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Abstract 

Ecological indices summarize large sets of complex data to improve performance 

monitoring, benchmarking, policy analysis, and public communication. Indices, such as 

the Ocean Health Index, are sensitive to the aggregation method and weighting scheme 

used in the construction of the index. This analysis investigates the differences in the 

mathematical properties and aggregate behaviour of eight aggregation methods and 

weighting schemes, and considers how information about desired index behaviour can 

be used to make a final choice of the mathematical form for the index. The mathematical 

properties of these aggregation methods and weighting schemes are compared using 

the axiomatic approach to index number theory, and a case study of the fisheries sub-

goal of the Ocean Health Index. The results show that the exponentially weighted 

geometric mean with proportional weight, and the weighted arithmetic mean with 

proportional weight perform the best in terms of their underlying mathematical properties 

and aggregate behaviour. The results highlight the importance of setting achievable 

objectives that inform which mathematical properties and aggregate behaviour are most 

desirable; from this, one can select an appropriate aggregation method for constructing 

indices that rely on averages.  

Keywords:  Index number theory; aggregation; averages; ecological index 
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1 Introduction 

In ecology, indices are widely used for performance monitoring, benchmarking, 

policy analysis, and public communication (Convention on Biological Diversity, 2010; 

Halpern et al., 2012; World Bank Group, 2014). For example, indices are used 

extensively to detect declines in abundance (Czech & Krausman, 1997; Kerr & Cihlar, 

2004; Mace et al., 2008), to quantify impacts of human activities on ecosystems (Ban, 

Alidina, & Ardron, 2010; Halpern et al., 2008), and as a resource accounting tool to 

measure environmental impacts (Rees, 1992). Other fields use indices extensively as 

well, for example, as a measure of inflation in an economy (Organization for Economic 

Cooperation and Development, 2004), and in the monitoring of key dimensions of 

human development (United Nations Development Programme, 2014). An index is 

referred to in this paper as a metric formed by aggregating individual components into a 

single number, synonymous with composite and aggregate indices.  Each of the 

examples mentioned above involve the simplification and summarization of large sets of 

separate measures into a single value, i.e., the index, that represents more manageable 

information that can be easily communicated to decision-makers, stakeholders and the 

public (Singh, Murty, Gupta, & Dikshit, 2009).  

 There is a vast literature on how to design indices, so that they may be most 

useful to managers or other audiences (Collen & Nicholson, 2014). This analysis 

focuses specifically on how the mathematical form of the aggregation index calculation 

influences the properties of the index. An ecological index, for example, could be based 

on a set of components (i.e., individual measures or a set of indices) describing the state 

of nature of a population, community, location, or ecosystem (e.g., IUCN indicator of 

declining abundance, Simpson’s Diversity Index, Living Planet Index, Human 

Development Index) (Mace et al., 2008; Simpson, 1949; WWF, 2014). Common practice 

assigns a weight to each component and uses an aggregation method, such as 

averaging, to combine these components into an index. These weights can be derived 
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from statistical or participatory methods (e.g., factor analysis or expert opinion) (Singh et 

al., 2009).  The construction of indices can be complicated due to their multi-

dimensionality and the heterogeneity of the individual components (Nardo et al., 2005). 

For example, the Human Development Index (HDI) produced by the United Nations 

Development Programme is composed of three components: (1) Health: measured by 

life expectancy in years, (2) Education: measured by literacy and gross enrolment ratios, 

and (3) Standard of Living: measured by per capita GDP in US dollars (United Nations 

Development Programme, 2014). The ability of the HDI to convey accurate information 

is contingent upon the underlying assumptions made about how the component parts of 

the index are weighted and summarized. For instance, if the three components are 

equally weighted, it means that they are assumed to all contribute equally to human 

development. Additionally, if the range of values is not standardized across the three 

components (e.g., using a rescaling transformation), the underlying assumption is that 

an increase by one point in Education represents an equivalent level of development as 

an increase by one US dollar unit in Standard of Living. These assumptions affect the 

index behaviour and thus the information communicated to interested parties (Singh et 

al., 2009). 

Once the components of an index have been selected and calculated, one must 

choose appropriate standardization procedures and weighting schemes for the 

components to ensure that the units of the components are compatible. Furthermore, 

one must identify the most appropriate aggregation method to ensure that the 

aggregation method’s properties are meaningful (Singh et al., 2009).  Examples of 

common aggregation methods include the arithmetic mean, geometric mean, and the 

average in log space (Nardo et al., 2005). Most indices, such as the ecological footprint 

analysis and several biodiversity metrics (Buckland, Magurran, Green, & Fewster, 2005; 

Rees, 1996; Singh et al., 2009), use the arithmetic mean or summation to aggregate 

components. Other indices, such as the Living Planet Index and many biodiversity 

indices for wild birds (Gregory & Strien, 2010; Loh et al., 2005), have adopted the 

geometric mean as their aggregation method.  

Despite the wide use of indices in ecology, sustainability science, and 

management, there has been very little consideration of the intrinsic behaviour of an 
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aggregation method and its resulting index in these fields with a few exceptions in the 

biodiversity literature (e.g., Buckland, Studeny, Magurran, Illian, & Newson, 2011; van 

Strien, Soldaat, & Gregory, 2012). In contrast, economics has an entire field of research, 

called index number theory, devoted to comparing aggregation methods and weighting 

schemes. Index number theory examines how to summarize economic price and 

quantity data into a smaller set of numbers or a single number, such as the consumer 

price index (International Monetary Fund, 2004).  

