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Abstract

Scalar-Tensor theory is a framework for modified gravity that encompasses many well-studied al-

ternatives to General Relativity. Of particular interests are theories which possess a screening

mechanism, which allows for the satisfaction of the bounds of solar system and laboratory scale

tests of gravity, while giving rise to novel effects on cosmological scales. Among these are Large-

Curvature f(R) as well as Chameleon, Symmetron and Dilaton gravity. All of these models can be

described in terms of a recently introduced parametrization of Scalar-Tensor Theory, which involves

two free functions of time alone. These models have been implemented by modifying the existing

code MGCAMB. In this thesis, we discuss our implementation of these models. We present the

results of Fisher forecasts for the constraints on the parameters of the 4 aforementioned models,

taking the Large Synoptic Survey Telescope (LSST) and Planck as representative surveys. We

also use the Principal Components Analysis approach, forecasting constraints for bins of the two

functions upon discretization.
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Chapter 1

The Standard Model of Cosmology

1.1 General Relativity

1.1.1 Foundations and Observations

General Relativity (GR) is at current our most successful theory of gravity, theoretically as well as

empirically. GR describes gravity in purely geometric terms. It attributes gravitation to the geometry

of spacetime. The dynamical field is the metric, a rank 2 tensor. The field equations are second

order in the metric derivatives.

The classical tests of GR include precession of the orbit of Mercury, lunar ranging and gravi-

tational lensing of light by the sun. The latter was the subject of the famous Eddington expedition

which first confirmed the deflection angle predicted by GR, which differs by a factor of 2 from the

Newtonian result. Today the deflection angle is measured to be that expected from GR within one

part in 104 [1]. Time delay experiments involving radio links with space craft have confirmed the

gravitational time delay expected due to GR within one part in 105 [2]. Both of these tests are

probes of null geodesics.

The anomalous precession of the perihelion of Mercury probes spacelike geodesics. In rela-

tivistic theories of gravity, in contrast with the Newtonian theory, the orbits of a test particle about

an isolated mass fail to close, causing the perihelion to precess. GR predicts a precession of

∆ω = 42.98′′ for Mercury [3]. The current best bound is ∆ω = 42.984± .061 [4].

1.1.2 The Einstein Field Equations

For completeness, the essentials of GR are reviewed here [5, 6]. The Riemann tensor is central to

describing the geometry of a (pseudo-) Riemannian manifold. It is defined in terms of the metric

1



CHAPTER 1. THE STANDARD MODEL OF COSMOLOGY 2

and its derivatives to second order as

Rρσµν ≡ ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ, (1.1)

where Γσµν is the metric connection 1

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν). (1.2)

In (1.1), as throughout, we employ the Einstein summation convention; repeated Greek indices (one

covariant and one contravariant) are summed from 0 to 3, while Latin indices are summed from 1

to 3. The former correspond to the (Minkowski) tangent space to the full spacetime, while the latter

correspond to the tangent space to a spacelike hypersurface.

A (simply-connected) spacetime is flat iff the Riemann tensor vanishes identically, in which case

there exists some coordinate system in which the metric is Minkowski

[gµν ] = [ηµν ] = diag(−1, 1, 1, 1). (1.3)

The rank two Ricci tensor is defined from Riemann as

Rµν ≡ Rγµγν . (1.4)

Further contracting yields the Ricci scalar

R ≡ Rµµ. (1.5)

The Riemann tensor has n2(n2 − 1)/12 independent components in n dimensions. 2

The Riemann tensor satisfies the Bianchi identity

∇[λRρσ]µν = 0, (1.6)

where the brackets denote anti-symmetrization with respect to the enclosed indices. The (twice-)

contracted version of this identity is

∇µ[Rµν −
1

2
Rgµν ] = 0. (1.7)

This identity provides one route to Einstein’s field equations. If we choose to describe matter in

terms of the energy-momentum tensor Tµν , and we want the latter to be conserved ∇µTµν ≡ 0,

then the left hand side of (1.7) is the right rank-2 tensor to equate to Tµν . The bracketed term in

(1.7) is known as the Einstein Tensor. We could add a constant times the metric, whose covariant

derivative and hence covariant divergence vanishes identically as a result of metric compatibility of

1I.e. it is the unique metric compatible, torsion-free connection.
2In 3 dimensions, this coincides with the degrees of freedom in the Ricci tensor, hence the historical importance of Rµν .
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the covariant derivative defined by the Christoffel connection. Hence the Einstein equations with a

Cosmological constant are

Rµν −
1

2
gµνR+ Λgµν = 8πGTµν , (1.8)

where we have set c = 1, as we will continue to do.

An alternate path to the field equations is as follows. The simplest scalar that can be constructed

from the metric and its derivatives to second order is the Ricci scalar plus a constant scalar 3.

Hence the simplest Lagrangian second order in the metric is the Hilbert-Einstein Lagrangian with a

“cosmological constant” term 4,

L =

√
−g

16πG
[R− 2Λ]. (1.9)

The field equations follow via the principle of least action. Varying (1.9) with respect to the metric

yields

Rµν −
1

2
gµνR+ Λgµν = 0. (1.10)

The right hand side of (1.8) following from including the matter action, and defining [5]

Tµν ≡ −
1√
−g

δSM
δgµν

. (1.11)

.

The cosmological constant term was initially added by Einstein to allow for the possibility of a

static solution. However, this solution is instable. Hence the constant term was not considered for a

great time. Recent evidence for the accelerated expansion of the universe lead to the resurrection

of the cosmological constant, which is now included in the standard model of Cosmology, Λ-Cold

Dark Matter (LCDM).

1.2 LCDM

1.2.1 The FRW Universe: Background Evolution

GR allowed for the mathematical study of the universe at a level not before possible. Taking the

Copernican principle, we suppose that the universe is very nearly (spatially) homogeneous and

isotropic. While initially this seems like a bold postulate, it is recapitulated by the statistics of the

Cosmic Microwave Background (CMB). This radiation surrounds us, coming from all directions on

the sky. It has a nearly perfect blackbody spectrum, and amazingly the Temperature corresponding

to this spectrum is the same from all points on the sky to 1 part in 105 [7].

3I will be loose with notation in referring to tensor fields simply as tensors, and Lagrangian densities simply as
Lagrangians.

4One can add additional terms involving contractions of products of Riemann and Ricci with themselves and still obtain
second order field equations. However, these terms do not add a contribution to the resulting Euler-Lagrange equations[3].
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Mathematically, a spatially homogeneous and isotropic spacetime can be realized as the foliation

of maximally symmetric spacelike 3-manifolds. The maximally symmetric 3-manifolds come in three

varieties: spherical, flat and hyperbolic. In any of these cases the metric can be put in the form

corresponding to the line element

ds2 = −dt2 + a2(t)[
dr2

1− κr2
+ r2dΩ2], (1.12)

where a(t) is known as the scale factor, whose evolution is to be determined from the Einstein

equations, while

κ =


< 0 for an open universe

= 0 for a flat universe

> 0 for a closed universe

corresponding to hyperbolic, Euclidean and spherical spatial geometry respectively.

