
Fast Direct Integral Equation Methods for
the Laplace-Beltrami Equation on the

Sphere
by

Natalia Iwanski

B.Sc., Simon Fraser University, 2013

Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

c© Natalia Iwanski 2015
SIMON FRASER UNIVERSITY

Summer 2015

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, criticism, review and news reporting is likely to be in accordance with

the law, particularly if cited appropriately.

Approval

Name: Natalia Iwanski

Degree: Master of Science (Mathematics)

Title: Fast Direct Integral Equation Methods for the Laplace-
Beltrami Equation on the Sphere

Examining Committee: Dr. Razvan Fetecau (chair)
Associate Professor

Dr. Mary-Catherine Kropinski
Senior Supervisor
Professor

Dr. Nilima Nigam
Supervisor
Professor

Dr. David Muraki
Internal Examiner
Professor

Date Defended: 24 July 2015

ii

Abstract

Integral equation methods for solving the Laplace-Beltrami equation on the unit sphere
are presented and applied to the problem of point vortex motion. The Laplace-Beltrami
equation is first posed on a simply connected domain on the sphere, then reformulated into
an integral equation and discretized. The resulting linear system is solved by adapting
current fast direct solvers from fully two and three dimensional problems to the surface
of the sphere. The solution is achieved in O(N) operations, where N is the number of
points lying on the contour of a single “island.” The performance of the solver is studied
through several representative examples. To highlight the efficiency of the direct method
for problems with multiple right hand sides, the solver is used to study point vortex motion.
The relationship between the Laplace-Beltrami equation and the motion of a point vortex in
the presence of coastlines is explained—both in terms of finding instantaneous streamlines
of the fluid and the trajectory of a vortex over time. The solver is used to construct these
instantaneous streamlines and trajectories, of which the latter requires the Laplace-Beltrami
equation to be solved for each time step. In this case the performance of the direct solver is
found to exceed previous iterative approaches using the fast multipole method. Lastly, the
fast direct solver is adapted to the multiply connected case and several numerical examples
are presented.

Keywords: Laplace-Beltrami, boundary integral equation, fast direct solver, boundary
value problem, point vortex motion

iii

Acknowledgements

I would like to thank my supervisor, Dr. Mary-Catherine Kropinski, for introducing me to
integral equations and for suggesting such an interesting and original research project. I
am also grateful for her encouragement and guidance throughout the research and writing
process.

Thank you to Dr. David Muraki for many helpful conversations and constructive feed-
back on my work, and to Dr. Nilima Nigam for her encouragement and positive comments.
I would like to thank both committee members for their time and interest in my work.

I am also grateful to my professors and to my fellow graduate students who made these
past two years truly enjoyable and memorable.

Lastly, I would like to thank my family, especially my parents and my sister, for providing
me with motivation, perspective and unconditional support. Thank you to Michael for being
there for me every step of the way.

This work was also partially supported by graduate scholarships from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC) and SFU.

iv

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Outline . 4

2 The Laplace-Beltrami Equation and Boundary Integral Equation Meth-
ods 6
2.1 The Generalized Fundamental Solution on the Sphere 8
2.2 Boundary Integral Equation Formulation . 9
2.3 The Stereographic Projection . 11
2.4 Nyström Method . 13

3 Fast Direct Solvers 16
3.1 Rank-Deficient Structure of System . 21
3.2 The ID and Rank-Revealing QR . 23
3.3 Single Level Brute Force Compression . 26
3.4 Recursive Brute Force Compression . 29
3.5 Accelerating Compression: Proxy Points in 2D 37

3.5.1 Relationship to Potential Theory . 37
3.5.2 Implementation . 39

3.6 Proxy Points on the Sphere . 43
3.7 Solution with UMFPACK . 51

4 Numerical Results 53

v

4.1 The Brute Force Vs. Proxy Point Method 54
4.2 The Influence of Geometry on Performance 59

5 Point Vortex Motion on the Sphere 63
5.1 Velocity and Vorticity Fields on the Surface of the Sphere 64
5.2 Instantaneous Point Vortex Motion . 66
5.3 Point Vortex Trajectories . 67

5.3.1 Numerical Methods for Finding Vortex Trajectories 70
5.3.2 Spectral Deferred Correction . 71

6 Numerical Results for Point Vortex Motion 77
6.1 Instantaneous Point Vortex Motion . 78
6.2 Point Vortex Trajectories . 83

6.2.1 Method 1: Constructing Contours of ψ̂(x,x0) 83
6.2.2 Method 2: Solving the Autonomous ODE, or Equation of Motion for

a Vortex . 85
6.2.3 Vortex Motion around a Thin, Extended Island on the Sphere 90

7 The Multiply Connected Case 93

8 Conclusion 99
8.1 Future Work . 100

Bibliography 102

vi

List of Tables

Table 4.1 Final row/column skeleton dimensions, corresponding to Example 4.1,
for the brute force and proxy point methods, denoted by kb and kp

respectively. The values are broken down by contour. N denotes the
original uncompressed matrix dimension. The input values of n(max)

1 ,
which determine the number of recursive levels, are also shown. n(max)

1
represents the number of points in a block on the finest recursive level. 58

Table 4.2 Results of the direct solver corresponding to the contour Γ2 in Exam-
ple 4.1. Results are broken down between the brute force and proxy
point methods. The table includes the final row/column skeleton di-
mensions for each value of N , as well as the time in seconds taken to
complete each stage of the solver. Tc denotes the time for compres-
sion, Tlu denotes the time for LU decomposition with UMFPACK, and
Ts denotes the solution time. Times were obtained from MATLAB’s
tic and toc commands which record the internal time of execution in
seconds. The error in the solution in the infinity norm is also shown,
using the reference solution (4.1). 59

Table 4.3 Results of the direct solver corresponding to Example 4.2. The proxy
point method is applied to four different contours. The dimensions of
the final skeletons, kp are given, along with the condition number K in
the infinity norm for the associated uncompressed matrix. Timings for
compression, Tc, LU decomposition, Tlu, and solution, Ts are also given,
along with the error, in the infinity norm. The reference solution (4.1)
is used. The accuracy of the ID is set to ε = 10−10 just as in Example
4.1. 61

vii

List of Figures

Figure 2.1 A simply connected domain, Ω, on the surface of the sphere, S, with
a smooth, closed boundary Γ. The single island is denoted by Ω1.
The normal, tangent and radial vectors are denoted by n, s and er
respectively. The normal vector, defined as n = s× er, points out of
the domain Ω and is tangent to the surface of the sphere S. 6

Figure 2.2 The simply connected domain from Figure 2.1 mapped to the stere-
ographic plane. 13

Figure 3.1 Sources on Γ which contribute to the potential on Γτ (3.5) (also
denoted by Γself). Γself represents sources due to self-interaction,
while Γnear and Γfar represent the near and far field respectively. . . 22

Figure 3.2 (b) plots the singular values of the horizontal off-diagonal blocks
corresponding to the matrix (I + K/π) in (2.13). For this example
we take a star-shaped boundary (shown in (a)) and discretize the
contour with N = 400 points. The matrix is divided into 4 × 4
blocks as in (3.6). The dimension of each horizontal off-diagonal
block is 100× 300. The singular values of each block, plotted in (b),
decay exponentially in this case. To machine precision each of the
blocks has an approximate numerical rank of 60. 23

Figure 3.3 Binary tree placed on a star-shaped boundary, Γ. The subscripts
correspond to the index vectors shown in the binary tree (3.12). . 30

Figure 3.4 Skeleton points on level 1 for the second and third off-diagonal row
blocks corresponding to Γ9 and Γ10 are shown in red. The accuracy
of the ID is set to ε = 10−5. After compressing all off-diagonal row
blocks, we obtain (c), which plots the skeleton points for Γ8, ..., Γ15. 32

Figure 3.5 Skeleton points on level 2 for the second and third off-diagonal row
blocks corresponding to Γ5 and Γ6 are shown in red. The black points
correspond to skeleton points selected on level 1. After compressing
all off-diagonal row blocks we obtain (c), which plots the skeleton
points for Γ4, ..., Γ7. 34

viii

Figure 3.6 Skeleton points on Level 3 for the two off-diagonal row and column
blocks corresponding to Γ2 and Γ3 are shown in red. The final num-
ber of skeleton points in (c) is 2k3 = 61 35

Figure 3.7 An example of a boundary contour corresponding to equation (3.17).
Γ is divided into two parts: Γτ and Γcτ 38

Figure 3.8 Sources on Γcτ divided into two sets: Γnear and Γfar. The new ar-
tificial contour, denoted by Γproxy, contains an equivalent density
distribution representing the far field contributions. 38

Figure 3.9 Sources on Γfar which induce a harmonic potential inside Γproxy. . . 39
Figure 3.10 The process of constructing a proxy circle. First a spherical cap

surrounding Γτ (not shown here) is defined, and then a second cap is
constructed which is 1.5d away from xc in Euclidean distance. The
second cap represents Γproxy. 44

Figure 3.11 Case 1: An example of proxy circles on the sphere where 1.5d < 2. 45
Figure 3.12 Case 2: An example of skeletonized points on the coarsest level of

the algorithm. Since 1.5d ≥ 2, no proxy circle is created. 46
Figure 3.13 Skeleton points on Γ8 selected by the ID. The proxy circle, plotted

in green, divides Γc8 into Γnear and Γfar, which are plotted in black
and grey respectively. The k1 skeleton points represent sources which
induce a harmonic potential on Γproxy, or targets where the potential
is evaluated due to sources on Γproxy. 47

Figure 3.14 Skeleton points selected by the ID after one level of compression. . 48
Figure 3.15 Skeleton points on Γ4 selected by the ID. The proxy circle now sur-

rounds skeletonized sources or targets from level 1. 49
Figure 3.16 Skeleton points selected by the ID after two levels of compression. 50
Figure 3.17 Skeleton points on Γ2 selected by the ID. The proxy circle surrounds

skeletonized sources or targets from level 2. In this case, the entire
section Γc2 is considered in the near field. 50

Figure 3.18 Skeleton points selected by the ID after three levels of compression 51

Figure 4.1 Three boundary contours chosen to test the brute force and proxy
point methods. 54

Figure 4.2 Error in the solution u(x) evaluated along a contour well away from
all three boundaries. The error, measured in the infinity norm, for
both the brute force and proxy schemes is on the order of accuracy
set for the ID, ε = 10−10. 56

ix

Figure 4.3 Timings for all three stages of the direct solver for both the brute
force and proxy point methods. The time in seconds, measured with
MATLAB’s tic and toc, is plotted for (i) matrix compression ((a)
and (b)), (ii) LU factorization with UMFPACK (c), and (iii) solution
with UMFPACK factors (d). 57

Figure 4.4 The four boundaries studied in Example 4.2. 60
Figure 4.5 Examples of "space-filling" boundaries in 2D for which direct solvers

do not give O(N) complexity [49, 21]. 62

Figure 6.1 Rate of convergence of the approximate solution to the stream func-
tion for the spherical cap. The level of precision for the ID is set
to ε = 10−10. Exponential convergence is seen due to the Nyström
method with the trapezoidal rule. 79

Figure 6.2 The numerical solution corresponding to Example 6.1. A point vor-
tex located at θ0 = π

3 , φ0 = 3π
2 is considered in the presence of a

spherical cap boundary. 81
Figure 6.3 The numerical solution corresponding to Example 6.2. A point vor-

tex located at θ0 = π
3 , φ0 = 3π

2 is considered in the presence of a
star-shaped boundary. 82

Figure 6.4 Point vortex trajectories plotted over a grid of the solution domain
Ω. There are 50× 100 grid points in total which discretize θ and φ.
The angle of elevation of the spherical cap is taken to be θc = π

6 . We
observe that the south pole is an elliptic stationary point, and the
speed of the vortex slows down as it approaches this stationary point. 84

Figure 6.5 Timings to find the contours of ψ̂(x0,x0) with the FMM (shown in
red) and the direct solver (shown in blue). The boundary of the
spherical cap is discretized with N = 1024 points. Only timings for
solving the system with GMRES, or applying the LU factors from
UMFPACK, are shown. The direct solver outperforms the FMM by
roughly two orders of magnitude. Ng denotes the total number of
points taken over a grid on Ω. 85

Figure 6.6 Point vortex trajectories plotted over a grid of the solution domain
Ω. There are 61,927 grid points in total. The same star-shaped
boundary as in Example 6.2 is used. We also see the same qualitative
behaviour of the vortex as for the spherical cap. 86

Figure 6.7 A single vortex trajectory over a spherical cap domain found with
spectral deferred correction. The initial position of the vortex is
x0 = (θ0 = 13π

40 , φ0 = 0), and the time interval taken is [0, T = 30] . 87

x

Figure 6.8 Convergence results for spectral deferred correction used to find a
vortex trajectory in a spherical cap domain. As expected, the order
of accuracy is just slightly under O(M−(J+1)), where J = 9. The
number of points on each panel is set toMp = 10. To increase M, the
number of panels are increased. The total time interval considered
is [0, T = 30]. The accuracy of the ID is set to ε = 10−12 for these
plots. 88

Figure 6.9 The time complexity of spectral deferred correction plotted against
varying M. The number of points on each panel is the same as in the
convergence plots, Mp = 10. 89

Figure 6.10 A single orbit with initial position x0 = (θ0 = 13π
40 , φ0 = 0) computed

with spectral deferred correction on the time interval [0, T = 15].
The number of points on each panel is Mp = 10, with 10 panels, and
the number of correction steps is J = 9. The orbit is plotted both
in the stereographic plane in (a) and on the sphere in (b). Figure
(b) also plots several velocity vectors on the trajectory to show the
direction of motion of the vortex. 89

Figure 6.11 Vortex trajectories for θg = 3π
4 , L = 0.4142. Several views are shown

for clarity. Two elliptic stationary points, or centers, occur on either
side of the island. A third hyperbolic stationary point occurs at
the south pole. A vortex can take one of three possible orbits: it
can circle the island, it can circle all three stationary points, or it
can form an elliptical orbit around one of the two elliptic stationary
points. The values of ψ̂(x0,x0) are plotted in the background. . . . 92

Figure 6.12 Vortex trajectories in the stereographic plane for θg = 3π
4 , L =

0.4142. Figure (b) is zoomed in to clearly show the two elliptic
stationary points that result for this value of L. 92

Figure 7.1 Results of the direct solver for the multiply connected domain shown
in (a), where the boundary data is prescribed from (7.7). 97

Figure 7.2 Instantaneous fluid motion in a multiply connected domain, around
a point vortex placed at θ0 = 1.2, φ0 = π/3. 98

xi

Chapter 1

Introduction

Laplace’s equation is of fundamental importance in mathematics and has far-reaching ap-
plications to many fields of science including electrostatics, astronomy, heat conduction and
fluid dynamics [18, 57, 30]. It is used to study problems governed by harmonic potentials,
such as the behaviour of gravitational or electrostatic fields, or the vector fields of steady in-
compressible fluids [18, 57, 30]. For problems in two and three dimensions, integral equation
methods for solving boundary value problems (BVPs) associated with Laplace’s equation
date back to early work on potential theory related to Laplace, Fredholm, Neumann and
many others [1, 43]. Integral equation methods are a classical and powerful approach for
solving not only Laplace’s equation but other elliptic BVPs [1, 43, 11, 37].

The study of harmonic potentials from an integral equation perspective can also be
extended to problems posed on surfaces embedded in three dimensions. On surfaces, the
Laplacian takes the form of the Laplace-Beltrami operator. Moving the partial differential
equation (PDE) to a surface implies that the same applications from 2D and 3D can be
studied, and also many new possibilities arise related to planetary scale fluid motion, image
processing, and pattern formation [9, 51, 62].

In this thesis we focus on numerically solving the Dirichlet Laplace-Beltrami equation
on the surface of the sphere using an integral equation approach. Specifically we develop
fast direct integral equation methods for solving the boundary integral equation (BIE)
reformulation of the PDE. Taking an integral equation approach has several key advantages
over other numerical methods for solving PDEs on surfaces. When the Laplace-Beltrami
equation is reformulated as a BIE, the dimension of the problem is reduced. We switch from
differentiating over a subdomain of the surface, to integrating along the boundary of the
subdomain alone, going from a two-dimensional subsurface to a one-dimensional curve. In
this way, complicated geometries are more easily handled, and we can consider boundaries
of any arbitrary shape.

Since the integral equation reformulation is not unique, there are many possible strate-
gies which can be used to rewrite the PDE. One can use a Green’s function representation,

1

however finding a Green’s function for a general domain is difficult. More commonly, an
indirect approach is used where an ansatz is made based on the single or double layer po-
tential. In [20], Gemmrich, Nigam and Steinbach use an ansatz based on the single layer
potential, leading to an integral equation of the first kind. They then use a Galerkin dis-
cretization of the integral equation and solve the resulting linear system. Kropinski and
Nigam [44] also use an indirect approach, but one that is based on the double layer potential,
leading to a Fredholm integral equation of the second kind. Just as in R2 or R3, discretizing
the equation with the Nyström method and solving the resulting linear system leads to
super-algebraic convergence, provided the boundary curve and the Dirichlet boundary data
are sufficiently smooth [1, 26].

In this thesis, we follow [44] and use an indirect approach based on the double layer
potential. Discretizing the BIE with the Nyström method then leads to a dense linear
system which in practical applications can become very large. As a result, using standard
Gaussian elimination to solve the system becomes infeasible. Acceleration strategies need
to be applied to reduce the solution time of the system.

In contrast, PDEs discretized with finite difference methods lead to large sparse lin-
ear systems [45]. The standard acceleration strategy for this type of system is to use an
iterative method such as Jacobi iteration, conjugate gradient or GMRES [45]. These it-
erative methods are also applicable to the dense, and usually non-symmetric systems that
arise from boundary integral discretizations. To make such an approach efficient, the fast
multipole method (FMM) can be employed to accelerate the matrix-vector product in the
iterative procedure [8, 27, 29]. This strategy is extremely effective, and when applied to
Fredholm equations of the second kind, it achieves a solution in O(N) operations, where N
denotes the number of points along the boundary. For Laplace’s equation the FMM uses
properties of the underlying electrostatic potential, and as a result the algorithm depends
on the dimension of the problem. FMM-accelerated iterative methods for BIEs in two and
three dimensions are well-studied and have been used for several decades [53].

The application of the FMM to problems on surfaces has been investigated only re-
cently. Kropinski and Nigam [44] apply an iterative strategy coupled with the FMM to
solve the Laplace-Beltrami equation on the surface of the sphere. They map the BIE into
the stereographic plane, where the kernel of the integral equation has a similar form to the
2D Coulomb potential. Using GMRES accelerated with the FMM for this 2D potential
allows a solution to be obtained in O(N) operations on the sphere. This provides an ef-
ficient and highly accurate solution method for the Laplace-Beltrami equation. However,
one of the main drawbacks of iterative methods is that they are ill-suited for problems with
multiple right hand sides. They are unable to re-use information from the solution from
one particular right hand side to the next.

More recently, fast direct solvers have been developed as an alternative to iterative
methods coupled with the FMM. There is a growing body of literature on these types of

2

methods related to research on hierarchically semi-separable (HSS) matrices [63], H [32]
and H2 [6] matrices, and hierarchal matrices [54]. We focus on methods introduced by
Martinsson and Rokhlin in [50], and subsequent work by Gillman et al. [21] and Ho and
Greengard [36]. Similar to the FMM, the fast direct solvers developed in these papers
achieve O(N) complexity for linear systems arising from integral equations representing
elliptic BVPs. Fast direct solvers find a compressed, or "data-sparse", representation for the
system matrix, which is accurate to some preset precision. This data-sparse representation
then allows an accurate approximation for the inverse to be efficiently constructed. The
representation for the inverse is also data-sparse and can be cheaply applied to any right
hand side to obtain the solution. The three stages of compressing the matrix, finding its
inverse, and then applying the inverse to the right hand side can all be done in O(N)
operations in 2D. In particular, applying the inverse to the right hand side is extremely
cheap. For a single right hand side fast direct solvers can be shown to be competitive with
the FMM in terms of solution time and accuracy [36]. For problems with multiple right
hand sides the performance of direct solvers surpasses that of the FMM.

Up to this point, fast direct solvers have only been applied to BIEs associated with PDEs
posed in two or three dimensions. They have not yet been applied to problems posed on
surfaces. The focus of this thesis is to extend the algorithms from 2D to the surface of the
sphere. Specifically, we follow the same initial approach as in [44]. The Dirichlet Laplace-
Beltrami equation is reformulated based on the double layer potential to obtain a Fredholm
integral equation of the second kind. The BIE is discretized directly on the surface in R3,
and then a fast direct solver is developed for the linear system. The algorithms developed
for the solver on the surface of the sphere are discussed in detail, and we verify that the
cost to obtain the solution remains O(N).

To highlight the advantage of the direct solver for linear systems with multiple right
hand sides, we apply it to the specific application of point vortex motion on the surface
of the sphere [12, 52, 39]. In particular we look at point vortex motion in the presence
of impenetrable “islands.” The point vortex model assumes that vorticity in a steady,
incompressible fluid is concentrated at a single point, represented by a delta distribution.
Applying a stream function formulation then leads to the problem of finding the Green’s
function for the Dirichlet Laplace-Beltrami equation on the sphere, which can be solved
with our integral equation approach. The stream function represents the motion of steady,
incompressible and irrotational fluid surrounding a vortex at a fixed location.

In addition this stream function formulation can also be used to find the trajectory
of a vortex over time. On the sphere, vorticity is conserved along the path of a passive
particle which is advected by the velocity field [16, 40]. Thus a vortex is transported by the
velocity field [16, 40, 12, 52, 39]. The instantaneous velocity of a vortex can be obtained
from the regular part of the instantaneous stream function. This allows us to write down
an autonomous ODE describing the trajectory of a vortex. The right hand side of the ODE

3

depends on the instantaneous velocity of the vortex at a particular time which is obtained by
the solving the Laplace-Beltrami equation. This means that for each time step of the ODE,
the Laplace-Beltrami equation must be solved for a different vortex location. Applying our
integral equation approach reduces this problem to solving a system with a new right hand
side for each time step.

Trajectories of a single vortex can be equivalently obtained by constructing contours of
the regular part of the stream function evaluated as a function of vortex position [16, 12,
52, 39]. This also leads to solving a system with multiple right hand sides. Both of these
methods for obtaining trajectories will be discussed in detail in Section 5.3.

Previous work investigating point vortex motion on the sphere mainly uses analytical
techniques to solve for the Green’s function of the Laplace-Beltrami equation. In [39],
Kidambi and Newton apply a stereographic projection to map the sphere to the complex
plane, and then use the method of images. They obtain exact solutions for the stream
function for several simply connected domains. Although their approach leads to an exact
solution, it can only be applied to a specific set of subdomains that satisfy certain special
symmetries. Crowdy [12] applies a stereographic projection to the sphere, and then uses a
conformal mapping, either to the complex upper-half plane, or to the unit disk, and solves
the problem on the simpler domain. Surana and Crowdy [58] then extend this technique
to the multiply connected case on the sphere. Although this strategy is applicable to more
subdomains than the method of images alone, it is still not completely general since it
requires knowledge of conformal maps to simpler geometries.

The numerical approach we apply to the point vortex problem is applicable to any
arbitrary, smooth boundary. As such we can extend the results of Kidambi, Newton and
Crowdy [39, 12], to an even broader range of subdomains on the sphere. This is especially
relevant when considering possible applications of point vortex motion to planetary scale
fluid flow [52, 12, 39, 38].

Since the Dirichlet Laplace-Beltrami equation can be used to study the motion of a
vortex on the sphere in the presence of impenetrable islands, it can be used, for example,
as an initial model for studying the motion of a point vortex over the surface of the earth
[52]. Being able to accommodate complicated boundaries is then essential for modelling the
earth’s continents. Although the Laplace-Beltrami equation provides a simplified model
for vortex motion, it can be used as a starting point for studying atmospheric and oceanic
flows especially in situations where vortices may travel over long-range distances on a global
scale, and where the curvature of the earth plays a role [52, 12, 39, 38].

1.1 Outline

The outline for the thesis is as follows. Chapter 2 introduces the Dirichlet Laplace-Beltrami
equation we will be studying on a simply connected domain. The process of reformulating

4

the BVP into a BIE is discussed in detail based on previous work in [44]. Afterwards the
Nyström method is presented, which is the numerical discretization strategy we use for
obtaining a linear system representing the BIE.

Chapter 3 will give an overview of acceleration strategies that can be used to solve the
linear system representing the BIE. Fast direct solvers are discussed in detail based on the
extensive literature for problems posed in 2D and 3D. All major algorithms necessary to
implement the solvers are presented, as well as the specific changes that need to be made
to extend direct methods to the surface of the sphere. We show that just as in 2D, direct
solvers on the sphere also achieve O(N) time complexity.

Chapter 4 presents numerical examples which study the performance of the direct solver
on the sphere. To test the accuracy we use known analytical solutions for the Laplace-
Beltrami equation on the sphere. Time complexity is also studied for a range of different,
smooth boundary contours.

Chapter 5 applies the direct solver developed on the sphere to point vortex motion.
We explain how the Laplace-Beltrami equation is used to solve for both steady state fluid
motion on the sphere, and for trajectories of a point vortex over time. We also discuss how
numerically constructing vortex trajectories requires solving a linear system with multiple
right hand sides.

