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ABSTRACT 

This study was designed to introduce the concepts of grey systems theory into 

water resources management as a means for accounting for uncertainty, and to conduct a 

grey systems analysis of the tradeoffs between meeting water quantity/quality objectives 

and maximizing economic income in the specific case of Xiamen, China. 

The literature on water resource systems analysis was reviewed to arrive at an 

understanding of how water quantity and quality problems were analyzed and incorporated, 

how uncertainty was accounted for, and what cases have been studied in water quantity and 

quality management. The literature revealed that ( 1) previous studies of water quantity and 

quality management were related to river or lake basins, and none was about a canal basin 

with strict water quality requirements; (2) none of the studies in China combined both 

quantity and quality problems in an optimization framework; and (3) no previous study 

attempted to communicate uncertain messages directly into optimization processes and 

solutions. 

This study has developed a grey linear programming (GLP) model for water 

quantity allocation and quality planning, and advanced a new solving approach which can 

effectively incorporate uncertain messages into the optimization framework. This method 

has been applied to water quantity and quality management in a water delivery canal in 

Xiamen, China. Results of the case study indicate that the derived decision schemes are 

feasible for the study area. When the canal water quality has precedence, the scheme for 

lower limit of objective function has to be adopted. Under this alternative, less cropping 

area, manure application and livestock numbers, and no fertilizer application are 

programmed. When agricultural income has precedence, the scheme for upper limit of 
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objective function can be adopted. Under this alternative, more cropping areas, manure 

application and livestock numbers, and some fertilizer application are programmed. 

Therefore, decision makers can adjust the grey decision variables (including cropping area, 

manure and ferti1izer applications and livestock numbers) within their grey intervals 

according to the detailed situations. 

Reliability of the method has been proved through sensitivity tests of the impacts of 

pollutant loss constraints on agricultural income, the costs of reducing pollutant losses, the 

impacts of water quantity constraints on agricultural income, and the effects of grey inputs 

on grey outputs. 
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CHAPTER I 

INTRODUCTION 

The objective of water resource management can be described in simplest terms as 

having the right amount of water available with the right quality for a particular use. 

Having too much, too little, or poor quality of water is poor management because too much 

water for a particular use will cause waste, too little may hinder socio-economic or 

ecological activities, and poor water quality will not be feasible for certain uses. Water uses 

include aesthetic and recreational uses, aquatic life habitat, domestic use, irrigation, and 

industrial use. Each of these uses has specific requirements for water quantity and quality. 

Water resource systems are complex, because the supply of, demand for and quality 

of water can be affected by human, socio-economic, biophysical, and other indirect factors. 

There is often an insufficient supply of water to meet all demands, and some economic 

activities (e.g., farming, industry) can reduce the value of water for some uses. Therefore, 

water resource management normally involves decisions regarding the tradeoffs between 

the costs and benefits of alternative water allocation schemes and management of related 

economic activities. 

Because of the complexity of water resource management, systems analysis methods 

have been applied with increasing frequency for identifying plans, policies or decision 

schemes that achieve to the greatest extent possible the needs, goals, and aims of those who 

plan, play for, and make use of, or are affected by water resources facilities and 

management plans. Systems analysis was defined as "techniques for applying the ways of 

thinking and working commonly used by scientists to the problems confronted by the 

decision makers in governments, businesses, and other institutions" (Rogers et al. 1978). 
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Over the past 30 years systems analysis applied to the planning and operation of 

water resource systems has "grown from a mathematical curiosity to a major specialty" 

(Rogers & Fiering 1986). Most of the systems analysis techniques were quantitative 

mathematical approaches, such as mathematical programming, dynamic programming, 

control theory, multivariate analysis, and simulation, which can incorporate all relevant 

variables into a mathematical expression, and their solutions may be directly related to 

practical problems. However, some systems analyses were qualitative, and no general 

mathematical expression was developed to incorporate all impact factors although 

quantitative methods may be used individually (e.g., Adiguzel and Coskunoglu 1984). 

Table 1.1 shows a summary of literature review of water resource systems 

analysis. The table indicates that five types of analytical method were commonly used: (1) 

mathematical programming, including linear programming and nonlinear programming; (2) 

dynamic programming; (3) goal programming; (4) statistical techniques; and (5) game 

theory. Linear and nonlinear programming, dynamic programming and goal programming 

are analytical optimization techniques. They usually incorporate quantitative relationships to 

describe the interactions among variables of the system, and display an analytical structure 

which promotes the optimal solution. Linear and nonlinear programming are optimization 

methods for single objective and single stage decision making. They differ as to whether 

the relations betw~en decision variables in objective functions and constraints are linear or 

nonlinear. Dynamic programming is an optimization technique which was commonly used 

for multistage or multilevel water resource decision making. Goal programming was used 

for the resolution of water problems involving multiple and conflicting objectives and for 

systematic investigation of various alternatives. Statistical techniques include multivariate 

analysis and inference (e.g., factor, principal component, and discriminant analysis). They 
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Table 1.1 Literature list of water resource systems analysis 

Research Focus 

Water Quantity 
& Quality I Analytical Technique I Situation of Study Areas 
Management 

Year Author 

Quan- Quality Linear Non- Dyna- Goal Statis- Game Multi- Others River Lake Agri- Canal 
tity Manag. Progr. LineM mic Progr. ti cal Theory Object Basin Basin cultural Basin 
Manag. Progr. Progr. Techniq Progr. System 

1955 Griffith x x x 

1955 Maffitt x x x 

1956 Fergus x x x x 
on 

Vl 

1958 Wilcox x x x x 

1958 Krause x x x x 

1959 Leo- x x x x 
pold 

1960 Pavelis x x 
et al. 

1965 Wallis x x 

1968 Revelle x x 
et al. 

1968 Diaz et x x 

al. 



Table 1.1 (continued) Literature list of water resource systems analysis 

Research Focus 

Water Quantity 
& Quality I Analytical Technique I Situation of Study Areas 

Management 
Year Author 

Quan- Quality Linear Non- Dyna- Goal Statis- Grune Multi- Others River Lake Agri- Canal 

tity Manag. Progr. Linear mic Progr. ti cal Theory Object Basin Basin cultural Basin 

Manag. Progr. Progr. Techniq Progr. System 

1968 Wallis x x 

1969 Steph- x x x 

enson 

1969 Butcher x x 

et al. 
_p.. 

1969 Rogers x x x 

1970 Gisser x x x x 

1970 Young x x 
&Pisan 

1970 Coe hr x x 
&Butch 

1971 Musp- x x x 

rau 

1971 Heidari x x 

1971 Morin x x x 

et al. 



Table 1.l(continued) Literature list of water resource systems analysis 

Research Focus 

Water Quantity 
& Quality I Analytical Technique I Situation of Study Areas 
Management 

Yea Author 

Quan- Quality Linear Non- Dyna- Goal Statis- Game Multi- Others River Lake Agri- Canal 
tity Manag. Progr. Linear mic Progr. ti cal Theory Object Basin Basin cultural Basin 
Manag. Progr. Progr. Techniq Progr. System 

1971 Anders- x x x 
on et al 

1972 Jacoby x x x 
U1 et al. 

1972 Graves x x 
et al. 

1972 Bargur x x 

1973 Zand et x x x 
al. 

1973 Young x x x 
et al 

1974 Mawer x x x 
&Thorn 

1975 Taylor x x 
et al. 

1975 Healy x x x x x 
&Nicol 

1976 Bis was x x 



Table 1.1 (continued) Literature list of water resource systems analysis 

Research Focus 

Water Quantity 
& Quality I Analytical Technique I Situation of Study Areas 

Management 
Year Author 

Quan- Quality Linear Non- Dyna- Goal Statis- Game Multi- Others River Lake Agri- Canal 

tity Manag. Progr. Linear mic Progr. ti cal Theory Object Basin Basin cultural Basin 

Manag. Progr. Progr. Techniq Progr. System 

1976 Hipel x x 
et al. 

1976 Goicoe- x x x 

ch et al 
(]\ 

1976 McBea x x 
n 

1977 Hochm x x x 

et al. 

1977 Nara ya- x x 
na et al 

1977 Pratish- x x 
thanada 

1977 Bishop x x 

1978 Potter x x 
et al. 

1979 Ciecka x x x 

et al. 

1980 Ducks- x x x 

tein 
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Table 1.1 (continued) Literature list of water resource systems analysis 

Research Focus 

Water Quantity 
& Quality I Analytical Technique I Situation of Study Areas 
Management 

Year Author 

Quan- Quality Linear Non- Dyna- Goal Statis- Game Multi- Others River Lake Agri- Canal 
tity Manag. Progr. Linear mic Progr. tical Theory Object Basin Basin cultural Basin 
Manag. Progr. Progr. Techniq Progr. System 

1980 Haimes x x x 
et al. 

1980 Guitjen x x x x x 
---..] et al. 

1981 Tubbs x x x 
&Haith 

1981 Mandi x x x x 

1981 Guariso x x x 
et al. 

1981 Stone x x x 

1981 Rydrew x x x 
sk et al 

1981 Bras et x x x 
al. 

1982 Lindsay x x x 
et al. 
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Table 1.1 (continued) Literature list of water resource systems analysis 

Research Focus 

Water Quantity 
& Quality I Analytical Technique I Situation of Study Areas 
Management 

Year Author 

Quan- Quality Linear Non- Dyna- Goal Statis- Game Multi- Others River Lake Agri- Canal 
tity Manag. Progr. Linear mic Progr. ti cal Theory Object Basin Basin cultural Basin 
Manag. Progr. Progr. Techniq Progr. System 

1982 Long x x x 

1982 Khan x x x x 

1983 Jenq et x x x 

co al. 

1983 Delwic x x x 
&Haith 

1983 Greis x x x 

1983 Chapra x x x 
et al. 

1983 Ogg et x x x 
al. 

1984 Haimes x x x 

1984 Jenq et x x x 
al. 

1984 Simon- x x x 
ov et al 



Table 1.1 (continued) Literature list of water resource systems analysis 

Research Focus 

Water Quantity 
& Quality I Analytical Technique I Situation of Study Areas 

Management 
Ye.ar Author 

Quan- Quality Linear Non- Dyna- Goal Statis- Grune Multi- Others River Lake Agri- Canal 

tity Manag. Progr. Linear mic Progr. ti cal Theory Object Basin Basin cultural Basin 

Manag. Progr. Progr. Techniq Progr. System 

1985 Clark x x x 

1985 Bum& x x x 

McBean 

1986 Graham x x x 
l...O et al. 

1986 Krzysz- x x x 
tofowicz 

1987 Heatwo x x x 

et al 

1987 Milon x x x 

1987 Wenger x x x 

&Rong 

1987 Haith x x x x 

1987 Su x x x 

1987 Huete x x x 
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Table 1.1 (continued) Literature list of water resource systems analysis 

Research Focus 

Water Quantity 
& Quality I Analytical Technique I Situation of Study Areas 

Management 
Yea- Author 

Quan- Quality Linear Non- Dyna- Goal Statis- Game Multi- Others River Lake Agri- Canal 

tity Manag. Progr. Linear mic Progr. ti cal Theory Object Basin Basin cultural Basin 

Manag. Progr. Progr. Techniq Progr. System 

1987 Allam x x x x 

1987 Ormsbe x x x x 

et al. 
f--l 
0 1988 Hough- x x x 

tal et al 

1989 Walker x x x 
JF et al 

1989 Wood x x x 

et al. 

1989 Walski x x x 

et al. 

1989 KC$ler x x x 

&Sham 

1989a Lansey x x x x 
et al. 

1990 Fujiwa- x x 
ra et al. 

1990 Camera x x x 
et al. 



have had numerous applications in aspects of water resource planning and decision 

making, primarily to describe recorded phenomena associated with river basin runoff and 

water quantity management. The purpose of game theory was mainly to establish a 

framework for water resource decision making under multiple criteria or under conflict. 

Among all these methods, linear programming was most commonly used because it is 

easier to be solved and its solutions are directly related to decision schemes (Gisser 1970; 

Hochman et al. 1977; Lindsay et al. 1982; Narayanan et al. 1977; Revelle et al. 1968). 

Methods of multiobjective programming were also developed (e.g., Haimes et al. 1980; 

Goicoechea et al. 1976). 

A limitation inherent in many optimization methods is that only phenomena 

quantifitable by some standard (e.g. monetary value, and energy expenditure) can be 

included. Intangibles cannot be properly accounted for in mathematical programming 

frameworks. For example, in the systems analysis of water quantity and quality 

management of Little Bear River, North Utah, a mathematical programming model was 

employed to devise a plan that would provide maximum net benefits from water resource 

development and management, and would present specific recommended measures to be 

undertaken. However, many social benefits (e.g., public health, aestheletic benefits) of 

improving river water quality were excluded from the calculation of net benefit, because of 

the difficulty of quantifying these benefits (Hendricks, et al. 1970). 

Previously, applications of systems optimization in water resources decision making 

mainly included ( 1) decision making of the trade off between environmental quality 

requirements and economic developments, and (2) decision making of the allocation of 

insufficient water supply for achieving maximum economic return. However, some studies 

have tried to combine both quantity and quality management in the optimization 

frameworks (e.g., Guitjens 1980; Mandi 1981; Long 1982; Ormsbee et al. 1987). 

However, all these previous studies were related to soil conservation or land use planning 
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(Heady and Nicol 1975; Kanneli 1978; Mandl 1981; Pizor 1984; Lauwaert 1985), and 

river or lake basin management (Guitjens 1980; Long 1982; Ormsbee 1987). None was 

about a canal, involving multiple uses, various human activities and strict water quality 

requirements, connected to a drainage basin. 

In China only a few studies of water resource systems analysis have been conducted 

(Liu et al. 1985a). Of those related directly to decision-making, some focused on the 

qualitative analysis of multiobjective water resource development problems (Chen 1985; 

Hou et al. 1988; Liu et al. 1985b; Lo et al. 1985), while others were concerned with either 

quantity (Lou 1985; Liu et al. 1985b) or quality (Wang 1985) management. None analyzed 

the quantity-quality issues in an optimization framework. 

Therefore, an optimization analysis of water quantity-quality problems of a canal 

basin would expand our knowledge of the complexities of water resource management and 

planning, and a case study in China, where high population density, overload utilization of 

natural resources~ great quantities of agricultural nonpoint source pollutant losses, and 

serious water pollution problems are involved, would fill in the gap in the integration study 

of water quantity and quality management in China. 

Water resources management has an important influence on agriculture, forestry, 

geography, watershed management, political science (water law and policy), economics, 

and sociology; and it has practical applications in structural design, water supply, waste

water disposal and treatment, irrigation, drainage, hydropower, flood control, navigation, 

erosion and sediment control, salinity control, pollution abatement, recreational use of 

water, fish and wildlife preservation, insect control, and coastal works. Because of the 

complicated nature of water resource management, we cannot have perfect knowledge of all 

12 



relevant phenomena and their relationships. Uncertainties will be associated with the 

physical phenomena, socio-economic interactions, environmental response, pollutant 

effects on health, and other situations where our understanding is limited. The definition of 

uncertainty therefore is a phenomenon where the value of a specific realization is not 

known precise! y. 

In water resources systems analysis, problems of uncertainty can be divided into 

input data uncertainty, parameter estimation uncertainty, model specification uncertainty, 

and uncertainty of solution errors in simulation, impact assessment, and optimization 

models. The existence of uncertain messages can affect the systems analysis results and the 

formation of water policies and decisions. Therefore, quantifying these impacts is an 

important step toward a more robust decision making process. 

Table 1.2 summerizes the literature on analyses of uncertainty in water resource 

systems. The table indicates that most previous studies of uncertainties in water resources 

systems analysis were related to simulations or impact assessments. Only a few tried to 

incorporate elements of uncertainties in optimization -~ialyses for decision making (Bum 

and McBean 1985; Fontaine and Lesht 1987; Lansey 1989; Morgan 1983; Segerson 1988; 

Smith 1979). However, all of these previous studies employed uncertainty analysis 

methods which were unable to communicate uncertain messages directly into optimization 

processes and solutions, and none of them considered both quantity and quality problems 

in its uncertainty analysis framework. 

Two problems therefore arise based on the above review: 

(1) In water resource systems analysis, there have been very few studies trying to 

connect water quantity allocation with water quality protection in an optimization 
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Table 1.2 Literature list of water resource systems analysis under uncertainty 

Research Focus 

Water Quantity & I 
Quality Managemen; 

Area of Uncertainty Study I Situation of Study Areas 

Year Author(s) 

Quantity Quality Simula- Impact Optimization • River Lake Agricul- Canal Others 

Manage- Manage- ti on Assess- Basin Basin tural Basin 

ment ment ment A B System 

1970 Upton x x x 

1972 Thomas x x 

et al. 

I-' 
,+.:::.. 1974 Boganti x x 

et al. 

1974 Shamir x x x 

1978 Kaynor x x x 

1979 Goiooe- x x 
chea 

1979 Smith x x x x 

1981 Clark DA x x 
et al. 

1982 Ducks- x x x 

tein et al. 

* A means that the optimization analyses can reflect uncertain messages into optimization processes and solutions; and 

B means that the optimization analyses cannot reflect uncertain messages into optimization processes and solutions. 



Table 1.2 (continued) Literature list of water resource systems analysis under uncertainty 

Research Focus 

water Quantity & I 
Quality Management 

Area of Uncertainty Study I Situation of Study Areas 

Year Author(s) 

Quantity Quality Simula- Impact Optimization• River Lake Agricul- Canal Others 
Manage- Manage- ti on Asse~- Basin Basin tural Basin 
ment ment ment A B System 

1982 Finney et x x x 
al. 

1982 Thomann x x x 
1--1 
U1 1982 O'neill et x x x 

al. 

1982 Walker x x x 

1982 Maham ah x x 
& Bhagat 

1982 Rao& x x x 
Jessup 

1982 Cll00ck7- x x 
ton et al. 

1982 Goicoe- x x 
chea et al 

1983 Morgan x x 

* A means that the optimization analyses can reflect uncertain messages into optimization processes and solutions; and 
B means that the optimization analyses cannot reflect uncertain messages into optimization processes and solutions. 
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Table 1.2 (continued) Literature list of water resource systems analysis under uncertainty 

Research Focus 

W arer Quantity & I 
Quality Management 

Area of Uncertainty Study I Situation of Study Areas 

Yt3" Author(s) 

Quantity Quality Simula- Impact Optimization • River Lake Agricul-
Manage- Manage- ti on A~- Basin Basin tural 
ment ment ment A B System 

1983 Spear & x x x 
Hornberg 

x 
1983 Reckhow x x 

1984 Dewey x x 

1984 Jaffe & x x 
Park.er 

1984 Huson x x 

1984 Fedra x x 

1984 Haimes x x 

1985 Burn& x x 
Mc~ 

* A means that the optimization analyses can reflect uncertain messages into optimization processes and solutions; and 
B means that the optimization analyses cannot reflect uncertain messages into optimization processes and solutions. 

Canal 
Basin 

Others 

x 

x 
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Table 1.2 (continued) Literature list of water resource systems analysis under uncertainty 

Research Focus 

water Quantity & I 
Quality Management 

Area of Uncertainty Study I Situation of Study Areas 

Year Author(s) 

Quantity Quality Simula- Impact Optimization • River Lake Agricul- Canal Others 
Manage- Manage- ti on ~- Basin Basin tural Basin 
ment ment ment A B System 

1985 Dandy x x 

1986 Riboudo x x x 
et al. 

1986 Warwick x x x 
~ 

& Cale ----..) 

1987 Fontaine x x x x 
& Lesht 

1988 Scg\!rson x x x 

1989b Lansey et x x 
al. 

1990 Melching x x x x 
e: al. 

* A means that the optimization analyses can reflect uncertain messages into optimization processes and solutions; and 
B means that the optimization analyses cannot reflect uncertain messages into optimization processes and solutions. 



framework. Of these, no study has performed an analysis in a basin with an open water 

supply canal, involving multiple uses, various human activities, and strict water quality 

requirements, and no study in China combined both quantity and quality problems in an 

optimization framework. An optimization analysis of water quantity allocation and quality 

protection in such an area (canal basin, China) would therefore be helpful for fully 

understanding the complex nature of water resource management and planning in a basin

wide context 

(2) Uncertainty is a common problem in water resource management. However, 

most previous studies tended to pay attention to the uncertainties in simulations or impact 

assessments. Very few studies tried to consider uncertainties in optimization analyses, and 

none communicated uncertain messages directly into the optimization processes and 

solutions. Consequently, a study of an effective approach which can reflect uncertainties in 

optimization processes and solutions will be very important for sound water resources 

decision-making. 

Therefore, the objective of this study is to do a grey systems analysis of water 

quantity allocation and quality protection under uncertainty in a canal basin in Xiamen, 

China. This objective entails: 

( 1) a systems analysis of the tradeoffs between meeting water quantity and quality 

objectives and maximizing economic income in the specific case of Xiamen. It will include: 

assessment of the factors that determine water quantity and quality management; 

examination of the conditions that can lead to maximum net income under the relevant 

constraints; identification of relationships between water quantity and quality 

considerations; and the formation of an optimal scheme for decision-making. 
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(2) introducing the concepts of grey systems theory into water resources 

management as a means for accounting for uncertainty. A grey linear programming (GLP) 

mcxlel will be developed and applied, which can incorporate elements of uncertainty within 

its optimization processes and solutions through the use of grey numbers and the concepts 

of topological space and state. These concepts will be presented in detail in Chapter 3. A 

new approach for solving the GLP mcxlel will also be advanced. 

The remainder of this thesis is organized in six chapters. Chapter 2 will describe the 

regional geography of the study area. Chapter 3 will present the methodology, model 

construction, and the method of solution of a grey linear programming (GLP) model. A 

detailed discussion of the characterization of relevant coefficients and parameters in the 

model, including agricultural, economic, resource and environmental factors, based on the 

data from each basic division, is presented in Chapter 4. Chapter 5 will provide the results 

of optimization analysis, and examine the applicability of the derived decision schemes. 

Chapter 6 gives sensitivity analyses of the optimization analysis, including tests of impacts 

of pollutant loss constraints on agricultural income, costs of reducing pollutant losses, 

impacts of water quantity constraints on agricultural income, and the effects of grey inputs 

on grey outputs. The last chapter will be devoted to an appraisal of the new approach of 

water resource management, and some areas for further research will be suggested. Figure 

1.1 shows a general flow chart of the research framework. 
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CHAPTER2 

1HE STUDY AREA 

1. Xiamen Area (XA) 

Xiamen Area is located in the southeast of Fujian Province, China. It is composed 

of Xiamen City (XC) and Xiamen Suburban Area (XSA), with an area of 754.7 km2 

(Figure 2.1). 

(1) Xiamen City (XC) 

Xiamen City is located on an island ( 130.2 km2). It is one of the five special 

economic zones (SEZs) of China (the other four are Shenzhen, Zhuhai, Shantou and 

Hainan), and is the most important city in South Fujian Province. 

The city became a SEZ in 1980, and has been developed on the basis of active 

foreign participation and run in ways different from the rest of the country. It has three 

special characteristics: first, its economy is mainly based on the free-market system; 

second, foreign investment is actively promoted, and has become the dominant source of 

investment within the city; and third, the city constitutes open systems of high technology 

and management skills and as such serves as China's nodal point for the transfer of 

technology (J ao and Leung 1986). 

Industry, tourism, commerce and housing are the main functions of the city. The 

main industries are food, textile, chemical, mechanical, shipbuilding, building materials, 
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pharmacy, printing, power, and electronic industries. Of them, food, textile, chemical, and 

electronic industries play a leading role. Since 1980, when the city became a SEZ, more 

than 800 foreign enterprises have invested in industries here, which brought about a great 

advance in the industrial economy. The gross value of industrial output in 1989 was about 

$7 .80 billion, which is over 6 times that in 1980. Table 2.1 compares the gross values of 

industrial output of the four leading industries in 1980 and 1989 (XSB 1981 & 1990). 

The city is the largest tourist centre in Southeast China. Mountains, islets, beaches, 

subtropical vegetation, and hot springs attract tourists from all over the world. About 1.5 

million tourists visited the city in 1989 (XSB 1990). 

Xiamen is also a commercial centre. Many trading corporations and shopping 

centres are distributed over the city. As an 'economic open city', it trades with many other 

countries based on a free-market system. The volume of import and export trades in 1989 

was about $210 million (XSB 1990). 

Along with the development of industry, tourism, and commercial activities, 

increasing requirements in both quantity and quality of housing has become a problem. 

About 400,000 to 600,000 m2 of new floor area have been built per year since 1984. The 

average per capita housing floor area has been increased from about 6 m2 in 1980 to about 

10 m2 in 1989. This floor area standard is comparatively higher than that of most other 

Chinese cities. In addition, thousands of new hotels, factories, office buildings and service 

buildings have been built since 1980 (XSB 1981 & 1990). 
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Table 2.1 Gross values of industrial output of the four leading industries in Xiamen City 
in 1980 and 1989 

Leading Industries Food Chemical Electric Textile 

1980 ($10,000) 26477 19772 18874 12882 

1989 ($10,000) 82997 74652 345271 29339 

Ratios (1989/1980) 3.13 3.78 18.29 2.28 
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(2) Xiamen Suburban Area (XSA) 

The primary role of Xiamen Suburban Area (XSA) is to supply agricultural 

products to the Xiamen Area. Its area is 624.5 km2. There are about 3 32 km2 of tillable 

land (58.0% of the total area of XSA), including 203 km2 of wet soil (rice soil) and 159 

km2 of dry soil, in the area. The main crops are rice, wheat, sweet potato, and vegetables 

(Liu et al. 1989). 

Besides crop farming, livestock husbandry and fishery also contribute to the 

agricultural economy. The main livestocks are ox, sheep, pig and domestic fowls (chicken, 

duck, goose and turkey), and fishery production exists along the coastal zone in the south 

and east of the area (Liu et al. 1989). 

In 1989, the gross value of agricultural output was about $229 .28 million. Table 

2.2 shows the agricultural output values of crop farming, livestock husbandry, and fishery 

in 1989, respectively. It demonstrates that crop farming contributed the most (62.1 % of the 

gross value) to the agricultural economy. Livestock husbandry and fishery contributed only 

24.8% and 9.5% of the gross value, respectively (GXSA 1990). 