Our universe is very close to flat; current observational constraints give Ωκ = 0.04± 0.06, where

Ωκ = 0 corresponds to a flat universe [8]. Here we consider the case of a flat spacetime, which is

assumed in our numerical work as well. In this case, the Einstein equations (1.8) become

(
ȧ

a
)2 =

8πG

3
Ga2ρ̄ (1.13)

d

dτ
(
ȧ

a
) = −4π

3
Ga2(ρ̄+ 3P̄ ), (1.14)

where dots denote derivatives with respect to conformal time, and the overbars have been added

to ρ and P in anticipation of the inclusion of perturbations.

Clearly, space is not homogeneous and isotropic on the scales that we experience here on

Earth. However, on large enough scales the universe is, as a matter of fact, very close to spatial

homogeneity and isotropy. Hence cosmologists often study the perturbed FRW universe. There is

then a limit to the scales within which this is valid. To study cosmology on smaller scales requires

full N-body simulations, which are computationally demanding. We restrict our attention to linear

cosmological perturbations.

1.2.2 Gauge Transformations

The field equations are invariant under general change of coordinates. General coordinate covari-

ance leaves us with gauge freedom, which amounts to the freedom to choose a frame with respect

to which perturbations are to be defined. Two commonly used gauges are the Conformal New-

tonian and Synchronous gauges. Here we shall develop the theory in the Conformal Newtonian

gauge, and introduce the relations required to transform to the Synchronous gauge, which is used

in CAMB.
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In general, perturbations to the metric can be decomposed into scalar, vector and tensor modes

with respect to 3-diffeomorphisms on the spatial slices [9]. At the level of linear perturbation theory,

these modes are decoupled. Further, it is scalar modes that couple to density fluctuations, and

hence the scalar modes are the central focus in the study of structure formation. In what follows,

we shall consider only scalar perturbations to the metric.

The Synchronous gauge can be defined by the line element

ds2 = a2(τ)[−dτ2 + (δij + hij)dx
idxj ]. (1.15)

We will later move to Fourier space. Hence we write the scalar component of hij as

hij(~x, τ) =

∫
d3kei

~k·~x[k̂ik̂jh(~k, τ) + (k̂ik̂j −
1

3
δij)6η(~k, τ)], (1.16)

where k̂ is the unit vector in the direction of ~k. There is still residual gauge freedom after this

definition, which is absorbed by choosing the frame in which the velocity of CDM vanishes.

The Newtonian gauge is defined by 5

gµνdx
µdxν = a2(τ)[−(1 + 2Ψ)dτ2 + (1− 2Φ)dxidx

i], (1.17)

where Ψ and Φ are scalar perturbations to the metric. By definition, only scalar perturbations to the

metric exist in the Newtonian gauge. So while this gauge is not completely general, it is suited to

our work.

One can transform between the Synchronous and Newtonian gauges using the following rela-

tions [10]

Ψ =
1

2k2
[ḧ+ 6η̈ +

ȧ

a
(ḣ+ 6η̇)] (1.18)

Φ = η − 1

2k2

ȧ

a
(ḣ+ 6η̇). (1.19)

1.2.3 The Perturbed Einstein Equations

In addition to the metric, the energy-momentum tensor also includes perturbations, which we will

denote as follows [10].

Tµν = T̄µν + δTµν (1.20)

Meanwhile,

ρ = ρ̄+ δρ (1.21)

P = P̄ + δP. (1.22)

5Different sign conventions for Φ are common. We follow the convention of [10]
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We shall find it convenient to work in Fourier space, following the convention that

Φ(~x, τ) ≡
∫
d3kdi

~k·~xΦ(~k, τ), (1.23)

where we denote the Fourier transform of a function by the same symbol as the function itself, which

shall not cause any confusion as we work solely in k-space.

If we define the variables

(ρ̄+ P̄ )θ ≡ ikjδT 0
j (1.24)

(ρ̄+ p̄)σ = −(k̂ik̂
j − 1

3
δi
j)(T ij −

T kk
3
δi
j), (1.25)

we can write the perturbed Einstein equations as

k2Φ + 3
ȧ

a
(Φ̇ +

ȧ

a
Ψ) = 4πGa2δT 0

0, (1.26)

k2(Φ̇ +
ȧ

a
Ψ) = 4πGa2(ρ̄+ P̄ )θ, (1.27)

Φ̈ +
ȧ

a
(Ψ̇ + 2Φ̇) + 2

ä

a
− (

ȧ

a
)2)Ψ +

k2

3
(Φ−Ψ) =

4πG

3
a2(ρ̄+ P̄ )δT ii (1.28)

k2(Φ−Ψ) = 12πGa2(ρ̄+ P̄ )σ. (1.29)

It should be noted that the variables introduced in (1.24) and (1.25) are gauge dependent. The

relationship between their values in the Newtonian and Synchronous gauges is as follows.

δ(SY N) = δ(CON) − α
˙̄ρ

ρ̄
(1.30)

θ(SY N) = θ(CON) − αk2 (1.31)

δP (SY N) = δP (CON) − αP̄ (1.32)

α =
ḣ+ 6η̇

2k2
(1.33)

For later reference, we shall define the matter power spectrum as follows.

< δ(~k)δ(~k′) >= (2π)3P (k)δ3(~k − ~k′), (1.34)

where the angular brackets denote an average over the distribution.
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1.2.4 The Boltzmann Equation

We are interested in the statistics of the large scale universe. Hence, we describe the various

species of matter in terms of their distributions. While the Einstein equations tell us how matter

influences gravity, we also need to know how matter will move in response to gravity. If we are only

considering matter as a perfect fluid, then the continuity equation suffices. However, in general we

need to include the full distribution functions and non-gravitational interactions [9, 10].

One can describe the (6-dimensional) phase space using the canonically conjugate variables

xi, Pj , where Pj is related to the proper momentum, pj , measured by an observed with fixed spatial

coordinates by

Pj = a(1− Φ)pj . (1.35)

Let f denote the phase space distribution of a given particle species, satisfying

f(xi, Pj , τ)dx1dx2dx3dP1dP2dP3 = dN, (1.36)

where dN is the differential number of particles in a differential 6-volume element of phase space.

In the 0th order universe, all species are in equilibrium, and hence we obtain the zero order distri-

butions f0 given by

f0(ε) =
gs
h3

1

eε/(kbT0) ± 1
, (1.37)

where + corresponds to fermions and − to bosons, h is Planck’s constant, and kb is the Boltzmann

constant. The energy-momentum tensor of a species is related to its distribution function via

Tµν =

∫ √
−gdP1dP2dP3

PµPν
P 0

f(xi, Pj , τ). (1.38)

We will work with q and nj , where qj = apj and qj = qnj , n̂ being a unit vector. We will proceed by

writing f(xi, Pj , τ) = f0[1− Y (xi, q, nj , τ)] and working to first order in Y . The Boltzmann equation

is in general
∂fi
∂τ

+
dxi

dτ

∂fi
∂xi

+
dq

dτ

∂fi
∂q

+
dni
dτ

∂fi
∂ni

= C[fj ], (1.39)

where we have added a Latin subscript to the distribution function to track the various species.