Chapter 6 presents extensive numerical examples of point vortex motion. We study the
performance of the direct solver showing that is very well suited for solving problems of
this type. We also discuss the qualitative behaviour of vortices on the sphere in comparison
with previous analytical results given in literature on vortex motion.

Lastly, Chapter 7 closes the thesis with a discussion of how the fast direct BIE approach
developed for a simply connected domain can be applied to multiply connected domains
on the sphere. We present several initial results which show that the solver can obtain
O(N) complexity for certain types of domains with multiple islands. We also discuss the
possibilities that these results present for further studying vortex motion.

5

Chapter 2

The Laplace-Beltrami Equation
and Boundary Integral Equation
Methods

We begin this chapter by outlining the Dirichlet BVP for the Laplace-Beltrami equation
posed on the surface of the sphere, S. For the majority of this thesis, we consider only a
simply connected domain Ω, where a smooth, closed boundary curve, ∂Ω ≡ Γ, divides Ω
from a second subdomain, or “island”, Ω1. An example is shown in Figure 2.1.

Ω1

Ω

er

n
s

Figure 2.1: A simply connected domain, Ω, on the surface of the sphere, S, with a smooth,
closed boundary Γ. The single island is denoted by Ω1. The normal, tangent and radial
vectors are denoted by n, s and er respectively. The normal vector, defined as n = s× er,
points out of the domain Ω and is tangent to the surface of the sphere S.

Although we will work mostly with real Cartesian co-ordinates on the sphere, the initial
discussion of the Laplace-Beltrami operator is easily expressed in spherical coordinates. A

6

point x ∈ S on the sphere can be described in the following way,

x(θ, φ) =


sin θ cosφ
sin θ sinφ

cos θ

 , θ ∈ [0, π], φ ∈ [0, 2π).

The unit vectors for the coordinate axes in the θ and φ direction are denoted by eθ and eφ,
respectively. The radial direction is represented by er.

To define the Laplace-Beltrami operator, we need to define the surface gradient on the
sphere. Applied to a scalar field f on S, the surface gradient is given by

∇S f(x) = ∂f

∂θ
eθ + 1

sin θ
∂f

∂φ
eφ.

The Laplace-Beltrami operator is then defined as the surface divergence of the surface
gradient on the sphere,

∆S ≡ divS∇S ,

= 1
sin2θ

∂2

∂φ2 + 1
sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
.

The Dirichlet boundary-value problem which we will be solving in this thesis is posed
in the following way:
Find u ∈ C2(Ω̄) such that

∆S u(x) = 0,

u(x) = g(x), x ∈ Γ.
(2.1)

Since ∆S is an elliptic operator, applying a BIE representation is a natural choice. The PDE
posed on the subdomain of the sphere, Ω, can be reformulated into an integral equation
over the boundary, Γ, which reduces the dimension of the problem from two to one. Once
a numerical scheme is applied, only the boundary needs to be discretized as opposed to the
whole solution domain. Thus the resulting linear system is much smaller. The boundary
integral reformulation also has advantages in cases of complicated geometry. In this thesis
we consider only smooth boundaries, and as long as a parametric representation for the
curve Γ is provided, the solution can be found for any arbitrary, smooth shape.

In addition, discretizing the BIE with the Nyström method, based on the trapezoidal
rule, leads to superalgebraic convergence for smooth data on smooth, closed, and separated
boundaries [1, 43]. Such a linear system is well-conditioned and its solution can be acceler-
ated via the FMM or a fast direct solver. In some cases, as will be discussed in Chapter 3,
the condition number of the linear system can grow if the boundary is not well-separated.
However the condition number will still remain bounded independent of the size of the sys-

7

tem. For the FMM, larger condition numbers often require more iterations for convergence,
while for fast direct solvers, boundaries that are “close-to-touching” often require a large
number of recursive levels in order to keep near field contributions local.

This chapter first summarizes the steps for obtaining the boundary integral formulation
on the surface of the sphere, based on previous work by [20] and [44]. We also follow this by
discussing how the Laplace-Beltrami can be mapped to the stereographic plane, which will
prove useful when comparing our results with previous work. Details of the discretization
are then given, along with the resulting properties of the linear system.

2.1 The Generalized Fundamental Solution on the Sphere

To obtain a boundary integral reformulation of the BVP (2.1), we first need to obtain what
is referred to as the generalized fundamental solution for the Laplace-Beltrami equation on
the sphere. This process is most easily explained through the application of point vortex
motion which we will discuss in detail in Chapter 5. The motion of steady, incompressible
fluid over the entire sphere S generated by a point vortex located at x0 ∈ S is described by
a stream function G(x,x0), x ∈ S. The velocity field of the fluid is given by

v = ∇G× er,

and the vorticity field by

ω = ∇× v = (−∆S G) er = ω(x,x0)er.

The dynamics of the fluid are generated by a delta singularity, κδ(x− x0), in the vorticity
field where κ denotes the circulation induced by the vortex. In addition, since the sphere,
S, is a smooth, oriented surface, Stokes theorem places an additional constraint on the
vorticity field, requiring that it integrates to zero over the spherical surface, i.e.∫

C
v · dr =

∫
S
ω(x,x0)dsx = 0. (2.2)

This property widely cited as the Gauss constraint [12, 52, 16, 13, 20], requires that the
generalized fundamental solution, or stream function, G satisfy

−∆S G(x,x0) = κ

(
δ(x− x0)− 1

4π

)
, x ∈ S. (2.3)

Thus the vorticity field on S given by the right hand side of (2.3) represents a point vortex,
denoted by the delta distribution, moving in a “sea” of uniform vorticity equal to 1

4π . The
constant 1

4π ensures the Gauss constraint is satisfied.

8

The Gauss constraint is analogous to the compatibility condition imposed on Poisson’s
equation over a periodic domain in 2D. For example, in a periodic domain, Ω, a stream
function φ satisfying

−∆φ = ω(x,x0), x ∈ Ω

also results in the same constraint ([23]) after applying the divergence theorem,∫
Ω
ω(x,x0) dx =

∫
Ω

∆φ dx =
∫
∂Ω

∂φ

∂n
dsx = 0.

One possible way of obtaining the generalized fundamental solution which satisfies (2.3),
is to map the surface of the sphere to the stereographic plane, as will be shown in Section
2.3. Under a stereographic projection, the Laplace-Beltrami operator becomes a variable
coefficient elliptic operator in the complex plane [44]. Analogous to the fundamental solution
for Laplace’s equation in 2D, the fundamental solution to this variable coefficient operator
also has a logarithmic singularity in the complex plane [12, 20]. Mapping back to real
coordinates gives

G(x,x0) = − 1
2π log ||x− x0||+

1
4π log 2. (2.4)

On the sphere, this logarithmic singularity depends on the Euclidean, or chord distance
between x and x0, denoted by ||x − x0|| [16, 20]. As a result the generalized fundamental
solution has the same form as in the plane, allowing many integral equation methods used
in 2D to be extended to the sphere, as will be discussed throughout the thesis. However this
is generally not as straightforward for other closed surfaces. Further details can be found
in [16, 5].

2.2 Boundary Integral Equation Formulation

There are several possible methods for reformulating the Laplace-Beltrami PDE (2.1) as
an integral equation. We follow [20, 44] and use an indirect approach using a layer ansatz.
To motivate this approach we first look at Green’s representation formula for a harmonic
function on the surface of the sphere, which has the form,

u(x) = 1
4π

∫∫
Ω
u(x′)dS′ −

∫
Γ

(
u∇′SG−G∇′Su

)
· n′ds′. (2.5)

Here, u satisfies ∆S u = 0, and G(x,x′) is taken to be the fundamental solution on the
surface of the sphere (2.4). The normal vector n′, at the point x′ ∈ Γ, is tangent to the
surface, and points out of the domain, Ω (Figure 2.1). Also, the prime notation refers to
differentiation or integration with respect to x′. This formula follows from substituting u

9

and G into Green’s second identity, and taking appropriate limits. The derivation of Green’s
identities on the sphere and the representation formula are proved in [20].

Equation (2.5) shows that the solution to the Laplace-Beltrami equation, u, can be
written as the sum of a single and double layer potential (defined below) and a constant
which comes from the double integral of u over Ω [20]. This extra constant arises as a result
of the Gauss constraint, which follows from the fact that we are working on a closed and
bounded domain.

The single and double layer potentials are defined as follows. For sufficiently smooth
density functions ρ and σ, the single layer has the form

(V ρ)(x) :=
∫

Γ
ρ(x′)G(x,x′)ds′,

and the double layer has the form

(Wσ)(x) := −
∫

Γ
σ(x′)∇′SG(x,x′) · n′ds′

= 1
2π

∫
Γ
σ(x′) ∂

∂n′
log ||x− x′||ds′. (2.6)

Either the single or double layer potential can be used to obtain an integral equation.
The double layer potential is advantageous since it automatically satisfies the Laplace-
Beltrami equation. The single layer potential, on the other hand, must satisfy an additional
constraint on the density ρ, before it is a solution to the equation. This extra constraint is
again due to the Gauss constraint on the sphere [20].

In addition, as will be shown below, using the double layer potential leads to a Fredholm
integral equation of the second kind that has a continuous, compact kernel [44]. Second kind
integral equations lead to well conditioned matrices, which have bounded condition numbers
independent of the number of discretization points, N [1]. This means that iterative solvers
perform well on these types of systems, and acceleration strategies like the FMM or fast
direct solvers can be applied to achieve O(N) time complexity.

As a result, the double layer potential is chosen in this case. Since it satisfies the
Laplace-Beltrami equation in Ω, we are left with the boundary condition, u = g(x),x ∈ Γ,
to satisfy in (2.1). For smooth curves, it is shown in [20] that the double layer potential
satisfies the following jump relation,

lim
x→x′
x∈Ω

(Wσ)(x′) = 1
2σ(x) + 1

2π

∫
Γ
σ(x′) ∂

∂n′
log ||x− x′||ds′. (2.7)

Applying the boundary condition for u, we obtain the following integral equation for σ,

1
2σ(x) + 1

2π

∫
Γ
σ(x′) ∂

∂n′
log ||x− x′||ds′ = g(x). (2.8)

10

We note that this BIE has the same form as for the planar problem in 2D. Consequently
much of the theory and numerical techniques from 2D carry over to the sphere.

Since the boundary Γ is smooth, the kernel, K in (2.8) given by

K ≡ ∂

∂n′
log ||x− x′||

is shown to be continuous along Γ in [44] with

lim
x→x′
x∈Γ

∂

∂n′
log ||x− x′|| = 1

2s · (κNp × x).

Here, s is the tangent vector at the point x, κ denotes the curvature at x, and Np denotes
the principal normal.

If σ satisfies (2.8), then u = (Wσ)(x) solves (2.1). Hence, solving (2.8) for σ and
evaluating u = (Wσ)(x), gives the solution to (2.1) throughout Ω.

Equation (2.8) is a Fredholm integral equation of the second kind. Since it has a contin-
uous kernel, it is compact. Furthermore, the null space of (I +K/π)σ = 0 is trivial, so we
can apply the Fredholm Alternative Theorem [1], which states that the integral equation
(2.8) has a unique solution for any integrable boundary data g.

2.3 The Stereographic Projection

The BVP in (2.1) can be equivalently posed in the complex plane by applying a stereographic
projection to the surface of the sphere. Many authors [44, 12, 39, 38, 52] work with the
equation in this form since analogies can be drawn with the 2D planar problem and complex
variable theory can be exploited to find solutions. Although we work almost exclusively in
real Cartesian co-ordinates, we will occasionally refer to the Laplace-Beltrami equation
posed in the stereographic plane, especially when applying past results in this area. We
also plot many of our numerical examples in the stereographic plane since the behaviour
of the solutions over the entire surface can be viewed in a flat plane. In this section we
introduce the stereographic projection, summarizing the details given in [44, 12].

For a point x = (x, y, z) ∈ S, the stereographic projection is given by

ξ = cot
(
θ

2

)
eiφ = x+ iy

1− z , ξ ∈ C. (2.9)

The mapping from the complex plane back to the sphere is given by

x = ξ + ξ̄

1 + |ξ|2
, y = ξ − ξ̄

i(1 + |ξ|2)
, z = 1− |ξ|2

1 + |ξ|2
. (2.10)

11

The stereographic projection maps the north pole, x = (0, 0, 1) to infinity, while the south
pole is mapped to the origin and the equator to the unit circle. For a simply connected
domain Ω, we can assume without loss of generality that the island Ω1 is placed over the
north pole [44]. The domain Ω, is then mapped to a bounded region in the complex plane
denoted by Ω̃. Likewise we denote the stereographic projections of Γ and Ω1 as Γ̃ and Ω̃1,
respectively. An example of a stereographic projection of a simply connected domain is
shown in Figure 2.2.

Applying the stereographic mapping (2.9) to the Laplace-Beltrami operator gives

∆S ≡ (1 + |ξ|2)2 ∂2

∂ξξ̄
= (1 + |ξ|2)2 ∆,

where ∆ is the Laplace operator on the plane. Therefore, harmonic functions in the plane
will satisfy the Laplace-Beltrami equation on the sphere under stereographic projection.
Thus exact solutions in the stereographic plane can be used to generate exact solutions on
the sphere. We use this approach to generate test cases for many of the numerical examples
presented later in this thesis.

The BVP (2.1) can be rewritten as,

−∆S ψ(ξ, ξ0) = 0, ξ ∈ Ω̃

ψ(ξ) = g(x(ξ)) ξ ∈ Γ̃.

Mapping the generalized fundamental solution from the sphere to the complex plane,
gives [58]

G(ξ, ξ0) = − 1
4π log

(
2 (ξ − ξ0)− (ξ̄ − ξ̄0)

(1 + |ξ|2)(1 + |ξ0|2)

)
.

Doing the same for the double layer potential gives [44]

(Wσ)(ξ) = Re
{

1
2πi

∫
Γ̃
σ(ξ′)

[
1

ξ − ξ′
− ξ̄′

1 + |ξ′|2

]
dξ′
}
, ξ ∈ Ω̃,

which leads to the BIE, [44]

1
2σ(ξ) + Re

{
1

2πi

∫
Γ̃
σ(ξ′)

[
1

ξ − ξ′
− ξ̄′

1 + |ξ′|2

]
dξ′
}

= g(x(ξ)), ξ ∈ Γ̃.

Thus taking a BIE approach on the sphere in R3 or in the stereographic plane will give
equivalent solutions.

12

Figure 2.2: The simply connected domain from Figure 2.1 mapped to the stereographic
plane.

2.4 Nyström Method

Returning to the BIE posed in real coordinates on the sphere (2.8), we now examine how
a numerical solution for the Laplace-Beltrami equation can be obtained. The Nyström
Method with the trapezoid rule is used to discretize the integral equation since it gives
super-algebraic convergence for smooth data on smooth, closed, boundaries [1, 43].

Given a parametric description of the boundary, oriented clockwise as in Figure 2.1,

r(t) = (r1(t), r2(t), r3(t)), t ∈ [0, 2π) ,

the curve is discretized into N grid points, equi-spaced in t. The integral in (2.8) is approx-
imated by the trapezoid rule,

σ(t) + h

π

N∑
j=1

K(r(t), rj)σj = 2g(t), t ∈ [0, 2π) , (2.11)

where h = 2π
N , tj = jh, rj = r(tj), and σj = σ(r(tj)). Then σ(t) and g(t) are evaluated at

the node points,

σi + h

π

N∑
j=1

K(ri, rj)σj = 2gi, i = 1, ..., N, (2.12)

13

where

K(ri, rj) =


− (ri−rj)·nj
||ri−rj ||22

dsj i 6= j

1
2si
(
(κNp)i × ri

)
dsi i = j.

Here, ni = n(ti), and the same holds for the remaining vectors. Also,

dsj =
∣∣∣∣drdt

∣∣∣∣
j
.

The normal and principal normal vectors are given by

ni = (si × ri), (κNp)i = 1
dsi

ds

dt

∣∣∣∣
ti

,

where s is arc length.
Equation (2.12) gives a dense linear system for σ = (σ1, σ2, ..., σN)T , of the form(

I + 1
π
K

)
σ = 2g, or Aσ = b, (2.13)

where g = (g1, g2, ..., gN)T . Numerical strategies for solving this system are discussed in the
next chapter.

We note that equation (2.11) provides an interpolation formula to evaluate σ(t) anywhere
along the curve Γ. It is referred to as the Nyström Interpolation Formula [1].

Also, [1] and [43] show that if the true solution is denoted by σ̃, then ||σ̃ − σ||∞ → 0,
as N → ∞ at the same rate as the quadrature scheme chosen. In this case we obtain
super-algebraic convergence with the trapezoid rule, which can be shown using the Euler-
Maclaurin formula [25]. In 2D, when R2 can be associated with the complex plane, a
bounded and analytic function over a closed boundary can be shown to achieve exponential
convergence [2]. This connection with analytic functions cannot be made in 3D, however we
can numerically verify that the trapezoidal rule gives not only super-algebraic convergence,
but exponential convergence in many cases.

Once we have σ, we can use it to find the approximate solution, u(x), to the original
problem (2.1), for any point x ∈ Ω. Typically, the Nyström interpolation formula is not
used, and u is evaluated using the same quadrature rule and grid points as the integral
equation. The approximate solution is given by

u(x) = h

2π

N∑
j=1

K(x, rj)σjdsj , x ∈ Ω. (2.14)

Atkinson [1] shows that the speed of convergence of the approximate solution is also
comparable to the speed of the quadrature rule, as long as x is evaluated away from the

14

boundary. Typically x is chosen to be a distance of 5h from the boundary. This is rigorously
shown for 2D domains in [2], but has not yet been proven in 3D, although it has been verified
empirically. Evaluating u(x) up to the boundary is known as the close evaluation problem
and is studied in [42, 2, 35].

15

Chapter 3

Fast Direct Solvers

The focus in this thesis is on the solution of the linear system (2.13), which arises from
the Nyström discretization of the BIE for the Laplace-Beltrami Equation. Although the
integral equation strategy leads to matrices of smaller dimension than other approaches,
the matrices are dense. For complicated domains that require a very fine grid along the
boundary, solving the system with N unknowns with a standard Gaussian elimination
scheme of O(N3) is prohibitively expensive.

To accelerate the solution of the linear system, we can take an iterative or direct ap-
proach. Iterative approaches such as GMRES, conjugate gradient or Gauss-Seidel, start
with an initial guess and then successively construct a sequence of solutions which converge
to some preset tolerance. For linear systems arising from BIEs for elliptic PDEs, combining
iterative methods with the landmark fast multipole method (FMM) to accelerate matrix
vector products allows systems to be solved in O(N) operations [29, 27]. This approach has
been used for several decades and provides some of the fastest and most accurate solvers
known today [36].

Direct methods on the other hand, like the LU decomposition, produce an exact solution
up to round-off error in a finite number of operations. Up until recently, they have been
considered too computationally expensive to be used in practical applications. However, the
development of fast direct solvers for BIEs from elliptic PDEs has brought attention back
to these types of methods. They achieve O(N) complexity in 2D and present a favourable
alternative to the FMM specifically for problems involving multiple right hand sides, or for
matrices with ill-conditioning arising from the geometry of the problem [50, 21, 36].

Both iterative and direct solvers have been extensively studied in the context of elliptic
PDEs posed in two and three dimensions, but less so for PDEs posed on surfaces. For the
first time in [44], Kropinski and Nigam apply an iterative method to solve the BIE arising
from the Laplace-Beltrami equation on the surface of the sphere, confirming that O(N)
complexity can be achieved with the FMM.

16

Direct solvers, however, have not been applied to PDEs posed on surfaces to date. In
this thesis we use the same integral formulation presented in [44], and develop a fast direct
solver for the Laplace-Beltrami equation on the sphere. This solver is based on the extensive
literature for solvers in 2D and 3D ([50, 21, 36] to name just a few). We outline the specific
changes that need to be made to adapt the solvers to a surface, and we verify that O(N)
complexity can be achieved, just as in the plane.

We first give a brief overview of iterative and direct solvers in the following two sections,
including the advantages and disadvantages of each approach.

Iterative Methods

In the numerical solution of elliptic PDEs, iterative methods are the standard approach for
solving large, sparse, linear systems which arise from finite difference discretizations, and
other similar discretization schemes [45]. With the development of numerical approaches
for solving integral equations, iterative methods have also been adapted to deal with the
dense linear systems arising from this context. To solve a system like (2.13), iterative
methods access matrix elements through matrix-vector products, i.e. (I + K/π)σ. As
mentioned above, they construct a sequence of approximations σ1,σ2, ..., to the solution
which converges to within some preset tolerance. BIE matrices based on a double layer
potential formulation are non-symmetric. Hence GMRES is typically used to solve such a
system, which is a Krylov subspace method [60].

There are two factors affecting the computation time for an iterative solution of a linear
system: The conditioning of the matrix, which influences the number of iterations required
to achieve convergence, and the cost of matrix-vector products.

Typically, the condition number will depend on N . For example, the condition number
for a matrix associated with a finite difference method for a second order PDE is O(N2)
[45]. Therefore, as the grid over the solution domain is refined, the number of iterations
increase. For Fredholm integral equations of the second kind, the condition number remains
bounded independent of N [1]. This means the number of iterations for convergence is fixed.
It is possible that the the condition number can become large when contours are not well-
separated or are "close to touching" [36]. In this case the number of iterations can grow,
increasing the computational cost of the iterative method. However the condition number
and the number of iterations still remain fixed across N .

The cost of each iteration is determined by the cost of matrix-vector products. Direct
matrix vector multiplication requires O(N2) operations. To decrease this, the fast multipole
method (FMM) is used [8, 27, 29]. This method was originally developed to evaluate
potential fields arising from a system of N charged particles. In the context of Laplace’s
equation, each matrix-vector product represents a gravitational or electrostatic potential
arising from a summation over N sources, or charges. When sources and targets are well-
separated, a multipole expansion for the fundamental solution can be applied which allows

17

groups of sources which lie close together to be treated as a single source. By employing
a hierarchal, or recursive strategy on the solution domain, the FMM is able to reduce the
cost of a matrix-vector multiply to O(N). As a result the method has been widely used in
the solution of elliptic boundary value problems. A thorough review is given in [53].

As previously mentioned, Kropinski and Nigam [44] employ an FMM-accelerated iter-
ative strategy to solve the Laplace-Beltrami equation on the surface of the sphere. They
apply a stereographic projection, and map the domain to the complex plane. Here the
kernel has a similar form to the 2D Coulomb potential. They then use GMRES, combined
with the FMM for the 2D electrostatic potential to solve the integral equation, achieving
O(N) complexity.

To solve the problem directly on the sphere in R3, a 3D FMM routine that works for
the generalized fundamental solution to the Laplace-Beltrami equation would need to be
developed. Another option would be to apply a kernel independent FMM [64]. This would
require adapting algorithms from 2D and 3D to the surface of the sphere.

However, these options still present a fundamental drawback to iterative approaches
which is that they are ill-suited for linear systems with multiple right hand sides. Each
new right hand side is treated virtually as a new problem. This is problematic since many
applications require the solution of a linear system with changing right hand sides. This
includes applications which model time dependent processes in fixed geometries [36]. For
example, the motion of a point vortex on the sphere involves repeatedly solving the Laplace-
Beltrami equation for each new vortex position. For these types of applications it becomes
impractical to apply iterative solvers.

Fast Direct Solvers

Fast direct solvers, which have been developed more recently, overcome some of the draw-
backs of iterative solvers. Given some computational tolerance, ε, and a linear system like
(2.13),

Aσ = b, (3.1)

the solvers construct a factorization that approximates A such that

||A−Aε|| < ε. (3.2)

As will be discussed in upcoming sections, Aε is built of multiple factors in which all but
one are block diagonal. The remaining factor forms a compressed (or what is referred to as
a "skeletonized") representation of A [10, 50, 21]. Due to the special form of these factors
Aε is said to be in a "data-sparse" format. This data-sparse factorization can be obtained

18

through a recursive algorithm which is essentially based on repeated applications of pivoted
or rank-revealing QR.

One can solve the system in this factored form,

Aεσ = b,

or construct an operator A−1
ε such that

||A−1 −A−1
ε || < ε. (3.3)

The data-sparse factorization of Aε allows an inverse operator A−1
ε to be efficiently con-

structed, which can then be applied to the right hand side of (3.1) to find an approximate
solution,

σε = A−1
ε b. (3.4)

As will be discussed in Section 3.3, A−1
ε is also in a data-sparse format, which allows it

to be quickly applied to the right hand side. Thus once the matrix A is compressed and
inverted, applying A−1

ε to the right hand side is extremely efficient, making this approach
very suitable for problems with multiple right hand sides. Unlike iterative solvers, this
solution process is also deterministic, in that it always produces a solution in a fixed number
of steps [50, 21, 36].

For general matrices, the data-sparse format is achieved by compressing rank-deficient
submatrices using a matrix factorization algorithm known as the Interpolative Decomposi-
tion (ID) [10]. This factorization is based on rank-revealing or pivoted QR. Depending on
the structure of the system, various gains in computational efficiency can be obtained.

