
A Pseudo Non-Parametric Bühlmann
Credibility Approach to Modeling Mortality

Rates
by

Xiang Luan

B.B.A., University of Wisconsin Madison, 2013

Project Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

in the

Department of Statistics and Actuarial Science

Faculty of Science

c© Xiang Luan 2015

SIMON FRASER UNIVERSITY

Summer 2015

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.” Therefore,
limited reproduction of this work for the purposes of private study, research, criticism,
review and news reporting is likely to be in accordance with the law, particularly if

cited appropriately.



Approval

Name: Xiang Luan

Degree: Master of Science (Actuarial Science)

Title: A Pseudo Non-Parametric Bühlmann Credibility Ap-
proach to Modeling Mortality Rates

Examining Committee: Dr. Tim Swartz (chair)
Professor

Dr. Cary Chi-Liang Tsai
Associate Professor
Senior Supervisor

Dr. Gary Parker
Associate Professor
Supervisor

Dr. Yi Lu
Associate Professor
Internal Examiner

Date Defended: 29 July 2015

ii



Abstract

Credibility theory is applied in property and casualty insurance to perform prospective expe-
rience rating, i.e., to determine the future premiums to charge based on both past experience
and the underlying group rate. Insurance companies assign a credibility factor Z to a specific
policyholder’s own past data, and put 1 − Z onto the prior mean which is the group rate de-
termined by actuaries to reflect the expected value for all risk classes. This partial credibility
takes advantage of both policyholder’s own experience and the entire group’s characteristics,
and thus increases the accuracy of estimated value so that the insurance companies can stay
competitive in the market. Faced with its popular applications in property and casualty insur-
ance, this project aims to apply the credibility theory to projected mortality rates from three
existing mortality models. The approach presented in this project violates one of the conditions,
and thus produces the pseudo non-parametric Bühlmann estimates of the forecasted mortality
rates. Numerical results show that the accuracy of forecasted mortality rates are significantly
improved after applying the non-parametric Bühlmann method to the Lee-Carter model, the
CBD model, and the linear regression-random walk (LR-RW) model. A measure of mean abso-
lute percentage error (MAPE) is adopted to compare the performances in terms of accuracy of
mortality prediction.

Keywords: Credibility Theory; Non-Parametric Bühlmann Estimate; Lee-Carter Model; CBD
Model; Linear Regression Model; Mortality Rates; MAPE
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Chapter 1

Introduction

Mortality rate is a measure of the number of deaths in a particular population per unit of
time. It is the core concern that all financial institutes need to incorporate when designing
not only traditional life insurance products, but also newly emerged mortality-linked financial
derivatives. There are many kinds of life insurance products prevalent in the market, with di-
verse contracts for benefit amounts, durations, and all other conditions specified. Despite of
these distinct requirements, they all provide protections, in exchange for premiums, for the in-
sureds from the uncertainty of death occurrence in the future. In this sense, insurance companies
heavily rely on their forecasted mortality rates to design life insurance products and determine
their premiums. As a consequence, the ability to conduct accurate forecasting of the future
mortality rates turns out to be a critical task for life insurance companies: once they are able to
make mortality predictions with high-level accuracy, they can accordingly determine competitive
premiums, conduct proper reserve analysis, and thus operate a stronger business in the market.
However, at the same time, it is quite a challenging task to forecast the future mortality rates
due to the random movements and irregular patterns in mortality rates, which seem not to be
easily captured in some mortality models. This project employs three mortality models: Lee-
Carter model, CBD model, and linear relational model; afterwards we apply the non-parametric
Bühlmann credibility approach based on these models to performing estimation with regards
to mortality rates. Outputs show that the implementation of the non-parametric Bühlmann
credibility approach based on original mortality models can provide higher degree of accuracy
and more stable prediction results. Chapter 3 will present a more elaborated demonstration of
the mortality models as well as the Bühlmann credibility theory.

All the mortality data applied in this project come from the Human Mortality Database
(HMD) at http://www.mortality.org/. HMD is a public database that provides detailed mortal-
ity and population information for 37 countries or areas around the world. The database contains
calculations of death rates and life tables, which consists of death counts from vital statistics,
plus census counts, birth counts, and population estimates from various sources. Again, this
project focuses on the topic of mortality forecasting and proposes an approach which embeds
the non-parametric Bühlmann credibility theory into a mortality model for forecasting mortality
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rates.

1.1 Background & Introduction to Mortalities

The procedure of our approach goes as follows: first we apply a mortality model to make
mortality forecasting from datasets for an age span and different fitting year spans; thereafter,
we implement the non-parametric Bühlmann credibility method using the forecasting results we
got to achieve the final estimation. As mentioned above, this projects mainly focuses on three
mortality models and collects forecasting values from each of the three. However, the imple-
mentation of the non-parametric Bühlmann credibility approach is not restricted to these three
models; instead, it can be conducted with any sample data generated from any other alterna-
tive models. This is also a major advantage since such approach possesses high-level flexibilities,
which make it more applicable in reality. For illustration purpose, in this project we only present
illustrations using Lee-Carter model, CBD model, and linear relational model.

The Lee-Carter model proposed by Lee and Carter (1992) has been recognized as the most
popular mortality model with wide applications in literature. There are numerous extensions
and modifications to the Lee-Carter model with the purpose of improving its forecasting perfor-
mance. The CBD model proposed by Cairns et al. (2006) was designed for modeling mortality
at higher ages based on the historical observations that the logit function of one-year death
probability is approximately linear in age for ages beyond 40. The CBD model also contains
the dynamic features of a stochastic model as the Lee-Carter model does, and is regarded as a
robust model with generally good fit. The linear relational model is an innovative model pro-
posed by Tsai and Yang (2015), which applies linear regression approach to modeling mortality
rates from observing a linear relation between two mortality sequences. One of the favorable
attributes of the linear relational model is its simple and straightforward construction. There
are two versions under the linear relational model in Tsai and Yang (2015): LR-LR model and
LR-RW model; in this project we only focus on the LR-RW model.

Credibility theory is a significant cornerstone in property and casualty insurance. One of
its popular applications is to conduct statistical estimations towards aggregate loss amount of
insurance claims. In a general case, insurers observe loss experience under a risk class and obtain
a prior mean for this risk class. At the same time, they might also have gathered a specific poli-
cyholder’s own experience data. With the chance that the prior mean from the risk class might
seem very different from the observed data from the policyholder, insurers have to decide how
credible the prior mean is and how much credit they should put onto the policyholder’s historical
data in order to determine an appropriate premium for this policyholder. In this sense, they
apply a credibility factor which represents the weight given to the policyholder’s historical data,
and assign the rest of the weight to the prior mean from the risk class. Chapter 3 will present a
more detailed demonstration on how to construct credibility framework. As mentioned earlier,
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the credibility theory is one of the most important and popular strategies applied in prospective
rate making, and has wide-ranging applications in property and casualty insurance. This project
extends the credibility theory to the exercise of mortality forecast area and applies the method
with special implementation and interpretation; more explanations are provided in Chapter 3.

1.2 Motivation

Providing mortality forecast with high-degree accuracy as well as stable forecasting perfor-
mance has critical meanings to both life insurers and reinsurers. Precise forecasting can help
reduce mortality/longevity risk and ensure a smoother operation of business. Underestimat-
ing future mortality rates would lead to insufficient premium levels while overestimation could
severely affect insurers’ competitiveness and gradually pull the insurers off the market. Retain-
ing appropriate premium levels takes even more important role at this point since the economic
condition is still in downturn. In this sense, the selection of mortality models turns out to be
more determinant for life insurance companies to accomplish accurate forecasting.

As the essential foundation for all different kinds of mortality-linked insurance products or
financial derivatives, mortality rate suggests critical implications in financial market, and thus
this project aims to develop an appropriate approach that can provide highly accurate and sta-
ble forecasting results for life insurance companies. There are numerous studies that have been
conducted to improve the forecasting performance based on specific mortality models, and we
will elaborate more on this in Chapter 2. However, a large number of research studies exclu-
sively focused on one specific mortality model and they achieved better forecasting results by
adding more complex factors and thus raising the difficulty levels for practical implementation.
This project, on the other hand, concentrates on the forecasted mortality rates that have been
already generated from existing mortality models. It provides a simple approach to applying
the non-parametric Bühlmann credibility method, and eventually produces satisfactory estima-
tion results. It is a creative approach to forecasting mortality rates with no previous research
references, and can bring better forecasting results to life insurance companies.

The structure of this project proceeds as follows: Chapter 2 focuses on literature review on
the development of Lee-Carter model, CBD model, and linear relational model; it also elaborates
the derivation of credibility theory as well as its current applications and modifications in indus-
try. Chapter 3 presents the three mortality models mentioned above in mathematical formulas,
and after a concise introduction to Bühlmann credibility theory, we apply the non-parametric
Bühlmann method based on the sample data collected from each of the three models. Numerical
results are summarized in tables in Chapter 4; figure comparisons and analysis are also provided
to support the conclusion that applying the credibility theory leads to better forecasting results
with lower errors. Chapter 5 illustrates several practical applications with our forecasted mor-
tality rates; we apply the estimated outcomes to price three types of life insurance and annuity
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products, and compare the results with those from the original models, which eventually con-
firms the conclusion declared in Chapter 4. Chapter 6 is the conclusion and it summarizes the
whole project with suggestions and further considerations.
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Chapter 2

Literature Review

2.1 Mortalities

2.1.1 Lee-Carter Model

The Lee-Carter mortality model was proposed by Lee and Carter (1992). It is a stochastic
model with dynamic features, and it concentrates on two factors: age effect and time effect
when modeling and forecasting mortality rates. Although it has been recognized as one of the
most popular and effective mortality models that can generally produce quite a good fit and
forecasting results, the Lee-Carter model has also been called into questions along the way
and consequently modified in order to achieve better forecasting results. For instance, Lee and
Miller (2001) examined Lee-Carter model’s actual and hypothetical forecast errors. Their results
suggested that the Lee-Carter model tends to under-project gains and furthermore, the actual
ever-changing age patterns also affect the model fitting. Brouhns et al. (2002) implemented a
new computational method for fitting, extrapolating, and improving the Lee-Carter model. They
expanded the model from the original Poisson regression setting, applied a time-varying index for
mortality forecasting, and updated the model by deriving Brass-type relational model which is
quite helpful in terms of estimating the cost of adverse selection in the whole life annuity market.

With the original age-effect and time-trend parameters in question, the Lee-Carter model has
been extended and modified to different extents in the past decades. Delwarde et al. (2007) ex-
amined the associated parameters in the Lee-Carter model, and discovered the irregular patterns
of the age-effect parameters exhibited in most cases, which might lead to deviated forecasting
values. To deal with this concern, they developed an approach to smoothing the estimated pa-
rameter by applying Poisson log-bilinear models for mortality projection. They also determined
the optimal value of the smoothing with the help of cross validation. Mitchell et al. (2013) put
forward a modification which utilizes the data with the growth rates of mortality rates, rather
than the regular mortality rates as in the original Lee-Carter model. Their numerical results
prove that such modification can help the model achieve better prediction performance in terms
of capturing mortality dynamics, as well as many of the subsequent variants.
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As a predominant method to describe and define the evolution of mortality rates, the Lee-
Carter model can perform well in most cases. However, the traditional Lee-Carter model assumes
normal distributions in the error terms, while there exists certain situations where the normal
distribution assumption can no longer hold, such as the occurrence of unusual worldwide disaster
or epidemic. Faced with the truth that such events changed the empirical mortality distribution
to a significant extend, Giacometti et al. (2009) included a non-Gaussian distributions for the
error terms in the Lee-Carter model so that it can exhibit such deviant patterns, which can not
be expressed as normal any more.

Besides the non-Gaussian distribution which helps the model better capture the occurrences
of jumps, there are also other extensions conducted to the Lee-Carter model. For instance,
Renshaw and Haberman (2006) incorporated an additional term into the model for the sake of
cohort effect, which refers to the observation that for some generations, people born in the same
year or same period of time display very similar pattern in terms of mortality dynamics as well
as life expectancy improvements.

As mortality-linked securities become more and more prevalent in financial derivatives mar-
kets, the requirements for a meticulous model which can allow accurate martingale measure for
mortality/longevity-linked securities have been rising in the past decade. Based on this tendency,
there are also abundant studies to link the Lee-Carter model with financial derivative pricing
strategies in order to corporate diverse demands in financial industry. Chuang and Brockett
(2014) made further extensions based on the progress from Mitchell et al. (2013); they brought
forward Esscher transform and Levy process in order to link the modification in Mitchell et
al. (2013) with martingale pricing. Chuang and Brockett (2014) also conducted a q-forward
pricing and found that their approach can produce similar in-sample estimations without any
complicated adjustments. Such computational expediency is very helpful and beneficial for life
insurance companies since they can directly apply this strategy in pricing, and furthermore,
their model can also achieve lower costs of longevity hedging.

The Lee-Carter model, as well as most other mortality models proposed in recent literature,
is constructed based on the assumption that the associated time-trend parameters follow a stan-
dard autoregressive integrated moving average (ARIMA) model, in particular, a random walk
with drift. One flaw regarding to this assumption is that the forecasted values will be highly
sensitive to the calibration period. Faced with this concern, Berkum et al. (2015) analyzed the
impact of multiple structural changes on a large collection of mortality models. Although they
did not make a general conclusion that work for all the cases, they did find several cases where
improvements in estimates and more robust projections are verified with structural changes.