The collision term on the right hand side is a functional of the distributions for all species. They

account for changes in the distribution function brought about by non-gravitational interactions and

are obtained by integrating appropriate cross sections calculated using Quantum Field theory over

all possible momenta.

From the geodesic equation it follows that

dq

dτ
= qΦ̇− ε(q, τ)ni∂iΨ. (1.40)

Hence to first order in perturbations (of the metric and distribution functions), the Boltzmann equa-

tion in k-space becomes

dY

dτ
+ i

q

ε
(~k · n̂)Y +

dlnf0

dlnq
[Φ̇− i ε

q
(~k · n̂)]Y =

1

f0
(
df

dτ
)C . (1.41)
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One consequence of the Boltzmann equation is that an axially symmetric distribution remains

axially symmetric for collisionless particles. Hence axially asymmetric perturbations for collisionless

particles do not couple to other species or the metric. For massless collisionless particles, we have

ε = q, so that we can integrate out the q-dependence in the distribution, defining

F (~k, η, τ) ≡
∫
dqq3f0(q)Ψ∫
dqq3f0(q)

. (1.42)

Since the angular dependence enters only through k̂ · n̂, we can expand F in a Legendre series:

F (~k, η, τ) ≡
∞∑
l=0

(−i)l(2l + 1)Fl(~k, τ)Pl(k̂ · n̂), (1.43)

where Pl is the lth Legendre polynomial and Fl are the corresponding Legendre components of

F . Taking (collisionless) massless neutrinos as an example, one obtains in the Newtonian gauge

δ̇ν = −4

3
θν + 4Φ̇ (1.44)

θ̇ν = k2(
1

4
δν − σν) + k2Ψ (1.45)

Ḟνl =
k

2l + 1
[lFν(l−1) − (l + 1)Fν(l+1)], l ≥ 2. (1.46)

Hence we obtain an infinite hierarchy of equations. In practice there are schemes to truncate this

hierarchy and maintain the required numerical precision.

In the case of massive particles, we choose instead to expand the perturbation Y directly in a

Legendre series:

Y (~k, n̂, q, τ) ≡
l=∞∑
l=0

(−i)l(2l + 1)Yl(~k, τ)Pl(k̂ · n̂). (1.47)

Taking massive neutrinos as an example, we have

Ẏ0 = −qk
ε
Y1 − Φ̇

dlnf0

dlnq
(1.48)

Ẏ1 =
qk

3ε
(Y0 − 2Y2)− εk

3q
Ψ
dlnf0

dlnq
(1.49)

Ẏl =
qk

(2l + 1)ε
[lYl−1 − (l + 1)Yl+1], l ≥ 2. (1.50)

In the case of massive particles, the obligatory q dependence in the Boltzmann equation makes the

equations computationally more demanding.



Chapter 2

Modified Gravity

2.1 The Dark Energy Problem

The current best-fit model of the universe is LCDM with ΩB ≈ 0.05,ΩC ≈ 0.25,andΩΛ ≈ 0.7 [3].

In particular, evidence from type Ia supernovae luminosity distances, CMB anisotropies, galaxy

clustering among others all support the presence of a component with a negative equation-of-state,

w ≡ P/ρ ≈ −1. What is the nature of this strange substance? If it is truly a cosmological constant,

then one may be content to interpret it as a property of the vacuum. However, this leads to problems.

One is the fine-tuning problem. If we attribute the cosmological constant to the vacuum energy

that is expected from Quantum Field Theory, one expects a cosmological constant that differs from

the observed one by 120 orders of magnitude! One can appeal to unknown physics at the Planck

scale. However, this is feigning ignorance. This is the domain of Quantum Gravity, for which 100

years of research have failed to produce a satisfying theory.

Another problem is the so called coincidence-problem. The energy density in matter and that in

the cosmological constant are of the same order of magnitude today. Since the energy density in

matter scales as a−3, and that in the cosmological constant remain constant, it seems an unlikely

coincidence that they should happen to be of the same order now.

Dark Matter too is problematic. There is not yet a compelling candidate for Dark Matter that fits

within the Standard Model of Particle Physics. And while there are many theoretically motivated

possibilities within popular extensions of the Standard Model, there is not yet compelling evidence

for these candidates. Further, the structure of CDM halos as predicted by N body simulations is

inconsistent with observations of galaxy density profiles. N-body simulations predict the density

profile of CDM to have a cusp and be of the form ρ ∼ 1/r or ρ ∼ r−α with α close to 1 [11]. Yet

galactic cores are observed to flatten out near the center [3]. While it is possible to invent models of

DM to alleviate these problems, at current these are speculative at best. Suffice it to say the nature

9
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of Dark Matter is still poorly understood.

An alternative is that a dynamical field is responsible for the accelerated expansion of the uni-

verse. Scalar-tensor theories contain a scalar gravitational field, and allow for novel behavior on

cosmological scales, which may circumvent the need for exotic components in the energy budget

of the universe.

2.2 Scalar-Tensor Theory

Lovelock’s theorem states that the only possible second-order Euler-Lagrange expression obtain-

able in a four dimensional space from a scalar density of the form L = L(gµν) is

Eµν = α
√
−g[Rµν − 1

2
gµνR+ λ

√
−ggµν ], (2.1)

where α and λ are constants, and Rµν and R are the Ricci tensor and scalar curvature, respectively

[3].

To modify gravity, then, we must relax some of the postulates of Lovelock’s theorem. Some pos-

sibilities include using higher order field equations, considering extra dimensions and considering

a non-symmetric 2nd rank tensor (adding torsion). Another possibility, and the one that we shall

pursue, is to add additional fields beyond the metric.

Scalar-tensor theories are constructed by including a gravitational scalar field in addition to the

rank-2 metric tensor. We will refer to these theories collectively as “Scalar-Tensor Theory” (STT).

