cases with only a user-item rating matrix, we study the standard

latent factor model and extend it to a heterogeneous one, which models the interaction of

different kinds of information. This latent model is called “Content + Attributes”, which

incorporates latent topics and descriptive attributes using probabilistic matrix factorization

and topic modeling to figure out the final recommendation results in heterogeneous scenar-

ios. We conduct extensive experiments on the DBLP data set and the experimental results

show that our proposed model outperforms the baseline methods.

4.1 Motivation

The content information added to the recommender systems would help improve the per-

formance, which is demonstrated in the previous chapter with homogeneous information.

In this chapter, we start to consider the case in the heterogeneous scenarios where usually

more than one single type of information exists.

We mainly focuses on the recommendation in academic networks, which is far more

complex than the conventional cases such as recommending movies or books. It is a het-

erogeneous scenario to recommend scientific articles in academic networks: each author has

several co-authors and may write and cite some papers; this co-authorship forms social

38

Attributes

v1

v2 v3

v4

v5
u1

u2

u3

u4

?

?

X

rate

���������	���
���	�
����																																																																					�������	
��	����������	������
����	��	�����	

	

	 ��	 ��	 ��	 ��	 ��	

��	 �	 	 	 �	 	 	 !	

��	 !	 !	 �	 	 	 �	

��	 �	 !	 �	 	 	 	 	

��	 �	 �	 	 	 	 	 	 	

	

	

	 "#$%&$%	'	(#)*+	 ,%%)-./%&+	

0�						0�					0�				1					02	 3�				3�			3�	 4�			4�	1				45	 6789	

��	 :								;								<					=							>	 �	 �	 ?<<@	

��	 >								>								A					=							B	 �	 							�	 ?<<@	

��	 C								B								>					=							D	 									�	 																					�	 ?<E<	

��	 F								G								D					=							>	 �	 �	 ?<E?	

��	 F								H								I					=							D	 																	�	 																					�	 ?<E<	

Figure 4.1: Heterogeneous recommendation scenario: each item has content and attribute
information. Each user marks the likes(

√
) and dislikes(×) for some items and the rest

are unknown(?) in the rating matrix.
√

in the information table means the item has this
attribute

networks and such publishing or citation reflects implicit ratings for items; each paper has

content (e.g., title and abstract in plain text) and attributes (e.g., author, venue, publish

year), as shown in Fig. 4.1. However, conventional collaborative filtering methods cannot

deal with the paper recommendation well if they still follow the pattern of friend’s friend or

item similarity. We have to recognize the diversity in the academic networks and admit that

users prefer not all the papers of their co-authors. Moreover, without considering attribute

information, the similarity-based methods may return less qualified papers. This is because,

the attributes remain a good indicator of user’s interests as the users may follow the big

guy or prefer top conferences in research areas. This motivates us to develop a novel model

to recommend scientific articles by taking advantage of all the heterogeneous information.

Next, we present some discussions on how these heterogeneous information matter.

39

4.1.1 Discussions

According to the toy example shown in Fig. 4.1, there are 5 items binding with content

and attributes (u and v represent the user and item in this section temporarily). Assume

that there are two topics “database” and “data mining” and three authors. According to

the content, suppose that v1, v3, v4 and v5 are in one topic (e.g., data mining) and v2 is in

the other (e.g., database). v1, v2 and v4 are written by the same author A1, v3 and v5 are

written by A2 and A3 respectively.

Item v1 and v2 have the same attributes but different topics in content; Item v1 and v3

have similar content but different attributes. The underlying pattern which involves both

content and attributes should be that u1 prefers the “data mining” topic except that of

author A3, u2 prefers the “data mining” topic except that of author A1, u4 prefers both

topics from author A1. If we consider content alone, it is difficult to explain why u2 likes v3

but dislikes v1 although they share the same topic and why u4 likes both v1 and v2 although

they have different topics. If we consider attributes alone, it is difficult to explain why u1

likes v1 but dislikes v2 although they are written by the same author. In fact, both content

and attribute information should be collaborated to determine a user’s interest.

One possible solution is to assign certain weights to content and attributes (i.e., w1

and w2), build one recommender using content and another recommender using attributes,

and then integrate them according to different weights. However, this approach does not

consider correlation of content and attributes into a unified model, and it is difficult to find

right weights from separate recommenders. For example, the recommender using attributes

would highly recommend v2 to u3, which lead to lower the value of w2 to balance the

final result. In that case, the recommender using content becomes dominant and would

recommend v5 to u1 and v1 to u2 by mistake. The problem of contradicted results by two

recommenders is hard to resolve.

Another solution is simply to combine content and attribute matrix together and treat

each attribute value as a word. At this time, the effect of attributes may be overwhelmed

by content because the number of attributes is much less than that of words. For instance,

v3 and v5 should have been very similar in this case but u1 likes v3 and dislikes v5.

Moreover, for out of matrix prediction, e.g., item v4 has never been rated or a new user

joins the network, traditional collaborative filtering methods cannot deal with this cold

start problem, but we can address it through item’s information and user’s social network.

40

From above discussions, in order to make precise recommendation in academic net-

works, we propose a latent factor model especially incorporating the content and attribute

information. We take both information into consideration as they are good indicators of

user’s preferences, and try to avoid the partial and biased recommendation. Our proposed

model can automatically optimize the contribution of content and attributes to the final

recommendation. The generalized recommendation model aims to overcome the drawbacks

of former homogeneous recommendation methodologies.

4.1.2 Comparison with Related Work

Some works adopted side information such as social networks or item content to improve

the recommendation. The works [44, 45, 69] incorporate social networks for social rec-

ommendation, based on the assumption that users should have close interests with their

friends in the social network. Ma et al. [45] introduced the social regularization to conform

user i to the friend f , through an individual based regularization term ‖ui − uf‖2. Yang

et al. [69] proposed the friendship-interest propagation (FIP) mode that utilizes the inner

product (uTi uf) between two users i and f . As indicated in Shen et al.’s work [59], existing

approaches have largely ignored the heterogeneity and diversity of the networks. It is not

equivalent to say that preferences between friends should be similar even though they share

certain interests.

Agarwal et al. [4] proposed fLDA to combine matrix factorization with topic modeling,

which lets latent item vector and topic assignments, as well as latent user factor, contribute

the rating prediction. Wang et al. [65] introduced collaborative topic regression (CTR)

which captures item’s content in latent space and derives the latent item vector through

the topic proportion vector with Gaussian noise. Both models provide a good solution

incorporating item’s content in latent space, but cannot satisfy the requirements in dealing

with the complex situations discussed in Section 4.1.1. The major improvement in this

chapter’s work is to further leverage the descriptive attributes into the latent factor model

and automatically tune their contributions to the latent item vectors, not with fixed settings

in CTR.

4.2 Model

The formulation of recommendation task in academic networks. The recommender

system has several inputs: (1) I users and J items with the user-item utility matrix R, in

41

which each element rij ∈ {0, 1} indicates user i’s preference to item j. rij = 1 means the user

rates the item (publish or cite it) and rij = 0 means the user does not rate the item (dislikes

or unknown); (2) items’ content and attributes, as shown in Figure 4.1. For each user, the

task is to recommend scientific papers that are not rated by this user before. We assume

that the latent topics and latent aspects for each item are obtained by topic modeling and

we can represent users and items in the latent low-dimensional space of dimension D, with

latent user vector ui ∈ RD and latent item vector vj ∈ RD through matrix factorization.

The prediction r∗ij represents that user i likes item j or not with inner product in their

latent space r∗ij = uTi vj .

Observed ratings in the rating matrix are involved in a supervised approach to minimize

the regularized squared error loss respect to U = (ui)Ii=1 and V = (vj)Jj=1:

minU,V
∑
i,j

εij
2 (rij − uTi vj)2 + λu

2
∑
i

‖ui‖2 + λv
2

∑
j

‖vj‖2 (4.1)

where εij is a binary indicator that is equal to 1 if user i rated item j and equal to 0

otherwise.

In PMF [56], the matrix factorization is generalized as a probabilistic model, where

latent user vector ui ∼ N (0, λ−1
u ID), latent item vector vj ∼ N (0, λ−1

v ID) and user-item

rating rij ∼ N (uTi vj , ε−1
ij). A local minimum of Eq. (4.1) can be achieved by applying

gradient descent algorithm in U and V . The final results can be used to predict user i’s

preference on item j by r∗ij . The disadvantage of PMF is that it cannot deal with the cold

start problem.

In CTR [65], the latent topic vector θj is incorporated into PMF framework and the

latent item vector is further confined by setting vj ∼ N (θj , λ−1
v ID). CTR can address the

cold start problem of new items, but is not fit for the feature information on items.

In this chapter’s work, we focus on the heterogeneity of content and attribute information

of items and build a recommendation system to combine these two sides into a unified model

(Section 4.2.3). We call it “unified” because both content and attributes are integrated into

a single model. We first propose a probabilistic topic model to process the item information,

then introduce two naive solutions to import attribute information and later propose our

unified model to achieve better performances.

42

4.2.1 Item Information Processing

Each item has its unstructured information (i.e., content) and structured information (i.e.,

attributes). Both of them are useful in recommending items to users as discussed in the

introduction. Usually, every item may contain hundreds of words in content and several

attributes, and the item set may overall contain tens of thousands of words in vocabulary

and attribute values. So we have to seek for an unsupervised method to reduce them to a

low dimension.

For content information, the topic modeling methods such as LDA [7] can be used to

achieve the goal of dimension reduction. The intuition behind LDA is that documents

exhibit multiple topics which are represented by distributions over words. For paper data

set, the content of each item consists of title and abstract, which is a probabilistic mixture

of latent topics. If we have K topics, we can adopt LDA to learn a latent topic vector in a

K-dimensional space for each item.

An attribute can be numerical (i.e., year) or categorical (i.e., venue and author). The

values of categorical attributes can be treated as words in content, while the values of

numerical attributes need to be processed in order to avoid the sparse problem. For example,

the attribute “year” in a paper data set can be ranged from late 20th century to now and

each paper only has one value for this attribute. If we take a separated view on it, the

connection of papers sharing the same topic but publishing in adjacent years would be

concealed. It is also probable that the number of published papers is skewed on “year”,

much more in some years while much less in other years. So we need to partition the

numerical attributes to ensure the effectiveness. The values in the attribute “year” are

divided into four classes: (2005-now), (2000-2004), (1995-1999) and (before 1995) from

newly published to long before. After such transforming, the attribute information has the

same format as content information.

4.2.2 First Cut Solutions

This section introduces two first cut solutions to deal with the additional attribute infor-

mation in the recommendation systems. Both methods leverage the attributes of items to

complement the only content based method.

The first method is weighted attributes method, which builds two different recom-

menders on content and attributes separately. Based on the content vector and attribute

vector learned by LDA, weighted attributes method applies CTR to obtain two predicted

43

ratings from content part and attribute part, denoted as r∗(c)ij and r∗(a)
ij . A weight w ∈ [0, 1]

is chosen to adjust the contribution of content and attributes, so the final rating of user i’s

preference on item j is:

r∗ij = (1− w)r∗(c)ij + wr
∗(a)
ij (4.2)

The second method is overwhelming attributes method, which treats the attribute

values as single word in content. This method merges the attribute values and words, and

then adopts LDA to obtain the latent topic vectors mixed with attribute information. CTR

is applied based on these latent vectors to figure out the final ratings. Compared to the

words in content, the number of attribute values is very little, so the attribute values are

largely overwhelmed by words, leading to a limited improvement.

4.2.3 Content + Attributes Model

This section introduces our Content + Attributes model to address the heterogeneity issue

in recommendation systems. The model has loose coupling and integrality on content and

attributes, as well as self-adaptation to latent item vectors. This model can offer more

precious recommendations to users by considering both content and attributes.

After item information processing, we adopt LDA to reduce both content and attributes

into a low dimensional space and apply them into the matrix factorization. Note that for

item j, we have obtained the K-dimensional latent topic vectors θj for content and the

L-dimensional latent aspect vectors γj for attributes, we should extend these vectors into a

combined latent vector in D-dimensional space (D = K + L). In our model, the combined

latent vector ϑj for item j is defined as follows:

ϑj =< θj(1), ..., θj(K), γj(1), ..., γj(L) > (4.3)

where the first K elements keep the topic information for content and the last L elements

keep the aspect information for attributes.

After the above transformations, we now describe the generative process for observed

ratings of the utility matrix in Content + Attributes model:

1. For each user i, draw latent user vector ui ∼ N (0, λ−1
u ID);

2. For each item j, draw latent item offset εj ∼ N (0, λ−1
v ID), and set latent item vector

vj = εj + τϑj ;

44

3. For each user-item (i, j), draw the rating rij ∼ N (uTi vj , 1).

Note that the latent item vector vj = εj + τϑj indicates vj should be close to scaled ϑj , and

τ is the adjustment factor to adapt the importance of ϑj to vj
So after combining adjusted latent topic vector for content and latent aspect vector for

attribute, we modify Eq. (4.1) to follow our generative process and set our goal of object

function that is to minimize E given such variables and parameters as follows:

E =
∑
i,j

εij
2 (rij − uTi vj)2 + λu

2
∑
i

uTi ui + λv
2

∑
j

(vj − τϑj)T (vj − τϑj) (4.4)

A local minimum can be achieved by iteratively applying gradient descent method. In

each iteration, first take the gradient of E respect to variable ui, vj and τ :

∂E

∂ui
= λuui −

∑
j

(rij − uTi vj)vj (4.5)

∂E

∂vj
= λvvj − λvτϑj −

∑
i

(rij − uTi vj)ui (4.6)

∂E

∂τ
= −λv

∑
j

ϑTj (vj − τϑj) (4.7)

Then update each variable by taking steps proportional to the negative of the gradient

based on recent values:

ut+1
i = uti − η

∂E

∂uti
vt+1
j = vtj − η

∂E

∂vtj
τ t+1 = τ t − η ∂E

∂τ t
(4.8)

where η is a parameter called learning rate and uti, vtj , τ t stand for the value of ui, vj and

τ at iteration t.

We can obtain the final results after enough iterations until the above equations (4.8)

reach the convergence. Similar to the previous methods, we can use the latent user vector

ui and latent item vector vj to predict user i’s rating value on item j: r∗ij = uTi vj .

The Content + Attributes model introduces adjustment factor τ to automatically opti-

mize the contribution of content and attributes to latent item vectors, because the closeness

of ϑj to uj is unknown. Unlike CTR that fixes uj ≈ θj , we use τ to control the scale of

vectors and achieve better predictions.

45

0 1000 2000 3000 4000 5000 6000 7000
0

100

200

300

400

500

600

700

800

900

1000

User

R
at

in
g

N
um

10
0

10
1

10
2

10
3

10
4

10
5

0

100

200

300

400

500

600

700

800

Item

R
at

ed
 N

um

Figure 4.2: Rating distributions of the data set. The left subfigure shows the number of
ratings by each user and the right subfigures shows the number of ratings on each item
(logistic scaled), all descent sorted.