2. The Study Area 

( 1) Location and Division 

The study area is situated in Xiamen Suburban Area, and the northwestward of 

Xiamen City (Figure 2.2). It is 6.5 km west of Jiulong River, which is the largest river in 

South Fujian Province. Its area is 143.7 km2, containing three townships and a population 
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Table 2.2 Distribution of agricultural output values in Xiamen Suburban Area in 1989 

Activities GAOV* Crop Farming Livestock Fishery Others 
Husbandry 

Output Values 22,928 14,242 5,687 2,181 818 
($10,000) 

Percentages (%) 100 62.1 24.8 9.5 3.6 

* GAOV means gross agricultural output value; 
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of 32,400 ( 1989). The three townships are Xinglin, Guankou, and Dongfu. Their areas are 

57 .1, 48.6 and 38.0 Icm2, respectively (GXSA 1990). 

A water delivery canal stretches across the basin with a length of 23.2 km. It 

supplies water to Xiamen City for industrial, domestic and recreational water uses, and the 

basin area for agricultural irrigation. The water is pumped from Jiulong River, maintaining 

a constant flow of 12.5 m3/s (D. Chen 1989). 

The area is divided into five subareas with different ways of drawing water for 

irrigation and different soil-crop distributions. Subarea 1 is located in the north of the basin 

area, subarea 2 in northeast, subareas 3 and 4 stretch along the canal, and subarea 5 is in 

the south. Three ditches (subcanals) were built for transferring water to subareas 1, 2 and 5 

because they are too far away from the canal (Liu et al. 1989; GXSA 1990). 

(2) Natural Environment 

A. Topography 

The study area is a drainage basin. A water delivery canal, built upon a little river in 

the 1970's, flows through the basin westerly. Flat terraces are distributed over both sides 

of the canal. 

On the north is a narrow strip of hilly and rocky lands of varying width, which are 

the extension of the hilly areas in the northwestern XSA. Elevations here are as high as 60 

m above sea level. Immediately to the east, the relief becomes quite moderate. The 

elevations rarely reach over 20 m high. On the southeast, the terrain is generally rough and 

rocky, but unlike the north, there is no mountain here. The terrain in the western and 

southwestern boundaries of the basin area is generally mountainous. The highest peaks of 
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the basin are located here with elevations ranging from 70 m to over 90 m. The highest 

peak (91.3 m) is Dongping Mountain (Xu et al. 1988). 

B. Climate 

Xiamen Area is located in the southern subtropics. It has a South-Subtropical 

Monsoon Type of Maritime Climate. The climate is generally warm and wet, with sufficient 

solar radiation, frequent monsoon, and highly varied precipitation (Tregear 1980). 

(a) Air Temperature 

Neither extremely hot summer nor cold winter is the general characteristic of air 

temperature in Xiamen Area. According to data from Xiamen Meteorological Observatory 

(XMO), the yearly average temperature in the area is 20.9 °C. The highest temperature in 

the period 1950-1989 was 38.5 °C (15th August, 1979), and the lowest 2.0 °C (12th 

February, 1959). January is the coldest month with an average temperature of 11.2 °C, and 

August the hottest, with an average temperature of 27.9 °C (XMO 1989 & 1990). Table 

2.3 shows the temperature variation of Xiamen Area in 1985-1989 (XMO 1989 & 1990). 

(b) Precipitation 

Over the 1950-1989 period, the average annual precipitation in Xiamen Area was 

1143.5 mm, ranging from 747.2 mm in 1954 to 1771.3 mm in 1973. Spatially, 

precipitation decreases progressively from southeast (coastal areas) to northwest 

(mountainous areas). Temporally, over 75% of annual precipitation falls from May to 
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Table 2.3 Temperature variation of Xiamen Area in 1985-1989 (°C) 

Years 1985 1986 1987 1988 1989 Average 

January 12.0 12.6 11.6 10.5 12.0 11.7 

February 12.6 12.1 11.0 10.8 12.3 11.8 

March 16.0 14.9 13.2 13.4 12.5 14.0 

April 19.9 17.3 19.4 17.1 17.8 18.3 

May 21.4 23.1 23.0 21.2 23.7 22.5 

June 24.7 24.4 26.2 26.5 24.8 25.3 

July 27.4 27.2 28.4 28.1 26.5 27.5 

August 28.3 27.5 27.8 27.3 27.0 27.6 

September 25.8 26.1 27.2 25.2 25.8 26.0 

October 22.6 23.9 24.4 22.3 23.7 23.4 

November 17.7 20.0 18.0 19.8 18.9 18.9 

December 13.3 13.8 12.7 13.8 13.6 13.4 

Yearly 
Average 20.1 20.2 20.2 19.7 19.9 20.0 
Temperature 

Highest 36.7 35.7 35.1 37.0 36.7 36.2 
Temperature 

Lowest 3.6 5.7 3.3 2.6 3.8 3.8 
Temperature 
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August (the wet season), while in the dry season (from September to April of the next 

year), precipitation is less than 25% of the annual value. Table 2.4 shows the monthly and 

annual precipitation of Xiamen Area in 1985-1989 (XMO 1989 & 1990). 

(c) Wind 

The prevailing wind direction in Xiamen Area is easterly. Northeast wind is most 

frequent between September and February, and east and southeast winds between March 

and August. The yearly average wind speed is 3.4 m/s. However, from July to September, 

the area is frequently affected by typhoon. Wind speed in the typhoon season can exceed 

25 m/s. Table 2.5 shows the wind speeds and directions of Xiamen Area in 1985-1989 

(XMO 1989 & 1990). 

( d) Other Meteorological variables 

The yearly average solar radiation intensity is 5300.4 MJm-2, the average annual 

sunshine time is 2233.5 hours, and the average annual pan evaporation is 1910.4 mm. The 

yearly average air pressure is 1006.9 mb, maximum air pressure 1025.1 mb, and minimum 

973.0 mb. The yearly average relative humidity is 77.0%, and absolute humidity 20.4 g/m3 

(XMO 1989 & 1990). 

C. Soils and Vegetation 

(a) Soils 

Soils of South Fujian Province in general are Subtropical Udults and U stults. They 

are high in iron and aluminum contents, and usually low in phosphorus and nitrogen 
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Table 2.4 Monthly and annual precipitation of Xiamen Area in 1985-1989 (mm) 

Years 1985 1986 1987 1988 1989 Average 

January 4.2 5.6 5.6 10.2 29.6 11.0 

February 40.7 21.8 14.5 20.5 8.8 21.3 

March 33.8 87.1 40.3 63.4 13.9 47.7 

April 32.5 98.5 49.2 61.3 109.8 70.3 

May 107.1 110.7 345.4 229.6 106.7 179.9 

June 349.6 282.0 319.8 151.1 322.0 284.9 

July 334.5 206.8 238.8 321.2 121.4 244.5 

August 161.1 147.4 380.8 112.6 216.3 203.6 

September 15.9 104.7 60.4 25.6 39.1 49.14 

October 68.5 3.3 0.8 24.1 70.1 33.36 

November 8.7 14.4 1.7 20.8 38.4 16.8 

December 32.9 4.0 21.8 2.1 23.7 16.9 

Annual 1189.5 1086.3 1479.1 1042.5 1099.8 1179.4 
Precipitation 

Rainy Days 153 157 164 133 132 148 
(Day) 
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Table 2.5 Wind speeds and directions of Xiamen Area, 1985-1989 

Years 1985 1986 1987 1988 1989 

Average Wind 3.9 3.7 3.8 3.7 3.5 
Speed (m/sec) 

Maximum 27.0 22.1 24.3 19.1 17.7 
Wind Speed 
(m/sec) 

Most Frequent E E E E E 
Wind Direction 

Second ENE NE SSE NE ENE 
Frequent Wind 
Direction 
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contents (Tregear 1980). According to a general survey of agricultural resources and 

productions, there are mainly four kinds of fanning soil in Xiamen Area. They are rice soil, 

solonchak, sandy loam, and loam (XASI 1989). 

Solonchak soils are rare in the study area. They are scattered along coastal zones, 

and rather poor for cultivation. Rice soil, sandy loam, and loam are distributed over most 

of the basin area, especially the flat terraces beside the canal. Some of them are the best 

agricultural soils in Xiamen Area. 

The agricultural soils can be generally classified into two categories: dry soil and 

wet soil. Solonchak, sandy loam, and loam are dry soils, where wheat, sweet potato and 

vegetables are planted. Rice soil is the wet one, including two types: salinized and 

permeable rice soils (XASI 1989). 

(b) Vegetation 

The primeval regional vegetations in the Xiamen Area were classified as South 

Fujian Wet-Hot Subtropical Rainforest (Tregear 1980). The primeval forests have vanished 

as a result of human activities over thousands of years. The present forests are human

made or secondary. They can be classified into six categories: evergreen broadloaf forest, 

evergreen conifer forest, mixed forest, economic forest, mangrove forest, and bush/grass 

(Lin and Lu 1988). 

There are 114 families, 292 genus, and 708 species of vegetation in Xiamen Area. 

They are composed of over 400 species of arbors, over 200 species of bushes, and nearly 

100 species of herbs (Lin and Lu 1988). However, crops, including rice, wheat, sweet 

potato and vegetables, are the dominant vegetation in the study area (canal basin). A very 
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small area in the west is occupied by forests extending from the northwestern mountain 

forests of XSA. 

D. Hydrology 

(a) Land 

The water delivery canal is a major hydrological entity in the study area. It stretches 

across the area with a length of 23.2 km. The water is pumped from Jiulong River, 

maintaining a constant flow of 12.5 m3/s (D. Chen 1989). Jiulong River is the largest river 

in southern Fujian Province. Its drainage area is 13000 km2, and annual runoff 12 billion 

m3. Its average annual flow is 259.7 m3/s, maximum 1230 m3/s, and minimum 37.3 m3/s 

(JRHS 1989; Chen, D. 1989). 

Groundwater is scarce in the area, and highly affected by marine water. Its chemical 

characteristic is Coastal Cl-Na type with high salt content, and it is not suitable for drinking 

or irrigation (Xu 1988). 

There are two reservoirs, namely Xinglinwan Reservoir and Maluanwan Reservoir, 

near the study area. They were built upon little gulfs for fishery and salt production in the 

1950's. The contents are seawater. 

(b) Marine 

The study area is near both West Xiamen Sea (WXS) and East Xiamen Sea (EXS). 

WXS is situated south of the area. It has an area of 52 km2 and depths of 6-25 m. EXS lies 
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east of the study area. It has an area of 42 km2 and depths of 5-10 m. The sea areas are all 

located in the inner gulf where wave power is minimal. 

The tidal pattern is semidiumal. The highest tide height is 4.53 m, and the lowest -

3.30 m. The average height of high water is 2.39 m, and that of low water -1.53 m. The 

average sea level in the Xiamen Area is -0.32 m (Chen et al. 1987). 

(3) Social Environment 

A. Population and Settlement Features 

The total population of Xiamen Area in 1989 was 0.84 million with 0.71 million in 

Xiamen City and 0.13 million in Xiamen Suburban Area (XSB 1990). The study area, 

situated in XSA, has a population of about 32,480, with 12,090 in Xinglin Township, 

10,730 in Guankou, and 9,660 in Dongfu. This population is only 3.86% of that of 

Xiamen Area, but its area amounts to 19.0%.Therefore, the population density of the area 

(226 /km2) is lower than that of Xiamen Area (1,110 /km2), and much lower than Xiamen 

City (5,470 one/km2). Among the three townships, Dongfu is the most densely populated 

(254 /km2) followed by Guankou (221 fkm2). Xinglin has the lowest population density 

(212 /km2). However, their differences are very little (less than 42 /km2). 

The yearly average population growth rate of the study area in 1989 is 14.38 per 

thousand population, which is higher than that of Xiamen Area (12.91 per thousand 

population). Table 2.6 shows the population distribution and growth rate of Xiamen Area 

in 1989 (XSB 1990). 

There are only three small towns, namely Zengying, Guankouzhen and Pudong, in 

the study area. They are the capitals of Xinglin, Guankou and Dongfu Townships, 
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Table 2.6 Population distribution and growth rate of Xiamen Area in 1989 

Areas"' XA xc XSA Study Area Xinglin Guankou Dongfu 

Population 
in 1988 831 704 127 31.94 11.91 10.56 9.49 
(103) 

Population 
in 1989 841 712 129 32.41 12.09 10.73 9.66 
(103) 

Percentages 
in 1989 100 84.66 15.34 3.86 1.44 1.28 1.14 
(%) 

Population 
Density in 1.11 5.47 0.207 0.226 0.212 0.221 0.254 
1989 
(106/km2) 

Growth 
Rate in 12.03 11.36 15.75 14.72 15.11 16.10 17.91 
1988-89 
(%0) 

* XA means Xiamen Area; XC means Xiamen City; and XSA means Xiamen Suburban 
Area. 
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respectively. Their importances lie in their acting as trading centres for agricultural 

products. 

Thirty-two villages are scattered throughout the area. Among them, 13 villages are 

in Xinglin Township, 10 in Guankou, and 9 in Dongfu. Table 2.7 shows the population 

distribution of the towns and villages in the study area (GXSA 1990). 

B. Agriculture 

Crop farming is the primary activity in the study area. Farmlands are distributed 

throughout the area. There are 98.35 km2 of tillable land in the study area, 38.51 km2 in 

Xinglin, 32.43 km2 in Guankou, and 26.91 km2 in Dongfu. Table 2.8 shows the farmland 

distribution in Xiamen Suburban Area (GXSA 1990). 

According to data from the Government of Xiamen Suburban Area (GXSA), the 

major crops are rice, wheat, sweet potato ( camote ), and vegetables. Vegetables grown in 

the area include cabbage, Chinese cabbage, carrots, onions, bean, pepper, soybean, 

tomato, and rape. Rice, the main crop, is grown on rice soils distributed all over the area 

except the mountainous west. The area of rice soil is 41.9% (41.19 km2) of that of tillable 

soil in the study area. The rice yield was 14.39 million kg with an output value of $5.91 

million in 1989 (GXSA 1990). 

The other crops are grown on dry soils, and all have lower yields and output values 

than rice. The yields of wheat and sweet potato were 3.91 and 6.99 million kg, and their 

output values were $1.92 million and $2.10 million in 1989, respectively. 

The output value of vegetables was $8.33 million in 1989. In 1989, 97.7% (96.09 

km2) of the tillable land was cultivated, and 95.0% irrigated, which suggests that 
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Table 2.7a Population distribution of Xinglin Township in 1989 

Villages Population Area Population Density 
(1,000) (km2) ( 1,000/km2) 

Zengying Town 2649 6.2 427.3 

Waizhai 698 2.9 240.7 

Zhaishang 908 4.6 197.4 

Kechu 1011 6.0 168.5 

Guochu 532 3.2 166.3 

Weiying 682 3.4 200.6 

Sitong 927 5.0 185.4 

Sizhuang 638 2.2 290.0 

Dianhou 729 4.1 177.8 

Hubian 431 2.5 172.4 

Binnei 1020 5.3 192.5 

Aoguang 766 3.9 196.4 

Tiandian 552 4.1 134.6 

Shengtao 450 3.7 121.6 
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Table 2.7b Population distribution of Guankou Township in 1989 

Villages Population Area Population Density 
(1,000) (km2) (1,000/km2) 

Guankouzhen Town 2041 6.1 334.6 

Koutie 1175 4.2 279.8 

Fangzhuang 973 3.8 256.1 

Guokeng 595 2.9 205.2 

Shuikou 967 4.3 224.9 

Huxi 602 4.3 140.0 

Luoxi 1087 5.0 217.4 

Qianxi 545 2.5 218.0 

Shipu 952 3.9 244.1 

Weichun 884 5.7 155.1 

Shanqian 909 5.9 154.1 

I 

It:, 
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Table 2.7c Population distribution of Dongfu Township in 1989 

Villages Population Area Population Density 

(1,000) (km2) (l,OOO/km2) 

Pudong Town 2159 5.2 415.2 

Yingchun 636 2.8 227.1 

Fengdan 1190 3.4 350.0 

Waiyang 792 2.3 344.3 

Laizhai 845 5.0 169.0 

Shunchun 652 3.6 181.1 

Qianzhen 809 4.7 172.1 

Qitou 675 4.1 164.6 

Biangou 1023 4.3 237.9 

Tianli 877 2.6 337.3 
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Table 2.8 Farmland distributions in Xiamen Suburban Area (XSA) 

Areas XSA Study Area Xinglin Guank:ou Dongfu 

Farmland 362.1 98.35 38.51 32.43 26.91 
Area (km2) 

Percentage (%) 100 27.16 10.64 8.96 7.43 

Percentage of 
Total XSA 58.0 15.75 6.17 5.19 4.31 
Area (%) 
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agricultural land use is very intensive in the area. Table 2.9 shows the crop farming 

achievements of the study area in 1989 (GXSA 1990). 

Animal husbandry is the secondary activity of the area. Table 2.10 shows the 

livestock husbandry achievements in 1989. It indicates that the main livestocks are ox, 

sheep, pig, and domestic fowls. Ox contributed the most in the output value of animal 

husbandry although domestic fowls had the highest yield (GXSA 1990). 

C. Traffic 

Traffic conditions are efficient in the study area, benefiting from the advanced 

traffic network in Xiamen City. Ying-Xia Railway (from Xiamen to Yingtan, Jiangxi 

Province), Fu-Xia Highway (from Xiamen to Fuzhou, Fujian Province), and Zhang-Xia 

Highway (from Xiamen to Zhangzhou, Fujian Province) all go through the area. All towns 

and villages are linked up by railway, highways or roads (XSB 1990). 

(4) Water Quantity and Quality Problems 

Since crop farming is the primary activity of the study area, agricultural production 

needs water for crops to grow and generates nonpoint source pollutants by fertilizer and 

manure applications. Therefore, water quantity and quality problems arise. 

A. Water Quantity Problem 

Xiamen City needs about 8.4 m3/s of water for industrial (5.4 m3/s), domestic (3.0 

m3/s), and recreational (0.001 m3/s) water uses. These demands must be satisfied 
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Table 2.9 Crop fanning achievements of the study area in 1989 

Farmland Area Average Output Value 
Crops Yields Total 

(103 tonne Yields 
Area(km2) % of Total /krn2) (103 tonne) Values % of Total 

Area (106 ¥) Value 

Rice 41.11 41.80 0.350 14.39 5.91 31.66 

Wheat 21.78 22.15 0.180 3.91 1.92 10.28 

Vegetables 11.69 11.89 1.549 18.11 8.33 44.62 

Sweet Potato 21.19 21.55 0.330 6.99 2.10 11.25 

Others 0.32 0.33 I I 0.41 2.20 
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Table 2.10 Livestock husbandry achievements of the study area in 1989 

Livestock Yield (103) Output Value (106 ¥) Percentage (%) 

Ox 5.80 8.60 26.22 

Sheep 7.25 0.76 4.63 

Pig 12.82 6.03 62.99 

Domestic Fowl 101.20 0.98 5.98 

Others I 0.03 0.18 
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according to the Water Management Regulation of Beixi Canal (GXSA 1987). This is 

based on two considerations. First, the main function of the canal was designed to supply 

drinking water to Xiamen City when it was built in the 1970's. Second, the output value 

per m3 of water consumption in Xiamen City (¥ 29 .44/m3) is over 70 times that in the study 

area(¥ 0.41/m3) in 1989, which indicates that it is more efficient to supply sufficient water 

for Xiamen City than for the study area. 

After the demands in Xiamen City are met, the remaining 4.1 m3 /s (include 

evaporation loss) is not sufficient for agricultural production in the basin area. Some 

farmers draw water from the canal wantonly for agricultural uses, which sometimes (in dry 

seasons) can produce water shortages in Xiamen City. Therefore, the first problem is how 

to solve the conflict between limited water supply and the increasing water demand· for 

agricultural development. 

Since the 1980's, studies of water quantity management in the study area have been 

conducted by local and national institutions because water supply is an important 

prerequisite for the development of Xiamen Special Economic Zone (D. Chen 1989; Jao 

and Leung 1986). Xiamen Hydrographic Station has observed the canal flow for many 

years. Xiamen Hydraulic Bureau has conducted some measures to reduce soil and sand 

sedimentation, and to increase canal flow (D. Chen 1989). Xiamen Agricultural Bureau has 

made some regulations of canal water uses (XAB 1989). However, no study dealt with a 

systems analysis of water quantity allocation for agricultural irrigation in the basin area. 

B. Water Quality of the Canal 

XEMS has monitored water quality of the canal six times per year (twice in June, 

October and December, respectively) regularly since 1980. Water samples were taken 
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between 11 :00 to 12:00 AM. Five monitoring stations were set up (Fugure 2.3), and over 

ten chemical items monitored. 

Tables 2.11 to 2.14 (see Appendix V) show the monitoring results of the canal 

water quality in 1989, and Tables 2.15 to 2.18 (see Appendix V) are their WQis (water 

quality indices). WQI is a comparison of water quality with the SDWS. WQI = C/P, where 

C is pollutant concentration, and P is the SDWS of the pollutant. When WQI < 1, the 

pollutant concentration can meet the SDWS, and WQI > 1 means that the concentration 

exceed the SDWS. Fugure 2.4 (see Appendix V) shows pollutant concentrations, and 

Fugure 2.5 (see Appendix V) shows the distribution of the WQI values (Sun et al. 1990). 

The results indicate that the canal water quality deteriorates as the water flows 

through the basin area. The yearly average NQ3--N concentrations (Table 2.14) increase 

from 0.45 mg/l in Station 1 (source) to 0.99 mg/l (2.2 times of that in Station 1) in Station 

5 (canal outlet); N02--N concentrations increase from 0.013 mg/l in Station 1 to 0.069 mg/l 

(5.3 times of that in Station 1) in Station 5; NH3-N concentrations increase from 0.13 mg/l 

in Station 1 to 0.53 mg/I ( 4.1 times of that in Station 1) in Station 5; and Total Phosphorus 

concentrations increase from 0.005 mg/l in Station 1 to 0.038 mg/l (7 .6 times of that in 

Station 1) in Station 5. Other pollutants have similar trends. The results indicate that the 

canal basin, where nonpoint source pollutants are discharged from agricultural production, 

has the main responsibility for the deterioration of canal water quality. 

Station 1 has the best water quality (all pollutant concentrations can meet the 

SDWS), followed by Station 2 (most of pollutant concentrations can meet the SDWS in 

October and December). Most of the higher concentrations are found at Stations 4 and 5. 

Station 4 has the highest concentrations of NQ3--N (1.11 mg/l, WQI = 0.11) and NQ2--N 

(0.091 mg/l, WQI = 4.55), followed by Station 5 (NQ3--N and N02--N concentrations are 

0.99 mg/I (WQI = 0.10) and 0.069 mg/l (WQI = 3.45), respectively); Stations 3 and 5 
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have the highest NHrN concentrations (0.66 mg/1 (WQI = 3.30) and 0.53 mg/1 (WQI = 

2.65), respectively); and the highest Total Phosphorus concentrations are found at Station 5 

(0.038 mg/I, WQI = 1.90) and 4 (0.029 mg/I, WQI = 1.45). The results indicate that water 

quality is worst near the canal's outlet (NQ2--N, NH3-N and Total Phosphorus 

concentrations greatly exceed the SDWS). 

The major pollutants are NQ2--N and NHrN, followed by Total Phosphorus. The 

yearly average concentrations of No2--N and NHrN at Station 2, 3, 4 and 5 all exceed the 

SDWS, and their yearly average WQis at Station 3, 4 and 5 all exceed 2.0. The yearly 

average Total Phosphorus concentrations at Station 3, 4 and 5 also exceed the SDWS (WQI 

> 1.0). Nitrogen compounds can hardly be treated by waterworks, and excessive nitrogen 

can cause health effects (i.e., methaemoglobinaemia). Therefore, high nitrogen 

concentration at the canal's outlet is a very serious problem facing the government. 

Water quality in June is much worse than in October or December. In June, N02-

N, NH3-N and Total Phosphorus concentrations at Station 2, 3, 4 and 5 all exceed the 

SDWS. At Station 5, WQI of NQ2--N is 8.45, that of NH3-N is 6.10, and that of Total 

Phosphorus is 2.55. The results demonstrate serious pollution problem in this season (wet 

season). 

In October, N02--N concentrations exceed the SDWS at Station 4 (0.023 mg/I, 

WQI = 1.15) and 5 (0.027 mg/I, WQI = 1.35); NH3-N concentration exceed the SDWS at 

Station 2 only (0.302 mg/I, WQI = 1.51); and Total Phosphorus concentrations exceed the 

SDWS at Station 4 (0.034 mg/I, WQI = 1.70) and 5 (0.038 mg/I, WQI = 1.90). The lower 

WQI values and less stations with high pollutant concentrations indicate better water quality 

in this season. 

In December, No2--N concentrations reach the SDWS at Station 4 (0.020 mg/I, 

WQI = 1.00) and meet the SDWS at other stations; NH3-N concentrations exceed the 
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SDWS at Station 4 (0.401 mg/l, WQI = 2.01) and 5 (0.220 mg/l, WQI = 1.10); and Total 

Phosphorus concentrations exceed the SDWS at Station 3 (0.030 mg/l, WQI = 1.50) and 5 

(0.025 mg/l, WQI = 1.25). The results are comparable to those in October. The reasons of 

the above temporal variance of water quality are that in wet season (June), greater runoff 

and soil loss can carry more pollutants from croplands to the canal. 

C. Water Quality Problems 

Since a large amount of fertilizer and manure is spread on the croplands every year, 

agricultural nonpoint source pollutants (mainly nitrogen and phosphorus) can enter the 

canal through a number of dispersed and often poorly defined drainage paths. 

