
Application of Depth Sensor in the Design of

Hybrid Robotic Gaming Environment

by

Shiou- Min Shen

B.A.Sc., Simon Fraser University, 2010

Project Report Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Engineering

in the

 School of Engineering Science

Faculty of Applied Science

 Shiou-Min Shen 2015

SIMON FRASER UNIVERSITY

Summer 2015

ii

Approval

Name: Shiou-Min Shen

Degree: Master of Engineering

Title: Application of Depth Sensor In The Design of Mobile
Robotic Hybrid Gaming Environment

Examining Committee: Chair: Ash Parameswaran

Shahram Payandeh
Senior Supervisor
Professor

Andrew Rawicz
Supervisor
Professor

Date Defended/Approved: May 21, 2015

iii

Abstract

This project combines depth sensor, virtual game platform, and mobile robots to create

an environment where user can engage in a game (i.e. a game of air-hockey) by using

simple hand gestures to control physical mobile robots against another user using the

virtual counterparts of mobile robots in a virtual environment. The mobile robots move on

an open field using DC motors, and each of them is equipped with a unique reflective

marker. The overhead camera feeds the image of the field into the game program which

utilizes image-processing algorithm to read the positions of the reflective markers and

displays the results in the virtual environment. The depth sensor provides the skeleton

models of the players which in turn give the hand positions and gestures to the program.

Through the combination these information, players can then interface with the virtual

environment. In the virtual environment, the real mobile robots which play against virtual

robot models of similar design are controlled by the players to move the puck into their

respective goal to score. Through this system, users can experience robot sports game

in a hybrid gaming environment using real mobile robots and virtual robots.

Keywords: Hybrid gaming, Kinect, Robot, Game

iv

Acknowledgements

I would like to thank my supervisors, Dr. Payandeh for his support throughout my

journey. I would also like to thank my colleagues in Experimental Robotics Lab for their

help and advice in academic work. I would like to express my gratitude to every teacher

and professor that helped me shape my understanding of the world. Finally I would like

to thank my parents, relatives, and friends for always being there for me for my entire

life.

v

Table of Contents

Approval .. ii
Abstract .. iii
Acknowledgements .. iv

Table of Contents .. v

List of Figures... vi
List of Acronyms .. viii

Chapter 1. Introduction ... 1

1.1. Mixed Reality Gaming... 2

1.2. Gesture-based User Interface ... 5

Chapter 2. System Hardware Structure .. 9

2.1. Robot Control Process .. 10

2.1.1. Mobile Robot ... 13

2.2. User Input Process ... 17

2.2.1. Kinect Motion Sensor... 17

Chapter 3. System Program Structure ... 20

3.1. Kinect for Windows SDK ... 22

3.1.1. NUI API ... 23

3.1.2. KinectInteraction API ... 25

3.2. Image-processing algorithm.. 27

3.3. Virtual World Setup ... 31

Chapter 4. Results and Discussion .. 37

Chapter 5. Conclusion and Future Work .. 39

References .. 42

Appendix Program Source Code ... 45

vi

List of Figures

Figure 1.1 Reality-Virtuality Continuum [20] .. 2

Figure 1.2 (A) Augmented reality sandbox [31] (B) Nokia HERE City Lens [25]
(C) Wikitude Drive navigation system [32] (D) Tangible augmented
reality for interior design [24] .. 4

Figure 1.3 (A) Interaction with virtual reality using a wired glove [29] (B) Using Wii
Remote to play Wii Sports [30] ... 6

Figure 1.4 Mapping body pose to anthropomorphic robot through the use of
Kinect skeleton tracking [4] .. 8

Figure 1.5 (A) Autonomous surveillance robot (B) Depth camera view and
decision window [5] .. 8

Figure 2.1 System flow .. 9

Figure 2.2 Hybrid robotic air-hockey game in action .. 10

Figure 2.3 Overhead digital camera setup on air-hockey field 11

Figure 2.4 Reflective patterns for mobile robots .. 12

Figure 2.5 (A) USB Transmitter Board (B) Data package [6] ... 13

Figure 2.6 Transmitter circuit [6] .. 13

Figure 2.7 Mobile robots .. 15

Figure 2.8 Receiver circuit ... 15

Figure 2.9 Microcontroller circuit.. 16

Figure 2.10 H-bridge circuit ... 16

Figure 2.11 Building blocks mobile robots ... 17

Figure 2.12 Kinect hardware components [9], used with permission from
Microsoft .. 18

Figure 2.13 (A) Pattern output from Kinect infrared projector (B) Depth distance
calculation using triangulation [7] ... 19

Figure 3.1 Program flow chart ... 21

Figure 3.2 Program interface screens ... 22

Figure 3.3 Kinect Hardware and Software Interaction with an Application [21] 23

Figure 3.4 Depth video and player skeleton .. 25

Figure 3.5 KinectInteraction Architecture [22] .. 26

Figure 3.6 Image processing flowchart .. 28

Figure 3.7 (A) Camera image of robots on the air-hockey field (B) Threshold
image (C) Contour search result .. 29

vii

Figure 3.8 (A) Camera image (B) Red polygons are the result of polygon
approximation [8] .. 30

Figure 3.9 Robot orientation calculation .. 31

Figure 3.10 Class diagram for virtual world ... 32

Figure 3.11 Elastic collision in 2D .. 33

Figure 3.12 Puck Colliding with a Moving Robot ... 34

Figure 3.13 Angle between colliding robots ... 34

Figure 3.14 (A) Game display screen (B) Player position screen 35

Figure 3.15 Real robot carrying the ball and scoring.. 36

viii

List of Acronyms

API Application Programming Interface

CMOS Complementary metal-oxide-semiconductor

ERL Experimental Robotics Lab

FTDI Future Technology Devices International

LED Light Emitting Diode

NUI Natural User Interface

MIROHOT MIcro RObot HOckey Tournament

MSDN Microsoft Developer Network

PWM Pulse Width Modulation

RGB Red Green Blue

RF Radio Frequency

SDK Software Development Kit

SFU Simon Fraser University

USB Universal Serial Bus

1

Chapter 1.

Introduction

Robot is defined as a machine controlled by a computer that can do the work of a

person. It usually consists of a combination of effectors, sensors, and a computing

system. The term robot was coined by Czech writer Karel Čapek, and it is based on the

Czech word robota which means serf labor [33]. In the late 1900's, with booming

economy and rising popularity of science fiction, robotic systems have become a popular

research field. As technology improves, the computational power is ever increasing while

size and power consumption of electronic components are decreasing, and the robotic

applications branched into our everyday lives. Mobile robots in particular have varied

uses in commercial, industrial, and military settings, and robotic competitions like

RoboCup help pushing for advancement in academic research. RoboCup, an annual

international robot competition founded in 1997, has a primary focus of using teams of

mobile robots to play soccer games [2]. These types of competitions challenge

innovation in multiple disciplines including but not limited to electronics, mechanics,

computer vision and artificial intelligence.