The general form of the Lagrangian for STT is 1

L =

√
−g

16π
[φR− ω(φ)

φ
∇µφ∇µφ− 2Λ(φ)] + Lm(ΨM , gµν), (2.2)

where ω and Λ are arbitrary functions of φ, and ΨM are some matter fields. The field equations

follow from the principle of least action. Varying the action with respect to the metric yields

φGµν + [2φ+
1

2

ω

φ
+∇µφ∇µφ+ Λ]gµν −∇µ∇νφ−

ω

φ
∇µφ∇νφ = 8πTµν . (2.3)

Varying the action with respect to φ, and using the trace of metric equation to eliminate R, one

obtains the second field equation

(2ω + 3)2φ+ ω′∇µφ∇µφ+ 4Λ− 2φΛ′ = 8πT. (2.4)

STT is conformally equivalent to GR- i.e. the field equations can be reduced to those of GR via

a conformal transformation of the metric

gµν → e−Σ(xµ)gµν = ¯gµν , (2.5)

1Technically this form assumes that we are working in the Jordan-frame in which matter is minimally coupled to the
additional scalar degree of freedom.
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upon which

L → −
√
ḡ

16π
φe2Σ(R̄− 6gµνΣ,µΣ, ν − 62̄Σ). (2.6)

Choosing e2Σ = φ−1 while defining √
4π

3 + 2ω
≡ ∂Σ

∂ψ
(2.7)

and 8πV (ψ) ≡ e4ΣΛ, we have 2

L →
√
−ḡ

16π
R̄−
√
−ḡ(

1

2
∇̄µψ∇̄µψ + V (ψ)) + LM (ΨM , e

2Σ ¯gµν). (2.8)

The field equations become

R̄µν −
1

2
ḡµνR̄ = 8π[T̄µν + ∇̄µψ∇̄νψ − (

1

2
∇̄αψ∇̄αψ + V )ḡµν ], and (2.9)

2̄ψ − dV

dψ
= −
√

4παT̄ , (2.10)

where

α ≡ 1√
3 + 2ω

. (2.11)

While (2.9) is formally equivalent to GR with a scalar field ψ in a potential V (ψ), there is an important

distinction to be made. From (2.10) it follows that

∇̄µT̄µν =
√

4παT̄ ∇̄νψ, (2.12)

and hence does not vanish in general. Matter no longer falls along geodesics of the metric in the

new conformal frame, which is known as the Einstein frame. This is in contrast with the previous

frame, known as the Jordan frame, in which matter is minimally coupled to the scalar field, falling

along geodesics of the Jordan frame metric. The trade off is that in the Jordan frame the Field

equations are mathematically and computationally more complicated. We shall elect to work in the

Einstein frame, which allows us to modify existing code to perform calculations.

2.3 The {m(a), β(a)} parametrization

The action (2.2) contains two free functions of φ(xµ), which by composition are functions of all space

and time. Under certain conditions, however, one can reduce the freedom to two functions of time

alone. This is one of the benefits of a parametrization recently introduced by [12, 13]. Another is

that these functions can be understood intuitively as the mass of the additional scalar field and the

strength of its coupling to matter.

2Note that hidden in LM isafactorof
√
−g, i.e. matter couples to the JF metric.
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Recall that the Einstein frame action is

S =

∫
d4x
√
−ḡ[

R̄

16πG
− 1

2
∇̄µψ∇̄µψ − V (ψ)] +

∫
d4x
√
−gLM (ΨM , gµν), (2.13)

where gµν and ḡµν denote the Jordan and Einstein frame metrics respectively. If we define the

function A(ψ) as

A2(ψ) = eΣ(ψ), (2.14)

and

β(ψ) ≡ mpl
dlnA

dψ
, (2.15)

we have for the scalar field equation

2ψ = −βT +
dV

dψ
, (2.16)

which is the usual Klein-Gordon equation with the effective potential

Veff (ψ) = V (ψ)− [A(ψ)− 1]T. (2.17)

If we are considering pressureless matter, then T = ρM . This detail is crucial. It has the conse-

quence that the minimum of the effective potential is a function of ρM , and hence the effective mass

of the scalar field is environmentally dependent.

m2 =
d2Veff
dψ2

|ψmin . (2.18)

This allows for the screening of modified gravity effects in dense environments, which is required to

satisfy solar system and lab-based tests of gravity.

To get the physics of Big Bang Nucleosynthesis (BBN) correct, it is required that the scalar field

ψ settle to the minimum of its effective potential prior to BBN. If this is not the case, the variation

in the particle masses due to the coupling of the scalar field to matter would be sufficient to cause

noticeable differences to the relative particle abundances we observe today. If the field has been at

this minimum since BBN, and also m2 >> H2, it follows that knowledge of β and m as functions of

the scale factor a are sufficient to reconstruct the dynamics of the theory.

To see this, we start by noting that under our assumptions, at the minimum

dV

dψ
|ψmin = −βAρM

mpl
. (2.19)

The time evolution of the field at the minimum of the effective potential is given by

dψ

dt
=

3H

m2
βA

ρM
mpl

. (2.20)

In order to ensure that that the time variation of fermion masses is not too great, it must be that

A(ψ) ≈ 1. Using this fact and integrating (2.20), we obtain

ψ(a) =
3

mpl

∫ a

aini

β(a)

am2(a)
ρM (a)da+ ψc, (2.21)



CHAPTER 2. MODIFIED GRAVITY 13

where ψc is the value of the field at some initial time before BBN. Hence we can write

V = V0 −
3

m2
pl

∫ a

aini

β2(a)

am2(a)
ρ2
M (a)da. (2.22)

This allows us to reconstruct the potential given the two functions m(a) and β(a), restricting our

attention to two functions of time alone. One can choose to study these functions in their full

generality to study screened modified gravity models in general, or choose specific functional forms

for these functions motivated by existing models. We will use both approaches. In what follows, we

introduce several well-studied screened modified gravity models that can be accommodated within

the {m(a), β(a)} parametrization. We note that in our work it is sometimes more convenient to deal

with

ξ(a) ≡ H0

m(a)
, (2.23)

in place of m(a).

2.3.1 Screened Modified Gravity

As mentioned above, a mechanism is required in order for STT to satisfy existing solar system and

laboratory based tests of gravity, and yet give rise to novel behavior on cosmological scales. Several

screening mechanisms have been proposed corresponding to different modified gravity models. We

will consider Large-Curvature f(R), Dilaton, Symmetron, and Chameleon theories of gravity, all of

which can be accommodated within the {m(a), β(a)} parametrization.

In the {m(a), β(a)} parametrization it is apparent that GR is recovered in the cases that

m→∞ (2.24)

or

β → 0. (2.25)

Hence if some dynamical mechanism exists that causes either of these conditions to be satisfied

within the environments common on Earth and the sun (i.e. dense environments), it may be possible

to satisfy solar system or laboratory tests. The Chameleon mechanism involves the suppression of

the scalar field in dense environments, where its mass becomes very heavy and the corresponding

range of the force negligibly small. We will consider Large-Curvature f(R) as well as Generalized

Chameleon models, both of which are of this type.

Another possibility is a screening mechanism of the Damour-Polyakov type. This involves an

environmentally dependent coupling which tends to zero in dense environments. We will consider

Dilaton and Symmetron gravity, both of which involve this type of screening mechanism.

