
Palindrome Recognition In The Streaming Model

by

Erfan Sadeqi Azer

B.Sc., Sharif University of Technology, 2011

Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

© Erfan Sadeqi Azer 2015
SIMON FRASER UNIVERSITY

Spring 2015

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Erfan Sadeqi Azer

Degree: Master of Science

Title of Thesis: Palindrome Recognition In The Streaming Model

Examining Committee: Dr. Binay Bhattacharya, Professor,

Chair

Dr. Funda Ergun,

Professor, Senior Supervisor

Dr. Petra Berenbrink,

Associate Professor, Supervisor

Dr. Jian Pei,

Professor, Internal Examiner

Date Approved: August 28th, 2014

ii

Partial Copyright Licence

iii

Abstract

A palindrome is defined as a string which reads forwards the same as backwards, like, for

example, the string “racecar.” In the Palindrome Problem, one tries to find all palindromes

in a given string. In contrast, in the case of the Longest Palindromic Substring Problem,

the goal is to find an arbitrary one of the longest palindromes in the string.

In this paper we present three algorithms in the streaming model for the above problems,

where at any point in time we are only allowed to use sublinear space. We first present

a one-pass randomized algorithm that solves the Palindrome Problem. It has an additive

error and uses O(
√
n) space. We also give two variants of the algorithm which solve related

and practical problems. The second algorithm determines the exact locations of all the

longest palindromes using two passes and O(
√
n) space. The third algorithm is a one-pass

randomized algorithm, which solves the Longest Palindromic Substring Problem. It has a

multiplicative error using only O(log(n)) space. Moreover, we give a matching lower bound

for any one-pass algorithm having additive error.

Keywords: Palindromes; Streaming Model; Sketching

iv

Acknowledgments

I am using this opportunity to express my gratitude to everyone who supported me through-

out the course of this M.Sc. program. First and foremost, I feel very lucky to finish my

Master’s under supervision of Dr. Funda Ergun. I am very thankful for her aspiring guid-

ance, invaluably constructive criticism and friendly advice during the research leading to

this thesis. I am specially grateful for her sympathetic patience through the highs and

downs in recent three years of my education. I, also, express my warm thanks to Dr. Petra

Berenbrink and Mr. Frederik Mallmann-Trenn for their collaboration on the research lead-

ing to this thesis. This work could have not been possible without their extensive help and

insights. I would also like to thank my parent and family to be a real lifetime support and

encouragement and I hope it will continue to be available up to end of my life. Finally, I

recognize that this research would have not been possible without the financial funding in

form of research assistantships, and scholarships provided by Simon Fraser University and

especially by Dr. Funda Ergun and NSERC.

v

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Acknowledgments v

Contents vi

1 Introduction 1

1.1 Streaming model . 2

1.2 Related work . 3

1.3 Thesis Outline . 4

2 Model and Definitions 5

3 An Introductory Algorithm 8

3.1 Algorithm . 8

3.2 Soundness . 11

4 The Additive Approximation Algorithm 13

4.1 Compression . 13

4.2 Algorithm ApproxSqrt . 14

4.3 Structural Properties . 16

4.4 Analysis of the Algorithm . 18

vi

5 The Exact Algorithm 22

5.1 Algorithm . 22

5.2 Analysis . 24

6 The Logarithmic Space Algorithm 28

6.1 Algorithm . 28

6.2 Analysis . 30

7 Lower Bound 35

7.1 Proof . 35

8 Conclusion 38

Bibliography 39

vii

Chapter 1

Introduction

A palindrome is defined as a string which reads forwards the same as backwards, e.g., the

string “racecar.” Palindromes have been considered as interesting structures from very

old times. They are used in poetry in different languages and cultures to make delightful

phrases. Such structured words and phrases are found in ancient scriptures. So, naturally

it motivated computer scientists to define and solve several problems around it. In the

Palindrome Problem one tries to find all palindromes (palindromic substrings) in an input

string. A related problem is the Longest Palindromic Substring Problem in which one tries

to find any one of the longest palindromes in the input.

In this thesis, we regard the streaming version of both problems, where the input arrives

over time (or, alternatively, is read as a stream) and the algorithms are allowed a space,

sublinear in the size of the input. Our first contribution is a one-pass randomized algo-

rithm that solves the Palindrome Problem. It has an additive error and uses O(
√
n) space.

The second contribution is a two-pass algorithm which determines the exact locations of

all longest palindromes. It uses the first algorithm as the first pass and uses O(
√
n) space.

The third one is a one-pass randomized algorithm for the Longest Palindromic Substring

Problem. It has a multiplicative error using O(log(n)) space. We also give two variants of

the first algorithm which solve other related practical problems.

Palindromes’ interesting structure has applications in some applied areas, too. Recognition

of palindromic substrings is important in computational biology. Palindromic structures

can frequently be found in proteins and identifying them gives researchers hints about the

structure of nucleic acids. For example, in nucleic acid secondary structure prediction, one

is interested in complementary palindromes which is addressed in Chapter 2, as shown by

1

CHAPTER 1. INTRODUCTION 2

[45], [42], and [23]. Recognizing these structures, called “hairpin loops” in this area, helps

researchers to predict the structure of nucleic acids. This problem is sometimes called RNA

folding problem.

1.1 Streaming model

A common definition of the streaming model is as follows. Let f denote a function that

we want to compute on a massively long input stream σ =< a1, a2, ..., am >, where each

element ai is drawn from alphabet set, Σ . Depending on the application, Σ can be a set

of positive integers, possible Nucleobases, e.g., {A,C,G, T} in DNAs, and {A,C,G, T} in

RNAs, or the set of all letters in a natural language. The length of the stream and alphabet

size, i.e., |Σ| are the most common parameters on which one can report space complexity of

an algorithm. In this thesis, we will consider just n, because our algorithms are independent

of |Σ|. Moreover, |Σ| is not necessarily huge in some areas like bioinformatics. Then, our

goal is to compute the function f on σ using a space of size s, i.e., s bits of random access

working memory. Since n is going to be huge and we can not have all the input stream

in our memory, s must be sublinear in terms of parameters of interest, only n in our case.

Formally,

s = o(n).

Ideally,

s = O(log n).

Beginning from late 70s, the concern of using sublinear space started and in late 90s got

formulated, but usually concerned with statistical problems. Alon, Matias and Szegedy

formulated the model for the problem of frequency moments [1]. Frequency moments are

generalization of some statistical functions of data mostly motivated by database applica-

tions. In particular, they could answer inquires such as the number of distinct elements

in a given sequence, length of it, or the repeat rate, i.e., F2 [1]. Following this work a

huge amount of research has been done for different problems through which the names

“streaming algorithm” or “data stream model” are coined.

A brief list of important results in the category of statistical functions are as follows:

Approximation of entropy [11],[6], Lp norm [28], [18], [29], [32], median and quantile esti-

mations [25], [10] and histogram constructions [24], [41]. This field of research went further

CHAPTER 1. INTRODUCTION 3

than statistical properties of data and introduced some interesting tasks. Sampling from

data streams are studied widely [4],[15],[7], [14], [2], in particular Lp samplers found a big

interest and application in the community [38], [31].

For a long time, the function of interest, i.e., f , was unrelated to the order of the elements

in input as in all the results mentioned so far. In the same category, variety of problems

over geometric data such as clustering and classifications of points [26], [12], [21], estimating

the diameter of a point set, bichromatic matching and minimum spanning tree on the plane

[19], [20] have been studied. In terms of general graph theory, we have witnessed some

important results. It is worth mentioning that there are several models one can consider for

graph problems in streaming model. Most notable results in this area are: near-maximum

matchings and approximate shortest path [36], [17]. In other hand, there are problems in

streaming model with a function of interest depending on the order of the input elements.

This thesis deals with problems in this category. In Section 1.2, we will mention the works

that have been done for string problems in the streaming model. For more detailed history

and techniques of streaming algorithms’ literature see [9] and [40], and for graph problems

see [37].

1.2 Related work

While palindromes are well-studied, to the best of our knowledge there are no results in

the streaming model. Manacher [35] presents a linear time online algorithm that reports

whether all symbols seen so far form a palindrome at any time . The authors of [3] show

how to modify this algorithm in order to find all palindromic substrings in linear time (using

a parallel algorithm). These works were considered to be optimal, at the time, in terms of

time and space, because a careful amortized analysis implies that they don’t take more cost

than an amount linear to the input size. However, there is an intrinsic need to perform

global random access to input elements, which makes it useless for the case of massive input

stream. In other words, for the applications where the whole input do not fit any random

access working memory, the need for the streaming model is felt.

Some of the techniques used in this paper have their origin in the streaming pattern

matching literature. In the Pattern Matching Problem, one tries to find all occurrences of

a given pattern P in a text T . The first algorithm for pattern matching in the streaming

model is given in [43] and requires O(log(m)) space. The authors of [16] give a simpler

CHAPTER 1. INTRODUCTION 4

pattern matching algorithm with no preprocessing, as well as a related streaming algorithm

for estimating a stream’s Hamming distance to p-periodicity. Breslauer and Galil [8] provide

an algorithm which does not report false negatives and can also be run in real-time and is

much simpler to express. All of the above algorithms in the streaming model take advantage

of Karp-Rabin fingerprints [33]. We formally define this tool in Chapter 2.

1.3 Thesis Outline

In Chapter 3, a simple one-pass algorithm is presented that gives the overall idea and scenario

of the algorithm in following chapter. In Chapter 4, a compression technique is presented.

Using this technique, we present a streaming algorithm with additive approximation. In

Chapter 5, we show how a second pass can help make a precise streaming algorithm for

Longest Palindromic Substring Problem. In Chapter 6, we present an even better streaming

algorithm for the case concerning multiplicative approximation. Finally, in Chapter 7, we

give a matching lower bound for the additive case.

Chapter 2

Model and Definitions

Let S ∈ Σn denote the input stream of length n over an alphabet Σ1. For simplicity we

assume symbols to be positive integers, i.e., Σ ⊂ N. We define S[i] as the symbol at index

i and S[i, j] = S[i], S[i+ 1], . . . S[j]. In this paper we use the streaming model: In one pass

the algorithm goes over the whole input stream S, reading S[i] in iteration i of the pass. In

this paper we assume that the algorithm has a memory of size o(n), but the output space is

unlimited. We use the so-called word model where the space equals the number of O(log(n))

registers (See [8]).

S contains an odd palindrome of length ` with midpoint m ∈ {`, . . . , n − `} if S[m − i] =

S[m + i] for all i ∈ {1, . . . , `}. Similarly, S contains an even palindrome of length ` if

S[m − i + 1] = S[m + i] for all i ∈ {1, . . . , `}. In other words, a palindrome is odd if and

only if its length is odd. For simplicity, our algorithms assume palindromes to be even

- it is easy to adjust our results for finding odd palindromes by apply the algorithm to

S[1]S[1]S[2]S[2] · · ·S[n]S[n] instead of S[1, n].

