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Abstract

Assessing, managing, and communicating variance and risk is fundamental to effective ecolog-
ical decision making. One promising approach is to borrow concepts from financial portfolio
management. Ecological populations behave like portfolios in many ways—we can treat the
abundance of populations, such as salmon in streams, as financial stock value, and groups of
populations, such as salmon within a river catchment, as portfolios. If a group of populations
react differently to an environmental event then the probability of sudden decline may be low-
ered, similar to a diversified financial portfolio. This risk reduction has been referred to as
the portfolio effect. In this thesis I consider three applications of portfolio concepts to ecol-
ogy. I begin by evaluating ways of estimating portfolio effects and applying these metrics to
moth, reef fish, and salmon metapopulations from around the world. I show an inherent bias
to a commonly used method, develop a new method based on Taylor’s power law of mean-
variance scaling, and outline recommendations for estimating portfolio effects. Next, I use a
portfolio approach to inform conservation priorities for salmon populations under a changing
climate. I show that preserving a diversity of thermal tolerances minimizes risk and ensures
persistence given long-term environmental change. However, this reduction in variability can
come at the expense of long-term persistence if climate change increasingly restricts available
habitat, forcing ecological managers to balance society’s desire for short-term stability and
long-term viability. Finally, I take the concept of black swans (extreme and unexpected events)
from the financial literature and ask what the evidence is for these events across hundreds of
bird, mammal, insect, and fish abundance time series. I find strong evidence for the infrequent
(3-5%) occurrence of ecological black swans. Black swans are predominantly (87%) downward
events and tend to be associated with extreme climate, natural enemies (predators and para-
sites), or the combined effects of multiple factors, with little relationship to life history. My
thesis demonstrates the importance of conserving ecological properties that may contribute to
portfolio effects, such as thermal-tolerance diversity and habitat heterogeneity, and developing

conservation strategies that are robust to unexpected extreme events.
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Chapter 1

Introduction

In the coming century we face a loss of biodiversity on the order of 100-10,000 times greater
than average rates in the fossil record (Millennium Ecosystem Assessment 2005)—a rate as
fast if not faster than any of the five past mass extinctions (Barnosky et al. 2011; Harnik et al.
2012). Compounding this problem for conservation managers is uncertainty in future climate
conditions (Heller and Zavaleta 2009) and the unknown responses of species and communi-
ties to those conditions (Lavergne et al. 2010). Therefore, several urgent questions need to be
addressed: Exactly how big a problem is the loss of biodiversity for the stability of ecological
systems? How can conservation biologists communicate the insurance benefit of biodiversity
to the public and policy makers? And, how can we apply limited conservation funds to manage
biodiversity and limit risk in the face of increasing environmental uncertainty?

Nearly a decade ago, Figge (2004) and Koellner and Schmitz (2006) laid the foundation for
why concepts from financial portfolio theory are ideally suited to addressing these questions.
Financial portfolio theory seems applicable to ecological systems for at least four reasons. First,
like financial systems, ecological systems are structured hierarchically (Odum 1959; Holling
2001). Groups of populations form metapopulations and groups of species form communities;
groups of financial assets form investment funds, which in turn form portfolios. Additionally,
ecological and financial managers have similar goals. Ecological resource managers might wish
to minimize the probability of population decline while maintaining an acceptable level of hunt-
ing or fishing; financial portfolio managers minimize the probability of large economic losses
for an acceptable level of expected financial returns (May et al. 2008). Another reason why
portfolio theory is ideally suited for ecology is that substantial resources have gone into devel-

oping mathematical theory for optimizing financial investments (e.g. Markowitz 1952; Rachev
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et al. 2008). There is therefore a rich body of theory and experience to draw from. Finally, the
portfolio metaphor is an engaging and accessible way for ecologists to think about variance
and biological diversity and convey the importance of this (often abstract) literature.

A number of recent studies have used financial portfolios as a metaphor, metric, or man-
agement approach (Fig. 1.1) to estimate and communicate the stabilizing benefit of diversity
and prioritize its conservation. I review many of these applications below and throughout my
thesis. Portfolio theory promises to move conservation biology beyond the familiar concepts
of the quantity, variety, and distribution of species (Mace 2005) and into a new dimension that
emphasizes elements of variance, covariance, stability, synchrony, and extremeness (Loreau

2010; Thompson et al. 2013).

Concept Desirable traits

Metaphor Accurate (not misleading)
Widely and quickly comprehensible
Facilitates new solutions

Metric Truthful (measures what it purports to)
Precise
Unbiased
Easily measurable
Easily interpretable

Management Operationable (produces actionable decisions)
approach Works with clearly defined goals

Conveys tradeoffs clearly

Based on defendable assumptions

Accurate (produces intended consequences)

Figure 1.1: Desirable traits of ecological metaphors, metrics, and management approaches
(decision-making tools).

1.1 Ecological portfolios as a metaphor

Metaphors are powerful tools for communicating and shaping scientific ideas (Brown 2003) and
are particularly useful in developing and communicating concepts in the field of conservation
biology (Larson 2011). The portfolio concept has long been used as a metaphor to emphasize
the need to not put all your eggs in one basket. This metaphor has come into particular promi-

nence in recent decades. For example, the IUCN Criterion B2a recognizes the risks associated
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with a species existing in few locations ([IUCN] The World Conservation Union 2001). As an-
other example, ecologists have suggested the need to bet-hedge by developing a portfolio of
approaches when tackling conservation issues (e.g. Ehrlich and Pringle 2008). Ecologists have

also used the metaphor to refer to diverse ecosystems and communities as portfolios of species

(Figge 2004).

1.2 The portfolio-effect metric

We can apply the portfolio metaphor to obtain the portfolio-effect metric, which asks what
the precise benefit is of a unit increase in diversity. The portfolio effect is derived from an
economic question: How much better off are we by investing in a diversified portfolio instead
of investing everything in a single asset (Markowitz 1952)? In conservation biology, we can
consider the current ecological system the diversified portfolio and a theoretical homogeneous
(or monoculture) system the single asset (Anderson et al. 2013). For example, we could ask how
much more stable is a metapopulation of salmon from different streams, rivers, or watersheds
(the portfolio) compared to a theoretical homogeneous stream population (the single asset)
(Schindler et al. 2010; Carlson and Satterthwaite 2011). So, to accurately measure a portfolio
effect we need to predict the variability of a theoretical homogeneous system—a system that
lacks the element of biodiversity we are interested in.

Early work focused on theoretical aspects of the portfolio effect for greatly simplified
systems—identifying when we would expect a stabilizing portfolio effect and what factors
would enhance it (Doak et al. 1998; Tilman et al. 1998; Lehman and Tilman 2000). Over time,
theoretical studies developed indices that relaxed assumptions about the systems they describe
(e.g. Loreau 2010; Thibaut and Connolly 2013; Gross et al. 2013). A recent trend has been to ap-
ply these indices to empirical data, albeit primarily to salmon (e.g. Greene et al. 2010; Schindler
et al. 2010; Carlson and Satterthwaite 2011; Gross et al. 2013; Anderson et al. 2013; Mellin et al.
2014).

This recent empirical work has mostly concentrated on applying simple portfolio-effect
metrics that make strong assumptions rarely met in empirical systems (Thibaut and Connolly
2013). Violation of these assumptions, for example, the assumption that the temporal standard
deviation scales directly with the mean, or that populations are approximately equal in size,
can distort our perception of the portfolio effect and hence the perceived benefit of diversity
to ecological stability. I tackle this issue in Chapter 2, where I consider a simple portfolio-

effect metric that has been used to infer the stabilizing effects of population diversity in salmon
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metapopulations. I extend the theoretical work of Doak et al. (1998) and Tilman et al. (1998)
to develop an additional empirical portfolio effect that accounts for the population abundance
mean-variance relationship and unequal population sizes. I show how these metrics theoreti-
cally differ and how they differ in practice when applied to metapopulations from around the
world. I conclude by making practical recommendations for ecologists when choosing how to

measure ecological portfolio effects.

1.3 Ecological portfolio management

In addition to measuring the portfolio-effect metric, we can use financial portfolio theory to
inform decisions about conservation management. Markowitz’s seminal contribution to finan-
cial portfolio theory was a focus on portfolio selection through what is now referred to as
modern portfolio theory—the idea that out of all possible portfolios there exists a subset that
maximize returns for a level of risk (or minimize risk for a level of return) (Markowitz 1952)
(Fig. 1.2). In conservation biology, the goals of conservation practitioners often parallel those of
financial managers, even though they are rarely expressed as such (Figge 2004). I see ecological
portfolio management happening in one of three ways: choosing existing management struc-
tures that promote diversified portfolios, using portfolio theory to optimize ecological resource
extraction, or using portfolio theory to optimize an ecological system itself.

First, we can identify resource management structures that promote diverse portfolios. For
example, fishers can engage in catch-pooling cooperatives where fishers share the profits from
their catches according to predefined rules. Sethi et al. (2012) showed that this portfolio-like
scheme reduces risk for red king crab fishers in the Bering Sea by up to 40%. Other fisheries
management tools, such as community-based management, individual transferable quotas, and
licensing systems that allow for fishing a diversity of species, can create diversified catch port-
folios for fishers and buffer fishers against the risk of poor profits (Hilborn et al. 2001; Kasperski
and Holland 2013). Alternatively, we can consider the properties of a diversified portfolio, such
as representation, resilience, and redundancy, and look for management strategies that pro-
mote these properties in ecological systems (Haak and Williams 2012)

Second, we can use portfolio theory directly to optimally allocate harvesting efforts. This
suggestion is not new—some of the earliest references to ecological portfolios suggest port-
folio theory as a management tool (Baldursson and Magnusson 1997; Costanza et al. 2000)

and interest in the topic expanded in subsequent years (e.g. Edwards 2004; Sanchirico et al.
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% (a) Efficient (c) Ariskier
€ - frontier efficient portfolio
S <
°© 2
= 2
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g GE) (b) Minimum (d) An inefficient
w variance portfolio portfolio

B

Expected variability
(e.g. variance or risk metrics)

Figure 1.2: An introduction to modern portfolio theory mean-variance optimization. In fi-
nance, portfolios are formed by choosing how much to invest in various assets. Modern port-
folio theory focuses on identifying the set of portfolios that optimizes the trade-off between
expected return (mean) and expected variance or risk. (a) This set of portfolios is referred to
as the efficient frontier. (b) The minimum variance portfolio achieves the lowest expected risk;
the remaining risk is said to be undiversifiable. (c) A risker, but still efficient portfolio. (d) An
example inefficient portfolio, which has a lower expected return than (c) and greater expected
risk than (b). Adapted from Hoekstra (2012).

2008; Halpern et al. 2011; Moloney et al. 2011). In conservation biology, portfolio optimiza-
tion can be applied spatially. For example, Halpern et al. (2011) used portfolio theory to il-
lustrate the tradeoff between fishing profits and spatial unevenness of marine resource value.
Portfolio theory has also been used to optimize decisions about whether to clearcut or retain
standing trees (Hyytiainen and Penttinen 2008; Hildebrandt and Knoke 2011). As a third ex-
ample, Moloney et al. (2011) used portfolio theory to optimize the choice of grazing animals on
Australia’s rangelands. With few exceptions, however, the application of portfolio theory for
harvesting decisions has been limited to fishery and forestry examples.

Finally, we can use ecological portfolio management to allocate conservation efforts to
manage risk for an ecological system as a whole. For example, portfolio optimization can be
used to spatially allocate conservation activity for wetlands to maximize ecosystem services at
a given level of risk under the uncertainty of climate change (Ando and Hannah 2011; Ando and
Mallory 2012). In forestry, portfolio theory has been used to select the optimal weighting of
seed sources for regenerating forests under a variety of climate change scenarios (Crowe and
Parker 2008). I focus on this last issue for Chapter 3, where I use portfolio theory to assess the

risk-return trade-off for salmon metapopulation productivity and persistence given choices
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about what habitat to conserve under climate change and stream-flow reduction scenarios.

1.4 Extreme risk

Early work in financial portfolio optimization focussed on mean-variance portfolio optimiza-
tion (Markowitz 1952). But even by the late 1950s, Markowitz (1959) was suggesting we con-
sider risk instead of variance. Whereas variance puts equal weight on upward and downward
events, risk specifically refers to both the probability of an undesired event happening and the
magnitude of loss associated with that event (Morgan and Henrion 1990; Reckhow 1994). It is
increasingly common in the financial literature to assume that that rate of change of financial
asset value follows a distribution that is heavier-tailed than the normal distribution (Rachev
et al. 2008). First, there is ample evidence that financial returns are heavy tailed. Second, the
consequences to portfolio optimization of assuming normal-tailed returns when they are heavy
tailed can have dramatic consequences for risk forecasts and hence portfolio investment deci-
sions (Rachev et al. 2008). For example, normal tailed returns would not allow for the stock
market crash of 2008, but we know that events this extreme are not only possible, they have
happened with surprising frequency in the last 100 years (Sornette 2009).

Taleb (2007) wrote about the concept of heavy-tailed events in detail. He coined the term
‘black swan’ to refer to rare events with large impact that are typically rationalized in ret-
rospect. For ornithologists, the discovery of a single black-coloured swan was sufficient to
disprove the hypothesis that all swans are white. Many of the major events that have shaped
human history could be considered black swans. For example, with hindsight, World War I and
IL, the great depression, and the spread of the Internet could be considered black swans (Taleb
2007). In recent years, the fields of finance and sociology have moved towards systematically
measuring these heavy-tailed events (e.g. Sornette 2009; Janczura and Weron 2012; Johnson
et al. 2013).

