
EXPLORING THE POWER OF FREQUENT

NEIGHBORHOOD PATTERNS ON EDGE WEIGHT

ESTIMATION

by

Li Xiong

B.Eng., Sichuan University, 2013

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

c© Li Xiong 2015

SIMON FRASER UNIVERSITY

Summer 2015

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Li Xiong

Degree: Master of Science

Title of Thesis: Exploring the Power of Frequent Neighborhood Patterns on

Edge Weight Estimation

Examining Committee: Dr. Binay Bhattacharya,

Professor, Chair

Dr. Jian Pei,

Professor, Senior Supervisor

Dr. Joseph Peters,

Professor, Supervisor

Dr. Ramesh Krishnamurti,

Professor, Internal Examiner

Date Approved: June 9th, 2015

ii

Abstract

Since links on social networks model a mixture of many factors, such as acquaintances and

friends, the problem of link strength prediction arises: given a social tie e = (u, v) in a

social network, how strong the tie e is? Previous work tackles this problem mainly by node

profile-based methods, i.e., utilizing users’ profile information. However, some networks do

not have node profiles. In this thesis, we study a novel problem of exploring the power

of frequent neighborhood patterns on edge weight estimation. Given a labeled graph, we

estimate its edge weights by applying its structural information as features. We develop an

efficient pattern-growth based mining algorithm to mine frequent neighborhood patterns as

features to estimate edge weights. Our experimental results on two real datasets show the

efficiency of our method and the effectiveness of the frequent neighborhood pattern based

features.

Keywords: graph mining; frequent pattern mining; social network; link strength

iii

To my parents and my brother.

iv

“I’m not young enough to know everything.”

— J. M. Barrie, (1860-1937)

v

Acknowledgments

I would like to express my deepest gratitude to my senior supervisor Dr. Jian Pei, for

his great patience, warm encouragement and continuous support throughout my Master’s

study. He shared with me not only valuable knowledge and the attitude to research, but

also the wisdom of life. Without his help, never can I accomplish this thesis.

I would like to thank Dr. Joseph Peters for being my supervisor and giving me helpful

suggestions on my thesis. I also thank Dr. Ramesh Krishnamurti and Dr. Binay Bhat-

tacharya for serving in my examining committee.

I am also very grateful to my friends during my Master’s study at Simon Fraser University

for their kind help. A particular thank goes to Junyi Shao, Yu Yang, Lin Liu, Beier Lu,

Jiaxing Liang, Lumin Zhang, Xiang Wang, Yu Tao, Xiaoning Xu, Guanting Tang, Xiangbo

Mao, Xiao Meng, Chuancong Gao, Juhua Hu, Zicun Cong, Xiaojian Wang, Xuefei Li and

Tong He.

I am so thankful for having my friend Peng Zhang at Purdue University for her encour-

agement during my Master’s study and insightful comments on my thesis.

Last but not least, my sincerest gratitude goes to my parents and my brother for their

endless love and support through all these years.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Tables ix

List of Figures x

1 Introduction 1

2 Related Work 4

2.1 Frequent Subgraph Mining . 4

2.1.1 Subgraph Mining in Graph Transactions 4

2.1.2 Subgraph Mining in a Single Large Graph 5

2.2 Link Strength Prediction . 7

3 Problem Definition 9

3.1 Preliminaries . 9

3.2 Problem Statement . 13

vii

4 The Pattern Mining Algorithm 14

4.1 The Pattern Growth Based Mining Algorithm 14

4.2 Pivoted Subgraph Isomorphism Test . 17

4.3 Pattern Extend Algorithm Revisited . 26

4.3.1 Pivoted Graph Isomorphism Test . 26

4.3.2 Pattern Children Generation . 27

5 Edge Weight Estimation 29

5.1 Framework . 29

5.2 Edge Feature Construction . 30

5.3 Regression Problem Formulation . 32

5.4 Gradient Boosting Overview . 33

5.4.1 The Gradient Boosting Model . 33

5.4.2 Model Parameters . 35

5.4.3 Time Complexity . 36

6 Experiments 37

6.1 Environments and Datasets . 37

6.2 Baseline Algorithms . 39

6.3 Efficiency of Our Pattern Mining Algorithm 40

6.4 Effectiveness of Frequent Neighborhood Pattern Features 45

7 Conclusions 49

Bibliography 51

viii

List of Tables

4.1 DFS Codes for the Pivoted Graphs in Figures 4.2 (a) - 4.2 (c) 22

5.1 Parameters of the Gradient Boosting Tree Regression Model 36

6.1 DBLP Dataset Statistics . 38

6.2 Tencent Weibo Dataset Statistics . 38

6.3 The Effect of τ and r on Estimation Performance on the DBLP Dataset . . . 46

6.4 The Effect of τ and r on Estimation Performance on the Tencent Weibo Dataset 47

6.5 Parameters of Gradient Boosting in Experiments 48

6.6 RMSE Comparison of Edge Weight Estimation on the DBLP Dataset 48

6.7 RMSE Comparison of Edge Weight Estimation on the Tencent Weibo Dataset 48

ix

List of Figures

3.1 An example of labeled graph and neighborhood pattern. 10

4.1 Example of one edge growth of neighborhood pattern. 17

4.2 DFS trees of pivoted graph and the forward/backward edge sets. 18

4.3 All the children of the pivoted graph Ppa in Figure 4.1 by rightmost extension. 28

5.1 An example of counting the number of pattern matches. 32

6.1 Edge weight distribution of the DBLP dataset. 38

6.2 Edge weight distribution of the Tencent weibo dataset. 39

6.3 The number of patterns under different supports and pattern sizes on the

DBLP dataset. 41

6.4 Running time comparison between our algorithm and Apriori base algorithm

under 4 support threshold values on the DBLP dataset. In each subfigure,

the curves show the running time under different pattern size constraints. . . 42

6.5 The number of patterns under different supports and pattern sizes on the

Tencent weibo dataset. 43

6.6 Running time comparison between our algorithm and Apriori base algorithm

under 4 support threshold values on the Tencent weibo dataset. In each sub-

figure, the curves show the running time under different pattern size constraints. 44

x

Chapter 1

Introduction

With the popularity of social networks, such as Facebook, Twitter, and LinkedIn, people

get connected more easily than ever before because of the low cost of link formation. Inter-

estingly, recent studies [14, 9] show that the number of followers and followees of a user in

a social network does not indicate the number of friends the user has. In fact, users have a

much smaller number of friends compared with the number of connections they declare in

social networks. For example, Huberman et al. [14] showed that users only interact with a

small number of people on Facebook while they have a large number of connections. Social

network ties model a mixture of factors, such as acquaintances and friends. To better under-

stand the links in social networks, the problem of tie strength prediction arises [33, 8, 17]:

given a tie e with two endpoints u and v, tie strength prediction is to predict how strong

the connection between u and v.

Existing approaches on the tie strength prediction rely highly on node profile informa-

tion. For example, Xiang et al. [33] proposed an unsupervised model to estimate relationship

strength based on profile similarity and interaction activities. A profile consists of informa-

tion such as hometown, school, employer, etc. Interaction activities on Facebook include

poke, picture tagging, and so on. However, there are two limitations to this: (1) there is no

straightforward profiles for nodes in some networks, such as DBLP bibliographical network

and, (2) there is a potential for incompleteness of node profile information which is vital

for profile based methods. For example, Abel et al. [1] showed that, in the sample dataset

they crawled from Twitter, only 48.9% users on average complete their profile attributes.

Therefore, a follow-up question arises naturally: can we develop some profile free methods

to estimate tie strength?

1

CHAPTER 1. INTRODUCTION 2

Most recently, topological features were successfully applied to link prediction, i.e., pre-

dicting the existence of a link in the future based on the current network structure [28].

Taskar et al. [30] showed that the principle of homophily [25] can be used to improve the

performance of link prediction in relational data. Intuitively, the homophily suggests that

an interaction between similar people occurs at a higher rate than dissimilar people. The

curiosity about link strength, the intuitiveness of homophily, and the success of topologi-

cal features on link prediction motivate the research question in this thesis: given an edge

e = (u, v), if e can be represented by topological features, can we estimate the edge weight of

e effectively without the profiles of u and v?

Thus, to address our research question, we further ask: (1) how can we find structural

features to represent an edge in a network and, (2) given the topological features of edges,

how do we estimate edge weights?

For the first question, we develop a method to construct the topological features of an

edge e = (u, v) based on u’s and v’s frequent neighborhood patterns defined by Han and

Wen [11]. Details about feature construction will be explained in Chapter 5. Frequent

neighborhood patterns carry rich semantics about the behaviours and the roles of their

pivot nodes in the patterns. For example, in the DBLP bibliographical network, a frequent

neighborhood pattern may indicate that most authors cite their own papers. In social

networks, a frequent neighborhood pattern may represent a person who is a professor and a

hockey fan as well. However, the frequent pattern mining algorithm described by Han and

Wen [11] is inefficient in both time and memory, since it adopts an Apriori [2] based, breadth

first search pattern mining scheme. In this thesis, inspired by gSpan [34] which is a frequent

subgraph mining algorithm under graph transaction setting, we propose a pattern growth

based frequent neighborhood pattern mining algorithm. We further accelerate the pivoted

subgraph isomorphism test [11] process by applying minimum DFS encoding, a canonical

labeling system for graph. Experimental results show the superiority of our pattern mining

algorithm compared with the Apriori based pattern mining algorithm [11].

To address the second question, we formulate the edge weight estimation problem as a

regression problem. The features are structural information of edges, and the target values

are the corresponding edge weights. In our problem, considering that the feature vectors

are represented by a sparse 0-1 matrix, we apply a gradient boosting regression [7] model to

it. It has two advantages compared with other frequently used regression models, such as

general linear regression [23], support vector machine (SVM) [29] based regression and neural

CHAPTER 1. INTRODUCTION 3

network [27] based regression: (1) gradient boosting is able to learn complicated relations

among features, which is the advantage of tree based regression over linear regression and,

(2) training a gradient boosting regression model is more efficient than training a SVM or

neural network based regression model.

We summarize our contributions as follows.

• To the best of our knowledge, we are the first to formalize the problem of exploring

the power of frequent neighborhood patterns on edge weight estimation.

• We design an efficient pattern growth based frequent neighborhood pattern mining

algorithm.

• We explore the ways to construct structural features for edge weight estimation.

• We empirically show the efficiency of our proposed pattern mining algorithm and the

effectiveness of frequent neighborhood pattern based features on real datasets.

The rest of the thesis is organized as follows. We review the related work in Chapter 2.

In Chapter 3, we formulate the problem of exploring the power of frequent neighborhood

patterns on edge weight estimation. In Chapter 4, we present our pattern growth based

frequent neighborhood pattern mining algorithm. In Chapter 5, we discuss the method

to construct edge features based on frequent neighborhood patterns, and introduce the

regression model for edge weight estimation. We report the experimental results in Chapter

6. Finally, Chapter 7 concludes this thesis.

Chapter 2

Related Work

Our problem of exploring the power of frequent neighborhood patterns on edge weight

estimation is related to the existing work on frequent subgraph mining and link strength

prediction. In this chapter, we provide a brief review on some major related work and

discuss the differences between our work and the existing ones.

2.1 Frequent Subgraph Mining

The problem of frequent subgraph mining (a.k.a. frequent pattern mining), is to find sub-

graphs, which occur frequently from either a graph transaction database or a single large

graph. In the following sections, we will not distinguish subgraphs from patterns when there

is no ambiguity. The existing work can be divided into two categories: graph transaction

based and single large graph based frequent subgraph mining.

2.1.1 Subgraph Mining in Graph Transactions

Mining frequent subgraphs from graph transaction databases is well-investigated in litera-

ture. In this section, we briefly review the most representative greedy search based methods

[13, 15, 18, 26, 34].

The definition of occurrence counting measure (support) under the graph transaction

database scenario is straightforward. Given a subgraph G′ and a graph database {Gi, i =

1, 2, . . . , n}, the support of G′ is the size of the set {i | G′ ' Gi, i = 1, 2, . . . , n}. The symbol

' stands for subgraph isomorphism. Obviously, it satisfies the downward closure property

4

CHAPTER 2. RELATED WORK 5

(also called anti-monotonicity) [2], which requires that the support of a pattern does not

exceed that of its sub-patterns.