The maximal palindrome (the palindrome of maximal length) in S[1, i] with midpoint m

is called P [m, i] and the maximal palindrome in S with midpoint m is called P [m] which

equals P [m,n]. We define `(m, i) as the maximum length of the palindrome with midpoint

m in the substring S[1, i]. The maximal length of the palindrome in S with midpoint m

is denoted by `(m). Moreover, for z ∈ Z \ {1, . . . , n} we define `(z) = 0. Furthermore, for

`∗ ∈ N we define P [m] to be an `∗-palindrome if `(m) ≥ `∗. Throughout this paper, ˜̀()

1All soundness, space, and time complexity analyses assumes |Σ| to be polynomial. One can use a proper
random hash function for bigger alphabets.

5

CHAPTER 2. MODEL AND DEFINITIONS 6

refers to an estimate of `().

We use the KR-Fingerprint, which was first defined by Karp and Rabin [33] to compress

strings and was later used in the streaming pattern matching problem (see [43], [16], and

[8]). For a string S′ we define the forward fingerprint (similar to [8]) and its reverse as

follows. φFr,p(S
′) =

(∑|S′|
i=1 S

′[i] · ri
)

mod p φRr,p(S
′) =

(∑|S′|
i=1 S

′[i] · rl−i+1
)

mod p,<

where p is an arbitrary prime number in [n4, n5] and r is randomly chosen from {1, . . . , p}.
We write φF (φR respectively) as opposed to φFr,p(φ

R
r,p respectively) whenever r and p are

fixed. We define for 1 ≤ i ≤ j ≤ n the fingerprint FF (i, j) as the fingerprint of S[i, j], i.e.,

FF (i, j) = φF (S[i, j]) = r−(i−1)(φF (S[1, j]) − φF (S[1, i − 1])) mod p. Similarly, FR(i, j) =

φR(S[i, j]) = φR(S[1, j]) − rj−i+1 · φR(S[1, i − 1]) mod p. For every 1 ≤ i ≤ n −
√
n the

fingerprints FF (1, i− 1−
√
n) and FR(1, i− 1−

√
n) are called Master Fingerprints. Note

that it is easy to obtain FF (i, j + 1) by adding the term S[j + 1]rj+1 to FF (i, j). Similarly,

we obtain FF (i + 1, j) by subtracting S[i] from r−1 · FF (i, j). The authors of [8] observe

useful properties which we state in Lemma 2.0.1 and Lemma 2.0.2.

Lemma 2.0.1 (Similar to Lemma 1 and Corollary 1 of [8]) Consider two substrings S[i, k]

and S[k + 1, j] and their concatenated string S[i, j] where 1 ≤ i ≤ k ≤ j ≤ n.

� FF (i, j) =
(
FF (i, k) + rk−i+1 · FF (k + 1, j)

)
mod p.

� FF (k + 1, j) = r−(k−i+1)
(
FF (i, j)− FF (i, k)

)
mod p.

� FF (i, k) =
(
FF (i, j)− rk−i+1 · FF (k + 1, j)

)
mod p.

The authors of [8] show that, for appropriate choices of p and r, it is very unlikely that two

different strings share the same fingerprint.

Lemma 2.0.2 (Theorem 1 of [8]) For two arbitrary strings s and s′ with s 6= s′ the proba-

bility that φF (s) = φF (s′) is smaller than 1/n4.

For many biological applications such as nucleic acid secondary structure prediction, one is

interested in complementary palindromes which are defined in the following.

Definition 1 Let f : Σ → Σ be a function indicating a complement for each symbol in

Σ. A string S ∈ Σn with length n contains a complementary palindrome of length ` with

midpoint m ∈ {`, . . . , n− `} if S[m− i+ 1] = f(S[m+ i]) for all i ∈ {1, . . . , `}.

CHAPTER 2. MODEL AND DEFINITIONS 7

The fingerprints can also be used for finding complementary palindromes: If one changes

the forward Master Fingerprints to be FFc (1, l) =
(∑l

i=1 f(S[i]) · ri
)

mod p (as opposed

to FF (1, l) =
(∑l

i=1 S[i] · ri
)

mod p) in all algorithms in this paper, then we obtain the

following observation.

Observation 1 All algorithms in this paper can be adjusted to recognize complementary

palindromes with the same space and time complexity.

Chapter 3

An Introductory Algorithm

In this chapter, we introduce a simple one-pass algorithm which reports all midpoints and

length estimates of palindromes in S. Throughout this paper we use i to denote the current

index which the algorithm reads. Simple ApproxSqrt keeps the last 2
√
n symbols of S[1, i]

in the memory.

3.1 Algorithm

It is easy to determine the exact length palindromes of length less than
√
n since any such

palindrome is fully contained in memory at some point. However, in order to achieve a bet-

ter time bound the algorithm only approximates the length of short palindromes. It is more

complicated to estimate the length of a palindrome with a length of at least
√
n. However,

Simple ApproxSqrt detects that its length is at least
√
n and stores it as an RS-entry (intro-

duced later) in a list Li. The RS-entry contains the midpoint as well as a length estimate

of the palindrome, which is updated as i increases.

In order to estimate the lengths of the long palindromes the algorithm designates certain in-

dices of S as checkpoints. For every checkpoint c the algorithm stores a fingerprint FR(1, c)

enabling the algorithm to do the following. For every midpoint m of a long palindrome:

Whenever the distance from a checkpoint c to m (c occurs before m) equals the distance

from m to i, the algorithm compares the substring from c to m to the reverse of the sub-

string from m to i by using fingerprints. We refer to this operation as checking P [m] against

checkpoint c. If S[c+ 1,m]R = S[m+ 1, i], then we say that P [m] was successfully checked

8

CHAPTER 3. AN INTRODUCTORY ALGORITHM 9

with c and the algorithm updates the length estimate for P [m], ˜̀(m). The next time the

algorithm possibly updates ˜̀(m) is after d iterations where d equals the distance between

checkpoints. This distance d gives the additive approximation. See Figure 3.1 for an illus-

tration.

ic1 c2 c3

FR(c0 + 1, m1)

FF (m2 + 1, i)

FF (m1 + 1, i)

FR(c1 + 1, m2)

m1 m2
c0

Figure 3.1: At iteration i two midpoints m1 and m2 are checked. Corresponding substrings
are denoted by brackets. Note, the distance from c0 to m1 equals the distance from m1 to
i. Similarly, the distance from c1 to m2 equals the distance from m2 to i.

m Legend:
sliding fingerprint partition

sliding window

i

Figure 3.2: Illustration of the Fingerprint Pairs after iteration i of algorithm with
√
n = 6,

ε = 1/3, and m = i−
√
n.

We need the following definitions before we state the algorithm: For k ∈ N with 0 ≤ k ≤
b
√
n
ε c checkpoint ck is the index at position k · bε

√
nc thus checkpoints are bε

√
nc indices

apart. Whenever we say that an algorithm stores a checkpoint, this means storing the

data belonging to this checkpoint. Additionally, the algorithm stores Fingerprint Pairs,

fingerprints of size bε
√
nc, 2bε

√
nc, . . . starting or ending in the middle of the sliding window.

In the following, we first describe the data that the algorithm has in its memory after reading

S[1, i− 1], then we describe the algorithm itself. Let RS(m, i) denote the representation of

P [m] which is stored at time i. As opposed to storing P [m] directly, the algorithm stores

m, ˜̀(m, i), FF (1,m), and FR(1,m).

Memory invariants. Just before algorithm Simple ApproxSqrt reads S[i] it has stored

the following information. Note that, for ease of referencing, during an iteration i data

structures are indexed with the iteration number i.

That is, for instance, Li−1 is called Li after S[i] is read.

1. The contents of the sliding window S[i− 2
√
n− 1, i− 1].

CHAPTER 3. AN INTRODUCTORY ALGORITHM 10

2. The two Master Fingerprints FF (1, i− 1) and FR(1, i− 1).

3. A list of Fingerprint Pairs: Let r be the maximum integer s.t. r · bε
√
nc <

√
n.

For j ∈ {bε
√
nc, 2 · bε

√
nc, . . . , r · bε

√
nc,
√
n} the algorithm stores the pair

FR((i−
√
n)− j, (i−

√
n)− 1), and FF (i−

√
n, (i−

√
n) + j − 1). See Figure 3.2 for

an illustration.

4. A list CLi−1 which consists of all fingerprints of prefixes of S ending at already seen

checkpoints, i.e., CLi−1 =
[
FR(1, c1), FR(1, c2), . . . , FR

(
1, cc(i− 1)/bε

√
ncc
)]

5. A list Li−1 containing representation of all
√
n-palindromes with a midpoint located

in

S[1, (i− 1)−
√
n]. The jth entry of Li−1 has the form

RS(mj , i− 1) = (mj , ˜̀(mj , i− 1), FF (1,mj), F
R(1,mj)) where

(a) mj is the midpoint of the jth palindrome in S[1, (i− 1)−
√
n] with a length of at

least
√
n. Therefore, mj < mj+1 for 1 ≤ j ≤ |Li−1| − 1.

(b) ˜̀(mj , i− 1) is the current estimate of `(mj , i− 1).

In the following, we explain how the algorithm maintains the above invariants.

Maintenance. At iteration i the algorithm performs the following steps. It is implicit that

Li−1 and CLi−1 become Li and CLi respectively.

1. Read S[i], set m = i−
√
n. Update the sliding window to S[m−

√
n, i] = S[i− 2

√
n, i]

2. Update the Master Fingerprints to be FF (1, i) and FR(1, i).

3. If i is a checkpoint (i.e., a multiple of bε
√
nc), then add FR(1, i) to CLi.

4. Update all Fingerprint Pairs: For j ∈ {bε
√
nc, 2 · bε

√
nc, , . . . , r · bε

√
nc,
√
n}

� Update FR(m− j,m− 1) to FR(m− j+ 1,m) and FF (m,m+ j− 1) to FF (m+

1,m+ j).

� If FR(m− j + 1,m) = FF (m+ 1,m+ j), then set ˜̀(m, i) = j.

� If ˜̀(m, i) <
√
n, output m and ˜̀(m, i).

5. If ˜̀(m, i) ≥
√
n, add RS(m, i) to Li:

Li = Li ◦ (m, ˜̀(m, i), FF (1,m), FR(1,m)).

CHAPTER 3. AN INTRODUCTORY ALGORITHM 11

6. For all ck with 1 ≤ k ≤ b i
bε
√
ncc and RS(mj , i) ∈ Li with i −mj = mj − ck, check if

˜̀(mj , i) can be updated:

� If the left side of mj is the reverse of the right side of mj (i.e., FR(ck + 1,mj) =

FF (mj + 1, i)) then update RS(mj , i) by updating ˜̀(mj , i) to i−mj .

7. If i = n, then report Ln.

3.2 Soundness

In all proofs in this paper which hold w.h.p. we assume that fingerprints do not fail as we

take less than n2 fingerprints and by using Lemma 2.0.2, the probability that a fingerprint

fails is at most 1/nc+2.