Ecology has likewise seen a move towards focusing on risk and extremeness (e.g. Gerber
and Hilborn 2001; Jentsch et al. 2007; Thompson et al. 2013, Fig. 1.3). Recent work in ecology
has noted the frequency and influence of population dynamic catastrophes (Gerber and Hilborn
2001; Ward et al. 2007), ecological surprises (Lindenmayer et al. 2010; Doak et al. 2008), coun-
terintuitive responses of populations to management (Pine III et al. 2009), and even explored
how the specific concept of black swans could apply to ecology and evolution (Nunez and
Logares 2012). Discussion of the importance of catastrophic events has a long history in the

ecological literature. As early as 1898, Bumpus (1899) observed that a severe winter storm off
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Providence, Rhode Island killed a disproportionate number of very small and large sparrows
(and this thesis uncovers a number of other catastrophic events from the 1800s). In the 1990s,
both Sugihara and May (1990) (using fractals) and Mangel and Tier (1994) (using population
catastrophes) highlighted extreme events as perhaps the most important force behind how

long species persist in nature.
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Figure 1.3: Trends in the ecological literature of four categories of terms from 1980 to 2013. I
extracted the number of articles in the Web of Science Sci-Expanded database that used var-
ious groups of terms in the title of English articles from the subject fields of ‘Biodiversity &
Conservation’, ‘Environmental Sciences & Ecology’, or ‘Marine & Freshwater Biology’. The
term groups were: ‘extreme or catastrophe’, ‘risk’ ‘synchrony or asynchrony or covariance or
synchronous or asynchronous or synchronization or synchronize’, and ‘variance or variabil-
ity’. (a) Percentage of articles from these subject fields with the terms in the title. (b) Change in
percentage of articles using the groups of terms since the mean percentage in 1980-1985. For
example, we see approximately a five-fold increase in the number of ecological articles with
the term ‘risk’ in the title since the early 1980s. The thick lines are loess smoothers fit to the
underlying raw data.

In Chapter 4, I explore the concept of black swans in population dynamics by asking how
often and how severely process deviations—the multiplicative stochastic jumps in abundance
from time step to time step—are more heavy tailed than the commonly assumed normal distri-
bution. I develop and simulation test a black-swan detection method based on a heavy-tailed
Gompertz population model and apply it to hundreds of populations of mammals, birds, in-
sects, and fishes. I find strong evidence for black swan dynamics, although they are rare and

unrelated to life-history characteristics. Importantly, the black swan events are almost always
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downwards events, which given previous work on the importance of catastrophes to popula-
tion persistence times, has important implications for estimates of extinction risk that typically
rely on normal-tailed population dynamics. Together, my thesis expands our understanding of
ecological portfolios and in doing so contributes to our understanding of variance and co-
variance (Chapter 2), managing for variance and covariance (Chapter 3), and extreme events

(Chapter 4) in ecological systems.

1.5 Contributions

This introduction and Chapter 5 (General discussion) are written in the first-person singu-
lar. Chapters 2—4 are written in the first-person plural since they are derived from published
manuscripts (Chapter 2 and 3) or from a manuscript that was written for submission to a journal
with co-authors (Chapter 4). Portions of Chapters 1 and 5 are derived from a draft manuscript
co-authored with Nick Dulvy and Andy Cooper. This draft manuscript has also benefited from
previous discussions with Jon Moore and Trevor Branch. For Chapters 2, 3, and 4, I wrote the
code, analyzed the data, and wrote the first drafts of the text. The idea for Chapter 2 grew
out of discussions between Nick Dulvy, Andy Cooper, and myself. Jon Moore and Michelle
McClure contributed their ideas for a manuscript, which I merged with my own ideas to carry
out Chapter 3. Trevor Branch first suggested I consider ecological black swans, the topic of
Chapter 4. Chapters 2, 3, and 4 benefited from discussions, editing, and comments from the

co-authors listed at the beginning of each chapter.



Chapter 2

Ecological prophets: Quantifying

metapopulation portfolio effects’

2.1

Abstract

1. A financial portfolio metaphor is often used to describe how population diversity can

increase temporal stability of a group of populations. The portfolio effect (PE) refers
to the stabilizing effect from a population acting as a group or “portfolio” of diverse
subpopulations instead of a single homogeneous population or “asset”. A widely used
measure of the PE (the average-CV PE) implicitly assumes that the slope (z) of a log-log

plot of mean temporal abundance and variance (Taylor’s power law) equals two.

. Existing theory suggests an additional unexplored empirical PE that accounts for z, the

mean-variance PE. We use a theoretical and empirical approach to explore the strength
and drivers of the PE for metapopulations when we account for Taylor’s power law com-
pared to when we do not. Our empirical comparison uses data from 51 metapopulations

and 1070 subpopulations across salmon, moths, and reef fishes.

Ignoring Taylor’s power law may overestimate the stabilizing effect of population diver-
sity for metapopulations. The disparity between the metrics is greatest at low z values

where the average-CV PE indicates a strong PE. Compared to the mean-variance method,

A version of this chapter appears as Anderson, S.C., A.B. Cooper, NK. Dulvy. 2013. Ecological prophets:
Quantifying metapopulation portfolio effects. Methods in Ecology and Evolution. 4(10): 971-981. http://doi.
org/10.1111/2041-210X.12093.
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the average-CV PE estimated a stronger PE in 84% of metapopulations by up to seven-
fold. The divergence between the methods was strongest for reef fishes (1.0 < z < 1.7)

followed by moths (1.5 < z < 1.9). The PEs were comparable for salmon where z ~ 2.

4. We outline practical recommendations for estimating ecological PEs based on research
questions, study systems, and available data. Since most PEs were stabilizing and di-
versity can be slow to restore, our meta-analysis of metapopulations suggests the safest

management approach is to conserve biological complexity.

2.2 Introduction

Biological complexity is increasingly recognized as a critical factor underpinning the stability
of ecological systems (e.g. Hilborn et al. 2003; Ives and Carpenter 2007; Schindler et al. 2010).
While the diversity-stability relationship for ecosystem properties is generally held to be true,
what is not known is the relative increase in benefit from each additional element of biodi-
versity for stability and persistence (Cardinale et al. 2012). For example, Schindler et al. (2010)
found that sockeye salmon populations in Bristol Bay were twice as stable as a homogeneous
population and management should focus on retaining biological diversity to ensure a ten-
fold reduction in the frequency of fishery closures. The stabilizing benefit of such population
diversity is clearly a critical and undervalued component of ecological systems for resource
management to conserve, yet there are few ways to quantify its benefit.

The empirical portfolio effect (PE) is a rapidly popularized metric (e.g. Schindler et al. 2010;
Carlson and Satterthwaite 2011; IMCC 2011) derived from theory introduced a decade earlier
(Doak et al. 1998; Tilman et al. 1998; Tilman 1999) that aims to measure the increase in stability
due to subpopulation diversity within a metapopulation (or greater species diversity within a
community). For example, we can think of salmon from individual streams as assets (subpop-
ulations) within a portfolio (metapopulation) that comprises the watershed. If subpopulations
react differently to environmental variability, then the metapopulation may experience a re-
duced risk of collapse or decline. Similarly, financial managers choose portfolios of diverse
financial assets to reduce their risk of financial losses.

Financial managers estimate the benefit of diversifying a financial portfolio by comparing
the variability in returns from investing in a single asset to the variability from investing in

a diversified portfolio (Markowitz 1959). In ecology, the empirical PE has been calculated by
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comparing the temporal coefficient of variation (CV) of metapopulation abundance (the diver-
sified portfolio; Fig. 2.1a) to the average CV of subpopulation abundances (the single assets;
Fig. 2.1b) (Secor et al. 2009; Schindler et al. 2010; Carlson and Satterthwaite 2011). We refer to
this approach as the average-CV PE (Fig. 2.1c). But ecological and financial systems differ; it is
timely to consider whether we can apply the same approach to ecological systems.

One crucial difference between financial and ecological portfolios is how asset variability
scales with investment. For a financial asset, the standard deviation of an investor’s returns
increases linearly with investment because investing in a financial stock doesn’t meaningfully
affect the stock’s properties. Therefore, as mean financial investment increases, we expect the
variance in returns to increase by a power of two. This is not true in ecological systems. As
abundance of a subpopulation grows (i.e. as investment in the single asset grows), the standard
deviation usually increases nonlinearly according to Taylor’s power law: the slope (z) of a
log-log plot of the variance and mean of subpopulation abundance is typically less than two
(Taylor et al. 1980; Taylor and Woiwod 1982). This means that larger populations may be less
variable than expected if we applied the financial metaphor. The CV is not necessarily a size-
independent metric of variability (McArdle et al. 1990).

The theoretical work of Tilman et al. (1998) implies an alternative way to measure the em-
pirical PE that accounts for the mean-variance relationship. Rather than assuming we can rep-
resent the variability of the theoretical homogeneous metapopulation (the single asset) by the
average subpopulation CV, we can estimate the variance of the homogeneous metapopulation
by extrapolating the mean-variance relationship to the observed metapopulation size (Fig. 2.1d).
We can then compare this expected homogeneous-population variability to the observed meta-
population variability to get what we call the mean-variance PE. This mean-variance PE asks:
If the mean-variance relationship continued to scale as we observed for larger and larger sub-
populations, how much more variable would we expect the metapopulation to be if it was
identically sized but acted with the same dynamics as any one subpopulation? Therefore, al-
though both the mean-variance PE and the average-CV PE get at the benefit of splitting one
large population into many subpopulations, only the mean-variance PE accounts for the ob-
served mean-variance scaling relationship—the average-CV PE assumes that z = 2. Given this
theoretical advantage of the mean-variance PE, what happens when we apply the average-CV
PE to empirical data where z is typically less than two, as recent literature has done (Secor et al.

2009; Schindler et al. 2010; Carlson and Satterthwaite 2011)?
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Figure 2.1: Estimating the two PEs from empirical data. (a, b) Example metapopulation (port-
folio) and subpopulation (asset) abundance time-series. Horizontal lines represent the time-
series’ means and the shaded regions represent variability. (c) We calculated the average-CV
PE by dividing the average CV of the subpopulations (CV,) by the CV of the metapopulation
(CVp). (d) We calculated the mean-variance PE by (1) plotting the mean and variance of each
subpopulation on log-log axes, (2) extrapolating the subpopulation mean-variance relationship
to the metapopulation mean (open-grey circle), and (3) comparing the predicted (open-grey cir-
cle) and observed (grey cross) metapopulation variability. Both methods will estimate the same
PE if the slope of the log-log plot (z) equals two.
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Here, we conducted the first large-scale cross-taxa evaluation of the average-CV PE com-
pared to the mean-variance PE for metapopulations, specifically addressing three main ques-
tions: (1) How does the average-CV PE differ compared to the mean-variance PE when applied
to theoretical systems with varying z values? (2) How prevalent and strong is this difference
across 51 metapopulations and 1070 subpopulations of salmon, moths, and reef fishes? (3) De-
spite its stronger theoretical foundations, is the mean-variance PE a reliable empirical metric
of how subpopulation diversity benefits stability? We conclude with a guide to measuring

metapopulation PEs based on question, study system, and data type.

2.3 Materials and methods

2.3.1 Defining the metapopulation portfolio

In our finance-ecology metaphor we represent portfolio value as metapopulation abundance
and financial-asset value as subpopulation abundance. We define metapopulations as groups
of that behave largely independently but are linked by dispersal of individuals among subpop-
ulations (Levins 1969). Although our data represent subpopulations in the spatial-metapopulation
sense, the methods in this paper could be applied more broadly. For example, future studies
could consider different age classes, different life-history variants, or populations with differ-
ent thermal-tolerances as subpopulations. Although the PE has also been applied to multiple
species within a community (e.g. Doak et al. 1998; Tilman et al. 1998; Karp et al. 2011), and
elements of our analysis are applicable to community portfolio effects, the analysis of PEs in
communities is complicated by trophic interactions, changes in mean abundance with increas-
ing diversity (the over-yielding effect), and differing mean-variance scaling relationships across
species (e.g. Loreau 2010; Thibaut and Connolly 2013).

When discussing the properties of metapopulation portfolios we use three terms (stability,
diversity, and homogeneous population), which we define here. We define stability in terms
of the variability (CV) of population trajectories through time. We define subpopulation di-
versity as the asynchrony (lack of correlation) between the groups defined as subpopulations.
Since our metrics are phenomenological, they don’t specify the mechanism generating asyn-
chrony, but a central candidate would be diversity of response to environmental fluctuations
(e.g. Elmqvist et al. 2003; Loreau and de Mazancourt 2008; Thibaut et al. 2012). We define a
homogeneous population as a theoretical population the same size as the existing “diverse” pop-

ulation but lacking whatever subpopulation diversity we are measuring. For metapopulations
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we can think of this in one of two ways: (1) a population the same size as the metapopulation
that behaves like the average subpopulation or (2) a metapopulation with synchronized sub-

population dynamics.

2.3.2 Theoretical evaluation of portfolio effects

We defined the PE as the ratio of the CV of a theoretical system composed of a single subpop-
ulation or asset (CV,) to the observed metapopulation or portfolio CV (CV,). A PE of two, for
example, would indicate that a metapopulation is two times less variable than if it were com-
prised of a single homogeneous population. For uncorrelated subpopulations and o2 = cy?
(where o? is the temporal variance, p is the temporal mean, and c is a constant that doesn’t
affect the PE and is hereafter ignored for simplicity), both interpretations of the PE define CV,

for subpopulations i 1 through n as

2+ Ui+ uR®
Cv, = Vi Hixt a . (2.1)
Hi+ Hiy1+ ...+ Uy

The average-CV PE defines CV, as
ViE | N, N

CV, = Hi Hi+1 Hn ’ (2.2)
n

whereas the mean-variance PE defines CV, as

i+ Ui + ...+ z
oV, = V(i + piv Hn)* (23)

Hi+ Hiy1+ ...+ Uy
Equations 2.2 and 2.3 are equal if z = 2.
To extend the theoretical PE calculations to metapopulations with p correlation between

subpopulations, we can calculate the metapopulation or portfolio variance cr;

aﬁziai2+i-ip,/aiza]?. (2-4)
i=1 =1 =1

j=

as

We explored the implications of the two PE definitions across four statistical properties that
are ecologically meaningful and have precedence in the PE literature (Tilman 1999; Cottingham
et al. 2001; Loreau 2010; Thibaut and Connolly 2013): the correlation between subpopulations,
the temporal mean-variance scaling relationship (z), the number of subpopulations, and the
evenness of subpopulation mean abundance. The expected effect of these properties on stabil-

ity has been addressed in the literature cited above. Our focus, instead, is to understand the
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performance of the average-CV method compared to the mean-variance PE across these four
ecological attributes. We show that differences between these PE metrics arise in real-world
metapopulations, and for each taxon we diagnose the ecological reasons why the differences

arise.