The axiomatic approach to index number theory examines the behaviour of 

indices by comparing how well aggregation methods satisfy a suite of conditions or 

properties that express intuitive notions about how indices should behave (Hill, 1988; 

Pfouts, 1966). Although an index will rarely satisfy all the performance criteria of the 

axiomatic approach, it may still be used to determine the approach that is closest to 

optimal. For example, when applied to a set of indices of biodiversity (e.g., Simpson’s 

Index, Shannon Index, arithmetic mean of abundance), the axiomatic approach revealed 

that the index based on the geometric mean of relative abundance satisfies many of the 

properties and was the most relevant when considering factors such as statistical 

properties, practicality, and ease of communication (Buckland et al. 2011, Van Strien et 

al. 2012).  

This project expands on this approach by applying index number theory to 

ecology using a case study, and applies this methodology to aggregation methods and 

weighting schemes appropriate for the purposes generally needed by ecologists and 

managers. This analysis investigates the differences in the mathematical properties and 

aggregate behaviour of eight aggregation methods and weighting schemes, and 

considers how information about desired index behaviour can be used to make a final 

choice of the mathematical form for the index. The implications of this choice are 

discussed for the interpretation of the index when applied as a monitoring and 

assessment tool.  

The Ocean Health Index (OHI) evaluates the status of the world’s ocean 

ecosystems according to ten goals (i.e., food provision, artisanal fishing opportunities, 

natural products, carbon storage, coastal protection, coastal livelihoods and economies, 
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tourism and recreation, sense of place, clean waters, and biodiversity). These goals are 

considered beneficial to people and important for the health of marine ecosystems 

(Halpern et al., 2012). Indices are created to represent each goal and then indices are 

combined across the 10 goals to form the OHI. Scientists, managers, policy makers and 

the public use the OHI as a communication and benchmarking tool to help assess ocean 

health. The ten goals can be considered individually or as an aggregate index number.  

The fisheries sub-goal index, which is a sub-set of the food provisioning index of 

the OHI, measures the degree to which wild-capture fishery resources are fully and 

sustainably exploited within an exclusive economic zone (EEZ). This index provides a 

good test case because the number of EEZs, and the number of stocks aggregated for 

each EEZ, provide sufficient variability in data structures and a large enough sample 

size to draw meaningful conclusions. Additionally, the index itself measures attributes 

that are commonly used in conservation science and in management, e.g. population 

abundance; thus, the results of the exploration are likely to find broad applicability. For 

example, this analysis could be adapted to a wide range of other ecological applications, 

such as indicators of endangerment, that do not currently consider the mathematical 

properties and aggregate behaviour of their methodology.  

In this paper, I compare five generic aggregation methods and two weighting 

schemes by evaluating whether the methods satisfy 11 key properties of the axiomatic 

approach to index number theory (Table 1). Performance of an aggregation method was 

determined by the degree to which the method satisfied all or most of these properties. 

The four best performing aggregation methods are applied to the fisheries sub-goal 

index. The functional behaviour of each version of the index is compared to the desired 

behaviour of the index. Finally, a sensitivity analysis is conducted to compare the index 

scores of the final two aggregation methods and weighting schemes. The results show 

that the aggregation methods and weighting schemes considered in this paper have 

different mathematical properties and aggregate behaviour, and result in significantly 

different index numbers. The choice in aggregation method and weighting scheme for 

the OHI is dependent on the perception of the associated mathematical properties, 

aggregate behaviour, sensitivity and relevance. 
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2 Methods 

Five aggregation methods and two weighting schemes are used to compute an 

index that averages a set of components (Section 2.1). These indices are applied to a 

case study of the fisheries sub-goal of the OHI, which uses fisheries status as the 

component values, and fisheries landings as the weighting values (Section 2.2). The 

aggregation methods and weighting schemes are compared using the axiomatic 

approach to index number theory. Strong performance of an aggregation method and 

weighting scheme is determined based on the number of axioms that it satisfies (Section 

2.3). The four best performing aggregation methods and weighting schemes are further 

analyzed for how sensitive they are to changes in fisheries status or landings (Section 

2.4). Finally, a sensitivity analysis is conducted to compare the index score and rankings 

of two aggregation methods and weighting schemes (Section 2.5).  

2.1 Aggregation Methods and Weighting Schemes 

I derived eight indices by combining examples from index number theory with 

more conventional indices used in ecology. The aggregation methods and weighting 

schemes are listed below, where  is the value of component i at time t,  is the set 

of weighting values, N is the number of components in the data set, and  is the 

weighting scheme. 