Nonpoint source losses of soil, nitrogen and phosphorus are due to land erosion 

and the wash away of unused nutrients from fertilizers and manures. Since crops need 

nitrogen and phosphorus for growth, fanners usually supplement the natural sources of 

these nutrients in the soil with fertilizer and manure applications. The applied nutrients, not 

taken up by crop as "wastes", can leave crop land through runoff and percolation. Both 

nitrogen and phosphorus may move with runoff in dissolved forms or in solid-phase or 

particulate forms associated with the canal sediments. Dissolved nutrients can also be 

transported by percolation. Therefore, the canal water quality is closely related to fertilizer 

and manure applications in the canal basin. Table 2.19 and Fugure 2.6 show the relations 

between the amounts of fertilizer and manure spread and yearly average nitrogen and 

phosphorus concentrations at the canal's outlet during 1987-1989. It is indicated that as the 

amount of manure spread increased from 2.08 x 106 tonnes in 1987 to 2.96 x 106 tonnes 

and 2.51 x 106 tonnes in 1988 and 1989, nitrogen and phosphorus concentrations 

increased correspondingly (the average nitrogen content of manure is 7.5 kg/tonne, and 

manure was applied to supply most of crop nitrogen requirement in the study area). N03 --
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Table 2.19 Amounts of manure and fertilizer spread in the canal basin and yearly average 
nitrogen and phosphorus concentrations at the canal's outlet during 1987-1989 

Amounts of Amounts of N~--N NOz--N NHrN Total 
manure fertilizer Concentra- Concentra- Concentra- Phosphorus 

Year Spread Spread ti on ti on ti on (mg/I) 
(106 tonne) (tonne) (mg/I) (mg/I) (mg/I) 

1987 2.08 3.71 0.89 0.039 0.48 0.031 

1988 2.96 3.66 0.96 0.038 0.48 0.032 

1989 2.51 3.92 0.99 0.069 0.53 0.038 
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I Liv;ock I 
Manure 

©(Bk)Tk 

Irrigation Water 
Fertilizer 

Where: 

Nutrients not 
Taken by Crops A; J 

Hj =the fertilizer nitrogen applied to soil i planted to crop j; 
r = nitrogen content of manure; 

©(Bk) = the amount of manure discharged by livestock k; 
T 1t = the numbers of livestock k in the study area; 
Bo = the amount of manure discharged by human; 
To = the number of man in the study area; 

Qij =the nitrogen requirement of crop j on soil i; 

Canal Water 

p = the percent of the applied nitrogen lost to the atmosphere 
because of ammonia volatilization and denitrification; 

i = the type of soil; 
j = the type of crop; 
k = the type of livestock. 

Figure 2.6 Relations between manure and fertilizer applications 
and the canal water quality 
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N concentrations increased from 0.89 mg/I in 1987 to 0.96 mg/I in 1988 and 0.99 mg/I in 

1989, N02--N concentrations increased from 0.039 mg/I in 1987 to 0.069 mg/I in 1989, 

NH3-N concentrations increased from 0.48 mg/I in 1987 to 0.53 mg/I in 1989, and Total 

Phosphorus concentrations increased from 0.031 mg/I in 1987 to 0.032 mg/I in 1988 and 

0.038 mg/l in 1989. Although the amount of manure spread in 1989 was less than that in 

1988, nitrogen and phosphorus concentrations in 1989 were higher than those in 1988, 

possibly because some unused nitrogen and phosphorus from fertilizer and manure applied 

after the wet season of 1988 could also be washed away and contribute to the canal water 

pollution in the wet season of 1989. 

Table 2.20 shows the relations between the amounts of fertilizer and manure spread 

and crop yields in the study area during 1987-1989. It is indicated that as the amount of 

manure spread increased from 2.08 x 106 tonnes in 1987 to 2.96 x 106 tonnes and 2.51 x 

106 tonnes in 1988 and 1989, yields of rice, wheat, and vegetables increased 

correspondingly. rice yields increased from 13.51 x 103 tonnes in 1987 to 14.27 x 103 

tonnes in 1988 and 14.39 x 103 tonnes in 1989, wheat yields increased from 3.80 x 103 

tonnes in 1987 to 3.91 x 103 tonnes in 1989, and vegetable yields increased from 16.09 x 

103 tonnes in 1987 to 18.11 x 103 tonnes in 1989. The only exception was sweet potato. 

Its yields decreased from 7 .10 x 103 tonnes in 1987 to 6.93 x 103 tonnes in 1988 and 

6.99 x 103 tonnes in 1989. 

High nitrogen and phosphorus concentrations can lead to eutrophication of water. 

In addition, nitrogen, in the form of nitrates such as N03--N, N02--N, and NH3-N, can 

contaminate water and make them unsafe for drinking. According to data from Xiamen 

Environmental Monitoring Station (Sun et al. 1990; Huang, et al. 1988), water quality at 

the canal's upper reach accords with the Standards for Drinking Water Sources (SDWS) 

issued by Xiamen Environmental Protection Bureau (XEPB 1988), while that at the canal's 

outlet does not meet with the standards. Concentrations of some pollutants (N02 --N, 
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Table 2.20 Amounts of manure and fertilizer spreads and crop yields in the canal basin 
during 1987-1989 

Amounts of Amounts of Crop Yields 
manure fertilizer 

Year Sp-ead Spread 
(106 tonne) (tonne) Rice Wheat Vegetables Sweet Potato 

1987 2.08 3.71 13.51 3.80 16.09 7.10 

1988 2.96 3.66 14.27 3.82 17.82 6.93 

1989 2.51 3.92 14.39 3.91 18.11 6.99 
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NH3-N, BOD, and COD) increase progressively along the canal, and greatly exceed the 

SDWS at the canal's outlet. Therefore, the main responsibility of water pollution is the 

discharge of agricultural nonpoint source pollutants from the canal basin. 

In recent years, many measures, such as setting regulations, cutting down fertilizer 

disposal, and soiVwater conservation practices, have been conducted. However, pollution 

overload still remains. It is also impossible to construct a new canal or pipe network in the 

future as the distance is long and the investment is costly (D. Chen 1989). Therefore, the 

problem is a conflict between agricultural development for economic growth on the one 

hand, and water quality protection for public health reason on the other. 

Since the 1980' s, studies of water quality protection of the canal have been 

conducted for supplying water with satisfactory quality to Xiamen Special Economic Zone 

(D. Chen 1989; Jao and Leung 1986). Xiamen Environmental Monitoring Station has 

monitored the canal water quality since 1980, and conducted time series analysis of 

pollution trends (Sun 1988; Sun et al. 1990; Huang et al. 1988). Water pollutant sources 

from runoff and soil erosion were investigated, and canal water quality was predicted (Sun 

et al. 1987 & 1988; Li & Xu 1988; Wu et al. 1989; Wu et al. 1988; Zhuang 1988). Xiamen 

Agricultural Science Institute has made a general survey of agricultural resources and 

agricultural production (Liu et al. 1989). Systems analysis of water pollution control in the 

area has also been conducted. Agricultural factors relating to water pollution, including 

cropping areas, types of soil-crop combinations, manure and fertilizer application rates, and 

livestock husbandry, but excluding the factor of water availability, were analyzed and 

adjusted to realize the objective of maximum net income under the constraints of water 

quality requirements. The results have been used for directing farming operation planning. 

Some regulations and local standards of canal water protection were also made according to 

the results (Sun et al. 1987 & 1988; Huang 1986). However, no study until now has 

integrated both water quantity and quality management in a systems analysis model. 
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Therefore, an optimization analysis of water quantity-quality problems is necessary to fully 

understand and effectively manage the complex water problems in the canal basin. 
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CHAPTER3 

~1HOIX)LOGY AND MODEL CONSTRUCTION 

1. Introduction to Grey Systems and Grey Linear Programming 

Grey systems theory was developed by Dr. J. Deng in the 1980's to deal with the 

problem of uncertainties in systems analyses (Deng 1984a and 1984b). Previously, most of 

reports on the developments of applications of the theory were published in Chinese, and 

very few of them were in English. This study is to introduce the grey systems theory to 

water resource management under uncertainty, and try to propose a new method of solution 

for grey linear programming (GLP) mcxlel. 

( 1) Grey Systems 

In grey systems theories, all systems are divided into three categories: white, grey, 

and black systems. A white system has certain and clear messages (e.g., water quality 

records), and black systems have unknown messages (e.g., mechanism of human body, 

and temperature field of human body). A grey system has both known and unknown 

messages (e.g., effects of water pollution, fates of pollutants in water body). 

In the real world, many problems are uncertain (grey problems). These uncertain 

problems have usually been expressed by certain numbers. A certain number, in fact, can 

only represent one of the infinite whitening values of a grey number (an uncertain 
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problem). Therefore, it is incomplete to use certain numbers to express uncertain problems, 

especially in systems analysis. 

Open sets of a topological space play an important role in space topology. An open 

set means that its bounds are uncertain. A number, whose real value cannot be determined 

with certainty, but whose open interval where this number located is known, is called a 

grey number (Deng 1985a; Huang 1987). For example, let ®(a) be a grey number, we 

have ®(a) = [~(a), ®(a)], where ®(a) is the upper limit of the grey number, and ~(a) is 

the lower limit of the grey number. Therefore, the grey number ®(a) represents a number 

(or an interval) which can have the maximum value of® (a) and minimum value of~ (a). 

Any white number (certain number) with the value between ~(a) and ®(a) is defined as a 

whitening value of the grey number ®(a). Thus, we can say that an open set is a grey 

number. In space topology, the neighbourhood of a point is a set of points which lie 

"close" enough to that point. Usually, a neighbourhood is an extension of a grey number, 

or, in other words, neighbourhoods imply that some close elements are located around a 

key element. According to the theory of grey systems, a key element is one of the 

whitening values of a grey number (Deng 1986). 

A decision model containing grey parameters is defined as grey decision model. The 

process of a grey decision can be described as: 

(i) an event occurs; 

(ii) there are many games (options) for dealing with the event; 

(iii) the effects (results) vary with games; 

(iv) the ultimate aim is to obtain the optimal effect. 

Therefore, four components are included in a grey decision process: event, game, effect, 

and aim. A combination of event(s) and game(s) is defined as state(s). 
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State is an essential concept of grey system theory. A set of states, including event(s) 

and game(s), is the essential element of grey decision making. For example, in agricultural 

production, it is a problem of decision making which crops should be chosen for farming 

in order to achieve the highest possible yields under different situations of water supply. In 

this case, different simations of water supply are the events, and different crops are the 

games. 

Let event 1 and 2 are the situations of sufficient and insufficient water supply, 

respectively, and gamel and 2 are rice and wheat, respectively. Thus we have four primary 

states: 

State 1 = (sufficient water supply, rice) 

State 2 =(sufficient water supply, wheat) 

State 3 = (insufficient water supply, rice) 

State 4 =(insufficient water supply, wheat) 

Furthermore, different games can be combined to achieve new games. For example, 

rice and wheat can all be cropped under sufficient water supply. Thus we have: 

State 5 = (sufficient water supply, rice + wheat) 

Also, these games can be arranged in different proportion, and then combined to achieve 

new games. For example, let the proportion of rice is 70%, and that of wheat is 30%. We 

have: 

State 6 =(sufficient water supply, 70% rice+ 30% wheat) 

Similar! y, we can have: 

State 7 = (sufficient water supply, 60% rice + 40% wheat) 
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State 8 = (sufficient water supply, 30% rice + 70% wheat) 

Therefore, the number of the states can be infinite. As a general rule, the effects of a 

state can vary with games under the same event. Therefore, the ultimate aim of decision 

making is to obtain a set of satisfactory states, where a key state is included, according to 

the effects. All satisfactory states, which consist of the neighbourhocxi of the key state, will 

abut on the key state in accordance with the given objectives and constraints, and are called 

a grey target of decision making (Deng 1987). 

(2) Grey Linear Programming (GLP) 

Grey linear programming (GLP) is an important area of grey systems theories. It is a 

development of the traditional linear programming (TLP) method. 

In a TLP model, all variables and coefficients are certain numbers, and the solution is 

unique. The TLP method has two disadvantages. First, many variables and coefficients are 

uncertain in the real world. They cannot be expressed by certain numbers. However, TLP 

model is static, and can only deal with certain messages. Second, solutions of TLP models 

are often very sensitive to even very small changes of coefficients, which can affect the 

effectiveness of the programming. 

The GLP method can overcome the two disadvantages. In a GLP model, grey 

numbers are introduced to express uncertain messages, which can be contained by the GLP 

model. Grey messages are then communicated into the optimization processes, and, 

thereby, yield grey solutions, i.e., from grey inputs, by GLP model, to grey outputs 
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(solutions). Planners can analyze the whitening values in the grey solutions to achieve the 

feasible realizations of the required objectives. 

2.rvtodelConstruction 

The objective of the proposed research will be achieved via a GLP model. The 

studied canal basin will be considered as a general grey system. Three components, namely 

soil-crop, livestock, and human activities, will be analyzed based on the consideration of 

water quantity allocation and quality protection (Figure 3.1). Their contributions to 

ecological, environmental, economic, and social efficiencies will be evaluated. 

Water pollution is generated by nonpoint source losses of sediment, nitrogen, and 

phosphorus from farm lands due to land erosion and the washing away of unused nutrients 

from fertilizers and manures. Water allocation for irrigation is related to farming activities, 

channel flows, and economic returns. 

( 1) Decision Variables 

The basic grey decision variables in the water resources system are cropland areas, 

manure and nitrogen fertilizer application rates, and the size of livestock husbandry. The 

objective is to achieve the maximum of net income, and the constraints include all the 

relations between the decision variables and the quantity-quality restrictions. 
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Figure 3 .1 Three agricultural components in the study area 
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Let there be m type of soils, n kind of crops, and l kind of livestocks in the study 

area Since only certain soiVcrop combinations are feasible in the area, we have: 

where 

(1 - sc .. Js .. = o 
') ') 

V' i, j ---------------- (1) 

scii =1 if the soiVcrop combination (i, j) is permitted and zero otherwise. 

Sii is the area of soil i planted to crop j (km2); 

Manure spreading may not be allowed in all cases, and: 

(1 - MS .. )F .. = 0 
lj lj 

V' i, j ---------------- (2) 

where 

MS ii= 1 if manure can be spread on Sii' and zero otherwise. 

Fij is the amount of manure spread on soil i planted to cropj (tonne); 

A second constraint on manure spreading is required to assure that F ii = 0 whenever Sii 

==(): 

-JOOOOS .. + p .. <O lj lj- V' i, j ---------------- (3) 

The "10000" on the left side of the constraint is an arbitrary large number greater than the 

maximum possible manure spreading rate (tonne/km2). 
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(2) Manure Application 

The manure spread on soil-crop component is from both human and livestock 

components (Figure 3.2). Thus a manure mass balance is given by: 

m n l 

.L .L Fi · - .L g(B,.) Tk - B0 T0 = 0, ---------------- ( 4) 
i==l f=l J /isl 

where 

®(BJ and B0 are the amount of manure discharged by livestock k and human, 

respectively (tonne/one). ®(BJ is a grey variable controlled by the grey 

properties of the agricultural system, ®(BJ = [@ (Bk), ® (BJ], where 

@(BJ is the whitening value of the lower limit of ®(BJ, and ®(Bk) is 

the whitening value of the upper limit of ®(BJ (Deng 1984b & 1985b ); 

B0 can be the total amount of manure discharged by human divided by the 

population. 

Tk and T0 are the numbers of livestock k and people in the area, respectively. 

The sizes of livestock may be constrained to some maximum numbers (T max) based 

on the available housing facilities or other considerations. Therefore: 

'V k ---------------- (5) 
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Where: 

Human 
Bo To 

Cropland 

Livestock 
®(Bk )Tk 

®(Bk) =the amount of manure discharged by livestock k; 
Tk =the numbers of livestock k in the study area; 
Bo = the amount of manure discharged by human; 
To =the number of man in the study area; 

Fi j = the amount of nitrogen spread on soil i planted to crop j; 

Figure 3 .2 Manure mass balance 
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(3) Crop Nitrogen Requirements 

A crop nutrient balance is constructed for nitrogen only. Potassium is not considered 

a potential water pollutant, and the total amount of phosphorus in the soil is generally not 

affected by fertilizer or manure applications (Haith 1984 ). Crop needs for potassium and 

phosphorus are not ig!lored, however, since the costs of these fertilizers are included in the 

model's objective function. 

The nitrogen requirement of crop j on soil i is specified by Qij (kg!km2). The 

nitrogen requirement will vary with soil fertility, and hence Qij is the requirement for the 

crop over and above the nitrogen provided by mineralization of soil organic matter. Thus, 

in order to supply the crop nitrogen requirements, we have the soil nitrogen balance (Figure 

3.3): 

{1-pi/100\rF .. + (l-p2/lOO\H .. -Q .. s .. >O 
'/ '1 '/ '1 '1 '1 - , \7 i, j ---------------- (6) 

where 

r is nitrogen content of manure (kg/t); 

Hij is the fertilizer nitrogen applied to Sij (kg); 

p 1 and p2 are nitrogen volatilization/denitrification rates of manure and nitrogen 

fertilizer, respectively (% ). 

(4) Livestock and Human Nutrient Requirements 

On energy and digestible protein requirements, although livestocks and humans need 

many different nutrients, the onfarm crops are grown principally to help supply their 
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Figure 3 .3 Soil nitrogen budget 
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(livestocks and human) net energy and digestible protein requirements (Figure 3.4 and 

3.5). Therefore, we have net energy and digestible protein balances: 

m n l 

.L .L Ci · ~ · Si · - .L (Ek - t;S(e,,)) Tk - (E0 - g(ec)) T 0 ~ 0, ---------------- (7) 
i-1 j-1 J J J IP! 

m n l 

.L .L Ci · /3i ·Si · - .L (Dk - t8Xd,,J) Tk - (D0 -t8Xdc)) T 0 ~ 0, ---------------- (8) 
i-1 j-1 J } J It-I 

where 

E 1e and E0 are the energy requirements of livestock k and human to be satisfied from 

onfarm crops, respectively (kcal/one); 

Cij is the yield of crop j on soil i (kg!km2); 

aij is the net energy content of C;j (kcal/kg); 

®( e J and ®( e0) are the net energy absorbed by livestock k and human from 

external systems, respectively (kcal/kg), where ®(eJ = [~ (eJ, ®(eJ], 

~e0) = [~ (e0), ®(eo)]; 

D 1e and D 0 are the digestible protein requirement of livestock k and human to be 

satisfied from onf arm crops, respectively (kg/one); 

/3ij is the digestible protein content of cij (% ); 

®( dJ and ®( d0) are the digestible protein absorbed by livestock k and human from 

other systems, respectively (kg/one), where ®(dJ = [~ (d1e), ®(dJ], 

~do)= [~(do), ®(do)]. 
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External Systems 
I [®(e1c )Tk] + ®(eo )To 

Where: 

Net Energy 
Requirement 

Onfarm Crops 
I Ii ( cj O.ij Sij ) 

Livestocks 
L (fa T1c) 

Human 
E.o To 

®(e1c) =net energy absorbed by livestock k from external systems; 
®( eo ) = net energy absorbed by human from external systems; 

T" = the number of livestock k in the study area; 
To= the number of people in the study area; 
fa = energy requirement of livestock k to be satisfied from onfarm crops; 
Eo = energy requirement of human to be satisfied from onfarm crops; 
Cj = the yield of crop j on soil i; 
aj = the net energy content of Cj ; 
Sij =the area of soil i planted to crop j; 

Figure 3.4 Net energy supply and demand 
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External Systems 
I [®(ch )Ti:]+ ®(do )To 

Where: 

Digestible Protein 
Requirement 

Onfarm Crops 

I I ( cj ~ij Sij ) 

Livestocks 
I (IA T1c) 

Human 
D>To 

®(ch ) = digestible protein absorbed by livestock k from external systems; 
®(do ) = digestible protein absorbed by human from external systems; 

T1c =the number of livestock k in the study area; 
To= the number of people in the study area; 
IA = digestible protein requirement of livestock k to be satisfied from onfarm crops; 
Do = digestible protein requirement of human to be satisfied from onfarm crops; 
Cj = the yield of crop j on soil i; 
~j = the digestible protein content of cj ; 

Sij =the area of soil i planted to crop j; 

Figure 3.5 Digestible protein supply and demand 
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(5) Pollutant Losses 

The following environmental parameters are related to the canal water quality: 

1. Tctal nitrogen losses 

2. soil loss 

3. solid-phase nitrogen and phosphorus losses 

4. dissolved nitrogen and phosphorus losses 

Each loss can be restricted to a maximum average annual value per km2• 

Let a and b be t.he maximum allowable total nitrogen and soil losses, respectively 

(kg/km2), which are controlled by the objectives of drinking water quality. The objectives 

are related to many grey factors, including upper stream water quality (external grey 

systems), diffusivity of canal water (environmental grey sub-system), local sanitary 

standards of drinking water (legal grey sub-system), and environmental/economic tradeoffs 

(economic grey sub-system). Therefore, a and b should be considered grey parameters 

®(a) and ®(b) in order to reflect the effects of many grey factors, where ®(a) = [@ (a), 

®(a)], &:(b) = f@(b), ®(b)]. Thus, we have: 

m n m 

~ ~ 1r F .. + H .. - Q·. S. .) < ®1a) ~ K. ---------------- 19\ ~ ~ \• 'l 'J 'l 'l - \' ~ ' ' \• J 
i=l ,J==l i==l 

m n m 

E E Lii Sii ~ g(b) E Ki, ---------------- (10) 
i=l J=l i=l 

n 

V" i ---------------- (11) 
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where 

Ki is the tillable area of soil i (km2); 

LiJ is the soil loss from SiJ (kg!km2). 

Figure 3.6 is a description of Constraint (9) of total nitrogen losses. 

On the losses of solid-phase and dissolved nitrogen and phosphorus, the quantities of 

solid-phase nitrogen and phosphorus in the soil are not greatly affected by cropping, 

manuring, or fertilizer practices. However, these nutrients vary significantly with soil type 

(Haith 1984). Runoff losses of dissolved nitrogen and phosphorus can be estimated as the 

product of runoff and dissolved nutrient concentrations in the runoff. These concentrations 

are primarily influenced by crop selection, and the concentrations in dry and wet seasons 

are often substantially different. 

Let c1 and c2 be the maximum allowable solid-phase nitrogen and phosphorus losses, 

respectively (kg/km2), andf1 andf2 be the maximum allowable losses of dissolved nitrogen 

and phosphorus by runoff, respectively (kg/km2). Similarly, c1 , c2 ,f1 andf2 should also 

be considered grey factors ®(c1), ®(c2), ®(f1), and ®(f2), where ®(c1) = {~(c1 ), 

®(c1)J, ®(c2) = {~ (c2), ®(c2)J, ®if1) = {~ (f1), ®(f1)J, and ®(f2) = {~ (f2),®(f2)J. 

Thus, we have: 

m n m 

.L .L hu Lii Sii 5 ~c1) L ~, ---------------- (12) 
i=l j=l i=l 

m n m 

.L .L hi 2 Li1· Si 1· ~~ ~ c~ .L ~ , ---------------- (13) 
i=l j-1 i-1 
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I' 
I' 

Manure 
r Fij 

Crop Nitrogen 
Requirement 

QjSij 

Total Nitrogen Losses 

~ ®(a) L Ki 

Nitrogen Fertiliz.er 
Hij 

where: Fij =the amount of manure applied to soil i planted to crop j; 
Hj =the fertilizer nitrogen applied to soil i planted to crop j; 

r = nitrogen content of manure; 
Qi i = the nitrogen requirement of crop j on soil i; 
Sij =the area of soil i planted to crop j; 

®(a) =the maximum allowable total nitrogen losses 
Ki = tillable area of soil i. 

Figure 3 .6 Constraint of total nitrogen losses 
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m n m 

.L .L (Rui N 1i + Rw N 2 ; J Si 1· ~ ®(f1 J .L ~, ---------------- (14) 
i=:l j=l .,, .,, i=:l 

m n m 

where 

h, 1 and h, 2 are nitrogen and phosphorus contents of soil i, respectively (% ). 

R 1 ij and R2 ij are wet and dry season runoff from S ij , respectively (mm); 

N 1j and N2j are dissolved nitrogen concentrations in wet and dry season runoff 

from land planted to crop}, respectively (mg/I); 

P Jj and P 2j are dissolved phosphorus concentrations in wet and dry season runoff 

from land planted to crop j, respectively (mg/I). 

(6) Water Quantity Requirements 

On water quantity management, let the quantity of irrigation water required (including 

losses during irrigation) per km2 of crop j on soil i in subarea t (suppose there are p 

subareas in the research area, t = 1, 2, ... , p) be designated as ®(W ijt), ®(W ij) = 

[~ (Wijt), ®(Wij1)] (m3Jkm2). Thus the total quantity of water required by each Sij in each 

subarea t is: 

~ i, j, t ---------------- ( 16) 
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s ij = ts ijt ---------------- ( 17) 
t-1 

where Siji is the area of soil i planted to crop j in subarea t (km2). 

The total quantity of water required in the study area (QW0) therefore is: 

m n p 

®(QWo) = .L .L .L ®(Wii1JSii1 ---------------- ( 18 J 
i-1 j-1 t-1 ':J ':J 

Let the total quantity of water required by Xiamen City be QW1 , we have the water 

quantity balance (Figure 3.7): 

~QW0) + QW1 ~CC, ---------------- (19) 

where CC is the canal capacity (m3). 

To deliver the water ®(QW0) to subarea t, we have: 

m n 

t = 1, 2, 5 ---------------- (20) 

where q, is the channel capacities within subarea t. 

The costs of water (D;) for each Sii in subarea t may include the portion to obtain and 

transport water to the basin area, ®(U), associated with the canal capacity. The cost will 

also include the fraction ®(v,) of the costs of delivering the water to Subarea t with ditch 

capacity q, . In addition, there are variable costs associated with each water allocation 

QWijt· These variable costs include the cost to obtain and allocate water to each Sijr 
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Canal Capacity 

cc 

Water Used in the 
study area 

QWo 

where: 

CC = canal capacity; 

Water Required by 
Xiamen City 

QW1 

Ditch 1 

Ditch 2 

Ditch 3 

QWo = total quantity of water required by the study area 
(include evaporation loss); 

QW1 =total quantity of water required by Xiamen City. 