Under the assumption that the effective potential has a matter-dependent minimum, along with a

couple of mathematical assumptions satisfied by all of these models, independent of which of these
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models we consider, there exists a general screening criterion

|ψ∞ − ψc| << 2β(ψ∞)mPLΦN , (2.26)

where ψC is the value of the field inside a celestial body, ψ∞ the value of the field outside the body

and ΦN is the Newtonian potential due to the body. This result comes from comparing the ratio of

fifth-force to gravity Fφ/FG in the two regimes φ∞ >> β∞mPLΦN and ρc → ∞, where ρc is the

density of the body. In the former, Newtonian gravity is recovered formally. For this to happen as

well in the latter case Equation 2.26 must hold.

In the following subsections, we briefly introduce each of the aforementioned models in terms

of the {m(a), β(a)} parametrization. We also introduce preliminary results of our collaborator Dr.

Alireza Hojjati who is using the code to obtain constraints on these models from existing data [16].

He uses a combination of currently available SNe, CMB and BAO data to derive joint constraints on

the MG and cosmological parameters, using our MGCAMB code in tandem with CosmoMC [17] to

sample the parameter space and the likelihood.

Generalized Chameleon

Chameleon Gravity was introduced in [18]. It is a designer approach to modified gravity. One

chooses the potential not from a priori theoretical motivations, but rather to obtain the desired

screening of modifications in dense environments. In this theory, the mass of the scalar field is

exponentially suppressed in dense environments. What is required is a monotonically decreasing

runaway potential and a coupling of matter to the scalar field that is also monotonic in ψ 3. What

is important is that this mechanism allows for order unity couplings. We will consider generalized

Chameleon models [12], corresponding to power laws for m(a) and β(a).

m(a) = m0a
−r (2.27)

β(a) = β0a
−s (2.28)

Preliminary results of Monte Carlo likelihood sampling by [16] are shown in Figures 2.1 and 2.2.

Two cases are considered : r = 3; s = 0 and r = s = 0. The former corresponds to a Generalized

Chameleon model, while the latter coincides with the fiducial model for the binned model forecast

(for results see Chapter 5). These results aid in choosing fiducial values for ξ0 ≡ H0/m0.

In Figure 2.1 it is evident that ξ0 is more tightly constrained in the case where there is no time-

dependence in m(a) and β(a) (r = s = 0). Allowing for time dependence in the mass leads to a

3In general, each matter species could be allowed to have a distinct coupling to the ψ. We won’t consider this general-
ization here.
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likelihood which is not sharply peaked near its maximum and has a broader tail. Hence there is a

much broader range of acceptable ξ0 once we allow for time dependence.

Figure 2.2 shows the 1σ and 2σ contours for ΩM and ξ0. Note that the red curves close, although

this is not shown explicitly. The range of ξ0 contained within the 1σ contours provide an indication of

the standard deviation on ξ0 from existing data. The shading, which represents the likelihood itself,

is immaterial; only the contours themselves are of interest in this figure.

Large-Curvature f(R)

General f(R) models [20] are described by the action

S =

∫
d4x
√
−g f(R)

16πG
, (2.29)

where f(R) is an arbitrary function of the Ricci scalar. f(R) corresponds to a constant value of

β(a) = 1/
√

6. This generalizes the GR action by replacing the Ricci scalar R with a function thereof.

We will restrict our attention to the case in which f(R) can be expanded as

f(R) = Λ +R− fR0

n

Rn+1
0

Rn
, (2.30)

where Λ is a cosmological constant and R0 denotes the curvature today, which is a specific f(R)

model. These models correspond to

m(a) = m0(
4ΩΛ0 + ΩM0a

−3

4ΩΛ0 + ΩM0
)(n+2)/2, (2.31)

where

m0 = H0

√
4ΩΛ0 + ΩM0

(n+ 1)fR0

. (2.32)

Preliminary results of [16] for f(R) gravity are shown in Figure 2.3. This Figure shows the 1σ and

2σ contours for ΩM and fR0 for n = 0, 1 and 2. The range of fR0 falling within the 1σ contours gives

us a standard deviation for fR0 from existing data.

Symmetron

In Symmetron gravity [21], the vacuum expectation value (VEV) of the gravitational scalar field is

tuned by the ambient density. Meanwhile, the coupling of the scalar to matter is proportional to the

VEV so that in dense environments their coupling tends to zero, shutting off the effects of modified

gravity. Symmetron models correspond to

m(a) = m∗
√

1− (a∗/a)3, (2.33)

β(a) =

{
β∗

√
1− (a∗a )3 a > a∗

= 0 a ≤ a∗
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Preliminary results of [16] for Symmetron gravity are shown in Figure 2.4. This figure shows

the 1σ contours for 1/m0 ( = ξ0/H0) and β0. The ranges of these parameters contained within the

contour give standard deviations on these parameters from existing data.

Dilaton

The Dilaton field arises in the low-energy limit of string/M-theory in the strong-coupling regime [22].

Dilaton gravity also exhibits a Damour-Polykov type screening mechanism. This model can be

parametrized by

β(a) = β0exp[−9A2m
3
plΩM0H

2
0

∫ 1

a

da

m2(a)a4
] (2.34)

and

m2(a) = 3A2H
2(a). (2.35)

Preliminary results of [16] for Dilaton gravity are shown in Figure 2.5. This figure shows 1/m0-ΩM
contours for the Dilaton model using existing data. We see that ξ0 (= H0/m0) is weakly constrained

by the data of the present.

In this thesis, we shall offer forecasts for constraints on model parameters from upcoming sur-

veys for the Generalized Chameleon and binned models 4. See Chapter (5) for these results and

discussion.

4Forecasts for the other models are in progress.
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Figure 2.1: Parameter space likelihood for two families of Generalized Chameleon models, corre-
sponding to fixed r and s [16].
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Figure 2.2: ΩM -ξ0 contours for two families of Generalized Chameleon models, corresponding to
fixed r and s [16].
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Figure 2.3: ΩM -fR0 contours for three Large-Curvature f(R) models, corresponding to n = 0, 1 and
2 [16].



CHAPTER 2. MODIFIED GRAVITY 20

0.00 0.04 0.08 0.12 0.16
β0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

1/
m

0
[M

P
c]

Symmetrons

Figure 2.4: 1/m0-β0 contours for the Symmetron model [16].



CHAPTER 2. MODIFIED GRAVITY 21

0.27 0.28 0.29 0.30 0.31
Ωm

0.00

0.02

0.04

0.06

0.08

0.10

1/
m

0
[M

P
c]

Dilatons

Figure 2.5: 1/m0-ΩM contours for the Dilaton model [16].



Chapter 3

Analysis: Fisher Forecasts and
Principal Components Analysis

3.1 Angular Correlations

In LCDM, matter fields are initially drawn from random fields whose statistics are determined by the

model of inflation. Hence one can only predict the statistics of the universe, for which we have only

one realization.