Proportionally Weighted 

Arithmetic Mean (PA) 
IPA =

1
N

xi, t ⋅wi, t
i=1

N

∑
  

(eqn 1) 

Exponentially Weighted 

Geometric Mean (EG) 
IEG =

i=1

N

∏ xi, t
si ,t

  
(eqn 2) 

xi,t wi,t

si,t
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Proportionally Weighted 

Geometric Mean (PG) 
IPG = (xi,t ⋅wi,t )

1
N

i=1

N

∏
  

(eqn 3) 

Weighted Geometric 

Mean (G) 
IG = (xi,t ⋅ si,t )

1
N

i=1

N

∏
  

(eqn 4) 

Weighted Arithmetic 

Mean (A) 
IA = xi, t ⋅ s i, t

i=1

N

∑
  

(eqn 5) 

The weighting scheme can take on one of two forms: (1) si,t = xi,t ⋅wi,t x j ,t ⋅wj ,tj=1

N∑ , 

which is called the “expenditure shares” as in index number theory, or (2) 

si,t = wi,t wj ,tj=1

N∑ , which is called the “proportional weight”. The weighting scheme is 

only applied to the exponentially weighted geometric mean, weighted geometric mean, 

and the weighted arithmetic mean. Superscripts “ES” and "P" represent expenditure 

shares and proportional weight, respectively. The proportionally weighted arithmetic 

mean and geometric mean do not use a weighting scheme (e.g., x ⋅ s ), and are instead 

weighted directly using the weighting values (e.g., x ⋅w ). 

2.2 Case Study 

The fisheries sub-goal index reflects the degree to which sustainable seafood is 

being provided from wild-capture fisheries in an EEZ. This analysis refers to a stock as a 

species fished within a Food and Agriculture Organization of the United Nations (FAO) 

major fishing area. The status of each fished ‘stock’ within an EEZ is assessed a score 

ranging from 0 to 1, where 1 represents an optimally harvested stock (i.e. to its 

maximum sustainable potential) and 0 represents a stock that is not harvested due 

either to over- or under-exploitation. The contribution of each of the stocks to total 

seafood being provided depends on how much of that species is being harvested. 

Therefore, the index requires averaging status across all individual stocks fished within 
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an EEZ ( ), weighted by their corresponding level of landings ( ). See the Appendix 

for more details on the underlying data. 

2.3 Desirable Properties 

This analysis uses a set of 11 axioms originally developed for indices in index 

number theory (Auer, 2008). See Table 1 for description and examples. These axioms 

are applied to compare the performance of the aggregation methods introduced in 

Section 2.1 when calculated on an artificial dataset of ten randomly generated 

component and weighting values  (Table 2).  This artificial dataset is simulated to test 

whether the axiom’s mathematical definition is violated. Strong performance of an 

aggregation method was determined based on the number of axioms that it satisfied.  

The complete list of axioms from the axiomatic approach is included in this 

analysis, however not all axioms should necessarily contribute equally to one’s 

understanding of performance of the aggregation method, and one should not be limited 

to the list of axioms provided in the axiomatic approach. In this paper, the eleven axioms 

are used as a starting point to compare a set of aggregation methods and weighting 

schemes. The behaviours of the aggregation methods and weighting schemes are 

further analyzed in Section 2.4 as they relate to the OHI case study.  

Based on the results of the axiomatic analysis, the four best performing 

aggregation methods are applied to real data from the fisheries sub-goal index of the 

OHI case study to demonstrate the differences between these aggregation methods. In 

particular, this analysis calculated the index score over time for Australia and Canada 

EEZs that tend to have medium to high landings and divergent index patterns. 

2.4 Aggregate Behaviour 

The four best performing aggregation methods and weighting schemes from 

Section 2.3 are also used to produce an index from the simulated status and landings 

data of ten hypothetical stocks in a single year (Table 2). I analyzed how sensitive the 

xi,t wi,t
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aggregation methods, weighting schemes and their overall index scores are to changes 

in either status or landings of a single stock. For nine of the hypothetical stocks, the 

status and landings data are held constant throughout the exercise. The status and 

landings data for the tenth stock is varied under different scenarios: 

(1) Status is varied between zero and one, and landings are held constant. This is 
done to analyze the effect of improving / declining status of a stock. 

(2) Status is held constant at a low value (status = 0.05), and landings are varied 
between zero and three hundred, where the other fisheries landings range from 
35 to 198.  This is done to analyze the effect of increased / decreased landings of 
a stock that is in poor condition. 

(3) Status is held constant at a high value (status = 0.95), and landings are varied 
between zero and three hundred, where the other fisheries landings range from 
35 to 198.  This is done to analyze the effect of increased / decreased landings of 
a stock that is in good condition. 

The choice of scenarios allows me to evaluate the effects of the weighting 

scheme and the aggregation method separately, further analyze the axioms from the 

axiomatic approach, and detect if there is an asymmetric behaviour between the overall 

index score and the status or landings variable (i.e., stocks with high status and low 

status have different ways of influencing the score). The results allow me to narrow 

down the selection of aggregation method and weighting scheme to two by deciding that 

the monotonicity axiom is an essential axiom. 

2.5 Sensitivity Analysis 

Two aggregation methods are chosen from Section 2.4 and a graphical 

sensitivity analysis is conducted that compares the two aggregation methods’ fisheries 

sub-goal index scores and rankings for all EEZs in 2011. Finally, the two aggregation 

methods are applied to the fisheries sub-goal index over time (1980-2011) for a subset 

of randomly selected EEZs. 
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3 Results 

3.1 Desirable Properties 

The axiomatic analysis found that no one index met all 11 of the axioms, but the 

exponentially weighted geometric mean with proportional weight ( ), the exponentially 

weighted geometric mean with expenditure shares ( ), the weighted arithmetic mean 

with proportional weight ( ), and the weighted arithmetic mean with expenditure 

shares ( ) satisfied the greatest number of axioms (Table 3). In particular,  and 

fulfilled nine axioms, while  and  fulfilled eight axioms.  

