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Abstract

Skyline computation is important in applications that involve multi-criteria decision making.

In this thesis, we consider the following problem: given a query point, find the subspaces

where the query point is in the subspace skyline. Although efficient algorithms for subspace

skyline computation were developed in many existing studies, finding skyline subspaces

for one certain query point is still an open problem. We develop an algorithm based on

bottom-up set enumeration to compute the skyline subspace efficiently. We formulate the

problem of identifying the uniqueness of a given vertex to skyline subspace queries problem

on graph and proposed effective pruning methods to tackle this problem. We further con-

duct experiments on both real world datasets and synthetic datasets to verify the efficiency

of our methods.

Keywords: Skyline; subspace; set enumeration; graph;
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Chapter 1

Introduction

In this chapter, we first introduce the basic idea of skyline subspace problem and several

interesting applications that motivate the problem, which will be studied in this thesis.

Then, we will summarize the major contributions and describe the structure of the thesis.

1.1 Motivations

The skyline operator is an important research topic for multi-criteria decision making ap-

plications.

One classical example of skyline queries is searching for hotels that are cheap and close

to the beach [4]. We assume that each hotel has two attributes: the price and the distance

from the hotel to the beach. Suppose there is Hotel A and Hotel B and the price of Hotel

A is lower than the price of Hotel B, and the distance from Hotel A to the beach is also

shorter than the distance from Hotel B to beach. Then Hotel A dominates Hotel B. We call

those hotels that are not dominated by others in terms of price and distance to the beach

skyline hotels. There are many recent studies on efficient methods for skyline computation,

subspace skyline analysis and skyline computation in different scenarios. We will review

the related work on Chapter 2.

However, all the previous studies are about the skyline computation. The questions

about computing the subspaces of a query point with respect to skyline remain open.

1
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Figure 1.1: An example of data points on full space (X,Y )
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Figure 1.3: The projection of data points on subspace Y

Example 1.1. Consider a set of 5 data points in 2-d space (X,Y ) as shown in Figure 1.1.

The points a, b and c are skyline points in space (X,Y ) since each of them is not dominated

by any other points. The definitions of skyline and domination are shown in 3.1 in

Chapter 3.

In Figure 1.2 and Figure 1.3, we also plot the projections of the data points on dimensions

X and Y , respectively. In our thesis, we are only interested in the non-trivial subspaces that

are non-empty. In Example 1.1, subspace X and subspace Y are two non-empty subspaces

that we are interested in. In subspace X, the projections of the point a and d have the
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same value. Both of them are subspace skyline points of subspace X. In subspace Y , the

projection of point c is also a skyline point.

From Figure 1.1, we can see that point a, point b and point c are skyline points in the

full space (X,Y ). However, there are differences among them if we look at them in different

projections. Point a is a subspace skyline point in subspace X. Point c is a subspace skyline

point in subspace Y . Although b is also skyline point in the full space (X,Y ), it is not a

skyline point in projection X or projection Y .

Taking the value 1 on subspace Y is sufficient for c to be a skyline point in the full space

(X,Y ). No other points are able to dominate c because c is the only point with the minimal

value 1 on subspace Y . While taking the value 1 on subspace X is not sufficient for a to be

a skyline point in full space, because d also has the same minimal value 1 on subspace X.

Point b does not have minimal value on subspace X or subspace Y .

Point d and e are still subtly different although neither of them is a skyline object in

full space (X,Y ). With the same minimal value 1 as point a on subspace X, point d is

a skyline point in subspace X. Point e is not a skyline point in full space (X,Y ) or any

subspaces of (X,Y ).

In our thesis, we are interested in finding all the minimal subspace projections such

that a query point is a skyline point on those projections. We call these projections skyline

subspaces of the query point.

Why are we interested about the skyline subspaces of the query points? The information

of skyline subspace helps us understand the data better. In Section 6.1, we analyze a real

dataset of DBLP citation network. We take the distances from all authors to a conference as

a dimension. Consider all conferences as the full space, we want to compute the subspaces

on which the query author point is a skyline point. By computing those subspaces, we are

able to know what distinguishes an author from its peers in terms of research topics and

academic connections of that author. For example, Dr. Stephan Schulz publishes papers

or connects with other authors who publish papers in the computing science conferences

ENTCS, J. Symb. Log., FLAIRS and ACM Trans. Graph.. Dr. Stephan Schulz is a

skyline point in terms of connections and publications in these four conferences and we

claim that he has a good reputations in computer science. We are interested in the subsets

of these conferences that make him distinguished with others. After computing the skyline

subspaces of Dr. Stephan Schulz in the DBLP citation network, we find the distances from

Stephan to conferences ENTCS and ACM Trans. Graph. are 2 and 1 respectively, which
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makes him a skyline point among all the researchers. In Section 6.2, we analyze the Yelp

academic dataset. Given a query business spot, taking the Euclidean distances between the

business spots and the business categories (restaurant, coffee shop, etc.) as criteria, we are

interested in finding the sets of business categories that makes the business spot special.

Computing the skyline points of all the subspaces [18, 22] is costly when users are only

interested in finding subspaces of a certain the query points. In this thesis, we are focusing

on skyline subspaces of one query point but not the whole dataset. The skyline subspace

queries is also known as skyline membership queries mentioned in [18] but the problem of

answering skyline membership queries efficiently had not been solved.

1.2 Contributions

The original skyline operator problems have been studied in [4, 6] and subspace skyline

problems have been studied in [18, 22]. In this thesis, our goal is to find the subspaces

where the query point is in the subspace skylines. By tackling this problem, we make the

following contributions.

• We develop an algorithm framework to answer the skyline subspace query, finding the

subspaces where a query point is in the subspace skyline. We present a bottom-up

algorithm based on set enumeration and dominant candidate sets intersection to solve

the problem.

• We apply skyline subspace query on two specific applications: Computing skyline

subspaces on graph and computing the skyline subspaces on Euclidean space. We

develop effective pruning algorithms to reduce the unnecessary computation.

• A performance study using both synthetic and real data sets is conducted to evaluate

our approach. For the skyline subspace problem on the graph, we run our algorithm

on DBLP citation network to test its efficiency and scalability. For the spatial skyline

subspace problem, we run our algorithm on the YELP academic dataset.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we review the related work

of skyline queries. We then formulate our skyline subspace problem in Chapter 3. In
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Chapter 4, we propose the basic framework of our algorithm and the pruning method on

skyline subspace queries on graph. In Chapter 5, we present our algorithm of spatial skyline

subspace queries. We report our experimental results in Chapter 6, and conclude the thesis

in Chapter 7.



Chapter 2

Related Work

Our problem of skyline subspace query is mainly related to the existing work on general

skyline queries, subspace skyline computation and skyline queries with specific constraints

which are reviewed in Section 2.1, Section 2.2 and Section 2.3, respectively.

2.1 General Skyline Queries

The general skyline problem is to find all the points that are not dominated by any other

points. There is a number of studies on skyline in Data Mining area. The problem of finding

the maxima (skyline) of a set of vectors was first investigated in [13] where an O(n logd−2 n)

algorithm for dimensionality d ≥ 4 and an O(n log n) time algorithm for dimensionality

d = 2, 3 are proposed. The algorithm in [13] is based on the divide and conquer principle.