Thus, by applying the union bound the probability that no fingerprint fails is at least

1−n−c. The following lemma shows that the Simple ApproxSqrt finds all palindromes along

with the estimates as stated in Theorem 4.4.2. Simple ApproxSqrt does not fulfill the time

and space bounds of Theorem 4.4.2; we will later show how to improve its efficiency.

Lemma 3.2.1 For any ε in [1/
√
n, 1] ApproxSqrt(S, ε) reports for every palindrome P [m] in

S its midpoint m as well as an estimate ˜̀(m) such that w.h.p. `(m)− ε
√
n < ˜̀(m) ≤ `(m).

Proof Fix an arbitrary palindrome P [m]. First we assume `(m) <
√
n. Then Simple

ApproxSqrt reports m and ˜̀(m) in step 4 of iteration m+
√
n which is the iteration where

the entire palindrome is in the sliding window. Furthermore, in the step 4, the algorithm

checks for all j ∈ {bε
√
nc, 2 · bε

√
nc, , . . . , r · bε

√
nc,
√
n}, where r is the maximum integer

s.t. r · bε
√
nc <

√
n, if FR(m− j + 1,m) = FF (m+ 1,m+ j), then sets ˜̀(m, i) = j. Let jm

be the maximum j such that FR(m− j + 1,m) = FF (m+ 1,m+ j) is satisfied at iteration

m +
√
n. Then P [m] covers the Fingerprint Pair with length jm but does not cover the

Fingerprint Pair with length jm + bε
√
nc. Since Simple ApproxSqrt sets ˜̀(m) = jm we

have `(m)− ε
√
n < ˜̀(m) ≤ `(m).

Now we assume `(m) ≥
√
n. Step 5 of iteration m+

√
n adds RS(m, i) to Li−1. We show for

every i ≥ m+
√
n that the following holds: After Simple ApproxSqrt read S[1, i] (iteration i)

we have `(m, i)− ε
√
n < ˜̀(m, i) ≤ `(m, i). We first show the first inequality and afterwards

the second. Define i′ ≤ i to be the last iteration where the algorithm updated ˜̀(m, i′) in

Step 6, i.e., it sets ˜̀(m, i′) = `(m, i′) = i′ −m.

CHAPTER 3. AN INTRODUCTORY ALGORITHM 12

� `(m, i) − ε
√
n < ˜̀(m, i): We first show `(m, i) < i′ + ε

√
n − m by distinguishing

between two cases:

1. i′ > i − ε
√
n : By definition of `(m, i), we have `(m, i) ≤ i − m. And thus

`(m, i) < i′ + ε
√
n−m.

2. i′ ≤ i− ε
√
n : Since the estimate of m was updated at iteration i′ we know that

there is a checkpoint at index 2m− i′ and therefore we know that due to step 3

there is a checkpoint at index 2m−(i′+bε
√
nc). Since i′ is the last iteration where

the estimate of P [m] was updated we infer that S[2m− (i′+ bε
√
nc),m] was not

the reverse of S[m+1, i′+bε
√
nc]. Hence, `(m, i) < i′+bε

√
nc−m ≤ i′+ε

√
n−m.

With `(m, i) < i′ + ε
√
n−m we have

`(m, i) < i′ + ε
√
n−m = `(m, i′) + ε

√
n = ˜̀(m, i′) + ε

√
n = ˜̀(m, i) + ε

√
n.

The last equality holds since i′ was the last index where ˜̀(m, i) was updated.

� ˜̀(m, i) ≤ `(m, i): Whenever ˜̀(m, i) is updated to `(m, i′) by the algorithm, this means

that FF (m+ 1, i′) = FR(2m− i′,m) and since we assume that fingerprints do not fail

we have that S[m− ˜̀(m, i′) + 1,m] is the reverse of S[m+ 1,m+ ˜̀(m, i′)]. It follows

that ˜̀(m, i) = ˜̀(m, i′) and `(m, i) ≥ `(m, i′).

Furthermore, step 7 reports Ln at iteration n which includes m and ˜̀(m).

Chapter 4

The Additive Approximation

Algorithm

In this chapter, we show how to modify Simple ApproxSqrt so that it matches the time and

space requirements of Theorem 4.4.2. The main idea of the space improvement is to store

the lists Li in a compressed form.

4.1 Compression

It is possible in the simple algorithm for Li to have linear length. In such cases S contains

many overlapping palindromes which show a certain periodic pattern as shown in Corollary

6.2.2, which our algorithm exploits to compress the entries of Li. This idea was first intro-

duced in [43], and is used in [16], and [8]. More specifically, our technique is a modification

of the compression in [8]. In the following, we give some definitions in order to show how

to compress the list. First we define a run which is a sequence of midpoints of overlapping

palindromes.

Definition 2 (`∗−Run) Let `∗ be an arbitrary integer and h ≥ 3. Let m1,m2,m3, . . . ,mh

be consecutive midpoints of `∗-palindromes in S. m1, . . . ,mh form an `∗-run if mj+1−mj ≤
`∗/2 for all j ∈ {1, . . . , h− 1}.

In Corollary 6.2.2 we show that m2 −m1 = m3 −m2 = · · · = mh −mh−1. We say that a

run is maximal if the run cannot be extended by other palindromes. More formally:

13

CHAPTER 4. THE ADDITIVE APPROXIMATION ALGORITHM 14

Definition 3 (Maximal `∗−Run) An `∗-run over m1, . . . ,mh is maximal it satisfies both

of the following: i) `(m1 − (m2 −m1)) < `∗, ii) `(mh + (m2 −m1)) < `∗.

Simple ApproxSqrt stores palindromes explicitly in Li, i.e., Li = [RS(m1, i); . . . ;RS(m|Li|, i)]

where RS(mj , i) = (mj , ˜̀(mj , i), F
F (1,mj), F

R(1,mj)), for all j ∈ {1, 2, . . . , h}. The im-

proved Algorithm ApproxSqrt stores these midpoints in a compressed way in list L̂i. Ap-

proxSqrt distinguishes among three cases: Those palindromes which

1. are not part of a
√
n-run are stored explicitly as before. We call them RS-entries. Let

P [m, i] be such a palindrome. After iteration i the algorithm stores RS(m, i).

2. form a maximal
√
n-run are stored in a data structure called RF -entry. Let m1, . . . ,mh

be the midpoints of a maximal
√
n-run. The data structure stores the following infor-

mation.

� m1, m2 −m1, h, ˜̀(m1, i), ˜̀(mb 1+h2 c, i),
˜̀(md 1+h2 e, i),

˜̀(mh, i),

� FF (1,m1), FR(1,m1), FF (m1 + 1,m2), FR(m1 + 1,m2)

3. form a
√
n-run which is not maximal (i.e., it can possibly be extended) in a data

structure called RNF -entry. The information stored in an RNF -entry is the same as

in an RF -entry, but it does not contain the entries: ˜̀(mb 1+h2 c, i),
˜̀(md 1+h2 e, i), and

˜̀(mh, i).

The algorithm stores only the estimate (of the length) and the midpoint of the following

palindromes explicitly.

� P [m] for an RS-entry (Therefore all palindromes which are not part of a
√
n-run)

� P [m1], P [mb(h + 1)/2c], P [md(h + 1)/2e], and P [mh] for an RF -entry

� P [m1] for an RNF -entry.

In what follows we refer to the above listed palindromes as explicitly stored palindromes.

We argue in Observation 2 that in any interval of length
√
n the number of explicitly stored

palindromes is bounded by a constant.

4.2 Algorithm ApproxSqrt

In this section, we describe some modifications of Simple ApproxSqrt in order to obtain a

space complexity of O(
√
n
ε) and a total running time of O(nε). ApproxSqrt is the same as

CHAPTER 4. THE ADDITIVE APPROXIMATION ALGORITHM 15

Simple ApproxSqrt , but it compresses the stored palindromes. ApproxSqrt uses the same

memory invariants as Simple ApproxSqrt , but it uses L̂i as opposed to Li.

ApproxSqrt uses the first four steps of Simple ApproxSqrt . Step 5, Step 6, and Step 7 are

replaced. The modified Step 5 ensures that there are at most two RS-entries per interval of

length
√
n. Moreover, Step 6 is adjusted since ApproxSqrt stores only the length estimate

of explicitly stored palindromes.

5. If ˜̀(m, i) ≥
√
n, obtain L̂i by adding the palindrome with midpoint m(= i −

√
n) to

L̂i−1 as follows:

(a) The last element in L̂i is the following RNF -entry(
m1,m2−m1, h, ˜̀(m1, i), F

F (1,m1), FR(1,m1), FF (m1+1,m2), FR(m1+1,m2)
)
.

i. If the palindrome can be added to this run, i.e., m = m1 +h(m2−m1), then

we increment the h in the RNF -entry by 1.

ii. If the palindrome cannot be added: Store P [m, i] as an RS-entry: L̂i =

L̂i ◦ (m, ˜̀(m, i), FF (1,m), FR(1,m)). Moreover, convert the RNF -entry

into the RF -entry by adding ˜̀(mb 1+h2 c, i),
˜̀(md 1+h2 e, i) and ˜̀(mh, i): First

we calculate mb 1+h
2
c = m1+

(
b1+h

2 − 1c
)

(m2−m1). One can calculate md 1+h
2
e

similarly. For m′ ∈ {mb 1+h2 c,md 1+h2 e,mh} calculate ˜̀(m′, i) =

max
i−2
√
n≤j≤i

{j−m′ | ∃ck with j−m′ = m′−ck and FR(ck+1,m′) = FF (m′+

1, j)}.

(b) The last two entries in L̂i are stored as RS-entries and together with P [m, i] form

a
√
n-run. Then remove the entries of the two palindromes out of L̂i−1 and add

a new RNF -entry with all three palindromes to L̂i−1:

m1, ˜̀(m1, i), F
F (1,m1), FF (1,m2), FR(1,m1), FR(1,m2),m2 − m1, h = 3. Re-

trieve FF (m1 + 1,m2) and FR(m1 + 1,m2).

(c) Otherwise, store P [m, i] as anRS-entry: L̂i = L̂i ◦ (m, ˜̀(m, i), FF (1,m), FR(1,m))

6. This step is similar to step 6 of Simple ApproxSqrt the only difference is that we check

only for explicitly stored palindromes if they can be extended outwards. 1

7. If i = n. If the last element in L̂i is an RNF -entry, then convert it into an RF -entry

as in 5(a)ii. Report Ln.

1This step is only important for the running time.

CHAPTER 4. THE ADDITIVE APPROXIMATION ALGORITHM 16

4.3 Structural Properties

In this section, we prove structural properties of palindromes. These properties allow us to

compress (by using RS-entries and RF -entries) overlapping palindromes P [m1], . . . , P [mh]

in such a way that at any iteration i all the information stored RS(m1, i), . . . , RS(mh, i) is

available. The structural properties imply, informally speaking, that the palindromes are

either far from each other, leading to a small number of them, or they are overlapping and it

is possible to compress them. Lemma 4.3.1 shows this structure for short intervals containing

at least three palindromes. Corollary 6.2.2 shows a similar structure for palindromes of a

run which is used by ApproxSqrt . We first give the common definition of periodicity.

