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Abstract

Relay/cooperative communication has been an active area of research in the past few

years. In most of the investigations, the amplifiers used in the system are assumed to be

linear. In this thesis, we first investigate the effect of amplifier non-linearity has on the

bit-error-rate (BER) of a two-way cooperative communication system that employs linear

modulation and amplify-and-forward (AF). It was found that irreducible error floor arises,

caused by the inter-modulation effect with non-linear amplification and the subsequent

imperfect self-interference cancellation. As a result of this finding, we propose two signal

forwarding techniques that offer MPSK modulations immunity against non-linear amplifier

distortion. The first technique, termed multiply-and-forward (MF), scales the product of

the two received signals at the relay for downlink transmission. The second technique,

termed phase-forward (PF), has a similar product structure, except that the amplitude

information in the product signal is discarded. We show that both schemes do not exhibit

the irreducible error characteristic found in AF when the amplifier is non-linear. The PF

scheme, in particular, can attain a BER lower than that of AF even when the amplifier is

linear. The conclusion is reached that MF and PF are suitable signal forwarding strategies

for two-way cooperative communication in the presence of amplifier non-linearity, with PF

being the more robust of the two.

Due to the multiplicative nature of the MF and PF, self-informantion cancellation be-

comes simple when differential modulation is used in the two-way cooperative relay system.

With differential modulation, there is no explicit channel state information (CSI) estimation

and and this leads to a saving of pilot symbol overhead. In the second and third parts of this

thesis proposal, we extend the MF and PF protocols to DPSK and CPFSK modulations.

Specifically, we demonstrate that the proposed forwarding methods has low computational

complexity at the relay as well as simple self-information cancellation at the receiver in the

last phase of the cooperative communication.
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Based on the results we have obtained on the new relay forwarding protocols, we can

see that the MF and PF are two promising forwarding techniques and they worth further

study and refinement.
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Chapter 1

Thesis Overview

Cooperative transmission, a distributed signaling technique built upon relay communi-

cation, has been recognized as an effective way to increase network coverage and reduce

outage. Two-way relaying techniques have gained much attention in recent years. A com-

mon signal forwarding scheme proposed in these two-way relaying protocols is amplify-and-

forward (AF), which can be considered as analog network coding (ANC), whereby the signal

sent by the relay is a a linear combination of the signals it receives from the two sources.

In comparison to the decode-and-forward (DF) method, the AF relay has cost effective

implementation complexity by bypassing the signal regeneration process.

1.1 Literature Review

Cooperative transmission [1, 2, 3, 4], which is based on relay forwarding [5], is a cost

effective way to combat fading because it creates a virtual multiple-input-multiple-output

(MIMO) communication channel without resorting to mounting antenna arrays at individual

nodes. In addition to spatial diversity from cooperative relaying [3], the adoption of relays

can also help to improve network coverage [6, 7], e.g. providing coverage at the edge of

a cell where a coverage hole often presents. Active development has been carried out to

adopt cooperative relays in the wireless communications industry. For instance, the third

generation partnership project (3GPP) has included relaying technologies in its long term

evolution (LTE) standardization [8, 9].

Earlier researches on cooperative transmission focus on one-way relaying with AF and

DF protocols [4, 10, 11]. Orthogonal time-slots are employed by the source and the relay

1



to allow the destination node to obtain independent faded copies of the same message

for combining purpose [4, 10]. The creation of these orthogonal time slots reduces the

throughput of the system [12]. For example, the so-called Protocol II in [2] has a throughput

of 1/N message/slot, where N is the number of relays in the system.

To improve the transmission efficiency of cooperative communication, two-way relaying

is proposed [13, 14, 15, 16, 17]. For example in [17], a two-way relay network where two users

exchange information with the assistance of an intermediate relay node was considered.

Commonly adopted two-way relay protocols include two-phase two-way relay and three-

phase two-way relay are considered. Both schemes offer an improved transmission efficiency

over their one-way relay counterpart. The two-phase two-way relay system starts with a

multiple access phase, where two user terminals transmit simultaneously to the relay, and

then followed by a broadcast phase, where the relay broadcasts a processed signal back to

both the user terminals. The two-phase two-way relay doubles the transmission efficiency

compared to that of one-way relaying. On the other hand, in a three-phase two-way relay

system, the aforementioned multiple access phase is decomposed into two phases, where

each of the user terminal transmits at a time. This approach allows the reception of direct

path signals for half duplex transceivers. It thus can provide a diversity effect and leads to

a better bit-error-rate (BER) performance.

The relay forwarding schemes can be broadly categorized into regenerative and non-

regenerative relays. A regenerative relay first demodulates the received signals and then

regenerates the transmitted relay signal based on the decision made. From an implementa-

tion point of view, the signal transmitted by the regenerative relay shares the same power

characteristics and can thus be amplified using the same type of power amplifiers used

at source terminals. On the other hand, a non-regenerative relay does not involve deci-

sion making and the relay combines the received signals according to analog network code.

Since the relay eliminates decision making, the computation complexity is much simpler

than the regenerative relays. However, non-regenerative relay techniques such as AF may

experience very large amplitude fluctuation. The implication is that AF relay, which has

limited instantaneous power in practice, either the highly dynamic transmitted signal will

experience non-linear signal distortion, or a linear power amplifier with wide enough linear

region must be used at the relay. The former situation can lead to system performance

degradation. The latter case, though avoids the non-linearity, will add hardware cost on

2



the relay and decrease the power efficiency of the relay. Hence the design of relay forward-

ing techniques should take into consideration different aspects of implementation to achieve

a good balance between implementation complexity, performance and cost. We want the

relay to have simple computation but at the same time we want the relay can reliably work

as it is intended. Further, the system performance, especially the BER performance, should

not be compromised.

1.2 Objective

The main objective of this thesis is to develop cooperative relay techniques capable of

coping with power amplifier non-linearity that exists in practical power amplifiers. At the

same time, we aim to design protocols that have low computational complexity at both the

relay and user terminals. The new protocols should also demonstrate good performance

compared to the AF cooperative relay.

1.3 Organization and Contributions

In this thesis, we propose multiplication based non-regenerative signal forwarding schemes

that share similar implementation complexity as AF but offers immunity against non-linear

amplifier distortion at the relay.

In Chapter 2, two new forwarding schemes, i.e. MF and PF, are formulated around

MPSK modulation. Based on our findings, the proposed relay protocols using MPSK

modulation offer good resistance to power amplifier nonlinearity. The MF protocol shows

little performance degradation when the relay power amplifier is limited by a maximum

instantaneous power output. The PF protocol, sharing similar instantaneous power distri-

bution as a PSK signal, can use the same type of the power amplifier as the user terminals.

Further, the PF protocol exhibits better BER performance compared with AF relay, es-

pecially when the source to relay link quality improves. Analytical results are developed

for the two proposed protocols, which include a unified BER lower bound for both the MF

and AF relays and a lower bound for the PF relay. Furthermore, diversity order analysis

is performed to show that both MF and PF relays can fully exploit the diversity order

available to the system.
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In Chapter 3, the MF protocol is extended to MDPSK modulation. In the two-way

relay literature, differential modulation receives much less adoption compared to coherent

modulation such as PSK and QAM. A major challenge is the difficulty in self-information

cancellation because of the lack of accurate CSI at the receivers, especially when fading is

not static. However, due to the multiplicative nature of the MF protocol, self-interference

cancellation becomes straightforward for a two-way relay employing DPSK modulation.

The performance of DPSK modulated MF three-phase two-way relay is studied analytically

under static fading environment. Based on the analysis, we also demonstrate that full

diversity order is achieved. The relay system is further verified via simulation under both

static and time varying fading for both linear and non-linear power amplifiers. Similar to

the PSK MF relay, the DPSK MF relay is insensitive to power amplifier nonlinearity.

In Chapter 4, we further apply the PF protocol to continuous phase frequency shift key-

ing (CPFSK) and compared it against DF based forwarding strategies. For both forwarding

protocols, the signals transmitted at the relay have a constant envelope, which allows the

choice of highly power efficient non-linear amplifiers at the relay. Exact BER analysis of the

protocols presented in this chapter are derived and verified via simulation. Results indicate

that the PF relaying approach leads to a more reliable relaying system.

Finally, Chapter 5 summarizes the research finding on the proposed two-way relay for-

warding protocols. We also layouts future research direction.
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Chapter 2

Coherent Multiply-and-Forward and

Phase-Forward

2.1 Introduction

Currently research on cooperative communication systems often assumes linear power

amplifier at the relay. This assumption, especially for the non-regenerative relays [18, 19, 20],

may require the power amplifier to be linear over a large range due to signal fluctuations. In

practice though, most amplifiers used in wireless transmission are often non-linear (or only

linear within a certain operating range), either because of cost consideration or because

of a power-efficiency concern. The highly power-efficient Class C-type amplifiers is a very

good example. When the amplifier is non-linear, one has to take into consideration the

relay signal’s peak power when evaluating the performance of the underlying cooperative

communication system. This is particularly important for the AF protocol because the

forwarded signal can vary over a wide range around its mean amplitude level, owing to the

fading fluctuation in the source to relay links, which are also referred to as uplinks in this

thesis. Current research work that involves power amplifier non-linearity has mainly layed

on the one-way relay networks. In [21], the authors proposed a variable power scaling factor

that can be used to limit the peak power of a one-way AF relay. Further studies on the

distribution of the instantaneous power of the AF relay in [22, 23] reveals that even in the

case of one-way relaying whereby the relay’s received signal involves only one uplink fading

process, the peak-to-average power ratio (PAPR) [24, 25] of an AF relay can be very large.

Consequently, power amplifier non-linearity is a practical issue that AF relays have to face.
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Effects of such non-linearity on the performance of relay networks are mostly carried out for

one-way AF OFDM systems [26, 27, 28, 29]. There seems to be limited techniques available

to cope with the high PAPR of the AF relay signals. In [30], a peak power efficient one-

way relay using a hard limiter is proposed for punctured convolutional coded star-QAM.

However, the adoption of channel coding reduces the transmission efficiency.

Currently, little attention has been paid to two-way cooperative communication systems

that are resistant to power amplifier non-linearity. Similar to one-way relaying (if not worse),

the performance of AF can be severely degraded in a two-way relaying system if the power

amplifier at the relay is non-linear. This can be intuitively understood by considering the

signal broadcasted by the relay is of the form G · (g1R(t)s1(t) + g2R(t)s2(t)), where g1R

and g2R denote the uplink channel gains, s1(t) and s2(t) the users’ data signals, and G

a fixed scaling factor. If this signal is transmitted through a non-linear power amplifier

(NLPA), the received signal will comprise of a series of inter-modulation products. As a

result, a source node will not be able to cancel out its own signal completely. The residual

self-interference will lead to an irreducible error floor that cannot be lowered even with

very large transmit power. In this chapter, we first propose a multiply-and-forward (MF)

technique for two-way relaying that is insensitive to NLPA distortion when used with PSK

modulations. While this technique can avoid an irreducible error floor when the amplifier

at the relay is non-linear, its performance with a linear power amplifier (LPA) is slightly

worse than AF. As such, we propose a second technique known as phase-forward (PF) [31]

that can outperform both AF and MF irrespectively of the type of amplifiers. As the reader

will discover, PF is essentially MF with self-induced hard-limiting. The technique was first

considered for one-way cooperative communication as a mean to keep the signal forwarded

by the relay constant envelope when the source itself employs constant envelope CPFSK

modulation [31].

This chapter is organized as follows. We first review in Section 2.2 the basic signal

structures of a two-way three-phase cooperative communication system that employs AF.

The BER of this baseline system, with LPA and NLPA, is evaluated via simulation. The

idea of MF is then introduced in Section 2.3 as a mean to alleviate the distortion introduced

by a NLPA at the relay. We show that MF is superior to AF when the amplifier in non-

linear. When the amplifier is linear though, MF suffers a degradation when compared to AF.

This motivates us to introduce in Section 2.4 the idea of phase-fowrad (PF) as a technique
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to achieve good performance in both cases of LPF and NLPA. The relationship between

MF and PF is outlined in this section. Finally, a conclusion of this chapter is provided in

Section 2.5.

2.2 AF in the Presence of Non-linear Amplifier Distortion

We consider two-way three-phase cooperative communication whereby two source nodes

(or users), S1 and S2, exchange information with the help of a relay R; refer to Figure 2.1.

We focus on three-phase cooperation because, as opposed to two-phase, it can provide a

second-order diversity effect. All the nodes in the communication network in Figure 2.1

have single antenna and half duplex transceivers. The modulation format adopted by both

users is coherent M -ary phase shift keying (MPSK). While we recognize this modulation

format is not as power-efficient as its QAM counterpart when the amplifier is linear, we will

demonstrate that MPSK, when used in conjunction with the proposed MF and PF relaying

strategies, offers immunity towards non-linear amplifier distortion. In contrast, QAM with a

dense constellation is almost unusable when the amplifier used in AF is non-linear. Finally,

all the links in the system are assumed to exhibit Rayleigh flat fading and additive white

Gaussian noise (AWGN) with power spectral density N0. Note that throughout this thesis,

the notation CN (0, σ2) refers to a complex Gaussian random variable with zero mean and

variance σ2 in both its real and imaginary parts. All the fading and noise processes are

assumed statistically independent. For simplicitly, perfect channel state information (CSI)

is assumed available at the receiver for self-interference cancellation and data detection.

Techniques for estimating the channel gains in cooperative/relay communication systems

based on embedded pilot symbols can be found in [32, 33].

Our baseline system is one that employs AF at the relay. In addition to being one of the

most frequently used benchmarks in the literature, AF has similar implementation complex-

ity as the proposed MF and PF techniques (refer to Section 2.4.3) and all three techniques

do not require intermediate decisions to be made at the relay. A decode-and-forward (DF)

relay, on the other hand, makes intermediate decisions. This leads to an increased imple-

mentation complexity at the relay because channel estimation must be performed before

data detection can take place. Furthermore, data detection is a form of quantization which

may lead to a loss in performance when compared to AF. The user terminals in Figure 2.1
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Figure 2.1: System model of the three phase two-way cooperative communication system.

transmit their complex MPSK symbols, si, i ∈ {1, 2}, in Phase 1 and 2 respectively, using

a common square root raised cosine (SQRC) pulse shape. The data symbols have a mean

square value of one and the SQRC pulse itself has unit energy. The transmitted uplink sig-

nals are subjected to fading and noise. The relay adds the two received uplink waveforms,

scales the sum by a constant gain, amplifies and broadcasts the resultant signal back to the

two users. The receiver of each user first filters its received signal using a matched filter

and then samples the matched filter’s output to generate the required decision statistics.

Figure 2.2 (a) depicts the trasmitting and receiving operations in the relay to source path,

or downlink, where sR(t) represents the forwarded signal, and G(·) represents the amplifier

used at the relay. Because of the nature of AF, sR(t) is a superposition of symbol-spaced

SQRC pulses, just like the source signals transmitted by the users. This structure is de-

picted on the left-hand side of the diagram with sR[k] being the equivalent discrete-time

symbols.

2.2.1 Baseline System - AF with LPA at all the Nodes

When all the amplifiers in the system are linear, we can describe the operations in the

entire AF system using an equivalent one-shot discrete-time model. This stems from the

fact that the received downlink signal in AF is a superposition of SQRC pulses.

During the first phase of communication, the source node S1 broadcasts its data symbol

s1 to both node S2 and the relay R, where s1 is a unit-amplitude MPSK symbol taken from
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Figure 2.2: Downlink models with the forwarded signal described as a superposition of
symbol-spaced SQRC pulses.

the set X = {ej
2π(k−1)

M }Mk=1. The average power of the data symbols is defined as

Ps =
1

2
E
[
|s1|2

]
=

1

2
, (2.1)

where E[ · ] is the expectation operator. Assuming the linear amplifier used at the source

has a gain of 1, then the equivalent discrete-time received signals at R and S2 are

y1R = g1Rs1 + n1R (2.2)

and

y12 = g12s1 + n12, (2.3)

where n1R = CN (0, N0) and n12 = CN (0, N0) are complex AWGNs at R and S2, g1R =

CN (0, σ2
1R) and g12 = CN (0, σ2

12) represent the Rayleigh fading in the S1→R and S1→S2

links, and γ̄1R = σ2
1R/N0 and γ̄12 = σ2

12/N0 are the corresponding average link signal-to-noise

ratios (SNRs).

Similarly, in the second phase of transmission, node S2 broadcasts its data symbol s2 to

S1 and R using a linear amplifier. The equivalent discrete-time received signals at R and

S1 are

y2R = g2Rs2 + n2R (2.4)

and

y21 = g21s2 + n21, (2.5)

where n2R = CN (0, N0) and n21 = CN (0, N0) are complex AWGNs at R and S1, g2R =

CN (0, σ2
2R) and g21 = CN (0, σ2

21) represent the Rayleigh fading in the S2→R and S2→S1

links, and γ̄2R = σ2
2R/N0 and γ̄21 = σ2

21/N0 are the corresponding average link SNRs.
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Upon receiving both y1R and y2R, an AF relay scales the sum of the two signals by a

constant GAF to form the forwarded symbol sR in Phase 3 of the AF protocol:

sR = GAF (y1R + y2R) = |sR|ejθR , (2.6)

where |sR| and θR are the amplitude and phase of sR, respectively. The scaling factor GAF

is chosen such that the average power of sR is 1/2, the same as that of the source symbols;

refer to (2.1). This requires

GAF =
1√

2 (γ̄1R + γ̄2R + 2)N0

. (2.7)

Under the assumption of a linear amplifier at the relay, the received symbol at node S1

is

yR1 =gR1sR + nR1

=GAF gR1g2Rs2︸ ︷︷ ︸
desired signal

+ GAF gR1g1Rs1︸ ︷︷ ︸
self−interference

+GAF gR1(n1R + n2R) + nR1︸ ︷︷ ︸
composite noise term

, (AF-LPA) (2.8)

where gR1 = CN (0, σ2
R1) and nR1 = CN (0, N0) are the fading and noise terms in the R→S1

link, and γ̄R1 = σ2
R1/N0 is the corresponding link SNR. The first term in the above equation

is the desired signal, the second term is self-interference, and the last term is a composite

noise term. Since perfect CSI is assumed in this chapter, i.e. all the gij ’s, i, j ∈ {1, 2, R},

are known, the self-interference term in (2.8) can be removed by the receiver at S1. As for

the composite noise term,

N = GAF gR1(n1R + n2R) + nR1, (AF-LPA) (2.9)

it is complex Gaussian with zero mean and variance σ2
N = (2G2

AF |gR1|2 + 1)N0 when condi-

tioned on gR1. After self-interference cancellation, the effective signal becomes

ỹR1 = yR1 −GAF gR1g1Rs1

= GAF gR1g2Rs2 +N, (AF-LPA) (2.10)

which can then be combined with the direct path’s received signal y21 in (2.5) using maximal

ratio combining (MRC) [34] to form the final decision variable

D =
g∗21y21

N0
+

GAF g
∗
2Rg
∗
R1

(2G2
AF |gR1|2 + 1)N0

ỹR1. (AF) (2.11)
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The decision rule is

ŝ2 = arg max︸ ︷︷ ︸
k=1,2,...,M

{2<(Dx∗k)}, (2.12)

where the xk’s are points in the MPSK signal constellation, and <( · ) is the real operator.

The instantaneous SNR of the decision statistics in (2.11) is

γAF =
|g21|2

N0
+

G2
AF |g2R|2|gR1|2

(2G2
AF |gR1|2 + 1)N0

. (2.13)

2.2.2 Non-linear Power Amplifier

The AF strategy described in (2.6) and (2.7) has the attribute of being simple – there

is no need for signal detection and regeneration at the relay. However, it suffers from

one drawback – the peak power of the forwarded symbol sR is, strictly speaking, infinite.

This stems from the fact that individual components of this signal are complex Gaussian

processes, which can assume very large values. What this means in practice is that occa-

sionally, the amplitude of the forwarded signal sR will go beyond the linear operating range

of a “real-world” power amplifier, creating non-linear distortion. If the amplifier is fixed, we

can choose to mitigate this non-linear distortion through input back-off (IBO) or through

signal pre-distortion [35]. Both techniques have their drawbacks, for example IBO reduces

the SNR in the decision statistics while signal pre-distortion leads to additional transceiver

complexity. Alternatively, if the amplifier’s non-linearity is known to the receiver, then

in principle, a new decision rule can be devised to deal with the non-linearity. However,

it is doubtful how the entire input-output characteristics of a non-linear amplifier can be

measured accurately and conveyed effectively by the relay without sacrificing downlink data

throughput (as in the case of pilot-assisted estimation). Even if the non-linear characteristic

is known exactly at the receiver, any signal compression that takes place inside the amplifier

will lead to a loss of information, rendering a non-linear distortion compensating receiver

not very effective. A good example is clipping – detailed information on the input signal

amplitude is lost when it is beyond the clipping threshold.