Figure 3. 7 Water quantity constraint 
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Denoting the variable costs per unit quantity of surface water as ®(X ij1), ®(X ijt) = 
[~ (Xijt), ®(Xij,)], the total cost of water for each Sij is (Figure 3.8): 

p 

!2;.i = !i [®(U) + ®(v,) + ®(Xu,) ]®(WijiJS;1, , \f i, j . ---------------- (21) 

(7) Agricultural Income 

For the purpose of this study, it is assumed that the f anner' s objective is to maximize 

net income. Therefore, the objective function for the optimization model is (Figure 3.9): 

m n l m n 

A = LL g(·a. J Ci. Si · + L {g( ak)- g(q,,JJ Tk - LL g(Gi) Si · -
i=l }=l J '.} } k=l i=l jal } 

m n m n mn p 

- tE(GJ L LFir Gh L LHii - LL L[®(UJ + ~v,J + ®(Xi;,)}®(Wij,JS;;" (22) 
i=l }=l i-1 j-1 'J i=l }=l tal ';/ 'J 

where 

~~)is the price of cropj (¥/kg),~~)=[~(~),®(~)]; 

~ <J.c) is the average net return of livestock k (¥/one), ~ <J.c) = [~ ( <J.c), ® ( <J.c) 1; 

®(q,J is the average consumptions from external systems by livestock k (¥/one), 

~qJ = [~(q,J, ®(qJ]; 

®(G;) is the farming cost on S;j (¥/km2), ®(Gij) = [~ (G;}, ®(Gij)]; 

®(G1) is the cost of manure disposal (¥/t), ®(Ge)=[~ (G1), ®(G1))]; 

Gh is the cost of nitrogen fertilizer (¥/kg). 
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Costs of Water 
for Sijt 

ilijt 

Obtain and Transport Water 
to the Basin Area 

®(U) 

Deliver Water to Subarea t 
by Ditches 

®(Vt) 

Obtain and Allocate Water to Sijt 

®(Xijt) 

Figure 3 .8 Costs of water for each soil-crop-subarea combination 
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Consumptions 
of Livestock k 
from External 

Systems 

Costs of 
Water for 
Irrigation 

Costs of 
Manure 
Disposal 

Crop Sold Livestock and 
Egg Sold 

Agricultural Income Farming 
Costs 

A 

Costs of 
Nitrogen 
Fertilizer 

Figure 3 .9 Agricultural income of the general system 
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(8) Optimization Mcxiel 

Thus, the optimization mcxiel is: 

Max A 

subject to ( 1) to (20) 

tt' i, j, t 

tt' k' ---------------- (23) 

where S ij , Fij , Hij , Qijt and Tk are decision variables, and other parameters are 

determined by practical investigations. 

This is a grey linear programming (GLP) model which needs a new solving approach 

different from the approach for traditional linear programming model. 

3. Method of Solution 

Optimization model (23) can be transferred into a standard format of grey linear 

programming model: 

Max{= ~c)x 

subject to ~A) x ~ b 

x~O, ---------------- (24) 

where ®(c) = [®(c 1), ®(c~, ... , ®(c,JJ, xr = (x1, x2, ••• , x"'), bT = (b1, b2, ••• , 

b,J, 
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®(a11) ®(a12) ®(aim) 

®(a21) ®(a22) ®(a2m) 

'8(A) = ---------------- (25) 

®(a,.z) ®(a112) ®(a,.m) 

For grey vector ~c) and grey matrix ~A), we have: 

'8(c) = [@(cJ, ®(c)J, tr i ---------------- (26) 

V" i, j ---------------- (27) 

Since some grey parameters exist in the objective function and constraints of the grey 

programming model, the optimal solutions of model (24) should be: 

'8(j) = [® (j), ®(j)], tr i ---------------- (28) 

tg(x*) = [<8(x/), tg(x/), ... , tg(xm•)j, ---------------- (29) 

'8(xtJ = [@(xtJ, ®(x/')], tr i ---------------- (30) 

Although some solving approaches of GLP model have been proposed, they were 

limited in solving the model by defining and testing "creditabilities". Creditability is defined 

as !a If max:, where f max is maximum possible objective value (upper limit); a is defined as a 

grey coefficient, and its value is between 0 and 1, i.e. a e [O, 1] (when a = 0, the grey 

coefficients in objective function and constraints will take their lower limits, but decision 

variables will reach their upper limits; and when a = 1, the coefficients will take their upper 
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limits, but decision variables will reach their lower limits); and f, is the solution of 

objective value under the grey coefficient a (see Appendix IV for details) (Deng 1986; 

Huang 1988). The "creditability" method does not communicate uncertain messages into 

optimization processes and solutions, and therefore cannot fully reflect the effects of grey 

factors. Therefore, a new approach for solving ®(f) and ~ x*) is developed and described 

below. 

( 1) Whitening Solution of the GLP Model 

Model (24) can be whitened as: 

where: 

Max{= ®,,/c)x 

subject to ®,,.(A) x :5 b 

x;(:?O, 

®m(a11) ®m(a12) 

®m(a21) ®m(a22) 

®m(AJ = 

®m(a,.1) ®m(a"2) 

---------------- (31) 

---------------- ( 32) 

®m(a1m) 

®m(a2m) 

--------------- (33) 

®m(a,.m) 
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or: 

where ®m(cj and ®m(ai) are the whitening values of 8(cj and 8(ai), respectively. 

Thus, we have: 

®m(cj E f@(ci), ®(ci)], where @(ci) is the whitening value of the lower 

limit of ®(ci), and ®(ci) is the upper limit of ®(ci); 

®m(aii) E f@(ai), ®(ai)J, where @(aii) is the lower limit of ®(ai), and 

® ( ai) is the upper limit of ®( ai) . 

Usually, whitening mean values are chosen for calculation. 

A set of whitening solutions ®,,lf) and ®,,.{x• ), which are included in the optimal 

grey solutions ®(f) and ®(x• ), can be derived by solving model (31). 

(2) Optimal Grey Solution ®(f) and ®(x•) 

Form grey coefficients ®(c) (i = 1, 2, . .. , m) in the objective function, if k1 of 

them are positive, and k2 are negative, let the former k1 coefficients ®( cJ ~ 0 (i = 1, 2, ... 

, k1), and the latter k2 coefficients ®(c) < 0 (i = 1, 2, ... , k2), where k1 + k2 = m. Thus, 

we have: 

(34) 
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(35) 

Based on equation (34), relevant constraints can be given as: 

~(ail) ®(x1J + ~ (ai~ ®(x~ + · · · + ~ (aik) ®(xk) + 

+ ® (ai.k, +1) ~ (xk,+1) + ... + ® Jaim) ~ (xm) ~bi, V' i ---------- (36) 

Similarly, based on equation (35), relevant constraints are: 

®(ai1J ~ (x1J + ®(ai~ ~ (x~ + · · · + ®(aik) ~ (xk) + 

+ ~(aik,+1) ®(xk,+1) +···+~(aim) ®(xm) ~bi, V' i ----------- (37) 

® (x) ~ QJ:(xtJ, 

~ (x) ~ QJ:(x/'), 

®(x) ~ ®<x/'), 

~ (x) ~ QJ:(x/'), 

i = 1, 2, ... , k 1, 

i = k 1 + 1, k 1 + 2, ... , m, ---------------- (38) 

i = k 1 + 1, k 1 + 2, ... , m, 

i = 1, 2, ... , k 1 • ---------------- (39) 
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Thus, Model (24) can be divided into two models: 

Max®({) 

subject to (36) and (38) 

~(x) ~o, i = k 1 + l, k 1 + 2, ... , m, ---------------- (40) 

Max~({) 

subject to (37) and (39) 

~ (x) ~ 0, i = 1, 2, ... , k 1 • ---------------- ( 41) 

Models (40) and (41) are linear programming models with a single objective function. 

Therefore, ®(j), ®(x/) ( i = 1, 2, ... , k1) and ®(x/) (i = k1 + 1, k1 + 2, ... , m) can 

be solved by Model (40), and~ (j), ®(xt) (i = k1 + 1, k1 + 2, ... , m) and ®(x/) ( i = 

1, 2, ... , k1 ) can be solved by model (41). Thus, the solutions of the GLP model (Model 

40) are: 

g(f) = [~ (f), ®(f)], ---------------- (42) 

tP;(x/') = [~ (x/'), ®(x/')], V' i ---------------- ( 43) 
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4. Interpretation of Solutions 

Solutions of the GLP model include decision variables (®(x/), ti i) and the 

relevant objective ({g(f)). The solutions of decision variables are expressed as t6<x/) = 

[~ (x/), ®(x/)], ti i, which means that the maximum possible value of ®(x/') is 

®(x/') (upper limit), and the minimum is ~ (x/') (lower limit). The solutions can be 

directly applied to decision making. Their values can be adjusted within their grey intervals 

in the final decision scheme. 

The solution of objective function is important for assessing decision efficiencies. It 

is expressed as Q!;(f) = [~ (f ), ® (f )], which means that the maximum objective value is 

® (f) (upper limit), and the minimum is ~ (f) (lower limit). The upper and lower limits of 

objective value are corresponding to different distributions of decision variables. The 

adjustment of decision variables within their grey intervals will lead to the variation of 

objective value within its grey interval correspondingly. 

The following is an example explaining the practical significance of the GLP model 

and its solutions. First, set a GLP model: 

Max f = '8(a1)X1 - '8(a2)X2 

Subject to 

'8:<b11)X1 + X2 5150 

6X1 + '8(b22)X2 5 280 

X1 + '8(b32)X2 590 

'8(b41)X1 - 10X2 5 -1 
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t8<a1) =[SO, 60], 

t8<a2) = [70, 901, 

t8<b11) = [4, 6], 

t8<b22) =[S, 7], 

(8(b32) = [3, 4], 

t8<b,1) = [1, 2], 

where ®(a1) =[SO, 60] means that the maximum value of (8(a1) is 60 (upper limit), and 

the minimum is 50 (lower limit); and so on for the others. We can then solve the GLP 

mcxlel by the former proposed approach. The solutions are: 

Decision varia!lles: 

X1 = [24.18, 36.56], 

X2 = [3 .76, 4.94], 

Objective value: 

f = [764.71, 1930.73], 

where X1 = (24.18, 36.56] means that the maximum possible value of X1 is 36.56 (upper 

limit), and the minimum is 24.18 (lower limit); X2 = (3.76, 4.94] means that the maximum 

possible value of X2 is 4.94 (upper limit), and the minimum is 3.76 (lower limit); andf = 

[764.71, 1930.73] means that the maximum objective value is 1930.73 (upper limit), and 

the minimum is 764.71 (lower limit). 

The solutions of decision variables X1 and X2 can be directly applied for achieving 

the optimal objective value, and the solution of objective function f can be used for 

evaluating the final decision scheme. Under the scheme for upper limit of objective, X1 

should take the upper limit value (®(XJ = 36.56), and X2 the lower limit(~ (X2) = 3.76); 
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and under the scheme for lower limit of objective, X1 should take the lower limit value 

(~(X1 ) = 24.18), andX2 the upper limit (®(Xz) = 4.94). Therefore, the final decision 

scheme of X1 and X2 can be adjusted within their grey intervals, i.e., from 24.18 to 36.56 

for X 1 , and from 3.76 to 4.94 for X2 • Higher X1 and lower X2 can be programmed for 

achieving higher objective value, and lower X1 and higher X2 can be chosen for lower 

objective value. 
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CHAPTER4 

SPECIFICATION OF COEFFICIENTS AND PARAMETERS 

1. Agricultural Data Sets 

The study area contains generally two soil types: dry soil and wet soil. Table 4.1 is 

their general natures (Liu et al. 1989). There are mainly four crops grown in the area. They 

are rice, wheat, vegetables and sweet potato. Rice is grown on wet soil (rice soil), and 

wheat, vegetables and sweet potato on dry soils. The possible soil-crop combinations are 

listed in Table 4.2 (GXSA 1990). 

Nutrients produced from the crops are given in Table 4.3. They are obtained by 

multiplying average yields of a crop in 1989 by nutrient contents of the crop (Liu et al. 

1989; GXSA 1990). Crop nitrogen requirements (Table 4.4) are obtained from a soil 

survey in 1988 (Liu et al. 1989; XAB 1989). 

The area is divided into five subareas with different ways of water drawing for 

irrigation and different soil-crop distributions. Table 4.5 shows their tillable land areas (Liu 

et al. 1989; GXSA 1990). 

The main livestocks are ox, sheep, pig and domestic fowls. Livestock nutrient 

requirements and manure production are shown in Table 4.6 (GXSA 1990; Zhang et al. 

1988). The table indicates that most of the nutrient requirements are supplied by the area 

itself. 
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Table 4.1 Soils of the study area 

Soils Tillable Area Ki Nitrogen Content hil 
(km2) (%) 

Dry Soil* 68.16 0.20 

Wet Soil•• 41.19 0.25 

* Dry soil includes Solonchak, sandy loam, and loam; 
** Wet soil includes salinized and permeable rice soils. 

Table 4.2 Possible soiVcrop combinations* 

Soil Rice Wheat Vegetables 

Dry Soil 0 1 1 

Wet Soil 1 0 0 

* 1 means that the combination is possible, and 0 otherwise. 
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Phosphorus Content hi2 
(%) 

0.030 

0.056 

Sweet Potato 

1 

0 



Table 4.3a Net energy produced from the crops 

Crop Rice Sweet Potato Vegetables 

Net Energy 
Content• [908, 917] [560, 569] [166, 176] [480, 489] 
®(a ij) (kcal/kg) 

Average Yield • 
®(Cij) [339, 362] [159, 181] [150, 172] [300, 332] 
(103 kg/km2) 

Net Energy 
Prcxloced 
®(~j aij) [308, 332] [89, 103] [249, 302] [144, 162] 
(1 ff' kcal/km2) 

* the ranges of investigated values from GXSA. 

Table 4.3b Digestible protein produced from the crops 

Crop Rice Vegetables Sweet Potato 

Digestible Protein 
Content* (11.6, 11.8] [16.5, 16.7] [0.49' 0.52] [8.3, 8.6] 
®@ij) (%) 

Average Yield * 
®(C1j) [339, 362] [159,181] [150, 172] [300, 332] 
( 1Q3 kglkrn2) 

Digestible Protein 
Prcxioced ®(Cij ~ ij) [39.18, 42.56] [26.23, 30.30] [7.42, 9.00] [24.84, 28.52] 
(103 kg/km2) 

* the ranges of investigated values from GXSA. 
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Table 4.4 Crop nitrogen requirements 

Crop 

Nitrogen 
Requirement Qij 
(103 kglkm2) 

Rice 

1.80 

Wheat 

1.11 

Table 4.5 Tillable land areas in five subareas 

Subarea Subarea 1 Subarea 2 Subarea 3 

Area(km2) 23.00 20.26 40.31 

Tillable Land 16.23 17.91 23.84 
Area(km2) 

Percentage (%) 70.57 88.40 59.14 

Dry Soil Area 12.12 13.57 10.97 
(km2) 

Wet Soil Area 4.11 4.34 12.87 
(km2) 
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Vegetables Sweet Potato 

1.10 1.00 

Subarea4 Subarea 5 

40.74 19.39 

25.64 14.73 

62.94 75.97 

9.93 10.57 

15.71 4.16 



Table 4.6 Livestock nutrient requirements and manure production 

Livestock Ox Sheep Pig Domestic Fowls 

Energy 
Requirement [1.58, 1.76] [0.538, 0.562] [1.05, 1.32] [0.098, 0.120] 
®<Et) 
( 106 kcal/one) 

Energy from 
External 
Systems®(~) [28, 34] [1.0, 1.2] [130, 170] [13.5, 18.0] 
( 103 kcal/one) 

Digestible Protein 
Requirement [70, 90] [12, 16] [17,23] [3.8, 4.8] 
®(Dk ) (kg/one) 

Digestible Protein 
from External [3.8, 8.2] [0.85, 1.34] [4.8, 7.9] [0.91, 1.13] 
Systems 
®( dk ) (kg/one) 

Manure Produced [117, 143] [22.5, 27.5] [82.8, 101.2] [3.42, 4.18] 
®(8t ) (tonne/one) 
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2. Human Activities 

The study area has a population of 32,400, and a population density of 226/km2• 

Since a large population exists, human activity is also an important control factor in the 

systems analysis. Table 4.7 shows human nutrient requirements and manure production 

(Yi 1984). 

3. Environmental Data Sets 

(1) Nutrients and Sediment Losses 

Water quality protection of the canal has caused great concern by local and central 

governments since the 1980's because it is related to water supply to Xiamen City -- a 

special economic zone and the most important city in Southeast China. Many research 

projects on canal water pollution control have been initiated. Sponsored by CEPA, XEPI 

has investigated and simulated agricultural nonpoint source pollutant losses in the basin 

area (Sun et al. 1987 & 1988; Wu et al. 1989; Li & Xu 1988). Soil losses were estimated 

from an improved Universal Soil Loss Equation (Wischmeier & Smith 1978; Yang 1987), 

and runoff from the U.S. Soil Conservation Service's runoff equation (Mockus 1972; Wu 

1985). Table 4.8 displays the resulting soil losses and runoff from different croplands. 

XEMS monitored concentrations of dissolved nitrogen and phosphorus in runoff 

for individual soil-crop combinations in dry and wet seasons (twice per season) in 1988. 



Table 4. 7 Human nutrient requirements and manure prcxiuction 

Average Amount 
of Manure 
Prodoced 
B0 (kg/one) 

61.0 

Energy 
Requirement 
from Onfarm 
Crops E0 

(I D3 kcal/one) 

876.0 

Energy from 
External 
Systems 
®<eo) 
(I 03 kcal/one) 

[340.0, 385.0] 

95 

Digestible 
Protein 
Requirement from 
onfarm crops 
Do (kg/one) 

24.6 

Digestible 
Protein 
Requirement from 
External Systems 
®(do ) (kg/one) 

[8.8, 10.1] 



Table 4.8 Soil losses and runoff from different croplands 

Crop Rice Vegetables Sweet Potato 

Annual Soil [305, 385] [550, 650] [565, 645] [540, 620] 
Losses * 
®~) (kg/km2) 

Runoff in 
Dry Season * [23, 27] [45, 55] [44, 53] [50, 56] 
®(Rlij) (mm) 

Runoff in 
Wet Season * [71, 81] [100, 120] [105, 130] (95, 120] 
®(R2ij) (mm) 

* the ranges of calculated values. 
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Table 4.9 shows the average nitrogen and phosphorus concentrations in runoff for different 

croplands in different seasons (Huang et al. 1988). 

According to data from Xiamen Agricultural Science Institute, the average nitrogen 

volatilization and denitrification rate of manure in Xiamen Area is about 50%, and that of 

nitrogen fertilizer is about 15%. Average nitrogen content of manure is 7 .5 kg/tonne (Liu et 

al. 1989). 

(2) Water Quality and Pollutant Losses 

Concentrations of N03--N, N02--N, and NHrN in the canal are mainly determined 

by nitrogen losses from the basin area. Table 4.10 shows concentrations of N03--N, N02-

N, and NHrN at the canal's outlet and the values of total nitrogen losses ®(a), soil loss 

®(b), and dissolved and solid-phase nitrogen losses (®(f1) and ®(c1)) in 1988 and 1989. 

The data indicate that when the nitrogen losses in 1988 were less than those in 1989, 

N03--N, N02--N, and NHrN concentrations in 1988 were also lower correspondingly 

(Chen et al. 1990). 

Table 4.11 shows Total Phosphorus concentrations at the canal's outlet and the 

values of soil loss ®(b), and dissolved and solid-phase phosphorus losses (®(f2) and 

®(ci)) from the basin area in 1988 and 1989. The results also indicate the relation between 

canal water quality and pollutant losses (Chen et al. 1990). 

According to data from XEMS, concentrations of No2--N, NH3-N, and Total 

Phosphorus at the canal's outlet could not meet the SDWS during 1984-1989. The fact 

suggests that it is very urgent to cut down pollutant losses from the basin area (Huang et al. 

1988; Sun et al. 1990). 
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Table 4.9 Nitrogen and phosphorus concentrations in runoff from different croplands 

Crop Rice Vegetables Sweet Potato 

Nitrogen 
Concentration in 
Dry Season • 1.5 1.6 2.0 1.6 
N1j {mg/l) 

Nitrogen 
Concentration in 
Wet Season • 2.8 2.8 3.3 2.6 
N2j {mg/l) 

Phosphorus 
Concentration in 
Dry Season • 0.22 0.29 0.28 0.33 
plj {mg/l) 

Phosphorus 
Concentration in 
Wet Season • 0.25 0.28 0.28 0.35 
p2j (mg/1) 

* mean monitoring values from XEMS. 
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Table 4.10 N03 -N, No2--N, and NHrN concentrations at canal's outlet and nitrogen 
losses from canal basin in 1988 and 1989 

Year 1988 1989 

N03--N Concentration (mg/I) 0.96 0.99 

N02--N Concentration (mg/I) 0.038 0.069 

NHrN Concentration (mg/I) 0.48 0.53 

Total Nitrogen Losses 34.89 36.67 
( 106 kg/km 2) 

Soil Loss (103 kg/km2) 152 159 

Dissolved Nitrogen Loss 91.87 92.30 
(103 kg/km 2) 

Solid-Phase Nitrogen Loss 30.01 30.15 
(1 ()3 kg/km 2) 
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Table 4.11 Total Phosphorus concentrations at canal's outlet and phosphorus losses from 
canai basin in 1988 and 1989 

Year 1988 1989 

Total Phosphorus 0.032 0.038 
Concentration (mg/I) 

Soil Loss (HP kg/km2) 152 159 

Dissolved Phosphorus loss 9.95 10.03 
(1 ()3 kg/km 2) 

Solid-Phase Phosphorus loss 5.86 5.90 
(1 ()3 kg/km 2) 
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In order to reduce pollutant losses, it is essential to know the quantitative relation between 

canal water quality and sources of pollutant discharges. Therefore, a simulation study of 

water quality in the canal, sponsored by XEPB, was conducted in 1987 (Wu et al. 1989; 

Wu 1988; Zhuang 1988). Based on synchronous investigation of water quality and 

pollutant losses, simulation mcxlels were constructed (Zhuang 1988). Thus, when pollutant 

losses are known, water quality can be predicted by the models. Table 4.12 shows 

simulation results of N02--N and NHrN concentrations at the canal's outlet under different 

amounts of total nitrogen losses, soil loss, and dissolved and solid-phase nitrogen losses. 

The results indicate that only when the amounts of total nitrogen losses, soil loss, and 

dissolved and solid-phase nitrogen losses are less than 32.50 x 106, 138 x 103, 91.0 x 103, 

and 28.7 x 103 kg/km2, respectively, can the NQ2--N and NH3-N concentrations meet the 

SDWS. Table 4.13 is Total Phosphorus concentration at the canal's outlet under different 

amounts of soil loss, and dissolved and solid-phase phosphorus losses. The results 

indicate that only when the amounts of soil loss, and dissolved and solid-phase phosphorus 

losses are less than 138 x 103, 9.90 x 103, and 5.77 x 103 kg/km2, respectively, can the 

Total Phosphorus concentration meet the SDWS. 

(3) Constraints on Nonpoint Source Pollutant Losses 

Tables 4.14 and 4.15 are the Standards for Drinking Water Sources (SDWS) and the 

Quality Grading Standards of Drinking Water Source (QGS) issued by Xiamen 

Environmental Protection Bureau (XEPB 1988a & 1988b ). The lowest requirement of 

water quality at the canal's outlet is the SDWS. Therefore, the lowest requirements of total 

nitrogen losses (®(a)), soil loss (®(b)), dissolved nitrogen and phosphorus losses (®(f1) 

and® (f2)) and solid-phase phosphorus and nitrogen losses(® (c1) and® (c2)) should be 

the amounts of pollutant losses corresponding to the outlet's water quality meeting the 
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Table 4.12 Simulation results of yearly average N02--N, and NH3-N concentrations at the 
canal's outlet under different amounts of annual nitrogen losses 

Total Nitrogen Soil Loss Disoolved Solid-Phase NOi--N NHrN 
Losses Nitrogen Loss Nitrogen Loss Concentration Concentration 
( 106 kg/km 2) ( 1()3 kg/km 2) (1()3 kg/km 2) (103 kg/km2) (mg/I) (mg/I) 

32.75 142 93.0 28.85 0.026 0.220 

32.50 138 91.0 28.70 0.019 0.201 

32.20 133 89.5 28.50 0.015 0.176 

31.95 129 88.0 28.35 0.013 0.130 

31.65 124 86.5 28.20 0.009 0.095 

31.40 119 85.0 28.00 0.005 0.058 
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Table 4.13 Simulation results of yearly average Total Phosphorus concentrations at 
canal's outlet under different amounts of annual phosphorus losses 

Soil Loss Dissolved Solid-Plwe Total Phosphorus 
Phosphorus loss Phosphorus Loss Concentration 

(1 ()3 kg/km 2) (1 ()3 kg/km2) ( 1 ()3 kg/km 2) (mg/I) 

142 5.87 10.15 0.0281 

138 5.77 9.90 0.0200 

133 5.()6 9.65 0.0160 

129 5.56 9.40 0.0091 

124 5.45 9.10 0.0048 

119 5.35 8.85 0.0021 
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Table 4.14 Standards for Drinking Water Sources 

Pollutant Standard (mg/l) Pollutant Standard (mg/l) 

N~--N 10 BOD 3.0 

NOi--N 0.02 Cu 0.01 

NHrN 0.2 Pb 0.05 

Total Phosphorus 0.02 Zn 0.5 

00 6.0 Cd 0.005 

COD 4.0 As 0.04 
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Table 4.15 Quality Grading Standards of Drinking Water Source (QCJS) 

Pollutant Grade 1 (SDWS) (mg/I) Grade 2 (mg/I) 

N0:3--N 10 5 

NOi--N 0.02 0.01 

NHrN 0.2 0.1 

Total Phosphorus 0.02 0.005 

00 6.0 Saturation Rate ~ 90% 

COD 4.0 2 

BOD 3.0 

Cu 0.01 0.005 

Pb 0.05 0.01 

Zn 0.5 0.5 

Cd 0.005 0.001 

As 0.04 0.01 

105 



SDWS (Tables 4.10 to 4.13 show their relations). Table 4.16 shows these lowest 
requirements, which are the upper limits of the grey constraints on pollutant losses. 