It is customary to work with angular correlations of observables[15], Cij(θ), where cos(θ) ≡
n̂1 · n̂2, and n̂1 and n̂2 are two directions on the sky. We perform a Legendre expansion of these

correlations:

Cij(θ) =

l=∞∑
l=0

2l + 1

4π
Cijl Pl(cosθ). (3.1)

Our observables are CMB temperature and polarization, galaxy counts (GC) and weak lensing

shear (WL). GC and WL are measured in NGC and NWL redshift bins, respectively. We consider

auto-correlations and cross-correlations of these observables, leading to N(N+1)
2 observables in

principle, whereN = 2+NGC+NWL. However, our code does not provide us with cross-correlations

of CMB polarization with observables other than CMB temperature. Hence the actual number of

types of Cl’s we use is

3{T×T+E×ET×E} + (NGC +NWL){T×GC/WL} +
NGC(NGC + 1)

2

{GC×GC}
(3.2)

+
NWL(NWL + 1)

2

{WL×WL}
+NGCN

{GC×WL}
WL . (3.3)

With NGC = 10 and NWL = 6 we obtain 155 distinct types of Cl’s.

22
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3.2 The Fisher Matrix

For our analysis, we make use of the Fisher matrix technique [23] for forecasting the errors to be

expected from a joint determination of cosmological and model parameters for several modified

gravity models discussed in (Chapter 2). For the binned model, we also make use of the technique

of Principal Components Analysis (PCA). Here we briefly review these techniques.

Suppose we have model parameters θi for i = 1, ...,m, and data xi for i = 1, ..., n. Let L(~θ; ~x) be

the probability distribution function for the parameters given the data. For a fixed set of data, this is

the “Likelihood function”. We will consider the Fisher matrix, defined as

Fij ≡<
∂L

∂θi∂θj
>, (3.4)

where L ≡ −lnL. Let ~θML be the estimator of the parameters that maximizes the likelihood. A best

unbiased estimator (BUE) is unbiased in that < ~θ >= ~θ0, the true value of the parameters, and also

minimizes the variances ∆θi. There are theorems that state that if there is a BUE, it is a function

of the maximum likelihood estimator, and that the maximum likelihood estimator is in the large-data

limit the BUE [23]. A result known as the Cramer-Rao inequality states that

∆θi ≥
√
F−1
ii , (3.5)

which becomes an equality in the large-data limit. Thus the Fisher matrix gives us a lower limit on

the parameter errors.

Assuming the likelihood is Gaussian in ~x, we obtain

Fij =
1

2
Tr[AiAj + C−1Mij ], (3.6)

where

Ai ≡ C−1C,i, (3.7)

and

Mij ≡ ~µ,i~µT,j + ~µ,j~µ
T
,i , (3.8)

where ~µ is the mean vector, C the covariance

C =< (~x− ~µ)(~x− ~µ)T >, (3.9)

and , i denotes partial differentiation with respect to the ith parameter, θi. .

In our case, the observables are angular correlations C(ij)
l , where i,j label the observables, and

the Fisher Matrix is given by [15]

Fab =

l=lmax∑
l=lmin

(2l + 1)

N∑
I=1

N∑
J=1

∂C̃Il
∂pa

[ ˜CSUBl

−1
]IJ

∂C̃Jl
∂pb

, (3.10)
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where I corresponds to fields {i, j} and J to {m,n}, while

[ ˜CSUBl ]IJ ≡ ˜Ciml
˜
Cjnl + C̃inl

˜
Cjml , (3.11)

and N is the number of distinct pairs of fields. That is, all pairs of fields are summed over in (3.10).

The ˜
Cijl are defined as

˜
Cijl = Cijl +N ij

l . (3.12)

We assume Poisson noise for galaxy counts and weak lensing [15]:

N
κiκj
l = δij

γrms
nj

(3.13)

N
GiGj
l = δijγrms

1

nj
(3.14)

N
κiGj
l = 0, (3.15)

where γrms is the expected root mean square shear of the galaxies, and nj is the number of galaxies

per steradian in the jth redshift bin, and Gi and κj denote the ith galaxy count and jth weak lensing

bin respectively.

For CMB temperature (T) and E-mode polarization (E), the noise is given by

NlY Y = [
∑
c

(NY Y
l,c )−1]−1, (3.16)

with

NY Y
l,c =

σYc θFWHM,c

TCMB
exp[

l(l + 1)θ2
FWHM,c

8ln2
], (3.17)

where Y refers to T or E, c labels the frequency channels for the CMB experiment, θFWHM,c is the

full-width at half-max of the beam, and in (3.17) we have assumed a Gaussian beam.

For WL and GC we take the Large Synoptic Survey Telescope (LSST) as a representative survey

[24], with parameters taken from [25]. For CMB we assume Planck [26], using the three lowest

Planck HFI channels, with parameters given in [27].

3.3 Principal Components Analysis

Theories such as Scalar-Tensor theory are typically parametrized by free functions appearing in the

action. There are two common courses of action. One can assume a specific functional form for

these functions, reducing the freedom to a finite set of parameters. In this case, one must single

out a specific model. To study the entire family of models in a more general way, one needs to

find a way to study the free functions, which contain in principle infinitely many degrees of freedom.
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The data, however, can only constrain certain features of these free functions. Our approach is to

discretize these functions using smoothed step functions.

Consider a function f(a) of the scale factor a = a(τ). Suppose we have defined f(a) discretely

in N bins by specifying m(ai) for i = 1, ..., N . Typically, the data is not sufficient to offer strong

constraints on the bins of a function, but rather constrains some linear combinations of these bins

well. Principal Components Analysis (PCA), which amounts to diagonalizing the Fisher matrix, is a

technique that allows one to determine which combinations of the bins will be well constrained.

Suppose that we have calculated the Fisher matrix for the parameters {m(ai), β(ai)} described

above [28]. Further, suppose that we have diagonalized this via the following transformation

F = WTΛW, (3.18)

where F is the Fisher matrix, Λ is F in the diagonal basis, and W is referred to as the “decorrelation

matrix” in this context. Then in the new basis, whose basis vectors with respect to the old basis

are given by the columns of W, the parameters are uncorrelated. The diagonal elements Λii ≡ λi

are related to the errors on these new parameters, which are linear combinations of the physical

parameters, via

σi = λi
− 1

2 . (3.19)

These eigenvalues can be ordered from the best- to worst- constrained models. We refer to

these as the Principal Components (PC’s). Typically only the first few PC’s will be well-constrained

by the observables.



Chapter 4

Numerical Implementation in
MGCamb

4.1 CAMB

Code for Anisotropies in the Microwave Background (CAMB) has become the industry standard for

numerically evolving Cosmological perturbations from the early universe to today [29]. The user pro-

vides cosmological parameters and CAMB integrates the Einstein-Boltzmann equations, producing

CTTl ,CTEl and CEEl . One can also obtain the matter power spectrum and transfer functions. There

is also an alternate stream of CAMB, CAMB Sources. CAMB Sources can calculate Cl’s for the

cross-correlations of weak lensing and galaxy counts in redshift bins. The additional observables

make CAMB Sources desirable for performing forecasts.