To integrate the skyline operator into database, Borzsony et al. [4] proposed the Block-

nested-loops Algorithm (BNL) and Divide and Conquer Algorithm (DC) to compute the

skyline queries. BNL essentially maintains a window of incomparable objects and compare

an object in the database with the objects in the window in each iteration. It outputs the

skyline at the end of all the iterations. DC divides the dataset into several partitions and

each partition can fit in memory. The skylines in all partitions are computed individually

in main memory, and then merged to produce the final skyline objects. The sort-first-

skyline (SFS) [6] algorithm also maintains a window of object, which is similar to the

BNL algorithm. In addition to that, it sorts the input data first so that it can guarantee

the objects in the window can be output immediately as skyline points, which makes the

algorithm more efficient. Kossmann et al. [12] studied the relationship between nearest

6



CHAPTER 2. RELATED WORK 7

neighbours and skyline points and developed the NN algorithm to compute skyline using

R-tree [3, 10] to index the data points. Different from original skyline query problem

which needs to scan the whole database to output all the skyline points at the very end,

the progressive skyline problem is to progressively return the skyline points as they are

identified. Tan et al. [20] proposed the Bitmap algorithm and Index algorithm to tackle

this problem. The Bitmap algorithm exploits a bitmap structure to identify whether a

point is a skyline point. The Index algorithm transfers the multi-dimensional objects into

1-dimensional space and stores the objects in a B+-tree structure. To explore the progressive

skyline problem further, Papadias et al. [16, 17] developed the bound-and-branch skyline

(BBS) algorithm which takes the advantage of R-tree [3, 10] to search for the nearest

neighborhood. These works are about finding the skyline points efficiently in databases.

2.2 Subspace Skyline Computation

The research of subspace skyline problem is to study the relationship between the property

of skyline and subspace. The major research problem of this field is that given a set of

n-dimensional points, we want to compute all the skyline points in all the subspaces of the

full space.

For the subspace skyline problem, Pei et al. [18] proposed the Skyey algorithm based on

the property of decisive subspaces to compute the skyline points for every subspace. The

algorithm not only outputs the skyline points in every subspace, but it also returns the

skyline groups. The skyline groups contain the skyline objects sharing the same values on

all dimensions in the corresponding subspaces. The Skyey algorithm takes the advantage

of sharing sorted order of the objects among different subspaces to make the computation

efficient. Yuan et al. [22] developed the Top-Down Skyline Algorithm to compute the skyline

in every subspace. They also developed a novel data structure skylist to stores the skyline

objects in different subspaces in a compact way. Both of their algorithms are in the top-down

manner.

Most of time, people are interested in computing the skyline of one particular subspace

instead of all subspaces. To tackle the problem of computing skyline in one particular

subspace, Tao et al. [21] proposed the SUBSKY algorithm using a single B-tree. They

applied a transformation on the multi-dimensional data to 1-dimensional value to enable

several effective pruning heuristics. The subspace skyline queries on high dimensional data
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was studied in [11]. To study the subspace skyline queries on high dimensional data, Jin

et al. [11] proposed novel notions of maximal partial-dominating space, maximal partial-

dominated space and the maximal equality space between pairs of skyline objects in the full

space. In our thesis, we are focusing on skyline subspace of one query point but not the

whole dataset. Different from previous works of subspace skyline. Our work is to find the

subspaces in terms of the query point. We also extend our work on the graph setting and

spatial setting.

2.3 Skyline Query in Specific Scenarios

In regular skyline problem, the n-dimensional values of the data points is known. However,

in many scenarios, the values of the data points is unknown at the beginning and somehow

it is costly to compute the actual values of all the data points. Finding efficient ways to

compute the skyline points in those scenarios are also interesting problems to study. In this

section, we will introduce several papers that study the skyline query problem in different

scenarios.

To explore the relationship Euclidean geometry and skyline, the spatial skyline problem

is studied in [19]: Given the two sets P of data points and Q of query points, the spatial

skyline of P with respect to Q is the set of those points in P whose distances to every

point in Q are not dominated by any other point of P . Sharifzadeh et al. [19] proved two

important theorems of spatial skyline problem: Any point p ∈ P which is inside the convex

hull of Q is a skyline point. Any point whose Voronoi cell intersects with boundaries of

convex hull of the query points is a skyline point. They proposed the algorithm B2S2 and

V S2 to compute the spatial skyline based on the geometry properties of convex hull and

Voronoi diagram. B2S2 algorithm is based on Branch and Bound algorithm which stores

the points in R-tree. V S2 stores the points in Voronoi diagram and takes the advantage of

Voronoi diagram to compute the nearest neighbours efficiently.

Road network skyline problem is studied in [8]: Given a road network modeled as a graph

G = (E, V ) and a set of query points Q, the road network skyline query of V with respect

to Q is the set of those points in V whose distances to every point in Q are not dominated

by any other point of V . Deng et al. [8] proposed Collaborative Expansion Algorithm (CE),

Euclidean Distance Constraint Algorithm (EDC) and Lower-Bound Constraint Algorithm

(LBC) to solve the problem. CE is a straight forward method which is based on Dijkstra
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Algorithm without taking the geometry information of the vertices into account. The EDC

algorithm is based on the A* algorithm which takes the advantage of the property that

the spatial distance between two vertices is less than the road distance between them. The

LBC algorithm decreases the skyline point candidate size by introducing the concept of path

distance lower bound. Both the EDC and the LBC algorithm utilize Euclidean distance as

the lower bound of shortest path distance in road network to perform pruning.

Both the spatial skyline problem and the road network skyline problem are the par-

ticular types of metric skyline problem. Metric distance satisfies the triangle inequality:

dist(x, z) ≤ dist(x, y) + dist(y, z). Metric distance is the general case of spatial Euclidean

distance and road network distance. Chen et al. [5] illustrate a triangle-based pruning mech-

anism to answer metric skyline queries through a metric index with M-tree. To go further

on the problem of skyline computation on metric space, Fuhry et al. [9] proved that the

distance between a metric space skyline point and q is bounded by 2rq +d(q,NN(q)) where

rq is the radius of the enclosing ball for the set of query points Q in terms of the query

point q. Using this property, they proposed the N2RS algorithm, which only searches for

the skyline points in a certain range. The B2MS2 algorithm based on a generic index tree

was also proposed in [9].

In the road network skyline problem, Deng et al. [8] takes the advantage of geometry

spatial information. To solve the skyline problem on pure graphs without any spatial

information, Zou et al. [23] proposed the SSP Query algorithm to tackle this problem.

They first introduced the concept of 1Hop Shortest Path Tree to index the tree in the

database in order to compute the shortest-distance queries efficiently. They also introduced

the SSP pruning method to prune the unnecessary skyline point candidates. After getting

the skyline point candidates, they performed the BNL algorithm [4] to find the skyline

points.

2.4 Reverse Dynamic Skyline Query

All of the previous works are focusing on finding the skyline points themselves. Papadias

et al. [16] introduced the concept of dynamic skyline query : Given a query point q and a

data set P , a dynamic skyline query according to q returns all data points in P that are

not dynamically dominated. A point p1 ∈ P dynamically dominates p2 ∈ P with regard to

the query point q if for all i, |qi − pi1| ≤ |qi − pi2| and for at least one j, |qj − pj1| < |qj − pj2|.
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qi represents the value in ith dimension of q. Dellis et al. [7] introduced an opposite version

of this problem reverse skyline query : Given a query point q and a data set P , a reverse

skyline query according to q returns all data points p1 ∈ P where q is in the dynamic skyline

of p1. They proposed BBRS algorithm, which is an improved customization of the original

BBS [16] algorithm to tackle this problem.

In our thesis, we study the reverse version of the problem in [21]: Given a set of data

points and a query point, we want to compute all the subspaces where the query point is

not dominated by any other point. We also extend our work to find the skyline subspaces

of a query point on the graph and Euclidean space.