The four best-performing aggregation methods are applied to the fisheries sub-

goal index of the OHI case study using Canada and Australia to examine the differences 

between the aggregation methods. The value and trend in Australia’s overall index score 

depends on the aggregation method (Figure 1A) because Australia has increased the 

proportion of stocks being caught from both low and high status fisheries over time 

(Figure 2A). When stocks were aggregated using , the overall index number was 

relatively high with a slight increase over time.  When the stocks are aggregated using 

, the overall score is relatively high and stable over time.  When the stocks are 

aggregated using either  or , the overall score is relatively low and slightly 

decreasing over time. In contrast to Australia, the value and trend in Canada’s overall 

index score is more robust to the choice of aggregation method with each giving similar 

values and trends (Figure 1B). Canada has much more diversity in the types of stocks 

that are caught at different status levels (Figure 2B).  

IEG
 P

IEG
 ES

IA
P

IA
ES IEG

 P

IA
P IA

ES IEG
 ES

IA
ES

IEG
 ES

IA
P IEG

 P
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3.2 Aggregate Behaviour 

The four best performing aggregation methods used simulated data of ten stocks’ 

landings and status scores to produce four indices, and analyze the sensitivity of these 

indices to changes in landings or status scores of a single stock.  results in a linear 

relationship between changes in a stocks’ status and changes in the overall index score 

(Figure 3A). When using the expenditure shares weighting scheme (i.e., IA
ES  and IEG

ES ) 

there is a parabolic-shaped relationship between the status of an individual stock, and 

overall index score. results in decreasing marginal returns of overall index score. 

Furthermore, the overall index score responds non-linearly to increases in stock 

landings, which correspond to an increase in the weight of that stock’s status, when 

using proportional weighting (Figures 3B and 3C). Although more difficult to see, this is 

also true for the expenditure shares weighting scheme.  

rewards the overall index score more when landings of a low status stock are 

reduced than when landings of a high status stock are increased. Based on the slopes of 

the lines, increasing landings of a stock that has a high status (Figure 3C) does not 

increase overall index score as fast as if one were to decrease the landings of a stock 

with a low status (Figure 3B).  In contrast, the expenditure shares weighting scheme 

rewards increasing landings of a stock with a high status (Figure 3C) more than reducing 

landings of a stock with a low status (Figure 3B). With the expenditure shares weighting 

scheme, it is very difficult to significantly improve one’s overall index score by reducing 

landings of a stock with a low status (Figure 3B), but it is much easier to increase one’s 

overall index score by increasing landings of a stock with a high status (Figure 3C); 

whereas equally rewards increased landings of stock with a high-status and 

decreased landings of stock with a low status.  

3.3 Sensitivity Analysis 

and are compared in the sensitivity analysis. The analysis resulted in 

different overall index scores and produced different overall rankings for intermediately 

IA
P

IEG
 P

IEG
 P

IA
P

IA
P IEG

 P
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ranked EEZs (Figure 4A and 4B). The arithmetic mean tended to produce higher index 

scores than the geometric mean (Figure 4A). The best and worst rankings did not 

change noticeably between and  (lines are relatively parallel), but did cause 

considerable reordering of the intermediate ranking EEZs (Figure 4B).  

IA
P IEG

 P
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4 Discussion 

This project applies index number theory to the fisheries sub-goal of the OHI by 

applying this methodology to aggregation methods and weighting schemes appropriate 

for the purposes of the OHI. This analysis investigates the differences in the 

mathematical properties and aggregate behaviour of these aggregation methods and 

weighting schemes, and considers how information about desired index behaviour can 

be used to make a final choice of the mathematical form for the index. The results show 

that and  perform the best in terms of their underlying mathematical properties 

and aggregate behaviour.  

4.1 Desired Properties 

The axiomatic analysis found that none of the indices analysed satisfied all 

eleven axioms, however , , , and  satisfied the greatest number of 

axioms. None of these aggregation methods satisfied the weak and strict 

commensurability axioms (axioms A10 and A11), whereas  and  did. This 

suggests that a change in the component values by a common factor cannot be offset by 

a change in the weighting values by the reciprocal of that factor. Auer (2008) showed 

that the single observation axiom cannot be satisfied at the same time as the weak and 

strict commensurability axioms; thus, one must consider the trade-offs between these 

two axioms, and decide which of the axioms is most important to the aggregation 

method.  

, , , and  were applied to the fisheries sub-goal of the OHI for 

Australia and Canada. The four indices resulted in significantly different overall index 

scores, especially in the case of Australia. The overall index score for Australia varies 

IA
P IEG

 P

IEG
 P IEG

 ES IA
P IA

ES

IPA IPG

IEG
 P IEG

 ES IA
P IA

ES
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significantly between aggregation method and weighting scheme, whereas the overall 

index score for Canada varies much less.   

Australia has increased the proportion of fisheries with both high and low status. 