The higher objective of the outlet water quality is Grade 2 in the QCJS. A description 
of the Grade 2 is a water quality level of river source without the effects of human activities 
(XEPB 1988). Therefore, @(a), @(b), @(f1), @(f2), @ (c 1) and @(c2) should be the 

amounts of pollutant losses corresponding to this grade of water quality at the canal's outlet 
(Tables 4.20 and 4.21 ). Table 4.17 shows these lower limits of grey constraints. 

4. Water Supply and Demand 

The canal has a flow of 12.5 m3/sec, and can transport about 3.9 x 108 m3 of water 

per year (Liu et al. 1989). 

Water quantity demanded by Xiamen City is about 8.4 m3/sec for industrial (5.4 
m3/sec), domestic (3.0 m3/sec), and recreational (0.001 m3/sec) uses. The remaining 4.1 
m3/sec is for agricultural irrigation in the basin area. Table 4.18 shows the quantities of 
irrigation water required by different soil-crop combinations. 

There are three irrigation ditches (subcanals) delivering water over areas farther 
from the canal (Subarea 1, 4 and 5). Their flows are shown in Table 4.19 (GXSA 1990). 
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Table 4.16 Upper limits of grey constraints on pollutant losses 

Maximum Maximum Maximum Maximum Maximum Maximum 
Allowable Allowable Allowable Allowable Allowable Allowable 
Total Nitrogen Soil Loss Solid-Phase Solid-Phase Diswlved Diswlved 
Losses ®(b) Nitrogen Phosphorus Nitrogen Phosphorus 
®(a) (103 kg/krn2) ®(c1) ®(ci) ®(f1) ®(fi) 
( 106 kg/krn2) ( lQ3 kg/krn2) (103 kg/krn2) (103 kg/km2) ( 103 kg/km2) 

32.50 138.00 28.70 5.77 91.00 9.90 

Table 4.17 Lower limits of grey constraints on pollutant losses 

Maximum Maximum Maximum Maximum Maximum Maximum 
Allowable Allowable Allowable Allowable Allowable Allowable 
Total Nitrogen Soil Loss Solid-Phase Solid-Phase Diswlved Dissolved 
Losses ®(b) Nitrogen Phosphorus Nitrogen Phosphorus 
®(a) (103 kg/krn2) ®(c1) ®(ci) ®(fl) ®(fi) 
( 106 kg/krn2) ( 103 kg/krn2) ( lQ3 kg/krn2) ( 103 kg/km2) ( 103 kg/km2) 

31.65 124.00 28.20 5.45 86.50 9.10 
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Table 4.18 Irrigation water required by different croplands in 1989 

Crop Rice Wheat Vegetables Sweet Potato Total 

Irrigation Water 
Required per 
Cropping Area [1.0, 1.4] [0.90, 0.99] [0.74, 0.86] [0.85, 1.02] [3.49, 4.27] 
per Year 
®(~t) 
(106 m3/krn2) 

Irrigation Water 
Required per 
Cropping Area [0.048, 0.067] [0.043, 0.047] [0.035, 0.041] [0.040, 0.049] [0.166, 0.204] 
per Second 
(m3/km2 sec) 

Cropping Area 41.11 21.78 11.69 21.19 95.77 
(km2) 

Irrigation Water 
Required [1.97, 2.75] [0.94, 1.02] [0.41, 0.48] [0.85, 1.04] [4.17, 5.29] 
(m3/sec) 

Table 4.19 Flows of three irrigation ditches for Subarea 1, 4 and 5 

Ditch Ditch 1 (for Subarea 1) Ditch 2 (for Subarea 4) Ditch 3 (for Subarea 5) 

Flow (m3/sec) [0.70, 0.77] [0.78, 0.87] [0.62, 0.72] 
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5. Costs and Returns 

Table 4.20 shows the average prices and cropping costs of rice, wheat, vegetables 

and sweet potato in 1989 (XSB 1990, Liu et al. 1989). The net returns of livestock 

husbandry are shown in Table 4.21. Manure disposal and nitrogen fertilizer costs are 

¥[9.25, 11.85]/tonne and ¥[2.58, 3.22]/kg, respectively (Liu et al. 1989). 

The costs of water for each cropland in a subarea may include the costs to obtain and 

transport water to the basin area ®(U), deliver the water to different subareas ®(Vt), and 

allocate the water to croplands within each subarea ®(Xijt). Table 4.22 shows these costs 

(GXSA 1990). 
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Table 4.20 Average prices and cropping costs of four crops in 1989 

Crop Rice Wheat Vegetables Sweet Potato 

Average Prices [0.36, 0.44] [0.405, 0.495] [0.45, 0.55] [0.25, 0.31] 

®(~) 
(¥/kg) 

Average Cropping 
Costs ®(Gij) [315, 385] [342, 418] [360, 440] [225, 275] 
(¥/km2) 

110 



Table 4.21 Average net returns of livestock husbandry in 1989 

Livestock Ox Sheep Pig Domestic Fowls 

Average Net 

Return ®(alt) 
~/one) 

[1168.41, 1483.60] [98.57, 106.03] [410.50, 479.50] [8.33, 9.87] 

Table 4.22 Costs of water for each soil-crop-subarea combination 

Costs to Obtain and Costs to Deliver Costs to Allocate 
Costs Transport Water to the Water to Different Water to Croplands 

Basin Area ®(U) Subareas ®(VJ ®(WJ 
(l0-3 Y/m3) (l0-3 Y/m3) (l0-3 Y/m3) 

Subarea 1 [3.5, 4.1] (4.0, 4.7] (1.8, 2.4] 

Subarea 2 (3.5, 4.1] (4.2, 4.8] (1.7, 2.3] 

Subarea 3 (3.5, 4.1] 0 [1.4, 1.8] 

Subarea4 [3.5, 4.1] 0 [1.5, 2.0] 

Subarea 5 (3.5, 4.1] [4.2, 4.8] [1.7, 2.3] 
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CHAPTER5 

RESULTS AND DISCUSSIONS 

1. Model Calculation 

The grey linear programming (GLP) model contains thirty-two decision variables 

corresponding to cropping areas of four soil-crop combinations, amounts of manure and 

nitrogen fertilizer applications on these combinations, and the numbers of livestocks in five 

subareas, as well as over fifty constraints corresponding to various water quantity and 

quality restrictions. The model's objective is the maximization of net income. 

The solutions of the GLP model were worked out by a FORTRAN program with 

simplex algorithm on the M.T.S. computer system in Simon Fraser University. 

Two databases were constructed for the cbefficients in the GLP model corresponding 

to the upper and lower limits (Equations 34 & 35) of the model objective, respectively 

(Appendix 2). They were compiled from data presented in Chapter 4. 

2. Results 

Table 5.1 shows the solutions of the GLP model (Equation 20), where ®(A) is the 

solution of objective value (net income of the study area), and ®(Sijk) (cropping area), 

®(Fij) (amount of manure applied), ®(~j) (amount of nitrogen fertilizer applied) and 
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Table 5.1 Solutions of grey linear programming mcxiel 

Decision Variable Scheme for Scheme for 
Grey Upper Limit Lower Limit 
Solution of Objective of Objective 

Symbol Soil Type Crop Type Subarea Function Function 

Cropping Area (km2) 

®(S211) wet soil rice 1 [0, 4.11] 4.11 0 

®(S121) dry soil wheat [0, 0 0.000066 
0.000066] 

®(S131) dry soil vegetables 1 12.12 12.12 12.12 

®(S141) dry soil sweet potato 0 0 0 

®(S212) wet soil rice 2 [0, 4.34] 4.34 0 

®(S1~ dry soil wheat 2 0 0 0 

®(S13i) dry soil vegetables 2 [13.31, 13.31 13.57 
13.57] 

®(S14i) dry soil sweet potato 2 0 0 0 

®(S21~ wet soil rice 3 [5.11, 12.87] 12.87 5.11 

®(S1z0 dry soil wheat 3 [0, 10.97] 10.97 0 

®(S13~ dry soil vegetables 3 [0, 10.97] 0 10.97 

®(S14~ dry soil sweet potato 3 0 0 0 

®(S21J wet soil rice 4 [0, 15.71] 15.71 0 

®(S1iJ dry soil wheat 4 0 0 0 

®(S1:w) dry soil vegetables 4 9.93 9.93 9.93 

®(S1~ dry soil sweet potato 4 [0, 0.000018 0 
0.000018] 

®(S215) wet soil rice 5 [0, 4.16] 4.16 0 

®(S125) dry soil wheat 5 0 0 0 

®(S135) dry soil vegetables 5 10.57 10.57 10.57 

®(S145) dry soil sweet potato 5 0 0 0 
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Table 5. l(continued) Solutions of grey linear programming model 

Decision Variable Scheme for Scheme for 
Grey Upper Limit Lower Limit 
Solution of Objective of Objective 

Symbol Soil Type Crop Type Livestock Function Function 

Amountof:M:anure 
Application ( 106 tonne) 

®(F21) wet soil rice (0.0025, 2.05 0.0025 
2.05] 

®(F1:J dry soil whe.at (0.0000016, 1.10 0.0000016 
1.10] 

®(F1~ dry soil vegetables (0.014, 2.96] 0.014 2.96 

®(F1J dry soil sweet potato (0, 0.00000071 0 
0.00000071] 

Amount of Nitrogen 
Fertilizer Application (kg) 

®<lfi1) wet soil rice 0 0 0 

®(H1:J dry soil wheat 0 0 0 

®(H1~ dry soil vegetables 0 0 0 

®(H1J dry soil sweet potato (0, 17.97] 17.97 0 

Size of Livestock 
Husbandry (103) 

®<T1) ox (1.39, 4.16] 4.16 1.39 

®(T:z) sheep [0, 8.00] 0 8.00 

®(T~ pig [0, 2.56] 0 2.56 

®(TJ domestic [125.00, 140.00 125.00 
fowls 140.00] 

Net Income (106 ¥) 

®(A) [8.13, 27.64] 27.64 8.13 
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®(T1 ) (size of livestock husbandry) are the solutions of decision variables, i = 1, 2; j = 1, 

2, 3, 4; k = 1, 2, 3, 4, 5; and l = 1, 2, 3, 4. Among them, ®(S211 ), ®(S 121 ), ®(S 212), 

®(S13z), ®(Sz13), ®(S123), ®(S133), ®(S214), ®(S144), ®(S215), ®(F21), ®(F12), 

®(F 13), ®(F14), ®(H 14), ®(T1), ®(T2), ®(T3) and ®(T4) are grey numbers, and 

®(S131), ®(S141), ®(S122), ®(S142), ®(S143), ®(S124), ®(S134), ®(S125), ®(S135), 

®(S 145), ®(H21 ), ®(H12) and ®(H13) are white ones. The results suggest that the grey 

messages in input data (grey coefficients in the objective function and constraints of the 

GLP model) can only have grey responses from the solutions of ®(S 211 ), ®(S 121 ), 

®(S212), ®(S132), ®(S213), ®(S123), ®(S133), ®(S214), ®(S144), ®(S215), ®(F21), 

®(F12), ®(F13), ®(F14), ®(H14), ®(T1), ®(T2), ®(T3) and ®(T4). 

The solutions with white numbers (®(S 131), ®(S 141), ®(S 122), ®(S 142), ®(S 143), 

®(S 124), ®(S 134), ®(S 125), ®(S 135), ®(S 145), ®(H21), ®(H12) and ®(H13)) demonstrate 

that these decision variables are not affected by the existence of grey numbers (grey 

intervals) in the model constraints. Most of them are equal to zero, which means that they 

cannot meet even dle lowest requirements of the constraints and are not feasible options. 

( 1) Cropping Area 

On the results of cropping areas, the solutions indicate that fourteen soil-crop-subarea 

combinations, including ®(S211 ), ®(S 121), ®(S 131 ), ®(S212), ®(S 132), ®(S213), ®(S123), 

®(S133), ®(S214), ®(S 134), ®(S 144), ®(S 135), ®(S215), are programmed for farming (the 

solutions are non-zero), and seven combinations, including ®(S 141 ), ®(S 122), ®(S 142), 

®(S 143), ®(S 124), ®(S 125), ®(S145), should be left idle (the solutions equal to zero). 

In subarea 1, three kinds of crops (rice, wheat and vegetables) are programmed for 

farming. For rice, the solution (cropping area) is [0, 4.11] km2• The solution for vegetables 
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is 12.12 km2, which means that 12.12 km2 of cropping area for vegetables on dry soil is 

definite. The value of 12.12 km2 is the total area of dry soil in subarea 1. The solution 

indicates that vegetables are very feasible for the area judged by environmental-economic 

requirements. Therefore, the constraints for both upper and lower limits of objective 

function can be satisfied under this option. The cropping area of wheat is programmed to 

be [0, 0.000066] 'km2, and no sweet potato is programmed. Therefore, wheat and sweet 

potato are not feasible for fanning in this subarea. 

In Subarea 2, rice and vegetables are programmed for cropping. The cropping area of 

rice is [O, 4.34] km2, which means that its maximum fanning area is 4.34 km2, and the 

minimum is 0 km2• All dry soils are programmed to be planted to vegetables (cropping area 

[13.31, 13.57] km2• No wheat or sweet potato is programmed 

In Subarea 3, rice, wheat and vegetables are chosen. The cropping area of rice is 

programmed to be [5.11, 12.87] km2• Either wheat or vegetables can be planted to dry soils 

(both have cropping area of [0, 10.97] km2). 

In Subarea 4, rice, vegetables and sweet potato are programmed for fanning, and 

their cropping areas are [0, 15.71] km2, 9.93 km2 and [0, 0.000018] km2, respectively. 

Only two kinds of crop (rice and vegetables) are programmed to be planted in 

Subarea 5. The cropping area for rice is [O, 4.16] km2, and for vegetables is 10.57 km2• 

The above results indicate that rice and vegetables are much more feasible for fanning 

than wheat and sweet potato in the whole study area. Sweet potato is nearly not to be 

planted in the area (its programmed cropping area is [0, 0.000018] km2). 

The scheme for upper limit of objective function in Table 5.1 represents an optimal 

decision scheme with the highest possible of net income and the most of pollutant losses, 

and the scheme for lower limit of objective function represents a decision scheme with the 
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lowest net income and the least pollutant losses. There is no option with both the highest 

net income and the least pollutant losses. Therefore, higher ®(S211 ), ®(S 131 ), ®(S212), 

®(S213), ®(S123), ®(S214), ®(S134), ®(S144) and ®(S215), and lower ®(S121), ®(S132) 

and ®(S 133) within the grey solutions should be programmed in order to achieve higher 

income; and lower ®(S 211 ), ®(S 131 ), ®(S 212), ®(S 213 ), ®(S 123), ®(S 214), ®(S 134), 

®(S 144) and ®(S215), and higher ®(S 121), ®(S 132) and ®(S 133) within the grey solutions 

should be programmed for better canal water quality. All these grey variables can be 

adjusted within their grey intervals in the final decision scheme. 

Under the scheme for the lower limit of objective function, three kinds of crop 

(excluding sweet potato) are programmed for farming, and the total cropping area is 62.27 

km2, which is 63.31 % of the tillable land area in the basin area. Under the scheme for 

upper limit of objective function, all four kinds of crop are chosen, and the total cropping 

area is 98.09 km2, which is 99.74% of the tillable land area in the study area. 

(2) Manure and Nitrogen Fertilizer Applications 

Manure and nitrogen fertilizer applications are the major pollutant sources of the 

canal. The amount of manure applied to rice land is programmed to be [2.45 x 103, 2.05 x 

106] tonnes, which means that the maximum amount of manure applied to rice land is 2.05 

x 106 tonnes, and the minimum is 2.45 x 103 tonnes. The amount of manure applied to 

wheat land is programmed to be [1.63, 1.10 x 106] tonnes, that to vegetable lands [13.6 x 

103, 2.96 x 106] tonnes, and that to sweet potato land [O, 0. 71] tonnes. 

On nitrogen fertilizer application, only [O, 17 .97] kg are programmed to be applied to 

sweet potato land as a supplement to manure. The result means that the maximum amount 
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of nitrogen fertilizer application is 17 .97 kg, and the minimum is 0 kg when sweet potato is 

not programmed for fanning under the scheme for lower limit of objective function. 

The study results indicate that rice and vegetable lands receive most of the manure, 

which corresponds to the programmed cropping areas (rice and vegetables have the largest 

areas, and sweet potato the least). 

Higher ®(F21 ), ®(F12), ®(F13), ®(F14) and ®(H14) within the grey solutions can be 

programmed for higher income; and lower ®(F21 ), ®(F12), ®(F13), ®(F14) and ®(H14) 

should be chosen for better canal water quality. All these grey variables can be adjusted 

within their grey intervals in the final decision scheme. 

Therefore, much more manure and fertilizer should be applied under the upper limit 

of the objective function than under the lower one, which also corresponds with the 

cropping area differences between the two limits. Thus, both higher income from more 

cropping area and lower canal water quality caused by more manure and nitrogen fertilizer 

applications can be derived under the scheme for the upper limit of objective function. 

Similarly, lower income but higher canal water quality can be derived under the scheme for 

the lower limit. 

(3) Livestock Husbandry 

The results of livestock husbandry indicate that four kinds of livestock are all 

programmed to be fed. The number of ox is programmed to be [1.39 x 106, 4.16 x 106]. 

The number of domestic fowls is [125 x 103, 139 x 103]. The numbers of sheep and pig 

are programmed to be (0, 8.00 x 103] and [O, 2.56 x 103], respectively. 
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Domestic fowls are programmed to have the largest size, followed by ox, pig and 

sheep. However, in terms of net income, ox husbandry contributes the most, followed by 

domestic fowls, and sheep the least. Incomes of domestic fowl husbandry are from both 

fowls and eggs. 

Higher ®(T1) and ®(T4) and lower ®(T2) and ®(T3) within the grey solutions can be 

programmed for higher income; and lower ®(T1) and ®(T4) and higher ®(T2) and ®(T3) 

should be chosen for better canal water quality. These grey variables can be adjusted within 

their grey intervals in the final decision scheme. 

On the difference between the schemes for the upper limit of objective function and 

that for the lower limit, ox, sheep, pig and domestic fowls are all programmed to be fed 

under the lower limit, and only ox and domestic fowls are chosen under the higher one. 

However, the numbers of ox and domestic fowls under the upper limit are much more than 

those under the lower limit. Thus, both more income and more manure production, which 

leads to lower canal water quality, can be derived from the scheme for the upper limit, and 

both less income and less manure production can be derived from the scheme for the lower 

limit. 

(4) Summary 

Two schemes for the upper and lower limits of objective function represent two 

different decision alternatives regarding environmental-economic tradeoff s. When the canal 

water quality has precedence, the scheme for lower limit of objective function has to be 

adopted. Under this alternative, the total cropping area is 62.27 km2, and only three kinds 

of crop (sweet potato is excluded) are planted; the total amount of manure application is 
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2.96 x 106 tonnes which are applied to the three croplands; no nitrogen fertilizer is used; 

and 1390 oxen, 8000 sheep, 2560 pigs and 125000 domestic fowls are fed. 

Generally, the values of ®(S 121), ®(S 132), ®(S 133), ®(T2) and ®(T3) should be as 

high as possible and those of ®(S 211 ), ®(S 131 ), ®(S 212), ®(S213 ), ®(S 123), ®(S 214), 

®(S134), ®(S144), ®(S215), ®(F21), ®(F12), ®(F13), ®(F14), ®(H14), ®(T1) and ®(T4) 

be as low as possible within the grey solutions. Under this decision scheme, the best 

possible water quality of the canal can be realized, but agricultural income will decrease. 

When agricultural income has precedence, the scheme for upper limit of objective 

function can be adopted. Under this alternative, the total cropping area can be 98.09 km2, 

and all four kinds of crop are planted; the total amount of manure application can be 3.16 x 

106 tonnes; 17.97 kg of nitrogen fertilizer can be applied; and 4160 oxen and 140000 

domestic fowls can be fed. 

Generally, the values of ®(S 211 ), ®(S 131 ), ®(S 212), ®(S213), ®(S 123), ®(S214), 

®(S134), ®(S144), ®(S215), ®(F21), ®(F12), ®(F13), ®(F14), ®(H14), ®(T1) and ®(T4) 

should be as high as possible, and those of ®(S 121), ®(S 132), ®(S 133), ®(T2) and ®(T3) 

be as low as possible within the grey solutions. Under this decision scheme, the highest 

agricultural income can be achieved, but water quality of the canal becomes poorer and the 

reliability of meeting water quality objectives becomes lower. 

In summary~ programming for lower limit of objective function should guarantee that 

water quality standards be met, but as programming aims toward the upper limit, the 

probability of achieving water quality objectives decreases (i.e. the risk of substandard 

water increases). In other words, programming for the lower limit represents a 

conservative strategy and would be appropriate for 100% certainty of attaining water 

quality standards. 
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3. Discussions 

( 1) From Whole Xiamen Area Point of View 

A. Water Quality 

Water quality at the canal's outlet will mostly meet the Standards for Drinking 

Water Sources (SDWS) (XEPB 1988) under the resulting decision schemes. However, it 

should be emphasized that the scheme for upper limit of objective function is a critical 

solution corresponding to the standard values of the SDWS, and it may not ensure water 

quality objectives would be met. Therefore, as programming aims toward the upper limit, 

the probability of substandard water quality may increase. 

The canal water is ultimately imported to Xiamen Waterworks, and, through certain 

treatment processes, the waterworks will supply tap water to Xiamen City for multiple 

uses. The inlet water requirements of the waterworks were set to be the SDWS. Therefore, 

under the resulting decision schemes, these requirements will mostly be met, and 

satisfactory water quality will be ensured for multiple uses, especially domestic drinking 

use. 

This improvement of canal water quality i& based on the decrease of agricultural net 

income in the canal basin. The study results in Table 5.1 indicate that the higher the 

requirements of canal water quality, the lower the income in the canal basin. Therefore, in 

order to improve water supply quality for Xiamen City, the canal basin has to pay costs of 

reducing agricultural income. 

In fact, according to the Function Division of Xiamen Special Economic Zone 

(Xiamen Government 1984), the main function of Xiamen Suburban Area (XSA) is to 
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assist the development of Xiamen City by supplying agricultural products. In 1989, the 

gross output value of Xiamen City (¥ 7 .80 billions) was over 34 times that of XSA (¥ 

229.28 millions), and population in the city (712000) was over 5 times that in XSA 

(129000). Therefore, the reason why the canal water quality protection has the precedence 

can be revealed by the comparison of water quality protection for¥ 7. 80 billions of output 

value and 712000 of population in Xiamen City with agricultural development for only 

¥229.28 millions of output value (2.94% of that in Xiamen City) in XSA where the canal 

basin is included. 

B. Water Quantity 

According to Water Management Regulation of Beixi Canal (GXSA 1987), water 

demand of Xiamen City (8.4 m3/sec) must be ensured without preconditions. This is based 

on two considerations: first, the canal was designed primarily to supply drinking water to 

Xiamen City when it was built in the 1970's; and second, the output value per m3 of water 

consumption in Xiamen City (¥ 29 .44/m3) was over 70 times of that in the study area (¥ 

0.41/m3) in 1989, which indicates that it is more efficient to supply sufficient water for 

Xiamen City than for the study area. 

Therefore, the water quantity problem for the study area is how to allocate optimally 

the remaining water (4.1 m3/sec), which is insufficient for the area, to various soil-crop

subarea combinations. The study results indicate that some soils should be left idle because 

of water quantity and quality restrictions (Table 5.1 ). It is recommended that fruit trees 

consuming less water and manure/fertilizer be planted on the idle soils. 
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C. Incomes 

In 1989, the gross output value of Xiamen City was over 97 .1 % of that of whole 

Xiamen Area and over 200 times of that of the study area. From an economic point of 

view, the development of Xiamen City has precedence over the other parts of Xiamen 

Area. Therefore, water supply to Xiamen City with good quality and sufficient quantity 

should be ensured. Thus, the first economic objective of the study area is to supply water 

with good quality and sufficient quantity to Xiamen City by the canal, and the second is 

then the maximization of agricultural income of the area itself under the water quantity and 

quality constraints from Xiamen City. 

Comparing the study results in Table 5.1 with environmental and economic 

situations of the study area in 1989, we can find that water quality at the canal's outlet 

would be improved from a poor level (concentrations of many pollutants cannot meet the 

SDWS) in 1989 to a better one (all pollutant concentrations meet the SDWS) under the 

programmed results, and water demands of Xiamen City would also be ensured. However, 

agricultural income under the programmed results will become less than that in 1989 (from 

35.07 million to [8.13, 27.64] million). The results indicate that in order to supply water to 

Xiamen City with good quality and sufficient quantity, the canal basin has to pay costs of 

reducing agricultural income. 

(2) From the Basin Area Point of View 

A. Farming Areas 

The study results indicate that [0.26, 35.04] km2 of farmland should be left idle 

because of water quantity/quality restrictions. Of these, [0, 4.11] km2 should be left idle in 
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subarea 1, [0.26, 4.34] km2 in subarea 2, [0, 7.76] km2 in subarea 3, [O, 15.71] km2 in 

subarea 4, and [0, 4.16] km2 in subarea 5. 

The most serious I y affected crop is sweet potato. In subareas 1, 2, 3 and 5, no 

sweet potato is programmed to be planted. Only [O, 0.000018] km2 can be planted in 

Subarea 4, which is [0, 0.000085]% of its cropping area in 1989. 

Thus, in order to satisfy Xiamen City's water requirements, the study area has to 

pay costs of reducing cropping areas. The costs are worthwhile because the farming output 

value in the area is only 0.24% of the gross output value in Xiamen City ( 1989), and it is 

not allowed by the local government to pay the costs of affecting Xiamen City's industrial, 

domestic and recreational water uses for increasing the very small farming output value 

(Xiamen Government 1984). 