Over the years, a number of popular models have been developed to describe non-linear

power amplification, for example, the Saleh model [36], the Ghorbanian model [37] and

the Rapp model [38]. Of the three, the Rapp model is specifically developed for solid-sate

power amplifiers, the type of amplifiers commonly used in wireless communications. Given

that solid state power amplifiers have very small phase distortion, the AM-PM distortion
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in the Rapp model is often set to zero, as in [39, 40, 41]. In this investigation, we adopt the

clipping model (a.k.a a soft limiter), which is a special case of the Rapp model when the

smoothness factor goes to infinity. With the clipping model, there is no AM-PM distortion

(as in [39, 40]), and the input-output relationship of the NLPA can be expressed as:

s̃R(t) =

 sR(t), |sR(t)| ≤ V,

V ejθR(t), |sR(t)| > V.
(2.14)

where the input sR = |sR|ejθR is the forwarded symbol in (2.6) and V is the clipping level.

From hereon, we will refer to ρ = V 2/2 as the saturation power level of a NLPA.

For the non-linear amplifiers considered in this investigation, we assume the clipping level

is chosen such that the instantaneous power of the transmitted uplink signals will not exceed

the saturation level by a certain percentage of time. This information can be extracted from

the complementary cumulative density function (CCDF) of the instantaneous power [24, 25]

of the uplink source signals. Figure 2.3 shows the CCDFs of the instantaneous power of

BPSK, 16PSK, and 16QAM (the first group of curves on the left). The results are based

on a square-root raised cosine pulse with a roll-off factor of 0.5. In the cases of BPSK and

16PSK, it is observed that 99.99 percent of the times, the instantaneous power is at most

3.2 dB and 2.7 dB above the average power of the two signals, respectively. For 16QAM,

the figure increases to 4.7 dB. If the NLPAs used for transmitting these modulations have

saturation power levels set according to these instantaneous power values, it means only

0.0001 fraction of the times will the amplifiers be operating in their non-linear regions.

This translates to practically no non-linear distortion. All the NLPAs considered in this

study are assumed to meet the 0.0001 CCDF requirement. As such, the source signals are

essentially free from non-linear distortion.

What would happen when the same NLPA is used at the relay to transmit an AF signal?

To answer this question, we include in Figure 2.3 the CCDF of the forwarded signal of an

AF relay (the middle set of curves), as well as those of the proposed MF (the right-hand

set of curves) and PF schemes (same set of curves as the source signals). Without loss of

generality, all three links in the cooperative communication network are assumed to have

the same average SNR at 20 dB. Details of the signal structures in MF and PF will be

provided in Sections 2.3 and 2.4 respectively. In the mean time, we can see from the figure

that AF has very large instantaneous power. As an example, with BPSK modulation at the

source terminals, the CCDF of the instantaneous power of the forwarded signal is 0.0001 at
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11 dB above the average power, a staggering 7.8 dB increase over that of the source BPSK

signals. This means that if AF were to be used, highly linear and expensive power amplifiers

must be used, not only at the relay, but also at the source nodes, since all nodes have equal

opportunity to function as a relay. If a NLPA with a saturation power level of 3.2 dB is

used instead, then according to the figure, 10 percent of the times the power amplifier will

be operating in its non-linear region, generating substantial distortion. In contrast, if PF

is used at the relay, we see from the figure that the instantaneous power distribution of the

forwarded signal is unchanged from that of the source signals, suggesting minimal non-linear

distortion. It should be pointed out that while MF has an even higher instantaneous power

than AF, it is not sensitive to non-linear amplifier distortion because of the way the relay

signal is constructed from the received uplink signals and the way self-interference is being

cancelled. Detailed discussion will be provided in the next section. It is worth noting that

the CCDF’s of the PAPR of the forwarded signals at the relay generally do not correspond

to a complex Gaussian signal. This means in the event of non-linear distortion at the relay,

the Bussgang Theorem [42] cannot be used to quantify the distortion, as in the case of

multi-carrier systems [43, 44].

When the non-linearly amplified downlink signal arrives at the source, it is matched filter

and sampled, just like that described in the previous subsection. However, because of the

non-linearity in the downlink, Eqn. (2.8) no longer represents the structure of the received

samples. Instead, each received sample is now made up of a series of intermodulation

products. The best a user can do in this circumstance is to (make an attempt to) cancel

out the linear component of its self interference as per (2.10), perform signal combining

according to (2.11), and make decision as per (2.12). As will be shown in the next section,

the higher order interference terms that remain in the decision statistics will have a dramatic

effect on the performance of the AF protocol.

2.2.3 BER Performance

The BER performance of the AF protocol with a LPA has been studied considerably in

the literature; see for example [18, 19, 20]. In this section, we provide a BER analysis that

is applicable to both AF and the proposed MF scheme in Section 2.3. The analysis is valid

for a LPA and is based on the discrete-time signal model in Section 2.2. To gain some quick

insight, let’s ignore the noise terms n1R and n2R at the relay (high SNR approximation).
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The received signal in (2.10) becomes

ŷR1 = GAF gR1g2Rs2 + nR1. (AF-LPA) (2.15)

If this is the structure of the downlink signal, then the combining rule that yields the largest

SNR is

DLPA
Bound =

g∗21y21

N0
+
GAF g

∗
2Rg
∗
R1ŷR1

N0
, (AF-LPA) (2.16)

and the corresponding instantaneous SNR is

γLPAAF =
|g21|2

N0
+
|GAF gR1g2R|2

N0
. (2.17)

Note that (2.17) represents an upper bound on the SNR in the decision variable. The SNR

that can be achieved in practice using the actual combining rule in (2.11) will be less. For

BPSK modulation at the source, according to the BER analysis in Appendix A, the average

BER of AF with a LPA is bounded by (2A.12) with n = 2, λ2 = σ2
2Rσ

2
R1. This analytical

result for a LPA, along with the simulation results1 for a NLPA, are shown in Figure 2.4.

In the case of NLPA, different saturation power levels are considered. Specifically, a curve

label “AF, ρ = X dB” in the figure refers to the case which a NLPA with a saturation power

level of 10log10(V 2/2) = X dB is used at the relay. The reason why only simulation results

are provided in the NLPA case is because the two downlink models in Figure 2.2 (a) and

Figure 2.2 (b) are no longer equivalent. Consequently, we can no longer capture all the signal

and amplifier characteristics using a symbol-space discrete-time model. The BER analysis

would become very difficult, if not impossible, to perform. In the simulations, all the three

links in the system are assumed to be equally strong. SQRC pulse with unit energy and

a roll-off factor of 0.5 is adopted and eight samples per symbol is used to approximate the

received waveform at the relay. We focus on in-band distortion as out-of-band distortion is

out of the scope of this thesis. Hence, there is no further attempt to filter out the out-of-

band distortion. As mentioned in the previous section, the steps outlined in (2.8), (2.10)

and (2.11) are used to arrive at the decisions on the transmitted symbols, irrespective of the

type of amplifiers. As seen from the figure, the lower bound on the BER of AF with a LPA

obtained from (2A.12) closely matches that obtained from simulation. As expected, the

lower the saturation level of the NLPA, the higher the BER. In particular, at a saturation

1Key simulation parameters are summarized in Appendix A.
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power level of 3.2 dB, an irreducible error floor of 1.5× 10−4 is observed. In contrast, when

the saturation power level is 9.5 dB, there is no irreducible error floor. These BER results

appear to be consistent with those CCDF results shown earlier in Figure 2.3.

2.3 Multiply and Forward

Given the problems of AF when subjected to NLPA distortion, we explore in this section

a relay strategy that offers immunity to such distortion. Instead of forwarding the sum of

the received signals in Phase 1 and 2, the relay in the proposed system forwards the product

of the two received signals. We term this new relay method multiply-and-forward (MF).

A MF relay operates as follows. During Phase 1 and 2 of the protocol, users S1 and S2

transmit their respective data to the relay using PSK modulations and SQRC pulse shaping.

The relay filters the two received signals using a matched filter, samples the matched filter’s

output at the symbol rate, and multiplies the corresponding samples of the two received

signals to form a product symbol sequence. After amplitude scaling, the product symbol

sequence is then fed to a linear modulator to generate the forwarded signal. It should be

emphasized that the bandwidth of the forwarded signal is identical to that of the uplink

signals because multiplication is done in the digital domain via sampling and remodulation.

The product samples used to construct the remodulated signal contain sufficient information

required to detect the product data symbols s1s2 at the users terminals. We choose not

to make any individual decisions on s1 and s2 at the relay (i.e. adopting a DF approach)

because this would lead to a loss of information and hence a degraded BER performance.

Beside, data detection requires channel estimation and it is preferrable to have this task

performed instead at the user terminals.

We describe next the detailed signal structure of this MF protocol. In the discussion, it

is assumed that the amplifiers used at the source terminals to transmit the uplink signals

follow the clipping model. However, the saturation levels of these amplifiers are high enough

so that the source signals will experience negligible distortion. As demonstrated earlier, a

saturation level of 3.2 dB above the average power level is sufficient for this purpose when

PSK modulations are considered. With such an amplifier, the matched filter output of an

MF relay for S1’s data symbol s1 is simply given by (2.2). This equation can be rewritten
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as

y1R = g1Rs1 + n1R

a
= (g1R + n1R)s1

b
= ejψ1R(a1R + n1R)s1

= b1Re
jφ1Rejψ1Rs1, (2.18)

where a1R and ψ1R are the amplitude and phase of g1R, and b1R and φ1R are the amplitude

and phase of (a1R+n1R). Note that Equality (a) in the above equation is obtained from the

observation that statistically, n1Rs1 and n1R are identical. This stems from the fact that

n1R is complex Gaussian with uniform phase, and s1 is a unit-amplitude PSK symbol. A

similar manipulation has been applied to the analysis of the BER of DPSK; see for example

[45]. Similarly, Equality (b) is obtained by absorbing the fading phase ψ1R into the term

n1R in Equality (a). Analogous to (2.18), the received sample at the relay’s matched filter

output for S2’s data symbol s2 can be written as

y2R = g2Rs2 + n2R

= (g2R + n2R)s2

= ejψ2R(a2R + n2R)s2

= b2Re
jφ2Rejψ2Rs2, (2.19)

where a2R and ψ2R are the amplitude and phase of g2R, and b2R and φ2R are the amplitude

and phase of (a2R + n2R). Now let us multiply the signals in (2.18) and (2.19) together and

scale the product by a scaling factor GMF to form the forwarded symbol

sR = GMF y1Ry2R

≡ GMF b1Rb2Rejφ1Rejψ1Rejφ2Rejψ2Rs1s2, (MF) (2.20)

where GMF is chosen such that the average power of sR is 1/2, the same as that of the

source symbols; see (2.1). This requires

GMF =
1

2N0

√
(γ̄1R + 1)(γ̄2R + 1)

. (2.21)

The sequence of symbols in (2.20) obtained at different sampling times is fed to a lin-

ear modulator that uses the same pulse shape and symbol rate as those used at the user

terminals. The resultant modulated signal is sent over the downlink to the two users.
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2.3.1 Linear Power Amplifier at the Relay

With a LPA at the relay, the signal received at node S1 in Phase 3 (after matched

filtering and sampling) can be written as

yR1 =gR1sR + nR1

=GMF gR1(g1R + n1R)(g2R + n2R)s1s2

+ nR1. (MF-LPA) (2.22)

After de-rotating yR1 by s∗1 and ignoring the product noise term, which is negligibly small

compared to other product terms at high SNR’s, we obtain the observation

ỹR1 =yR1s
∗
1

≈GMF gR1g1Rg2Rs2︸ ︷︷ ︸
desired signal

+GMF gR1(g1Rn2R + g2Rn1R)s2 + nR1︸ ︷︷ ︸
composite noise

, (MF-LPA) (2.23)

where the composite noise term N = GMF gR1(g1Rn2R + g2Rn1R)s2 + nR1 has a variance of

σ2
N = (G2

MF |gR1|2(|g1R|2 + |g2R|2) + 1)N0. After combining ỹR1 with the direct path signal

y21 in (2.5) using MRC, the receiver at S1 obtains the decision variable

D =
g∗21y21

N0
+

GMF g
∗
R1g
∗
1Rg
∗
2R

(G2
MF |gR1|2(|g1R|2 + |g2R|2) + 1)N0

ỹR1. (MF) (2.24)

The data symbol s2 of user S2 is then detected according to (2.12). The instantaneous SNR

of the decision variable in (2.24) is

γMF =
|g21|2

N0
+

G2
MF |gR1|2|g1R|2|g2R|2

(G2
MF |gR1|2(|g1R|2 + |g2R|2) + 1)N0

. (2.25)

2.3.2 Non-linear Power Amplifier at the Relay

With a non-linear amplifier at the relay, it is strictly speaking not accurate to describe

the received signal at S1 using the discrete-time model in (2.22)-(2.24). This stems from the

fact that matched filtering and sampling of a faded, non-linearly amplified signal comprising

of a superposition of SQRC pulses is not the same as introducing fading and non-linear

distortion to the output samples of a matched filter; compare Figure 2.2 (a) and 2.2 (b).

Nonetheless, we will employ the discrete-time non-linear model to help us explain intuitively

why the proposed MF scheme can mitigate non-linear amplifier distortion. The claim will

be verified via waveform level simulation in the next subsection.
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Assuming a non-linear amplifier with amplitude and phase responses of A(x) and Φ(x)

respectively, where x is the input signal magnitude. This means after amplification, the

relay symbol in (2.20) become

s̃R =A(GMF b1Rb2R)︸ ︷︷ ︸
unknown

amplitude

distortion

ejΦ(GMF b1Rb2R)ej(φ1R+φ2R)︸ ︷︷ ︸
unknown

phase

distortion

ej(ψ1R+ψ2R)︸ ︷︷ ︸
known

phase

distortion

s1s2. (2.26)

The corresponding received signal at node S1 is yR1 = gR1s̃R+nR1, which after multiplication

by exp(−j(ψ1R + ψ2R))s∗1, generates the decision variable

ỹR1 =gR1A(GMF b1Rb2R)ejΦ(GMF b1Rb2R)ej(φ1R+φ2R)s2 + nR1. (MF) (2.27)

Given that s2 is an MPSK symbol, the unknown amplitude distortion A(GMF b1Rb2R) has

no effect on the decision, except for a loss in SNR compared to that of the LPA case.

Concerning the unknown phase distortion in (2.26), let ∆R be a short notation for

[Φ(GMF b1Rb2R) + (φ1R +φ2R)]. The effect of a phase error is the rotation of the transmitted

signal constellation while decision is still based on the original non-rotated constellation.

With a solid state power amplifier, the AM-PM distortion exp(jΦ(GMF b1Rb2R)) is expected

to be negligibly small [39, 40, 41]. Further, since φiR, i ∈ {1, 2}, are the phases of (|giR|+

niR), they will be relatively small at large SNR. In the case of BPSK modulation, if the

∆R is in the interval −π/2 < ∆R < π/2 , where π/2 is the angular distance, or phase

margin, between a signal point to its nearest decision boundary, then −10 log10(cos2 ∆R)

dB more signal power is required to maintain the same BER as the case with no phase

error. On the other hand, when the absolute value of the phase error is greater than

π/2 , then the BER will be greater than 1/2, which is not a case of interest. In general,

for M -ary PSK, as long as the phase error satisfies −π/M < ∆R < π/M , the SNR

degradation is of the form −10 log10(f(∆R)), where 0 < f(∆R) < 1 is a function of the

phase error. Given that in practice, it is unlikely a very dense MPSK is adopted, so

π/M should be a sufficient margin for any phase error arising from channel estimation

and amplitude-to-phase distortion caused by a non-linear amplitude. Another important

point to note is that all the three schemes considered in the thesis, AF, PF, and MF, will

be degraded by more or less the same amount in the presence of phase error. So their

relative performance more or less remains unchanged. In short, the unknown phase noise,
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exp(jΦ(GMF b1Rb2R)) exp(j(φ1R + φ2R)), which is expected to be small when compared to

the phase margin π/M , M being the size of the PSK constellation, will only lead to a SNR

degradation. The most important property of this MF protocol is that, unlike AF, it does

not lead to any residual self-interference. Consequently, there will be no irreducible error

floor, only a lateral shift in the BER curve.

2.3.3 BER Performance

When the amplifier is linear, a lowerbound on the BER of MF can be obtained by

assuming the noise terms at the relay, n1R and n2R, are negligible. In this case, (2.23)

simplifies to

ŷR1 = GMF gR1g1Rg2Rs2 + nR1. (MF-LPA) (2.28)

The combining rule that yields the largest SNR for this signal structure is

DLPA
Bound =

g∗21y21

N0
+
GMF g

∗
R1g
∗
1Rg
∗
2RŷR1

N0
. (MF-LPA) (2.29)

The corresponding SNR in this decision variable is

γLPAMF =
|g21|2

N0
+
|GMF gR1g1Rg2R|2

N0
, (2.30)

which will be larger than the SNR obtained from the actual combining rule (2.24) used at

the receiver. As such, any BER derived from (2.30) will provide us a lower bound on the

BER. In realizing that the first component in (2.30) is the square of a 3rd order cascade

Rayleigh random variable, a lower bound on the average BER can be obtained from (2.30)

using results from Appendix 2A. Specifically, (2A.12) with GAF replaced by GMF , n = 3 and

λ2 = σ2
1Rσ

2
2Rσ

2
R1 gives the lower bound on the BER of MF with a linear power amplifier.

Furthermore, the diversity order of MF protocol is shown to be 2 in Appendix 2B.

Figure 2.5 shows the BER of MF with BPSK modulation, SQRC pulse shaping with

a roll-off factor of 0.5, and equally strong links. Also included in the figure are the BER

curves of AF from the last section. Both lower bound and simulation results are provided

for the case of a LPA at the relay. The analytical results are obtained from (2A.12) with

n = 3, λ2 = σ2
1Rσ

2
2Rσ

2
R1 = σ6

g , and 6 terms in the series (k = 0 to 5), where σ2
g is the variance

of the fading processes in all the links. Like in the AF case, only simulation is used to study

the BER of MF when the relay’s amplifier is non-linear. The simulation model follows that
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in Figure 2.2 (a). where 8 samples per symbol interval is used to model waveforms. The

NLPA considered in the simulation has a saturation power level of 3.2 dB above the average

power of the source BPSK signals. As mentioned earlier, this non-linear characteristic has

practically no effect on the source signals. The receiver block in the simulator first filters

the downlink signal using a matched filter, and then samples the matched filter’s output at

the symbol rate to obtain the sample yR1. In the case of a LPA, the structure of yR1 follows

that in (2.22). On the other hand for a NLPA, the structure of yR1 is approximately that

shown in (2.27). In both cases, the combining rule is given by (2.23) and (2.24), and the

decision rule is given by (2.12). No attempt is made to derive the “optimal” combining rule

for the NLPA case because we assume the downlink receiver does not have prior knowledge

of the amplifier characteristics at the relay.

It is observed from the figure that in the case of a LPA, the lower bound on the BER of

MF agrees with simulation, and that MF is approximately 1.5 dB less power efficient than

AF at the same BER. As predicted, the BER of MF is practically unaffected by amplifier

non-linearity, which is a marked improvement from the irreducible error floors seen in AF

with NLPA.

To further illustrate the effect of signal clipping on AF and MF, we show in Figure 2.6

the BER of the two protocols at a common link SNR of 30 dB and with the saturation power

level of the NLPA as a variable. For the AF protocol, the BER improves with the NLPAs

saturation level, up to ρ = 9.5 dB, the point where the CCDF of the instantaneous power of

the forwarded signal becomes sufficiently small. In contrast, the BER of MF remains almost

constant as the PA’s saturation level varies. This implies that the MF protocol is resilient to

power amplifier saturation. Although the MF protocol exhibits a slightly higher BER than

AF when the amplifier is linear, this drawback is more than compensated by its robustness

against non-linear power amplification. In the next section, we present a modification to

the MF signaling structure such that the resultant system is not only immune to NLPA

distortion, it also offers an improved BER when the amplifier is linear.

2.4 Phase Forward

In the last section, we demonstrated that MF is a technique that can be used to avoid

the self-interference arising from the use of a NLPA at the relay. The only drawback is that

22



0 5 10 15 20 25 30 35 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

γ (dB)

B
E

R

 

 
AF, NLPA, simulation
MF, NLPA, simulation
MF, LPA, simulation
MF, LPA, lower bound
AF, LPA, lower bound
AF, LPA, lower bound
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Figure 2.7: Hard limiter operation on the multiplied input symbols to generate the phase
forward symbol sR in (2.31).

with a LPA, MF is approximately 1.5 dB less power efficient than AF. Naturally, it is highly

desirable to devise a scheme that is at least as power efficient as AF when the amplifier is

linear while offers at the same time a robustness against NLPA distortion similar to that

of MF. This brings us to the idea of PF, a technique first introduced in [31] to maintain

constant envelope signaling at the relay when CPFSK modulation is employed in a one-way

relaying system. A similar idea was also employed in [30] to address the high peak power

issue in one-way relaying systems with star-QAM modulation. While the technique in [30]

requires channel coding to function properly, the PF technique in [31] does not.