Besides the ARIMA model involved in the Lee-Carter model, there are also questions raised
towards other assumptions. For instance, the Lee-Carter model assumes an invariant age effect
with linear time component. However, Booth et al. (2002) found that such assumption does
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not fit Australian data. Faced with significant departures from linearity in the time effect, they
adjusted the time-trend parameter to reproduce the age distribution of deaths, rather than to-
tal deaths. They also determined the optimal fitting period in order to address non-linearity
in the time effect. In terms of Australian case, such modification produces higher forecast life
expectancy than the original Lee-Carter method with a high reduction in error.

2.1.2 CBD Model

The CBD model was proposed by Cairns, Blake and Dowd (2006). The framework of the
CBD model follows similar patterns with most of other stochastic mortality models; there are
two time-trend parameters involved in the CBD model, which can be estimated by fitting the
model into historical data. It is generally believed that the CBD model was mainly developed
to capture mortality dynamics for higher ages, and thus it cannot provide a fit as good as the
Lee-Carter model does. However, in the current market, mortality/longevity risk has become
a newly social concern which has potentially big effects on life insurance companies. Longevity
risk particularly refers to the unexpected longer life expectancy, which consequently leads to
higher pay-out amounts and thus heavier financial burdens for life insurers. Faced with such un-
derestimation possibility, there are plenty of hedging instruments developed in order to protect
the insurers from the potential liabilities. For example, Cairns (2011) proposed a method using
the Taylor expansion to conduct approximated longevity-contingent values, and by applying the
functions to the CBD model, Cairns (2011) derived a closed-form formula which is a significant
progress, since the previous research can only rely on simulations.

As the longevity risk catches more attention, the development of longevity-linked derivatives
becomes more prevalent in the market, and thus more researchers begin to realize the CBD
model’s favorable properties in terms of this perspective. For example, Chan et al. (2014) found
that, among various stochastic mortality models with time-trend parameters, the CBD model
turns out to be the most appropriate candidate to indicate longevity risk levels at different time
points. Based on this judgment, they expanded the CBD model by jointly modeling a more
general class under a multivariate time-series setting so that their modification can take consid-
eration of cross-correlations. Chan et al. (2014) applied this expanded model to conduct joint
prediction region, which can function as a graphical longevity risk metric. This metric works as
a helpful tool for life insurers to be able to compare the longevity risk exposures coming from
different portfolios, and thus they can accomplish more intuitive and beneficial pricing strategies.

Similar to the Lee-Carter model, the associated parameters involved in the CBD model have
also been modified along the way. There are questions raised towards the original assumption
since historical data show that the two time-trend factors in the CBD model do not follow a
random walk. Instead, Sweeting (2011) proposed that they should be modeled as a random
fluctuation around a trend which varies periodically, and applied statistical techniques to quan-
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titatively determine the periodicity, which can be used to project the frequency of future changes.

Both the Lee-Carter and the CBD models are robust stochastic models with good fits, and
those extensions and modifications mentioned above can improve their forecasting performance
to different extents. However, the concern is that we cannot find the universally best model
with the most suitable extension that works out for all datasets. The best choice of mortality
models and possibly corresponding modifications all depend on the data. For example, Cairns
et al. (2009) quantitatively compared the results from eight stochastic models in terms of fitting
and forecasting mortality rates, based on the mortality data of England and Wales and in the
United States. As the numerical results indicate, for higher ages, an extension of the CBD
model that incorporates a cohort effect fits the England and Wales males data best, while for
U.S. males, the extension by Renshaw and Haberman (2006) to the Lee-Carter model that also
allows for a cohort effect provides the best fit. This increases the challenges for life insurers
to select an appropriate model with possible modifications when they need to perform pricing.
Since different populations reflect distinct features, which cannot be captured using a unified
mortality model, life insurers have to test different candidates to find the most suitable one for
each specific case. To make the situation even worse, not all of these extensions mentioned above
are implementable when they come to mortality forecasting.

2.1.3 Linear Relational Model

The linear relational model, an innovative model proposed by Tsai and Yang (2015), exploits
the linear relation between two mortality sequences of equal length. Based on this foundation,
Tsai and Yang (2015) applied a simple linear regression to relate the target mortality rate se-
quence to the base mortality sequence. For each of the estimated slope and intercept parameters,
they conducted simple linear regression (LR-LR) and random walk with drift (LR-RW) models.
The sequences of the fitted slope and intercept parameters can be then applied for forecasting
future deterministic and stochastic mortality rates. They also compared the forecasting per-
formances generated from the LR-LR and LR-RW models as well as the Lee-Carter and CBD
models, and applied a measure called hedge effectiveness rate in order to quantify risk reduc-
tion amount per dollar spent for hedging mortality and longevity risks with a mortality-linked
security under the underlying mortality models.

Hedging mortality and longevity risks has caught more and more attentions due to the flour-
ishing market for mortality-linked securities, a brand new class of financial securities. As men-
tioned earlier, mortality/longevity risk has raised more attention in financial market; however,
the fact is that there remains considerable unresolved issues for ensuring successful development
in a financial market. Accordingly, there are numerous research papers addressing these con-
cerns and offering resolutions for life insurers and annuity providers to manage their exposure
to such risks. For instance, Wills and Sherris (2010) studied the securitization of longevity risk
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and derived an approach to structuring and pricing a longevity bond using techniques developed
for the financial markets, particularly for mortgages and credit risk. Besides the securitization
issue, Blake et al. (2006) analyzed the main characteristics of longevity bonds and demonstrated
various forms into which these bonds can evolve. They addressed the sensitivity concerns and
corresponding valuation issues in order to expand longevity bonds into a professional risk man-
agement tool for hedging longevity risk. To be more specific, Blake et al. (2006) analyzed
two famous mortality-linked securities: the Swiss Re mortality bond issued in December 2003
and the EIB/BNP longevity bond issued in November 2004. They broke down the contracts
and examined each specific condition, and also provided exhaustive comments regarding to such
products’ potential uses and implementation issues.

The Lee-Carter, CBD, and linear relational models are the three mortality models that we
will focus on in this project. However, there are many other favorable mortality models and
their extensions and modifications from different perspectives to fit and forecast mortality rates.
In this sense, which model to choose turns out to be an indispensable question for both insurers
and researchers. Therefore, Dowd et al. (2010) designed a framework to evaluate the goodness
of fit of six stochastic mortality models using English & Welsh male mortality data. While they
recognized notably deviated values generated from different models, they did not find a model
that can perform well in all tests, and thus they concluded that no model clearly dominates the
others.

To further expand the conclusion by Dowd et al. (2010), Cairns et al. (2011) continued to
evaluate and compare the suitability of six stochastic mortality models which vary in different
perspectives. They assessed these models individually in terms of forecasting performance at
different ages, and established a set of qualitative criteria such as forecasting plausibility, bio-
logical reasonableness, the robustness of the forecasts relative to the sample period and so on.
After an exhaustive comparison and analysis, they found out that even though a model might
work as a good fit to historical data, it does not guarantee that the model will produce accurate
forecasting values. Moreover, those models satisfying their presumed criteria can still generate
significant deviations when forecasting mortality rates at different ages.

2.2 Credibility Theory

Credibility theory takes a vitally important role in property and casualty (P&C) insurance
as a popular and effective approach to providing predictions in claim so that companies can
reply on such estimates to determine the prospective premiums. Bühlmann (1967) proposed
credibility premiums with a statistical framework which formalized the basis and principles for
credibility theory, and also proposed the procedures to compute Bühlmann credibility factors
Z in the credibility model with equal exposure units. Bühlmann and Straub (1970) achieved
another significant practical improvement by allowing unequal exposure units within a portfolio,
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and this affords more flexibilities and puts the model forward to wider applications in practice.

Based on the result that Bühlmann (1967) developed, in the past few decades there have been
extensive efforts paid by researchers in order to extend the model to more broad cases and deal
with more intricate conditions. For example, Gerber and Jones (1975) and Frees et al. (1999)
were dedicated to credibility models with time dependence. Frees and Wang (2005) modified
the credibility theory by applying copulas which can be used to model the dependencies over
time. They also extended the linear regression to the generalized linear models with respect to
loss distributions. Particularly, they are the first to apply t-copula, the copula associated with
the multivariate t-distribution, under such generalized linear model setting. Such link between
credibility and loss distributions demonstrates favorable advantages since t-copula gives rise to
easily computable predictive distributions that insurance companies can use to generate credi-
bility predictors.

Yeo and Valdez (2006) extended the model by Frees and Wang (2005), and continued to
extend the credibility theory within the frameworks of copula models. The accomplishment
they made is to exempt the theory from claim independence assumption; namely, the classic
model commonly assumes that claims are independent of each other, but Yeo and Valdez (2006)
managed to apply the credibility theory without this restriction, and apply the concept of copula
models to derive the predictive claim expressions so that they can conduct claim prediction.

Besides the modification and extensions mentioned above regarding to the model itself, there
are also abundant studies to promote computational convenience. Generally speaking, the cred-
ibility factor can be calculated using two popular approaches, Bayesian and Bühlmann. It has
been proved that under certain conditions, the credibility factor calculated from the Bühlmann
and Straub model is equal to that from the empirical Bayes method (Ericson, 1970). However,
with explicit prior and posterior loss distributions required, it is usually inconvenient to imple-
ment the Bayes method into practical computations. The Bühlmann credibility factor, on the
other hand, can be calculated from some general statistical packages, and there are numerous
reports presenting different methods to calculate the Bühlmann credibility factor. For example,
Tolley et al. (1999) proposed a method of calculating the Bühlmann credibility factor using
one-way Analysis of Variance (ANOVA). ANOVA is a popular statistical model to analyze the
differences among group means and variations. It can be easily implemented with various pro-
gramming tools including Excel, and thus provides a more open and accessible platform for
companies to run the model. Based on the ANOVA setting, Tolley et al. (1999) applied the
method of moments, and thus simply constructed and computed the credibility factor. Such
advancement has important meanings regarding to business applications since the method of
credibility theory is extensively applied in P&C insurance for actuaries to determine the premi-
ums for all different types of business lines.
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The two paragraphs above have presented abundant academic research with regards to mor-
tality models and the credibility theory, with elaborated modifications and extended applications
in insurance industry. However, the literature combining these two is quite limited. The credibil-
ity model is mainly applied in P&C insurance while mortality models and all their corresponding
modifications primarily concentrate on life insurance or financial derivatives market. With dif-
ferent areas, no one tried to apply the credibility theory to improve the estimation of mortality
rates. In this sense, this project develops a link to combine these two, derives the formula to
conduct estimation, presents numerical results to compare forecasting performance, and makes
decent contributions to the literature of mortality modeling. The forecasting and estimating
methods illustrated in this project are applicable to products issued by both traditional life
insurance companies and financial derivative markets, and can be applied under various product
pricing scenarios as well.
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Chapter 3

Applying Credibility Theory to Existing
Models

Lee-Carter model, CBD model, and linear relational models are the three mortality models
embedded with the credibility theory in this project. These three models possess favorable per-
formances in terms of capturing the trend of mortality rates. The Lee-Carter model is a simple
robust model in which the mortality rate dynamics is driven by both age effect and time effect;
it provides a good fit over wide age ranges. The CBD model uses two time-trend factors, level
and slope, to capture the movements of mortality rates, particularly taking advantage of the
linear pattern reflected from the logit function of one-year death probability at ages above 40, so
it was designed to model mortality rates for higher ages. Although the CBD model does not fit
as well as the Lee-Carter model in general cases, it is still a robust model with simple age effects
and convenience to incorporate parameter uncertainty. The linear relational model, on the other
hand, is an innovative approach to modeling mortality rates. It exploits a linear relationship
between two mortality sequences, and can produce decent forecasting performance in terms of
hedging effectiveness; it even outperforms the Lee-Carter model for the mortality datasets stud-
ied in Tsai and Yang (2015). All these three models are stochastic models which provide more
flexibility to deal with the random deviation of the deterministic forecast in mortality rates.
Although some deterministic models can capture the overall declining trend of mortality rates,
the real declines will be quite volatile; the true mortality rates will always stay unknown until
they really happen in the future, and thus the uncertainty needs to be taken into account when
we conduct forecasting.

Figure 3.1 displays the framework for the Lee-Carter and CBD models. In the figure, m
represents the length of the age span and n is the length of the fitting year span. In this project,
t0 stays fixed, i.e., the ending year of the fitting year span remains the same, while n changes so
that the length of the fitting year span varies. Changing fitting year spans will return diverse
forecasted results which are the observations of the sample data employed into the credibility
method in later sections.
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Figure 3.1: Framework of the Lee-Carter and CBD models

The following sections illustrate the three models in more details. Based on the fact that dif-
ferent fitting year spans lead to distinct mortality forecasts, we treat these forecasts as a random
sample, and thereafter apply the non-parametric Bühlmann method to the sample. Justifica-
tion, model interpretations, and numerical results are also provided.

3.1 Lee-Carter Model

The Lee-Carter model is the most cited and used model in actuarial literature to model
mortality rates. It models the logarithm of central death rate, ln(mx,t), with a selected age
span and a fitting year span. The deterministic part represents the mean of the fitted or
forecasted mortality rate, and the stochastic part describes all the errors that are not captured
in the model. This section briefly goes over the essentials of the model, and only focuses on
the deterministic part, from which we can apply the credibility theory, get the non-parametric
Bühlmann estimates, and achieve a better prediction.