Matrices arising from a Nyström discretization of a BIE, like (2.13), have structured
rank-deficient off-diagonal blocks. Once factored with the ID, these off-diagonal blocks
can be rearranged to expose more rank deficiencies that can be recompressed, leading to a
recursive algorithm. The cost of applying the ID to each off-diagonal block is determined
from the cost of pivoted QR which depends on the rank and dimension of the block being
compressed. Summing up this cost over all recursive levels will give a compression algorithm
with time complexity O(N2). BIE matrices with such structured off-diagonal blocks are
described as hierarchically block separable in the fast direct solver literature [21, 36].

Matrices arising from BIEs such as Laplace’s equation have the added property that they
represent a discretized kernel which comes from a single or double layer potential. Similar to
the FMM, the block low-rank structure can be understood in terms of far field interactions
between groups of sources and targets [36]. This implies that far field interactions can be
approximated by a smaller set of equivalent sources or targets, resulting in off-diagonal
blocks with smaller dimension. This reduces the cost of the QR and the subsequent cost of

19

the ID, allowing the recursive O(N2) algorithm to be accelerated to O(N). For fast direct
solvers, it is the existence of a Green’s theorem associated with the underlying PDE that
enables this approximation of far field interactions to take place [50, 36]. With this added
property, solvers can achieve O(N) complexity, both for obtaining a factorization, as in
(3.2), and for computing the solution, (3.4).

An advantage of direct solvers widely cited in literature is that the solution time of a fast
direct solver is relatively insensitive to geometric ill-conditioning [50, 21, 36]. In the case
where an island is thin and elongated and/or where the boundary is "close-to-touching",
or in the multiply connected case where several islands are close together, the condition
number of the system can increase. With iterative methods, dealing with this issue usually
means finding appropriate pre-conditioners for the system, whereas with direct solvers no
changes need to be made.

As previously mentioned, direct solvers have been developed for elliptic PDEs in 2D
and 3D, however they have not been applied to problems on manifolds to date. This thesis
adapts a 2D fast direct solver to the Laplace-Beltrami equation on surface of the sphere.
We verify that since the boundary remains one-dimensional, and the double layer potential
has the same form as in the plane, the cost of compression and solution remains O(N).

Outline of Chapter

This chapter first summarizes some key ideas necessary to implement fast direct solvers on
the sphere based on several papers from the fast direct solver community [21, 36, 50, 10].
We also draw from slides presented at the 2014 CBMS-NSF Conference on Fast Direct
Solvers for Elliptic PDEs at Dartmouth College [49]. The block low rank structure of the
system (2.13) is described first in Section 3.1. Then in Section 3.2 we introduce the ID and
pivoted QR, which are the main tools which allow the off-diagonal blocks of (2.13) to be
compressed. In Section 3.3 we describe how the ID is applied to the full system matrix (2.13)
for a single level compression, or "skeletonization". The recursive procedure is explained
in the following section, along with the resulting structure of the factorization. Since this
process carries over from 2D onto the sphere with no significant changes, we discuss these
steps directly in terms of the discretized integral equation on the sphere.

We then discuss the acceleration of the recursive procedure by approximating far field
interactions with so called “proxy points.” This process is first examined in detail for the
planar, two dimensional case in Section 3.5 and later extended to the surface of the sphere
in the following section. The ability to extend proxy points to the surface of the sphere is
the main reason why we are still able to achieve O(N) complexity.

Lastly, once the compressed, or data-sparse, representation for the matrix is obtained,
one option is to construct a compressed inverse like (3.3), which is done in [21, 50]. However,
we follow Ho and Greengard [36] instead, and embed the compressed matrix, (3.2) into a
sparse matrix. We then use the sparse solver software, UMFPACK to factor and solve the

20

system. This solution procedure has the same O(N) cost as in 2D. UMFPACK provides
an efficient LU decomposition of the sparse matrix which allows it to be cheaply applied to
the right hand side. This solution process is discussed in Section 3.7.

3.1 Rank-Deficient Structure of System

As mentioned above, a key feature of systems arising from the discretization of elliptic BIEs
is that they have rank-deficient off-diagonal blocks [10, 50, 54]. For the system (2.13) that
we work with, which arises from the Dirichlet Laplace-Beltrami BVP (2.1), this low rank
structure can be understood in terms of interactions between sources and targets along the
boundary, Γ [10, 50, 36].

The matrix K in the system (2.13) corresponds to the discretized double layer potential

K(x,x′)σ(x′) =
∫

Γ
σ(x′) ∂

∂n′
log ||x− x′||ds′, x ∈ Γ.

Kσ then represents the electrostatic potential on Γ due to dipole charges, ∂
∂n′ log ||x −

x′||, distributed over the boundary with some density σ. Examining the potential over an
arbitrary segment of the boundary Γτ , given by

K(x,x′)σ(x′) =
∫

Γ
σ(x′) ∂

∂n′
log ||x− x′||ds′, x ∈ Γτ , (3.5)

we can split the charges along Γ into three parts [49] (Figure 3.1):

Γ = Γself + Γnear + Γfar.

Γself represents the self-interaction charges on Γτ , while Γnear and Γfar represent the near and
far field sources lying on the remainder of the boundary. The sources on Γself and Γnear have
the largest contribution to the potential and cannot readily be reduced or approximated,
while, on the other hand, the far field charges decay [10, 50, 36, 54].

In terms of the matrix structure, the potential on each section of the contour Γτ cor-
responds to a row block of the matrix. Dividing the matrix A = (I + K/π) in (2.13) into
four horizontal blocks for example, and splitting the sources based on the column indices

21

Figure 3.1: Sources on Γ which contribute to the potential on Γτ (3.5) (also denoted by
Γself). Γself represents sources due to self-interaction, while Γnear and Γfar represent the near
and far field respectively.

corresponding to Γself, Γnear and Γfar we obtain [49]

A =
(
A(self) +A(near)

)
+ A(far).

The large contribution of the self interaction and near field terms gives A a diagonally
dominant structure. A(self) is full rank, while A(near) is close to full rank as well. The entries
in A(far) are rank-deficient due to the decay of the far field [36, 50].

Fast direct solvers group the near and far field blocks together, splitting the matrix into
a diagonal and off-diagonal part,

A = A(off) + D.
=


(3.6)

The off-diagonal blocks can be grouped by row indices to form horizontal blocks, or by col-
umn indices to form vertical blocks. Row indices correspond to targets, where the potential
is evaluated, while column indices correspond to sources. Both off-diagonal horizontal and
vertical blocks are rank-deficient and have rapidly decaying singular values. An example of

22

(a)

0 20 40 60 80 100

Ordered Index

10
-20

10
-15

10
-10

10
-5

10
0

S
in

g
u

la
r

V
a

lu
e

s

(b)

Figure 3.2: (b) plots the singular values of the horizontal off-diagonal blocks corresponding
to the matrix (I+K/π) in (2.13). For this example we take a star-shaped boundary (shown
in (a)) and discretize the contour with N = 400 points. The matrix is divided into 4 × 4
blocks as in (3.6). The dimension of each horizontal off-diagonal block is 100 × 300. The
singular values of each block, plotted in (b), decay exponentially in this case. To machine
precision each of the blocks has an approximate numerical rank of 60.

this decay for the horizontal off-diagonal blocks is shown in Figure 3.2. We note that the
same decay can also be seen for the vertical blocks.

3.2 The ID and Rank-Revealing QR

Fast direct solvers exploit the rank-deficiency in BIE matrices by factoring the off-diagonal
blocks of the system with the ID, which can be obtained by using rank-revealing QR. Given
anm×n rank-deficient block B and a tolerance ε, rank-revealing, or pivoted QR determines
the approximate rank k of the matrix and a basis for the column space [60, 4, 15].

In the fast direct solver literature, Modified Gram Schmidt (MGS) is typically used to
compute the pivoted QR [10, 21, 50]. Given the matrix B, after l = min(m,n) steps, the
algorithm will give a matrix Q with orthonormal columns, and upper triangular matrix R
of the form

BP = QR =
[
Q11 Q12

Q21 Q22

]
m×l

[
R11 R12

0 R22

]
l×n

.

Here, P is an n×n permutation matrix, Q11 is k× k, Q12 is k× (l− k), Q21 is (m− k)× k,
and Q22 is (m− k)× (l− k). R11 is k × k, R12 is k × (n− k), and R22 is (l− k)× (n− k).

23

The columns of B are pivoted in such a way that

Q1 =
[
Q11

Q21

]

contains k orthonormal vectors which span the range of the first k linearly independent
columns of BP . If B has exact rank k < l then R22 is exactly zero [60, 4]. If we look at
numerical rank, then ||R22|| < O(ε) [4, 15, 31]. Hence one possible pivoting strategy [4, 15]
is to ensure the diagonal elements of R are non-increasing, i.e.

r11 ≥ r22 ≥ ... ≥ rll ≥ 0.

Given a tolerance, ε, the algorithm terminates at step k, where ||rkk||2 or ||rkk||F < O(ε).
The cost of applying MGS with pivoting is O(kmn) [10, 50]. It depends on the rank, k,

of the block B, and its dimensions, m and n. Applied as-is to the block B, this cost is also
referred to as the brute force cost in the literature [49, 48].

For the ID specifically, it is important to obtain as accurate a decomposition as possible.
For this reason a double reorthogonalization step is also added. More details are provided
in [10, 3, 15].

Using the pivoted QR algorithm, the matrix B can be approximated by

B ≈
[
Q11

Q21

] [
R11 R12

]
P ∗

since R22 ≈ O(ε). Re-grouping the factors then gives the column ID for the matrix [10],

B ≈ Q1R11
SC

[
Ik R11

−1R12
]
P ∗

V ∗

,

≈ SC
m×k

V ∗
k×n

, (3.7)

where SC contains the k linearly independent columns of B which form a basis for the
column space and V ∗ holds the linear combinations of these columns. We also note that
V ∗ contains a k × k identity matrix corresponding to the k columns chosen in SC .

If B has exact rank k, then σk > 0 and σk+1 = σk+2 = ... = σl = 0, where l = min(m,n),
σi denotes the ith singular value of B, and the singular values are arranged in non-increasing
order, σ1 ≥ σ2 ≥ ... ≥ σl. In this case, the factorization (3.7) holds exactly [31].

Computationally, if σk+1 ≈ O(ε) and σk >> σk+1, then B is said to have numerical
rank k and (3.7) holds approximately with error bound [31]

||B − SCV ∗||2 ≤ σk+1(B)
√

1 + nk(n− k). (3.8)

24

The error depends on the (k + 1)st singular value of B. If we write out the SVD of B [60]
we obtain

B = ÛΣV̂ ,

=
r∑
i=1

σi ûi v̂
∗
i . (3.9)

where r denotes the exact rank of the matrix, and ûi and v̂i denote the columns of Û and V̂ .
Choosing a tolerance for the factorization (3.7) then truncates this sum at i = k ≤ r. For
example referring back to Figure 3.2, choosing a tolerance of ε = 10−10 will approximately
retain the first k = 40 terms in the sum (3.9), corresponding to the first 40 singular values
of the off-diagonal blocks of the matrix A.

Pivoted QR can also be applied to the rows of B by factoring B∗:

B∗P̃ ≈ Q̃1
[
R̃11 R̃22

]
.

Re-grouping the factors then gives the row ID for B [10]

P̃ ∗B ≈
[
R̃11 R̃22

]∗
Q̃∗1,

≈ P̃
[
R̃∗11
R̃∗22

]
Q̃∗1,

≈ P̃
[

Ik

R̃∗12(R̃∗11)−1

]
U

[
R̃∗11Q̃∗1

]
SR

,

≈ U
m×k

SR
k×n

.

Here, SR contains the k linearly independent rows of B which form a basis for the row
space, and U contains the linear combinations of SR which form B.

We can also combine the two factorizations together by first applying the column ID to
B,

B ≈ SC
m×k

V ∗
k×n

,

and then applying the row ID to SC ,

SC ≈ U
m×k

S
k×k

.

25

This gives the full ID for B,

B = U
m×k

S
k×k

V ∗
k×n

.

The matrix S is a k× k submatrix of B, which is comprised of k linearly independent rows
and columns, while U and V ∗ both contain k × k identity matrices and have norms close
to 1 [10]. The ID represents each row of B as a linear combination of k selected rows, and
each column of B as a linear combination of k selected columns. As a result the matrix S
is referred to as the compressed representation of B, or its "skeleton" matrix. We can think
of the "action" of B as being represented through the action of its submatrix S [10]. Since
obtaining the ID for the matrix B requires pivoted QR to be applied twice, the cost of the
ID is also O(kmn).

The advantage of this factorization is that S is represented by the intersection of k rows
and columns of B, which we will see allows for a more straightforward physical interpretation
of the ID, especially once it is applied recursively in Section 3.4. Since the matrices U and
V ∗ both contain identity matrices, they can be constructed more efficiently than in other
matrix factorizations such as the SVD [60].

3.3 Single Level Brute Force Compression

To apply the ID to the matrix A in (2.13) arising from the discretization of the Laplace-
Beltrami BIE (2.8), the matrix is first divided into p blocks of size n.

To clearly show how the single level algorithm works, we first work through a specific
example with p = 4, andN = 400 as in (3.6) and Figure 3.2. Let Iτ , and Lτ = {1, ..., pn}\Iτ ,
τ = 1, ..., 4 denote the index vectors for the rows and columns of the τ th off-diagonal row
block. Then the ID can be applied one by one to each off-diagonal block.

If we look at the first horizontal off-diagonal block, A(I1, L1), and apply the row ID, we
obtain

A(I1, L1)
n×3n

≈ U1
n×k

SR1 .
k×3n

26

Here, the colour red is used to denote the row indices, I1, of the block. SR1 contains the k
rows of A(I1, L1) selected by the ID, shown in the matrix on the right. The factorization can
equivalently be interpreted as representing each column of A(I1, L1) as a linear combination
of the columns of U1. This implies that the columns of U1 form a basis for the columns of
the horizontal off-diagonal block.

Likewise, the same procedure can be applied to the second row block, A(I2, L2), which
gives

A(I2, L2)
n×3n

≈ U2
n×k

SR2 .
k×3n

For simplicity we assume that all horizontal and vertical blocks have the same numerical
rank k, although this is not required by the compression algorithm. The ID determines the
rank of each block based on the level of precision assigned.

Continuing through the matrix, we can obtain factorizations for A(I3, L3) and A(I4, L4).
The vertical blocks are then compressed in the same way. Applying the ID to the first

vertical block gives

A(L1, I1)
3n×n

≈ SC1
3n×k

V ∗1 ,
k×n

(3.10)

where we use blue to denote the column indices of the vertical block. SC1 contains the k
columns of A(L1, I1) selected by the ID, which are shown on the right. Also, taking the

27

transpose of (3.10), we have

A∗(L1, I1) ≈ V1S
∗
C1 .

Just as with the row ID, this implies that (3.10) can be equivalently interpreted as repre-
senting each row of the vertical block as a linear combination of the columns of V1.

After applying this procedure to all vertical blocks, we have

A ≈


A11 U1S12V

∗
2 U1S13V

∗
3 U1S14V

∗
4

U2S21V
∗

1 A22 U2S23V
∗

3 U2S24V
∗

4
U3S31V

∗
1 U3S32V

∗
2 A33 U3S34V

∗
4

U4S41V
∗

1 U4S42V
∗

2 U4S43V
∗

3 A44

 .

Note that each matrix Ui is a basis for the columns in the ith off-diagonal row block, and
each matrix Vj is a basis for the rows in the jth off-diagonal column block.

At this point A can be separated into its diagonal and off-diagonal components, which
gives

A ≈ A(off) + D.

≈


0 U1S12V

∗
2 U1S13V

∗
3 U1S14V

∗
4

U2S21V
∗

1 0 U2S23V
∗

3 U2S24V
∗

4
U3S31V

∗
1 U3S32V

∗
2 0 U3S34V

∗
4

U4S41V
∗

1 U4S42V
∗

2 U4S43V
∗

3 0

+


A11

A22

A33

A44


The matrices Ui and Vj can then be factored to give

A ≈


U1

U2

U3

U4




0 S12 S13 S14

S21 0 S23 S24

S31 S32 0 S34

S41 S42 S43 0




V ∗1

V ∗2
V ∗3

V ∗4

 + D

≈ U
4n×4k

S
4k×4k

V ∗
4k×4n

+ D.
4n×4n

(3.11)

We can see that the above factorization for A is comprised of block diagonal factors, and a
smaller, dense skeleton matrix, S.

Cost of Single Level Brute Force Compression and Inversion

The cost of obtaining the factorization (3.11) is determined by summing up the cost of
the ID for each off-diagonal block, which is determined from the cost of pivoted QR. For
general p and n, the cost of applying the ID to one horizontal and vertical off-diagonal block

28

is O(2kn(p−1)n). Since there are p diagonal blocks, this procedure is applied p times, giving
a total approximate cost of O(kp2n2) = O(kN2). Thus compressing A depends on the cost
of the ID/QR which depends on the ranks and dimensions of the off-diagonal blocks.

A matrix which can be decomposed into the compressed factorization (3.11) is called
block-separable [21, 36]. Due to the special form of this factorization, existing formulas for
matrix inversion can be applied. Specifically, a variation of the following classical Sherman-
Morrison-Woodbury formula can be used [21].

Sherman- Morrison-Woodbury Formula
Suppose A is an invertible matrix in the form given in (3.11), and that the matrices, D,
V ∗D−1U , and S + (V ∗D−1U)−1 are also invertible. Then the inverse of A is given by

A−1 = E(S + D̂)−1
F ∗ +G,

where

D̂ = (V ∗D−1U)−1
,

E = D−1UD̂,

F = (D̂V ∗D−1)∗,

G = D−1 −D−1UD̂V ∗D−1.

Since U , V , and D are block diagonal, D̂, E, F and G can be evaluated rapidly. The cost
of then inverting A can be shown to drop from O(p3n3) to O(pn3 + p3k3) [21]. The details
are omitted since we use a different inversion strategy which will be discussed in Section 3.7.
The Sherman-Morrison-Woodbury formula is mentioned here, since our inversion strategy
follows similar principles and has similar costs.

The total cost then for compression, inversion and solution of the system is O(kp2n2 +
pn3+p3k3), which has a small computational gain over O(N3) [21]. To really see a difference,
we need to apply this single level scheme recursively.

3.4 Recursive Brute Force Compression

The key observation that fast direct solvers make is that S in (3.11) is also block separable.
If S is split into larger blocks, then rank deficiencies can be reintroduced into the off-diagonal
blocks which can be recompressed by the same scheme as above.

We illustrate this recursive process by applying it to a specific example, similar to
Section 3.3. This is also based on examples shown by Gillman et al. in [21] and Martinsson,
in [49] for the planar case. To obtain an efficient recursive algorithm, we take the total
number of points, N , which for this example we set to N = 400, and place the index vector

29

(a) Root of tree:
Γ = Γ1

(b) Level 3:
Γ2 ∪ Γ3

(c) Level 2:
Γ4 ∪ Γ5 ∪ Γ6 ∪ Γ7

(d) Level 1:
Γ8 ∪ Γ9 ∪ ... ∪ Γ15

Figure 3.3: Binary tree placed on a star-shaped boundary, Γ. The subscripts correspond to
the index vectors shown in the binary tree (3.12).

I = [1, ..., N] on a binary tree. The number of points, nl on each level, l, is successively
halved, until we reach a desired number of points, n1, on the finest level, l = 1. In this case
n1 = 50. The resulting binary tree is given by,

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15 Level 1

Level 2

Level 3

I1=[1, 2,…, 400]

I2=[1, 2,…, 200], I3=[201, 202,…, 400]

I4=[1, 2,…, 100], I5=[101, 202,…, 200], …

I8=[1, 2,…, 50], I9=[51, 52,…, 100], …
 (finest)

(coarsest)

(3.12)

The finest level on the bottom of the tree is labelled as level l = 1 since this is where the
recursive algorithm begins. The number of leaves on this level represents the initial number
of blocks, p1, in the matrix. At each successive level the number of blocks, p1, is halved
until we reach the coarsest level, l = λ, where pλ = 2. In (3.12), λ = 3.

The binary tree corresponds to successively halving the boundary contour into smaller
and smaller sections (Figure 3.3). In this example, we take the same star-shaped boundary
as in Figure 3.2a.

Level 1

The recursive algorithm begins on the finest level, l = 1, where p1 = 8 and n1 = 50. We
compress the horizontal and vertical off-diagonal blocks just as for single level compression.
The first horizontal off-diagonal block is denoted by A(I8, L8), where the index vectors I8

and L8, now correspond to those shown in the binary tree (3.12). The row ID is then

30

applied, giving

A(I8, L8)
n1×(p1−1)n1

≈ U8
n1×k1

SR8 ,
k1×(p1−1)n1

(3.13)

where SR8 is shown on the left. As with single-level compression we assume that on each
level all horizontal and vertical off-diagonal blocks have the same rank, which is denoted by
k1 on level 1. The accuracy for the ID is set to ε = 10−5 across all levels in this example.

We recall from Section 2.4, equation (2.12), that the matrix A(I8, L8) represents the
discretized kernel,

A(I8, L8) = h

π
K(ri, rj), i ∈ I8, j ∈ L8.

Thus, selecting k1 rows of A(I8, L8), corresponds to evaluating K(ri, rj) at k1 points along
ri. These k1 skeleton points along Γ8, are plotted in red in (3.13). Thus the ID can be
thought of as reducing the number of rows in an off-diagonal block of A, or reducing the
number of points needed to discretize the corresponding section of the boundary, Γ8.

The same steps are applied to the remaining 7 horizontal blocks on level 1. ID com-
pression of each row block identifies k1 skeleton points on Γ9, ..., Γ15. These are shown in
Figure 3.4.

31

(a) Skeleton points for
Γ9.

(b) Skeleton points for
Γ10.

…

(c) Skeleton points for
Γ8, ..., Γ15.

Figure 3.4: Skeleton points on level 1 for the second and third off-diagonal row blocks
corresponding to Γ9 and Γ10 are shown in red. The accuracy of the ID is set to ε = 10−5.
After compressing all off-diagonal row blocks, we obtain (c), which plots the skeleton points
for Γ8, ..., Γ15.

The same procedure can be applied to the p1 = 8 vertical blocks of A to give a new set
of skeleton points on Γ8, ...,Γ15. The ID for the first off-diagonal column block is given by

A(L8, I8)
(p1−1)n1×n1

≈ SC8
(p1−1)n1×k1

V ∗8
k1×n1

,

where SC8 is shown on the left. Selecting k1 columns of A(L8, I8) now corresponds to
evaluating K(ri, rj) at ri using k1 points along rj .

However fast direct solvers typically compress the horizontal and vertical blocks at the
same time [21, 50]. This means that for the τ th horizontal and vertical off-diagonal blocks,

32

the ID is applied to the matrix [
A(Iτ , Lτ) A∗(Lτ , Iτ)

]
n1×2(p1−1)n1

.

In this way the resulting row and column skeletons are the same, with U = V . This
has been noted to produce slightly higher ranks k, but leads to better stability of the
compression and inversion stages [50, 21]. If we apply this approach then we have the same
set of skeleton points for both the rows (ri) and columns (rj).

The resulting factorization for A on this level is

A
8n1×8n1

≈ U (1)
8n1×8k1

S(1)
8k1×8k1

(V (1))∗
8k1×8n1

+ D(1).
8n1×8n1

The white and grey blocks indicate zero and nonzero entries in the matrices respectively.
Examining S(1) we see that it is also a dense matrix which when re-grouped into larger

blocks has rank-deficient off-diagonal blocks. This means that the same single-level com-
pression scheme can now be applied to S(1).

Level 2

On level 2, we set n2 = 2k1, and p2 = 4. We then compress the matrix S(1) exactly
as we would in the single-level compression scheme, except now the entries in the matrix
correspond to the skeleton points selected on level 1 (Figure 3.4). If we let Ĩτ denote the
indices of the skeletonized points from level 1, then the index vectors for the first off-diagonal

33

blocks on level 2 are given by

I4 = Ĩ8 ∪ Ĩ9

L4 = Ĩ10 ∪ ... ∪ Ĩ15.

Applying the row ID to the first horizontal off-diagonal block we obtain

S(1)(I4, L4)
n2×(p2−1)n2

= U4
n2×k2

SR4 .
k2×(p2−1)n2

(3.14)

As mentioned previously, this is done simultaneously with the off-diagonal column S(1)(L4, I4)
to obtain a matching column skeleton. Applying the ID to the remaining off-diagonal blocks
on this level, we obtain the skeleton points shown in Figure 3.5.

(a) Skeleton points for
Γ5.

(b) Skeleton points for
Γ6.

…

(c) Skeleton points for
Γ4, ..., Γ7.

Figure 3.5: Skeleton points on level 2 for the second and third off-diagonal row blocks
corresponding to Γ5 and Γ6 are shown in red. The black points correspond to skeleton
points selected on level 1. After compressing all off-diagonal row blocks we obtain (c),
which plots the skeleton points for Γ4, ..., Γ7.