4.3 Experimental Evaluation

4.3.1 Data Sets

The original data set1 is from DBLP, containing over 1.5 million item (papers) and around

700 thousand users (authors). We preprocess this data set to select those items with com-

plete content (i.e., title and abstract) and attributes (i.e., author, venue and year), to remove

the users with fewer than 10 papers. The final data set consists of 6815 users and 78475

items with 436704 user-item ratings. The rating distribution of the processed data set is

exhibited in Fig. 4.2, which is following the power law distribution. We randomly select

10% percent of ratings from 1600 users who have more than 80 ratings, i.e., 26328 user-item

ratings (approximately 6% of total ratings) as testing set withheld in model learning and use

others as training set for learning the latent vectors. We conduct validations on the testing

set and report the averaged results of 5 repeated experiments to measure the performance

of different methods.

4.3.2 Evaluated Methods

Followings are five methods compared in the experiments all with the same learning rate

η = 0.001:
1http://arnetminer.org/citation

46

Probabilistic matrix factorization (denoted PMF): This is the first baseline

method only adopting matrix factorization on utility matrix. PMF is widely used in the

collaborative filtering community. Following Salakhutdinov et al.’s work [56], we set the

parameters λu = λv = 0.01.

Collaborative topic regression (denoted CTR): This is the second baseline method

incorporating topic model into matrix factorization. Following Wang et al.’s work [65], we

set the parameters λu = λv = 0.01, α = 50
K and β = 0.01.

Weighted attributes method (denoted WAM): This is the third baseline algo-

rithm mentioned in section 4.2.2 which builds two recommenders on content and attributes

respectively, and take different weight on attributes. The parameter settings are the same

as CTR, and weight w varies from 0.1 to 0.5. Note that WAM is identical to CTR when

w = 0.

Overwhelming attributes method (denoted OAM): This is the fourth baseline

algorithm mentioned in section 4.2.2 combining words and attribute values, which neglects

the heterogeneity of content and attributes. The parameter settings are the same as CTR.

Content + Attributes model (denoted CAT): This is our model proposed in

section 4.2.3 with adapted adjustment factor τ . In CAT, τ is initialized as 1. Other

parameter settings are the same as CTR.

4.3.3 Evaluation Metrics

We adopt the following metrics to evaluate the performance of different methods.

RMSE (root mean squared error) quantifies the difference between rating values implied

by a recommender and the true values in the testing set. This metric is defined as follows:

RMSE =
√

1
N

∑
i,j(rij − r∗ij)2 where rij is the true rating value, r∗ij is the predicted rating

value and N is the number of ratings in the testing set.

Coverage indicates the retrieval ratio from total ratings in the testing set using a trans-

forming function σ(x), which classifies the estimated rating values into “likes” and “dislikes”

by a threshold: Coverage = 1− 1
N

∑
i,j(rij − σ(r∗ij)) where σ(x) =

 1 if x ≥ 0.5

0 if x < 0.5
.

Recall@k quantifies the fraction of rated items that are in the top-k of the ranking list

sorted by their estimated ratings from among all rated items in the test set. For each user

i: Recall@k = |N(k; i)|
|N(i)| , where | · | denotes the number of elements in a set, N(i) is the set

of items rated by i in the testing set and N(k; i) is the subset of N(i) contained in the top-k

47

list of all items sorted by their estimated ratings. The metric is designed in the condition

that a high coverage may be biased due to excessive estimated rating values.

We report average RMSE, coverage and recall over the whole testing set.

4.3.4 Experimental Results

We vary the number of dimension D ∈ {10, 20, 40, 80}, when the dimension is low or high,

the matrix factorization cannot converge well on RMSE for training set due to less features

or overfitting problem. So we report the results of the best performance at D = 20. The

mean rating values of the predicted utility matrix is 0.2-0.3, which would not lead to a

biased coverage.

Table 4.1: RMSE and coverage results of different methods. Lower values on RMSE and
higher values on coverage are better.

Models RMSE Coverage
PMF 0.3077± 0.0019 0.8810± 0.0034
CTR 0.2775± 0.0020 0.9090± 0.0042
WAM 0.2691± 0.0014 0.9158± 0.0033
OAM 0.2700± 0.0022 0.9157± 0.0031
CAT 0.2580± 0.0017 0.9237± 0.0038

The experiment results for RMSE and coverage are shown in Table 4.1, with the best

performers for each metric highlighted in bold face. Obviously, the conventional PMF with-

out considering any auxiliary information performs worst. This is because, when this matrix

is sparse, the ratings as only the similarity information among users are hardly enough to

make accurate recommendation. Two naive solutions combining attribute information work

slightly better than CTR, which only considers the content information. All these meth-

ods takes additional information beyond the rating matrix to achieve better performances.

However, as discussed in Section 4.1.1, these solutions lost specific patterns represented

by attributes. In contrast, CAT incorporates both content and attributes into a unified

model which automatically adapts the contribution to the final latent item vectors. As

pointed in Koren’s work [29], achievable RMSE values lie in a quite compressed range and

small improvements in RMSE terms can have a significant impact on the quality of the

top few presented recommendations. Our CAT model achieves a 16% and 7% improvement

over PMF and CTR on RMSE, which verifies the effectiveness of further incorporating the

attribute information.

48

The experiment results for recall are shown in Fig. 4.3, with an overall subfigure and five

individual level subfigures (each dot represents a user and the red line reports the average)

for each method. We observe that CTR, WAM and OAM perform very close, due to that

both WAM and OAM are minor variations of CTR. With no surprise, PMF without any side

information still performs worst on recall. CAT model performs best on recall, with a 53%

and 10% improvement over PMF and CTR, as well as more dense points above the average

line. The advantage over CTR is from that CAT further considers the attribute information.

In other words, more side information achieves better recommendation performance.

4.4 Summary

This chapter mainly discussed a heterogeneous recommendation scenario in academic net-

works where abundant information exist. We proposed a unified model to incorporate item’s

content and attributes for better prediction. The experiments on real life data set demon-

strated its effectiveness compared with baseline methods. The studies suggested that the

traditional approach (PMF) on the rating matrix only is not a good predictor for scientific

paper recommendation. Incorporating more side information such as content and attributes

improve the recommendation performance.

49

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 40 80 120 160 200

PMF
CTR

WAM
OAM
CAT

(a) Recall@k

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Number of papers a user rates

R
ec

al
l

(b) PMF

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Number of papers a user rates

R
ec

al
l

(c) CAT

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Number of papers a user rates

R
ec

al
l

(d) CTR

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Number of papers a user rates

R
ec

al
l

(e) WAM

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Number of papers a user rates

R
ec

al
l

(f) OAM

Figure 4.3: Recall performance of different methods. The left top subfigure shows overall
performance of different methods while varying k. The rest subfigures exhibit the individual
level of performance each method while fixing k = 200.

50

Chapter 5

Temporal Matrix Factorization

User preferences change over time and capturing such changes are essential for developing

accurate recommender systems. Despite its importance, only a few works in collaborative

filtering have addressed this issue. In this chapter, we consider evolving preferences and we

model user dynamics by introducing and learning a transition matrix for each user’s latent

vectors between consecutive time windows. Intuitively, the transition matrix for a user

summarizes the time-invariant pattern of the evolution for the user. We first extend the

conventional probabilistic matrix factorization and then improve upon this solution through

its fully Bayesian model. These solutions take advantage of the model complexity and

scalability of conventional Bayesian matrix factorization, yet adapt dynamically to user’s

evolving preferences. We evaluate the effectiveness of these solutions through empirical

studies on six large-scale real life data sets.

5.1 Motivation

A founding principle of collaborative filtering is that if two users share similar interests on

some items, they also likely share similar interests on other items. This simple preference

propagation model from one item to another is challenged when user behaviors change

over time. For example, a user rated cartoon movies at earlier years, then action movies

some years later, and romantic movies more recently, and for another user, such a path

of changes may be different. Another changing scenario voiced in Mcauley et al.’s work

[48] is that user’s expertise level may upgrade from amateur to connoisseur over time. In

both cases, the exact change in preferences depends on the user because such changes are a

reflection of user’s life experiences. As a result, even though two users rated cartoon movies

51

cartoon movies
 action movies
 romantic movies

rating matrix
 latent user vectors

U

i,t-1
 U

i,t+1

U

it

B

i

B

i

i

Figure 5.1: Evolution of user i’s preferences

similarly some years ago, they may rate the same movie differently or like very different

kinds of movies at a later time. In this situation, it is largely irrelevant to predict current

preferences based on the similarity of preferences a few years ago.

On the other hand, it is possible that, for other users, the similarity of past preferences

remains a good indicator of the similarity of current preferences. Therefore, it does not

work to simply partition the rating data by time and learn a model using the data in each

partition. This method not only misses the dependence of preferences for some users across

time windows, but also accelerates the well known data sparsity problem. In addition, as

pointed out in Koren’s work [30], temporal dynamics in recommendation are different from

concept drift studied in machine learning [64]. In the case of recommendation, the evolution

of each user’s behaviors is determined by a potentially different set of factors, and there is

no single global concept to be learnt.

5.1.1 Contributions

We assume that user preferences evolve gradually: the preference of user i at time t depends

on the preference of the user at time t− 1. Such temporal dependence is the basic idea of

many statistical dynamic approaches such as hidden Markov model [21] and Kalman filter

[27]. We model the temporal dependence for each user i through a D×D transition matrix

Bi, where D is the dimensionality in the latent space: the latent vector uit of user i at time

t is a linear combination, specified by the rows of Bi, of the user’s latent vector ui,t−1 at

time t − 1, that is, uit has the mean Biui,t−1. This relationship is illustrated in Fig. 5.1.

Intuitively, Bi captures the time-invariant pattern of the evolution for user i. For example,

52

if user i increasingly prefers the movies directed by James Cameron over time, the entry

(j, j) in Bi will have a value larger than 1, assuming that the jth latent factor corresponds

to James Cameron. The conventional static model can be treated as the special case of

having the identity transition matrix Bi. Learning the transition matrices that help predict

unknown ratings in the next time point is the main task in this chapter.

The contributions of this chapter are as follows: (1) We propose temporal probabilistic

matrix factorization (TMF) and its fully Bayesian treatment model (BTMF), by incorporat-

ing a transition matrix into the conventional matrix factorization methods. This approach

provides a clean solution by capturing temporal dynamics through the transition matrix

and leveraging the principled Bayesian matrix factorization methodology. (2) We present

gradient descent and MCMC to infer the parameters and transition matrices of these two

models. (3) We conduct extensive experiments on six large-scale data sets. The empirical

results demonstrate appealing improvements over the conventional matrix factorization and

the state-of-the-art time-aware methods.

Although predicting the future rating is the focus in this chapter, the learnt transition

matrices have other applications. For example, since the transition matrix for a user cap-

tures the time-invariant aspect of user’s evolution patterns, we can group users using learnt

transition matrices as the features and develop a customized recommendation strategy for

each group. A further investigation of this topic is beyond the scope of this chapter.

5.1.2 Comparison with Related Work

Ding et al. [15] uses a time weighting scheme for a similarity based collaborative filtering

approach, which decays the similarities to previously rated items as time difference increases

at the prediction time. As discussed above, the time decay scheme may miss a long-term

effect for some users. Our method learns the temporal dependence from the whole set of

ratings without limiting any part of the data. Xiong et al. [68] proposed the user-item-

time tensor factorization to model temporal effects. In a recommender system, the time

dimension is a local effect and should not be compared across all (user,item) pairs [67].

Xiang et al. [67] used a graph connecting users, items, and sessions to model users’ long-

term preferences and short-term preferences. Sun et al. [61] modeled temporal effects using

Kalman filtering with a transition process parameter for each user similar to our transition

matrix, but their transition parameters are time-dependent and user-supplied, and their

model was evaluated only on generated data. Clearly, specifying such parameters for all

53

users at all time points is impractical. In contrast, our transition matrices are time-invariant

and are learnt automatically by the model from observed data. Chua et al. [13] further

extended Sun et al.’s work [61] in the scenario of temporal adoption.

Our work is most related to Koren’s work [30], which presented the first temporal model

for the matrix factorization approach by introducing time-variant biases for each user and

each item. The time-variant biases are the differences at each time window, but do not

summarize the underlying pattern for such differences. This approach works for prediction

only if two windows share similar biases. In contrast, our time-invariant transition matrices

capture properties that are independent of time, and thus, can be used for prediction in a

new time window. Beyond prediction, time-invariant properties also helps understand the

mechanism that underpins the temporal dynamics.

5.2 Temporal Probabilistic Matrix Factorization

We present the temporal probabilistic matrix factorization (TMF) to model user temporal

dynamics. We assume that time is represented by a series of consecutive time windows.

Matrix factorization models map both users and items to a joint latent factor space of

a low dimensionality D, such that ratings are modeled as inner products in that space.

Suppose we have M items, N users, S time windows, and rating values from 1 to K. Let

rijt denote the rating of user i for item j at time window t, U ∈ RD×N×S and V ∈ RD×M×S

denote latent user and latent item (factor) hypermatrices, with column vectors uit and

vjt representing user-specific and item-specific latent (factor) vectors, which describe user’s

interests and item’s features, at time window t, respectively.

5.2.1 Introducing Transition Matrix

We assume that there is a temporal dependence between the latent user vectors uit and

ui,t−1 and we model this dependency by a transition hypermatrix B ∈ RN×D×D for all

users. In particular, Bi, the D × D transition matrix for user i, models the transition of

user i’s preferences in the latent space from the previous time window to the next; so we

expect uit to have the mean Biui,t−1. In plain English, this says that for each user i, the

jth latent factor in the next time window is a linear combination, as specified by the jth

row of Bi, of the latent factors in the previous time window. As each latent factor captures

some intrinsic feature of items (e.g., movie’s genre, movie’s director, etc.), Bi captures the

54

time-invariant aspect of the user i’s evolution in this intrinsic feature space. It makes sense

not to model this dependency for items since item’s features are stable and less correlated.

For example, consider the D = 2 latent space. The identity transition matrix

1 0

0 1


represents a stable latent user vector that does not change much over time; the transition

matrix

0 1

1 0

 represents the alternating changing pattern between two latent user vectors

(a, b) and (b, a); the transition matrix

1.1 0

0 1

 represents a gradual shift pattern toward

the first factor. In a higher dimensional latent space, a different subspace could undergo a

different pattern, therefore, several patterns could occur at the same time.