Definition 4 (period) A string S′ is said to have period p if it consists of repetitions of a

block of p symbols. Formally, S′ has period p if S′[j] = S[j + p] for all j = 1, . . . , |S′| − p. 2

Lemma 4.3.1 Let m1 < m2 < m3 < · · · < mh be indices in S that are consecutive mid-

points of `∗-palindromes for an arbitrary natural number `∗. If mh −m1 ≤ `∗, then

(a) m1,m2,m3, . . . ,mh are equally spaced in S, i.e., |m2 − m1| = |mk+1 − mk| ∀k ∈
{1, . . . , h− 1}

(b) S[m1 + 1,mh] =

(wwR)
h−1
2 h is odd

(wwR)
h−2
2 w h is even

, where w = S[m1 + 1,m2].

Proof Given m1,m2, . . . ,mh and `∗ we prove the following stronger claim by induction over

the midpoints {m1, . . . ,mj}. (a’) m1,m2, . . . ,mj are equally spaced. (b’) S[m1+1,mj+`∗]

is a prefix of wwRwwR... .

Base case j = 2: Since we assume m1 is the midpoint of an `∗-palindrome and `∗ ≥ mh −
m1 ≥ m2−m1 = |w|, we have that S[m1− |w|+ 1,m1] = wR. Recall that `(m2) ≥ `∗ ≥ |w|
and thus, S[m1 + 1,m2 + |w|] = wwR.

We can continue this argument and derive that S[m1+1,m2+`∗] is a prefix of wwR . . . wwR.

(a’) for j = 2 holds trivially.

Inductive step j − 1 → j: Assume (a’) and (b’) hold up to mj−1. We first argue that

|mj −m1| is a multiple of |m2−m1| = |w|. Suppose mj = m1 + |w| · q+ r for some integers

q ≥ 0 and r ∈ {1, . . . , |w| − 1}. Since mj ≤ mj−1 + `∗, the interval [m1 + 1,mj−1 + `∗]

2Here, p is called a period for S′ even if p > |S′|/2

CHAPTER 4. THE ADDITIVE APPROXIMATION ALGORITHM 17

contains mj . Therefore, by inductive hypothesis, mj − r is an index where either w or wR

starts. This implies that the prefix of wwR(or wRw) of size 2r is a palindrome and the string

wwR(or wRw) has period 2r. On the other hand, by consecutiveness assumption, there is

no midpoint of an `∗-palindrome in the interval [m1 + 1,m2 − 1]. does not have a period of

2p, a contradiction. We derive that mj −m1 is multiple of |w|.
Hence, we assume mj = mj−1 + q · |w| for some q. The assumption that mj is a midpoint

of an `∗-palindrome beside the inductive hypothesis implies (b’) for j. The structure of

S[mj−1 + |w| − `∗ + 1,mj−1 + |w| + `∗] shows that mj−1 + |w| is a midpoint of an `∗-

palindrome. This means that mj = mj−1 + |w|. This gives (a’) and yields the induction

step.

Corollary 6.2.2 shows the structure of overlapping palindromes and is essential for the com-

pression. The main difference between Corollary 6.2.2 and Lemma 4.3.1 is the required

distance between the midpoints of a run. Lemma 4.3.1 assumes that every palindrome in

the run overlaps with all other palindromes. In contrast, Corollary 6.2.2 assumes that every

palindrome P [mj] overlaps with P [mj−2], P [mj−1], P [mj+1], and P [mj+2]. It can be proven

by an induction over the midpoints and using Lemma 4.3.1.

Corollary 4.3.2 If m1,m2, . . . ,mh form an `∗-run for an arbitrary natural number `∗ then

(a) m1,m2,m3, . . . ,mh are equally spaced in S, i.e., |m2 − m1| = |mk+1 − mk| ∀k ∈
{1, . . . , h− 1}

(b) S[m1 + 1,mh] =

(wwR)
h−1
2 h is odd

(wwR)
h−2
2 w h is even

, where w = S[m1 + 1,m2].

Lemma 4.3.3 shows the pattern for the lengths of the palindromes in each half of the run.

This allows us to only store a constant number of length estimates per run.

Lemma 4.3.3 At iteration i, let m1,m2,m3, ...,mh be midpoints of a maximal `∗-run in

S[1, i] for an arbitrary natural number `∗. For any midpoint mj, we have:

`(mj , i) =

`(m1, i) + (j − 1) · (m2 −m1) j < h+1
2

`(mh, i) + (h− j) · (m2 −m1) j > h+1
2

Proof We prove the first case where mj is in the first half, i.e., j < h+1
2 . The other case is

similar. By Corollary 6.2.2, S[m1,mh] is of the form wwRwwR... and mj = m1 +(j−1) · |w|,

CHAPTER 4. THE ADDITIVE APPROXIMATION ALGORITHM 18

where w is S[m1 + 1,m2]. Define m0 to be the index m1− |w|. Since `(m1, i) ≥ `∗ ≥ |w| we

have S[m0 + 1,m1] = wR.

By Corollary 6.2.2, we have that S[m0 + 1,mj]
R = S[mj + 1,m2j]. This implies `(mj , i) ≥

j·|w|. Define k to be `(mj , i)−j·|w|. We show that k = `(m0, i). By definition, k is the length

of the longest suffix of S[1,m0] which is the reverse of the prefix of S[m2j + 1, n]. Corollary

6.2.2 shows that S[m2j + 1,m2j + `∗] is equal to S[m0 + 1,m0 + `∗] as both are prefixes of

wRwwR.... Therefore, k is also the same as the length of the longest suffix of S[1,m0] which

is the reverse of the prefix of S[m0 + 1,m0 + `∗], i.e., k = max{k′|S[m0 − k′ + 1,m0]R =

S[m0 + 1,m0 + k′]} = `(m0, i). Thus, `(mj , i) = `(m0, i) + j · |w|.

4.4 Analysis of the Algorithm

We show that one can convert RS-entries into a run and vice versa and ApproxSqrt ’s main-

tenance of RF -entries and RNF -entries does not impair the length estimates. The following

lemma shows that one can retrieve the length estimate of a palindrome as well as its finger-

print from an RF -entry.

Lemma 4.4.1 At iteration i, the RF -entry over m1,m2, . . . ,mh is a lossless compression

of [RS(m1, i); . . . ;RS(mh, i)]

Proof Fix an index j. We prove that we can retrieve RS(mj , i) out of the RF -entry repre-

sentation. Corollary 6.2.2 gives a formula to retrieve mj from the corresponding RF -entry.

Formally, mj = m1 + (j − 1) · (m1 −m2).

Corollary 6.2.2 shows that S[m1 + 1,mh] follows the structure wwRwR · · · where w =

S[m1 + 1,m2].

This structure allows us to retrieve FF (1,mj), F
R(1,mj), since we have FF (1,mj) =

φF (S[1,m1]wwRwwR · · ·).
We know argue that the length estimates have the same accuracy as RS-entries. Note

that the proof of Lemma 3.2.1 shows that after iteration i and any RS(m, i) we have

`(m, i) − ε
√
n < ˜̀(m, i) ≤ `(m, i). We show that one can retrieve the length estimate for

palindromes which are not stored explicitly by using the following equation. The equation

from Lemma 4.3.3.

˜̀(mj , i) =

˜̀(m1, i) + (j − 1) · (m2 −m1) j < h+1
2

˜̀(mh, i) + (h− j) · (m2 −m1) j > h+1
2

.

CHAPTER 4. THE ADDITIVE APPROXIMATION ALGORITHM 19

Let i′ be the index where RF was finished. We distinguish among three cases:

1. mj = m1: Since the algorithm treats P [mj] as an RS-entry in terms of comparisons,

`(mj , i)− ε
√
n < ˜̀(mj , i) ≤ `(mj , i) holds.

2. mj ∈ {mb(h + 1)/2c,md(h + 1)/2e,mh}: At index i′ ApproxSqrt executes step 5(a)ii and one

can verify that `(mj , i
′)− ε

√
n < ˜̀(mj , i

′) ≤ `(mj , i
′) holds. For all i ≥ i′ palindrome

P [mj] is treated as an RS-entry in terms of comparisons. Thus, `(mj , i) − ε
√
n <

˜̀(mj , i) ≤ `(mj , i) holds.

3. Otherwise, we assume WLOG. 1 < j < bh+1
2 c. Lemma 4.3.3 shows that `(mj , i) −

˜̀(mj , i) = `(m1, i)− ˜̀(m1, i). We know 0 ≤ `(m1, i)− ˜̀(m1, i) < ε
√
n. Thus, `(mj , i)−

ε
√
n < ˜̀(mj , i) ≤ `(mj , i).

Let Compressed Run be the general term for RF -entry and RNF -entry. We argue that in

any interval of length
√
n we only need to store at most two single palindromes and two

Compressed Runs. Suppose there were three RS-entries, then, by Corollary 6.2.2, they form

a
√
n-run since they overlap each other. Therefore, the three RS-entries would be stored in

a Compressed Run. For a similar reason there cannot be more than two Compressed Runs

in one interval of length
√
n. We derive the following observation.

Observation 2 For any interval of length
√
n there can be at most two RS-entries and two

Compressed Runs in L∗.

We now have what we need in order to state and prove Theorem 4.4.2. It worth mentioning

that the algorithm can easily be modified to report all palindromes P [m] in S with `(m) ≥ t
and no P [m] with `(m) < t − ε

√
n for some threshold t ∈ N. For t ≤

√
n one can modify

the algorithm to report a palindrome P [m] if and only if `(m) ≥ t. Note, the algorithm is

also (1 + ε)-approximation.

Theorem 4.4.2 (ApproxSqrt) For any ε ∈ [1/
√
n, 1] Algorithm ApproxSqrt(S, ε) reports

for every palindrome P [m] in S its midpoint m as well as an estimate ˜̀(m) (of `(m)) such

that w.h.p.3 `(m)− ε
√
n < ˜̀(m) ≤ `(m). The algorithm makes one pass over S, uses O(n/ε)

time, and O(
√
n/ε) space.

3We say an event happens with high probability (w.h.p.) if its probability is at least 1− 1/nc for c ∈ N.

CHAPTER 4. THE ADDITIVE APPROXIMATION ALGORITHM 20

Proof Similar to other proofs in this paper we assume that fingerprints do not fail as we

take less than n2 fingerprints and by Lemma 2.0.2, the probability that a fingerprint fails is

at most 1/(n4). Thus, by applying the union bound the probability that no fingerprint fails

is at least 1− n−2.