Once these skeleton points have been obtained, we can write out the factorization for
level 2:

34

S(1)
4n2×4n2

≈ U (2)
4n2×4k2

S(2)
4k2×4k2

(V (2))∗
4k2×4n2

+ D(2)
4n2×4n2

.

Level 3

The recursive algorithm continues until the compressed matrix S(l) on level l = λ is a 2× 2
block matrix. In this example applying one more level of recursion gives a 2 × 2 block
matrix, S(3). On level 3 we set n3 = 2k2 and p3 = 2. Compressing the two horizontal and
vertical off-diagonal blocks gives the skeletons shown in Figure 3.6.

(a) Skeleton points for
Γ2.

(b) Skeleton points for
Γ3.

(c) Skeleton points for
Γ2 and Γ3.

Figure 3.6: Skeleton points on Level 3 for the two off-diagonal row and column blocks
corresponding to Γ2 and Γ3 are shown in red. The final number of skeleton points in (c) is
2k3 = 61

The resulting factorization for S(2) is

S(2)
2n3×2n3

≈ U (3)
2n3×2k3

S(3)
2k3×2k3

(V (3))∗
2k3×2n3

+ D(3)
2n3×2n3

.

Comparing the original contour in Figure 3.2a, with Figure 3.6c, the "skeletonization"
feature of fast direct solvers becomes very evident. Level by level we identify the columns
and rows of A which form a basis for its off-diagonal blocks, to some preset precision. The
resulting factorization then expresses A in terms of linear combinations of these rows and
columns. Starting with N = 400, the recursive compression algorithm reduces the number
of points needed to discretize Γ to 2k3 = 61 on level 3, with a level of precision of ε = 10−5.
We can observe that these skeleton points tend to cluster at the points where Γ is divided

35

on each level (Figure 3.6c). Building the recursive levels back up we obtain the following
factorization for A:

A ≈ U (1) (U (2) (U (3) S(3) (V (3))∗ + D(3)) (V (2))∗ + D(2)) (V (1))∗ + D(1).

(3.15)

We note that all the factors in (3.15), except for S(3), are block diagonal matrices which
can be efficiently built and processed. Thanks to the sparsification of rows and columns
the matrix S(3) has much smaller dimension than A and can be easily inverted. Applying
the Sherman-Morrison-Woodbury formula from Section 3.3 recursively to this telescoping
factorization, also gives a telescoping representation for A−1 [21]. Again, we omit the details
for now and address inversion in more detail in Section 3.7. The advantage of the formula
is that it preserves the nice structure in the telescoping blocks, so A−1 is also represented
in terms of block diagonal factors, and a smaller compressed matrix [21]. This ensures that
A−1 can be cheaply applied to any right hand side.

Cost of Recursive Brute Force Compression and Inversion

The recursive cost of compression is determined from the cost of repeatedly applying the ID
on each level. In [50] Martinsson and Rokhlin give a detailed breakdown of the complexity
analysis showing that the total cost of obtaining the telescoping factorization (3.15) is
O(n1N

2).
When this recursive skeletonization procedure is used as-is, it is referred to as the “brute

force” method. It can be applied to any matrix with structured rank-deficient off-diagonal
blocks. Matrices of this type, which admit a telescoping factorization such as (3.15), are
referred to as hierarchically block separable [21].

Since the O(N2) cost is determined from the cost of repeatedly applying the ID/pivoted
QR, the only way to reduce the overall brute force cost is to reduce the dimension of
the horizontal and vertical off-diagonal blocks being compressed. In order to do this the
solver utilizes the physical interpretation of the ID and its connection with the double layer
potential of the Laplace-Beltrami operator. More generally, direct solvers relate the ID with
the underlying potential in a BIE operator, which is associated with Green’s theorems for
the underlying PDE [36, 50, 21].

We also note that for the recursive procedure the cost of inverting the telescoping fac-
torization (3.15) drops to O(N) [50]. Thus once the compression stage is accelerated to
O(N) the overall cost of the solving the system will drop to O(N) overall.

36

3.5 Accelerating Compression: Proxy Points in 2D

The main factor driving the time complexity of the brute force method is the large dimension
of the off-diagonal blocks that need to be compressed with pivoted QR on each level (blocks
(3.13), and (3.14) for example). Taking level 1 as an example, if the matrix A is decomposed
into p × p blocks of size n, then A(Iτ , Lτ) has dimension n × (p − 1)n (the subscripts on
p and n are dropped for clarity). This gives a cost of O(kn2(p− 1)) for the ID. To reduce
the cost of compressing such a block, we want to reduce its dimension without changing its
range.

For Laplace’s equation, fast direct solvers accelerate the brute force method in 2D and 3D
by exploiting the fact that the system matrix associated with a discretized BIE corresponds
to evaluating a potential field. The rank-deficient off-diagonal blocks can then be interpreted
as representing far field interactions between clusters of points. This implies that charges
lying in the far field can be approximated with a smaller set of points.

For the Laplace-Beltrami equation, we recall from Section 2.2 that the BIE is given by
(2.8), which is derived from the double layer potential on the sphere (2.6). We recall from
Section 2.3 that after applying the stereographic mapping (2.9), (2.8) can be equivalently
represented in the stereographic ξ plane by

1
2σ(ξ) + Re

{
1

2πi

∫
Γ̃
σ(ξ′)

[
1

ξ − ξ′
− ξ̄′

1 + |ξ′|2

]
dξ′
}

= g(x(ξ)). (3.16)

We note that the first term in the kernel (3.16) is the double layer potential for Laplace’s
equation in the plane. The single-layer potential in the stereographic plane also has a similar
form to the one in the 2D plane, except that the density has to satisfy an extra constraint,
as discussed in Section 2.2.

Due to the similarity between the kernels in the stereographic and 2D plane, we first
examine the acceleration scheme for Laplace’s equation in 2D. The scheme is extended to
the sphere in the next section, and later the brute force example from Section 3.4 is repeated
with proxy points to show how the acceleration scheme works in practice.

3.5.1 Relationship to Potential Theory

For simplicity we follow previous work in [50, 21, 36] and start by explaining the acceleration
process for a matrix associated with the discretized single-layer potential. The τ th horizontal
off-diagonal block is then associated with the operator,

K(x,x′)σ(x′) =
∫

Γcτ
σ(x′) log |x− x′|ds′, x ∈ Γτ , (3.17)

where the boundary Γ is divided into two parts: Γτ and Γcτ , corresponding to Iτ and Lτ

(Figure 3.7).

37

Γ
τ

Γ
τ

c

Figure 3.7: An example of a boundary contour corresponding to equation (3.17). Γ is
divided into two parts: Γτ and Γcτ .

Physically, log |x − x′| represents the potential at x due to a point source located at
x′. The integral (3.17) then represents the potential on Γτ due to a continuous charge
distribution on Γcτ with charge density σ(x′).

Γcτ can be further broken down into two sections: Γnear and Γfar, representing sources
in the near and far field respectively. Thus K(x,x′)σ(x′) can be written as,

K(x,x′)σ(x′) =
∫

Γnear
σ(x′) log |x− x′|ds′ +

∫
Γfar

σ(x′) log |x− x′|ds′, x ∈ Γτ .

Similar to the FMM, the contributions of distant sources on Γfar decay rapidly. As a result
they can be approximated by a smaller set of sources which lie on a new "artificial" contour
Γproxy, shown in Figure 3.8.

Γ
τΓ

near

Γ
proxy

Γ
far

Figure 3.8: Sources on Γcτ divided into two sets: Γnear and Γfar. The new artificial contour,
denoted by Γproxy, contains an equivalent density distribution representing the far field
contributions.

More specifically, the charges on Γfar induce a harmonic field inside Γproxy (Figure 3.9).
The potential on Γτ , given by∫

Γfar
σ(x′) log |x− x′|ds′, x ∈ Γτ ,

38

Γ
τ

Γ
proxy

Γ
far

Figure 3.9: Sources on Γfar which induce a harmonic potential inside Γproxy.

is then harmonic and smooth inside Γproxy. Thus it can be equivalently represented by a
charge distribution on Γproxy,∫

Γproxy
σ̃(x′) log |x− x′|ds′ =

∫
Γfar

σ(x′) log |x− x′|ds′, x ∈ Γτ . (3.18)

In the literature, the size of Γproxy is determined by first surrounding Γτ by a circle of
radius r. The radius of the proxy circle is then taken to be 1.5 times larger, r(proxy) = 1.5r.
Correspondingly, Γnear and Γfar are the sections of Γcτ which lie inside and outside Γproxy.

Similar steps can be applied to the vertical off-diagonal blocks. The τ th vertical block
is associated with the discretized operator

K(x,x′)σ(x′) =
∫

Γτ
σ(x′) log |x− x′|ds′, x ∈ Γcτ . (3.19)

(3.19) now represents the potential on Γcτ due to sources on Γτ . We can think of this in
terms of the exterior problem, where sources on Γτ generate a harmonic field outside of
Γproxy. Ho and Greengard [36] note that if the sources correctly evaluate the potential on
Γproxy, then they can also reproduce the potential on Γfar.

3.5.2 Implementation

Since we are dealing with the discretized form of these equations we only need to capture
the charge distribution on Γproxy to finite precision. In addition, since the contributions
from the charges in the far field decay, Γproxy can be represented by a discrete set of points,
and in particular we can use a constant number of points, J , across all levels.

For this section, let the matrix A denote the discretized matrix associated with the
single layer potential, and let AHproxy denote the discretized sources on Γproxy generating a
potential on Γτ (3.18), given by

AHproxy ≡ log |xi − x′j |, xi ∈ Γτ , x′j ∈ Γproxy,

39

where i ∈ Iτ and j ∈ {1, ..., J}. Consequently, instead of compressing the full n× (p− 1)n
horizontal off-diagonal block

A(Iτ , Lτ) = = , (3.20)

we now compress [
A(Iτ , L(near)

τ) AHproxy

]
n×(n(near)+J)

= = UτStemp, (3.21)

where n(near) denotes the number of points on Γnear and n(near) + J << (p− 1)n. In (3.20),
the colour red is used to denote row indices, or targets, while black and grey are used to
denote the column indices corresponding to sources in the near and far field. The proxy
sources approximating the far field are shown in green in (3.21). The ID of the reduced
block (3.21) given by UτStemp, provides the indices of the k rows of the reduced block which
form a basis for the row space, and the linear combinations of these rows. This information
can then be applied to the original off-diagonal block A(Iτ , Lτ) to give

A(Iτ , Lτ)
n×(p−1)n

≈ Uτ
n×k

SRτ .
k×(p−1)n

where SRτ contains the k rows of A(Iτ , Lτ) which form a basis for the row space, corre-
sponding to the indices determined from the ID of the reduced block (3.21).

The compression of vertical blocks works the same way. If we define

AVproxy = log |xi − x′j |, xi ∈ Γproxy, yj ∈ Γτ ,

40

then each vertical off-diagonal block

A(Lτ , Iτ) = = , (3.22)

can be compressed by applying the ID to the reduced block

[
A(L(near)

τ , Iτ)
AVproxy

]
(n(near)+J)×n

= = StempV
∗
τ . (3.23)

In (3.22) blue is used to denote the column indices, or sources, of the vertical block, while
black and grey denote the targets in the near and far field. The new proxy targets are
shown in green in (3.23). Again, we can take the information from (3.23) to obtain

A(Lτ , Iτ)
(p−1)n×n

≈ SCτ
(p−1)n×k

V ∗τ .
k×n

We note that, just as with the brute force algorithm, the row and column blocks can be
compressed at the same time, so that U = V .

The role of proxy points in the above compressions is to accelerate the process of iden-
tifying the k skeleton points which lie on the original boundary Γ, denoting either source or
target locations. As such, the reduced off-diagonal blocks, and the matrices Stemp, are only
constructed temporarily. The final skeleton matrices SRτ and SCτ are built by evaluating
the original kernel at the k skeleton locations selected from the ID of the reduced blocks.

41

The size of Γproxy and its distance from Γτ is determined more or less heuristically.
Setting r(proxy) < 1.5r implies there are fewer points in the near field, and a larger far field
is being approximated. In order to maintain the desired level of accuracy, the number of
points on Γproxy would then need to be increased. Setting r(proxy) > 1.5r leads to a larger
near field, which means that less of the far field is being approximated, leading to better
accuracy. However, a larger near field also means less computational savings.

The number of proxy points needed on Γproxy is determined from the desired accuracy.
Typically the number of proxy points used on each level of the recursive skeletonization is
fixed. Using J = 50 has been observed to give an accuracy on the order of 10−10 [21].

The discussion of proxy points for the single layer potential can analogously be extended
to the double layer potential in 2D, which is the closer analogy to the problem we are solving
on the sphere.

A Note About Complexity:

We recall that the cost of applying the ID to an arbitrary block is O(kn(p − 1)n). Thus
the time complexity depends on two factors: the rank of the block and its dimension.
Proxy points reduce the cost of the ID by reducing the dimension of an off-diagonal block.
The rank of an off-diagonal block is determined from the rank of interaction between Γτ
and Γcτ . Ho and Greengard [36] and Martinsson and Rokhlin [50] explain that for many
BIE matrices, especially those arising from Laplace’s equation, the rank kl on each level l
depends logarithmically on the number of points in each block, i.e. kl ≈ log(nl). Combining
this observation with the reduced block size, and summing over all levels then results in
O(N) complexity, for compression, inversion and solution of the system. Details are given
in [36, 50].

A Note About Accuracy:

Although an error estimate is available for the ID, (3.8), tracking how the error accumulates
over the single level and recursive compression schemes is difficult. Furthermore, if

||A−Aε|| < O(ε), (3.24)

it is not necessarily the case that

||A−1 −A−1
ε || < O(ε).

Also, the error ε in (3.24) does not necessarily match the accuracy set for the ID. How-
ever, in practice we can empirically observe that the growth of errors across levels is mild.
Often the tolerance level set for the ID matches the resulting order of accuracy in Aε. If
A is well-conditioned, ||A−1 − A−1

ε || should also have the same order of accuracy as the

42

compressed matrix. In [36], Ho and Greengard give some basic error estimates confirming
these statements. Gillman et al. also use a method involving power iteration to estimate
the error a posteriori [21].

3.6 Proxy Points on the Sphere

The main reason why proxy points can be applied to solve Laplace’s equation in 2D is
that a harmonic function can be represented as a single or double layer potential in which
sources only need to be placed along the boundary of the domain. For a simply connected
domain on the sphere, [20] shows that a smooth solution u ∈ Ω satisfying the Dirichlet
Laplace-Beltrami equation (2.1) can only be represented as a single layer potential,

u(x) =
∫

Γ
ρ(x′)

(
− 1

2π log ||x− x′||+ 1
4π log 2

)
ds′,

if the density satisfies the constraint ∫
Γ
ρ(x′)ds′ = 0. (3.25)

This constraint is a result of the Gauss constraint discussed in Chapter 2. Consequently
proxy points cannot be applied in a straightforward way, since any reconfiguration of sources
must satisfy (3.25).

The double layer potential, on the other hand, does satisfy the Laplace-Beltrami equa-
tion without any further constraints, so the solution u is given by

u(x) = 1
2π

∫
Γ
σ(x′) ∂

∂n′
log ||x− x′||ds′, x ∈ Ω. (3.26)

This implies that the double layer potential on the sphere satisfies the conditions to apply
proxy points. Since it has the same physical interpretation on the sphere as in 2D, the same
arguments for the implementation of proxy points carry over from Section 3.5.

However, the topology of the sphere does affect how proxy circles are constructed. We
first need to define a distance measure between two points on the sphere. Since points on
the sphere lie in R3, we can either use 3D Euclidean distance or geodesic distance. We
opt for Euclidean distance for a couple of reasons. First, the double layer potential (3.26)
is posed in terms of Euclidean distance, which implies that distances between sources and
targets are measured the same way. Secondly, the construction of proxy circles for the direct
solver only needs to be approximate. As long as the points in the near field are captured
accurately, the arrangement of proxy points for the far field is flexible.

Just as in 2D, the τ th horizontal off-diagonal block of the Laplace-Beltrami BIE matrix
(2.13), corresponds to evaluating the potential on a segment of the boundary, Γτ . To define
a proxy circle surrounding Γτ , we proceed in the following way. Let xi, i = 1, ..., n, denote

43

the points lying on Γτ . As in 2D, we want to surround these points by a circle of radius r.
On the sphere, this translates to defining a spherical cap which contains all of the points
xi ∈ Γτ . We first define an approximate centre, xc of the points xi, by either taking the
midpoint of the endpoints, or the centre of mass of the points, i.e.

xc = x1 + xn
2 , or xc = 1

n

n∑
i=1

xi.

Then xc is projected onto the sphere. Specifically, we convert xc into spherical coordinates,
and set the radial component equal to 1.

We then measure the Euclidean distance between xc and each xi, and define d by the
max distance,

d = max
i=1,...,n

||xc − xi||2.

This distance allows us to define a corresponding spherical cap with radius r which surrounds
Γτ and is oriented with xc as the north pole (Figure 3.10). Given the distance d and the
height between the furthest point xi and xc, r is given by

r =
√
d2 − h2.

The equation for the boundary of the cap surrounding Γτ is then

(r cos t, r sin t,
√

1− r2) or, (sin θc cos t, sin θc sin t, cos θc),

where θc denotes the angle of elevation in spherical coordinates of the cap.

d

r
! 1.5d

h

xc

Γproxy
r(proxy)
!

Figure 3.10: The process of constructing a proxy circle. First a spherical cap surrounding
Γτ (not shown here) is defined, and then a second cap is constructed which is 1.5d away
from xc in Euclidean distance. The second cap represents Γproxy.

44

The corresponding proxy circle, Γproxy, is constructed by ensuring that it is a distance
of 1.5d away from xc. In other words, if we let x′j , j = 1, .., J denote the points on Γproxy,
then

||xc − x′j ||2 = 1.5d, j = 1, .., J.

Any point on the sphere outside the proxy circle is then defined to lie on Γfar. Given xc and
the distance 1.5d, we can define a spherical cap for the proxy circle, by specifying its angle
of elevation θc. Without loss of generality we assume xc = (0, 0, 1). Given xc and a point
on Γproxy, x′j = (sin θc cosφ, sin θc sinφ, cos θc), the distance between them needs to satisfy

(1.5d)2 = sin2 θc(cos2 φ+ sin2 φ) + (1− cos θc)2.

Solving for θc gives

θc = arccos
(

1− (1.5d)2

2

)
.

Once the proxy circle is constructed, points are classified as lying in the near or far field
depending if they lie above or below the cap.

A complication arises if 1.5d exceeds the maximum possible Euclidean distance between
two points on the sphere, which is 2. This leads to separating the construction of proxy
points into two cases:

• Case 1: 1.5d < 2
If the distance between Γproxy and xc does not exceed 2, then everything proceeds
normally. Once the near and far field points are classified, the compression of the
system matrix proceeds just as in 2D. Some examples are shown in Figure 3.11.

(a) Case 1 on finer level (b) Case 1 on coarser level

Figure 3.11: Case 1: An example of proxy circles on the sphere where 1.5d < 2.

• Case 2: 1.5d ≥ 2
This case typically occurs on coarser levels when Γτ is larger. In this instance, no

45

Figure 3.12: Case 2: An example of skeletonized points on the coarsest level of the algorithm.
Since 1.5d ≥ 2, no proxy circle is created.

proxy circle is constructed, since the size of 1.5d indicates that the entire near field
would need to be considered, and thus using a proxy circle would not provide any
computational savings. Since this occurs on the coarser levels of the algorithm, Γ
is already quite sparse due to skeletonization, and so this step does not add to the
computational cost. An example is shown in Figure 3.12.

In Chapter 4 we verify numerically that the recursive algorithm with proxy points on
the sphere leads to the same O(N) time complexity and similar accuracy as in the plane.

Example

We now refer back to the example shown in Section 3.4 for the brute force method. We
repeat several steps to show how proxy points work in practice on the sphere. Again,
the matrix A represents the system matrix in (2.13) corresponding to the the discretized
Laplace-Beltrami BIE (2.8).

Just as in Section 3.4, A is divided into p1 = 8 × 8 blocks, of size n1 = 50, and we
compress the matrix level by level based on the same binary tree (3.12) used for the brute
force method.

The relative precision of the ID is still set to ε = 10−5 and the number of points on each
proxy circle is set to J = 50.

Level 1

We begin by compressing the first horizontal off-diagonal block, A(I8, L8), shown in (3.13).
To reduce its dimension we take Γ8, surround it with a proxy circle, Γproxy, and divide Γc8
into 2 parts: Γfar and Γnear. Each of these segments is shown in Figure 3.13. The index
vector L8 is similarly split into L8 = L

(near)
8 ∪ L(far)

8 .

46

A(I8, L
(far)
8) is then discarded from the off-diagonal horizontal block and replaced with

the value of the discretized kernel along Γproxy, defined as,

AHproxy = K(ri,x′j) = −
(ri − x′j)
||ri − x′j ||

2
2

· njdsj ,
ri ∈ Γ8, x′j ∈ Γproxy

i ∈ I8 j ∈ {1, ..., 50}.

Here, nj denotes the outward normal vector to the proxy circle.
We then construct the reduced horizontal off-diagonal block,

HB8 =
[
A(I8, L

(near)
8) AHproxy

]
n1×(n(near)+J)

.

At the same time, we build the reduced vertical block:

AVproxy = K(xi, r′j) = −
(xi − r′j)
||xi − r′j ||

2
2

· njdsj ,
xi ∈ Γproxy, r′j ∈ Γ8

i ∈ {1, ..., 50}, j ∈ I8,

V B8 =
[
A(L(near)

8 , I8)
AVproxy

]
.

(n(near)+J)×n(near)

These reduced horizontal and vertical blocks are then compressed with the ID giving[
HB8 V B∗8

]
n1×2(n(near)+J)

= U8
n1×k1

Stemp.
k1×2(n(near)+J)

As noted in Section 3.5.2, Stemp is not explicitly constructed. The indices of the k1 skeleton
points on Γ8 (shown in Figure 3.13), denoted by Ĩ8, are used to select k1 rows and columns
of the original horizontal and vertical off-diagonal blocks.

Figure 3.13: Skeleton points on Γ8 selected by the ID. The proxy circle, plotted in green,
divides Γc8 into Γnear and Γfar, which are plotted in black and grey respectively. The k1
skeleton points represent sources which induce a harmonic potential on Γproxy, or targets
where the potential is evaluated due to sources on Γproxy.

47

The factorizations for the original off-diagonal blocks are then given by

A(I8, L8) ≈ U8A(Ĩ8, L8),

A(L8, I8) ≈ A(L8, Ĩ8)U∗8 = A(L8, Ĩ8)V ∗8 ,

where we assume Ĩ8 takes into account the appropriate permutations applied to the rows
and columns during the ID. The same procedure is carried out for the remaining 7 blocks
on level 1. The resulting skeleton on Γ is shown in Figure 3.14.

Figure 3.14: Skeleton points selected by the ID after one level of compression.

A is then factored just as in the brute force method to give

A
8n1×8n1

≈ U (1)
8n1×8k1

S(1)
8k1×8k1

(V (1))∗
8k1×8n1

+ D(1)
8n1×8n1

. (3.27)

S(1) is comprised of the 8k1 rows and columns of the matrix A, corresponding to the indices
of the skeleton points in Figure 3.14.

Level 2

Next, we set p2 = 4, n2 = 2k1, and compress S(1) from (3.27). The index vectors I4, L4,
for the first off-diagonal blocks are given by

I4 = Ĩ8 ∪ Ĩ9

L4 = Ĩ10,∪... ∪ Ĩ15.

The first horizontal off-diagonal block is then denoted as S(1)(I4, L4), just as in (3.14). The
same compression steps from level 1 are then repeated. A proxy circle Γproxy is constructed
around Γ4 and the remaining points are split into Γnear and Γfar (Figure 3.15). The reduced
horizontal and vertical blocks are then built:

SHproxy = K(ri,x′j),
ri ∈ Γ4, x′j ∈ Γproxy

i ∈ I4 j ∈ {1, ..., 50},

48

SVproxy = K(xi, r′j),
xi ∈ Γproxy, r′j ∈ Γ4

i ∈ {1, ..., 50} j ∈ I4,

HB4 =
[
S(1)(I4, L

(near)
4) SHproxy

]
V B4 =

[
S(1)(L(near)

4 , I4)
SVproxy

]
.

Applying the ID gives[
HB4 V B∗4

]
n2×2(n(near)+J)

= U4
n2×k2

Stemp.
k2×2(n(near)+J)

The k2 skeleton points selected are shown in Figure 3.15.

Figure 3.15: Skeleton points on Γ4 selected by the ID. The proxy circle now surrounds
skeletonized sources or targets from level 1.

The factorizations for the first off-diagonal blocks are then

S(1)(I4, L4) ≈ U4S
(1)(Ĩ4, L4),

S(1)(L4, I4) ≈ S(1)(L4, Ĩ4)U∗4 = S(1)(L4, Ĩ4)V ∗4 .

Carrying out this same procedure on the remaining blocks we obtain the skeleton in Figure
3.16. The resulting factorization for S(1), just as in Section 3.4, is given by

S(1)
4n2×4n2

≈ U (2)
4n2×4k2

S(2)
4k2×4k2

(V (2))∗
4k2×4n2

+ D(2)
4n2×4n2

.

