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Abstract

Silicon has been the backbone of the microelectronics industry for decades. As spin-based
technologies continue their rapid development, silicon is emerging as a material of primary
interest for a number of these applications. There are several techniques that currently
exist for polarizing the spin-1

2
29Si nuclei, which account for 4.7% of the isotopic makeup of

natural silicon (the other two stable isotopes, 28Si and 30Si, have zero nuclear spin). Polar-
ized 29Si nuclei may find use in quantum computing (QC) implementations and magnetic
resonance (MR) imaging. Both of these applications benefit from the extremely long T1 and
T2 of the 29Si nuclear spins. However, the lack of interactions between the 29Si nuclei and
their surroundings that allow for these long relaxation times also means that it is difficult
to find a source of spin-polarization that effectively couples to the 29Si spin ensemble. We
identify and exploit a field-dependent, frequency-matched resonant transfer process between
31P donor and 29Si nuclear spins in natural silicon to efficiently hyperpolarize the bulk 29Si
to over 6%. This all-optical technique requires no microwave irradiation, and the coupling
can be switched off to recover the ultra-long nuclear spin relaxation lifetimes of 29Si. This
switchable hyperpolarization technique significantly enhances the usefulness of 29Si spins in
QC and MR imaging applications.

Keywords: Silicon; silicon-29; phosphorus-31 donors; hyperpolarization; donor bound ex-
citons; magnetic resonance detection
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Chapter 1

Introduction

Due to the incredible success of the microelectronics industry, the silicon manufacturing
process has become extraordinarily well developed. Because of this, silicon is a quintessen-
tial material when considering any future applications of semiconductors in science and
technology. The size of transistors in computer processors has steadily decreased and quan-
tum effects have become more important in these devices [1]. Related to this, scientists
have been considering the possibility of using the quantum properties of silicon, as well as
the dopant impurities it may contain, as a primary platform for future technologies [1, 2].

This thesis work focuses on the silicon-29 (29Si) isotope, the only stable isotope of Si
that possesses a non-zero nuclear spin. In this work we develop a technique to hyperpolarize
29Si nuclear spins, inducing a nuclear polarization far larger than the polarization achiev-
able under easily realized thermal equilibrium conditions. This chapter will give a short
background of 29Si hyperpolarization techniques that have already been developed and will
discuss the two primary applications this procedure is likely to influence the most.

1.1 29Si Nuclear Polarization

Scientists first began working on techniques of nuclear hyperpolarization for applications
in high energy particle physics and low energy nuclear physics [3]. These methods became
known as dynamic nuclear polarization (DNP) experiments. Even though the nuclear polar-
izations required (>20%) [4] for use as polarized targets in high energy physics experiments
were never achievable in silicon [3], these techniques were incorporated into studies of the
fundamental dynamics of semiconductors. In silicon, DNP has been used to study the inter-
action of conduction electrons [5, 6], different species of impurities and lattice defects [7, 8],
and static magnetic fields [9] with the host 29Si nuclear spins in the Si lattice. Additionally,
by looking at the 29Si polarization and relaxation dynamics scientists have been able to bet-
ter understand the effects that illumination [10, 11], crystal deformation [12], high dopant
concentration [13], isotopic concentration [14, 15], and micro- and nanoparticles [16, 17]

1



have on a variety of properties of silicon. These properties include the nuclear magnetic
resonance properties of 29Si and impurity centres, the spin resonance properties of electrons
bound to impurities, and the polarization of electrons in the conduction band.

Due to conservation laws, all DNP techniques require a reservoir of polarization to trans-
fer to the target nuclei. A variety of techniques to hyperpolarize 29Si have been developed.
The majority of these have used the sizeable thermal polarization of unpaired electron spins
at low temperatures and high magnetic fields as the reservoir of polarization. These un-
paired electrons can be associated with donors [3, 15, 13], defect states (on the surface or
in the crystal bulk) [12, 16, 17], or conduction electrons [10, 18]. Each of these sources
requires a direct interaction between the electrons and 29Si nuclei to drive mutual spin flips
that will polarize the 29Si. The most successful techniques to date have used oscillating
magnetic fields at microwave frequencies [16, 15, 13, 17] to drive the mutual spin flips of the
coupled electron-nuclear spin system. This can be done directly, by driving forbidden mi-
crowave transitions, a technique called the solid effect [3]. Conversely, by using microwaves
to equalize the electron spin up and spin down populations under conditions where there
should otherwise be a non-zero equilibrium polarization of the unpaired electronic spin
states, one can throw the electron ensemble system out of equilibrium. This leads to the
electron relaxing via mutual spin flips with the 29Si, a method of polarizing the 29Si called
the Overhauser Effect [3]. Using the Overhauser Effect, Dementyev, et al. have been able
to generate a 29Si hyperpolarization of ∼ 10% [13]. Scientists have also attempted to use
optical pumping [10, 12, 18] to put electrons in a non-thermal state and hyperpolarize the
29Si by relying on relaxation processes that entail mutual spin flips. However, these optical
techniques have found less success, generating polarizations of <1% [18].

1.2 Applications of 29Si Polarization Methods

There are two primary emergent fields that have been identified as the most likely candidates
to benefit from expanding our knowledge of 29Si hyperpolarization techniques. These are the
realms of quantum computing (QC) and nanomedicinal applications in magnetic resonance
imaging (MRI). For both of these applications, the primary features of hyperpolarized
29Si that make it an attractive medium are its extremely long characteristic spin-lattice
relaxation time (T1), reaching up to 4 hours in bulk Si even at room temperature, and its
long characteristic spin-spin dephasing time (T2). These long relaxation times are due to
the lack of other species of spins in Si that can couple to the 29Si and lead to a loss of
hyperpolarization.

1.2.1 Quantum Computation

Quantum computation promises dramatic boosts in computing speed by employing quantum
algorithms that accomplish crucial tasks, like searching and factoring, much more efficiently

2



than their classical counterparts [19]. In order for a proposed implementation of a quantum
processor to be viable, it must satisfy the five Divincenzo criteria [19]:

1. It must be possible to construct a scalable physical system of well-defined qubits;

2. The qubits must be capable of maintaining phase coherence (T2) for sufficiently long
periods of time;

3. There must exist control mechanisms such that one can perform unitary transforma-
tions on the qubits that correspond to a universal set of quantum gates;

4. Each qubit state needs to be able to be measured with high fidelity, and

5. The qubits must be able to be initialized into a simple state (e.g. |000 . . .〉) at the
beginning of the calculation.

There have been several QC proposals [20, 21, 22] that use chains of 29Si nuclei embedded
in a spin-free host lattice of enriched 28Si as an analogue to the molecules used in liquid
state nuclear magnetic resonance (NMR) QC implementations [23, 24]. Itoh [25] provides
the details of how linear chains of 29Si in 28Si meet the five criteria listed above that are
required for an effective QC implementation. These criteria are summarized below.

To satisfy criterion one, it must be easy to scale the construction of these 29Si chains.
Long chains can be fabricated by depositing atoms of 29Si on a 28Si crystal that has been
specially designed to have a terrace-like surface. This organizes the deposited atoms into
chains along each step [25]. The ability of 29Si nuclear spins to satisfy criterion two is one
of the primary reasons they are being considered as a qubit candidate. The T2 of 29Si has
been shown to be very long. When using techniques that effectively decouple nearby 29Si
nuclear spins from each other to reduce dephasing, 29Si spins can maintain coherence for up
to ∼ 25 seconds [26]. To satisfy criterion three, one can achieve universal control of single
29Si spin qubits in linear chains by applying a strong magnetic field gradient to the atoms
in the chain and pulsing radio frequency (RF) oscillating magnetic fields at the specific
resonant frequency of the desired qubit in the field gradient. The dipole-dipole interaction
between qubits can also be controlled with decoupling pulse sequences to perform multiple
qubit quantum operations [25, 27]. To read out the spin state of a 29Si qubit in this QC
implementation as required by four, Itoh [25] suggests using electrons bound to 31P donors
at the ends of the 29Si chains to probe the spin state of the 29Si qubit [28] using the highly
anisotropic hyperfine interaction it exhibits with nearby 29Si nuclear spins [29].

This thesis is concerned with addressing the fifth criterion. The technique we have
developed, as well as the DNP techniques discussed above in section 1.1, allow one to
initialize a large fraction of the 29Si spin qubits into the same state. The 31P donors needed
to read out the 29Si spin states in this sort of implementation can also act as a reservoir of
hyperpolarization to initialize the 29Si. The 29Si spins nearest the donors will polarize first,
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and the induced spin polarization will diffuse along the chains of nuclei [14, 15, 13]. This
ability to effectively initialize the qubits is a huge improvement on the very small polarization
values and strongly mixed initial states characteristic of liquid state NMR implementations
of QC. This inability to effectively initialize the qubits in liquid state NMR QC limits the
maximum number of qubits that can be added to the system while maintaining a high signal
to noise ratio, making it unscalable.

1.2.2 Direct MRI of Micro- and Nanoparticles

MRI is a medical imaging technique that has become widely used in diagnosing illness.
It uses high static magnetic fields and radio-frequency (RF) oscillating magnetic fields to
probe nuclei in the body. The signal that is detected in MRI requires the existence of
polarized nuclear spins. Because the equilibrium polarization of nuclear spins at room
temperature is low and scales with the applied magnetic field strength, high fields are
required. However, even at the maximum applied magnetic field commercial MRI machines
are typically able to achieve (∼ 7 T), these polarization values are still typically only of
order 10−5. This high field requirement can be relaxed by injecting imaging agents spin-
polarized beyond equilibrium (a technique known as hyperpolarization) into the body and
using MRI to image the agents directly. This has been achieved using hyperpolarized noble
gases to image the lungs [30, 31], hyperpolarized 13C in metabolites to monitor tumor
responses to treatment [32], and hyperpolarized 29Si in silicon microparticles in a variety of
in vivo environments [17]. To be an effective medical imaging agent, there are three primary
requirements. First, the imaging agent must be biocompatible (safe to administer). Second,
there must exist a source of spin polarization that can be transferred to the target nuclei.
Third, the nuclei being imaged must have long spin-lattice relaxation times (T1) to maintain
hyperpolarization in the tumultuous in vivo environment throughout the imaging procedure.

Hyperpolarized 29Si in micro- and nanoparticles made out of silicon possess the required
characteristics listed above and, in addition, a number of other advantageous properties. In
tests on mice, the Si micro- and nanoparticles appear to be biocompatible [17]. The magnetic
moment of 29Si is similar to 13C and 15N, putting its resonance within the tuning range
of most commercial multi-nuclear MRI machines [17]. Additionally, there are naturally
only trace quantities of silicon in the body, meaning that imaging the silicon particles is
essentially background-free. In bulk silicon, 29Si nuclear spins have also been shown to
have T1 relaxation times that exceed four hours at room temperature [33, 34]. 29Si exists
in a mostly spin-free lattice with a natural abundance of ∼ 4.7%. The nuclei exhibit a
weak dipole-dipole interaction with each other and have no electric quadrupole moment,
making them insensitive to stray crystalline electric fields. Combined with the isotropic
nature of the silicon lattice, these properties make any spin polarization insensitive to lattice
orientation [35, 17] and allow these long T1 relaxation times to persist even when tumbling
through space, as in a fluid suspension [35], and in weak magnetic fields [36]. To that effect,
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in vivo relaxation time measurements of 29Si in natural silicon (natSi) microparticles have
shown a 29Si T1 ≈ 40 minutes [17]. Using a 29Si hyperpolarization technique developed by
Dementyev, et al. [16] that uses unpaired electrons bound to defects on the surface of the
microparticles, the positive attributes of Si microparticles outlined above have proven to be
effective enough to achieve direct MRI of these particles in vivo [17].

1.2.3 29Si Hyperpolarization Via Switchable Dipole-Dipole Coupling

Maintaining long 29Si T1 and T2 relaxation times is crucial when initializing 29Si nuclear
spins for use in QC, as well as when preparing hyperpolarized silicon micro- or nanoparticles
for imaging. However, introducing large numbers of unpaired electrons coupled to the 29Si
for hyperpolarization simultaneously acts as a source of relaxation, reducing the T1 and
T2 times. Hence, it is of interest to identify a source of 29Si hyperpolarization where the
coupling used to transfer polarization to the 29Si can be switched off to recover the long
relaxation times that give these applications promise.

The idea for this project was developed by Stephanie Simmons with the hope that we
could create a switchable technique for 29Si hyperpolarization. At Simon Fraser University,
we carried out a series of experiments to bring this idea to fruition. To that effect, we
have developed an all-optical method of hyperpolarizing 29Si to over 6% in bulk natSi. This
method uses optically hyperpolarized 31P donor nuclear spins as the reservoir of hyperpolar-
ization. The 31P nuclear hyperpolarization is able to diffuse to nearby 29Si nuclei through a
strongly field dependent dipole-dipole coupling mechanism. This field-dependence allows us
to switch off the 31P-29Si coupling when the hyperpolarization procedure is complete to re-
cover the long 29Si relaxation times. We believe this is the highest 29Si nuclear polarization
achieved by an all-optical technique to date.
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Chapter 2

Theoretical Framework

This chapter will first discuss the basic concepts required to understand the silicon crystal
and donor impurities. It will then give a general description of nuclear spin hyperpo-
larization and how this could be implemented in a diamagnetic crystal containing dilute
paramagnetic impurity centres, as is the case for a natural silicon (natSi) crystal dilutely
doped with phosphorus-31 (31P) donor impurities.