Inokuchi et al. [15] proposed an efficient algorithm, called AGM, on finding all frequent

induced subgraphs in a graph database. An induced subgraph is a subset of the nodes of

a graph G together with any edges whose endpoints are both in this subset. AGM utilizes

the anti-monotonicity of the support to prune infrequent subgraphs. In this way, a lot of

search space is reduced. Kuramochi et al. [18] further developed the idea of AGM using

a more efficient graph representation structure. Their algorithm is called FSG, which is to

find all the frequent connected subgraphs. FSG focuses on memory efficiency and algorithm

scalability. Both AGM [15] and FSG [18] follow the Apriori based candidate expansion

scheme. A size k + 1 candidate is generated by joining two size k ones. AGM [15] extends

a candidate by adding one vertex, while FSG [18] extends a candidate by adding one edge.

The deficiencies are: (1) the pattern join operation is costly and, (2) a lot of false positives

need to be pruned.

In order to make subgraph mining more efficient, McPherson et al. [26] investigated the

use of the quickstart principle. The intuition is that searching frequent structures separately

in an increasing complexity order (frequent paths, frequent trees and frequent cyclic graphs)

can speed up the whole mining process. Yan and Han [34] proposed a pattern growth

based approach to extend the candidates. Under the pattern growth approach, a size k + 1

candidate is extended from a size k candidate directly (either by adding one edge or one

node, which depends on the definition of pattern size) instead of joining two size k ones.

Huan et al. [13] and Nijssen et al. [26] also adopted the pattern growth mechanism to

extend a subgraph. In addition, Yan and Han [34] designed a new canonical labeling system

called minimum DFS encoding to accelerate the process of subgraph isomorphism test.

Although the frequent subgraph mining algorithms under graph transaction setting can

not be applied to the problem under a single large graph setting directly, the optimiza-

tion techniques used in the subgraph isomorphism test and subgraph candidate generation

methods are applicable with minor modifications.

2.1.2 Subgraph Mining in a Single Large Graph

Different from the research status quo of graph transaction based frequent subgraph mining,

the problem under a single large graph setting is still under exploration. It is tricky because

there is no straightforward support definition of a subgraph, which satisfies the downward

CHAPTER 2. RELATED WORK 6

closure property. However, it is the key to do pruning in the candidate generation stage and

further leads to an efficient mining algorithm.

Kuramochi et al. [19] and Vanetik et al. [32] proposed the maximum independent set

(MIS) based support measure (MIS-support) and the corresponding frequent subgraph min-

ing algorithms in a single large labeled graph. However, in order to compute the support

of a subgraph, it needs to first solve the MIS problem which is NP-complete. Therefore,

this method is computationally expensive. Fiedler and Borgelt [5] defined a support based

on the MIS-support called harmful overlap support (HO-support). The HO-support re-

laxes the MIS-support by allowing overlapping embeddings which do not destroy the anti-

monotonicity of support. However, the HO-support still suffers from high computational

cost. Another anti-monotonic support measure, the minimum image based support (MNI-

support), was defined by Bringmann and Nijssen [4]. It is based on the number of unique

nodes in the graph G = (V,E) to which a node of the pattern p (a subgraph of G) is mapped.

The MNI-support is a support measure which avoids expensive MIS computations, thus it

can be efficiently computed. Its result set is a superset of the MIS-support and HO-support.

Therefore, by excluding unqualified subgraphs from the result set of the MNI-support mea-

sure, we can get the HO-support based results and the MIS-support based results. Han and

Wen [11] also proposed an anti-monotonic support measure, which counts the number of

nodes that can match the given subgraph with a pivot node specified. Under this support

definition, we can see that the frequent patterns mined reveal the local topological infor-

mation of the matching nodes. However, since Han and Wen [11] applied an Apriori based

pattern generation paradigm, it is not efficient in both time and memory when extending a

pattern, especially when a graph gets larger. In this work, we adopt the support measure

defined in [11]. There are two reasons: (1) the support of a pattern can be computed much

more efficiently than the other support measures discussed above and, (2) the frequent pat-

terns under this support measure carry the structural information of the matching nodes,

and we can further make use of this semantics. The detailed computational complexity of

this support will be discussed in Chapter 4.

In this thesis, we explore the power of frequent neighborhood patterns on edge weight

estimation. The first step of our work is to mine frequent neighborhood patterns (pivoted

subgraphs) from a single large graph, which is the same as the problem in [11]. However, our

work differs from theirs in two aspects. Firstly, we improve the pattern mining algorithm

proposed in [11]. Instead of extending subgraphs in an Apriori based breadth first search

CHAPTER 2. RELATED WORK 7

manner, we apply a pattern growth based depth first search scheme which is more efficient

in both space and time. Secondly, we further improve our pattern growth based algorithm

by applying minimum DFS encoding introduced in [34] to pattern generation and subgraph

isomorphism test, which makes our proposed algorithm even faster.

2.2 Link Strength Prediction

In literature, tie strength prediction [8] is also called edge weight estimation in graphs or

link strength prediction in heterogeneous information networks [17]. Let S denote a function

which maps a link to its strength, and u, v denote two endpoints of a link, respectively. The

strength can either be a discrete value, such as S : (u, v) → {strong,medium,weak}, or

a continuous value, such as S : (u, v) → R+
0 . The problem of tie strength prediction is to

predict how strong the connection S(u, v) is for two connected users u and v in a network

(or two endpoints of an edge in a graph).

Most existing methods are based on the property of homophliy [25] in social networks.

Homophily in social network theory postulates that similar users in a social network tend

to establish a social relation. The higher the similarity, the stronger the tie. It is likely that

the strength of link influences the frequency of interaction between users directly. Under the

assumption of homophily, Kahanda and Neville [17] proposed a supervised learning approach

to predict link strength on Facebook. They extracted features from four categories to train

classifiers, i.e., attribute similarity, topological connectivity, transactional connectivity, and

network-transactional connectivity. However, this work only differentiates between strong

ties and weak ties. In order to predict continuous relationship strength from weak to strong,

Xiang et al. [33] proposed a latent variable model based on profile similarity and social

network interactions.

The existing approaches to predict link strength all construct features from node pro-

file information. For example, node profile is user’s profile information such as hometown,

school, etc., on Facebook. To the best of our knowledge, there does not exist any previ-

ous work which predicts continuous link strength from weak to strong based on network

structural information rather than node profiles. In this thesis, we bridge the gap.

Most recently, Sun et al. [28] exploited meta-path in predicting co-author relationships

between existing authors in a heterogeneous bibliographic network. They declared higher

CHAPTER 2. RELATED WORK 8

prediction accuracy than traditional homogeneous topological feature based models intro-

duced in [22]. In this thesis, we study how topological information influences the formation

of links in a heterogeneous network. However, Sun et al. [28] focused on predicting the

existence of a new link using topological features and we focus on predicting the strength

of existing links.

There also exists another line of research similar to ours which aims to predict the sign

of relationship, i.e., positive (true friends) or negative (possible frenemy) [10, 20, 21, 35].

Guha et al. [10] applied a random walk based label propagation algorithm to predict the

sign of link. In [35], a latent model called Behavior Relation Interplay (BRI) was proposed

by Yang et al. to infer the sign of link. The basic idea in BRI is to infer the signs of social

ties based on the decision making behaviors of users. Leskovec et al. [20] solved the link

sign inference problem in a leave-one-out setting: given a social network with signs on all

links except for that from node u to node v, how reliably can one infer this sign s(u, v)?

They designed a classifier to predict s(u, v) which was trained by two classes of features,

i.e., node degree based features and balance theory based features. The balance theory of

social networks implies the intuition that “a friend of my friend is my friend” and “an enemy

of my enemy is my friend” [12]. Given the discovery of the correlation between frequent

neighborhood patterns and edge weights in this thesis, we can further explore how those

patterns affect the signs of links in the future.

Chapter 3

Problem Definition

In this chapter, we formulate our problem of exploring the power of frequent neighborhood

patterns on edge weight estimation. For the sake of simplicity, we follow the terminology

definitions in [11] throughout the thesis. At first, let us revisit the key concepts in [11]

and some essential preliminaries of our problem with a running example, followed by the

detailed statement of our problem.

3.1 Preliminaries

Definition 3.1 (Labeled Graph). Let Σv denote the node label alphabet. An undirected

labeled graph is a 4-tuple G = (V,E, l, w), where V is the set of nodes in G, E ⊆ V × V
is the set of edges in G, l is a labeling function l : V → ΣV and w is a weight function

w : E → N. Every node in G has exactly one label.

For example, Figure 3.1a shows a labeled graph, where the integers on edges are edge

weights, and uppercase letters are the labels of nodes.

Definition 3.2 (Pivoted Graph). A pivoted graph G = (G, vp) is a tuple of a labeled graph

G and a node vp ∈ V . vp is called the pivot of G.

We define a neighborhood pattern, or a pattern for short, P to be a connected

pivoted graph. For instance, Figure 3.1b shows two pivoted graphs P1 and P2, their pivots

are marked in grey. In terms of neighborhood pattern, we ignore the edge weights, and only

consider the topological structure of the graph. Without explicitly mentioning, the pivoted

graphs discussed in this thesis are connected pivoted graphs.

9

CHAPTER 3. PROBLEM DEFINITION 10

A

B

C

B

C

𝑣1

𝑣2 𝑣3 𝑣4

𝑣5

3

3

1

3

3

1

(a) A labeled graph. Integers on edges are
edge weights and uppercase letters are the la-
bels of nodes.

A

B

C

B

A

C

(b) Two pivoted graphs, pivots are marked in
grey.

Figure 3.1: An example of labeled graph and neighborhood pattern.

Definition 3.3 (Pivoted Subgraph Isomorphism). A pivoted graph G1 = (G1, vp1) is pivoted

subgraph isomorphic to a pivoted graph G2 = (G2, vp2), denoted by G1 ⊆p G2, if there exists

an injective function f : V1 → V2 such that:

• ∀v ∈ V1, l1(v) = l2(f(v))

• ∀(u, v) ∈ E1, (f(u), f(v)) ∈ E2

• f(vp1) = vp2

Definition 3.4 (Pivoted Graph Isomorphism). A pivoted graph G1 = (G1, vp1) is pivoted

graph isomorphic to a pivoted graph G2 = (G2, vp2), denoted by G1 'p G2, if there exists a

bijective function f : V1 → V2 such that:

• ∀v ∈ V1, l1(v) = l2(f(v))

• ∀(u, v) ∈ E1, (f(u), f(v)) ∈ E2

• f(vp1) = vp2

From Definition 3.3 and Definition 3.4, it is easy to see that pivoted graph isomorphism

is a special case of pivoted subgraph isomorphism.

Theorem 3.1. [11] The problem of pivoted subgraph isomorphism test is NP-complete.

CHAPTER 3. PROBLEM DEFINITION 11

Theorem 3.2. The problem of pivoted graph isomorphism test is in GI.

Proof. We can reduce the problem of graph isomorphism to the problem of pivoted graph

isomorphism in polynomial time as follows. Given two graphs G1 and G2, we add a node

vp1 to G1, connect vp1 with every node in G1, and set vp1 as the pivot of the pivoted graph

G1 = (G1, vp1). We then add a node vp2 to G2, connect vp2 with every node in G2, and set

vp2 as the pivot of the pivoted graph G2 = (G2, vp2). It is easy to see that if we solve the

problem of pivoted graph isomorphism test on G1 and G2, we solve the graph isomorphism

problem on G1 and G2, too. This is a polynomial time reduction.

Therefore, the problem of graph isomorphism test is no harder than the problem of

pivoted graph isomorphism test. Since there does not exist a polynomial time algorithm for

the graph isomorphism problem, it is also computationally expensive to solve the pivoted

graph isomorphism problem.

Property 3.1. The relations ⊆p and 'p are transitive.

Proof. Consider three arbitrary graphs G1, G2 and G3 such that G1 ⊆p G2, G2 ⊆p G3. Let

f12 be the injective function f12 : V1 → V2 and f23 be the injective function f23 : V2 → V3

both satisfying the requirements in Definition 3.3. Consider the injective function f13(v) =

f23(f12(v)), which maps V1 to V3. We then show that f13 certificates G1 ⊆p G3. First, for

any v ∈ V1, l1(v) = l2(f12(v)) = l3(f23(f12(v))) = l3(f13(v)). Second, for any (u, v) ∈ E1, we

have (f12(u), f12(v)) ∈ E2. By the definition of f23, we have (f23(f12(u)), f23(f12(v))) ∈ E3,

which means that (f13(u), f13(v)) ∈ E3. Third, we know that f12(vp1) = vp2 and f23(vp2) =

vp3, thus f13(vp1) = f23(f12(vp1)) = vp3. Therefore, G1 ⊆p G3 holds and ⊆p is transitive. By

a similar way, we can prove that the relation 'p is transitive, too.