2.4.1 Signal Structure and Processing

For the two-way relaying system under investigation, we can have a PF relay by mod-

ifying the relay signal in MF as follows. Instead of using directly the product samples in

(2.20) to generate a remodulated signal at the relay, the proposed two-way PF relay drops

the term GMF b1Rb2R in the equation and uses

sR = ejφ1Rejφ2Rejψ1Rejψ1Rs1s2. (PF) (2.31)

instead. The symbol sR in (2.31) can be generated using a hard limiter (implemented in

the digital domain) operating on (2.20); see Figure 2.7 for an illustration of the symbol

processing at the relay. This leads to a forwarded signal comprising of symbols with unit-

amplitude, just like the source PSK signals.

In essence, PF is MF with an automatic gain control (AGC) or intentional hard-limiting.

As in the case of MF, the fading phases ψ1R and ψ2R can be compensated during coherent

detection at the destination node. The only effective disturbances are the phase noises φ1R

and φ2R of the processes (|g1R|+n1R) and (|g2R|+n2R), which are small at reasonably large

SNR.
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Given that the forwarded symbols in PF are of constant amplitude, the corresponding

remodulated signal has a much lower PAPR than those of AF and MF. According to Fig-

ure 2.3, the CCDF of the instantaneous power in PF is almost identical to that of pulse

shaped PSK. This means the same amplifier used at the source terminals to transmit PSK

signals without non-linear distortion can be used at the relay to transmit the forwarded

signal without distortion. In the absence of non-linear distortion, the downlink models in

Figure 2.2 (a) and Figure 2.2 (b) are approximately equivalent. Consequently, the received

sample at the matched filter output of S1 is

yR1 = gR1e
j(ψ1R+ψ2R)ej(φ1R+φ2R)s1s2 + nR1. (PF) (2.32)

After de-rotating this signal by e−j(ψ1R+ψ2R)s∗1 , we obtain the decision variable

ỹR1 = gR1e
j(φ1R+φ2R)s2 + nR1, (PF) (2.33)

where we took the liberty to absorb the fading and data phases into the noise term. Finally,

we need to combine ỹR1 with the signal y21 to form the final decision variable. In order

to determine the optimal combining weight for ỹR1, we need to first analyze its signal and

noise structures.

Consider the term exp(jφ1R) in (2.33). It can be rewritten as (|g1R|+n1R)/ ||g1R|+ n1R|.

For sufficiently large |g1R|, we can ignore the noise term in the denominator and approximate

exp(jφ1R) as (1 + n1R/|g1R|). Similarly, exp(jφ2R) is approximately (1 + n2R/|g2R|). Based

on these approximations, we can rewrite (2.33) as

ỹR1 ≈gR1

(
1 +

n1R

|g1R|

)(
1 +

n2R

|g2R|

)
s2 + nR1

=gR1s2 + gR1

(
n1R

|g1R|
+

n2R

|g2R|
+

n1Rn2R

|g1R||g2R|

)
s2 + nR1. (PF) (2.34)

Given that the signal component in the above approximation is gR1s2 while the composite

noise term has a variance of

σ2
N =

[
|gR1|2

(
1

|g1R|2
+

1

|g2R|2
+

N0

|g1R|2|g2R|2

)
+1

]
N0, (2.35)

the MRC rule for PF is thus

D =
g∗21y21

N0
+

g∗R1[
|gR1|2

(
1

|g1R|2 + 1
|g2R|2 + N0

|g1R|2|g2R|2

)
+ 1
]
N0

ỹR1. (PF) (2.36)
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2.4.2 BER Analysis for Both Linear and Non-Linear Amplifiers

The instantaneous SNR in the decision variable in (2.36) is

γPF =
|g21|2

N0
+

(∑
i∈L

1

|gi|2/N0
+

N0

|g1R|2|g2R|2

)−1

, (2.37)

where L = {1R, 2R,R1}. Ignoring the product term in the denominator allows us to obtain

the following upper bound on the SNR

γPF <
|g21|2

N0
+

(∑
i∈L

1

|gi|2/N0

)−1

. (2.38)

It should also be pointed out that the second SNR term γR =

(∑
i∈L

1
|gi|2/N0

)−1

in (2.38) is

identical to that achieved in an ideal 3-hop relaying chain [46, Eqns. (4)-(5)].

Before proceeding to the BER analysis of PF, let us compare it against the other two

forwarding techniques based on the AoF [47] in the relay path. This parameter is a sim-

ple and yet effective measure of the severity of fading and can be used as a performance

index when making comparisons of the three relay protocols. From the SNR analysis in

Sections 2.2 and 2.3, we see that with a LPA, the relay paths in AF and MF are, in essence,

cascaded Rayleigh channels at large SNR. Specifically for AF, its relay path is equivalent

to a double Rayleigh channel (corresponding to the n = 2 case in Appendix 2A), while for

MF, its relay path is equivalent to a triple Rayleigh channel (n = 3). According to [48], the

AoF in these two cases can be determined from the general formula (2n − 1). This means

an AoF of 3 for AF and an AoF of 7 for MF. As for the relay path in PF, it approximates

an ideal 3-hop relaying chain under Rayleigh fading. The AoF in this case can be evaluated

using (2C.5)-(2C.7). Specifically, with equal link SNR, the AoF of PF can be found to be

(2C.8) in Appendix 2C, whose numerical value is 0.6969. This is the lowest amongst the

three protocols. Based on these results, we can predict that PF should have the lowest BER

when the amplifier is linear. Below is the detailed BER analysis for PF.

The average BER of PF with BPSK modulation can be determined using the moment

generating function (MGF) approach [47], similar to that in the AF and MF cases shown

earlier in Appendix 2A. One major difference though, in the case of AF and MF, the BER

analysis is confined to that of a linear amplifier, whereas in the case of PF, the analysis

presented below applies to both LPA and NLPA. Firstly, the MGF of the direct path SNR,
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γ21 = |g21|2/N0, is simply Φγ21(s) = (1− 2γ̄21s)
−1 where γ̄21 = σ2

21/N0 is the average SNR

in the direct link. Secondly, the MGF of γR in (2.38) can be determined from [49, 50] as

ΦR(s) =

∞∫
0

−J0(2
√
−st)

[
∂

∂t
Φ1/γ(−t)

]
dt, (2.39a)

=1−
√
−s

π
2∫

0

sec2 ξ√
tan ξ

J1(2
√
−s tan ξ)Φ1/γ(tan ξ)dξ, (2.39b)

where

Φ1/γ(s) =
∏
i∈L

√
−2s

γ̄i
K1

(√
−2s

γ̄i

)
(2.40)

is the MGF of the reciprocal of γR, Jν( · ) is the Bessel’s function of the first kind of order ν,

K1( · ) is the modified Bessel’s function of the second kind of order 1, and γ̄i’s are the SNRs

in the different links defined in Section 2.2. With the Φ21(s) given above and ΦγR(s) given

by (2.39b) and (2.40), the average BER is Pe = 1
π

∫ π
2

0 Φγ21(−1
2 sin−2 θ)ΦγR(−1

2 sin−2 θ)dθ

which can be shown equal to

Pe,PF =
1

2

(
1−

√
γ̄21

1 + γ̄21

)

− 1

π

π
2∫

0

π
2∫

0

2 sin θ tan ξ sec2 ξJ1

(√
2 tan ξ
sin2 θ

)
(sin2 θ + γ̄21)

∏
i∈L

K1

(√
2 tan ξ
γ̄i

)
√∏
i∈L

γ̄i
dξ dθ. (2.41)

Although the above BER is not in closed-form, the double integral can be easily evaluated

numerically. Furthermore, using the integral form of (2.39a), as shown in Appendix 2B, we

can see a second order diversity in the PF protocol.

Figure 2.8 shows the BER of PF obtained through numerical integration of (2.41) and

through simulation. The amplifiers used in the simulation have a power saturation level

3.2 dB higher than the average power of the source BPSK signals. It is observed that the

numerical results and the simulation results agree with each other. This confirms that the

non-linearity in the amplifier has no effect on PF and that it is appropriate to ignore the

product noise term in (2.37). For comparison purpose, we also include in Figure 2.8 the

AF and MF results for a linear power amplifier taken from previous figures. It is observed

that PF is substantially better than AF and MF. The BER improvement can be attributed

to the fact that amongst the three schemes, PF has the smallest AoF when the amplifier
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Figure 2.8: BER of PF compared to those of MF and AF. The modulation is BPSK and all
the links in the system have the same average link-SNR γ̄ = γ̄1R = γ̄2R = γ̄R1 = γ̄21. The
AF and MF results assume a LPA while those of PF are valid for both linear and non-linear
amplifiers.
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is linear. Now, if we compare all three schemes based on the same NLPA, i.e, by inserting

the BER curves of PF into Figure 2.5, we can see that PF is superior to AF and MF.

Next, we consider the scenario of asymmetric channels, i.e. the different links in the co-

operative communication network do not have identical SNR. This can happen, for example,

when the relay is midway between the two source nodes. Assuming a path-loss exponent of

4, this situation translates into a 12 dB higher SNR in the S1→R and S2→R links than in

the direct link. Another situation that gives rise to asymmetric channels is when the relay

is a mobile device while the two source nodes are fixed terminals. In this case, the relay

is expected to have lower transmit power. Figure 2.9 shows the BER of PF, AF and MF

when the S1→R and S2→R links are 10dB stronger than those in the direct path and in the

downlink. This asymmetric channel condition allows us to study the impact of the uplink

signal quality on the overall system performance. It is observed that the performance of

AF and MF do not improve with an increase in the uplink signal quality. On the other

hand, the BER of PF is lowered somewhat when the uplinks are 10 dB stronger than both

the downlink and the direct path. Figure 2.10 further illustrates this behavioral difference.

Here the downlink and direct path SNRs are fixed at 20 dB while the uplink SNR is varied

from 20 to 32 dB. It is observed that the BER of PF can be reduced to 1/3 that of equally

strong links when the uplink’s SNR is 12 dB above that in the direct path.

2.4.3 Discussions

Higher Order Modulation with MF and PF Relays

The results in Figures 2.8-2.10 clearly demonstrate the advantages of PF over MF and

AF from the BER perspective when the modulation is PSK and channel estimation is

perfect. What would happen when other modulation formats and/or implementation com-

plexity are also taken into consideration? Will PF still be able to maintain its advantages

over the other two approaches? Another question is, how can channel estimation be achieved

in the proposed MF and PF schemes? We first address the modulation issue.

From the discussion in Section 2.4.1, it should be clear that the proposed PF technique

is only applicable to PSK modulations. On the other hand, it is well known that PSK is not

as energy efficient when compared to QAM. So a natural question to ask is: how well the

proposed PF scheme with PSK modulation actually performs when compared to schemes
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Figure 2.11: BER comparison of AF with (1) 16PSK/QAM, (2) MF with 16PSK, and (3)
PF with 16PSK. The direct path and the downlink SNRs are the same, i.e. γ̄ = γ̄21 = γ̄R1,
while the uplink SNRs are 10 dB stronger, i.e. γ̄1R = γ̄2R = γ̄ + 10dB.

that can accommodate QAM, for example AF? The answer to this question is twofold.

Firstly, in order to accommodate QAM in AF, the saturation power level of a practical

amplifier must be increased dramatically, or, the input signal level in the uplink be backed

off sufficiently. The former approach leads to more expensive hardware while the latter

leads to a substantial drop in the BER performance. Secondly, we show in Figure 2.11 that

the BER of AF with 16QAM using a LPA is actually higher than that of the proposed

PF scheme with 16PSK modulation with a saturation level of 3.2 dB. Here an asymmetric

channel condition identical to that in Figure 2.9 is considered. It is observed that PF with

16PSK outperforms AF with 16QAM in the high SNR region. This makes PF especially

attractive as it has a less stringent requirement on amplifier linearity while at the same time

more energy efficient.

33



Implementation Considerations

We further evaluate AF, MF, and PF from the implementation perspective and compare

them against each other and against other alternatives such as DF and physical network

coding, which is two-phase. Given all three schemes requires three transmission phases, they

have very similar implementation complexity. In all three cases, the signals received in the

first two phases must first be stored before they can be added/multiplied and broadcasted

in the final phase. As described in Sections 2.2.1, 2.3.1, and 2.4.1, the requirement of signal

storage implies the received uplink signals must first be filtered, sampled, and digitized to

generate two discrete time signals. Sample-by-sample addition/multiplication of the two

stored sequences is then performed to generate a product sample sequence for remodulation

in the third phase. Control signaling is required for all these functions to operate properly.

Hence, the main difference between a MF and AF relay is that the former employs a

multiplier, while the later uses an adder that is simpler to implement. As for the PF relay,

as shown in Figure 2.7, it has a hard limiter in additional to the multiplier used in MF

relay. At the same time, as shown in the previous sections, MF and PF relays have more

relaxed requirement on the linearity of the power amplifier compared to AF relay. The

ability to operate under NLPA more than compensates the slight increase in the MF and

PF implementation.

Moreover, channel estimation is not required at the MF or PF relay, since no intermedi-

ate decisions are made. In contrast, a DF relay needs to estimate the uplink channel gains

before coherent demodulation can be performed. This could be an issue if the relay is a

mobile unit where signal processing should be kept to a minimum. Note that a DF relay

also needs to perform filtering, sampling, and redmodulation, just like the three schemes

studied in this chapter. Even in physical network coding, which is two-phase, these oper-

ations are required, since most relays used in practice are half-duplex and the sum signal

received in the first phase must first be stored before it can be processed and broadcasted

in the second phase. In conclusion, there is not much difference amongst various signal

forwarding strategies as far as implementation complexity is concerned.

An important application of the proposed relays is to improve network coverage by

reducing blind spots in a cellular network. This overlaps with the function of a repeater

[51] that has been frequently used to fill the coverage hole near a cell edge [52]. In the
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following, we first examine the differences between a repeater and a AF relay since they are

similar in processing the received signal. The discussion result is then extended to MF and

PF relays.

The two user nodes of a two-way relay can represent a base station and a mobile terminal.

Given that the relay is half duplex, at least two hops are needed to transmit a symbol from

the base station to the mobile terminal. Specifically, for the three-phase two-way relay

depicted in Figure 2.1, it takes 1.5 time slots to transmit a symbol. On the other hand, a

repeater is essentially a “one-phase” one-way AF relay transparent to both the base station

and mobile terminal, where the received signal is forwarded the same time it is received.

This implies 1 time slot to transmit a symbol. Ideally, the repeater has higher throughput

compared to the three-phase two-way relays. However, due to the amplification nature of

AF relay, the repeater amplifies the noises in the received signals as well. This increases

interference levels at both the mobile and base station when a direct path is present [53].

Furthermore, the overall delay profile is complicated by the repeater introduced signal

processing delay and the indirect path delay [53]. Consequently, a repeater can cause

system performance degradation in terms of increased BER as well inaccurate round trip

delay measurement needed for handover. In contrast, while a AF relay amplifies the received

noises as well, the noises can be mitigated through MRC at the receiver. Secondly, due to

the orthogonal time slot used in transmitting relay signals, the aforementioned interference

is avoided. Lastly, the relay path delays can be compensated as the relay is seen by the

base station rather than being transparent compared to the repeater. This makes a AF

relay more attractive over a repeater. Due to the non-regenerative processing of MF and

PF relays, they both share much of the same interference and delay characteristics as the

AF relay, except that they have better resistance to the NLPA than the AF relay. The

improvement in system performance therefore provides incentives towards the adoption of

the proposed relays instead of repeaters.

Channel Estimation Methods

Finally, we briefly discuss how channel estimation can be achieved in the proposed MF

and PF systems and the impact of imperfect channel estimation has on system performance.

Other references on channel estimation in relay/cooperative communication systems can be

found in [32, 33]. As shown in (2.8),(2.11), (2.23), (2.24), (2.34),(2.36), knowledge of the
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channel gains g1R, gR1, and g2R are needed for signal detection and combining in AF and

the proposed MF and PF protocols. This requires multiple pilot symbols to be inserted per

frame of data. Furthermore, the pilot patterns employed in the different links should be

orthogonal and mixing of these pilot patterns at the relay should be additive, even when

the underlying protocol is MF or PF. One simple and obvious choice of the pilot patterns

of users S1, S2, and the relay are p1 = [1, 0, 0], p2 = [0, 1, 0], and pR = [0, 0, 1] respectively.

Based on the signal models of the cooperative communication systems, the final received

pilot symbols at user S1’s terminal is p̂ = [g1RgR1, g2RgR1, gR1] + n, where n represents the

noise terms in the received pilot symbols. The third term in p̂ provides directly an estimate

of gR1 while dividing the first and second terms by the third term gR1 generates estimates of

g1R and g2R. It can be shown that if equal gain combining is used instead of MRC, then only

two pilot symbols per frame are required for signal detection in AF. For MF and PF, the

number of pilot symbols per frame can be further reduced to 1 and mixing of the received

uplink pilot symbols can be done multiplicatively.

From the inserted pilot symbols, the channel gains affecting the data symbols can be

derived via interpolation. If the amplifier is linear, the channel estimation error arising from

this interpolation process can be made quite small, especially with slow fading. When the

amplifier is non-linear though, channel estimation in AF can be problematic because the

channel estimates derived from the orthogonal pilot patterns p1 and p2 mentioned above

can be substantially different from the actual gains affecting the data. This stems from the

fact the sum of the faded uplink data symbols are not necessarily the same as the sum of

the faded pilot symbols of the two users. As such, they will be amplified differently, leading

to a mismatch. The result of this mismatch is imperfect self-interference cancellation in AF,

and hence an irreducible error floor. While a similar mismatch also exists in the proposed

MF protocol, it will only lead to a drop in SNR because of the multiplicative nature of

interference cancellation, but not an irreducible error floor. Finally for the proposed PF

scheme, amplifier non-linearity creates no problem during channel estimation because of the

constant-modulus nature of the forwarded signal. The only source of degradation in this

case is the channel noise.
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2.5 Conclusion

Amplify-and-forward (AF) is a signal forwarding strategy commonly considered for co-

operative communication. We demonstrate in this chapter that when this technique is used

in a two-way cooperative network, the distortion introduced by a non-linear power amplifier

at the relay can lead to an irreducible error floor. To circumvent this problem, we propose

in this chapter two signal forwarding techniques for two-way cooperative communication

that offer immunity against non-linear amplifier distortion. The first technique, termed

multiply-and-forward (MF), scales the product of the two received signals at the relay be-

fore transmitting it over the downlinks to the destinations. The second technique, termed

phase-forward (PF), has a similar product structure, except that the amplitude information

in the product received signal is discarded (self-induced hard-limiting). Through analysis

and simulation, we show in this chapter that both schemes do not exhibit an irreducible

error floor even when the amplifier at the relay is non-linear. The PF scheme is particularly

attractive as it not only offers immunity against non-linear power amplifier (NLPA) distor-

tion, it can also substantially outperform AF even when a more costly linear power amplifier

(LPA) is allowed in the latter system. An amount-of-fading (AoF) analysis is provided to

explain this relative performance. In conclusion, MF and PF are suitable signal forwarding

strategies for two-way cooperative communication when non-linearity in the amplifier is a

concern.