At the current time t, we learn the latent user vector uit and latent item vector vjt for

each user i and each item j, as well as the transition matrix Bi from all the ratings collected

up to time t. With the learnt parameters, we can predict the rating of the user i on the

item j at a future time window by the rule r∗ij = (Biuit)T vjt. The model performance is

measured by the root mean squared error (RMSE) on the testing set {rij}:

RMSE =

√∑
i,j(rij − r∗ij)2

n
(5.1)

where n is the number of ratings in the testing set. Using all the ratings collected up to

the current time t helps capture the long-term effect discussed in Section 1 while modeling

temporal changes through transition matrices. As the current time advances to the time

t + 1, the above learning process is repeated on all the ratings collected up to time t + 1.

The choice of the granularity of time dictates the trade-off between the freshness of updates

and the efficiency of learning.

5.2.2 Modeling

We develop a temporal probabilistic model with Gaussian observation noises to learn the

parameters U , V , and B. This is done by extending the conventional probabilistic ma-

trix factorization (PMF) model [56] with the transition hypermatrix B. The conditional

distribution over the observed ratings R is

p(R|U, V, σ) =
S∏
t=1

N∏
i=1

M∏
j=1

[N (rijt|uTitvjt, σ2)]εijt (5.2)

55

N

M

σu

σ

σv

σu

σ

σv

σB Bi

uit ui,t+1

rijt rij,t+1

vjt vj,t+1

N

M
µ0 µ0

ν0,W0 ν0,W0

σ σ

ν0,W0 ν0,W0

Z0 Σ,ΩBiZ

uit ui,t+1

rijt rij,t+1

vjt vj,t+1

µt µt+1

Φt Φt+1

Λt Λt+1

Figure 5.2: Graphical representations of TMF (left) and BTMF (right), with parameters
and hyperparameters of time window t and t+ 1 shown only

where N (x|µ, σ2) is the probability density function of the Gaussian distribution with mean

µ and variance σ2, and εijt is the indicator variable that is equal to 1 if user i rated item j

at time window t and equal to 0 otherwise.

As in Salakhutdinov et al.’s work [56], we place zero-mean spherical Gaussian priors on

latent item vectors in V :

p(V |σv) =
S∏
t=1

M∏
j=1

p(vjt|σv) =
S∏
t=1

M∏
j=1
N (vjt|0, σ2

vI) (5.3)

To model latent user vectors in U , we place Gaussian priors with mean Biui,t−1 on latent

user vectors uit to model the temporal dependence of time window t on time window t− 1:

p(uit|Bi, ui,t−1, σu) = N (uit|Biui,t−1, σ
2
uI) (5.4)

where p(ui1|Bi, ui0, σu) = N (ui1|0, σ2
uI) by defining ui0 = 0. Integrating out variables i and

t gives:

p(U |B, σu) =
S∏
t=1

N∏
i=1
p(uit|Bi, ui,t−1, σu)

=
S∏
t=1

N∏
i=1
N (uit|Biui,t−1, σ

2
UI)

(5.5)

The latent transition matrixBi is placed with matrix-variate normal distributionMN (Z,Σ,Ω)

where Z is a matrix containing the expectation of each element of Bi, and Σ,Ω are two co-

56

variance matrices. In this case, we set Z = I, i.e., aD×D identity matrix, and Σ = Ω = σBI:

p(B|σB) =
N∏
i=1
MN (Bi|I, σBI, σBI) (5.6)

5.2.3 Inference

Following Eq. (5.2-5.6) and the graphical representation of TMF shown in Fig. 5.2 , the

posterior distribution over the user and item vectors is given by

p(U, V,B|R, σ, σv, σu, σB)

∝p(U |B, σu)p(V |σv)p(B|σB)p(R|U, V, σ)
(5.7)

Our goal is to find the values of uit, vjt, and Bi that maximize the log-posterior of Eq.

(5.7), which is equivalent to minimizing the sum-of-squared-errors objective function with

quadratic regularization terms:

1
2

S∑
t=1

N∑
i=1

M∑
j=1

εijt(rijt − uTitvjt)2 + λv
2

S∑
t=1

M∑
j=1
‖vjt‖2Fro

+ λu
2

S∑
t=1

N∑
i=1
‖uit −Biui,t−1‖2Fro + λB

2

N∑
i=1
‖Bi − I‖2Fro

(5.8)

where λu = σ2/σ2
u, λv = σ2/σ2

v , λB = σ2/σ2
B and ‖ · ‖2Fro denotes the Frobenius norm. We

adopt gradient descent with learning rate η in U , V and B to find the local minimum of

the objective function in Eq. (5.8).

5.3 The Fully Bayesian Model (BTMF)

One drawback of TMF is that it is hard to search appropriate values of the hyperparameters

σ, σu, σv, σB to control the model complexity. A possible solution is to integrates out all

model parameters U, V,B and hyperparameters σ, σu, σv, σB to achieve the predictive distri-

bution given observed data. In this section, we extend TMF to a fully Bayesian treatment

called BTMF, in which both parameters and hyperparameters are sampled from the predic-

tive distribution through the MCMC method. Though the mathematical development is a

bit involved, the spirit of the extension is essentially the same as extending the probabilistic

matrix factorization to its fully Bayesian treatment [55].

57

5.3.1 Modeling

BTMF introduces priors for the hyperparameters to control the model complexity, as shown

in Fig. 5.2. Instead of Eq. (5.3) with fixed settings, BTMF models two hyperparameters,

the mean vector µt and the precision matrix Φt, for each latent item vector vjt, as in

Salakhutdinov et al.’s work [55]; the prior distribution is assumed to be Gaussian:

p(vjt|µt,Φt) = N (vjt|µt,Φ−1
t) (5.9)

And we place Gaussian-Wishart priors on µt,Φt:

p(µt,Φt|µ0, β0,W0, ν0)

= p(µt|Φt, µ0, β0)p(Φt|W0, ν0)

= N (µt|µ0, (β0Φt)−1)W(Φt|W0, ν0)

(5.10)

Here W is the Wishart distribution with ν0 degrees of freedom and a D ×D scale matrix

W0:

W(Λ|W0, ν0) = 1
C
|Λ|(ν0−D−1)/2 exp(−1

2Tr(W−1
0 Λ))

For each latent user vector uit, the mean vector is given by Biui,t−1 and we place Wishart

priors on the user hyperparameter Λt:

p(uit|Bi, ui,t−1,Λt) = N (uit|Biui,t−1,Λ−1
t) (5.11)

p(Λt|W0, ν0) = p(Λt|W0, ν0) =W(Λt|W0, ν0) (5.12)

For each transition matrix Bi, there are three hyperparameters, i.e., the mean matrix Z

and two covariance matrices Σ,Ω; contrary to Eq. (5.6), the prior distribution is assumed

to be matrix normal:

p(Bi|Z,Σ,Ω) =MN (Bi|Z,Σ,Ω) (5.13)

To be simplified, we place no priors on Σ and Ω (Indeed, the priors for variance matrices

of matrix normal distribution are hyper inverse Wishart distributions but they have little

effects). We place the prior Z0 to control the expectation matrix Z and set Σ = Ω = I.

For the sake of convenience, we define the hyperparameters ΘU = {Λt=1...S} , ΘV =

{µt=1...S ,Φt=1...S} and ΘB = {Z} controlled by priors Θ0 = {µ0, ν0, β0,W0, Z0}. The pre-

dictive distribution of the rating value r∗ij for user i and item j at future time window can

58

be obtained by marginalization:

p(r∗ij |R,Θ0)

=
∫∫

p(r∗ij |uit, vjt, Bi)p(U, V,B|R,ΘU ,ΘV ,ΘB)

p(ΘU ,ΘV ,ΘB|Θ0)d{U, V,B}d{ΘU ,ΘV ,ΘB}

(5.14)

The exact evaluation of this predictive distribution is analytically intractable due to the

complexity of the posterior. MCMC-based methods [49] use the Monte Carlo approximation

to the predictive distribution given by

p(r∗ij |R,Θ0) ≈ 1
ϑ

ϑ∑
κ=1

p(r∗ij | uκit, vκjt, Bκ
i) (5.15)

where ϑ is the given maximal iteration number and uκit, vκjt, Bκ
i are samples at κth iteration.

5.3.2 Inference

To compute r∗ij using Eq. (5.15), we need to sample the variables U, V,B and ΘU , ΘV ,

ΘB in turn from its distribution conditional on the current values of all other variables,

according to Gibbs sampling. Below, we describe these conditional distributions.

Sampling uit and hyperparameter Λt: Due to the use of conjugate priors for the

parameters and hyperparameters in our model, the conditional distribution over the latent

user vector uit, conditioned on other variables (V,R,B...) and the hyperparameters (ΘU , σ),

is Gaussian:

p(uit|V,R,B, ui,t−1,ΘU , σ) = N (uit|µ∗u, [Λ∗u]−1)

∝
M∏
j=1

[N (rijt|uTitvjt, σ2)]εijtp(uit|Bi, ui,t−1,Λt)
(5.16)

where

Λ∗u = Λt + 1
σ2

M∑
j=1

εijt[vjtvTjt],

µ∗u = [Λ∗u]−1(1
σ2

M∑
j=1

εijt[vjtrijt] + ΛtBiui,t−1).

The conditional distribution over the user hyperparameters Λt conditioned on the la-

tent user feature hypermatrix U and transition hypermatrix B is given by the Wishart

59

distribution:

p(Λt|U,B,Θ0) =W(Λt|W ∗0 , ν∗0) (5.17)

where

[W ∗0]−1 = W−1
0 +

N∑
i=1

(uit −Biui,t−1)(uit −Biui,t−1)T ,

ν∗0 = ν0 +N.

Sampling vjt and hyperparameters µt,Φt: This part is the same as the conven-

tional fully Bayesian case [55]. The conditional distribution over the latent item vector vjt,

conditioned on other variables (U,R) and the hyperparameters (ΘV , σ), is Gaussian:

p(vjt|U,R,ΘV , σ) = N (vjt|µ∗v, [Φ∗v]−1)

∝
N∏
i=1

[N (rijt|uTitvjt, σ2)]εijtp(vjt|µt,Φt)
(5.18)

where

Φ∗v = Φt + 1
σ2

N∑
i=1
εijt[uituTit],

µ∗v = [Φ∗v]−1(1
σ2

N∑
i=1
εijt[uitrijt] + Φtµt).

The conditional distribution over the item hyperparameters µt,Φt conditioned on the

latent item vector hypermatrix V is given by the Gaussian-Wishart distribution:

p(µt,Φt|V,Θ0) = N (µt|µ∗0, (β∗0Φt)−1)W(Φt|W ∗0 , ν∗0) (5.19)

where

µ∗0 = β0µ0 +MV̄

β0 +M
, β∗0 = β0 +M, ν∗0 = ν0 +M,

[W ∗0]−1 = W−1
0 + C̄ + β0M

β0 +M
(µ0 − v̄)(µ0 − v̄)T ,

v̄ = 1
M

M∑
j=1

vjt, C̄ =
M∑
j=1

(vjt − v̄)(vjt − v̄)T .

Sampling Bi and hyperparameter Z: Like Eq. (5.16) and (5.18), we assume that

the conditional distribution over each transition matrix Bi is matrix normal, and the con-

ditional distribution is determined by a series of multivariate normal distribution and a

prior distribution according to p(Bi|U,ΘB) ∝ p(U |Bi)p(Bi|ΘB). The approximation to this

60

conditional distribution is as follows:

p(Bi|U,ΘB) =MN (Bi|Z∗,Σ,Ω)

∝
S∏
t=1
N (uit|Biui,t−1,Λ−1

u)p(Bi|Z,Σ,Ω)
(5.20)

where

Z∗ = (
S∑
t=1

[uituTi,t−1] + Z)(
S∑
t=1

[ui,t−1u
T
i,t−1] + I)−1,

Σ = Ω = I.

Analogously, the conditional distribution over Z conditioned on the transition hyper-

matrix B is given by the matrix normal distribution:

p(Z|B,Θ0) =MN (Z|Z∗0 ,Σ,Ω) (5.21)

where

Z∗0 = Z0 +NB̄

1 +N
, B̄ = 1

N

N∑
i=1
Bi, Σ = Ω = I.

Algorithm 1 shows the process of the Gibbs sampling for BTMF. x ∼ y means sampling

the random variable x following the distribution y.

Algorithm 1 Gibbs sampling for BTMF
Initialize the model parameters { U1, V 1, B1 }
for κ = 1→ ϑ do
Sample the hyperparameters by Eq. (5.17) (5.19) (5.21) for all time windows:

Θκ
U ∼ p(ΘU |Uκ, Bκ,Θ0),

Θκ
V ∼ p(ΘV |V κ,Θ0),

Θκ
B ∼ p(ΘB|Bκ,Θ0).

For each time window t = 1, ..., S, sample each latent user vector by Eq. (5.16), sample
each latent item vector by Eq. (5.18):

uκ+1
it ∼ p(uit|V κ, R,Bκ, uκi,t−1,Θκ

U , σ),
vκ+1
jt ∼ p(vjt|Uκ, R,Θκ

V , σ).
For each user i = 1, ..., N , sample the transition matrix in parallel by Eq. (5.20):

Bκ+1
i ∼ p(Bi|Uκ,Θκ

B).
end for

61

5.4 Experimental Evaluation

We conducted extensive experiments to evaluate the prediction accuracy of the proposed

methods. We first introduce the experimental settings and then present the main findings.

5.4.1 Evaluated Methods

We evaluate TMF proposed in Section 5.2 and BTMF proposed in Section 5.3 against

the following methods: PMF refers to the probabilistic matrix factorization model widely

used in collaborative filtering [56]. BPMF refers to the fully Bayesian treatment to PMF

achieving better results [55]. timeSVD refers to the time sensitive algorithm applied

successfully in Netflix data set [30]. Ensemble refers to an ensemble method by adopting

PMF in separate windows and tuning the relevant weights.

We set η = 0.001, λu = λv = 0.01 in PMF, timeSVD, Ensemble and TMF, with other

internal parameters with default settings in timeSVD and λB = 0.01 in TMF, and set

ν0 = D,β0 = 2,W0 = I, µ0 = 0 in BPMF and BTMF, with additional Z0 = I in BTMF.

5.4.2 Data Sets

We conduct experiments on six data sets: MovieLens1 (movie ratings), BeerAdvocate2 (beer

ratings), FineFoods2 (food ratings), Epinions [26] (product ratings), EachMovie1 (movie

ratings), and Flixster [26] (movie ratings). We keep the first two data sets unchanged

because they have a balanced scale, and preprocess the other four data sets by removing

the users with less than 20 ratings as in Marlin et al.’s work [47]. All data sets contain

ratings ranging from 1 to 5, except for the Eachmovie data set which ranges from 1 to 6.

The statistics of the processed data sets are shown in Table 5.1.

Table 5.1: Statistics of data sets.