Based on the definition of pivoted subgraph isomorphism, we define match between a

pivoted graph P and a node v of data graph G: P matches v in G if P is pivoted subgraph

isomorphic to the pivoted graph G = (G, v). For instance, in Figure 3.1, P1 matches node

v3 in G, and P2 matches node v1 and node v5 in G.

Definition 3.5 (Support). Given a labeled graph G = (V,E, l, w) and a pivoted graph P, let

MG(P) = {v ∈ V | P ⊆p (G, v)} be the set of all nodes in G that P matches. The support

of P in G is the size of MG(P).

CHAPTER 3. PROBLEM DEFINITION 12

Corollary 3.1. The problem of computing whether the support of a pattern is greater than

or equal to τ is NP-complete.

Proof. Consider the case when τ = 1. Given an instance 〈G,P, τ〉, this problem is equivalent

to the pivoted subgraph isomorphism test problem which is NP-complete. In other words, by

solving the support checking problem, we are able to solve the pivoted subgraph isomorphic

problem 〈G,P〉. Thus our problem is NP-hard. The solution of an instance of our problem

is verified in polynomial time. Therefore, our problem is NP-complete.

A frequent neighborhood pattern is a neighborhood pattern whose support is greater

than or equal to a threshold τ . In this thesis, we represent each node by a 0-1 feature

vector. The ith coordinate of this feature vector is 1 if the node matches the ith pattern.

The length of the feature vector is the total number of frequent neighborhood patterns.

Han and Wen [11] showed that the support in Definition 3.5 satisfies the downward closure

property. Specifically, if two neighborhood patterns Pi and Pj satisfy Pi ⊆p Pj , then∣∣MG(Pi)
∣∣ ≥ ∣∣MG(Pj)

∣∣. This property is very important in designing an efficient frequent

neighborhood pattern mining algorithm.

Definition 3.6 (Pattern Size). Given a labeled graph G = (V,E, l, w) and a pattern P =

(G, vp), the pattern size of P is the size of E.

Example 3.1 (Frequent Neighborhood Pattern and Pattern Size). Assume the support

threshold τ is 2. In Figure 3.1, according to Definition 3.3 and Definition 3.5, we get

MG(P1) = {v3}, and MG(P2) = {v1, v5}. The support of P2 is 2, and the support of P1 is

1. Therefore, P2 is a frequent neighborhood pattern and P1 is not. The pattern sizes of both

P1 and P2 are 3.

Definition 3.7 (Frequent Neighborhood Pattern Mining). Given a labeled graph G =

(V,E, l, w), a minimum support τ , and a maximum pattern size r , let

ζ(P, v) =

1 if P ⊆p (G, v)

0 otherwise

where P = (G′, v) is a neighborhood pattern, and G′ is a subgraph of G. Let

σ(P, G) =
∑
v∈V

ζ(P, v)

CHAPTER 3. PROBLEM DEFINITION 13

where σ(P, G) denotes the support of the pattern P in G, and let κ(P) denote the pattern

size of P. Frequent neighborhood pattern mining is to find all the connected pivoted graphs

such that σ(P, G) ≥ τ and κ(P) ≤ r.

3.2 Problem Statement

Given a labeled graph G, our problem is to explore the power of frequent neighborhood

patterns on edge weight estimation. Concretely, it consists of two steps: (1) mining fre-

quent neighborhood patterns from G and, (2) estimating edge weights by applying frequent

neighborhood patterns as features.

The problem in the first step is well-defined in Definition 3.7. For the second step, we

first formulate edge weight estimation as a regression problem since the edge weight is a

continuous variable. Then we apply gradient boosting to train a regression model to estimate

edge weights. The features for training the regression model are constructed using the

frequent neighborhood patterns. The method of applying frequent neighborhood patterns

to feature construction will be presented in Chapter 5. To measure the effectiveness of the

frequent neighborhood pattern based features on edge weight estimation, we compare the

root mean square error (RMSE) of our model with the RMSEs of three baseline algorithms.

The baseline algorithms will be introduced in Chapter 6.

In this thesis, we use the pattern size to constrain the number of frequent neighborhood

patterns. There are two reasons: (1) we focus on the semantics of neighborhood patterns of

a node rather than arbitrarily large patterns and, (2) the larger a pattern, the more running

time needed to compute its support and to check pivoted subgraph isomorphism. We set

a pattern size constraint to make a tradeoff between semantics carried by a neighborhood

pattern and time cost of pattern mining.

Chapter 4

The Pattern Mining Algorithm

In this chapter, we present the frequent neighborhood pattern mining algorithm which

follows the pattern growth based depth first search (DFS) paradigm [34]. First of all, we

introduce the overall picture of the algorithm, and then discuss the details of minimum DFS

encoding based pivoted subgraph isomorphism test as well as the corresponding pattern

extension algorithm.

4.1 The Pattern Growth Based Mining Algorithm

Algorithm 2 is the framework of this pattern growth based frequent pattern mining algo-

rithm. The algorithm starts from the frequent edge patterns. Each frequent edge pattern

is a frequent pivoted graph and has only one edge. Frequent edge patterns have been pre-

computed by Algorithm 1. Firstly, it constructs all possible 1-edge graphs. The edge in

each 1-edge graph is constructed by enumerating all possible combinations of node labels

(line 2 - line 4). For example, consider two node labels x and y, the edge constructed by

them is e = (u, v) with l(u) = x and l(v) = y. The pivot is the first node u in each 1-edge

pivoted graph. Then the support of each 1-edge pivoted graph will be computed (line 5).

The frequent ones will be added to the frequent edge pattern set fedge (line 6). For each

frequent edge pattern, we extend it by adding one edge to it in a depth first search manner.

Let k denote the size of a pattern, the algorithm which extends a size k pattern to a size

k + 1 pattern is displayed in Algorithm 3.

14

CHAPTER 4. THE PATTERN MINING ALGORITHM 15

Algorithm 1 Frequent Edge Pattern Mining Algorithm

Input: G: labeled graph, τ : support threshold

Output: fedge: frequent edge patterns

1: fedge← ∅
2: for each node label x ∈ Σv do

3: for each node label y ∈ Σv do

4: Construct a pivoted graph Ge with only one edge e = (u, v),

where l(u) = x, l(v) = y, pivot vp = u.

5: if σ(Ge) ≥ τ then

6: fedge← fedge ∪ {Ge}
7: end if

8: end for

9: end for

10: return fedge

Algorithm 2 Frequent Neighborhood Pattern Mining Algorithm

Input: G: labeled graph, fedge: frequent edge patterns, τ : support threshold, r: maximum

pattern size

Output: S: frequent neighborhood patterns

1: S ← ∅
2: for each frequent edge e ∈ fedge do

3: Pattern Extension(e, G, τ , r)

4: end for

CHAPTER 4. THE PATTERN MINING ALGORITHM 16

Algorithm 3 Pattern Extension Algorithm

Input: s: frequent neighborhood pattern candidate, G, τ , r

Output: S

1: if ∃P ∈ S, s 'p P then

2: return;

3: end if

4: S ← S ∪ {s}
5: Generate all the potential children of s with one edge growth;

6: for each child c do

7: if κ(c) ≤ r and σ(c) ≥ τ then

8: Pattern Extension(c, G, τ , r)

9: end if

10: end for

In Algorithm 3, we extend a frequent neighborhood pattern s (line 5). Before we gen-

erate the children of the current pattern s, we will first check whether the current frequent

neighborhood pattern candidate s already exists in S via a pivoted graph isomorphism test

(line 1). If s passes the test, which means it is a newly discovered frequent neighborhood

pattern, we add it to S (line 4) and generate the children of s by adding one edge (line 5).

The newly added edge can be an edge carrying a new node or an edge connecting two ex-

isting nodes. For instance, in Figure 4.1, when we extend the parent frequent neighborhood

pattern Ppa, we can generate its children like Pc1, and Pc2. The dashed lines are the newly

added edges in Pc1 and Pc2, respectively.

For every child generated, if it satisfies the size and support constraints, we will continue

extending it by calling the pattern extension procedure recursively (line 8); otherwise, the

procedure terminates.

Computing the size of a neighborhood pattern is trivial. The method we apply to

compute the support is enumerating all the occurrences of a neighborhood pattern s in G.

An optimization is the following. For each pattern, we maintain a set of nodes which are

the pivots of its occurrences. Next time, when we compute the support of its children,

according to the downward closure property of the support measure, we only check their

parent’s pivots set, which reduces the size of the search space substantially.

CHAPTER 4. THE PATTERN MINING ALGORITHM 17

B

 A

 B

𝑣1

𝑣2

𝑣3

B

 A

 B

𝑣1

𝑣2

𝑣3

 C

B

 A

 B

𝑣1

𝑣2

𝑣3 𝑣4

Figure 4.1: Example of one edge growth of neighborhood pattern.

4.2 Pivoted Subgraph Isomorphism Test

In order to accelerate the pivoted graph isomorphism test process, we borrow the idea of

checking whether two pivoted graphs have the same canonical labels from McKay et al.

[24]. A canonical labeling system maps a graph into a unique sequence. Yan and Han [34]

developed a canonical labeling system called minimum DFS encoding to map a graph. If

two graphs share the same minimum DFS code, these two graphs are isomorphic. However,

there exists an obvious difference between our problem and the problem solved by Yan and

Han [34]. In our problem we are checking pivoted graph isomorphism rather than graph

isomorphism. Therefore, we need different DFS code to represent a pivoted graph.

Before we define our minimum DFS encoding of pivoted graph, let us first refresh some

related concepts defined by Yan and Han [34]. We modify these concepts to fit our pivoted

graph context.

Definition 4.1 (DFS Tree of Pivoted Graph). Given a pivoted graph G, a DFS tree of G
is a spanning tree that results from performing a depth first search in G. The starting node

of a depth first search in G is the pivot of G.

It is obvious that a pivoted graph can have more than one DFS tree with different edge

growing orders. For example, Figures 4.2 (a) - 4.2 (c) are all pivoted graphs isomorphic to

the pivoted graph G on the left. The thickened edges in Figures 4.2 (a) - 4.2 (c) represent

three different DFS trees of G. Note that for all the different DFS trees of a pivoted graph

G, their pivots are the same with G, otherwise, they cannot be pivoted graphs isomorphic

CHAPTER 4. THE PATTERN MINING ALGORITHM 18

to G according to Definition 3.4.

Let T denote a DFS tree of a pivoted graph. We use subscripts to label the order of

depth first discovery of nodes.

DFS Subscripting. Given a DFS tree T of a pivoted graph G, let vi ≺T vj indicate

that vi is discovered before vj . ∀i, j, vi ≺T vj if i < j. Each node is assigned a subscript

from 0 to n − 1, where n is the total number of nodes in G. We call such a pivoted graph

G with subscripts to denote the order of node discovery as a subscripted pivoted graph,

denoted by GT . v0 is called the root of T and vn−1 is called the rightmost node. Note

that, in a DFS tree of a pivoted graph, v0 is always the pivot of G. The straight path from

v0 to vn−1 is called the rightmost path.

Example 4.1 (DFS Subscripting). In Figure 4.2 (a), there are 5 nodes in total. In the

DFS tree, the order of node discovery in the depth first search is v0, v1, v2, v3, v4, which

is consistent with the order of subscripts, namely, 0, 1, 2, 3, 4. For every pair of nodes vi

and vj, if vi is discovered before vj, i.e., vi ≺T vj, we have i < j, and vice versa. The root

is v0, and the rightmost node is v4. The rightmost path is (v0, v1, v2, v4).

X

 Y

 X

 Z

 Z

X

 X

 Y

 Z Z

(a)

X

 X

 Y

 Z Z

(b)

X

 Y

 Z

 Z

(c)

 X

𝑣0 𝑣0 𝑣0

𝑣1 𝑣1 𝑣1

𝑣2 𝑣2 𝑣2

𝑣3 𝑣3 𝑣3 𝑣4 𝑣4

𝑣4

Figure 4.2: DFS trees of pivoted graph and the forward/backward edge sets.

Definition 4.2 (Forward Edge Set and Backward Edge Set). Given a subscripted pivoted

graph GT , the forward edge set contains all edges in the DFS tree, denoted by Ef,T = {e |

CHAPTER 4. THE PATTERN MINING ALGORITHM 19

∀i, j, i < j, e = (vi, vj) ∈ E}, and the backward edge set contains all edges which are not

in the DFS tree, denoted by Eb,T = {e | ∀i, j, i > j, e = (vi, vj) ∈ E}.