Appendix 2A BER Lower Bound Derivation for the AF and

MF Protocols

We derive in this Appendix BER lower bounds for the three-phase two-way AF and

MF protocols with a LPA. For simplicity, we assume BPSK modulation at the sources, i.e.

s1, s2 ∈ {±1}. First, let gi, i = 1, 2, . . . , n, be independent zero mean complex Gaussian

random variables with variances of σ2
i . The random variable

X =

n∏
i=1

|gi| ≥ 0 (2A.1)
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is known as a cascaded Rayleigh random variable. As shown in [48], the pdf of X can be

expressed as

pX(x) =2
(
2nλ2

)− 1
2 Gn,0

0,n

(2nλ2
)−1

x2

∣∣∣∣∣∣ −
1
2 , . . . ,

1
2

 , (2A.2)

where λ2 =
∏n
i=1 σ

2
i and Gm,n

p,q

z
∣∣∣∣∣∣a1, a2, . . . , ap

b1, b2, . . . , bq

 is the Meijer G function. Let Y =∏n
i=1 |gi|2 be the square of X. It can be shown that the pdf of Y is

pY (y) =
1
√
y

(
2nλ2

)− 1
2 Gn,0

0,n

(2nλ2
)−1

y

∣∣∣∣∣∣ −
1
2 , . . . ,

1
2

 . (2A.3)

Using the Laplace transform given in [54, 5.6.3-(1)], the MGF of Y , ΦY (s) = E
[
esY
]
, can

be found equal to

ΦY (−s) =
(
2nλ2s

)− 1
2 Gn,1

1,n

(2nλ2s
)−1

∣∣∣∣∣∣
1
2

1
2 , . . . ,

1
2

 . (2A.4)

Furthermore, using the identity Gm,n
p,q

z
∣∣∣∣∣∣ap + c

bp + c

 = zcGm,n
p,q

z
∣∣∣∣∣∣apbp

 from [54, 5.4-(4)], we

have

Gn,1
1,n

(2nλ2s
)−1

∣∣∣∣∣∣
1
2

1
2 , . . . ,

1
2

 =
(
2nλ2s

)− 1
2 Gn,1

1,n

(2nλ2s
)−1

∣∣∣∣∣∣ 0

0, . . . , 0

 . (2A.5)

Consequently, ΦY (−s) can be further simplified to

ΦY (−s) =
(
2nλ2s

)−1
Gn,1

1,n

(2nλ2s
)−1

∣∣∣∣∣∣ 0

0, . . . , 0

 . (2A.6)

Next, we will show how to make use of the result in (2A.6) to determine the BER of

AF and MF with a LPA. In both cases, the instantaneous SNR in the decision variable is

of the form

γ =
G2

N0
Y +

1

N0
Z, (2A.7)

where Y =
∏n
i=1 |gi|2, with n = 2, G = GAF , and λ2 = σ2

R1σ
2
2R for AF, n = 3, G = GMF , and

λ2 = σ2
1Rσ

2
2Rσ

2
R1 for MF, and Z is an exponential random variable with a pdf of fZ(z) =

(2σ21)−1 exp(−z/σ2
21), z ≥ 0. The MGF of Z can be easily shown to be

ΦZ(s) =
1

1− 2σ2
21s

. (2A.8)
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Using the MGF approach [47], this averaging of the conditional BER can be expressed in

terms of a single integral as

Pe =
1

π

π
2∫

0

ΦY

(
− G

2N0 sin2 θ

)
ΦZ

(
− 1

2N0 sin2 θ

)
dθ. (2A.9)

After substituting (2A.6) and (2A.8) into (2A.9), the average BER becomes

Pe =
1

π

π
2∫

0

2 sin2 θ

2nG2λ2/N0
Gn,1

1,n

 2 sin2 θ

2nG2λ2/N0

∣∣∣∣∣∣ 0

0, . . . , 0

 sin2 θ

sin2 θ + γ̄21
dθ, (2A.10)

where γ̄21 = σ2
21/N0. Now, by expressing the term sin2 θ/(sin2 θ+ γ̄21) as the infinite series

sin2 θ

sin2 θ + γ̄21
=
∞∑
k=0

(−1)k(sin2 θ)k+1

γ̄k+1
21

(2A.11)

and by making use of [54, 5.6.4-(19)] to solve the above integral, we can express the average

BER in terms of an infinite sum of the Meijer G-functions and obtain

Pe =
1√

π2nG2λ2/N0

∞∑
k=0

(−1)k

γ̄k+1
21

Gn,2
2,n+1

 N0

2n−1G2λ2

∣∣∣∣∣∣∣∣
−(k + 3

2), 0

0, . . . , 0︸ ︷︷ ︸
n

,−(k + 2)



≈ 1√
π2nG2λ2/N0

KT∑
k=0

(−1)k

γ̄k+1
21

Gn,2
2,n+1

 N0

2n−1G2λ2

∣∣∣∣∣∣∣∣
−(k + 3

2), 0

0, . . . , 0︸ ︷︷ ︸
n

,−(k + 2)

 . (2A.12)

Although there are infinite number of terms in the series, for all practical purpose, we can

truncate it to a finite number of terms. Table 2.1 compares the numerical results obtained

from numerical integration of (2A.10) and those obtained from (2A.12) at different SNRs.

It is observed that using 6 terms in the series ( k = 0 to KT = 5 in (2A.12)) is sufficient

to yield results that are almost identical to those obtained from numerical integration for

SNR greater than 5dB.

Appendix 2B Diversity Order

The diversity order can be found by evaluating the following limit

η = − lim
γ̄→∞

logPe(γ̄)

log γ̄
, (2B.1)
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Table 2.1: Truncated series representation of the BER for (a) AF with a LPA (n = 2) and
(b) MF with a LPA (n = 3)

Numerical Truncated Numerical Truncated
integration series integration series

SNR n = 2 n = 2 and n = 3 n = 3 and
(dB) in (2A.10) KT = 5 in (2A.10) KT = 5

in (2A.12) in (2A.12)

0 1.0326e-01 6.5749e-02 1.0848e-01 7.0062e-02

5 3.0302e-02 3.1003e-02 3.1591e-02 3.2344e-02

10 6.0181e-03 6.0649e-03 6.5503e-03 6.6030e-03

15 9.6231e-04 9.6468e-04 1.1584e-03 1.1614e-03

20 1.3591e-04 1.3602e-04 1.8639e-04 1.8654e-04

where Pe(γ̄) is the BER expression and γ̄ is the average SNR. For the MF protocol, we can

use the integral form of the BER in (2A.10) with n = 3, G = GMF , and λ2 = σ2
1Rσ

2
2Rσ

2
R1.

Further, in oder to show the diversity order in terms of γ̄, we set σ2
1R = σ2

2R = σ2
R1 = σ2 and

γ̄ = σ2/N0. Now, Pe(γ̄) can be written as

Pe(γ̄) =
1

π

π
2∫

0

sin4 θ(γ̄ + 1)2

γ̄3(sin2 θ + γ̄)
G3,1

1,3

sin2 θ(γ̄ + 1)2

γ̄3

∣∣∣∣∣∣ 0

0, 0, 0

 dθ, (2B.2)

Since the Meijer G-function is analytic [55], we can see that the integrand in (2B.2) is con-

tinuous over the range of integration. Consequently, the integral in Pe(γ̄) can be eliminated

based on mean value theorem

Pe(γ̄) =
sin4 θc(γ̄ + 1)2

2γ̄3(sin2 θc + γ̄)
G3,1

1,3

sin2 θc(γ̄ + 1)2

γ̄3

∣∣∣∣∣∣ 0

0, 0, 0

 , (2B.3)

where θc ∈ [0, π/2]. At γ̄ approaches infinity, the argument to the Meijer G function in

the above equation approaches zero. Using Mathematica, we can have the following series

representation of the above Meijer G function at x = 0,

F (x) = G3,1
1,3

x
∣∣∣∣∣∣ 0

0, 0, 0

 =
ln2(x)

2
+ 2γe ln(x) + 2γ2

e +
π2

3
+O(x), (2B.4)

where γe is the Euler-Mascheroni constant. This means that as x approaches zero, the

Meijer G function approaches infinity.

At high SNR, (2B.3) can be approximated by

Pe(γ̄) =
sin4 θc

2γ̄2
G3,1

1,3

sin2 θc
γ̄

∣∣∣∣∣∣ 0

0, 0, 0

 . (2B.5)
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To prepare the calculation of the diversity order, we consider the following series expansion

of the F ′(x)/F (x) at x = 0 that is obtained from Mathematica.

G3,1
1,3

x
∣∣∣∣∣∣ 0

1, 0, 0


G3,1

1,3

x
∣∣∣∣∣∣ 0

0, 0, 0

 = − 6 lnx+ 2γe

3 ln2 x+ 12γe lnx+ 12γ2
e + 2π2

+O(x) (2B.6)

Taking the limit of the above ratio at zero using L’Hopital’s rule, we have

lim
x→0

G3,1
1,3

x
∣∣∣∣∣∣ 0

1, 0, 0


G3,1

1,3

x
∣∣∣∣∣∣ 0

0, 0, 0

 = − lim
γ̄→∞

6

6 lnx+ 12γe
= 0 (2B.7)

Substituting (2B.5) into (2B.1) and using (2B.7) when applying L’Hopital’s rule, we have

η =− lim
γ̄→∞

log (1
2 sin4 θc)

log γ̄
− lim
γ̄→∞

log γ̄−2

log γ̄
− lim
γ̄→∞

G3,1
1,3

sin2 θc
γ̄

∣∣∣∣∣∣ 0

1, 0, 0


G3,1

1,3

sin2 θc
γ̄

∣∣∣∣∣∣ 0

0, 0, 0


=2. (2B.8)

Thus, the diversity order of MF protocol is 2.

Similar to the MF protocol, by settting a common γ̄, we can first express the BER of

the PF protocol by substituting (2.40) into (2.39a) and using [55, 8.486-(10)],

Pe(γ̄) =
1

π

π
2∫

0

π
2∫

0

1

1 + γ̄/ sin2 θ
J0

(√
2 tan ξ

sin2 θ

)

× 6 tan ξ sec2 ξ

γ̄2
K2

1

(√
2 tan ξ

γ̄

)
K0

(√
2 tan ξ

γ̄

)
dξdθ (2B.9)

Using the mean value theorem, we can rewrite the BER expression in product terms

Pe(γ̄) =
A

1 + γ̄/ sin2 θc

1

γ̄2
K2

1

(√
2 tan ξc
γ̄

)
K0

(√
2 tan ξc
γ̄

)
, (2B.10)
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where A is a constant and ξc, θc ∈ [0, π/2]. Substituting (2B.10) into (2B.1) and us-

ing L’Hopital’s rule, we have the following result by noticing that lim
x→0

xK0(x) = 0 and

lim
x→0

xK1(x) = 1,

η =− lim
γ̄→∞

log ( A
1+γ̄/ sin2 θc

)

log γ̄
− lim
γ̄→∞

log γ̄−2

log γ̄

− lim
γ̄→∞

logK2
1

(√
2 tan ξc
γ̄

)
log γ̄

− lim
γ̄→∞

logK0

(√
2 tan ξc
γ̄

)
log γ̄

=2. (2B.11)

This shows the diversity order of PF protocol is also 2.

Appendix 2C Amount of Fading

Consider the random variable (RV) γ whose reciprocal is the sum of the reciprocals of

the independent RV’s γi’s

1

γ
=

L∑
i=1

1

γi
. (2C.1)

By substituting (2.40) into (2.39b) and taking the first and second derivatives of Φγ(s), the

first and second moments of γ can be obtained. From [50], we have

dΦγ(s)

ds
=

π
2∫

0

sec2 ξJ0

(
2
√
s tan ξ

)
Φ1/γ (tan ξ) dξ. (2C.2)

To derive the second derivative of Φγ(s) from (2C.2), first we start with the following

d

ds
J0

(
2
√
s tan ξ

)
= −J1

(
2
√
s tan ξ

)
s−

1
2 tan

1
2 ξ. (2C.3)

Using the series representation of J1( · ) [55, 8.441-(2)], we can rewrite the above equation

as

d

ds
J0

(
2
√
s tan ξ

)
=
∞∑
k=0

(−1)k+1sk tank+1 ξ

k!(k + 1)!
.

Consequently, the second derivative is

d2

ds2
Φγ(s) =

π
2∫

0

sec2 ξ

( ∞∑
k=0

(−1)k+1sk tank+1 ξ

k!(k + 1)!

)
Φ1/γ (tan ξ) dξ. (2C.4)
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Substituting s = 0 into (2C.2) and (2C.4) allows us to express the first and second moments

as

m1 =
dΦγ(s)

ds

∣∣∣∣
s=0

=

π
2∫

0

sec2 ξΦ1/γ(tan ξ)dξ

=

∞∫
0

Φ1/γ(x)dx (2C.5)

and

m2 =
d2Φγ(s)

ds2

∣∣∣∣
s=0

=

π
2∫

0

sec2 ξ tan ξΦ1/γ(tan ξ)dξ

=

∞∫
0

xΦ1/γ(x)dx (2C.6)

respectively.

The amount-of-fading [47] in a wireless channel can be determined from m1 and m2

according to

AoF =
m2 −m2

1

m2
1

. (2C.7)

For the special case when all the γ̄i’s are identical and equal to γ̄, substituting Φ1/γ(s)

into (2C.5) and (2C.6) and evaluate the resultant equations using the Symbolic toolbox in

Mathematica, we obtain the following analytical equation for the two moments:

m1 =

√
πγ̄

8
G3,2

3,3

4
∣∣∣∣∣∣

1
2 ,

3
2 , 3

3
2 ,

5
2 ,

7
2

 ,

and

m2 =

√
πγ̄2

16
G3,2

3,3

4
∣∣∣∣∣∣

1
2 ,

3
2 , 4

5
2 ,

7
2 ,

9
2

 .

Consequently, the AoF in (2C.7) is

AoF =

4G3,2
3,3

4
∣∣∣∣∣∣

1
2 ,

3
2 , 4

5
2 ,

7
2 ,

9
2


√
πG3,2

3,3

4
∣∣∣∣∣∣

1
2 ,

3
2 , 3

3
2 ,

5
2 ,

7
2

2 − 1 ≈ 0.6969, (2C.8)

and is independent of γ̄.
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Chapter 3

Multiply-and-Forward and Phase-Forward

with DPSK

Differential modulation, with differential detection, does not require explicit estimation

of the CSI. Compared to coherent modulation, it therefore has simpler implementation

as well as bandwidth saved from not sending pilot symbols. In relays with explicit self-

interference cancellation, typically AF relays, CSI estimation needs to be performed based

on the received signals prior to signal detection. Without pilots, current CSI esitmation

methods are limited to quasi-static fading channels. Maximum likelihood (ML) detector

based relays avoids the CSI estimation by making joint detection of both symbols. Such

relays are often associated with relatively high computation complexity. In particular, when

the ML is employed at the relay, the decode and re-encode processes associated with high

computational complexity undermines the simplicity of the differential modulation. The

MF/PF two way relay protocol introduced in the previous chapter has inherent multiplica-

tive self-interference cancellation capability. It has the same form of operation as fading

channel de-rotation used in differetial detection. The idea of combining these two operations

together can greatly simplify the signal detection in a two way relay system. We explore in

this chapter multiplicative two way relays with differential modulation.
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3.1 Introduction

As discussed in Chapter 2, two way relay systems are often used with coherent modu-

lation. Coherent modulation requires accurate estimation of the CSI at the user terminals

S1 and S2 for detection. It is often assumed perfect CSI of all of the channels is available at

these nodes. In practice, the knowledge of the CSI is acquired via the transmission of pilot

symbols. The overhead created by the pilots reduces the bandwidth efficiency of the coop-

erative communication system. Secondly, the design of pilot symbols for the two-way relay

is challenging when compared to contentional point-to-point communication systems. This

motivates the adoption of differential modulation in two way cooperative communications.

Similar to their coherent modulation two way relay counterparts, there are regenerative

[56, 57, 58, 59] and non-regeneratvie [59, 60, 61] relays with differential modulation. Without

CSI, two approaches are used in signal detection. The first approach is maximum likelihood

(ML) based. In [59], a ML based detector is derived to detect the signal directly at the user

terminal in the last phase. Though the ML based detector was derived for both AF and DF

relays, it has relatively high computaton complexity and is based on the assumption of quasi-

static fading and reciprocal channels. In [56], an approximation of the ML detector using

a multiuser detector is proposed to denoise-and-forward (DNF) the received signals at the

relay. Quasi-static channel is also assumed for the ML detector. When multiple relays are

available in the DNF two way relay system, post combining is possible via hard decision on

each relay path, while soft decision doesn’t seem viable. Differential distributed space-time

coding (DDSTC) has been considered in [57, 58]. In [57], the three-phase relaying scheme

requires double transmission of information symbols, which is drawn from an expanded

source constellation, in order to allow the relay to extract data from each source node. In

[58], the 2P protocol first selects two relays that are making correct joint dectection on the

two user terminal symbols and then encodes the DDSTC symbols for broadcasting in the

second phase.

The second aproach to detect DPSK signals in a two way relay is to perform self-

interference cancellation before signal detection. When AF relays are used, common practice

is to exploit orthogonality among signal expectations and estimate the CSI via time averages

[60, 61] over a data frame. In [60], two time averages are made to remove self-interference. In
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[61], a single time average is made to perform self-interference cancellation. In both cases,

the time average based self-interference cancellation methods are limited by two factors.

First, the methods are intended to work at quasi-static fading environment or at very slow

fading environment, e.g. with fade rate up to 2 × 10−4 in [61]. Secondly, due to the time

average processing during CSI estimation, a frame delay is inevitable at the receiving user

terminal.

In this chapter, we extend the MF relay protocol from the last chapter to MDPSK mod-

ulation. Compared to the self-interference cancellation using time averages, our proposed

MF relay, as will be shown later, has simple forwarding operation at the relay as well as

simple self-interference cancellation at the user terminals. Consequently, this procedure

can be performed without frame delay before sigal combining. Moreover, as opposed to the

quasic-static channel assumption made in the existing methods, the MF relay works in a fast

fading environment, just as conventional “two symbol” differential detection. The structure

of the MF two way relay is the same as a multi-diversity point-to-point DPSK system. The

only difference is that the relay path signal is a noisy copy of the source transmitted signal

and is multiplied by a noisy copy of the self-interference.

The chapter is organized as follows. We first introduce in Section 3.2 the signal and

system model for the MF three-phase two-way relay system with differential modulation.

Further, the concept of PF relay is also considered with DPSK modulation. In Section 3.3,

the BER performace of the DPSK MF and PF relays are analyzed under the static and

time varying fading assumptions. An analysis of the diversity order of the MF relay is

also provided. Without the CSI estimation overhead that is needed in the coherent MF

relay system, the DPSK MF relay has better scalability. Section 3.4 generalizes the DPSK

MF relay to multiple relays with a theoretical analysis on the BER and diveristy order.

Section 3.5 presents simulation results for the DPSK MF and PF relay systems under various

channel conditions, including time-selective fading. The effect of NLPA is also examined

to ensure that the DPSK MF relay protocol is resistant to NLPA. Finally, Section 3.6

summarizes this chapter and provides future work direction.
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3.2 System Model

The three-phase two-way relay cooperative system using DPSK modulation share the

same structure as the one in Section 2.2, except that the self-information cancellation and

detection are modfied for MDPSK modulation. The signal structures are identical to those

in Chapter 2 except that we now have to introduce a time-index k for differential encoding

and decoding. Specifically, we have

yij [k] = gij [k]si[k] + nij [k], (3.1)

where si[k] is a differentially encoded symbol and i, j are from {1, 2, R}, i 6= j. The trans-

mitted symbol si[k]’s, i ∈ {1, 2}, are differentially modulated according to

si[k] = si[k − 1]di[k], (3.2)

where the data symbol di[k] is drawn from the PSK symbol set X = {ej
2π(k−1)

M }Mk=1 with

equal probability. Further the average power of si[k] is Ps = 1
2E
[
|si[k]|2

]
= 1

2 , and the

gij [k]’s and nij [k]’s follow the same naming conventions in Section 2.2.

At user S1, the received direct path signal is a conventional point-to-point DPSK mod-

ulated signal, which has a decision variable of

D21 = y∗21[k − 1]y21[k]. (3.3)

At the relay, the two received signals y1R[k] and y2R[k] are multiplied and scaled for broad-

casting in the third phase similarly to the MPSK modulation in (2.20).

sR[k] = GMF y1R[k]y2R[k], (DPSK MF) (3.4)

where GMF is a scalar used to regulate the average transmit power at the relay. Specifically,

it is given by (2.21) since the transmitted DPSK signals have the same power as the PSK

signals.

In the last phase, assuming a LPA at the relay, the received signal at S1 can be expanded

by substituting (3.1) and (3.4) into yR1[k],

yR1[k] =gR1[k] sR[k] + nR1[k]

=GMF gR1[k](g1R[k] + n1R[k])(g2R[k] + n2R[k])s1[k] s2[k] + nR1[k], (3.5)
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where once again, we extract s1[k] and s2[k] from the received uplink samples g1R[k]s1[k] +

n1R[k] and g2R[k]s2[k] + n2R[k], just like we did earlier in Section 2.3. It is obvious that the

differentially encoded symbols s1[k] and s2[k] are simply multiplied. This structure of the

signal makes self-interference differential detection simple.

To understand how self-interference cancellation can be performed in the proposed

DPSK MF relay system, lets first rewrite (3.5) as

yR1[k] = gα[k] s1[k] s2[k] + nR1[k], (3.6)

where

gα[k] = GMF gR1[k](g1R[k] + n1R[k])(g2R[k] + n2R[k]) (3.7)

is the effective channel gain in the downlink whose phase is unknown to the users detector.

To remove the effect of this unknown phase and to perform self-interference cancellation,

user S1’s detector multiplies yR1[k] by (yR1[k−1] d1[k])∗ to obtain the decision statistics

DR1[k] = (yR1[k−1] d1[k])∗yR1[k]

= g∗α[k − 1]gα[k]d2[k] + g∗α[k − 1]nR1[k] + gα[k]n∗R1[k − 1] + n∗R1[k − 1]nR1[k], (3.8)

where the differential encoding rule in (3.2) is used to arrive at the second line of the

equation. In the ideal case of large SNR and relatively static fading, gα[k] = gα[k − 1] and

hence gα[k]g∗α[k − 1] ≈ |GMF gR1[k] g1R[k] g2R[k]|2, which has zero phase. This allows the

detection of user S2’s data symbol in (3.8).