In 1980, 54.6 percent of Australia’s landings were from stocks with an individual status of 

less than 0.5; this percentage increased to 79.4 by 2011. In contrast, in 1980, only 5.2 

percent of Australia’s landings were from stocks with an individual status of greater than 

0.9; this percentage increased to 18.6 by 2011. Part of this change is attributed to the 

increase in landings of historically low status stocks, such as the southern bluefin tuna 

(Thunnus maccoyii). There has been a widespread decline of stock status without a 

reduction in fishing activity, such as the great barracuda (Sphyraena barracuda) stock. 

For some fisheries in Australia, the low status is the result of poor reporting of taxonomic 

scale (e.g., pelagic fishes, marine animals). There has been an increase in landings and 

status over time of many stocks in Australia, including the yellowfin tuna (Thunnus 

albacares stock). 

In contrast, Canada has a greater diversity in scores than Australia. Over time, 

Canada has increased its proportion of catch taken from stocks with high status, and 

marginally decreased its proportion of catch taken from stocks with moderate to low 

status. This pattern is the result of changes to the status of species being fished, and 

changes in the proportion of landings of species being fished. For example, between 

1980 and 2011, there was a decrease in the status of some species in Canada, such as 

albacore (Thunnus alalunga) and sablefish (Anoplopoma fimbria), and an increase in the 

status of other species, such as Alaska pollock (Theragra chalcogramma) and 

arrowtooth flounder (Atheresthes stomias). In some of these cases, the decrease or 

increase in status of the stock is reflected in the proportion of landings of that stock. 

Canada also experienced a decline in low status fisheries in the early 1990s. This is 

caused by the significant reduction in landings of Atlantic cod (Gadus morhua) from 22 

percent of total landings in 1988 to 1 percent by 1995. The fisheries sub-goal index 

score for Canada increased over this time. 

Whether the aggregation methods show consistent patterns will depend on the 

specific fisheries in that EEZ. For example, IEG
P  is especially sensitive to low values in 
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fisheries status. For EEZs landing fish predominantly from groups with status in the mid 

range (e.g., Canada), the aggregation methods show similar relative but different 

absolute overall index scores. For EEZs landing a significant proportion of fish from 

groups in the low status range (e.g., Australia), the geometric mean will penalize overall 

index score in a non-linear way; for instance, when an EEZ increases fishing of a low 

status stock. As a consequence of this, the aggregation methods may not show similar 

relative patterns, and will not show similar absolute patterns. This non-linear aggregate 

behaviour resulting from harvesting low status stocks will be discussed more in the 

following section. 

4.2 Aggregate Behaviour 

For increasing stock status, has decreasing marginal returns in overall index 

score. This suggests that one can improve the overall index score more by improving the 

status of a stock that has low status (e.g., x = 0.05), than a stock that has high status 

(e.g., x = 0.95), but improving the status of the stock always increases the overall index 

score. Depleted stocks are harder to rebuild than overexploited stocks, and fishing less 

of a stock in good health is more easily remedied than fishing too much of a stock in 

poor health. Furthermore, a stock may have a low status as a result of overexploitation 

and fishery collapse, and may not be fished anymore due to low abundances (e.g., 

Atlantic cod). Small landings from a low status fishery may not be reflected in the index 

number as much as it should be. For this reason, it seems appropriate to penalize EEZs 

more for increasing landings of a low status stock than reducing landings of a high status 

stock.  However, this property results in the aggregation method being very sensitive to 

low values, which can become problematic when the status of a single stock is zero. The 

geometric mean offers a more pessimistic view based on the absolute value of overall 

index score by providing a lower score than other aggregation methods.  

The expenditure shares weighting scheme (i.e.,  and ) results in a 

parabolic-shaped relationship between an individual stock status and overall index 

score. This suggests that when fisheries status is low, a one-unit increase in fisheries 

status can result in a decrease in the overall fisheries sub-goal index score. This pattern 

IEG
P

IA
ES IEG

ES
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was detected using the axiomatic approach, which found that the expenditure shares 

weighting scheme failed to fulfill the monotonicity axiom; this axiom states that if one 

component increases with everything else remaining constant, the index number should 

also increase. The expenditure shares weighting scheme used in this analysis was 

borrowed from index number theory, which commonly uses this weighting scheme for 

indices that scale to a baseline point in time. For indices that don’t scale to a baseline, 

such as the fisheries sub-goal, the expenditure shares weighting scheme results in a 

parabolic shape as shown in Figure 3A. The equation for this relationship can be easily 

derived; for example, for the , the relationship can be derived as approximately 

IA
ES = (x2 + 445.51) (x + 606.43) , where x is fisheries status, and I is the overall index 

score.  

Some subjective judgment is required to choose which aggregation method and 

weighting scheme is most suitable for the fisheries sub-goal index of the OHI case study. 

This depends on what aggregate behaviour and sensitivities are considered most 

suitable for the aggregation method; this will depend on the case study being 

considered. This decision should be informed by the information considered in the 

analysis above. For example, one needs to decide whether it is good behaviour to 

reward the fisheries sub-goal index score more when landings of a stock with a low 

status are reduced than when landings of a stock with a high status are increased as 

with . For the OHI, this analysis assumes that monotonicity is an essential property – 

increasing the status of a single stock should always increase the index score. With 

monotonicity as a prerequisite, the set of aggregation methods and weighting schemes 

are narrowed down to two: and . 

4.3 Sensitivity Analysis 

and  resulted in significantly different overall index scores and rankings. 

This emphasizes that our choice in aggregation method matters and the importance of 

considering the mathematical properties and aggregate behaviour a priori.  