In Figures 4.2 (a) - 4.2 (c), all the dashed edges are backward edges and all the thickened

edges are forward edges.

We define three partial orders ≺f,T , ≺b,T and ≺bf,T on Ef,T and Eb,T . Consider e1 =

(vi1 , vj1), e2 = (vi2 , vj2). We define

e1 ≺f,T e2,∀e1, e2 ∈ Ef,T , (4.1)

if j1 < j2.

e1 ≺b,T e2,∀e1, e2 ∈ Eb,T , (4.2)

if one of the following holds:

(1) i1 < i2;

(2) i1 = i2 and j1 < j2.

We also define

e1 ≺bf,T e2, (4.3)

if one the the following holds:

(1) e1 ∈ Eb,T , e2 ∈ Ef,T , i1 < j2;

(2) e1 ∈ Ef,T , e2 ∈ Eb,T , j1 ≤ i2.

Let the relation ≺E,T denote the combination of the three partial orders 4.1, 4.2 and

4.3.

Theorem 4.1. [34] The relation ≺E,T is a linear order.

Example 4.2 (Linear Order ≺E,T on Edges). In Figure 4.2 (a), consider three edges e1 =

(v1, v2), e2 = (v2, v0), and v3 = (v2, v3). According to the partial order 4.3, we have e1 ≺E,T
e2 , and e2 ≺E,T e3. Since e1 ≺E,T e2 and e2 ≺E,T e3, we have e1 ≺E,T e3 according to the

property of transitivity of ≺E,T .

Based on the concepts defined above, we define our key concepts for pivoted graph

isomorphism test below. For simplicity, we use an ordered pair of subscripts (i, j) to denote

an edge (vi, vj).

CHAPTER 4. THE PATTERN MINING ALGORITHM 20

Definition 4.3 (DFS Code of Pivoted Graph). Given a pivoted graph G and a DFS tree T

of G, the DFS code of G is an edge sequence α = {ei} constructed based on the linear order

≺E,T such that ei ≺E,T ei+1, where i = 0, ...,|E| − 2, and the pivot v0 is in the first edge

e0 = (0, 1) in a DFS code.

Example 4.3 (DFS Code of Pivoted Graph). Consider the pivoted graph in Figure 4.2 (a).

The corresponding DFS code is an edge sequence. Let α = {ei} denote the edge sequence.

We have α = {(0, 1), (1, 2), (2, 0), (2, 3), (3, 1), (2, 4)}. Every two adjacent edges ei and ei+1

satisfy ei ≺E,T ei+1, where i = 0, . . . ,|E| − 2.

Definition 4.4 (DFS Edge). A DFS edge is a 4-tuple, denoted by a = (i, j, l(i), l(j)),

which represents an edge in a subscripted pivoted graph GT = (G, vp), where i and j are the

subscripts of node vi and node vj, respectively, l(i) and l(j) indicate the labels of node vi

and node vj, respectively.

Example 4.4 (DFS Edge). In Figure 4.2 (a), consider the edge (1, 2). Its corresponding

DFS edge is (1, 2, X, Y), where 1 and 2 indicate the nodes v1 and v2, respectively, and X

and Y are the labels of v1 and v2, respectively.

To encode node labels into the DFS code of a subscripted pivoted graph, we represent an

edge in a DFS code as a DFS edge. For example, the DFS code of Figure 4.2 (a) with DFS

edge representation is α = {(0, 1, X, Y), (1, 2, X, Y), (2, 0, Y,X), (2, 3, Y, Z), (3, 1, Z,X),

(2, 4, Y, Z)}.
Given a subscripted pivoted graph, the method to construct its DFS code is presented

in Algorithm 4. Let Sold denote the set of nodes which are put into the DFS code, and α

denote the edge sequence of the DFS code. Firstly, add the pivot v0 to Sold, Sold = {v0}
(line 1). Then add the nodes vj ∈ V \ Sold to Sold one by one: (1) find the parent node vi

of vj (line 3), add a forward edge (vi, vj) to α (line 4) and, (2) for each node vk ∈ Sold, if

(vj , vk) ∈ E, add a backward edge (vj , vk) to α (line 5 - line 9). After finishing adding all

the forward and backward edges introduced by vj , we add vj to Sold (line 10). Repeat this

procedure to grow the code until all edges are included in the DFS code. The order of edge

addition guarantees the relation ≺E,T between two consecutive edges in a DFS code.

CHAPTER 4. THE PATTERN MINING ALGORITHM 21

Algorithm 4 DFS Code Construction

Input: GT = (G, vp): subscripted pivoted graph

Output: α: DFS code of GT
1: Initialize Sold ← {v0}
2: for j = 1 to n− 1 do

3: Find the parent vi of vj

4: Add a forward edge (vi, vj) to DFS code α← α ∪ {(i, j, l(i), l(j))}
5: for each vk ∈ Sold with subscript k in ascending order do

6: if (j, k) ∈ E then

7: Add a backward edge to DFS code α← α ∪ {(j, k, l(j), l(k))}
8: end if

9: end for

10: Sold ← Sold ∪ {vj}
11: end for

12: return α

Claim 4.1. The Algorithm 4 is correct.

Proof. Let α = {at} denote the DFS code outputted by Algorithm 4 from input–a sub-

scripted pivoted graph GT . We prove that, for each t = 0, 1, . . . , |E| − 2, at ≺E,T at+1.

Suppose there are t DFS edges in α so far, the tth edge is denoted by at = (it, jt, l(it), l(jt)).

Suppose that vj is the next node to be added to Sold, and let Ej denote the set of edges

introduced by adding the new node vj to Sold, and kEj denote the size of the set Ej . The

edge(s) in Ej can be:

1. only one forward edge at+1 = (it+1, jt+1, l(it+1), l(jt+1)), where vit+1 is the parent of

vj and jt+1 = j. We prove that, at ≺E,T at+1. If at is a forward edge, since jt < jt+1,

at ≺E,T at+1 holds. If at is a backward edge, according to the partial order 4.3,

at ≺E,T at+1 holds because it < jt+1.

2. one forward edge at+1 = (it+1, jt+1, l(it+1), l(jt+1)) and kEj − 1 backward edges. Let

at+r = (it+r, jt+r, l(it+r), l(jt+r)), where 2 ≤ r ≤ kEj .

We first prove at+1 ≺E,T at+r, where 2 ≤ r ≤ kEj . Since all the backward edges

are grown from node vj , we have it+r = j for 2 ≤ r ≤ kEj . Because jt+1 = j, we

CHAPTER 4. THE PATTERN MINING ALGORITHM 22

have jt+1 = it+r, where 2 ≤ r ≤ kEj . According to the partial order 4.3, we have

at+1 ≺E,T at+r, where 2 ≤ r ≤ kEj .

Then we prove for arbitrary two backward edges at+r = (it+r, jt+r, l(it+r), l(jt+r))

and at+r+1 = (it+r+1, jt+r+1, l(it+r+1), l(jt+r+1)), where 2 ≤ r ≤ kEj − 1, we have

at+r ≺E,T at+r+1. Since it+r = it+r+1 = j and jt+r < jt+r+1 (line 5), according to the

partial order 4.1, we have at+r ≺E,T at+r+1.

Finally, the relation at ≺E,T at+1 can be proved in the same way as that in the first

case.

And all the edges in the pivoted graph GT have been included in this DFS code (line 2 - line

11), thus the Algorithm 4 is correct.

By following Algorithm 4, we construct the DFS codes for the DFS trees shown in

Figures 4.2 (a) - 4.2 (c), which are shown in Table 4.1. The edge no. in the first column

indicates the order of DFS edges in the corresponding DFS code.

Table 4.1: DFS Codes for the Pivoted Graphs in Figures 4.2 (a) - 4.2 (c)

edge no. (a) α (b) β (c) γ

0 (0, 1, X, X) (0, 1, X, X) (0, 1, X, Y)

1 (1, 2, X, Y) (1, 2, X, Y) (1, 2, Y, X)

2 (2, 0, Y, X) (2, 0, Y, X) (2, 0, X, X)

3 (2, 3, Y, Z) (2, 3, Y, Z) (2, 3, X, Z)

4 (3, 1, Z, X) (2, 4, Y, Z) (3, 1, Z, Y)

5 (2, 4, Y, Z) (4, 1, Z, X) (1, 4, Y, Z)

Property 4.1 (DFS Code’s Neighborhood Restriction). Given a pivoted graph G, a DFS

tree T , a DFS code α = code(G, T) = (a0, a1, ..., am), m ≥ 2, and two consecutive ele-

ments on the code ak and ak+1(0 ≤ k < m). Let ak = (ik, jk, l(ik), l(jk)), and ak+1 =

(ik+1, jk+1, l(ik+1), l(jk+1)), then ak and ak+1 must agree with the following rules:

rule 1. if ak is a backward edge, then one of the following holds.

• if ak+1 is a forward edge, then ik+1 ≤ ik and jk+1 = ik + 1;

• if ak+1 is a backward edge, then ik+1 = ik and jk < jk+1.

rule 2. if ak is a forward edge, then one of the following holds.

CHAPTER 4. THE PATTERN MINING ALGORITHM 23

• if ak+1 is a forward edge, then ik+1 ≤ jk and jk+1 = jk + 1;

• if ak+1 is a backward edge, then ik+1 = jk and jk+1 < ik.

Proof. The definition of DFS code of a pivoted graph requires ak ≺E,T ak+1. For rule 1,

(1) if ak is a backward edge and ak+1 is a forward edge, according to the partial order 4.3,

there should be ik < jk+1. According to Algorithm 4, Note that the DFS code is unique

for a given DFS tree. ik+1 must be a node in Sold, thus ik+1 ≤ ik holds; and jk+1 must be

the next node which will be added to Sold, since previously added node is ik, jk+1 = ik + 1

holds; (2) if ak+1 is a backward edge, according to Algorithm 4, two consecutive backward

edges must grow from the same node, which in this case is ik, hence ik+1 = ik holds; because

ak ≺b,T ak+1, jk < jk+1 holds. By a similar way, we can prove rule 2.

From above discussion, it is clear that the positions of the edges in a DFS code cannot

be exchanged randomly, otherwise the relation ≺E,T between two consecutive DFS edges in

a DFS code will not hold. For instance, we cannot change the position of edge no. 2 and

edge no. 3 of code α in Table 4.1. Moreover, we can see that a pivoted graph can have

more than one DFS code with different node permutations. The minimum DFS encoding,

as a canonical labeling system, must select one as the unique representation of a pivoted

graph. The following discussion provides a design of linear order among all DFS codes of a

pivoted graph. Based on that linear order, the smallest DFS code of a pivoted graph will

be selected as the canonical label.

Definition 4.5 (DFS Lexicographic Order). Suppose Z = {code(G, T) | T is a DFS tree of

G}, Suppose there is a linear order (≺L) in the label set ΣV , then the combination of ≺E,T
and ≺L is a linear order ≺e on the set E × ΣV × ΣV . DFS Lexicographic Order is a

linear order defined as follows. If α = code(Gα, Tα) = (a0, a1, ..., am) and β = code(Gβ, Tβ) =

(b0, b1, ..., bn), α, β ∈ Z, then α ≤ β if one of the following is true:

• ∃t, 0 ≤ t ≤ min(m,n), s.t. ak = bk for k < t, and at ≺e bt

• ak = bk for 0 ≤ k ≤ m, and n ≥ m.