In coherent two-way relay, we assume perfect CSI is avialable for all links. However, with

differential modulation, such information is not available, and we use equal gain combining

(EGC) [47] to combine the relay path decision variable (3.8) with the direct path decision

variable (3.3) to form the final decision variable D[k],

D[k] = D21[k] +DR1[k], (3.9)

where D21[k] and DR1 are given by (3.3) and (3.8), respectively. The decision is then made

according to (2.12).
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3.2.1 DPSK PF Relay

In the previous chapter, though the coherent modulated MF relay has shown good

resistance to NLPA, it performs worse than AF relay by 1.5 dB in terms of BER when LPA

is available. The PF relay was consequently developed to achieve better BER performance

than MF protocol under both LPA and NLPA. Due to the multiplicative nature of its signal

combining at the relay, the PF relay is expected to work with differential modulation in

a similar fashion as the MF relay. In this section, we explore the idea of combining PF

protocol with DPSK modulation.

The DPSK modulated PF relay shares much of the same operations as the DPSK MF

relay, except the signal combining function at the relay for transmission in the last phase.

Specifically, in the first two phases of the DPSK PF relay, each of the user terminals S1

and S2 transmits in turn following the same procedure as the DPSK MF relay. In the

third phase, the DPSK PF relay performs the additional hard limiting operation on the

transmitted signal of the MF relay in (3.4) to obtain

sR[k] = ejψ1R[k]ejψ1R[k]s1[k] s2[k], (DPSK PF) (3.10)

where ψiR[k] is the phase of the received signal in the first two phases

ψiR[k] = arg[giR + niR], i ∈ {1, 2}, (3.11)

and si[k] is the differentially encoded transmitted symbols given by (3.2). Considering a

LPA relay, the received signal yR1 at S1 can be expressed as

yR1[k] =gR1[k]ejψ1R[k]ejψ1R[k]s1[k] s2[k] + nR1[k]

=gβ[k] s1[k] s2[k] + nR1[k], (3.12)

where gβ[k]

gβ[k] = gR1[k]ejψ1R[k]ejψ1R[k] (3.13)

is the overall channel gain on the relay path. Similar to the MF relay, the unknown channel

gain in gβ[k] and self-interference are removed by multiplying yR1[k] by (yR1[k−1] d1[k])∗ to
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obtain

DR1[k] = (yR1[k−1] d1[k])∗yR1[k]

= g∗β[k − 1]gβ[k]d2[k] + g∗β[k − 1]nR1[k] + gβ[k]n∗R1[k − 1] + n∗R1[k − 1]nR1[k],

(3.14)

where the symbols d1[k], s1[k] and s2[k] are absorbed in the noise terms. For large uplink

γ̄1R and γ̄2R, the relay can be approximated as noise free and consequently φ1R[k] and φ2R[k]

vanishes in (3.13). Further, with static fading, gβ[k] is equvalent to gR1[k] since ψ1R[k]

and ψ2R[k] are constant phase offsets and don’t affect the decision. This implies that the

relay path signal of the PF protocol is equivalent to a conventional fading channel under

the assumption of static fading and large uplink SNRs. Combined with direct path signal,

the BER performance of DPSK PF relay can potentially approach that of a conventional

point-to-point two branch DPSK system.

Without out exact channel information, we combine the direct path decision variable

D21 given by (3.3) and the relay path decision variable DR1 in (3.14) through addition

D[k] = D21[k] +DR1[k], (3.15)

The decision is then made according to (2.12).

3.3 BER Performance

In this section, we study the BER performance of the proposed DPSK modulated MF

and PF two way relays. First, we provide a BER lower bound for the the MF protocol

under the assumption of a LPA at the relay using the results developed in Appendix 2A.

Next, an exact BER analysis of the DPSK PF two way relay is given using the characteristic

function (CF) approach. The analytic results are duely verified by simulation in section 3.5

with discussions.

3.3.1 DPSK MF relay

We consider an ideal noiseless relay to obtain a lower bound on the BER. Further,

static fading is assumed in all the links. Since this scenario corresponds to a second order
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diversity BDPSK system with independent fading gains g21[k] and gα[k], the corresponding

conditional BER can be found in [62, 47] and is reproduced below as

Pe (γ21, γMF ) =
1

2
e−(γ21+γMF ) +

1

8
(γ21 + γMF )e−(γ21+γMF ), (3.16)

where γ21 is the direct path instantaneous SNR and γMF is the effective SNR in the relay

path. Specifically,

γ21 =
|g21|2

N0

γMF =
G2
MF

N0
|g1R|2|g2R|2|gR1|2

(3.17)

Averaging the conditional SNR in (3.16) over the pdfs of γ21 and γMF gives the BER lower

bound of the relay system. In [47], the average BER of DPSK with diversity reception

is derived from the product form representation of the conditional BER using the MGF

method. This approach leads to a single finite integral when the diversity order is high. For

smaller diversity orders, such as the case of a single two way relay system at hand involving

only one relay, we can use the summation form of Pe (γ21, γMF ) in (3.16) directly. Adopting

the later approach leads to an exact expression with just a few terms, avoiding integration

in the result.

First, the average BER Pe is obtained by averaging Pe (γ21, γMF ) over the joint pdf of

p(γ21, γMF ), which is p(γ21)p(γMF ) based on the channel independence assumption,

Pe =E[Pe (γ21, γMF )]

=

+∞∫
0

+∞∫
0

Pe (γ21, γMF ) p(γ21)p(γMF )dγ21dγMF

=
1

2

+∞∫
0

e−γ21p(γ21)dγ21

+∞∫
0

e−γMF p(γMF )dγMF

+
1

8

+∞∫
0

γ21e
−γ21p(γ21)dγ21

+∞∫
0

e−γMF p(γMF )dγMF

+
1

8

+∞∫
0

e−γ21p(γ21)dγ21

+∞∫
0

γMF e
−γMF p(γMF )dγMF

(3.18)

By recognizing that each of the integral in the above equation can be expressed as either

a MGF or a first derivative of the MGF [63], we can rewrite Pe in (3.18) in terms of the
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MGFs evaluated at s = −1, i.e.

Pe =
1

2
Φγ21(−1)ΦγMF (−1) +

1

8
Φ′γ21(−1)ΦγMF (−1) +

1

8
Φγ21(−1)Φ′γMF (−1) (3.19)

The MGF and its first order derivative of the direct path’s SNR γ21 are readily available,

Φγ21(s) =
1

1− γ̄21s

Φ′γ21(s) =
γ̄21

(1− γ̄21s)2

(3.20)

As for the relay path’s SNR γMF in (3.17), it is the magnitude square of the a cascaded

Rayleigh fading term, scaled by
G2
MF

2N0
. Using (2A.6) from Appendix 2A and [54, (5.5-14)],

the MGF and its first order derivative of γMF are found to be

ΦγMF (s) = (−ζs)−1 G3,1
1,3

(−ζs)−1

∣∣∣∣∣∣ 0

0, 0, 0


Φ′γMF (s) =

(−ζs)−1

−s
G3,1

1,3

(−ζs)−1

∣∣∣∣∣∣ −1

0, 0, 0

 ,

(3.21)

where ζ = 23λ2G
2
MF

2N0
and λ2 = σ2

1Rσ
2
1Rσ

2
R1. By subsituting λ2 and GMF in (2.21) into the

definition of ζ, we have

ζ =
γ̄1Rγ̄2Rγ̄R1

(γ̄1R + 1) (γ̄2R + 1)
. (3.22)

Finally, substituting (3.20), (3.21) and (3.22) into (3.19), we arrive at the average BER

lower bound of the DPSK modulated MF two way relay

Pe =

G3,1
1,3

1
ζ

∣∣∣∣∣∣ 0

0, 0, 0


2 (1 + γ̄21) ζ

1 +
γ̄21

4 (1 + γ̄21)
+

1

4
G3,1

1,3

1

ζ

∣∣∣∣∣∣ −1

0, 0, 0

/G3,1
1,3

1

ζ

∣∣∣∣∣∣ 0

0, 0, 0

 . (3.23)

The BER bound obtained is exact and does not involve any integration. The Meijer G

function in the expression can be calculated using software packages such as Matlab or

Mathematica.

3.3.2 Diversity Order of DPSK MF Relay

With the average BER obtained from the last section, we can further study the diversity

order of the DPSK modulated two way relay system. In particular, if we set γ̄1R = γ̄2R =
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γ̄R1 = γ̄ in (3.23), then

Pe(γ̄) =

1
γ̄G3,1

1,3

1
γ̄

∣∣∣∣∣∣ 0

0, 0, 0


2 (1 + γ̄)

1 +
γ̄

4 (1 + γ̄)
+

1

4
G3,1

1,3

1

γ̄

∣∣∣∣∣∣ −1

0, 0, 0

/G3,1
1,3

1

γ̄

∣∣∣∣∣∣ 0

0, 0, 0

 , (3.24)

where ζ is replaced by γ̄ as a large SNR approximation. Now subsitute the above equation

into (2B.1) and we have the following,

η =− lim
γ̄→∞

log ( 1
2γ̄(γ̄+1))

log γ̄
− lim
γ̄→∞

log G3,1
1,3

1
γ̄

∣∣∣∣∣∣ 0

0, 0, 0


log γ̄

− lim
γ̄→∞

log

1 + γ̄
4(1+γ̄) + 1

4G3,1
1,3

1
γ̄

∣∣∣∣∣∣ −1

0, 0, 0

/G3,1
1,3

1
γ̄

∣∣∣∣∣∣ 0

0, 0, 0


log γ̄

(3.25)

The first limit term in the above equation can be easily found to be 2. The second term,

based on the previous results in Appendix 2B, is zero. For the last term, we first notice that

1 + γ̄
4(1+γ̄) approaches a constant when γ̄ approaches infinity. For the Meijer G function

ratio, using [54, 5.4-(8)], we have

G3,1
1,3

x
∣∣∣∣∣∣ −1

0, 0, 0


G3,1

1,3

x
∣∣∣∣∣∣ 0

0, 0, 0

 =

G3,1
1,3

x
∣∣∣∣∣∣ 0

0, 0, 0

−G3,1
1,3

x
∣∣∣∣∣∣ 0

1, 0, 0


G3,1

1,3

x
∣∣∣∣∣∣ 0

0, 0, 0

 (3.26)

Based on the previous results in Appendix 2B, the above ratio approaches 1 as x approaches

zero. Consequently,

lim
γ̄→∞

log

1 + γ̄
4(1+γ̄) + 1

4G3,1
1,3

1
γ̄

∣∣∣∣∣∣ −1

0, 0, 0

/G3,1
1,3

1
γ̄

∣∣∣∣∣∣ 0

0, 0, 0


log γ̄

=
lim
γ̄→∞

log 11
2

lim
γ̄→∞

log γ̄
= 0 (3.27)

By now, each of the limits in (3.25) are known. We can therefore arrived at the conclusion

that the diversity order of the DPSK modulated two way MF relay system is 2. This means

that the DPSK MF relay can fully exploit the diversity available, the same as the AF relay

in [60]. Compared to the denoise-and-forward two way relay [56], whose diversity is about

half the number of relays, the MF two way relay can fully utilize the diversity available.
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Furthermore, compared to DDSTC modulated two-way relay in [58], which also achieves

full diversity, the MF relay does not need a relay selection process that requires both CRC

decoding and centralized selection.

3.3.3 BER of DPSK PF Relay

In this section we analyze the BER performance of the binary DPSK PF relay protocol

using the CF approach. Without loss of generality, assume d2[k] is +1. We begin with the

well known result on the direct path decision variable D21, which can be rewritten in matrix

format as

D21 = 2Re{y∗21[k−1]y21[k]}

= yH21 F y21, (3.28)

where y21 = [ y21[k−1] y21[k] ]T , F =

0 1

1 0

 and Re{·} is the real operator. Acording to

[62], the CF of D21 is

Φ21(s) =
1

‖I + 2sΦ21F‖
, (3.29)

where ‖ · ‖ denotes the determinant of a matrix and Φ21 is the covariance matrix

Φ21 =
1

2
E
[
y21y

H
21

]
=

 σ2
21 +N0 σ2

21J0

σ2
21J0 σ2

21 +N0

 , (3.30)

where J0 = J0(2πfdT ). The poles of Φ21(s) are

p1 =
−1

2
(
γ̄2

21[1 + J0] + 1
)
N0

< 0, (3.31)

p2 =
1

2
(
γ̄2

21[1− J0] + 1
)
N0

> 0. (3.32)

For the relay path, we can similary define yR1 = [ yR1[k−1] d1[k] yR1[k] ]T and rewrite

DR1 as

DR1 = 2Re{(yR1[k−1] d1[k])∗y21[k]}

= yHR1 F yR1, (3.33)
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The corresponding CF is

ΦR1(s) =
1

‖I + 2sΦR1F‖
, (3.34)

where

ΦR1 =
1

2
E
[
yR1y

H
R1

]
=

 σ2
R1 +N0 σ2

R1e
−j(∆1R+∆2R)J0

σ2
R1e

j(∆1R+∆2R)J0 σ2
R1 +N0

 , (3.35)

where ∆iR = ψiR[k] − ψiR[k−1] for i ∈ {1, 2}. Consequently, the correponding poles of

φR1(s) can be found as

Q1 =
γ̄2
R1J0 cos(∆1R + ∆2R)−

√(
γ̄2
R1 +N0

)2 − (γ̄2
R1J0 sin(∆1R + ∆2R

)2
2
(
(γ̄2
R1 +N0)2 − (γ̄2

R1J0)2
)
N0

< 0, (3.36)

Q2 =
γ̄2
R1J0 cos(∆1R + ∆2R) +

√(
γ̄2
R1 +N0

)2 − (γ̄2
R1J0 sin(∆2R + ∆2R

)2
2
(
(γ̄2
R1 +N0)2 − (γ̄2

R1J0)2
)
N0

> 0. (3.37)

As the decision variable in (3.15) is the sum of two independ variables D21 from direct

path and DR1 from relay path, the CF is the product of the two corresponding CFs. Thus

the CF of D can be written as

ΦD(s) = Φ21(s) ΦR1(s)

=
p1p2Q1Q2

(s− p1)(s− p2)(s−Q1)(s−Q2)
, (3.38)

where the poles are given by (3.31), (3.32), (3.36) and (3.37). Conditioned on ∆1R and ∆2R,

the conditional BER of the binary DPSK PF relay is

Pr [D < 0|∆1R,∆2R] = −
∑
p2,Q2

Residues

{
ΦD(s)

s

}
=

−p1Q1Q2

(p2 − p1)(p2 −Q1)(p2 −Q2)
+

−Q1p1p2

(Q2 −Q1)(Q2 − p1)(Q2 − p2)
. (3.39)

Finally, the average BER can be obtained by averaging (3.39) over ∆1R and ∆2R,

Pe =

π∫
−π

π∫
−π

Pr [D < 0|∆1R,∆2R] p (∆1R) p (∆2R) d∆1R d∆2R, (3.40)

where the pdf of ∆1R and ∆2R are specified by (3A.9) with ρz =
σ2
1RJ0

σ2
1R+N0

in p(∆1R) and

ρz =
σ2
2RJ0

σ2
2R+N0

in p(∆2R), respectively. The above finite double integral can then be evaluated

numerially on computer.
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Figure 3.1: Multiple Relay Implemementation of the DPSK modulated MF System.

3.4 MF with Multiple Two Way Relays

The differentially modulated MF two way relay requires no channel estimation and

it thus saves the overhead on the pilots that is needed in a coherent modulation based

relay system. This feature of the DPSK MF relay is especially suitable for easy scalability

because there is no added computation complexity associated with the CSI estimation at

the receivers. A multiple two relay system is dipicted by Figure 3.1. It can be viewed as a

generalization of the three-phase two-way relay discussed in the previous sections. Instead of

one relay, there are L relays assisting the two terminals S1 and S2 to exchange information.

Further, like the three-phase two-way relay system, a direct path is available between the

two terminals. The operation of the generalized relay system is similar to the three-phase

two-way MF relay except that in the broadcast phase, each of the relays broadcasts its own

transmitted signal on a channel that is orthogonal to the rest of the relays. The orthogonal

channels can be implemented by additional frequency band or time slots.

Following the same notation convention used in the previous sections, the received signal

at terminal S1 can be written as

yRl1[k] =gRl1[k] sRl [k] + nRl1[k]

=Gl gRl1[k](g1Rl [k] + n1Rl [k])(g2Rl [k] + n2Rl [k])s1[k] s2[k] + nRl1[k], (3.41)
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The decision variable contributed from each received relay path is then obtained after CSI

compensation and self information cancellation,

DRl1 = (yRl1[k−1] d1[k])∗yRl1[k]. (3.42)

The final decision variable D[k] is obtained summing all the decision variables using EGC

rule

D[k] = D21[k] +
L∑
l=1

DRl1[k]. (3.43)

The BER analysis of the generalized DPSK MF relay involves a single direct path that

is Rayleigh faded and L cascaded Rayleigh fadings arise from the relay paths. The analysis

for the fast fading scenario seems to be forbidable so we turn our attention to the case of

quasi-static fading, in which the channels remain the same for two consecutive transmission

blocks. Under the quasi-static channel assumption, we are able to find the BER lower bound

corresponding to the scenario when there are no noises at the relays. First we start with

the L+ 1 channel BDPSK BER from [47],

Pe(γt) =
1

22L+1
e−γt

L∑
l=0

clγ
l
t, (3.44)

where

cl =
1

l!

L−l∑
k=0

2L+ 1

k

 (3.45)

and

γt =

L∑
l=0

γl. (3.46)

For notation simplicity, we have re-indexed the SNR’s as γ0 = γ21, γ1 = γMF1 , γ2 = γMF2 ,

. . . , and γL = γMFL . Averaging over all the instantaneous SNRs in the above equatoin, we
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have the average BER expressed in terms of the MGF functions evaluated at s = −1.

Pe = E[Pe(γt)]

= E

[
1

22L+1
e−(γ0+γ1+...+γL)

L∑
l=0

cl(γ0 + γ1 + . . .+ γL)l

]

= E

 1

22L+1

L∑
l=0

cl

 ∑
∑L
u=0 ku=l

 l

k0, k1, . . . , kL

 L∏
u=0

γkuu e−γu




=
1

22L+1

L∑
l=0

cl

 ∑
∑L
u=0 ku=l

 l

k0, k1, . . . , kL

 L∏
u=0

Φ(ku)
γu (s = −1)

 , (3.47)

where the multinomial coefficient is calculated as l

k0, k1, . . . , kL

 =
l!

k0! k1! . . . kL!
. (3.48)

In the above derivation, the mutlinomial theorem is used to expand the l-th power of the

sum of the instantaneous SNR’s. Further, Φ
(ku)
γu (s) is the ku-th derivative of the MGF of

γu. This result shows that if we know the MGF of all the received instantaneous SNR’s and

their derivatives up to L-th order, we are able to find the lower bound of the differentially

modulated MF two way relay system.

The MGF and derivatives of the direct path SNR γ0 = γ21 can be summarized as one

equation

Φ(k)
γ0 (s) =

dk

dsk
Φγ0(s) =

k! γ̄k0
(1− γ̄0s)k+1

. (3.49)

For k = 0, the above equation is the MGF of γ0.