2.3.3 Empirical evaluation of portfolio effects
Data sources

To test the real-world strength of the average-CV and mean-variance PEs, we collected meta-
population time-series data for salmon, moths, and reef fishes (Supporting materials Table 2.1;
Figs 2.7, 2.8). We obtained salmon returns from the primary literature, in particular Dorner et al.
(2008), and government research documents (Table 2.1). We obtained moth abundance trends
from the Rothamsted Insect Survey (Conrad et al. 2004). These data represent univoltine moths
captured by light traps. We obtained reef visual census fish counts from the Australian Insti-
tute of Marine Science Long-term Monitoring Program (Sweatman et al. 2008). See Tables 2.2
and 2.3 for the subpopulation site locations of the moth and reef fish populations, respectively.
Details on our data sources are available in the Supporting Information.

We defined data inclusion criteria to ensure adequate estimation of temporal mean-variance
relationships. For salmon and moths we excluded populations with less than four subpop-
ulations or ten years of data and where the largest subpopulation temporal mean was less than
three times the size of the smallest temporal mean. To reduce the number of reef fish popu-
lations to an approximately comparable number, we used the metapopulations used by Mellin
et al. (2010). Their main inclusion criteria were five subpopulations, 15 years of data, and two

orders of magnitude difference in subpopulation means.

Average-CV PE

We calculated the empirical average-CV PE as the ratio of the mean subpopulation CV to the
observed metapopulation CV (Fig. 2.1c). We estimated confidence intervals by bootstrap; we
sampled the subpopulations within each metapopulation 500 times, with replacement, and
recalculated the PE. We then used the adjusted bootstrap percentile (BCa) 95% confidence in-
tervals (Canty and Ripley 2012).
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Mean-variance PE

To calculate the empirical mean-variance PE, we estimated z as the slope of a linear regression

of the subpopulations’ (i) interannual log(c?) and log(y),

log(07) = fo + 2 - log(u;) + €; (2.5)

where ¢; represents independent and identically distributed residual error with mean zero and
an estimated variance. We used this model to predict the variance given the mean of the meta-
population abundance (6%; Fig. 2.1d). The &2 reflects the variance we would expect if the port-
folio was composed of a homogeneous population. We then calculated the mean-variance PE
as the ratio of observed o to predicted 6%. The mean-variance PE is therefore equivalent to the
average subpopulation CV adjusted for the observed subpopulation CV mean-variance scaling
relationship. We obtained confidence intervals on the mean-variance PE by re-calculating the
PE using the 95% confidence intervals on the predicted metapopulation variance.

Our empirical mean-variance PE calculation assumes the inter-subpopulation mean-variance
relationship can be used as a proxy for the intra-subpopulation relationship. To test this we
estimated the intra-subpopulation mean-variance relationship between the first and second
halves of the subpopulation time series for the time-series in which one half was at least two-
times greater. We compared these intra-subpopulation z values with the inter-subpopulation z

values used in our analysis.

2.3.4 Alternative ways of extrapolating the mean-variance PE

Quadratic extrapolations: In our main analysis, we estimated Taylor’s power law z values by
linear regression of the time-series’ log-transformed mean and variance values. In some cases,
a quadratic fit may be more appropriate (Routledge and Swartz 1991; Perry and Woiwod 1992).
We fit a quadratic model,

log(alz) = ﬁo + ﬁl log(,ul) + ﬁz IOg([li)z + €, ﬁz >0 (26)

Perry and Woiwod (1992) suggest limiting the lower value of f; to 0 since a negative f, would
imply that at some value of y the o2 would decrease with increasing y and eventually become
negative. We used the R package nls (R Core Team 2013) with the port algorithm to fit the
quadratic model and bound the lower value of 8, to 0. If §; = 0 the quadratic model simplifies

to the linear model.
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Model averaging: Whereas the quadratic version of Taylor’s power law can only provide a
closer fit to the data than the linear version due to the added coefficient, it does so at the expense
of greater model complexity and potentially poorer predictive capacity. We also examined
predictions averaged across the linear and quadratic models with the predictions weighted by
the Akaike weights of their respective models (Burnham and Anderson 2002). We fit an AICc-
model-averaged version of the linear and quadratic Taylor’s power law fits using the R package

MuMIn (Barton 2012).

2.3.5 Accounting for non-stationary time-series

Long-term trends in data can upwardly bias variability metrics such as the CV. We therefore
conducted two alternative analyses in which we detrended the data before estimating the PEs.
We used the residuals from (1) a fitted linear model and (2) a fitted loess smoother (Loess func-
tion; R Core Team 2013) with a smoothing span of 75% of the data. For both the subpopulations
and metapopulations we calculated the mean abundance before detrending. We estimated the
variance of each subpopulation using the detrended time-series. We estimated the variance of
the metapopulations using the detrended version of the original metapopulation abundance
time-series. A more thorough analysis of PEs for non-stationary time series might consider
the distribution of means, variances, and CVs within each subpopulation, but was beyond the

scope of our analysis.

2.3.6 'The ecofolio R package

We provide an R package ecofolio to estimate the PEs described in this paper (see the Support-
ing Information). In addition to the average-CV and mean-variance PEs, our package includes
options to fit quadratic mean-variance scaling models, average across mean-variance model

predictions, and detrend non-stationary time-series.

2.4 Results

2.4.1 Theoretical evaluation of portfolio effects

By assuming z = 2, the average-CV method can misrepresent the effect of changes in subpop-
ulation number, correlation, and evenness on the PE (Fig. 2.2). The average-CV PE univer-
sally becomes more stabilizing (higher PE) as subpopulation number increases regardless of z,

whereas when we account for the mean-variance relationship, the PE can become destabilizing
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with more subpopulations at small z values (Fig. 2.2a). The PE becomes less stabilizing as corre-
lation increases regardless of the method, although accounting for the mean-variance relation-
ship shifts the PE uniformly (assuming even subpopulation sizes) across all correlation values
(Fig. 2.2b). The average-CV PE can erroneously become more stabilizing as subpopulations
become uneven; the mean-variance PE indicates that the PE would become less stabilizing at

high z values or remain relatively constant at low z values (Fig. 2.2c).
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Figure 2.2: The ecological factors driving the PE in theoretical systems. A PE of two, for exam-
ple, would indicate a two-fold increase in stability for the portfolio compared to what we would
expect in a single homogeneous population of the same size. We show the mean-variance PE
and average-CV PE for three z values across (a) number of subpopulations, (b) correlation be-
tween subpopulation time-series, and (c) unevenness of mean subpopulation abundance. We
generated uneven mean subpopulation abundances by drawing four values at quantiles of 0.2,
0.4, 0.6, and 0.8 from a log-normal distribution with log-mean p (1 = 2) and log-standard
deviation of the unevenness value (the x-axis) times p. We fixed correlation at 0.2 and subpop-
ulation number at four in all panels where these parameters weren’t varying. The grey-shading
indicates stabilizing PEs. Both PE definitions are equal across all scenarios at z = 2. In panels
(a) and (b) the average-CV PE is the same regardless of z.

2.4.2 Empirical evaluation of portfolio effects

The key assumption that ecological systems have the same mean-variance relationship as fi-
nancial systems (z = 2) does not hold across taxa. Whereas z was not significantly different from
two for 17/20 of the salmon metapopulations, there was infrequent overlap between the 95%
CI and two for the moth metapopulations (3/20), and no overlap for reef fish metapopulations
(Supporting materials Figs 2.9, 2.10). The inter-subpopulation mean-variance relationship was
areasonably unbiased proxy for the intra-subpopulation mean-variance relationship. The slope
of a regression of median intra- and inter-subpopulation z was 1.04 (95% CI: 0.51-1.57) although

there was a high degree of scatter (R* = 0.25; Supporting materials Fig. 2.11).
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In our empirical meta-analysis, the PEs varied strongly between, but also within, taxonomic
groups due to the mean-variance scaling (Fig. 2.3). The mean-variance PE ranged from o.5-
2.0 and the average-CV PE from 0.8-6.3. Hence, at best the mean-variance PE suggests the
metapopulation portfolio is twice as stable as the homogeneous single asset. In comparison,
the average-CV PE suggests the metapopulation portfolio could be up to six times more stable.
The z values varied by taxonomic group, with the highest observed for salmon populations
and the lowest for reef fishes. As z decreased (reading from top to bottom) the average-CV
PE indicated increasingly stabilizing PEs compared to the mean-variance PE (Fig. 2.3a). For
salmon, where the z values tended to be near two, the PE metrics were largely in agreement
(Fig. 2.3a, b). By contrast, for reef fishes, where the z values were small (mean = 1.3, range =
1.0-1.7), the meta-analytic average-CV PE indicated a substantially more stabilizing PE (mean
= 3.6, 3.2-4.3 95% CI) than the mean-variance PE (mean = 0.9, 0.8-1.0 95% CI) (Fig. 2.3a, d). The
dashed-red lines in Fig. 2.3b—d illustrate the mean-variance fit if z is assumed to equal two as
in the average-CV PE. Whereas the mean-variance relationship assumed by the average-CV
appears reasonable for salmon (Fig. 2.3b), it deviates strongly from the observed relationship
for some moth and reef fish metapopulations (Fig. 2.3c, d).

The mean-variance PE was highly sensitive to the estimation method (Fig. 2.4). In particu-
lar, 13/18 reef fish metapopulations switched from destabilizing to stabilizing PEs with quadratic
(Supporting materials Fig. 2.12) or quadratic-linear averaged (Supporting materials Fig. 2.13)
models. The AICc of the quadratic models was lower in 11/51 metapopulations and at least two
units lower in 8/51, indicating increased support despite the added model complexity. Linear
detrending generally created a similar mean-variance PE pattern to the original mean-variance
PEs (Fig. 2.4, Supporting materials Fig. 2.14). Loess detrending increased the mean-variance PE
in 34/51 cases and the average-CV PE in 34/51, lowering it in the others (Fig. 2.4, Supporting ma-
terials Fig. 2.15). None of the detrending options or alternative mean-variance extrapolations

resulted in a similar pattern for both the mean-variance and average-CV PE.

2.4.3 Diagnosing the ecological properties of empirical portfolio effects

Plotting the empirical metapopulations in the theoretical PE parameter space revealed five key
findings (Fig. 2.5). (1) By viewing the coloured shading of the panels from left to right, we can
see that the average-CV PE responds inversely to z compared to the mean-variance PE, and
this issue is prevalent for the parameter space observed in real ecological systems. (2) The

empirical PEs were strongly grouped by taxonomy (see also Supporting materials Fig. 2.16).
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Figure 2.3: PEs across 51 metapopulations. (a) Empirical PEs (circles) and 95% ClIs (lines)
for the mean-variance method and the average-CV PE method. We ordered metapopulations
within taxonomic groups by Taylor’s law z values (indicated in brackets beside each meta-
population name). Diamonds represent inverse-variance weighted random-effect (RE) meta-
analytic means and 95% ClIs. Numbers before population names represent population IDs (see
Table 2.1). PEs > 1(grey shading) represent stabilizing effects; note the log-distributed x-axis. (b,
¢, d) Examples of using Taylor’s power law to calculate the mean-variance PE. The solid black
regression line projects the subpopulation mean-variance relationship to the metapopulation
mean abundance (shaded grey circle). The X denotes the observed metapopulation mean and
variance. The ratio of the observed to predicted variance represents the mean-variance PE. The
red circle denotes the average-CV PE and the dashed-red line the mean-variance relationship
under the assumption that z = 2, as the average-CV PE assumes.
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Figure 2.4: The sensitivity of PE metrics across two detrending (linear and loess) methods
(columns 2—3 and 5-6) and three mean-variance model fits (columns 4, 7-8). Columns 1 and 4
represent the same PEs as shown in Fig. 2.3, but with colour indicating the strength of stabiliz-
ing effect. Red indicates a stabilizing PE, blue indicates a destabilizing PE, and white indicates
a neutral PE. The y-axis shows the same metapopulation IDs as Fig. 2.3.
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(3) We did not observe metapopulations that were both highly uneven and highly correlated
(lower-right panels of Fig. 2.5). (4) The PE surface surrounding the observed metapopulations
(the colour shading) was highly sensitive to changes in z for the mean-variance method when
correlation was low (e.g. Fig. 2.5b), but the corresponding surface of the average-CV PE for
the same metapopulations was insensitive to changes in z (e.g. Fig. 2.5k). (5) The average-CV
method, however, considerably overestimated the PE compared to the mean-variance PE for

uneven metapopulations with small values of z (Fig. 2.5¢ versus 2.5l).
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Figure 2.5: Empirical ecological PEs (points) overlaid in theoretical PE parameter space (colour
shading). The colour shading indicates the stabilizing-effect of the theoretical mean-variance
PEs (a-i) and average-CV PEs (j-1): red indicates a stabilizing effect and blue indicates a desta-
bilizing effect. The dashed lines indicate neutral PEs. Columns from left to right show systems
with increasingly uneven subpopulation sizes, and rows from top to bottom show systems with
increasingly strong mean correlation between subpopulation (see the Supporting Information).

Predicting the PE using these four properties alone (binned as shown in Fig. 2.5) explained
84% of the variability in the average-CV PE and 53% of the mean-variance PE (R? from a re-
gression of log theoretical PE and log empirical PE; Supporting materials Fig. 2.17). The factors
driving the PE co-varied; in particular, we observed high correlation of subpopulations asso-
ciated with high variability (CV) and few subpopulations (Supporting materials Fig. 2.18b, c).
High z values occurred when there were few moderately-to-highly correlated subpopulations

(Supporting materials Fig. 2.18¢, f).
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2.5 Discussion

We conclude that the empirical average-CV PE is incompatible with Taylor’s power law and,
due to the parameter space in which most ecological populations exist, will tend to estimate a
stronger benefit of population diversity than the mean-variance PE. In this discussion, we begin
by considering the influence of mean-variance scaling on subpopulation and metapopulation
stability and the possible mechanisms behind stabilizing portfolio effects. We then review limi-
tations of these phenomenological metrics and discuss the potential of mechanistic models. We
conclude by synthesizing our results into practical recommendations for quantifying ecological

PEs.