Data set #User #Item #Rating Timespan
MovieLens 2113 9801 824600 1997.11-2008.12
BeerAdvocate 33387 66051 1586259 1998.1-2012.10
FineFoods 7590 27385 141294 1999.10-2012.10
Epinions 14077 96291 470557 1999.3-2000.12
EachMovie 36658 1623 2580267 1996.2-1997.8
Flixster 36492 48277 7729741 2005.12-2009.11

1http://www.grouplens.org/node/12
2http://snap.stanford.edu/data/#reviews [48]

62

The first three data sets span a longer period of time than the last three. For each data

set, we created S = 10 time windows as follows. We partition each of the first three data

sets yearly and merge several oldest windows (which have less data) into one window to

create a total of 10 time windows. For the last three data sets, we partition them bimonthly

or half-yearly to get 10 time windows. The last three windows are used for testing. For

each testing window, we use all the time windows prior to it, except for Ensemble, as the

training set, and run the experiment five times and report the average results for reliability.

For Ensemble, we use each of the q most recent windows prior to the testing window to

learn a model and average the scores of these models. We report the best result for all

possible q.

5.4.3 Evaluation Metrics

We evaluate the accuracy of estimated ratings based on RMSE and Recall@k for the testing

data. RMSE, defined in Eq. (5.1), is the root mean squared error measuring the difference

between the estimated rating values and the true rating values, thus, the prediction accuracy

on the individual rating level. Recall@k for a user i is defined as the ratio |N(k;i)|
|N(i)| , where | · |

denotes the number of elements in a set, N(i) is the set of items rated by i in the testing

set and N(k; i) is the subset of N(i) contained in the top-k list of all items sorted by their

estimated ratings. We report the average of the recall over all users in the testing set. In

practice, recall is more useful in recommender systems since it takes a global view on all

items and a high recall indeed reflects the user’s adoption.

5.4.4 Experimental Results

The followings are the findings on Recall@k and RMSE.

Recall@k. Fig. 5.3-5.5 presents the recall performance of different models at three

testing windows of six data sets. The left three columns show Recall@k at the latent

dimensionality D = 20 while varying k from 50 to 500. The right three columns show

Recall@300 while varying D from 10 to 50. We observed that our proposed model TMF

always performs better than its conventional counterpart PMF that has no temporal con-

sideration. Ensemble, whose data partitioning misses global patterns and suffers from the

data sparsity issue, works no better than PMF. These evidences suggest that considering

the effect of temporal dependence and dynamics through the transition matrix help improve

the accuracy of recommendation.

63

The fully Bayesian treatment BTMF beats PMF, BPMF, Ensemble, and TMF in all

six data sets. The performance of BTMF is steady with respect to the dimensionality

D. The relative ranks of items are better predicted by our temporal models due to the

reality that user’s subsequent ratings depend more on recent ratings, which is modeled by

r∗ij = (Biuit)T vjt, where t is the current time. However, simply focusing on recent ratings,

like Ensemble, will miss patterns represented by anterior ratings. Our models address this

problem by capturing the temporal dependence and the users’ interest shift through the

transition matrix Bi learnt from the full set of rating data.

The results of BTMF are competitive even compared with the time-aware timeSVD:

BTMF beats timeSVD on MovieLens, FineFood and EachMovie data sets and performs

similarly on other data sets. timeSVD aims to capture temporal effects by incorporating a

time-variant bias for each user and item at every individual time window, whereas BTMF

captures temporal effects through incorporating a single time-invariant transition matrix

for each user. Unlike time-variant biases, the time-invariant transition matrix captures the

temporal pattern that holds all times, and thus, is suitable for prediction in the next time

window. In contrast, time-variant biases are differences at each individual time window

and do not summarize the underlying pattern for such differences. This approach works

for prediction only if two windows share similar biases. Indeed, for the faster changing

FineFoods and MovieLens, we observed a more significant improvement of BTMF over

timeSVD.

Different with timeSVD regressing the ratings dynamically, our BTMF further models

the preference shift associated with latent user vectors. This relaxes the restriction that

prediction should be within the same time period of training in timeSVD. Usually, timeSVD

adopts the latest components learnt from the training data to predict future ratings, which

works well only if the rating patterns in the future time window is close to recent patterns.

Our models, however, try to catch the pattern transition across time windows and better

estimate the future ratings with new patterns.

RMSE. Table 5.2 shows the RMSE of different models. As pointed out in Koren’s

work [30], achievable RMSE values lie in a quite compressed range and small improvements

in RMSE terms can have a significant impact on the quality of the top few presented

recommendations. First of all, the two fully Bayesian matrix factorization models, BPMF

and BTMF, achieve better performance than their non-Bayesian counterparts, PMF and

TMF. The boldface and italic highlight the best and second best performers, respectively.

Since timeSVD and BTMF perform best on recall, we focus on these two methods here.

64

Table 5.2: RMSE (mean±standard error) of different models. D = 20. The best performer
is in boldface and the second best performer is in italic.

MovieLens BeerAdvocate
Algorithm Window 1 Window 2 Window 3 Window 1 Window 2 Window 3
PMF[56] 0.9661± 0.0018 0.9478± 0.0026 0.9036± 0.0016 0.7006± 0.0015 0.6247± 0.0014 0.6368± 0.0010
BPMF[55] 0.9351± 0.0029 0.9350± 0.0057 0.8843± 0.0015 0.6917± 0.0005 0.6226± 0.0005 0.6325± 0.0010
timeSVD[30] 0.9170± 0.0021 0.9049± 0.0010 0.8683± 0.0013 0.6424± 0.0013 0.5634± 0.0017 0.5648± 0.0009
Ensemble 0.9531± 0.0007 0.9642± 0.0020 0.9105± 0.0027 0.6984± 0.0007 0.6269± 0.0008 0.5941± 0.0032
TMF 0 .8909 ± 0.0020 0 .8801 ± 0.0020 0 .8557 ± 0.0027 0.6660± 0.0007 0.5800± 0.0012 0.5882± 0.0022
BTMF 0.8712± 0.0006 0.8454± 0.0006 0.8310± 0.0004 0 .6524 ± 0.0003 0 .5708 ± 0.0003 0 .5779 ± 0.0002

FineFoods Epinions
PMF[56] 1.2671± 0.0032 1.2078± 0.0073 1.2429± 0.0097 1.2419± 0.0087 1.2268± 0.0037 1.1924± 0.0048
BPMF[55] 1.2537± 0.0003 1.1792± 0.0002 1.1940± 0.0006 1.1892± 0.0004 1.1818± 0.0005 1.1542± 0.0003
timeSVD[30] 1 .2484 ± 0.0008 1.1684± 0.0009 1 .1893 ± 0.0007 1.1707± 0.0013 1.1655± 0.0017 1.1357± 0.0009
Ensemble 1.2528± 0.0004 1.1779± 0.0018 1.1956± 0.0020 1.1929± 0.0017 1.1847± 0.0008 1.1582± 0.0002
TMF 1.2506± 0.0047 1.1820± 0.0058 1.2089± 0.0041 1 .1125 ± 0.0016 1 .1117 ± 0.0012 1 .0978 ± 0.0015
BTMF 1.2476± 0.0004 1 .1744 ± 0.0002 1.1891± 0.0001 1.1024± 0.0002 1.1067± 0.0002 1.0937± 0.0001

EachMovie Flixster
PMF[56] 1.3163± 0.0015 1.3099± 0.0044 1.3608± 0.0025 1.1299± 0.0082 1.0511± 0.0056 1.0899± 0.0067
BPMF[55] 1 .2894 ± 0.0016 1.2855± 0.0017 1.3134± 0.0014 1.1100± 0.0008 1 .0337 ± 0.0015 1 .0489 ± 0.0024
timeSVD[30] 1.3696± 0.0010 1.3736± 0.0026 1.4233± 0.0019 1 .0865 ± 0.0007 1.0390± 0.0003 1.0539± 0.0006
Ensemble 1.4659± 0.0053 1.4778± 0.0064 1.5371± 0.0052 1.1466± 0.0024 1.0572± 0.0022 1.0713± 0.0006
TMF 1.3477± 0.0024 1.3493± 0.0019 1.3909± 0.0030 1.1555± 0.0038 1.0723± 0.0011 1.1290± 0.0004
BTMF 1.2867± 0.0080 1 .2892 ± 0.0098 1 .3414 ± 0.0143 1.0802± 0.0038 1.0329± 0.0022 1.0436± 0.0018

With 6 data sets and 3 testing windows for each, there are 18 test cases. Among these 18

test cases, BTMF performs best in 12 cases and second best in 6 cases, whereas timeSVD

performs best in 4 cases and second best in 3 cases. For the four cases where timeSVD

performs best (i.e., three cases for BeerAdvocate and one case for FineFoods), timeSVD is

only slightly better than BTMF.

5.5 Summary

This chapter proposed two temporal matrix factorization methods, TMF and BTMF, to

predict user preferences that evolve over time. The key idea is to model the evolution by

a latent transition matrix that captures the time-invariant property of user’s temporal dy-

namics, thus, the “pattern of evolution” for a user. The experimental results demonstrated

improved prediction over previous methods. Two elements contribute to this improvement.

One is considering temporal effects in the full time range without discarding any part of

the data. Ensemble, which uses several recent time windows, performs poorly. The second

element is the time-invariant transition matrix that captures a property essential for predic-

tion. The time-variant biases used by the timeSVD model are fit for prediction only if such

biases are similar for adjacent time windows. The transition matrix also provides a way to

65

understand the pattern of evolution for a user. We observed two types of transition matri-

ces learnt. The first type has non-zero entries on the main diagonal, which captures those

inactive users who have very few ratings observed. The second type has non-zero entries

outside the main diagonal and such entries represent certain preference shifts among latent

factors, and a different distribution of non-zero entries captures a different shift pattern.

66

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100 200 300 400 500

PMF
BPMF

timeSVD
Ensemble

TMF
BTMF

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100 200 300 400 500
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100 200 300 400 500

(a) Recall@k at MovieLens, D = 20. Vary k

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 10 20 30 40 50
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 10 20 30 40 50
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 10 20 30 40 50

(b) Recall@300 at MovieLens. Vary D

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 200 300 400 500
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 200 300 400 500
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 200 300 400 500

(c) Recall@k at BeerAdvocate, D = 20. Vary k

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 20 30 40 50

(d) Recall@300 at BeerAdvocate. Vary D

Figure 5.3: Recall of different models. Every two rows refer to a data set and each column
refers to a testing window. For each data set, the first row observes the effect of varying k
with fixed D = 20 while the second row observes the effect of varying D with fixed k = 300.
Higher values are better.

67

 0

 0.05

 0.1

 0.15

 0.2

 100 200 300 400 500
 0

 0.05

 0.1

 0.15

 0.2

 100 200 300 400 500
 0

 0.05

 0.1

 0.15

 0.2

 100 200 300 400 500

(a) Recall@k at FineFoods, D = 20. Vary k

 0

 0.05

 0.1

 0.15

 0.2

 10 20 30 40 50
 0

 0.05

 0.1

 0.15

 0.2

 10 20 30 40 50
 0

 0.05

 0.1

 0.15

 0.2

 10 20 30 40 50

(b) Recall@300 at FineFoods. Vary D

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 100 200 300 400 500
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 100 200 300 400 500
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 100 200 300 400 500

(c) Recall@k at Epinions, D = 20. Vary k

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10 20 30 40 50
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10 20 30 40 50
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10 20 30 40 50

(d) Recall@300 at Epinions. Vary D

Figure 5.4: Recall of different models (cont.). Every two rows refer to a data set and each
column refers to a testing window. For each data set, the first row observes the effect of
varying k with fixed D = 20 while the second row observes the effect of varying D with
fixed k = 300. Higher values are better.

68

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100 200 300 400 500
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100 200 300 400 500
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100 200 300 400 500

(a) Recall@k at Eachmovie, D = 20. Vary k

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 10 20 30 40 50

(b) Recall@300 at Eachmovie. Vary D

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 100 200 300 400 500
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 100 200 300 400 500
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 100 200 300 400 500

(c) Recall@k at Flixster, D = 20. Vary k

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 10 20 30 40 50
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 10 20 30 40 50
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 10 20 30 40 50

(d) Recall@300 at Flixster. Vary D

Figure 5.5: Recall of different models (cont.). Every two rows refer to a data set and each
column refers to a testing window. For each data set, the first row observes the effect of
varying k with fixed D = 20 while the second row observes the effect of varying D with
fixed k = 300. Higher values are better.

69

Chapter 6

Cross-region Collaborative
Filtering

Recommending points of interest (POIs) to a user according to the user’s current location

and past check-in activities is the focus in this chapter. Previously proposed probabilistic

and topic model based methods predict the POIs based on the distribution of the POIs

visited in the past, assuming that the next POI for the user follows the same distribution.

Such methods tend to recommend the POIs in the cities or regions that the user has visited

before because only such cities or regions have observed ratings for the user. Thus, these

works are not suitable for a user who travels to a new city or region where she has not

checked in any POI previously. To address this issue, we distinguish the user preferences

on the content of POIs from the user preferences on the POIs themselves. The former is

long-term and is independent of where POIs are located, and the latter is short-term and

is constrained by the proximity of the location of the POI and the user’s current location.

This distinction motivates a location-independent modeling of user’s content preferences

of POIs, and a location-aware modeling of user’s location preferences of POIs. The final

recommendation of POIs is derived by combining the predicted rating on content and the

predicted rating on location of POI. We evaluate this method using the Yelp and Foursquare

data sets. This approach has superiority over the state-of-the-art and works well in the “new

city” situation in which the user has not rated any of the POIs in the current region.

70

6.1 Motivation

Location based social network (LBSN) services such as Yelp and Foursquare enable users

to “check in” at a certain point of interest (POI), such as hotel/restaurant/museum, via

their mobile devices. A user may rate and comment about the POI after visiting it, and

subsequently other users may consider those ratings and comments before selecting the

POIs for their visits. The availability of rating data and LBSN services open up an array

of new research topics and problems in both academia and industry [57, 70], such as user

behavior analysis, movement pattern study [10, 39], and various real-world applications

[11, 73, 77]. Among them, an emerging application is to recommend suitable POIs as users

travel to a region or location [25, 41, 72]. A key difference from traditional recommender

systems is that the distance between the location of the user and the location of a POI

will influence the user’s adoption of the recommended POI. For example, recommending a

Chinese restaurant in Beijing to a user who is currently visiting New York City will fail,

even if the user loves Chinese food very much.

We assume that each POI has two essential descriptions, location and content. Location

refers to the geographical position such as longitude and latitude of the POI. Content refers

to any other descriptive information about a POI and its function, such as features (e.g.,

categories of art works for a museum), tags attached by users, and comments created by

users. After a user visits a POI, the user may rate the POI and select some features or

create tags or comments for it. The content of a POI is defined by the collection of terms

created or features selected by all users for the POI. Given some observed rating data and

content of POIs, the POI recommendation problem is to recommend suitable POIs to a user

who is currently visiting a location, by factoring in the match between the user’s interest

and the content of the POI, and the geographical distance between the POI and the current

location of the user. Figure 6.1 is a POI map in Phoenix from the Yelp data set partitioned

into 10 regions. The POIs in the orange and skyblue regions are less attractive to a user

visiting the brown region, and more so for the POIs in the yellow and dark blue regions.