2.1 The Silicon Crystal

Crystalline silicon forms a diamond lattice structure, where each atom sits at the centre of
a tetrahedron constructed from its four nearest neighbours [37]. As seen in Fig. 2.1, the
diamond lattice structure can be constructed from a face centred cubic lattice with a two
atom basis such that one is located at (0,0,0) and the other is at the position (a4 ,

a
4 ,

a
4 ),

corresponding to one quarter of the diagonal length of the unit cell along the [111] lattice
direction. In Si, the lattice constant a = 5.43 Å [38], as indicated in Fig. 2.1. Si has 14
protons and is a group-IV element with three stable isotopes. In natSi, these are: 28Si
with a concentration of ∼ 92.2%, 29Si with a concentration of ∼ 4.7%, and 30Si with a
concentration of ∼3.1% [39]. 28Si and 30Si both have a nuclear spin of zero, while 29Si has
a nuclear spin of 1

2 and will couple to other spin systems through contact hyperfine and
dipole-dipole interactions.

Silicon is an indirect bandgap semiconductor with a energy gap Eg between the max-
imum of the valence band and the minimum of the conduction band of Eg = 1.17 eV at
4.2 K [41]. Since the bandgap is indirect, the maximum energy of the valence band occurs
at a different position in k-space than the minimum of the conduction band. Fig. 2.2 shows
a diagram of the band structure in silicon along the [001] direction. The energy of the
valence band is maximum at the the Brillouin zone centre, where k = 0. The minimum of
the conduction band occurs at k ≈ 0.852π

a in the 〈100〉 directions [42]. Hence, Si has six
identical conduction band minima [37]. The Si valence band is split, as seen in Fig. 2.2, due
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Figure 2.1: The silicon unit cell. Lattice sites are labeled in units of
(
a
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a
4
a
4
)
, with

a = 0.543 nm the size of the silicon unit cell. Figure adapted from [40].
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to the interaction of holes with the lattice. Holes have spin angular momentum Jh = 3
2 and

holes with different magnetic quantum numbers (mh = ±1
2 , ±3

2) have different effective
masses. Holes with mh = ±1

2 are referred to as light holes, while those with mh = ±3
2

are referred to as heavy holes. Each type of hole (light or heavy) has a gyromagnetic ratio
strongly dependent on the crystal orientation in the applied magnetic field.

Eg

Conduction
band

Valence
band heavy hole bandlight hole band

E

[001][001]

Figure 2.2: A schematic illustration of the silicon band structure along the [001] directions.
Because of the symmetry of the lattice, this same conduction band minima exist along all the
[100] and [010] directions. Since silicon is an indirect bandgap semiconductor, a wavevector
conserving phonon must be created when an electron is excited from the valence band
maximum to the conduction band minimum. At 4.2 K Eg = 1.17 eV [41]. Figure adapted
from [43].

2.2 Phosphorus Donor Impurities

Phosphorus is a common impurity atom found in silicon. It is a substitutional impurity,
meaning that it replaces one of the silicon atoms in the lattice while maintaining all the
chemical bonds with the surrounding four silicon atoms. Phosphorus possesses only one
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stable isotope, 31P, and is a group-V element with atomic number 15. Because it has
five valence electrons compared to the four of Si, neutral 31P impurities in the silicon
lattice will donate an electron (this is the reason 31P is called a ‘donor impurity’). As a
substitutional donor, 4 of the 31P impurity’s valence electrons will be used in covalent bonds
with the neighboring Si atoms, leaving the extra ‘donated’ electron to experience a screened,
attractive Coulomb potential due to the nucleus. At low temperatures, this potential loosely
binds the donor’s electron with an energy of ∼ 45.6 meV below the conduction band in
hydrogenic orbitals. At temperatures above ∼30 K, the 31P donors will begin to ionize and
at room temperature they will be completely ionized. This makes 31P neutral donors (D0)
inherently low temperature systems [44, 45].

For a D0 in its 1s-like ground state, the maximum value of the donor electron wave-
function is at the nucleus of the donor impurity and a Fermi contact hyperfine interaction
is present between the two particles. This interaction is governed by the donor electron
hyperfine tensor A, which at the donor nucleus is an isotropic scalar with a value of
A = 117.53 MHz for 31P [42]. At low temperatures and under an applied static mag-
netic field B0 = B0ẑ, this coupled system can be described by the 31P donor hyperfine
Hamiltonian

Ĥ =γeŜ ·B0 − γI Î ·B0 +AÎ · Ŝ
=γeŜzB0 − γI ÎzB0 +AÎ · Ŝ , (2.1)

where Ŝ =
(
Ŝx Ŝy Ŝz

)T
and Î =

(
Îx Îy Îz

)T
with the T superscript signifying the

transpose of these row vectors. The donor electron and nuclear gyromagnetic ratios are
γe = geµB = 28.020 MHz ·mT−1 and γI = gIµI = 17.247× 10−3 MHz ·mT−1, where ge and
gI are the phosphorus donor electron and nuclear g-factors and µB and µI the Bohr and
nuclear magnetons, respectively [46, 47].

At B0 = 0, the hyperfine interaction term AÎ · Ŝ splits the energies of the F̂ = Î + Ŝ = 1
triplet and F̂ = Î − Ŝ = 0 singlet two particle spin states by the energy of the hyperfine
interaction constant A. Under an applied magnetic field, the donor electron spins states are
split according to the Zeeman interaction γeŜzB0. Similarly, in the presence of a magnetic
field, the donor nuclear spin splits the electron spin states into hyperfine states with the
−γI ÎzB0 term. In addition to splitting the energies of the zero field spin states, AÎ · Ŝ
importantly causes the energy difference (also called the Larmor frequency) between the
31P nuclear spin states to be dependent on the state of the donor electron spin. Hence, the
31P nuclei will possess distinct nuclear magnetic resonance (NMR) frequencies depending
on the state of the donor electron. Because of this, throughout this thesis we will distinguish
the two different Larmor frequencies of the 31P nuclei by referring to whether the coupled
electron spin is in the |↑〉 or |↓〉 state (see Fig. 2.3 for an illustration of this).
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We can determine the energy levels of this coupled spin-1
2 system from the Hamiltonian

using the Breit-Rabi formula [48]. At high field, the eigenstates can be accurately approx-
imated by |↑⇑〉, |↑⇓〉, |↓⇓〉, |↓⇑〉, where the first arrow (l) corresponds to the electron spin
state and the second arrow (m) to the nuclear spin state. We will label these states |1〉, |2〉,
|3〉, |4〉 in order of decreasing energy when B0 < 3.4 T (the field region we will be operating
at in this study), as shown in Fig. 2.3. These energies are given by [48, 49]

E|↑⇑〉 =E1 = A

2

{1
2 + B0(γe − γI)

A

}

E|↑⇓〉 =E2 = A

2

−1
2 +

√[
B0(γe + γI)

A

]2
+ 1


E|↓⇓〉 =E3 = A

2

{1
2 −

B0(γe − γI)
A

}

E|↓⇑〉 =E4 = A

2

−1
2 −

√[
B0(γe + γI)

A

]2
+ 1

 .

(2.2)

Since A defines the donor electron-nuclear interaction energy, the relation (E1−E4)−(E2−
E3) = A holds for all B0.

In low magnetic fields, |↑⇓〉 and |↓⇑〉 are only approximate eigenstates of the Hamiltonian
and hyperfine mixing occurs between them, whereas |↑⇑〉 and |↓⇓〉 are pure eigenstates.
When γeB0 � A, |↑⇓〉 and |↓⇑〉 will be sufficiently pure to be considered eigenstates of the
Hamiltonian. Since γe = 28.020 MHz ·mT−1, in a field of just 50 mT, γeB0 = 1397.85 MHz
is over two orders of magnitude larger than A. Under a projective measurement of the
electron or nuclear spin in the |↑⇓〉 or |↓⇑〉 states at 50 mT, the probability of returning
the opposite admixed state is negligibly small: | ± 0.042|2 = 0.0018 [49]. In this work, we
will be operating at fields above 2 T where |↑⇓〉 and |↓⇑〉 are pure enough to be considered
eigenstates of the Hamiltonian given in Eq. 2.1.

2.2.1 Donor Bound Excitons

Illumination from sub-bandgap light (~ω < Eg) at specific energies corresponding to an
approximate wavelength of 1078 nm will create electron-hole pairs localized around the
donor impurities called donor bound excitons (D0X, in contrast to D0). D0X states can also
be formed by capturing free excitons (FE) onto D0. FE are bound electron-hole pairs that
are created when when the sample is illuminated with above-bandgap light. An illustration
of the initial (D0) and final (D0X) states of these near infrared optical absorption transitions
is shown in Fig. 2.4B.
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Figure 2.3: This schematic diagram depicts the important features of the coupled donor
electron and nuclear spin energy levels as a function of static magnetic field strength B0.
Note that at B0 = 0, the splitting between the F = 1 and F = 0 states is equal to the donor
electron contact hyperfine interaction energy at the nucleus, A = 117.53 MHz. Additionally,
at ∼3.4 T the energies of |↑⇑〉 and |↑⇓〉 cross and the Larmor frequency of 31P nuclei with
electron spin |↓〉 is equal to A.
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Figure 2.4: A diagram of the 12 allowed 31P D0X absorption transitions. A) shows the initial
and final states of the 12 allowed D0X transitions in 31P. Because the g-factor of the hole
states is highly dependent on the orientation of the crystal relative to B0, the energies
of these transitions depend not only on the magnitude of B0, but also on the sample
orientation. B) shows an illustration of the initial and final states when creating bound
excitons in 31P. The electrons, both in D0 and D0X (where they form a singlet state), have
an s-like wavefunction (depicted in pink), while the hole possesses a probability amplitude
characteristic of a p-like wavefunction (depicted in blue). Figure adapted from [50].
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Since the two electrons are in a singlet state (S = MS = 0), there is no hyperfine
interaction present between them and the hole, or donor nucleus. Additionally, this hole
possesses a p-like wave function, with zero probability amplitude at the site of the donor
nucleus. Therefore, there is no spin interaction between the hole and the nucleus (see
Fig. 2.4B). Holes have spin J = 3

2 , and under the applied magnetic field the four-fold mh

degeneracy will be lifted as the states split according to the Zeeman interaction. Ignoring
the negligible bare nuclear Zeeman energy, the energy levels of the D0X states in an applied
magnetic field are given solely by the four hole spin states described by the Hamiltonian

Ĥ = ghµBĴzB0 , (2.3)

where the gh is the hole g-factor, which is different for the light (mh = ±1
2) and heavy

(mh = ±3
2) holes and is strongly dependant on the crystal orientation relative to B0.

The lifetime of a phosphorus D0X is ∼ 280 ns [51]. When the bound exciton decays,
one of the two electrons in the spin-singlet will recombine with the hole, releasing energy
triggering one of two possible outcomes. The most likely outcome is that the energy released
will ionize the electron that made up the other half of the singlet (a process called Auger
recombination). However, with an efficiency of ∼10-4, this recombination event will release
a photon through either a phonon-assisted or no-phonon process [51]. The existence of
this small amount of luminescence allows the impurity content of the silicon sample to
be characterized by examining the energies of the sharp bound exciton lines that exist at
sub-bandgap energies in photoluminescence (PL) spectra [52].

Under an applied magnetic field, there are 12 allowed D0X transitions for phosphorus
such that the total change in the angular momentum ∆M = ∆mS + ∆mh = ±1 or 0
(the possible quanta of spin angular momentum a photon can have, in units of ~), as
seen in Fig. 2.4A. Using photoluminescence excitation spectroscopy, a tunable laser can be
scanned across the energies of the transitions from the D0 states to the D0X states while
a detector monitors either the luminescence photons or the change in impedance of the
sample as the Auger recombination process ionizes electrons into the conduction band. In
isotopically enriched 28Si, all 12 of these D0X transitions can be resolved with a linewidth
of approximately 37 MHz. This makes it possible to achieve selective excitation of the
electron and nuclear spin states of the 31P donors [53, 54]. However, in a natSi sample, the
∼ 4.7% isotopic concentration of 29Si and 3.1% concentration of 30Si isotopes significantly
broaden these optical transitions to the point where all resolution of the nuclear hyperfine
components is lost. Only at high magnetic fields (∼ 1 T) is electron spin state dependent
excitation of D0 to D0X in phosphorus-doped natural silicon (31P:Si) possible [39].

13



2.2.2 Relaxation Processes in 31P

When a spin ensemble is polarized out of its equilibrium population distribution, the system
tends toward thermal equilibrium. The channels that allow for these systems to settle into
their equilibrium states are called relaxation processes. In the spin system described in
this thesis, these relaxation processes are associated with energy exchange with the Si
crystal lattice, free carriers, and other spins and impurities. As illustrated in Fig. 2.5
below, there are three important relaxation mechanisms to consider when working with
neutral 31P donors in Si: the electron, cross, and nuclear spin-lattice relaxation processes
with characteristic time scales T1e, T1x, and T1n, respectively [55]. Since these relaxation
processes all occur in spin systems, they must conserve spin angular momentum in addition
to energy. Because of this, relaxation between |↑⇑〉 and |↓⇓〉 is extremely improbable, as
∆M = ±2, and will not be considered [55].