In Experimental Robotics Lab (ERL) at Simon Fraser University (SFU), there has

been a continuous and dedicated effort in developing fist-sized mobile robots to play air-

hockey games. The system consists of teams of robots and a puck on a field, an

overhead cameras looking down at the playing field, and a processing computer that

locates the robots from the camera images and send AI or user input commands to the

robots [1]. The system continuously evolves and is often employed in various projects.

This project is built on this system to create a platform where these robots can take part

in a hybrid gaming environment and interact with virtual objects. Furthermore, a depth

sensor is employed so users can manipulate objects in this hybrid game using simple

hand gestures.

The report will start

incorporated into the robotic

of each hardware compone

integration of the hardware

system. Then the results will

1.1. Mixed Reality G

Mix reality, also know

with computer generated da

elements of both real and vir

physical existence resides, a

and defined by its own set o

in reality, they can immerse

world through headsets. Fig

roughly classified into 2 cate

additional information from th

in the virtual world are enha

virtuality. Mixed reality encom

virtuality.

Figure 1.1 Reality-Virtuality Con

Mixed reality systems

technology. The system con

scene, a computer unit wh

displays the mixed reality, a

tactile feedbacks. The visual

2

rt by explaining the background of the new co

 air-hockey system. The next chapter will go ov

nent in this project. The chapter after that wil

e and the software program to complete the hy

ill be presented following by conclusion and futur

Gaming

own as hybrid reality, combines the world of ph

data to create a visual and audio environmen

virtual world in real time [19]. Reality is the world

, and virtuality is the world generated by comput

 of continuum rules including physics. Although p

e in virtuality by transferring sensory information

igure 1.1 shows that blending of reality and virt

tegories. When objects in the real world are en

 the virtual world, it is augmented reality, and wh

hanced with information from the real world, it is

ompasses the field of both augmented reality and

ontinuum [20]

s come in many varieties depending on the pur

nsists of an input visual sensor which acquires

which processes the image, a visual output d

, and plus other sensory output devices like s

al output device includes but not limited to a LCD

oncepts to be

ver the design

ill explain the

hybrid gaming

ure work.

physical reality

ent that blend

ld where actual

uter simulation

people reside

ion from virtual

irtuality can be

enhanced with

when elements

t is augmented

nd augmented

urpose and the

s image of the

 device which

 speakers and

CD display, an

3

optical head mounted display, or an image projector which shines the mixed reality

output directly onto the scene.

Figure 1.2 (A) shows an augmented reality sandbox consists of a physical

sandbox, Kinect, a projector, and a processing computer. It can generate real-time

contour map based on the height of the sands. Its watershed simulation is useful for

science education and military strategic planning [31]. Figure 1.2 (B) is a screenshot of

Nokia HERE City Lens for Windows Phone, an augmented reality map app that

pinpoints shops and restaurants and other location information to the current camera

view of the street [25]. Figure 1.2 (C) shows Wikitude Drive, a navigation system which

superimposes recommended driving paths on live video feed of the driver’s view from

smart phones so that instead of drawing driving instructions on abstract maps, the

instructions are directly relevant to what the driver sees [32]. Figure 1.2 (D) shows a

marker-based mixed reality for interior design. Using image processing to read the

orientations and locations of the individual markers and the bottom marker board, the

interior design of the virtual room can be generate at real time to help the designer

visualize the result [24]. From educational, design and prototype, commercial

entertainment to military applications, mix reality enhances everyday gadgets with extra

information about the tasks. The potential is limitless.

4

(A) (B)

(C) (D)

Figure 1.2 (A) Augmented reality sandbox [31] (B) Nokia HERE City Lens [25] (C) Wikitude Drive
navigation system [32] (D) Tangible augmented reality for interior design [24]

This project aims to construct a virtual robotic air-hockey environment and bring

the actual physical mobile robots to the virtual world to interact with the objects in the

game. In this way the virtual world and the real world can be bridged together to build a

mixed reality robotic air-hockey game. The inspiration to build a hybrid gaming system

came from marker-based mixed reality system in Figure 1.2 (D) where, through the use

of cameras and graphic marker patterns, the system can generate extra graphic

information on screen to enhance the way user experiences reality. This project applies

this concept in a similar way, but with robots in the physical world interacting with virtual

objects in an air-hockey game.

5

1.2. Gesture-based User Interface

Gesture recognition is a field in computer science where technology and

mathematical algorithms are employed to interpret the body motions of human gestures

[26]. Gesture recognition has wide application in sign language interpretation and

consumer electronics, and it is an integral component to the development of natural

human-machine interface where the user interacts with a system through intuitive

everyday actions [28]. Earliest implementation of gesture recognition employs wearable

gloves with arrays of analog sensors on each finger to measure the finger movements.

These wearable gloves, categorized as wired gloves, are notably expensive to produce

due to the cost of the sensors, and the higher end devices also include haptic feedback

to simulate sense of touch [27]. An example of using a wired glove to interact with virtual

reality is shown in Figure 1.3 (A). Alternatively, handheld controller-based devices like

Wii Remote and PlayStation Move can also detect wrist and body motions through the

use of accelerometers and gyroscopes as shown in Figure 1.3 (B). Although handheld

controllers cannot detect the fine movements of the fingers, they provide the ability to

operate in 3D work space at a much lower cost. Lastly, the combination of cameras and

image processing techniques can offer users gesture recognition capabilities without

having users carrying any peripherals. The complexity of the image processing varies

depending on the type of cameras. For example, it is more difficult to detect gestures

with a single 2D color camera compare to an array of 2D cameras because one single

camera has limited field of vision and has difficulty measuring distance while a camera

array can combine results to produce 3D stereo vision.

6

Figure 1.3 (A) Interaction with virtual reality using a wired glove [29] (B) Using Wii Remote to play
Wii Sports [30]

In the previous implementation of robotic air-hockey system, the users control the

robots using standard input devices like keyboard and gamepads, and they directly input

the rotation and forward motions of the robots. This type of control scheme requires first

person perspective to operate effectively, but the users can only look at the playing field

through fixed camera bird’s eye view. A more intuitive control scheme is for users to

generate the destination locations for individual robots using drag and drop operations

similar to the mouse control scheme. Furthermore, for multiple users to perform drag

and drop operations on multiple robots simultaneously, the input device needs the ability

to register their commands at the same time, and therefore standard computer mouse is

not suitable for this task.