One immediate solution is to partition the observed ratings by geographical regions of

location (e.g., cities) and build one regional recommender for each region using the rating

data in that region. As a user moves to a region, the recommender for that region is used for

POI recommendation. Though very simple, this solution has a number of drawbacks. (1)

The restriction to the rating data in a single region accelerates “data sparsity”, which leads

to poor rating prediction. (2) There is a lack of knowledge transfer due to the following

71

−113 −112.8 −112.6 −112.4 −112.2 −112 −111.8 −111.6 −111.4 −111.2
32.8

33

33.2

33.4

33.6

33.8

34

34.2

la
tit

ud
e

longitude

Figure 6.1: Locations of the Yelp data partitioned into regions

“new city” problem: suppose that two users x and y have visited many common POIs in

their home city A and suppose that user x has also visited the city B but y has not. When

y visits the city B for the first time, thus a “new city” to y, the recommender for B will

mistakenly consider x and y as sharing little common interests due to the lack of observed

data for y in the city B. Note that the “new city” problem is different from the “cold start”

problem since the POIs of the “new city” all exist in the system, but they are “new” to a

specific user who has not rated any POI in that city. (3) If the user’s current region has

no suitable POI, this method tends to recommend irrelevant POIs because collaborative

filtering in one region does not benefit from those in other regions.

Recently, some topic modeling based methods [25][72][33] have incorporated content

and location information of POIs. The main idea is to infer the probability of visiting a

POI/location based on the observed check-in data and user generated data such as tweets

[25], and recommend the POIs/locations to a user that have the highest estimated probabil-

ity, assuming that the check-in pattern of the user does not change. These approaches may

not work if the user is currently visiting a region where she does not have much check-in

data previously, as discussed before. In this case, these methods still recommend the POIs

from the “home cities” that the user used to visit in the past because such POIs have the

72

highest estimated probability, but such POIs are not interesting to the user who is currently

visiting a different region.

Our insight is to distinguish user’s preferences on the content of POIs from user’s prefer-

ences on the POIs themselves: The former reflects the user’s long-term interests developed

through life time and is independent of the user’s current location, whereas the latter is

short-term and is constrained by where the POI and the user are located. Importantly,

the long-term preferences on content are transferrable via location. For example, a user

who loves arts, e.g., visited arts museums frequently in the past, tends to look for arts

museums when visiting a new city. This observation motivates a cross-region collaborative

filtering approach to POI recommendation: we infer the user’s content preferences from the

observed rating data across all regions independent of where the user is, and infer user’s

location preferences based on where the user is currently located. As a user travels to a

new region, content-suitable POIs in the new region are identified through the location

independent content preferences. The details and contributions are summarized as follows.

6.1.1 Contributions

We present a new solution, cross-region collaborative filtering (CRCF), to address both

long-term content preferences and short-term location preferences of users. We model the

long-term content preferences by a location independent content recommender learnt from a

user-feature rating matrix derived from all rating data, and use this recommender to predict

the user’s rating on the content of a POI. We model the short-term location preferences

by a location recommender, and use this recommender to predict the user’s rating on the

location of a POI. In particular, we partition the entire geographical region into a number

of local regions (e.g., cities), and for every user i and every region k, we create a “virtual

user” (i, k) to model the user i visiting the region k, and learn the location recommender

from a “virtual-user”-POI rating matrix whose entry ((i, k), j) is the “perceived rating” on

the location of POI j by the virtual user (i, k), that is, assuming that the user i is visiting

the region k. Both recommenders are learnt by collaborative filtering on their matrices.

The final predicted rating of a POI is derived from the predicted rating on content and the

predicted rating on location.

An example of these matrices is shown in Figure 6.2. For example, (A,II)=4 in the

original rating matrix (a) indicates the observed rating 4 on POI II by the user A when the

user actually visited the POI II in the region r2. In the “virtual-user”-POI rating matrix

73

I II III bag of features region
user A 4 4 I f1, f2 r1
user B 5 2 5 II f1, f3 r2
user C 5 4 III f2, f4 r1

(a) The left indicates the traditional rating matrix and the right
indicates the content and region of each POI

f1 f2 f3 f4
A {4,4} 4
B 2 {5,5} 5
C 5 5 4

(b) User-feature matrix for learning
the content recommender

I II III
(A,r1) 4 2
(A,r2) 2 4
(B,r1) 5 1 5
... ...

(c) “Virtual-user”-POI matrix
for learning the location recom-
mender

Figure 6.2: Different matrices for 3 users (A,B,C), 3 POIs (I, II, III), 4 features (f1,f2,f3,f4),
and 2 regions (r1,r2). POI I has features f1, f2 and is located in region r1, POI II has features
f1, f3 and is located in region r2, POI III has features f2, f4 and is located in region r1.
Users may select a subset of the features when rating a POI.

(c), ((A,r1),II)=2 indicates the perceived rating on II by A assuming that the user is in the

region r1. The perceived rating is lower than the observed rating because the user is in a

different region from that of the POI. The generation of the perceived rating ((A,r1),II) will

take into account the observed rating (A,II)=4 as well as the distance between the POI II

and the user’s current region r1. Thus, ((A,r1),II) is a result of transferring the observed

knowledge in other regions, i.e., II’s region r2, to the current region of the user, i.e., r1,

while factoring the impact of distance.

Our method is fundamentally different from the distance adjustment to the ratings

of any collaborative filtering, e.g., filter the POIs by a circle or some distance penalty

functions [40], because the distance adjustment still prefers the near POIs and further

needs user efforts such as setting the radius of the circle. Consider the example if you

are vegetarian and the only vegetarian restaurant in this city is at some distance from

your current location, our method likely recommends the vegetarian restaurant because the

content recommender ranks the restaurant highly and the location recommender does not

use a hard distance threshold, while the distance adjustment approach either cannot find

the vegetarian restaurant or recommends a non-vegetarian restaurant.

74

This approach has several novel features. (1) Both location and content recommenders

are based on collaborative filtering on the rating data across all regions, an important factor

to address the data sparsity issue discussed earlier. (2) Our method addresses the “new

city” problem by explicitly modeling a user i visiting any region k through the virtual user

(i, k) in the location-aware matrix used by the location recommender. (3) Our method

could recommend POIs from a neighboring region if the current region of the user does not

have suitable POIs. In contrast, the regional recommender tends to recommend irrelevant

POIs in this case. (4) This method is easy to implement; all it requires is the principled

matrix factorization method and the preprocessing/postprocessing steps that wraps up the

factorization method. We have evaluated our method on two LBSN service data sets, Yelp

and Foursquare. The study shows that our method achieves a considerable improvement

over the state-of-the-art methods in terms of mean reciprocal rank and recall.

6.1.2 Comparison with Related Work

Hu et al. [25] proposed a spatial topic model by incorporating user posts as well as user

movements into a geographical topic model where regions and topics are random latent

variables associated with each post. Their model predicts the location for a given document

based on a collection of geo-tagged posts, which tends to give high probabilities to locations

close to user’s frequently visited locations before. Liu et al. [41] proposed a geographical

probabilistic factor model taking latent preferences, user mobility and item popularity into

consideration. Their model assigns a user to a latent region learnt from user’s previously

visited POIs and sets the region center as the user’s location.

All of the above mentioned probabilistic and topic model methods are based on modeling

the probability distribution of the POIs for a user based on the observed data, therefore,

favor the POIs in the user’s frequently visited region (e.g., the home city). Such methods

are not suitable if the user travels to a new region where she has not generated any post

or check-in activity. By modeling a virtual user (i, k), our method will recommend POIs

specifically for a user i traveling to a region k. For example, if a user checked-in POIs in

Beijing in the past and is currently visiting New York City where she has not checked-in any

POI, our method will recommend matching POIs in New York City, whereas the probability

and topic model methods tend to recommend the POIs in Beijing because they have the

highest estimated probability.

75

Yin et al. [72] presented a topic model called LCA-LDA to incorporate item content and

user’s visit history. Similar to ours, their focus is to make appropriate recommendations for

a user visiting a certain region. By treating each POI as word, their model learns the topic

distributions for each user and each region (e.g., city), and for a user coming to a region,

the recommendation of venues is derived from the distributions learnt for that region. Their

model does not consider the distance or location information for POIs across regions, which

is an important factor in our modeling. In Bao et al.’s work [6], the rating data is partitioned

by regions and categories of locations, and for each region and each category, “local experts”

are extracted based on the historical data in that region and category. As pointed out before,

partitioning the rating data by regions will accelerate data sparsity and reduces the level

of collaborative filtering. Our method takes the geographical space as partitioned regions

(for modeling geographical influence), but collaborative filtering is always performed on the

rating data for all regions.

6.2 Methodology

This section presents our model. We start with the description of data representations

and tasks. Our model basically consists of two components, i.e., the content recommender

and the location recommender. Figure 6.2 gives a quick overview of them in terms of data

presentation.

6.2.1 Preliminaries

We have I users, J POIs, and F features (or terms) for POIs. Each user i may give some

numeric ratings (say 1 to 5) to several POIs j that she has visited. The observed rating

data is represented in an I × J user-POI matrix M (see Figure 6.2(a)), in which an entry

rij represents the observed rating on POI j given by user i. If user i did not rate POI j,

rij is undefined. When rating a POI j, a user i may optionally select some features of j,

Tij , to indicate the features preferred. If a user i does not rate a POI j, we assume Tij = ∅.

The content of POI j is defined as Tj =
⋃
i Tij . Each POI also has a geographical location,

i.e., latitude and longitude. We assume that a function will return the distance between

any two geographical locations.

For example, if POIs are hotels, the ratings could be 1-5 stars and the features of a hotel

can be cleanliness, service, rate, comfort, etc. If a user i gives the 5-star rating to a hotel

j and explicitly selects cleanliness and comfort, rij = 5 and Tij = {cleanliness, comfort},

76

which means that the user particularly likes cleanliness and comfort of the hotel. If a user

i rates a hotel j but selects no feature, we assume that the user implicitly selects all the

features, i.e., Tij contains all features of j. Here Tij contains the features both explicitly

and implicitly selected. Alternatively, features can be terms in a review or tags created for

a POI, and Tij is the collection of terms or tags for POI j created by user i.

The task of POI recommendation is to recommend top-n POIs to a user that suit the

user’s interests and are close to the user’s current location. The key is to predict a user’s

rating on unrated POIs based on the observed rating data, the content and location of

POIs, and the user’s current location. Our solution first predicts the rating on the content

of POIs and the rating on the locations of POIs independently, and then combines these

ratings to derive an overall ranked list of POIs. Below, we describe these steps.

6.2.2 Predicting Content Preferences

First, we construct the content recommender to predict the user’s rating on a feature of a

POI, e.g., cleanliness of a hotel. The user’s preference on the content of a POI is estimated

by aggregating the predicted ratings on all the features of the POI. To predict the rating

on the features of a POI, we adopt the feature-centric recommendation from Zhang et al.’s

work [74], which applies collaborative filtering on the features of items instead of items

themselves. First, we transform the original user-POI matrix M into a I × F user-feature

matrixM1 (see Figure 6.2(b)), where each row represents a user and each column represents

a feature f [74]. An entry (i, f) in M1 is the aggregated rating on the feature f over the

POIs j that contain f and are rated by user i:

gif = agg({rij |f ∈ Tij and rij is defined}) (6.1)

In this chapter, agg(X) returns the average of the values inX. Therefore, gif is the averaged

observed rating on f by user i. agg(X) is undefined if X is empty. Then we extract the

latent user vectors ui for users i and the latent feature vector vf for features f . This can be

done by performing the standard matrix factorization [31] on M1. The goal is to minimize

the regularized squared error loss between the rating gif and the predicted rating uTi vf , as

in Salakhutdinov et al.’s work [56]. For completeness, we include the algorithm of matrix

factorization as follows.

77

E =1
2

∑
i,f

εif (gif − uTi vf)2 + λu
2

∑
i

‖ui‖2 + λv
2

∑
f

‖vf‖2 (6.2)

where λu and λv are regularization parameters; εif is a binary indicator that is equal to 1 if

user i has selected feature f (gif is observed) and equal to 0 otherwise. Taking the gradient

of E respect to the variables ui and vf , we get

∂E

∂ui
= λuui −

∑
f

(gif − uTi vf)vf (6.3)

∂E

∂vf
= λvvf −

∑
i

(gif − uTi vf)ui (6.4)

A local minimum of E is found by iteratively updating each variable with a step proportional

to the negative of the gradient based on the recent values with the learning rate η:

uκ+1
i = uκi − η

∂E

∂uκi
, vκ+1

f = vκf − η
∂E

∂vκf
(6.5)

This iterative process stops until convergence. The outcome is the latent user vectors ui for

all users i and the latent feature vectors vf for all features f .

The predicted rating of user i on the content of a POI j is computed by aggregating the

predicted ratings uTi vf over all the features f in Tj :

r∗ij = agg({uTi vf |f ∈ Tj}) (6.6)

The reason for choosing agg(X) as the average of the values in X is that it is simple and

works well in our experiments. Other choices of the aggregation function are possible, such

as the average of the differences from the averaged rating of all the items rated by the

concerned user, or a regression based weighting inspired by multi-criteria ratings [17].

6.2.3 Predicting Location Preferences

The second important factor in recommending POIs is the user’s location preference on a

POI. We construct a location recommender to predict this user location preference, which

depends on the location of the POI and the location of the user. To model this dependency,

we partition the geographical space into K regions for some specified K, where a region

78

covers the locations within a close proximity and each region has a mass center. Since

we approximate the distance between any two locations from two regions by the distance

between the centers of the two regions, a region should be “small enough”. For example,

in New York City, regions could be areas that corresponded to community districts, such

as Manhattan, Brooklyn, and Queens, etc. The choice of the definition of regions often

depends on the application. Our method assumes that the partition of regions is given.

Assuming that user i is in some region k, we want to estimate the user’s rating on the

location of POI j, where j is not necessarily in the region k. Clearly, this rating may not

be the same as the observed rating rij generated when user i actually visited POI j where

both the user and the POI are in the same region. When the user is in the region k, her

rating on the location of j should be reduced according to the distance from the region k

to the location of j. We estimate this distance-adjusted rating by l(i,k),j = rij
dis(k, j) , where

dis(k, j) denotes the normalized distance between the center of the region k and the center

of the region for POI j:

dis(k, j) =


1 if j is in region k

1 + ‖c(k)− c(σ(j))‖2
MIN

otherwise
(6.7)

where σ(j) is the region index of the POI j, c(x) is the center of a region x, andMIN is the

minimum pairwise distance of region centers. Intuitively, l(i,k),j is the observed rating rij
adjusted by the normalized distance between the regions of the POI j and the region of user

i. This adjustment is consistent with Tobler’s first law of geography [62], which implies that

the propensity of a user for a POI is inversely proportional to geographic distance between

the user and the POI. On the other hand, if the user is obsessed with the content of the POI,

she will be less deterred by geographical distance. This is the reason for incorporating the

rating rij in the distance-adjusted rating. If rij is not observed, l(i,k),j is undefined. Note

that if the POI j is in the same region k as the user i, the distance influence disappears

and l(i,k),j = rij .