T1xT1e T1e

T1n

T1n

Figure 2.5: This diagram illustrates the possible D0 spin-lattice relaxation channels in 31P.

There are a number of parameters that determine how energy exchange with the lattice
occurs [55, 56] so pinning down the actual mechanisms behind the neutral 31P relaxation
processes is difficult. However, it has been found that these T1 times and the mechanisms
behind them depend on many parameters, including the temperature, applied magnetic
field, and impurity concentration [55, 57, 58, 59, 60].

When a hyperpolarized spin ensemble relaxes via energy exchange with the lattice, the
target state’s surplus population is reduced. Any hyperpolarization technique must fight
against spin lattice relaxation to maintain the desired non-equilibrium population distribu-
tion. However, in a coupled two-particle spin system, T1 relaxation processes that involve
a spin flip of each element (like T1x) can be exploited to effectively drive the population
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for one of the coupled particles into a desired spin state. This phenomenon is called the
Overhauser Effect and will be introduced more completely in section 2.3.2.

2.3 Spin Polarization

One of the parameters that can be examined and manipulated when working with a system
made up of an ensemble of spins is the polarization of that spin system. The polarization
of an ensemble of two-level systems is the population difference Nb−Na as a fraction of the
total population of the ensemble Nb + Na. When a system is in thermal equilibrium at a
finite temperature, any time there is an energy splitting between quantum states there will
be some degree of excess population in the lower energy state of the quantum system. To
determine the equilibrium polarization P0 of a two level system made up of states |a〉 and
|b〉, with an energy difference ∆Eba = Eb − Ea < 0, at an absolute temperature T , we can
use [61]

P0 = 1− e
∆Eba
kBT

1 + e
∆Eba
kBT

. (2.4)

In general, a higher ∆Eba and/or lower absolute temperature leads to a higher P0 [61].
In this thesis, all discussion of polarization will refer to the polarization of a spin ensem-

ble. The polarization of a spin ensemble can be manipulated from the equilibrium polar-
ization by supplying additional energy to the system. The energy required to manipulate
state populations or generate hyperpolarized states often takes the form of electromagnetic
radiation. The forms of polarization manipulation discussed in this thesis are near-infrared
optical excitation to create hyperpolarized donor electron spin states and radio frequency
(RF) oscillating magnetic fields to coherently manipulate the populations of the nuclear
spin states.

2.3.1 Spin Temperature

For any given two level energy splitting ∆Eba and polarization P (not necessarily in equilib-
rium), we can determine the absolute temperature that would be required to generate this
population configuration by solving Eq. 2.4 for T . Hence, we can describe the polarization
of a non-equilibrium state relative to thermal equilibrium in terms of temperature.

For example, given the two level system made up of states |a〉 and |b〉 with ∆Eba =
Eb − Ea < 0 in equilibrium at a temperature T , there will exist a population excess in
the lower energy level |b〉 and a steady state polarization 0 < P0. Now, one can apply
energy to the system such that the new degree of polarization is P with P0 < P . Since
this new situation is equivalent to one where the system is in thermal equilibrium at a
lower temperature, this is referred to as a cold spin temperature relative to the equilibrium
polarization (a polarization of +1 would correspond to a spin temperature of absolute zero).
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On the other hand, one can also apply energy to the system such that 0 < P < P0. Since
this would be equivalent to the system being at a higher temperature, this is referred to
as a hot spin temperature. Lastly, the system can be held out of equilibrium so there
is a population excess in the higher energy state (|a〉 , in this case) implying P < 0. This
population distribution is considered to have a negative spin temperature because a negative
temperature would be required for Eq. 2.4 to return P0 < 0 [61].

After determining the equilibrium polarization, we can discuss the effectiveness of any
polarization technique not only in terms of the difference in population between the states,
but also in terms of the enhancement factor the polarization scheme allows us to achieve
over the equilibrium polarization. The polarization enhancement ε is given by:

ε = P

P0
. (2.5)

2.3.2 Nuclear Hyperpolarization Via the Overhauser Effect

In a coupled, two particle spin system in thermal equilibrium with each particle possessing
different Zeeman splittings, Eq. 2.4 dictates that the component of the system that has
a larger energy splitting will have a higher equilibrium polarization. An example of this
situation is the coupled nuclear and electron hyperfine system present in the neutral phos-
phorus donor under an applied magnetic field. The electron gyromagnetic ratio γe is orders
of magnitude greater than the nuclear gyromagnetic ratio γI and therefore interacts much
more strongly with the field. As a result, the donor electron Zeeman splitting is several
orders of magnitude larger than the nuclear hyperfine splitting at the fields used in this
study. This leads to an extremely large difference between the equilibrium polarization of
the two spin species. Using a technique developed by Albert Overhauser called the Nuclear
Overhauser effect (NOE) [62] this polarization can be transferred from the electron spins
to the nuclear spins by exploiting the coupling between them.

In practice, spin polarization transfer via the NOE is accomplished by holding the
polarization of the electron spin system Pe out of equilibrium, usually by driving the
∆mS = ±1, ∆mI = 0 transitions with some sort of electromagnetic radiation (tradition-
ally with microwave frequency oscillating magnetic fields or, in the case of this study, laser
excitation) [63, 64]. T1n is typically orders of magnitude larger than T1e or T1x and is
generally neglected when considering the Overhauser hyperpolarization dynamics [65]. T1e

acts to bring the system into thermal equilibrium, whereas an AC magnetic field driving
electron spin flips acts to saturate the electron spin populations (make the populations of
the electron spin |↑〉 and |↓〉 states equal). This interplay is characterized by the saturation
factor

s = 1− Pe
P0

, (2.6)
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which influences the effectiveness of any nuclear hyperpolarization scheme using the NOE.
This parameter acts as a multiplicative factor to the time dependent Overhauser equation

ε(t) = 1 + s
|γS |
γI

(
1− e−t/Tb

)
. (2.7)

Here, Tb is the characteristic time of the Overhauser polarization buildup. Looking at
Eq. 2.6, one can see that when driving the NOE with continuous wave (CW) oscillating
magnetic fields at microwave frequencies to saturate the electron spin states, s will take on
values 0 ≤ s ≤ 1. In the limit of infinite microwave power and complete saturation of the
electron spin states Pe = 0 =⇒ s = 1. Alternatively, if the electron spins are in thermal
equilibrium Pe = P0 =⇒ s = 0 and Overhauser hyperpolarization becomes impossible.
Finally, by creating a negative electron spin temperature, Pe < 0 =⇒ 1 < s and by
examining Eq. 2.7 we can see that this will correspond to an ‘enhanced’ NOE.

T1e only influences the Overhauser polarization dynamics by affecting the ratio P
P0

in
the definition of s, while relaxation due to T1x will drive ∆mS = ±1 and ∆mI = ∓1 =⇒
∆M = ∆(mS +mI) = 0. Because the T1x relaxation process involves both an electron and
nuclear spin flip, this drives the nuclear polarization into the spin state the electron was in
prior to relaxing and vice versa [62, 3].

For example, in the 31P D0 system, when in equilibrium under a high magnetic field
at low temperature, the donor phosphorus electron polarization approaches unity, while
the nuclear polarization is still orders of magnitude smaller. If the electron spin popula-
tion is saturated (hot spin temperature) or inverted (negative spin temperature), T1x will
flip electron spins from |↑〉 to |↓〉 [55]. Due to the fact T1x is a zero quantum transition
(∆M = 0), T1x will also flip the nuclear spins from |⇓〉 to |⇑〉 . Over time, this drives
the nuclear hyperpolarization of the 31P donors into |⇑〉. Unfortunately, there is a limit
to the maximum nuclear hyperpolarization enhancement εmax possible when saturating the
electron transitions. Taking t→∞ and assuming s = 1 in Eq. 2.7 implies

εmax = 1 + s
|γe|
γI

= 1622 , (2.8)

for 31P donors in Si. However, one can see that by creating a negative electron spin tem-
perature (1 < s), this limit can be surpassed [65].

There are many parameters that affect the efficiency of the nuclear Overhauser effect.
One of the most important parameters in the systems this work will be exploring is the
thermal population difference between states, something that is greatly influenced by tem-
perature (see Eq. 2.4). The thermodynamic principle of detailed balance tells us that the
ratio of populations in two states connected by some rate that moves a fraction of the popu-
lation from one to the other and vice versa (like spin-lattice relaxation) is equal to the ratio
of the two rates that connect the states. Namely, for states |a〉 and |b〉 with populations
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and energies Na and Ea and Nb and Eb, respectively, connected by rates Rab and Rba that
move population from state |a〉 to |b〉 and |b〉 to |a〉, respectively, the following is true

Na

Nb
= Rba
Rab

= e(Eb−Ea)/kBT . (2.9)

Hence, one can see that by moving to a lower temperature TL < TH , we can potentially
improve the magnitude of the NOE by increasing the relaxation rate ratio. For a constant
energy difference 0 < ∆Eab between states |a〉 and |b〉 in a coupled electron-nuclear spin
system connected by cross relaxation rates Rab and Rba, the ratio of rates that drive the
Overhauser hyperpolarization is improved by a factor of

exp
(

∆Eab
kBTL

)
exp

(
∆Eab
kBTH

) = exp
[∆Eab
kB

( 1
TL
− 1
TH

)]
. (2.10)

2.4 The 29Si Isotope

Out of the three isotopes present in natSi , the only one that possesses a non-zero nuclear
spin is 29Si with a spin of 1

2 . Because the isotope has non-zero nuclear spin, at zero field
the energies of the 29Si centres will be degenerate, but under an applied static magnetic
field, this degeneracy breaks and the Zeeman energies of the ±1

2 spin states split. This
interaction is described by the Hamiltonian

Ĥ = −γ29Î(29) ·B = −γ29Î
(29)
z B0 , (2.11)

where γ29 = −8.458 × 10−3 MHz · mT−1 [66]. This creates energy levels (and, therefore,
energy level differences) that vary linearly with magnetic field strength.

As previously mentioned, 29Si has an extremely long T1 and can maintain an Sz eigen-
state for up to 3-4 hours at room temperature and for a nearly unmeasurable length of
time at liquid helium temperature. There are two principal interaction mechanisms that
lead to 29Si spin-lattice relaxation. These are interactions between 29Si nuclear spins and
conduction electrons [67, 6] and with donor electrons localized around impurity centres [29].
The latter of the two has been shown to be the most efficient [5, 65, 6].

At room temperature, the Si band gap (∼1.11 eV at room temperature [38]) is several
orders of magnitude larger than the thermal energy kBT = 25.9 meV. Therefore, when in
the dark at room temperature, there will be few conduction electrons besides those due to
ionized D0. Because there are few conduction electrons even at room temperature and the
interaction between them and the 29Si is weak, they contribute only a small portion to the
29Si relaxation rate [6].
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At liquid helium temperatures (≤ 4.2 K) in the dark, there are essentially no conduction
electrons and the donors will be neutral (D0). In this situation nearly all of the relaxation
is due to interactions with the electrons bound to nearby D0.

Because the Coulomb interaction between donor nuclei and electrons is screened by the
intervening core electrons of the 31P impurity, the donor electron has a wavefunction that is
not spatially well-confined. It has an effective Bohr radius of ∼20−25 Å [47, 68]. Hence, the
donor electron exhibits an anisotropic hyperfine interaction described by the Hamiltonian

Ĥ = γeSzB0 +
∑
k

(
Î(29)
k ·A(rk) · Ŝ− γ29I

(29)
z,k B0

)
(2.12)

with the ∼ 80 surrounding 29Si nuclei that fall within one Bohr radius. The tensor A(rk)
describes the anisotropic hyperfine interaction of a donor electron spin with a 29Si nuclear
spin situated at lattice site k a distance rk as measured from the donor nucleus. In the
frame of reference of the electron, these interactions shift its energy levels and manifest
themselves as inhomogeneously broadened electron spin resonance (ESR) lines [29]. The
donor electron spins have a T1 that is much shorter than that of the 29Si nuclear spins.
Hence, the electrons are seen by the 29Si as a noise bath as they flip up and down randomly
on a time scale corresponding to their relaxation rate 1/T1 that increases dramatically with
temperature. The transition probability of a 29Si nuclear spin flip depends on on the overlap
between the wave functions of the donor electron and the 29Si nuclear spin as well as the
noise spectrum of the donor electron. The Larmor frequency of the donor electron ωe is
over three orders of magnitude larger than the 29Si Larmor frequency ω29. Therefore, for a
donor electron-29Si flip-flop to occur, a large amount of energy must be exchanged with the
lattice making the probability of this relaxation transition occurring small. The transition
probability per unit time given is by

Wif = 1
t

1
~2

∣∣∣∣∫ t

0
〈mf |Î ·A · Ŝ|mi〉 exp

[−i(Ef − Ei)t′
~

]
dt′
∣∣∣∣2 , (2.13)

where the hyperfine interaction Î ·A · Ŝ is treated as a perturbation to the Zeeman compo-
nents of the donor electron and 29Si two-particle Hamiltonian in Eq. 2.12. |mi〉 and |mf 〉
are the initial and final states of the unperturbed Hamiltonian with corresponding energies
Ei and Ef [69].