4.2 MGCAMB

The default version of CAMB assumes GR. It has been modified to incorporate modifications to GR

using the {µ(a, k), γ(a, k)} parametrization (see 4.2.1). There are two versions of MGCAMB, cor-

responding to the two versions of default CAMB. MGCAMB V1 [30] is based upon CAMB Sources,

and used to generate data for Fisher forecasts. MGCAMB V2 [31] is based upon CAMB and is used

together with CosmoMC [17] to obtain fits of model parameters to existing data.

MGCAMB V1 allows the user to choose step sizes for each default and model parameter in

addition to the fiducial values supplied. If there are N parameters in total, one run of MGCAMB

results in 2N + 1 sets of 158 (1 l and 157 distinct correlations of observables) Cl’s corresponding

to 2N + 1 sets of parameters pi. Each parameter is perturbed in turn, once by adding the step

26
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p → p + δp and once by subtracting the step p → p − δp. One run using the fiducial values- i.e.

leaving all parameters unperturbed- also takes place. This allows for the calculation of derivatives

of Cl’s with respect to parameters via finite difference.

The {m(a), β(a)} parametrization is facilitated by the expressions (4.3,4.4) which give µ(m(a), β(a))

and γ(m(a), β(a)). MGCAMB requires µ, γ as well as their derivatives with respect to conformal

time, which are obtained by implicitly differentiating the (4.3,4.4) expressions with respect to con-

formal time. For the models considered, the derivatives are computed analytically and used in

MGCAMB.

4.2.1 The {µ, γ} parametrization

MGCAMB implements modifications to GR within the {µ, γ} parametrization [14, 15]. This phe-

nomenological parametrization describes modified gravity in terms of the effective modifications to

the Poisson equation and the anisotropy equation, introducing µ(k, a) and γ(k, a) as follows.

k2Ψ = −4πGa2µ(k, a)ρ∆ (4.1)

Φ

Ψ
= γ(k, a). (4.2)

In the quasi-static limit, the {m(a), β(a)} parametrization can be related to the µ, γ parametriza-

tion outlined in (Section 2.3). One obtains [12]

µ(k, a) =
(1 + 2β2)k2 +m2a2

k2 +m2a2
(4.3)

γ(k, a) =
(1− 2β2)k2 +m2a2

(1 + 2β2)k2 +m2a2
. (4.4)

Expressions (4.3) and (4.4) allow the implementation of STT in the {m(a), β(a)} parametrization

within MGCAMB.

4.3 Finite Differences

Given the Cl data from one run of MGCAMB, one can calculate an approximation to the derivatives

dCl/dpi with respect to the N parameters pi, namely

dCl
dpi
≈ Cl(pi + δpi)− Cl(pi − δpi)

2δpi
. (4.5)

In the limit that δpi → 0, (4.5) should become an equality. However, in practice this is not the case.

As δpi are shrunk, at some point they become small enough that numerical instability becomes
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Amplitude β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11

×10−3 2 1 5 2 3 5 1 3 4 2 1

Table 4.1: Bin amplitudes used in testing the binning routine.

an issue. One obtains changes δCl that are small and meaningless. But upon dividing by δpi as

in (4.5), one obtains a large number that is not a good approximation to the actual derivative. Of

course, if the step size is too large, one cannot expect to get a good approximation to the derivative

either. So one needs to find the sweet spot, where derivatives have began to converge, but the

onset of numerical instabilities has yet to be reached. In practice, convergence is obtained when

the step-sizes are smaller than but of the same order as the constraints obtained from the Fisher

calculation.

4.4 Binning Routine

In order to study constraints on the functions m(a) and β(a) in more generality, we introduce a

binning routine. It consists of smoothed step functions. We make use of a hyperbolic tangent

function, letting m(a), e.g., be defined as

m(a) =

Nbin−1∑
i=1

mi −mi+1

2
[1 + tanh(

a− ai+1

∆i
)], (4.6)

where ∆i ≡ ai+1−ai
20 is the width of the ith bin, mi is the amplitude for the ith bin, the ai are the bin

edges and β(a) is similarly defined. The derivatives, calculated analytically, are also used in the

code.

To illustrate the binning routine, β(a) and β̇(a) are plotted in Figures 4.1 and 4.2. The amplitudes

used for these plots are given in 4.1. These values are not typical of our actual runs, but rather

chosen for illustrative and testing purposes only. The binning function (Equation 4.6) is seen to

consist of smoothed step functions. As expected, the derivative is nonzero only near bin edges,

where it is sharply peaked. It might be desirable to use an alternate binning routine in order to

smooth the derivatives. However, it is known that this change does not significantly affect the

results for similar models implemented in previous versions of MGCAMB.

Our code allows for β(a) to be treated as a single constant or as a binned function. For forecasts

we aim to use a large number of bins in order to perform PCA. Below we use 11 redshift bins for

m(a) and treat β(a) as a constant β0.
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Figure 4.1: Binned β(a).
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Figure 4.2: Binned dβ(a)/dτ .
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Results

5.1 Generalized Chameleon
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Figure 5.1: Relative difference in matter power spectrum for some Generalized Chameleon models
compared to GR: varying β0.

Figures 5.1-5.4 show the relative difference in the Matter Power Spectrum for some Generalized

Chameleon models compared to GR. We note the trend general trend that the deviation from GR

grows with k. This can be understood as follows. GR corresponds to γ = µ = 1 in Equations (4.3)

and (4.4). For k << m, γ → 1 and µ→ 1 in these equations. The parameter m is inversely related

to the range of the new scalar force, while k is inversely related to the scale. When k is small relative

to m, we are considering scales much larger than the range of the force, and the modifications to GR

are negligible. As k grows, we begin to consider scales on which the new force becomes important.
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Figure 5.2: Relative difference in matter power spectrum for some Generalized Chameleon models
compared to GR: varying ξ.

Parameter ωbh
2 ωch

2 H0 τ
∑
mν w ln(1010A2

s) ns

Gen Cham I 0.0226 0.112 70 0.09 0 -1 3 0.96

Table 5.1: Fiducial values used for standard cosmological parameters.

Figures (5.5-5.7) show the relative difference in the CMB temperature power spectrum for ex-

treme Generalized Chameleon models. We also note that numerical issues arise before an ap-

preciable difference in the CMB due to extreme β0 is seen, hence the absence of a fourth figure.

Comparing the CMB plots to those for matter power spectrum suggests that these modified gravity

parameters are best constrained by LSS observables, which are related to the growth of perturba-

tions.

Table 5.1 lists the fiducial values used for the standard cosmological parameters in our forecasts.

Table 5.2 lists the fiducial values used in our Fisher forecasts for Generalized Chameleon models.