We can define an (I ×K)× J matrix M2 (see Figure 6.2(c)) with l(i,k),j as follows. For

each user i and each region k, we create a row denoted (i, k), and for each POI j, we create a

column j. The entry for the row (i, k) and the column j, denoted by ((i, k), j), contains the

distance-adjusted rating l(i,k),j if it is defined. Intuitively, each row (i, k) simulates a virtual

user that is the instance of user i visiting the region k and the entry ((i, k), j) simulates the

perceived rating on the location of the POI j of this virtual user.

79

Once having constructed M2, we can infer unfilled ratings in M2 by performing matrix

factorization onM2 to learn the latent user vectors uik for virtual users (i, k), and the latent

location vectors vj for the POIs j. The objective function to be minimized is

E =1
2

∑
i,j,k

εij(l(i,k),j − uTikvj)2 + λu
2

∑
i,k

‖uik‖2 + λv
2

∑
f

‖vj‖2 (6.8)

The computation of uik and vj is similar to the previous subsection. The predicted location

rating by a user i at the region k for the POI j is estimated by the inner product of uik and

vj :

l∗(i,k),j = uTikvj (6.9)

6.2.4 Recommending POIs

We believe that the content recommender captures the long-term preferences while the

location recommender captures the short-term preferences for users. So we first generate

a set of POIs that match user’s interests and later filter them by location. For a given

positive integer n, we would like to recommend top-n interesting POIs to a user i who is

currently visiting a region k. Note that these POIs are not necessarily in the region k. This

is done in four steps as shown in Figure 6.3. (i) For each POI j, predict the content rating

of user i on j using Eq. (6.6) and sort all POIs by their predicted content rating. (ii) Select

the top-m POIs from the ranked list as the seed set, where m > n. The POIs in the seed

set are considered matching user interests in content, and the POIs not in the seed set are

never recommended to the user. (iii) Reorder the POIs in the seed set according to their

predicted location rating computed by Eq. (6.9). (iv) Recommend the top-n POIs in the

reordered list. These POIs have the most preferred locations among those that match user

interests. We call this method cross-region collaborative filtering (CRCF).

Of course, there are other ways to generate the final recommendation except the re-

ranking mentioned above, for example, pick the nearby POIs first according to location rec-

ommender and then choose those matching user’s interests through content recommender.

In this chapter, however, we do not consider these in the experiments.

6.2.5 Discussion

The CRCF method has a number of properties that are worth noting. First, the recom-

mended POIs are not necessarily from the current region of the user. If the current region

80

!"#$!$%&'($)($(**+$(*, -".,*+$/0$1"2,*2,$#.*3*.*21*

!"#$"$%&'($3".$.*1"44*2+),5"2

6*".+*.$,7*$.)28$"3$95(,$/0$9"1),5"2$#.*3*.*21*

(i)(ii)

(iii)

(iv)

Figure 6.3: Combining the predicted content rating and location rating to compute the
top-n POIs in CRCF

of the user has POIs with a high predicted content rating, such POIs tend to be included

in the seed set and selected for recommendation. If the current region does not have POIs

with a high predicted content rating, POIs from other regions with a high predicted content

rating will be included in the seed set. The choice of the size m of the seed set dictates

the relative weight of content preference and location preference. A larger m leads to more

flexible content preferences to favor local POIs in the current region of the user, and a

smaller m will favor POIs with strong content preferences, so local POIs with weak content

preferences may not get into the seed set. Thus, m can be used to control the trade-off

between content preference and location preference.

Our method assumes that the geographical space is partitioned into K regions so that

the locations of the POIs within a region can be approximated by the region center. The

granularity of regions has an implication on the computation and the accuracy of location

modeling. A finer granularity yields a more accurate modeling of the location of POIs, but

leads to a larger number K of regions, thus, a larger matrix M2. For a small-to-medium

geographical space, such as a city or state, a K in hundreds usually suffices. For a large

geographical space, such as a country or the world, K is likely larger in order to keep each

region small. This could impose a high cost on space and computation. One solution is

to partition a large geographical space, e.g., a country, into small-to-medium subspaces,

e.g., states, and apply our method to each subspace independently. This approach makes

sense because a user visiting a state usually considers the POIs from the same state and

the problem of data sparsity is less severe for a state (than a small district).

81

Our method can handle the “new city” problem without special arrangements. Suppose

that a user i visits a city k for the first time, therefore, has not rated any POI in the city.

From the user’s point of view, the city k is a “new city”. Our method models this scenario by

the virtual user (i, k) inM2 with the perceived rating l(i,k),j for POI j. As long as user i has

rated some POIs in some cities, not necessarily in the current city k, the recommendation

for user i visiting the region k does not require special handling.

6.3 Experimental Evaluation

This section evaluates the effectiveness of the CRCF method proposed in Section 6.2. First,

we describe our data sets, the methods for comparison, and our evaluation metrics.

6.3.1 Data Sets

We adopt the Yelp1 and Foursquare2 data sets in our experiments. Both data sets were

previously used for recommendation evaluation in Hu et al.’s work[25]. The Yelp data

set contains 45,981 users, 229,906 ratings, 11,537 POIs, plus user reviews on POIs. We

preprocessed the reviews by removing stop words and infrequent words occurring in < 100

reviews, and using the remaining 8,519 keywords as features. The feature set or content

of a POI consists of all keywords contained in the reviews about the POI. The Foursquare

data set contains 20,784 users, 153,477 ratings, 7,711 POIs, and user published tweets

when checking-in at a POI. Like Yelp, we obtained 1,377 features after preprocessing the

tweets. To partition the space into regions, we apply the K-means clustering algorithm to

the locations of all POIs due to its simplicity. Other sophisticate clustering or tessellation

methods [2, 54] are also possible.

6.3.2 Evaluated Methods

We compare the following methods, which we either implemented or got the codes from

their authors.

Probabilistic matrix factorization (denoted PMF): This method adopts matrix

factorization on the user-item rating utility matrix [56] where POIs are treated as items,

which ignores the content and location information of POIs. In PMF, matrix factorization

is generalized as a probabilistic model where a latent user vector ui ∼ N (0, λ−1
u ID), a latent

1http://www.yelp.com/dataset_challenge/
2https://foursquare.com/

82

http://www.yelp.com/dataset_challenge/
https://foursquare.com/

item vector vj ∼ N (0, λ−1
v ID), and user-item rating rij ∼ N (uTi vj , ε−1

ij). The predicted user

i’s rating on item j is given by uTi vj .

Partitioned PMF (denoted PAR): This method simulates a location aware version

of PMF by building a PMF model for each region using the user-item matrix M containing

only the rating data in the region. Note that M still has a column for every POI, but only

those in the current region have rating data. As discussed in Section 6.2.5, this approach

does not leverage collaborative learning across regions in that only local rating data are

used for each region. For a user visiting a region, the recommender built for that region is

used to recommend POIs to the user.

Collaborative topic regression (denoted CTR): This is the matrix factorization

with topic modeling applied to the features of items [65]. For our data sets, items are

POIs. LDA is employed on POI j’s features to learn the latent topic vector θj , which is

incorporated into the PMF framework to confine the search of latent item vectors by setting

vj ∼ N (θj , λ−1
v ID). This method does not consider the location of POIs.

Spatial topic model (denoted STM): This is the generative topic model for POI

recommendation incorporating the spatial and textual aspects of POIs [25]. STM gives a

global recommendation without considering the user’s current location.

Location content aware model (denoted LCA): This is another generative topic

model for POI recommendation incorporating content and location information [72]. LCA

makes personalized recommendation according to user’s current location but does not con-

sider distance while modeling locations.

Location recommender (denoted LOC): This is the location recommender in Sec-

tion 6.2.3 that performs cross-region collaborative filtering on location ratings while ignoring

the content information of POIs. Given a user i visiting a region k, this recommender rec-

ommends the top-n POIs ranked by the predicted rating in Eq. (6.9).

Content recommender (denoted CON): This is the content recommender in Section

6.2.2 that performs cross-region collaborative filtering on feature ratings while ignoring the

location information of POIs. Given a user i, this recommender recommends the top-n

POIs ranked by the predicted rating in Eq. (6.6).

Cross region POI recommender (denoted CRCF): This is the POI recommender

in Section 6.2.4 that integrates the predicted ratings by the location recommender and the

content recommender. By default, the seed size m used by this recommender is set to 200.

PMF, PAR, and CTR serve as the baselines that treat POIs as regular items. STM and

LCA are recent state-of-the-art recommendation methods for POIs. LOC, CON, CRCF are

83

derived from our methods in Section 6.2 through considering location only, content only,

and both location and content of POIs. All latent factor models adopt the dimensionality

of D = 10 by default for latent vectors and we also vary D from 10 to 50 to study the

effectiveness. We use grid search to find the optimal value of the regularization parameters

λu and λv which are searched from [0.001,0.01,0.1,1]. The parameters for topic modeling

are α = 50
D , β = 0.01 and the learning rate is η = 0.0001. Since we could not get the code

of the geographical probabilistic factor model proposed in Liu et el,’s work [41], it is not

included here.

6.3.3 Evaluation Metrics

For both data sets, we conduct 10-fold cross-validation, i.e., in each fold, 90% of the observed

ratings are picked as the training set M and the test set T contains the positive ratings

in the remaining 10% data. For Yelp with 1-5 ratings, a positive rating is a rating ≥ 4

(since the average ratings in this data set is around 3.6). For Foursquare with 0/1 ratings,

a positive rating is the rating of 1. Since each user actually checked-in the POI of a certain

region in the test set, we adopt the region center as the user’s current location when the

recommendation is performed.

In general, recommendation methods that predict the user’s rating on a POI can be

evaluated by error based metrics (such as RMSE/MAE) and rank based metrics. However,

the topic model based methods STM and LCA predict the probability of visiting a POI, for

which the error specific metrics such as RMSE/MAE are not suitable because probabilities

are not comparable with ratings. For this reason, we use rank based metrics and adopt a

similar procedure as in Cremonesi et al.’s work [14]: For each method described in Section

6.3.2, we first train the recommender using the observed ratings in M . Then, for each test

case (i, j) in T where user i rates POI j positively: (i) We predict the ratings for the POI j

and for all the other POIs unrated by user i using the recommender. (ii) We form a ranked

list by ordering all these POIs according to their predicted ratings. Let rank(i, j) denote

the rank of the POI j within this list. The best result corresponds to the case where the

POI j precedes all other POIs, i.e., rank(i, j) = 1. (iii) We pick the top n ranked POIs

from the list, where n is the number of POIs to be recommended. If rank(i, j) ≤ n, we

have a hit. Otherwise we have a miss. We consider the following two rank based evaluation

metrics based on the notion of hits.

84

Table 6.1: MRR (mean ± standard error). K = 10

Methods Yelp Foursquare
Traditional recommendation algorithms

PMF 0.0078± 0.0003 0.0092± 0.0004
CTR 0.0107± 0.0004 0.00112± 0.0006

Spatial recommendation algorithms
STM 0.0102± 0.0003 0.0139± 0.0006
LCA 0.0159± 0.0007 0.0272± 0.0011
PAR 0.0254± 0.0010 0.0282± 0.0012

Our proposed algorithms
LOC 0.0090± 0.0004 0.0119± 0.0004
CON 0.0155± 0.0005 0.0178± 0.0008
CRCF 0.0690± 0.0014 0.0521± 0.0016

Mean reciprocal rank (MRR) is the average of the reciprocal ranks of the test cases

(i, j) in T , defined as

MRR = 1
|T |

∑
(i,j)∈T

1
rank(i, j) (6.10)

A large value of MRR is desirable since a small value of rank(i, j) gives a higher rank to a

positive rating.

Recall@n is designed for top-n recommendation. As explained above, for each test

case (i, j) in T , if rank(i, j) ≤ n, we have one hit, meaning that the positively rated POI

j is recommended to the user i. The portion of the test cases in T that that have a hit is

defined by recall:

Recall@n = #hit
|T |

(6.11)

where #hit is the number of hits for the test cases in T . A higher recall means that more

positively rated POIs in T are recommended to a user.

Another metric used in Cremonesi et al.’s work [14] is Precision@n, which is equal to
Recall@n

n
. Since all methods are compared for the same n, it suffices to consider Recall@n.

6.3.4 Experimental Results

MRR. Table 6.1 shows MRR of all methods for K = 10 regions. PMF performs worst

since it uses only the rating data but ignores the feature and location information. The

content-aware CTR and STM improve the performance over PMF. STM also considers the

85

location of POIs, but the improvement is limited on the Foursquare data set because the

global recommendation of STM does not consider the user’s current location. LCA achieves

better results by modeling topic distribution for different regions and making personalized

recommendation to suit the user’s current region. To our surprise, PAR performs reason-

ably well, but it fails when the regional recommender has not enough ratings in the “new

city” testing (Section 6.3.5). The significantly higher MRR of CRCF, compared to that

of PAR, LOC and CON, suggests that considering both content and location information,

as well as collaborative filtering across all regions, does improve the performance of POI

recommendation.

We further examine the performance of the two best performers, CRCF and PAR. For all

test cases, 97% of the top-10 POIs recommended by PAR are from the user’s current region,

and this percentage is around 30% for CRCF. The rest POIs recommended are from nearby

regions. For example, for a test case (i, j) with positive rating on a Chinese restaurant

j, CRCF recommends 4 restaurants in user i’s current region and other 6 from nearby

regions, and all these restaurants are associated with the Chinese food theme. However,

PAR recommends all 10 restaurants from the user i’s current region, and only 1 of them is

related to the Chinese food theme. The higher MRR in the case of CRCF is because more

POI j has a higher rank(i, j) than in the case of PAR. In particular, the PAR recommender

relies solely on the rating data in the region for user i, which is vulnerable to data sparsity,

thus, tends to rank POIs incorrectly. We should mention that our evaluation is in favor of

PAR that tends to recommend POIs from the current region because for each test case (i, j)

in T , user i has actually visited POI j, so the hit j is always in the current region of user

i. If the preferred POIs are not in the current region of the user, we expect that PAR will

perform worse. CRCF captures the user’s interest and location constraint by considering

nearby regions if necessary.