Again, S(2) is comprised of the 4k2 rows and columns of S(1) corresponding to the skeleton
points in Figure 3.16.

49

Figure 3.16: Skeleton points selected by the ID after two levels of compression.

Level 3

On level 3 we have p3 = 2, and n3 = 2k2. The indices of the first off-diagonal blocks are

I2 = Ĩ4 ∪ Ĩ5, L2 = Ĩ6 ∪ Ĩ7.

Γproxy is then constructed around Γ2 (Figure 3.17). On this coarsest level we see that due
to the size of Γ2, the proxy circle surrounds the entire contour Γ = Γ2 ∪ Γ3. Hence all of
Γc2 is included in the near field. This is common on coarser recursive levels for problems in
2D as well. However, the number of points on Γc2 is sparse from skeletonization on previous
levels, so this does not have any noticeable effect on computation time or accuracy.

Figure 3.17: Skeleton points on Γ2 selected by the ID. The proxy circle surrounds skele-
tonized sources or targets from level 2. In this case, the entire section Γc2 is considered in
the near field.

The remainder of the algorithm proceeds normally. The reduced horizontal and vertical
blocks are built

HB2 =
[
S(1)(I2, L

(near)
2) SHproxy

]
V B2 =

[
S(1)(L(near)

2 , I2)
SVproxy

]
,

50

and after compressing
[
HB2 V B∗2

]
, the corresponding skeleton points are shown in

Figure 3.17. The same steps are applied to obtain and compress
[
HB3 V B∗3

]
. The

resulting skeleton for Γ2∪Γ3 is plotted in Figure 3.18. Beginning with N = 400, the number

Figure 3.18: Skeleton points selected by the ID after three levels of compression

of skeleton points on Γ after three levels of compression is 2k3 = 75, which is slightly higher
than the 61 selected by the brute force method. Even though we obtain slightly higher
ranks than the brute force approach, the reduced time complexity far outweighs the small
growth in ranks.

Subsequently, the resulting factorization is

S(2)
2n3×2n3

≈ U (3)
2n3×2k3

S(3)
2k3×2k3

(V (3))∗
2k3×2n3

+ D(3)
2n3×2n3

.

Once the coarsest level is reached (i.e. level 3), the factorizations are built back up to
give the same final telescoping factorization as in Section 3.4

A ≈ U (1)
(
U (2)

(
U (3)S(3)(V (3))∗ +D(3)

)
(V (2))∗ +D(2)

)
(V (1))∗ +D(1). (3.28)

Thus using proxy points gives virtually identical skeletons and factorizations as the brute
force method, but now the cost of compression (and inversion) is reduced to O(N).

3.7 Solution with UMFPACK

The final component of the fast direct solver is the inversion of the compressed matrix.
In Sections 3.3 and 3.4 we mentioned briefly that since the telescoping factorization pro-
vided by the recursive compression algorithm results in block diagonal factors, a variation
of the Sherman-Morrison Woodbury formula can be applied. It also gives a telescoping
factorization for A−1 that can be quickly applied to any right hand side.

This is the standard approach taken in the literature on fast direct solvers [21, 50]. Ho
and Greengard refer to this algorithm as the "hand-rolled" Gaussian elimination approach
[36]. The inversion process has O(N) complexity when performed recursively, however

51

it can be numerically unstable without some method of pivoting. Consequently, Ho and
Greengard embed the compressed representation (3.28) into a sparse matrix and then use
state of the art software to factor and solve the system. Specifically, they use the sparse
solver software UMFPACK [14].

The telescoping factorization (3.28) is embedded in the following matrix structure


D(1) U (1)

(V (1))∗ −I
−I D(2) U (2)

(V (2))∗
. . . D(λ) U (λ)

(V (λ))∗ −I
−I S





x
y(1)

z(1)

...

...
y(λ)

z(λ)


=



b
0
0
...
...
0
0


which we label as Ãx̃ = b̃. The superscripts denote the number of recursive levels in
the compression, with 1 being the finest level, and λ being the coarsest. For each level l,
z(l) = (V (l))∗x and y(l) = S(l)z(l).

Once we have this sparse representation we then factor using UMFPACK’s LU decom-
position,

P (R−1Ã)Q = LU.

Here the matrix R represents a diagonal row-scaling matrix, P and Q represent permutation
matrices, and U, L represent upper and lower triangular matrices. Row scaling is included
since it can lead to a more accurate factorization.

The system is then solved by applying the factors to the right hand side,

x̃ = Q(U−1(L−1(P (R−1b̃)))).

Since UMFPACK is highly optimized, we can expect it to perform at least as well as
the O(N) hand rolled Gaussian elimination scheme. Hence both the LU and solve stages
can be expected to have O(N) complexity. We also confirm this numerically in the next
chapter. Once the compression and LU factorization are completed, the time to apply the
factors to the right hand side is significantly faster.

We also note that UMFPACK is built into MATLAB, and is used automatically for
sparse, nonsymmetric matrices.

52

Chapter 4

Numerical Results

We now investigate the performance of a fast direct solver for the Laplace-Beltrami equation
on the sphere, based on the recursive algorithms presented in the previous chapter. The
direct solver is tested on several representative examples in which we solve the Laplace-
Beltrami equation for various types of boundaries where the analytical solution is known.
Accuracy and time complexity are studied for both the brute force and proxy point schemes.
In particular we look at how the level of precision set for the ID influences the final error of
the recursive algorithm. We also confirm that the proxy point scheme achieves O(N) time
complexity for any smooth boundary discretized with N points.

First, the brute force method is compared to the proxy point acceleration scheme, both
in terms of error and time complexity, for several types of boundaries. We also compare
the final row and column skeletons given by both methods.

We then investigate the O(N) proxy point approach more closely, comparing the con-
dition numbers and skeleton dimensions for a select number of matrix sizes. This is done
to examine the effect of changing geometry on the performance of the direct solver.

The numerical examples are implemented in MATLAB and run on a desktop computer
with 2.8 GHz Intel i7 processor and 8 GB of ram. The code for the fast direct solver on the
sphere is adapted from a 2D code provided at the 2014 CBMS Fast Direct Solver Workshop
at Dartmouth College [48]. Since this thesis presents an initial investigation of fast direct
solvers on the sphere, both the 2D code and the one adapted to the sphere are not optimized.
In particular more efficient versions of the ID would need to be implemented in the future.
Currently, MATLAB does not have a QR decomposition implemented with Modified Gram
Schmidt. As such, implementing one by hand is slower than using MATLAB’s built in
QR which gives a full factorization instead of a reduced one based on rank. A better
method for building the binary tree for the recursive levels could also be implemented,
including improved storage of off-diagonal blocks across recursive levels. Fortran is used
in the vast majority of direct solver literature, however Gillman et al. [21] implement the
compression stage of a 2D solver with an unoptimized MATLAB code as well. They state

53

that since the compression stage is somewhat specific to the particular elliptic PDE being
solved, implementing the compression with unoptimized code is representative of the typical
timings that would be found in practice.

4.1 The Brute Force Vs. Proxy Point Method

Example 4.1

We begin by confirming the accuracy and time complexity of the recursive brute force and
proxy point approaches. We solve the Dirichlet Laplace-Beltrami equation (2.1) with three
different smooth contours: an ellipse, Γ1, and two differently shaped stars, Γ2 and Γ3, shown
in Figure 4.1. The parametric equation for each contour is given by

r(t) = (r1(t), r2(t), r3(t)),

where

Γ1 : r1(t) = 0.8 cos t, r2(t) = 0.4 sin t r3(t) =
√

1− r2
1(t)− r2

2(t)
Γ2 & Γ3 : r1(t) = R(t) cos t, r2(t) = R(t) sin t, r3(t) =

√
1−R2(t)

with R(t) = c(1 + a cosωt).

For Γ2, R(t) = 0.6(1 + 0.3 cos 5t) giving a star with ω = 5 "arms", and for Γ3, R(t) =
0.6(1 + 0.5 cos 10t), giving a star with ω = 10 arms.

Figure 4.1: Three boundary contours chosen to test the brute force and proxy point meth-
ods.

The boundary conditions on these contours are generated from an exact solution for the
Laplace-Beltrami equation in the stereographic plane, stated in Section 2.3. The solution
is given by

u(ξ, ξ̄) = 1
2 Re 1

ξ − ξ0
,

54

where ξ0 is outside of the solution domain Ω̃, on the island Ω̃1 (Figures 2.1 and 2.2). Mapped
back to real coordinates using (2.10), the boundary values are given by

u(x) = 1
2 Re 1

x+ iy

1− z −
x0 + iy0
1− z0

, x ∈ Γ. (4.1)

After discretizing the BIE from Section 2.2 with the Nyström method, we solve the
system (2.13) for the unknown density σ, with the fast direct solver. The accuracy of the
ID for all numerical results is set to ε = 10−10. The error is obtained by using the numerical
solution for σ to evaluate the approximate solution u(x) in the domain Ω, given by (2.14).
We check the solution at an arbitrary set of points on a contour on the sphere well away
from the boundary. The resulting error is measured in the infinity norm.

The number of proxy points used on each recursive level is set to J = 50, and the relative
radius is set to rproxy = 1.5r where, as discussed in Section 3.6, r is the radius of the circle
that surrounds a given section of the boundary, Γτ .

Recursive Levels

The number of recursive levels is determined by dividing the matrix A in (2.13) into blocks
using a binary tree ((3.12) for example). We start with a single block of dimension N×N at
the top of the tree. The number of points, N , is successively halved to give the dimension,
nl × nl, of a block on each level l. This is done until the number of points nl on the finest
level falls below a preset value. As in Section 3.4, the finest level is labelled as level l = 1
since this is where the compression algorithm begins. Thus the algorithm takes N and
n

(max)
1 as inputs where n(max)

1 denotes the number of points defining one block on the finest
level.

Since n(max)
1 determines the dimension of a block on level 1, it in turn determines the

number of points on a section of the boundary Γτ , which for the proxy point scheme, also
determines the size of the proxy circle surrounding Γτ .

If n(max)
1 is chosen too small, then the contour is broken up too finely. The compression

ratio, or the ratio between consecutive off-diagonal ranks kl and kl+1, is not significantly
reduced until later levels are reached. For the proxy point scheme choosing n(max)

1 too small
means that a large far field must be approximated, which can introduce more error than
necessary into the algorithm.

If n(max)
1 is chosen too large then the algorithm will slow down due to the cost of applying

the ID to a large block. This can also lead the near field to contain charges that are nonlocal,
which can increase the ranks of off-diagonal blocks.

In our numerical experiments we found that the optimal number of recursive levels is
typically between 5-10. For experiments run with 210 ≤ N ≤ 217, choosing n(max)

1 = 26 or

55

27 was found to give roughly optimal results in terms of error and timing. The values of
n

(max)
1 chosen for our numerical examples are reported in Table 4.1.

Accuracy and Timing Results

Figure 4.2 shows the error in the solutions obtained with the solver for the brute force and
proxy point schemes for the three boundary contours Γ1, Γ2 and Γ3. Examining Figure 4.2
we see that both the brute force and proxy point schemes give errors on the same order of
accuracy as the ID, ε = 10−10. Furthermore, the difference in error between the brute and
proxy schemes is quite small. This is a result of the fact that the proxy point scheme only
introduces a small amount of error when approximating far field sources and targets. For
all contours, the error converges exponentially until the desired level of accuracy is reached.
After this point the error grows slightly with increasing N , which is the same trend found
by Gillman et al. in [21] for the 2D case. To combat this growth, a stricter level of precision
can be set for the ID. The initial exponential convergence is due to the Nyström method
with the trapezoidal rule.

10
1

10
2

10
3

10
4

10
5

10
6

N

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

||
·
||
∞

Error

Γ
1
 proxy

Γ
1
 brute

Γ
2
 proxy

Γ
2
 brute

Γ
3
 proxy

Γ
3
 brute

Figure 4.2: Error in the solution u(x) evaluated along a contour well away from all three
boundaries. The error, measured in the infinity norm, for both the brute force and proxy
schemes is on the order of accuracy set for the ID, ε = 10−10.

Timings of the algorithm for all three contours are shown in Figure 4.3. The timings
are broken down based on the three stages of the direct solver: (i) compression, (ii) LU
factorization in UMFPACK, and (iii) solution of the system. We observe that in the com-
pression stage the brute force method achieves the expected O(N2) complexity while the
proxy point scheme achieves O(N). Compression times also include the time taken to embed
the telescoping factorization of A into a sparse matrix Ã which is provided to UMFPACK
(discussed in Section 3.7).

56

10
1

10
2

10
3

10
4

10
5

N

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

T
im

e
 (

s
)

Time for Brute Compression

O(N
2
)

(a)

10
1

10
2

10
3

10
4

10
5

10
6

N

10
-2

10
-1

10
0

10
1

10
2

T
im

e
 (

s
)

Time for Proxy Compression

O(N)

(b)

10
1

10
2

10
3

10
4

10
5

10
6

N

10
-3

10
-2

10
-1

10
0

10
1

10
2

T
im

e
 (

s
)

Time for LU

O(N)

Γ
1
 proxy

Γ
1
 brute

Γ
2
 proxy

Γ
2
 brute

Γ
3
 proxy

Γ
3
 brute

(c)

10
1

10
2

10
3

10
4

10
5

10
6

N

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

T
im

e
 (

s
)

Time for Solve

O(N)

(d)

Figure 4.3: Timings for all three stages of the direct solver for both the brute force and proxy
point methods. The time in seconds, measured with MATLAB’s tic and toc, is plotted for
(i) matrix compression ((a) and (b)), (ii) LU factorization with UMFPACK (c), and (iii)
solution with UMFPACK factors (d).

For the most complicated contour tested, Γ3, the time for compression with the proxy
scheme initially increases quite significantly as compared to Γ1 and Γ2. This is likely due
to the higher ranks of off-diagonal blocks that result from a more complicated boundary
(Table 4.1). Each arm of the star is thin and "close-to-touching." Due to the large amount
of folding, the near field surrounding a section of the boundary Γτ includes points that are
nonlocal. More specifically, it includes points that are physically close to Γτ , but far in
terms of parameter space. This is what contributes to the increased rank of interaction
between Γτ and Γcτ . Figure 4.3b shows that after the initial increase, the timings begin to
approach O(N) around N = 214. This is because n(max)

1 = 27 is taken small enough so
that nonlocal contributions are excluded from the near field. We examine the relationship

57

between geometry and the performance of the algorithm in more detail in the next section.

Γ1 Γ2 Γ3

N n
(max)
1 kb kp kb kp kb kp

210 26 60 60 123 156 302 364
211 26 58 58 121 150 334 390
212 27 58 54 120 144 332 386
213 27 56 50 118 140 326 372
214 27 54 50 118 134 320 356
215 27 54 50 114 128 316 348
216 27 54 46 112 125 310 340
217 27 46 120 326

Table 4.1: Final row/column skeleton dimensions, corresponding to Example 4.1, for the
brute force and proxy point methods, denoted by kb and kp respectively. The values are
broken down by contour. N denotes the original uncompressed matrix dimension. The
input values of n(max)

1 , which determine the number of recursive levels, are also shown.
n

(max)
1 represents the number of points in a block on the finest recursive level.

The timings for the second stage of the solver, the LU decomposition in UMFPACK,
are shown in Figure 4.3c. All boundary contours perform as expected giving around O(N)
complexity. Interestingly, the sparse matrices from the brute force compression perform
slightly better than the ones from the proxy point scheme. This could be due to the fact
that the brute force method gives slightly lower ranks than the proxy point scheme, shown
in Table 4.1. Another factor could be that the matrices U (i) and V (i)∗ in the telescoping
factorization are slightly better conditioned than those that result from the proxy point
scheme. However, the small advantage of the brute force method for the LU is far outweighed
by the O(N2) compression time required to obtain the sparse matrix.

For the third stage, the solution times also behave as expected. This stage is roughly
O(N) for both methods, and all contours, and performs significantly faster than the previous
stages. Once the compressed matrix is obtained and factored with UMFPACK, the solution
time drops by several orders. Thus applying the LU factorization from UMFPACK to the
right hand side is extremely fast. Table 4.2 displays the results in Figure 4.3 for the contour
Γ2.

58

Brute Force
N kb Tc (s) Tlu (s) Ts (s) Error (|| · ||∞)
210 123 2.9× 10−1 1.6× 10−1 1.2× 10−3 5.8× 10−12

211 121 9.3× 10−1 1.4× 10−1 1.2× 10−3 9.2× 10−12

212 120 4.2× 100 1.8× 10−1 5.1× 10−3 6.1× 10−12

213 118 2.5× 101 2.9× 10−1 4.6× 10−3 1.8× 10−11

214 118 1.2× 102 5.2× 10−1 8.5× 10−3 3.0× 10−11

215 114 4.8× 102 9.8× 10−1 1.7× 10−2 6.3× 10−12

216 112 1.9× 103 1.6× 100 2.8× 10−2 1.0× 10−10

Proxy Points
N kp Tc (s) Tlu (s) Ts (s) Error (|| · ||∞)

210 156 1.3× 10−1 1.1× 10−1 1.4× 10−3 4.8× 10−12

211 150 2.4× 10−1 1.9× 10−1 2.4× 10−3 2.5× 10−12

212 144 3.3× 10−1 3.9× 10−1 4.8× 10−3 4.1× 10−11

213 140 7.1× 10−1 9.1× 10−1 1.3× 10−2 3.1× 10−11

214 134 1.3× 100 1.4× 100 2.0× 10−2 1.8× 10−10

215 128 2.7× 100 2.4× 100 3.5× 10−2 2.2× 10−10

216 125 6.2× 100 4.1× 100 6.5× 10−2 3.7× 10−10

217 120 1.5× 101 7.1× 100 1.4× 10−1 9.2× 10−10

Table 4.2: Results of the direct solver corresponding to the contour Γ2 in Example 4.1.
Results are broken down between the brute force and proxy point methods. The table
includes the final row/column skeleton dimensions for each value of N , as well as the time
in seconds taken to complete each stage of the solver. Tc denotes the time for compression,
Tlu denotes the time for LU decomposition with UMFPACK, and Ts denotes the solution
time. Times were obtained fromMATLAB’s tic and toc commands which record the internal
time of execution in seconds. The error in the solution in the infinity norm is also shown,
using the reference solution (4.1).

4.2 The Influence of Geometry on Performance

Example 4.2

We now focus more closely on the results from the proxy point scheme. As seen in Table
4.1, the final dimensions of the skeletons on each contour grow as the contours become
increasingly complicated. In turn, the computational time to complete all three stages
of the solver increases (Figure 4.3). To investigate this further we examine the condition
numbers of the uncompressed matrices associated with each contour from the previous
example. A fourth elliptical contour, Γ4 is also added with a larger aspect ratio than Γ1

to specifically study the effect of a "close-to-touching" boundary. Its parametric equation is
given by

Γ4 : r1(t) = 0.8 cos t, r2(t) = 0.04 sin t, r3(t) =
√

1− r2
1(t)− r2

2(t).

59

In summary, we study the solver’s performance on two elliptical contours Γ1, and Γ4, and
two star-shaped contours Γ2 and Γ3 (Figure 4.4). Γ4 is "close-to-touching" while Γ3 has a
more complicated shape which covers more surface area on the sphere, with thin elongated
arms.

(a) Two elliptical contours. Γ4 is close-to-
touching.

(b) Two star-shaped contours.

Figure 4.4: The four boundaries studied in Example 4.2.

After applying the direct solver with proxy points to all four of these boundary value
problems, Table 4.3 shows the resulting skeleton dimensions, condition numbers, timings,
and errors for several values of N . The condition numbers are computed from the corre-
sponding uncompressed matrices. As expected, the contours Γ3 and Γ4 have the largest
skeleton dimensions and condition numbers. The ellipse has the largest skeleton dimension,
while the star has the highest condition number. The skeleton dimensions, or off-diagonal
ranks, of both Γ3 and Γ4 increase because more information is needed to accurately capture
the interactions between sources and targets along the boundary.

Thus we expect that for problems with larger off-diagonal ranks, the solution time of the
solver also increases. The ID requires more steps for compression, and the resulting factors
in the telescoping factorization of A are larger. Building and processing these factors then
takes more time. This increase in time is evident for Γ2, Γ3 and Γ4. However, despite Γ4’s
significantly higher skeleton dimension, the timings for all three stages of the solver increase
only slightly. This is in contrast to the behaviour of the solver on Γ3. Although the star,
Γ3, has a lower skeleton dimension than the ellipse, Γ4, timings for compression and LU
decomposition are markedly higher.

This indicates that other factors influence the performance of the algorithm. Martinsson
[49] and Gillman et al. [21] both note that direct solvers do not perform as efficiently for
"space-filling" contours, such as those shown in Figure 4.5. This is due to the fact that the
near field contains charges that are nonlocal to Γτ in terms of parameter space. In these
cases the rank of interaction between Γτ and Γcτ is no longer logarithmic as noted in Section
3.5.2, but grows like √nl, where nl is the number of points in a block on level l. This
leads to an overall complexity of O(N1.5). We do not see the same increase in timings for

60

Ellipse Γ1
N kp K Tc (s) Tlu (s) Ts (s) Error (|| · ||∞)

210 60 10.0 1.3× 10−1 1.1× 10−1 1.1× 10−3 3.4× 10−13

211 58 10.0 2.3× 10−1 2.7× 10−1 3.3× 10−3 1.3× 10−11

212 56 10.0 4.6× 10−1 4.2× 10−1 5.4× 10−3 9.7× 10−12

213 54 10.0 9.0× 10−1 6.4× 10−1 1.3× 10−2 1.3× 10−11

Ellipse Γ4
N kp K Tc (s) Tlu (s) Ts (s) Error (|| · ||∞)

210 552 111.6 4.7× 10−1 4.3× 10−1 5.5× 10−3 1.5× 10−10

211 546 111.6 6.4× 10−1 5.3× 10−1 6.5× 10−3 2.6× 10−11

212 530 111.6 9.7× 10−1 8.5× 10−1 8.9× 10−3 4.0× 10−11

213 508 111.6 1.3× 100 8.6× 10−1 1.2× 10−2 1.4× 10−10

Star Γ2
N kp K Tc (s) Tlu (s) Ts (s) Error (|| · ||∞)

210 156 17.8 1.5× 100 2.1× 10−1 9.3× 10−3 4.8× 10−12

211 150 17.8 8.5× 10−1 2.5× 10−1 3.3× 10−3 2.5× 10−12

212 144 17.8 9.5× 10−1 5.2× 10−1 6.1× 10−3 4.1× 10−11

213 140 17.8 2.0× 100 1.1× 100 1.3× 10−2 3.1× 10−11

Star Γ3
N kp K Tc (s) Tlu (s) Ts (s) Error (|| · ||∞)

210 364 172.6 1.3× 100 5.0× 10−1 5.8× 10−3 9.5× 10−13

211 390 172.7 1.4× 100 9.9× 10−1 8.8× 10−3 2.4× 10−12

212 386 172.7 1.9× 100 1.7× 100 1.2× 10−2 6.1× 10−13

213 372 172.7 2.3× 100 1.7× 100 1.9× 10−2 2.2× 10−11

Table 4.3: Results of the direct solver corresponding to Example 4.2. The proxy point
method is applied to four different contours. The dimensions of the final skeletons, kp are
given, along with the condition number K in the infinity norm for the associated uncom-
pressed matrix. Timings for compression, Tc, LU decomposition, Tlu, and solution, Ts are
also given, along with the error, in the infinity norm. The reference solution (4.1) is used.
The accuracy of the ID is set to ε = 10−10 just as in Example 4.1.

61

the ellipse since the proxy circles contain charges local to Γτ . However, this has not been
investigated in detail in the literature. Since the ten arms of Γ3 do cover a large amount of
surface area on the sphere this could be influencing the computation time of the solver.

Figure 4.5: Examples of "space-filling" boundaries in 2D for which direct solvers do not give
O(N) complexity [49, 21].

Overall, the results in Table 4.3 indicate that a relationship exists between the geometry
of the problem and the solution time of a direct solver. Both the skeleton dimension and
conditioning can play a role in performance. However, once the system matrix is compressed
and factored with UMFPACK, the solution time for all four contours is extremely fast.
Regardless of the shape of the contour, the direct solver is still clearly very well suited for
problems with multiple right hand sides.

62

Chapter 5

Point Vortex Motion on the Sphere

As a way to further study the performance of the direct solver developed in the previous
chapters, we examine an application in fluid dynamics which requires efficient solutions to
the Laplace-Beltrami equation. Specifically, modelling the behaviour of a point vortex in a
steady, incompressible fluid requires fast and accurate solutions for both a single solve, and
for multiple solves of the Laplace-Beltrami equation.

We begin this chapter by introducing some preliminary concepts needed to set up the
point vortex model. Specifically, we look at general properties of the velocity and vorticity
fields on the sphere, and their relationship to the Laplace-Beltrami operator. Afterwards,
point vortex motion is introduced in Section 5.2. We show that the instantaneous motion
of fluid on the sphere in the presence of a fixed vortex location is governed by the Laplace-
Beltrami equation. In Section 5.3 we examine the motion of a vortex over time, and derive
the equation of motion for a single vortex trajectory. More specifically we look at the path
a vortex will take over time, in a steady, incompressible, irrotational fluid, based on the
velocity generated by its own rotation.