Correctness: Fix an arbitrary palindrome P [m]. For the case `(m) <
√
n there is no differ-

ence between Simple ApproxSqrt and ApproxSqrt , so the correctness follows from Lemma

3.2.1. In the following, we assume `(m) ≥
√
n. Firstly, we argue that RS(m,n) is stored in

L̂n. At index i = m+
√
n, ApproxSqrt adds P [m] to L̂i. The algorithm does this by using

the longest sliding fingerprint pair which guarantees that if S[i − 2
√
n + 1, i −

√
n] is the

reverse of S[i −
√
n + 1, i], then the fingerprints of sliding window are equal. Moreover, a

palindrome is never removed from L̂i for 1 ≤ i ≤ n. Additionally, Lemma 4.4.1 shows how

to retrieve the midpoint. Hence, RS(m,n) is stored in L̂n.

We now argue `(m)−ε
√
n < ˜̀(m) ≤ `(m). Palindromes are stored in an RS-entry, RF -entry

and RNF -entry. Since we are only interested in the estimate ˜̀(m) after the nth iteration of

Simple ApproxSqrt and since the algorithm finishes an RNF -entry at iteration n, we know

that there are no RNF -entries at after iteration n.

1. RS(m,n) is stored as an RS-entry. Since RS-entries are treated in the same way as

in Simple ApproxSqrt , `(m)− ε
√
n < ˜̀(m) ≤ `(m) holds by Lemma 3.2.1.

2. RS(m,n) is stored in the RF -entry RF . Then Lemma 4.4.1 shows the correctness.

Furthermore, the algorithm reports L̂n step 7 of iteration n.

Space: The number of checkpoints equals bn/bε√ncc ≤ 2n/ε
√
n = O(

√
n/ε), since ε ≥ 1/

√
n.

Moreover, there are O(n/ε) Fingerprint Pairs which can be stored in O(n/ε) space. The

sliding window requires 2
√
n space. The space required to store the information of all

√
n-palindromes is bounded by O(

√
n): By Observation 2, the number of RS-entries and

Compressed Runs in an interval of length
√
n is bounded by a constant. Each Compressed

Run and each RS-entry can be stored in constant space. Thus, in any interval of length
√
n

we only need constant space and thus altogether O(
√
n) space for storing the information

of palindromes.

Running time: The running time of the algorithm is determined by the number of com-

parisons done at lines 6 and 4. First we bound the number of comparisons corresponding

to line 6. For all
√
n-palindromes we bound the total number of comparisons by O(nε):

CHAPTER 4. THE ADDITIVE APPROXIMATION ALGORITHM 21

The ApproxSqrt checks only explicitly stored palindromes with checkpoints and therefore

with RS-entries and at most 4 midpoints per Compressed Run. As shown in Observation

2, there is at most a constant number of explicitly stored midpoints in every interval of

length
√
n. In total, we have O(

√
n) explicitly stored midpoints and O(

√
n/ε) fingerprints of

checkpoints. We only check each palindrome at most once with each checkpoint 4. Hence,

the total number of comparisons is in order of O(n/ε). Now, we bound the running time

corresponding to Step 4. This step has two functions: There are O(1/ε) Fingerprint Pairs

which are updated every iteration. This takes O(1/ε) time. Additionally, the middle of the

sliding window is checked with at most O(1/ε) Fingerprint Pairs. Thus, the time for Step

4 of the algorithm is bounded by O(n/ε).

4We can use an additional queue to store the index where the algorithm needs to check a checkpoint with
a palindrome.

Chapter 5

The Exact Algorithm

This section describes Algorithm Exact which determines the exact length of the longest

palindrome in S using O(
√
n) space and two passes over S.

5.1 Algorithm

For the first pass this algorithm runs ApproxSqrt (S, 1
2) (meaning that ε = 1/2). The first

pass returns `max, if `max <
√
n (Lemma 3.2.1). Otherwise, the first pass (Theorem 4.4.2)

returns for every palindrome P [m], with `(m) ≥
√
n, an estimate satisfying `(m) −

√
n/2 <

˜̀(m) ≤ `(m) w.h.p.

The algorithm for the second pass is determined by the outcome of the first pass. For the

case `max <
√
n, it uses the sliding window to find all P [m] with `(m) = `max. If `max ≥

√
n,

then the first pass only returns an additive
√
n/2-approximation of the palindrome lengths.

We define the uncertain intervals of P [m] to be: I1(m) = S[m− ˜̀(m)−
√
n/2 + 1,m− ˜̀(m)]

and I2(m) = S[m + ˜̀(m) + 1,m + ˜̀(m) +
√
n/2]. The algorithm uses the length estimate

calculated in the first pass to delete all RS-entries (Step 3) which cannot be the longest

palindromes. Similarly, the algorithm (Step 2) only keeps the middle entries of RF -entries

since these are the longest palindromes of their run. In the second pass, Algorithm Exact

stores I1(m) for a palindrome P [m] if it was not deleted. Algorithm Exact compares the

symbols of I1(m) symbol by symbol to I2(m) until the first mismatch is found. Then the

algorithm knows the exact length `(m) and discards I1(m). The analysis will show, at any

time the number of stored uncertain intervals is bounded by a constant.

22

CHAPTER 5. THE EXACT ALGORITHM 23

First Pass Run the following two algorithms simultaneously:

1. ApproxSqrt (S, 1/2). Let L be the returned list.

2. The simple process in ApproxSqrt (See Lemma 4.4.2) which reports `max if `max <
√
n.

Second Pass

� `max <
√
n: Use a sliding window of size 2

√
n and maintain two fingerprints FR[i −

√
n−`max+1, i−

√
n], and FF [i−

√
n+1, i−

√
n+`max]. Whenever these fingerprints

match, report P [i−
√
n].

� `max ≥
√
n: In this case, the algorithm uses a preprocessing phase first.

Preprocessing

1. Set ˜̀
max = max{˜̀(m) | P [m] is stored in L as an RF or an RS entry}.

2. For every RF -entry RF in L with midpoints m1, . . . ,mh remove RF from L and

add

Rs(m, i) = (m, ˜̀(m), FF (1,m), FR(1,m)) to L, for m ∈ {mb(h+1)/2c,md(h+1)/2e}.
To do this, calculate mb 1+h

2
c = m1 + (b1+h

2 c − 1)(m2 −m1) and md 1+h
2
e = m1 +

(d1+h
2 e−1)(m2−m1). Retrieve FF (1,m) and FR(1,m) form ∈ {mb(h+1)/2c,md(h+1)/2e}.

3. Delete all RS-entries (mk, ˜̀(mk), F
F (1,mk), F

R(1,mk)) with ˜̀(mk) ≤ ˜̀
max−

√
n/2

from L.

4. For every palindrome P [m] ∈ L set I1(m) := (m− ˜̀(m)− 1/2
√
n,m− ˜̀(m)] and

set finished(m) := false.

The resulting list is called L∗.

String processing At iteration i the algorithm performs the following steps.

1. Read S[i]. If there is a palindrome P [m] such that i ∈ I1(m), then store S[i].

2. If there is a midpoint m such that m+ ˜̀(m) < i < m+ ˜̀(m) +
√
n

2 , finished(m)

= false, and S[m− (i−m) + 1] 6= S[i], then set finished(m) := true and `(m) =

i−m− 1.

3. If there is a palindrome P [m] such that i ≥ ˜̀(m) +m+
√
n

2 , then discard I1(m).

4. If i = n, then output `(m) and m of all P [m] in L∗ with `(m) = `max.

CHAPTER 5. THE EXACT ALGORITHM 24

5.2 Analysis

The analysis of Algorithm Exact is based on the observation that, after removing palin-

dromes which are definitely shorter than the longest palindrome, at any time the number

of stored uncertain intervals is bounded by a constant. The following Lemma shows that

only the palindromes in the middle are strictly longer than the other palindromes of the

run. This allows us to remove all palindromes which are not in the middle of the run. The

techniques used in the lemma are very similar to the ideas used in Lemma 4.3.3. Let L̂n be

the list after the first pass.

Lemma 5.2.1 Let m1,m2,m3, ...,mh be midpoints of a maximal `∗-run in S. For every

j ∈ {1, . . . , h} \ {b(h+ 1)/2c, d(h+ 1)/2e},

`(mj) < max{`(mb(h+1)/2c), `(md(h+1)/2e)}.

Proof If h is even, the claim follows from Lemma 4.3.3. Therefore, we assume h = 2d− 1

which means that mb(h+1)/2c = md(h+1)/2e = md. Hence, we have to show that `(mj) <

`(md). Define w exactly as it is defined in Lemma 4.3.3 to be S[m1 + 1,m2]. Note that

S[mh−1 + 1,mh] = wR. We need two claims:

1. `(md) ≥ (d− 1)|w|+min{`(m1), `(mh)}
Proof: Suppose `(md) < (d−1)|w|+min{`(m1), `(mh)}. We know that S[m1 +1,md]

is the reverse of S[md+1,mh]. Therefore, `(md) = (d−1)|w|+k where k is the length

of the longest suffix of S[1,m1] which is the reverse of the prefix of S[mh + 1, n]. For-

mally, k = max{k′|S[m1 − k′ + 1,m1]R = S[mh + 1,mh + k′]}.
Define `′ , min{`(m1), `(mh)}. Thus, it suffices to show that k ≥ min{`(m1), `(mh)} =

`′. Observe, `′ < `∗ + |w| since otherwise m1 − |w| or mh + |w| would be a part of the

run. Since m1 is the midpoint of a palindrome of length `′ < `∗ + |w|, by Corollary

6.2.2, the left side of m1, i.e., S[m1− `′+1,m1] is a suffix of length `′ of wwR . . . wwR.

Similarly, S[mh + 1,mh + `′] is a prefix of length `′ of wwR . . . wwR. These two facts

imply that S[m1 − `′ + 1,m1] is the reverse of S[mh + 1,mh + `′] and thus k ≥ `′. �

2. |`(mh)− `(m1)| < |w|
Proof: WLOG., let `(mh) ≥ `(m1), then suppose `(mh) − `(m1) ≥ |w|. This implies

that `(mh) ≥ |w|+ `(m1) ≥ |w|+ `∗. By Lemma 6.2.2, we derive that the run is not

maximal, i.e., there is a midpoint of a palindrome with length of `∗ at index mh + |w|.
A contradiction. �

CHAPTER 5. THE EXACT ALGORITHM 25

Using these properties we claim that `(md) > `(mj):

1. For j < d : `(md) ≥
Property 1

(d − 1)|w| + min{`(m1), `(mh)} >
Property 2

(d − 1)|w| +

`(m1)− |w| = (d− 2)|w|+ `(m1)− |w| ≥ (j − 1)|w|+ `(m1) =
Lemma 4.3.3

`(mj).

2. For j > d : `(md) ≥
Property 1

(d − 1)|w| + min{`(m1), `(mh)} >
Property 2

(d − 1)|w| +

`(mh)− |w| = (d− 2)|w|+ `(mh)− |w| ≥ (j − 1)|w|+ `(mh) =
Lemma 4.3.3.

`(mj).

This yields the claim.

We conclude this section by stating and proving Theorem 5.2.2 covering the correctness of

the algorithm as well as the claimed space and time bounds. We say a palindrome with

midpoint m covers an index i if |m− i| ≤ `(m).