B. Manure and Nitrogen Fertilizer Applications 

The study results (Table 5.1) indicate that both manure and nitrogen fertilizer 

applications should be restricted. In fact, pollutant losses from farmlands are strongly 

related to manure and nitrogen fertilizer applications. Therefore, cutting down 

manure/fertilizer application is a key measure of reducing pollutant losses, which can cause 

changes in livestock numbers, cropping areas, and agricultural income, etc. For the 

alternative of manure or nitrogen fertilizer, the former is much preferred. In fact, from the 

results of canal water quality simulation, only limited amounts of nutrient (mainly from 

manure or fertilizer) can be applied in the basin area because of the canal water quality 

constraints. Therefore, how optimally to apply nutrients to croplands, i.e., how to make 

efficient use of the limited pollutant discharge allowances, becomes a problem. 
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Manure is cheaper to buy and apply, and is related to livestock husbandry which 

can also contribute to agricultural income when consuming the limited allowances, while 

fertilizer is more expensive and consumes the limited allowances without any compensation 

in income. The study results reflect the fact. Almost no nitrogen fertilizer is programmed to 

be applied in the optimal solutions (only one soil-crop-subarea combination (sweet potato 

in Subarea 4) is to use [O, 17.97] kg of nitrogen fertilizer). Manure is preferred, and all 

manure generated in the basin area is programmed to be applied to farmlands. 

C. Livestock Husbandry 

Livestock husbandry is related to both income and crop nutrient requirements. 

The programming results indicate that more ox and domestic fowls, and less sheep 

and pig should be fed. In terms of market demands, a great quantity of ox, fowls and eggs 

is demanded by Xiamen City. Especially, fowls (chicken and duck) are favored by 

Xiamenese, and their demands frequently exceeded supplies from XSA and were 

complemented by other parts of the country in recent years. 

Over 10 new pig farms have been built in Xiamen Suburban Area since 1980 when 

Xiamen City became a special economic zone, in order to correspond to the quick 

development of the city. Presently, pork supplies exceed demands because the population 

development of Xiamen City does not amount to the predicted scale. Therefore, pig 

husbandry is not encouraged in other parts of XSA. Mutton is not favored by Xiamenese, 

and sheep husbandry is not encouraged, too. Therefore, the decision scheme of livestock 

husbandry corresponds with present market demands and is applicable from both the study 

area and whole Xiamen Area points of view. 
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(3) Advantages of the GLP Model Compared with Previous 

Systems Analysis Methods 

In the previous systems analysis methods, input coefficients and parameters in the 

objective function and constraints are expressed as white numbers (certain numbers), and 

the derived solutions (decision variables) are white numbers, too. Therefore, neither the 

inputs (coefficients and parameters) nor the outputs (solutions) can reflect the uncertainties 

in the real world. 

In the GLP model, uncertain messages of the coefficients and parameters are 

expressed as grey numbers and incorporated into the model, and the derived solutions 

contain grey numbers which can reflect the uncertainties of the decision schemes. 

Therefore, for water resource managers, the GLP model provides a better management 

tool. Its advantages are as follows. 

(a) In the interpretation of solutions, the GLP model provides grey outputs (grey 

solutions) which can reflect uncertainties of decision making, and are direct and convenient 

for the managers to interpret and apply to practical problems. However, previous systems 

analysis methods can only give white solutions (certain numbers) which are difficult to be 

interpreted in complicated systems where problems of uncertainty exist, because it may not 

be suitable to use certain numbers to represent uncertain problems (uncertainties of decision 

making) in the real world. 

(b) In the GLP model, the grey solutions provide possible ranges of the model 

objective and relevant decision variables by grey numbers. Therefore, water resource 

managers can adjust the decision scheme and make tradeoffs between the objectives and 

relevant decision variables according to the practical situations. For example, in this study, 

when a conservative strategy, which emphasizes the insurance of the canal water quality, is 
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adopted, the decision scheme for the lower limit of objective value would be appropriate; 
and when a radical strategy, which emphasizes the development of agricultural prcxiuction, 
is adopted, the scheme for the upper limit might be used. However, the risk of substandard 
water becomes high under the upper limit scheme because the amounts of agricultural 
pollutant losses will arrive at the critical values corresponding to relevant quality standards 
(SDWS). Therefore, the managers can adjust the decision variables between the two 
extreme strategies. 

In comparison, the previous methods can provide only one set of solutions of 
model objective and decision variables, and are not flexible for making adjustments when 
the results are applied. When the values of model objective or decision variables need to be 
adjusted, it will be very difficult, or even impossible, for the methods to provide further 
scientific bases. 

( c) Solutions of the GLP model, which contain grey messages, can be interpreted 
as infinite potential decision schemes (whitening solutions). Therefore, much more options 
from the GLP model than those from the previous methods are provided for the decision 
makers. This is especially significant when details of a decision scheme are discussed. 

( 4) Limitation of the GLP Model 

In this study, a GLP model was constructed and applied because relations between 
decision variables in the model constraints and objective function can be treated by linear 
expressions. For example, on the constraint of manure application(Equation 4 in Chapter 
3 ), relations between amounts of manure spread on croplands and sizes of livestock 
husbandry: 
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m n l 

L LFij-(LW..JT1t+B0 T0 J"'=O 
i-1 j-1 lt-1 

can be nonlinear if m # 1. However, m is very closed to 1: m ~ 1, because direct relation 

between the two variables exist: manure spread on soil-crop component is from livestock 

and human components. Therefore, linearizing the constraint by the following expression 

is reasonable: 

m n. l 

L LFi1· - (L W,.J T1t + B0 T0 ) = 0. 
ial fa=l le>-1 

Similarly, on the constraint of crop nitrogen requirements (Equation 6 in Chapter 

3), relations between amounts of manure spread, amounts of nitrogen fertilizer spread, and 

cropping areas are linear, because the crop nitrogen requirements are satisfied by manure 

and fertilizer applications; on the constraints of livestock and human nutrient requirements 

(Equation 7 and 8 in Chapter 3), relations between cropping areas and sizes of livestock 

husbandry are linear, because the nutrient requirements by livestocks are principally 

supplied by onfarm crops; on the constraints of pollutant losses (Equation 9 to 15 in 

Chapter 3), linear relations exist between cropping areas, amounts of manure spread, and 

amounts of nitrogen fertilizer spread, because the crop nutrient requirements are supplied 

by manure and fertilizer applications, and the applied nutrients, not taken by the crops, can 

leave croplands as pollutant losses; and the constraints of water quantity requirements 

(Equation 18 to 20 in Chapter 3) describe simple linear relations between cropping areas in 

different subareas where quantities of irrigation water required and water costs are 

different. 
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However, relations between decision variables in some complicated systems can be 

obviously nonlinear. Therefore, development of grey nonlinear programming (GNP) 

mcxiel would be valuable. 

Until now, there has still been no report of the study in grey nonlinear 

programming (GNP) method. In fact, in complicated systems where many constraints and 

decision variables exist, even a traditional nonlinear programming (TNP) model is very 

difficult to be solved (a large amount of human-computer dialog is required), and 

sometimes only better solutions rather than optimal solutions can be derived. Therefore, 

whenever possible, most of systems analyzers would rather use linear programming model 

which is much easier to be solved although errors may exist due to the linearization of the 

nonlinear relations between variables. For example, given a nonlinear constraint: 

aX + b.v 9110 < 
J '.11.2 - C, 

if we know: 5 ~ X2 ~ 10, we can linearize the constraint to: 

aX1 + 0.82bX/
110 ~ C, 

or express it as a grey linear constraint: 

aX1 + {0.79, 0.85}bX/110 ~ C. 

However, when relations between decision variables cannot be linearized in very 

complicated grey systems, a GLP mcxiel has to be applied. Therefore, development of GLP 

method, especially its solving approach, is very important for broadening the applicable 

range of grey systems theory. 
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CHAPTER6 

SENSITIVITY ANALYSES 

1. Impacts of Pollutant Loss Constraints on Agricultural Income 

The effects of pollutant loss reductions on fann income are determined by solving the 

GLP model for various values of pollutant loss constraints. 

Tables 6.1 to 6. 7 (see Appendix VI) show seven sets of solutions with different 

pollutant loss constraints. Table 6.1 shows the solutions of income-maximizing plans with 

no restrictions on pollutant losses (Table 6.1 ). The solutions indicate both the maximum 

income and pollutant losses that could be obtained from the agricultural production. If these 

pollutant losses are acceptable, no changes in management practices are necessary, and the 

net income would be ¥8. 09 x 109. 

Table 6.2 shows the impact of reductions of allowable total nitrogen losses ®(a) from 

35 x 106 kg/km2 to 30 x 106, 25 x 106, or 20 x 106 kg/km2. These results are obtained by 

setting ®(a) equal to 35 x 106, 30 x 106, 25 x 106, or 20 x 106 kg/km2, and leaving other 

pollutant losses unconstrained. The primary effects are to reduce the amounts of manure 

and nitrogen fertilizer application in order to meet the lower nitrogen losses and, since less 

manure and/or fertilizer are allowed to be produced and applied, smaller cropping area and 

livestock sizes will apply. Therefore, as the allowable total nitrogen losses are decreased 

from 35 x 106 kg/km2 to 20 x 106 kg/km2, the net income of the area will decrease from 

¥10.59 x 106 to ¥6.05 x 106. 
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The third set of solution is based on alternative limits on soil loss (®(b) = 140 x 103, 

120 x 103, 100 x 103, and 80 x 103 kg/km2) (Table 6.3). The results are comparable to 

those produced by nitrogen restrictions except that more rice soil is planted because it is 

less erosive. As the allowable soil loss decreases from 140 x 103 kg/km2 to 80 x 103 

kg/km2, the net income of the area would decrease from ¥9.94 x 106 to ¥6.47 x 106. 

Tables 6.4 to 6.7 are solutions for restrictions on dissolved nitrogen and phosphorus 

losses (®(f 1) and ®(f2)), and solid-phase nitrogen and phosphorus losses(®(c 1) and 

®( c2) ). The solutions under dissolved nitrogen and phosphorus loss constraints are similar 

to the solutions obtained with total nitrogen constrained. As the allowable dissolved 

nitrogen loss decreases from 90 x 103 kg/km2 to 60 x 103 kg/km2, the net income of the 

area would decrease from ¥9.29 x 106 to ¥6.72 x 106, and as the allowable dissolved 

phosphorus loss decreases from 12 x 103 kg/km2 to 6 x 103 kg/km2, the net income of the 

area would decrease from ¥11.68 x 106 to ¥6.59 x 106• Solid-phase nitrogen and 

phosphorus restrictions produce solutions similar to the results for soil loss constraints. As 

the allowable Solid-phase nitrogen loss decreases from 30 x 103 kg/km2 to 15 x 103 

kg/km2, the net income of the area would decrease from ¥9.64 x 106 to ¥5.94 x 106, and as 

the allowable Solid-phase phosphorus loss reduces from 6 x 103 kg/km2 to 3 x 103 kg/km2, 

the net income of the area would decrease from ¥9.55 x 106 to ¥6.15 x 106. 

2. Costs of Reducing Pollutant Losses 

The impacts of pollutant loss constraints on agricultural income can be presented as in 

Figures 6.1 to 6.6 (see Appendix VI) to show the costs of reducing nonpoint source 

pollutant losses from the basin area. Costs are measured as losses in farm income. 
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For example, for total nitrogen losses (Figure 6.1 ), if the losses are reduced from 35 

x 106 kg/km2 to 20 x 106 kglkm2 (reduce 42.86% ), this costs ¥4.54 x 106 in lost income. 

Those lines represent environmentaVeconomic trade-offs. Trade-offs must occur 

when objectives are incompatible. Thus we cannot reduce pollutant losses without also 

increasing costs (reducing income). The slope of the curve in Figure 6.1 is approximately 

105.67 x 103, indicating that we can "trade off' income for reductions in total nitrogen 

losses at the rate of ¥105.67 x 103 for each 1 % improvement (reduction) in losses. The 

slope for Figure 6.2 is approximately 81.18 x 103, indicating that the rate of "trade off' is 

¥81.18 x 103 for each 1 % improvement (reduction) in losses. The slopes for Figure 6.3 to 

6.6 are approximately 77.41 x 103, 101.98 x 103, 73.78 x 103, and 67.79 x 103, 

respectively, indicating that they have similar "trade off' rates. 

3. Impacts of Water Quantity Constraints on Agricultural Income 

The effects of water supply (from the canal) on agricultural income are determined by 

solving the GLP model for different values of water quantity constraints (Equation 16). 

Table 6.8 (see Appendix VI) shows the impact of reductions of water supply from 50 

x 1Q6 m3/yr to 40 x 106, 30 x lQ6, or 20 x lQ6 m3/yr. The primary effects are to reduce 

cropping area in order to meet the lower water supply. Since the cropping area is smaller, 

less fertilizer would be applied, and fewer livestocks would be fed due to less nutrient 

132 



supply. Therefore, as water supply decreases from 50 x 106 m3/yr to 20 x 106 m3/yr, the 

cropping area and livestock number would decrease correspondingly, and the net income of 
the study area would decrease from ¥11.14 x 106 to ¥6.38 x 106. 

4. Effects of Grey Inputs on Grey Outputs 

(1) Definition of Grey Degree (Gd) 

The grey degree of a grey number is its grey interval divided by its whitening mean 
value. Given a grey number ®(x) = [@ (x), ® (x)], and its whitening mean value M(x), we 

can calculate its grey degree Gd[®(x)]: 

Gd[®(x)] = { [® (x) - @(x)]/M(x)} x 100% 

(2) Grey Inputs and Grey Outputs 

Grey inputs are the input data of grey coefficients in the objective function and 
constraints of the GLP model, and grey outputs are the output solutions of the model. 
Table 6. 9 and Figure 6. 7 shows the relations between the grey degrees of grey inputs (grey 
coefficients) and those of grey outputs (net income) in the GLP model. The results indicate 
that the grey degrees of grey outputs increase non-linearly with the increases of the grey 
degrees of grey inputs. The results demonstrate that the grey solutions (grey outputs) are 
sensitive to the effects of grey coefficients (grey inputs). 
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Table 6.9 Effects of grey inputs on grey outputs 

Increases in Grey 
Degrees of Grey 0 10 15 20 Inputs (%) 

Grey Degrees of 
Grey Outputs 109.09 129.56 147.29 198.94 Gd[®(A)] (%) 

Increases in Grey 
Degrees of Grey 0 18.76 35.00 82.35 Outputs (%) 
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CHAPTER 7 

CONCLUSIONS 

1. Summary 

( 1) A grey systems analysis of water quantity allocation and quality protection has 

been applied in a canal basin in Xiamen, China. The trade-offs between meeting water 

quantity and quality objectives has been evaluated, and the concepts of grey systems theory 

has been introduced into water resource management as a means for accounting for 

uncertainty. A grey linear programming (GLP) model was developed, and a new approach 

for solving the GLP model was advanced. 

(2) The results indicate that the quantity of water allocated varies with the demands 

for domestic, agricultural, industrial and recreational uses, the capacity of canal flow, the 

size of each subarea in the basin area, and the costs of delivering water to each subarea, and 

the canal water quality varies with the availability of water supply, the nonpoint source 

pollutant discharge, the type of fertilizer and manure spread used by farmer, the type of 

soil, the kind of crops grown, and the type of livestock raised. Water quantity and quality 

are interrelated and the efficient management of one generally depends on the other. 

Therefore, a systems analysis of the constraints and uncertainties affecting water quantity 

and quality management is an efficient way to deal with the water problems. 

(3) In terms of technology, this study suggests that grey systems analysis is a 

useful means for decision making of water quantity and quality management under 

uncertainty, and the proposed new solving approach for GLP model can efficiently reflect 
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the effects of grey messages. Reliabilities of the method, its solving approach, and its 

application have been demonstrated through sensitivity tests of the impacts of pollutant loss 

constraints on agricultural income, the costs of reducing pollutant losses, the impacts of 

water quantity constraints on agricultural income, and the effects of grey inputs on grey 

outputs. 

(4) In the case study of Xiamen, China, the results indicate that the derived decision 

schemes are feasible for the study area. When the canal water quality has precedence, the 

scheme for lower limit of objective function has to be adopted. Under this alternative, less 

cropping area, manure application and livestock numbers, and no fertilizer application are 

programmed. When agricultural income has precedence, the scheme for upper limit of 

objective function can be adopted. Under this alternative, more cropping area, manure 

application and livestock numbers, and some fertilizer application are programmed. 

Therefore, decision makers can adjust the grey decision variables (including cropping area, 

manure and fertilizer applications and livestock numbers) within their grey intervals 

according to the applicability analysis of the detailed situations. 

2. Contributions of this study 

This study has contributed to five aspects of water resource and environmental 

management: 

( 1) A new methodology has been first introduced to water resource management. 

Grey systems theory has been successfully applied in military, agricultural, and economic 
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decision making. However, there had been no previous application in water resource 

planning and decision making. This study is a new attempt. 

(2) A new solving approach of GLP model has been advanced. It improved the 

previous creditability methods, and allows grey messages in the GLP model be 

communicated into optimization processes and solutions. The reliability of the new 

approach has been demonstrated through the sensitivity test of the effects of grey inputs on 

grey outputs. 

(3) A new application field -- water quantity and quality management in a water 

delivery canal connected to a drainage basin -- has been studied. Previous studies of water 

quantity and quality management were related to river or lake basins, and none was about a 

canal with strict water quality requirements. 

( 4) A new case -- water quantity and quality management in China -- has been 

studied. None of the previous studies of water resource planning in China combined the 

quantity and quality problems in an optimization framework. 

(5) For the study area (Xiamen Area), this study will be valuable for the formation 

of local policies, standards, and regulations of water resources management and protection; 

the planning of regional economic development; the decision of comprehensive schemes of 

regional environmental pollution control; the adjustment of the interrelationship between 

urban and rural areas; and the insurance of gocxl water supply (in both quantity and quality) 

for Xiarnen City. 
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3. Limitation and Extension of This Study 

(1) In this study, a GLP model was constructed and a new solving approach 

advanced. However, relations between decision variables under some situations can be 

nonlinear. Therefore, development of grey nonlinear programming (GNP) methods and 

relevant solving approaches would be very valuable for broadening the applicable range of 

grey systems theory. 

(2) In the GLP model, grey messages are expressed as grey numbers with upper 

and lower limits. However, when a phenomenon is very fuzzy (i.e., it has a very high grey 

degree), the solutions will also have high grey degrees. The integration of fuzzy sets theory 

into the grey systems theory may provide a framework for more efficient solutions. 

(3) The constructed GLP model can only deal with average annual conditions, and 

does not account for interannual variations, nor for lag effects. One lag example is the 

application of fertilizer which can affect the soil structure, crop yields and pollutant losses 

in following years. 

( 4) In this study, fixed prices for the crops (yearly average prices) and water supply 

are used, which is only applicable for China where the prices are determined by the 

government. In a free-market economy, the prices will vary with supply (i.e. cropping 

areas). Therefore, further studies of the effects of the price variations would be significant. 

(5) In the case study, the agricultural system is considered as a system with human, 

livestock, and soil-crop components, and some relations are expressed as linear equations 

relating to water quality and quantity management. In reality, an agricultural system is a 

multilevel, multicomponent and multivariable system where intricate relations exist between 
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subsystems. Therefore, further considerations of the complexity in the grey programming 

model and its solubility would be helpful for making a more feasible decision. 

( 6) Owing to the complex nature of water resources problems, the data base 

required for this study is extensive. Although most data sources are relatively accurate 

(certain numbers, or grey numbers with low grey degree), others are less so (grey numbers 

with high grey degree). Therefore, increasing the accuracy of the data sets, i.e., decreasing 

the grey degrees of the input grey data, would increase the confidence of the results 

generated. That is, the grey degrees of the output results (solutions) would be decreased. 
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C PROGRAM OF GLP MODEL 
DIMENSION A(900,900) ,X(9000) ,NR(9000) 
READ (5,100) M, N, TYPE 

100 FORMAT(1X,2I3,E15.6) 
E=0.0001 
Ml=M+2 
M2=M-1 
M3=M+l 
M4=M-4 
MS=M-3 
Nl=N+l 
N2=N+M+l 
N3=N+M 
N4=N+2 
DO 105 J=l,N2 
DO 105 I=l,N4 

105 A{I,J)=O.O 
DO 110 I=l,M 

110 X{I) =0.0 
DO 118 I=2,Nl 
READ ( 5 I 115) (A (I I J) I J = 1 , M 4) 

115 FORMAT (1X,4E15.6) 
READ (5, 116) {A(I,J) I J=MS,Ml) 

116 FORMAT (1X,6E15.6) 
118 CONTINUE 

READ ( 5 I 11 7) (A (1 , I) I I = l , M) 
117 FORMAT (1X,4E15.6) 

DO 120 I=2,Nl 
DO 120 J=l,Ml 

120 A(I,J) =SIGN(l.0, A(I,Ml)) *A(I,J) 
DO 125 I=l,M 

12 5 A ( 1, I) =-TYPE* A ( 1, I) 
IF (N.EQ.1) GOTO 135 
DO 130 I=2,Nl 
A (I I N2) =A (I I Ml) 
A(I,Ml) =0.0 
IF (I.EQ.2) GOTO 130 
M4=I+M2 
A(I,M4) =A(I,M3) 
A(I,M3)=0.0 

130 CONTINUE 
135 L=l 

DO 145 I=2,Nl 
MS=I+M2 
NR(I)=MS 
IF (A (I I MS) . EQ . 1 . 0) GOTO 14 5 
NR(I)=N2 
DO 140 J=l,N3 

140 A(N4,J)=A(N4,J)-A(I,J) 
L=N+2 

145 CONTINUE 
150 12=1 
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DO 160 I=2,N3 
IF (A (LI I) -A (LI L2) . GT. E) GOTO 16 0 
IF (A(L, I) -A(L,L2) .LT.-E) GOTO 155 
IF (L.EQ.l) GOTO 160 
IF (A (1 I I) -A (1 I L2) . GE . - E) GOTO 16 0 

155 L2=I 
160 CONTINUE 

IF (A(L,L2) .LT.-E) GOTO 180 
IF (L.EQ.l) GOTO 230 
DO 165 I=l,N3 
IF (A ( L, I) . GT. E) GOTO 170 

165 CONTINUE 
L=l 
GOTO 150 

170 DO 175 I=2,Nl 
IF (NR(I) .LE.N3) GOTO 175 
IF (A(I,N2) .GT.E) GOTO 210 

175 CONTINUE 
GOTO 230 

180 Ll=l 
DO 190 I=2,Nl 
IF (A(I,L2) .LE.E) GOTO 190 
Y=A(I,N2) /A(I,L2) 
IF (Ll.EQ.l) GOTO 185 
IF (Y.GE. (A(Ll,N2) /A(Ll,L2))) GOTO 190 

185 Ll=I 
190 CONTINUE 

IF (Ll.EQ.l) GOTO 220 
NR ( Ll) =L2 
Y=A(Ll,L2) 
DO 195 I=l,N2 

195 A(Ll,I) =A(Ll,I) /Y 
DO 205 I=l,N4 
IF (I.EQ.Ll) GOTO 205 
Y=A(I,L2) 
DO 200 J=l,N2 

200 A(I,J) =A(I,J)-Y*A(Ll,J) 
205 CONTINUE 

GOTO 150 
210 WRITE (6,215) 
215 FORMAT (lHO, 'INFEASIBLE') 

GOTO 250 
220 WRITE (6,225) 
225 FORMAT (lHO,'UNBOUNDED') 

GOTO 250 
230 DO 235 I=2,Nl 

IF (NR(I) .GT.M) GOTO 235 
J=NR (I) 
X(J) =A(I,N2) 

235 CONTINUE 
Y=TYPE*A ( 1, N2) 
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WRITE (6,240) Y 
240 FORMAT (1H0,20HOBJECTIVE FUNCTION=, El5.6) 

WRITE (6,245) (I,X(I) ,I=l,M) 
245 FORMAT (13X,2HX(, I3,3H)=, El5.6) 
250 STOP 

END 
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APPENDIX II INPUT DATABASES FOR CALCULATIONS 

1. Input Database for Lower Limit of Objective Function 

32,55,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1.,1.,1.,1. 
o.,o.,o.,o. 
-117.,-22.5,-82.81,-3.42,0.,1976400. 
-1800. '0., 0., 0. 
-1800. '0. '0. '0. 
-1800. '0. '0. '0. 
-1800. '0., 0. '0. 
-1800., 0., 0. '0. 
3.75,0.,0.,0. 
o.a5,o. ,o. ,o. 
o.,o.,o.,0.,-1.,o. 
0. ,-1110. ,0. ,0. 
0. '-1110. '0. '0. 
0. ,-1110. ,0. ,0. 
0. '-1110. '0. '0. 
o. ,-1110. ,0. ,0. 
o.,3.75,o.,o. 
0. '0. 85' 0. '0. 
o. ,0. ,0. ,0. ,-1. ,0. 
0. '0. , -1100. '0. 
0. '0. '-1100. '0. 
0., 0., -1100., 0. 
0. , 0. '-1100. , 0. 
0. '0., -1100. '0. 
o.,0.,3.75,o. 
o. ,o. ,0.85,o. 
o.,o.,o.,0.,-1.,o. 
0 . , 0 . , 0 • ' -1000 . 
0 . ' 0 . , 0. , -1000 • 
0 . ' 0 . , 0 . ' -1000 • 
0. '0. '0. '-1000. 
0 • f 0 • f Q •I -1000 • 
0.,0.,0.,3.15 
o. ,o. ,o. ,a.as 
o. ,0. ,0. ,0. ,-1. ,0. 

332000000.,103000000.,302000000.,162000000. 
332000000.,103000000.,302000000.,162000000. 
332000000.,103000000.,302000000.,162000000. 