To perform a drag-and-drop operation with multiple users, the input device needs

to register inputs from multiple users. A gesture recognition system using image

processing can accomplish this task. Users’ hand and arm motion in open space would

translate directly to control the robots, and multiple users can share a single camera

without conflict by standing side by side within the view of the camera. There are several

ways to implement such a gesture control system. One method is to use webcam in

combination with cursors made of color patterns, and users wear the markers using

7

gloves to move the cursors. However, processing the patterns will be troublesome

because hands move in 3D space and will bend the marker patterns and make them

difficult to recognize by the camera, and lighting condition and users’ clothes can affect

the image processing operation.

Depth-camera-based gesture system, on the other hand, has advantages over

2D marker-based gesture system in the area of motion capture. Depth cameras are less

sensitive to color and illumination, and therefore users' clothing and lighting of the room

do not affect the performance of the system. Depth camera will capture the scene

directly without depending on recognition of marker patterns, and then use the depth

information to determine the locations and gestures of the users.

Since 2009 when Microsoft first launched their commercial depth sensor,

Microsoft Kinect, application of depth sensors have been greatly expanded with the

widely available commercial product ranging from gaming to military applications. It

plays a major role in many of Xbox best-selling games like Child of Eden and Dance

Central series, and it also helps defend the South Korean borders with its motion

detection technology [3]. In particular, it also has many applications in the field of

robotics. For example, its skeleton tracking capability can be used to control a humanoid

robot to mimic the motion of the user [4] as shown in Figure 1.4; this is useful for

carrying out tasks in environment where humans cannot be physically preset, including

handling of hazardous materials. In addition, it can also act as the vision system for the

navigation of autonomous mobile robots [5] as shown in Figure 1.5. The depth sensor

gives autonomous robots the ability to measure distances, avoid obstacles, and map out

the area while navigating in an indoor environment.

8

Figure 1.4 Mapping body pose to anthropomorphic robot through the use of Kinect skeleton
tracking [4]

Figure 1.5 (A) Autonomous surveillance robot (B) Depth camera view and decision window [5]

Furthermore, the Kinect for Windows SDK provides powerful API with extensive

documentation. Microsoft also employs dedicated support team in Microsoft Developer

Network (MSDN) forum, so questions for their products are answered in a timely fashion.

For the purpose of this project, Microsoft Kinect is the best choice to build a user

interface for gesture inputs.

The next chapter lays out the structure of the physical system in this project.

Then it will go over the design of each hardware component of the system. The robotic

air-hockey system structure will come first, and follow by the Kinect device.

Chapter 2.

System Hardware

In the physical setup

camera placed on top of the

sensor, and a computer whe

the playing field while the ca

field with robots in it and se

image and uses the result

destinations. At the same tim

to the computer. Then the co

the game and the destinatio

of the system is shown in Fig

Figure 2.1 System flow

9

re Structure

p of the system, the game involves 2 mobile rob

he field to get the overhead view of the field, a K

here the virtual world takes place. The mobile rob

camera, positioned above the field, records an

sends it to the computer. The computer then p

lt to determine the speed the robots need to

time, the Kinect records the motion of the player

computer extracts the player gestures to update

ions of the robots. The relationship between the

igure 2.1, and the system in action is shown in Fi

obots, a digital

 Kinect motion

obots roam on

n image of the

 processes the

to reach their

er and sends it

te the status of

e components

Figure 2.2.

10

Figure 2.2 Hybrid robotic air-hockey game in action

2.1. Robot Control Process

The computer interacts with the robots by first looking at where the robots are

and then tell them which direction to go. The positions of the mobile robots are

monitored through the digital camera which is mounted on a steel frame above the air-

hockey field, and then the system acquires images from the digital camera using

OpenCV computer vision library. The camera is required to capture at 640x480

resolutions at 30 frames per second, and most modern webcams are capable of this

operation. The current system for distinguishing robots employs polygon shapes made

of reflective tapes in combination with bright white LED light source placed beside the

overhead digital camera (See Figure 2.3 for the set up of the camera). Each robot has a

unique pattern, and they are differentiated by the number of sides in the reflective

11

pattern as shown in Figure 2.4. The combination of LED lights and reflective patterns

produces highly visible markers which are very useful for image segmentation, and detail

explanation for this is in Section 3.2.

(A) (B)

Figure 2.3 Overhead digital camera setup on air-hockey field

12

Figure 2.4 Reflective patterns for mobile robots

After the computer uses an image-processing algorithm to determine the

positions of the robots and calculated their paths, it sends the robot motor control

commands through the radio transmitter. The transmitter board, shown in Figure 2.5 (A),

uses TXM-315-LR serial RF transmitter which transmits at 315MHz, and because the

transmitter sends data using serial protocol, FT232RL is employed for serial-to-USB

signal conversion. The circuit diagram of the transmitter board is shown in Figure 2.6.

The computer talks to the transmitter board through the USB socket using FTDI driver

and library by Future Technology Devices International (FTDI)[6]. The communication

between the computer and the robots is one-way only with no feedback, so the

transmission package includes a checksum byte as shown in Figure 2.5 (B). The start

byte indicates the beginning of a new data package. The ID byte designates which robot

to execute the command. The cmd byte is used to activate shooting command. V and w

are linear and angular velocities respectively. And the last part of the package, the

checksum, is calculated from these parameters. The computer constantly transmits new

commands, and the robots continuously execute the last correct commands until they

receive the new commands with the correct checksums[6]. The design specification of

the robots is mentioned in the following sub-section.

13

Figure 2.5 (A) USB Transmitter Board (B) Data package [6]

Figure 2.6 Transmitter circuit [6]

2.1.1. Mobile Robot

The mobile robots, shown in Figure 2.7, are designed to perform 3 tasks, to

receive and interpret commands from users, to move from an initial position to a final

destination, and to shoot the puck. The robots receive the commands using a one way

RXM-315-LR receiver chip at 315 MHz located on a board separate from the processing

unit (see Figure 2.8). The received message which includes the angular and linear

14

velocity and the shoot command is deciphered by the dsPIC30F2010 microcontroller,

and the microcontroller (see Figure 2.9) generates the Pulse Width Modulation (PWM)

signals for the motors. There are 2 DC motors to drive the 2 wheels of the robot, and

they are actuated by an H-bridge (see Figure 2.10) when the H-bridge receives the

PWM signals from the microcontroller. The shooting mechanism consists of a single

shooting motor, and the microcontroller generates the PWM signals for it when a

shooting command is received, but the shooting function is not used in this project.