3.1.1 Notations & Assumptions

The Lee-Carter model captures the dynamics of mortality rates taking both age effect and
time (year) effect into account, and performs forecasting based on this layout. The classical
Lee-Carter model is presented as

ln(mx,t) = ax + bx × kt + εx,t, x = x0, x0 + 1, ..., x0 +m− 1, t = t0 − n+ 1, ..., t0,

where ax is the average age-specific mortality factor, kt is the general mortality level in year
t, bx is the age-specific reaction to kt at age x, and εx,t represents the error term, which is as-
sumed to be independent and identically distributed (i.i.d) normal for t = t0−n+1, · · · , t0 with
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mean 0 and variance σ2
εx . Furthermore, it is assumed that εx,t is independent with εz,t for x 6= z.

The equation above is subject to two constraints:
∑x0+m−1
x=x0 bx = 1 and

∑t0
t=t0−n+1 kt = 0.

To fit the model and estimate its parameters, we can use singular value decomposition (SVD)
method; alternatively, we can estimate parameters as follows:

t0∑
t=t0−n+1

ln(mx,t) = n× ax + bx ×
t0∑

t=t0−n+1
kt = n× ax

⇒ âx = 1
n

t0∑
t=t0−n+1

ln(mx,t), x = x0, x0 + 1, ..., x0 +m− 1, (3.1)

and

x0+m−1∑
x=x0

[ln(mx,t)− âx] = kt ×
x0+m−1∑
x=x0

bx = kt × 1

⇒ k̂t =
x0+m−1∑
x=x0

[ln(mx,t)− âx] , t = t0 − n+ 1, · · · , t0. (3.2)

To get b̂x, we regress [ln(mx,t)− âx] on k̂t without the constant term involved for each x.

3.1.2 Estimation of Model Parameters

Figure 3.2 displays Lee-Carter model’s parameters âx, b̂x, and k̂t. Throughout this chap-
ter, we use UK male mortality data to conduct parameter illustrations. Five fitting year spans
are selected to illustrate mortality forecasting for 2001 − 2010, which are 1951 − 2000, 1961 −
2000, 1971− 2000, 1981− 2000, and 1991− 2000. The age span is set to be [25, 84] with x0 = 25
and m = 60. Based on this layout, there are 5 paths corresponding to 5 fitting year spans for
âx’s, b̂x’s and k̂t’s given in Figures 3.2 (a), (b) and (c), respectively.

Figure 3.2 also provides us a good picture for the parameter movements. It can be seen that
âx’s follow quite a consistent pattern with a neat and clear uptrend; the 5 paths turn out very
close to each other, and âx’s increase in x. k̂t’s also show a neatly linear pattern but with an
overall down trend instead; the 5 paths look parallel with each other. b̂x’s, on the other hand,
reflect more fluctuations and do not have an evident linear relationship with age x; however, it
can still be seen that the parameter values increase with age for the first half, and then start
decreasing at some higher age.
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(a) âx

(b) b̂x

(c) k̂t

Figure 3.2: Estimates of parameters for the Lee-Carter model
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3.1.3 Model Prediction

From Figure 3.2 (c) it can be seen that k̂t’s follow an approximately linear pattern, so we
apply ARIMA(0, 1, 0) to model k̂t, that is, a random walk model with drift θ: k̂t = k̂t−1 +θ+εt,
where εt is the time-trend error and follows independent and identically distributed (i.i.d.)
normal with mean 0 and variance σ2

ε . In this sense, θ̂ can be estimated by

θ̂ = 1
n− 1

t0∑
t=t0−n+2

(
k̂t − k̂t−1

)
= 1
n− 1

(
k̂t0 − k̂t0−n+1

)
. (3.3)

Hence, k̂t0+τ for year t0 + τ can be projected as

k̂t0+τ = k̂t0 + τ × θ̂, τ = 1, 2, ..., T, (3.4)

where τ represents the number of years beyond t0 such that [t0 +1, t0 +T ] is the forecasting year
span as shown in Figure 3.1. Based on the equations above, we can forecast the deterministic
mortality rate for age x in year t0 + τ as

ln(m̂x,t0+τ ) = âx + b̂x × (k̂t0 + τ × θ̂) = ln(m̂x,t0) + b̂x × τ × θ̂, (3.5)

where ln(m̂x,t0) = âx + b̂x × k̂t0 stands for the fitted value for year t0. For the stochastic part,
we need to add two error terms, the model error εx,t from ln(mx,t) and the time-trend error εt
from k̂t, to get

ln(m̃x,t0+τ ) = âx + b̂x × (k̂t0 + τ × θ̂ +
τ∑
t=1

εt0+t) + εx,t0+τ

= ln(m̂x,t0+τ ) + b̂x ×
τ∑
t=1

εt0+t + εx,t0+τ . (3.6)

It follows that the variance of ln(m̃x,t0+τ ) is

σ2
x,τ = V ar [ln(m̃x,t0+τ )] = τ × b̂2

x × σ2
ε + σ2

εx , (3.7)

where σ2
ε , the variance of the time-trend error, can be estimated by

σ̂2
ε = 1

n− 2

t0∑
t=t0−n+2

ε2t = 1
n− 2

t0∑
t=t0−n+2

(
k̂t − k̂t−1 − θ̂

)2
, (3.8)

and σ2
εx , the variance of the model error, can be estimated as

σ̂2
εx = 1

n− 2

t0∑
t=t0−n+1

ε2
x,t = 1

n− 2

t0∑
t=t0−n+1

[
ln(m̂x,t)−

(
âx + b̂x × k̂t

)]2
. (3.9)
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(a) ln(m̂x,t0+τ )

(b) σ̂2
x,τ = V̂ ar [ln(m̃x,t0+τ )]

Figure 3.3: ln(m̂x,t0+τ ) and V̂ ar [ln(m̃x,t0+τ )] for x = 40 based on 5 fitting year spans

Figure 3.3 displays the forecasted ln(m̂x,t0+τ ) and estimated V̂ ar [ln(m̃x,t0+τ )] for x = 40.
The same 5 fitting year spans, 1951−2000, 1961−2000, 1971−2000, 1981−2000, and 1991−2000,
are selected to forecast mortality rates for years 2001−2010. It is obvious from Figure 3.3 (a) that
different fitting year spans give different âx, b̂x and k̂t0 to form distinct fitting value ln(m̂x,t0) =
âx+ b̂x×k̂t0 for year t0, and then yield varying forecast ln(m̂x,t0+τ ) = ln(m̂x,t0)+ b̂x×τ×θ̂. Same
situation can also be found in Figure 3.3 (b) for σ̂2

x,τ = V̂ ar [ln(m̃x,t0+τ )] = τ × b̂2
x × σ̂2

ε + σ̂2
εx ,

and such distinct values of variance will affect simulation results.
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3.2 CBD Model

3.2.1 Notations & Assumptions

Built on the observation that the logarithm of qx,t/px,t is approximately linear at ages above
40, the CBD model was designed to model mortality rates for higher ages. Although the CBD
model is less popular than the Lee-Carter model, yet it possesses its own superiority. In fact,
Chan et al. (2014) concluded that the CBD model is most suitably used as indexes to indicate
levels of longevity risk at different time points among all different kinds of time-varying models.
The model applies two time-varying parameters to capture the movements in mortality rates.
With the same framework demonstrated in Figure 3.1, the CBD model is presented as

logit(qx,t) =k1
t + k2

t (x− x̄) + εx,t, x = x0, · · · , x0 +m− 1, t = t0 − n+ 1, · · · , t0, (3.10)

where logit(qx,t) = ln
(

qx,t
1−qx,t

)
, x̄ = 1

m

∑x0+m−1
x=x0 x, and εx,t is the model error which is assumed

i.i.d. normal for t = t0 − n+ 1, · · · , t0 with mean 0 and variance σ2
εx . In addition, it is assumed

that εx,t is independent of εz,t (i.e., εx,t ⊥ εz,t) for x 6= z.

3.2.2 Estimation of Model Parameters

Both estimates of k1
t and k2

t can be obtained by regressing logit(qx,t) on (x − x̄) for each t
to get

x0+m−1∑
x=x0

logit(qx,t) =
x0+m−1∑
x=x0

k1
t +

x0+m−1∑
x=x0

k2
t (x− x̄)

⇒ k̂1
t = 1

m

x0+m−1∑
x=x0

logit(qx,t), (3.11)

and

x0+m−1∑
x=x0

[logit(qx,t)× (x− x̄)] =
x0+m−1∑
x=x0

k1
t (x− x̄) +

x0+m−1∑
x=x0

k2
t (x− x̄)2

⇒ k̂2
t =

∑x0+m−1
x=x0 [logit(qx,t)× (x− x̄)]∑x0+m−1

x=x0 (x− x̄)2 . (3.12)

Figures 3.4 (a) and (b) exhibit k̂1
t ’s and k̂2

t ’s, respectively. The age span remains at [25, 84],
and the 5 fitting year spans are still 1951 − 2000, 1961 − 2000, 1971 − 2000, 1981 − 2000, and
1991− 2000. From (3.11) and (3.12) above, it can be concluded that for i = 1, 2, k̂it will return
the same value as long as the fitting year span covers the same t. For example, the fitting year
spans 1951 − 2000 and 1961 − 2000 share the same historical data for the period from 1961 to
2000, and since k̂it only depends on logit(qx,t) and (x− x̄), as a consequence, k̂it for 1961− 2000
overlaps with k̂it for 1951− 2000 for i = 1, 2, respectively. Same overlapped patterns also apply
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(a) k̂1
t

(b) k̂2
t

Figure 3.4: Estimates of parameters for the CBD model

to other fitting year spans, which can be clearly seen in Figure 3.4.

The CBD model assumes that the time trends k̂1
t and k̂2

t are independent and both follow a
random walk with drift θi, i = 1, 2. Specifically,

k̂it = k̂it−1 + θi + εit, i = 1, 2, (3.13)

where the time-trend error εit
i.i.d∼ N

(
0, σ2

εi
)
for i = 1, 2. In addition, we assume that the two

time-trend errors are independent of each other, i.e., ε1t ⊥ ε2t . The drift θi can be estimated as

θ̂i = 1
n− 1

t0∑
t=t0−n+2

(
k̂it − k̂it−1

)
= 1
n− 1

(
k̂it0 − k̂

i
t0−n+1

)
, i = 1, 2. (3.14)
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There is noticeable difference between Figures 3.4 (a) and (b). While random walk seems to
be a good fit for k̂1, it does not seem appropriate for k̂2. We should realize that although the
CBD model suggests the random walk with drift to model the time-trend parameters k̂1 and k̂2,
yet the random walk assumption might not work out well for all cases. It may not be suitable
for some age spans, year spans, or population datasets to be fitted into the random walk model.
We are conscious of a critical inference that there does not exist a universally ideal model which
fits all datasets well; instead, a model’s forecasting performance heavily depends on the data,
and different datasets may return quite diverse forecasting results.

3.2.3 Model Prediction

By extrapolating k̂1
t and k̂2

t to the future, we can make mortality prediction. The logit
function of the forecasted qx,t0+τ for age x in year t0 + τ is

logit (q̂x,t0+τ ) =
(
k̂1
t0 + τ × θ̂1

)
+
(
k̂2
t0 + τ × θ̂2

)
× (x− x̄)

= logit (q̂x,t0) + τ ×
[
θ̂1 + θ̂2 × (x− x̄)

]
, (3.15)

where logit (q̂x,t0) = k̂1
t0 + k̂2

t0 × (x− x̄) represents the fitted value for year t0. The stochastic
part is

logit (q̃x,t0+τ ) =
(
k̂1
t0 + τ θ̂1 +

τ∑
t=1

ε1t0+t

)
+
(
k̂2
t0 + τ θ̂2 +

τ∑
t=1

ε2t0+t

)
× (x− x̄) + εx,t0+τ

= logit (q̂x,t0+τ ) +
τ∑
t=1

[
ε1t0+t + ε2t0+t(x− x̄)

]
+ εx,t0+τ , (3.16)

and the variance of logit (q̃x,t0+τ ) is

σ2
x,τ = V ar [logit (q̃x,t0+τ )] = τ × σ2

ε1 + τ × σ2
ε2 × (x− x̄)2 + σ2

εx , (3.17)

where σ2
εi , the variance of the time-trend error, can be estimated by

σ̂2
εi = 1

n− 2

t0−1∑
t=t0−n+1

(
k̂it+1 − k̂it − θ̂i

)2
, i = 1, 2, (3.18)

and σ2
εx , the variance of the model error, can be estimated by

σ̂2
εx = 1

n− 2

t0∑
t=t0−n+1

[
logit (qx,t)− k̂1

t − k̂2
t × (x− x̄)

]2
. (3.19)

Figure 3.5 displays 5 groups of forecasting results with the CBD model being applied to
forecast mortality rates for years 2001 − 2010 from 5 fitting year spans: 1951 − 2000, 1961 −
2000, 1971 − 2000, 1981 − 2000, and 1991 − 2000 for x = 40. It is obvious that different fit-
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(a) logit(q̂x,t0+τ )

(b) σ̂2
x,τ = V̂ ar [logit(q̃x,t0+τ )]

Figure 3.5: logit(q̂x,t0+τ ) and V̂ ar [logit(q̃x,t0+τ )] for x = 40 based on 5 fitting year spans

ting year spans generate divergent slopes and discrepant forecasted mortality rates accord-
ingly. Such discrepancy may be caused by the models for k̂1

t and k̂2
t . Figure 3.4 (a) dis-

plays a relatively linear pattern, so a linear regression model is able to capture k̂1
t ’s dynamics;

however, k̂2
t ’s pattern reflected in Figure 3.4 (b) is quite volatile, in which case it is not a

good idea to apply the random walk with drift θ. As mentioned above, θi is estimated by
θ̂i = 1

n−1
∑t0
t=t0−n+1

(
k̂it − k̂it−1

)
= 1
n− 1

(
k̂it0 − k̂

i
t0−n+1

)
for i = 1, 2; so different selections of n

lead to very distinct slopes and corresponding forecasted results, which is reflected in Figure 3.5
(a).
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3.3 LR-RW Model

The linear relational model is an innovative model developed from a different layout com-
pared with that of the Lee-Carter and CBD models. The relational model relates one mortality
sequence to the other by ux,t0+t = f (ux,t0 ; Θ) + Eε,t for some function f and its associated
parameter set Θ. ux,t can be qx,t, px,t, mx,t, ln(mx,t), or logit(qx,t). With such wide-range
choices and high-level flexibility, this model can provide favorable forecasting performance. For
this project, we will focus on the linear regression and random walk (LR-RW) model, a specific
form under the linear relational model category. Specifically, f (ux,t0) is a linear function of ux,t.
We fit ux,t0+t by simple linear regression, and then construct a random walk with drift to model
the movements of the parameters of f .