156 



332000000.,103000000.,302000000.,162000000. 
332000000.,103000000.,302000000.,162000000. 
o.,o.,o.,o. 
0. ,0. ,0. ,o. 
-1740000.,-536000.,-880000.,-80000.,-1.,491000. 
42560.,30295.,9002.,28520. 
42560.,30295.,9002.,28520. 
42560.,30295.,9002.,28520. 
42560.,30295.,9002.,28520. 
42560.,30295.,9002.,28520. 
0.,0.,0.,0. 
o.,o.,o.,o. 
-81.8,-14.66,-16.6,-3.67,-l.,14.5 
105975.,52777.,664928.,61845. 
105975.,52777.,664928.,61845. 
113395.,58077.,669486.,67940. 
113115.,57877.,669314.,67710. 
105975.,52777.,664928.,61845. 
-14.85,-14.85,-14.85,-14.85 
-3.52,-3.52,-3.52,-3.52 
1168.41,98.57,410.5,14.33,-1.,0.00l 
-1800.,-1110.,-1100.,-1000. 
-1800.,-1110.,-1100.,-1000. 
-1800.,-1110.,-1100.,-1000. 
-1800.,-1110.,-1100.,-1000. 
-1800.,-1110.,-1100.,-1000. 
7.5,7.5,7.5,7.5 
1.,1.,1.,1. 
o.,o.,o.,0.,1.,31650000. 
385.,650.,645.,620. 
385.,650.,645.,620. 
385.,650.,645.,620. 
385.,650.,645.,620. 
385.,650.,645.,620. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,124000. 
1.,1.,1.,1. 
1.,1.,1.,l. 
1.,1.,1.,1. 
l.,1.,1.,1. 
1.,1.,l.,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,98.35 
1. ,0. ,0. ,O. 
1. ,0. ,0. ,O. 
1.,0.,0.,0. 
1.,0.,0.,0. 
1. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,41.19 
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o.,i.,i.,i. 
o.,i.,i.,i. 
o.,i.,i.,i. 
o.,i.,i.,i. 
o.,L,1.,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,51.16 
90.3,125.,123.,116. 
90.3,125.,123.,116. 
90.3,125.,123.,116. 
90.3,125.,123.,116. 
90.3,125.,123.,116. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,28200. 
19.6,18.3,19.,18. 
19.6,18.3,19.,18. 
19.6,18.3,19.,18. 
19.6,18.3,19.,18. 
19.6,18.3,19.,18. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,5450. 
259.8,401.,489.9,386.4 
259.8,401.,489.9,386.4 
259.8,401.,489.9,386.4 
259.8,401.,489.9,386.4 
259.8,401.,489.9,386.4 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o.,1.,86soo. 
26.19,49.55,51.24,60.48 
26.19,49.55,51.24,60.48 
26.19,49.55,51.24,60.48 
26.19,49.55,51.24,60.48 
26.19,49.55,51.24,60.48 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,9100. 
1400000.,990000.,860000.,1020000. 
1400000.,990000.,860000.,1020000. 
1400000.,990000.,860000.,1020000. 
1400000.,990000.,860000.,1020000. 
1400000.,990000.,860000.,1020000. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,81993600. 
1400000.,990000.,860000.,1020000. 
o.,o.,o.,o. 
0. ,0. ,O. ,O. 
o.,o.,o.,o. 
o.,o.,o.,o. 
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0. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,14116800.1 
o.,o.,o.,o. 
1400000.,990000.,860000.,1020000. 
o. ,0. ,0. ,0. 
0. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,16398720. 
0. ,O. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1400000.,990000.,860000.,1020000. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,13034880. 
1. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0. ,O. ,0. ,0. 
o.,o.,0.,0.,1.,4.11 
o.,l.,1.,1. 
0. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,0.,1.,12.12 
o.,o.,o.,o. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,0.,1.,4.34 
o.,o.,o.,o. 
o.,L,L,L 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o.,1.,13.s1 
o.,o.,o.,o. 
o.,o.,o.,o. 
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1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o.,1.,12.a1 
o.,o.,o.,o. 
0. ,0. ,0. ,o. 
0.,1.,1.,l. 
o.,o.,o.,o. 
0. ,0. ,0. ,0. 
0. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,10.91 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o. ,0. ,0. ,0. 
o.,o.,o.,o.,1.,1s.11 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,i.,i.,i. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,0.,0.,0.,1.,9.93 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o. ,0. ,0. ,0. 
o.,o.,0.,0.,1.,4.16 
0. ,0. ,0. ,0. 
0. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o. ,1. ,1. ,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o.,1.,10.s1 
1. ,0. ,0. ,0. 
o.,o.,i.,o. 
0. ,0. ,0. ,0. 
o. ,0. ,0. ,1. 
o.,o.,o.,o. 
0. ,0. ,0. ,0. 
o.,o.,o.,o. 
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o.,o.,0.,0.,-1.,o. 
o.,o.,o.,i. 
o. ,0. ,0. ,0. 
o. ,0. ,0. ,0. 
0. ,0. ,0. ,0. 
0. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1.,0.,0.,0.,-1.,0. 
o.,o.,i.,i. 
0.,0.,0.,0. 
o.,o.,o.,o. 
l.,0.,0.,1. 
0. ,0. ,0. ,O. 
o.,o.,o.,o. 
0. ,O. ,0. ,O. 
0.,0.,0.,0.,-1.,0. 
o.,o.,o.,i. 
0. ,0. ,O. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0.,1.,0.,0. 
0. ,0. ,0. ,O. 
0. ,O. ,0. ,0. 
o.,o.,0.,0.,-1.,o. 
0.,0.,0.,l. 
o.,o.,o.,o. 
0. ,0. ,0. ,O. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
i.,o.,0.,0.,-1.,o. 
0.,0.,0.,l. 
0. ,0. ,O. ,O. 
o.,o.,o.,o. 
0.,0.,0.,0. 
1. ,O. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0. ,O. ,O. ,0. ,-1. ,0. 
o.,o.,o.,i. 
0. ,0. ,O. ,O. 
o.,0.,0.,0. 
o. ,0. ,0. ,0. 
1.,0.,0.,0. 
0. ,0. ,0. ,0. 
o.,o.,o.,o. 
0., 0., 0., 0., -1., 0. 
0.,0.,0.,l. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
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o.,o.,o.,i. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,-1.,o. 
o.,o.,o.,i. 
o.,o.,o.,o. 
0. ,0. ,0. ,0. 
o. ,0. ,0. ,0. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
l.,o.,0.,0.,-1.,o. 
o.,o.,o.,o. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,i.,o.,o. 
o.,o.,o.,o. 
0. ,0. ,0. ,O. 
o.,o.,o.,o. 
l.,o.,o.,0.,-1.,o. 
o.,o.,o.,i. 
1.,0.,0.,0. 
0.,1.,0.,0. 
0.,0.,0.,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1., 0., 0., 0., -1., 0. 
0. ,0. ,0. ,O. 
1.,0.,0.,0. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,-1.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,-1.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0.,1.,0.,0. 
o.,o.,i.,o. 
l.,o.,0.,0.,-1.,o. 
o.,o.,o.,i. 
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o.,o.,o.,o. 
o.,o.,o.,o. 
3.,o.,o.,o. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1. ,0. ,0. ,0. ,-1. ,0. 
-100000.,0.,0.,0. 
-100000.,0.,0.,0. 
-100000.,0.,0.,0. 
-100000.,0.,0.,0. 
-100000.,0.,0.,0. 
l.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,o. 
0.,-100000.,0.,0. 
0.,-100000.,0.,0. 
0.,-100000.,0.,0. 
0.,-100000.,0.,0. 
0.,-100000.,0.,0. 
0.,1.,0.,0. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,o. 
0.,0.,-100000.,0. 
0.,0.,-100000.,0. 
0.,0.,-100000.,0. 
0.,0.,-100000.,0. 
0.,0.,-100000.,0. 
o.,o.,i.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,o. 
0.,0.,0.,-100000. 
0.,0.,0.,-100000. 
0.,0.,0.,-100000. 
0.,0.,0.,-100000. 
0.,0.,0.,-100000. 
o.,o.,o.,i. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
l.,o.,0.,0.,1.,6000. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
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o.,o.,o.,o. 
o.,1.,0.,0.,1.,aooo. 
o. ,0. ,0. ,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0.,0.,1.,0.,1.,20000. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,1.,1.,125000. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,0.,1.,o. 
105975.,52777.,664928.,61845. 
105975.,52777.,664928.,61845. 
113395.,58077.,669486.,67940. 
113115.,57877.,669314.,67710. 
105975.,52777.,664928.,61845. 
-ll.85,-11.85,-11.85,-11.85 
-3.22,-3.22,-3.22,-3.22 
1168.41,98.57,410.5,8.33 
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APPENDIX II INPUT DATABASES FOR CALCULATIONS 

2. Input Database for Upper Limit of Objective Function 

32,53,1. 
0. ,0. ,O. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1.,1.,1.,1. 
0. ,0. ,0. ,0. 
-143.,-27.5,-101.2,-4.18,0.,1976400. 
-1800., 0. , 0., 0. 
-1800. ,O. ,O. ,0. 
-1800. , 0. , 0. , 0. 
-1800. ,O. ,O. ,O. 
-1800. , 0. , 0., 0. 
3. 75,0. ,O. ,0. 
0.85,0. ,0. ,0. 
o. ,0. ,0. ,0. ,-1. ,0. 
0. , -1110. , 0. , 0. 
0. ,-1110. ,O. ,0. 
0. ,-1110. ,0. ,O. 
0., -1110., 0., 0. 
0., -1110., 0., 0. 
0.,3.75,0.,0. 
0. , 0. 85, 0. , 0. 
o.,0.,0.,0.,-1.,o. 
0. , 0. , -1100. , 0. 
0. , 0. , -1100. , 0. 
0., 0., -1100., 0. 
0., 0., -1100., 0. 
0. , 0. , -1100. , 0. 
o.,o.,3.75,o. 
o. ,0. ,0.85,0. 
0. ,0. ,0. ,0. ,-1. ,O. 
0. , 0. , 0. , -1000. 
0. , 0. , 0. , -1000. 
0 . , 0 . , 0 • , -1000 . 
0 . , 0 . , 0 . , -1000 . 
0., 0. , 0., -1000. 
0.,0.,0.,3.15 
o.,o.,o.,o.85 
o. ,0. ,0. ,0. ,-1. ,0. 
308000000.,89000000.,249000000.,144000000. 
308000000.,89000000.,249000000.,144000000. 
308000000.,89000000.,249000000.,144000000. 
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308000000.,89000000.,249000000.,144000000. 
308000000.,89000000.,249000000.,144000000. 
o.,o.,o.,o. 
o.,o.,o.,o. 
-2390000.,-561000.,-1190000.,-106500.,-l.,536000. 
39175.,26230.,7415.,24840. 
39175.,26230.,7415.,24840. 
39175.,26230.,7415.,24840. 
39175.,26230.,7415.,24840. 
39175.,26230.,7415.,24840. 
o.,o.,o.,o. 
o.,o.,o.,o. 
-86.2,-17.15,-19.2,-4.99,-l.,15.8 
-1800.,-1110.,-1100.,-1000. 
-1800.,-1110.,-1100.,-1000. 
-1800.,-1110.,-1100.,-1000. 
-1800.,-1110.,-1100.,-1000. 
-1800.,-1110.,-1100.,-1000. 
7.5,7.5,7.5,7.5 
1.,1.,l.,1. 
o.,o.,0.,0.,1.,32500000. 
305.,550.,565.,540. 
305.,550.,565.,540. 
305.,550.,565.,540. 
305.,550.,565.,540. 
305.,550.,565.,540. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,0.,1.,138000. 
1.,1.,l.,1. 
1.,1.,l.,1. 
1.,1.,1.,1. 
1.,1.,1.,1. 
1.,1.,1.,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,98.35 
1.,0.,0.,0. 
1.,0.,0.,0. 
1.,0.,0.,0. 
1.,0.,0.,0. 
1. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,0.,1.,41.19 
o.,L,L,L 
o.,L,L,L 
o.,L,L,L 
o.,i.,i.,i. 
o.,L,L,L 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,0.,1.,51.16 
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76.3,110.,113.,108. 
76.3,110.,113.,108. 
76.3,110.,113.,108. 
76.3,110.,113.,108. 
76.3,110.,113.,108. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0.,0.,0.,0.,1.,28700. 
17.1,16.5,17.,16.2 
17.1,16.5,17.,16.2 
17.1,16.5,17.,16.2 
17.1,16.5,17.,16.2 
17.1,16.5,17.,16.2 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,0.,0.,0.,1.,5110. 
233.3,352.,434.5,327. 
233.3,352.,434.5,327. 
233.3,352.,434.5,327. 
233.3,352.,434.5,327. 
233.3,352.,434.5,327. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,91000. 
22.81,41.05,41.72,49.75 
22.81,41.05,41.72,49.75 
22.81,41.05,41.72,49.75 
22.81,41.05,41.72,49.75 
22.81,41.05,41.72,49.75 
o.,o.,o.,o. 
o.,o.,o.,o. 
0.,0.,0.,0.,1.,9900. 
1000000.,900000.,740000.,850000. 
1000000.,900000.,740000.,850000. 
1000000.,900000.,740000.,850000. 
1000000.,900000.,740000.,850000. 
1000000.,900000.,740000.,850000. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0.,0.,0.,0.,1.,90403200. 
1000000.,900000.,740000.,850000. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,16101000.1 
0. ,0. ,0. ,O. 
1000000.,900000.,740000.,850000. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
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0. ,0. ,0. ,O. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,18302000. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1000000.,900000.,740000.,850000. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o.,1.,1so34100. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0 • t 0 • t 0 • t 0 •I l. t 4 .11 
200. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,820. 
o.,1.,1.,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0. ,0. ,O. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,0.,1.,12.12 
0. ,O. ,0. ,0. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0 •I 0 •I 0•t0•t1. t 4 • 34 
o.,o.,o.,o. 
o.,1.,1.,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0. ,0. ,O. ,0. 
o.,o.,o.,o.,1.,13.s1 
o.,o.,o.,o. 
o.,o.,o.,o. 
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1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o.,1.,12.a1 
0. ,o. ,0. ,0. 
o.,o.,o.,o. 
o.,L,1.,1. 
o.,o.,o.,o. 
0. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,10.91 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o.,1.,1s.11 
o. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0.,1.,L,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,9.93 
o.,o.,o.,o. 
o. ,0. ,0. ,0. 
o. ,0. ,0. ,0. 
o.,o.,o.,o. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o.,1.,4.1s 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,1.,1.,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o.,1.,10.s1 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,l.,1.,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 

169 



o.,o.,o.,o.,1.,10.s1 
1.,0.,0.,0. 
o.,o.,i.,o. 
o.,o.,o.,o. 
o.,o.,o.,i. 
0.,0.,0.,0. 
0. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,0.,0.,-1.,o. 
o.,o.,o.,i. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
l.,o.,o.,0.,-1.,o. 
o.,o.,i.,i. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1.,0.,0.,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,-1.,o. 
o.,o.,o.,i. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0.,1.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,-1.,o. 
0.,0.,0.,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
l.,o.,o.,0.,-1.,o. 
o.,o.,o.,i. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,-1.,o. 
0. ,0. ,0. ,1. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
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1.,0.,0.,0. 
o.,o.,o.,o. 
0.,0.,0.,0. 
0., 0., 0., 0., -1., 0. 
o.,o.,o.,i. 
0. ,0. ,O. ,0. 
o.,o.,o.,o. 
0. ,0. ,0. ,0. 
0.,0.,0.,1. 
0. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,0.,0.,0.,-1.,o. 
o.,o.,o.,i. 
0. ,0. ,O. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
1. ,0. ,0. ,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
l.,o.,0.,0.,-1.,o. 
o. ,0. ,0. ,0. 
1.,0.,0.,0. 
0. ,0. ,O. ,O. 
0.,1.,0.,0. 
o.,o.,o.,o. 
0.,0.,0.,0. 
o.,o.,o.,o. 
1.,0.,0.,0.,-1.,0. 
o.,o.,o.,i. 
1.,0.,0.,0. 
0.,1.,0.,0. 
o.,o.,o.,i. 
o.,o.,o.,o. 
0.,0.,0.,0. 
o.,o.,o.,o. 
1. ,O. ,O. ,0. ,-1. ,0. 
o.,o.,o.,o. 
1.,0.,0.,0. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,0.,0.,-1.,o. 
-100000.,0.,0.,0. 
-100000.,0.,0.,0. 
-100000.,0.,0.,0. 
-100000.,0.,0.,0. 
-100000.,0.,0.,0. 
1.,0.,0.,0. 
o.,o.,o.,o. 
o.,0.,0.,0.,1.,o. 
0.,-100000.,0.,0. 
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0.,-100000.,0.,0. 
0.,-100000.,0.,0. 
0.,-100000.,0.,0. 
0.,-100000.,0.,0. 
0.,1.,0.,0. 
o.,o.,o.,o. 
o.,o.,0.,0.,1.,o. 
0.,0.,-100000.,0. 
0.,0.,-100000.,0. 
0.,0.,-100000.,0. 
0.,0.,-100000.,0. 
0.,0.,-100000.,0. 
o.,o.,i.,o. 
o.,o.,o.,o. 
0.,0.,0.,0.,1.,0. 
0.,0.,0.,-100000. 
0.,0.,0.,-100000. 
0.,0.,0.,-100000. 
0.,0.,0.,-100000. 
0.,0.,0.,-100000. 
o.,o.,o.,i. 
0.,0.,0.,0. 
o.,o.,0.,0.,1.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0. ,0. ,0. ,O. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o. ,0. ,0. ,o. 
l.,o.,o.,o.,1.,62so. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0.,0.,0.,0~ 

o.,1.,o.,o.,1.,a4oo. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,0.,1.,0.,1.,22000. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0.,0.,0.,1. 
o.,o.,o.,o. 
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0. ,0. ,0. ,0. 
0.,1.,0.,0.,-1.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0.,0.,0.,0. 
o.,o.,o.,o. 
0.,0.,0.,0. 
o.,o.,o.,o. 
o.,o.,o.,o. 
0.,0.,0.,1.,1.,140000. 
149665.,80883.,937270.,94790. 
149565.,80793.,938684.,94705. 
154065.,84843.,942014.,98530. 
153965.,84753.,941940.,98439. 
149565.,80793.,938684.,94705. 
-9.25,-9.25,-9.25,-9.25 
-2.58,-2.58,-2.58,-2.58 
1483.6,106.03,479.5,9.87 
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APPENDIX III 

COMPLETE NAMES OF VARIABLES USED 
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APPENDIX III COMPLETE NAMES OF VARIABLES USED 

A = agricultural Incomes (¥); 

~a) = the maximum allowable total nitrogen losses (kg/km2); 

tE( b) = the maximum allowable soil loss (kg/km2); 

tE( BJ = the amount of manure discharged by livestock k ( t/one ); 

B0 =the amount of manure discharged by human (t/one); 

tE( c 1) = the maximum allowable solid-phase nitrogen loss (kg/km2); 

tE( c2) = the maximum allowable solid-phase phosphorus loss (kg!km2); 

Cij =the yield of crop j on soil i (kg!km2); 

CC= the canal capacity (m3); 

tE( dJ = the digestjble protein absorbed by livestock k from other systems (kg/one); 

tE( d0) = the digestible protein absorbed by man from other systems (kg/one); 

Dk = the digestible protein requirement of livestock k to be satisfied from onfarm crops 

(kg/one); 

D0 =the digestible protein requirement of man to be satisfied from onfann crops (kg/one); 

tE(eJ =the net energy absorbed by livestock k from external systems (kcal/kg); 

tE( e0) = the net energy absorbed by man from external systems (kcal/kg); 

Ek= the energy requirements of livestock k to be satisfied from onfann crops (kcaVone); 

E0 = the energy requirements of man to be satisfied from onf arm crops (kcaVone ); 

Fij =the amount of manure spread on soil i planted to crop j (t); 

tg(f1) = the maximum allowable dissolved nitrogen loss by runoff (kg/km2); 

tg(f2) = the maximum allowable dissolved phosphorus loss by runoff (kg/km2); 

®(GiJ) =the farming cost on Sij (¥1km2 ); 

tE(G1) = the cost of manure disposal (¥/t); 

Gh =the cost of nitrogen fertilizer (¥/kg); 
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APPENDIX ill COMPLETE NAMES OF VARIABLES USED - Continued 

hi 1 =nitrogen contents of soil i (%); 

hi 2 = phosphorus contents of soil i (% ); 

Hii = the fertilizer nitrogen applied to Sii (kg); 

i =type of soil; 

j = type of crop; 

Ki = the tillable area of soil i (km2); 

k = type of livestock; 

l = the number of livestock kinds in the study area; 

L .. =the soil loss from s .. (kg!km2)· 
lj 'l ' 

m =the number of soil types in the study area; 

MSiJ = 1 if manure can be spread on SiJ, and MSiJ = 0 otherwise; 

n = the number of crop types in the study area; 

N1i = dissolved nitrogen concentrations in wet season runoff from land planted to crop j 

(mg/l); 

N2i =dissolved nitrogen concentrations in dry season runoff from land planted to crop j 

(mg/l); 

P Ji = dissolved phosphorus concentrations in wet season runoff from land planted to crop j 

(mg/l); 

P 2i = dissolved phosphorus concentrations in dry season runoff from land planted to crop j 

(mg/l); 

p 1 = the percentages of the applied nitrogen lost to the atmosphere because of ammonia 

volatilization (% ); 

p2 = the percentages of the applied nitrogen lost to the atmosphere because of ammonia 

denitrification (% ); 
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APPENDIX ill COMPLETE NAMES OF VARIABLES USED - Continued 

~ q J<) = the average consumptions from external systems by livestock k (¥/one); 

QiJ =the nitrogen requirement of crop j on soil i (kglkm2); 

q, =the channel capacities within subarea t (m3/sec); 

QW0 = the total quantity of water required in the study area (m3); 

QW1 = the total quantity of water required by Xiamen City (m3); 

®(QWiJ) = the quantity of irrigation water required per km2 of crop j on soil i in subarea t 

(m3Jkm2); 

r =nitrogen content of manure (kg/t); 

R 1 iJ = wet season runoff from S iJ (mm); 

R2iJ = dry season runoff from S iJ (mm); 

SiJ = the area of soil i planted to crop j (km2); 

S iJt = the area of soil i planted to crop j in subarea t (km2); 

sci}= 1 if the soiVcrop combination (i, }) is permitted, and sci}= 0 otherwise; 

t =names of subareas; 

Tk. = the numbers of livestock k in the study area; 

T0 = the number of man in the study area; 

T max = the maximum possible sizes of livestocks; 

®f.U) = the costs to obtain and transport water to the basin area associated with the canal 

capacity (¥/m3); 

~v,) = the costs of delivering the water to Subarea t with ditch capacity q, ; 

®(XiJ) = variable costs associated with each water allocation QWiJr including the costs to 

obtain and allocate water to each S iJt ; 

aiJ = the net energy content of CiJ (kcal/kg); 

/JiJ = the digestible protein content of CiJ (% ); 

177 



APPENDIX ill COMPLETE NAMES OF VARIABLES USED - Continued 

~ ~ ) = the price of crop j (¥/kg); 

~ CJ1r.) = the average net return of livestock k (¥/one); 

~ Dij) = the costs of water for each Sii (¥/m3). 
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APPENDIX IV 

"CREDITABILITY" ~1HOD FOR THE SOLUTION OF GREY LINEAR 

PROGRAMMING MODEL 

179 



APPENDIX IV "CREDITABILITY" METHOD FOR TIIE SOLUTION OF 

GREY LINEAR PROCJRAMMING MODEL 

The following is a grey linear programming (GLP) model: 

where: 

Max{= QS(c)x 

subject to ®(A) x 5 b 

x~O, ---------------- ( 1) 

®( c) = [ ®(c 1), ®(c:), ... , ®(c,)J, ---------------- (2) 

xT = (X1, X2, ... 'x,J, ---------------- (3) 

bT = (b1, b2 1 ••• , b,,J, ---------------- (4) 

®(A) = 

®(a11) ®(a12) 

®(a21) ®(a22) 

-------------- ( 5) 

For grey vector ~c) and grey matrix (8'.(A), we have: 

QS(cJ = [~ (cJ, ®(cJJ, V' i ---------------- (6) 
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'v' i, j ---------------- (7) 

®(c) and ®(A) can be whitened as: 

---------------- (8) 

®.(a11) ®.(a12) ®.(a1,.) 

®.(a21) ®.(a22) ®.(a2,.) 

®.(A) = -------------- (9) 

®.(am1) ®.(am2) ®.(am,.) 

or: 

---------------- ( 10) 

---------------- ( 11) 

where ®m(cJ and ®m(ai) are the whitening values of QS(cJ and ®(ai), respectively. 

Thus, we have: 

®m(cJ E [~ (ci), ®(ci)], where ~ (ci) is the whitening value of the lower 

limit of tg(cJ, and ®(ci) is the upper limit of tg(ci); 

®m(aii) E [~ (ai), ®(ai)J, where~ (ai) is the lower limit of ®(ai), and 

® ( ai) is the upper limit of tg( ai) . 

These relations can be expressed as: 
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'v' i, j ---------------- ( 12) 

® (a .. )=® (a .. )+ a[ '°'(a .. ) - ®(a··)] m iJ - 1.J 'Cl '1 - 'l' 'v' i, j ---------------- ( 13) 

where a is a grey coefficient. From Equation (12) and (13), we have: 

1) When 0 < a< 1, i.e., a E (0, 1), ®m(cj and ®m(ai) will change between their 

upper and lower limits, i.e., ®m(cj E (@(ci), ®(ci)), and ®(ai) E (@(ai), ®(aiJ)); 

2) When a= 0, ®m(cj and ®m(ai) will reach their lower limits, i.e., ®m(cJ = 
@(cJ, and ®(ai) =@(ai); 

3) When a= 1, ®m(cj and ®m(ai) will reach their upper limits, i.e., ®m(cJ = 

®(ci), and ®(aij) = ®(aij). 

For constraints in the GLP model (1), if ®(ai) (i = 1, 2, ... , n;j = 1, 2, ... , m) 

equals ®(ai) (upper limit value), x (xT = (x11 x2, ... , x,J) will have lower limit solution 

X,,u"; and if ®(ai) (i = 1, 2, ... , n; j = 1, 2, ... , m) equals @(ai) (lower limit value), 

x (xT = (x1, x2, ... , x,J) will have upper limit solution x""" . 

Conversely, for the objective function in the GLP model (1), if tg(cj (i = 1, 2, ... , 

n) equals ®(cJ (upper limit value), objective function/ will have the maximum weights; 

and if ®(cj (i = 1, 2, ... , n) equals @(cJ (lower limit value), objective functionfwill 

have the minimum weights. 