IA
ES
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P
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P IEG

P
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P IEG
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The dendrogram performed moderately well in identifying the related groupings 

of countries (Figures 5A and 5B). The dendrogram may identify clusters of countries with 

similar geographic location, as this may reflect similar stocks being fished and similar or 

shared fisheries management, or with similar economic factors. It is worth noting here 

that while the stock status is estimated at the scale of the statistical area defined by the 

FAO, which may include multiple EEZs, landings data used for the weights are obtained 

for each country’s EEZ. Thus, country-specific factors that affect the rate of fishing at 

any given time would emerge from the dendrogram. Lithuania, Russia (Baltic Sea), 

Poland and Latvia were successfully identified as being related for both aggregation 

methods. Other less-related countries, such as Canada and Morocco, which do not 

seem to have any relation in reality, were identified as sharing similar patterns in overall 

index score. The aggregation methods resulted in some different groupings in the 

dendrogram; for example,  identified Estonia as being related to Lithuania, Russia 

(Baltic Sea), Poland and Latvia, whereas the did not. 
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5 Conclusions 

Examining the axiomatic properties beforehand allows one to understand the 

consequences of choosing one aggregation method over another. The results of the 

sensitivity analysis highlight the need to look at this issue a priori. The choice of 

aggregation method not only affected the overall index score, but also the relative 

rankings of EEZs. This analysis showed that the choice in aggregation method required 

a number of tradeoffs and value judgments. The axiomatic approach was valuable in 

narrowing the field of aggregation methods, but the final choice was dependent on the 

perception of the associated mathematical properties, aggregate behaviour, sensitivity 

and relevance. The perception of the appropriateness of these factors will differ on a 

case-by-case basis, since interested parties may value the changes in a component 

value differently.  

In practice, ecological indices are more likely to be effective and applicable if they 

acknowledge the interconnected nature of science and policy (Gieryn, 1983). Science is 

used in the collection of data and the construction of ecological indices; however, 

ecological indices are also shaped by social preferences and considerations. Therefore, 

indices should be constructed to ensure that they are relevant to both ecology and policy 

(Turnhout, Hisschemoller, & Eijsackers, 2007). An ecological index that does not 

consider these perspectives will likely be less successful at contributing to meaningful 

policymaking and public communication, and may even lead to incorrect policy 

determinations. The construction of ecological indices does not fall clearly in the science 

or policy domain, but rather somewhere in the middle, where science and policy overlap. 

This requires the transfer of knowledge from one domain to the other (Turnhout et al., 

2007). Scientists must communicate with non-scientists and frame their work within a 

social and political context. Thus, in addition to the scientific reasoning behind the 

chosen aggregation method, one must also consider the social and political landscape 

that defines the goals and purpose of the index. For the index to be effective, the 
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aggregation method may need to consider social values and policy needs.  For example, 

whether an index should be more sensitive to changes in low values than high values is 

as much a policy judgment as a scientific question, because the appropriateness of such 

a behaviour is defined by the political, social and ecological contexts.   

When producing an index of any form, a procedure should be followed to pick the 

most appropriate aggregation method. One can follow a similar procedure to what was 

used in this analysis (Figure 6). The axiomatic approach is a good starting point to 

narrow down the number of aggregation methods being considered. One can evaluate 

which mathematical properties are most important by setting achievable objectives by 

having the axiom list reflect these value judgments. The axiomatic approach is flexible to 

these value judgments and the diverse range of ecological applications that we work 

with. One can also consider how each aggregation method performs under different 

scenarios specific to the application. I recommend working alongside interested parties 

to decide which aggregate behaviour is appropriate and which is not. 

Future work could consider the use of bilateral indices in ecological applications. 

Bilateral indices, such as the consumer price index, are used to track relative changes 

over time or space and could be a useful tool to track the change in an ecological 

process (e.g., to track the change in sea level rise). Bilateral indices are more commonly 

used in index number theory because they have more favourable mathematical 

properties than indices that track a single point in time (Auer, 2008). Bilateral indices 

were not used in this analysis because bilateral indices lose the original units in which 

they were measured and are instead scaled to a baseline point in time. Here a baseline 

is defined as the state of a system in one point in time. For example, an index in year 

2012 could be scaled to the index baseline in year 2000; this would result in an 

adimensional index number, independent of time. In order to be effectively 

communicated to stakeholders and policy makers, the fisheries sub-goal of the OHI 

needs to be meaningful in its original units. Bilateral indices were deemed inappropriate 

for the goals of the OHI. Further research should also consider the robustness of indices 

to reasonable departures from assumptions. For example, in managed systems, 

attaining perfect information about the system is unlikely; however, management 

decisions need to be made regardless of process and observation uncertainty. A power 
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analysis could be performed to observe the sensitivity of aggregation methods to various 

levels and types of uncertainty. This would provide information on the probability of 

detecting an effect with a given level of confidence (e.g., false positive and negative 

rates). 