Chapter 3

Problem Definition

The traditional skyline query problem is to find the skyline points which are not dominated

by any other points. In this thesis, we consider a variant of this problem. We consider a

set of objects S in an n-dimensional space and a query object u in this space. The object

u may be a skyline point in some subspaces. We call these subspaces the skyline subspaces.

The skyline subspaces queries are to find those skyline subspaces. Different from the work

by Tao et al. [21]: given a subspace as a query, determine the sets skyline points in that

subspace, the problem we want to solve is in a reverse way: given a query point, determine

the subspaces where the query point is in the subspace skyline. In this chapter, we will

introduce the general skyline subspace queries and its applications in two different settings:

skyline queries on graph and spatial skyline queries.

3.1 General Skyline Subspace Queries

Definition 3.1 (Skyline). For objects u, v ∈ S, u dominates v if and only if for all i,

(1 ≤ i ≤ n), u.i ≤ v.i and there exists a j (1 ≤ j ≤ n) such that u.j < v.j. Object u is a

skyline object if u is not dominated by any other objects in S.

Definition 3.2 (Skyline Subspace). Subspace B is a (non-trivial) |B|-dimensional subspace

of D if B ⊆ D(B 6= ∅). For an object u in space D, the projection of u in subspace B,

denoted by uB , is a |B|-tuple (u.i1, . . . , u.i|B|), where i1, . . . , i|B| ∈ B, u.i is the value of u

on i. If uB is not dominated by any wB in subspace B where w ∈ S, then B is a skyline

subspace for uB.

11
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Definition 3.3 (Minimal Skyline Subspace). A skyline subspace B is a minimal skyline

subspace for object u if and only if there is no such a skyline subspace C for object u that

C ⊂ B.

Definition 3.4 (Skyline Subspace Queries). Given a set of objects S in an n-dimensional

space D and a query object q = (q.1, . . . , q.n) in space D. The skyline subspaces query is to

find all the minimal skyline subspaces for query object q.

points A B C

x 4 2 3

y 3 3 3

z 2 4 1

Table 3.1: A set of objects as our running example

In Table 3.1, if the query point is y, the minimal skyline subspaces of y are (A,B) and

(B,C). In subspace (A,B), we have x(A,B) = (4, 2), y(A,B) = (3, 3), z(A,B) = (2, 4) and

y(A,B) is not dominated by x(A,B) or z(A,B). In subspace (B,C), x(B,C) = (2, 3), y(B,C) =

(3, 3), z(B,C) = (4, 1) and y(B,C) is not dominated by x(B,C) or z(B,C). Therefore, (A,B) and

(B,C) are both skyline subspace of y. In subspace (A,C), we have y(A,C) = (3, 3), z(A,C) =

(2, 1) and y(A,C) is dominated by z(A,C). Therefore, (A,C) is not a skyline subspace.

(A,B,C) is a skyline subspace but it is not a minimal skyline subspace because it is a

proper superset of one of the skyline subspace (A,B).

3.2 Skyline Subspace Queries on Graph

In this section, we introduce the skyline subspace queries on the graph setting. First, we

will introduce a kind of graph such that each vertex in the graph contains several labels,

denoted by a labeled graph. We are interested in the distances from all vertices and all labels.

The set of distances from a vertex to all labels is represented by the labeled distance vector

of that vertex. The following shows the definitions of labeled graph and labeled distance

vector.

Definition 3.5 (Labeled Graph). A labeled graph is defined as a undirected and unweighted

graph G = (V,E,L), with each vertex v ∈ V contains a set of labels Lv ⊆ L, where L is the

universal set of labels.
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Definition 3.6 (Labeled Distance Vector on Graph in d-hop). Given a labeled graph G

with n labels and a hop number d, the Labeled Distance Vector of a vertex v is LVv =

(dist1, dist2, . . . , distn), where n is the number of labels, disti is the distance from vertex v

to the closest vertex that contains label i. If a label j is not reachable by the vertex v in d

hops, then distj =∞.

We simply denote the value of labeled distance vector of a vertex v on dimension D by

v.D in our thesis.

Definition 3.7 (Skyline Subspace Queries on Graph). Given a labeled graph G = (V,E, L),

a query vertex q and a hop number d, the skyline subspaces query on graph is to find all the

minimal skyline subspaces of the query vertex q with respect to the labeled distance vectors

of all the vertices on graph G in d hops.

Experts Skills

u Accounting

y Bioinformatics

w C++, Bioinformatics

Table 3.2: An example of skill sets on LinkedIn profile

𝑥 𝑦 

𝑞 

𝑢 𝑣 

𝑤 

Figure 3.1: An example of LinkedIn network

Consider an example on LinkedIn to illustrate the skyline subspace queries on graph. In

Figure 3.1, a graph is represented by the LinkedIn connection network. Table 3.2 shows the

skills of each person of the LinkedIn network which can be treated as vertices with labels.

Both of them together represent a labeled graph. In Table 3.2, it shows that vertex u has a

skill of Accounting, vertex w has skills of Bioinformatics and C++ and vertex y has a skill

of Bioinformatics. In this example, we want to compute the subspace skyline queries in 3

hops.
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Distances A B C

u 0 2 3

v 1 3 ∞
w 3 0 0

x 2 2 3

y 2 0 1

q 1 1 2

Table 3.3: Distance between each person and each skill

In the header row of Table 3.3, A, B and C stand for Accounting, Bio-informatics and

C++ respectively. The table shows the distances between the people and the skills. For

example, the distance between v and skill B is 3 because y is the closest vertex to v that

contains label B and the distance between v and y is 3. Since C++ is not reachable by v

in 3 hops, the distance between v and C is ∞. Each row of Table 3.3 represents a labeled

distance vector of a vertex. In this example, if the query point is q, the minimal skyline

subspaces of q are (A,B) and (A,C) because there is no such a vertex w ∈ S that w(A,B)

dominates q(A,B) or w(A,C) dominates q(A,C).

3.3 Spatial Skyline Subspace Queries

In this section, we will introduce spatial skyline subspace queries. Given a set of points

in a 2-dimensional Euclidean space. Some of the points contain some labels. The distance

between a point and a label is the Euclidean distance between that point and the closest

point with that label. Our goal is to compute the skyline subspace queries on this spatial

setting.

Definition 3.8 (Spatial Labeled Distance Vector in range r). Given a set of points P ,

the Labeled Distance Vector of a point v is LVv = (dist1, dist2, . . . , distn), where n is the

number of labels, disti is the Euclidean distance from vertex v to the closest vertex that

contains label i. If a label j is not reachable by the point v in range r, then distj =∞.

We simply denote the value of labeled distance vector of a point v on dimension l by v.l

in our thesis.

Definition 3.9 (Spatial Skyline Subspace Queries). Given a set of points P , a query point

q and range r, the skyline subspaces query on Euclidean space is to find all the minimal
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skyline subspaces with respect to the spatial labeled distance vectors in range r of every

point in P .

Spots Categories

u Asian Food

y Breakfast

w Cafes, Breakfast

Table 3.4: An example of spots with categories

−1 0 1 2 3 4 5
−1

0

1

2

3

4

u:(1, 1)

q:(2, 2)

v:(0, 0)

x:(2, 3)

y:(3, 2) w:(4, 2)

Figure 3.2: An example of spatial locations of spots

Table 3.4 shows the business spots with categories. Figure 3.2 shows the geometric

locations of all spots. We consider each spot a point in a 2-dimensional Euclidean space

and the categories the spot contains as its labels.
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Distances A B C

u 0
√

5
√

10

v
√

2
√

13
√

18

w
√

10 0 0

x
√

5
√

2
√

5

y
√

5 0 1

q
√

2 1 2

Table 3.5: Distance between each spot and each category

In the header row of Table 3.5, A, B and C stand for Asian Food, Breakfast and Cafes,

respectively. The table shows the distances between each spot and each categories. In this

example, if q is the query point, then the minimal skyline subspaces are (A,B) and (A,C).