Figure 2.11 shows interconnection of the major building blocks of the mobile robot

components.

The mobile robots have the dimension of 9x9x9cm and run on 4 AA batteries.

Using a set of 2 DC motors to drive the wheels, each robot can achieve a maximum

speed of 20cm/s and angular speed of 114 degrees/s. The frames of the robots are

designed using Solidworks and then built using rapid prototype machine. The frames are

made of plastic and can be assembled with super glue. The full specifications of the

robots are listed in [6].

15

Figure 2.7 Mobile robots

Figure 2.8 Receiver circuit

16

Figure 2.9 Microcontroller circuit

Figure 2.10 H-bridge circuit

17

Figure 2.11 Building blocks mobile robots

2.2. User Input Process

The users determine the paths the robots travel by analyzing the current

progress of the game, and then input their decisions to the game through the input

device. Since the game takes place in the virtual space, the computer needs to display

the positions of the robots and the ball and game control options to the users, and then

wait for user inputs. In this particular setup, the computer relays the game information to

the users through a user interface program on the monitor, and the user interface

program is built using OpenCV and OpenGL libraries (see Chapter 3). The users input

commands in the form of hand gestures, and they are detected using Microsoft Kinect

motion sensor which acts as the user input device. The computer communicates with

Kinect through the drivers in Microsoft Kinect SDK. The structure of Kinect is explained

in the following subsection.

2.2.1. Kinect Motion Sensor

Since Kinect’s debut in 2009, several versions of Kinect optimized for different

purposes have been introduced in the market, but in general, Kinect devices usually

18

consist of 5 components; a RGB camera, an infrared emitter, a monochrome CMOS

infrared sensor, an array of 4 microphones, and a tile motor as shown in Figure 2.12.

The RGB camera operates similar to a regular webcam and can stream videos at a

resolution of 640 by 480 at 30 frames per second. However, the main feature of Kinect

lies in the infrared emitter and sensor pair. The infrared emitter, placed on one end of

Kinect, sends out infrared lights of dotted encoding pattern (see Figure 2.13 (A)).

Objects at various distances are covered with the light pattern, and the brightness of the

dots increases as distance decreases. Then the infrared sensor, located near the center

of Kinect, detects the unique light patterns on the objects and triangulates them using

parallax, so the onboard processor can determine the depth of each object [7][8], as

shown in Figure 2.13 (B).

Figure 2.12 Kinect hardware components [9], used with permission from Microsoft

Kinect is capable of tracking a maximum of 6 people within its view but only

provides full body skeleton models for the 2 primary players. The generated skeleton

models consist of 20 joints each. It can capture depth images at 320x240 and 640x4880

resolutions, and its optimum operating range is between 1.2m and 3.5m [10].

In the next chapter, the role of each piece of hardware in the program will be

explained. Each device is a crucial component to this game. The combination of

hardware and software is what makes hybrid robotic air-hockey game possible.

19

(A) (B)

Figure 2.13 (A) Pattern output from Kinect infrared projector (B) Depth distance calculation using
triangulation [7]

20

Chapter 3.

System Program Structure

In the program that facilitates the robotic air-hockey game in the virtual world,

OpenCV is used to acquire images from the RGB webcam, and Kinect for Windows SDK

is used to communicate with the Kinect depth camera. Using the functionalities of the

API in the libraries, the positions of the robots and the users can be obtained from the

acquired images. With the information of the robots and users known, the game can

decipher player's action with respect to the game interface and update the robot's

positions accordingly. Figure 3.1 describes this process, and the specifics of the

program are described in the subsections. Since the software development of the

MIROHOT project uses exclusively C and C++, naturally C++ is the best choice to

develop this project, and Visual Studio 2010 is used to build it.

The program takes 2 inputs, the users' gestures captured by the depth sensor

and positions and orientations of the robots captured by the digital camera. The

processing of the depth image and digital camera image extracts the current user inputs

and robot position data. Finally the program outputs the data on the virtual environment

and transmits the motor control data to the robots. The program interface screens are

shown in Figure 3.2.

21

Figure 3.1 Program flow chart

Start

Acquire color image

of the playing field

Acquire depth image

of the players

Update the virtual

sports game

Process color image to

obtain position and

orientation of the robots

Process depth image to

determine the gestures

of players’ hands

Display current game

progress on screen

Output movement

commands to robots

End

Program?

Finish

Yes

No

22

Figure 3.2 Program interface screens

3.1. Kinect for Windows SDK

There are several options that a user can employ to access a Kinect device on a

PC. There is a fully open source library called OpenKinect, but it cannot make use of the

full capabilities of the Kinect device. There is a private library called OpenNI maintained

by PrimeSense, the company that developed the technology inside Kinect, but the library

is now defunct after Apple’s acquisition of PrimeSense. Finally, Microsoft released the

official all-inclusive software development kit (SDK) called Kinect for Windows SDK. It

offers full access to Kinect's functionalities in its application programming interface (API),

and it includes samples in various languages and extensive documentations. Most

important of all, active user developers and technical support teams on the MSDN

forums provide support and

reasons, Kinect for Windows

For the purpose of in

to be able to track the han

provides 2 sets of API to

KinectInteraction. NUI provid

and skeleton generation as

information from NUI and out

Figure 3.3 Kinect Hardware and

3.1.1. NUI API

NUI, the core of the

Kinect device. Other Kinect A

their functions. In this projec

generation.

The Kinect SDK is mu

NUI, an object for the Kinec

stream and its event is create

INuiSensor* sensor;

HANDLE depthEvent, depthH

NuiCreateSensorByIndex(0,

sensor->NuiInitialize();

depthEvent = CreateEvent();

23

nd discussion in a timely fashion. For the afo

s SDK version 1.8 is used in this project.

interacting with the robots using gestures, the pro

and positions and gestures from multiple user

o accomplish this task, Natural User Interface

ides color and depth video streaming, real time b

as shown in Figure 3.3. KinectInteraction pr

utputs the status of users' hands.

nd Software Interaction with an Application [21]

e Kinect SDK, allows access to the basic fun

t API’s require this component to run before they

ect, NUI is used to facilitate depth video stream

multi-threaded and event-driven. To access Kinec

ect device is created and initialized. Then a han

ated and initialized like the following.

Handle, skeletonEvent

, &sensor); //Open default sensor

forementioned

program needs

ers. The SDK

ce (NUI), and

 body tracking,

processes the

nctions of the

ey can execute

 and skeleton

ect device with

andle for each

24

sensor-> NuiImageStreamOpen (y,y,y,y, depthHandle); //y’s are the setting parameters

skeletonEvent = CreateEvent();

sensor->NuiSkeletonTrackingEnable(skeletonEvent,0);

After the initialization step is done, the main loop of the program requires updates from

the streams. In every cycle of the loop, the program checks if the streams invoke an

event flag. If an event does occur, the program will execute the processing function of

the respective stream. The depth event is always occurring because depth stream is

constantly acquiring video.