Here h ≡ H0/100. The relative deviation from GR in the Matter power spectrum is plotted in Figure

5.8. The parameter constraints
√
F−1

ii (where i labels the parameters), resulting from the Fisher

forecast, are collected in Table 5.3. The 1σ confidence interval for xi obtained by [16] using current

data is [10−6.1, 10−1.5]. From Table 5.2 we see that LSST can be expected to improve this to at least

ξ0 < 10−3. We do not obtain a lower bound for ξ0, since ξ > 0 strictly while our constraint σξ0 is of

Parameter β0 r ξ0 s

Gen Cham I 0.41 3 9.0e-4 0

Table 5.2: Fiducial values used for the Generalized Chameleon forecast.
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Figure 5.3: Relative difference in matter power spectrum for some Generalized Chameleon models
compared to GR: varying s.

Parameter, p ωbh
2 ωch

2 H0 τ w ns β0 r ξ0

σp 6.7e-5 2.3e-4 0.21 1.1e-3 6.8e-3 2.5e-3 0.25 1.0 1.1e-3

Table 5.3: Standard deviations forecast for Generalized Chameleon and cosmological parameters.

the same order as our fiducial value for ξ0.

In Figures 5.9-5.14 we plot the 1σ contour plots. For each combination of Generalized Chameleon

model parameters or w, we have plotted contours corresponding to WL + CMB, GC + CMB,

WL+GC, and WL+GC+CMB, where WL+CMB, e.g., refers to including all auto-correlations

and cross-correlations of the NWL weak lensing bins and CMB T/E that are provided by MGCAMB.

It is clear in all cases that CMB offers very weak constraints. This is evident from that the

contours for WL+GC are almost identical to those for WL+GC +CMB. The model parameters

are best constrained by WL and GC. In general, we see stronger constraints from WL than GC (both

considered in combination with CMB). Beyond this, the cross-correlations WL X GC, included in the

WL + GC curves, improve the constraints significantly.

ξ0 and r are highly degenerate, no matter which observables are considered. This is to be

expected as both appear in the same function (see Equation 2.27)

m(a) =
H0a

−r

ξ0
. (5.1)

w is degenerate with r and also ξ0 when considering WL or GC separately, but including their

cross-correlations helps to break these degeneracies. Meanwhile, w is not strongly degenerate

with β0. β0 and r are highly degenerate, and no combination of observables considered breaks this

degeneracy. We can increase the coupling of the field to matter provided that we simultaneously
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Figure 5.4: Relative difference in matter power spectrum for some Generalized Chameleon models
compared to GR: varying r.

Parameter β0 ξi = H0/mi

Binned Model I 0.1 1.0e-3

Table 5.4: Fiducial values used for the Binned Model I forecast.

increase r, how quickly the range decays. On the other hand, while β0 is degenerate with ξ0

considering CMB +GC only, one need only consider WL to break this degeneracy.

5.2 Binned {ξ(a)}

For the binned models, we assume β(a) ≡ β0 = constant, and bin ξ(a) into 11 redshift bins. As

a fiducial, we take ξ(a) flat, i.e. all of the amplitudes ξi are equal. Hence the fiducial models are

equivalent to a Generalized Chameleon model with r = s = 0. For illustration purposes, we have

produced plots of the relative difference in the matter power spectrum compared to GR for various

choices of β0 and ξ0 for r = s = 0. These appear in Figures. The fiducials we use here are

presented in Table 5.4.

PCA was performed on the resulting Fisher matrix- i.e. F−1 was diagonalized. The errors of the

PC’s are given in Figure 5.17. The eigenvalues for the first 5 PC’s are plotted in Figure 5.18.

We note that the first PC rises at a ≈ 0.3 and is flat afterwards. Hence m(a) is sensitive to these

observables at a > 0.3. Of the rest, only PC 5 shows a long coherent structure. From Figure 5.17

we can see that the first PC is signifcantly better constrained than subsequent PC’s. Hence this is

expected to be representative of noise rather than something physical.



CHAPTER 5. RESULTS 35

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 500 1000 1500 2000 2500

GeneralizedChameleonPowerLaw : » = 0:001;¯0 = 0:5; r = 1:0; s = 0:0

l

¢
C
l=
C
l

Figure 5.5: Relative difference in CMB power spectrum for a Generalized Chameleon model com-
pared to GR: extreme r.
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Figure 5.6: Relative difference in CMB power spectrum for a Generalized Chameleon model com-
pared to GR: extreme ξ.
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Figure 5.7: Relative difference in CMB power spectrum for a Generalized Chameleon model com-
pared to GR: extreme s.
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Figure 5.8: Relative difference in matter power spectrum for Generalized Chameleon model I
compared to GR.
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Figure 5.9: ξ0-r 1σ contour for Generalized Chameleon I model parameters.

Figure 5.10: β-r 1σ contour for Generalized Chameleon I model parameters.
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Figure 5.11: w-r 1σ contour for Generalized Chameleon I model parameters.

Figure 5.12: β0-ξ0 1σ contour for Generalized Chameleon I model parameters.
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Figure 5.13: w-ξ0 1σ contour for Generalized Chameleon I model parameters.

Figure 5.14: w-β0 1σ contour for Generalized Chameleon I model parameters.
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Figure 5.15: Relative difference in matter power spectrum as compared to GR for some General-
ized Chameleon models with r = s = 0: varying ξ0.
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Figure 5.16: Relative difference in matter power spectrum as compared to GR for some General-
ized Chameleon models with r = s = 0: varying β0.
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Figure 5.17: Normalized errors σi of the first 5 PC’s for Binned Model I,after marginalizing over all
parameters except β0 and m(a).

Figure 5.18: Normalized eigenvectors of the Fisher Matrix F for Binned Model I, after marginalizing
over all parameters except β0 and m(a).



Chapter 6

Conclusion

In this thesis, we have introduced our implementation of the {m(a), βa} parametrization of STT in

MGCAMB, and presented Fisher Forecasts for a few popular Screened Modified Gravity models.

Forecasts for the additional models discussed in Chapter 2 are in progress. As with the Chameleon

Model, generalizations of the Symmetron and Dilaton models exist, and can be readily implemented

within our code. It might also be of interest to bin β(a) in addition tom(a), and to use a larger number

of bins. There is an alternate set of expression for µ(k, a) and γ(k, a) [12]. Namely,

γ(k, a) =
1− ε(k, a)

1 + ε(k, a)
(6.1)

µ(k, a) = 1 + ε(k, a), (6.2)

where

ε(k, a) ≡ 2β(k, a)2

1 +m(k, a)2a2/k2
. (6.3)

One could introduce this parametrization into our code, effectively replacing two functions of a alone

with one function of k and a, proceeding to perform PCA on this 2-D function. We note that our

binning routine is already capable of binning in k as well as a.

We have found that the models we have studied are constrained primarily by LSS. Meanwhile,

the constraints from the CMB are quite weak. One possible generalization would be to allow for

distinct couplings βi of the field to each matter species i. Allowing for distinct coupling to CDM and

baryonic matter was shown to lead to non-trivial constraints on m(a) from the CMB in [32]. There

it was also suggested that the CMB and LSS are complementary in that they constrain distinct

features of m(a).
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