Therefore, when a= 1, which means that ®m(cj and ®m(ai) reach their upper 

limits, decision variable x will have its lower limit solution X,,u", while objective function 

has the maximum weights. Therefore, the objective value f is: 

Ii =fa= ®(c)xmin ---------------- ( 14) 
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When a= 0, which means that ®m(cJ and ®m( ai) reach their lower limits, decision 
variable x will have its upper limit solution Xmax, while objective function has the minimum 
weights. Therefore, the objective value f is: 

fo =fa=~ (c) Xmax ---------------- ( 15) 

Obviously, we can not compare / 1 with / 0 by saying f 1 > fo or fi < fo based on the 
Equation (14) and (15). However, when a= 0 for the constraint coefficient ®m(ai) and 
a= 1 for the objective coefficient (weight value)®m(cJ, the objective value will be the 
maximum: 

!max = ®(c) Xmax ---------------- ( 16) 

When a = 1 for the constraint coefficient ®m( ai) and a = 0 for the constraint 
coefficient ®m( cJ, the objective value will be the minimum: 

f, · = ® (c) x · 
1'1111 - "'"' 

---------------- ( 17) 

Thus, we can define a creditability criterion under grey coefficient a : 

---------------- ( 18) 

where fa is the objective value under grey coefficient a : 

---------------- ( 19) 
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where ®m ( c) a is the whitening weight vector of the objective function under grey 

coefficient a; Xa is the whitening vector of the decision variables corresponding to the 

values of ®m(AJa (coefficient matrix of the constraints) under grey coefficient a. 

Obviously: 

f min ~fa~ J max 

Ra E {0, 1} 

---------------- (20) 

---------------- (21) 

Thus, given a creditability requirement Ra· , we can judge the feasibility of the 

model solution: 

If Ra ~ Ra·, the requirement is satisfied, and the solving process ends; 

If Ra ~ Ra·, the requirement is not satisfied. New a values should be chosen 

and tested until the creditability requirement is satisfied. 
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MONITORING RESULTS OF THE CANAL WATER QUALITY IN 1989 
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Table 2.11 Canal water quality in June, 1989 {mg/l) 

Monitoring 1 2 3 4 5 
Station 

N0:3--N 0.391 0.554 0.703 1.112 1.253 

NO£-N 0.017 0.097 0.157 0.229 0.169 

NHrN 0.191 1.080 1.730 0.830 1.220 

Total 0.008 0.020 0.027 0.040 0.051 
Phosphorus 

SS 244 56 59 51 23 

DO 7.27 6.62 6.15 5.49 4.96 

COD 5.94 3.96 4.93 5.46 3.74 

BOD 1.60 3.60 3.50 4.60 3.10 

Cu 0.0192 0.0212 0.0066 0.0062 0.0099 

Pb 0.100 0.006 0.012 0.005 0.010 

Zn 0.128 0.0640 0.0217 0.0284 0.0673 

Cd 0.00036 0 0 0 0.000036 

As 0 0 0 0 0 

* Station 1 is the source of the canal (i.e. Jiulong River), and Station 5 is the outlet. 
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Table 2.12 Canal water quality in October, 1989 (mg/I) 

Monitoring 2 3 4 5 
Station* 

N0:3--N 0.42 0.52 0.70 1.16 1.04 

NOi--N 0.010 0.011 0.018 0.023 0.027 

NH3-N 0.099 0.302 0.118 0.177 0.139 

Total 0.002 0.014 0.018 0.034 0.038 
Phosphorus 

SS 22 22 50 44 38 

DO 6.83 7.24 6.82 6.25 5.86 

COD 1.86 3.84 2.41 2.40 2.37 

BOD 1.1 1.0 1.4 1.8 1.6 

Cu 0.0028 0.0022 0.0168 0.0042 0.0022 

Pb 0.0075 0.0081 0.0089 0.0040 0.0047 

Zn 0.0103 0.0058 0.0188 0.0057 0 

Cd 0 0 0 0 0 

As 0 0 0 0 0 

* Station 1 is the source of the canal (i.e. Jiulong River), and Station 5 is the outlet. 
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Table 2.13 Canal water quality in December, 1989 (mg/I) 

Monitoring 2 3 4 5 
Station • 

N~--N 0.54 0.58 0.74 1.06 0.67 

NO£-N 0.012 0.010 0.010 0.020 0.012 

NH3-N 0.100 0.111 0.119 0.401 0.220 

Total 0.004 0.018 0.030 0.013 0.025 
Phosphorus 

SS 13 29 28 32 32 

DO 8.85 8.74 8.72 7.67 8.54 

COD 2.33 2.28 2.58 2.26 2.40 

BOD 0.82 0.88 1.03 1.10 0.94 

Cu 0.00065 0 0.00170 0.002 0.00038 

Pb 0.00049 0 0.00058 0 0 

Zn 0.0026 0.0050 0 0.0120 0 

Cd 0 0 0.00006 0.00012 0.00012 

As 0 0 0 0 0 

* Station 1 is the source of the canal (i.e. Jiulong River), and Station 5 is the outlet. 
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Table 2.14 Canal water quality in 1989 (yearly average) (mg/I) 

Monitoring 2 3 4 5 
Station* 

N~--N 0.45 0.55 0.71 1.11 0.99 

NO:z--N 0.013 0.039 0.062 0.091 0.069 

NH3-N 0.13 0.50 0.66 0.47 0.53 

Total 0.005 0.017 0.025 0.029 0.038 
Phosphorus 

SS 93 36 46 42.3 31 

00 7.65 7.53 7.23 6.47 6.45 

COD 3.38 3.36 3.31 3.37 2.84 

BOD 1.2 1.8 2.0 2.5 1.88 

Cu 0.0076 0.0078 0.0084 0.0041 0.0042 

Pb 0.036 0.0047 0.0065 0.003 0.0049 

Zn 0.047 0.025 0.016 0.015 0.022 

Cd 0.00012 0 0.00002 0.00003 0.00005 

As 0 0 0 0 0 

* Station 1 is the source of the canal (i.e. Jiulong River), and Station 5 is the outlet. 
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Table 2.15 Canal water quality index in June, 1989* 

Monitoring 1 2 3 4 5 
Station ** 

N~--N 0.04 0.06 0.07 0.11 0.13 

N0£-N 0.85 4.85 7.85 11.50 8.45 

NHrN 0.96 5.40 8.65 4.15 6.10 

Total 0.40 1.00 1.35 2.00 2.55 
Phosphorus 

COD 1.49 0.99 1.23 3.14 0.94 

BOD 0.53 1.20 1.17 1.53 1.03 

Cu 1.92 2.12 0.66 0.62 0.99 

Pb 2.00 0.12 0.24 0.10 0.20 

Zn 0.26 0.13 0.04 0.06 0.13 

Cd 0.07 0 0 0 0 

As 0 0 0 0 0 

* Water quality index= pollutant concentration/water quality standard; 
* Station 1 is the source of the canal (i.e. Jiulong River}, and Station 5 is the outlet. 
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Table 2.16 Canal water quality index in October, 1989* 

Monitoring 1 2 3 4 5 
Station •• 

N~--N 0.04 0.05 0.07 0.11 0.10 

NO:z--N 0.50 0.55 0.90 1.15 1.35 

NH3-N 0.50 1.51 0.59 0.89 0.70 

Total 0.10 0.70 0.90 1.70 1.90 
Phosphorus 

COD 0.47 0.96 0.60 0.60 0.59 

BOD 0.37 0.33 0.47 0.60 0.53 

Cu 0.28 0.22 1.68 0.42 0.22 

Pb 0.15 0.16 0.18 0.08 0.09 

Zn 0.02 0.01 0.04 0.01 0 

Cd 0 0 0 0 0 

As 0 0 0 0 0 

* Water quality index= pollutant concentration/water quality standard; 
* Station 1 is the source of the canal (i.e. Jiulong River), and Station 5 is the outlet. 
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Table 2.17 Canal water quality index in December, 1989* 

Monitoring 1 2 3 4 5 
Station ** 

N~--N 0.05 0.06 0.07 0.11 0.07 

NO£-N 0.60 0.50 0.50 1.00 0.60 

NH3-N 0.50 0.56 0.60 2.01 1.10 

Total 0.20 0.90 1.50 0.65 1.25 
Phosphorus 

COD 0.58 0.57 0.65 0.57 0.60 

BOD 0.27 0.29 0.34 0.37 0.31 

Cu 0.07 0 0.17 0.20 0.04 

Pb 0.01 0 0.01 0 0 

Zn 0.01 0.01 0 0.02 0 

Cd 0 0 0.01 0.02 0.02 

As 0 0 0 0 0 

* Water quality index= pollutant concentration/water quality standard; 
* Station 1 is the source of the canal (i.e. Jiulong River), and Station 5 is the outlet. 
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Table 2.18 Canal water quality index in 1989 (yearly average)* 

Monitoring 1 2 3 4 5 
Station ** 

N0:3--N 0.05 0.06 0.07 0.11 0.10 

N0£-N 0.65 1.95 3.10 4.55 3.45 

NHrN 0.65 2.50 3.30 2.35 2.65 

Total 0.25 0.85 1.25 1.45 1.90 
Phosphorus 

COD 0.85 0.84 0.83 0.84 0.71 

BOD 0.40 0.60 0.67 0.83 0.63 

Cu 0.76 0.78 0.84 0.41 0.42 

Pb 0.72 0.09 0.13 0.06 0.10 

Zn 0.09 0.05 0.03 0.03 0.04 

Cd 0.02 0 0 0.01 0.01 

As 0 0 0 0 0 

* Water quality index = pollutant concentration/water quality standard; 
* Station 1 is the source of the canal (i.e. Jiulong River), and Station 5 is the outlet. 
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Table 6.1 Solutions with no restrictions on IXJllutant losses 

Decision Variable Grey Solution Decision Variable Grey Solution 

Cropping Area (km2) Amount of Manure 
Application ( 106 tonne) 

®(S211) 4.11 

®(F21) 0 
®(S121) 0 

®(F1i) 0 
®(S131) 12.31 

®(F1:J 0.017 
®(S141) 0 

®(F1J 0 
®(S21i> 5.32 

®(S1ii> 0 Amount of Nitrogen 
Fertilizer Application 
(109 kg) 

®(S13i} 11.80 

~1) 26.95 
®(S14i) 0 

®<H1i> 0 
®(S21:J 12.85 

®(H1:J 0 
®(S1i:J 0 

®(H1J 0 
®(S13~ 10.81 

®(S14:J 0 Size of Livestock 
Husbandry (I 03) 

®(S21J 15.38 

®(T1) 0 
®(S1iJ 0 

®(Ti) 0 
®(S1~ 9.92 

®(T:J 137165 
®(S1~ 0 

®(TJ 0 
®(S215) 0 

®(S125) 0 Net Income (¥ 106 ) 

®(S135) 10.57 ®(A) 8086.61 

®(S145) 0 
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Table 6.2 Solutions with total nitrogen loss constraints 

Total Nitrogen Loss Constraints ®(a) (106 kg/km2) 

Decision Variable 
20 25 30 35 

Net Income (¥106) 

®(A) 6.05 7.57 9.08 10.59 

Amount of~ure 
Application (tonne) 

®(F21) 0 0 0 0 

®(F1i} 0 0 0 0 

®(F1:J 0 0 0 0 

®(F1.J 0.0039 0.0039 0.0039 0.0039 

Amount of 
Nitrogen Fertilizer 
Application (kg) 

®<lfi1) 0.023 0.029 0.035 0.041 

®(H1i) 0.0085 0.011 0.013 0.015 

®(H1:J 20081500 25101900 30122400 35142700 

®(H1.J 22584 28229 33875 39520 

Size of Livestock 
Husbandry (103) 

®(f1) 15.19 18.99 22.79 26.59 

®(fi} 0 0 0 0 

®(f:J 0 0 0 0 

®(f.J 0 0 0 0 

Continue to next page 
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Table 6.2 (continued) Solutions with total nitrogen loss constraints 

Total Nitrogen Loss Constraints ®(a) (106 kg/km2) 

Decision Variable 
20 25 30 35 

Cropping Area 
(km2) 

®(S211) 0 0 0 0 

®(S121) 0 0 0 0 

®(S131) 0 0 0 0 

®(S141) 0 0 0 0 

®(S212) 0 0 0 0 

®(S1zl> 0 0 0 0 

®(S13i) 0 0 0 0 

®(S14i) 0 0 0 0 

®(S213) 0 0 0 0 

®(Sin) 0 0 0 0 

®(S13:J 77.24 96.55 115.85 135.16 

®(S14:J 19.20 23.99 28.79 33.59 

®(S21J 0.0000049 0.0000061 0.0000073 0.0000085 

®(S1iJ 0 0 0 0 

®(S1~ 0 0 0 0 

®(S1~ 0 0 0 0 

®(S215) 0 0 0 0 

®(S125) 0 0 0 0 

®(S135) 0 0 0 0 

®(S14s) 0 0 0 0 
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Table 6.3 Solutions with soil loss constraints 

Soil Loss Constraints ®(b) (103 kg/km2) 

Decision Variable 
80 100 120 140 

Net Income N 106) 

®(A) 6.47 7.63 8.78 9.94 

Amountof~anure 
Application (tonne) 

®(F21) 0 0 0 0 

®(F1i) 0 0 0 0 

®(F1~ 16766.7 16766.7 16766.7 16766.7 

®(F1.J 0 0 0 0 

Amount of 
Nitrogen Fertilizer 
Application (kg) 

®<~1) 21399700 25248900 29098000 32947200 

®(H1i) 0 0 0 0 

®(H1~ 0 0 0 0 

®(H1.J 0 0 0 0 

Size of Livestock 
Husbandry (103) 

®(T1) 0 0 0 0 

®(Ti) 0 0 0 0 

®(T~ 61.87 81.47 101.07 120.67 

®(T.J 0 0 0 0 

Continue to next page 
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Table 6.3 (continued) Solutions with soil loss constraints 

Soil Loss Constraints ®(b) ( 103 kg/krn2) 

Decision Variable 
80 100 120 140 

Cropping Area 
(km2) 

®(S211) 4.11 4.11 4.11 4.11 

®(S121) 0 0 0 0 

®(S131) 12.12 12.12 12.12 12.12 

®(S141) 0 0 0 0 

®(S21:J 4.34 4.34 4.34 4.34 

®(S1i:J 0 0 0 0 

®(S13z) 13.57 13.57 13.57 13.57 

®(S14z) 0 0 0 0 

®(S21:J 12.87 12.87 12.87 12.87 

®(S1i:J 0 0 0 0 

®(S13:J 10.97 10.97 10.97 10.97 

®(S14:J 0 0 0 0 

®(S21.J 15.71 15.71 15.71 15.71 

®(S12.J 0 0 0 0 

®(S1J.J 9.93 9.93 9.93 9.93 

®(S1~ 0 0 0 0 

®(S215) 75.00 126.94 178.89 230.84 

®(S125) 0 0 0 0 

®(S13s) 10.57 10.57 10.57 10.57 

®(S14s) 0 0 0 0 
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Table 6.4 Solutions with dissolved nitrogen loss constraints 

Dissolved Nitrogen Loss Constraints ®(f1) (H>3 kg/km2) 

Decision Variable 
60 70 80 90 

Net Income (¥106) 

®(A) 6.72 7.57 8.43 9.29 

Amount of Manure 
Application (tonne) 

®(F21) 0 0 0 0 

®(F1i) 0 0 0 0 

®(F1~ 16766.7 16766.7 16766.7 16766.7 

®(F1J 0 0 0 0 

Amount of 
Nitrogen Fertilizer 
Application (kg) 

®<H21) 22224600 25076600 27928600 30780700 

®(H1i) 0 0 0 0 

®(H1~ 0 0 0 0 

®(H1J 0 0 0 0 

Size of Livestock 
Husbandry (103) 

®(T1) 0 0 0 0 

®(Ti) 0 0 0 0 

®(T~ 66.07 80.60 95.12 109.64 

®(TJ 0 0 0 0 

Continue to next page 

2 08 



Table 6.4 (continued) Solutions with dissolved nitrogen loss constraints 

Dissolved Nitrogen Loss Constraints ®(f1) (1()3 kg/km2) 

Decision Variable 
60 70 80 90 

Cropping Area 
(km2) 

®(S211) 4.11 4.11 4.11 4.11 

®(S121) 0 0 0 0 

®(S131) 12.12 12.12 12.12 12.12 

®(S141) 0 0 0 0 

®(S212) 4.34 4.34 4.34 4.34 

®(S1zi> 0 0 0 0 

®(S132) 13.57 13.57 13.57 13.57 

®(S14i) 0 0 0 0 

®(S213) 12.87 12.87 12.87 12.87 

®(S1i:J 0 0 0 0 

®(S133) 10.97 10.97 10.97 10.97 

®(S14:J 0 0 0 0 

®(S21.J 15.71 15.71 15.71 15.71 

®(S1i.J 0 0 0 0 

®(S1J.J 9.93 9.93 9.93 9.93 

®(S1~ 0 0 0 0 

®(S21s) 86.13 124.62 163.11 201.60 

®(S125) 0 0 0 0 

®(S135) 10.57 10.57 10.57 10.57 

®(S145) 0 0 0 0 
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Table 6.5 Solutions with dissolved phosphorus loss constraints 

Dissolved Phosphorus Loss Constraints ®(f:z) (lo-1 kg/km2) 

Decision Variable 
6 8 10 12 

Net Income (¥106) 

®(A) 6.59 8.29 9.98 11.68 

Amount of Manure 
Application (tonne) 

®(F21) 0 0 0 0 

®(F1i) 0 0 0 0 

®(Fl~ 16766.7 16766.7 16766.7 16766.7 

®(F1J 0 0 0 0 

Amount of 
Nitrogen Fertilizer 
Application (kg) 

®(H21) 21789400 27448300 33107100 38766000 

®(H1:z) 0 0 0 0 

®(H1:J 0 0 0 0 

®(H1J 0 0 0 0 

Size of Livestock 
Husbandry (103) 

®(f1) 0 0 0 0 

®(fi) 0 0 0 0 

®(f:J 63.86 92.67 121.48 150.29 

®(f J 0 0 0 0 

Continue to next page 
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Table 6.5 (continued) Solutions with dissolved phosphorus loss constraints 

Dissolved Phosphorus Loss Constraints ®(fi) (101 kg/km2) 

Decision Variable 
6 8 10 12 

Cropping Area 
(km2) 

®(S211) 4.11 4.11 4.11 4.11 

®(S121) 0 0 0 0 

®(S131) 12.12 12.12 12.12 12.12 

®(S141) 0 0 0 0 

®(S21:i> 4.34 4.34 4.34 4.34 

®(S1;n) 0 0 0 0 

®(S13i) 13.57 13.57 13.57 13.57 

®(S14:z} 0 0 0 0 

®(S213) 12.87 12.87 12.87 12.87 

®(Sin) 0 0 0 0 

®(S13:J 10.97 10.97 10.97 10.97 

®(S14:J 0 0 0 0 

®(S21.J 15.71 15.71 15.71 15.71 

®(S1iJ 0 0 0 0 

®(S1J.J 9.93 9.93 9.93 9.93 

®(S1~ 0 0 0 0 

®(5215) 80.26 156.63 233.00 309.37 

®(S125) 0 0 0 0 

®(S135) 10.57 10.57 10.57 10.57 

®(S14s) 0 0 0 0 
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Table 6.6 Solutions with solid-phase nitrogen loss constraints 

Solid-phase Nitrogen Loss Constraints ®(c1) (103 kg/km2) 

Decision Variable 
15 20 25 30 

Net Income (¥ 106) 

®(A) 5.94 7.17 8.41 9.64 

Amount of Manure 
Application (tonne) 

®(F21) 0 0 0 0 

®(F1-) 0 0 0 0 

®(F1:J 16766.8 16766.7 16766.7 16766.7 

®(F1J 0 0 0 0 

Amount of 
Nitrogen Fertilizer 
Application (kg) 

®(H21) 19638200 23741000 27843900 31946700 

®(H1-) 0 0 0 0 

®<H1:J 0 0 0 0 

®(H1J 0 0 0 0 

Size of Livestock 
Husbandry (103) 

®(T1) 0 0 0 0 

®(T-) 0 0 0 0 

®(T:J 52.91 73.80 94.68 115.57 

®(TJ 0 0 0 0 

Continue to next page 
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Table 6.6 (continued) Solutions with solid-phase nitrogen loss constraints 

Solid-phase Nitrogen Loss Constraints ®(c1) (103 kg/km2) 

Decision Variable 
15 20 25 30 

Cropping Area 
(km2) 

®(S211) 4.11 4.11 4.11 4.11 

®(S121) 0 0 0 0 

®(S131) 12.12 12.12 12.12 12.12 

®(S141) 0 0 0 0 

®(Sm) 4.34 4.34 4.34 4.34 

®(S1zi) 0 0 0 0 

®(S132) 13.57 13.57 13.57 13.57 

®(S14i) 0 0 0 0 

®(S21~ 12.87 12.87 12.87 12.87 

®(S1i:J 0 0 0 0 

®(S13~ 10.97 10.97 10.97 10.97 

®(S14~ 0 0 0 0 

®(S21J 15.71 15.71 15.71 15.71 

®(S1:iJ 0 0 0 0 

®(S1~ 9.93 9.93 9.93 9.93 

®(S1~ 0 0 0 0 

®(S215) 51.22 106.59 161.97 217.34 

®(S125) 0 0 0 0 

®(S135) 10.57 10.57 10.57 10.57 

®(S14s) 0 0 0 0 
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Table 6.7 Solutions with solid-phase phosphorus loss constraints 

Solid-phase Phosphorus Loss Constraints ®(c:J (103 kg/krn2) 

Decision Variable 
3.0 4.0 5.0 6.0 

Net Income (i 106) 

®(A) 6.15 7.29 8.42 9.55 

Amount of Manure 
Application (tonne) 

®<F21) 0 0 0 0 

®(F1:J 0 0 0 0 

®(Fl~ 16766.8 16766.7 16766.7 16766.7 

®(F1.J 0 0 0 0 

Amount of 
Nitrogen Fertilizer 
Application (kg) 

®(H21) 20334600 24115100 27895500 31675900 

®(H1:J 0 0 0 0 

®(Hl~ 0 0 0 0 

®(H1.J 0 0 0 0 

Size of Livestock 
Husbandry (103) 

®(T1) 0 0 0 0 

®(Ti) 0 0 0 0 

®(T~ 56.45 75.70 94.95 114.19 

®(TJ 0 0 0 0 

Continue to next page 
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Table 6. 7 (continued) Solutions with solid-phase phosphorus loss constraints 

Solid-phase Phosphorus Loss Constraints ®(Ci} (103 kg/km2) 

Decision Variable 
3.0 4.0 5.0 6.0 

Cropping Area 
(km2) 

®(S211) 4.11 4.11 4.11 4.11 

®(S121) 0 0 0 0 

®(S131) 12.12 12.12 12.12 12.12 

®(S141) 0 0 0 0 

®(S212) 4.34 4.34 4.34 4.34 

®(S1zz> 0 0 0 0 

®(S13i) 13.57 13.57 13.57 13.57 

®(S14i) 0 0 0 0 

®(S21~ 12.87 12.87 12.87 12.87 

®(Sin) 0 0 0 0 

®(S13~ 10.97 10.97 10.97 10.97 

®(S14~ 0 0 0 0 

®(S21J 15.71 15.71 15.71 15.71 

®(S1:iJ 0 0 0 0 

®(S1JJ 9.93 9.93 9.93 9.93 

®(S1~ 0 0 0 0 

®(S215) 60.62 111.64 162.66 213.68 

®(S125) 0 0 0 0 

®(S135) 10.57 10.57 10.57 10.57 

®(S14s) 0 0 0 0 
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Table 6.8 Solutions with water quantity constraints 

Water Quantity Constraints (106 m3/year) 

Decision Variable 
20 30 40 50 

Net Income ('/ 106) 

®(A) 6.38 7.96 9.55 11.14 

Amount of~anure 
Application (tonne) 

®(F21) 0 0 0 0 

®(F1i) 0 0 0 0 

®(F1~ 16766.7 16766.7 16766.7 16766.6 

®(F1J 0 0 0 0 

Amount of 
Nitrogen Fertilizer 
Application (kg) 

®<Hz1) 21082700 26375400 31668100 36960800 

®(H1i) 0 0 0 0 

®(H1~ 0 0 0 0 

®(H1J 0 0 0 0 

Size of Livestock 
Husbandry (103) 

®(T1) 0 0 0 0 

®(Ti) 0 0 0 0 

®(TJ 60.26 87.21 114.15 141.10 

®(TJ 0 0 0 0 

Continue to next page 
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Table 6.8 (continued) Solutions with water quantity constraints 

Water Quantity Constraints (106 m3/year) 

Decision Variable 
20 30 40 50 

Cropping Area 
(km2) 

®(S211) 4.11 4.11 4.11 4.11 

®(S121) 0 0 0 0 

®(S131) 12.12 12.12 12.12 12.12 

®(S141) 0 0 0 0 

®(S212) 4.34 4.34 4.34 4.34 

®(S1rJ> 0 0 0 0 

®(S132) 13.57 13.57 13.57 13.57 

®(S142) 0 0 0 0 

®(S213) 12.87 12.87 12.87 12.87 

®(Sin) 0 0 0 0 

®(S13:J 10.97 10.97 10.97 10.97 

®(S14:J 0 0 0 0 

®(S21J 15.71 15.71 15.71 15.71 

®(S1~ 0 0 0 0 

®(S1~ 9.93 9.93 9.93 9.93 

®(S1.w) 0 0 0 0 

®(S215) 70.72 142.15 213.58 285.00 

®(S12s) 0 0 0 0 

®(S135) 10.57 10.57 10.57 10.57 

®(S145) 0 0 0 0 
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Figure 6.4 Effects of reduction in dissolved phosphorus loss on agricultural income 

221 



--

.s 

... 
fl:l 
0 
u 

Trade-off line 

01!1---..---..---.---....--....---..---..--...------....---..---1 

0 1 0 20 30 40 50 60 
Reduction in solid-phase nitrogen loss (%) 

Figure 6.5 Effects of reduction in solid-phase nitrogen loss on agricultural income 

222 



§ 4 

§ --

Trade-off line 

1 0 20 30 40 50 60 
Reduction in solid-phase phosphorus loss (%) 

Figure 6.6 Effects of reduction in solid-phase phosphorus loss on agricultural income 
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