More specifically, the DFS Lexicographic Order in Z is defined as follows. Consider

two DFS codes α = code(Gα, Tα) = (a0, a1, . . . , am) and β = code(Gβ, Tβ) = (b0, b1, . . . , bn),

α, β ∈ Z, then α ≤ β if one of the following is true. Assume the forward edge set and

CHAPTER 4. THE PATTERN MINING ALGORITHM 24

backward edge set for the subscripted pivoted graphs GTα and GTβ are Eα,f , Eα,b, Eβ,f and

Eβ,b, respectively. Let at = (ia, ja, l(ia), l(ja)) and bt = (ib, jb, l(ib), l(jb)),

1. for t, 0 ≤ t ≤ min{m,n}, we have ak = bk for k < t, and

at ≺e bt =



true, if at ∈ Eα,b, and bt ∈ Eβ,f

true, if at ∈ Eα,b, bt ∈ Eβ,b, and ja < jb

true, if at ∈ Eα,f , bt ∈ Eβ,f , and ib < ia

true, if at ∈ Eα,f , bt ∈ Eβ,f , ia = ib and l(ia) ≺L l(ib)

true, if at ∈ Eα,f , bt ∈ Eβ,f , ia = ib, l(ia) = l(ib), and l(ja) ≺L l(jb)
(4.4)

2. ak = bk for 0 ≤ k ≤ m, and n ≥ m

For the subscripted pivoted graphs in Figures 4.2 (a) - 4.2 (c) and their corresponding

DFS codes in Table 4.1, if the linear order ≺L on their node labels is X ≺L Y ≺L Z, according

to Definition 4.5, the order among them is α < β < γ. To show how the comparison between

two DFS codes works, we take the comparison between the two DFS codes α and β from

Table 4.1 as an example. The first four edges of α and β are all the same, so we compare the

5th edges of them, which are α4 = (3, 1, Z,X) and β4 = (2, 4, Y, Z). Since α4 is a backward

edge while β4 is a forward edge, according to the first rule in Equation 4.4, we get α4 ≺e β4.
Therefore, α < β.

Note that, the linear order ≺E,T is used to compare two DFS edges within a DFS code,

and the linear order ≺e is used to compare two DFS edges in two different DFS codes. The

relation < used between two DFS codes in Definition 4.5 indicates the DFS lexicographic

order between them. For example, consider two DFS codes α, β. If α < β, it means that

the DFS code α is DFS lexicographic less than the DFS code β.

Definition 4.6 (Minimum DFS Code of Pivoted Graph). Given a pivoted graph G, Z(G) =

{code(G, T) | ∀T , T is a DFS tree for G}, based on the DFS lexicographic order, the minimum

DFS code, denoted by min(Z(G)), is called the Minimum DFS Code of Pivoted Graph

G, which is also the canonical label of G.

For example, for the pivoted graph G in Figure 4.2, DFS code α is its minimum DFS

code, i.e., α = min(Z(G)). For two pivoted graphs G1 and G2, if min(Z(G1)) < min(Z(G2)),
we say G1 < G2.

CHAPTER 4. THE PATTERN MINING ALGORITHM 25

Theorem 4.2. Given two pivoted graphs G1 and G2, G1 is pivoted graph isomorphic to G2
if and only if min(Z(G1)) = min(Z(G2)).

Proof. Let G1 and G2 be two pivoted graphs satisfying G1 'p G2. By traversing these two

pivoted graphs, we get the same set of subscripted pivoted graphs, and then we get the

same set of DFS codes Z(G1) and Z(G2). Therefore, min(Z(G1)) = min(Z(G2)).
Let min(Z(G1)) and min(Z(G2)) denote the minimum DFS codes of two pivoted graphs

G1 and G2, respectively, such that min(Z(G1)) = min(Z(G2)). It is obvious that all the

pivoted graphs represented by the set of DFS codes Z(G1) are mutually pivoted graph iso-

morphic, so do the pivoted graphs represented by Z(G2). Because min(Z(G1)) = min(Z(G2)),
the two pivoted graphs represented by min(Z(G1)) and min(Z(G2)) are identical. So the piv-

oted graph represented by min(Z(G1)) is pivoted graph isomorphic to every pivoted graph

represented by Z(G2). And G2 is a pivoted graph represented by one of the DFS codes in

Z(G2). Therefore, G1 'p G2.

Definition 4.7 (DFS Code’s Parent and Child.). Given a DFS code α = (a0, ..., am), a

valid DFS code β = (a0, ..., am, b) is called a child of α and α is called β’s parent, where b

is the newly added DFS edge. We denote children(α) = {β | ∀β, α is β’s parent }.

Definition 4.8 (DFS Code Tree). A DFS Code Tree is a tree in which each node rep-

resents a DFS code, the relation between parent node and child node complies with the

relation described in Definition 4.7, and the relation between siblings is consistent with the

DFS lexicographic order. That is, the pre-order search of DFS Code Tree follows the DFS

lexicographic order. The tree is denoted by T.

Let α be a DFS code for a pivoted graph, We use min(α) to denote the minimum DFS

code of the pivoted graph represented by α.

Theorem 4.3. [34] Given a DFS code β, if α = min(β), then α < β. Let Dγ = {η |
∀η, η < γ}. ∀δ, δ ∈ children(β), i.e., any valid DFS code generated by one edge growth from

β, min(δ) ∈ Dα ∪ children(α) ⊆ Dβ.

Theorem 4.3 implies that given a DFS code β, if α = min(β), then α must appear before

β in the DFS Code Tree in the pre-order traversal of the DFS Code Tree. This property is

very important in pruning duplicate neighborhood patterns.

So far, we build all the theoretical foundations for the minimum DFS encoding based

pivoted graph isomorphism test. An example is provided below to illustrate how to apply

CHAPTER 4. THE PATTERN MINING ALGORITHM 26

DFS code to a pivoted graph isomorphic test. The naive algorithm to compute the minimum

DFS code of a pivoted graph is to enumerate all the DFS codes of pivoted isomorphic graphs

and compare them according to the lexicographic order defined in Definition 4.5. Note that

it is different when enumerating isomorphic graphs and enumerating pivoted isomorphic

graphs. For isomorphic graph enumeration, every node in the graph can be the starting

node, i.e., v0, so the time complexity of enumeration is O(n!), where n is the number of

nodes of the graph. However, v0 in pivoted graph can only be the pivot. Therefore, the

time complexity for enumeration is O((n− 1)!).

Example 4.5 (DFS Code Based Pivoted Graph Isomorphism Test). Consider two pivoted

graphs shown in Figure 4.2 (b) and Figure 4.2 (c). Now we check whether they are pivoted

graph isomorphic through the method described in this section. Firstly, we compute their

minimum DFS codes. For both of them, we get their minimum DFS codes equal to α shown

in Table 4.1. Therefore, these two pivoted subgraphs are pivoted graph isomorphic.

4.3 Pattern Extend Algorithm Revisited

4.3.1 Pivoted Graph Isomorphism Test

In Algorithm 3, the most time-consuming parts are pivoted graph isomorphism (line 1)

test and pattern support computation (line 7). Neither of them is known to be solved

in polynomial time. Note that the purpose of checking whether the current pattern s

is pivoted graph isomorphic to a pattern discovered before is to avoid duplicate pattern

support computing, and further avoid duplicate patterns in the result set.

Armed with minimum DFS encoding, we develop a DFS code based pivoted graph iso-

morphism test algorithm. The new pattern extension algorithm is shown in Algorithm 5.

In Algorithm 5, we represent a pattern by its corresponding DFS code. Now our method to

check pivoted graph isomorphism (line 1) becomes: given a pattern candidate s, we compute

its minimal DFS code, denoted by min(s). If s is not equal to min(s), which means that s

has been computed before according to Theorem 4.3, we can prune it immediately. Once s

is pruned, all the descendants of s can be pruned. We do not need to compute the support

for every pattern generated, thus the computation cost is reduced dramatically.

Another method for solving the pivoted graph isomorphism problem is the following.

Given two pivoted graphs G1 and G2, the algorithm tries to find a bijective function f :

CHAPTER 4. THE PATTERN MINING ALGORITHM 27

V1 → V2 through a recursive backtracking procedure proposed by J. R. Ullmann [31]. For

convenience, we refer this algorithm as direct searching. This is the algorithm used by Han

and Wen [11]. However, in this thesis, we adopt the canonical labeling based algorithm which

outperforms the direct searching in practice for the following reasons. Firstly, canonical

labeling based algorithm concentrates on one graph at a time, powerful ideas from the realm

of group theory can be brought to bear on the problem, significantly decreasing the running

time [6]. In addition, canonical labeling based algorithm can provide more information than

the direct searching. For example, it can list all the automorphisms of the pivoted graph.

Algorithm 5 Pattern Extend Algorithm (DFS Code)

Input: s, G, τ , r

Output: S

1: if s 6= min(s) then

2: return;

3: end if

4: S ← S ∪ {s}
5: Generate all the potential children of s with one edge growth;

6: for each child c do

7: if κ(c) ≤ r and σ(c) ≥ τ then

8: Pattern Extension(c, G, τ , r)

9: end if

10: end for

4.3.2 Pattern Children Generation

According to DFS code’s neighborhood restriction stated in Property 4.1, to construct a

valid DFS code, backward edges can only grow from the rightmost node and forward edges

can only grow from the nodes on the rightmost path. We call it rightmost extension.

In Algorithm 5, we represent every pattern in the form of its corresponding DFS code.

Therefore, the children generation of a pattern in line 5 in fact is DFS code extension. The

relation between the parent node and its children complies with Definition 4.7.

Take pivoted graph Ppa in Figure 4.1 as an example. Assume the node label alpha-

bet is {A,B}. All the possible children generated by Ppa via the rightmost extension are

listed in Figure 4.3. The dashed lines indicate their newly grown edges, respectively. The

CHAPTER 4. THE PATTERN MINING ALGORITHM 28

lexicographic order of the minimum DFS codes of them is (a), (b), (c), (d), (e), (f), (g) in-

creasingly. The precondition that we will extend such a child pattern Pc of a parent pattern

Pa is that there exists at least one embedding of Pc in the labeled graph G based on which

we are computing support.

Note that, in this thesis, we extend a pattern through a depth first search (DFS) manner.

It has two main advantages over the Apriori [2] based breadth first search (BFS) scheme.

Firstly, our pattern extension algorithm avoids expensive candidate generation cost by pat-

tern joining operation. Secondly, DFS is more space efficient than BFS, especially when the

graph is large.

A

B

B

𝑣1

𝑣2

𝑣3

A

B

B

𝑣1

𝑣2

𝑣4

A

B

B

𝑣1

𝑣2

𝑣3

A

B

B

𝑣1

𝑣2

𝑣3
A A

A

𝑣3
𝑣4

𝑣4

 (a) (b) (c) (d)

A

B

B

𝑣1

𝑣2

𝑣4

A

B

B

𝑣1

𝑣2

𝑣3

A

B

B

𝑣1

𝑣2

𝑣3
B B

B

𝑣3
𝑣4

𝑣4

 (e) (f) (g)

Figure 4.3: All the children of the pivoted graph Ppa in Figure 4.1 by rightmost extension.

Chapter 5

Edge Weight Estimation

Edge weight estimation, or link strength prediction attracts a lot of attention in the areas

of graph mining and social network analysis. Methods are proposed from the perspective

of studying the correlation between the node profile information and friendship strength,

estimating the edge weight by graph structural information such as random walk, person-

alized PageRank [16], etc. Inspired by the property of homophily [25] in social network, we

are interested in the correlation between the local structures of two endpoints of an edge

e = (u, v), and the weight of the edge e. To the best of our knowledge, we are the first to

pose this problem and estimate continuous edge weights.

The main purpose of this chapter is to connect frequent neighborhood patterns and edge

weights. We present it in the following way. We introduce the framework to address this

problem in Section 5.1. In Section 5.2 we give the details of how to construct edge features

based on frequent neighborhood patterns. We formalize the regression problem in Section

5.3 and lastly we give an overview of the regression model we apply in this thesis.

5.1 Framework

In our problem, edge weights are the target values we predict. Since the edge weight is a

continuous variable, given edge features, edge weight estimation is a regression problem. To

utilize frequent neighborhood patterns in edge weight estimation, we need to first involve

them into the regression model: convert frequent neighborhood patterns as edge features.

Below is the framework of studying the effectiveness of frequent neighborhood patterns on

edge weight estimation.

29

CHAPTER 5. EDGE WEIGHT ESTIMATION 30

1. Convert nodes’ frequent neighborhood patterns into structured edge features;

2. Train a regression model with edge features and their corresponding target values;

3. Measure the effectiveness of frequent neighborhood pattern based features on edge

weight estimation by comparing the root mean square error (RMSE) of our proposed

approach with the RMSEs of three baseline algorithms.

We elaborate on the first two parts of the framework in Section 5.2 and Section 5.3. The

third part will be discussed in Chapter 6.

5.2 Edge Feature Construction

For an edge e = (u, v) ∈ E in a labeled graph G, after we run the pattern mining algorithm

described in Chapter 4, we get a list of patterns for node u, denoted by P (u) = {Pi | Pi ⊆p
(G, u)}, and a list of patterns for node v, denoted by P (v) = {Pi | Pi ⊆p (G, v)}. The

question is: how can we construct the edge features of e = (u, v) given P (u) and P (v), and

then train a regression model for edge weight estimation? The method we apply in this

thesis is discussed below.