Theorem 5.2.2 (Exact) Algorithm Exact reports w.h.p. `max and m for all palindromes

P [m] with a length of `max. The algorithm makes two passes over S, uses O(n) time, and

O(
√
n) space.

Proof In this proof, similar to Theorem 4.4.2, we assume that the fingerprints do not fail

w.h.p.

For the case `max <
√
n it is easy to see that the algorithm satisfies the theorem.

Therefore, we assume `max ≥
√
n.

Correctness: After the first pass we know that due to Theorem 4.4.2 all
√
n-palindromes are

in L. The algorithm removes some of those palindromes and we argue that a palindrome

which is removed from L cannot be the longest palindrome. A palindrome removed in

� Step 2 is, by Lemma 5.2.1, strictly shorter than the palindromes of the middle of the

run from which it was removed.

� Step 3 with midpoint m has a length which is bounded by ˜̀
max − ˜̀(m) ≥

√
n/2. We

derive `max ≥ ˜̀
max ≥

√
n/2 + ˜̀(m) > `(m) where the last inequality follows from

`(m)−
√
n/2 < ˜̀(m) ≤ `(m).

Therefore, all longest palindromes are in L∗. Furthermore, the exact length of P [m] is

determined at iteration m + `(m) + 1 since this is the first iteration where S[m − (`(m) +

1)+1] 6= S[m+`(m)+1]. In Step 2, the algorithm sets the exact length `(m). If `(m) = `max,

then the algorithm reports m and `max in step 4 of iteration n.

CHAPTER 5. THE EXACT ALGORITHM 26

Space: For every palindrome we have to store at most one uncertain interval. At iteration i,

the number of uncertain intervals we need to store equals the number of palindromes which

cover index i. We prove in the following that this is bounded by 4. We assume ε to be 1/2

and `max ≥
√
n. Define ˜̀

min to be the length of the palindrome in L∗ for which the estimate

is minimal. All palindromes in L∗ have a length of at least
√
n, thus ˜̀

min ≥
√
n. We define

the following intervals:

� I1 = (i− ˜̀
min −

√
n, i− ˜̀

min]

� I2 = (i− ˜̀
min, i]

Recall that the algorithm removes all palindromes which have a length of at most ˜̀
max−

√
n/2

and thus ˜̀
min ≥ ˜̀

max −
√
n/2. Additionally, we know by Theorem 4.4.2 that `max − ˜̀

max <
√
n/2. We derive: `max − ˜̀

min ≤ `max − ˜̀
max +

√
n/2 <

√
n/2 +

√
n/2 =

√
n and therefore

`max <
√
n+ ˜̀

min. Hence, there is no palindrome which covers i and has a midpoint outside

of the intervals I1 and I2. It remains to argue that the number palindromes which are

centered in I1 and I2 and stored in L∗ is bounded by four: Suppose there were at least

four palindromes in I1 and I2 which cover i. Lemma 4.3.1 shows that in any interval of

length ˜̀
min either the number of palindromes is bounded by two or they form an ˜̀

min-run.

Thus there has to be at least one ˜̀
min-run. Recall that step 2 keeps for all RF -entries

only the midpoints in the middle of the run. The first pass does not create RF -entries

for all runs where the difference between two consecutive midpoints is more than
√
n/2

(See Definition 3 and step 5(a)i of ApproxSqrt). Thus, there is a run where the distance

between two consecutive midpoints is greater than
√
n/2. By Lemma 4.3.3, the difference

between `(m) for distinct midpoints m of one side of this run is greater than
√
n/2. Since

the checkpoints are equally spaced with consecutive distance of
√
n/2, the difference between

˜̀(m) for distinct midpoints m of one side of this run is greater than
√
n/2 as well. This

means that just the palindrome(s) in the middle of the run, say P [m], satisfy the constraint

˜̀(m) ≥ ˜̀
max −

√
n/2 and therefore the rest of the palindromes of this run would have been

deleted. A contradiction. Thus, there are at most two palindromes in both intervals and

thus in total at most four palindromes and four uncertain intervals. This yields the space

bound of O(
√
n).

Running time: As shown in Theorem 4.4.2 the running time is in O(n). The preprocessing

and the last step of the second pass can be done in O(n). If the first pass returned an

`max <
√
n then the running time of the second pass is trivially inO(n). Suppose `max ≥

√
n.

CHAPTER 5. THE EXACT ALGORITHM 27

The preprocessing and the last step of Algorithm Exact can be done in O(n) time and they

are only executed once. The remaining operations can be done in constant time per symbol.

This yields the time bound of O(n).

Chapter 6

The Logarithmic Space Algorithm

In this chapter, we present an algorithm which reports one of the longest palindromes and

uses only logarithmic space. We call it ApproxLog and we express it in the following section.

6.1 Algorithm

ApproxLog has a multiplicative error instead of an additive error term. Similar to ApproxSqrt

we have special indices of S designated as checkpoints that we keep along with some constant

size data in memory. The checkpoints are used to estimate the length of palindromes.

However, this time checkpoints (and their data) are only stored for a limited time. Since we

move from additive to multiplicative error we do not need checkpoints to be spread evenly

in S. At iteration i, the number of checkpoints in any interval of fixed length decreases

exponentially with distance to i. The algorithm stores a palindrome P [m] (as an RS-entry

or RNF -entry) until there is a checkpoint c such that P [m] was checked unsuccessfully

against c. A palindrome is stored in the lists belonging to the last checkpoint with which

is was checked successfully. In what follows we set δ ,
√

1 + ε− 1 for the ease of notation.

Every checkpoint c has an attribute called level(c). It is used to determine the number of

iterations the checkpoint data remains in the memory.

Memory invariants. After algorithm ApproxLog has processed S[1, i − 1] and before

reading S[i] it contains the following information:

1. Two Master Fingerprints up to index i− 1, i.e., FF (1, i− 1) and FR(1, i− 1).

2. A list of checkpoints CLi−1. For every c ∈ CLi−1 we have

28

CHAPTER 6. THE LOGARITHMIC SPACE ALGORITHM 29

� level(c) such that c is in CLi−1 if and only if c ≥ (i− 1)− 2(1 + δ)level(c).

� fingerprint(c) = FR(1, c)

� a list Lc. It contains all palindromes which were successfully checked with c, but

with no other checkpoint c′ < c. The palindromes in Lc are either RS-entries or

RNF -entries (See the Algorithm ApproxSqrt).

3. The midpoint m∗i−1 and the length estimate ˜̀(m∗i−1, i − 1) of the longest palindrome

found so far.

The algorithm maintains the following property. If P [m, i] was successfully checked with

checkpoint c but with no other checkpoint c′ < c, then the palindrome is stored in Lc.

The elements in Lc are ordered in increasing order of their midpoint. The algorithm stores

palindromes as RS-entries and RNF -entries. This time however, the length estimates are

not maintained. Adding a palindrome to a current run works exactly (the length estimate

is not calculated) as described in Algorithm ApproxSqrt .

Maintenance. At iteration i the algorithm performs the following steps.

1. Read S[i]. Update the Master Fingerprints to be FF (1, i) and FR(1, i).

2. For all k ≥ k0 = log(1/δ)/log(1 + δ)(The algorithm does not maintain intervals of size 0.)

(a) If i is a multiple of bδ(1 + δ)k−2c, then add the checkpoint c = i (along with

the checkpoint data) to CLi. Set level(c) = k, fingerprint(c) = FR(1, i) and

Lc = ∅.

(b) If there exists a checkpoint c with level(c) = k and c < i−2(1+δ)k, then prepend

Lc to Lc′ where c′ = max{c′′ | c′′ ∈ CLi and c
′′ > c}. Merge and create runs in

Lc if necessary (Similar to step 5 of ApproxSqrt). Delete c and its data from CLi.

3. For every checkpoint c ∈ CLi

(a) Letmc be the midpoint of the first entry in Lc and c′ = max{c′′ | c′′ ∈ CLi and c
′′ <

c}.

If i−mc = mc − c′, then we check P [m] against c′ by doing the following:

i. If the left side of mc is the reverse of the right side of mc (i.e., FR(c′,mc) =

FF (mc, i)) then move P [mc] from Lc to Lc′ by adding P [mc] to Lc′ :

A. If |Lc′ | ≤ 1, store P [mc] as a RS-entry.

CHAPTER 6. THE LOGARITHMIC SPACE ALGORITHM 30

B. If |Lc′ | = 2, create a run out of the RS-entries stored in Lc′ and P [mc].

C. Otherwise, add P [mc] to the RNF -entry in Lc′ .

ii. If the left side of mc is not the reverse of the right side of mc, then remove

mc from Lc.

iii. If i−mc > ˜̀(m∗i), then set m∗i = mc and set ˜̀(m∗i) = i−mc.

4. If i = n, then report m∗i and ˜̀(m∗i).

6.2 Analysis

ApproxLog relies heavily on the interaction of the following two ideas. The pattern of the

checkpointing and the compression which is possible due to the properties of overlapping

palindromes (Lemma 4.3.1). On the one hand the checkpoints are close enough so that the

length estimates are accurate (Lemma 6.2.4). The closeness of the checkpoints ensures that

palindromes which are stored at a checkpoint form a run (Lemma 6.2.3) and therefore can

be stored in constant space. On the other hand the checkpoints are far enough apart so

that the number of checkpoints and therefore the required space is logarithmic in n.

We start off with an observation to characterise the checkpointing. Step 2 of the algorithm

creates a checkpoint pattern: Recall that the level of a checkpoint is determined when the

checkpoint and its data are added to the memory. The checkpoints of every level have the

same distance. A checkpoint (along with its data) is removed if its distance to i exceeds a

threshold which depends on the level of the checkpoint. Note that one index of S can belong

to different levels and might therefore be stored several times. The following observation

follows from Step 2 of the algorithm.

Observation 3 At iteration i, ∀k ≥ k0 = d log(
(1+δ)2

δ
)

log(1+δ) e. Let Ci,k = {c ∈ CLi | level(c) = k}.
1. Ci,k ⊆ [i− 2(1 + δ)k, i].

2. The distance between two consecutive checkpoints of Ci,k is bδ(1 + δ)k−2c.

3. |Ci,k| = d 2(1+δ)k

bδ(1+δ)k−2ce.

This observation can be used to calculate the size of the checkpoint data which the algorithm

stores at any time.

Lemma 6.2.1 At Iteration i of the algorithm the number of checkpoints is in O
(

log(n)
ε log(1+ε)

)
.

CHAPTER 6. THE LOGARITHMIC SPACE ALGORITHM 31

Proof Given m1,m2, . . . ,mh and `∗ we prove the following stronger claim by induction over

the midpoints {m1, . . . ,mj}. (a’) m1,m2, . . . ,mj are equally spaced. (b’) S[m1+1,mj+`∗]

is a prefix of wwRwwR... .

Base case j = 2: Since we assume m1 is the midpoint of an `∗-palindrome and `∗ ≥ mh −
m1 ≥ m2−m1 = |w|, we have that S[m1− |w|+ 1,m1] = wR. Recall that `(m2) ≥ `∗ ≥ |w|
and thus, S[m1 + 1,m2 + |w|] = wwR.