The OHI faces a number of challenges that cannot be solved through 

aggregation methodology alone. First, landings data is obtained at the EEZ scale and is 

sensitive to the level of catch reporting of that EEZ. In contrast, status data is obtained at 

the FAO region scale and may include status information from multiple EEZs; thus, poor 

fisheries management by one EEZ may skew the status values of good fisheries 

management of another EEZ if both EEZs are within the same FAO region. These 

factors may favour some EEZs more than others. Furthermore, these factors will change 

over time depending on the discrepancy between status values within an FAO region, 

and social, political and economic considerations within an EEZ. Second, when a low 

status fishery collapses, reducing landings of that fishery (e.g., the Atlantic cod fishery in 

Canada), the fisheries sub-goal index score will improve. This behaviour can be 

minimized by using an aggregation method that is sensitive to low values.  

This paper showed that collaboration between science and policy is necessary to 

produce an effective index. The behaviour of ecological indices needs to be tied to the 

goals and purpose of the index, to change in the appropriate manner, and to be 

communicable to the intended audience.  All of these issues require a thorough 

examination of the intrinsic properties of the index before they are implemented. 
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Tables   

Table 1. Axiomatic approach axioms, their descriptions, and an example of each from the Ocean Health Index. 

 Axiom Formal Definition Simplified Definition OHI Example 
A1 Anonymity Axiom  is exclusively a function of 

x and w. 
The index number should only consider the 

set of components being summarized (x) and 
the set of weighting values (w) as inputs into 

the index formula. 

The index number should not be 
affected by the number of fisheries (N) 

being aggregated. 

A2 Invariance to Re-
Ordering Axiom 

  

where  and   are uniform 
permutations of the vectors  and 

   

If the set of components being summarized 
and the set of weighting values are 

reordered in the same way, then the index 
number remains unchanged. 

If there is information from three 
fisheries being aggregated, it should 

not matter which order the fisheries are 
aggregated in. 

A3 Single Observation 
Axiom 

 
when N=1 

If the set of components being summarized 
is composed of only one observation, then 
the index number should take the value of 

this single observation. 

If there is one fishery being aggregated, 
and this fishery has a status equal to 

0.1, then the index number should 
equal 0.1 regardless landings. 

A4 Uniformity Axiom When !! = ! for ! = 1,2,… ,! 
 

If the set of components being summarized 
is composed of a number of observations of 

the same value, then the index number 
should also take on that value. 

If all of the fisheries being aggregated 
have the same status, then the index 

number should equal that same status 
regardless of landings. 

A5 Mean Value Axiom  The index number should take a value 
between the largest and smallest 

components. 

If fisheries status ranges between 0.1 
and 0.5, then the index number should 

also range between 0.1 and 0.5 
regardless of landings. 

I(xt ,wt )

 I(x
t ,wt ) = I( !xt , !wt )

 !xt  !wt

xt

wt

I(xt ,wt ) = x1

I(xt ,wt ) = x

mini xi{ } ≤ I(xt ,wt ) ≤maxi xi{ }
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 Axiom Formal Definition Simplified Definition OHI Example 
A6 Positivity Axiom 

  
The index number is positive so long as the 
set of components being summarized and 

the set of weighting values are positive. 

If there are no fisheries with a status of 
zero, then the index number should be 

positive. 
A7 Linear Homogeneity 

Axiom  
If each observation in the set of components 
being summarized is changed by the same 

factor and the set of weighting values 
remains the same, then the index number 
should also change by the same factor. 

If the set of fisheries status values 
doubles, then so should the index 

number.  

A8 Quantity 
Proportionality Axiom  

If each observation in the set of weighting 
values changes by the same factor and the 

set of components being summarized 
remains the same, then the index number 

should remain unchanged. 

If the set of landings values doubles, 
then there should be no change to the 

index number.  

A9 Monotonicity Axiom  

when and 
for at least one element the strict 

relation holds. 

If the set of components being summarized 
is greater than or equal to another set of 

components with at least one element being 
strictly greater than the first index number 
should be strictly greater than the second. 

If the set of fisheries status values for 
one EEZ is greater than another EEZ, 

then the first EEZ should have a 
greater index number. 

 
A10 Weak 

Commensurability 
Axiom 

 
If the set of components being summarized 
changes by a factor and the set of weighting 

values changes by the reciprocal of this 
factor, the index number should remain 

unchanged. 

If the set of fisheries status values 
double in size and the set of landings 
values are reduced by half, then the 

index number should remain 
unchanged. 

A11 Strict 
Commensurability 

Axiom 

 
Λ is an arbitrary N by N diagonal 
matrix with positive elements !!  

If each observation in the set of components 
being summarized changes by different 
factors within a set of factors and each 

observation in the set of weighting values 
changes by the reciprocal of these same 
factors, then the index number remains 

unchanged. 

If each fisheries status value changes 
by a different factor, and the 

corresponding landings values change 
by the reciprocal of those factors, then 

the index number should remain 
unchanged. 

!

I(xt ,wt ) > 0 if 
xt >> 0 and wt >> 0

I(λ ⋅ xt ,wt ) = λ ⋅ I(xt ,wt )
∀λ > 0

I(xt ,λ ⋅wt ) = I(xt ,wt )
∀λ > 0

I(xt ,wt ) > I(x*t ,wt )

x*t ≥ xt ,  ∀x*t  and ∀xt

I(λ ⋅ xt ,wt / λ) = I(xt ,wt )
∀λ > 0

I(Λ⋅ xt ⋅Λ,wt ⋅Λ−1) = I(xt ,wt )
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Table 2. Example dataset with 10 simulated component and weighting 
values. This simulated numerical example is used to evaluate the 
axiomatic approach in Section 2.3, and the aggregate behaviour of 
different aggregation methods in Section 2.4. 