2.5.1 The influence of mean-variance scaling

The primary difference between the mean-variance and average-CV PEs is how they depend
on z. The mean-variance PE becomes more stabilizing with increasing z. The average-CV PE
does the opposite (or remains constant) because the theory assumes z = 2 and the measures in-
creasingly diverge as empirical populations deviate from this value. An increased z value (with
all else being equal) means that all subpopulations are more variable (Mellin et al. 2010), but it
also increases the benefit of a portfolio structure (Tilman et al. 1998; Tilman 1999; Cottingham
et al. 2001). This subtlety highlights a potential source of confusion: the PE is a relative measure
comparing two sources of variability. It does not reflect the absolute stability of the portfolio
or of the theoretical homogeneous portfolio. The stability of these components could decline
while the PE increases. In some scenarios, we can think of the mean-variance PE as a consola-
tion prize for a higher z value—the subpopulations become less stable and the metapopulation
becomes less stable, but the stabilizing effect of diversity increases.

Why is z usually less than two? Explanations tend to fall into one of three categories. First,
the most common explanation is demographic stochasticity. Demographic stochasticity has
been implicated via simple stochastic population growth models (e.g. Anderson et al. 1982; Bal-
lantyne IV 2005) and may be a particularly strong driver when density dependence generates
chaotic dynamics (Perry 1994). In simplified theoretical systems, z will tend towards two under
conditions that increase population synchrony (such as strong environmental forcing) and tend
towards one under conditions that decrease synchrony (such as strong demographic stochas-
ticity) (Loreau 2010). Second, competitive species interactions can affect z values. (Kilpatrick

and Ives 2003). For example, if competition with other species impacts larger populations less
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than smaller populations, then z will be less than two. Third, measurement error in abundance
estimates (Perry 1981), and particularly rounding at low abundance (Taylor and Woiwod 1982),
can create artificially low z values. However, it remains unclear which of these three expla-
nations, under what conditions, are responsible for observed z values across real ecological
systems. Further, z can depend on the spatial and temporal scale of analysis (Leps 1993) and
most existing theories do not explain why z could be greater than two as we observed in 8/51
of our metapopulations and other experimental and observational studies have observed (e.g.
Valone and Hoffman 2003).

In financial systems, analysts use the equivalent of the average-CV PE to calculate the ben-
efit of diversifying a financial portfolio. For such systems, the approach makes sense since the
standard deviation of investment value should scale directly with investment (z = 2). For exam-
ple, if a financial investor triples investment in an asset, the investor can expect the standard
deviation of the returns from that investment to triple. Similarly, the average-CV PE may be an
appropriate method if applied to analogous questions about natural resource extraction. For
example, we can ask how stable a fisher’s catches would be if the fisher targeted a diverse port-
folio of stocks instead of a single stock. Here, the analogy is more straightforward: the fisher
(the investor) invests time, effort, and resources into fishing a fish stock (the asset) or multiple
fish stocks (the portfolio) and catches are returned. Given moderate levels of fishing and ignor-
ing issues related to efficiency, any one fisher will not change the mean-variance properties of
the fish stock and hence the average-CV PE will be appropriate.

The PE metrics in this paper compare the observed metapopulation variability to the the-
oretical variability of a single homogeneous population. This homogeneous-population ref-
erence point is the most direct interpretation of the financial portfolio analogy—a financial
investor can invest all her money in a single asset (our reference point) or in a diversified
portfolio (our comparison). This homogeneous-population reference point is loosely equiva-
lent to the monoculture reference point often used in community PE analyses (e.g. Equation
7 in Thibaut and Connolly 2013). However, other reference points may be more relevant to
ecology and easier to test experimentally. For example, researchers might instead choose as a
reference point metapopulation variance under a harvesting regime that tends to synchronize

subpopulations or metapopulation variance if habitat loss eliminated certain subpopulations.
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2.5.2 Mechanisms driving metapopulation portfolio effects

Two major mechanisms may generate stabilizing metapopulation PEs. First, diversity of phe-
notypes across subpopulations can cause subpopulations to react differently to the same en-
vironmental forces (response diversity; Elmqvist et al. 2003). Second, since metapopulations
can exist over a large area, subpopulations may experience a greater diversity of environmen-
tal conditions than an individual population (i.e. Moran effect). In contrast, non-systematic
sources of variability such as demographic stochasticity should not generate stabilizing PEs
(Loreau and de Mazancourt 2008). Our results suggest a research agenda that seeks to un-
derstand the relative contribution of these mechanisms across taxa and geography and the
ecological management approaches that can promote stabilizing PEs.

We observed a number of PEs less than one. These PEs indicate the metapopulations would
theoretically be less variable as one large homogeneous population than as the product of many
small subpopulations. These have been referred to as inverse PEs (Thibaut and Connolly 2013),
and documented in other observational studies (DeClerck et al. 2006). One explanation for
these inverse PEs could be increased demographic stochasticity at low population densities
resulting in an Allee effect (Allee 1931). Further, Minto et al. (2008) demonstrated an increase
in the variability of fish offspring survival at low population densities. The same sized meta-
population split into fewer subpopulations might avoid these effects. A second explanation for
these apparent inverse PEs could involve hidden diversity. Other elements of diversity, such as
size and age structure, can be reduced at low population densities (e.g. Hutchings and Myers
1993). Therefore, inverse PEs could arise if the diversity we are measuring (subpopulation num-
ber) increases but the unmeasured diversity within the subpopulations decreases. This hidden

diversity may be more relevant to stability.

2.5.3 Limitations of phenomenological portfolio effects

Beyond tending to overestimate the benefit of diversity if z < 2, there are potential conse-
quences to applying the average-CV as an ecosystem index. First, the average-CV PE could
fail to prioritize conservation of populations most in need. For example, if we consider two
otherwise similar metapopulations, the average-CV PE will always be the same or stronger
for metapopulations divided into more subpopulations. However, the mean-variance PE indi-
cates that there is a threshold at which subdivision no longer benefits metapopulation stability
(Figs 2.2a, 2.5a—1, Supporting materials Fig. 2.19). Second, used as an ecosystem index through

time, the average-CV PE could fail to warn us of critical change or create the false impression
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of recovery. For example, if a reef fish metapopulation with a low z value and moderate even-
ness (circles in Fig. 2.5k) became more uneven in mean subpopulation size (see Fig. 2.5]) the
average-CV PE would become up to about five times more stabilizing. The mean-variance PE
informs us, however, that a change in evenness has little influence on the portfolio effect in
this parameter space (Fig. 2.5b cf. ¢).

Despite its stronger theoretical foundations, we emphasize caution when interpreting em-
pirical mean-variance PE values for reasons related to model, biological, and measurement
uncertainty. Model uncertainty: Is a log-log mean-variance linear model always best supported
by the data? We often observed non-linearities in the relationship and studies have suggested
numerous other mean-variance models (e.g. quadratic models, Routledge and Swartz 1991; or
models with a break-point at low population abundance, Perry and Woiwod 1992). Biological
uncertainty: Even if we knew the mean-variance model precisely, will the same dynamics per-
sist when extrapolating outside the range of observed data? Measurement uncertainty: There
may be biases in the estimated z values because of observation error (Perry 1981; Taylor and
Woiwod 1982), and estimates of z can depend on how time-series are aggregated (here, what we
define as a subpopulation) (Fronczak and Fronczak 2010). Conclusions drawn from any phe-
nomenological mean-variance relationships should be tempered with caveats such as these.

The PE metrics measured in this paper are limited by the observational data to which they
are typically applied. Recent mechanistic stability-diversity models that explicitly account for
asynchrony of response to environmental conditions exist (e.g. Ives et al. 2003; Loreau and
de Mazancourt 2008; Loreau 2010; de Mazancourt et al. 2013) but are still largely unexplored
beyond theory. However, mechanistic stability-diversity models have at least two major prob-
lems. First, they must assume a functional form to a mechanism and their results may be
sensitive to this decision. For example, does the environment affect productivity and does
productivity impact population growth rate through a Ricker or logistic growth function? Sec-
ond, the number of estimated parameters may exceed the power of most ecological data sets

(Thibaut and Connolly 2013). Therefore, there remains a need for phenomenological metrics.

2.5.4 Practical recommendations for quantifying ecological portfolio effects

Given the need for phenomenological PE metrics, which metric should you chose? The answer
depends on the research question and the scope of the ecological system and data (Fig. 2.6).
Research question: The PE metrics discussed in this paper ask specifically how much more sta-

ble the observed portfolio is than a theoretically homogeneous portfolio. These metrics do
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Figure 2.6: Decision tree showing options for quantifying ecological portfolios. Blue boxes in
the middle column show questions to ask of the study system and available data. The orange
boxes at the bottom represent the methods demonstrated in this paper. The light-grey boxes
along the sides show other options to quantify ecological portfolios given different research

questions, study systems, and available data.
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not address the benefit of increases in portfolio size (e.g. metapopulation size) itself. In finan-
cial portfolio terms, these PE metrics address the expected variability of a portfolio without
addressing the expect rate of return. Scope: The average-CV or mean-variance PEs are rel-
evant to any portfolio-like aggregation in which the stability of the overall portfolio “value”
is of interest and the interaction between “assets” is minimal. As demonstrated in this paper,
metapopulation abundance or biomass data can fall into this scope. Other examples include
fishers harvesting a portfolio of fish stocks or a predator hunting a portfolio of species. These
PE metrics are not necessarily appropriate for a community of species where complications
such as multiple mean-variance relationships and trophic interactions may require different
phenomenological models (Thibaut and Connolly 2013).

Assuming the research question, ecological system, and data are appropriate for the meth-
ods shown in this paper, we recommend the following when choosing between the average-CV
and mean-variance PEs (Fig. 2.6). First, consider whether the mean-variance scaling relation-
ship can be estimated. Does a power law fit the data well? Are the subpopulations clearly

defined? Is there minimal observation error?

« If the answer to any of these questions is no, then mean-variance scaling (z) is not well
defined and you may need to ask a different question with a different metric. For example,
you could quantify the synchrony of the populations using the synchrony index (Loreau

and de Mazancourt 2008; Thibaut and Connolly 2013).

« If z » 2 then use the average-CV PE, which amounts to the same metric as the mean-

variance PE at z = 2 and is simpler to estimate, conceptualize, and communicate.

o If z is well defined but different than two then account for the mean-variance scaling

relationship using the mean-variance PE.

The financial metaphor is an engaging and accessible way to convey the importance of bi-
ological diversity to the public and provides a framework to guide stability-diversity research
(Figge 2004; Koellner and Schmitz 2006). However, our results indicate the metaphor should be
used with caution. By ignoring a fundamental ecological property—the mean-variance scaling
relationship—the commonly applied average-CV PE method will tend to overestimate the ben-
efit of subpopulation diversity in real-world systems and may respond in non-intuitive ways to
ecosystem change. Conversely, mechanistic stability-diversity models offer the gold-standard

of PE metrics but are challenging to apply in practice and so we still need phenomenological PE
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metrics. Our results highlight the importance of ground-truthing these metrics and acknowl-
edging their limitations. Based on these results, our paper outlines practical recommendations
for estimating ecological PEs for metapopulations and similarly structured ecological systems.
Irrespective of the challenges of finding a suitable metric to describe the ecological PE, given
the tendency for stabilizing PEs and the challenges of restoring lost population diversity, it is
clear we need to find ways of understanding, prioritizing, and conserving the processes that

give rise to ecological stability.
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2.7 Supporting materials

2.7.1 R package to estimate metapopulation portfolio effects

In an R console, the ecofolio package can be installed with,

# install.packages("devtools") # if needed

devtools::install_github("seananderson/ecofolio")

Current code and install details are available at
https://github.com/seananderson/ecofolio

You can load the package, read the vignette, and access the help pages with:

library("ecofolio")
vignette("ecofolio")

help(package = "ecofolio")

2.7.2 Data sources for the empirical portfolio effect analysis

We sought to include as many metapopulation time series from as diverse taxonomic groups as
possible. However, due to availability, the included data primarily represent metapopulations in
North America (salmon), the United Kingdom (moths), and Australia (reef fishes) (Figure 2.8).
We show a summary of the data included in our analysis of empirical ecological systems in

Table 2.1 and the time series in Figure 2.7.

Salmon

We obtained salmon data from a variety of sources, in particular Dorner et al. (2008). Most of
the salmon populations are from the northwest coast of North America, but also: Kola Penin-
sula, Russia (Jensen et al. 1999), southern New England (Kocik and Sheehan 2006), and Central
Valley, California (Carlson and Satterthwaite 2011) (Figure 2.8). All data represent annual es-
timated returns—fisheries catch plus escapement to the spawning grounds. We divided pink
salmon annual estimated returns into odd- and even-year time series due to their strongly
distinct runs that do not interbreed (Quinn 2005). To maintain consistency with previous PE
analyses involving sockeye salmon (Schindler et al. 2010) and analyses of time series of these
data (Dorner et al. 2008), and due to the less distinct separate runs (Quinn 2005), we did not

divide the sockeye salmon into separate runs.
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Subsets of these salmon data have been used in numerous analyses relating diversity with
stability. A particular feature of the salmon literature is a focus on the role of “biocomplexity”—
a diversity of life-histories and local adaptations to the environment—in producing stability
(Hilborn et al. 2003) and recent papers have focussed on measuring the portfolio effects we
investigate in this paper (Schindler et al. 2010; Carlson and Satterthwaite 2011). In studying the
mechanisms behind subpopulation asynchrony, and hence portfolio effects, studies of Pacific
salmon have generally focussed on drivers that fall into two categories: (1) landscape filtering
of the environment so that different subpopulations experience different environmental forces
(e.g. local topology affecting stream flow) (e.g. Schindler et al. 2008), and (2) biologically-based
response diversity to the environment (e.g. genetically-based variation in thermal tolerances)
(e.g. Eliason et al. 2011). These patterns of asynchrony can play out not just at the decadal scale

but also over centuries (Rogers et al. 2013).

Moths

We obtained moth abundance time series from the Rothamsted Insect Survey (RIS). L. R. Taylor
started the trap network that forms the RIS in the early 1960s; the RIS is now one of the longest-
running and largest-scale insect surveys in the world (Conrad et al. 2004). Details on the
survey are available in Conrad et al. (2004) and Taylor (1986). The RIS captures moths by light
traps (Williams 1948) placed 1—2 m above ground; these traps catch small but reliable samples
of moth populations (Williams 1948; Taylor and French 1974; Conrad et al. 2004). Although
different species may show different responses to the traps (Muirhead-Thomson 1991; Woiwod
and Hanski 1992), we compare across sites within the same species so this should not affect our
results.