We can continue this argument and derive that S[m1+1,m2+`∗] is a prefix of wwR . . . wwR.

(a’) for j = 2 holds trivially.

Inductive step j − 1 → j: Assume (a’) and (b’) hold up to mj−1. We first argue that

|mj −m1| is a multiple of |m2−m1| = |w|. Suppose mj = m1 + |w| · q+ r for some integers

q ≥ 0 and r ∈ {1, . . . , |w| − 1}. Since mj ≤ mj−1 + `∗, the interval [m1 + 1,mj−1 + `∗]

contains mj . Therefore, by inductive hypothesis, mj − r is an index where either w or wR

starts. This implies that the prefix of wwR(or wRw) of size 2r is a palindrome and the string

wwR(or wRw) has period 2r. On the other hand, by consecutiveness assumption, there is

no midpoint of an `∗-palindrome in the interval [m1 + 1,m2 − 1] without a period of 2p, a

contradiction. We derive that mj −m1 is multiple of |w|.
Hence, we assume mj = mj−1 + q · |w| for some q. The assumption that mj is a midpoint

of an `∗-palindrome beside the inductive hypothesis implies (b’) for j. The structure of

S[mj−1 + |w| − `∗ + 1,mj−1 + |w| + `∗] shows that mj−1 + |w| is a midpoint of an `∗-

palindrome. This means that mj = mj−1 + |w|. This gives (a’) and yields the induction

step.

Corollary 6.2.2 shows the structure of overlapping palindromes and is essential for the com-

pression. The main difference between Corollary 6.2.2 and Lemma 4.3.1 is the required

distance between the midpoints of a run. Lemma 4.3.1 assumes that every palindrome in

the run overlaps with all other palindromes. In contrast, Corollary 6.2.2 assumes that every

palindrome P [mj] overlaps with P [mj−2], P [mj−1], P [mj+1], and P [mj+2]. It can be proven

by an induction over the midpoints and using Lemma 4.3.1.

Corollary 6.2.2 If m1,m2, . . . ,mh form an `∗-run for an arbitrary natural number `∗ then

(a) m1,m2,m3, . . . ,mh are equally spaced in S, i.e., |m2 − m1| = |mk+1 − mk| ∀k ∈
{1, . . . , h− 1}

CHAPTER 6. THE LOGARITHMIC SPACE ALGORITHM 32

(b) S[m1 + 1,mh] =

(wwR)
h−1
2 h is odd

(wwR)
h−2
2 w h is even

, where w = S[m1 + 1,m2].

Proof We prove this by induction. Suppose j0 is the highest index where mj0 < m1 + `∗.

By Definition 2, we have j0 ≥ 3. We start by proving the induction basis. By Lemma 4.3.1,

the claim holds for m1,m2, . . . ,mj0 , i.e., they are equally spaced and S[m1 + 1,mj0] is a

prefix of wwR . . . wwR. For the inductive step we assume that the claim holds for mj−1.

Consider the midpoints mj−1,mj ,mj+1. Since mj+1 −mj−1 ≤ `∗, Lemma 4.3.1 shows that

those midpoints fulfill the claimed structure.

The space bounds of Theorem 6.2.5 hold due to the following property of the checkpointing:

If there are more than three palindromes stored in a list Lc for checkpoint c, then the

palindromes form a run and can be stored in constant space as the following lemma shows.

Lemma 6.2.3 At iteration i, let c ∈ CLi be an arbitrary checkpoint. The list Lc can be

stored in constant space.

Proof We fix an arbitrary c ∈ CLi. For the case that there are less than three palindromes

belonging to Lc, they can be stored as RS-entries in constant space. Therefore, we assume

the case where there are at least three palindromes belonging to Lc and we show that they

form a run. Let c′ be the highest (index) checkpoint less than c, i.e., c′ = max{c′′ | c′′ ∈
CLi and c

′′ < c}. We disregard the case that the index of c is 1. Let k be the minimum value

such that (1 + δ)k−1 < i− c ≤ (1 + δ)k. Recall that Lc is the list of palindromes which the

algorithm has successfully checked against c and not against c′ yet. Let P [m] be a palindrome

in Lc. Since it was successfully checked against c we know that i−m ≥ m−c. Similarly, since

P [m] was not checked against c′ we have i−m < m−c′. Thus, for every P [m] in Lc we have
i+c′

2 < m ≤ i+c
2 . Therefore, all palindromes stored in Lc are in an interval of length less than

i+c
2 −

i+c′

2 = c−c′
2 . If we show that `(m) ≥ c−c′

2 for all P [m] in Lc, then applying Lemma 4.3.1

with `∗ = c−c′
2 on the palindromes in Lc implies that they are forming a run. The run can be

stored in constant space in an RNF -entry. Therefore, it remains to show that `(m) ≥ c−c′
2 .

We first argue the following: c − c′ ≤
Obs. 3

δ(1 + δ)k−2 ≤
δ≤1

(1+δ)k−1

2 <
Def. of k

i−c
2 . Since P [m]

was successfully checked against c and since m > i+c′

2 we derive that `(m) > i+c′

2 − c.

Therefore, `(m) > i+c′

2 − c = i−c
2 + c′−c

2 >
(6.2)

c− c′ + c′−c
2 = c−c′

2 .

CHAPTER 6. THE LOGARITHMIC SPACE ALGORITHM 33

The following lemma shows that the checkpoints are sufficiently close in order to satisfy the

multiplicative approximation.

Lemma 6.2.4 ApproxLog reports a midpoint m∗ such that w.h.p. `max
(1+ε) ≤ ˜̀(m∗) ≤ `max.

Proof In step 4 of iteration i, ApproxLog reports the midpoint and length estimate of

P [m∗]. We first argue that ˜̀(m∗) ≤ `(m∗) ≤ `max. Let i′ be the last time ˜̀(m∗) was

updated by step 3(a)iii of the algorithm. By the condition of step 3(a)iii, S[c′ + 1,m∗] is

the reverse of S[m∗+ 1, i′], where c′ = 2 ·m∗− i′. Hence, we derive `(m∗) ≥ i′−m = ˜̀(m∗).

Moreover, by the definition of `max we have `max ≥ `(m∗).
We now argue `max

(1+ε) ≤ ˜̀(m∗). Let P [mmax] be a palindrome of maximum length, i.e.,

`(mmax) = `max. Let k be an integer such that (1+δ)k−1 < `max ≤ (1+δ)k. Consider ˜̀(m∗)

after the algorithm processed S[1, i′], where i′ = mmax+(1+δ)k−1. By Observation 3, there

is a checkpoint in interval [i′−2 · (1+δ)k−3, i′−2 · (1+δ)k−1 +δ(1+δ)k−3]. Let c denote this

checkpoint. ApproxLog successfully checked P [mmax] against this checkpoint and therefore

the value ˜̀(m∗) is set to at least mmax−c. We have mmax−c ≥ (1+δ)k−1−δ(1+δ)k−3. Thus,

we have ˜̀(m∗) ≥ mmax−c ≥ (1+δ)k−1−δ(1+δ)k−3. Therefore, `max
˜̀(m∗)

≤ (1+δ)k

(1+δ)k−1−δ(1+δ)k−3 =

(1+δ)3

(1+δ)2−δ ≤ (1 + δ)2 = 1 + ε.where the last equation follows from δ =
√

1 + ε− 1.

We conclude this chapter by stating and proving Theorem 6.2.5. Arguably the most sig-

nificant contribution of this paper is an algorithm which requires only logarithmic space.

In contrast to ApproxSqrt (Theorem 4.4.2) this algorithm has a multiplicative error and it

reports only one of the longest palindromes (see Longest Palindromic Substring Problem)

instead of all of them due to the limited space.

Theorem 6.2.5 (ApproxLog) For any ε in (0, 1], Algorithm ApproxLog reports w.h.p.

an arbitrary palindrome P [m] of length at least `max/(1 + ε). The algorithm makes one pass

over S, uses O(n log(n)
ε log(1+ε)) time, and O(log(n)

ε log(1+ε)) space.

Proof In this proof, similar to Theorems 4.4.2 and 5.2.2, we assume that the fingerprints do

not fail w.h.p. as ApproxLog , similar to ApproxSqrt , does not take more than n2 fingerprints

during the processing of any input of length n.

Correctness: The correctness of the algorithm follows from Lemma 6.2.4. It remains to

argue that the space and time are not exceeded.

CHAPTER 6. THE LOGARITHMIC SPACE ALGORITHM 34

Space: The space required by ApproxLog is dominated by space needed to store the palin-

dromes (corresponding midpoints and fingerprints) in Lc for all c ∈ CLi. Lemma 6.2.3 shows

that for any c ∈ CLi the list Lc can be stored in constant space. Furthermore, Lemma 6.2.1

shows that there are O
(

log(n)
ε log(1+ε)

)
elements in CLi.

Running time: The running time is determined by step 2b and 3. The algorithm goes in

every iteration through all checkpoints in CLi which has O
(

log(n)
ε log(1+ε)

)
elements as Lemma

6.2.1 shows. For each checkpoint the steps (2b and 3) take only constant time. Thus, the

required time to process the whole input is O
(

n log(n)
ε log(1+ε)

)
.

We are ready to prove Theorem 6.2.5. The correctness follows from Lemma 6.2.4. Lemma

6.2.1 and Lemma 6.2.3 yield the claimed space. In every iteration the algorithm processes

every checkpoint in CLi in constant time. The number of checkpoints is bounded by Lemma

6.2.1.

Chapter 7

Lower Bound

In this chapter, we prove that lower bounds on the space of any randomized algorithm. We

give in Lemma 7.1.1 a probability distribution over input streams. This distribution gives a

lower bound on the required space of an optimal deterministic algorithm which approximates

the length of the longest palindrome within an additive error.

7.1 Proof

Theorem 7.1.2 applies Yao’s principle (for further reading see [39]) and shows a lower bound

on the space of any randomized algorithm which approximates the length of the longest

palindrome. Recall that Σ denotes the set of all input symbols. A memory cell is a memory

unit to store a symbol from Σ. Let C(S,A) denote the required space of algorithm A on

the input stream S.

Lemma 7.1.1 Let A be an arbitrary deterministic algorithm which approximates the length

of the longest palindrome up to an additive error of er elements. For any positive integers m

and er, there is a probability distribution p over Σ2m(2er+1)+4er such that E[C(S,A)] ≥ m,

where S ∈ Σ2m(2er+1)+4er is a random variable and follows the distribution p.

Proof We construct a set of input streams S and we discuss afterwards the expected space

that A needs to process a random input from S ∈ S. We define the string [2er] = 1, 2, 3, ..., 2·
er and similarly [2er]

R = 2 · er, 2 · er − 1, . . . , 2, 1. Define S such that each element of S
consists of 2m arbitrary symbols from Σ separated by the string [2er] in the first half and

35

CHAPTER 7. LOWER BOUND 36

by [2er]
R in the second half. Formally,

S = {[2er]a1[2er]a2[2er]...am[2er][2er]
Ram+1[2er]

Ram+2 . . . [2er]
Ra2m[2er]

R | ∀j, aj ∈ Σ}.