The caclulation of the derivatives of the MGF of the relay path instantaneous SNR is

more involved and it is easier to deal with the Meijer G function only. First we rewrite

the MGF of the instantaneous SNR of the l-th (1 ≤ l ≤ L) relay path as the following

composite function

Φγl(s) = (−ζls)−1 G3,1
1,3

(−ζls)−1

∣∣∣∣∣∣ 0

0, 0, 0


= G3,1

1,3

(−ζls)−1

∣∣∣∣∣∣ 1

1, 1, 1


= G(u(s)), (3.50)
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where G(u) = G3,1
1,3

u−1

∣∣∣∣∣∣ 1

1, 1, 1

 , u(s) = −ζls and ζl = 23λ2
l

G2
MFl

2N0
. The k-th derivative of

G(u) can be found as

G(k)(u) =
dk

duk
G(u) =u−kG4,1

2,4

u−1

∣∣∣∣∣∣ 1, 1− k1, 1, 1, 1


=(−1)ku−kG3,1

1,3

u−1

∣∣∣∣∣∣ 1− k1, 1, 1


=(−1)ku−(k+1)G3,1

1,3

u−1

∣∣∣∣∣∣ −k0, 0, 0

 (3.51)

With the derivatives of G(u) and u(s) known, the k-th derivative of the composite func-

tion Φγl(s) in (3.50) can be calculated using Faa di Bruno’s formula [64], which is the

generalization of the derivative chain rule to higher orders. In general, the k-th derivative

of a composite function involves all the derivatives of both the functions, which form the

composite function, up to order k. For the linear function u(s), however, the higher order

derivatives of Φγl(s) can be simplified to involve only the k-th order of G(u) and the first

order derivative of u(s). Specifically,

Φ(k)
γl

(s) =
dk

dsk
Φγl(s)

=
dkG(u)

duk

(
d u(s)

ds

)k
=(−1)k (−ζls)−(k+1) G3,1

1,3

(−ζls)−1

∣∣∣∣∣∣ −k0, 0, 0

 (−ζl)k

=
1

ζl
(−s)−(k+1)G3,1

1,3

(−ζls)−1

∣∣∣∣∣∣ −k0, 0, 0

 , (3.52)

where

ζl =
γ̄1Rl γ̄2Rl γ̄Rl1

(γ̄1Rl + 1) (γ̄2Rl + 1)
, (3.53)

for 0 ≤ l ≤ L. Using (3.45), (3.49), (3.52) and (3.53) in (3.47), the lower bound of the

DPSK MF relay system can be written as

Pe =
1

22L+1

L∑
l=0

cl


∑
L∑
u=0

ku=l

 l

k0, k1, . . . , kL

 k0! γ̄k00

(1 + γ̄0)k0+1

L∏
u=1

1

ζl
G3,1

1,3

1

ζl

∣∣∣∣∣∣ −ku0, 0, 0


 . (3.54)
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The above BER bound is quite complex and don’t seem to provide insights on the BER

performance. To see the high SNR BER behavior, we set the SNR’s in all the links to γ̄

and let γ̄ →∞. Further, using the following relationship found by Mathematica

lim
γ̄→∞

G3,1
1,3

1

γ̄

∣∣∣∣∣∣ −ku0, 0, 0

 = k! G3,1
1,3

1

γ̄

∣∣∣∣∣∣ 0

0, 0, 0


Pe at high SNR can be approximated as

Pe(γ̄) =
α(L)

γ̄L+1

G3,1
1,3

1

γ̄

∣∣∣∣∣∣ 0

0, 0, 0

L , (3.55)

where

α(L) = 2−(2L+1)

L∑
l=0

cl


∑
L∑
u=0

ku=l

 l

k0, k1, . . . , kL

 L∏
u=1

ku!

 (3.56)

is a positive coefficient determined by L. Finally, with the help of (2B.7), we can find the

diversity order of the multiple relay system as

η =− lim
γ̄→∞

logα(L)

log γ̄
− lim
γ̄→∞

log γ̄−(L+1)

log γ̄
− lim
γ̄→∞

log

G3,1
1,3

1
γ̄

∣∣∣∣∣∣ 0

0, 0, 0

L
log γ̄

=L+ 1. (3.57)

This shows that the DPSK MF two way relay achieves the full diversity available. It is

worthwhile to note that in the event the direct path is not available, full diversity can still

be achieved.

3.5 Numerical Results and Discussion

In this section, the DPSK modulated MF relay is simulated under different channel

conditions. The simulation results are verified against the theoretical BER performance

bound wherever applicable. Further, unless otherwise stated, all the power amplifiers in the

system are assumed to be linear.
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Figure 3.2: BER of DPSK MF relay compared with coherent relays in static fading. The
modulation is BPSK and all the links in the system have the same average link-SNR γ̄ =
γ̄1R = γ̄2R = γ̄R1 = γ̄21.

First a static fading enviornment is considered. In Figure 3.2, the BER curve of the

proposed DPSK MF two-way relay is plotted against the coherent AF and MF two-way

relays studied in Chapter 2. In the figure, binary modulation is used and all the links in

the relay systems have equal SNR’s. Compared to the coherent detection schemes, it is

observed that the differentially modulated PSK MF scheme is 3 dB and 4.5 dB worse than

the coherent PSK MF and coherent PSK AF protocols, respectively. Obviously, the lack of

precise CSI and the subsequent use of EGC lead to this performance loss. However, the use

of DPSK, as opposed to coherent PSK, leads to a higher spectral efficiency, as there is no

need to transmit any pilot for channel estimation purpose. It is observed from the figure

that in the low SNR region of 0 dB to 15 dB, there is a gap between the BER lower bound

given by (3.23) and the actual BER obtained by simulation. This gap is caused by the

omission of the relay noises in the BER analysis. Nonetheless, as the uplink SNR’s improve

in the high SNR region, from 20 dB and onwards, the BER becomes limited by fading and

the gap between the two is negligible.
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Figure 3.3: BER of DPSK MF relay with stronger uplinks. The modulation is BPSK and all
the links in the system have the same average link-SNR except γ̄ = γ̄1R = γ̄2R = γ̄21 +20dB.

Next, impact of asymmetrical channels on the BER performance is considered. Specif-

ically, we evaluate the case where the uplinks have better signal quality. This scenario

corresponds to the typical case that the relay is located in the middle of the two terminals.

Figure 3.3 shows the BER of DPSK MF when the S1→R and S2→R links are 20 dB

stronger than those in the direct path and in the downlink. It is seen that increasing the

uplink SNR’s γ̄1R and γ̄2R improves the BER by 1 dB in the low SNR region from 0 dB to 15

dB. Beyond 20 dB, the marginal return by increasing γ̄1R and γ̄2R becomes negligible. This

behavior is slightly different from the coherent AF or MF relay, which exhibits virtually no

BER improvement for the same SNR increase as shown in Figure 2.9.

One of the challenges in the implementation of the differential modulated two-way relay

systems is the realization of self-interference cancellation in AF based relays. For AF relays,

it is often assumed that the channel remains static during a transmission block [60, 61]

so that the relay can take a time average of the received signals for CSI estimation. For

example, the generalized differential modulation AF relay [61] can achieve good performance
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Figure 3.4: Simulation BER of DPSK MF relay with time varying fading. The modulation
is BPSK and all the links in the system have the same average link-SNR.

in a static fading channel with long block length. However, the BER quickly grows to 0.1

at an SNR of 30 dB when the normalized Doppler frequency becomes 2× 10−4. The same

assumption of a static fading channel is also adopted in the regenerative relays such as

the ML relay in [59] and denoise-and-forward (DNF) relay in [56]. The MF relay, on the

otherhand, is not limited by the static fading. In Figure 3.4, simulated BER results of the

DPSK MF relay are plotted for both static and time selective fading. The time selective

fading process in each of the links follows Jake’s model [65], in which the Doppler spreads

normalized to symbol duration, fdT , are 0.01 and 0.03, respectively. The plot shows that

the MF relay indeed works in a time varying fading environment. However, similar to the

point-to-point DPSK transmission, there exists an increasing error floor when fdT becomes

higher. This is because in differential detection, the previously received signal is used as an

estimate of the fading channel; see (3.3) and (3.8). For time varying fading, such an estimate

is not fast enough to track the changes in the fading channel, e.g. phase reversal caused

during a deep fade [66]. As a result, when fading dominates in the high SNR region, an

irreduceable error floor occurs. The correlation between two adjacent fading gains gij [k−1]
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Figure 3.5: Simulation BER of DPSK MF relay with NLPA. The modulation is BPSK for
AF relay and BDPSK for MF relay. All the links have the same average link-SNR. The
NLPA has a saturation power of 3.2 dB.

and gij [k] is σ2
ij J0(2πfdT ). Higher fdT leads to smaller correlation, which in turn results

in larger channel estimation error in the differential detection. Consequently, higher fdT

results in higher error floor in the DPSK MF two-way relay.

In Chapter 2 we found that the MF relay with coherent MPSK modulation is resistant

to the power amplifier nonlinearity. Does this property still hold for the differentially

modulated MF relay? To answer this question, we first notice that the DPSK MF relay

transmitted symbol sR in (2.20) has exactly the same form as PSK MF relay transmitted

symbol in (3.4). As such, they experience the same fading and noise disturbances. Further,

since the transmitted DPSK symbols are drawn from the same signal constellation as PSK,

the DPSK MF relay is expected to exhibit the same resilient to NLPA distortion as the PSK

MF relay This is verified via simulation under both static fading and slow fading, and the
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results are demonstrated in Figure 3.5. For comparison, coherent PSK MF and AF relay

results are also included in the plot. In the plot, BPSK is used for the coherent modulated

AF/MF relay and BDPSK is used for the MF relay. All of the relays are using a NLPA

with a saturation power of 3.2 dB, which corresponds to the highest instantaneous power

of a BPSK sigal shown in Figure 2.3. We see that while PSK AF relay system experiences

a high error floor of 1 × 10−4, the DPSK MF relay shows no obersable BER degradation,

just as the coherent PSK MF relay.

Figure 3.6 and 3.7 plot the BER results of DPSK modulated MF and PF relays under

symmetrical channel configuration with all links having the same SNR, and asymetrical

channels with the uplink SNR γ̄1R and γ̄2R 20 dB stronger. Further, Figure 3.6 considers

static fading, while Figure 3.7 corresponds to time varying fading with fdT = 0.01. For

comparison purpose, point-to-point DPSK results with first and second order diversity are

also included in the plots.

From the figures, it can be seen that DPSK MF relay is less sensitive than DPSK PF

relay to the channel coditions considered. For DPSK MF relay, increasing the uplink SNRs

results in BER improvement mainly in the low SNR region. Further, the MF relay shows

second order diversity DPSK modulation. The BER of DPSK PF relay, on the other hand,

significantly depends on the uplink SNRs. For the case of symmetrical channels, though the

PF relay shows an improvement of 2 dB over point-to-point DPSK, diversity effect is not

realized. When the uplink SNR γ̄1R and γ̄2R are 20 dB stronger, we can see that DPSK PF

relay improves significantly, becoming better than DPSK MF relay by 5 dB, and become

close to the second order point-to-point DSPK. When time varying fading is present, as

shown by Figure 3.7, the DPSK PF protocol has higher error floor than MF protocol.

Obviously, unlike coherent PSK PF relay studied in the previous chapter, DPSK PF

relay does not outperform DPSK MF relay all the time. The differentially modulated

PF protocol only performs better than the MF protocol under better channel conditions.

This can be explained in part by the signal combining rule at the receiver. With precise

knowledge of CSI, the coherent detector can perform MRC in (2.36). However, for DPSK

PF, the relay path signal is simply added to that of the direct path, thus redenering the

system less efficient. As a result, the DPSK PF protocol should be only used in good

channel conditions.
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Figure 3.6: Simulation BER of BDPSK PF relay compared with MF relay under static
fading.
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3.6 Conclusion

In this chapter, the MF and PF relays proposed in Chapter 2 are further extended to

work with DPSK modulation. The immediate benefit is that pilot symbols are no longer

needed as in the case of coherent two way relay. The multiplicative self-interference can-

cellation of the DPSK MF relay is simple and yet effective, which leads to a similar imple-

mentation complexity as conventional differential detection. In particular, compared to the

subtractive self-interference methods in [61], the DPSK MF and PF relays can bypass the

CSI estimation that is necessary for self-interference cancellation in AF based protocols.

A closed form BER lower bound for the binary DPSK MF relay is derived and verified

via simulation. Based on the lower bound, we further derived the diversity order of the

DPSK MF relay system. The proposed relay system achieves the full diversity order that

is available.

For differentially modulated two way relays in the literature, the assumption of static

fading is a common basis for the relay systems to perform CSI estimation for self-interference

cancellation. However, the DPSK MF relay considered in this chapter is not built on such

an assumption and it works in fast fading environment. This is a marked improvement over

the existing two-way relays that employ DPSK modulation.

Similar to the PSK MF relay, the DPSK MF relay is resistant to power amplifier non-

linearity. Simulation results indicate that even when the MF relay is equipped with the same

power amplifier as the two terminals, which is insufficient to amplify the relay transmitted

signal linearly, the MF relay system shows no noticeable BER degradation. Combined with

differential modulation, MF two-way relay has the potential to deliver robust performance

at low complexity, low cost and high power efficiency.

In the previous chapter, PF two-way relay was developed for coherent PSK modulation

to achieve both good resistance to power amplifier non-linearity and good BER performance

(over both AF and MF relay). This idea is tested with DPSK modulation in this chapter.

Compared to MF relay, the PF relay offers similar implementation complexity at the relay

and also have low requirement on the linear region of the power amplifier. The BER of PF

relay, however, doesn’t out perform the MF relay in all situations. It is actually worse than

MF relay when the link SNRs are equally strong. But when uplink SNRs are stronger and
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static fading is present, it is found that the DPSK PF two-way relay performs better than

the DPSK MF relay. This suggests the use of PF relay when the relay is located in between

the two user terminals.

Last but not least, the DPSK MF relay protocol is generalized to multiple relays in view

of the scalability of the DPSK MF relay. Its BER under static fading is derived, which

further allows us to provide an analysis of diversity order on the generalized system.

Appendix 3A PDF of the Phase Difference in (3.40)

Consider a circular complex Gaussian random process z(t), whose power spectrum is

symmetrical about y-axis. We are interested in finding the pdf of the phase difference

between z(t) and z(t + τ). In [67], A discussion of the more general Gaussian perturbed

signal model is presented. However the results are given in integral form, which cannot

be used directly in our analysis. In the following, we provide the analytical result for the

signals under consideration.

First, let’s write z(t) and z(t+ τ) in terms of cartesian forms as

z(t) = x1 + jy1 (3A.1)

z(t+ τ) = x2 + jy2 (3A.2)

Due to circular symmetry, the real and imaginary part of z(t) are independent and iden-

tically distributed with zero mean. Further, the symmetrical power spectrum of z(t)

implies that the cross correlation between the real and imaginary parts are zero. Let

z = [x1 y1 x2 y2]T , then the pdf of z can be written as

p(z) =
1

(2π)2σ4
z(1− ρ2)

exp

{
−x

2
1 − 2ρzx1x2 + x2

2 + y2
1 − 2ρzy1y2 + y2

2

2σ2
z(1− ρ2)

}
, (3A.3)

where σ2
z = 1

2E
[
|z(t)|2

]
and ρz = 1

2E[z(t+ τ)z∗(t)].

To find the pdf of the phase difference between z(t) and z(t+ τ), we next express them

in their polar form as following,

z(t) = r1e
jθ1 (3A.4)

z(t+ τ) = r2e
jθ2 (3A.5)
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Now let w = [r1 θ1 r2 θ2]T , the joint pdf of w can be calculated from p(z) based on the

transformation functions xi = ri cos θi and yi = ri sin θi, i ∈ {1, 2}, with a Jacobian of r1r2.

Specifically, the pdf p(w) is

p(w) =
r1r2

(2π)2σ4
z(1− ρ2)

exp

{
−r

2
1 + r2

2 − 2r1r2 cos(θ1 − θ2)

2σ2
z(1− ρ2)

}
, (3A.6)

Integrating (3A.6) over r1 and r2 would give us the joint pdf of θ1 and θ2,

p(θ1, θ2) = q(θ1 − θ2), (3A.7)

where

q(ξ) =

(
1− ρ2

z

4π2

) ∣∣ρ2
z cos2 ξ

∣∣ arctan
(√

ρ2z cos2 ξ
1−ρ2z cos2 ξ

)
+
√

1− ρ2
z cos2 ξ + π

2ρz cos ξ

[1− ρ2
z cos2 ξ]

3
2

. (3A.8)

Notice that the joint pdf only depends on the phase difference ∆ = θ1− θ2. As a result, the

pdf of ∆ can be expressed in terms of q(∆) as

p(∆) =

(
1− ρ2

z

2π

)∣∣ρ2
z cos2∆

∣∣ arctan
(√

ρ2z cos2∆
1−ρ2z cos2∆

)
+
√

1− ρ2
z cos2∆ + π

2ρz cos∆

[1− ρ2
z cos2∆]

3
2

. (3A.9)
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Chapter 4

Phase-Forward with CPFSK Modulation

In Chapter 2, we studied coherent PSK MF and PSK PF two way relays that are

resistant towards power amplifier non-linearity. Multiplying the received signals at the

relay preserved the phase information in the event of non-linear distortion at the power

amplifier. However, there is still signal waveform variation due to pulse shaping. This is

true even for the PF relay transmitted signals, whose symbols have constant amplitude.

In Chapter 3, differential encoding is employed in the MF two way relay to avoid the

transmission of pilot symbols. It is desirable to further reduce the amplitude variations at

the relay while eliminating the pilot symbols. In this chapter we propose the idea of PF

relaying for three-phase two-way relay cooperative network employing constant envelope

modulation with discriminator detection in a Rayleigh fading environment. It was found

that, compared to one-way relaying, two-way PF relaying suffers only a moderate loss in

energy efficiency (of 1.25 dB). On the other hand, PF improves the transmission efficiency

by 33%. Furthermore, we believe that the loss in energy efficiency can be reduced if power

is allocated to the different nodes in this cooperative network in an optimal fashion. In

this chapter we explore both the PF relay as well as the DF based relay for the CPFSK

modulation. It was found that the latter has a similar BER performance as PF while

requiring additional processing at the relay. It can thus be reached that the proposed PF

technique is indeed the preferred way to maintain constant envelope signaling throughout

the signaling chain in a three-phase two-way relaying system.
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4.1 Introduction

In the last two chapters, we considered PF in three-phase two-way cooperative relay

systems that use PSK modulation at the user terminals and PSK-like modulation at the

relay. While PSK symbols at different symbol intervals all have the same magnitude, the

transmitted PSK signal does not have a constant signal envelope because of pulse shaping.

In this chapter, we consider the use of continuous phase frequency shift keying (CPFSK)

in three-phase two-way cooperative communication systems with a PF relay. Similar to a

PSK PF two-way relay, the CPFSK PF two-way relay performs self induced hard limiting

after multiplying two recieved signals at the relay. However, unlike PSK PF, a CPFSK PF

signal has constant signal envelope at all times. Note that CPFSK modulations are widely

used in public safety (police, ambulane) and private mobile communication systems (taxi,

dispatch, courier fleets) even though are are, in general, not as bandwidth efficient as linear

modulations. The use of constant envelope modulations in cooperative communications

had been considered in [68, 69, 31]. Specifically in [31], CPFSK and PF was proposed for

2-node MRC-type cooperative communication system with time-selective Rayleigh fading

and discriminator detection. The authors reported that PF has a lower BER than DF. It

also delivers the same performance as AF when dual-antenna selection is available at the

relay. They concluded that PF is a cost-effective alternative to AF and DF, since it does

not need signal regeneration at the relay nor does it need expensive linear amplifiers.

To further confirm the usefullness of the proposed CPFSK PF scheme, we compare it

against a phase combining PF technique that is based on DF and multi-level CPFSK re-

modulation at the relay. Specifically we consider the so-called decode-superposition-forward

(DSF) and deocde-XOR-forward (DXF) protocols for three-phase two-way relaying.

This chapter is organized as follows. We first describe in Section 4.2 the signal and

system model for the proposed CPFSK PF relaying scheme and competing DF schemes

based on multi-level CPFSK re-modulation at the relay. The detection and combining

strategies are presented in Section 4.3, followed by a discussion on the implementation

concerns of the proposed relaying protocols. The BER analysis of the three protocols is

provided in Section 4.5. Numerical results are provided in Section 4.6 and conclusions of

this investigation are given in Section 4.7.
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4.2 System Model

The basic three-phase two-way cooperative communication network considered in this

chapter is identical to that in Figure 2.1 except that the modulation at the user terminals

are now replaced by CPFSK modulations and the relay signal is replaced by a phase-

superimposed constant envelope signal. The general equation for signals at different nodes

of the cooperative network is:

yij(t) = gij(t)si(t) + nij(t), (4.1)

where i ∈ {1, 2}, j ∈ {1, 2, R} and i 6= j, gij(t) is the i.i.d. circular complex Gaussian

process that represent Rayleigh fading in the i→j link, and nij(t) is the AWGN process at

the receiver on the i→j link. Specifically, s1(t) and s2(t) are CPFSK signals of the form

si(t) = ejθi(t), i ∈ {1, 2}, (4.2)

where

θi(t) = πh

(
k−1∑
n=0

di,n

)
+ πhdi,k

(t− kT )

T
, kT < t ≤ (k + 1)T, (4.3)

is the information carrying phase, with di,k ∈ {±1} being the data bit in the k-th symbol

interval for User i, i ∈ {1, 2}, h being the modulation index, and T being the bit-duration.

Note that the derivative of the information bearing phase is

θ̇i(t) = πhdi,k/T, kT < t ≤ (k + 1)T, (4.4)

which is proportional to the data bit di,k. This property is crucial in understanding the

decision rule made by the discriminator detector presented in the next section. Another

property of CPFSK that is important to the understanding of the results is the bandwidth

of the signal. It is well known [70] that CPFSK signals, are in general, not band-limited.

As such, a common practice is to adopt the frequency range that contains 99% of the total

signal power as the bandwidth of the signal. This is referred to as the 99% bandwidth [70].