Our moth data spanned from 1999—2010 for 13 species (Table 2.1) and 28 sites (Table 2.2). We
included only moths with single broods per year (univoltine moths) and single annual flight
episodes since we were aggregating the data annually to maintain consistency with data from
other taxonomic groups that were available. We removed site-species combinations where
there were eight or more years with zero moths caught in traps to avoid sites where a given
species was exceptionally rare and not likely to be consistently censused. This removed 97 sub-
populations leaving 280. Further culling of populations according to the criteria in the Meth-
ods section left us with 268 subpopulations. All the species included are common within Great
Britain, although some have undergone declines in abundance since the RIS began (Conrad

et al. 2004).
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Earlier versions of these moth data featured heavily in the work of Taylor and colleagues on
the property now known as Taylor’s power law (Taylor and Taylor 1977; Taylor et al. 1980; Perry
1981). This early work focussed on behavioural properties that might regulate the stability and
variance of moth populations (Taylor et al. 1980). Work has continued with these datasets and
studies have shown a number of mechanisms generating stability. For example, authors have
shown spatial asynchrony (Gaston 1988), polyphagy (eating different kinds of food) (Redfearn
and Pimm 1988), and density dependence to act as stabilizing forces (Hanski and Woiwod 1993).

Reef fishes

We obtained reef visual census fish counts within the Greater Barrier Reef (GBR) from the Aus-
tralian Institute of Marine Science’s (AIMS) Long-term Monitoring Program (LTMP) (Sweat-
man et al. 2008). The AIMS survey data used here are from fixed transects at selected sites
across 46 reefs from 1994-2010 (Table 2.3). Details of the sampling design are available from
Halford and Thompson (1994). Briefly, AIMS surveys reef fish annually within six sectors of the
GBR. AIMS identifies inner-, mid-, and outer-shelf positions and three reefs within each shelf
position. Within each reef, AIMS chooses three sites of the same habitat and establishes five
permanent 5om transects at 6-9m depth 10m apart and parallel to the reef crest. Divers count
damselfishes (Pomacentrids) on im-wide transects and all other families on sm-wide transects.
AIMS only censuses fish one year or older since recruitment can be highly spatially and tem-
porally variable. AIMS conducts annual standardization exercises to avoid temporal bias in
counts within and across divers (Halford and Thompson 1994).

A number of recent studies have used these reef-fish data to investigate stability-diversity
relationships, often focusing on functional diversity or reef size and isolation. For example,
Thibaut et al. (2012) found strong asynchrony of response to the environment between three
functional groups of herbivorous reef fishes, which lead to greater stability. Another benefit
to this functional diversity may be increased disease resistance (Raymundo et al. 2009), pre-
sumably enhancing stability. Independent of functional roles, Mellin et al. (2010) found that
small, isolated reefs have higher population variability and therefore higher probability of local

extinction.

2.7.3 Diagnosing the ecological properties of empirical portfolio effects

We overlaid the empirical PEs in their respective theoretical parameter space to investigate the

ecological properties of real-world metapopulations (subpopulation correlation, mean-variance
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scaling, subpopulation number richness, and evenness). Specifically, we matched the empirical
linear-regression z values and the number of subpopulations with their theoretical counter-
parts.

To present our results graphically in Figure 2.5, we categorized the mean correlation of the
empirical subpopulations (p) into bins of 0 < p < 0.25, 0.25 < p < 0.5, and 0.50 < p < 75 and
matched these with the theoretical PE estimated at the midpoints of these bins (i.e. 0.125, 0.375,
and 0.625). We matched the disparity in subpopulation size by: (1) calculating the CV of the
log of the subpopulation time series’ means, CV(log p1); (2) categorizing the empirical metapop-
ulations into bins of 0 < CV(log i) < 0.3,0.3 < CV(log p1) < 0.6, and 0.6 < CV(log i) < 0.9; (3)
estimating the theoretical PE using evenly-spaced values from a log-normal distribution with
a mean of two and standard deviation of the midpoints of these bins (i.e. 0.15, 0.45, and 0.75).
Here and in Figure 2.2, we derived these evenly-spaced values as follows. We drew subpop-
ulation (i) quantiles g; from the evenly-spaced sequence: aj,ay, . . . ,a,, where a; = 1/(n+1) and
ap, = 1—(1/(n+1)). We then calculated the subpopulation means at each g; from a log-normal
distribution with log-mean of two and a log-standard deviation of the “unevenness value” times

the log-mean.

2.7.4 Supporting Tables and Figures
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Table 2.2: Moth sites used from the Rothamsted Insect Survey database. Sites are ordered from
north to south. County refers to the British County. “Number of spp.” refers to the number of
moth species remaining that matched our inclusion criteria.

Site name County Northing Easting Altitude (m) Number of spp.
Starcross South Devon 821 2972 9 12
Denny Lodge South Hampshire 1056 4333 30 10
Bentley Wood South Wiltshire 1324 4253 130 12
Winkworth Surrey 1412 4991 130 12
Alice Holt North Hampshire 1428 4803 122 12
Perry Wood East Kent 1565 6040 8o 13
Wisley II Surrey 1579 5065 40 10
Westonbirt West Gloucestershire 1898 3847 46 13
Geescroft I Hertfordshire 2128 5132 130 12
Allotments Hertfordshire 2134 5134 130 7
Barnfield Hertfordshire 2135 5132 130 10
Hereford Herefordshire 2476 3564 91 10
Cockayne Hatley Bedfordshire 2494 5253 76 1
Llysdinam Breconshire 2586 3009 197 11
Tregaron Cardiganshire 2618 2687 198 10
Broom’s Barn West Suffolk 2656 5752 73 9
Compton Park Staffordshire 2988 3889 105 9
Preston Montford I Shropshire 3143 3433 61 13
Malham Tarn Mid-west Yorkshire 4672 3894 396 8
Shildon County Durham 5262 4239 150 9
Forest-in-Teesdale North-west Yorkshire 5306 3853 381 5
Castle Eden Dene 1 County Durham 5394 4428 91 10
Auchincruive II Ayrshire 6233 2377 52 10
Brodick Clyde Islands 6380 2014 50 8
Rowardennan Stirlingshire 6960 2378 15 8
Kindrogan East Perthshire 7630 3055 259 7
Beinn Eighe I West Ross & Cromarty 8629 2024 25 9
Cromarty East Ross & Cromarty 8672 2785 30 10
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Table 2.3: Reef locations used from the AIMS LTMP Great Barrier Reef database. Reefs are
ordered from north to south. “Number of spp.” refers to the number of fish species remaining
that matched our inclusion criteria.

Reef Latitude (deg south) Longitude (deg east) Number of spp.
Carter Reef 14.52 145.58 17
Yonge Reef 14.57 145.62 16
No Name Reef 14.62 145.64 18
Macgillivray Reef 14.64 145.49 18
Lizard Island 14.69 145.46 18
North Direction Reef 14.74 145.51 18
Martin Reef(14123) 14.75 145.37 18
Linnet Reef 14.79 145.35 18
Agincourt Reefs (no 1) 16.04 145.87 17
St Crispin Reef 16.07 145.84 18
Opal (2) 16.20 145.90 18
Low Islands Reef 16.38 145.57 17
Hastings Reef 16.49 146.02 17
Michaelmas Reef 16.55 146.05 18
Green Island Reef 16.77 145.97 18
Fitzroy Island Reef 16.92 145.99 18
Myrmidon Reef 18.25 147.38 18
Dip Reef 18.39 147.45 17
Rib Reef 18.47 146.88 18
John Brewer Reef 18.62 147.08 18
Chicken Reef 18.66 147.72 18
Davies Reef 18.80 147.66 18
Pandora Reef 18.81 146.43 3
Slate Reef 19.66 149.91 18
Hyde Reef 19.73 150.09 18
191318 19.77 149.38 18
Rebe Reef 19.80 150.16 18
19138s 19.80 149.43 18
Hayman Island Reef 20.05 148.89 4
Langford-bird Reef 20.07 148.87 4
Border Island Reef (no 1) 20.18 149.03 13
East Cay Reef 21.46 152.56 18
Turner Reef 21.70 152.56 18
215298 21.87 152.18 18
Gannett Cay Reef 21.98 152.47 18
Horseshoe 22.02 152.62 18
Snake (22088) 22.02 152.19 18
Broomfield Reef 23.24 151.94 18
One Tree Reef 23.48 152.09 18

Lady Musgrave Reef 23.88 152.42 18
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Figure 2.7: Subpopulation time series. Each panel contains one metapopulation. Colours
were randomly assigned to distinguish subpopulations. Numbers in top-left corners refer to
metapopulation IDs (see Table 2.1).
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Figure 2.8: Map of included metapopulations. We represented salmon metapopulations with
orange symbols, moths with purple, and reef fishes with pink. Numbers refer to metapop-
ulation IDs (Table 2.1). Points are jittered slightly for visual clarity.
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Figure 2.9: Calculation of the mean-variance PE using Taylor’s power law. Each dark-grey cir-
cle represents the log(1) and log(c?) of an individual subpopulation timeseries. The orange lines
represent fitted linear regressions. The green lines represent fitted quadratic regressions. Black
x symbols represent the observed metapopulation or portfolio mean and variance. Dashed
lines indicate the extrapolation of the model fit to the observed metapopulation or portfolio
mean and variance. Open-orange circles represent the predicted variance under the linear-fit
assumption. Open-green diamonds represent the predicted variance under the quadratic-fit as-
sumption. Metapopulations in which the predicted variance is greater than the observed vari-
ance represent variance-reducing PEs. We ordered the panels by decreasing Taylor’s power
law z-value (slope of the linear regression) within taxonomic groupings. Numbers in upper
left of panels refer to metapopulation IDs (Table 2.1)
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1 Coho salmon ———

2 Pink salmon, odd years

3 Sockeye salmon ————

4 Sockeye salmon
5 Pink salmon, odd years ——————

6 Sockeye salmon ———
7 Pink salmon, odd years

8 Pink salmon, even years —————

9 Sockeye salmon
10 Pink salmon, even years

11 Atlantic salmon ——————
12 Chum salmon
13 Chinook salmon ——
14 Chinook salmon
15 Chum salmon ————
16 Pink salmon, odd years
17 Pink salmon, even years ————
18 Atlantic salmon ———
19 Chinook salmon ——

20 Chum salmon

21 The magpie moth ————
22 Common quaker moth !
23 Common emerald moth ———
24 Square-spot rustic moth ————
25 Brown silver-lines moth ———
26 Mottled umber moth ————
27 Ingrailed clay moth ———
28 Yellow-line quaker moth ————
29 Common swift moth ——
30 December moth ———
31 Common footman moth ——
32 Heart & dart moth ———
33 Feathered thorn moth ————
34 Scarus psittacus ————
35 Pomacentrus moluccensis ——
36 Acanthochromis polyacanthus ————
37 Neopomacentrus azysron ———
38 Chlorurus sordidus ———
39 Ctenochaetus spp ——
40 Pomacentrus lepidogenys ———
41 Plectropomus leopardus ———
42 Scarus chameleon ————
43 Chlorurus microrhinos ———
44 Scarus frenatus ————
45 Hemigymnus melapterus ———

46 Hemigymnus fasciatus ———
47 Scarus niger ——
48 Epibulus insidiator | —=e=—
49 Chaetodon plebeius | —==—
50 Gomphosus varius ————
51 Chaetodon trifasciatus —=e=———o
T T T T 1

1.0 1.5 2.0 2.5 3.0
z value

Figure 2.10: Taylor’s power law z values across metapopulations. Points represent maximum
likelihood estimates, thick line segments represent 50% confidence intervals, and thin line seg-
ments represent 95% confidence intervals. The vertical dashed line at z = 2 represents the value
assumed by the average-CV PE method.
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Figure 2.11: Intra- vs. inter-subpopulation mean-variance scaling relationship (Taylor’s power
law z-value). Our estimation of the empirical mean-variance PE assumes that the inter-
subpopulation z-value can approximate the intra-subpopulation z-value. We use the inter-
subpopulation z-value throughout our paper. Here, we have also calculated the intra-
subpopulation z-value for subpopulation time series in which the mean abundance in the 1%
or 2" half of the time series is twice the magnitude of the other half. Points represent median
intra-subpopulation z-values within each metapopulation and vertical line segments repre-
sent 1% and 3™ quartile values. The dashed-red line represents a one-to-one relationship and
the solid-grey line (under the one-to-one line) represents a linear regression of the median
intra-subpopulation z-values with inter-subpopulation z-values. Symbols represent salmon
(crosses), moths (triangles), and reef fishes (circles).
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—— Mean-variance PE
Average-CV PE

1 Coho salmon (2.4)

2 Pink salmon, odd years (2.3)

3 Sockeye salmon (2.2) -

4 Sockeye salmon (2.1) -

5 Pink salmon, odd years (2.1) |

6 Sockeye salmon (2.1) -

7 Pink salmon, odd years (2.1)

8 Pink salmon, even years (2.0) -
9 Sockeye salmon (2.0)

10 Pink salmon, even years (2.0) |
11 Atlantic salmon (2.0) -

12 Chum salmon (2.0) -

13 Chinook salmon (2.0) -

14 Chinook salmon (1.9) -

15 Chum salmon (1.9) -

16 Pink salmon, odd years (1.7) -
17 Pink salmon, even years (1.7) |
18 Atlantic salmon (1.6) -

19 Chinook salmon (1.6) -

20 Chum salmon (1.5) |

21 The magpie moth (1.9) -

22 Common quaker moth (1.8) -
23 Common emerald moth (1.7) -
24 Square-spot rustic moth (1.7)
25 Brown silver—lines moth (1.7) -
26 Mottled umber moth (1.7) -

27 Ingrailed clay moth (1.7) -

28 Yellow-line quaker moth (1.7)
29 Common swift moth (1.7)

30 December moth (1.6) -

31 Common footman moth (1.6) |
32 Heart & dart moth (1.5) -

33 Feathered thorn moth (1.5)

34 Scarus psittacus (1.7)

35 Pomacentrus moluccensis (1.6)
36 Acanthochromis polyacanthus (1.6) -
37 Neopomacentrus azysron (1.5) -
38 Chlorurus sordidus (1.5)