We define the input distribution p to be the uniform distribution on S. Let ` denote the

length of a stream S ∈ S, i.e., ` = 2m(2er + 1) + 4er. In the following, we show that A

needs to store a1, . . . , am in order to have an approximation of at most er.

If A does not store all of them, then A behaves the same for two streams S1, S2 ∈ S with

1. S1[1, `/2] 6= S2[1, `/2]

2. S1[1, `/2] = S2[`/2, `]R = S1[`/2, `]R

Let x = j(2er+1) be the highest index of S1[1, `/2] such that S1[x] 6= S2[x] for j ∈ {1, . . . ,m}.
If A has the same memory content at index `/2 for S1 and S2, then A returns the same

approximation for both streams, but their actual longest palindromes are of lengths (m +

1)2er and (m− j + 1) · 2er where j ≥ 1. Hence, no matter which approximation A returns,

it differs by more than er of either S1 or S2. Thus, A must have distinct memory contents

after reading index `/2.

In what follows we argue that the expected required space to store a1, . . . , am is m.

We use Shannon’s entropy theorem (for further reading on information theory see [44]) to

derive a lower bound on the expected size of the memory. By Shannon’s entropy theorem,

the expected length of this encoding cannot be smaller than the distribution’s entropy. Fix

an arbitrary assignment for the variables a1, . . . , am. The probability for a string to S to

have the same assignment is 1
|Σ|m . The entropy of an uniform distribution is logarithmic in

the size of the domain. Hence, log(|Σ|m) = m · log(|Σ|) (or m memory cells) is the lower

bound on the expected space of A.

Theorem 7.1.2 uses Yao’s technique to prove the lower bound for randomized algorithms’

space on the worst-case input, using deterministic algorithms’ space on random inputs.

Theorem 7.1.2 Any randomized algorithm for approximating the length of the longest

palindrome in a stream of length ` has the following property: In order to approximate

the length up to an additive error of er elements it must use Ω(`/er) space.

Proof Let S be the set of all possible input streams. Let D be the set of all deterministic

algorithms. By Yao’s principle ([39]), we derive the following. For any random variable

CHAPTER 7. LOWER BOUND 37

Sp over input streams which follows a probability distribution p and for any randomized

algorithm Dq which is a probability distribution q on deterministic algorithms we have:

Min
A∈D

E[C(sp, A)] ≤Max
I∈S

E[C(I,Dq)]

Lemma 7.1.1 gives a lower bound for the left hand side of the above inequality: It shows

that for a stream of length 2m(2er+1)+4er at least m memory cells are required in order to

achieve an additive error of at most er. Therefore, the required space for ` = 2m(2er+1)+2er

is Ω(`/er). One can generalize this for any ` by using padding. Thus,

Ω(l/e) ≤Max
I∈S

E[C(I,Dq)].

Theorem 7.1.3 can be derived by setting ` = n and er = ε
√
n.

Theorem 7.1.3 Any randomized one-pass algorithm that approximates the length of the

longest palindrome up to an additive error of ε
√
n must use Ω(

√
n/ε) space.

Corollary 7.1.4 is another direct implication that can be obtained by setting er = 1.

Corollary 7.1.4 There is no any randomized algorithm that computes the length of the

longest palindrome in a given string precisely and uses a sublinear number of memory cells.

Chapter 8

Conclusion

The work presented in this thesis studies complexity of the Longest Palindromic Substring

Problem in the streaming model. Palindromes are motivated to be studied in computer

science through variety of applications. It has been used in several old literature in dif-

ferent languages. However we consider a new application in bioinformatcs area, where a

complementary palindrome in an RNA corresponds to certain shape, called hairpin loop.

The results discussed in this thesis can be considered as a starting point to process long

RNA sequences and estimate overall shape and how it could fold.

For the case, where one is interested in finding all palindromic substrings with an additive

approximation to their length, A sublinear space algorithm is presented. The tools used for

this end, includes Karp-Rabin fingerprint, which shows the strength of this tool despite

the time that has passed since it was first introduced. Also, the properties of overlapping

palindromes are studied closely further than what has been known in the past. To prove

optimality, matching lower bound is given. Moreover, an interesting, carefully designed

checkpointing scheme is introduced, which allows us to present a logarithmic space algorithm

considering multiplicative approximation.

There are still plenty of classical string problems needed to be studied in streaming

model, which finds its applications in bioinformatics areas. Namely, different generalizations

of palindrome concept can be good candidates to be discussed in the area which allows

human being to be able to process long streams of data.

38

Bibliography

[1] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[2] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms
via precision sampling. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 363–372,
2011.

[3] Alberto Apostolico, Dany Breslauer, and Zvi Galil. Parallel detection of all palindromes
in a string. Theoretical Computer Science, 141(12):163 – 173, 1995.

[4] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a moving window
over streaming data. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA., pages 633–634,
2002.

[5] Valérie Berthé and Laurent Vuillon. Palindromes and two-dimensional sturmian se-
quences. 6(2):121–138, 2001.

[6] Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating entropy over data streams.
In Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzerland,
September 11-13, 2006, Proceedings, pages 148–159, 2006.

[7] Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from
sliding windows. J. Comput. Syst. Sci., 78(1):260–272, 2012.

[8] Dany Breslauer and Zvi Galil. Real-time streaming string-matching. In Raffaele Gian-
carlo and Giovanni Manzini, editors, Combinatorial Pattern Matching, volume 6661 of
Lecture Notes in Computer Science, pages 162–172. Springer Berlin Heidelberg, 2011.

[9] Amit Chakrabarti. CS85: Data Stream Algorithms (Lecture Notes), December 2009.
Lecture Notes, Dartmouth College.

[10] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds
for communication and stream computation. Electronic Colloquium on Computational
Complexity (ECCC), 18:62, 2011.

39

BIBLIOGRAPHY 40

[11] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on
the multi-party communication complexity of set disjointness. In 18th Annual IEEE
Conference on Computational Complexity (Complexity 2003), 7-10 July 2003, Aarhus,
Denmark, pages 107–117, 2003.

[12] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms
for clustering problems. In Proceedings of the 35th Annual ACM Symposium on Theory
of Computing, June 9-11, 2003, San Diego, CA, USA, pages 30–39, 2003.

[13] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms (3. ed.). MIT Press, 2009.

[14] Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin Zhang. Continuous sampling
from distributed streams. J. ACM, 59(2):10, 2012.

[15] Nick G. Duffield, Carsten Lund, and Mikkel Thorup. Priority sampling for estimation
of arbitrary subset sums. J. ACM, 54(6), 2007.

[16] Funda Ergun, Hossein Jowhari, and Mert Saǧlam. Periodicity in streams. In Proceedings
of the 13th international conference on Approximation, and 14 the International con-
ference on Randomization, and combinatorial optimization: algorithms and techniques,
APPROX/RANDOM’10, pages 545–559, Berlin, Heidelberg, 2010. Springer-Verlag.

[17] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. Graph distances in the streaming model: the value of space. In Proceedings
of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005,
Vancouver, British Columbia, Canada, January 23-25, 2005, pages 745–754, 2005.

[18] Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. An
approximate l1-difference algorithm for massive data streams. SIAM J. Comput.,
32(1):131–151, 2002.

[19] Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing diameter in the
streaming and sliding-window models. Algorithmica, 41(1):25–41, 2005.

[20] Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in dynamic data streams
and applications. Int. J. Comput. Geometry Appl., 18(1/2):3–28, 2008.

[21] Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, pages 209–217, 2005.

[22] Zvi Galil. String matching in real time. J. ACM, 28(1):134–149, January 1981.

[23] Malgorzata Giel-Pietraszuk, Marcin Hoffmann, Sylwia Dolecka, Jacek Rychlewski, and
Jan Barciszewski. Palindromes in proteins. Journal of Protein Chemistry, 22(2):109–
113, 2003.

BIBLIOGRAPHY 41

[24] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukrishnan, and
Martin Strauss. Fast, small-space algorithms for approximate histogram maintenance.
In Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21,
2002, Montréal, Québec, Canada, pages 389–398, 2002.

[25] Sudipto Guha and Andrew McGregor. Approximate quantiles and the order of the
stream. In Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, June 26-28, 2006, Chicago, Illinois, USA,
pages 273–279, 2006.

[26] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. Clustering data streams: Theory and practice. IEEE Trans. Knowl.
Data Eng., 15(3):515–528, 2003.

[27] Dan. Gusfield. Cambridge University Press, 1997.

[28] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. J. ACM, 53(3):307–323, 2006.

[29] Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments
of data streams. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, Baltimore, MD, USA, May 22-24, 2005, pages 202–208, 2005.

[30] Johan Jeuring. The derivation of on-line algorithms, with an application to finding
palindromes. Algorithmica, 11(2):146–184, 1994.

[31] Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers,
finding duplicates in streams, and related problems. In Proceedings of the 30th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
2011, June 12-16, 2011, Athens, Greece, pages 49–58, 2011.

[32] Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment esti-
mation in data streams in optimal space. In Proceedings of the 43rd ACM Symposium
on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
745–754, 2011.

[33] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBM J. Res. Dev., 31(2):249–260, March 1987.

[34] D. Knuth, J. Morris, Jr., and V. Pratt. Fast pattern matching in strings. SIAM Journal
on Computing, 6(2):323–350, 1977.

[35] Glenn Manacher. A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. J. ACM, 22(3):346–351, July 1975.

BIBLIOGRAPHY 42

[36] Andrew McGregor. Finding graph matchings in data streams. In Approximation,
Randomization and Combinatorial Optimization, Algorithms and Techniques, 8th In-
ternational Workshop on Approximation Algorithms for Combinatorial Optimization
Problems, APPROX 2005 and 9th InternationalWorkshop on Randomization and Com-
putation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005, Proceedings, pages
170–181, 2005.

[37] Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20,
2014.

[38] Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error lp-sampling with
applications. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages
1143–1160, 2010.

[39] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge Uni-
versity Press, New York, NY, USA, 1995.

[40] S. Muthukrishnan. Data Streams: Algorithms and Applications.

[41] S. Muthukrishnan and Martin Strauss. Rangesum histograms. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14,
2003, Baltimore, Maryland, USA., pages 233–242, 2003.

[42] S. Ohno. Intrinsic evolution of proteins. the role of peptidic palindromes. Riv. Biol.,
83:297–291, 1990.

[43] Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming
model. In Proceedings of the 2009 50th Annual IEEE Symposium on Foundations
of Computer Science, FOCS ’09, pages 315–323, Washington, DC, USA, 2009. IEEE
Computer Society.

[44] Claude E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423, 623–656, July, October 1948.

[45] Michael Zuker and David Sankoff. Rna secondary structures and their prediction.
Bulletin of Mathematical Biology, 46(4):591–621, 1984.