Figure 3.6 is the framework demonstration for the LR-RW model where m represents the
length of age span and n is the length of the fitting year span. We keep t0, the ending year of
the fitting year span, to be fixed, and change the length n in order to make forecasting based
on different fitting year spans.

Figure 3.6: Framework of the LR-RW model

3.3.1 Notations & Assumptions

As demonstrated in the figure above, the LR-RW model employs a base year t0− n in order
to construct the model, and assumes a linear relationship between two mortality sequences for
the base year and a year in the fitting year span. The base year always stays one year before
the selected fitting year span. For example, if the fitting year span is chosen to be 1951− 2000,
then the base year would be 1950. Linear regression is applied to fit ux,t0−n+t as

ux,t0−n+t = β0,t + β1,t × ux,t0−n + εx,t, t = 1, 2, ..., n, (3.20)

22



where εx,t is the model error which is assumed independent and identically distributed normal
for t = 1, 2, ..., n, i.e., εx,t

i.i.d∼ N(0, σ2
εx). Let ux,t0−n+t be the logarithm of central death rate for

age x in year t0 − n+ t, t = 1, 2, ..., n, and the LR-RW model is given by

ln(mx,t0−n+t) = β0,t + β1,t × ln(mx,t0−n) + εx,t, t = 1, 2, ..., n, (3.21)

where β1,t is the slope parameter that signalizes the time-varying relationship between the fitting
mortality sequence for year t0 − n + t and that for the base year t0 − n, β0,t is the intercept
parameter, and εx,t represents the model error term which is assumed to be independent and
identically distributed (i.i.d) normal for t = 1, · · · , n with mean 0 and variance σ2

εx . Furthermore,
it is assumed that εx,t is independent of εz,t for x 6= z.

3.3.2 Estimation of Model Parameters

Figure 3.7 displays the parameter sequence β̂i,t estimated from linear regression with 5 paths
corresponding to 5 fitting year spans for UK males. From the figure we can see that the 5 β̂i,t’s
from different fitting year spans follow quite similar pattens for i = 1, 2. However, it does not
necessarily imply that the shortest fitting year span will return the biggest value of β̂i,t as that
for the Lee-Carter model, in which the shorter the fitting year span, the bigger the k̂t as shown
in Figure 3.2 (c).

3.3.3 Model Prediction

Let Bi = {β̂i,1, · · · , β̂i,n}, i = 0, 1. To model Bi, Tsai and Yang (2015) assumed a
random walk with drift θi as follows:

β̂i,t = β̂i,t−1 + θi + εit, (3.22)

where θi can be estimated by θ̂i = 1
n− 1

(
β̂i,t0 − β̂i,t0−n+1

)
, and the time-trend error εit are

assumed to follow i.i.d N
(
0, σ2

εi
)
for i = 0, 1. In addition, we assume that the two time-trend

errors are independent of each other, i.e., ε1t ⊥ ε0t . The variance of the time-trend error, σ2
εi , can

be estimated by

σ̂2
εi = 1

n− 2

n∑
t=2

[
β̂i,t0−t+2 − β̂i,t0−t+1 − θ̂i

]2
, (3.23)

so that the time-trend parameter β̂i,t for year t0 + τ can be projected as

˜̂
βi,t0+τ = β̂i,t0 + τ × θ̂i +

τ∑
t=1

εit0+t, τ = 1, 2, ..., T. (3.24)
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(a) β̂1,t

(b) β̂0,t

Figure 3.7: Estimates of parameters for the LR-RW model
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Thus, the deterministic prediction for age x in year t0 + τ is

ln (m̂x,t0+τ ) =
(
β̂1,t0 + τ × θ̂1

)
× ln (m̂x,t0−n) +

(
β̂0,t0 + τ × θ̂1

)
, (3.25)

and the stochastic one is

ln (m̃x,t0+τ ) =
(
β̂1,t0 + τ θ̂1 +

τ∑
t=1

ε1t0+t

)
× ln (mx,t0−n) +

(
β̂0,t0 + τ θ̂0 +

τ∑
t=1

ε0t0+t

)
+ εx,t0+τ

= ln (m̂x,t0+τ ) +
τ∑
t=1

[
ln (mx,t0−n)× ε1t0+t + ε0t0+t

]
+ εx,t0+τ . (3.26)

The variance of the stochastic forecast ln (m̃x,t0+τ ) is

σ2
x,τ = V ar[ln (m̃x,t0+τ )] = τ ×

[
ln (mx,t0−n)2 × σ2

ε1 + σ2
ε2

]
+ σ2

εx , (3.27)

where σ2
εi is estimated in (3.23), and σ2

εx , the variance of the model error, is estimated by

σ̂2
εx = 1

n(m− 2)

n∑
j=1

m−1∑
i=0

[
ln (mx+i,t0−n+j)− β̂0,t0−n+j − β̂1,t0−n+j × ln (mx+i,t0−n)

]2
. (3.28)

Figure 3.8 exhibits the results for 5 fitting year spans. We apply the LR-RW model to fore-
cast mortality rates for 2001 − 2010, generated from 5 fitting year spans: 1951 − 2000, 1961 −
2000, 1971− 2000, 1981− 2000, and 1991− 2000, for a 40-year-old UK male.
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(a) ln(m̂x,t0+τ )

(b) σ̂2
x,τ = V̂ ar [ln(m̃x,t0+τ )]

Figure 3.8: ln(m̂x,t0+τ ) and V̂ ar [ln(m̃x,t0+τ )] for x = 40 based on 5 fitting year spans

26



3.4 Bühlmann Credibility Theory

With wide applications in property and casualty (P&C) insurance, credibility theory works
as an approach to performing prospective rating, i.e., to calculating different premium levels that
will be charged to policyholders. Take P&C prospective rating as an example, it combines the
policyholder’s own experience with the expected value of the risk class which the policyholder
belong to. Under the credibility theory, a partial weight (the credibility factor Z) is assigned to
the policyholder’s own data (the sample mean of these observations, denoted as Ȳ ), and the rest
of the weight (1−Z) is assigned to the expectation of the risk class (denoted as µ). Accordingly,
the prospective premium to be charged is C = Z × Ȳ + (1− Z)× µ.

The reason to assign such a credibility factor is that, although the risk class is assumed ho-
mogeneous with respect to the underwriting characteristics, yet there still remains a little hetero-
geneity when it comes to each specific policyholder’s behavior and risk characteristics. Insurance
company needs to take care of both sides of information in order to determine an appropriate
premium level. In this sense, credibility method not only captures the risk characteristics of the
whole risk class, but also takes each policyholder’s specific experience into consideration. Thus
in this way, it can return better results and reduce the average error. Bühlmann (1967) devel-
oped a credibility model with a statistical framework, called "the Bühlmann credibility model"
(Klugman, Panjer and Willmot, 2012). The subsections below will demonstrate in details how
to apply Bühlmann’s credibility model to quantitatively formulate the experience data as well
as the estimator which is produced from other information.

3.4.1 Credibility Estimation

Suppose that we have collected observed values Yx,j for age x = x0, x0 +1, · · · , x0 +m−1 (m
represents the length of the age span) from the jth fitting year span, j = 1, 2, · · · , J . It can also
be interpreted as a random sample of size J for age x available for our credibility estimation.
We have an expected rate µ corresponding to this risk class (age) and plan to determine an
estimation also based on all these different observed values. To proceed with the Bühlmann
credibility framework, we assume that the mortality rate in the risk class is characterized by
a risk parameter Θx. Furthermore, we assume that the mortality rates in the sample corre-
sponding to different fitting year spans are conditionally independent and identical; specifically,
the mortality rates Yx,1|Θx, · · · , Yx,J |Θx are independent and identical as Yx,∗|Θx. This layout
provides us a model-based framework to determine the credibility estimate.

While there are many different approaches to calculating the credibility factor, Bühlmann
(1967) derived a formula for the credibility factor using a linear estimator that minimizes the
expected squared error. It is suggested that since we have observed Yx,1, · · · , Yx,J , we can
conduct an approximation of µ(Θx) = E [Yx,j |Θx] = E [Yx,∗|Θx] by a linear function of the
observed data. That is, we will choose α0, α1, · · · , αJ to minimize the mean of squared error Q
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as follow (see Klugman et al., 2012):

Q = E

{[
µ(Θx)− α0 −

J∑
j=1

αjYx,j

]2}
,

where the expectation is over the joint distribution of Yx,1, · · · , Yx,J , and Θx. In this sense, the
squared error is the average over all possible values of Θx and all sample values available. To
minimize Q, we take the derivatives and set it to be 0; then we get

E[Yx,∗] = E[µ(Θx)] = α̂0 +
J∑
j=1

α̂j · E[Yx,j ], (3.29)

where α̂0, α̂1, · · · , α̂J are the values of α0, α1, · · · , αJ which minimize Q. For i = 1, 2, · · · , J , we
have

E[µ(Θx) · Yx,i] = E[Yx,∗ · Yx,i], (3.30)

and

Cov(Yx,i, Yx,∗) =
J∑
j=1

α̂j · Cov(Yx,i, Yx,j). (3.31)

Equation (3.29) and the J equations (3.31) together are called the normal equations. These
equations can be solved for α̂0, α̂1, · · · , α̂J to reach the credibility estimate α̂0 +

∑J
j=1 α̂j · Yx,j

which is the best linear estimator of the hypothetical mean µ(Θx).

Special case: If E[Yx,j ] = µ, V ar(Yx,j) = σ2 and Cov(Yx,i, Yx,j) = ρ · σ2 for i 6= j, where
the correlation coefficient ρ satisfies −1 < ρ < 1. Then

α̂0 = (1− ρ) · µ
1− ρ+ nρ

, α̂j = ρ

1− ρ+ nρ
, j = 1, 2, · · · , J.

The credibility estimate is then

α̂0 +
J∑
j=1

α̂j · Yx,j = 1− ρ
1− ρ+ nρ

· µ+ ρ

1− ρ+ nρ
·
J∑
j=1

Yx,j = (1− Z) · µ+ Z · Ȳx,

where Z = nρ/(1 − ρ + nρ) and Ȳx = 1
J

∑J
j=1 Yx,j . Thus, if 0 < ρ < 1, then 0 < Z < 1

and the credibility estimate is a weighted average of the sample mean Ȳx and the expectation
E[Yx,∗] = µ.

3.4.2 Parametric Bühlmann Model

This section will present the inference and logics to construct the parametric Bühlmann
model (Bühlmann, 1967) and compute the Bühlmann credibility factor so that we can extend
the model under a more complex context based on similar procedures. Assume that for a spe-
cific age x, Yx,1|Θx, Yx,2|Θx, . . ., Yx,J |Θx are independent and identically distributed, and that
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Θx, · · · ,Θx+m−1 are independent and identically distributed. In order to apply the parametric
Bühlmann model, both distributions of Yx,j |Θx and Θx must be given.

Denote
(1) the hypothetical mean µ(Θx) = E[Yx,j |Θx];
(2) the process variance v(Θx) = V ar[Yx,j |Θx];
(3) the expected value of the hypothetical means (the collective premium) µ = E[µ(Θx)];
(4) the expected value of the process variances v = E[v(Θx)] = E[V ar(Yx,j |Θx)]; and
(5) the variance of the hypothetical means a = V ar[µ(Θx)] = V ar[E(Yx,j |Θx)].

The mean and variance of Yx,j can be obtained as follows:

E[Yx,j ] = E[E(Yx,j |Θx)] = E[µ(Θx)] = µ,

and

V ar[Yx,j ] = E[V ar(Yx,j |Θx)] + V ar[E(Yx,j |Θx)]

= E[v(Θx)] + V ar[µ(Θx)] = v + a, j = 1, 2, . . . , J.