If (WAIT_OBJECT_0 == WaitForSingleObject((x)Event, 0))

{ Process(x)Function (); }

Where Process(x)Function is the user specified function to process data for a specific

event (x)

The main tasks of the processing functions for depth stream and skeleton generation are

to capture the current frame and visualize the depth data and user skeletons for the

players. The captured frame is sent into interaction stream instance so it can analyze the

depth frame and skeleton data and identify an interaction.

When Kinect streams the depth video of the scene, the stream format consists of

2 parts, the depth data and the player index number. The depth data is the detected

depth values from the depth sensor in millimeters. Kinect internally segments the depth

data to identify up to 6 players in the scene, and assign a player index number of 1 to 6

for each depth bit belonging to the player, and 0 if there is no one in the scene [11].

The incoming depth stream needs to be processed to generate the skeleton

models for the players. To build the skeletons, first the body poses must be recognized

so the limbs, joints, and body parts are labeled correctly, the SDK accomplishes this

take using a built-in training set of 1 million samples. It uses a tree-like decision model to

match the depth data with the training set [12][13].

Figure 3.4 shows the skeleton generated from the depth data. The red lines are

the visible body bones, and the blue lines are the inferred body bones. Because the SDK

25

creates a skeleton for whole body, it also tries to infer the location of the limbs that are

not detected by the camera. This capability allows it to guess the posture the player is

currently in.

Figure 3.4 Depth video and player skeleton

3.1.2. KinectInteraction API

From depth video streaming to the skeleton generation are all accomplished

using the NUI API. However, the core of the SDK does not process the gestures of the

hands, and KinectInteraction API is used to obtain the gesture information. Because C++

is the language used to write this program, Kinect SDK does not provide higher level

libraries for gestures and interactions in this language. KinectInteraction library is the

only library available in C++ for gesture recognition (see Figure 3.5), and there is also no

sample code for this API. However, the API is used in a similar fashion as NUI. It is

event driven and is used in conjunction with NUI.

Figure 3.5 KinectInteraction Arc

The library requires it

requires an event handler to

INuiInteractionStream* intera

CIneractionClient interactionC

HANDLE interactionEvent;

interactionClient = new CIner

NuiCreateInteractionStream(

interactionEvent = CreateEve

interactionStream->Enable(in

The INuiInteractionStream ob

and skeleton generation, so

stream and let it analyze the

During each loop, the

event flag. If an event does

26

rchitecture [22]

 its own instance and initiation separate from NU

o handle events like in the following.

ractionStream;

nClient;

eractionClient();

();

vent();

(interactionEvent);

object is required by the processing function for

o these functions can pass the latest frame to th

e data and identify an interaction event.

he program checks to see if the interaction stream

es occur, the program will execute the functio

UI, and it also

r depth stream

 the interaction

am invokes an

ion to process

27

interaction. Interaction event only occurs when the hands change positions or change

gestures.

if(WAIT_OBJECT_0 == WaitForSingleObject(interactionEvent, 0))

{ ProcessInteractionFunction(); }

The processing function for interaction uses the interaction data to update the positions

and gestures of players’ left and right hands.

KinectInteraction analyzes the depth data and the skeleton models of the depth

data to track the hands of the users. The API can detect 2 types of gestures, pressing

and gripping motion, for both hands from the first 2 players in the scene. It also rescales

the positions of the hands relative to the shoulder joint, and then normalizes the position

values to a range of 0 to 1 [14].

The information on the inner working of the KinectInteraction API is not available,

but it seems to analyze the size of the hand to detect open and closed palm. The sample

code for this API is also not present in the SDK, and this part is built based on the

combination of SDK sample programs and code snippets from the MSDN forum [15][16].

3.2. Image-processing algorithm

As robots roam the playing field, the overhead digital camera delivers the stream

of 640 x 480 RGB color video to the computer, and then image-processing techniques

are employed to obtain the positions and orientations of the robots in RGB color images.

The general outline of the image processing steps is shown in Figure 3.6.

Figure 3.6 Image processing flo

The program first es

following constructor from Op

cv::VideoCapture cap(0);

Recall the method for disting

has LEG lights installed bes

them. When LED light shine

the tapes as the largest num

segmentation to basic thresh

image and output a binary i

camera image in Figure 3.7

OpenCV.

28

flowchart

establishes a connection to the default came

OpenCV

guishing robots as mentioned in Chapter 2 wher

eside them, and the robots have reflective patte

es on the reflective tapes, the camera will read

umber that the camera could perceive. This sim

sholding which makes it much easier to remove

 image. Figure 3.7 (B) shows the result of thre

3.7 (A), and this is done using the threshold(

era using the

ere the camera

terns on top of

d the colors of

implifies image

ve background

resholding the

() function in

(B)

Figure 3.7 (A) Camera image of
search result

From the segmented

the robots. The patterns of th

and the angles at which th

orientation of the robots. To

analysis, findContours(), is

contours in the binary

approxPolyDP(), is applied

vertices. The result of conne

example output of polygon ap

29

(A)

(C)

 of robots on the air-hockey field (B) Threshold image

d image, the locations of the pixel blobs are the

the reflector tapes differentiate the robots from

the patterns are oriented in the image corres

o determine the location of the robots, connecte

is applied on the segmented image to find the loc

y image, and then polygon-approximation

 to simplify the shape of these contours into a s

ected component analysis is shown in Figure 3.7

 approximation is shown in Figure 3.8.

e (C) Contour

he locations of

 one another,

espond to the

ted component

locations of the

on algorithm,

 smaller set of

3.7 (C), and an

30

Figure 3.8 (A) Camera image (B) Red polygons are the result of polygon approximation [8]

From the approximated polygons of these pixel blobs, image central moments

can be calculated with moments(). The equation of image moments is

��� = ∑ ∑ �����	
(�, �),

but the moments are calculated with translated centers for the pixel blobs. Central

moments normalize the translations by using image centroids, so the moments become

translation-invariant. The equation for central moments becomes

��� = ∑ ∑ (� − �̅)�(� − ��)��	
(�, �), (3-1)

and the center of mass can be calculated with the following,

(�̅, ��) = �������
,������

�. (3-2)

To obtain the angles of robot orientations, recall that the reflective patterns are designed

so that the longest lines away from the centers of the patterns point to the front of the

robots, and approxPolyDP() produces the vertices of the reflective polygons.