Recall@n. Figure 6.4 shows recall@n. CRCF is the clear overall winner. PAR has

the second best performance, followed by LCA. LOC, CTR and STM achieve quite similar

results and PMF has the worst performance. The reason for the higher recall of CRCF is

the same as for the higher MRR discussed above, i.e., there is a higher portion of hits for

the test cases (i, j) in T . From a view of each component of CRCF, we find that CON

already beats other algorithms considering content information, which shows our modeling

for content preference is feasible. The other component LOC also has a comparable result to

other algorithms, but generates a different ranking of POIs with CON (if not, the POIs keep

almost no change after re-ranking), which leads to the higher recall of CRCF by the two

86

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 5 10 15 20 25 30 35 40 45 50

PMF
CTR
STM
LCA
PAR
LOC
CON

CRCF

(a) Recall@n at Yelp

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 5 10 15 20 25 30 35 40 45 50

PMF
CTR
STM
LCA
PAR
LOC
CON

CRCF

(b) Recall@n at Foursquare

Figure 6.4: Recall@n vs n (the x-axis). K = 10

stage ranking mentioned in Section 6.2.4. In other words, the superiority of CRCF comes

from combining the location preference and content preference of users, and collaborative

filtering over the rating data of all regions without discarding any data.

The effect of the seed size m. As discussed in Section 6.2.5, CRCF uses the seed

size m to determine the top m POIs, ranked by content preferences, that participate in the

final ranking by location preferences. A larger m gives flexibility to content preferences and

more weight to location preferences. Table 6.2 reports the effect of the seed size m on MRR

and recall for CRCF. For a smaller n, a better recall@n is achieved for a smaller m. In fact,

a large m and a small n tend to include many less preferred POIs for location preference

ranking, which degenerates into the under-performing LOC. For a large data set with over

thousands of POIs, we believe that the setting of m at hundreds is a good choice.

The effect of the dimensionality D. We examine the performance of different

methods with respect to the number of dimensionality D. We show the results in Figure 6.5

where D is represented by the x-axis. From D = 10 to 50, we observe that all the methods

achieve stable performances, with the runtime linearly increased. With D increased, there

are more latent factors to infer so that the runtime is accordingly increased. For the Yelp

data set which has more content information (each review has much more words than the

tweet in the Foursquare data set), the content recommender CON takes the longest time,

followed by the algorithms with topic modeling such as LCA and STM. For the Foursquare

data set whose content information is less, however, the location recommender LOC takes

the longest time since the ratings are replicated for K times.

87

Table 6.2: Performances of CRCF for different seed sizes m

Yelp
Seed size m MRR Recall@5 Recall@10 Recall@50

50 0.0585 0.0681 0.0786 0.1118
100 0.0682 0.0826 0.0993 0.1463
200 0.0690 0.0927 0.1145 0.1754
300 0.0644 0.0941 0.1195 0.1913
400 0.0597 0.0898 0.1191 0.1984
500 0.0566 0.0833 0.1183 0.2045

Foursquare
Seed size m MRR Recall@5 Recall@10 Recall@50

50 0.0603 0.0932 0.1212 0.1627
100 0.0588 0.0893 0.1284 0.1972
200 0.0521 0.0752 0.1193 0.2279
300 0.0452 0.0636 0.1017 0.2266
400 0.0409 0.0565 0.0897 0.2211
500 0.0373 0.0492 0.0819 0.2113

The effect of the number of regions K. We also examine the performance of

CRCF and PAR with respect to the number of regions K. The result is shown in Figure

6.6 where K is represented by the x-axis. For all K tested, CRCF outperforms PAR. The

performance of CRCF can be affected by K to a certain extent. The performance of PAR

gradually improves as K increases except recall@50. Note that this result is obtained from

our test cases (i, j) in T where i has actually visited POI j, therefore, user i and the POI j

are always in the same region. Since a larger K produces smaller regions with fewer POIs

and PAR tends to recommend local POIs, a larger K increases the chance of hits. However,

a larger K also increases the possibility of visiting a “new city” and leads to less POIs in

each region. If the hits are not in the region of the user, PAR is expected to perform less

desirably.

The number of regions K also impacts the runtime of learning the location recommender

of CRCF, shown in Table 6.3, because the matrix M2 contains K virtual users for each real

user. Since the runtime of matrix factorization is proportional to the number of observed

ratings in the matrix and since M2 contains a copy of distance-adjusted ratings for each

region, the runtime for factorization based onM2 is proportional to K. As the performance

of CRCF is stable with a different K, we suggest that larger K is unnecessary. As discussed

88

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 10 20 30 40 50

PMF
CTR
STM
LCA
PAR
LOC
CON

CRCF

(a) Recall@5 at Yelp

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 10 20 30 40 50

PMF
CTR
STM
LCA
PAR
LOC
CON

CRCF

(b) Recall@5 at Foursquare

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50

PMF
CTR
STM
LCA
PAR
LOC
CON

(c) Runtime (s) at Yelp

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 20 30 40 50

PMF
CTR
STM
LCA
PAR
LOC
CON

(d) Runtime (s) at Foursquare

Figure 6.5: Performance vs D (the x-axis). K = 10

in Section 6.2.5, a large geographical space can be partitioned into multiple small-to-medium

geographical spaces and our method can be applied to each small-to-medium geographical

space independently. Therefore, K does not have to increase as the size of the geographical

space. Note that K does not affect the runtime of learning the content recommender of

CRCF.

Table 6.3: Runtime of learning the location recommender of CRCF (min) vs K

K 5 10 15 20 50 100
Yelp 1.46 2.88 4.31 5.97 14.85 29.43

Foursquare 1.04 1.98 2.91 3.85 9.55 18.87

89

 0

 0.02

 0.04

 0.06

 0.08

 0.1

5 10 15 20 50 100

CRCF
PAR

(a) MRR at Yelp

 0

 0.02

 0.04

 0.06

 0.08

 0.1

5 10 15 20 50 100

(b) MRR at Foursquare

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

5 10 15 20 50 100

(c) Recall@5 at Yelp

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

5 10 15 20 50 100

(d) Recall@10 at Yelp

 0

 0.05

 0.1

 0.15

 0.2

5 10 15 20 50 100

(e) Recall@50 at Yelp

 0

 0.02

 0.04

 0.06

 0.08

 0.1

5 10 15 20 50 100

(f) Recall@5 at Foursquare

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

5 10 15 20 50 100

(g) Recall@10 at Foursquare

 0

 0.05

 0.1

 0.15

 0.2

 0.25

5 10 15 20 50 100

(h) Recall@50 at Foursquare

Figure 6.6: Performances for different numbers of regions K

6.3.5 “New city” Testing

One claim about our method is the ability to deal with the “new city” problem, i.e., the

recommendation to a user who visits a city or region for the first time, therefore, does not

have any rating data in the city before. To evaluate this claim, we partition the POIs into

K = 10 regions by K-means clustering and fix the region index, pick 90% of the observed

ratings as the training set and take the rest as the test set such that, for each user, the

region in the test data did not appear in the training data. In other words, each user has

ratings in 9 regions as “home city” and the other region is treated as “new city”. Note that

the “home city” is not actually the home of user, but the regions where the user has already

90

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 5 10 15 20 25 30 35 40 45 50

PMF
CTR
STM
LCA
PAR
LOC
CON

CRCF

(a) Recall@n at Yelp

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 5 10 15 20 25 30 35 40 45 50

PMF
CTR
STM
LCA
PAR
LOC
CON

CRCF

(b) Recall@n at Foursquare

Figure 6.7: Recall@n vs n (the x-axis) in “new city” testing. K = 10

visited (even a few ratings), and the “new city” refers to the regions where the user has

never visited before. In this way, we could conduct 10-fold cross validation to evaluate the

performance of each method for a user visiting a “new city”.

Figure 6.7 presents the recall@n of all methods in “new city” testing. A cross examina-

tion with Figure 6.4 shows that all the methods perform similarly in both general testing

and “new city” testing except PAR. A large decrease in recall is observed for PAR, which

is not surprising because PAR takes only a portion of training data while others take the

whole training data to build the model. In the “new city” setting, the user never rated

a POI in the region of testing data, so she is the cold user for PAR in that region. As

PAR is the location-aware version of PMF, it definitely performs bad facing the cold users.

The other methods, adopting the whole training data, can benefit the collaborative learning

across different regions. From the “new city” testing, we suggest that a direct data partition

and building regional models is unsatisfactory. Besides, only recommending the POIs in

the current region like PAR is not practical.

6.4 Summary

This chapter proposed a cross-region collaborative filtering for location-based recommen-

dation. The empirical studies on real life LBSN service data supported our claim that

cross-region collaborative filtering helps address the vulnerability of data sparsity while fac-

toring in the location influence and leads to more correct ranking of POIs. The superior

performance of the proposed method also supported our approach of distinguishing user’s

91

long-term content preferences and user’s short-term location preferences, and the different

strategies for modeling such preferences.

92

Chapter 7

Conclusion

Data mining in real life recommender systems is a hot topic due to large amount of avail-

able data in social media and user’s high demands in personalized recommendation. The

fundamental of recommender systems is to estimate user’s preferences on items accurately,

and comprehensive works have been done to predict the user’s preferences based on the

rating matrix. However, there exist different kinds of side information in real life applica-

tions beyond the rating matrix. In this thesis, we focused on recommender systems with

rich side information. We believe that content information helps to recognize and explain

the user interests in an explicit way; temporal information helps to model the evolution of

user interests over time; spatial information helps to indicate the user mobility pattern and

activity areas for feasible recommendation. The state-of-the-art treated side information as

add-on to the traditional approaches for better performances, as reviewed in Chapter 2.

In this thesis, we proposed several novel methods to handle the side information in rec-

ommender systems. In Chapter 3, we proposed a feature-centric recommendation approach

to model the feature-level preference because we believe that the user prefers an item due

to some specific features on it. Different from previous works that are item-centric, our

approach learns the feature-level preferences and the relevant weight for each feature, and

then predicts user’s preferences on items through the feature-level preference. Evaluation

results on four data sets showed that the proposed approach demonstrated its superiority

over item-centric approaches in terms of recommendation accuracy.

In Chapter 4, we studied the scientific paper recommendation in heterogeneous academic

networks. We pointed out that both content and attributes (e.g., author, venue, etc.) could

be a good indicator for paper recommendation and proposed a unified latent factor model to

blend both content information and attribute information. Compared to the previous works

93

with no side information or only content information, our method achieved considerable

improvement on DBLP data set.

In Chapter 5, we focused on the temporal effects in recommender systems where user’s

interests may change over time. We proposed temporal matrix factorization to model such

dynamics by introducing and learning a transition matrix for each user’s latent vectors. This

transition matrix captures the time-invariant pattern of the evolution for user’s preferences,

and helps to predict user’s adoption in future. Both temporal matrix factorization and its

fully Bayesian version showed their effectiveness through the empirical studies on six data

sets.

In Chapter 6, we studied the problem of recommending POIs to a user according to the

user current location and past check-in activities, where the spatial information plays an

important role to restrict the feasible areas for recommendation. We proposed a cross-region

collaborative filtering to distinguish the user’s long-term interests and short-term interests.

The long-term interests are learnt through content recommmender which takes the advan-

tage of the feature-centric recommendation, and the short-term interests are learnt through

location recommender which considers the proximity of the POI location and the user’s cur-

rent location. The final recommendation is generated by the itemset re-ranking of content

recommmender and location recommender. Experiment results shows the effectiveness of

our methods on two location-based data sets.

This thesis is ended up with several promising directions for future work. We briefly

discuss these directions:

• Recommendation with constraints

Recommendation with constraints is rarely considered in literature, regardless of its

practicability in real life applications. For example, there are limited resources in job

recommendation and limited budget in travel recommendation. Some users may be

unavailable to attend the social event due to the conflict of time so that this constraints

should be considered in the event recommendation. Such constraints could be another

kind of side information and well-designed recommender systems had better take these

constraints into consideration.

• More complex scenarios

This thesis basically dealt with each kind of side information in separate. Although

the heterogeneous information is considered in Chapter 4 and both content informa-

tion and spatial information is considered in Chapter 6, the recommender systems on

94

a daily basis may meet more complex scenarios. e.g., a recommender system with con-

tent, temporal, spatial and budget information. To this end, a comprehensive model

taking all information into consideration or ensemble learning of different models in

separate is a promising direction.

• Sequential recommendation

Extending the current techniques for recommending a sequence of items in order

instead of a single item is another possible future work. We believe that the order is

an important factor to influence the user’s preferences and the itemset itself should

also match the user’s interests. Such sequential recommendation can be applied to

trip recommendation.

• Evaluation metrics

Currently, the state-of-the-art measures the recommender system in terms of error-

specific metrics (RMSE, MAE, etc.) or ranking-specific metrics (recall, MRR, etc.),

which only focus on prediction accuracy. It is an interesting study to adopt other

evaluation metrics such as diversity, serendipity and novelty for the efficacy of recom-

mender systems.

• Cold start problem

Cold start is a common issue in recommender systems. Although the cold start prob-

lem is not the main focus of this thesis, the feature-centric recommendation proposed

in Chapter 3 can deal with it if the cold item shares some features already existed in

the systems. Further research is still needed to resolve the cold start problem.

• User feedback

User feedback is another kind of side information for improving the recommender sys-

tems. Since the user feedback reflects whether the user adopted the recommendation

or not, the recommender system should be dynamically updated according to user

feedback. Evolving the recommender system with user feedback is currently absent

in literature and further research is needed in this direction.

95

Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering, 17(6):734–749, 2005.

[2] Natalia Adrienko and Gennady Adrienko. Spatial generalization and aggregation of
massive movement data. IEEE Transactions on Visualization and Computer Graphics,
17(2):205–219, 2011.

[3] Deepak Agarwal and Bee-Chung Chen. Regression-based latent factor models. In ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 19–28. ACM,
2009.

[4] Deepak Agarwal and Bee-Chung Chen. flda: matrix factorization through latent dirich-
let allocation. In Proceedings of the third ACM international conference on Web search
and data mining, pages 91–100. ACM, 2010.

[5] Deepak Agarwal, Bee-Chung Chen, and Bo Pang. Personalized recommendation of user
comments via factor models. In EMNLP, pages 571–582. Association for Computational
Linguistics, 2011.

[6] Jie Bao, Yu Zheng, and Mohamed F Mokbel. Location-based and preference-aware
recommendation using sparse geo-social networking data. In ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, pages 199–208,
2012.

[7] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the
Journal of machine Learning research, 3:993–1022, 2003.

[8] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong Yu.
Svdfeature: a toolkit for feature-based collaborative filtering. The Journal of Machine
Learning Research, 13(1):3619–3622, 2012.

[9] Chen Cheng, Haiqin Yang, Irwin King, and Michael R Lyu. Fused matrix factorization
with geographical and social influence in location-based social networks. In AAAI
Conference on Artificial Intelligence, volume 12, pages 17–23, 2012.