2.4.1 Spin Diffusion in 29Si

As discussed before, to generate hyperpolarization in an ensemble of nuclear spins, there
must be some source of magnetization that generates a non-equilibrium nuclear spin temper-
ature in the surrounding nuclei. This creates a nuclear magnetization (or spin temperature)
gradient in the system of coupled nuclear spins. Since each nuclear spin in the ensemble

19



generates a dipole field, nearby nuclear spins interact with each other. When the energy
splitting of two nearby nuclei with anti-parallel spins is the same, the exponential term in
Wif is unity and the transition probability is maximum for a given coupling strength. In
this situation, the dipole-dipole coupling between the two spins allow the magnetization
to diffuse through the crystal via spin angular momentum and Zeeman energy conserving
spin flip-flops (∆m1 + ∆m2 = 0 and ∆E = 0). Since 31P donor nuclei are easy to hyper-
polarize, the spins present in these impurities can be used as the reservoir to generate the
hyperpolarization that diffuses through the 29Si via the dipole-dipole interaction they have
with each other. The Hamiltonian that describes spin diffusion due to the dipole-dipole
interaction [70, 71]

Ĥdd = dij
[
4Îiz Îjz − (Îi+Îj− + Îi−Îj+)

]
(2.14)

with
dij = γiγj~2

4|rij |3
(1− 3 cos3 θij) , (2.15)

where Î+ and Î− are the nuclear spin raising and lowering operators, respectively, γi,j are
the respective gyromagnetic ratios of the two nuclear spins, and θij is the angle between rij
(the vector that separates the two spins) and the applied magnetic field. By examining this
Hamiltonian, one can see that the Îi∓Îj± terms give rise to the Zeeman energy conserv-
ing spin flip-flops between anti-parallel spins that allow for the diffusion of magnetization
throughout the lattice. These terms also give rise to the dipole-dipole contribution of the
observed 29Si NMR linewidth νdd [70, 71]. One can determine νdd experimentally and relate
it to the spin-spin relaxation time T2, which is the characteristic time scale of the interac-
tion that mediates relaxation via dipole-dipole coupling [70, 71]. One can then use T2 to
experimentally estimate this coupling strength. Since, dipole-dipole coupling mediates spin
diffusion throughout the crystal, by being able to estimate the strength of this interaction,
one can estimate the coefficient that characterizes spin diffusion throughout the crystal
bulk [70, 71].
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Chapter 3

Experimental Method for 29Si
Hyperpolarization

As mentioned in the previous chapter, by using 31P donor impurities in natSi as easily hyper-
polarized sources of magnetization, one can exploit spin diffusion to polarize the 29Si in the
bulk of the crystal. This chapter will describe some important characteristics of 31P:Si, and
how these properties can be exploited to create a new technique to efficiently hyperpolarize
29Si nuclei. Unlike many 29Si polarization techniques, this method of hyperpolarization
does not require strong coupling between unpaired electrons and the 29Si nuclei. Relaxing
the requirement that large numbers of coupled, unpaired electrons be added to the material
is beneficial to maintaining the long 29Si T1 times, even at elevated temperatures.

3.1 31P and 29Si Nuclear Larmor Frequencies

As mentioned in section 2.2, the energy levels in 31P are described via the hyperfine Hamil-
tonian (Eq. 2.1) and the energies are shown in Eq. 2.2. The contact hyperfine interaction
term AÎ · Ŝ in the Hamiltonian makes the energies of the |↑⇓〉 and |↓⇑〉 states nonlinear as
a function of applied magnetic field. This causes the strong nonlinearity in the 31P nuclear
Larmor frequencies seen in both 31P donors with electron spin |↑〉 and |↓〉 at low fields
(< 60 mT), seen in Fig. 3.1.

29Si nuclei exhibit only a simple nuclear Zeeman interaction under an external magnetic
field. This causes both the |⇑〉 and |⇓〉 states to be linear in B0 and gives rise to a Larmor
frequency that is linear in B0, as seen in Fig. 3.1. Because of the nonlinearity in the neutral
31P nuclear Larmor frequency, the Larmor frequency of donors with electron spin |↑〉 is
equal to the Larmor frequency of the 29Si at two fields, as seen in Fig. 3.1. This happens
at an applied magnetic field of 2.2835 T with a Larmor frequency of 19.314 MHz when
E|↑⇓〉 < E|↑⇑〉, and at 6.6800 T with a Larmor frequency of 56.500 MHz, when E|↑⇑〉 < E|↑⇓〉.
By operating at 2.2835 T, we create a frequency-matched resonance condition between the
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Figure 3.1: The Larmor frequencies of 29Si and neutral 31P nuclei. The nuclear Larmor
frequency of the 31P donor is dependent on the state of the donor electron, leading to two
distinct Larmor frequencies possible for each D0. In this figure, the curves labelled ‘electron
spin |l〉’ refer to the Larmor frequencies of the 31P neutral donor nuclei that occur when
the electron is either spin |↑〉 or spin |↓〉. Note that the energies of the |↑⇑〉 and |↑⇓〉 states
cross at ∼3.4 T, and from that point on E|↑⇑〉 < E|↑⇓〉.

31P and 29Si nuclear spin systems. This means that a 31P-29Si nuclear spin flip-flop conserves
both energy and spin angular momentum (∆E = Ef−Ei = 0 and ∆M = 0). This resonant
matching condition creates a strong coupling between 31P and 29Si nuclei that is dependent
on the state of the donor electron. Any spin polarization built up in the 31P nuclei will couple
to nearby 29Si spins via a dipole-dipole interaction and diffuse away from the donors to the
host nuclei in the same way that it diffuses from 29Si to 29Si, as explained in Section 2.4.1.
However, since the coupling is dependent on the state of the donor electron, this coupling
can be switched off by allowing the electron to relax into |↓〉, ionizing the donor (moving to
high temperature), or by changing B0 from the resonant field. Now that we have identified
this resonance condition, we must show that it actually facilitates polarization transfer from
the 31P nuclei to the 29Si.
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3.2 Nuclear Magnetic Resonance Detection Methods

To detect 29Si polarization due to the transfer of spin magnetization from the 31P , we must
use a detection method that is sensitive to the polarization of a spin system. The ideal way
to accomplish this is through a simple pulsed NMR detection scheme [72].

3.2.1 NMR in the Rotating Reference Frame

An individual nuclear spin i sitting in a magnetic field B0 will obey Larmor’s theorem,
which states the motion of the nuclear spin’s magnetization vector Mi is governed by the
equation [72]

dMi

dt = Mi × γIB0 . (3.1)

This implies that if the spin is in an eigenstate of Îz (i.e. Mi is parallel or anti-parallel
to B0) Mi will be time independent. However, if the spin is not in an eigenstate of Îz
(i.e. Mi is not parallel or anti-parallel to B0), then one can see that Mi will precess about
B0 at the Larmor frequency ωI = γIB0 such that |Mi| is constant. One can simplify the
description of this motion by a change of reference frame to one that is precessing about B0

at the Larmor frequency. We define the unit vectors of the rotating frame x̂′ = cos(ωIt)x̂,
ŷ′ = sin(ωIt)ŷ, and ẑ′ = ẑ. In this reference frame, Mi is stationary, regardless of its phase
φI and the angle it makes with the z′ axis θI .

To manipulate the magnetic moment of the spin, one can apply a radio-frequency (RF)
electromagnetic field that is rotating in the x-y plane perpendicular to B0 in the station-
ary laboratory reference frame such that its frequency ωRF ≈ ωI . The Hamiltonian that
describes the control field is given by [27]

ĤRF = −~γIB1
[
Îx cos(ωRFt+ φRF)− Îy sin(ωRFt+ φRF)

]
, (3.2)

where B1 is the amplitude of the rotating control field and φRF is its phase. Assuming
ωRF ≈ ωI , in the reference frame rotating at ωI , B1(t) will lose its time-dependence. By
arbitrarily choosing φRF = π

2 , B1 will be a vector with constant magnitude pointing along
the y′ axis in the rotating frame. In a manner similar to the precession of Mi about B0,
Larmor’s theorem dictates that the spin will begin to nutate about B1 in the x′-z′ plane of
the rotating frame with nutation frequency ω1 = γIB1, as illustrated in Fig. 3.2.

By pulsing B1(t) for a length of time tp, one can stop the nutating magnetization at a
specific angle θI = γIB1tp. After the pulse is turned off, the spin magnetization will undergo
its usual precession in the laboratory frame due to B0 with constant θI and φI [72].
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Figure 3.2: This illustration depicts the nutation of a nuclear spin in the rotating reference
frame. B0 is oriented along the z′ axis. The y′ axis (in red) is the axis of nutation that the
on-resonance RF field is oriented along. When in the presence of this on-resonance field,
the spin magnetization will nutate in the x′-z′ plane along the path indicated in red. An
RF field pulsed for a length of time tp rotates the spin an angle θI = ω1tp. When the field
is turned off, the spin will remain stationary in the rotating frame with constant θI and φI .
Meanwhile, in the laboratory frame, the spin will undergo its usual Larmor precession due
to B0.
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3.2.2 Experimental Pulsed NMR Detection

In practice, to perform an NMR experiment, the sample sits in an applied static magnetic
field that lifts the degeneracy of the spin states and forces the spins to align parallel or
anti-parallel to B0 = B0ẑ with the population of each state governed by the Boltzmann
distribution at the given B0 and temperature. To generate the rotating magnetic field, a
cavity or coil (this thesis work uses a solenoid coil) that resonates at ωI is placed around
the sample with the axis of its RF magnetic field perpendicular to B0. The spin is then
manipulated by applying a RF oscillating voltage in the coil with frequency ωRF ≈ ωI

that will generate a linearly oscillating magnetic field B1(t) perpendicular to B0 in the
laboratory frame. B1(t) can be decomposed into two counter-rotating magnetic fields in
the x-y plane perpendicular to B0. Since ωRF ≈ ωI , in the rotating reference frame one
of the two counter-rotating components of the oscillating field will be stationary, while the
other will be rotating in the opposite direction with a frequency of ∼ 2ωI . Since this field
will be so far off resonance, it will have a negligible effect on the nutation of the nuclear
spin [72]. Hence, the spin will be subjected to the field described by the Hamiltonian in
Eq. 3.2.

Now that the techniques of quantum control of the spin magnetization have been es-
tablished, one must detect the signal that determines the 29Si polarization. According
to Faraday’s Law of induction, a voltage V (t) is induced in a coil of wire proportional
to the rate of change of magnetic flux ΦM through the coil

(
i.e. V (t) ∝ dΦM

dt

)
. For an

ensemble of nuclear spins with a magnetization vector M = ΣiMi, dΦM
dt will be propor-

tional to the rate of change of the transverse component of the ensemble’s magnetization(
dMxy(t)

dt ∝ dΦM
dt where Mxy is the transverse component of the margnetization

)
. Since the

time dependence of Mxy(t) is solely due to its precession about B0, we can write the flux
ΦM (t) due to the nuclear spin magnetization M through a N turn solenoid coil as

ΦM (t) = M ·A = MxyAN cos[φ(t)] = MxyAN cos(ωIt+ φ0) , (3.3)

where A is the area of one loop of the coil and φ0 is the phase of M when the oscillating
voltage is initially detected. The z component of the magnetization of an ensemble of spin-1

2
nuclei with populations Nb and Na is given by

Mz = 1
2~γI(Nb −Na) , (3.4)

implying that the induced nuclear polarization is

Pn = 2
~γI(Nb +Na)

Mz . (3.5)
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This implies that if the magnetization is tipped an angle θI away from the z axis by ap-
plying B1(t), the transverse magnetization will be given by the projection of the resultant
magnetization vector into the x-y plane. Assuming |M| is constant after the rotation by
B1(t), this projection is given by

Mxy = Mz sin θI = 1
2~γI(Nb +Na)Pn sin(γIB1tp) (3.6)

Given these assumptions,

ΦM (t) = 1
2~γI(Nb +Na)AN cos(ωIt+ φ0) sin(γIB1tp)Pn , (3.7)

implying V ∝ Pn.
Hence, for a constant θI , one can determine Pn from the detected NMR signal solely by

knowing the signal due to the equilibrium polarization. Furthermore, Eq. 3.7 implies that
the maximum detected NMR signal will occur when θI = π

2 and M = Mxy [72]. This RF
pulse that maximizes the induced NMR signal is referred to as a π

2 pulse.
Given an ideal system, once the nuclear spins have been rotated by applying B1(t),

the spins will relax into eigenstates of the system on a time scale that is given by its T1

relaxation. However, local inhomogeneities in B0 and different coupling strengths between
nearby nuclear spins give rise to a slightly different effective magnetic field felt by each spin.
This variation in effective field corresponds to a slightly different ωI for each spin in the
ensemble. The lack of uniformity in ωI will cause the NMR signal to decay with a time scale
T ∗2 . For this reason, the signal detected in an NMR experiment is called a free induction
decay (FID). Immediately after the spins are rotated, they are all in phase. However, due
to the different ωI values for each spin, instead of the ensemble’s transverse magnetization
being time independent in the rotating frame, some spins will precess faster and others
slower and they will lose phase coherence. This manifests itself as an exponentially decay-
ing envelope on the oscillating induced voltage, as seen in Fig. 3.3A. Over time, the net
magnetization will become zero and no further voltage will be induced in the resonant coil.