Also, for i 6= j, Cov[Yx,i, Yx,j ] = V ar[µ(Θx)] = a. From the special case, we have σ2 = v + a

and ρ = a/(v + a). The credibility premium becomes

α̂0 +
n∑
j=1

α̂j · Yx,j = Z · Ȳx + (1− Z) · µ, (3.32)

a linear function of Ȳx with the slope Z and the intercept (1− Z) · µ, where

Z = Jρ

1− ρ+ Jρ
= J

J + v/a
= J

J + k
(3.33)

is called the Bühlmann credibility factor, and

k = v

a
= E[v(Θx)]
V ar[µ(Θx)] = E[V ar(Yx,j |Θx)]

V ar[E(Yx,j |Θx)] .

From (3.32), we can see that it is a weighted average of sample mean Ȳx and the expected
rate µ. This formula turns out quite desirable for insurance companies since both sample values
and expected value are taken into account. From (3.33) for the credibility factor Z, it can be
seen that Z approaches to 1 as J increases to infinity, which implies that companies will pay
their attention to the sample mean. From the other side, if all the µ(Θx0), · · · , µ(Θx0+m−1)
display a homogeneity to a great extent, then the hypothetical means µ(Θx) = E[Yx,j |Θx] will
not vary much from µ. In this case, such small variation will produce a small a and a large k,
and thus a low Z. It implies that insurance companies will put little focus on the sample data,
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but instead concentrate on the risk characteristics of ages x0, · · · , x0 +m− 1.

3.4.3 Non-parametric Bühlmann Model

Let Yx,j denote the random variable representing the forecasted mortality rate for age x in
some year from the jth fitting year span for x = x0, x0 + 1, . . . , x0 + m − 1 and j = 1, . . . , J ,
where J ≥ 2 and m ≥ 2. Also, let Yx = (Yx,1, . . . , Yx,J) be the mortality random sample that
insurance companies already collected by forecasting mortality rates from J fitting year spans
for age x in some year. We would like to compute the non-parametric Bühlmann estimate
E[Yx,◦|Yx] for all x, x = x0, x0 + 1, . . . , x0 +m− 1, where Yx,◦ is the true mortality rate for age
x. For the non-parametric Bühlmann model, the data needs to satisfy all the assumptions below:

(1) Yx0 , . . . , Yx0+m−1 are independent;
(2) For x = x0, x0 + 1, . . . , x0 +m− 1, the distribution of each element Yx,j (j = 1, . . . , J) of Yx

depends on an (unknown) risk parameter Θx;
(3) Θx0 . . .Θx0+m−1 are independent and identically distributed random variables;
(4) Given x, Yx,1|Θx, . . . , Yx,J |Θx are independent; and
(5) Each combination of age and fitting year span has an equal number of underlying exposure

units.

For x = x0, x0 + 1, . . . , x0 + m − 1 and j = 1, . . . , J , define the hypothetical mean by
µ(Θx) = E[Yx,j |Θx] and the process variance as v(Θx) = V ar[Yx,j |Θx]. Let
µ = E[µ(Θx)] = E{E[Yx,j |Θx]} = E[Yx,j ], the expected value of the hypothetical means,
a = V ar[µ(Θx)] = V ar[E(Yx,j |Θx)], the variance of the hypothetical means, and
v = E[v(Θx)] = E[V ar(Yx,j |Θx)], the expected value of the process variances.

In this case, the non-parametric Bühlmann estimate of the mortality rate for age x in some
year τ is

E[Yx, ◦|Yx] = Ẑ × Ȳx + (1− Ẑ)× µ̂, x = x0, x0 + 1, . . . , x0 +m− 1,

where Ȳx = 1
J

∑J
j=1 Yx, j , Ẑ = J

J + k̂
and k̂ = v̂

â
. Note that it is possible that â could be negative

due to the substraction. When that happens, it is customary to set â = 0, implying Ẑ = 0, and
the Bühlmann estimate becomes µ̂ = Ȳ . Below are the formulas to estimate µ, v and a.

In this project, we apply the principles and structures of the non-parametric Bühlmann
model; however, assumption (4) is violated since our forecasted mortality rates Yx,1|Θx, . . . , Yx,J |Θx

partially share the same fitting year span containing same fitted data, so our approach is de-
nominated as "pseudo non-parametric Bühlmann estimation" in this sense. More details will be
demonstrated in next section.
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Table 3.1: Estimation for µ, v and a

(Yx0,1 Yx0,2 · · · Yx0,J)
Ȳx0 = 1

J

J∑
j=1

Yx0,j ,

v̂x0 = 1
J − 1

J∑
j=1

(Yx0,j − Ȳx0)2;

(Yx0+1,1 Yx0+1,2 · · · Yx0+1,J)
Ȳx0+1 = 1

J

J∑
j=1

Yx0+1,j ,

v̂x0+1 = 1
J − 1

J∑
j=1

(Yx0+1,j − Ȳx0+1)2;

...
...

...
...

...

(Yx0+m−1,1 Yx0+m−1,2 · · · Yx0+m−1,J)
Ȳx0+m−1 = 1

J

J∑
j=1

Yx0+m−1,j ,

v̂x0+m−1 = 1
J − 1

J∑
j=1

(Yx0+m−1,j − Ȳx0+m−1)2.

â = 1
m− 1

x0+m−1∑
x=x0

(Ȳx − Ȳ )2 − v̂

J

µ̂ = Ȳ = 1
m

x0+m−1∑
x=x0

Ȳx,

v̂ = 1
m

x0+m−1∑
x=x0

v̂x

= 1
m(J−1)

∑x0+m−1
x=x0

∑J
j=1(Yx,j − Ȳx)2.
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3.5 Applying Pseudo Non-Parametric Bühlmann Estimation

From (a) of Figures (3.3), (3.5) and (3.8), it can be seen that different lengths of the fitting
year span will generate distinct slopes when forecasting future mortality rates for year t0 + τ if
t0, the ending year of the fitting year span, is fixed. Roughly speaking, the longer the fitting
year span we choose, the steeper the forecasted slope it will reflect from the figures. Faced with
these varying forecasted values, which fitting year span should we choose in order to achieve the
best forecasting result? This implies significant financial concerns for insurance companies since
accurate mortality estimation is one of the most essential parts for them to conduct product
pricing. An appropriate premium level helps insurance operate stronger business and stay more
competitive in the market. Thus, companies need to develop an approach to determining the
fitting year span which can return an accurate mortality estimate.

For a specific case, companies can apply all possible fitting year spans, i.e., 1951 − 2000,
1952 − 2000, 1953 − 2000, ..., until 1999 − 2000. They can apply all these fitting year spans
into a mortality model separately to get the forecasted mortality rates for years 2001 − 2010,
and compare the results with the true mortality rates by the mean absolute percentage error
(MAPE) defined in (4.2). Through the MAPE comparisons, companies can find out which fit-
ting year span does the best job; the fitting year span that returns the smallest MAPE implies
the highest prediction accuracy. However, this "best fitting year span" will only apply to the age
span from a certain population selected by the company; it is not guaranteed to remain the best
fitting year once the age span or the population changes. As a matter of fact, there does not
exist a universally best fitting year span that will always returns the most accurate prediction
result. Each case has its own best fitting year span.

To deal with such varying forecasting results, this project collects forecasted mortality rates
for the same age span but different fitting year spans with an equal ending year, applies the
non-parametric Bühlmann credibility to the forecasted values, and calculates corresponding es-
timates. In this way, it offers a "compromise" among all possible forecasted values, which, from
the outcome, will generate an overall better forecasting performance than those generated from
different fitting year spans. Below are sections demonstrating the layout and formulas to con-
struct such model with supportive numerical results illustrated in the next chapter.
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3.5.1 Construction of Non-Parametric Bühlmann Estimation

Figure 3.9 demonstrates how the sample is constructed in this case. From each of the different
fitting year spans, we take the corresponding forecasted mortality rates for the same future year
to form a sample for the year; then we conduct the non-parametric Bühlmann estimation based
on the sample. For example, assume we have 48 fitting year spans: 1951−2000, 1952−2000, ...,
until 1998−2000, each of which can be used to forecast mortality rates for years 2001−2010. In
this sense, we can collect 48 columns of forecasted mortality rates to form a matrix for each of
years 2001− 2010. In the matrix, each column represents the forecasted mortality rates for the
year across the same age span. Then the non-parametric Bühlmann estimation will be applied
based on the matrix.

Figure 3.9: Framework of collecting data for the non-parametric Bühlmann model

Denote Yx,j,τ the forecasted mortality rate for age x in year t0 + τ generated from the jth

fitting year span, τ = 1, 2, ..., T and j = 1, 2, ..., J . For the Lee-Carter and LR-RW models,
Yx,j,τ = ln(m̂x,j,t0+τ ) is given in (3.5) and (3.25), respectively. For the CBD model, Yx,j,τ =
logit(q̂x,j,t0+τ ) is given in (3.15). Table 3.2 is the layout to conduct the non-parametric Bühlmann
estimation for year t0 + τ .

In credibility theory setting, µτ is the expected value of the hypothetical means, aτ is the
variance of the hypothetical means, and vτ is the expected value of the process variances. The
µ̂τ , âτ , and v̂τ in Table 3.2 are unbiased estimators, and thus, the non-parametric Bühlmann
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Table 3.2: Framework for the non-parametric Bühlmann estimate

(Yx0,1,τ Yx0,2,τ ... Yx0,J,τ ) Ȳx0,·,τ = 1
J

∑J
j=1 Yx0,j,τ ,

v̂x0,τ = 1
J−1

∑J
j=1

(
Yx0,j,τ − Ȳx0,·,τ

)2
;

(Yx0+1,1,τ Yx0+1,2,τ ... Yx0+1,J,τ ) Ȳx0+1,·,τ = 1
J

∑J
j=1 Yx0+1,j,τ ,

v̂x0+1,τ = 1
J−1

∑J
j=1

(
Yx0+1,j,τ − Ȳx0+1,·,τ

)2
;

...
...

(Yx0+m−1,1,τ Yx0+m−1,2,τ ... Yx0+m−1,J,τ ) Ȳx0+m−1,·,τ = 1
J

∑J
j=1 Yx0+m−1,j,τ ,

v̂x0+m−1,τ = 1
J−1

∑J
j=1

(
Yx0+m−1,j,τ − Ȳx0,·,τ

)2
;

âτ = 1
m−1

∑x0+m−1
x=x0

(
Ȳx,·,τ − Ȳ·,·,τ

)2
− v̂τ/J

µ̂τ = Ȳ·,·,τ = 1
m

∑x0+m−1
x=x0 Yx,·,τ ,

v̂τ = 1
m

∑x0+m−1
x=x0 v̂x,τ

= 1
m(J−1)

∑x0+m−1
x=x0

∑J
j=1

(
Yx,j,τ − Ȳx,·,τ

)2
.

estimate for a age x in year t0 + τ is

Cx,τ = Ẑx,τ × Ȳx,·,τ +
(
1− Ẑx,τ

)
× Ȳ·,·,τ ,

where Ẑx,τ = J
J+k̂τ

and k̂τ = v̂τ/âτ .

3.5.2 Notation and Interpretations

According to the credibility theory, Pc = Z × Ȳ + (1−Z)× µ, where Ȳ stands for the mean
of the observed data Y1, · · · , YJ from a policyholder, Yj is the observed value for the jth year,
and µ is the group rate that indicates the risk characteristic for the group. The non-parametric
Bühlmann model is popularly applied in property and casualty insurance in order to perform
prospective rating, i.e., to determine the premium to charge for the (J + 1)th year. In this
sense, the credibility premium charged to the policyholder for the (J + 1)th year is denoted
by E[YJ+1|Y1, . . . , YJ ]. However, the Bühlmann estimation applied in this project has different
implication, and it is of vital importance to realize the different interpretation. In our case, the
forecasted values are made for the same year by some specific mortality model, but generated
from different fitting year spans. In this sense, we treat the forecasted mortality rates as our
sample drawn for the policyholders aged x in the same age span, and want to get a "compromise
average" from the sample. For the case demonstrated in Figure 3.9, we collect 48 column vectors
of forecasted mortalities for the year 2001, generated from 48 fitting year spans: 1951 − 2000,
1952− 2000, · · · , and 1998− 2000. Applying the non-parametric Bühlmann estimation to these
48 column vectors of values can help us determine the final mortality estimate for year 2001.
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This interpretation violates one of the assumptions required for the non-parametric Bühlmann
model, as our forecasted mortality rates Yx,1|Θx, . . . , Yx,J |Θx are obtained from the mortality
data in partially overlapped fitting year spans, so they cannot be regarded as conditionally in-
dependent. However, we still apply the non-parametric Bühlmann estimation, and follow the
same procedures to compute the credibility factor; so our approach is denominated as "pseudo
non-parametric Bühlmann estimation." Such conduction is practically applicable for insurance
companies; for example, when an insurance institute plans to estimate the mortality rates for
an age span in 2010, and it already collects J columns of different estimates for the age span
provided by J insurance companies. In this situation we can apply the pseudo non-parametric
Bühlmann estimation from these J columns of values, and thus determine the final estimate of
the forecasted mortality rate for the age span in 2010.

Given a sequence of projected mortality rates for some unknown age x in a specific year from
different fitting year spans, we apply a pseudo non-parametric Bühlmann approach to getting
the Bühlmann estimate for that age. Model specifications and numerical results are presented
in the next chapter.