Consider a list of patterns {Pj , j = 1...m} mined by the frequent neighborhood pattern

mining algorithm described in Chapter 4, where m is the total number of frequent neighbor-

hood patterns. Each Pj describes the local structure of its pivot node in G. We represent

each node u ∈ V as an m−dimensional vector Nu = (n1, n2, ..., ni, ..., nm),

ni =

1, if Pi ⊆p (G, u)

0, otherwise
(5.1)

where 1 ≤ i ≤ m.

Based on Nu, we represent each edge e = (u, v) ∈ E as a 2m−dimensional vector

xe = (xe1 ,xe2), where xe1 = (x11, ..., x
1
k, ..., x

1
m) and xe2 = (x21, ..., x

2
k, ..., x

2
m). Let

x1k =

1, if Nu(k) ∧Nv(k) = 1

0, otherwise
(5.2)

x2k =

1, if Nu(k) ∨Nv(k) = 1

0, otherwise
(5.3)

CHAPTER 5. EDGE WEIGHT ESTIMATION 31

where 1 ≤ k ≤ m.

xe1 is the result of logic operation AND on Nu and Nv. xe2 is the result of logic

operation OR on Nu and Nv. By combining xe1 and xe2 , we get the edge feature vector

xe. For convenience, we call this edge feature construction method Pattern based Feature

Construction (PFC). The features are called PFC features.

Example 5.1 (Edge Feature Construction). Given an edge e = (u, v), suppose Nu =

(1, 1, 0, 1, 0) and Nv = (0, 1, 1, 1, 0). After applying the PFC method, we get edge e’s feature

vector xe = (0, 1, 0, 1, 0, 1, 1, 1, 1, 0).

Property 5.1. Consider two edges e = (u, v) and e′ = (v, u). The PFC feature vectors of

e and e′ are the same.

Proof. Let Nu and Nv denote the corresponding node features of u and v, respectively.

According to the PFC feature construction method, we have xe1 = Nu ∧ Nv and xe2 =

Nu ∨ Nv. Then we switch the order of Nu and Nv to compute x′e1 and x′e2 . Now we have

x′e1 = Nv ∧ Nu and x′e2 = Nv ∨ Nu. Because the operations logical AND ∧ and logical OR

∨ are commutative, which means xe1 = x′e1 and xe2 = x′e2 . Therefore xe = xe′ .

From Property 5.1, we can see that the PFC features of an edge e = (u, v) are insensitive

to the order of the feature vectors of u and v. In this thesis, we deal with undirected edges.

Property 5.1 shows that the PFC method works for undirected edges.

We also consider other alternative approaches to construct edge features.

• Given two feature vectors of two endpoints, i.e., Nu and Nv, we construct the cor-

responding edge features by combining them into one vector. Specifically, let the

corresponding edge feature vectors be xe1 = (Nu,Nv), xe2 = (Nv,Nu). However, this

method does not work for undirected edges since it implies the directions of edges. In

other words, the feature vectors are different when we switch the order of Nu and Nv.

• For each dimension of the feature vector Nu, we use the number of times that the ith

pattern matches node u in a labeled graph G.

For example, in Figure 5.1, P represents a frequent neighborhood pattern, and the

pivot is the node in grey. G is the labeled graph. Let u denote the node with label X

in G. P matches u in G for 8 times because every node with label Y together with u

constitute a match between P and u in G. So the ith dimension of Nu is 8.

CHAPTER 5. EDGE WEIGHT ESTIMATION 32

The advantage of the count based features is that they carry richer semantics than

the existence based features. However, the computation cost becomes much higher.

In order to compute the number of patterns, we need to enumerate all the matches of

a pattern which is extremely time-consuming. On the contrary, if we only compute

the existence of a pattern, no extra effort is needed. We can mark whether a node

in the labeled graph matches a certain pattern when we compute the support of the

pattern.

X Y X

Y

Y

Y

Y

Y

Y Y

Y

𝐺

Figure 5.1: An example of counting the number of pattern matches.

We leave other effective feature construction methods as future work.

5.3 Regression Problem Formulation

With the PFC features, we formalize the regression problem of edge weight estimation as

follows.

Input: Dtrain = {(xi, yi) | i = 1...n}, where xi is the feature vector of the ith edge

in G, yi is the target value, i.e., edge weight, and n is the size of the training data. And

Dtest = {(xi, yi) | i = 1...k}, where k is the size of the test data. Dtrain and Dtest are

disjoint.

Output : the RMSE on Dtest.
Let ŷ denote the estimated edge weights by our regression model. Below is the equation

CHAPTER 5. EDGE WEIGHT ESTIMATION 33

to compute the RMSE.

RMSE =

√√√√1

k

k∑
i=1

(ŷi − yi)2 (5.4)

In this thesis, we use gradient boosting regression [7]. The reasons are: (1) the training

data is a sparse 0-1 matrix, boosting tree is more effective than the general linear model [23]

to learn the higher order interactions between features and, (2) gradient boosting is more

efficient than other regression models which can also learn complicated relations from data

such as SVM [29] and neural networks [27] based regression.

In this thesis, we adopt the implementation of gradient boosting tree regression called

XGBoost 1. We give an overview of gradient boosting regression in XGBoost in the next

section.

5.4 Gradient Boosting Overview

Gradient boosting was first introduced by Friedman [7] in 2001. It is one of the techniques

which aim to improve the regression performance of a single model by fitting multiple

models and combining them for prediction. It produces a prediction model in the form of

an ensemble of weak models. Gradient boosting is usually used with decision trees [3].

5.4.1 The Gradient Boosting Model

The prediction model is shown as follows.

ŷi =
T∑
t=1

ft(xi), ft ∈ F (5.5)

where T is the number of trees, F is the space of functions which contains all the decision

trees, and each ft is a decision tree which maps attributes to a regression score.

In order to learn F , a regularized objective function L is defined.

L =

n∑
i=1

l(yi, ŷi) +

T∑
t=1

Ω(ft) (5.6)

1http://github.com/tqchen/xgboost

http://github.com/tqchen/xgboost

CHAPTER 5. EDGE WEIGHT ESTIMATION 34

where l is a differentiable convex loss function which measures the difference between the

predicted ŷ and target y. In our problem, l is square loss defined as follows.

l(ŷi, yi) = (ŷi − yi)2 (5.7)

The second term Ω is a function of tree, which controls the complexity of the model to avoid

overfitting. Ω is defined in Equation 5.8.

Ω(ft) = γN +
1

2
λ

N∑
j=1

w2
j (5.8)

N indicates the number of leaves in a tree ft, and the second part in Equation 5.8 is the

L2 norm of leaf score which is denoted by wj . γ and λ are two regularization parameters.

They will be explained in Subsection 5.4.2.

Therefore, a model employing simple and predictive functions will be selected as the best

model. Generally, the gradient boosting algorithm adds functions to minimize Equation 5.6

in T rounds iteratively, where T is user specified.

The algorithm to learn F is shown in Algorithm 6. At first, it initialize the tree space

F as an empty set. Then it adds T trees to F in T rounds (line 2 - line 7). In order to get

the tree ft in round t, there are two steps (line 3).

1. Grow a tree f ′t .

f ′t is a full binary tree with K levels. Consider a node in level k of f ′t , where k < K,

denoted by le. Let gainj denote the maximum gain obtained by splitting the node

le on the jth feature, where 1 ≤ j ≤ d, and d is the number of features. In order

to compute the gainj for the jth feature, the splitting criterion on the jth feature

is needed. In XGBoost, it first sorts the dataset according to the value of the jth

feature, then enumerates the splitting criterion which partitions the dataset into two

subsets. Let D′j denote the sorted dataset according to the value of the jth feature.

Assume the size of D′j is n. There are n − 1 possible splitting criteria which result

in n− 1 kinds of different partitions of D′j . For the sth partitioning, we use D′js1 and

D′js2 to denote the two subsets, where 1 ≤ s ≤ n − 1. D′js1 is assigned to le’s left

child, and D′js2 is assigned to le’s right child after splitting. And we use ILs and IRs

to denote the corresponding indices of the data points in D′js1 and D′js2 , respectively.

The gain of splitting the node le on the jth feature with the sth partitioning on the

CHAPTER 5. EDGE WEIGHT ESTIMATION 35

jth feature is computed according to the Equation 5.9. Then we can compute gainj

by gainj = max{gain(j, s) | 1 ≤ s ≤ n− 1}.

We choose the jth feature to split le if j = arg maxj{gainj | 1 ≤ j ≤ d}.

gain(j, s) =
1

2

[
(
∑

i∈ILs
gi)

2∑
i∈ILs

hi + λ
+

(
∑

i∈IRs
gi)

2∑
i∈IRs

hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ (5.9)

where I is the set of indices of D′j , and the relation among ILs , IRs and I is I =

ILs ∪ IRs .

2. Prune the tree f ′t .

The pruning is done in a bottom up way. More specifically, given a non-leaf node, if

the maximum gain obtained by splitting that node in step 1 is negative, we get rid

of that splitting. Then that non-leaf node becomes a leaf node. The pruned tree is

denoted by ft.

Then we use ft to update the predicted targets ŷ (line 5). At last, the tree ft will be added

to the tree space F (line 6).

Algorithm 6 Gradient Boosting Model Learning Algorithm

Input: D: dataset, K: maximum depth, λ, γ: regularization parameters, η: step size, l:
loss function, g: first order derivative of l, h: second order derivative of l
Output: F : the set of decision trees

1: F ← ∅
2: for t in 1 to T do
3: Greedily grow a decision tree f ′t to the maximum depth K that maximize the gain

for each split by Equation 5.9
4: Calculate the pruned tree ft by eliminating splits in f ′t with negative gain
5: ŷt ← ŷt + η · ft(Dtrain)
6: F ← F ∪ ft
7: end for
8: return F

5.4.2 Model Parameters

In this model, there are several key parameters which are listed in Table 5.1.

CHAPTER 5. EDGE WEIGHT ESTIMATION 36

Table 5.1: Parameters of the Gradient Boosting Tree Regression Model

Parameter Interpretation

η step size shrinkage used in update to prevents overfitting.

K maximum depth of a tree.

λ L2 regularization term on weights.

γ minimum loss reduction required to make a further partition on a leaf node of the tree.

T number of trees

5.4.3 Time Complexity

Assume the size of the training data is n, the number of features is d, and the maximum

depth of a tree is K. We compute the time complexity of growing a tree in Algorithm 6 as

follows. Consider the current leaf level k of a tree, where 0 ≤ k ≤ K − 1. Since the tree is

a full binary tree, the number of leaves in level k is 2k. Let mi denote the number of data

points assigned to the ith leaf in level k. According to Algorithm 6, the time cost for splitting

each leaf node will be d ·mi · logmi, which is O(d ·mi log n) because n > mi. And the time

cost for the splitting of all the 2k nodes in level k is d
∑2k

i=1mi logmi, which is O(nd log n).

This tree has K levels, thus the time complexity of growing a tree is O(ndK log n).

Chapter 6

Experiments

In this chapter, we report the experimental results of (1) the efficiency of our proposed pat-

tern growth based frequent neighborhood pattern mining algorithm and, (2) the effectiveness

of frequent neighborhood pattern based features on edge weight estimation.

6.1 Environments and Datasets

The pattern mining algorithm is implemented in C#. The regression model for edge weight

estimation is implemented in R. All experiments are conducted on a PC computer with Intel

Core i7-3770 3.40 GHz CPU and 16GB main memory running 64-bit Microsoft Windows 7.

In this thesis, we conduct the experiments on two real datasets. They are the DBLP

bibliography dataset and the Tencent weibo dataset. Details about these datasets are shown

in Table 6.1 and Table 6.2, respectively.

For the DBLP dataset, the node label alphabet is ΣV = {Author, Paper, Conference}.
When estimating edge weights, we only consider the edges formed by two nodes with node

label Author. The reason is that such edges convey meaningful edge weights. For example,

the weight of the edge that connects two authors represents how many papers these two

authors have co-authored. However, other edges such as an edge formed by a Paper node

and a Conference node does not have meaningful weights, so we ignore them.

For the Tencent weibo dataset, all nodes are users. The node label alphabet is ΣV =

{Unknown, Female,Male}. The edge weight is defined as the number of interactions be-

tween two users. Interactions include re-tweet, comment, and mention. Intuitively, the

weight is used to measure how close two users are. Note that in our experiments, we only

37

CHAPTER 6. EXPERIMENTS 38

consider the bi-followed user pairs, i.e., two users follow each other.