We can use the FID signal intensity to determine the polarization of the nuclei in
question. FID data from two of our 29Si hyperpolarization experiments is shown in Fig. 3.3A.
Taking the fast Fourier transform (FFT) of the FID gives an inhomogeneously broadened
Lorentzian in frequency space, as seen in Fig. 3.3B. These Lorentzians are centred on the
ωRF−ωI , but in Fig. 3.3 they have been shifted so the results of the polarization procedure
in two different temperature regimes can be compared more easily.

3.3 31P Hyperpolarization

In order to be able to effectively exploit the resonant spin polarization transfer process from
the 31P to nearby 29Si, we must both hyperpolarize the donor nuclear spins and push the

26



−10 −5 0 5 10

0 2 4 6Time (ms)

Frequency (kHz)

In
te

ns
ity

 (a
.u

.)
In

te
ns

ity
 (a

.u
.)

1.4 K

4.2 K

1.4 K

4.2 K

A)

B)

Figure 3.3: Examples of the 29Si spectra after being polarized for 5 minutes at ∼2.2835 T
at 1.4 K and 4.2 K. A) The FID signals detected by the NMR receiver due to the oscillating
voltage induced in the resonant coil after an on-resonance π

2 pulse. The signal decay is
due to the dephasing of the spin ensemble as it precesses in the transverse plane. B) The
fast Fourier transform of the FIDs. The frequency scale is relative to the resonant RF
frequency of ∼19.332 MHz used to generate the π

2 pulse. The two FFTs have been shifted
by ωRF − ω29 so the efficiency of hyperpolarizing the 29Si in the two temperature regimes
can be compared more easily. Note that the noise level in each temperature regime is
approximately the same, implying a lower signal-to-noise ratio for experiments we ran at
4.2 K.
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electrons of as many of the D0 as possible into the spin |↑〉 state . At low temperatures,
there are a number of techniques that efficiently hyperpolarize dilute 31P donor nuclei in
Si. In isotopically enriched 28Si, bound exciton optical methods are able to hyperpolarize
the 31P nuclear spins to & 90% in under a second [73]. This is due to the D0X lines being
narrow enough to address and depopulate individual D0 hyperfine spin states using single-
frequency lasers [73]. In natSi, broadband optical processes [64] and continuous wave (CW)
electron spin resonance (ESR) techniques [55] that employ the nuclear Overhauser effect are
made possible by the strong hyperfine interaction between the donor electron and nuclear
spins.

At liquid He temperatures and at 2.2835 T, the optical linewidths of the resonant D0X
transitions are narrow enough in natSi to selectively excite a particular electron spin state.
Fig. 3.4 shows an illustration of how the 31P hyperpolarization scheme we have proposed
works. Starting from the equilibrium polarization in Fig. 3.4A, we resonantly create bound
excitons in Fig. 3.4B conditional on them being in the electron spin |↓〉 state by pumping
bound exciton transitions 3 and 4, as labelled in Fig. 2.4A. Because the electrons in the
bound exciton form a spin-singlet state, when it decays via Auger recombination it pop-
ulates the conduction band with high spin temperature electrons. If the ionized donor is
subsequently neutralized by a spin |↑〉 electron, the donor moves out of optical resonance.
Otherwise, an electron spin |↓〉 neutralization event restarts the bound exciton creation and
decay cycle until the donor is neutralized by a spin |↑〉 electron, as illustrated in Fig. 3.4B.
Over time, this effectively drives the donor electrons into the spin |↑〉 state, creating a neg-
ative electron spin temperature and putting the donor nuclear spins in resonance with the
surrounding 29Si.

Since T1e relaxation is mostly overpowered by resonantly pumping the D0X transitions,
inverting the donor electron spin states while operating at liquid helium temperatures cre-
ates a large negative electron spin temperature across the relaxation channel T1x and drives
an ‘enhanced’ NOE (see section 2.3.2 for details). As seen in Fig. 3.4C, this hyperpolarizes
the 31P into the |↑⇑〉 state, while at the same time putting the majority of the donor nuclei
in resonance with the 29Si.

3.4 Experimental Realization

We test the validity of this resonant hyperpolarization transfer process using an n-type natSi
sample with a 31P doping concentration of ∼ 6 × 1015 cm-3. The sample was made up of
four silicon pieces cut from the same wafer and stacked on top of each other. Each had
dimensions of approximately 11 mm × 14 mm × 3 mm, giving an effective sample size of
11 mm×14 mm×12 mm. The sample is mounted in a home-built NMR probe that contains
a variable capacitor. This capacitor allows us to adjust the resonant frequency of the coil
to the 29Si Larmor frequency while operating at different fields and temperatures.
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Figure 3.4: An illustration depicting the 31P populations during the 29Si polarization pro-
cedure. A) shows the the thermal polarization before the laser excitation. Shortly after
the laser is turned on in B) the electron polarization changes as bound excitons are created
and decay via Auger recombination prior to electron recapture by the donor. As the laser
continues to polarize the donor electrons in C), T1x cross relaxation drives a nuclear polar-
ization that, when excited by the laser excitation, hyperpolarizes the donors into state |1〉.
At 2.2835 T, ∆E12 = E1 − E2 = ω29 and the hyperpolarization that has built up in state
|1〉 diffuses to the nearby 29Si centres via dipole-dipole mediated resonant spin flip-flops.
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3.4.1 Cryostat and Magnet

The sample was inserted into a Janis Research Co. “SuperVaritemp” high homogeneity
split-pair superconducting magnet cryostat with optical access that holds the liquid helium
in a reservoir separate from the sample chamber [74]. The capillary tube connecting the two
chambers can be closed, allowing us to run the experiment in different temperature regimes.
To immerse the sample, we open the capillary tube and pull liquid helium into the sample
chamber. We can then pump on the liquid helium vapour to operate at temperatures lower
than 4.2 K. To operate at temperatures above 4.2 K, we first push the liquid helium in the
sample chamber back into the reservoir. Then we turn on a heater at the opening of the
capillary and flow a small amount of vaporized helium through it, allowing us to maintain
a constant temperature above 4.2 K.

The cryostat contains a Janis Research Co. Superconducting Magnet System. This
split-pair superconducting magnet is capable of operating at fields of up to 7 T with a
homogeneity of ±0.01% over a 1 cm diameter at the centre of the field [74]. We were able to
reproducibly set the magnetic field (with a precision of ∼0.02 mT) by using a high precision
voltmeter to measure the voltage across a shunt resistor on the power supply. Using the
relationship B0 = ω29

γ29
, we were able to confirm the magnetic field we were operating at by

monitoring the nuclear resonance frequency of the 29Si. This allowed us to establish a linear
relationship between the voltage drop across the shunt and ω29. Hence, for experiments that
required us to sweep B0 we could adjust the field, tune the coil to ω29, and set ωRF ≈ ω29

before the measurement. If we did not need to sweep B0, then we could put the magnet
into persistent current mode by disconnecting the power supply, allowing us to maintain a
constant field for long periods of time.

We have two methods of determining the temperature when the sample is immersed
in liquid helium. The first is monitoring the vapour pressure of the the liquid helium in
the sample chamber. There is a well defined relationship between the vapour pressure
and temperature of the liquid helium that gives us accurate readings of the temperature.
This was facilitated by operating in only two liquid helium vapour pressure regimes: no
pumping, corresponding to atmospheric pressure (4.2 K) and maximum pumping power,
corresponding to 1-4 torr (1.4± 0.1 K). Additionally, we have a temperature sensor sitting
at the bottom of the sample chamber near the opening of the capillary that connects the
liquid helium reservoir to the sample chamber. This sensor is how we determine T when
the sample is not immersed in liquid helium.

3.4.2 Optical Excitation

The laser excitation required (as discussed in Section 3.3) to drive D0X transitions 3 and
4 was provided by a single frequency Koheras Adjustik ytterbium-doped fibre laser that
will be referred to as the pump laser [75]. The frequency of the pump laser can be tuned
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with a temperature controller or by applying a voltage across a piezo-electric modulator.
To polarize the 31P, we centre its frequency on the 31P bound exciton transitions 3 and 4 to
throw the D0 system out of equilibrium and allow the NOE to generate the nuclear hyper-
polarization. Given that the bound exciton lines in natSi are inhomogeneously broadened,
we dither the laser frequency ±∼0.9 GHz from the centre frequency (∼1.8 GHz bandwidth)
by applying a 3 Hz oscillating voltage across the piezo-electric modulator in the laser. This
allows more of the 31P neutral donors to be in optical resonance with the pump laser.

We are also able to excite electrons directly from the Si valence band to the conduction
band using a neodymium doped yttrium lithium fluoride (Nd:YLF) laser that lases at a
wavelength of 1047 nm, such that ~ω > Eg. This type of excitation creates free electrons
and holes. The electrons saturate the conduction band with approximately equal numbers
possessing spin |↑〉 and spin |↓〉. If, upon recombination, the electrons are recaptured by
31P donors, they will partially saturate the donor electron spin states. This will drive a
‘standard’ Overhauser process that will polarize the 31P nuclei. The saturation factor s for
this type of excitation will fall into the regime where 0 < s < 1.

3.4.3 NMR Probe

The NMR probe used to deliver the resonant RF excitation to the sample is made up of a
series-parallel tank circuit. The coil generating B1(t) is a 20 turn rectangular coil wound
with 0.25 mm diameter wire and 0.25 mm loop spacing. A 3.3 pF capacitor in parallel with
the coil and a 1-10 pF in series sit in the tail of the cryostat. We can modify its capacitance
by turning a glass rod attached to the capacitor that pokes out of the flange on the top
of the sample chamber. Altering B0 changes ω29 and varying the temperature changes the
resonant frequency of the tank circuit. The variable capacitor allows us to keep the circuit’s
resonant frequency equal to ω29 so we can rotate the spin magnetization with consistent B1.
We built the probe at room temperature, and when we immersed it in liquid helium, the
resonance of the circuit shifted too much for the variable capacitor to compensate. To bring
the resonance of the circuit back to within range of adjustments of the variable capacitor,
we added an additional 39 pF capacitor in series outside the dewar.

We impedance match, determine the resonant frequency, and find the bandwidth of
the tank circuit using a Morris Instruments RF Sweeper. The bandwidth of the circuit at
19.314 MHz is ∼200 kHz, implying a Q-factor of ∼100.

3.4.4 NMR Detection

A diagram of the experimental set up used in this thesis to hyperpolarize the 31P and detect
spin diffusion to the 29Si is given in Fig. 3.5. With the pump laser dithering about the centre
frequency of D0X lines 3 and 4 (details on how we determine this value in section 3.4.5),
we illuminate the sample at liquid helium temperatures (T ≤ 4.2 K) and allow the induced
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31P nuclear spin polarization to diffuse from the 31P to the 29Si centres. We stop the
hyperpolarization process by closing a shutter and allowing a short period of time (∼30 s)
for the free carriers to be captured and the system to reach a steady state. After the system
equilibrates, we then apply a π

2 pulse and detect the FID. After each FID we detect, we
apply a long RF pulse (≥ 5 ms) at the 29Si resonant frequency to maximally mix the 29Si
polarization state, effectively setting the polarization to zero and erasing the history of
previous polarization attempts.

A SpinCore RadioProcessor board generates the RF excitation required to rotate the
29Si nuclear spins and detects the resultant FID [76]. The RF excitation is fed through a
transmission amplifier that brings the power to ∼6 W. A 100 µs delay is inserted between
when the RF pulse is applied and the FID is detected to eliminate the possibility of de-
tecting the RF pulse as it rings in the resonant coil. After the delay, the resultant induced
oscillating voltage is amplified by passing it through two Minicircuites preamplifiers before
it is detected.

There are two parts to an NMR experiment: transmission and detection. Both of these
must be taken into account when connecting the RF transmitter and receiver to the tank
circuit. During transmission, it is necessary that as much power as possible is incident on
the tank circuit and that the excitation pulse does not damage the delicate preamplifiers
that are necessary to detect the FID. During detection, the objective is to allow as much of
the FID signal as possible into the detector, while protecting the signal from the noise due
to the transmission amplifier. To do this, we use a λ

4 cable and two sets of crossed diodes
to create a transmit/receive switch (T/R), as seen in Fig. 3.5. Due to a diode’s nonlinear
impedance-voltage relation, an individual set of crossed diodes will act like switches that
will be closed for large signals and open for small signals [72].

To protect the preamplifiers during transmission, we have placed a set of crossed diodes
D2 connected to ground just before the input to the receiver. This will short out any of the
high powered excitation pulse that could damage the preamplifiers in the receiver. However,
we also want as much of the excitation pulse as possible to be incident on the tank circuit.
To that effect, we cut the coaxial cable between the two sets of diodes D1 and D2 to be
a quarter wavelength

(
λ
4

)
of the ∼ 19.3 MHz excitation pulse. When the RF excitation

pulse is transmitted, the diode switch will be closed and the voltage at D2 will be held at
zero. Because the λ

4 coaxial cable is not terminated at 50 Ω, the excitation pulse will be
reflected back and will create a standing wave of current and voltage in the λ

4 line. The
impedance at any point in the λ

4 cable will be given by Z = V
I , where V is the voltage and

I is the current. At D1, the voltage will be maximum and the current will be minimum.
This results in maximum Z and minimal RF power diverted from the NMR probe [77].