Chapter 4

A Pruning-based Method on

Graphs

In this chapter, we will introduce the algorithms to compute the skyline subspace queries.

One naive way to solve this problem is to compute the labeled distance vectors of all the

vertices first and enumerate all subspaces to check whether the query vertex is a subspace

skyline in those subspaces using the existing skyline computation algorithms. Given a label

graph G = (V,E,L), the time complexity of this method is O((|V |+ |E|)|L|+ 2|L||L||V |2).
O((|V |+|E|)|L|) is the complexity to traverse the whole graph to get labeled distance vectors

of all vertices. O(2|L|) is the complexity of enumerating every subspace of a |L|-dimensional

space. O(|L||V |) is the time complexity of checking whether the query is a skyline point in a

certain subspace. We compare each pair of points to check whether one point dominates the

other one. This brute force method is very time consuming. In order to make the algorithm

more efficient, we propose a bottom-up set enumeration algorithm and manage to avoid

some unnecessary computation by applying some pruning techniques in our method.

4.1 BFS Label Collecting

We collect the d-hop labels using Breadth-First-Search and get the labeled distance vector

of the query vertex. The idea is that we start with the query vertex and traverse the graph

in a breadth first manner. If we visit a vertex with a new label that we have not visited

before, we update the corresponding entry of that label in the labeled distance vector to the

distance from the query vertex. The Breadth First Search process will end if all reachable

17
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Symbol Interpretation

q query vertex q

LVv labeled distance vector of vertex v representing the distances be-
tween v and each label.

B subspace B
SDSu strictly dominating subspace of u

EQu equivalence subspace of u

CANDB dominating candidate set of subspace B
(u, dom) element in dominating candidate set. (u, dom) ∈ CANDB means

that u dominates query vertex q in subspace B.

(u, eq) element in dominating candidate set. (u, eq) ∈ CANDB means
that u dominates query vertex q in subspace B.

Table 4.1: Symbols used in the pruning-based method on graph

vertices in up to d hops have been visited. Then we will get the labeled distance vector of

the query vertex when the BFS label collecting ends. Algorithm 1 shows the process of

label collecting. The time complexity is O(|V |+ |E|).

4.2 Dominating Candidate Sets

By collecting the label in d hops from the query vertex, we build the labeled distance vector

of our query vertex. To avoid computing the labeled distance vectors of some unnecessary

vertices, we define a concept of dominating candidate set to store the candidate vertices

that dominate the query vertex q in certain subspaces. Given a subspace B, the dominating

candidate set of B contains the vertices that dominates or equals the query vertex on

subspace B.

Definition 4.1 (Dominating Candidate Set). Given a subspace B, the dominating candidate

set of that subspace is the set of vertices that dominate the query vertex q or equal to query

vertex q on every dimension in subspace B, denoted by CANDB with respect to q.

We define the elements of the dominating candidate set, (u, dom) and (u, eq) in the

following way: (u, dom) ∈ CANDB if vertex u dominates query vertex q in subspace B, and

(u, eq) ∈ CANDB if vertex u equals query vertex q in subspace B.

The reason we put all vertices equal to the query vertex to the candidate set is that if a

vertex equals to the query vertex in a subspace B then that vertex may dominate the query
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Algorithm 1 Label Collecting

Input: A graph G = (V,E), a list of label sets F = {Lv|v ∈ V }, the label sets of all vertices,
a query vertex q, the number of hops d;

Output: The labeled distance vector LVq of the query vertex q;
1: push (q, 0) to Q
2: while Q is not empty do
3: (v, dis) = de-queue Q
4: if dis = d then
5: continue
6: end if
7: for all not visited neighbour u of v do
8: push (u, dis + 1) to Q
9: for all label l in Lu do

10: if (l, ∗) not in LVq then
11: add (l, dis + 1) to LVq

12: end if
13: end for
14: end for
15: end while

vertex in some supersets of subspace B.

If CANDB = ∅ or every vertex in CANDB is equal to the query vertex q in subspace B,

then q is a skyline point in subspace B. Therefore, we can determine whether a subspace

B is a skyline subspace by checking whether the dominating candidate set of B is empty or

whether all elements in the dominating candidate set of B are all equal to the query vertex

in subspace B. In other words, given a subspace B, if there does not exist a vertex u, such

that (u, dom) ∈ CANDB, then B is a skyline subspace of query vertex q. To understand the

concept of dominating candidate set better, we will show a running example in Section 4.2.2.

4.2.1 Dominating Candidate Set of 1-dimensional subspace

We will introduce an algorithm to compute the dominating candidate set of 1-dimensional

subspace. We will also introduce the concepts of Strictly Dominating Subspace and Equiva-

lence Subspace which help us prune the some of the vertices from the dominating candidate

sets.

Definition 4.2 (Strictly Dominating Subspace). Given a vertex u, the strictly dominating

subspace B for u, SDSu, is the subspace that consists of all the dimensions l such that
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u.l < q.l, where q is the query vertex (with respect to q).

Definition 4.3 (Equivalence Subspace). Given a vertex u, the equivalence subspace B for

u, EQSu, is the subspace that consists of all the dimensions l such that u.l = q.l, where q

is the query vertex (with respect to q).

In this algorithm, we start from the vertices with labels and initialize the values of

the corresponding dimensions of those vertices to 0. In the next step, we push all the

neighbours of those vertices into a queue and update their labeled distance vectors. The

updating procedure is in a breadth first manner. For every dimension l, the procedure of

updating the labeled distance vectors of vertices ends when the distance from the current

vertex that we are visiting to the label l is greater than q.l, where q.l is the distance from

the query vertex q to the label l. The time complexity of the algorithm is O((|V |+ |E|)|L|).

Algorithm 2 Dominating Candidate Set on 1-Dimensional Subspace

Input: A graph G = (V,E) and the labeled distance vector LVq of the query vertex q;
Output: Dominating candidate Set CAND in all one dimension subspace in LVq, EQS

and SDS ;
1: for all vertex v contains label l do
2: for all (l, dist) in LVq do
3: push (v, 0) to Q
4: end for
5: end for
6: while Q 6= ∅ do
7: for all (l, dist) in LVq do
8: (v, distv,l) = de-queue Q
9: if distv,l = dist then

10: add (u, equal) to CAND l

11: add l to EQSu

12: continue
13: end if
14: add (u, dom) to CAND l

15: add l to SDSu

16: for all not visited neighbour u of v do
17: push (u, distv,l + 1) to Q
18: end for
19: end for
20: end while
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4.2.2 Running Example of Computing Dominating Candidate Set

In this subsection, we will give an example of how the algorithm of finding dominating can-

didate set on 1-dimensional subspace works. We will also show how the strictly dominating

subspace and the equivalence subspace of each vertex are built.