As an example, consider the so-called Minimum Shift Keying (MSK) scheme, i.e. CPFSK

with h = 1/2. Using the results from [62], the 99% bandwidth of MSK is found to be

1.1818/T .

Due to the constant envelope nature of the transmitted signal in (4.2), a highly power

efficient, though non-linear, power amplifier can be employed at the two user terminals.
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Naturally, it is desirable to maintain the same constant envelop characteristic at the relay.

In the following sections, we first apply the phase forward concept to the CPFSK two

way relay to achieve this goal. Next, we consider two DF based forwarding techniques

that are suitable to be used for combining with the direct path received signal. When DF

forwarding strategies are implemented at a two-way relay, the two symbols from the two

users are combined to form a new symbol by network coding, such as the popular XOR

coding. However, this may post an issue when the user attempts to combine the relay path

sigal with the direct path signal because the the former signal is a mixure of both user signal

and the later contains information of a single user. Therefore, self-interference cancellation

must be performed prior to signal combing at the user terminal in the third phase. Based

on the fact the the information are beared in the phase, we devise the phase superpostition

based DF methods that allow self-interference cancellation prior to the signal combining.

4.2.1 Phase-Forward of CPFSK

In the proposed PF scheme, the signal transmitted by the relay is

sR(t) = exp {j(arg[y1R(t)] + arg[y2R](t)}) , (4.5)

where arg[y1R(t)] and arg[y2R(t)] are the phases of the signals y1R(t) and y2R(t) respectively.

Note that sR(t) is both constant envelope and continuous-phase, just like the data signals

s1(t) and s2(t). As observed from (4.5), the forwarded signal has constant envelope. More-

over, the phase of sR(t) is the sum of the phases of the two uplink signals y1R(t) and y2R(t).

Since this phase superposition is equivalent to a multiplication of (the hard-limited versions

of) the signals y1R(t) and y2R(t) in the time domain, refer to Figure 2.7, the corresponding

frequency domain convolution will lead to a spectrum expansion if the relay is destined to

transmit without any bandwidth limitation.

One nice feature of the CPFSK PF relaying technique is that constant envelope sig-

naling is maintained at the relay without requiring it to perform any demodulation and

re-modulation. A natural question to ask is, how does PF compare to DF strategies that

employ constant envelope signaling at the relay? To be able to answer this question, we

introduce next the 3-Level Decode-and-Phase-Forward (3-DPF) scheme and the Alternate

4-Level Decode-and-Phase-Forward (A4-DPF) scheme as possible alternatives to PF. For
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both schemes, the relay first make decisions on user S1 and user S2’s data based on the

its received signals y1R(t) and y2R(t). It then applies the decisions, d̂1,n and d̂2,n, to (4.2)

and (4.3) to re-generate user S1 and user S2’s signals according to ŝ1(t) = exp{jθ̂1(t)} and

ŝ2(t) = exp{jθ̂2(t)}.

4.2.2 3-Level Decode and Phase Forward (3-DPF)

With this detection and forward strategy, the relay adds the detected phases in ŝ1(t)

and ŝ2(t) synchronously to form the relay signal

sR(t) = exp
{
j
(
θ̂1(t) + θ̂2(t)

)}
= ŝ1(t)ŝ2(t). (4.6)

This signal is both constant envelope and continuous-phase, just like the data signals s1(t)

and s2(t). Furthermore, because of synchronous mixing, we can view sR(t) as a 3-level

CPFSK signal with modulation index h and symbol values +2, 0,−2 that occur with priori

probabilities 1
4 ,

1
2 ,

1
4 . The 3 signal levels and the corresponding priori probabilities are due to

the fact that the detected bits d̂1,n and d̂2,n at the relay are {±1} binary random variables.

Another consequence of synchronous phase mixing is that the bandwidth of sR(t) is less than

the sum bandwidth of ŝ1(t) and ŝ2(t), even though sR(t) = ŝ1(t)ŝ2(t). Considering MSK

modulation, the sum bandwidth is two times 1.1818/T or 2.3636/T . The 99% bandwidth of

the corresponding sR(t), on the other hand, is only 1.832/T based on numerical calculation

of the convolution of two MSK power density spectrums [62].

4.2.3 Alternate 4-level Decode and Phase Forward (A4-DPF)

In general, we can construct a constant-envelope relay signal based on the superposition

of the detected phases as follows

sR(t) = exp
{
j
(
w1θ̂1(t) + w2θ̂2(t)

)}
(4.7)

where w1 and w2 are weighting coefficients [9,10,12]. In the case where w1 = 2 and w2 = 1,

sR(t) becomes a conventional 4-level CPFSK scheme with modulation h and symbol values

+3,+1,−1,−3 all occurring with equal probability. This signal will have a wider bandwidth

than the 3-level relay signal in the previous section but it will also provide a better BER

performance (typical power-bandwidth tradeoff). One thing though, the unequal weightings
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on the two detected phases will translate into an asymmetric error performance at S1 and

S2. This problem can be alleviated by alternating the weighting rules between even and

odd time slots as follows:

w1 = 2, w2 = 1; even time slot,

w1 = 1, w2 = 2; odd time slot.
(4.8)

We call this strategy Alternate 4-level detect and phase forward or A4-DPF.

4.3 Discriminator Detection of the Relay Signals

As shown in (4.1), the transmitted signals at S1, S2 and R, will in general, experience

time-selective fading. This makes the implementation of coherent detection rather compli-

cated. As such we consider the much simpler discriminator detector. This non-coherent

detector does not need channel state information when making data decisions and it thus

spares the receiver from performing complicated channel tracking and sequence detection

tasks. Without loss of generality, we demonstrate in the following sections how User S1

detects the data intended for it from User S2, i.e. the d2,k’s, using a discriminator detector.

The detection of User S1’s data at Node S2 follows exactly the same procedure. It is further

assumed that ideal low-pass filters (LPF) are used to limit the amount of noise admitted

into the detector, with the bandwidth of each receive LPF set to the 99% bandwidth of its

incoming signal. As such, the noise processes in (4.1) are all band-limited white Gaussian

noises.

4.3.1 Detection of CPFSK PF Signals

To see how discriminator detector works in the proposed CPFSK PF system, we first

rewrite the two received signals at the relay as

y1R(t) = g1R(t)ejθ1(t) + n1R(t) = a1R(t)ejψ1R(t) (4.9)

and

y2R(t) = g2R(t)ejθ2(t) + n2R(t) = a2R(t)ejψ2R(t) (4.10)
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where a1R(t) = |y1R(t)|, a2R(t) = |y2R(t)|, ψ1R(t) = arg[y1R(t)] and ψ2R(t) = arg[y2R(t)]. As

stated in (4.5), the relay broadcasts

sR(t) = exp {jθR(t)} ,

θR(t) = ψ1R(t) + ψ2R(t),
(4.11)

to S1 and S2 in the last phase. Substituting (4.11) into (4.1) with i = R and j = 1, the

received signal at S1 during the third phase can now be written as

yR1(t) = gR1(t)ejθR(t) + nR1(t) = aR1(t)ejψR1(t), (4.12)

where aR1(t) and ψR1(t) are respectively the amplitude and phase. In order to detect the

signal from S2, User S1 first removes its own phase θ1(t) from ψR1(t). The resultant complex

signal is

ỹR1(t) = aR1(t)ejψ̃R1(t),

ψ̃R1(t) = ψR1(t)− θ1(t).
(4.13)

It then combines ỹR1(t), non coherently, with the signal

y21(t) = g21(t)ejθ2(t) + n21(t) = a21(t)ejψ21(t) (4.14)

from (4.1) with i = 2 and j = 1, where a21(t) and ψ21(t) are respectively the received signal

amplitude and phase from the direct path. Specifically at the decision making instant,

which is taken to be the mid-symbol position in each bit interval, the non-coherent detector

adds the phase derivatives ψ̇21(t) and
˙̃
ψR1(t) according to the maximal ratio combining

principle [31]

D = D21 +DR1 (4.15)

where

D21 = 2a2
21ψ̇21 =

[
y∗21 ẏ∗21

]0 −j

j 0

y21

ẏ21

 ,
DR1 = 2a2

R1
˙̃
ψR1 =

[
ỹ∗R1

˙̃y∗R1

]0 −j

j 0

ỹR1

˙̃yR1

 , (4.16)

and then makes a decision on the data bit in question, d2, according to

d̂2,k = sgn(D). (4.17)
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An intuitive understanding of the above decision rule can be gained by considering

the ideal situation where there are no fading and noise in all the links. In this case, the

received phase derivatives at the relay and at node S1 during the first and second phases of

transmission are ψ̇1R(t) = πhd1,k/T , ψ̇2R(t) = πhd2,k/T , and ψ̇21(t) = πhd2,k/T ; see (4.4).

Furthermore, the received phase derivative at user S1 during the third phase is simply

ψ̇R1(t) = πh(d1,k + d2,k)/T . As a result,
˙̃
ψR1(t) = ψ̇R1(t) − θ̇1(t) = πhd2,k/T . This means

the sign of the decision variable D in (4.15) equals the sign of the data bit d2,k. Naturally,

in the presence of fading and noise, these phase derivatives are subjected to distortions.

However, as long as the channels average SNR is at a decent level, the decision rule in

(4.17) will still enable us to recover the data reliably. Further discussion on the optimality

of (4.15) can be found in [31].

4.3.2 Detection of the 3-DPF and A4-DPF Signals

From the discussion in Sections 4.2.2 and 4.2.3, we can see that 3-DPF is a specific case

of A4-DPF. For both schemes, the relay broadcasts a signal of the form sR(t) = exp {jθR(t)}

in the final phase of cooperation, where θR(t) =
(
w1θ̂1(t) + w2θ̂2(t)

)
is the phase of the

relayed signal, θ̂1(t) and θ̂2(t) are the detected phases at the relay, (w1, w2) = (1, 1) for

3-DPF, and (w1, w2) alternates between (3, 1) and (1, 3) for A4-DPF. Using (4.12) as the

definition of the received signal at S1 during the third phase, we first remove S1’s own phase

from ψR1(t) according to

ỹR1 = aR1(t)ejψ̃R1(t),

ψ̃R1(t) = (ψR1(t)− w1θ1(t)) /w2.
(4.18)

and then combine the derivative of ψ̃R1(t) non coherently with ψ̇21(t), the received phase

derivative at S1 in Phase 2, according to (4.15) and (4.16). As in the case of PF, the decision

rule is given by (4.17).

One nice feature about DF-based strategies is that the modulation index used at the

relay, hR, needs not to be identical to h, the modulation index used by S1 and S2. This

flexibility is especially important if we want to impose stringent bandwidth requirement on

the signal transmitted by the relay. If the relay does use a different modulation index, the

effective form of the forwarded phase is θR(t) = ρ
(
w1θ̂1(t) + w2θ̂2(t)

)
, where ρ = hR/h is
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the ratio of modulation indices. In this case, (4.18) should be modified to

ỹR1 = aR1(t) ejψ̃R1(t),

ψ̃R1(t) = (ψR1(t)− ρw1 θ1(t)) /(ρw2).
(4.19)

before combining with ψ̇21(t) according to (4.15) and (4.16).

4.4 Implementation Issues

We provide in this section some implementation guidelines for the proposed PF strategy.

Comparison with the considered DF schemes, in terms of implementation complexity, will

also be made.

According to (4.5), a PF relay needs to first convert the signals y1R(t) and y2R(t) in (4.1)

into the constant envelope signals ŷ1R = exp{j arg[y1R(t)]} and ŷ2R = exp{j arg[y2R(t)]}

before transmitting the product signal sR(t) = ŷ1R(t)ŷ2R(t) in the final phase of relaying.

Given that the relay is half-duplex and cannot transmit and receive at the same time, it must

first detect and store (the sufficient statistics of) the data packets it receives from S1 and

S2 in their entireties before generating and forwarding the product constant envelope signal

in the final phase. The procedure requires frame synchronization at the relay to ensure

proper time-alignment of ŷ1R(t) and ŷ2R(t). This can be done by inserting a special sync

pattern into each data packet and correlating the received signals with this pattern at the

relay. As for storage of the entire frames of ŷ1R(t) and ŷ2R(t), this will be done in the digital

domain via sampling and quantization. The minimum sampling frequency will be twice the

bandwidth of sR(t), rather than twice the bandwidth of individual ŷ1R(t) and ŷ2R(t). This

stems from the fact that signal mixing (multiplication) is a bandwidth-expanding process.

We found that when the two source signals in (4.1) (namely s1(t) and s2(t)) are MSK,

then the product signal sR(t) has a bandwidth of 1.832/T , where 1/T is the bit rate. So

in this case, a sampling frequency of 4/T would be sufficient to create signal samples that

capture all the information about the product signal. As for quantization, it is relatively

straight forward because, unlike the original received signals y1R(t) and y2R(t), the real and

imaginary components of ŷ1R(t) and ŷ2R(t) all have finite dynamic range. Specifically, the

values of these components are confined to the interval [−1,+1]. Given the limited dynamic

range, we can use a simple (b + 1) bits uniform quantizer, where b is chosen such that the
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signal-to-quantization noise ratio (SQNR) is much higher than the channel SNR seen at

the destination receiver. Since the SQNR of a uniform quantizer (assuming that the real

and imaginary components of ŷ1R(t) and ŷ2R(t) are uniformly distributed in [−1,+1]) varies

according to 22(b+1) [71], an 8-bit (b = 7) quantizer can already yield a SQNR of 48 dB,

which is much higher than the anticipated channel SNR.

From the above discussion, it becomes clear that the proposed PF scheme requires a

total of

NPF = 4(b+ 1)KN (4.20)

bits to store the signals ŷ1R(t) and ŷ2R(t) at the relay, where fs = K/T is the sampling

frequency, (b+1) is the number of bits used in quantization, N is the number of bits in each

data packet, and the factor of 4 is the total number of real and imaginary components in

ŷ1R(t) and ŷ2R(t). In contrast, the 3-level Decode-and-Phase-Forward (3-DPF) and Alter-

nate 4-level Decode-and-Phase-Forward (A4-DPF) schemes described in Sections 4.2.2 and

4.2.3 require only

NDPF = 2N (4.21)

bits to store the decoded bit streams {d̂1,n}Nn=1 and {d̂2,n}Nn=1. However, this reduction in

storage requirement comes at the expense of additional computations required for demodula-

tion and re-modulation at the relay. According to (4.16), the discriminator detector used for

demodulation needs to compute the phase derivatives in the original received signal y1R(t)

and y2R(t) at the decision making instants. These derivatives can be expressed in terms

of the constant envelope signals ŷ1R(t) and ŷ2R(t) as −j ŷ∗1R(t) ˙̂y1R(t) and −j ŷ∗2R(t) ˙̂y2R(t),

where ŷ∗ and ˙̂y represent respectively signal conjugation and derivative. Let us assume

the two signal derivatives ˙̂y1R(t) and ˙̂y2R(t) are computed in the digital domain with ŷ1R(t)

and ŷ2R(t) represented by samples spaced T/K seconds apart, where K is an integer that

is large enough to ensure that the sampling frequency fs = K/T is higher than twice the

bandwidth of the product signal sR(t) = ŷ1R(t)ŷ2R(t). Then the corresponding discrete-time

differentiator is simply a K-tap digital finite impulse response filter 1 with a computational

1 Note that in theory, we can use a higher (> K) order differentiator to improve the accuracy of the
derivative estimate. However, it is unclear if this is actually beneficial in practice, given that such a differen-
tiator inevitably involves using samples that span multiple bits and the bit transitions may actually degrade
the accuracy of the derivative estimate at the decision making instants.
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complexity of K complex multiply-and-add (CMAD) for each decoded bit d̂1,n or d̂2,n. As

a result, the total demodulation complexity is

CDEMOD = 2KN (CMAD) (4.22)

As for the re-modulation complexity in DPF, if we assume a table look-up based modulator,

then the basic operations are waveform fetching and concatenation. These operations can

be assumed insignificant when compared to the multiply-and-add operations mentioned

above. Although a table-look-up re-modulator requires storage of all possible modulation

waveforms, this should not be counted towards the storage requirement of the two DPF

schemes, since the modulator is always required to transmit a nodes own data, irrespective

of whether it uses PF or DPF while in the relay mode. Another implementation structure

that is common to PF and DPF is the analog-to-digital converter front end.

In summary, from the computational complexity point of view, PF is simpler because it

avoids the CMAD operations required for demodulation at the relay. Although it requires

substantially more storage, the tradeoff still favors PF because memory is inexpensive while

additional computational load can, in general, lead to quicker battery drain and even the

need of a more powerful processor. We note further that the complexity of PF can be

further reduced if we adopt direct bandpass processing. This is achieved by first passing

ỹ1R(t) and ỹ2R(t), the bandpass versions of y1R(t) and y2R(t), through a bandpass filter,

followed by bandpass limiting [72], then bandpass sampling [73] and quantization. As

shown in [73], the sampling frequency of the bandpass signals is roughly the same as that

of their complex baseband versions. So no high speed analog to digital converter (ADC)

is required. By direct bandpass processing, we can bypass up and down conversions in

PF altogether, which in turn reduces the number of multiplication and addition required

to perform these steps in a digital modulator/demodulator. It should be emphasized that

with decode-and-phase-forward, down and up conversion are unavoidable.
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4.5 Performance Analysis

4.5.1 The BER of PF

The BER performance of the PF scheme with discriminator detection is evaluated using

the CF approach; see [31]. In the analysis, the variances of the fading processes gij(t) in

(4.1), where i, j ∈ {1, 2, R} and i 6= j, are denoted as σ2
ij , with σ2

1R = σ2
R1, σ2

2R = σ2
R2, and

σ2
12 = σ2

21. On the other hand, the variances of the noise processes nij(t) in these equations

are denoted as σ2
nij , with σ2

n12
= σ2

n21
= σ2

n1R
= σ2

n2R
= N0B12 and σ2

nR1
= σ2

nR2
= N0B3,

where N0 is the noise power spectral density (PSD), B12 the bandwidth of the receive

LPFs in Phases 1 and 2, and B3 the bandwidth of the receive LPF in Phase 3. In this

investigation, B12 is always set to the 99% bandwidth of s1(t) and s2(t), while B3 is either

the same as B12, or set to the 99% bandwidth of the relay signal sR(t). Given the nature

of the symbol-by-symbol detectors described in the previous section, we take the liberty to

drop the symbol index k in d1,k and d2,k in the performance analysis.

First, it is observed that the terms D21 in (4.16) is a quadratic forms of complex Gaussian

variables (y21, ẏ21) when conditioned on θ̇2; refer to Appendix 4A of this chapter for the

statistical relationships between different parameters in the general channel model

y(t) = g(t)ejθ(t) + n(t) = a(t)ejψ(t), (4.23)

where g(t) and n(t) are, respectively, CN (0, σ2
g) and CN (0, N0), θ(t) is the signal phase, and

a(t) and ψ(t) are the amplitude and phase of y(t), respectively. Without loss of generality,

we assume d2,k = +1 and hence θ̇2(t) = πh/T . By substituting θ = θ̇2 into (4A.5) and

(4A.8), and with F in (4A.10) set to the

 0 −j

j 0

 matrix in (4.16), we can find the two

poles of the CF of D21 as following:

p1 = − 1

2α21β21(1 + ρ21)
< 0, p2 = +

1

2α21β21(1− ρ21)
> 0, (4.24)

where α21, β21, ρ21 are determined from (4A.10) under the conditions θ̇ = πh/T , σ2
g = σ2

g21

and σ2
n = N0B12; B12 the bandwidth of the receive filter in Phases 1 and 2.
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How about the term DR1 in (4.16)? This term can be rewritten as DR1 = 2a2
R1Ψ̇R1 =

2
(
a2
R1ψ̇R1 − a2

R1θ̇1

)
, or in the quadratic form as

DR1 =
[
y∗R1 ẏ∗R1

] −2θ̇1 −j

j 0

 yR1

ẏR1

 , (4.25)

which is once again a quadratic form of complex Gaussian variables. This quadratic form,

however, depends on a number of parameters. First is the data phase derivation θ̇1. Second,

it depends on the forwarded phase derivative θ̇R = ψ̇1R + ψ̇2R, which in turns depends on

both ψ̇1R and ψ̇2R; refer to (4.11). Of course, ψ̇1R depends on θ̇1, while ψ̇2R depends on θ̇2,

refer to (4.9) and (4.10). Note that D21 and DR1 are statistically independent. Conditioned

on ψ̇1R, ψ̇2R, θ̇1, θ̇2 = πh/T , and F =

 −2θ̇1 −j

j 0

, we can determine from (4A.10) the

poles of the CF of DR1 as

Q1 =

(
χ2
R1 − θ̇1α

2
R1

)
−
√
α2
R1

(
θ̇2

1α
2
R1 − 2θ2

1χ
2
R1 + β2

R1

)
2
(
1− ρ2

R1

) < 0,

Q2 =

(
χ2
R1 − θ̇1α

2
R1

)
+

√
α2
R1

(
θ̇2

1α
2
R1 − 2θ2

1χ
2
R1 + β2

R1

)
2
(
1− ρ2

R1

) > 0.