Once the equation of motion is derived, two methods for numerically constructing vortex
trajectories are introduced. The first method constructs contours of a modified stream
function, while the second method deals with the solution of the initial value problem
(IVP) which governs the motion of a point vortex. We apply a numerical algorithm called
spectral deferred correction to solve the IVP, which is outlined in Section 5.3.2.

As will be discussed, efficiently solving for either instantaneous point vortex motion, or
point vortex trajectories over time depends on the efficiency and accuracy of the numerical
method used to solve the Laplace-Beltrami equation. As a result it provides a very good
application for testing the performance of fast direct solvers.

63

5.1 Velocity and Vorticity Fields on the Surface of the Sphere

To set up the point vortex model, we begin by assuming that fluid flow on the surface of the
sphere, S, is steady, and incompressible. We focus on the same general simply connected
domain, Ω, that was introduced in Chapter 2 for the Laplace-Beltrami equation. We recall
that this domain has a smooth, closed boundary curve, Γ, which divides Ω from a second
subdomain, or "island", Ω1 (Figure 2.1).

The fluid velocity field on the sphere can be described in spherical coordinates by v =
(0, vθ, vφ). To compute the gradient of the velocity field, we can use the standard gradient
in 3D expressed in spherical coordinates [20]. Since the flow is incompressible, ∇ · v = 0,
v is a solenoidal field given by v = ∇ × Ψ(θ, φ). Furthermore, since we are working on
a two-dimensional surface, Ψ can be written in terms of a scalar stream function where
Ψ = ψ(θ, φ)er. The vector field v can then be represented by

v = ∇× ψ(θ, φ)er = ∇ψ(θ, φ)× er.

Subsequently, the associated vorticity field, ω of the fluid is given by

ω = ∇× v

= ∇×
(

0, 1
sin θ

∂ψ

∂φ
,−∂ψ

∂θ

)
=
(−1

sin θ
∂

∂θ

(
sin θ∂ψ

∂θ

)
− 1

sin2θ

∂

∂φ

(
∂ψ

∂φ

))
er

= (−∆S ψ(θ, φ)) er, (5.1)

where ∆S denotes the Laplace-Beltrami operator on the sphere. From above, equation
(5.1) implies that vorticity, ω, reduces to a scalar function on the sphere with ω = −∆S ψ.

Another important property of vorticity on the sphere is that it is advected along with
the flow. This also means that the vorticity at any particular point in time is simply
a rearrangement of the initial vorticity distribution. To see this standard result, we can
examine the Euler equations for incompressible, inviscid fluid flow in 3D [52, 56]. As above,
we can view the velocity field on the sphere as a 3D field with no radial component, i.e.

v = (0, vθ, vφ).

In this case the Euler equations take the form

∂v
∂t

+ (v · ∇) v = −1
ρ
∇p + f , (5.2)

64

where p denotes pressure, ρ density, and f is considered to be an external, conservative
force. Following Saffman [56], we can use the identity

(v · ∇) v = 1
2∇(v · v)− v× (∇× v)

to rewrite (5.2):

∂v
∂t
− v× ω = −∇

(
p

ρ
+ 1

2v2
)

+ f . (5.3)

We can then take the curl of (5.3) and apply the identity

∇× (v× ω) = v(∇ · ω)− ω(∇ · v) + (ω · ∇)v− (v · ∇)ω, (5.4)

= (ω · ∇)v− (v · ∇)ω

where the first two terms in (5.4) are zero since ∇ · ω = 0 and the fluid is incompressible.
This gives

∂ω

∂t
+ v · ∇ω = ω · ∇v + 1

ρ2 (∇ρ×∇p) +∇× f ,

where 1
ρ2 (∇ρ×∇p) = 0 and∇×f = 0, since the fluid is barotropic [56] and f is conservative.

This results in the following equation for vorticity

∂ω

∂t
+ v · ∇ω = ω · ∇v, (5.5)

where ω ·∇v = 0 since ω = ωer has only a radial part, while v has no radial part. Rewriting
(5.5) in terms of the material derivative we have

Dω

Dt
= 0,

which means that vorticity does not change along the path of a fluid particle, meaning that
it is advected with the flow.

The particle path of a passive fluid particle in a time-independent, steady flow is given
by

dx
dt

= v(x) = ∇ψ(x)× er

x(0) = x0.

65

It follows that particle paths are tangent to the velocity field. Taking the derivative of the
stream function along a particle path

dψ(x(t))
dt

= ∇ψ · x′(t) = 0,

we also see that the stream function ψ is constant along each path, since v is orthogonal
to ∇ψ. Hence, in steady flow, particle paths are given by contours of the stream function,
which are also referred to as streamlines. Visualizing streamlines often gives insights into
the qualitative behaviour of a fluid, especially in terms of its interaction with regions of
vorticity.

5.2 Instantaneous Point Vortex Motion

When considering the motion of a point vortex, we assume that the fluid is irrotational
everywhere except at a single point where the vorticity is given by a Dirac delta distribution.
In this thesis we look at one point vortex, and for now, we restrict ourselves to a simply
connected domain. Hence we are interested in solving the problem

−∆S ψ(x,x0) = κδ(x− x0), x,x0 ∈ Ω

ψ(x) = 0, x ∈ Γ,
(5.6)

where κ is a real value denoting vortex strength.
The boundary condition is a result of the impenetrable boundary on the sphere, which

must satisfy
v · n = 0,

where n points out of the domain Ω and is tangent to the surface of the sphere (see Figure
2.1). Since the gradient of the stream function is also normal to the vector field v, the
condition ensures ψ is a streamline. This is automatically satisfied for any constant value
of ψ, and so without loss of generality we can set ψ = 0, for the simply connected problem.

When κ = 1 equation (5.6) is equivalent to finding the Green’s function for the Laplace-
Beltrami operator on the sphere for a particular simply connected domain. Thus we can
begin to solve the problem by looking at the generalized fundamental solution, G, from
Section 2.1. We recall that G satisfies (2.3),

−∆S G(x,x0) = δ(x− x0)− 1
4π , x ∈ S,

and is given by (2.4),

G(x,x0) = − 1
2π log ||x− x0||+

1
4π log 2.

66

Thus in order to satisfy the Gauss constraint (2.2) and have an irrotational flow surrounding
the vortex, we must either impose a constant background vorticity, or place a second vortex
of opposite sign in the fluid. To find the Green’s function for (5.6) we do the latter.

The stream function ψ is decomposed into three parts:

ψ(x,x0) = κG(x,x0)− κG(x,x1) + u(x,x0)︸ ︷︷ ︸
= ψ̂(x,x0)

,

where κG(x,x0) and −κG(x,x1) represent two vortices on the sphere which satisfy the
Gauss constraint. κG(x,x0) is situated in the domain Ω and −κG(x,x1) is a vortex of
opposite sign situated on the island Ω1 where x1 ∈ Ω1. The function u is chosen to ensure
the no-penetration boundary condition, ψ = 0, is satisfied, or in other words to ensure the
boundary is a streamline of the fluid. κG(x,x0) is referred to as the singular part of ψ,
while ψ̂(x,x0) = κG(x,x1) +u(x,x0) forms the regular part. The resulting equation which
u needs to satisfy is

−∆S u = 0, x ∈ Ω (5.7)

u = g(x,x0) ≡ κ

2π log ||x− x0|| −
κ

2π log ||x− x1||, x ∈ Γ.

Solving for u, and finding ψ will give the stream function for the fluid. We can use it
to visualize the fluid field, or the instantaneous streamlines for a fixed vortex location.
For a given vortex location x0, this requires one solve of the Laplace-Beltrami BIE (2.8).
This implies we can apply the fast direct integral equation approach to solve for u. The
remaining terms involving G(x,x0) and G(x,x1) are then simply added to u to give the
stream function.

5.3 Point Vortex Trajectories

Since vorticity is advected by the fluid velocity field on the sphere, the trajectory of a
point vortex over time is determined from studying the behaviour of the velocity field
and properties of the stream function. Flucher and Gustaffson [19], Lin [46] and Saffman
[56] show how the equation of motion for a point vortex is derived in two dimensions, for
simply and multiply connected domains. In [12] Crowdy summarizes these steps for the
simply connected case on the sphere, in stereographic coordinates, and later in [58], for the
multiply connected case. This section follows the same steps as these previous works, but
for the simply connected case on the sphere, in real Cartesian coordinates.

67

The velocity field for any point on the sphere x ∈ Ω, x 6= x0, is given by

v(x) = ∇ψ(x,x0)× er
= κ∇G(x,x0)× er − κ∇G(x,x1)× er +∇u(x,x0)× er
= κ∇G(x,x0)× er +∇ψ̂ × er.

The evaluation of the velocity field at x0 is complicated by the singularity there. Physically,
∇G(x,x0)×er corresponds to a purely rotational motion around x0, so it does not contribute
to the drift of the vortex on the sphere. Although this is a somewhat heuristic argument,
previous authors [19, 65] justify this step by the fact that the point vortex model can be
shown to be the limit of more "realistic" models based on the Euler equations [47, 61]. The
velocity of the point vortex itself is then given by

v(x0) = ∇xψ̂(x,x0)× er
∣∣∣
x=x0

.

Since ψ(x,x0) is the Green’s function for equation (5.6), it is symmetric, meaning it
satisfies ψ(x,x0) = ψ(x0,x) [18]. This symmetry property leads to the following set of
relations stated by Lin [46]

∂ψ̂(x0, y0, z0, x0, y0, z0)
∂x0

= 2 lim
x→x0

∂ψ̂(x, y, z, x0, y0, z0)
∂x

.

The same holds for ∂ψ̂(x0,x0)
∂y0

and ∂ψ̂(x0,x0)
∂z0

. Using these relations, the resulting equation of
motion for the vortex is given by

dx0
dt

= v(x0) = ∇xψ̂(x0,x0)× er

= 1
2∇x0ψ̂(x0,x0)× er.

If we then examine the value of ψ̂ along the curve x0(t), we find

d

dt
ψ̂(x0(t),x0(t)) = ∇x0ψ̂(x0,x0) · dx0

dt
= 0.

This implies ψ̂(x0,x0) is constant along the vortex trajectories, x0(t), meaning that the
trajectories can be represented by contours of 1

2 ψ̂(x0,x0). In the literature, 1
2 ψ̂(x0,x0) is

often referred to as theKirchhoff-Routh path function, since its existence was first established
by Kirchhoff [41] for unbounded two dimensional domains, and then Routh [55], for simply
connected bounded domains.

In summary, there are two ways to obtain the trajectory of a point vortex on the sphere:

68

Method 1: Constructing the contours of ψ̂(x0,x0), x0 ∈ Ω
This method can be used to visualize complete orbits of the point vortex over the whole
domain, or a section of the subdomain. The contours of ψ̂ show vortex trajectories
for any possible initial position.

Method 2: Solving the autonomous ODE

dx0
dt

= ∇xψ̂(x0,x0)× er, or,
dx0
dt

= 1
2∇x0ψ̂(x0,x0)× er. (5.8)

This method can be used to find a single vortex trajectory for a specific initial position.

An example of vortex trajectories obtained with both methods is shown in Figure 6.10.
Both methods require us to first solve for

ψ̂(x,x0) = −κG(x,x1) + u(x,x0),

where u satisfies (5.7). Solving for a new vortex position, x0, implies solving (5.7) with a
new boundary condition, g(x,x0). Since the geometry of the problem remains the same,
changing the vortex position only changes the density function σ, in the integral equation
(2.8). We denote σ’s dependence on x0 by σ(x,x0). After obtaining the approximation for
σ, we can then solve for u,

u(x) = 1
2π

∫
Γ
σ(x′,x0) ∂

∂n′
log ||x− x′||ds′. (5.9)

To obtain the contours of ψ̂(x0,x0), u is simply evaluated at x0.
For the ODE in Method 2, an extra step is required. The gradient of ψ̂ needs to be

obtained, which requires finding the gradient of u. Taking the gradient of the representation
formula (5.9), gives

∇x u = 1
2π

∫
Γ
σ(x′,x0) ∇x

(
x− x′

|x− x′|2
· n′
)
ds′,

where (
∇x

(
x− x′

|x− x′|2
· n′
))

i

= ni
′

|x− x′|2
− 2(xi − xi′) ((x− x′) · n′)

(|x− x′|2)2 , i = 1, .., 3.

∇xu(x) can then be evaluated at x = x0 and substituted into the IVP (5.8).
Thus, each time ψ̂ needs to be evaluated at a point vortex location x = x0, for either

Method 1 or 2, the linear system (2.13) must be solved with a new right hand side. Applying
a fast direct solver to the system allows the matrix A in (2.13) to be compressed and factored
so that solutions for each right hand side can be obtained very cheaply afterwards. A BIE

69

approach combined with a fast direct solver then ensures that the process of finding vortex
trajectories with either Method 1 or Method 2 is computationally efficient.

5.3.1 Numerical Methods for Finding Vortex Trajectories

Assuming we have the solution ψ̂(x,x0) from the direct solver, finding vortex trajectories
with Method 1 simply requires ψ̂(x,x0) to be evaluated at x = x0 on a grid over the solution
domain. The contours of ψ̂ can then be constructed to visualize point vortex trajectories.

Method 2 involves solving the IVP (5.8) to find a single vortex trajectory. Computa-
tionally, finding a single vortex trajectory can be less expensive than evaluating ψ̂(x,x0)
over the solution domain, especially when we are only interested in the trajectory associated
with a particular initial position. It can also be used to verify the accuracy of the contours
given from Method 1. Another advantage is that it can be extended to problems which
involve multiple vortices.

The initial value problem (5.8), is an autonomous, Hamiltonian dynamical system [12,
56, 52, 16]. This means that the Hamiltonian given by

H = 1
2 ψ̂(x0,x0)

represents the energy in the system. Typically H represents the total energy in the system,
however for point vortex motion, it represents what is referred to as the interaction energy
[52, 16]. Although the details are omitted here, ψ̂ can be equivalently derived by taking
the kinetic energy of the system and excluding the singularity at x = x0 [16]. The defining
characteristic of an autonomous Hamiltonian dynamical system is that this interaction
energy, H, remains constant, or is conserved, along vortex trajectories.

This property must be taken into account when choosing an appropriate numerical
method for solving the IVP (5.8). Using a standard method such as forward Euler, overes-
timates the energy in each step and leads to inaccurate trajectories. The correct approach
is to apply what is referred to as a symplectic method which conserves the energy along a
trajectory, x0(t) [33]. One example is to use a partitioned method which is comprised of
both an implicit and explicit method, such as backward and forward Euler. Backward Euler
underestimates the energy while forward Euler overestimates. Thus alternating time steps
between the two leads to a better approximation of the energy, and the resulting trajectory
[33].

In this thesis we use a high order numerical method based on integration, called spectral
deferred correction [17]. The high accuracy of this time-stepping method ensures the energy
remains constant along each trajectory. Since the focus in this thesis is on boundary value
problems, using spectral deferred correction gives a quick and accurate method for testing
the solutions of the Laplace-Beltrami equation on problems involving vortex motion. It
preserves the high accuracy obtained from the BIE approach and can easily incorporate the

70

direct solver. We give a summary of the time-stepping method below, which is developed
in [17] by Dutt, Greengard and Rokhlin.

5.3.2 Spectral Deferred Correction

We begin first by describing the numerical method for a general, one-dimensional IVP of
the form

ϕ′(t) = F (t, ϕ(t)), t ∈ [a, b],

ϕ(a) = ϕa.
(5.10)

Here, ϕ(t) ∈ Rn and F : R × Rn → Rn. If F ∈ C1(R × Rn), then the local existence
and uniqueness of solutions is guaranteed [17, 7]. However the spectral deferred correction
approach is based on spectral integration, and requires F to be sufficiently smooth in order to
achieve a high order of convergence. The point vortex problems in this thesis are posed with
smooth boundaries, Γ, and since ψ̂ satisfies the Laplace-Beltrami equation, it is harmonic
in Ω, which implies ψ̂ ∈ C∞(Ω).

Spectral deferred correction is based on the following general approach. First, the IVP
is reformulated into a Picard integral equation. An initial estimate of the solution can then
be obtained by applying a low order method such as forward Euler. The resulting error
of the approximation can be shown to also satisfy a Picard integral equation of the same
form. As a result, forward Euler can be re-applied, but this time to the error, to improve
the initial estimate. Applying this approach iteratively then leads to better and better
approximations to the solution of the IVP.

The Picard Integral Equation

We first show how both the IVP and the expression for the numerical error can be repre-
sented as integral equations. Integrating the IVP (5.10) with respect to t gives an equivalent
Picard integral equation of the form

ϕ(t) = ϕa +
∫ t

a
F (s, ϕ(s))ds. (5.11)

If we assume we have some initial approximation to the solution ϕ0(t), the residual function
is given by

ε(t) = ϕa +
∫ t

a
F (s, ϕ0(s))ds− ϕ0(t). (5.12)

The error in the solution is denoted by

δ(t) = ϕ(t)− ϕ0(t).

71

Subbing ϕ(t) = ϕ0(t) + δ(t) into (5.11), we obtain

δ(t) =
∫ t

a
F (s, ϕ0(s) + δ(s))ds+ ϕa − ϕ0(t). (5.13)

From (5.12),

ϕa − ϕ0(t) = −
∫ t

a
F (s, ϕ0(s))ds+ ε(t).

Subbing this into (5.13) gives

δ(t) =
∫ t

a

[
F (s, ϕ0(s) + δ(s))− F (s, ϕ0(s))

]
ds+ ε(t). (5.14)

Letting G be given by

G(t, δ) = F (t, φ0(t) + δ(t))− F (t, φ0(t)),

allows (5.14) to be rewritten in the form

δ(t)−
∫ t

a
G(s, δ(s))ds = ε(t). (5.15)

Consequently, the error δ(t) can also be expressed as a Picard integral equation.

Forward Euler

Both of the Picard integral equations (5.11) and (5.15) can be solved numerically by applying
the forward Euler method, which has order O(h) [45]. Given the m+ 1 points,

a = t0 < t1 < ... < tm−1 < tm = b,

forward Euler computes an approximation to the solution at ti+1 based on the solution at
ti. For equation (5.11) the Euler steps have the form

ϕi+1 = ϕi + hi · F (ti, ϕi), hi = ti+1 − ti,

for i = 0, 1, ...,m− 1. Similarly for equation (5.15) we have

δi+1 = δi + hi ·G(ti, δi) + (ε(ti+1)− ε(ti)). (5.16)

72

Spectral Integration

From (5.16), the forward Euler approximation for δ(t) requires an estimate of the residual,
which we recall is given by

ε(t) = ϕa +
∫ t

a
F (s, ϕ0(s))ds− ϕ0(t).

We observe that in order to evaluate ε(ti) the integral of F on the interval [a, ti] must be
approximated. This is done by using spectral integration on a Chebyshev grid [17]. Since
Chebyshev points lie in the interval [−1, 1], and are given by

xi = − cos
(
πi

m

)
, i = 0, ...,m,

the IVP (5.10) is first mapped to [−1, 1]. This is also done by Tang et al. in [59].
We define a linear transformation between t ∈ [a, b] and x ∈ [−1, 1]:

t = 1
2(a+ b) + 1

2(b− a)x.

The Picard integral equation (5.11) then has the form

φ(x) = ϕa +
∫ 1

2 (a+b)+ 1
2 (b−a)x

a
F (s, ϕ(s))ds, x ∈ [−1, 1],

where φ(x) = ϕ(1
2(a+ b) + 1

2(b− a)x). The limits of integration are then transferred from
[a, 1

2(a+ b) + 1
2(b− a)x] to [−1, x], by applying a second linear transformation:

s = 1
2(a+ b) + 1

2(b− a)τ, τ ∈ [−1, x].

The resulting IVP on [−1, 1] is given by

φ(x) = ϕa + 1
2(b− a)

∫ x

−1
F (τ, φ(τ))dτ, x ∈ [−1, 1]. (5.17)

Similarly, the resulting equation for the residual has the form

ε(x) = ϕa + 1
2(b− a)

∫ x

−1
F (τ, φ0(τ))ds− φ0(x), (5.18)

and the equation for the error is given by

δ(x) = 1
2(b− a)

∫ x

−1

[
F (τ, φ0(τ) + δ(τ))− F (τ, φ0(τ))

]
dτ + ε(x). (5.19)

73

Applying forward Euler to the Picard integral equation for φ(x), (5.17), on the points
xi ∈ [−1, 1], gives an approximation to the solution,

φ0 = (φ0
0, φ

0
1, ..., φ

0
m) = (φ0(x0), φ0(x1), ..., φ0(xm)).

To approximate the residual at xi, we first approximate the integral in (5.18) using spectral
integration. A Lagrange interpolating polynomial is constructed on the points (xi, φ0

i)mi=0,
given by

L(x, φ0) =
m∑
i=0

`i(x)φ0
i , `i(x) =

m∏
j 6=i

(x− xj)
(xi − xj)

.

For each point xi ∈ [−1, 1], the integral (5.18) is then approximated by∫ xi

−1
F (τ, φ0(τ))ds ≈

∫ xi

−1
L(τ, φ0(τ))dτ.

If we define the vector g = (g0, g1, ..., gm), by

gi =
∫ xi

−1
L(τ, φ0(τ))dτ,

then an (m + 1) × (m + 1) matrix S can be constructed which maps the values of φ0 at
the Chebyshev nodes, xi to the values of the integral of the interpolating polynomial at xi.
The matrix is given by

Sφ0 = g, Sij =
∫ xi

−1
`j(τ)dτ.

S is referred to as a spectral integration matrix [17], and the values given by g can be shown
to converge spectrally to the exact values of the integral. The matrix is well-conditioned,
and its maximum eigenvalue is bounded, while the minimum eigenvalue is of order O(1

m2)
[17]. A more complete discussion of the properties of spectral integration matrices can be
found in [28, 24, 34] .

Spectral Deferred Correction Algorithm

Given the Picard integral equations (5.17), (5.18), (5.19), and a spectral integration matrix
S, we can now outline the spectral deferred correction algorithm.

Let xi, i = 0, ...,m, denote the m + 1 Chebyshev points in the interval [−1, 1], and let
S denote the corresponding (m+ 1)× (m+ 1) spectral integration matrix. We also define

74

the following vectors:

φj = (φj0, φ
j
1, ..., φ

j
m) denotes an approximate solution to φ(x) at step j of the algorithm

δj = (δj0, δ
j
1, ..., δ

j
m) denotes the approximate error in the solution φj−1

ε(φj) = (ε(x0,φ
j), ε(x1,φ

j), ..., ε(xn,φj)) denotes the values of the residual for the

approximate solution φj at each node xi.

φa = (φa, ..., φa) denotes an m+ 1 constant vector of initial values

F(φj) = (F (x0, φ
j
0), F (x1, φ

j
1, ..., F (xm, φjm)) denotes the values of the right hand side

for each node xi and solution vector φj

The algorithm proceeds as follows [17]:

Step 1: Apply forward Euler to the IVP:

φ0
i+1 = φ0

i + hi · F (xi, φ0
i), hi = xi+1 − xi, i = 0, ...,m− 1

This gives an initial approximation, φ0, on the Chebyshev grid.

Step 2: Iteratively apply forward Euler to estimate the error δ(x):

for j = 1, ..., J

1. Estimate the residual of the approximate solution φj−1:

ε(φj−1) = φa + 1
2(b− a)SF(φj−1)− φj−1

2. Compute an approximation to the error δ(x) using forward Euler:

δji+1 = δji + hi ·G(xi, δji) + (ε(xi+1, φ
j−1
i)− ε(xi, φj−1

i)), i = 0, 1, ...,m− 1

where G(xi, δji) = F (xi, φj−1
i + δi)− F (xi, φj−1).

3. Update the approximate solution:

φj = φj−1 + δj

The following result specifying the order of accuracy of the above procedure is stated in
[17].

Theorem 5.3.1. For any sufficiently smooth function F : R×R and any natural numbers
m, J , the approximation φJ given by the spectral deferred correction algorithm above con-
verges to the exact solution (φ(x0), φ(x1), ...φ(xm)) with order of accuracy min(m+1, J+1).

The order of accuracy of the interpolating polynomial L(x, φj) on m + 1 points is
O(hm+1), while each correction step j = 1, .., J improves the accuracy of the initial O(h) ap-

75

proximation by one order [45]. After J correction steps the error in the solution is O(hJ+1).
This implies that the number of correction steps that can be applied is bounded by the
accuracy of the interpolating polynomial, giving the O(hmin(m+1,J+1)) order stated in the
theorem. Usually, the value of J is set to J = m.

Composite Spectral Deferred Correction

We also note that applying S to φj directly has a cost of O((m+ 1)2). While there are
efficient algorithms which reduce this cost based on the FFT, the spectral deferred correction
algorithm can be implemented on a composite grid [17]. As a result the number of points
on each panel is typically taken to be at most m + 1 = 15. To implement the algorithm
on a composite grid, the interval [a, b] is divided into a collection of subintervals, [ai, bi]
with ai+1 = bi. The spectral deferred correction algorithm above is then applied to each
subinterval. We verify numerically in Section 6.2.2 that the order of accuracy falls just
under O(hmin(m+1,J+1)). There is a small growth of error because the starting value ai on
each subinterval is based on an approximation from the previous interval. However this
accumulation of error is very mild as shown in Figure 6.8.