35



Chapter 4

Numerical Results

This chapter presents the numerical results of the models constructed in Chapter 3 with both
visualized plots and table summaries, followed by corresponding comparison and analysis. We
apply the data from 3 countries, UK, USA and Japan, for male (M) and female (F) separately,
and conduct mortality forecasting under the Lee-Carter (hereafter the LC model), CBD, and
LR-RW models, respectively. The age span remains to be 25 − 84, but the fitting year span
varies. Table 4.1 displays 3 forecasting year spans conducted in this project, where T represents
the length of the forecasting year span, t0 is the ending year of the fitting year span, and J

stands for the total number of the fitting year spans.

Table 4.1: Summary of 3 forecasting year spans

T 10 30 50

t0 2000 1980 1960

J 48 28 8

Fitting year spans

1951-2000 1951-1980 1951-1960
1952-2000 1952-1980 1952-1960

...
...

...
1998-2000 1978-1980 1958-1960

Forecasting year spans 2001-2010 1981-2010 1961-2010

Note that both the LC and CBD models require at least two-year data to estimate the
associated parameters and make predictions. In this case, the theoretical shortest fitting year
span is 2 years. However, a two-year fitting practically returns quite large forecasting errors
that turn out to be a distraction to our comparison and analysis. Based on this fact, we set
the shortest fitting year span to be 3 years long, and that is why J = 48, 28, 8 in the table
above, which will generate 48, 28 and 8 column vectors of forecasted mortality rates, respectively.
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4.1 Model Specification

Based on the forecasted mortality rates given in (3.5), (3.15) and (3.25) from the three
mortality models, we also apply a grouping strategy to the age span and compare the corre-
sponding performances of the strategies with or without grouping. To be more specific, there
are 2 stages in this project: in Stage I the original age span [25, 84] is either split into 12 age
groups (the strategy is denoted by G) or ungrouped (the strategy is denoted by U) when fitting
and forecasting mortality rates with a mortality model; in Stage II, the same grouping strategy
is adopted again when applying the non-parametric Bühlmann method to a matrix of forecasted
mortality rates (see Figure 3.9). Then 4 combinations are generated as shown in Table 4.2 below:

Table 4.2: Framework for Stage I and Stage II

Stage I Stage II
Forecasting using mortality Forecasting using the non-parametric

models: LC, CBD and LR-RW Bühlmann credibility theory

Ungrouped age span (U) Ungrouped age span (UU)
Grouped age span (UG)

Grouped age span (G) Ungrouped age span (GU)
Grouped age span (GG)

The purpose of conducting such a grouping strategy is to better identify homogeneous risks
within each group. As mentioned before, the Bühlmann credibility factor Z is a weight as-
signed to individual observations and 1−Z stays with the group rate which represents the risk
characteristics from the group. It is theoretically assumed that the wider range a group covers,
the higher degree of heterogeneity the data in the group will reflect. In this sense, we want
to study if there will be any noteworthy improvements after dividing the data into 12 smaller
groups. In the ideal case, such a smaller group is supposed to display more homogeneity and
better represent the risk characteristics, and thus reduce the variability in observations. Such a
grouping strategy will generate a more meticulous group rate µ for each of the 12 groups, and
thus we can compare the corresponding forecasting performance with that based on the original
(ungrouped) age span. The following two subsections illustrate this grouping strategy in more
details; numerical results are also provided at the end of this chapter.

4.1.1 Stage I: Grouped vs Ungrouped Age Span in Models

As mentioned above, Stage I focuses on the 3 mortality models with 12 grouped age spans
or the original age span. For the age span [25, 84] selected in this project, we split it into 12
groups with 5 ages being compiled into one group (the 12 groups are [25, 29], [30, 34], [35, 39],
· · · , [80, 84]), and apply the LC, CBD and LR-RW models to both the original age span and the
12 grouped age spans. Consequently, there will be two matrices of forecasted mortality rates

37



generated from each of the three mortality models in Stage I. Figure 4.1 exhibits the framework
of the grouped age spans.

Figure 4.1: Framework of the grouped age spans

The methods of estimating parameters of the three mortality models remain the same un-
der such a grouping arrangement except for different starting and ending values of the sum-
mation function. For example, âGx and âUx for the LC model are exactly the same since
âGx = 1

n

∑t0
t=t0−n+1 ln(mx,t) for x = x0, x0 + 1, ..., x0 + m − 1; the formula has nothing to do

with age x so âx’s value is invariant with a grouping strategy. However, the estimate of kt
depends on the age span; k̂t’s under the grouping strategy are calculated as follows:

k̂G1
t =

29∑
x=25

[
ln(mx,t)− âGx

]
, t = t0 − n+ 1, · · · , t0;

k̂G2
t =

34∑
x=30

[
ln(mx,t)− âGx

]
, t = t0 − n+ 1, · · · , t0;

...

k̂G12
t =

84∑
x=80

[
ln(mx,t)− âGx

]
, t = t0 − n+ 1, ..., t0. (4.1)

For each age x = x0, · · · , x0 +m− 1, b̂Gx is obtained by regressing
[
ln(mx,t)− âGx

]
on k̂Git where

x is in the ith group for some i ∈ {1, 2, · · · , 12}. The same procedure of estimating parameters
under the grouping strategy also applies to the CBD and LR-RW models. The dimension of
the matrix (see Figure 3.9) of forecasted mortality rates from J fitting year spans remains the
same no matter the age span is grouped or ungrouped. More specifically, for τ = 1, · · · , T , a
mortality model will always generate a matrix of forecasted mortality rates of dimension 60× J
from J fitting year spans, so there will be 60 × J × T predicted mortality rates in total for all
forecasting years and all fitting year spans regardless of grouped or ungrouped age span.

38



4.1.2 Stage II: Grouped vs Ungrouped Age Span for Bühlmann Estimation

For Stage II we also apply the same grouping strategy to the age spans with the non-
parametric Bühlmann method: either splitting the 60-year long age span into 12 groups with
5 consecutive ages being assigned into one group, or keeping the original age span unchanged.
Based on such setting, there will be 4 combinations for Stage II, UU , UG, GU and GG, as
illustrated in Table 4.2. With grouped and ungrouped age spans, Stage I returns two corre-
sponding matrices of dimension 60 × J × T . For each τ = 1, · · · , T , by fitting either a matrix
of 60 × J once (U) or 12 matrices of 5 × J (G) separately into the non-parametric Bühlmann
model, we get two corresponding column vectors of Bühlmann estimates for the age span [25, 84].

As mentioned earlier, the non-parametric Bühlmann estimate "smoothes" the unpredictable
variations resulting from the selection of different fitting year spans, and thus can provide a better
forecasting outcome. In order to have a sense of how well the non-parametric Bühlmann estimate
performs, we apply the mean absolute percentage error (MAPE) to the forecasted mortality rates
to compare the forecasting performances. MAPE is a statistic index defined below to measure the
accuracy of the fitted/forecasted values with the true values. Before applying MAPE, we need
to convert the forecasted ln(m̂x,t0+τ,j)’s (for the LC and LR-RW models) and logit(q̂x,t0+τ,j)’s
(for the CBD model) to the corresponding q̂x,t0+τ,j ’s by q̂x,t0+τ,j = 1 − exp[−eln(m̂x,t0+τ,j)] and
q̂x,t0+τ,j = elogit(q̂x,t0+τ,j)/[1 + elogit(q̂x,t0+τ,j)], respectively, and then compare them with the true
qx,t0+τ ’s. For the V strategy (V = U,G) in Stage I,

MAPEVx,j = 1
T

T∑
τ=1

∣∣∣∣∣ q̂
V
x,t0+τ,j − qx,t0+τ

qx,t0+τ

∣∣∣∣∣ , x = x0, · · · , x0 +m− 1, j = 1, · · · , J ;

MAPEVτ,j = 1
m

x0+m−1∑
x=x0

∣∣∣∣∣ q̂
V
x,t0+τ,j − qx,t0+τ

qx,t0+τ

∣∣∣∣∣ , τ = 1, · · · , T, j = 1, · · · , J ;

MAPEVj = 1
T

T∑
τ=1

MAPEVτ,j = 1
m

x0+m−1∑
x=x0

MAPEVx,j . (4.2)

Note that the MAPEVj in (4.2) above is based on the jth fitting year span for the V strategy
in Stage I. For the VW strategy in Stage II where (V,W ) = (U,U), (U,G), (G,U) and (G,G),
the corresponding MAPE formula is

MAPEVW = 1
mT

T∑
τ=1

x0+m−1∑
x=x0

∣∣∣∣ q̂VWx,t0+τ − qx,t0+τ

qx,t0+τ

∣∣∣∣ (4.3)

where q̂VWx,t0+τ is the non-parametric Bühlmann estimate of qx,t0+τ for age x in year t0 + τ using
the VW strategy. As illustrated in Table 4.1, J is the total number of all fitting year spans
involved, and T is selected to be 10, 30 and 50 with corresponding J = 48, 28 and 8, respectively.
Figures 4.2-4.10 are the MAPEVj and MAPEVW plots for 3 countries (UK, USA and Japan)
and 2 genders regarding to the 3 pairs of (T, J)’s, (10, 48), (30, 28) and (50, 8).
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(a) UKM , LC (b) UKF , LC

(c) UKM , CBD (d) UKF , CBD

(e) UKM , LR−RW (f) UKF , LR−RW

Figure 4.2: MAPEj ’s vs 1950 + j for UK with T = 10 and year span = [1950 + j, 2000]
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Figure 4.2 demonstrates theMAPE plots with the forecasting year span 2001−2010 (T = 10)
and J = 48 for UK males and females under each of the three mortality models. We can see
that compared with MAPEUj ’s, MAPEGj ’s help to smooth the fluctuations by producing a
more stable plot with smaller MAPE values. However, while MAPEGj generally returns better
outcomes than MAPEUj for 48 MAPEj values corresponding to 48 fitting year spans, both
of them depend on the selection of fitting year spans. Such fluctuations particularly occur for
very short fitting year spans. For example, for the fitting year spans 1996 − 2000, 1997 − 2000
and 1998− 2000, the MAPEVj values under the LC model jump sharply as shown in the steep
right tails of Figures 4.2 (a) and (b), while the previous MAPEVj values display a smoothly
decreasing trend.

Besides the fluctuations shown from MAPEUj ’s and MAPEGj ’s, it can be also seen that the
three mortality models reveal different reactions towards Stage I and Stage II. In Figure 4.2,
GU and GG strategies produce much lower MAPE values than UU and UG strategies except
for the UK females under the LR-RW model, which implies that the grouping strategy in Stage I
takes more important role in reducing forecasting errors and improving prediction performance.
Besides, GU and GG strategies produce quite similar results with each other that they look as
overlapped from the plots, and the same pattern also happens to UU and UG strategies. Such
feature suggests that it is not necessary to repeat grouping at Stage II if it is already applied
in earlier stage, since they will produce similar results in the end. Grouping strategy in Stage I
significantly reduce theMAPE values, and this can be reflected from all the subfigures of Figure
4.2. The reason for this significant improvement might be that, after conducting the grouping
strategy in Stage I, the associated parameters from each of the mortality models can better rep-
resent the dynamics of the mortality rates, and thus will generate a more accurate forecast result.

There is a belief that, within a certain range, the shorter the fitting year span we choose,
the better forecasting performance we will achieve, since recent years’ data can reflect mortality
changes better and thus will be more able to capture and forecast the pattern of future mortality
rates. On the other hand, the more past fitting years are included, the more faraway information
they contain, and thus the prediction performance with too much faraway information may not
work out very well. However, from theseMAPEVj plots, the length of the fitting year spans does
not have any relationship with the forecasting performance. As a matter of fact, the forecasting
performance in terms of MAPEVj values totally depends on the dataset.

In order to show the irrelevance between the fitting year span and its corresponding forecast-
ing performance, we compare the plots for these three countries and two genders under the LC
model for T = 10 and J = 48. Figure 4.2 (a) demonstrates that under LC model, the smallest
MAPEGj for UK males occurs at the fitting year span 1990 − 2000, and after that MAPEGj
steeply increases when the fitting year span shortens until it shrinks to 1998− 2000. This might
lead to a specious conclusion with respect to the relationship between the forecasting perfor-
mance and the fitting year span. However, once we change the population dataset, the pattern
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(a) USM , LC (b) USF , LC

(c) USM , CBD (d) USF , CBD

(e) USM , LR−RW (f) USF , LR−RW

Figure 4.3: MAPEj ’s vs 1950 + j for US with T = 10 and year span = [1950 + j, 2000]
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(a) JapanM , LC (b) JapanF , LC

(c) JapanM , CBD (d) JapanF , CBD

(e) JapanM , LR−RW (f) JapanF , LR−RW

Figure 4.4: MAPEj ’s vs 1950 + j for Japan with T = 10 and year span = [1950 + j, 2000]
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(a) UKM , LC (b) UKF , LC

(c) UKM , CBD (d) UKF , CBD

(e) UKM , LR−RW (f) UKF , LR−RW

Figure 4.5: MAPEj ’s vs 1950 + j for UK with T = 30 and year span = [1950 + j, 1980]
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(a) USM , LC (b) USF , LC

(c) USM , CBD (d) USF , CBD

(e) USM , LR−RW (f) USF , LR−RW

Figure 4.6: MAPEj ’s vs 1950 + j for US with T = 30 and year span = [1950 + j, 1980]
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varies accordingly. For example, MAPEGj in Figure 4.3 (a) for US males stays approximately
constant until 1985−2000, then increases to its peak at 1995−2000, and falls after that. What is
more ,MAPEGj in Figure 4.4 (a) for Japan males displays a convex pattern where the minimum
MAPEGj occurs at the fitting year span 1981− 2000.