Table 6.1: DBLP Dataset Statistics

ID #Nodes #Edges

1
Author Paper Conference

103201
28702 28569 20

Table 6.2: Tencent Weibo Dataset Statistics

ID #Nodes #Edges

2
Male Female Unknown

156895
14576 8444 286

The values of edge weights are very skewed. In the DBLP dataset, most (81.2%) edge

weights are 1. Figure 6.1a shows the weight distribution in a log-log scale, which indicates

the weight distribution has a long tail. And Figure 6.1b shows the histogram of the edge

weights of the DBLP dataset. Note that, for better visualization, we plot Figure 6.1b by

using the edge weights which are not greater than 20 (99.9% of the whole DBLP dataset).

0 1 2 3 4

1
2

3
4

5
6

7
8

9
1

0
1

1

Log Value of Edge Weight

L
o

g
 V

a
lu

e
 o

f
F

re
q

u
e

n
cy

(a) Log-log scale of edge weight and its frequency.

Value of Edge Weight

D
en

si
ty

1 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

(b) The histogram of edge weights.

Figure 6.1: Edge weight distribution of the DBLP dataset.

The edge weights are also skewed in the Tencent weibo dataset. Figure 6.2a shows the

log-log scale edge weight distribution, which indicates a long tail distribution as well. Figure

CHAPTER 6. EXPERIMENTS 39

6.2b shows the histogram of the edge weights of the Tencent weibo dataset. Note that, for

better visualization, we plot Figure 6.2b by using the edge weights which are not greater

than 100 (99.1% of the whole Tencent weibo dataset).

0 2 4 6 8 10

1
2

3
4

5
6

7
8

9
1

0
1

2

Log Value of Edge Weight

L
o

g
 V

a
lu

e
 o

f
F

re
q

u
e

n
cy

(a) Log-log scale of edge weight and its frequency.

Value of Edge Weight
D

en
si

ty
0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

(b) The histogram of edge weights

Figure 6.2: Edge weight distribution of the Tencent weibo dataset.

6.2 Baseline Algorithms

In order to measure the efficiency of our proposed frequent neighborhood pattern mining

algorithm, we compare our running time with that of the Apriori based pattern mining

algorithm [11].

The problem of continuous edge weight estimation in heterogeneous network scenario

has never been studied by literature, so there is no existing baseline algorithms. In this

thesis, considering the extremely skewed edge weights, we propose three baseline algorithms

listed below. In order to measure the effectiveness of frequent neighborhood pattern based

features on edge weight estimation, we compare the RMSE of our model with the RMSEs of

these baseline estimators. Let y denote the target ground truth, i.e., the edge weight vector

in our regression problem. And ŷ1, ŷ2 and ŷ3 in Equations 6.1, 6.2, and 6.3 represent the

results of three baseline algorithms, respectively.

• Mean: take the mean value from the training target values as the estimated edge

CHAPTER 6. EXPERIMENTS 40

weight on test data.

ŷ1 =
1

n

n∑
i=1

yi (6.1)

where n = |y|.

• Median: take the median from the training target values as the estimated edge weight

on test data.

ŷ2 = median of y (6.2)

• Mode: take the mode from the training target values a as the estimated edge weight

on test data.

ŷ3 = arg max
yi
{frequency of yi | i = 1, . . . , n} (6.3)

where n = |y|.

Due to the skewness of edge weights, the baseline estimators are actually quite effective.

Section 6.4 will show that the model trained from the frequent neighborhood pattern based

features can get better performance on edge weight estimation than all these three baseline

algorithms. Before we show the effectiveness of neighborhood pattern based features, we

show the efficiency of our pattern mining algorithm in Section 6.3 first.

6.3 Efficiency of Our Pattern Mining Algorithm

In this section, we report the performance of our pattern growth based frequent neigh-

borhood pattern mining algorithm compared with the Apriori based algorithm [11] on the

DBLP and Tencent weibo datasets. Generally, the running time of the frequent pattern

mining algorithm is positively correlated to the size of result set, that is the larger the

number of frequent neighborhood patterns, the longer the running time.

In the frequent neighborhood pattern mining problem, we have two parameters: support

threshold τ and pattern size r. In our experiments, we choose τ from {0.005, 0.01, 0.05, 0.1}
and r from {1, 2, 3, 4, 5}. For instance, for a dataset with n nodes, when we choose τ = 0.01,

the support of a frequent pattern should be at least 0.01n.

Experiments on the running time test show that our pattern growth based algorithm is

up to 22 times faster than the Apriori based algorithm [11] on both datasets.

CHAPTER 6. EXPERIMENTS 41

DBLP Dataset. We test the running time of our algorithm with parameters τ from

{0.005, 0.01, 0.05, 0.1} and r from {1, 2, 3, 4, 5}.
Figure 6.3 shows the number of patterns under different supports and with different

pattern sizes. From this figure we can see that with the increase of pattern size, the number

of patterns increases. With a fixed pattern size, the number of patterns becomes larger

when the support threshold is smaller.

Figure 6.3: The number of patterns under different supports and pattern sizes on the DBLP
dataset.

Figure 6.4 shows the efficiency of our pattern growth based mining algorithm compared

with the Apriori based mining algorithm [11]. From this figure, we can see that the advantage

of our algorithm becomes more pronounced when the pattern size threshold gets larger. That

is because when the size increases, the number of frequent neighborhood pattern candidates

becomes larger. Therefore, more computation is needed to do expensive pivoted graph

isomorphism test and support computing.

CHAPTER 6. EXPERIMENTS 42

1 2 3 4 5

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07

Pattern Size

R
un

ni
ng

 T
im

e
(m

s)

Apriori
Pattern Growth

(a) τ = 0.005

1 2 3 4 5
0e

+
00

2e
+

07
4e

+
07

6e
+

07
8e

+
07

Pattern Size

R
un

ni
ng

 T
im

e
(m

s)

Apriori
Pattern Growth

(b) τ = 0.01

1 2 3 4 5

0e
+

00
2e

+
07

4e
+

07
6e

+
07

Pattern Size

R
un

ni
ng

 T
im

e
(m

s)

Apriori
Pattern Growth

(c) τ = 0.05

1 2 3 4 5

0e
+

00
2e

+
07

4e
+

07
6e

+
07

Pattern Size

R
un

ni
ng

 T
im

e
(m

s)

Apriori
Pattern Growth

(d) τ = 0.1

Figure 6.4: Running time comparison between our algorithm and Apriori base algorithm
under 4 support threshold values on the DBLP dataset. In each subfigure, the curves show
the running time under different pattern size constraints.

CHAPTER 6. EXPERIMENTS 43

Tencent weibo Dataset. Figure 6.5 shows the number of patterns under different

support thresholds and with different pattern size constraints. It has similar trends on

the number of patterns to Figure 6.3 of the DBLP dataset. The running time comparison

results of frequent neighborhood pattern mining on the Tencent weibo dataset shown in

Figure 6.6 also demonstrate that our algorithm outperforms the Apriori based algorithm

[11] noticeably.

Figure 6.5: The number of patterns under different supports and pattern sizes on the Tencent
weibo dataset.

CHAPTER 6. EXPERIMENTS 44

Pattern Size

R
un

ni
ng

 T
im

e
(m

s)

1 2 3 4

0e
+0

0
1e

+0
7

2e
+0

7
3e

+0
7

4e
+0

7

Apriori
Pattern Growth

(a) τ = 0.005

Pattern Size

R
un

ni
ng

 T
im

e
(m

s)
1 2 3 4

0e
+0

0
1e

+0
7

2e
+0

7
3e

+0
7

4e
+0

7

Apriori
Pattern Growth

(b) τ = 0.01

Pattern Size

R
un

ni
ng

 T
im

e
(m

s)

1 2 3 40.
0e

+0
0

1.
0e

+0
7

2.
0e

+0
7

Apriori
Pattern Growth

(c) τ = 0.05

Pattern Size

R
un

ni
ng

 T
im

e
(m

s)

1 2 3 40.
0e

+0
0

1.
0e

+0
7

2.
0e

+0
7

3.
0e

+0
7

Apriori
Pattern Growth

(d) τ = 0.1

Figure 6.6: Running time comparison between our algorithm and Apriori base algorithm
under 4 support threshold values on the Tencent weibo dataset. In each subfigure, the
curves show the running time under different pattern size constraints.

CHAPTER 6. EXPERIMENTS 45

Analysis. The experimental results on the running time test on both datasets show

that our pattern growth based mining algorithm outperforms the Apriori based pattern

mining algorithm [11] greatly. We summarize the reasons as follows.

1. Candidate generation method. Our algorithm generates a size k pattern by adding one

edge to a size k−1 pattern directly. However, the Apriori based algorithm generates a

size k pattern by joining two size k − 1 patterns. The pattern join operation is costly

whereas our algorithm avoids that.

2. Pivoted graph isomorphism test. The Apriori based algorithm conducts a pivoted

graph isomorphism test by the direct searching [31] algorithm. Our algorithm ap-

plies the minimum DFS encoding in the pivoted graph isomorphism test, which was

empirically shown to be more efficient than the direct searching by Yan and Han [34].

3. False positive patterns. The Apriori based algorithm generates more false positive

pattern candidates than those of our algorithm. Therefore, it needs more computation

on checking the support to filter out these false positives. However, we apply the

minimum DFS code based pruning techniques described in Chapter 4 in the pattern

generation step, which leads to less false positives. So that a lot of computation is

saved.

6.4 Effectiveness of Frequent Neighborhood Pattern Features

After mining the frequent neighborhood patterns, we construct edge features based on them

and train the regression model to estimate edge weights. In this thesis, we use gradient

boosting regression model. We adopt an implementation of the gradient boosting regression

in R, called XGBoost1.

First of all, we study the problem: how do the support threshold τ and the pattern size r

affect the effectiveness of edge weight estimation? Table 6.3 shows the RMSEs of different

combinations of τ and r on the DBLP dataset. All the related model parameters in XGBoost

are set the same as they are shown in Table 6.5 for the DBLP dataset. In Table 6.3, the

first row indicates the four different support thresholds, and the first column indicates five

different pattern sizes. Every other cell is a tuple of two float numbers. The first float

1http://github.com/tqchen/xgboost

http://github.com/tqchen/xgboost

CHAPTER 6. EXPERIMENTS 46

number is the RMSE on the training data, and the second one is the RMSE on the test

data. Note that we compute the RMSE in the following way. Firstly, we split the dataset

into 5 folds, every time we take 4 of them as the training dataset, and the rest one fold as

the test dataset. The final RMSE is the average of these 5 RMSEs.

Figure 6.3 shows that with a fixed τ , the larger the pattern size constraint r, the larger

the number of frequent neighborhood patterns. And when we fix r, the smaller the support

threshold τ , the larger the number of frequent neighborhood patterns. Therefore, in Table

6.3, the upper left cell (r = 1, τ = 0.1) represents the RMSEs from the model trained from

the smallest amount of features, and the lower right cell (r = 5, τ = 0.005) represents the

RMSEs from the model trained from the largest amount of features.

From Table 6.3, we get the following three observations.

• In each row from left to right, with the decrease of the support threshold τ , the number

of frequent neighborhood patterns increases, and the RMSEs decrease on both training

and test data.

• In each column from top to bottom, with the increasing of the pattern size r constraint,

the number of frequent neighborhood patterns increases, and the RMSEs decrease on

both training and test data.

• The largest RMSE is in the upper left cell which corresponds to the model with the

smallest amount of features, and the smallest RMSE is in the lower right cell which

corresponds to the model with the largest amount of features.

Table 6.3: The Effect of τ and r on Estimation Performance on the DBLP Dataset

r/τ 0.1 0.05 0.01 0.005

1 (0.4107741, 0.4107398) (0.4107772, 0.4107646) (0.4107772, 0.4107646) (0.4107772, 0.4107646)

2 (0.3589964, 0.3590526) (0.3519334, 0.3528697) (0.3519334, 0.3528697) (0.3519334, 0.3528697)

3 (0.3519448, 0.3528679) (0.3440261, 0.3486310) (0.3440261, 0.3486310) (0.3440261, 0.3486310)

4 (0.3248251, 0.3289706) (0.3050721, 0.3244362) (0.2879135, 0.3202999) (0.2879135, 0.3202999)

5 (0.3137784, 0.3248358) (0.2687392, 0.3107534) (0.2495713, 0.3044902) (0.2503219, 0.3051163)

We get the same observations from the edge weight estimation experiments on the Ten-

cent weibo dataset. The results are shown in Table 6.4. All the related model parameters

in XGBoost are set the same as they are in Table 6.5 for the Tencent weibo dataset.