Comparing the distances of the polygon vertices and the centers of masses will yield the

direction of the longest line and therefore the direction that the robot is facing as shown

31

in Figure 3.9. The algorithm is based on Appendix C of [8] and is implemented using the

OpenCV library.

Figure 3.9 Robot orientation calculation

3.3. Virtual World Setup

The goal of this project is to allow players and physical robots to interact with

virtual objects in the virtual world. Kinect depth sensor and gesture recognition achieve

the former, while digital camera and image processing achieve the latter. With the

information of players and robots available to the system, the bridge between the real

world and the virtual world can be built.

Recall the flowchart of the program in Figure 3.1, in the main loop of the

program, first the image acquisition and processing for the air-hockey field camera are

performed so the robots can be located. At the same time, the program checks the event

handlers of the Kinect SDK and process the data to locate the players. The update of the

virtual world comes at the last step after the 2 inputs from the real world are processed.

In this final step, the interactions between the users, the robots, and the game are sorted

out so the objects in the game can update from time t to t+1.

There are 3 basic objects in the game, the hands, the robots, and the puck. The

hand objects store the status of the hands from KinectInteraction and track the ID of

robots that are being contro

orientations, and kinematic

information of both real and

kinematic profile, and its sin

these 3 types, there are 2 cla

defined by its 2 hands, and a

1 team and virtual robots to

the other would control the vi

supports both gripping and p

this project because it’s intui

difficult for the user to rea

gesture at the same time. Th

shown in Figure 3.10.

Figure 3.10 Class diagram for v

The virtual world has

environment, and the game

same tank travel patterns. W

robots, they rotate until the

straight line to the designate

and real robots share the sa

32

trolled by the hands. The robot objects store t

ic profiles of the robots. This class is used

d virtual robots. The puck object stores the po

ingleton instance exists only on the virtual plan

classes that are composed of these basic elemen

 a robot team consists of 2 robots. By assigning

o the other, one user would take control of the re

 virtual team respectively. Recall that Kinect for W

 pressing gestures, but only gripping gesture is

tuitive to the user and is less ambiguous to the p

ach the maximum work space while maintain

The class diagram showing the relationship of th

 virtual world

as 4 interactive elements, the virtual robots, th

e menu. The virtual robots mimic the real robots

 When a new destination is set for both the rea

ey line up with the destination angle and the

ted location. Because they use the same param

same data type. The virtual puck interacts with t

 the positions,

 to store the

osition and its

ane. On top of

ents. A user is

g real robots to

 real team and

 Windows SDK

is employed in

 program. It is

ining pressing

 the classes is

 the puck, the

ts by using the

eal and virtual

en travel in a

meters, virtual

 the objects in

the virtual world through colli

puck bounces off the wall at

3.11, and a constant friction

field. The puck is assumed to

response does not involve

dimensional, the objects only

hockey game 2D. These furt

with the 4 walls of the air-h

robots and the puck.

Figure 3.11 Elastic collision in 2

The puck also collid

checking the penetration d

calculation is similar to the co

a moving robot, the result is

vector is the speed and dire

robot. The second vector sim

and is calculated by multiply

this collision type is shown in

33

llision. The collision response is assumed to be e

at the same speed with the same reflected angle

on force is applied on the puck when it slides o

 to have no rotational component in its motion so

e torque. Furthermore, even though the virtua

nly traverse on the XY plane which effectively m

urther simplify the collision calculation when the

hockey field, which act as the absolute bounda

 2D

lides with the robots, and the collision can be

 distance. When the robots are stationary,

collision with the walls. However, when the puck

 is modeled as the vector addition of two vecto

irection the puck would end up with if it had hit

imulates the extra impact force caused by the ro

lying the robot’s motion vector by a constant. An

in Figure 3.12.

e elastic so the

gle (see Figure

 on the virtual

o that collision

ual world is 3

makes the air-

e puck collides

daries for both

e detected by

, the collision

ck collides with

ctors. The first

hit a stationary

robot’s motion,

An example of

34

Figure 3.12 Puck Colliding with a Moving Robot

The collision response between robots is implemented as full stop for both

robots. Following a collision, the robots must rotate away from the robot it collided with

so that the angle Θ (see Figure 3.13) is large enough for it to move around the collision.

This implementation is reasonable for collisions between real and virtual robots because

the max travel speed of the robots is not fast.

Figure 3.13 Angle between colliding robots

Finally, the last part of the virtual world is the game menu. The game menu

tracks the scores of the teams and includes buttons to reset the positions of all virtual

objects and the scores. The

the buttons and grip them. Th

Figure 3.14.

Figure 3.14 (A) Game display sc

35

e buttons are activated by moving the hand curs

The user interface is drawn using OpenGL, and

(A)

(B)

screen (B) Player position screen

rsors on top of

d it is shown in

36

The players interact with the virtual objects by using gestures with their hands.

The person standing on the left controls the blue team, and the person on the right

controls the red team. If there are more than 3 people in the scene, the first two visible

persons from the left become the players. The game is set up to be controlled using only

the players' right hands so the interface would not be cluttered with cursors. When the

right hand of a player is open, it does not interact with anything in the scene, and if the

hand was interacting with anything previously, the interaction will stop. If a player

overlaps right hand on a robot of his team and change the hand to closed fist, a drag

and drop operation is engaged, and the robot's destination will change to the current

position of the player's right hand. The destination will keep updating until player opens

the hand, and then the robot will continue to move toward its last recorded destination.

In the same manner as the regular air-hockey game, the players bring the puck

to the goal on the opponent’s side to score. The goals act as special boundaries so that

when the puck reaches the goal areas, the positions of all virtual objects reset and the

score counter for the scoring team is increased by 1. The process is shown in Figure

3.15. Because there are situations where the robots and the puck could get stuck in a

corner, the position reset button is necessary.

Figure 3.15 Real robot carrying the ball and scoring

37

Chapter 4.

Results and Discussion

Building on previous works and incorporating new technology, a peripheral-free

hybrid robotic air-hockey game is built. A player can use simple gestures to control a

team of 2 robots physically constructed in reality and play against another player who

controls 2 robots that reside in the virtual space. The virtual robots serve as the ideal

case for the real robots to compare with. The objects in real space can affect objects in

the virtual space, and objects in the virtual space can affect objects in the real space.

Within the boundaries of this robotic air-hockey game, reality and virtuality are

successfully bridged together.

The cameras operate at 30 frames per second which means they take 33

milliseconds to capture one frame. The program runs at an average of 27 milliseconds

per loop, which is less than the refresh rate of the cameras. Because the program can

produce its results before the next frame arrives, it does not lose track of the robots in

any given frame.