The preceding paragraph shows that there does not exist an evident relationship between the
forecasting performance and the length of the fitting year span; instead, the forecasting perfor-
mance completely depends on the dataset. This conclusion also applies to the CBD and LR-RW
models, as well as for T = 30 (forecasting 1981− 2010) and T = 50 (forecasting 1961− 2010).

The Figures 4.5-4.7 demonstrate the MAPEVj plots for UK, USA, and Japan under each of
the three mortality models with T = 30 and J = 28. These three figures display some different
patterns compared with Figures 4.2-4.4 for T = 10 and J = 48. Generally speaking, the gap
between MAPEUj and MAPEGj significantly narrows down regardless of which specific mortal-
ity model we are applying. This shrinked gap indicates that the grouping strategy in Stage I
does not help a lot to produce better forecasting outcomes in this case compared with what it
does for T = 10. Even more, there are several cases where MAPEGj is larger than MAPEUj ,
implying that the grouping strategy in Stage I even produces worse forecasting results. An
extreme example can be seen from Figure 4.5 (d) for UK females, where the MAPEUj is clearly
smaller than MAPEGj .

By comparing the forecasting performance across different mortality models, countries and
genders, we can see that the GU and GG strategies generally produces the best forecasting
performance for T = 10. This indicates that the grouping strategy in Stage I turns out to
be the most effective way to reduce forecasting errors. However, for T = 30, the GU and GG
strategies do not necessarily produce the best results. For example, Figures 4.5 (d) and (f) show
larger MAPE values generated from GU and GG strategies, compared with those from UU

and UG strategies. In these two cases, applying UU and UG strategies will produce a better
outcome: less estimation effort with quite a low MAPE value. For T = 30 and J = 28, the
MAPEVj (V = U,G) plots under the CBD model reflects quite fluctuating pattens which turn
out quite opposite as what they do for T = 10 and J = 48. For example, by comparing Figures
4.2 (c) and 4.5 (c) for UK males, we can see that MAPEVj under the CBD model in Figure
4.5 (c) produces larger errors with more irregularities. Although the performance depends on
countries and genders to a large extent and sometimes the pseudo non-parametric Bühlmann
estimation cannot guarantee a lowest MAPE for all j’s, yet it yields better performances on
average. More importantly, it smooths such variations and produces a stable result, which is
definitely a favorable feature for life insurance companies.
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(a) JapanM , LC (b) JapanF , LC

(c) JapanM , CBD (d) JapanF , CBD

(e) JapanM , LR−RW (f) JapanF , LR−RW

Figure 4.7: MAPEj ’s vs 1950 + j for Japan with T = 30 and year span = [1950 + j, 1980]
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(a) UKM , LC (b) UKF , LC

(c) UKM , CBD (d) UKF , CBD

(e) UKM , LR−RW (f) UKF , LR−RW

Figure 4.8: MAPEj ’s vs 1950 + j for UK with T = 50 and year span = [1950 + j, 1960]
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(a) USM , LC (b) USF , LC

(c) USM , CBD (d) USF , CBD

(e) USM , LR−RW (f) USF , LR−RW

Figure 4.9: MAPEj ’s vs 1950 + j for US with T = 50 and year span = [1950 + j, 1960]
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(a) JapanM , LC (b) JapanF , LC

(c) JapanM , CBD (d) JapanF , CBD

(e) JapanM , LR−RW (f) JapanF , LR−RW

Figure 4.10: MAPEj ’s vs 1950 + j for Japan with T = 50 and year span = [1950 + j, 1960]
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4.2 Numerical Results

The MAPEVW values and corresponding MAPEVW reduction ratios for T = 10, 30 and 50
with the smallest MAPEVW and the biggest MAPEVW reduction ratio being highlighted for
each population under each mortality model are summarized in Tables 4.3-4.8, whereMAPEVW

is given in (4.3) and (V,W ) = (U,U), (U,G), (G,U) and (G,G). MAPEVW reduction ratio
indicates the extent of relative improvements inMAPE using the VW strategy in Stage II with
respect to the average of MAPEVj ’s over J fitting year spans using the V strategy in Stage I.

Specifically, the MAPEVW reduction ratio for the strategy VW is 1− MAPEVW

1
J

∑J
j=1MAPEVj

where

MAPEVj is given in (4.2).

Table 4.3: MAPEVW values for 10-year forecasting

10 years MAPE UK_M UK_F USA_M USA_F Japan_M Japan_F

LC

UU 0.096405 0.074328 0.073048 0.068887 0.067027 0.074448
UG 0.096550 0.074400 0.072919 0.068912 0.067048 0.074491
GU 0.074408 0.053749 0.070137 0.067185 0.044048 0.055165
GG 0.074416 0.053746 0.070167 0.067208 0.044014 0.055166

CBD

UU 0.150090 0.093302 0.093585 0.082051 0.092035 0.113843
UG 0.150100 0.093301 0.093573 0.082057 0.092023 0.113850
GU 0.078441 0.055469 0.069938 0.066997 0.044270 0.055121
GG 0.078562 0.055485 0.069928 0.067014 0.044271 0.055169

LR-RW

UU 0.132135 0.058297 0.086863 0.063076 0.051654 0.082970
UG 0.132255 0.058301 0.086865 0.063098 0.051841 0.083018
GU 0.078881 0.056687 0.070037 0.067256 0.044327 0.054938
GG 0.079080 0.056822 0.070029 0.067273 0.044451 0.055006

Table 4.4: MAPEVW reduction ratios for 10-year forecasting

10 years method UK_M UK_F USA_M USA_F Japan_M Japan_F Average

LC

UU 14.87% 19.92% 21.67% 11.04% 16.12% 22.22% 17.64%
UG 14.74% 19.84% 21.80% 11.01% 16.10% 22.17% 17.61%
GU 10.06% 13.99% 6.83% 5.71% 21.71% 15.85% 12.36%
GG 10.05% 14.00% 6.79% 5.68% 21.77% 15.85% 12.36%

CBD

UU 0.92% 1.58% 6.25% 1.68% 2.94% 5.19% 3.09%
UG 0.92% 1.58% 6.27% 1.67% 2.96% 5.18% 3.09%
GU 6.15% 10.04% 5.55% 4.31% 19.39% 13.49% 9.82%
GG 6.00% 10.01% 5.56% 4.29% 19.39% 13.41% 9.78%

LR-RW

UU 6.07% 29.32% 17.20% 12.30% 35.64% 13.20% 18.96%
UG 5.99% 29.32% 17.20% 12.27% 35.41% 13.15% 18.89%
GU 8.19% 13.48% 7.43% 6.48% 23.01% 17.20% 12.63%
GG 7.95% 13.27% 7.44% 6.46% 22.80% 17.10% 12.50%
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Comparing Tables 4.3 and 4.4, we observe that while the lowest MAPE values always occur
at either GU or GG, these two strategies do not necessarily produce the highest reduction ratios.
Furthermore, the difference between the lowest and the highestMAPE is not significantly huge,
so the insurers need to consider computational effort to conduct such grouping strategy in prac-
tice. If the grouping strategy turns out to be time-/effort-consuming, they can only apply the
non-parametric Bühlmann estimation without grouping the age span and still get a respectable
improvement, reflected in the MAPE reduction ratio. Also, the results vary largely with the
selection of countries and genders, as we see that mortality models exposed to the same grouping
strategy and the same credibility method can still produce very distinct responses in terms of
their MAPE values and MAPE reduction ratios.

Table 4.5: MAPEVW values for 30-year forecasting

30 years MAPE UK_M UK_F USA_M USA_F Japan_M Japan_F

LC

UU 0.215638 0.138213 0.104037 0.134060 0.158833 0.212429
UG 0.215469 0.137659 0.103427 0.134062 0.158774 0.212627
GU 0.211492 0.130453 0.112650 0.129232 0.163904 0.214291
GG 0.211306 0.129948 0.112626 0.129312 0.164146 0.214460

CBD

UU 0.219551 0.096419 0.122542 0.137485 0.147286 0.221189
UG 0.219572 0.096436 0.122446 0.137486 0.147302 0.221277
GU 0.208105 0.124942 0.113829 0.129738 0.163635 0.213599
GG 0.207968 0.125319 0.113416 0.130026 0.163773 0.213632

LR-RW

UU 0.208993 0.088878 0.110342 0.138836 0.171562 0.240170
UG 0.208992 0.088843 0.110300 0.138819 0.171639 0.240380
GU 0.207886 0.125182 0.113580 0.129790 0.163816 0.214336
GG 0.207828 0.125818 0.113176 0.130186 0.163940 0.214382

Table 4.6: MAPEVW reduction ratios for 30-year forecasting

30 years method UK_M UK_F USA_M USA_F Japan_M Japan_F Average

LC

UU 7.64% 19.13% 21.63% 5.70% 11.52% 5.37% 11.83%
UG 7.71% 19.45% 22.09% 5.69% 11.56% 5.29% 11.96%
GU 6.82% 15.24% 19.12% 7.57% 8.25% 3.63% 10.11%
GG 6.90% 15.57% 19.14% 7.51% 8.11% 3.56% 10.13%

CBD

UU 2.03% 10.10% 14.80% 1.21% 6.77% 3.29% 6.37%
UG 2.02% 10.09% 14.86% 1.21% 6.76% 3.25% 6.37%
GU 5.95% 14.45% 17.58% 7.54% 6.49% 1.85% 8.98%
GG 6.01% 14.20% 17.88% 7.33% 6.41% 1.84% 8.94%

LR-RW

UU 3.59% 24.15% 18.00% 1.65% 6.25% 2.58% 9.37%
UG 3.59% 24.18% 18.03% 1.66% 6.21% 2.49% 9.36%
GU 6.29% 16.36% 17.97% 7.99% 6.54% 2.07% 9.54%
GG 6.31% 15.93% 18.26% 7.71% 6.47% 2.05% 9.46%
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The scenario for T = 30 show more variations and irregularities in terms of the distribution
of smallest MAPE’s. In this case, UG and UU strategies take more important roles compared
with what they do for T = 10, and this is also consistent with what we observe from Figures
4.5 (d) and (f), where the lowest MAPE paths are generated from UU and UG strategies.
For application in reality, it is a wise decision to not to conduct grouping since insurers could
save time and cost and still achieve favorable forecasting improvements by applying this pseudo
non-parametric Bühlmann estimation approach; for example, the reduction ratios for the UU
strategy can reach 10%-24% for UK females and USA males under all three mortality models
and for Japan males under the LC model.

Table 4.7: MAPEVW values for 50-year forecasting

50 years MAPE UK_M UK_F USA_M USA_F Japan_M Japan_F

LC

UU 0.237005 0.227854 0.268602 0.164896 0.189809 0.314934
UG 0.231657 0.223325 0.268572 0.157344 0.190882 0.320814
GU 0.219842 0.212082 0.324142 0.174500 0.419674 0.482245
GG 0.216052 0.211558 0.323244 0.168564 0.429905 0.492173

CBD

UU 0.163630 0.234207 0.310390 0.085199 0.401134 0.509598
UG 0.164286 0.234862 0.310236 0.087596 0.410283 0.516667
GU 0.208432 0.212875 0.325244 0.128633 0.415556 0.482082
GG 0.209817 0.211565 0.324576 0.132380 0.426439 0.487139

LR-RW

UU 0.170722 0.280204 0.298340 0.071553 0.442342 0.590521
UG 0.171254 0.280626 0.299485 0.075723 0.450890 0.596104
GU 0.209277 0.212026 0.323853 0.129594 0.417582 0.483266
GG 0.209829 0.210002 0.324165 0.133010 0.427570 0.487836

Table 4.8: MAPEVW reduction ratios for 50-year forecasting

50 years method UK_M UK_F USA_M USA_F Japan_M Japan_F Average

LC

UU 27.12% 34.04% 11.42% 26.74% 40.65% 29.90% 28.31%
UG 28.76% 35.35% 11.43% 30.10% 40.32% 28.59% 29.09%
GU 20.35% 27.06% 10.19% 31.04% 20.31% 17.51% 21.08%
GG 21.72% 27.24% 10.44% 33.39% 18.36% 15.81% 21.16%

CBD

UU 13.63% 6.95% 6.47% 42.85% 19.45% 13.52% 17.14%
UG 13.28% 6.69% 6.51% 41.24% 17.61% 12.32% 16.28%
GU 17.62% 12.49% 10.58% 35.26% 17.63% 15.60% 18.20%
GG 17.08% 13.03% 10.77% 33.38% 15.48% 14.72% 17.41%

LR-RW

UU 11.24% 2.87% 8.52% 51.12% 17.57% 12.62% 17.32%
UG 10.96% 2.72% 8.17% 48.27% 15.98% 11.79% 16.32%
GU 19.63% 14.12% 10.88% 35.19% 18.82% 16.65% 19.21%
GG 19.42% 14.94% 10.79% 33.48% 16.88% 15.86% 18.56%
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From Table 4.8 we can see that the MAPE reduction ratios for T = 50 are generally higher
than those for T = 10 and 30, which might lead to a conjecture that the longer the forecasting
year, the better forecasting performance we can achieve by applying the pseudo non-parametric
Bühlmann estimation approach. However, the performance varies with the population dataset.
Those variations reflected in the tables above also confirm our belief that there does not exist a
universally best model or strategy which will always generate the most satisfactory forecasting
performances for all population datasets. Actually, the forecasting performance depends on the
underlying mortality data to a great extent.