39 Ctenochaetus spp (1.5)

40 Pomacentrus lepidogenys (1.5) -
41 Plectropomus leopardus (1.5)
42 Scarus chameleon (1.3) -

43 Chlorurus microrhinos (1.3) -

44 Scarus frenatus (1.3) -

45 Hemigymnus melapterus (1.2) -
46 Hemigymnus fasciatus (1.2) -

47 Scarus niger (1.2) -

48 Epibulus insidiator (1.1)

49 Chaetodon plebeius (1.1) |

50 Gomphosus varius (1.1)

51 Chaetodon trifasciatus (1.0) -
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Figure 2.12: PEs with the mean-variance PEs estimated from a quadratic model. See Figure 2.3

for details.
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—— Mean-variance PE
Average-CV PE

1 Coho salmon (2.4)

2 Pink salmon, odd years (2.3) |

3 Sockeye salmon (2.2) -

4 Sockeye salmon (2.1) -

5 Pink salmon, odd years (2.1)

6 Sockeye salmon (2.1) -

7 Pink salmon, odd years (2.1) |

8 Pink salmon, even years (2.0) -
9 Sockeye salmon (2.0) -

10 Pink salmon, even years (2.0) |
11 Atlantic salmon (2.0) -

12 Chum salmon (2.0) -
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Figure 2.13: PEs with the mean-variance PEs estimated from a linear-quadratic averaged

model. See Figure 2.3 for details.
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Figure 2.14: PEs from linear detrended time series. See Figure 2.3 for details.
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Figure 2.17: Predicted vs. observed mean-variance (a) and average-CV PEs (b). Predicted PEs
correspond to the colour underlying the metapopulations displayed in Figure 2.5; observed PEs
to the values calculated directly from the empirical data and shown in Figure 2.3. The predicted
PEs are approximate due to other statistical properties of the data beyond the four examined in
Figure 2.5, and due to grouping the CV,,, and correlation values from the metapopulations to
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used throughout the paper (Table 2.1). The solid sloped lines indicate one-to-one relationships.
Note that all axes have been log transformed and the two panels have separate axis limits.
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Chapter 3

Portfolio conservation of

metapopulations under climate change”

3.1 Abstract

Climate change will likely lead to increasing population variability and extinction risk. Theo-
retically, greater population diversity should buffer against rising climate variability, and this
theory is often invoked as a reason for greater conservation. However, this has rarely been
quantified. Here we show how a portfolio approach to managing population diversity can
inform metapopulation conservation priorities in a changing world. We develop a salmon
metapopulation model where productivity is driven by spatially-distributed thermal tolerance
and patterns of short- and long-term climate change. We then implement spatial conservation
scenarios that control population carrying capacities and evaluate the metapopulation portfo-
lios as a financial manager might—along axes of conservation risk and return. We show that
preserving a diversity of thermal tolerances minimizes risk given environmental stochasticity
and ensures persistence given long-term environmental change. When the thermal tolerances
of populations are unknown, doubling the number of populations conserved may nearly halve
metapopulation variability. However, this reduction in variability can come at the expense of
long-term persistence if climate change increasingly restricts available habitat—forcing ecolog-

ical managers to balance society’s desire for short-term stability and long-term viability. Our

2A version of this chapter appears as Anderson, S.C., JW. Moore, M.M. McClure, N.K. Dulvy, A.B. Cooper.
Portfolio conservation of metapopulations under climate change. Ecological Applications. In press. http://doi.
org/10.1890/14-0266.1.
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findings suggest the importance of conserving the processes that promote thermal-tolerance
diversity, such as genetic diversity, habitat heterogeneity, and natural disturbance regimes, and
demonstrate that diverse natural portfolios may be critical for metapopulation conservation in

the face of increasing climate variability and change.

3.2 Introduction

Untangling the mechanisms that underpin the stability of ecological systems is a critical fo-
cus of ecology (e.g. Ives and Carpenter 2007; de Mazancourt et al. 2013). Decades of research
has focused on the role of species richness and functional diversity in driving stability; how-
ever, recent research has highlighted that the drivers of ecological stability are more complex
and multidimensional than previously thought (e.g. Balvanera et al. 2006; Ives and Carpenter
2007; de Mazancourt et al. 2013). Two key drivers of population stability that have been com-
paratively understudied are response diversity (Winfree and Kremen 2009; Mori et al. 2013)—
different responses to the environment by functionally similar species or populations (Elmqvist
et al. 2003)—and the role of metapopulations (Schtickzelle and Quinn 2007). Here, we exam-
ine the role of response diversity conservation in stabilizing metapopulations given projected
changes in climate. With unprecedented loss of biodiversity and levels of anthropogenic en-
vironmental change, it is more critical than ever to consider conservation approaches that
maintain system stability in the face of environmental uncertainty (Lee and Jetz 2008; Ando
and Mallory 2012).

Typically, conservation actions to maintain system stability and thereby reduce risk are
driven by an ad hoc combination of scientific information, political influences, and feasibility
(Margules and Pressey 2000); the management of financial portfolios provides another way of
considering risk (e.g. Figge 2004; Koellner and Schmitz 2006; Ando and Mallory 2012; Haak
and Williams 2012). Economists work to minimize risk and maximize returns by building a
portfolio of individual investments (called assets) with different attributes. For example, differ-
ent financial sectors can be expected to perform uniquely in some economic conditions; when
one rises in value another may fall. Modern portfolio theory proposes that out of all possible
portfolios, there is a small subset of portfolios that maximizes expected return for a level of
risk or minimizes risk for a level of return (called the efficient frontier), and that only by con-
sidering risk and return in tandem can an investor achieve maximum benefit from a portfolio

(Markowitz 1952).
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Similarly, expected growth rate and variance of a metapopulation is a function of the vari-
ance, covariance, and size of the individual populations (Moore et al. 2010; Carlson and Sat-
terthwaite 2011; Anderson et al. 2013). An ecological portfolio approach to managing risk for a
metapopulation might therefore consider how conservation actions affect the weight of each
population in a metapopulation portfolio. This investment weight could represent the con-
servation budget or the habitat conserved for each population. The population growth rate is
then analogous to the financial rate of return and the variability of that growth rate a metric
of risk. Environmental conditions could represent the financial market conditions. Given this
interpretation, ecological managers could consider how various conservation strategies affect
the expected risk and return of their ecological portfolio. These risk and return elements are
central to ecological management and conservation—management aims to ensure stability over
environmental variability (risk), and increase population abundance (return). Different scenar-
ios may suggest different desired trade-offs between the two. For example, a manager with a
healthy population might prioritize short-term stability, while a manager with an endangered
population might try to balance the two, or prioritize population growth initially.

Managing Pacific salmon under the uncertainty of climate change is an ideal scenario to
consider through the lens of portfolio theory for four reasons. (1) The migration of Pacific
salmon biomass profoundly influences aquatic and terrestrial coastal ecosystems throughout
the North Pacific ocean from Korea to California (Quinn 2005). (2) Pacific salmon form meta-
populations (e.g. Policansky and Magnuson 1998; Cooper and Mangel 1999; Schtickzelle and
Quinn 2007) and we can consider, for example, the metapopulation in a river-catchment as a
portfolio and the stream populations as assets (Schindler et al. 2010; Moore et al. 2010; Carlson
and Satterthwaite 2011; Anderson et al. 2013; Yeakel et al. 2014). Fisheries often integrate across
multiple populations, acting as investors in the salmon portfolio (Hilborn et al. 2003). Fish-
eries managers and conservation agencies can act as portfolio managers by choosing which
salmon habitat to prioritize for protection or restoration. (3) Many Pacific salmon metapop-
ulations are highly threatened (e.g. Gustafson et al. 2007) and will likely become more at risk
as threats such as overfishing, damming, logging, and particularly changing climate, intensify
(e.g. Lackey 2003). Indeed, recovery goals for Pacific salmon are often set at the metapop-
ulation level (McElhany et al. 2000), and knowing what minimizes risk to the metapopulation
can help choose efficient conservation actions (Policansky and Magnuson 1998; McElhany et al.
2000). (4) Given the scale and variety of the threats facing salmon, some prioritization will be

required to recover these highly-valued, even iconic species (Allendorf et al. 1997; Ruckelshaus
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et al. 2002).

Two key mechanisms can generate the asynchrony in metapopulation dynamics that is
critical to a diversified portfolio. First, localized habitat features can filter larger-scale en-
vironments, generating unique conditions for populations (Schindler et al. 2008) (sensu the
Moran effect). Second, salmon populations may respond differently to environmental vari-
ability (i.e. response diversity (Elmqvist et al. 2003) and biocomplexity (Hilborn et al. 2003))
arising from unique local adaptations and traits (Fraser et al. 2011; Eliason et al. 2011; Thorson
et al. 2014c¢). In reality, these mechanisms can interact. For example, salmon response diversity
in the marine environment can be driven by adaptation to localized freshwater environments
(Johnson and Schindler 2013).

In addition to posing perhaps the greatest threat to global biodiversity in general (Thomas
et al. 2004), climate warming poses a particular threat to riverine species whose ranges are
largely confined to existing habitat (Thomas 2010). Among these species, salmon are strongly
affected by climate warming (e.g. Patterson et al. 2007). Warmer water can lead to massive
mortality of salmon populations (e.g. Patterson et al. 2007) and indirectly impact salmon pro-
ductivity through alterations to snow-melt timing and extreme hydrological events (Crozier
et al. 2008). Due to these effects, adverse stream temperatures are already impeding recov-
ery of some Pacific salmon populations (McCullough 1999) and are expected to make recov-
ery targets more difficult to achieve (Battin et al. 2007). However, despite the evidence that
warming impacts salmon, salmon also show evidence of response diversity and local adapta-
tion to temperature. For example, thermal tolerance of sockeye salmon in the Fraser River,
British Columbia, Canada, varies within streams according to historical environmental condi-
tions (Eliason et al. 2011).

Here we ask how portfolio theory can inform spatial approaches to prioritizing metapop-
ulation conservation in a changing world. To answer this, we develop a salmon metapopulation
simulation in which spatially-distributed thermal tolerance and patterns of short- and long-
term climatic change drive population-specific productivity. We then implement scenarios
that prioritize alternative sets of populations and evaluate the salmon portfolios along risk-
return axes, as a financial portfolio manager might. We show that conserving a diversity of
thermal tolerances buffers metapopulation risk given short-term climate forcing and ensures
metapopulation persistence given long-term climate warming. We then show that dividing
conservation among more populations buffers risk regardless of thermal-tolerance diversity

or climate trend, but possibly at the expense of long-term growth rate and persistence when
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available habitat declines over time. We conclude that considering metapopulations through
portfolio theory provides a useful additional dimension through which we can evaluate con-

servation strategies.

3.3 Methods

We developed a 100-year salmon metapopulation simulation model that includes both popu-
lation dynamics and harvesting along with process, observation, and implementation uncer-
tainty (Fig. 3.1). We tested different conservation scenarios under two kinds of environmen-
tal regimes (short-term climate variability and long-term climate change) and in cases where
habitat capacity remained constant or declined over time. We provide a package metafolio
(Anderson 2014) for the statistical software R (R Core Team 2013) as an appendix, to carry out

the simulations and analyses described in this paper (Supporting materials).

3.3.1 Defining the ecological portfolio

In our ecological portfolios, we defined assets as stream-level populations and portfolios as
salmon metapopulations. The specific configuration of our model refers to salmon that spend
extended time rearing in freshwaters (e.g. steelhead [Oncorhynchus mykiss], sockeye salmon
[O. nerka), coho salmon [O. kisutch], and stream-type Chinook salmon [O. tshawytscha]), which
will likely be more impacted by changes to stream temperature and flow (Mantua et al. 2010).
We use the terms stream and populations interchangeably to represent the portfolio assets. We
defined the portfolio investors as the stakeholders in the fishery and metapopulation perfor-
mance. For example, the investors could be conservation agencies, First Nations groups, or civil
society as a whole. The fisheries management agency then becomes the portfolio manager. We
defined the asset value as the abundance of returning salmon in each stream and the value of
the portfolio as the overall metapopulation abundance.

In this scenario, the equivalent to financial rate of return is the generation-to-generation
metapopulation growth rate, calculated as the first difference of the log salmon returns. We
defined the financial asset investment weights as the capacity of the stream populations—
specifically the unfished equilibrium stock size—since maintaining or restoring habitat requires
money, time, and resources and habitat size itself is a strong predictor of the occupancy of

salmon (Isaak et al. 2007). Investment in a population therefore represents investing in salmon
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Figure 3.1: Flow chart of the salmon-metapopulation simulation. There are n salmon popula-
tions and t generations. Blue text indicates values that are generated before the simulation
progresses through time. Red text indicates steps in which calculations are performed through
time. Black text indicates values that are calculated. Grey text indicates parameters that can
be set. Green text indicates the looping structure of the simulation.



CHAPTER 3. METAPOPULATION PORTFOLIO CONSERVATION 56

habitat conservation or restoration and the risk and return from investment strategies become

emergent properties of our metapopulation model.

3.3.2 Salmon metapopulation dynamics

The salmon metapopulation dynamics in our simulation were governed by a spawner-return
relationship with demographic stochasticity and straying between populations. We defined
the spawner-return relationship with a Ricker model,

Ri(t+1) — Si(t)eai(l)(l_si(t)/bi)+wi(t)

where i represents a population, ¢ a generation time, R the number of returns, S the num-
ber of spawners, a the productivity parameter (which can vary with the environment), and b
the density-dependent term (which is used as the asset weights in the portfolios). The term
Wi(s) represents first-order autocorrelated error. Formally, wi;) = wj;—1)pw + Ti(z), Where 1y
represents independent and normally-distributed error with standard deviation of ¢,, mean of
—0?2/2 (bias corrected so the expected value after exponentiation is 1), and correlation between
subsequent generation values of p,,. We set o, = 0.7 and p,, = 0.4 to match the mean values
for salmonids in Thorson et al. (2014a).

We manipulated the capacity and productivity parameters b; and a;(;) as part of the port-
folio simulation. The capacity parameters b; were controlled by the investment weights in
the populations. For example, a large investment in a stream was represented by a larger un-
fished equilibrium stock size b for stream i. The productivity parameters a;;) were controlled
by the interaction between a temperature time series and the population thermal-tolerance
performance curves. In a different context, investment could represent improving the pro-
ductivity (a;) parameters, say through culling, to offset mortality increases due to changing
temperatures. However, such a scenario is unlikely in the case of an endangered species where
population levels are often well below levels where culling would increase productivity.