To protect the NMR signal from noise due to the powerful transmission amplifier, we
have placed a diode switch D1 on the output of the RF pulse transmitter. This will allow
the high powered excitation pulse to pass while shielding the receiver from the amplifier
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Figure 3.5: This diagram illustrates the set up used to hyperpolarize the 29Si and subse-
quently detect its FID. Using a tunable capacitor, the resonant frequency of the tank circuit
is centred on the 29Si resonant frequency. The polarizing pump laser frequency is set to the
centre of D0X transitions 3 and 4. Due to inhomogeneous broadening of the D0X transitions
in natSi, we apply a 3 Hz oscillating voltage from a signal generator to the piezo-electric
modulator in the pump laser to dither its frequency over a ∼ 1.8 GHz bandwidth. This
puts as many of the 31P nuclei in optical resonance as possible, increasing the 31P hyperpo-
larization. When the laser has finished polarizing the sample, a shutter is closed and after
30 s the SpinCore RadioProcessor NMR board sends a π

2 pulse to the sample and detects
the resultant FID. The two sets of crossed diodes (D1 and D2) combined with the λ

4 coaxial
cable act like a transmit/receive switch. When it is in transmission mode the setup allows
the transmitted RF pulse to rotate the spin magnetization with maximum power without
losses through D2. This implementation also prevents the excitation pulse from damaging
the delicate preamplifiers in the receiver. Then, while in receiving mode, the induced volt-
age will be detected by the FID receiver while any noise from the transmission amplifier
will excluded. Figure is adapted from [50].
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noise, which will not have a high enough voltage to forward bias the diodes. Similarly, the
induced oscillating voltage has an amplitude much too small to forward bias any of the
diodes and both diode switches appear to be open. Hence, we are able to collect the full
NMR signal without losses.

When we vary the temperature of the sample, the probe’s resonant frequency changes.
Similarly, when the static magnetic field is varied, the 29Si resonant frequency changes. To
that effect, we have built the resonant circuit with a tunable capacitor that allows us to
match the resonant frequency of the coil to that of the 29Si, allowing us to excite the RF
transitions with consistent B1.

3.4.5 Photoconductive Spectrum

To determine the optimal frequency for the hyperpolarizing laser excitation, we use a variant
of the spectroscopic technique photoluminescent excitation (PLE) to find the frequencies of
the D0X transitions. This technique differs from typical PLE experiments because instead
of detecting the optical resonances by monitoring photon emission, we detect changes in
the resistivity of the material due to photoconductivity: a change in the conductivity of the
sample due to photon absorption.

When laser excitation resonantly creates a bound exciton (see Fig. 2.4 for an illustration
of the D0X state) and it decays via Auger recombination, an electron is kicked into the
conduction band, lowering the resistivity of the semiconductor. The experimental setup
used to detect the photoconductivity due to these excitation and decay cycles is illustrated
in Fig. 3.6.

We determine the 31P D0X spectrum by locking the pump laser to the external cavity
described in [43] and scanning it across the transition frequencies of the 31P D0X lines. To
detect changes in the conductivity, we use a technique similar to ‘contactless electrically
detected magnetic resonance’ readout [78, 50]. The sample is mounted in the previously
described NMR probe and is immersed in liquid helium. We apply a 19.3 MHz CW RF
voltage to the coil, which is tuned to produce minimum reflected power at that frequency
(matched), and monitor the power of the reflected signal using a directional coupler and
a power sensor that outputs a proportional voltage. This voltage is detected and plotted
against the energy of the laser, monitored by a wavemeter. When the laser comes into
resonance with one of the D0X transitions and increases the number of free carriers, the
oscillating magnetic field causes these carriers to generate eddy currents in the material
and absorb some of the RF power, increasing the amount that is reflected back. This is
equivalent to a change in the matching of the coil and allows us to detect the energies of
the D0X transitions we will pump to hyperpolarize the 29Si.

Fig. 3.7 shows a spectrum of the six lowest energy 31P bound exciton optical transitions
(labelled 1-6 in Fig. 2.4) at 4.2 K and the resonant 2.2835 T field that will be used to
hyperpolarize the 29Si centres. The width of the D0X lines we will pump to hyperpolarize
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Figure 3.6: An illustration of the experimental setup used to detect the photconductive
spectrum of the D0X transitions. The sample is immersed in liquid helium and is mounted
in the NMR probe used to detect the polarization of the 29Si nuclei. The pump laser (also
the laser used to hyperpolarize the 29Si) is frequency locked to a cavity using a stabilized
HeNe laser as a reference. We step the frequency of the pump laser, allowing us to scan it
over the region of interest and monitor this frequency with a wavemeter. As the laser scans
over the D0X transitions, we look for corresponding changes in the photoconductivity of
the sample. We detect these by driving an oscillating voltage in the NMR coil and looking
for changes in the power of the reflected signal fed through a directional coupler to a power
sensor. Figure is adapted from [50].
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the 29Si (lines 3 and 4) is ∼ 2.5 GHz. This implies that the ∼ 1.8 GHz bandwidth of
the dithered polarizing excitation will not be able to generate bound excitons for all the
31P donor centres, leaving the donors that fall within the tails of the line out of optical
resonance.
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Figure 3.7: A photoconductive spectrum of D0X transitions 1-6 at 2.2835 T and 4.2 K. The
labels 1+2, 3+4, and 5+6 refer to the D0Xtransitions as labelled in Fig. 2.4A. From this
spectrum the pump laser could be accurately set to the centre of the 3+4 D0X transition.

3.4.6 Rabi Cycle

When the on resonance RF control pulse is applied to the spin magnetization vector, it
nutates about B1 in the rotating reference frame (see section 3.2.1 for details and Fig. 3.2
for an illustration of this). Because the size of the FID signal is due to the projection of the
precessing magnetization into the x-y plane, to maximize the FID, we must first determine
the proper length of the π

2 pulse
(
when θI = π

2
)
.

We can determine this pulse length by looking at the oscillations due to a Rabi cycle.
In a Rabi cycle experiment (detailed in Fig. 3.8), we first polarize the nuclear spins in the
sample and then apply RF control pulses of varying duration and observe how the NMR
signal depends on the pulse length. The projection of the magnetization into the transverse
plane (and hence, the signal magnitude) is proportional to sin2 (tpω1), where tp is the pulse
length and ω1 = γIB1 is the nutation frequency.

The data we have collected that allows us to determine the π
2 pulse length of our system

of 29Si spins is shown in Fig. 3.9. Once we collected the data from the Rabi experiment,
we fit the first peak to the function A sin2(ω1tp) + C, where the amplitude A, nutation
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frequency ω1, and vertical offset C were the free parameters. From this fit, we were able to
determine ω1 = 32± 2 kHz implying that the length of the π

2 pulse tπ
2

= π
2ω1

= 49± 3 µs.
This π

2 pulse length was used throughout the rest experiment.

Polarize tp

FID detection

Figure 3.8: This diagram illustrates the steps of the Rabi cycle experiment used to determine
the correct π

2 pulse length. First the spins are polarized, then a resonant RF pulse is applied
to the spins, and the FID is detected. The duration of the RF pulse (tp) is varied and the
first maximum in the in the plot of signal intensity versus tp determines the correct π

2 pulse
length tπ/2.

3.4.7 The Experimental Parameters

Now that we have found tπ/2, we can determine the efficiency of this all-optical polariza-
tion scheme, look at the mechanisms behind the 29Si hyperpolarization, and attempt to
understand the limiting factors in the polarization rate. Central to this hyperpolarization
method is the effect that B0 mediated resonant hyperpolarization transfer from 31P to 29Si
nuclei has on the polarization rate. We are able to determine the magnitude of this effect
by varying the applied magnetic field slightly from the 31P-29Si resonance condition and
detecting the polarization at each magnetic field.

Once we have established the principle of resonant spin diffusion from the 31P donors to
29Si nuclei, we can vary parameters like the temperature, excitation conditions (pump laser
frequency and power), and the exposure time. Finally, to determine the actual fraction
of the 29Si nuclei we have successfully hyperpolarized, we must determine the equilibrium
polarization signal by allowing unpolarized 29Si nuclei to equilibrate to the thermal polar-
ization. However, the extremely long 29Si T1 that is so important for its various applications
makes this parameter difficult to directly determine at liquid helium temperatures. We were
therefore required to exploit several temperature dependent processes to arrive at a value
for the equilibrium 29Si NMR signal.
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Figure 3.9: The Rabi cycle data taken at 4.2 K with a polarization time of of 3 minutes for
each data point. The data is normalized to the maximum value. Error bars are determined
from the noise level of the signal intensity and the function A sin2(ω1tp) + C was fit to the
the data. The amplitude of the oscillations A, nutation frequency ω1, and offset C were left
as fit parameters. The nutation frequency determined from the fit is 32 ± 2 kHz implying
that the π

2 pulse length is 49±3 µs. A detailed survey of tp was only performed up through
100µs.
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Chapter 4

Results and Discussion

Section 3.4.7 outlined the important experimental parameters we must consider in this
project. In this chapter, we will present the results of varying said parameters and the
effects that changing the conditions used to polarize the 29Si have on the efficiency of this
procedure. By understanding these effects, we will be able to make inferences about the
dynamics of this polarization scheme as well as present ways to potentially improve this
technique. First, we will examine the effect of polarizing the 29Si at the resonant matching
field under two temperature regimes. Then, we will explore what varying the frequency
and intensity of the laser excitation used to hyperpolarize the 31P can tell us about the
mechanisms at work in the sample during this procedure. Finally, we will determine the
29Si NMR signal that corresponds to the thermal Boltzmann polarization, observe how
the 29Si hyperpolarization signal depends on the duration of the optical excitation, and
ultimately determine the fraction of the 29Si nuclei we were able to hyperpolarize in the
longest polarization time investigated, 64 hours.

4.1 Resonant Spin Transfer

Before moving forward with this project, we needed to confirm that resonantly transferring
spin hyperpolarization from 31P nuclei to the 29Si was an effective method of generating a
highly polarized ensemble of nuclei in our sample. The Larmor frequency matched resonance
condition between the donor nuclei with electron spin |↑〉 and the 29Si is dependent on B0.

Therefore, we can observe how the 29Si polarization depends on B0 in the region sur-
rounding 2.2835 T and determine whether the dependence suggests that resonant transfer
of polarization between the 31P and 29Si is occurring. To do this, we first tune the NMR
probe to the 29Si resonance frequency at a range of static magnetic fields about 2.2835 T
and then directly detect the 29Si NMR signal after 5 minutes of hyperpolarization at each
point.
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We first examined this resonant transfer process at 4.2 K, but unfortunately operating
at the resonant field only improved the 29Si polarization by approximately a factor of two,
as seen in Fig. 4.1. However, we can see in Fig. 4.1 that when pumping on the liquid helium
vapour to lower the temperature to 1.4 K, we were able to improve the 29Si polarization by
approximately an order of magnitude when operating at the resonant matching condition.
We also find that the resonance condition did not occur at the exact magnetic field and
29Si frequency we were expecting (2.2835 T and 19.314 MHz). The maximum value of the
data in Fig. 4.1 occurs at 2.2857 T with a 29Si resonant frequency of 19.332 MHz and a 31P
resonant frequency of 19.277 MHz. The cause of this will be discussed in section 4.1.2.
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Figure 4.1: The magnetic field and temperature dependence of the 29Si polarization when
illuminated for 5 minutes. The magnetic field was determined using the relation B0 = ω29

|γ29| ,
with γ29 = −8.458 MHz·mT−1 [66]. The data is normalized to the maximum value achieved
at 1.4 K. The signal error is the size of the data points and the spline fits are solely a guide
for the eye.

4.1.1 Temperature Dependence

Temperature affects several parameters that contribute to the dramatic improvement we
see when polarizing at 2.2857 T and 1.4 K. At pumped liquid helium temperatures, the
equilibrium polarization of the donor electron is ∼ 0.80 as compared to ∼ 0.35 at 4.2 K (a
factor of ∼ 2.3). Recalling Eq. 2.10, due to the principle of detailed balance we expect to

40



see an improvement in the 31P polarization rate due to a decrease in temperature given by
exp

[
∆E
kB

(
1
TL
− 1

TH

)]
. In this case, ∆E ≈ 63.879 GHz, TL = 1.4 K, and TH = 4.2 K. This

implies that the ratio R2→4/R4→2 increases by a factor of ∼ 4.3. This accounts for nearly
all of the five-fold improvement in the 29Si hyperpolarization rate at the matching field
by moving to a lower temperature. Additional improvement in the 29Si hyperpolarization
rate can also be attributed to the donor electron T1 increasing when moving from 4.2 K to
operate at 1.4 K [55]. By increasing T1e, the saturation factor increases and we are able
to generate a larger steady state donor electron spin inversion. This will keep more 31P in
resonance with the nearby 29Si and drive a stronger NOE.