𝑥 
 

𝑦 
 

𝑞 
 

𝑢 
 

𝑣 
 

𝑤 
 

(1,1,2) 

(∞,∞,∞) (∞, 0,∞) 

(0,∞,∞) (∞,∞,∞) 

(∞, 0,0) 

Figure 4.1: Label distance vector after the first iteration

SDS EQS

u A ∅

v ∅ ∅

w BC ∅

x ∅ ∅

y B ∅

Table 4.2: SDS and EQS of each vertex after the first iteration

Subspaces Dominating candidate

A (u, dom)

B (w, dom), (y, dom)

C (w, dom)

Table 4.3: Dominating candidate set of each 1-dimensional subspace after the first iteration
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Consider the LinkedIn network represented by Table 3.2 and Figure 3.1 as our running

example. Again, we take q as the query vertex. The labeled distance vectors of all vertices

are originally initialized as (∞, . . . , ∞). As shown in Figure 4.1, we start from the vertices

with labels and mark the corresponding entries of the labeled distance vectors of those

vertices as 0. We add the label A to SDSu because u dominates the query vertex q in

dimension A. Table 4.2 shows the SDS and EQS of all the vertices after the first iteration.

After the first iteration, since u dominates q in the 1-dimensional subspace A, we add

(u, dom) to the dominating candidate set CANDA as shown in Table 4.3.

𝑥 
 

𝑦 
 

𝑞 
 

𝑢 
 

𝑣 
 

𝑤 
 

(1,1,2) 

(∞,∞,∞) (∞, 0,1) 

(0,∞,∞) (1,∞,∞) 

(∞, 0,0) 

Figure 4.2: Label distance vector after second iteration

SDS EQS

u A ∅

v ∅ A

w BC ∅

x ∅ ∅

y BC ∅

Table 4.4: SDS and EQS of each vertex after the second iteration
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Subspaces Dominating candidate

A (u, dom), (v, eq)

B (w, dom), (y, dom)

C (w, dom), (y, dom)

Table 4.5: Dominating candidate set of each 1-dimensional subspace after the second iter-

ation

Then, we explore the graph in a breadth first manner. On the second iteration, as

shown in Figure 4.2, we visit the neighbours of the vertices that were visited in the first

iteration and update the corresponding entries of their labeled distance vectors. Table 4.4

shows that subspace A is added to EQS v because on the second iteration we update the

distance between v and label A to 1 which is equal to the distance between q and label A.

For the same reason, we add (v, eq) to CANDA as shown in Table 4.5. It means that in

1-dimensional subspace A, v is equal to q and it is still possible for v to dominate q.

After two iterations, the process of building the dominating candidate sets of all 1-

dimensional subspace ends. The strictly dominating subspaces and the equivalence subspaces

of all the vertices on graph are built. In Table 4.6, we collect the 3-hop labels by Breadth-

First-Search and get the label vectors. By this point, if the value of label l in the labeled

distance vector of vertex v is ∞, then it means the distance between label l and vertex v is

longer than the distance between the label l and the query vertex q.

Distances A B C

u 0 ∞ ∞
v 1 ∞ ∞
w ∞ 0 0

x ∞ ∞ ∞
y ∞ 0 1

q 1 1 2

Table 4.6: Distance between each person and each skill in 2-hop

Although some information is still missing (equal to ∞) in Table 4.6, we are still able

to get the minimal skyline subspaces of q: (A,B) and (A,C) from the Table 4.6.
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4.3 Dominating Candidate Pruning

In this section, we will introduce a way to prune the unnecessary vertices using the strictly

dominating subspace, SDS , and the equivalence subspace, EQ of the vertices.

Lemma 4.3.1. Given a vertex u, if there exists a vertex v, such that (SDSu ∪ EQSu ⊆
SDSv ∪ EQSv) ∧ (SDSu ⊆ SDSv), and (u, dom) ∈ CANDB, then for any subspace B, we

have (v, dom) ∈ CANDB.

Proof. We prove this lemma by contradiction. Suppose there exists a subspace B, such

that (u, dom) ∈ CANDB, but (v, dom) 6∈ CANDB. Then (u, dom) ∈ CANDB implies that

vertex u dominates query vertex q in subspace B. (v, dom) 6∈ CANDB implies that v does

not dominate query vertex q in subspace B. There are two possible cases that v does not

dominate q.

Case 1: The values of all dimensions in subspace B of v are all equal to the values of q.

Since u dominates q in subspace B, in one of the dimensions of B, the value of u is less than

q , say dimension c. By the definition of strictly dominating subspace, we have c ∈ SDSu.

We have c /∈ SDSv, since v equals to q in subspace B. Therefore, SDSu ⊆ SDSv and

SDSu 6⊆ SDSv, a contradiction.

Case 2: In one of the dimensions of subspace B, say dimension e, vertex v has a greater

value than query vertex q. By the definitions of strictly dominating subspace and equivalence

subspace, we have e /∈ SDSv∪EQSv. Since u dominates q in subspace B and e ∈ B, the value

of u in dimension e is less than or equal to the value of q in dimension e. Thus, e ∈ SDSu or

e ∈ EQSu. Thus e ∈ SDSu ∪ EQSu. Therefore, we have SDSu ∪ EQSu 6⊆ SDSv ∪ EQSv,

a contradiction.

Subspace B is a skyline subspace (with respect to q) if and only if CANDB does not

contain any vertices that dominate q in subspace B. As long as CANDB contains one

vertex, say (w, dom) that dominates q, B is not a skyline subspace. We determine whether

a subspace B is skyline subspace by checking whether there exists such a (w, dom) that

(w, dom) ∈ CANDB. By Lemma 4.3.1, we notice that (u, dom) always comes with the

vertex (v, dom). Thus, given a subspace B, pruning u from CANDB does not affect the

result of deciding whether the subspace B is a skyline subspace.

Given a point u, if we are able to find such a point v that (SDSu ∪ EQSu ⊆ SDSv ∪
EQSv)∧(SDSu ⊆ SDSv), by Lemma 4.3.1, u can be pruned from the dominating candidate
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sets that u belongs to.

How to find such a vertex v? One way to find such a v is to enumerate all the vertices in

the graph G to check whether the statement (SDSu ∪EQSu ⊆ SDSv ∪EQSv)∧ (SDSu ⊆
SDSv) is true or not. It takes O(|V |) time to determine whether a vertex u can be pruned

from its dominating candidate sets.

In our thesis, we heuristically search for the vertex v from the neighbours of the query

vertex q. The intuition is that usually the neighbours of query vertex q will have strictly

dominating subspaces with more dimensions, comparing to the vertices that are not the

neighbours of query vertex. The reason is that for any label D, every vertex w (except for q

itself) on the shortest path from the query vertex q to the label D has w.D < q.D. In other

words, the strictly dominating subspaces of the vertices on the shortest path must contain

dimension D. Heuristically, a neighbour vertex of the query vertex q is on multiple shortest

paths from the query vertex q to the labels.