We generated the thermal-tolerance curves according to

a?®™ — W(e; — e?pt)z, if ajs) >0

aj(t) =
O’ lf a,-(t) <0

where W; controls the width of the curve for population i, e; represents the environmental value

max

. opt . . .
at generation t, e;” represents the optimal temperature for population i, and a]™®* represents

the maximum possible a value for population i. We set the W; parameters (evenly spaced values
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increasing and decreasing between 0.08 and 0.04) to generate widths approximately as shown
in Eliason et al. (2011). We set the area under each curve to 30 units to create a®* values
ranging roughly between 2.2 and 2.9 as in Dorner et al. (2008). These parameter values created
some warm-tolerant populations, some cold-tolerant populations, and some populations with
a wider range of thermal-tolerance but a lower maximum productivity (Fig. 3.2a). Although
we refer to a thermal-tolerance curve because temperature is a dominant driver of salmon
productivity (e.g. McCullough 1999; Patterson et al. 2007; Eliason et al. 2011), our model could
apply to any environmental tolerance (e.g. tolerance to stream flow volume or changes in snow
melt timing; Crozier et al. 2008).

We implemented straying as in Cooper and Mangel (1999). We arranged the populations
in a line and salmon were more likely to stray to streams near their natal stream (Supporting
materials Fig. 3.7). Two parameters controlled the straying: the fraction of fish fay (0.02)
that stray from their natal stream in any generation and the rate m (0.1) at which this straying

between streams decays with distance

e—mli=jl

strays; ;) = ForayRj(r) n

3 el

k=1

k#j
where Rj(;) is the number of returning salmon at generation t whose natal stream was stream
j. The subscript k represents a stream ID and n the number of populations. The denominator
is a normalizing constant to ensure the desired fraction of fish stray. Our simulation did not
account for the homogenization of diversity due to straying. For example, all salmon in one

population maintained the same thermal-tolerance curve regardless of how many salmon it

received from another stream.

3.3.3 Fishing

Our simulation used a simple set of rules to establish the exploitation rate of fisheries and the
remainder left to spawn (escapement target). First, to establish a range of spawner-return val-
ues and to mimic the start of an open-access fishery, for the first 30 years we drew the fraction
of fish harvested randomly from a uniform distribution between 0.1 and 0.9. We discarded
these initial 30 years as a burn-in period. Then, every five years for the remaining 100 years

of our simulation, we fitted a spawner-return function to the cumulative data for individual
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Figure 3.2: Different ways of prioritizing thermal-tolerance conservation. Panel a shows
thermal-tolerance curves for ten possible populations and panels b—e show different ways of
prioritizing four of those populations. The curves describe how productivity varies with tem-
perature for a given population. Some populations thrive at low temperatures (blue shades)
and some at warm temperatures (red shades). Some are tolerant to a wider range of environ-
mental conditions (green-yellow shades) but with a lower maximum productivity. The total
possible productivity (the area under the curves) is the same for each population.
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populations. The target escapement rate E,, (a proportion per year) was set based on Hilborn

and Walters (1992) as

_ R
(0.5 — 0.07q)

where R represents the return abundance and a and b represent the Ricker model parameters.

Eiar =

The target harvest rate is then a function of returns and the escapement target (Hy,y = R — Etay)-
We included implementation uncertainty in the actual harvest rate H,.; as a function of the
target harvest rate and a beta distribution with location parameter ay,, shape parameter fp,

and standard deviation of oy, (set to 0.1 as observed for similar data in Pestes et al. (2008)).

1-H, 1
Hz tar
ah = tar( 2 - H )
o h tar

ap —
Htar

beta(an, fr).

B

H, act

3.3.4 Environmental dynamics

Environmental dynamics typically have both short- and long-term fluctuations, such as annual
variability and directional climatic warming. We evaluated portfolio performance under these
two components separately in our initial scenarios and combined in our final scenario. We did
not explicitly model a cyclical climate trend, such as the Pacific Decadal Oscillation, but the
effect of such a trend would largely be a product of the short-term variability and long-term
trend. We represented short-term dynamics eghori(;) as a stationary first-order autoregressive

process, AR(1), with correlation p, (0.1)

€short(r) = €t-1Pe t dy,d; ~ N(/ld,ajv)

where d; represents normally distributed deviations of some mean y; and standard deviation
o4. We set p17 to 16 °C and o4 to 2 °C, to approximately match the stream temperature variation
in Eliason et al. (2011). We represented long-term environmental dynamics ejong(s) as a linear

shift in the temperature through time

€long(t) = €0 t ,Bet
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where ) represents the starting temperature up until the burn-in period ends and S, repre-
sents the annual increase in temperature. We set ¢y = 15°C and f. = 0.04 °C/generation to
obtain an increase in stream temperature of 4 °C over the next century (assuming one gener-
ation equals one year) ending at or above the optimum thermal optimum of all populations.
This increase approximately matches predicted increases in stream temperature—relative to the
1980s, stream temperatures in the Pacific Northwest have already increased by approximately
0.2 °C/decade (Isaak et al. 2012), and are predicted to increase 2 to 5 °C by 2080 (Mantua et al.
2010).

We summarize the chosen parameter values in Supporting materials Table 3.1. Combining
salmon population dynamics, fishing, and environmental dynamics, we illustrate the compo-
nents of an example simulation in Fig. 3.3 and the effect of varying population, fishing, and
environmental parameters from their base values on metapopulation abundance in Supporting

materials Fig. 3.8.

3.3.5 Conservation scenarios

Spatial conservation scenarios: We evaluated four spatial conservation scenarios (Fig. 3.2b—e).
We conserved four populations (b; = 1000) and set the unfished equilibrium abundance of the
six remaining populations to near elimination (b; = 5) at the start of the simulation. These
reduced populations could still receive straying salmon but were unlikely to rebuild on their

own to a substantial abundance. The four spatial scenarios we considered were:

1. Conserve a full range of thermal tolerances (conserve some cool-, some intermediate-,

and some warm-tolerant populations; Fig. 3.2b).

2. Conserve the middle section of the metapopulation (conserve the most thermal-tolerant

populations with the widest response curves; Fig. 3.2c).

3. Conserve the lower half of the metapopulation (conserve cool-tolerant populations; Fig.

3.2d).

4. Conserve the upper half of the metapopulation (conserve warm-tolerant populations;

Fig. 3.2e).

Unknown thermal tolerances: In reality we rarely know precise levels of thermal response

diversity. We therefore also considered cases where conservation was randomly assigned with
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Figure 3.3: The components of an example metapopulation simulation. We show, from top to
bottom, the temperature signal, the resulting productivity parameter (Ricker a), the salmon
returns, fisheries catch, salmon escapement, salmon straying from their natal streams, salmon
joining from other streams, spawner-return residuals on a log scale, and the estimated a and b
parameters in the fitted Ricker curve. The shaded lines indicate populations that thrive at low
(blue-green) to high (orange-red) temperatures.
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n
respect to thermal tolerance but where conservation effort (3, b; = 2000) could be distributed

across different numbers of streams. We considered conserv_ing from two to 16 streams with
thermal tolerance distributed along the same range as in the spatial scenarios. As in the spatial
strategies, we reduced the capacity of the remaining streams to the nominal level of b; = 5.
Declining habitat availability: Habitat capacity in the Pacific Northwest is likely shrink-
ing over time as salmon populations are squeezed between warming temperatures reducing
habitat from below and declining stream flows reducing the habitat that remains from above.
For example, temperature isotherms are shifting upstream at 1-10 km/decade in low gradient
streams that Chinook use for spawning (Isaak and Rieman 2013). At the same time, summer-
fall stream flow volumes have been decreasing 10-30% across the Pacific Northwest over the
past 50 years (Luce and Holden 2009) and are likely to continue declining (Luce et al. 2013). We
therefore considered a scenario where habitat capacity declined by a constant amount across
all populations. We reduced the b parameters by 0.85 units per generation so that some of the
smaller populations would reach near extinction by the end of the simulation, as is likely for
smaller isolated populations within this century (e.g. Gustafson et al. 2007). In this scenario,
we considered cases where thermal tolerance was unknown but conservation effort could be
distributed across between 16 and two streams. Climate followed a combination of the same
long-term warming and short-term variability as before. For many Pacific salmon metapop-

ulations, this scenario represents the most realistic scenario investigated.

3.4 Results

3.4.1 Spatial conservation scenarios

Given short-term environmental fluctuations (strong interannual variation), conserving a wide
range of thermal tolerances is the safest choice because it reduces overall risk to an ecological
portfolio (Figs 3.3, 3.4a, Supporting materials Fig. 3.10). The average variance of metapopulation
growth rate was 1.6 times lower given balanced thermal tolerance conservation (conserving a
full range of thermal tolerances or the middle section vs. the upper or lower half). Thermal tol-
erance diversity also led to more consistent stability—there was less spread in variance across
simulated metapopulations (width of quantiles from left to right in Fig. 3.4a). These increases
in stability occurred despite the portfolios being comprised of warm- and cool-thriving pop-
ulations that individually showed greater variation in response to environmental variability

than populations with wide thermal tolerance curves. We can see the mechanism behind these
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Figure 3.4: The importance of preserving thermal-tolerance diversity through spatial conser-
vation strategies. The conservation strategies correspond to figure 2 and represent conserving
a range of responses (green), the most stable populations only (orange), or one type of environ-
mental response (purple and pink). In risk-return space we show environmental scenarios that
are comprised primarily of (a) short-term and (b) long-term environmental fluctuations. The
dots show simulated metapopulations and the contours show 25% and 75% quantiles across 500
simulations per strategy. We also show example metapopulation abundance time series for the
(c, e) short-term and (d, f) long-term environmental-fluctuation scenarios. The thick grey line
(a, b) indicates the efficient frontier across all simulated metapopulations—metapopulations
with the minimum variability for a given level of growth rate.
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portfolio properties by inspecting example population time series (Fig. 3.4c, d). If only the up-
per or lower half of thermal tolerances is conserved, the portfolio tends to alternate between
performing well and poorly, depending on the environmental conditions, resulting in a riskier
portfolio (Fig. 3.4e). This risk is buffered when a diversity of thermal tolerances is conserved
(Fig. 3.4¢) and the resulting asynchrony in population abundance (Supporting materials).

Given long-term environmental change, such as climate warming, an ecological manager
is hedging his or her bets on the environmental trend and how the populations will respond
by conserving a range of thermal tolerances. The choice of which populations to conserve
affects the “rate of return” (metapopulation growth rate) properties of an ecological portfolio
(Fig. 3.4b; Supporting materials Figs 3.11, 3.12). The typical metapopulation growth rate when
thermal tolerances were balanced was near zero—the metapopulation neither increased nor
decreased in abundance in the long run. The example metapopulation abundance time series
(Fig. 3.4d, f) illustrate the mechanism: by conserving a range of thermal tolerances, when one
population is doing poorly, another is doing well and the metapopulation abundance remains
stationary through time. If a manager had invested only in the populations that were doing
well at the beginning they would have had the lowest metapopulation growth rate at the end
(purple portfolios in Fig. 3.4f).

3.4.2 Unknown thermal tolerances

In a scenario where the distribution of population-level thermal tolerances are unknown, port-
folio optimization informs us that investing in more populations buffers portfolio risk regard-
less of environmental trend (Fig. 3.5). Given short-term environmental fluctuations, conserving
more populations buffers portfolio risk (Fig. 3.5a, ¢, d; Supporting materials Figs 3.13, 3.14). For
example, a metapopulation with 16 conserved populations is on average 1.7 times less variable
than a metapopulation with only eight. At the same time, the random conservation of thermal
tolerances creates an increased spread of possible metapopulation risk given fewer populations
conserved (increasing quantile width from left to right in Fig. 3.5a).

Given long-term environmental change, conserving more populations also buffers portfolio
risk (Fig. 3.5b; Supporting materials Figs 3.15, 3.16). Furthermore, in comparison to the short-
term environmental noise scenario, the long-term environmental change creates a greater
spread of possible metapopulation growth rates. For example, the height of the 75% quantile of
the mean metapopulation growth rate for the two-population systems (light grey polygons) is

larger given long-term change than short-term change.
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Figure 3.5: The importance of preserving as many populations as possible when we do not know
how thermal-tolerance is distributed. In risk-return space we show environmental scenarios
that are comprised primarily of (a) short-term and (b) long-term environmental fluctuations.
We show metapopulations in which two through 16 populations are conserved. The dots show
simulated metapopulations and the contours show 25% and 75% quantiles across 500 simula-
tions per strategy. We also show example metapopulation (c) rate-of-change and (d) abundance
time series for the short-term environmental-fluctuation scenario. The thick grey line (a, b) in-
dicates the efficient frontier across all simulated metapopulations—metapopulations with the
minimum variability for a given level of growth rate.
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3.4.3 Declining habitat availability

Given a reduction in stream flow over time along with climate change and climate variability, a
manager encounters a risk-return trade-off when deciding how many populations to distribute
conservation efforts across (Fig. 3.6; Supporting materials Figs 3.17, 3.18). Conserving more
populations buffers portfolio risk, but at the expense of expected metapopulation growth rate.
For example, the mean metapopulation variance was 2.7 times lower when 12 populations were
conserved instead of four, but the expected metapopulation growth rate was 2.0 times lower
when 16 populations were conserved instead of eight. The conservation scenarios represent an
efficient frontier where a manager must choose whether to hedge his or her bets on a smaller
number of populations and take on greater expected variability or conserve more populations

and accept a lower expected metapopulation growth rate.

3.5 Discussion

The importance of conserving populations with a diversity of responses to the environment is
a key assumption of conservation ecology, but has rarely been tested quantitatively (Mori et al.
2013). We show how maintaining populations with a variety of thermal tolerances reduces risk
caused by short-term environmental stochasticity and optimizes chances for long-term per-
sistence given climate change. Further, conserving more populations reduces metapopulation
variability but possibly at the expense of long-term metapopulation growth rate if available
habitat is squeezed by climate change. In this discussion, we begin by linking our model with
real-world conservation issues for Pacific Northwest salmon. We then consider broader impli-

cations for metapopulation conservation of any species and ecological stability in general.