4.1.2 Width and Shape

The linewidth and asymmetry we observe on the high field tail of the 31P-29Si resonant
transfer peak in Fig. 4.1 are due to the distribution of 29Si nuclei about the 31P donors.
The asymmetry we see is not a hysteresis effect as it is independent of magnetic field
sampling order. This implies it must be due to a shift in the resonant matching condition.
This shift is a function of the small anisotropic hyperfine interaction present between the
spin |↑〉 donor electrons and the nearby 29Si nuclei [29]. We can qualitatively confirm this
by considering the effective 29Si oscillation frequency [79]

ω29(rk,ms) = 1
~

√√√√(msAzz(rk)− γSi~B0︸ ︷︷ ︸
unperturbed 29Si Zeeman splitting

)2 +m2
s(A2

zx(rk) +Azy(rk)) (4.1)

at lattice site k with position rk relative to the location of the nearby neutral 31P donor.
Azz(rk), Azx(rk), and Azy(rk) are components of the hyperfine tensor Ak that can be split
into isotropic (ak) and anisotropic (Bk) components such that Ak = ak1+Bk [66, 79]. This
spread of 29Si Larmor frequencies distributed about the 31P donors gives rise to the width
of the resonant transfer peak. For the majority of the anisotropic hyperfine interactions
that have been measured, the Azz(rk) term is orders of magnitude larger than Azx(rk) and
Azy(rk) and for the resonant matching condition to apply, mS = +1

2 . Hence, there exists
a characteristic downward shift of ω29 for 29Si nuclei located in specific shells surrounding
the donor [66, 42]. Since resonant spin transfer is conditional on the donor electron being
spin |↑〉, this downward shift in ω29 will alter the magnetic field resonant transfer is most
effective at. B0 will need to be slightly higher, as depicted in Fig. 4.2.

The transition probabilityWif of a spin flip-flop between two interacting nuclei is depen-
dent on the initial and final states of the unperturbed two particle Hamiltonian. According
to Eq. 2.13, any ∆Eif 6= 0 will decrease the transition probability per unit time. Hence, this
will spoil the resonant matching condition for the 29Si nearest the phosphorus donors and
will have a negative effect on the rate of spin diffusion away from the 31P. This problem has
been well documented in the literature and is referred to as a spin diffusion barrier [5, 70, 80].
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Figure 4.2: A diagram depicting the implications of the anisotropic hyperfine interaction
between the donor electron and the 29Si. This interaction shifts ω29 for the nuclei near the
donors and leads to the asymmetric peak shape we see on the high field tail of Fig. 4.1.

This barrier of radius d was defined by Bloembergen [5] to be the distance from the impurity
(in this case the 31P donor) that the Larmor frequencies of two hyperfine-shifted neighbor-
ing spins is equal to the NMR linewidth [70]. Since the gradient in Larmor frequency is
large for rk < d, we will need to polarize the 29Si that lie outside the diffusion barrier in
order for this hyperpolarization to readily diffuse into the bulk 29Si. In our situation,it is
possible the problem with the diffusion barrier could be mitigated by dithering B0 while
hyperpolarizing the 29Si nuclei in an attempt to match the Larmor frequencies of as many
of the 29Si to those of the 31P nuclei.

4.2 Variation of Optical Excitation Conditions

There are several parameters relating to the laser excitation conditions we can vary. The
most illuminating, in reference to the dynamics of the polarization procedure we are employ-
ing, is the dependence of its effectiveness on the laser excitation frequency. By varying the
frequency of the polarizing excitation, we can create negative, hot, or cold donor electron
spin temperatures that generate enhanced, standard, or inverted 31P Overhauser hyperpo-
larization.
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4.2.1 Negative Spin Temperature

Up until now in this work, we have discussed the 29Si polarization only under the condi-
tions that we create a negative electron spin temperature. As seen in Fig. 4.3, the most
effective method for hyperpolarizing the 29Si is by creating a negative donor electron spin
temperature. As we have done in the rest of this thesis, we pump D0X transitions 3 and 4
(labelled 3+4) to drive an enhanced 31P nuclear hyperpolarization. In addition to driving
an enhanced NOE, pumping lines 3 and 4 puts the maximum number of 31P nuclei in res-
onance with the 29Si, allowing for the hyperpolarization to be diffused away from the 31P
most efficiently.
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Figure 4.3: Here we compare the signal intensity of the 29Si polarization under four different
laser energy regimes at 2.2857 T and 1.4 K. The label 3+4 in the figure corresponds to the
29Si polarization when driving D0X transitions 3 and 4 with the Koheras fibre laser. The
label 5+6 in the figure corresponds to the 29Si polarization when driving D0X transitions
5 and 6 with the Koheras fibre laser. The label BG corresponds to the 29Si polarization
when non-resonantly ionizing neutral donors with below bandgap excitation supplied by the
Koheras fibre laser at an energy of ∼ 9275.08 cm-1. The label AG corresponds to the 29Si
polarization when illuminating the sample with above bandgap laser excitation supplied by
the Nd:YLF laser at ∼9551 cm-1. The data is normalized to the maximum value.

4.2.2 Hot Spin Temperature

In contrast, we are able to create a hot electron spin temperature and drive a standard
NOE by ionizing the donor electrons either with below-bandgap or above-bandgap non-
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resonant laser excitation (labelled BG and AG, respectively, in Fig. 4.3). BG excitation
is supplied by the Koheras Yb-fibre laser emitting ∼ 9275.08 cm-1 energy light, while AG
excitation is supplied by a 1047 nm solid state laser (1047 nm ≈ 9551 cm-1). These types
of excitation create hot conduction band electrons that can neutralize ionized donors and
partially saturate the donor electron spin states. BG excitation creates hot conduction
band electrons by nonresonantly ionizing neutral donors, while AG excitation populates
the conduction band by exciting electrons directly from the Si valence band. One must
keep in mind that the BG nonresonant excitation is always present, even when we are
resonantly driving the bound exciton transitions.

4.2.3 Cold Spin Temperature

By resonantly driving D0X transitions 5 and 6, we are able to push what little thermal donor
electron |↑〉 population there is into the electron |↓〉 state, creating a colder electron spin
temperature. In principle, when we move donor electrons out of equilibrium from |↑〉 to |↓〉,
we are driving a 31P nuclear hyperpolarization into the opposite spin state as the excitation
conditions that have been previously mentioned (3+4, BG, and AG in Fig. 4.3). Under
this pumping regime, we are also removing the ability for the few donor nuclei that would
be in resonance with the 29Si to diffuse away any 31P hyperpolarization we have created.
However, because in thermal equilibrium at 1.4 K and 2.2857 T, the electron polarization
is already ∼ 0.80 spin |↓〉, the laser is only able to resonantly create a very small number
of bound excitons, leading to an extremely weak NOE that must compete against the
ever present non-resonant BG excitation that drives a standard NOE. Hence, resonantly
pumping lines 5 and 6 is not efficient enough to polarize the 29Si into the opposite nuclear
spin state. Even though polarizing the donor electrons into |↓〉 generates an extremely weak
NOE, this sheds light on the importance of not neglecting non-resonant BG ionization when
we are resonantly pumping D0X transitions 3 and 4. This non-resonant excitation has the
possibility of compromising the maximum 31P hyperpolarization we are able to achieve by
reducing the the steady state donor electron population inversion.

4.2.4 Insights into the 31P -29Si Polarization Mechanism

The 29Si polarization build up is more efficient at the resonant matching condition when
resonantly pumping D0X transitions 3 and 4 as well as when pumping with above-bandgap
light (AG). This indicates that the NOE must hyperpolarize the 31P nuclei first before
the magnetization can diffuse out to the 29Si. Any direct hyperpolarization from the non-
equilibrium donor electron spins will occur much more slowly in this system due to the large
difference in Larmor frequencies and weak coupling between the two spin systems [81]. Even
though the laser intensity is slightly different when under nonresonant BG and AG excitation
conditions (∼220 mW·cm−2 for BG and∼185 mW·cm−2 for AG), the 29Si hyperpolarization
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rates are similar (a factor of ∼1.7). AG excitation will generate significantly more carriers
and populate the conduction band much more efficiently with electrons excited directly from
the valence band than BG excitation. Hence, we can say that the 29Si hyperpolarization
under nonresonant conditions does not significantly depend on the number of conduction
electrons. The above observations rule out the possibility that the spin diffusion mechanism
from the 31P to the 29Si is due to a conduction electron mediated nuclear spin coupling that
could arise, for instance, from the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[82].

4.2.5 Optical Intensity Dependence

As one might expect, the speed of this 29Si hyperpolarization procedure is dependent on the
intensity of the laser light incident on the sample. In Fig. 4.4, we can see that for low laser
intensities (shown here < 250 mW ·cm-2) and a fixed 29Si polarization time of 5 minutes, the
polarization achieved is nearly linearly dependent upon the excitation intensity. However,
we can see by fitting an exponential to the data, that at some point this trend will saturate.
This will occur when the rate that we create hyperpolarized 31P nuclear spins equals the
diffusion rate of that hyperpolarization to the 29Si.
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Figure 4.4: This shows the effect varying the laser intensity has on the 29Si polarization
when illuminating the sample for 5 minutes at 2.2857 T and 1.4 K. The data is normalized
to the maximum value. The data is fit to an exponential that suggests the hyperpolarization
rate could be improved at maximum by a factor of ∼1.4.

4.3 Total 29Si Hyperpolarization

We have shown that by using the dipole-dipole interaction between 31P and 29Si nuclear
spins and choosing a magnetic field that creates a resonance between the nuclear spin
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systems, we have been able to polarize the 29Si and have demonstrated that this resonant
matching condition dramatically improves the spin hyperpolarization transfer to the 29Si.
However, ultimately, when looking at how potentially useful this all-optical technique for
hyperpolarizing 29Si is, we need to determine how long it takes to hyperpolarize the nuclear
spins to a usable degree and determine a value for the polarization. This requires us to look
at the dependence of the 29Si polarization on the duration of illumination.

4.3.1 Equilibrium Polarization

Before we can assign absolute 29Si polarization values to the raw data, we must first deter-
mine the NMR signal that corresponds to the 29Si polarization when in thermal equilibrium.
Since we can easily calculate the 29Si equilibrium polarization (P0) using Eq. 2.4, the po-
larization (P ) of the 29Si in the resonant coil will be given by P = signal(P )

signal(P0)P0. While the
extremely long T1 of the 29Si makes it ideal for quantum computing and MRI applications,
this same property makes it very difficult to measure the thermal NMR polarization signal.
This is especially true at the temperatures we have been operating at during this experi-
ment. This became obvious when, after polarizing the 29Si for 30 minutes, we were unable
to observe any decay in the signal after 24 hours of hold time in the dark at 4.2 K. Addi-
tionally, when starting from an unpolarized state and allowing for ∼60 hours of hold time
in the dark at 4.2 K, we were unable to see any NMR signal due to the thermal polarization.

However, we recognize that the coupling to the 31P nuclei at the resonant field we
are using could provide an effective channel for 29Si nuclear relaxation, but in thermal
equilibrium at 4.2 K, there are few 31P nuclei in resonance with the 29Si (the thermal electron
polarization is ∼0.35 spin-down). At 20 K, the donor electron Boltzmann polarization is
only ∼ 0.08 spin-down, the donor T1e and T1x are both many orders of magnitude shorter
(on the order of microseconds) [59], and the ratio of donor electron spin transition rates
R↓→↑
R↑→↓

= 0.86 as opposed to 0.48 at 4.2 K. The net result of having more donors in resonance
with the 29Si and operating in a temperature regime such that donor electron spin flips in
both directions (from high to low energy and vice versa) are frequent allows for the 31P nuclei
to act as an effective 29Si relaxation channel. The experimental data showing the build up
of equilibrium polarization at 20 K and 2.2857 T, along with its corresponding exponential
fit, is given in Fig. 4.5. From the fit, we extracted the NMR signal that corresponds to the
equilibrium polarization and the T1 relaxation time scale of the 29Si under these conditions.
The equilibrium polarization buildup asymptotically approaches P0 = 2.31 × 10−5 with a
corresponding T1time scale of 33±4 hours. This is in contrast to the 29Si T1 of ∼200 hours
at 77 K reported in reference [10] (albeit with a lower 31P doping concentration).

46



Po
la

riz
at

io
n

( ×
 1

0-5
)

0
0 90Dark Time (hrs)

2 T = 20 K

 

Figure 4.5: This shows the build up of the 29Si thermal equilibrium polarization as a function
of hold time in the dark at 20 K and 2.2857 T. The exponential fit returns a 29Si T1 under
these conditions of 33± 4 hours.

4.3.2 29Si Hyperpolarization Build Up

Now that we have determined the NMR signal corresponding to the 29Si equilibrium po-
larization, we can assign values to its hyperpolarization build up as a function of optical
exposure time. Results for this build up of hyperpolarization under maximum optical inten-
sity (∼450 mW · cm-2) with the corresponding exponential fit are shown in Fig. 4.6. After
64 hours of exposure at the 31P-29Si resonant field condition and 1.4 K, we were able to
achieve a total hyperpolarization of 6.6±0.4%. The fit returns an asymptotic maximum
nuclear hyperpolarization of 13± 2%. However, since this value is likely determined by the
Overhauser dynamics of the 31P system, we suspect that this limit can be surpassed. Tech-
niques for potentially extending this limiting value and improving the rate of 29Si nuclear
hyperpolarization will be discussed in subsequent sections.