However, playing through the game reveals many limitations of this setup. The

user movements and the game occur at real time, but the robots do not respond as

freely because of its motion pattern and physical limitations. The robot motion algorithm

is designed to move using the basic tank control scheme, so it cannot turn and advance

at the same time. Secondly, due to the limited gesture recognition capabilities in the

Kinect for Windows SDK, only pressing and gripping gestures are supported. Any

gesture that involves complex finger orientations like a rotation gesture or pinpoint

gesture is not recognizable by the SDK, so users only have limited options to control the

robots.

38

The depth sensor accomplishes its task without losing track of the upper body

skeleton of the players. However, because the detection of the hand-gripping motion is

based on size, the detection could become unstable when the hands are oriented at

particular angles that confuse the algorithm. The player recognition could also be

disturbed when a bystander walks behind the players.

An inherent user side problem with peripheral free control interface was

discovered during the game. To move a robot from point A to point B using a drag and

drop operation, the user moves its hand in the open air space while looking at the

computer screen to see the visualization of the game. Even though the screen output

acts as a visual feedback for the user to correct the hand position, the user is moving its

hand in open space without a physical reference, and a small jerk could cause

inaccuracy in setting the robot's path. This inherent inaccuracy exists in human muscle

control, and only a peripheral interface can bypass this problem.

39

Chapter 5.

Conclusion and Future Work

This project set out to create a setup that combines micro mobile robots, natural

user interface, and mixed reality so that users can manipulate the mobile robots to

interact with objects in a different space. The result is a game that takes the real robots

into the virtual space to play against their virtual counterpart while users control them

using hand gestures. When the system was built as a proof of concept, many

components of the system were simplified. The advanced counterparts of these

components are available but require update.

There are many ways one can improve the system. The simplified base

components can be replaced by advanced ones, and there are several existing works

available for it. Another approach is to fundamentally enhance the systems and add

extra functionality to make it more versatile. The full list of proposed changes is in the

following.

To make the virtual puck’s behavior in line with real physics, the puck’s mass and

shape should be taken into account in its collision model so that the rotational

component of its kinematic profile can be determined during collision. The assumption of

elastic collision may not hold in this system, and should be replaced by an inelastic

collision model. In addition, the 4 corners of the virtual air-hockey ring should be round to

reflect the shape of a real hockey field, so the puck would not get stuck in the corner and

require reset button to reset its position.

As discussed in early sections, the robots only move using tank control at

constant angular and linear velocity. Because it can only advance after it rotates and

lines up with its destination, it is a 2-step process and uses up considerable time. The

efficient way is to turn and move forward at the same time, and this requires different

40

PWM for the 2 driving motors of the robots. Previously Bezier curve was implemented to

generate trajectories for this type of movement [6]. Although this algorithm improves the

efficiency, there are a few minor cases where tank movement excels over trajectory, and

it is best to create a decision model that can make use of both methods for best

performance. Also, because the robot’s built-in shooting mechanism is not used in this

project, there is no distinction between the front face and back face of the robots. This

opens up the option for the robot to move backward to hit the puck.

Continuing on the topic of motor speed of the robots; one of the robots’

properties that was overlooked is their ability to travel at an acceleration. Even when the

firmware implements tank control scheme, the implementation still allows the robot to

accelerate when rotating or travelling in a straight line. When users assign new

destinations using drag-and-drop, the users should be able to control the acceleration by

varying the distance between the robots and their destinations.

Due to the inaccuracy of human body movement, it may be advantageous to

have the game strategically generate paths for players to follow and assist the players

optimize controlling the robots. The option to have the game supplying an AI to control

the robots and put the players in the supervisory role can also be implemented. The

work on path generation is also available in the lab, but the implementation requires

heavy software update [17].

Although Kinect SDK supports two different gestures, gripping and pressing, only

gripping was implemented for ease of use, and only the right hand is used to play the

game in this project. The unexplored gesture inputs using the left hand and left arm

could be employed to control the robots’ rotation and finer motions. Also, Kinect is

capable of 3D motion capture, but the user inputs were mapped to 2D to match the 2D

movements of the robots. The unused dimension is another option to implement new

user gesture inputs.

To improve the gesture detection and make the user interface more intuitive, it

may be worth the investigation to add in finger tracking capability so more gestures

could be recognized, and users could use new gestures to manipulate other parameters

of the robots' movement. Because Kinect SDK does not natively support finger tracking,

41

it will require processing the raw depth image directly in order to implement this feature.

There are existing libraries that can track fingers in an image, but several of them are

either unstable, paid ware, or defunct. PrimeSense's OpenNI library for example

supports finger tracking, but the library is no longer supported. The speed of the

algorithm also needs to be considered for real-time usage when other components also

use up time per loop.

By the time this project was completed, Kinect version 2 was publically released

with improved functionality in every aspect compared to Kinect version 1 [18]. This

updated hardware also comes with native finger tracking for index fingers and thumbs.

Most major stores are starting to thin out their stocks for Kinect 1 since the release of

Kinect 2, and it may be wise for the project to migrate to Kinect 2 in near future.

However, the Kinect SDK 2 uses different API from SDK 1.8 and does not provide

backward compatibility with Kinect 1, and it also doesn't install on any operating system

older than Windows 8.

Finally, because the system is a multiplayer game, incorporating network

capability will allow people to play with their own robot setups and compare their image

processing and robot movement controls. A player will also have 1 Kinect dedicated to

him/her so players can move without space limitations. There are active developers

working on network transmission in the lab, with their help this should come easily.

The project has reached its initial working stage by the time of this report.

However, it's still in its basic form and requires many updates to reach maturity.

Changing technology and upgrading hardware will introduce unknown factors to the

development of this project, but new features that come with the risks make the

upgrading worthwhile.

42

References

[1] H. Xiao, “Design, development and evaluation of an experimental platform for
network robotics application,” MASC thesis, School of Engineering Science,
Simon Fraser Univ., B.C., 2012.

[2] RoboCup. (n.d.). Wikipedia. Available: http://en.wikipedia.org/wiki/RoboCup.
Accessed Mar. 19, 2015.

[3] S. Anthony, “South Korea now using Kinect to monitor, track down North Koreans in
the DMZ” 2014. [Online]. Available: http://www.extremetech.com/gaming/175955-
south-korea-now-using-kinect-to-monitor-track-down-north-koreans-in-the-dmz.
Accessed on: Mar. 15, 2014.