(4.26)

where αR1, βR1, ρR1, χ2
R1 are determined from (4A.10) under the conditions θ̇ = ψ̇1R + ψ̇2R,

σ2
g = σ2

gR1
, and σ2

n = N0B3; B3 the bandwidth of the receive filter in Phase 3.

Recall that we assume d2 = ±1 and hence θ̇2(t) = πh/T . In this case, the detector

makes a wrong decision when D < 0. Since the CF of D is

ΦD(s) =
(p1p2)(Q1Q2)

(s− p1)(s− p2)(s−Q1)(s−Q2)
,

the probability that D < 0 is the sum of residues of −ΦD(s)/s at the right plane poles p2

and Q2, yielding

Pr
[
D < 0

∣∣∣θ̇1, θ̇2 = πh/T, ψ̇1R, ψ̇2R

]
=

−p1

p2 − p1

Q1Q2

(p2 −Q1)(p2 −Q2)
+
−Q1

Q2 −Q1

p1p2

(Q2 − p1)(Q2 − p2)
.

(4.27)
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Finally, since ψ̇1R and ψ̇2R are random variables given θ̇1 and θ̇2, respectively, the uncondi-

tional error probability can be expressed in semi-analytical form as

Pb =
1

2

+1∑
d1=−1

∞∫
−∞

∞∫
−∞

Pr
[
D < 0|θ̇1 = πhd1/T, θ̇2 = πhd2/T, ψ̇1R, ψ̇2R

]
×p
(
ψ̇1R

∣∣∣∣θ̇1 =
πhd1

T

)
p

(
ψ̇2R

∣∣∣∣θ̇2 =
πhd2

T

)
dψ̇1Rdψ̇2R

(4.28)

where the marginal probability density functions and can be determined from (4A.5)-(4A.6)

in Appendix 4A.

4.5.2 BER of 3-DPF and A4-DPF Signals

The two multi-level DPF signals broadcasted by the relay in (4.6) and (4.7) are con-

structed from decisions made by the relay about user nodes S1 and S2’s data. Although

different from (4.5), the exact BER analysis of these signals can still be determined via

the CF approach. This stems from the fact that the decision variable D of these DPF

schemes are again quadratic forms of complex Gaussian variables when conditioned on the

data phase derivatives θ̇1 and θ̇2, as well as their decoded versions
˙̂
θ1 and

˙̂
θ2 at the relay.

Specifically, the poles of the CF of D21 are identical to those in the PF case, and can be

found in (4.24). As for the poles of the CF of DR1, we should first replace the term θ̇ in the

Appendix by θ̇R = w1
˙̂
θ1 + w2

˙̂
θ2 and then modify the F matrix in (4A.10) to

F =

 −2w1
w2
θ̇1

−j
w2

j
w2

0

 (4.29)

The resultant poles are found to be

Z1 =

(
χ2
R1 − w1θ̇1α

2
R1

)
−

√
α2
R1

[(
w1θ̇1

)2
α2
R1 − 2w1θ̇1χ2

R1 + β2
R1

]
2
(
1− ρ2

R1

)
α2
R1β

2
R1

w2 < 0,

Z2 =

(
χ2
R1 + w1θ̇1α

2
R1

)
−

√
α2
R1

[(
w1θ̇1

)2
α2
R1 − 2w1θ̇1χ2

R1 + β2
R1

]
2
(
1− ρ2

R1

)
α2
R1β

2
R1

w2 > 0,

(4.30)

where αR1, βR1, ρR1 and χ2
R1 are determined from (4A.10) under the conditions θ̇ = w1

˙̂
θ1 +

w2
˙̂
θ2, σ2

g = σ2
gR1

, and σ2
n = N0B12; B12 the bandwidth of the receive filter in Phase 3. As

84



in the case of PF, the conditional BER is expressed in the form

Pr
[
D < 0

∣∣∣θ̇1, θ̇2 = πh/T, ψ̇1R, ψ̇2R

]
=

−p1

p2 − p1

Z1Z2

(p2 − Z1)(p2 − Z2)
+
−Z1

Z2 − Z1

p1p2

(Z2 − p1)(Z2 − p2)
.

(4.31)

The only difference between (4.31) and (4.27) is that the former is conditioned on the hard

decisions
˙̂
θ1 and

˙̂
θ2 made at the relay, while the latter is based on the soft decisions ψ̇1R

and ψ̇2R. If we let Pe,1 and Pe,2 be the probabilities that the relay makes a wrong decision

about S1 and S2’s data respectively, then the unconditional BER is

Pb =
1

2Nw

+1∑
d1=−1

∑
w1,w2

{
(1− Pe,1)(1− Pe,2)Pr

[
D < 0

∣∣∣∣θ̇1 =
πhd1

T
, θ̇2 =

πh

T
,

˙̂
θ1 = θ̇1,

˙̂
θ2 = θ̇2

]
+(1− Pe,1)Pe,2Pr

[
D < 0

∣∣∣∣θ̇1 =
πhd1

T
, θ̇2 =

πh

T
,

˙̂
θ1 = θ̇1,

˙̂
θ2 = −θ̇2

]
+Pe,1(1− Pe,2)Pr

[
D < 0

∣∣∣∣θ̇1 =
πhd1

T
, θ̇2 =

πh

T
,

˙̂
θ1 = −θ̇1,

˙̂
θ2 = θ̇2

]
+ Pe,1Pe,2Pr

[
D < 0

∣∣∣∣θ̇1 =
πhd1

T
, θ̇2 =

πh

T
,

˙̂
θ1 = −θ̇1,

˙̂
θ2 = −θ̇2

]}
(4.32)

where Nw = 1 for 3-DPF and Nw = 2 for A4-DPF, and the inner summation is over the two

different permutations of w1 and w2 in (4.8). It should be pointed out the error probabilities

Pe,1 and Pe,2 can be determined by integrating the marginal pdf in (4A.6) from −∞ to 0

when the data bit is a +1, or from 0 to +∞ when the data bit is a −1. The end result is

of the form [31, 74]

Pe,i =
1

2
(1− |ρi|) ; i ∈ {1, 2}, (4.33)

where |ρ1| and |ρ2| are |ρ| in (4A.5) obtained under the conditions σ2
g = σ2

1R, σ2
n = N0B1R

and σ2
g = σ2

2R, σ2
n = N0B2R respectively.

4.6 Numerical Results

We present next some numerical results for the proposed three-phase two-way PF and

DPF relaying schemes. For simplicity, we only consider the case of MSK, i.e. h = 1/2, and

plot the BER of the resultant cooperative communication system as a function of the SNR

in the direct link between S1 and S2. In general, the SNR of a link is defined as the fading
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Figure 4.1: BER of three-phase two-way PF cooperative transmission in a static Rayleigh
fading channel; B12 = 1.1818/T and B3 = 1.832/T .

variance σ2
g to noise variance σ2

n ratio in that link. Since the energy per transmitted bit is

Eb = σ2
12T and the noise variance is σ2

n = N0B12 = N0× 1.1818/T in the direct link, where

N0 is the noise power spectral density and 1.1818/T is the 99% bandwidth of MSK, the

SNR is equivalent to 0.85Eb/N0. Unless otherwise stated, all the links are assumed to have

the same SNR and the same fade rate fdT .

Figure 4.1 considers the case of static fading whereas Figure 4.2 considers the case of

time-selective fading with a normalized Doppler frequency of fdT = 0.03 in all the links.

To put the two-way relaying results into perspective, we compare them against the one-way

relaying results from [31] for MSK source signal and phase-forward relay signal. The BER

curves shown in these figures were obtained from the semi-analytical expression in (4.17)

and as well as from simulation. The two sets of results are in good agreement.

In the static fading case, it is observed from Figure 4.1 that two-way relaying is con-

sistently 3 dB less power efficient than one-way relaying over a wide range of BER. In the

fast fading case, two-way relaying has an irreducible error floor around 10−3 while that of
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Figure 4.2: BER of three-phase two-way PF cooperative transmission in a time-selective
Rayleigh fading channel; fdT = 0.03; B12 = 1.1818/T and B3 = 1.832/T .

87



one-way relaying sits at 6× 10−4. Above the irreducible error floors and at a BER of 10−2,

the difference between one and two-way relaying is about 5 dB.

One source for the degraded performance stated above is simply energy normalization.

In both figures, we assume all the nodes transmit with a bit-energy of Eb. This means one-

way relaying needs a total of 4Eb transmit two bits while two-way relaying needs only 3Eb

to transmit the same amount of information. So if we normalize the energy, the difference

between the two schemes in the static fading case actually reduces to only 1.5 dB. We regard

this loss as acceptable, given that two-way relaying improves the transmission efficiency by

33%.

The results obtained above were based on using a receive low pass filter (LPF) in the

R→S1 path whose bandwidth, B3, equals the 99% bandwidth of the relay signal. As

mentioned earlier, because of the spectral convolution effect, the bandwidth of the relay

signal is larger than that of the original MSK signal and is found to be 1.832/T . A natural

question is, how would PF perform if the signal in the R→S1 path is band-limited to that

of the MSK signal? Specifically, what is the tradeoff between a reduced noise figure but

an increased signal distortion because of tighter filtering? Figure 4.3 shows the effect of

using the same LPF in the relay path and the direct path, i.e. B3 = B12 = 1.1818/T .

The simulation results show that with a narrower filter in the relay path, the proposed

PF scheme actually achieves a better performance. We attribute this to the fact that non-

coherent detection is not match filtering, and the reduction in noise level through tighter

filtering more than compensates for the self-interference that it generates.

In a two way relaying system, the SNRs of different links are not necessarily equal as

explained in the previous chapters. For instance, if the relay is much closer to one of S1

and S2, then we expect the SNR in the S1→R or S2→R link to be higher than that in the

S2→S1 link. We next show in Figures 4.4 and 4.5 BER results for different asymmetric

channel conditions, for both static fading and time-selective fading with a normalized fade

rate of 0.03. As in Figure 4.3, the bandwidth of the LPF filter in the R→S1 path is set to

that of MSK. Three different scenarios are considered -

1. All the links have the same SNR,

2. The two source-relay paths have higher SNRs, and
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Figure 4.3: Effect of using the different LPF bandwidth, B3, in Phase 3 of PF cooperative
transmission; fdT = 0.03.
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Figure 4.4: BER at S1 for unequal SNR under static fading; γ̄1R, γ̄2R and γ̄21 are the SNRs
in the S1→R, S2→R and S2→S1 links.

3. Only one of the source-relay paths is stronger.

Also included in Figures 4.4 and 4.5 are the BERs of MSK without diversity and with dual-

receive diversity. From the figures, we can see that when the SNR in both the S1→R and

S2→R links is 20 dB stronger than that in the S2→S1 link, the BER curve exhibits a very

prominent second order diversity effect. In contrast, when all the three links are equally

strong, the diversity effect disappears (the case when only the S1→R link has a higher SNR

than the S2→S1 link falls in between these two cases).

Finally, we show in Figures 4.6 and 4.7 BER curves for the DF based 3-DPF and A4-

DPF schemes. Also included in the figures are results for the proposed PF scheme. The

bandwidth of all the receive LPFs is set to 1.1818/T , the bandwidth of MSK. From Figure

4.6, we can see that the performance of PF is consistently 2 dB more energy efficient than
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Figure 4.5: BER at S1 for unequal SNR and a fade rate of fdT = 0.03; γ̄1R, γ̄2R and γ̄21 are
the SNRs in the S1→R, S2→R and S2→S1 links.
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Figure 4.6: Performance of multi-level DPF and PF in static fading channel; B12 = B3 =
1.1818/T .

the two multi-level DPF schemes when fading is static. With time-selective fading, the

simulation results indicate PF and A4-DPF have somewhat similar performance and both

are more power efficient than 3-DPF. Hence, it can be concluded that the proposed PF

scheme not only offers a complexity advantage over multi-level DPF, it also provides a BER

advantage.

4.7 Conclusions

We consider in this chapter the use of constant envelope modulation in three-phase two-

way cooperative transmission. Specifically, CPFSK PF is proposed and its BER perfor-

mance compared to one-way relaying and to two-way relaying based on decode-and-forward

and multi-level re-modulation. As demonstrated in this chapter, the proposed technique

allows us to maintain constant envelope signaling throughout the signaling chain. This

property enables the relay to operate with highly power efficient power amplifiers without
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Figure 4.7: Performance of multi-level DPF and PF in a time-selective fading channel with
an fdT = 0.03; B12 = B3 = 1.1818/T .
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distortion, and does not require complicated signal processing at the relay like its decode-

and-forward counterparts. Through analytical and simulation studies, we found that the

BER of PF with discriminator detection in Rayleigh fading suffers only a moderate loss

in energy efficiency (of 1.5 dB after energy normalization) when compared to its one-way

relaying counterpart. We consider this loss as acceptable, considering that PF improves the

transmission efficiency by 33% and it offers a way to avoid expensive linear power amplifiers

and complicated signal processing at the relay. We also found that, in comparison with its

decoded-and-forward counterparts, the proposed PF scheme offers a lower BER while at the

same time relieves the relay from performing unnecessary demodulation and re-modulation

tasks.

Appendix 4A Statistical Properties of Faded Signal

We discuss in this Appendix the statistical properties of the faded signal

y(t) = g(t)ejθ(t) + n(t) = a(t)ejψ(t), (4A.1)

where g(t) and n(t) are zero-mean complex Gaussian processes with variances (per dimen-

sion) of σ2
g and σ2

n respectively, θ(t) is the transmitted signal phase, which is treated as

a deterministic parameter, and a(t) and ψ(t) are respectively the amplitude and phase of

y(t). Furthermore, the autocorrelation functions of g(t) follows a Jakes spectrum, i.e.

Rg(τ) =
1

2
E[g∗(t)g(t+ τ)] = σ2

gJ0(2πfdτ), (4A.2)

where fd is the bandwidth (Doppler frequency) of g(t). The noise term, n(t), on the other

hand, is band-limited white noise with an autocorrelation function of

Rn(τ) =
1

2
E[n∗(t)n(t+ τ)] = σ2

nsinc(Bτ), (4A.3)

where σ2
n = N0B, N0 being the power spectral density of n(t), and B the bandwidth of

ejθ(t).

At any time instant, the joint pdf of a, its derivative ȧ, ψ, its derivative ψ̇, given the

data phase derivative θ̇, is [31, 74]

p(a, ȧ, ψ, ψ̇|θ̇) =
a2

4π2α2β2(1− ρ2)
exp

{
− ȧ2

2β2(1− ρ2)

}
× exp

{
− a2

2β2(1− ρ2)

[(
ψ̇2 − ρβ

α

)
+
β2

α2
(1− ρ2)

]}
,

(4A.4)
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where

α2 =
1

2
E
[
|y(t)|2

]
= σ2

g + σ2
n, β2 =

1

2
E
[
|ẏ(t)|2

]
= σ2

g θ̇
2 + λ+ σ2

ṅ,

λ =
1

2
E
[
|ġ(t)|2

]
= 2π2f2

d σ
2
g , σ2

ṅ =
1

2
E
[
|ṅ(t)|2

]
= π2B2σ2

n/3,

χ2 =j
1

2
E[y(t)ẏ∗(t)] = σ2

g θ̇, ρ =χ2/(αβ) = σ2
g θ̇/(αβ),

(4A.5)

with ġ(t), ṅ(t), ẏ(t) being the derivatives of g(t), n(t), y(t) respectively. A useful marginal

pdf of (4A.4) is the pdf of ψ̇ given θ̇, which is found to be

p(ψ̇|θ̇) =
β2(1− ρ2)

2α2

[(
ψ̇ − ρβ

α

)2

+
β2

α2
(1− ρ2)

]− 3
2

(4A.6)

Another useful property is that the random vector

r =

 y

ẏ

 (4A.7)

is zero mean complex Gaussian with a covariance matrix of

Φ =
1

2
E
[
rrH

]
=

 α2 −jχ2

jχ2 β2

 (4A.8)

Consequently, the CF of the quadratic form

D = rHF r (4A.9)

is

Φ(s) = ‖I + 2sΦF‖−1 =
p1p2

(s− p1)(s− p2)
(4A.10)

where ‖ · ‖ denotes the determinant of a matrix, s is the transform domain parameter, and

p1 < 0 and p2 > 0 are respectively the left and right plane poles of the CF.
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Chapter 5

Conclusion and Future Work

In this thesis, we considered two multiplication based two-way relay protocols, the MF

and PF relay protocols. These two protocols have been shown to work with both coher-

ent and non-coherent modulation. The newly proposed relay protocols are insensitive to

power amplifier non-linearity and are therefore suitable for low cost high power efficiency

applications.

In Chapter 2, coherent modulation, i.e. MPSK, is used to develop the MF and PF relay

protocols. These protocols are studied under both LPA and NLPA and show that they

offer superior performance over the conventional AF two-way relay when the relay power

amplifier has limited instantaneous power. Further, PSK PF relay protocol achieves lower

BER than the AF counterpart. Both theoretical analysis and simulation were carried out

to characterize the BER performance of the relay protocols. We also found that both MF

and PF relays can achieve second order diversity.

When non-coherent modulations are used, we see that the MF and PF protocols have

the main advantage of having simple self-interference cancellation operation at the receiver

end. In Chapter 3, we applied both MF and PF protocols to DPSK modulation. The DPSK

MF and PF relays were found to work under both static and fast fading. And a BER lower

bound was derived for the static fading scenario. Based on this lower bound, we were able

to show that the DPSK MF two-way relay can fully exploit the diversity order available to

the system. Due to the lack of CSI at the receiver, the performance gain of PF over MF

protocol depends on uplink channel conditions. And the PF relay should be used when the
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relay is positioned in between the two user terminals to achieve best performance. Because

of the omission of pilot symbols in the DPSK modulated relay network, scalability can be

achieved easier compared to coherent relay network. This motivated us to generalized the

DPSK MF relay, and through analysis on the BER, we determined that the proposed DPSK

MF relay can fully utilize the diversity order available to the system.

In Chapter 4, the PF protocol was used with CPFSK modulation that achieves constant

envelop relay transmitted signal. The combination of PF forwarding relay and CPFSK

modulation led to a highly power efficient cooperative system. For comparison purpose,

we correspondingly developed two DF two-way relay protocols for the CPFSK. The DF

protocols allows self-interference cancellation before decision and can be combined with

direct path signal for data detection. Exact BER results were obtained for the proposed

protocols and were further verified by simulation.

The ideas reported in this thesis are new and has not been previously reported in the

two-way relay literature. Future research work may include extending the MF and PF

protocols to more spectrum efficient modulations such as the QAM. In the literature, star-

QAM has been know as to work with power efficient power amplifiers. It may be a good

modulation candidate to work with MF or PF protocols to improve data rate.
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Appendix A

Simulation Parameters

Both of the MF and PF relays are simulation studied for the various modulations em-

ployed in this thesis. The purpose of simulation study is twofold. First, simulations are used

to verify the analyses of the proposed relays, especially the BER performance. Secondly,

when analytical results are not available, e.g. the BER performance of AF and MF under

NLPA in Section 2.2.3 and 2.3.3, simulation is the only viable way to evaluate the system

performance. In the following, important simulation parameters are summarized.

The number of trials is the number of transmitted symbols from a user node during the

simulation for a given set of channel conditions and system configurations. The number of

trials for each BER point simulated is at least 107. This is to ensure accurate modeling

of the wireless channels as well as to collect enough error counts for reliable BER results.

Furthermore, if the BER is expected to be small, on the order of 10−7, then the number

of trials is increased to at least 10 times the inverse of the BER order so that sufficient

error counts are collected. For example, when the BER is expected to be 1×10−7, then the

number of trials is at least 108.

Two levels of simulations are performed — symbol level and waveform level. The symbol

level simulation is conducted when the communication system can be represented by a

discrete model, which typically corresponds to MF and PF relays with LPA in Chapter 2

and 3. However, when NLPA is employed in a MF or PF relay employing PSK or DPSK

modulation, the non-linearity effect acts on the waveforms of the relay transmitted signals,

and the symbol level discrete time model is no longer valid. In this case, waveform simulation
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is needed to simulate the performance of the system. The SQRC pulse with unit energy

and a roll-off factor of 0.5 is adopted and 8 samples per symbol is used to approximate the

received waveform at the relay. Another application of waveform simulation is the CPFSK

PF relay, because the CPFSK signals must be band limited to its 99% power bandwidth

and the limiter discriminator extracts phase derivative by differentiating the continuous time

signal. Further, to avoid aliasing, an oversampling factor of 16 is used when simulating the

CPFSK waveforms.
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