[10] Chen Cheng, Haiqin Yang, Michael R Lyu, and Irwin King. Where you like to go next:
Successive point-of-interest recommendation. In International Joint Conferences on
Artificial Intelligence, pages 2605–2611. AAAI Press, 2013.

96

[11] Zhiyuan Cheng, James Caverlee, Krishna Yeswanth Kamath, and Kyumin Lee. To-
ward traffic-driven location-based web search. In ACM International Conference on
Information and Knowledge Management, pages 805–814, 2011.

[12] Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user move-
ment in location-based social networks. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1082–1090.
ACM, 2011.

[13] Freddy Chong Tat Chua, Richard Oentaryo, and Ee-Peng Lim. Modeling temporal
adoptions using dynamic matrix factorization. In IEEE International Conference on
Data Mining, 2013.

[14] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender
algorithms on top-n recommendation tasks. In Recsys, pages 39–46. ACM, 2010.

[15] Yi Ding and Xue Li. Time weight collaborative filtering. In ACM International Con-
ference on Information and Knowledge Management, pages 485–492, 2005.

[16] Yi Ding, Xue Li, and Maria E Orlowska. Recency-based collaborative filtering. In
Proceedings of the 17th Australasian Database Conference-Volume 49, pages 99–107.
Australian Computer Society, Inc., 2006.

[17] Matthias Fuchs and Markus Zanker. Multi-criteria ratings for recommender systems:
an empirical analysis in the tourism domain. Springer, 2012.

[18] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle, and Lars
Schmidt-Thieme. Learning attribute-to-feature mappings for cold-start recommenda-
tions. In IEEE International Conference on Data Mining, pages 176–185. IEEE, 2010.

[19] Fatih Gedikli and Dietmar Jannach. Rating items by rating tags. In Proceedings of the
2010 Workshop on Recommender Systems and the Social Web at ACM RecSys, pages
25–32, 2010.

[20] Fatih Gedikli and Dietmar Jannach. Improving recommendation accuracy based on
item-specific tag preferences. ACM Transactions on Intelligent Systems and Technology
(TIST), pages 11:1–11:19, 2013.

[21] Zoubin Ghahramani and Michael I. Jordan. Factorial hidden markov models. Machine
learning, 29(2-3):245–273, 1997.

[22] Thomas L Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of the
National Academy of Sciences, 101(suppl 1):5228–5235, 2004.

[23] Eui-Hong Sam Han and George Karypis. Feature-based recommendation system. In
ACM International Conference on Information and Knowledge Management, pages
446–452. ACM, 2005.

[24] Liangjie Hong, Aziz S Doumith, and Brian D Davison. Co-factorization machines:
modeling user interests and predicting individual decisions in twitter. In ACM Inter-
national Conference on Web Search and Data Mining, pages 557–566. ACM, 2013.

97

[25] Bo Hu and Martin Ester. Spatial topic modeling in online social media for location
recommendation. In RecSys, pages 25–32, 2013.

[26] Mohsen Jamali and Martin Ester. A transitivity aware matrix factorization model for
recommendation in social networks. In International Joint Conferences on Artificial
Intelligence, pages 2644–2649, 2011.

[27] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Journal of basic Engineering, 82(1):35–45, 1960.

[28] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver. Mul-
tiverse recommendation: n-dimensional tensor factorization for context-aware collabo-
rative filtering. In Recsys, pages 79–86. ACM, 2010.

[29] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 426–434. ACM, 2008.

[30] Yehuda Koren. Collaborative filtering with temporal dynamics. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 447–456, 2009.

[31] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42(8):30–37, 2009.

[32] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceedings of the Sec-
ond Berkeley Symposium on Mathematical Statistics and Probability, pages 481–492.
University of California Press, 1951.

[33] Takeshi Kurashima, Tomoharu Iwata, Takahide Hoshide, Noriko Takaya, and Ko Fu-
jimura. Geo topic model: joint modeling of user’s activity area and interests for location
recommendation. In ACM International Conference on Web Search and Data Mining,
pages 375–384, 2013.

[34] Neal Lathia, Stephen Hailes, and Licia Capra. Evaluating collaborative filtering over
time. In Proceedings of the SIGIR 2009 Workshop on the Future of IR Evaluation,
pages 41–42. Citeseer, 2009.

[35] Neal Lathia, Stephen Hailes, and Licia Capra. Temporal collaborative filtering with
adaptive neighbourhoods. In ACM SIGIR conference on Research and development in
information retrieval, pages 796–797, 2009.

[36] Neal Lathia, Stephen Hailes, Licia Capra, and Xavier Amatriain. Temporal diversity
in recommender systems. In ACM SIGIR conference on Research and development in
information retrieval, pages 210–217. ACM, 2010.

[37] Tong Queue Lee, Young Park, and Yong-Tae Park. A time-based approach to effec-
tive recommender systems using implicit feedback. Expert systems with applications,
34(4):3055–3062, 2008.

[38] Tong Queue Lee, Young Park, and Yong-Tae Park. An empirical study on effective-
ness of temporal information as implicit ratings. Expert Systems with Applications,
36(2):1315–1321, 2009.

98

[39] Kenneth Wai-Ting Leung, Dik Lun Lee, and Wang-Chien Lee. Clr: a collaborative
location recommendation framework based on co-clustering. In ACM SIGIR conference
on Research and development in information retrieval, pages 305–314, 2011.

[40] Justin J Levandoski, Mohamed Sarwat, Ahmed Eldawy, and Mohamed F Mokbel. Lars:
A location-aware recommender system. In ICDE, pages 450–461. IEEE, 2012.

[41] Bin Liu, Yanjie Fu, Zijun Yao, and Hui Xiong. Learning geographical preferences
for point-of-interest recommendation. In ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 1043–1051, 2013.

[42] Bin Liu and Hui Xiong. Point-of-interest recommendation in location based social
networks with topic and location awareness. In Proceedings of the 2013 SIAM Inter-
national Conference on Data Mining, pages 396–404, 2013.

[43] Zhengdong Lu, Deepak Agarwal, and Inderjit S Dhillon. A spatio-temporal approach
to collaborative filtering. In Proceedings of the third ACM conference on Recommender
systems, pages 13–20. ACM, 2009.

[44] Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin King. Sorec: social recommen-
dation using probabilistic matrix factorization. In ACM International Conference on
Information and Knowledge Management, pages 931–940. ACM, 2008.

[45] Hao Ma, Dengyong Zhou, Chao Liu, Michael R Lyu, and Irwin King. Recommender
systems with social regularization. In ACM International Conference on Web Search
and Data Mining, pages 287–296. ACM, 2011.

[46] Shanle Ma, Xue Li, Yi Ding, and Maria E Orlowska. A recommender system with
interest-drifting. In International Conference on Web Information Systems Engineer-
ing, pages 633–642. Springer, 2007.

[47] Benjamin Marlin and Richard S. Zemel. The multiple multiplicative factor model for
collaborative filtering. In International Conference on Machine Learning, pages 73–80,
2004.

[48] Julian McAuley and Jure Leskovec. From amateurs to connoisseurs: Modeling the
evolution of user expertise through online reviews. In International World Wide Web
Conference. ACM, 2013.

[49] Radford M. Neal. Probabilistic inference using markov chain monte carlo methods.
Technical Report CRG-TR-93-1, 1993.

[50] Michael J. Pazzani. A framework for collaborative, content-based and demographic
filtering. Artificial Intelligence Reivew, 13:393–408, 1999.

[51] Herbert E Rauch, CT Striebel, and F Tung. Maximum likelihood estimates of linear
dynamic systems. AIAA journal, 3(8):1445–1450, 1965.

[52] Steffen Rendle. Factorization machines with libfm. ACM Transactions on Intelligent
Systems and Technology (TIST), 3(3):57:1–57:22, 2012.

[53] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B Kantor. Recommender
systems handbook, volume 1. Springer, 2011.

99

[54] Roberto Rösler and Thomas Liebig. Using data from location based social networks for
urban activity clustering. In Geographic Information Science at the Heart of Europe,
pages 55–72. Springer, 2013.

[55] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization
using markov chain monte carlo. In International Conference on Machine Learning,
pages 880–887, 2008.

[56] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In Ad-
vances in Neural Information Processing Systems, pages 1257–1264, 2008.

[57] Jitao Sang, Tao Mei, Jian-Tao Sun, Changsheng Xu, and Shipeng Li. Probabilistic
sequential pois recommendation via check-in data. In ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 402–405, 2012.

[58] Shilad Sen, Jesse Vig, and John Riedl. Tagommenders: connecting users to items
through tags. In International World Wide Web Conference, pages 671–680. ACM,
2009.

[59] Yelong Shen and Ruoming Jin. Learning personal+ social latent factor model for
social recommendation. In ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 1303–1311. ACM, 2012.

[60] Alex J Smola and Bernhard Scholkopf. A tutorial on support vector regression. Statis-
tics and computing, 14(3):199–222, 2004.

[61] John Z Sun, Kush R Varshney, and Karthik Subbian. Dynamic matrix factorization:
A state space approach. In ICASSP, pages 1897–1900, 2012.

[62] Waldo R Tobler. A computer movie simulating urban growth in the detroit region.
Economic geography, pages 234–240, 1970.

[63] Karen HL Tso-Sutter, Leandro Balby Marinho, and Lars Schmidt-Thieme. Tag-aware
recommender systems by fusion of collaborative filtering algorithms. In Proceedings of
the 2008 ACM symposium on Applied computing, pages 1995–1999. ACM, 2008.

[64] Alexey Tsymbal. The problem of concept drift: definitions and related work. Technical
Report TCD-CS-2004-15, Trinity College Dublin, 2004.

[65] Chong Wang and David M. Blei. Collaborative topic modeling for recommending
scientific articles. In ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 448–456, 2011.

[66] Edwin B Wilson. Probable inference, the law of succession, and statistical inference.
Journal of the American Statistical Association, 22(158):209–212, 1927.

[67] Liang Xiang, Quan Yuan, Shiwan Zhao, Li Chen, Xiatian Zhang, Qing Yang, and
Jimeng Sun. Temporal recommendation on graphs via long-and short-term preference
fusion. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
723–732, 2010.

100

[68] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff G Schneider, and Jaime G Carbonell.
Temporal collaborative filtering with bayesian probabilistic tensor factorization. In
SIAM International Conference on Data Mining, volume 10, pages 211–222, 2010.

[69] Shuang-Hong Yang, Bo Long, Alex Smola, Narayanan Sadagopan, Zhaohui Zheng,
and Hongyuan Zha. Like like alike: joint friendship and interest propagation in social
networks. In International World Wide Web Conference, pages 537–546. ACM, 2011.

[70] Mao Ye, Peifeng Yin, and Wang-Chien Lee. Location recommendation for location-
based social networks. In ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 458–461, 2010.

[71] Mao Ye, Peifeng Yin, Wang-Chien Lee, and Dik-Lun Lee. Exploiting geographical in-
fluence for collaborative point-of-interest recommendation. In ACM SIGIR conference
on Research and development in information retrieval, pages 325–334, 2011.

[72] Hongzhi Yin, Yizhou Sun, Bin Cui, Zhiting Hu, and Ling Chen. Lcars: a location-
content-aware recommender system. In ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, pages 221–229, 2013.

[73] Jing Yuan, Yu Zheng, and Xing Xie. Discovering regions of different functions in a city
using human mobility and pois. In ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 186–194, 2012.

[74] Chenyi Zhang, Ke Wang, Ee-peng Lim, Qinneng Xu, Jianling Sun, and Hongkun Yu.
Are features equally representative? a feature-centric recommendation. In AAAI Con-
ference on Artificial Intelligence, pages 389–395, 2015.

[75] Yi Zhen, Wu-Jun Li, and Dit-Yan Yeung. Tagicofi: tag informed collaborative filtering.
In Recsys, pages 69–76. ACM, 2009.

[76] Vincent W Zheng, Yu Zheng, Xing Xie, and Qiang Yang. Collaborative location and
activity recommendations with gps history data. In International World Wide Web
Conference, pages 1029–1038, 2010.

[77] Yu Zheng, Lizhu Zhang, Zhengxin Ma, Xing Xie, and Wei-Ying Ma. Recommending
friends and locations based on individual location history. ACM Transactions on the
Web, 5(1):1–44, 2011.

[78] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting locations and
travel sequences from gps trajectories. In International World Wide Web Conference,
pages 791–800, 2009.

[79] Tom Chao Zhou, Hao Ma, Irwin King, and Michael R Lyu. Tagrec: Leveraging tagging
wisdom for recommendation. In International Conference on Computational Science
and Engineering, volume 4, pages 194–199. IEEE, 2009.

101

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Taxonomy
	Latent Factor Model
	Topic Model

	Recommendation with Side Information

	Related Work: Beyond the Rating Matrix
	Recommendation with Content Information
	Similarity-based Approaches
	Latent Factor Models meet Topic Models
	Latent Factor Models with Regularization
	Factorization Machines

	Recommendation with Temporal Information
	Time Partition or Decay Model
	Temporal CF with Adaptive Neighbourhoods
	Latent Factor Models with Temporal Bias
	Kalman Filtering
	Tensor Factorization

	Recommendation with Spatial Information
	Location as Items
	Generative Models with Location
	Latent Factor Models with Location

	Feature-centric Recommendation
	Motivation
	Our Approach
	Comparison with Related Work

	Feature-Centric Recommendation
	Extracting User-Feature Rating Matrix
	Predicting Item Ratings by Heuristic
	Predicting Item Ratings through Regression

	Experimental Evaluation
	Data Sets
	Evaluated Methods
	Evaluation Metrics
	Experimental Results

	Summary

	Recommendation by Blending Content and Attributes
	Motivation
	Discussions
	Comparison with Related Work

	Model
	Item Information Processing
	First Cut Solutions
	Content + Attributes Model

	Experimental Evaluation
	Data Sets
	Evaluated Methods
	Evaluation Metrics
	Experimental Results

	Summary

	Temporal Matrix Factorization
	Motivation
	Contributions
	Comparison with Related Work

	Temporal Probabilistic Matrix Factorization
	Introducing Transition Matrix
	Modeling
	Inference

	The Fully Bayesian Model (BTMF)
	Modeling
	Inference

	Experimental Evaluation
	Evaluated Methods
	Data Sets
	Evaluation Metrics
	Experimental Results

	Summary

	Cross-region Collaborative Filtering
	Motivation
	Contributions
	Comparison with Related Work

	Methodology
	Preliminaries
	Predicting Content Preferences
	Predicting Location Preferences
	Recommending POIs
	Discussion

	Experimental Evaluation
	Data Sets
	Evaluated Methods
	Evaluation Metrics
	Experimental Results
	``New city'' Testing

	Summary

	Conclusion
	Bibliography