For example, in Figure 4.3, one of the neighbours w is on the shortest paths from query

vertex q to label D, label E, and label F . Thus, the neighbours of the query vertex q tend

to have strictly dominating subspaces with multiple dimensions. In Figure 4.3, we have

SDSu = {A,B}, SDSx = {C}, SDSw = {D,E, F}. By Lemma 4.3.1, the vertices enclosed

by the solid line can be pruned by vertex u, the vertices enclosed by the dot line can be

pruned by vertex x, and the vertices enclosed by the dash line can be pruned by vertex

w. We develop a 1-hop pruning algorithm. In Algorithm 3, S contains all query vertex’s

neighbours. If both SDSu and SDSu ∪ EQSu are subsets of SDSv and SDSv ∪ EQSv

(v ∈ s), respectively, then we prune u from the dominating candidate sets. The running

time is O((|V | ∗ |d|)|L|) (|d| is the degree of the query node q).
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q 
u 

w 

B 

E 

D 

A 

v 
x 

F 

C 

Figure 4.3: Example of neighbours of query vertex q

Algorithm 3 1-hop Pruning

Input: Strictly Dominating Subspace SDS , Equivalence Subspace EQS , Dominating can-

didate CAND , query vertex q, graph G = (V,E);

Output: Pruned Dominating candidate CAND ;

1: S = neighbours of query point q

2: for all (l, dist) in LVq do

3: for all u in CAND l do

4: for all v in S do

5: if u 6= v ∧ SDSu ∪ EQSu ⊆ SDSv ∪ EQSv ∧ SDSu ⊆ SDSv then

6: delete u from CAND l

7: end if

8: end for

9: end for

10: end for

Table 4.7 shows SDS and EQS of all vertices on the graph from Figure 3.1. We can

prune the some of the vertices from the dominating candidate set according this table. By

Lemma 4.3.1, vertex v can be pruned by u and vertex w can be pruned by y.
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Dim SDS EQS SDS ∪ EQS

u A ∅ A

v ∅ A A

w BC ∅ BC

x ∅ ∅ ∅
y BC ∅ BC

Table 4.7: The SDS and EQS of each vertex

Distances A B C Pruned By

u 0 ∞ ∞
v 1 ∞ ∞ u

w ∞ 0 0 y

x ∞ ∞ ∞ u

y ∞ 0 1

q 1 1 2

Table 4.8: Label distance vector after 1-hop pruning

Subspaces Dominating candidate

A (u, dom)

B (y, dom)

C (y, dom)

Table 4.9: Pruned dominating candidate set of 1-dimensional subspace

Table 4.8 shows that v and x are pruned by u. Also, y is pruned by w. Table 4.8 shows

the vertices to be pruned and their labeled distance vectors. Although w seems to be better

than y (because w dominates y), vertex w is pruned by vertex y because both vertices y

and vertex w have the same SDS and EQS and y is a 1-hop neighbour of the query vertex

q. Table 4.9 shows the dominating candidate sets of the 1-dimensional subspaces after the

1-hop neighbour pruning.

4.3.1 Dominating Candidate Sets for Multi-dimensional Subspaces

We generate the dominating candidate set on multi-dimensional subspaces by intersecting

the dominating candidate sets of subspaces with lower dimensionality. The CAND set
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intersection operation is computed in the following way: Given subspaces A and B,

W = {(u, dom)|∀u, (u, dom) ∈ CANDA ∧ (u, eq) ∈ CANDB}

X = {(u, dom)|∀u, (u, eq) ∈ CANDA ∧ (u, dom) ∈ CANDB}

Y = {(u, dom)|∀u, (u, dom) ∈ CANDA ∧ (u, dom) ∈ CANDB}

Z = {(u, eq)|∀u, (u, eq) ∈ CANDA ∧ (u, eq) ∈ CANDB}

CANDA∪B = W ∪X ∪ Y ∪ Z

For example, we consider two dominating candidate sets CANDA = {(u, dom)} and

CANDB = {(u, eq)}. We want to compute the CAND intersection of these two dominating

candidate sets CANDA∪B. Both CANDA and CANDB contain the element u. In this

example, vertex u dominates query vertex q in subspace A and vertex u is equal to query

vertex q in subspace B. Therefore, vertex u dominates query vertex q in the subspace A∪B
because u is less than q in at least one dimension of A ∪ B (u dominates q in A).

4.3.2 Bottom-up Subspace Eumeration

In this section, we introduce a bottom-up algorithm to compute the dominating candidate

sets from 1-dimensional subspaces to n-dimensional subspaces. This algorithm is inspired

by the Apriori algorithm for mining association rules [2]. A similar bottom-up algorithm

has also been used in enumerating different subspaces in subspace clustering problem [1].

Property 4.1. If in a k-dimensional subspace B, CANDB contains a set of vertices S, then

in any (k-1)-dimensional projection C of B, CANDC also contains the set of vertices S.

Proof. If a vertex v is in CANDB, where space B is a k-dimensional subspace, then the

vertex v is not greater than query vertex q in any dimension of space B. For any (k-1)-

dimensional projection C of B, the vertex v is also is not greater than query vertex q in any

dimension of projection C. Therefore, in projection C, CANDC contains the vertex v.

The algorithm computes the dominating candidate sets from one dimensional subspaces

to n-dimensional subspaces. We already introduce an algorithm to compute the dom-

inating candidate sets on all 1-dimensional subspaces. Let’s say that Lk is the set of

k-dimensional subspaces on which the dominating candidate sets are non-empty. Hav-

ing all the dominating candidate sets on all (k − 1)-dimensional subspaces, we are able
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to construct the non-empty dominating candidate sets on k-dimensional subspaces Lk =

{A ∪ {b} |A ∈ Lk−1 ∧ b ∈
⋃
Lk−1 ∧ b /∈ A}.

Algorithm 4 Subspace Eumeration

Input: Dominating candidate CAND of all one dimension subspaces in LVq;

Output: A set of subspaces SUB where query vertex q is a skyline point;

1: for all (l, dist) in LVq do

2: if ∃u, (u, dom) ∈ CAND l, add l to SUB, else add l to L1

3: end for

4: k = 2

5: while Lk−1 6= ∅ do

6: Lk = {A ∪ {b} |A ∈ Lk−1 ∧ b ∈
⋃
Lk−1 ∧ b /∈ A}

7: for all C in Lk do

8: for all (k-1)-projection S of C do do

9: if S /∈ Lk−1 then

10: delete C from Lk

11: end if

12: end for

13: end for

14: for all C in Lk do

15: Let A and B be two subspace of C
16: CANDC = CANDA ∩ CANDB

17: if CANDC is empty then

18: add C to SUB

19: remove C from Lk

20: end if

21: end for

22: k = k + 1

23: end while

24: return SUB

We still take the LinkedIn network in Table 3.2 and Figure 3.1 as our running example.

By running the set enumeration algorithm we get the dominating candidate sets in all

subspaces in Table 4.10.
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Subspaces Dominating Candidates Generated by

A (u, dom)

B (w, dom)

C (w, dom)

AB ∅ A ∩B

AC ∅ A ∩ C

BC (w, dom) B ∩ C

Table 4.10: Dominating candidate sets of all subspaces

As shown in Table 4.10, CANDBC is computed by CANDB ∩ CANDC , CANDAB is

computed by CANDA∩CANDB and CANDAC is computed by CANDA∩CANDC . In this

example, CANDBC = CANDB ∩CANDC = {(w, dom)}, CANDAB = ∅ and CANDAC = ∅.
The query vertex q is a skyline point on subspaces AB and AC because their dominating

candidate sets are all empty.



Chapter 5

Spatial Skyline Subspace

In this chapter, we will introduce the algorithms to compute the spatial skyline subspace

queries in range r. In the computation of the spatial skyline subspace queries, we use the

same set enumeration framework as shown in Chapter 4 with different pruning techniques.

We introduce a method to prune some of the dominating candidates based on the geometric

property of the spatial skyline subspace query problem.

5.1 Label Collecting in Range r

We index the data points in an R-tree. In an R-tree we can get all the points in a certain

rectangle in O(M logM n) time [10], where M is the maximum number of entries of each

bounding box and n is the total number of points. By indexing the data points in an R-

tree, if we want to access the neighbouring points of a certain query point q, we can query

the square box with its center on point q in the R-tree without accessing the whole set

of data points. We compute the labeled distance vector of the query point q by retrieving

the labels of the points in the circle with center (p.x, p.y) and radius r. To retrieve the

points in the circle, we make a rectangle query on the R-tree with the lower-left corner

point (p.x−r, p.y−r) and the upper-right corner point (p.x+r, p.y+r), and check whether

those points with labels are in range r of the query point q. Then we collect the distances

to those labels from q as the labeled distance vector of q.