3.5.1 Implications for salmon conservation

Our results emphasize the importance of promoting ecological conditions that promote diver-
sity of environmental response to the environment if stability is to be maintained in the face of
environmental uncertainty. This suggests three clear conservation actions. First, since habitat
heterogeneity can lead to local adaptation (e.g. Fraser et al. 2011), our results emphasize the
need to maintain a diversity of salmon habitat (Rogers and Schindler 2008). Second, if conser-
vation actions must be prioritized, then our model suggests we should focus on populations

that aren’t spatially contiguous to maximize diversity of response to the environment. Third,
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Figure 3.6: Risk-return trade-off in the case where habitat is lost over time through stream flow
reduction. The temperature follows both short-term fluctuations and a long-term increase.
Thermal tolerance is randomly conserved. Shading indicates conservation plans where two
through 16 populations are conserved. (a) Conserving more populations decreases expected
variance but also decreases expected growth rate. Dots show simulated metapopulations and
contours show 25% and 75% quantiles across 500 simulations per strategy. The thick grey line
indicates the efficient frontier across all simulated metapopulations—metapopulations with the
minimum variability for a given level of growth rate. Also shown are (b) example metapop-
ulation growth rate and (c) abundance time series from the 2 and 16 population scenarios.
Regression lines in (b) illustrate a decreasing growth rate through time.
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our results demonstrate the advantages of avoiding structures that artificially remove diver-
sity of environmental response. For salmon, dams are a prominent example (McClure et al.
2008a). Dams can have a double impact whereby their introduction selectively eliminates a
large swath of contiguous habitat, perhaps analogous to our upper- or lower-half scenarios in
Fig. 3.4, and then mitigation approaches such as hatcheries can further reduce response diver-
sity if not carefully managed (McClure et al. 2008b). In fact, salmon habitat lost to dams in
the western U.S. has been biased towards warmer, drier, higher habitats (McClure et al. 2008a)
and our findings suggest the resulting loss of warm-tolerant species may compound the risk
to current metapopulations in the face of global warming.

The goals of existing salmon management structures in the western US and Canada support
a portfolio conservation perspective. In the US, salmon populations are divided into Evolution-
arily Significant Units (ESUs), groups of populations that are reproductively isolated and share
a common evolutionary heritage, and finer-scale Viable Salmonid Populations (VSPs), popula-
tions that are demographically independent of other populations over a 100-year time frame
(McElhany et al. 2000). In Canada, the rough equivalent to the ESU is a Conservation Unit (CU),
which consists of a group of salmon that are reproductively isolated and that if lost would be
unlikely to recolonize in a reasonable time frame (DFO 2005). A salmon portfolio in our model
could represent an ESU or CU and the lessons learned from our models are thus directly appli-
cable to management guidelines in the Pacific Northwest. In fact, a number of VSP guidelines
agree with our findings. For example, VSP guidelines suggest maintaining diversity in a vari-
ety of forms, focusing conservation efforts not just where salmon are currently abundant, and
maintaining metapopulations with some populations near each other and others further apart
(McElhany et al. 2000).

However, salmon populations in the Pacific Northwest are already heavily impacted (e.g.
Gustafson et al. 2007) and VSP and CU recovery goals have not yet been achieved for most
populations. Since European-Americans arrived, 29% of 1400 historical salmon populations in
the Pacific Northwest and California have been lost (Gustafson et al. 2007). Furthermore, 44%
of salmon habitat in the western US (in the lower 48 states) has been lost to dams and other
freshwater blockages (McClure et al. 2008a). Changes to habitat, combined with increasing
climate variability, has led to disturbance regimes that differ substantially in the frequency,
magnitude, and duration from historical patterns, and threaten the resilience of salmon pop-
ulations (Waples et al. 2009). Many remaining populations rely on hatcheries for long-term

population viability—creating substantial evolutionary risks such as outbreeding depression,
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genetic homogenization, reduced effective population size, and domestication of fish (adaption
to artificial environments and reduced fitness in wild environments) (McClure et al. 2008b).
Reduction of long-term reliance on hatcheries, accompanied by habitat restoration through,
for example, restoring connectivity of floodplains and stream flow regimes, remains a criti-
cal component of long-term salmon sustainability in the Pacific Northwest—particularly given
predicted patterns of climate change (Beechie et al. 2013).

Our model complements other simulation-based salmon-habitat prioritization models. While
these other models tend to focus on detailed assessment of individual fish stocks, our model
is the first to consider the role of response diversity in buffering risk for metapopulations as a
whole. The Shiraz model is one complementary prioritization scheme (Scheuerell et al. 2006).
It focuses on detailed conditioning of the habitat-population-dynamics relationship at multiple
life-history stages for a single salmon population. Whereas the Shiraz model can be applied
to an entire watershed, it combines the populations together as a single unit thereby ignoring
the role of population-level environmental response diversity. A second salmon prioritization
model proposes combining population viability measures with an assessment of the genetic
consequences of losing particular populations (Allendorf et al. 1997). This model, however, also
focuses on the assessment of individual stocks without considering their covariance and there-
fore the performance of the salmon portfolio as a whole. Our model does not replace these
prioritization schemes. Rather, it proposes an additional focus on prioritization that optimizes
metapopulation growth and risk and that considers diversity of tolerance to environmental
conditions.

While our model captures many relevant aspects of salmon life history and environmental
dynamics, it ignores others that could be investigated in future analyses and might improve
our understanding of salmon portfolio conservation. First, some salmon populations, such as
ocean-type Chinook, tend to spawn further downstream than stream-type salmon. Ocean-type
Chinook may therefore be less affected by declining stream flow and be able to shift upstream
to avoid shifting isotherms (Mantua et al. 2010). A model could consider evolutionary adap-
tation by having populations adopt more ocean-type-like characteristics. Second, our model
ignores lost thermal-tolerance diversity from populations that reach low population sizes and
are reestablished by straying from nearby streams. An individual-based model might more
accurately penalize for this lost diversity and emphasize the need to define lower limits on the

investment weights in a salmon conservation portfolio. Third, our model ignores fine-scale



CHAPTER 3. METAPOPULATION PORTFOLIO CONSERVATION 70

within-stream spatial and temporal environmental fluctuations. Fine-scale extremes in tem-
perature and stream flow may be particularly important to population dynamics (Mantua et al.
2010) and could be incorporated into a future analysis. Such a model might show an increased
benefit of portfolio optimization if the impact of increased magnitude and frequency of local

climate extremes is important in addition to the mean trend (Jentsch et al. 2007).

3.5.2 Broad ecological implications and conservation priorities

To promote the stabilizing effect of a diversified ecological portfolio, there are two key compo-
nents to identify: (1) the environmental drivers to which a varied response might occur, and (2)
the conservation actions that can increase or decrease the diversity of response. A third com-
ponent, identifying the traits and behaviours that mediate population responses to the envi-
ronment may provide further insight into the mechanisms. Environmental drivers of response
can include, for example, changes to temperature, habitat availability, air quality, water chem-
istry, or extreme weather (Elmgqvist et al. 2003). Identifying conservation actions that promote
environmental response diversity is critical to developing stable ecological systems (Mori et al.
2013). However, merely measuring environmental response diversity in real ecological systems
is challenging (albeit possible; Thibaut et al. 2012). Therefore, one realistic solution may be to
create general guidelines from a small number of intensively-monitored systems in which we
can associate changes in synchrony of populations with changes in conservation regimes (e.g.
Moore et al. 2010; Carlson and Satterthwaite 2011). Another solution may be to monitor the
diversity of environmental conditions themselves (e.g. temperature, stream flow, and gravel
size in the case of salmon) since we know that traits affecting response to environmental con-
ditions are heritable and are likely to adapt to local conditions (Carlson and Satterthwaite 2011)
possibly producing diversity of response to subsequent disturbances.

We suggest a number of specific extensions to our simulation model. First, the environment-
thermal-tolerance mechanism could be expanded—the distribution of environmental tolerance
across a metapopulation does not necessarily follow a linear gradient, different forms of en-
vironmental tolerance could interact, and environmental conditions could affect populations
through mechanisms other than productivity. Second, in addition to other taxa, our model
could be extended to ecological communities or meta-communities after accounting for species
interactions. Third, without any modifications, our model could consider the Moran or envi-
ronmental-filter concept whereby populations experience increasingly different environmental

forces at further distances (Schindler et al. 2008; Rogers and Schindler 2008). Fourth, a model
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could consider the contribution of contemporary evolution (Stockwell et al. 2003). These rapid
adaptations to changes in the environment could strongly influence portfolio performance and
emphasize the importance of maintaining genetic diversity and a variety of local habitat. Fi-
nally, our model could be conditioned on a system of interest—say a particular river basin in
our example—and the metapopulation portfolio could be optimized across conservation and
restoration options as part of a formal decision analysis.

Management decisions for exploited species often come with a trade-off between conserva-
tion and revenue generation. Our findings when habitat capacity declined over time illustrate
another kind of trade-off more similar to the trade-off described by Markowitz (1952) in his
seminal financial portfolio work. In this case, managers must navigate a trade-off between ex-
pected risk and return of the metapopulation/portfolio growth rate itself. No position along
this trade-off is inherently better than another unless considered in the context of societal val-
ues. Does society value short-term stability or a greater assurance of long-term persistence?
The optimal choice likely lies somewhere in the middle and parameterizing our model to a
specific metapopulation could illustrate the nature of the trade-off and aid conservation de-
cision making. However, if environmental tolerance could be targeted for conservation as in
Fig. 3.4, a manager could likely achieve portfolios closer to the efficient frontier in Fig. 3.6. In
other words, a manager could achieve a lower expected variance for the same expected growth
rate or a higher expected growth rate for the same expected variance—a better conservation
outcome in either case.

Conservation planning is inherently a spatial activity (Pressey et al. 2007) and our results
can inform how we approach spatial conservation planning. First, our results suggest focusing
on conserving the processes and mechanisms underlying stability, not just biodiversity itself
(Pressey et al. 2007; Beechie et al. 2013). In particular, our results suggest that response diver-
sity should be a mainstream element of conservation, not just species and functional diversity
(Mori et al. 2013). Our analysis also illustrates how conserving a portfolio of populations, ideally
selected for a wide range of environmental tolerance, can help integrate across environmen-
tal uncertainty when spatial planning (Ando and Mallory 2012). This is particularly important
given the uncertainty surrounding the future ecological responses to climate change (Walther
et al. 2002). Finally, the increasing rapidness and variability of environmental change necessi-
tates a dynamic approach in which spatial planning is reevaluated at regular intervals (Hannah
et al. 2002)—perhaps testing for changes in population and species asynchrony in addition to

changes in local productivity and variability. Combined, our results detail a pathway through
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which population diversity in environmental tolerance can underpin the stability of ecolog-
ical systems. This pathway highlights that diverse natural portfolios may be critical for the

conservation of metapopulations in the face of increasing climate variability and change.
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3.7 Supporting materials

The metafolio R package contains the functions and code to carry out the analyses in our paper.

The package can be installed from CRAN with:
install.packages("metafolio")

Alternatively, you can view the code and install the package from
http://github.com/seananderson/metafolio.
The included vignette describes the package and illustrates some example simulations. You can

view the vignette with:
vignette("metafolio")
You can view the help for the package with:

?metafolio

help(package = "metafolio")

The figures from this paper can be re-created by downloading the code from GitHub and sourc-

ing the file README .R in the inst/examples folder:

setwd("metafolio/inst/examples")
source("README.R")
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Table 3.1: Input parameters to the salmon metapopulation simulation with default values.

Description Symbol  Value Reference

Population dynamics parameters

Stock-recruit residual standard deviation (on log or 0.7 Thorson et al. 2014a

scale)

AR(1) serial correlation of stock-recruit residuals Pw 0.4 Thorson et al. 2014a

Fraction of fish that stray from natal streams fstray 0.02 Quinn 2005 and
references therin

Exponential rate of decay of straying with distance m 0.1 Cooper and Mangel 1999

Range of maximum productivities apex 2.2-2.9 Dorner et al. 2008

Environmental parameters

Width parameter for thermal-tolerance curves for w; 0.08-0.04-0.08 Brett 1952; Eliason et al.

populations i 1 to n (values generate widths in line 2011

with listed references)

Optimum environmental value for populations i 1 to n e?pt 13-19 Eliason et al. 2011

Standard deviation of annual temperature o4 2 Eliason et al. 2011

fluctuations

AR(1) autocorrelation of annual temperature Pe 0.1

fluctuations

Annual increase in stream temperature in degrees Pe 0.04 Mantua et al. 2010

Celcius

Fishery parameters

Standard deviation of beta distribution for oh 0.1 Pestes et al. 2008

implementation error

Frequency of assessment (years) fassess 5
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Source population

10

1 2 3 4 5 6 7 8 9 10
Receiving population

Figure 3.7: An example straying matrix. The rows and columns represent different populations
(indicated by population number). Dark blue indicates a high rate of straying and light blue
indicates a low rate of straying.
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5000 - Base case, see main text or Table S1 for parameter values

AL I Joer O

5000 - No temperature fluctuations o4 =0

5000 - Larger temperature fluctuations o4 =5

AN NN/ SA

5000 4 No straying fgy, =0

AL LAAN N

5000 - More straying fgsy = 0.2

MMA

No recruitment variability o, =0

PR AA RS

Metapopulation return abundance

5000 -

0
5000 - No implementation error o, =0
0 - -
5000 - Larger implementation error o, =0.25
10 20 30 40

Generation

Figure 3.8: The impact of increasing or decreasing various parameter values on metapopulation
return abundance. The different coloured lines represent three example salmon populations.
The base case represents the base-case values for the short-term environmental fluctuation
scenario.



CHAPTER 3. METAPOPULATION PORTFOLIO CONSERVATION 77

1
3
|$..
2 R
]
c 3 ‘%?'. ;"ﬁ"’-
S [Ty [N
= N U
5 . .;‘; L i .
Q 4 [N oWl e
o W e e
a we LTiEE |8
> C P P R e B
o] Ve 2 PSS .
3 of S x oo .
R P O U SN S
[ PR B - P o
R T RIS A
A
= o b TaEe :-i.._\:_; S s
g ° '--... PO .- ¢ l:'..‘.“:) o
7 7, HEF oghed| WXL
= S
7 ¥ *s s - ¥ ]
o) ¢ ) s L