We summarize the effects of the support threhold τ and the pattern size r on the per-

formance of edge weight estimation as follows.

CHAPTER 6. EXPERIMENTS 47

Table 6.4: The Effect of τ and r on Estimation Performance on the Tencent Weibo Dataset

r/τ 0.1 0.05 0.01 0.005

1 (1.1220802, 1.1222688) (1.1214886, 1.1218813) (1.1184574, 1.1192905) (1.1172602, 1.1181911)

2 (1.1126835, 1.1199483) (1.0972538, 1.1112949) (1.0765263, 1.1070381) (1.0875048, 1.1047293)

3 (1.1139993, 1.1187700) (1.0959688, 1.1044453) (1.0857054, 1.0990376) (1.0159790, 1.0819079)

4 (1.0254504, 1.0984213) (0.9773067, 1.0911211) (0.9383468, 1.0835034) (0.9321516, 1.0857181)

1. With a fixed support threshold τ , the larger the pattern size constraint r, the larger

amount of pattern based features, and the smaller the RMSE.

2. With a fixed pattern size constraint r, the larger the support threshold τ , the larger

amount of pattern based features, and the smaller the RMSE.

Secondly, we compare the edge weight estimation performance of our model with that

of the three baseline algorithms.

Considering the expensive time cost on the pattern mining algorithm, we make a trade-

off between the number of frequent neighborhood patterns and the richness of semantics

carried by the patterns. In other words, we set the pattern size constraint to limit the

number of frequent neighborhood patterns. For the DBLP dataset, we choose the frequent

neighborhood patterns mined with parameters τ = 0.005 and r = 5. In total, we get 552

frequent neighborhood patterns. For the Tencent weibo dataset, we choose the frequent

neighborhood patterns mined with parameters τ = 0.01 and r = 4. In total, we have 925

frequent neighborhood patterns.

Since the Tencent weibo dataset is large, in order to accelerate the regression training

process, we sample 20% edges uniformly to do edge weight estimation experiments. The

sample dataset has the same skewed edge weight distribution with the original dataset.

For the two datasets in our experiments, we sample 90% uniformly as the training data

and the rest 10% as the test data.

In Table 5.1, we list the related parameters in XGBoost. We choose the value of each

parameter via a 5-fold cross validation on training data for both datasets. The model

parameters used in the regression model training for both datasets are shown in Table 6.5.

The first column is the related parameters in this regression model, the second column

contains the concrete values we choose for the DBLP dataset, and the third column lists

the values chosen for the Tencent weibo dataset.

To validate the effectiveness of the frequent neighborhood pattern based features on

CHAPTER 6. EXPERIMENTS 48

Table 6.5: Parameters of Gradient Boosting in Experiments

Parameters DBLP Tencent weibo

η 0.02 0.01

K 10 12

λ 0.1 0.1

γ 0 0

T 300 300

edge weight estimation, we compare the RMSE of our model with the RMSEs of the three

baseline algorithms.

The RMSEs on both training and test data are shown in Table 6.6 for the DBLP dataset

and in Table 6.7 for the Tencent weibo dataset. From these tables, we can see that our

model outperforms the other strong baseline algorithms, which shows the effectiveness of

the frequent neighborhood pattern based features.

The difference between the RMSE of the training data and the RMSE of the test data of

our model is larger than that of every baseline algorithm. The reason is that each baseline

algorithm only captures one statistical feature of the dataset, whereas our model captures a

lot more features of the dataset than the baselines. Therefore, the variance of that difference

of our model is larger and more sensitive to the dataset.

Table 6.6: RMSE Comparison of Edge Weight Estimation on the DBLP Dataset

Gradient Boosting Mean Median Mode

Training 0.2503219 0.4107773 0.4478321 0.4478321

Test 0.3051163 0.4107767 0.4478295 0.4478295

Table 6.7: RMSE Comparison of Edge Weight Estimation on the Tencent Weibo Dataset

Gradient Boosting Mean Median Mode

Training 0.9383468 1.1356146 1.1502391 1.4342084

Test 1.0835034 1.1355933 1.1501875 1.4341537

Chapter 7

Conclusions

In this thesis, we formulate the problem of exploring the power of frequent neighborhood

patterns on edge weight estimation. To tackle this problem, we propose a two-step method.

Firstly, we construct features based on frequent neighborhood patterns of nodes. Secondly,

we model edge weight estimation as a regression problem with structural features. In the

first step, in order to mine frequent neighborhood patterns from a single large labeled graph

efficiently, we devise an efficient pattern growth based mining algorithm. Moreover, we

apply minimum DFS encoding to our pivoted subgraph isomorphism test, which is one of

the key components to make our pattern growth based algorithm efficient. We also discuss

different ways of feature construction based on frequent neighborhood patterns and explain

why we finally choose the way we used in this thesis.

We empirically show that frequent neighborhood patterns are not only correlated to

edge weights but also effective features in estimating edge weights. Experiments conducted

on two real datasets verify that our pattern growth based algorithm is much more efficient

than the Apriori based pattern mining algorithm [11] as well.

As future work, we can consider the following interesting directions.

• Do edges have structural patterns? There may exist better methods to mine edge

patterns directly from the graph. In this thesis, we first mine node patterns, then

construct edge patterns based on node patterns, which is an indirect method.

• Can we design a new support measure, which can be efficiently computed, and its

corresponding substructure can be well interpreted, and as edge features to estimate

edge weights? Frequent neighborhood patterns are one kind of structural patterns on

49

CHAPTER 7. CONCLUSIONS 50

edges, more effective patterns and pattern support are awaiting to be discovered.

• Do frequent neighborhood patterns also work in other applications? Apply frequent

neighborhood patterns to other link related tasks, such as binary link prediction and

link sign prediction.

• Can we apply more heuristics to accelerate the pattern mining algorithm? Under

our current pattern mining algorithm framework, we can develop more heuristics to

optimize the proposed algorithm. For example, apply the partial count pruning [34]

to the candidate generation step.

Bibliography

[1] F. Abel, N. Henze, E. Herder, and D. Krause. Interweaving public user profiles on the

web. In Proceedings of the 18th International Conference on User Modeling, Adaptation,

and Personalization, UMAP’10, pages 16–27, Berlin, Heidelberg, 2010. Springer-Verlag.

1

[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of

items in large databases. In Proceedings of the 1993 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’93, pages 207–216, New York, NY,

USA, 1993. ACM. 2, 5, 28

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regres-

sion Trees. CRC Press, New York, 1999. 33

[4] B. Bringmann and S. Nijssen. What is frequent in a single graph? In Advances in

Knowledge Discovery and Data Mining, pages 858–863. Springer, 2008. 6

[5] M. Fiedler and C. Borgelt. Subgraph support in a single large graph. In Data Mining

Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International Conference on,

pages 399–404. IEEE, 2007. 6

[6] S. Fortin. The graph isomorphism problem. Technical report, Technical Report 96-20,

University of Alberta, Edomonton, Alberta, Canada, 1996. 27

[7] J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals

of statistics, pages 1189–1232, 2001. 2, 33

[8] E. Gilbert and K. Karahalios. Predicting tie strength with social media. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, pages 211–220.

ACM, 2009. 1, 7

51

BIBLIOGRAPHY 52

[9] S. A. Golder, D. M. Wilkinson, and B. A. Huberman. Rhythms of social interaction:

Messaging within a massive online network. In Communities and technologies 2007,

pages 41–66. Springer, 2007. 1

[10] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust.

In Proceedings of the 13th international conference on World Wide Web, pages 403–412.

ACM, 2004. 8

[11] J. Han and J.-R. Wen. Mining frequent neighborhood patterns in a large labeled

graph. In Proceedings of the 22Nd ACM International Conference on Conference on

Information Knowledge Management, CIKM ’13, pages 259–268, New York, NY, USA,

2013. ACM. 2, 6, 9, 10, 12, 27, 39, 40, 41, 43, 45, 49

[12] F. Heider. Attitudes and cognitive organization. The Journal of psychology, 21(1):107–

112, 1946. 8

[13] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the pres-

ence of isomorphism. In Data Mining, 2003. ICDM 2003. Third IEEE International

Conference on, pages 549–552. IEEE, 2003. 4, 5

[14] B. A. Huberman, D. M. Romero, and F. Wu. Social networks that matter: Twitter

under the microscope. Available at SSRN 1313405, 2008. 1

[15] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent

substructures from graph data. In Principles of Data Mining and Knowledge Discovery,

pages 13–23. Springer, 2000. 4, 5

[16] G. Jeh and J. Widom. Scaling personalized web search. In Proceedings of the 12th

International Conference on World Wide Web, WWW ’03, pages 271–279, New York,

NY, USA, 2003. ACM. 29

[17] I. Kahanda and J. Neville. Using transactional information to predict link strength in

online social networks. In ICWSM, 2009. 1, 7

[18] M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent sub-

graphs. Knowledge and Data Engineering, IEEE Transactions on, 16(9):1038–1051,

2004. 4, 5

BIBLIOGRAPHY 53

[19] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph*.

Data mining and knowledge discovery, 11(3):243–271, 2005. 6

[20] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and negative links

in online social networks. In Proceedings of the 19th International Conference on World

Wide Web, WWW ’10, pages 641–650, New York, NY, USA, 2010. ACM. 8

[21] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages

1361–1370. ACM, 2010. 8

[22] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks.

Journal of the American society for information science and technology, 58(7):1019–

1031, 2007. 8

[23] K. Mardia, J. Kent, and J. Bibby. Multivariate analysis. Probability and mathematical

statistics. Academic Press, 1979. 2, 33

[24] B. D. McKay et al. Practical graph isomorphism. Department of Computer Science,

Vanderbilt University, 1981. 17

[25] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in

social networks. Annual review of sociology, pages 415–444, 2001. 2, 7, 29

[26] S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a

difference. In Proceedings of the Tenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’04, pages 647–652, New York, NY,

USA, 2004. ACM. 4, 5

[27] D. F. Specht. A general regression neural network. Neural Networks, IEEE Transactions

on, 2(6):568–576, 1991. 3, 33

[28] Y. Sun, R. Barber, M. Gupta, C. C. Aggarwal, and J. Han. Co-author relationship

prediction in heterogeneous bibliographic networks. In Advances in Social Networks

Analysis and Mining (ASONAM), 2011 International Conference on, pages 121–128.

IEEE, 2011. 2, 7, 8

[29] J. A. Suykens and J. Vandewalle. Least squares support vector machine classifiers.

Neural processing letters, 9(3):293–300, 1999. 2, 33

BIBLIOGRAPHY 54

[30] B. Taskar, M.-F. Wong, P. Abbeel, and D. Koller. Link prediction in relational data.

In Advances in neural information processing systems, page None, 2003. 2

[31] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM),

23(1):31–42, 1976. 27, 45

[32] N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns from

semistructured data. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE

International Conference on, pages 458–465. IEEE, 2002. 6

[33] R. Xiang, J. Neville, and M. Rogati. Modeling relationship strength in online social

networks. In Proceedings of the 19th international conference on World wide web, pages

981–990. ACM, 2010. 1, 7

[34] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Data Mining,

2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on, pages 721–

724. IEEE, 2002. 2, 4, 5, 7, 14, 17, 19, 25, 45, 50

[35] S.-H. Yang, A. J. Smola, B. Long, H. Zha, and Y. Chang. Friend or frenemy?: predicting

signed ties in social networks. In Proceedings of the 35th international ACM SIGIR

conference on Research and development in information retrieval, pages 555–564. ACM,

2012. 8

	Approval
	Abstract
	Dedication
	Quotation
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Related Work
	Frequent Subgraph Mining
	Subgraph Mining in Graph Transactions
	Subgraph Mining in a Single Large Graph

	Link Strength Prediction

	Problem Definition
	Preliminaries
	Problem Statement

	The Pattern Mining Algorithm
	The Pattern Growth Based Mining Algorithm
	Pivoted Subgraph Isomorphism Test
	Pattern Extend Algorithm Revisited
	Pivoted Graph Isomorphism Test
	Pattern Children Generation

	Edge Weight Estimation
	Framework
	Edge Feature Construction
	Regression Problem Formulation
	Gradient Boosting Overview
	The Gradient Boosting Model
	Model Parameters
	Time Complexity

	Experiments
	Environments and Datasets
	Baseline Algorithms
	Efficiency of Our Pattern Mining Algorithm
	Effectiveness of Frequent Neighborhood Pattern Features

	Conclusions
	Bibliography