Consider the example in Figure 3.2 and Table 3.4 in Chapter 3, we compute the spatial

skyline subspace query of q in range r = 2. We first make a query on R-tree to get all the

points in rectangle (0, 0), (4, 4). Then we have points x, y, w, u in range r = 2 of the query

31
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point q. The distances from q to u, y, w are
√

2, 1, 2, respectively. Therefore, the labeled

distance vector of query point q is (
√

2, 1, 2).

5.2 Dominating Candidates in Spatial Subspace Skyline

In this section, we will show an algorithm to compute the CAND of all 1-dimensional

subspaces.

Algorithm 5 Dominating Candidates

Input: R-tree R that indexes the spatial points and labeled distance vector LVq of query

point q;

Output: Dominating Candidates Set CAND of all 1-dimensional subspaces, SDS and EQS

of all points;

1: for all (l, dist) in LVq do

2: for all point p contains label l do

3: rec = R.query(p.x− dist, p.y − dist, p.x + dist, p.y + dist)

4: for all point u in rec do

5: d = distance(u, p)

6: if d < dist then

7: add (u, dom) to CAND l

8: add l to SDSu

9: end if

10: if d == dist then

11: add (u, eq) to CAND l

12: add l to EQSu

13: end if

14: end for

15: end for

16: end for

In Algorithm 5, we construct the labeled distance vectors of other points from every

point with labels. For each label l, we enumerate all the points that contain the label l. For

each point p with label l, we retrieve all the points in range q.l of p. For each point u in

range q.l of p (q.l is the distance from q to label l), we assign the distance between p and
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u to u.l. The running time of the algorithm is O(M log n). M is the number of points in

query rectangle of the point q.

We still consider the Figure 3.2 and Table 3.4 as the running example. We start from

the point u which contains the label A and get all the points in range q.A =
√

2 of u. Then

we have point v in range
√

2 of u and let v.A be the distance from u to v which is
√

2. Thus,

we put (v, eq) to CANDA, because v.A = q.A. The labeled distance vectors of all the points

are shown in Table 5.1. The dominating candidate sets of all the 1-dimensional subspaces

are shown in Table 5.2. The strictly dominating subspaces and the equivalence subspaces of

all the points are shown in Table 5.3.

Distances A B C

u 0 ∞ ∞
v

√
2 ∞ ∞

w ∞ 0 0

x ∞ ∞ ∞
y ∞ 0 1

q
√

2 1 2

Table 5.1: Labeled distance vector of each point

Subspaces Dominating candidate

A (u, dom), (v, eq)

B (w, dom), (y, dom)

C (w, dom), (y, dom)

Table 5.2: Dominating candidate set of each 1-dimensional subspace
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SDS EQS

u A ∅

v ∅ A

w BC ∅

x ∅ ∅

y BC ∅

Table 5.3: SDS and EQS of each point

5.3 Same Region Pruning

After getting the list of dominating candidate sets and the SDS and EQS of all the points, we

can prune some of the candidate points of the dominating candidate sets. By Lemma 4.3.1,

we can see that if two points u and v have the same SDSu and SDS v, and they have the

same EQSu and EQS v, then one of them can be pruned by the other.

𝑣1 𝑣3 

𝑣2 
𝑣4 𝑣6 

𝑣5 

𝐴 𝐵 
𝑟𝐴 𝑟𝐵 

𝑞 

Figure 5.1: We can pick one candidate from each region (with same color) and eliminate
the others.

We will show an example of how the spatial points can be pruned from the dominating

candidate set. In Figure 5.1, point q is the query point, point A is a point with label A and

point B is a point with label B. rA is the distance between the query point q and the label

A, and rB is the distance between the query point q and the label B. The blue points (v1

and v2) dominate the query point q in the 1-dimensional subspace A. The green points (v5

and v6) dominate the query point q in subspace B. The red points (v3 and v4) dominate

the query point q in subspace (A,B). In this example, the points with the same colors,
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(v1, v2), (v3, v4), (v5, v6) have the same strictly dominating subspace SDS and the same

equivalence subspace EQS . Therefore, we can keep one of the points from each region as

a representative and prune the others from their dominating candidate sets. We will show

that the number of regions is bounded by the square of the number the of vertices with

labels.

Property 5.1. n circle can only divide the 2-dimensional space into at most n(n− 1) + 2

different regions.

Proof. Proof by induction.

Basic: If n = 1, then one circle divide the 2-dimensional space into 2 different regions.

Inductive step: Assume that the statement holds for k, i.e., k circles can only divide the

space into at most k(k − 1) + 2 different regions. The (k + 1)th circle can only intersect

with at most k circle with 2k intersection points. Then the (k + 1)th can only be divided

into 2k segments and each segment divides the region it is located in into two. Therefore,

k+ 1 circles can only divide the space into at most k(k−1) + 2 + 2k = k(k+ 1) + 2 different

regions.

Since both the basis and the inductive step has been performed, by mathematical induction,

the statement holds for all natural number n.

By Property 5.1, we know that the total number of regions is not greater than the square

of total number of vertices containing label.

In our algorithm, we determine whether two points u, v are in the same region by

checking whether SDSu and SDSv are the same.

Algorithm 6 Same Region Pruning

Input: Dominating Candidates CAND , query vertex q, graph G = (V,E);

Output: Pruned Dominating Candidates CAND;

1: for all (l, dist) in LVq do

2: for all u in CAND l do

3: if u is in the same region as other points then

4: delete u from CAND l

5: end if

6: end for

7: end for
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By applying the Algorithm 6, we prune some of the elements in the dominating candidate

set in all 1-dimensional subspace. Then we will use the same set-enumeration method of

skyline subspace computation from Chapter 4 to compute the dominating candidate sets of

all the subspaces in order to answer the spatial skyline subspace queries. The running time

of the algorithm is O(|L||V |).



Chapter 6

Experiments

In this chapter, we will evaluate our approach by reporting the experimental results with

respect to the running time on computing the subspace skyline on both real data sets and

synthetic data sets. We compare the running time of the algorithms with and without using

pruning method. Both of the algorithms compute the subspace skyline using dominating

candidate sets enumeration framework. The only difference between these two algorithms

we compare is whether the pruning method is applied.

We implement our algorithms using C++. We use Microsoft Visual Studio 2010 to

compile our C++ programs. Experiments are conducted on a PC with an Intel Core(TM)

i7-3779 3.40GHz CPU, 16GB main memory and a 900G hard disk, running the Microsoft

Windows 7 Enterprise Edition operating system.

6.1 Experiments of Skyline Subspace Query on Graph

In this section, we will introduce the empirical studies on skyline subspace queries on graphs.

In all of the experiments of this section, we uniformly choose 100 nodes as the query nodes

and compute the average running time of those queries. Using the model of Kronecker graph

provided by [14], we generate graphs of different sizes. According to [14], a Kronecker graph

has several real world network properties: heavy tails for the in-degree and out-degree

distributions; heavy tails for the eigenvalues and eigenvectors; small diameters; and the

“Densification Power Law” (DPL).