Besides MAPE, the mean absolute error MAE = 1
m× T

∑x0+m−1
x=x0

∑t0+T
t=t0+1 |q̂x,t − qx,t| and

the root mean squared error RMSE =
[ 1
m× T

∑x0+m−1
x=x0

∑t0+T
t=t0+1 (q̂x,t − qx,t)2

]1/2
are another

two commonly used indexes to measure mortality forecasting accuracy. However, these two in-
dexes are scale-dependent and cannot be used to make comparisons among different age levels.
In credibility theory, the mean squared prediction error MSPE = E

[
(q̂x,t − qx,t)2

]
is one of the

most commonly applied index and it refers to the same meaning with RMSE in our mortality
modeling. In this project we are interested in comparing the q̂x,t instead of the original ln(m̂x,t)
or logit(q̂x,t); furthermore, in the process of transferring the ln(m̂x,t) or logit(q̂x,t) back to the
corresponding q̂x,t, to minimize ln(m̂x,t) or logit(q̂x,t) does not necessarily imply minimizing the
corresponding q̂x,t. In this sense, we decide to apply MAPE since it is expressed in generic
percentage term. It measures the percentage error which is age-independent, and this relative
error measurement allows us to compare the forecasting performance across different age levels.
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Chapter 5

Applications

Capturing the dynamics of mortality rates has critical meanings for both life insurers and
reinsurers due to its important financial implications. Mortality is one of the core factors to take
care of for life insurance companies to price a product, for pension consulting firms to conduct
valuations and adjust their pension annuity amounts, for government to manage social secu-
rity programs, and for the financial investment institutions to issue or analyze mortality-linked
securities. However, it is not an easy task to provide a good forecast, and it turns out even
more challenging nowadays due to the fact the population of developed countries has improved
rapidly over the last decades. Mortality rates are affected by many factors, and it is challenging
for the life insurance companies to accurately capture and estimate future mortality rates.

From the outcomes in Chapter 4, we already confirm that applying the non-parametric
Bühlmann credibility theory to a mortality model can help companies improve their forecast-
ing performances to a significant extent. This chapter takes one step further and applies those
mortality estimates to price life insurance and annuity products. Although there are numerous
life insurance and annuity products in the market, we will mainly focus on term life insurance,
endowment and annuity.

In this chapter we price the three T -year products for age x0 in year t using the cohort
mortality sequence qT,cx0,t = {qx0,t, qx0+1,t+1, · · · , qx0+T−1,t+T−1} where "c" represents cohort ef-
fect. That is, we take the diagonal entries of the matrix of forecasted mortality rates for T
years generated from the LC, CBD and LR-RW models, respectively, in Stage I (the results are
denoted by U and G), and also do the same thing for the non-parametric Bühlmann estimates
in Stage II (the results are denoted by UU , UG, GU and GG).

Assuming that the pricing interest rate i = 2%, we calculate the net single premium (NSP)
of each of the 3 life insurance and annuity products. More specifically, the 3 NSPs and their
explicit formulas are
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(1) NSPx of T -year fully discrete term life insurance,
∑T−1
k=0 kpx,t × qx+k,t+k × vk+1;

(2) NSPx of T -year fully discrete endowment,
∑T−1
k=0 kpx,t × qx+k,t+k × vk+1 +T px,t × vT ;

(3) NSPx of T -year temporary life annuity immediate,
∑T
k=1 kpx,t × vk;

where v = 1
1 + i

and kpx,t = px,t × · · · × px+k−1,t+k−1.

The computations are conducted for each of the LC, CBD and LR-RW models with
(1) T = 10, t = 2001, x = 25, ..., 75;
(2) T = 30, t = 1981, x = 25, ..., 55; and
(3) T = 50, t = 1961, x = 25, ..., 35.

Chapter 4 has shown that, with the pseudo non-parametric Bühlmann estimation being ap-
plied, the forecasted mortality rates turn out to be more accurate and stable; we use the MAPE
index to quantitatively support our conclusion. In this chapter we adopt the same index to
compare and analyze the performances resulting from applying the non-parametric Bühlmann
approach.

In this case, MAPEjx =
∣∣∣∣ ˆNSP

j
x−true NSPx

true NSPx

∣∣∣∣, where ˆNSP
j
x is the NSP for age x based on the

forecasted mortality rates from the jth fitting year span. For instance, if T = 30 and J = 28,
then there are 28 fitting year spans. From the formula it can be seen that every time we switch
to a new fitting year span, we get a corresponding ˆNSP

j
x and thus an MAPEjx value. As a

consequence, for each age x, there are 28 MAPEjx values.

Figures 5.1-5.3 illustrate MAPEjx against x under the LC, CBD and LR-RW models using
mortality data of US males. For illustration purpose, we only present the scenario for T = 30
and J = 28 in this project. As mentioned above, there are 28 MAPEjx values for each x,
and we also calculate MAPEAvgx , the average of these 28 values, which is denoted as "Average"
in the plots. The subscripts "U" and "G" following each of the LC, CBD and LR-RW mod-
els help to distinguish the two results generated from the ungrouped and grouped age spans
in Stage I. We then apply the mortality rates produced from UU , UG, GU and GG strate-
gies, respectively, in Stage II to compute corresponding NSP VWx ’s and MAPEVWx ’s where
MAPEVWx =

∣∣∣∣ ˆNSP
VW
x −true NSP
true NSP

∣∣∣∣ and (V,W ) = (U,U), (U,G), (G,U) and (G,G).

From all the subfigures, the difference between MAPEUUx and MAPEUGx , as well as the
difference between MAPEGUx and MAPEGGx , is almost invisible. The two curves reflect such
similar pattens that they almost overlap with each other in the subfigures.

It is noticeable that, regardless of U case on the left side or G case on the right, theMAPEWx

path using the pseudo non-parametric Bühlmann credibility approach is almost lower than
MAPEAvgx , the average of 28 MAPEjx’s, for each age x. Lower MAPEx value implies higher
accuracy, that is, the estimate is close to the true value. However, we notice that the gap between
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(a) LCU (b) LCG

(c) CBDU (d) CBDG

(e) LR−RWU (f) LR−RWG

Figure 5.1: MAPEx for 30-year term life insurance vs age x for US males
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MAPEWx and the average MAPEAvgx is not as significant as what has been shown in mortality
prediction. For example, when comparing Figure 4.6 with 5.1 for US males with T = 30, we ob-
serve that the pseudo non-parametric Bühlmann approach obviously reduces the MAPE values
for all 3 mortality models as shown in Figures 4.6 (a), (c) and (e), while the difference between
the MAPEGGx curve and the MAPEAvgx curve is not big for most ages as displayed in Figures
5.1 (a), (b) and (c). This disparity can be explained by the different computation methods of
MAPE. In Figure 4.6, the MAPE index is MAPEVj (V = U,G) (see (4.2)) measuring accuracy
of forcasted mortality rates based on the jth fitting year span, which is averaged MAPE over
all ages x = x0, · · · , x0 +m− 1 and all forecasting years t = t0 + 1, · · · , t0 + T , while in Figure
5.1, the MAPE refers toMAPEx which measures accuracy of forecasted NSP of a life insurance
product issued to x; the px+i−1,t+i−1’s in kpx,t under-estimating and over-estimating the true
values can offset each other. Besides the different computation method, another possible expla-
nation is the cohort effect. As mentioned earlier, we apply cohort mortality rate sequence in this
pricing scenario. As a consequence, when we take the mortality rates from the diagonal entries
of a forecasted mortality rate matrix, the MAPEVj index does not serve as a helpful reference.

Comparing theG, GU andGG strategies, we can also find that the grouping strategy adopted
in Stage I makes the 3 plots generated from three different mortality models look alike. For
example, Figures 5.1 (b), (d) and (f) demonstrate quite similar patterns though the numerical
values involved in each subfigure are not exactly the same. This similarity is caused by the
grouping strategy which, on the other hand, also helps to eliminate or reduce the model risk
for pricing since the three different mortality models can produce very close NSPs of the three
products if the grouping strategy is adopted in Stage I.

From Figure 5.1 for 30-year term life insurance, it can be observed that MAPEjx’s are
smaller and denser at higher ages for both U and G strategies. All the 6 subfigures show that
the MAPEx paths have a downtrend beyond x = 42. However, opposite patterns are observed
for the LCG, CBDG, LR − RWG and LCU for endowment and annuity products as shown in
Figures 5.2 and 5.3. Except this inconsistency, all other patterns remain the same: the grouping
strategy in Stage I makes the 3 plots from three different mortality models look similar, and
also contributes to generating a bigger gap betweenMAPEVWx andMAPEAvgx , which implies a
favorable pricing performance for this case. A more accurate forecast in mortality rates supports
our conclusion before, and such a satisfactory prediction in premiums can also return potentially
huge financial benefits to life insurance companies.
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(a) LCU (b) LCG

(c) CBDU (d) CBDG

(e) LR−RWU (f) LR−RWG

Figure 5.2: MAPEx for 30-year endowment vs age x for US males
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(a) LCU (b) LCG

(c) CBDU (d) CBDG

(e) LR−RWU (f) LR−RWG

Figure 5.3: MAPEx for 30-year temporary life annuity immediate vs age x for US males
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Chapter 6

Conclusion

This project proposes an effective approach to estimating future mortality rates. With quite
satisfactory results of predicting mortality rates and pricing life insurance and annuity products,
our approach makes contributions to the literature in mortality modeling as well as mortality-
linked insurance pricing. In this project we retain the major structure of 3 well-known mortality
models, Lee-Carter, CBD and LR-RW models, with only slight modifications in Stage I by
dividing the original age span into twelve smaller age groups and conduct mortality modeling.
Based on Stage I results, we then apply the pseudo non-parametric Bühlmann estimation to
these forecasted mortality rates produced from different fitting year spans. By fitting this pseudo
non-parametric Bühlmann model we can calculate a weighted average of the mean of the sample
values for age x and the mean of the sample values for the age span. We summarize the numer-
ical results and compare plots using different population datasets; all these outputs have shown
that, with such a grouping strategy, applying the pseudo non-parametric Bühlmann credibility
approach can significantly reduce the forecasting errors and thus improve the forecasting per-
formance compared with the original mortality models.

As introduced at the beginning, there exists a large number of mortality models to fit and
forecast future mortality rates, with various extensions and modifications in order to make them
more adaptable to various pricing scenarios. However, as there are more and more complicated
insurance products coming out in the market, it becomes more inconvenient for life insurers
to apply such sophisticated models. It is previously realized by researchers that there is not a
universally best model that can fit all mortality data well. This project takes a further step to
point out that there does not exist any identifiable relationships between the choice of fitting
year spans and the corresponding forecasting performance. Based on our testings for 3 countries
(UK, USA, and Japan) and 2 genders with all possible fitting year spans, we do not find any
general rule to conclude that which fitting year span would produce the best forecasting results.
As a matter of fact, different selection of fitting year spans will generate very divergent results
in some cases; the forecasting performances totally depend on dataset.
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In this sense, the approach proposed in this project turns out to be quite a pleasant solution,
and this is another favorable advantage our approach possesses: besides the accurate estimation
results with low prediction errors, this pseudo non-parametric Bühlmann credibility approach is
also quite convenient to implement and can produce stable forecasting performances. Insurers
do not need to worry about any intricate modifications or various choices of different fitting year
spans. Instead, they can pick up whichever fitting year spans, long or short, or recent or far-off,
for a mortality model, that are the most convenient for them to exercise; and after finishing
mortality forecasting using the original mortality models, they can easily take the outcomes
into this pseudo non-parametric Bühlmann credibility framework and eventually get compro-
mised results. Numerical results have shown that such an approach can work as a stable choice
with decent outcomes. We also confirm this conclusion by bringing our approach into a pricing
scenario. By computing the net single premiums of 3 types of traditional life insurance and
annuity products and comparing the outcomes with the original ones, we support the conclu-
sion that such pseudo non-parametric Bühlmann credibility approach can provide estimates of
higher quality; this will certainly help the life insurance companies to exercise more competitive
business and earn potential higher profits.

We can extend our work to wider fitting year intervals as well. The numerical results pre-
sented in the project demonstrate different performances that continuous fitting year span se-
quences can produce, i.e. the first fitting year span 1951− 2000 and the second one 1952− 2000
has only one year gap in between. However, it is not necessary for insurance companies to use
such fitting year spans; they can definitely choose a 5-year or even 10-year gap between two fit-
ting year spans. Although it is the general case to apply fitting year spans with a gap of 1, 5 or
10 years, it is actually up to the insurance companies; they can select any fitting year spans with
which they feel comfortable. Overall, the application of this pseudo non-parametric Bühlmann
approach to existing mortality models can help predict mortality rates more accurately, and can
also protect the life insurers from some extraordinary deviations caused by selecting a certain
fitting year span. With such accurate and stable forecasting performances, this approach serves
as an effective way for the life insurance companies to conduct appropriate pricing for all kinds
of insurance products.
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