4.4 Improving the 29Si Hyperpolarization

Now that we have been able to determine our 29Si polarization values using this all-optical
technique, we must look ahead to how we can improve the polarization rate and maximum
achievable hyperpolarization. The ways we can improve the hyperpolarization rate can be
broken down into two main (though related) areas: considering ways to more effectively
transfer hyperpolarization to the 29Si centres; and, increasing the number of hyperpolarized
31P nuclei.
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Figure 4.6: This shows the buildup of the 29Si hyperpolarizarization under maximum optical
intensity (∼450 mW · cm-2) at 1.4 K and 2.2857 T.

4.4.1 Improving Hyperpolarization Transfer

To more efficiently transfer 31P hyperpolarization to the 29Si we must find ways to have a
larger number of 31P experiencing the precise magnetic field that allows for resonant spin dif-
fusion. As discussed in section 4.1.2, the hyperfine interaction between donor electrons and
29Si nuclear spins modifies the 31P-29Si resonance condition and determines the linewidth
and asymmetric shape of the resonant transfer peak in Fig. 4.1. The modification of the
matching condition for 29Si nuclei located very near the 31P donors is a detrimental effect
that reduces the efficiency of nuclear spin flip-flops. This could potentially be mitigated
by dithering the applied field over a range determined by the hyperfine-induced linewidth
of the resonant transfer peak. This would allow all the 29Si to experience the resonance
condition with nearby hyperpolarized 31P. This width is dependent on the impurity concen-
tration of the sample, and though increasing the concentration would increase the number
of 31P donors that could transfer hyperpolarization to the 29Si, it would move some of the
nuclei out of resonance, especially those near clusters of donors (concentration effects will
be considered in more detail in the subsequent section 4.4.2).

4.4.2 Increasing the Number of Hyperpolarized 31P

The simplest way to increase the number of hyperpolarized 31P is by moving to a higher
optical intensity. This will improve the donor electron inversion, pushing the electrons fur-
ther out of equilibrium to drive a stronger NOE while keeping more 31P nuclei in resonance
with the 29Si. Another way to increase the number of donor nuclei coupled to the 29Si
is by simply increasing the 31P doping concentration. While this will likely improve the
29Si hyperpolarization rate, there is a limit to the improvement that can be provided by
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increasing the donor concentration. This limit comes as we approach the low temperature Si
metal-insulator transition at a 31P doping concentration of ∼3−4×1018 cm-3 [83]. At con-
centrations >10−17 cm-3, the exchange interaction between donors in clusters of impurities
becomes important as the ESR lines broaden [13]. This has a variety of unintended conse-
quences, and may make resonant transfer impossible. For instance, the D0X transitions will
broaden as the 31P concentration increases and donor electron exchange interactions become
more important. This would force us to dither the laser over a larger range of energies so
that the majority of donors are still in optical resonance. Additionally, the donor electron
T1e becomes extremely short and we would require higher optical intensity to maintain a
high degree of electron population inversion. Most importantly, in this higher doping regime
the exchange interaction would broaden the 31P nuclear resonance lines. At the same time,
a larger fraction of the 29Si Larmor frequencies will be shifted due to anisotropic hyperfine
coupling between donor electrons and 29Si nuclei. This will smear out the 29Si NMR lines
and broaden the resonant spin transfer peak seen in Fig. 4.1. This will reduce the rate of
spin diffusion from the 31P to 29Si (however, this could be mitigated by dithering B0 as
discussed in sections 4.1.2 and 4.4.1).
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Chapter 5

Conclusion and Future Directions

These results demonstrate a method of efficiently hyperpolarizing bulk 29Si spins in silicon
doped with phosphorus. This all-optical technique requires no microwave manipulation and
uses 31P nuclear spins hyperpolarized by the NOE as the reservoir of polarization. By using
the 31P bound exciton transitions to create a negative donor electron spin temperature, we
are able to push the donor electron populations much further from equilibrium and drive a
stronger NOE than if we had used CW microwave irradiation to saturate the electron spin
states. The strong hyperfine interaction between the 31P donor electron and nuclear spins
allows the 31P nuclear spins to hyperpolarize much faster than using the coupling between
the donor electrons and 29Si spins to hyperpolarize the 29Si nuclei. We chose B0 to create a
switchable, frequency-matched resonance condition between the 31P and 29Si. This allowed
the built up 31P hyperpolarization to effectively diffuse out to the nearby 29Si via energy
and spin angular momentum conserving flip-flops.

This method for hyperpolarizing 29Si in 31P:Si was able to generate a total hyperpolar-
ization of over 6%, the highest to date for an all-optical hyperpolarization technique. With
some improvements (or more patience) it should be possible to push the 29Si hyperpolar-
ization further in the future.

This work is the first to identify this resonance condition between the 31P nuclear spins
and 29Si as a switchable coupling that can generate a hyperpolarization. In fact, the match-
ing field condition described here may have contributed to the very high 29Si hyperpolar-
ization (∼10%) observed by Dementyev et al. in their highly doped 31P:Si sample. These
results were taken at 2.35 T, a commonly used field for 100 MHz spectrometers that is
coincidentally very near the resonant matching condition we have observed for 31P. This
may have contributed to the much stronger DNP signal observed in highly-doped (and
hence linewidth-broadened) 31P:Si than that of similarly-doped natSb:Si, whose matching
field condition lies far away from the magnetic field used in their work.
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5.1 Future Directions

While this work has demonstrated an effective and unique way to hyperpolarize 29Si in
natural silicon doped with phosphorus, the majority of the measurements we made involved
varying the excitation conditions of the laser that hyperpolarized the 31P (e.g. its frequency,
intensity, duration), we were not able to experimentally probe all the ways the different fac-
tors at work in the system interplayed in a quantitative way. We have demonstrated that
resonant transfer from 31P donor nuclei to 29Si is a sizeable effect and that this hyperpo-
larization technique is effective. If there were to be another series of experiments looking
at this process, it would be crucial to devise methods that allow us to determine the time
scales of each aspect in this hyperpolarization scheme.

There are three important time scales that each affect the efficiency of this technique.
They are the 31P nuclear hyperpolarization time scale, the time scale that governs the
diffusion of the 31P nuclear hyperpolarization to the nearby 29Si nuclei, and the bulk 29Si
diffusion time scale. Further complicating the interplay of the three time scales is the
interaction between donor electrons and the closest 29Si nuclei that alters the resonant
matching condition between the two species of nuclei. This is especially true since the
probability amplitude of the donor electron wavefunction does not monotonically decrease
with distance from the donor [47].

An interesting experiment that could shed some light on the interplay between the
31P hyperpolarization time and the diffusion of that hyperpolarization to the nearby 29Si
could be carried out by adding the complexity of pulsed resonant microwave manipulation
of the donor electron spin states. Using pulsed resonant microwave manipulation, one
could intermix quantum SWAP operations on the 31P donors [84] with the resonant D0X
laser excitation. This would allow the large thermal polarization of the donor electrons at
1.4 K and 2.2857 T to be transferred to the 31P nuclei. Over a period of time twait, this
hyperpolarization would resonantly diffuse to the 29Si. Fig. 5.1 shows how a polarization
technique like this could be implemented.

The added complexity in this experiment also has the potential to increase the 29Si
hyperpolarization rate in 31P:Si. This scheme would allow us to obtain a very high 31P
nuclear polarization on demand and would eliminate the need to rely on the Overhauser
dynamics of the system to hyperpolarize the 31P. By relaxing this requirement, the technique
could potentially generate a 31P hyperpolarization above the asymptotic value that exists
when strictly relying on the NOE. Though there would be many parameters that would
need to be considered, adding pulsed resonant microwave manipulation could improve the
maximum achievable 29Si hyperpolarization.
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Figure 5.1: An illustration of a 29Si hyperpolarization scheme that uses a quantum SWAP
operation to transfer the thermal polarization of the donor electrons to the donor nuclei.
A) is the donor thermal polarization before a microwave frequency π pulse exchanges the
populations of states |1〉 and |4〉 in B). Then in C), a RF π pulse exchanges the populations
of |3〉 and |4〉. Resonant laser excitation of D0X lines 3 and 4 moves the population from
|4〉 to |1〉 in D) to generate a strong hyperpolarization in state |1〉. Then a delay twait allows
the 31P-29Si resonant coupling to facilitate diffusion of the nuclear spin hyperpolarization
that has built up in |1〉 to nearby 29Si in E). During this period, T1e pushes the donor
electrons back towards thermal equilibrium and can allow this procedure to begin again. A
significant amount of work would need to be done to optimize all the delays and parameters
of this procedure, including twait.
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5.2 Considerations for Applications in Quantum Computa-
tion and Magnetic Resonance Imaging

We have identified two primary fields that have the potential to benefit from the technique
we developed in this thesis project and the knowledge we have gained about the interac-
tion between 31P and 29Si nuclear spins. As mentioned previously, these are the fields of
quantum computing and magnetic resonance imaging. However, since this experiment was
performed in a bulk 31P:Si crystal, there are several considerations that need to be taken
into account and experiments that need to be performed before the ultimate applicability
of this technique into QC and MRI can be assessed.

5.2.1 Quantum Computation

As mentioned in the introduction of this thesis, this 29Si hyerpolarization method would
be well suited to initializing the qubits in QC architectures that use linear chains of 29Si
embedded in a spin-free 28Si host lattice as qubits [25]. To initialize and readout the 29Si
qubits, 31P donors would be placed at the end of the 29Si chains [25]. In the 28Si host crystal
that would be used in this implementation, the D0X lines would be narrow enough to allow
the 31P electron and nuclear spin states to be selectively excited. This would allow the 31P
electrons and nuclei to be hyperpolarized to ∼90% in less than a second. Then, the efficient
dipole-dipole coupling between 31P nuclei and 29Si nuclei at the resonant magnetic field used
in this work would allow the hyperpolarization to diffuse down the chains of qubits.

This would likely be a very effective method of initializing the qubits in the architecture.
Unfortunately, this implementation of QC is currently not one of the frontrunners that the
community is considering. Regardless, this work compliments this implementation nicely,
and hopefully will add some extra validity to the proposal so its usefulness can be examined
in a more practical manner.

5.2.2 Magnetic Resonance Imaging

Using this technique to implement the quantum computing architecture proposed in refer-
ence [25] is something that would be far in the future, but the applications of hyperpolarized
29Si as a medical imaging agent seem to be much closer. As mentioned in the introduction,
hyperpolarized 29Si in natSi micro- or nanoparticles can be directly imaged in vivo using
MRI to aid in diagnosing illnesses in traditionally difficult places to image, like the gas-
trointestinal tract [17]. First and foremost, before Si micro- and nanoparticles can be used
in MRI, more studies of the toxicology of particulate silicon in vivo need to be performed.
However, the outlook on these technologies achieving widespread use as diagnostic tools is
promising [85, 2].
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There are a few considerations that would need to be addressed before the 29Si hy-
perpolarization technique we have developed could be implemented to hyperpolarize the
29Si in Si micro- and nanoparticles. Most importantly, these particles would need to be
spectroscopically examined before we could use this technique that employs the 31P D0X
transitions as the hyperpolarization mechanism. This is because the bound exciton tran-
sitions would need to be fully resolved to use our method. Unfortunately, the crystalline
core of these particles are usually surrounded by a layer of amorphous silicon and a layer
of silicon dioxide (SiO2) that will introduce random strain fields due to structural defects
on the particle’s surface. These strain fields will broaden the D0X lines, and depending on
the degree of broadening, make it more difficult or nearly impossible to excite the required
D0X transitions in a sufficiently large number of the 31P donors. Due to the small size of
the particles, these effects will likely be exaggerated when compared to bulk natSi.

However, this technique has an advantage over the ones currently employed to hyperpo-
larize 29Si in silicon micro- and nanoparticles. The current techniques use unpaired electrons
associated with dangling bonds on the particle’s surface as the reservoir of hyperpolarization
and allow the 29Si hyperpolarization to diffuse into the core of the particles [16, 17]. Due to
the high density of structural defects, the 29Si in the outer shell or amorphous region of the
particle polarizes very quickly. However, it takes a longer time to polarize the silicon in the
crystalline core of the particles as the polarized spin system diffuses across the amorphous-
crystalline boundary to the core nuclei. These structural defects in the amorphous region
are also the primary relaxation channel as the 29Si nuclei return to their equilibrium polar-
ization. To that effect, by considering micro- or nanoparticles with moderate doping levels
of donors (1015 to 1016 cm-3), the method we have developed would be able to hyperpo-
larize the core 29Si nuclei first. However, to date, researchers have dismissed doped micro-
and nanoparticles due to the donor electrons acting as an additional channel for relaxation.
Unfortunately, there is a gap in the research in this regard, as there have not been studies
looking at the relaxation times of 29Si in moderately doped particles. To date, 29Si relax-
ation times have only been examined in particles that are nominally undoped and those
that are doped to the point where they can almost be considered metals [35]. Experiments
in bulk natSi that measured the 29Si T1 times as a function of donor concentration have
found that T1 is only weakly dependent on the doping level up to ∼1016 cm-3 [67]. This is
a gap in the research that ought to be addressed because doping the particles opens up the
possibility of employing a number of other 29Si hyperpolarization techniques.
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