37
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We use the MATLAB code from graph500 1 to generate graphs with scale from 15 to 20

which corresponds to the number of vertices from 215 to 220. All the graphs with different

sizes are generated from the initial matrix: 0.3 0.24

0.24 0.22

 (6.1)

with edge factor 2 which is the expected average degree of the vertices. The label is

generated in power law distribution. We use the Pareto function from a python package

numpy 2 to generate the label information of the vertices. We randomly generate 1000

different labels for these graphs in power law distribution. Our algorithms run skyline

subspace queries in 2-hops neighbourhood. Figure 6.1 shows that the speed-up factor of

algorithm with pruning is increasing with increasing number of labels. Neither method is

linearly scalable with respect to the number of the labels.
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Figure 6.1: Kronecker graphs with 1000 different labels

We also do some empirical studies on real world datasets. We download a dataset of

1http://www.graph500.org/specifications#sec-3_3
2http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.pareto.html

http://www.graph500.org/specifications#sec-3_3
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.pareto.html
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datasets Facebook Network DBLP Network

number of nodes 4039 906505

number of edges 88234 1656732

number of different labels 20 1000

average degree 21.8455 1.8276

Table 6.1: Dataset statistics

Facebook network from Stanford Network Analysis Project 3. In Figure 6.2, we show the

running time of our algorithms in 3-hops neighbourhood with different numbers of unique

labels in total. The labels are assigned to the vertices in uniform distribution. In the

Facebook network dataset, the running time of the algorithm with pruning is much less

than the running time of the algorithm without pruning. We note that neither method is

linearly scalable with respect to the size of the graphs.
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Figure 6.2: Running time of the algorithms on facebook network

Figure 6.3 shows the distribution of the degrees in the Facebook network dataset. The

degrees of most of the vertices are less than 200 while some of the vertices are with degrees

3http://snap.stanford.edu/data/egonets-Facebook.html

http://snap.stanford.edu/data/egonets-Facebook.html


CHAPTER 6. EXPERIMENTS 40

greater than 800.
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Figure 6.3: Facebook network degree distribution

Figure 6.4 shows the running time of the queries with different numbers of hops on

Facebook network with 20 unique labels. We conduct this experiment by using different hop

numbers d in the input. The speed-up factor of the pruning-based algorithm is increasing

with the increasing number of hops.
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Figure 6.4: Running time of the queries different numbers of hops

Figure 6.5 shows the running time of the queries with different label densities on Face-

book dataset. We use the number of labels each node contains in average in x-axis. It shows

that it takes a long time to answer the queries when the label density is 1. The running
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time of both end (too dense or too sparse) are relatively smaller. The reason is that if the

label density is too sparse then the query node tends to have a distance vector with lower

dimensionality. If the label density is too dense then the distance vector of the query node

tends to have a number of dimensions with values 0. It also shows that our pruning method

is more suitable for the labeled graph with sparse label distribution.
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Figure 6.5: Running time of different label densities

We also use the DBLP dataset from arnetminer 4 to evaluate the performance of our

algorithms. The DBLP dataset provides us the author list of each publication. We build a

citation network based on these author lists in the following way. We add an edge between

author X and author Y if X is one of the top ten co-authors of Y and Y is also one of the

top ten co-authors of X. We choose the top one thousand most frequent conferences as the

labels of the vertices. If an author publishes more than five papers in a conference, then we

add the corresponding label of that conference to that author. Figure 6.6 shows that the

pruning-based algorithm is about 10 times faster than the algorithm without pruning on

DBLP network. We note that neither algorithm is linearly scalable with respect to number

of conferences.

4http://arnetminer.org/billboard/citation

http://arnetminer.org/billboard/citation
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Figure 6.6: Running time of the algorithms on DBLP network

Figure 6.7 shows the distribution of the degrees of the DBLP network. Comparing to

the facebook network, the variance of the degrees of the vertices in the DBLP network is

small.
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Figure 6.7: DBLP network degree distribution
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6.2 Experiments of Spatial Skyline Subspace Query

In this section, we will introduce the empirical studies on spatial skyline subspace queries.

We use the Yelp academic dataset 5 to evaluate our algorithms. Yelp academic dataset

provides 13490 different business spots. Each business spot consists of its longitude and

latitude information. We use the longitude and latitude information of the business spot

as its spatial information. The business spot consists of a set of category information,

neighbourhood information and university information. We use that information as the

labels of the business spot. Each business spot also contains a star rating.

In Figure 6.8, we choose the top 20 most popular categories as the labels of the business

spots and we compare the running time of the algorithms in the sense of different radii.

The running time of the prune-based algorithm is about 2 times faster than the algorithm

without pruning.
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Figure 6.8: Yelp Data Set with Top 20 most popular categories

In Figure 6.9, we choose the top 300 most popular categories as the labels of the business

spots. We assign a category to a business spot as a label if the business has the highest

star rating among all the business with that category. We note that both algorithms are

5https://www.yelp.ca/academic_dataset

https://www.yelp.ca/academic_dataset
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linearly scalable with respect to radius. Table 6.2 shows the average numbers of business

spots in terms of radius in yelp dataset.
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Figure 6.9: Yelp Data Set with 300 different labels

We also evaluate the running time of the algorithm on data with the radius fixed but

the number of labels is different. In this thesis, we conduct the empirical study on the

spatial skyline queries with radius of 10000 meters. We first get a random permutation of

the labels. Second, we run our programs on the first 100 labels, the first 200 labels, . . . ,

etc. Figure 6.10 shows the running time per query in average. The running time of the

pruning-based algorithm does not have significant better performance than the algorithm

without pruning.

Figure 6.11 shows the running time of spatial synthetic data with 20 different labels.

Both the spatial points and the labels of the points are generated randomly in uniform

distribution. The pruning-based algorithm is 7 times faster than the naive algorithm when

the radius is 40000 meters.

In summary, the experimental result shows that our algorithms compute the skyline

subspace efficiently and the pruning methods improve the running time of the programs

effectively.
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Radius (meters) Number of Points

50 11

100 26

150 42

200 59

250 76

500 159

1000 298

5000 597

10000 657

20000 721

Table 6.2: Number of points in certain radii in average
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Figure 6.10: Yelp dataset in 10000 meters neighbourhood
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Figure 6.11: Spatial synthetic dataset
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Conclusions

The skyline subspace problem is originally motivated by the problem of what distinguishes

one from its peers in social networks [15]. In this thesis, we formulate the social network

into a graph with labels and consider the distances between a person and the labels as the

factors that distinguish the person from its peers. We propose a bottom-up algorithm to

answer skyline subspace query which is based on set enumeration and dominating candidate

sets intersection. To tackle the problems of skyline subspaces on graph and the skyline

subspaces on Euclidean space, we develop effective pruning methods to reduce the search

space. We do empirical studies using both synthetic and real datasets to evaluate our

approach. We generate the synthetic graph based on the Kronecker graph model and the

real world datasets are from DBLP and YELP. The experimental results verify the efficiency

of our algorithms.

As for future work, we can consider the following directions.

• Using top-down set enumeration. Our algorithm is based on bottom-up set enumer-

ation. In bottom-up manner, we take the advantage of the property that if a target

skyline subspace is found then we do not need to search for the subspaces that contain

this subspace. For top-down approach, one of the advantage we can take is that if

the query point is strictly dominated by some points in a certain subspace A, then we

do not need to check the subsets of the subspace A because we know that the query

point cannot be a skyline point in those subspaces.

• Further pruning method development in Euclidean space. There are many properties

in euclidean space. In [19], Sharifzadeh et al. took the advantage of the property

47
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of convex hull to reduce the size of skyline candidates. They also used the Voronoi

diagram structure to index the graph. For future work, we can index the spatial points

using Voronoi diagram instead of R-tree and apply pruning methods based on some

geometry properties such as the property of convex hull.

• Skyline subspace algorithm on other applications. Finding the skyline subspaces on

road networks and metric space are still an open problem. This topic is an interesting

problem to be studied in the future.
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