Systems of ODEs

Spectral deferred correction can be extended to systems of ODEs. In our case the IVP for
a vortex trajectory is a decoupled system of three ODEs. Hence the algorithm can simply
be applied component-wise.

Summary

In summary, both Method 1 and 2 require ψ̂(x,x0) to be repeatedly evaluated as a function
of different vortex positions x0. This implies that for each value of x0, u(x,x0) in (5.7),
which satisfies the Laplace-Beltrami equation, must be re-solved with different boundary
data. Once u(x,x0) is found it can then be evaluated at x = x0. To obtain the contours of
ψ̂(x0,x0) the Laplace-Beltrami equation must be solved for each grid point x0. For spectral
deferred correction, ∇xψ̂(x0,x0) must be found for each time step along a vortex trajectory.
This trajectory is then corrected J + 1 times, meaning that ψ̂ must also be updated at the
same time.

Therefore, the fast direct solver is very well suited to find vortex trajectories with either
Method 1 or 2. In the next chapter we study the efficiency of Methods 1 and 2 when
combined with the direct solver.

76

Chapter 6

Numerical Results for Point
Vortex Motion

The performance of the fast direct integral equation approach outlined in Chapters 2 to 4
is now examined for problems involving point vortex motion. Instantaneous point vortex
motion is examined first, where the stream function is obtained for a fixed vortex location
for several different domains. An example is presented for a point vortex in the presence of
a spherical cap, where the analytical solution is known due to Crowdy [12]. Then the fast
direct solver is applied to a new star-shaped boundary.

Once instantaneous vortex motion has been examined the direct solver is applied to the
problem of constructing vortex trajectories over time. This involves using either Method 1
to construct contours of the regular part of the stream function ψ̂, or Method 2 to solve
the autonomous ODE giving the equation of motion for a vortex. Numerical examples are
presented for Method 1 first, for both a spherical cap and star-shaped boundary. Accuracy
and time complexity are verified for the cap by using exact solutions provided from litera-
ture. We also verify that the qualitative behaviour of fluid motion matches that of existing
theory on vortex motion.

The direct solver is also compared to the FMM to highlight the advantage of using a di-
rect approach. Just as in [44] the Laplace-Beltrami equation is mapped to the stereographic
plane where the FMM for the 2D electrostatic potential is used to iteratively accelerate the
solution of the linear system. The solution time for the FMM in the stereographic plane is
compared to the solution time of the direct solver on the sphere in R3.

The same numerical examples applied to Method 1 are then examined with Method 2.
We construct vortex trajectories using spectral deferred correction. Convergence rates and
timings for deferred correction are presented first for a spherical cap domain. Afterwards,
trajectories are plotted over the contours obtained from Method 1, for both the cap and
star-shaped island, as a way to verify both solutions.

77

Since the IVP governing the motion of a vortex is an autonomous Hamiltonian dynamical
system, a great deal of literature studies the behaviour of vortices from a dynamical systems
perspective [12, 52, 38, 16]. The numerical results we obtain for the spherical cap and star
confirm the expected dynamics of a point vortex on the sphere. As will be discussed, the
vortex behaves very similarly as it would in the plane, for a simply connected domain.
However, in [12] Crowdy looks at a test case where a thin elongated bar spans the length
of more than half the sphere. He finds that the trajectory of a point vortex in the presence
of such an island becomes qualitatively different from the plane. To investigate his results
further, we also set up a similar example and examine vortex trajectories on the sphere with
both Method 1 and 2.

6.1 Instantaneous Point Vortex Motion

Example 6.1: Spherical Cap

In this example we obtain the stream function for a spherical cap boundary where the
solution is known analytically, due to Crowdy [12]. The spherical cap is parametrized by

r(t) = (sin θc cos t, sin θc sin t, cos θc),

where θc denotes the angle of elevation of the cap. The location of the point vortex, denoted
in spherical coordinates, is x0 = (θ0, φ0).

As outlined in the previous chapter, we solve for ψ(x,x0) where u satisfies (5.7). The
exact solution is given in stereographic co-ordinates, where we recall from Section 2.3 that
the mapping from the sphere to the stereographic plane is given by (2.9),

ξ = cot
(
θ

2

)
eiφ, (θ, φ) ∈ Ω.

The solution found by Crowdy [12] is

ψ(ξ, ξ0) = − κ

2π log
∣∣∣∣∣ζ(ξ)− ζ(ξ0)
ζ(ξ)− ζ̄(ξ0)

∣∣∣∣∣ ,
where ξ0 denotes the location of the vortex in the stereographic plane, and ζ(ξ) denotes a
conformal mapping from the solution domain Ω̃ in the stereographic plane to the complex
upper-half plane. The conformal mapping for the spherical cap determined by Crowdy [12]
is

ζ(ξ) = i

(
rc − ξ
rc + ξ

)
,

78

where rc denotes the radius of the spherical cap in the complex plane given by

rc = sin θc
1− cos θc

.

The most straightforward way to check the solution ψ(x,x0) obtained from the direct solver
in real coordinates, is to map the solution on the sphere to the stereographic plane using
(2.9).

For this example θc = π
6 and the location of the vortex is set to θ0 = π

3 , φ0 = 3π
2 .

The strength of the vortex is set to κ = 1, where the vortex generates a counterclockwise
rotation in the fluid. The level of precision for the ID is set to ε = 10−10. Figure 6.1
shows the rate of convergence of the solution using the direct solver. The smooth boundary,
assigned with smooth data gives exponential convergence due to the Nyström method with
the trapezoidal rule.

0 50 100 150 200 250 300

N

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

||
 ·

 |
| ∞

Error

Figure 6.1: Rate of convergence of the approximate solution to the stream function for the
spherical cap. The level of precision for the ID is set to ε = 10−10. Exponential convergence
is seen due to the Nyström method with the trapezoidal rule.

Figure 6.2 shows a plot of the solution for N = 700, where the time taken to compress
and solve the system is 0.2s. A large value of N is chosen to sufficiently resolve the behaviour
near the boundary, Γ. As discussed in Section 2.4, the Nyström method achieves super-
algebraic convergence up to a distance of approximately 5h away from Γ. Figure 6.1 shows
that to achieve an accuracy of 10−10 for the solution away from the boundary, under 50
points need to be taken along Γ. To evaluate the solution closer to Γ, we can either apply
methods in [2, 42, 35] developed specifically to deal with the close evaluation problem,
or simply take a larger value of N . Since the methods in these papers have not yet been
adapted to surfaces we opt for the latter. In this thesis we only need to evaluate the solution
close to the boundary for plotting purposes.

79

The numerical solution obtained for the stream function is plotted on the sphere, and
the corresponding contours are also plotted in the stereographic plane to verify that the
boundary is a streamline of the fluid (Figures 6.2a and 6.2b). In terms of the dynamics
of the system, the point vortex is a centre, with instantaneous streamlines forming closed
orbits around it. Since the vortex generates a counterclockwise rotation in the fluid, passive
particles in the fluid move in the same direction.

The solution is also broken down into its singular and regular parts,

ψ(x,x0) = κG(x,x0) + ψ̂(x,x0),

to show the purely rotational fluid motion resulting from the point vortex, and the drift of
the fluid contributed from the regular part (Figures 6.2c and 6.2d).

Example 6.2: Star-Shaped Island

For the second example we consider the more complicated geometry of a star-shaped island.
The solution is obtained in 0.8 seconds, forN = 2048 points along the boundary, equi-spaced
in arc length. The stream function ψ and the contours in the stereographic plane are plotted
in Figure 6.3. We see that just as in the spherical cap case the point vortex is a center,
with streamlines forming closed, counterclockwise orbits around it. The final orbit is the
zero streamline around the boundary.

80

(a) The stream function ψ.

-3 -2 -1 0 1 2 3

Re(ξ)

-3

-2

-1

0

1

2

3

Im
(
ξ
)

(b) Contours of the stream function
ψ in the stereographic plane.

(c) The singular part of the stream
function, G(x, x0). It corresponds
to the purely rotational motion
generated by the point vortex.

(d) The regular part of the stream
function, ψ̂. It takes into account
the effects of the boundary on the
fluid motion.

Figure 6.2: The numerical solution corresponding to Example 6.1. A point vortex located
at θ0 = π

3 , φ0 = 3π
2 is considered in the presence of a spherical cap boundary.

81

(a) The stream function ψ.

-5 0 5

Re(ξ)

-5

-4

-3

-2

-1

0

1

2

3

4

5

Im
(
ξ
)

(b) Contours of the stream function ψ
in the stereographic plane.

Figure 6.3: The numerical solution corresponding to Example 6.2. A point vortex located
at θ0 = π

3 , φ0 = 3π
2 is considered in the presence of a star-shaped boundary.

82

6.2 Point Vortex Trajectories

We now show the true strength of the direct solver by applying it to the problem of finding
vortex trajectories on the sphere. The previous section looked at how the Laplace-Beltrami
equation can be used to solve for the instantaneous motion of fluid around a fixed vortex. We
now look at how to obtain the path a vortex will take over time in a steady, incompressible
fluid.

6.2.1 Method 1: Constructing Contours of ψ̂(x,x0)

Example 6.3: Spherical Cap

In this example Method 1 from Section 5.3 is used to construct the contours of ψ̂(x0,x0)
for the same spherical cap boundary as in Example 6.1. For each vortex location x0, the
system (2.13) is solved with a new right hand side.

The numerical solution is compared to the exact solution given by Crowdy [12]. The
same notation from Example 6.1 is used. The solution is given by

ψ̂(ξ, ξ0) = −κ log
∣∣∣∣∣(1 + ξ0ξ̄0)ζ ′(ξ0)
ζ(ξ0)− ζ̄(ξ0)

∣∣∣∣∣ , ξ, ξ0 ∈ Ω̃,

where

ζ ′(ξ0) = − 2irc
(ξ0 + rc)2 .

Figure 6.4 plots the resulting numerical solution for ψ̂(x0,x0) over a 50 × 100 point
grid on Ω. The grid is constructed by discretizing the interval [θc + 2h, π] with 50 points,
and the interval [0, 2π] with 100 points. We are able to evaluate the solution this close to
the spherical cap because of the large number of points used to discretize the boundary,
N = 2048. The corresponding value of h is 2π

N .
The total time taken for compression and LU factorization of the system matrix A in

(2.13) is 0.5s. To evaluate ψ̂ over the grid, the matrix A is then applied to the right hand
side, g(x,x0), 50× 100 times, taking a total of 2.5s to obtain all solutions. With the level
of accuracy for the ID set to ε = 10−10, the maximum error over the grid in the infinity
norm is || · ||∞ = 3.7802 · 10−10

For a simply connected domain in 2D, vortex trajectories for a single vortex are well
known to orbit the boundary [19]. Furthermore these orbits circle an elliptic stationary
point in the domain. The same behaviour is seen by both Kidambi in [39], Crowdy in
[12], and in our results on the sphere. All trajectories are qualitatively the same, and
form closed orbits circling the island. As the vortex approaches the boundary, the velocity
increases, as seen from the contours of ψ̂ in Figure 6.4. For the spherical cap centered at

83

(a) ψ̂(x0,x0) plotted on the sphere.

-3 -2 -1 0 1 2 3

Re(ξ)

-3

-2

-1

0

1

2

3

Im
(ξ

)

-2.5

-2

-1.5

-1

-0.5

0

0.5

(b) The contours of ψ̂(x0,x0) plotted in
the stereographic plane.

Figure 6.4: Point vortex trajectories plotted over a grid of the solution domain Ω. There
are 50 × 100 grid points in total which discretize θ and φ. The angle of elevation of the
spherical cap is taken to be θc = π

6 . We observe that the south pole is an elliptic stationary
point, and the speed of the vortex slows down as it approaches this stationary point.

the north pole, the south pole is an elliptic stationary point corresponding to the critical
point ψ̂(x0,x0) = 0. This means, that if the initial position of a vortex is placed at the
south pole, it will remain stationary for all time t. As a result the speed of the vortex slows
as it approaches this stationary point (Figure 6.4).

Example 6.4: Comparison of the Direct Solver with the FMM

The same example as above is implemented again, except this time using the FMM as
in [44]. The Laplace-Beltrami equation is mapped to the stereographic plane where the
FMM for the 2D Coulomb potential can be applied to accelerate matrix-vector products
in GMRES. The specific FMM routine used in this example is implemented in MATLAB
using mex files from the open source FMMLIB package [22]. Although the routine is not
optimized, the timings of both the direct solver and the FMM for a single solve were found
to be comparable after extensive testing. The significant difference between the direct and
iterative solvers is that the FMM must completely re-apply GMRES to the system for each
new grid point x0.

Figure 6.5 shows the timings of both methods on increasingly larger grids. The number
of points used to discretize the boundary is N = 1024. For the FMM, the initial com-
putation time of building the system, 1.4s, is excluded, and for the direct solver the time
for compression and LU factorization of the system, 0.3s, is also excluded. Only timings
for solving the system are shown. The direct solver beats the FMM by approximately two
orders of magnitude. The time taken by GMRES with the FMM to solve for one grid point
is 0.09s. For the direct solver, the time to apply A to the right hand side is 0.002s. Thus

84

for a single solve, the direct solver is about one order of magnitude faster. The direct solver
also clearly outperforms the FMM as soon as multiple right hand sides are considered.

10
2

10
3

10
4

N
g

10
-1

10
0

10
1

10
2

10
3

T
im

e
 (

s
)

Direct Solver
FMM

Figure 6.5: Timings to find the contours of ψ̂(x0,x0) with the FMM (shown in red) and
the direct solver (shown in blue). The boundary of the spherical cap is discretized with
N = 1024 points. Only timings for solving the system with GMRES, or applying the LU
factors from UMFPACK, are shown. The direct solver outperforms the FMM by roughly
two orders of magnitude. Ng denotes the total number of points taken over a grid on Ω.

Example 6.5: Star-Shaped Island

We also consider vortex trajectories in the presence of the same smooth, star-shaped island
used in Example 6.2. Figure 6.6 plots the values of ψ̂(x,x0) on the sphere, and the cor-
responding contours in the stereographic plane. For N = 2048, the time for compression
and LU decomposition of the matrix A is 0.6s. The total time to solve over all 61,927 grid
points is 5.4s.

Again, we see the same dynamics as for the spherical cap. The south pole forms an
elliptic stationary point and the trajectories form closed orbits circling the stationary point
and the island.

6.2.2 Method 2: Solving the Autonomous ODE, or Equation of Motion
for a Vortex

Example 6.6: Spherical Cap

This example solves the IVP (5.8) which governs the motion of a single vortex along one
trajectory. The same spherical cap boundary as in Example 6.3 is considered. The composite
spectral deferred correction algorithm from Section 5.3.2 is applied to solve the equivalent

85

(a) ψ̂(x0,x0) plotted on the sphere.

-5 0 5

Re(ξ)

-5

-4

-3

-2

-1

0

1

2

3

4

5

Im
(ξ

)

-1.5

-1

-0.5

0

(b) The contours of ψ̂(x0,x0) plotted in
the stereographic plane.

Figure 6.6: Point vortex trajectories plotted over a grid of the solution domain Ω. There
are 61,927 grid points in total. The same star-shaped boundary as in Example 6.2 is used.
We also see the same qualitative behaviour of the vortex as for the spherical cap.

Picard integral equation associated with (5.8),

x0(t) = x0(0) +
∫ T

0

(
∇xψ̂(x0(s),x0(s))× er

)
ds.

If the total time interval is given by t ∈ [0, T], we recall that the composite method divides
the interval into smaller subintervals, discretized with Chebyshev points. On each subin-
terval, the solution is first approximated using forward Euler. Since the error of this initial
approximation also satisfies a Picard integral equation, forward Euler can be successively
re-applied to improve the initial solution.

Figure 6.7a shows an example of a vortex orbit for the initial position x0 = (θ0 =
13π
40 , φ0 = 0), over the time interval [0, T = 30]. The trajectory plotted in red is the initial
forward Euler estimate. As expected it performs poorly, and also inaccurately approximates
the energy of the system, which is constant along the grey contour lines from Method 1.
However, after applying several correction steps, the trajectory is corrected to the one shown
in blue. For this example three panels are considered with Mp = 10 points each. Since the
order of the method is given by O(hmin(Mp,J+1)), a total of J = 9 correction steps are used
on each panel.

Figure 6.7b plots the same sample orbit from Figure 6.7a, but this time on the sphere.
Vectors corresponding to the fluid velocity field are plotted at several points to show the
direction of travel of the vortex. Since κ = 1, the vortex generates a counterclockwise
rotation in the fluid. Combined with the clockwise rotation generated by the image vortex
−κG(x,x1) placed on the spherical cap, the vortex moves in a clockwise direction on the
sphere with respect to the north pole.

86

-3 -2 -1 0 1 2 3

Re(ξ)

-3

-2

-1

0

1

2

3
Im

(
ξ
)

(a) The results of spectral deferred correc-
tion. The initial forward Euler approximation
is shown in red, and the corrected approxima-
tion after J = 9 steps is shown in blue. Three
panels with 10 points each are used to approxi-
mate the solution, which matches the contours
from Method 1, shown in grey.

(b) The same solution plotted on the sphere
without the initial forward Euler estimate.
The arrows represent values of the vector
field at several points along the orbit. Since
the vortex generates a counterclockwise ro-
tation in the fluid, it will move to the left, or
in a clockwise direction with respect to the
north pole.

Figure 6.7: A single vortex trajectory over a spherical cap domain found with spectral
deferred correction. The initial position of the vortex is x0 = (θ0 = 13π

40 , φ0 = 0), and the
time interval taken is [0, T = 30]

Since the exact solution for this problem is given by Crowdy [12], we can verify the
order of convergence of spectral deferred correction. Figure 6.8 shows two plots of the
error. For a varying number of points M , taken over the time interval [0, T = 30] the order
of convergence falls just under O(M−(J+1)). There is some small growth in error since the
initial value on each panel is an approximation from the previous panel. If we fix a value
of M and examine the convergence behaviour of the correction steps, we observe that they
converge exponentially. This is due to the spectral integration that is used to estimate
the residual, and the fact that the Nyström method converges exponentially to the exact
solution of ψ̂.

The time complexity of the method is influenced by the time complexity of the direct
solver. To determine ψ̂ at each step, we solve for the density σ in the system (2.13),
using a fixed number of points along the boundary, N . Hence the solution time to obtain
∇xψ̂(x0,x0), remains constant across all time-steps of the ODE solver. The time-complexity
then grows based on the number of points used in the time-stepping. Since the number of
points in each panel is low, the cost of applying the spectral integration matrix also remains

87

10
1

10
2

10
3

M

10
-22

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

||
·
||
∞

Convergence rate for varying M and fixed J = 9

O(M
-(J+1)

)

O(M
-(J+1/2)

)

(a) Convergence rate for varying M, and a fixed
number of correction steps, J = 9. The order
of convergence is just under O(M−(J+1)).

1 2 3 4 5 6 7 8 9

Correction Steps j

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

||
·
||
∞

Convergence Rate for Varying J, Fixed M = 100

exp(-(J+1))

(b) Convergence rate for fixed M, and varying
j = 1, ..., J . This plot studies the quality of the
correction steps applied to the initial forward
Euler estimate. The error is plotted for each
of the 10 panels used. The correction steps are
observed to converge exponentially.

Figure 6.8: Convergence results for spectral deferred correction used to find a vortex tra-
jectory in a spherical cap domain. As expected, the order of accuracy is just slightly
under O(M−(J+1)), where J = 9. The number of points on each panel is set to Mp = 10.
To increase M, the number of panels are increased. The total time interval considered is
[0, T = 30]. The accuracy of the ID is set to ε = 10−12 for these plots.

low. Overall, we observe that the time complexity grows linearly with the total number of
points, M . This is shown in Figure 6.9.

Example 6.7: Star-Shaped Island

Spectral deferred correction is also applied to find a vortex trajectory in the same star-
shaped domain as in Example 6.5. The initial position of the vortex is taken to be x0 =
(θ0 = 13π

40 , φ0 = 0). The resulting solution over the time interval [0, T = 15] is plotted in
Figure 6.10 both on the sphere and in the stereographic plane. We see that the numerical
solution to the IVP coincides with the contours of ψ̂(x,x0) found in Example 6.5. The
dynamics are also the same as in the spherical cap case. The vortex follows the shape of
the boundary moving in a clockwise direction with respect to the north pole.

88

10
1

10
2

10
3

M

10
0

T
im

e
 (

s
)

O(M)

Figure 6.9: The time complexity of spectral deferred correction plotted against varying M.
The number of points on each panel is the same as in the convergence plots, Mp = 10.

-5 0 5

Re(ξ)

-5

-4

-3

-2

-1

0

1

2

3

4

5

Im
(
ξ
)

(a) (b)

Figure 6.10: A single orbit with initial position x0 = (θ0 = 13π
40 , φ0 = 0) computed with

spectral deferred correction on the time interval [0, T = 15]. The number of points on each
panel is Mp = 10, with 10 panels, and the number of correction steps is J = 9. The orbit is
plotted both in the stereographic plane in (a) and on the sphere in (b). Figure (b) also plots
several velocity vectors on the trajectory to show the direction of motion of the vortex.

89

6.2.3 Vortex Motion around a Thin, Extended Island on the Sphere

Example 6.8

For the numerical examples presented thus far, the point vortex behaves very similarly on
the sphere as it would in the plane, for a simply connected domain. For both the spherical
cap and star the vortex follows closed orbits around the island. These orbits eventually
shrink down to ellipses as they draw away from the boundary until they hit the stationary
point at the south pole.

However, it is possible to see qualitatively different behaviour when a long extended
island is placed on the sphere, as in Figure 6.11. In [12] Crowdy shows an example for a
long, thin bar placed on the sphere. When the length of the bar exceeds some critical value,
the trajectories no longer shrink down to one elliptic stationary point, but two, and the
south pole becomes a hyperbolic critical point [12].

Since the BIE approach combined with the Nyström method requires smooth boundaries
for rapid convergence, we apply a similar example to Crowdy’s for an island with a smooth
boundary. Following Crowdy [12] we suppose that the island is centred at the north pole,
and that its endpoints lie along the great circle corresponding to φ = 0, π. The gap between
the endpoints is symmetrical about the south pole and given by the latitudes [π − θg, π].

To obtain a parametric equation for such a smooth island, we first work in the stereo-
graphic plane and then map the expression for the boundary to the sphere. This requires
several intermediate mappings in the complex plane, which we summarize below.

In the stereographic plane, the desired boundary has an elliptical shape where the centre
has been pinched together, resulting in two smooth "folds" that are close to touching (Figure
6.12). The width between these two folds is determined by θg. In the stereographic plane
this width is equal to

2L = cot
(
θg
2

)
,

where the centers of each fold touch the points −L and L along the real axis (Figure 6.12).
To obtain a shape like this in the stereographic plane, we begin with the expression for

a disk with radius 1 + δ in the complex ζ plane

ζ(t) = (1 + δ)eit, t ∈ [0, 2π].

This disk is then mapped to the region exterior to the island, using a degenerate Joukowski
map,

ζ1(ζ) = 1
2(ζ + ζ−1).

90

And then finally it is mapped to the desired stereographic coordinates, ξ, using

ξ = L

ζ1
.

Composing these maps together gives,

ξ(t) = 2L(1 + δ)eit

(1 + δ)2e2it + 1
.

To obtain this expression in real coordinates we then use the mapping (2.10) provided in
Section 2.3.

Examining the resulting vortex trajectories that occur around this extended island, we
find that their behaviour differs based on the same critical value found for L as in [12]. If
L ≥ 1√

2 , trajectories follow the same orbits as for the spherical cap and star. They follow
the shape of the boundary, and eventually shrink down to an elliptic stationary point. If
L < 1√

2 , then trajectories no longer shrink down to one elliptic stationary point, or center,
but two, which lie along φ = ±π

2 , depending on the length of the wall. Also, there is a
third hyperbolic stationary point which forms at the south pole. Hence, a vortex can form a
closed orbit circling the island, it can orbit both centers, or it can follow one of two possible
closed elliptic orbits surrounding either elliptic stationary point. Examples of these types
of trajectories are shown in Figures 6.11 and 6.12. Figure 6.11 plots several orbits on the
sphere, while Figure 6.12 shows a contour plot of all possible trajectories.

It is evident that these critical values found by Crowdy [12], likely hold for any general
shape which is extended over the island in this way. In this case, it is the length of an island,
rather than its specific shape, that determines the dynamics of vortices. The numerical
methods developed in this thesis allow vortex trajectories to be constructed for any general
smooth shape, and can be used to further investigate vortex behaviour for cases where
obtaining analytical solutions is difficult.

91

Figure 6.11: Vortex trajectories for θg = 3π
4 , L = 0.4142. Several views are shown for

clarity. Two elliptic stationary points, or centers, occur on either side of the island. A third
hyperbolic stationary point occurs at the south pole. A vortex can take one of three possible
orbits: it can circle the island, it can circle all three stationary points, or it can form an
elliptical orbit around one of the two elliptic stationary points. The values of ψ̂(x0,x0) are
plotted in the background.