Stock No. Status  
(Component Value) 

Landings 
(Weighting Value) 

1 0.2655 41.1949 
2 0.3782 35.3114 
3 0.5729 137.4046 
4 0.9082 76.8207 
5 0.2017 153.9683 
6 0.8984 99.5399 
7 0.9447 143.5237 
8 0.6608 198.3812 
9 0.6291 76.0070 

10 0.0618 155.4890 
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Table 3. Results of the axiomatic approach.  The ‘✔ ’ signifies when an 
aggregation method satisfies the axiom requirements. 

           

(A1) Anonymity  ✔ ✔    ✔ ✔ 

(A2) Invariance.to.Re0Ordering ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

(A3) Single.Observation  ✔ ✔    ✔ ✔ 

(A4) Uniformity  ✔ ✔    ✔ ✔ 

(A5) Mean.Value  ✔ ✔    ✔ ✔ 

(A6) Positivity ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

(A7) Linear.Homogeneity ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

(A8) Quantity.Proportionality  ✔ ✔  ✔ ✔ ✔ ✔ 

(A9) Monotonicity ✔  ✔ ✔  ✔  ✔ 

(A10) Weak.Commensurability ✔   ✔     
(A11) Strict.Commensurability         

 Total&Number&of&Properties&Satisfied 5 8 9 5 4 5 8 9 

 

!

IPA IEG
ES IEG

P IPG IG
ES IG

P IA
ES IA
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Figures  

A.##

&

B.#

&

Figure 1. Fisheries sub-goal index scores for Australia (Figure 1A) and 
Canada (Figure 1B) using the arithmetic and geometric mean with 
proportional weight (P) and expenditure shares (ES) weighting 
schemes. 
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A.#.

.

B..

.

Figure 2. The proportion of catch at each fisheries status level for Australia 
(Figure 2A) and Canada (Figure 2B), from 1980 through 2011. 

! !

0.00

0.25

0.50

0.75

1.00

1980 1985 1990 1995 2000 2005 2010
Year

Pr
op

or
tio

n 
of

 T
ot

al
 C

at
ch

0.25 0.50 0.75 1.00
Score

0.00

0.25

0.50

0.75

1.00

1980 1985 1990 1995 2000 2005 2010
Year

Pr
op

or
tio

n 
of

 T
ot

al
 C

at
ch

0.25 0.50 0.75 1.00
Score



 

 26 

A..

.

B..

.

.......................................C..

.

Figure 3. The overall index score as a function of the status of one stock 
(Figure 3A), landings from one stock when status of that stock is 
0.05 (Figure 3B), and landings from one stock when status of that 
stock is 0.95 (Figure 3C). All other data remains constant. 
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A.! B..

. .

Figure 4. Comparison of the arithmetic and geometric mean with proportional 
weight fisheries sub-goal index scores (Figure 4A) and rankings 
(Figure 4B) for all EEZs in 2011. A line segment is drawn to 
represent the difference between the two aggregation methods.  If 
the line segment is perfectly horizontal, this suggests that the two 
aggregation methods do not result in different overall index scores 
or rankings. If the line segment is slanted one way or the other, the 
two aggregation methods result in different overall index scores or 
rankings. 
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!
A. B. 

! !

!

Figure 5. The fisheries sub-goal of the Ocean Health Index for a subset of 48 randomly selected countries. The 
exponentially weighted geometric mean with proportional weight is shown in Figure 5A and the weighted 
arithmetic mean with proportional weight is shown in Figure 5B. The dendrogram on each plot clusters 
countries based on their correlation of scores. 
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Figure 6.  The general procedure for producing an index number. 
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Appendix  
 
Data for the fisheries sub-goal of the Ocean Health Index 

The objective of the fisheries sub-goal of the Ocean Health Index is to produce 
an index number that reflects the state of fisheries in an exclusive economic zone 
(EEZ). This requires an averaging of fisheries status of all fisheries in an EEZ, 
weighted by the corresponding level of landings for each fishery. Fisheries status 
is determined by whether or not an EEZ is under-utilizing (i.e., biomass greater 
than B/Bmsy) or over-utilizing (i.e., biomass less than B/Bmsy) a fishery, such 
that: 

 

where  is biomass,  is biomass at maximum sustainable yield, α is the rate 
at which status declines as the population moves away from its optimal size, and 
β represents the lowest status possible for an under-utilized population. This 
analysis takes  and . Fisheries status was obtained at the Food 
and Agriculture Organization of the United Nations (FAO) region level, and 
landings data was obtained at the EEZ specific level; therefore, status of a 
fishery in an EEZ was assumed to be the same for all EEZs within an FAO 
region, whereas the landings of a fishery in an EEZ was specific to the EEZ. For 
landings in a given year from an EEZ that are reported at coarser taxonomic 
levels than species, the landings’ status will be based on the minimum of the 

 estimates across all species in that FAO region in that year.  Scoring it 
this way makes it such that landings reported at taxonomic levels coarser than 
species can never get a higher status than the species with the lowest status in 
the region. See Halpern et al. (2015) for more details on the underlying data. 

status =
B Bmsy  if  B Bmsy < 0.95
1   if  0.95 < B Bmsy <1.05
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