[4] M. Wasielica et al., "Interactive programming of a mechatronic system: A small
humanoid robot example," Advanced Intelligent Mechatronics (AIM), 2013
IEEE/ASME International Conference on , vol., no., pp.459,464, 9-12 July 2013

[5] D.S.O. Correa et al., "Mobile Robots Navigation in Indoor Environments Using Kinect
Sensor," Critical Embedded Systems (CBSEC), 2012 Second Brazilian
Conference on , vol., no., pp.36,41, 20-25 May 2012

[6] J. Guo, “Integration of Real Time Mobile Hockey Robot System,” BASC thesis,
School of Engineering Science, Simon Fraser Univ., B.C., 2009.

[7] CuriousInventor. (2013, Feb. 16). “How the Kinect Depth Sensor Works in 2 Minutes.”
[Video]. Available: https://www.youtube.com/watch?v=uq9SEJxZiUg. Accessed
Mar. 12, 2015.

[8] C. Diaz, “An Experimental Study of Remote Multi-Modal,” MASC thesis, School of
Engineering Science, Simon Fraser Univ., B.C., 2014.

[9] Kinect for Windows Sensor Components and Specifications. (n.d.). Microsoft
Developer Network. [Online]. Available: https://msdn.microsoft.com/en-
us/library/jj131033.aspx. Accessed Nov. 15, 2014.

[10] Kinect for Windows Human Interface Guidelines v1.8.0. (n.d.). Microsoft Developer
Network. [Online]. Available: https://msdn.microsoft.com/en-
us/library/jj663791.aspx. Accessed Nov. 13, 2014.

43

[11] Depth Stream. (n.d.). Microsoft Developer Network. [Online]. Available:
http://msdn.microsoft.com/en-us/library/jj131028.aspx. Accessed Nov. 13, 2014.

[12] R. Knies, (2011, Sep. 26). Kinect Body Tracking Reaps Renown. Microsoft
Research. [Online]. Available: http://research.microsoft.com/en-
us/news/features/kinectskeletal-092711.aspx

[13] J. MacCormick, (2011, Sep. 11). How does the Kinect work? Dickinson College
[Online]. Available: http://users.dickinson.edu/~jmac/selected-talks/kinect.pdf

[14] KinectInteraction. (n.d.). Microsoft Developer Network. [Online]. Available:
http://msdn.microsoft.com/en-us/library/dn188671.aspx. Accessed Nov. 13,
2014.

[15] j_nyukai. (2013, October). N/A. Microsoft Developer Network. [Online]. Available:
http://social.msdn.microsoft.com/Forums/en-US/7d303daf-e391-43e2-8bcc-
f271d8d40e3e/

[16] King Nguyen. (2013, April). N/A. Microsoft Developer Network. [Online]. Available:
http://social.msdn.microsoft.com/Forums/en-US/e4f5a696-ed4f-4a5f-8e54-
4b3706f62ad0/

[17] W.Y. Chen, S. Payandeh, "Micro Robot Hockey Simulator - Game Engine Design,"
Computational Intelligence and Games, 2007. CIG 2007. IEEE Symposium on,
vol., no., pp.9,16, 1-5 April 2007

[18] R. Filkov, (2014, May. 13). Kinect v2 – What’s New. RFilkov.com - Technology,
Health and More [Online]. Available: http://rfilkov.com/2014/05/13/kinect-v2-
whats-new/

[19] B. Sobota, S. Korecko, F. Hrozek, "Mobile mixed reality," Emerging eLearning
Technologies and Applications (ICETA), 2013 IEEE 11th International
Conference on , vol., no., pp.355,358, 24-25 Oct. 2013

[20] Mixed reality. (n.d.). Wikipedia. Available: http://en.wikipedia.org/wiki/Mixed_reality.
Accessed Mar. 25, 2015.

[21] Kinect for Windows Architecture. (n.d.). Microsoft Developer Network. [Online].
Available: https://msdn.microsoft.com/en-us/library/jj131023.aspx. Accessed
Nov. 13, 2014.

[22] KinectInteraction Architecture. (n.d.). Microsoft Developer Network. [Online].
Available: https://msdn.microsoft.com/en-us/library/dn188672.aspx. Accessed
Nov. 13, 2014.

[23] Yaldex. (n.d.). Smarter robots partnering with soldiers. [Online]. Available:
http://www.yaldex.com/games-programming/0672323699_ch13lev1sec5.html

44

[24] Polistina, S. (2013, Jul. 25). “Tangible Augmented Reality for interior design.”
[Video]. Available: https://www.youtube.com/watch?v=jK8cUXxIag0. Accessed
Mar. 12, 2015.

[25] HERE Europe B.V. (2015, Apr. 9). HERE City Lens. [Online]. Available:
http://www.windowsphone.com/en-us/store/app/here-city-lens/b0a0ac22-cf9e-
45ba-8120-815450e2fd71

[26] Gesture Recognition. (n.d.). Wikipedia. Available:
http://en.wikipedia.org/wiki/Gesture_recognition. Accessed Apr. 17, 2015.

[27] Wired Glove. (n.d.). Wikipedia. Available: http://en.wikipedia.org/wiki/Wired_glove.
Accessed Apr. 10, 2015.

[28] M. Rouse. (2011, Apr.). Natural user interface (NUI). [Online]. Available:
http://whatis.techtarget.com/definition/natural-user-interface-NUI

[29] NASA. (2014, Apr. 23).Realite virtuelle, Person with a head-mounted display (HMD),
wired glove and joystick. [Online]. Available:
http://commons.wikimedia.org/wiki/File:Realite_virtuelle.jpg

[30] L. Jewel. (2008, Feb. 7). Hitting the Links.... Virtually. [Online]. Available:
http://usarmy.vo.llnwd.net/e2/-images/2008/02/07/12658/

[31] okreylos. (2012, May 6). “Augmented Reality Sandbox with Real-Time Water Flow
Simulation.” [Video]. Available: https://www.youtube.com/watch?v=j9JXtTj0mzE

[32] Gibbons Media & Research LLC. (2010, Oct. 18). Augmented Reality Navigation
System Nabs Galileo Master Award in Satellite Navigation Competition. [Online].
Available: http://www.insidegnss.com/node/2344

[33] Robot. (n.d.). Wikipedia. Available: http://en.wikipedia.org/wiki/Robot. Accessed May
19, 2015.

45

Appendix

Program Source Code

The attached file, HockeyKinectVS2010.zip, is a compressed archive of the

source codes for this project. The program is built using Visual Studio 2010 on a 64 bit

system. It requires OpenCV 2.4x, Kinect for Windows SDK 1.7/1.8, OpenGL Utility

Toolkit, and FTDI libraries to compile.