-6 -4 -2 0 2 4 6

Re(ξ)

-6

-4

-2

0

2

4

6

Im
(
ξ
)

(a)

-1.5 -1 -0.5 0 0.5 1 1.5

Re(ξ)

-1.5

-1

-0.5

0

0.5

1

1.5

Im
(ξ

)

(b)

Figure 6.12: Vortex trajectories in the stereographic plane for θg = 3π
4 , L = 0.4142. Figure

(b) is zoomed in to clearly show the two elliptic stationary points that result for this value
of L.

92

Chapter 7

The Multiply Connected Case

A natural extension of the numerical methods presented thus far is to apply them to a
domain with multiple islands. We give several examples to show how direct solvers can be
applied to solve the Laplace-Beltrami equation over a multiply connected domain on the
sphere. Initial results are shown here, and further investigation is left for future work.

To formulate the appropriate integral equations we follow previous work in [44]. Suppose
we have a multiply connected domain on the sphere with M smooth islands, denoted by
Ω1,Ω2, ...,ΩM . The boundaries of these islands are denoted by Γ1,Γ2, ...,ΓM respectively.
The solution domain is then denoted by Ω = S\(Ω1∪...∪ΩM), where S represents the surface
of the sphere, and the multiply connected boundary curve is denoted by Γ = Γ1 ∪ ... ∪ ΓM .
An example of a multiply connected domain with M = 2 islands is shown in Figure 7.1a.
The normal, tangent, and principal normal vectors on each boundary curve are defined in
exactly the same way as for the simply connected case (Chapter 2 and Figure 2.1). The
Dirichlet Laplace-Beltrami equation for such a domain is also posed in exactly the same
way,

∆S u(x) = 0, x ∈ Ω

u(x) = g(x), x ∈ Γ.

Just as in Chapter 2, the boundary value problem above can be reformulated into a
BIE, which is given by the same equation as for the simply connected case,

1
2σ(x) + 1

2π

∫
Γ
σ(x′) ∂

∂n′
log ||x− x′||ds′ = g(x), x ∈ Γ.

For the simply connected case, this Fredholm integral equation of the second kind has
a trivial nullspace and thus a unique solution for any integrable boundary data. For the
multiply connected case however, the homogeneous problem (which sets g = 0), has M − 1
nontrivial solutions [44].

93

To resolve this issue, [44] follows a similar approach taken for 2D problems in [26], which
is to place a fundamental solution of unknown strength inside each island. This results in
the following representation for the solution u,

u(x) = 1
2π

∫
Γ
σ(x′) ∂

∂n′
log ||x− x′||ds′ +

M∑
k=1
AkG(x, ck), (7.1)

where ck ∈ Ωk. Applying the Laplace-Beltrami operator to (7.1), results in

∆S u = 1
4π

M∑
k=1
Ak.

Thus to satisfy the Laplace-Beltrami equation, we need

M∑
k=1
Ak = 0. (7.2)

Applying the jump relation (2.7) as in Chapter 2, gives the following integral equation for
σ

1
2σ(x) + 1

2π

∫
Γ
σ(x′) ∂

∂n′
log ||x− x′||ds′ +

M∑
k=1
AkG(x, ck). (7.3)

Discretizing this integral equation adds M − 1 additional degrees of freedom to the system.
As a result [44] and [26] add the extra constraints∫

Γk
σ(x)ds = 0, k = 2, ...,M. (7.4)

The equations (7.2) and (7.4) are augmented to the system representing (7.3), resulting in
an (N + 1)M by (N + 1)M system. More details are given in [44, 26].

However, augmenting the system in this way makes it difficult to apply the direct solver
to the system matrix since the extra constraints cannot be compressed using a brute force
or proxy point approach. Instead the system is kept in the same form as (7.3), and we set

Ak =
∫

Γk
σ(x)ds, k = 2, ..,M,

where A1 is obtained from (7.2),

M∑
k=1
Ak = 0, =⇒ A1 = −

M∑
k=2
Ak.

94

Substituting this into (7.1), we obtain the following representation for the solution, u,

u(x) = 1
2π

∫
Γ
σ(x′) ∂

∂n′
log ||x− x′||ds′ +

M∑
k=2
Ak (−G(x, c1) +G(x, ck)),

and the following integral equation for σ

1
2σ(x) + 1

2π

∫
Γ
σ(x′) ∂

∂n′
log ||x− x′||ds′ +

M∑
k=2
Ak (−G(x, c1) +G(x, ck)) = g(x). (7.5)

The Nyström Method

Equation (7.5) is discretized with the Nyström Method in the same way as the simply
connected case in Section 2.4. Each contour Γ1, ...,ΓM is discretized with N points. For
the kth contour the discretized parametric boundary is denoted by

rk(ti) = rki , ti ∈ [0, 2π), k = 1, ...,M.

The associated unknown density along each curve is denoted by σki , the mesh spacing is
h = 2π

n , and the arc length is denoted by dski =
∣∣∣drk
dt

∣∣∣
i
. The resulting system has the form

σk
i + h

π

M∑
m=1

N∑
j=1

σm
j K(rk

i , rm
j) + 2h

M∑
m=2

N∑
j=1

dsm
j

(
−G(rk

i , cm−1) +G(rk
i , cm)

)
= 2gk

i , k = 1, ...,M,

i = 1, ..,M,

(7.6)

where

K(rki , rmj) =


− (rki−rmj)·nmj
||rki−rmj ||

2
2

dsmj rki 6= rmj
1
2ski

(
κkiNp

k
i × rki

)
dsi rki = rki .

The definitions for all vectors above can be found in Section 2.4.
The direct solver is then applied to the system(

I + 1
π
K̃

)
σ = 2g,

where K̃ denotes that the extra log terms in (7.6) are added to the kernel. The solver
works the same way as for the simply connected case except for a slight change to the proxy
points. When the kernel is evaluated along a proxy circle, all log terms associated with the
indices of the far field are added to the proxy kernel. There are likely other possible options
for dealing with these sources but this approach seems to be the most straightforward.

95

Example 7.1

We now apply the solver to a multiply connected domain with two star-shaped islands
shown in Figure 7.1a. Boundary data is prescribed from the exact solution

u(x) = 1
2 Re 1

x+ iy

1− z −
x1 + iy1
1− z1

+ 1
2 Re 1

x+ iy

1− z −
x2 + iy2
1− z2

, x ∈ Γ, (7.7)

where x1, and x2 are points on the islands Ω1 and Ω2 respectively.
Figure 7.1a plots the solution for N=2000. The accuracy of the ID is set to ε = 10−10

and the solution for the density σ is found in 2.1 seconds by the direct solver.
Figure 7.1b shows a convergence plot for the error, confirming that numerical solutions

converge exponentially to the true solution. Lastly, Figure 7.1c shows timings of the direct
solver for the three stages of compression, LU, factorization and solution. The time com-
plexity remains O(MN) where MN is the total number of points used to discretize both
boundaries.

Example 7.2

We also show a second example related to instantaneous point vortex motion. We keep
the same star-shaped boundaries and place one vortex on the sphere. The stream function
satisfies the same equation as for the simply connected case,

−∆S ψ(x,x0) = δ(x,x0), x ∈ Ω

ψ(x,x0) = 0, x ∈ Γ.

Compared to other models of point vortex motion, the boundary condition ψ = 0 does not
give the most realistic results for the multiply connected case. Typically the stream function
for a multiply connected domain takes on different constant values on the boundary of each
island [58, 46]. Extending the stream function formulation and also the direct solver to
handle varying boundary conditions is left for future work.

Figure 7.2 shows a plot of the stream function on the sphere and in the stereographic
plane. For M = 2, N = 3000, the solution for the density σ is obtained in 2.0 seconds to
an order of accuracy of ε = 10−10 on the sphere. Examining the stream function in Figure
7.2a we see that streamlines do not penetrate through the gap between the islands. This is
a result of the zero boundary condition.

96

(a) Numerical solution evaluated over the
sphere with N = 2000.

0 100 200 300 400 500 600

M*N

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

||
 ·

 |
| ∞

Error

(b) Error in the solution u(x) evaluated along
a contour well-away from the boundary.

10
2

10
3

10
4

10
5

M*N

10
-2

10
-1

10
0

10
1

T
im

e
 (

s
)

Time for Compression

O(M*N)O(M*N)

10
2

10
3

10
4

10
5

M*N

10
-3

10
-2

10
-1

10
0

10
1

T
im

e
 (

s
)

Time for LU

O(M*N)

10
2

10
3

10
4

10
5

M*N

10
-4

10
-3

10
-2

10
-1

T
im

e
 (

s
)

Time for Solve

O(M*N)

(c) Timings for all three stages of the direct solver. The time in seconds is plotted for (i) matrix
compression, (ii) LU factorization with UMFPACK, and (iii) solution with UMFPACK factors.

Figure 7.1: Results of the direct solver for the multiply connected domain shown in (a),
where the boundary data is prescribed from (7.7).

97

(a) Numerical solution to the stream
function ψ(x,x0).

-10 -5 0

Re(ξ)

-8

-6

-4

-2

0

2

4

6

Im
(
ξ
)

(b) Contours of ψ(x,x0) in the stereo-
graphic plane.

Figure 7.2: Instantaneous fluid motion in a multiply connected domain, around a point
vortex placed at θ0 = 1.2, φ0 = π/3.

98

Chapter 8

Conclusion

The main objective of this thesis was to develop fast direct integral equation methods for
the Laplace-Beltrami equation on the sphere. Since fast direct solvers haven’t been applied
to an elliptic PDE on a surface before, our aim was to investigate if they could be adapted
to the surface of the sphere. This involved studying existing solvers for 2D problems in
detail and identifying analogies that could be made between the plane and the sphere.

Firstly, we utilized the fact that the fundamental solution for the Laplace-Beltrami
equation on the sphere has a very similar form as in the plane. This implies that just as in
2D, the matrix corresponding to the kernel of the double layer potential has rapidly decaying
singular values in its off-diagonal blocks. As a result an O(N2) recursive compression
algorithm could be applied to the discretized BIE.

Furthermore we found that this O(N2) recursive algorithm could be accelerated with
proxy points to achieve O(N) time complexity just as in 2D. This is a result of the Green’s
identities which hold on the sphere. They allow the kernel of the BIE to be represented as
a potential where sources are distributed over the boundary of the domain.

In all numerical examples tested with smooth boundaries, we saw super-algebraic con-
vergence due to the Nyström method with the trapezoidal rule and O(N) time complexity
for any simply connected domain on the sphere. We did observe longer compression times
for boundaries that result in matrices with higher condition numbers and off-diagonal ranks.
The increase in compression time was the most dramatic for space-filling contours, which
is consistent with literature but needs to be investigated further.

The same exponential convergence rates of accuracy and O(N) time complexity were
seen for numerical examples tested on multiply connected domains. These initial results are
promising, and more investigation needs to be done into the behaviour of proxy points and
their influence on compression time especially for boundaries that fill space on the sphere.

Since direct solvers perform very well for problems with multiple right hand sides, we
applied our solver to the study of point vortex motion on the sphere, which is governed
by Green’s functions of the Laplace-Beltrami operator. The solver gave very efficient and

99

accurate solutions for the instantaneous motion of fluid on the sphere. We also used it to
efficiently obtain vortex trajectories over time in two possible ways.

Firstly, we repeatedly solved the system representing the Laplace-Beltrami BIE to eval-
uate the modified stream function ψ̂(x0,x0) at different vortex locations. The contours of
this stream function were then constructed to give all possible vortex trajectories over a
given subdomain.

Secondly, we used the direct solver to find solutions to the equation of motion for a
vortex, which is given by an autonomous ODE. Combined with spectral deferred correction
this gave an effective strategy for finding the possible paths a vortex will take on the sphere.

Our work shows that the direct solver for the Laplace-Beltrami equation can be used
as a tool to study vortex motion, in both simply and multiply connected domains. It can
also be extended to any similar models which govern a time dependent process in a fixed
geometry.

The development of fast direct solvers has opened up an alternative approach to solv-
ing large linear systems arising from elliptic PDEs. Direct solvers have not only become
competitive with iterative methods, but also offer several specific advantages. Most impor-
tantly, they provide a much more efficient solution process in situations where the same
system needs to be repeatedly solved. They can also be used for problems where iterative
methods converge slowly. Thus they are much more robust, and can be more easily adapted
to different types of elliptic PDEs. We have shown that on the sphere, fast direct solvers
outperform iterative methods especially for problems with multiple right hand sides. This
implies that the advantages of direct solvers are not only restricted to PDEs posed in 2D
and 3D but can also be extended to PDEs posed on surfaces.

8.1 Future Work

In the future, we would like to investigate the time complexity and accuracy analysis of the
solvers in more detail, especially to better understand how proxy points work to achieve
O(N) complexity. This may also shed some light on the relationship between space-filling
contours and time complexity.

The effect of space-filling contours in the multiply connected case also needs to be
studied. For such domains it is often more convenient to introduce blocks in the system
matrix based on physical space rather than parameter space.

It would also be useful to develop more optimized codes for the ID and matrix compres-
sion. Moving codes to Fortran would allow a clearer comparison to be made between direct
solvers and the FMM, as well as between the solver for the Laplace-Beltrami equation and
other solvers used in literature.

In terms of the fluid dynamics applications to vortex motion it would be interesting to
study vortex dynamics in more detail. In particular, the paths of passive particles placed

100

in the fluid field generated by a point vortex can exhibit different types of behaviour. In a
multiply connected domain, it is possible for these particle paths to become chaotic. These
dynamics also become more involved as more vortices are added to the domain. Thus,
the numerical methods developed in this thesis could be used to explore instantaneous
streamlines and vortex trajectories for domains that are difficult to study analytically.

More broadly, integral equation methods can also be developed for different types of
surfaces, and for other elliptic PDEs. It would be interesting to see if direct solvers can also
be applied to these more general problems. This would also open up many more applications
for future study.

101

Bibliography

[1] K.E. Atkinson. The numerical solution of integral equations of the second kind, vol-
ume 4. Cambridge University Press, 1997.

[2] A. H. Barnett. Evaluation of layer potentials close to the boundary for Laplace and
Helmholtz problems on analytic planar domains. SIAM Journal on Scientific Comput-
ing, 36(2):A427–A451, 2014.

[3] A. Björck. Numerics of Gram-Schmidt orthogonalization. Linear Algebra and Its
Applications, 197:297–316, 1994.

[4] A. Björck. Numerical methods for least squares problems. SIAM, 1996.

[5] S. Boatto and J. Koiller. Vortices on closed surfaces. arXiv preprint arXiv:0802.4313,
2008.

[6] S. Börm. Efficient numerical methods for non-local operators: H2-matrix compression,
algorithms and analysis, volume 14. European Mathematical Society, 2010.

[7] R. L. Burden and J. D. Faires. Numerical Analysis. Brooks/Cole, Cengage Learning,
Boston, MA, 2011.

[8] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole algorithm for
particle simulations. SIAM Journal on Scientific and Statistical Computing, 9(4):669–
686, 1988.

[9] M. A.J. Chaplain, M. Ganesh, and I. G. Graham. Spatio-temporal pattern formation
on spherical surfaces: numerical simulation and application to solid tumour growth.
Journal of Mathematical Biology, 42(5):387–423, 2001.

[10] H. Cheng, Z. Gimbutas, P.G. Martinsson, and V. Rokhlin. On the compression of low
rank matrices. SIAM Journal on Scientific Computing, 26(4):1389–1404, 2005.

[11] D. Colton and R. Kress. Integral equation methods in scattering theory, volume 72.
SIAM, 2013.

[12] D. Crowdy. Point vortex motion on the surface of a sphere with impenetrable bound-
aries. Physics of Fluids, 18(3):036602, 2006.

[13] D. Crowdy and M. Cloke. Analytical solutions for distributed multipolar vortex equi-
libria on a sphere. Physics of Fluids, 15(1):22–34, 2003.

[14] T. A. Davis. Algorithm 832: UMFPACK V4. 3—an unsymmetric-pattern multifrontal
method. ACM Transactions on Mathematical Software (TOMS), 30(2):196–199, 2004.

102

[15] A. Dax. A modified Gram–Schmidt algorithm with iterative orthogonalization and
column pivoting. Linear Algebra and its Applications, 310(1):25–42, 2000.

[16] D. G. Dritschel and S. Boatto. The motion of point vortices on closed surfaces. In
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, volume 471, page 20140890. The Royal Society, 2015.

[17] A. Dutt, L. Greengard, and V. Rokhlin. Spectral deferred correction methods for
ordinary differential equations. BIT Numerical Mathematics, 40(2):241–266, 2000.

[18] L. Evans. Partial differential equations. American Mathematical Society, 1998.

[19] M. Flucher and B. Gustafsson. Vortex motion in two-dimensional hydrodynamics.
Royal Institute of Technology Report No. TRITA-MAT- 97-MA 02, 1997.

[20] S. Gemmrich, N. Nigam, and O. Steinbach. Boundary integral equations for the
Laplace-Beltrami operator. In Mathematics and Computation, a Contemporary View,
pages 21–37. Springer, 2008.

[21] A. Gillman, P. M. Young, and P.G. Martinsson. A direct solver with O(N) complexity
for integral equations on one-dimensional domains. Frontiers of Mathematics in China,
7(2):217–247, 2012.

[22] Z. Gimbutas and L. Greengard. FMMLIB: fast multipole methods for electrostatics,
elastostatics, and low frequency acoustic modeling. preparation. Software available
from http://www. cims. nyu. edu/cmcl/software. html.

[23] M.S. Gockenbach. Partial differential equations: analytical and numerical methods.
SIAM, 2010.

[24] D. Gottlieb and S. A. Orszag. Numerical analysis of spectral methods: theory and
applications, volume 26. SIAM, 1977.

[25] A. Greenbaum and T.P. Chartier. Numerical Methods: Design, analysis, and computer
implementation of algorithms. Princeton University Press, 2012.

[26] A. Greenbaum, L. Greengard, and G.B. McFadden. Laplace’s equation and the
Dirichlet-Neumann map in multiply connected domains. Journal of Computational
Physics, 105(2):267–278, 1993.

[27] L. Greengard. The rapid evaluation of potential fields in particle systems. MIT press,
1988.

[28] L. Greengard. Spectral integration and two-point boundary value problems. SIAM
Journal on Numerical Analysis, 28(4):1071–1080, 1991.

[29] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of
Computational Physics, 73(2):325–348, 1987.

[30] D. J. Griffiths. Introduction to electrodynamics. Boston: Pearson, 2013.

[31] M. Gu and S. C. Eisenstat. Efficient algorithms for computing a strong rank-revealing
QR factorization. SIAM Journal on Scientific Computing, 17(4):848–869, 1996.

103

[32] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. part I: Introduction
to H-matrices. Computing, 62(2):89–108, 1999.

[33] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: structure-
preserving algorithms for ordinary differential equations, volume 31. Springer Science
& Business Media, 2006.

[34] E. Hairer, S.P. Norsett, and G. Wanner. Solving ordinary differential equations I,
nonstiff problems. Section III, 8, 1993.

[35] J. Helsing and R. Ojala. On the evaluation of layer potentials close to their sources.
Journal of Computational Physics, 227(5):2899–2921, 2008.

[36] K. L. Ho and L. Greengard. A fast direct solver for structured linear systems by
recursive skeletonization. SIAM Journal on Scientific Computing, 34(5):A2507–A2532,
2012.

[37] D. B. Ingham and M. A. Kelmanson. Boundary integral equation analyses of singular,
potential, and biharmonic problems, volume 7. Springer Science & Business Media,
2012.

[38] R. Kidambi and P. K Newton. Streamline topologies for integrable vortex motion on
a sphere. Physica D: Nonlinear Phenomena, 140(1):95–125, 2000.

[39] R. Kidambi and P.K. Newton. Point vortex motion on a sphere with solid boundaries.
Physics of Fluids, 12(3):581–588, 2000.

[40] Y. Kimura and H. Okamoto. Vortex motion on a sphere. Journal of the Physical
Society of Japan, 56(12):4203–4206, 1987.

[41] G. Kirchhoff. Vorlesungen über mathematische Physik, volume 1. BG Teubner, 1876.

[42] A. Klöckner, A. Barnett, L. Greengard, and M. O’Neil. Quadrature by expansion: a
new method for the evaluation of layer potentials. Journal of Computational Physics,
252:332–349, 2013.

[43] R. Kress. Linear integral equations, volume 82 of Applied Mathematical Sciences.
Springer-Verlag, New York„ 1999.

[44] M.C.A. Kropinski and N. Nigam. Fast integral equation methods for the Laplace-
Beltrami equation on the sphere. Advances in Computational Mathematics, 40(2):577–
596, 2014.

[45] R. J. LeVeque. Finite difference methods for ordinary and partial differential equations:
steady-state and time-dependent problems, volume 98. SIAM, 2007.

[46] C.C. Lin. On the motion of vortices in two dimensions: I. existence of the Kirchhoff-
Routh function. Proceedings of the National Academy of Sciences of the United States
of America, 27(12):570, 1941.

[47] C. Marchioro. Euler evolution for singular initial data and vortex theory: a global
solution. Communications in Mathematical Physics, 116(1):45–55, 1988.

104

[48] P.G. Martinsson. 2014 CBMS-NSF Conference: Fast direct solvers for elliptic PDEs:
Codes, 2014.

[49] P.G. Martinsson. 2014 CBMS-NSF Conference: Fast direct solvers for elliptic PDEs:
Lecture materials, 2014.

[50] P.G. Martinsson and V. Rokhlin. A fast direct solver for boundary integral equations
in two dimensions. Journal of Computational Physics, 205(1):1–23, 2005.

[51] T.G. Myers and J. PF Charpin. A mathematical model for atmospheric ice accretion
and water flow on a cold surface. International Journal of Heat and Mass Transfer,
47(25):5483–5500, 2004.

[52] P.K. Newton. The N-vortex problem: analytical techniques, volume 145. Springer
Science & Business Media, 2001.

[53] N. Nishimura. Fast multipole accelerated boundary integral equation methods. Applied
Mechanics Reviews, 55(4):299–324, 2002.

[54] S. Rjasanow and O. Steinbach. The fast solution of boundary integral equations.
Springer Science & Business Media, 2007.

[55] E.J. Routh. Some applications of conjugate functions. Proceedings of the London
Mathematical Society, 1(1):73–89, 1880.

[56] P.G. Saffman. Vortex dynamics. Cambridge University Press, 1992.

[57] W. A. Strauss. Partial differential equations: An introduction. John Wiley & Sons,
Inc., 1992.

[58] A. Surana and D. Crowdy. Vortex dynamics in complex domains on a spherical surface.
Journal of Computational Physics, 227(12):6058–6070, 2008.

[59] T. Tang, X. Xu, and J. Cheng. On spectral methods for Volterra integral equations
and the convergence analysis. J. Comput. Math, 26(6):825–837, 2008.

[60] L. N. Trefethen and D. Bau III. Numerical linear algebra, volume 50. SIAM, 1997.

[61] B. Turkington. On the evolution of a concentrated vortex in an ideal fluid. Archive for
Rational Mechanics and Analysis, 97(1):75–87, 1987.

[62] A. Witkin and M. Kass. Reaction-diffusion textures. ACM Siggraph Computer Graph-
ics, 25(4):299–308, 1991.

[63] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. Superfast multifrontal method for
large structured linear systems of equations. SIAM Journal on Matrix Analysis and
Applications, 31(3):1382–1411, 2009.

[64] L. Ying, G. Biros, and D. Zorin. A kernel-independent adaptive fast multipole algo-
rithm in two and three dimensions. Journal of Computational Physics, 196(2):591–626,
2004.

[65] L. Ying and P. Zhang. Vortex methods, volume 381. Kluwer Academic Pub, 1997.

105

	Approval
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Outline

	The Laplace-Beltrami Equation and Boundary Integral Equation Methods
	The Generalized Fundamental Solution on the Sphere
	Boundary Integral Equation Formulation
	The Stereographic Projection
	Nyström Method

	Fast Direct Solvers
	Rank-Deficient Structure of System
	The ID and Rank-Revealing QR
	Single Level Brute Force Compression
	Recursive Brute Force Compression
	Accelerating Compression: Proxy Points in 2D
	Relationship to Potential Theory
	Implementation

	Proxy Points on the Sphere
	Solution with UMFPACK

	Numerical Results
	The Brute Force Vs. Proxy Point Method
	The Influence of Geometry on Performance

	Point Vortex Motion on the Sphere
	Velocity and Vorticity Fields on the Surface of the Sphere
	Instantaneous Point Vortex Motion
	Point Vortex Trajectories
	Numerical Methods for Finding Vortex Trajectories
	Spectral Deferred Correction

	Numerical Results for Point Vortex Motion
	Instantaneous Point Vortex Motion
	Point Vortex Trajectories
	Method 1: Constructing Contours of (x, x0)
	Method 2: Solving the Autonomous ODE, or Equation of Motion for a Vortex
	Vortex Motion around a Thin, Extended Island on the Sphere

	The Multiply Connected Case
	Conclusion
	Future Work

	Bibliography

